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ABSTRACT

Hypothesis testing plays an important role in econometrics. It is used to test aspects

of economic theory or to check the specification of an econometric model. Because

econometrics is a non-experimental discipline, it is essential to have reliable testing

procedures, particularly in the presence of nuisance parameters. Also,

econometricians often use sample sizes of under one hundred, therefore it is

preferable that their testing procedures have reliable finite-sample properties. In the

absence of uniformly most powerful (UMP) tests or uniformly most powerful

invariant (UMPI) tests, King (1987b) suggested the use of point optimal (PO) tests,

which are most powerful at a chosen point under the alternative hypothesis.

Unfortunately, these tests cannot always be constructed for a composite null

hypothesis. For situations where PO tests cannot be constructed, King suggested an

approximate point optimal (APO) test.

Existing studies, show that King's APO tests are not always reliable. For example,

Silvapulle (1991, 1994a) applied King's APO tests to two composite non-nested

testing problems, namely, testing for first-order moving average (MA(1)) errors

against first-order autoregressive (AR(1)) errors and testing for AR(1) errors against

first-order integrated MA (IMA(1,1)) errors with a negative MA coefficient in the

linear regression model. The APO test worked extremely well for the former problem

but performed poorly for the latter. This and the excellent finite-sample performance

of the PO test motivated us to propose an APO test, called the g test, based on the

generalised Neyman-Pearson lemma (GNPL), for testing a composite null hypothesis

against a simple alternative. This test can be used for testing a composite null

hypothesis versus a composite alternative.

In this thesis, we apply the g test to the above two testing problems considered by

Silvapulle and to the problem of testing for a static linear regression model with

AR(1) errors against a dynamic linear regression model with white noise errors. For

the first two problems, we compare the small-sample sizes and powers of our g test

with those of Silvapulle's test with encouraging results, while for the third problem,

we compare the small-sample sizes and powers of our test with those of marginal



likelihood based one-sided classical tests, such as, the likelihood ratio (LR), Wald

(W) and Lagrange multiplier (LM) tests. Because classical tests are specially

designed for nested testing, they are applied to test for the significance of the dynamic

regressor coefficient in a dynamic linear regression model with AR(1) errors. We

consider both the Laplace approximated information based and estimated information

I based W (and LM) tests, in order to see which test is best in finite samples.

1
I

We selected the third problem purposely because the performance of the PO and APO

tests in the presence of (unavoidable) nuisance parameters is largely unknown in

practice. The presence of nuisance parameters can make tests non-similar. Because it

is extremely hard to obtain exact non-similar critical values of non-similar tests, few

studies exist based on (approximate) non-similar critical values. In this thesis, we

propose a new approach to obtain exact non-similar critical values of general non-

similar tests, using a global optimizer called simulated annealing (SA). Because this

can be an extremely computer intensive procedure, we also suggest and investigate

the performance of near exact non-similar critical values. Because this SA based

approach involves controlling the maximum size of a non-similar test over the

nuisance parameter space, this method also allows one to assess the accuracy of any

approximation to the distribution of the test statistic under the null hypothesis. In this

thesis, we used this approach to assess the finite-sample performance of large-sample

based classical tests under the null hypothesis and to check whether the large-sample

distribution based test or the approximate small disturbance asymptotic (ASDA)

distribution based test is more reliable. For the latter case, we used the large-sample

based Durbin's t test and the ASDA distribution based Durbin-Watson (DW) test in

the context of the dynamic linear regression model.

Our study clearly shows that the marginal likelihood based one-sided asymptotic LR

and W tests cannot be trusted under the null hypothesis even when the sample size is

60, because they can have maximum sizes closer to one over the nuisance parameter

space. Compared to all the tests considered, the Laplace approximated information

based LM test seems to be the best in this regard, however, it is not ideal either. Our

study also shows that neither the large sample based t test nor the ASDA distribution

based DW test is best under the null because both tests can have approximately the

same (higher than nominal) maximum sizes over the nuisance parameter space.

XI



The overall recommendation of this thesis is that, if a PO test is suitable for a

particular testing problem it should be used. For the testing problems we considered,

the g test performs well, which suggests that this test may be useful for other

situations where the PO test cannot be constructed. For the non-similar tests we

considered, near exact non-similar critical values generally seem good approximations

to the exact non-similar critical values. Also our study favours near exact non-similar

critical values over approximate non-similar cntical values.
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Chapter 1: Introduction

CHAPTER 1

INTRODUCTION

1.1 Introduction

Hypothesis testing plays an important role in econometrics. It is used to test aspects

of economic theory or to check the specification of an econometric model. The non-

experimental nature of econometrics (which distinguishes econometrics from its

parent discipline of statistics), means econometricians have little control over sample

size and there is much less certainty about model specification than in disciplines in

which experiments can be conducted. Also, econometric models often have to

account for factors which may not be directly of interest. Thus, econometric models

typically contain large numbers of unknown parameters, about whose true functional

form, little is known. For all these reasons, econometricians need reliable testing-

procedures, particularly in the presence of nuisance parameters (see King (1994)).

Also, these tests should be as powerful as possible.

Tests that have the correct size and good power properties can be regarded as good

tests. Achieving correct sizes is a problem in the presence of nuisance parameters

because their presence can make tests non-similar. In other words, the test's sizes
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vary with the nuisance parameter values, thus size cannot be fixed at a desired level.

The conventional approach to dealing with non-similar tests is to control the

maximum probability of a Type I error (or size) over the nuisance parameter space by

ones choice of critical values. These critical values are called exact non-similar

critical values and if they are used, sizes for all null hypothesis data generating

processes will never exceed the nominal size.

For any testing problem, we would like to use a uniformly most powerful (UMP) test

or a uniformly most powerful invariant (XJMPI) test1, which always have power at

least as great as that of any other test of the same size. However, such tests rarely

exist. If a UMP test does not exist then selecting a test becomes complicated by the

fact that no single test dominates in terms of power. For this situation, Cox and

Hinkley (1974) suggested three alternative approaches to test construction, namely,

using a test which maximizes power at a "somewhat arbitrary typical point" in the

alternative parameter space, removing this arbitrariness by choosing the point to be

close to the null hypothesis and choosing the test which maximizes some weighted

average of power over the alternative parameter space. Cox and Hinkley's first

suggestion is known as the point optimal (PO) solution and was investigated by King

(1983, 1987b). For tests based on the second suggestion, see Wu and King (1994),

and for tests based on the third suggestion, see Andrews and Ploberger (1994).

In this thesis, we propose an approximate point optimal (APO) test, based on the

generalised Neyman-Pearson lemma (GNPL), for testing a composite null hypothesis

against a simple alternative. We denote this test as the g test. The g test can be used

for testing a composite null hypothesis against a composite alternative. As explained

below, this test will be useful for situations where King's PO test cannot be

constructed. The g test involves the finding of multiple critical values. These critical

values can be obtained by following an iterative procedure (described in Chapter 3) or

by using a global optimizer called simulated annealing (SA) (described in Chapter 5).

In this thesis, we also propose a new approach to obtain exact (and near exact) non-

similar critical values of general non-similar tests, using SA. To author's knowledge

this is the first study that uses SA for these purposes.

If a test is UMP within the class of invariant tests then it is called a UMPI test.



Chapter 1: Introduction

1.1.1 Motivation for Constructing the g Test

King (1987b) introduced a PO test (which is the most powerful test at a chosen point

under the alternative hypothesis) for testing nested and non-nested hypotheses2.

Because it is the most powerful test at a chosen point, King observed that his PO test

can be used to trace out the maximum attainable power envelope for a given problem.

The power envelope provides a benchmark against which test procedures can be

evaluated. Also, the PO test exploits the one-sided nature of the testing problem in

economic applications, which is helpful for situations where one has reasons to

believe that the parameter under study is positive or negative3.

Because, PO tests are exact, they are useful for the typical sample sizes used in

econometrics. For the majority of testing situations, PO tests have excellent relative

power around the point at which power is optimised. They also can have good power

away from this point. For example, if a UMP test exists, then the PO test will be

UMP. For some testing situations, PO tests can be approximately UMP (see Shively

(1988b)) or can be UMP over a subset of the alternative parameter space (see King

and Smith (1986)). However, for other testing situations, the relative power

performance of the test can drop away quickly as one moves away from the point at

which power is optimised (see Dufour and King (1991)).

Though the PO test has several advantages, it is not suitable for every testing situation

in econometrics. It seems suitable for testing problems which involve a small number

of parameters and prior knowledge of the signs of the parameters under the alternative

hypothesis. As King points out, in econometric applications the knowledge of the

parameter's signs can often be deduced from the underlying economic theory and the

number of parameters in a testing problem, particularly if one is dealing with a linear

model, can sometimes be reduced by invariance methods or by considering sufficient

statistics. Even if these are realised, the PO test cannot be guaranteed always to exist

as we shall discuss next.

2 Nested hypotheses mean the null can be obtained as a simplified version of the alternative model. If
this is not the case for all models under the null then the hypotheses are known as non-nested (see
McAleer and Pesaran (1986)).
3 In hypothesis testing, using such information should result in greater power (see Wu and King
(1994)).
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A PO test always exists for (a) a simple null hypothesis versus a simple alternative

hypothesis testing problem, and for (b) a simple null hypothesis versus a composite

alternative hypothesis testing problem, but not always for (c) a composite null

hypothesis versus a composite alternative hypothesis testing problem. That is, for (a),

the fundamental Neyman-Pearson lemma (FNPL) provides a likelihood ratio (LR)

test, which is the most powerful test, therefore, it is the PO test. Similarly, for (b), for

a chosen point in the alternative parameter space, the FNPL based LR test is the most

powerful test in the neighbourhood of that chosen point, therefore, it is the PO test.

For (c), one might think of applying the FNPL based LR test for a chosen point under

the null versus a chosen point under the alternative case, however, this test does not

necessarily result in a test which is PO. The reason for this is that because the null

hypothesis is composite, the sizes of the test are a function of parameters under the

null hypothesis and hence vary with the values of these parameters. This means that

we cannot fix the size of the test to a desired constant level. The standard approach in

this situation is (as mentioned earlier) to control the maximum size to be less than or

equal to some desired nominal size by ones choice of critical value. If for such a

critical value, the maximum size of the FNPL based LR test occurs precisely at the

chosen point under the null, then the test will be most powerful in the neighbourhood

of the chosen point under the alternative, thus, it is the PO test. However, it may not

be possible to obtain such critical values always, consequently this form of PO test

cannot be guaranteed always to exist when testing a composite null. For situations

where a PO test cannot be constructed, King (1987b) recommended an APO test.

Existing studies suggest that King's APO tests are not always reliable. For example,

Silvapulle (1991, 1994a) applied King's APO tests to two composite non-nested

testing problems, namely, testing for first-order moving average (MA(1)) errors

against first-order autoregressive (AR(1)) errors and testing for AR(1) errors against

first-order integrated MA (IMA(1,1)) errors with a negative MA coefficient in the

linear regression model. The APO tests worked extremely well for the former

problem but performed poorly for the latter. Studies like this indicate that it is

important to have a reliable APO test for testing composite hypotheses, which

econometricians frequently face. This and the rem?*l • >le finite-sample properties of

the PO tests reported in previous studies motivated us to develop the g test which is

introduced in Chapter 3.
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1.1.2 Motivation for a New Approach to Finding Exact (and Near Exact)

Non-Similar Critical Values

As noted earlier, the presence of nuisance (or unknown) parameters can make tests

non-similar. To avoid the effects of nuisance parameters, researchers often search for

a class of similar or invariant tests. In the former test case, the size of the test is fixed

independently of the nuisance parameters and in the latter case, the nuisance

parameters are avoided by making the test invariant to the class of data

transformations that they represent. Invariant tests are attractive but not always

available. Also the associated test statistics tend not to have standard distributions.

Similarly, it may not always be possible to construct similar tests for complicated

problems. Also, similar tests may be less powerful than non-similar tests (see

McAleer and Pesaran (1986) and McAleer (1995) in the context of non-nested

testing). Another popular approach (in the presence of nuisance parameters) is to

replace the unknown parameters by consistent estimates and appeal to asymptotic

theory. Recent studies show that using marginal likelihood estimates rather than

classical likelihood estimates for the nuisance parameters can result in better finite-

sample inferential procedures (see Ara (1995), Grose (1998) and Rahman and King

(1998))4. However, this approach does not solve the problem of tests being non-

similar.

By assuming knowledge of the nuisance parameters, exact size critical values of a

non-similar test can be obtained via the Monte Carlo method. If such a critical value

is used, for the nuisance parameter values we assumed the test size will be equal to

the nominal size. Exact size critical values for non-similar tests are not useful in

practice because they require knowledge of the unknown parameters. Exact non-

similar critical values can be useful, however, they seem to be less popular because

they require performing a Monte Carlo experiment each time one wants a critical

value. There are few existing studies based on non-similar critical values (see Inder

(1985), King and McAleer (1987), Grant (1987) and Silvapulle (1991)). However,

these are typically only based on approximate non-similar critical values.

4 Marginal likelihood is one of the likelihood based methods designed to overcome the nuisance
parameters' problem and is discussed in Chapter 5.
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Approximate non-similar critical values may not work well for all testing problems,

design matrices and tests. Also, it is difficult to obtain them when the number of

nuisance parameters is high. This motivated us to investigate a (SA based) approach

to obtain exact (and near exact) non-similar critical values of general non-similar

tests. This approach involves controlling the maximum size of a non-similar test over

the nuisance parameter space, therefore it is also useful for assessing the accuracy of

an approximation to the distribution of the test statistic under the null hypothesis.

This thesis focuses on the following issues:

(1) The theory and construction of the g test.

(2) Testing for MA(1) errors against AR(1) errors in the linear regression model,

using the g test.

(3) Testing for AR(1) errors against IMA(l.l) errors in the linear regression model

using the g test.

(4) Calculating exact (and near exact) non-similar critical values and exact size

critical values5 for general non-similar tests via SA.

(5) Testing a static linear regression model with AR(1) errors against a dynamic linear

regression model with white noise errors, using the marginal likelihood based g

test and the marginal likelihood based one-sided classical tests.

Among these, (1), (2) and (3) are discussed in Chapter 3, while (4) and (5) are

discussed in Chapter 4 and Chapter 5, respectively. Unlike for the first two testing

problems, nuisance parameters cannot be avoided for the last problem. We purposely

selected the last problem, in order to see the performance of the g test (which is an

APO test) in the presence of (unavoidable) nuisance parameters .

5 Exact size critical values are obtained by assuming knowledge of the unknown parameters.
6 Chapter 2 reveals that the performance of the PO and APO tests in the presence of unavoidable
nuisance parameters is largely unknown.
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1.2 Outline of the Thesis

A review of hypothesis testing is presented in Chapter 2. This chapter mainly focuses

on studies involving PO tests in the context of composite hypothesis testing. Because

all the applications considered in this thesis are non-nested, some popular non-nested

tests are also briefly discussed. In addition, other studies that are relevant to this

thesis, such as, studies based on non-similar critical values and those based on SA are

also discussed.

This chapter reveals the importance of developing tests which have excellent finite-

sample properties, such as, PO tests, rather than relying on large-sample based tests.

For example, in the context of non-nested testing, almost all the existing tests are

large-sample based and many are observed to perform poorly in finite samples.

Studies involving APO tests of a composite null indicate the need for a reliable APO

test. We also note that PO and APO tests have been applied mainly for situations

where the nuisance parameters can be avoided via invariance arguments, which

confirms the fact that their performance in the presence of unavoidable nuisance

parameters is largely unknown. Studies based on approximate non-similar critical

values indicate that obtaining such critical values can be quite difficult when the null

distribution of the test statistic depends on more than one nuisance parameter.

Finally, studies on SA confirm that the SA algorithm is much more robust than

conventional algorithms.

Chapter 3 discusses the theory behind the g test and how it can be applied for testing

composite non-nested disturbance covariance matrices in the linear regression model.

The g test is then applied for the first two (above mentioned) testing problems and the

small-sample size and power properties are compared with those from Silvapulle

(1991, 1994a) and Silvapulle and King (1991). Also, the use of the g test is illustrated

by its application to two real world data sets.

Chapter 4, proposes a new approach to calculating exact size critical values (r /

assuming knowledge of the unknown parameters) and exact non-similar critical

values of general non-similar tests. Because obtaining the exact non-similar critical
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values can be time consuming, we also suggest and investigate the use of near exact

non-similar critical values. For this study we consider two non-similar tests, namely,

the Durbin-Watson (DW) test and Durbin's t test in the context of the dynamic linear

regression model. In order to obtain near exact non-similar critical values of these

tests, we use approximate small disturbance asymptotic (ASDA) and large-sample

based critical values, respectively, and SA. Therefore, in this case, our SA based

approach can be expected to indicate which asymptotic approach is more reliable

under the null hypothesis. In this chapter, we calculate the sizes of the tests for a

variety of nuisance parameter values and design matrices, in order to check whether

the SA based near exact non-similar critical values are indeed working well in terms

of controlling the sizes over the nuisance parameter space. We also compare near

exact non-similar critical values with approximate non-similar critical values used in

previous studies.

Chapter 5 explores the problem of testing for a static linear model with AR(1) errors

against a dynamic linear model with white noise errors. As mentioned earlier, for this

problem, the nuisance parameters cannot be avoided. Therefore, to lessen the

nuisance parameters' effect, here we deal with marginal likelihood based tests. The

tests considered for this problem are the marginal likelihood based g test and the

marginal likelihood based one-sided LR, Lagrange multiplier (LM), and Wald (W)

tests. Both Laplace approximated information based and estimated information based

W (and LM) tests are considered in order to see which test is best in finite samples.

The size and power comparisons of this chapter are based on near exact non-similar

critical values obtained via SA. Here, the size and power calculations are made for a

variety of nuisance parameter values in order to determine the best test over the

nuisance parameter space.

A summary and some concluding remarks are given in the final chapter.
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CHAPTER 2

HYPOTHESIS TESTING AND RESEARCH FINDINGS RELATED

TO OUR STUDY: A REVIEW

2.1 Introduction

The non-experimental nature of econometrics leads to much less certainty about

model specification than in disciplines in which experiments can be conducted. That

is, for a particular economic data set there may be more than one plausible model.

Any model seems plausible should it be able to stand up to rigorous testing using

empirical data. For this purpose there exist many diagnostic tests such as the DW test

for serial correlation, LM tests for various forms of heteroscedasticity, tests for

functional form, structural stability, exogeneity of regressors and so on (see Beggs

(1988) for an excellent survey on diagnostic tests). It is possible for these diagnostic

tests to accept one or more models within the same (nested) or across different (non-

nested) paradigms. It is then important to test the models which are not rejected by

diagnostic tests against each other using powerful testing procedures because correct

model specification is essential for inference, forecasting and policy making.
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Econometricians typically use small to moderate sized samples. Because it is

extremely hard to derive the finite-sample distributions of test statistics in the

presence of nuisance parameters, econometricians often use large-sample based tests.

However, large-sample based tests generally perform poorly in terms of size

properties. For example, the majority of the tests proposed for non-nested problems

are large-sample based and many are known to perform poorly in finite samples (see

McAleer and Pesaran (1986) and McAleer (1987, 1995) and Godfrey (1998)). The

reason for the failure of most of the asymptotic tests in finite samples may be due to

their dependence on the likelihood principle. That is, the most popular basis for

estimation and inference in econometrics is the maximum likelihood or likelihood

principle. It is well known that maximum likelihood estimates are biased in finite

samples, consequently, maximum likelihood based tests can be expected to perform

relatively poorly in finite samples. Recent studies show that marginal likelihood

based tests behave better than conventional likelihood based tests in small samples

(see Ara (1995), Rahman and King (1998), and Grose (1998)). This suggests that

better handling of nuisance parameters may improve the small-sample properties of

large-sample based approaches. Because marginal likelihood based tests have been

applied mainly to linear regression models and dynamic linear regression models with

white noise errors, their performance for more complicated models is largely

unknown.

King's (1987b) point optimal (PO) testing approach is particularly aimed at small-

sample testing problems. Since its introduction, PO tests and approximate point

optimal (APO) tests have been applied successfully to many testing situations.

Strangely, many text books fail to mention the PO testing approach and its progress.

We also observe that recent studies on non-nested testing procedures also mostly

ignore this approach (see McAleer (1995) and Pesaran and Weeks (2000)). This

chapter's aim is to survey contributions on PO testing in the context of composite

hypothesis testing. Because all the applications considered in this thesis are non-

nested, we briefly discuss some popular non-nested tests as well. Other studies

relevant to this thesis are also reviewed.

The plan of this chapter is as follows. Section 2.2 introduces PO and APO tests.

Section 2.3 briefly discusses some non-nested tests. Section 2.4 compares the PO

10
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(and APO) tests of a composite null hypothesis with other existing tests. Section 2.5

reviews some other relevant studies to this thesis. Finally, concluding remarks are

given in section 2.6.

2.2 Introduction to PO Tests and APO Tests

In the absence of UMP or UMPI tests, King (1987b) suggested a PO test, which is the

most powerful test at a chosen point in the alternative parameter space. The idea

behind his PO test is as follows. If we focus ^n one point in the alternative hypothesis

parameter space, then for a given significance level, all tests have a single power

value at this point. According to theory, for a given class of tests, the maximum (or

supremum) of these power values exists and a test whose power attains this maximum

is a most powerful test in the neighbourhood of the predetermined point; it is the PO

test.

King proposed the PO test for a very general framework and applied it to the problem

of testing for AR(1) errors against MA(1) errors in the linear regression model. He

proposed the PO test for the general problem of testing

Ho: x has density f(x\co) (2.2.1)

against

Ha: JC has density g(xW) (2.2.2)

where x is the observed sample, (O is a p x 1 vector of parameters restricted to the

set A and 0 is a q X1 vector of parameters restricted to the set 0 . Observe that this

general testing problem incorporates both nested and non-nested problems as special

cases. We assume that any knowledge about the possible range of parameter values

has been used to keep the parameter sets, A and 0 , as small as possible.

For the simpler problem of testing

11
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(2.2.3)

against

H*a: x has density g{x,6x), (2.2.4)

where fl),6 A and 0, e 0 are fixed and known, the fundamental Neyman-Pearson

lemma (FNPL) implies that rejecting H*Q for large values of s(a)l,6l) =

g(x,dx)l/(*,*yj) is the most powerful test. Suppose we wish to test a simple

hypothesis Hi against a composite alternative Ha, the same test can serve as the most

powerful test in the neighbourhood of 0,. However, as discussed in the previous

chapter, the same test does not necessarily result in a most powerful test in the

neighbourhood of 0,, when testing Ho against Ha. King observed that this could

happen only if the critical value c and the point co] can be chosen such that

?r[s(Q)l,dl)>c\x~f(x,G)l)] = a (2.2.5)

and

Pr[s(Q)l,0l)>c\x~ f(x,co)] < a, for all coeA, (2.2.6)

where a is the desired level of significance. That is, we have to choose co] such that

the maximum size of the test occurs at this point. For situations where appropriate

values of ft), and c cannot be found, King suggested an APO test. The APO test

requires cox to be chosen such that (2.2.6) holds and

a - Pr[s(G)x,0l)>c\x~f(x,Q)l)] (2.2.7)

is minimised. Obviously, if (2.2.7) equals zero, then, the APO test is the PO test.

Thus, the closer (2.2.7) is to zero the better.

12
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The majority of successful applications of the PO approach have been in the context

of the linear regression model. Some examples are: testing for AR(1) disturbances

(Berenblut and Webb (1973), King (1985a) and Dufour and King (1991)); testing for

MA(1) disturbances (King (1985b)); testing for heteroscedasticity (Evans and King

(1985, 1988)), testing for random walk disturbances (Sargan and Bhargava (1983));

testing for random coefficients (Franzini and Harvey (1983), Shively (1986, 1988a,

1988b), Brooks and King (1994), Brooks (1993, 1995) and Rahman and King

(1994)); testing for moving average unit roots in ARIMA models (Saikkonen and

Luukkonen (1993)); testing for autoregressive disturbances in a time series regression

with missing observations (Shively (1993)), testing for block effects in regression

disturbances (Bhatti (1992) and Bhatti and King (1994)); and tests of non-nested error

processes (King (1983, 1987b), Silvapulle (1991, 1994a, 1994b) and Silvapulle and

King (1991, 1993)).

Despite its excellent performance on many occasions, King "s PO test has had its

critics (see Dastoor and Fisher (1988), Bierens (1988) and Potscher (1988)). The

main criticisms King's PO test have received are as follows.

(1) The finite-sample distributions of the PO tests are complex, therefore, it is

computationaly difficult to obtain critical values for the PO tests.

(2) If the null hypothesis is simple (possibly after reduction by invariance), PO tests

can be easily constructed using FNPL. But in practice, there exist testing

problems which cannot be simplified by using the invariance principle or by any

other means. Will PO tests be able to be found and will they continue to perform

well in such situations?

For the first reason, some researchers have ignored the PO test (even for situations

where it can be easily constructed) and have developed or used tests which have

known asymptotic distributions (see Burke et al. (1990) and Smith and Tremayne

(1990)). Asymptotic tests are easier to apply because of their known asymptotic null

distributions. However, computational simplicity is not the only criterion for making

a choice of testing procedure. A good test should have right size and good power

properties.

13
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2.3 A Brief Introduction to Non-Nested Tests

The classical tests are not appropriate for non-nested hypothesis testing, because the

distributions of statistics such as LR or W test statistics are not centred at zero under

the null hypothesis when the hypotheses under consideration are non-nested.

However, if conventional test statistics are appropriately centred (at least

asymptotically), the same tests can be applied for non-nested hypothesis testing.

Observing that the standard LR test is not applicable for non-nested hypothesis testing

and needs to be properly centred, Cox (1961, 1962) suggested a modification of the

LR test statistic (hereafter, the Cox test) which does not have the usual central chi-

squared distribution under the null hypothesis and can be quite demanding in terms of

computation. The Cox test has been mainly applied to linear and simple non-linear

regression models (for example, see Pesaran and Deaton (1978) and Evans and

Deaton (1980)). This may be due to the complex and often intractable derivations

that are involved in the computation of the numerator of the Cox statistic in non-

regression situations. To overcome this problem, Pesaran and Pesaran (1993)

proposed a simulation based approach for computing the Cox statistic. A drawback of

this approach is that it depends on a reference distribution which is valid

asymptotically.

Atkinson's (1970) test is closely related to the Cox test and is based on a

comprehensive model constructed by artificially nesting the non-nested models of

interest. Because his testing framework is nested, standard tests designed for nested

hypothesis testing can be used. However, Atkinson's test suffers some limitations

(see Pesaran and Weeks (2000)).

Many other tests that are asymptotically equivalent to the Cox test have been

proposed and investigated by various authors in the context of non-nested linear

regression models. Among these, the following tests seem popular: two artificial

nesting procedures known as the J and P tests proposed by Davidson and

MacKinnon (1981, 1982), the JA test (which is an exact test under normally and

independently distributed (NID) errors) proposed by Fisher and McAleer (1981), the

Cox-type N test proposed by Pesaran (1974) and adjusted Cox-type tests derived by

14
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Godfrey and Pesaran (1983). Though easy to implement, Deaton's (1982) F test

(which is exact under NID errors) has been used less frequently than either the J or

JA tests. This may be due to its poor power properties (see McAleer and Pesaran

(1986)).

According to the literature, the Cox test and Cox-type tests can have significantly

higher than nominal sizes, particularly in finite samples. Though, the JA and F tests

have accurate sizes, they can be less powerful than the Cox and J tests. In order to

overcome the poor performance of the Cox test under the null, Godfrey and Pesaran

(1983) proposed some modifications to the test based upon mean and variance

adjustments which resulted in a substantial improvement in its finite-sample

performance. In particular, Godfrey and Pesaran showed that their adjusted Cox-type

tests have empirical sizes that agree very closely with the nominal size, while having

power that is typically much higher than those of the F and JA tests. However, their

adjusted Cox tests do not have known null distributions.

In the context of non-nested linear regression models, Godfrey (1998) noted that the

J test has several useful features: it is easily generalised to allow for several non-

nested alternative regression models; and it has considerable intuitive appeal. He also

noted that after adjustment of critical values (because the J test is known to perform

poorly in small samples), the J test might be more powerful than other procedures.

These observations led him to apply the bootstrap method to the J test to reduce the

problem of over rejection of true models7. He also applied this technique to the Cox-

type N test, JA test, F test and adjusted Cox-type tests of Godfrey and Pesaran

(1983) and noticed a substantial improvement in finite-sample sizes, when the errors

are normal and non-normal (when errors are non-normal, the JA and F tests are no

longer exact and are asymptotically valid only). Godfrey's power results indicate that

the J and Godfrey and Pesaran's tests are equally powerful, whereas, the F and JA

tests are less powerful. He applied the bootstrap method to the multiple non-nested

alternatives case as well. Based on his results, he recommended the bootstrap based

joint J test over a joint F test for testing multiple alternatives. The remarkable

performance of the bootstrap approach led Godfrey to comment that the bootstrap

7 Bootstrap is a data based simulation method which is useful to approximate an unknown sampling
distribution (see Horowitz (1997)).
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samples could be used to make more reliable inferences from diagnostic checks as

well. Fan and Li (1995) and Davidson and MacKinnon (1996) also successfully

applied the bootstrap method to the / test.

Walker (1967) was the first to introduce a test based on Cox's principle for testing

non-nested time series models, especially AR(p) against MA(q) processes. However,

his test turns out to be unattractive in terms of computation, particularly when both p

and q exceed one. Godfrey and Tremayne (1988) proposed pure significance (PS)

tests for testing AR(1) against MA(1) models. These tests are asymptotically valid

and are easy to calculate but can have higher than nominal sizes in finite samples.

Observing this, Smith and Tremayne (1990) introduced various correction factors to

the PS tests to ensure that sizes of the corrected PS tests are reasonably close to the

nominal size, in the context of testing AR(1) against MA(1) models. Burke et al.

(1990) introduced an easy to implement PS test to the problem of testing for AR(1)

errors against MA(1) errors in the lineai regression model. Some other studies that

considered the problem of testing between AR and MA models are McAleer et al.

(1988), Hall and McAleer (1989), Godfrey and Tremayne (1992), and Franses (1992).

Baltagi and Li (1995) derived some modifications to the PS test of Burke et al. (1990)

and applied their modified test to the problem of testing for AR(1) errors against

MA(1) errors (and vice-versa) in an error components model. Their Monte Carlo

results suggest that the PS test for testing AR(1) against MA(1) errors is trustworthy

only when the sample size, n > 60 and n is greater than the number of individuals.

However, the PS test for MA(1) errors against AR(1) errors performs well when the

number of individuals is large and does not rely on n to achieve its asymptotic

distribution.

McKenzie et al. (1999) developed some simple (large-sample based) separate (or non-

nested) tests for testing AR(p) against MA(q) errors (and vice-versa) in the linear

regression model. After estimating both the null and alternative non-nested models

by maximum likelihood methods, their testing procedure involves testing the

significance of variables added to a linearised version of the null model, the added

variables being the predictions, or the residuals from the specified alternative model,

16
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or the difference of the predictions of the two models8. For the simpler case of testing

for AR(1) against MA(1) errors (and vice-versa), they compared the finite-sample

properties of their tests with those of the PS tests of Burke et al. (1990) and LM tests

of AR(1) against ARMA(1,1) errors. Their Monte Carlo results, supported the

prediction tests which use information from the alternative hypothesis. The LM tests

(which use information about the null model only) are the second best and PS tests

perform the worst.

Mizon and Richard (1986) proposed two encompassing testing procedures, namely,

the Wald encompassing test (WET) and the score encompassing test (SET), for

testing encompassing hypotheses (see Gourieroux and Monfort (1995) and references

therein). The encompassing approach involves asking whether the null model can

explain one or more features of the rival alternative model. When all the features of

the alternative model can be explained by the null model, it is said that the latter

model encompasses the former model. Similarly, the alternative model can also

encompass the null model9. McAleer and Pesaran (1986) noted that encompassing

tests are also straightforward applications of Cox's principle. Both encompassing

tests are harder to implement because the derivations involved in the test statistics are

not always easy to evaluate.

2.4 Comparing PO (APO) Tests of a Composite Null Hypothesis with

Other Tests

PO and APO tests have been applied to both nested and non-nested testing problems,

which are discussed separately below. Also, for each category (nested and non-

nested), we explain how the PO test and APO test can be constructed for a selected

testing problem.

8 Thus, separate tests are also known as prediction tests.
9 For a formal definition of encompassing, see Gourieroux and Monfort (1995).
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2A.I Comparing Tests for Composite Non-Nested Problems

Because PO tests have been applied more to the problem of testing for AR(1) errors

against MA(1) errors in the linear regression model, we explain how to construct the

PO test for this popular problem. Consider the linear regression model,

(2.4.1)

where y is an n x 1 vector, X is an n x k nonstochastic matrix of rank k < n, /?

is a k x 1 parameter vector and u is the n X1 vector of disturbances.

Suppose we wish to test the null hypothesis that the elements of u are generated by

the stationary AR(1) process,

Ho: u, = pu,_x + e , , 0 < p < \ , (2.4.2)

against the alternative hypothesis that the elements are generated by the MA(1)

process,

H a : u , = e, + ye,_x, 0 < y < 1 , (2.4.3)

where, e = (eQ, e,, ..., «„)'- N(0,cr2/n+1). These hypotheses can be rewritten in

matrix form as

H0:u~ , 0 < p<\, (2.4.4)

against

Ha: u , 0< y < (2.4.5)
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where S(p) is an nxn matrix whose (ij)th dementis p | l W ' / ( l - p 2 ) and Cl(y) is

the nxn tridiagonal matrix with l + y2 as the main diagonal elements and y as the

nonzero off-diagonal elements. For this problem, the nuisance parameters J3 and <72

can be avoided by using the invariance method (explained in the next chapter).

The construction of King's point optimal invariant (POI) test10 for testing (2.4.4)

against (2.4.5) involves first pre-specifying values for the autocorrelation parameters

p and y. Let these values be p 0 and y0, respectively, and the corresponding

covariance matrices under the null and alternative hypotheses be <72X(p0) and

(T2Q.(y0), respectively. Here y0 is the point under the alternative hypothesis at

which we wish to optimize power while pQ is an arbitrary value of p under Ho.

Now the FNPL provides a POI test which possesses optimal power at y0. The

critical regions of such a test can be written as

(2.4.6)

where u and u are the generalised least squares (GLS) residual vectors from (2.4.1)

for covariance matrices £(p0) anc* ^(?o)»respectively.

King explored whether the s(7 0 ,p 0 ) test still optimizes power at y0 when £(p0) is

broadened to E(p) . He observed that this could happen if the critical value c and the

parameter p0 can be chosen such that

Pr[s(ro,Po) = a (2.4.7)

and

Pr[s(7o,Po) <cl«~ AK0,Kp)),0<p<0.999] <<r (2.4.8)

10 If a test achieves optimum power at a particular point within the class of invariant tests then it is
called a POI test.
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hold simultaneously, where a is the desired level of significance. Here, we

approximated 0 < p < 1 with 0 < p < 0.999 for practical reasons. The LHS of

(2.4.8) (of which (2.4.7) is a special case) can be evaluated using standard numerical

methods such as Koerts and Abrahamse's (1969) or Davies' (1980) versions of

Iinhof s (1961) algorithm. Alternatively, Palm and Sneek's (1984) and Shively et

al.'s (1990) procedures can be used (for more detail see King (1987b)).

If c and p0 cannot be chosen to solve (2.4.7) and (2.4.8) together, as mentioned

earlier, King's APOI test can be constructed. Such tests have critical regions of the

form of (2.4.6) with c chosen such that (2.4.8) holds and p 0 chosen to make the left

side of (2.4.7) as close to a as possible.

King suggested an iterative procedure to obtain appropriate p0 and c values. He also

provided solved pQ and c values for an X matrix which can be regarded as a

representative matrix for a number of matrices used in practice. Such values might be

used to apply an approximate test, or they could be used as good starting values for

the iterative process. In order to make the POI test (or APOI test) operational, the

point at which power is to be optimized should be decided (see King (1987b) and Wu

and King (1994) on this issue).

King (1983) originally considered an approximate version of the s(y0 ,p0) test which

we call the pseudo POI (PPOI) test. The PPOI test is obtained by controlling the

maximum probability of a type I error by ones choice of critical value alone. That is,

c is determined by solving

Pr[s(po>7o) < a. (2.4.9)

King (1987b) compared his s(yo ,po) tests with PPOI tests and found that the former

tests are preferable over the latter.

King and McAleer (1987) considered testing for AR(1) errors against MA(1) errors in

the linear regression model using the Cox test, P test, prediction test, LM test of

AR(1) disturbances against ARMA(l.l) disturbances, and PPOI tests. Their Monte
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Carlo study revealed that the Cox test and its versions can have actual sizes much

higher than the nominal size, while the LM test sizes are acceptable. On the other

hand, (by construction) the PPOI test has sizes less than or equal to the nominal size.

Therefore, in order to compare the powers at roughly the same significance levels,

they followed two steps. The first step involves controlling the maximum size of an

asymptotic test by ones choice of critical value (explained i1 ore in section 2.5.1) and

the second step involves calculating the powers using that critical value (hereafter,

tests based on this approach are called size corrected tests). Based on their empirical

results, King and McAleer recommended the PPOI test and they also commended the

LM test as having reasonable power properties even when it is applied for an

inappropriate alternative.

When testing for AR(1) errors against MA(1) errors, King (1983) commented that any

good test should have a size which tends to zero, asymptotically, for autocorrelation

coefficients greater than 0.5. Burke et al. (1990) introduced an easy to implement PS

test which satisfies King's suggestion, based on ordinary least squares (OLS)

residuals. In particular, they compared their (size corrected) PS test results with those

of King and McAleer (1987). Their study also supported the PPOI test while their

new test seems to be slightly more powerful than the LM test. This is in contrast to

McKenzie et al.'s (1999) finding that the LM test is more powerful than the PS test.

Silvapulle (1991, 1994b) considered tesimg for AR(1) errors against MA(1) errors in

the first-order dynamic linear regression model, using POI, PS (denoted the T test)

and LM tests. Consider the first-order dynamic linear regression model

y, = /0V-, + x'P + u,, f =! , . . . ,« , (2.4.10)

where y, is the dependent variable at time t, x, is a fcxl vector of non-stochastic

exogenous variables at time t, // is an unknown scalar assumed to be such that |//| <

I11, p is an unknown kxl parameter vector and u, is the disturbance term.

11 n is believed to be typically non-negative in economic applications.
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Obviously, if //y,_, is not present in (2.4.10), the testing problem can be simplified

using invariance arguments. This influenced Silvapulle to estimate fi using the

instrumental variable (IV) estimator and subtract //y_, from yt
 12. Thereafter, she

applied a modified version of King's POI test, denoted the MPOI test, to the problem.

She showed that the approximate critical value for the MPOI test can be obtained

using an approximate small disturbance asymptotic (ASDA) distribution of the test

statistic. Her ASDA distribution based critical value for the MPOI test statistic turns

out to be the true critical value of the statistic for the corresponding regression with

the lagged dependent variable omitted. This approach is analogous to the one adopted

by Inder (1985) when testing for AR(1) disturbances in the dynamic linear regression

model.

Silvapulle found that MPOI tes'is generally perform better than asymptotic tests in

terms of size and power properties and the LM test is the second best13. However, her

study is rather limited in the sense that she carried it out almost always in the positive

nuisance parameter space. That is, she nearly always used a positive ft vector and

varied it by varying cr, which can take only positive values. Therefore, Silvapulle's

((1991), p. 129) conclusion that, "ASDA distribution based MPOI tests perform

equally well with choppy, random and economic data series as exogenous regressors.

Thus, we are tempted to say that the ASDA distribution based critical values of the

MPOI tests are good approximations to the non-similar critical values" is

questionable. Also, her results indicate that the ASDA distribution based MPOI tests

can have estimated sizes as high as 0.120 when the nor ~al size is 0.050.

Silvapulle and King (1993) considered testing for higher-order autocorrelations such

as joint AR(1)-AR(4) disturbances against joint MA(1)-MA(4) disturbances in the

linear regression model, using POI tests, the LM test of restricted AR(5) errors against

restricted ARMA(5,5) errors and the prediction test. Because the asymptotic tests are

observed to have significantly higher than nominal sizes, they used size corrected

tests. Their empirical power results favoured the POI tests when positive first-order

and fourth-order autocorrelations are considered while they favoured the asymptotic

12 Because the OLS estimator is inconsistent under the null, the IV estimator is used.
13 She did not size correct the tests in this case.
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tests when wrongly assuming positive autocorrelation in the presence of mild negative

autocorrelation. On many occasions, the POI tests are found to possess more than

double the power of their competitors. In addition, the POI tests are the only ones to

have the desirable property that the test's size tends to zero as the sample size

increases whenever the AR(1)-AR(4) disturbance process has either a first-order or

fourth-order autocorrelation coefficient greater than 0.5 (see King (1983) for more

detail). Based on their results, Silvapulle and King commented that the extra

computation required to perform a POI is worthwhile. Their study encourages the use

of POI tests for testing higher-order autocorrelations.

Silvapulle and King (1991) and Silvapulle (1994a) encountered two situations where

the POI tests cannot be constructed, when testing for MA(1) errors against AR(1)

errors and testing for AR(1) errors against IMA(1,1) errors in the linear regression

model. For the latter problem, Silvapulle was able to construct a PO test (which

excelled in its performance) when the MA coefficient is positive but not when it is

negative. For the cases where POI tests cannot be constructed, they constructed APOI

tests and compared their performance with those for the LM, PS and prediction tests.

The APOI tests worked extremely well for the former problem in terms of size and

power properties, but performed poorly for the latter problem. In particular, for the

latter problem, the APOI test sizes are generally closer to zero in absolute value and

powers are less than or equal to the nominal size. We note that, for the former

problem, the probability of the form (2.2.7) is closer to zero, while this is not true for

the latter problem. This suggests that the APOI test may work well if it is nearly a PO

test, otherwise it is not always reliable.

2.4.2 Comparing Tests for Composite Nested Problems

King (1989) applied the APOI test to the problem of testing for fourth-order

autoregressiv- O-A(4)) disturbances in the linear regression model in the presence of

AR(1) disturbances. For this case, the POI test (and APOI test) can be constructed as

follows. Consider the linear regression model (2.4.1). Suppose the error term u is

generated by a joint AR(1) and simple AR(4) process,
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(2.4.11)

in which 0 < p 4 < 1 and 0 ^ px < 1 are unknown parameters, L is the lag operator

such that Lu, = «,_,, and e = (e,, ...,<?„)' ~ N(0,cy2In). Note that (2.4.11) is the

AR(5) process,

(2.4.12)

Suppose we wish to test

Ho: pA = 0against Ha: p4>0. (2.4.13)

This testing problem can be simplified by using invariance arguments. Now King's

POI test and APOI test can be constructed as outlined in section 2.4.1. This involves

first constructing the test for the simpler problem of testing

Hi: (P,,P4)' = (Ao>0)' (2.4.14)

against

(2.4.15)

where 0 < plQ < 0.999, 0 < pu < 0.999 and 0 < /?41 < 1 are known and fixed. Let

Q,(/7,,0) and Q.2(pvp4) be disturbance covariance matrices under the null and

alternative hypotheses, respectively, and A, = Q,(plo,O) and A2 = Q2(p,,,p41).

Now the FNPL provides the most powerful test based on critical region of the form

(2.4.16)

where u and u are the GLS residual vectors assuming disturbance covariance

matrices A2 and A,, respectively. For the existence of a POI test (as explained
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earlier) we have to choose the critical value and p10 such that the following

probabilities hold simultaneously.

Pr[5(p10,y011,p41)<clM~iV(0,Q1(p10,0))] = a (2.4.17)

and

Pr[5(plo,pn,p41)<clM~Ar(O,Q](p1,O))] < a. (2.4.18)

If such p,0 and c cannot be chosen then the APOI test can be obtained by searching

for a p10 value which minimises

a - Pr[5(p lo,p lpp41)<clu~iV(O,n i(p lo,O))] (2.4.19)

subject to (2.4.18) holding. By construction, the POI (and APOI) tests have sizes less

than or equal a for all the p, values, therefore, it is possible that their powers at

some points under the alternative hypothesis will be less than their nominal size. For

more information about how to select p10 , p,, and p4 1 , see King (1989). King

considered three versions of the APOI test corresponding to three different choices of

these parameters. These parameter choices are either arbitrary or satisfy some

optimality criteria associated with power. Based on his empirical results, he

recommended that all values of test parameters be chosen by optimality criteria

associated with power. One of the APOI tests he considered is not nearly optimal and

was found to be poor at optimizing power.

As mentioned earlier, existing studies show that marginal likelihood based tests

perform better in finite samples. We have seen that the PO tests also have excellent

finite-sample properties. Rahman and King (1994) explored which of these

approaches is best in finite samples. They considered testing random regression

coefficients in the presence of AR(1) errors, using APOI tests and the marginal

likelihood based LM and asymptotically locally most mean powerful (ALMMP)
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tests14. Surprisingly, they concluded that the extra computation required for the APOI

tests hardly seems worthwhile. According to their empirical results, neither of the

two asymptotic tests dominates the other in terms of power properties. The ALMMP

test is best on average but for certain data sets in which the component scores used in

the test statistic are negatively correlated, this test performs poorly. Though, the

APOI tests are sometimes less powerful than their competitors, there are cases where

the APOI tests dominate the asymptotic tests, particularly when their sizes are much

lower than their competitors. Also, as Rahman and King noted, one of the required

probabilities for the existence of an APOI test (similar to (2.4.19)) is not properly

satisfied in the sense that it is typically significantly different from zero. Therefore,

these APOI tests may not nearly optimize power at the chosen points under the

alternative hypothesis which may be the reason for their inferior properties. Thus, an

appropriate choice of APOI test could have altered Rahman and King's conclusion.

2.5 Research Findings Related to Our Study

Griliches (1967) considered an interesting testing problem, namely, testing for a static

linear regression model with AR(1) errors against a dynamic linear regression model

with white noise errors and suggested an ad hoc rule-of-thumb to discriminate

between these two models. The null and the alternative models he considered can be

written as

H0:y, --x', ut = t = (2.5.1)

and

e,, et~N(0,<r2), t =2,...,n, (2.5.2)

14 King and Wu (1997) introduced the ALMMP test.
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respectively, where, yt is the dependent variable at time t, x, is a k x 1 vector of

non-stochastic regressors at time t, fi is a k x 1 vector of coefficients, 0 < fi < 1

and u, is the disturbance term with |p| < 1 and et ~ N(0,(T2).

Griliches observed that if the true model is (2.5.1) and if (2.5.2) is fitted to the sample

by OLS, it is likely to explain the data quite well. Therefore, one may mistakenly

assume that the sample was generated by (2.5.2) which will lead to misleading

inferences and sub-optimal forecasts. For example, King and Rankin (1993) (in the

context of forecasting alone) commented that when the DW test is significant and the

dynamic parameter of the dynamic linear model is large, a substantial loss in accuracy

of prediction can occur if one proceeds to correct for AR(1) disturbances in a static

linear model without first checking for a possibility of a dynamic linear model with

white noise errors.

Observe that the null model can also be written as

y, =/7y,_, + x'tP- et. (2.5.3)

Model (2.5.3) is similar to (2.5.2), except for the regressor x,_,. Obviously, these two

models are not distinguishable if the regressor x, is lag invariant (that is, the lag of

the exogenous regressors added provides no extra explanation of the dependent

variable). Similarly, it can be shown that these models are not distinguishable if the

exogenous regressors are a constant and/or time trend only (see King (2000)). Also,

the null and alternative models may not be distinguished at all if exogenous regressors

are not present. Thus, this testing problem is a complicated one.

Griliches' ad hoc rule-of-thumb for discriminating between (2.5.1) and (2.5.2) is as

follows. He suggested that after (2.5.2) has been estimated by OLS one should also

estimate

yt = 772y,_, e,.
(2.5.4)
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If % is significant and close to -(77, X7)2), then one can conclude that the sample was

generated by (2.5.3) and not by (2.5.2). However, Griliches did not quantify the

expression "close to". Griliches also suggested that if his proposal is followed and 77,

is significantly positive, the true model is a generalised Koyck model. Giles (1975)

noted some practical difficulties associated with this suggestion and suggested one

should consider the possibility of a generalised Koyck model even if 77, is negative.

Maddala (1971) suggested a Bayesian posterior odds method to discriminate between

the null and alternative models of interest. Giles (1975) tested (2.5.1) against (2.5.2)

using Griliches' ad hoc rule-of-thumb and Maddala's Bayesian posterior odds

analysis. Based on his empirical results, he concluded that the Bayesian analysis is

generally superior to the ad hoc rule-of-thumb.. To the best of the author's

knowledge, other than Griliches (1967), Giles (1975) and Maddala (1971), so far no

one has considered this complicated testing problem.

2.5.1 Non-Similar Tests

The problem with non-similar tests is that their sizes are a function of nuisance (or

unknown) parameters. Consequently, it is impossible to obtain exact size critical

values for which the size always equals the significance level. As noted in Chapter 1,

finding exact non-similar critical values of these tests is the only promising way to

proceed in this situation. Because it is extremely hard to obtain exact non-similar

critical values, researchers nearly always use approximate non-similar critical values.

Inder (1985) considered testing for autocorrelated disturbances (as in (2.4.2)) in the

first-order dynamic linear regression model (as in (2.4.10)). Because this testing

problem is of interest in this thesis, we discuss it in detail. It is well known that, in the

linear regression model with a lagged dependent variable as regressor, the assumption

of uncorrelated disturbances is essential for the properties of the structural parameter

estimates. If the disturbances are autocorrelated and the parameters are estimated by

OLS, the estimates will be inconsistent, and may lead to misleading inferences.
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Therefore, it is important to have a powerful testing procedure to detect the presence

of autocorrelation.

In their seminal paper, Durbin and Watson (1950, 1951) emphasised that their DW

test (which is specially designed for static linear regression models) is not applicable

for models including lagged dependent variables such as the dynamic linear

regression model. This is mainly because of the lack of appropriate critical values for

such models. However, researchers indiscriminately used the DW test in the context

of the dynamic linear regression model using upper and/or lower bounds of the

critical values (intended for static linear regression models) as actual critical values.

Not surprisingly this received much criticism because at the time, there was no

theoretical basis for using such critical values and because of inconsistent test

performance.

Later, Durbin (1970) proposed two large-sample based tests, namely, Durbin's t test

and h test for models including lagged dependent variables. After carefully studying

the literature on autocorrelation and dynamic linear regression models and also

through Monte Carlo experiments, Inder (1985) realised that if appropriate critical

values could be found then the DW test would be the preferred candidate compared to

Durbin's asymptotic tests. This motivated him to derive the ASDA distribution of the

DW statistic in the context of the first-order dynamic linear regression model. His

ASDA distribution based critical value turns out to be the exact DW critical value for

the dynamic linear regression model when the lagged dependent variable is omitted as

a regressor. Therefore, his work allows one to use existing computer algorithms for

calculating DW critical values or tables of bounds or further approximations

appropriate for the static model.

Observing that the testing problem is not invariant to /? (except for the intercept), but

is invariant to rescai.ng such that the ratio file is preserved, Inder also obtained

approximate non-similar critical values by letting /? = 0 and experimenting with fi

values until the smallest (and largest) critical value for the DW (and Durbin's

asymptotic tests) is found. In particular, he compared the performance of the DW test

and Durbin's asymptotic tests based on exact size critical values (obtained via the
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Monte Carlo method assuming knowledge of the nuisance parameters), approximate

non-similar critical values and asymptotic critical values and found that the DW test is

always the best. He also commented that the ASDA distribution based DW test

performs much better than do Durbin's asymptotic tests, under the null. His empirical

results indicate that the use of approximate non-similar critical values can often

produce sizes well below the nominal size for all three tests. For example, when the

nominal size is 0.050, sizes of the tests are frequently less than 0.010 or equal to zero.

Thus, the use of approximate non-similar critical values does not lead to ideal sizes.

Also, because Inder considered a limited number of nuisance parameter values in his

study15, it is not clear whether his approximate non-similar critical values are

adequate enough to control the sizes of the tests over the nuisance parameter space.

After Inder's study, there seemed to be an awakening of interest in applying the DW

test to dynamic linear regression models (see Grant (1987), King and Wu (1991),

Rayner (1993), King and Harris (1995) and Dezhbakhsh and Thursby (1995))16. King

and Wu (1991) and King and Harris (1995) extended Inder's study for the dynamic

linear model. In particular, King and Wu (1991) observed that the exact small

disturbance asymptotic distribution of the DW statistic is equivalent to the distribution

of the DW statistic from the regression model with the lagged dependent variables

replaced by their means (i.e,, by their expected values). A shortcoming of their

approach is that the expected values of the lagged dependent variables are unknown

because they are functions of unknown regression coefficients. They discussed how

bounds for the small disturbance critical value could be calculated. Therefore, their

study gives a justification for the use of the familiar tables of bounds when applying

the DW test to the dynamic linear regression model. An alternative approach would

be to estimate the expected values of the variables. King and Harris (1995) adopted

this approach and treated the lagged dependent variables as estimates of their means.

That is, their approach involves calculating the exact critical values of the DW test

with the lagged dependent variables treated as non-stochastic. Their Monte Carlo

results generally support their new approach over Inder's (1985) ASDA based DW,

modified PO tests and Durbin's asymptotic tests, particularly when two lags of the

15 He used one /? vector and varied it by varying a.
16 Grant's study is similar to Inder's.
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dependent variable are present. They also found that the sizes of all five tests they

considered are relatively robust to non-normality in the disturbances.

In the case of testing AR(1) errors against MA(1) errors in the static linear regression

model, King and McAleer (1987) observed that the null distributions of the

asymptotic tests they considered depend on p. Therefore, in order to compare the

powers at roughly the same significance levels, they used approximate non-similar

critical values for their tests. Their approach involves finding the exact critical value

of an asymptotic test (via the Monte Carlo method) assuming AR(1) errors with a

fixed p value. This is done for p = 0, 0.1, ..., 0.9. From these critical values, they

choose the largest (absolute) value as their approximate non-similar critical value.

This choice ensures that, at least for the above p values, the size of the test is not

greater than the desired significance level. Burke et al. (1990), Silvapulle and King

(1991) and Rahman and King (1998) also used this kind of approximate non-similar

critical values.

Silvapulle and King (1993) (see section 2.4.1), estimated the asymptotic tests' sizes at

25 grid points, defined as {(p , ,p 4 ) : p , , p4 =0.1, 0.3, 0.5, 0.7, 0.9}. For each test,

the largest of the 25 critical values was taken as the appropriate critical value, thus

ensuring that, at least for these grid-points, the size of the test does not exceed the

nominal size.

Grose (1998) considered testing the partial adjustment (or dynamic regressor)

coefficient in the first-order dynamic linear regression model with white noise errors.

In particular, she compared marginal likelihood based classical tests with

conventional likelihood based counterparts. Observing that this testing problem is not

invariant to (3 (except for the intercept), Grose obtained approximately exact non-

similar critical values by doing simulations across a range of ft values. For this, she

considered nine (3 vectors, namely, (0,0,0), (0,0,1), (0,1,1), (0,1,0), (0,1,-1), (0,0,-1),

(0,-1,-1), (0,-1,0) and (0,-1,1) and made /? larger or smaller along each of eight

directions by decreasing or increasing G. Her approximately exact non-similar

critical value of a test is the largest critical value found for all (/?, <7) combinations.
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Silvapulle and King's (1993) and Grose's (1998) studies indicate that obtaining

approximate non-similar critical values can be quite demanding when the null

distribution of the test statistic depends on more than one nuisance parameter.

2.5.2 The Simulated Annealing (SA) Algorithm

The SA algorithm is used for all the optimizations carried out in this thesis, SA is a

global optimizer which is explicitly designed for optimizing functions with multiple

optima. It was first introduced in thermodynamics, where one studies a system's

thermal energy. To achieve a low energy state of a molten metal, it is first heated and

then slowly cooled (called annealing)17. If the cooling is done very quickly the metal

might not escape the local energy minimum and when fully cooled it may contain

more energy than the desired level. This cooling schedule motivates the concept of

the S A algorithm. That is, S A tries to minimize some analogue of energy in a manner

similar to annealing, in order to find the global minimr.' Thus, for function

optimization, the objective function to be minimized corresponds to the energy of the

states of the solid.

SA explores the function's entire surface and tries to optimize the function by doing

both uphill and downhill moves18. Thus, unlike the conventional algorithms, SA is

largely independent of the starting values. Also, SA assumes very little about the

shape of the function to be optimized. This can be considered as another advantage of

SA, because, almost all the conventional algorithms explicitly assume that the

function has one optimum and often assume that the function is approximately

quadratic. Thus, when faced with a function with multiple optima or a difficult

function not approximately quadratic, conventional algorithms may fail. Also,

because conventional algorithms assume that the function has one optimum, it is

possible for them to find any local maximum as the global maximum. SA can also

optimize functions that are not defined for some parameter values. Therefore, as

17 Slowly cooling means every time the rate of heating is reduced.
18 Conventional algorithms do not explore the entire surface, instead they head up (or down) the hill
much as a blind man would (see Goffe et al. (1992)).
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Goffe et al. (1992, 1994) point out, SA can easily identify corner solutions because it

can snuggle up to a corner for functions that don't exist in some regions. Finally, SA

can optimize functions which need not even be differentiable (see Corana et al.

(1987)). All these observations led Goffe (1996) to comment that the SA algorithm is

much more robust than conventional algorithms. The only undesirable aspect of SA

is the greater run time it takes. Because it is more reliable than the conventional

algorithms, this problem has to be stomached. Also, in an era of cheap, and

increasingly cheaper computing, this may become a minor problem.

Kirkpatrick et al. (1983), and Cerny (1985) are the first to show how Metropolis et

al.'s (1953) model for simulating the annealing of solids (discussed above), could be

used for optimisation problems. After this, SA received much attention and has been

applied to many optimisation problems occurring in areas such as statistics, computer

design, image processing, molecular physics and chemistry. Some examples of

applications in statistics are Corana et al. (1987), Aarts and Laarhoven (1989), Eglese

(1990), Brooks and Morgan (1995), Goffe (1996) and Ali et al. (1997).

Goffe et al. (1992, 1994) introduced SA to optimize some econometric functions with

great success. Goffe et al. (1992) minimised a function with two local minima, using

conventional algorithms, namely, conjugate gradient, quasi-Newton and simplex

methods, and SA. All algorithms were run 100 times with different starting values for

the model parameters (same ones were used by all algorithms). We reproduce their

results in Table 2.1, below.

Table 2.1: Goffe et al.'s comparison of four algorithms giving number of times

different maxima were obtained and average time taken for 100 runs

Algorithm

Solutions

20.482

16.082

Time (seconds)

Simplex

40

60

0.019678

Conj. gradient

48

52

0.004083

Quasi-Newton

48

52

0.006829

SA

0

100

16.328

Solutions are categorised by the minimum at which they terminate. The minimum with the

value of 16.082 is the global minimum.

33



Chapter 2: Literature Review

Table 2.1 shows that the conventional algorithms converge nearly half the time to the

local minimum, 20.482, whereas SA always converges to the global minimum,

16.082. This example clearly shows that (for functions with multiple optima)

conventional algorithms are not efficient enough to distinguish between the local and

global optima. Though SA is much more efficient in this regard, it takes greater run

time than its competitors19. This led Goffe et al. (1992, p. 141) to conclude, "Though

this algorithm is considerably more expensive in computational resource, its benefits

in estimation of functions with multiple optima are quite obvious. Thus, its use

should be considered for difficult econometric problems".

Goffe et al. (1994) compared the same algorithms (as above) for more complicated

econometric functions. The first two functions they considered are, the rational

expectations version of the monetary theory of exchange rate determination

(minimization of which involves 14 parameters), firm production efficiency based on

a system of a frontier cost function and its input share equations (minimization of

which involves 62 parameters) and the third function comes from the neural network

literature (minimization of which involves 35 parameters). The first function is

difficult to minimize because it effectively does not exist for some parameter values.

In these regions, the function value is either complex or the elements of the

covariance matrix go to infinity. For such regions, they set the objective function

value to about 102000 to force termination of the conventional algorithms. Of the 100

runs, with the simplex and quasi-Newton algorithms, about half are observed to have

terminated due to floating point errors, which indicates that the algorithms are beyond

the likely region of a solution because large numbers are needed to cause a floating

point error on the computer they used. The conjugate gradient algorithm performed

better in this regard. However, all the conventional algorithms fail to find the global

minimum.

SA also experienced some difficulty with this function. It converged to different

optima for different starting values and seed values for the uniform random number

generator of SA (explained later). Goffe et al. modified the function to search a

19 The much longer time for SA is largely due to using Corana et al.'s (1987) very conservative
suggestions for parameters, which are appropriate for very complicated functions. Even if these
parameters are reduced, SA will take more time than conventional algorithms.
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restricted region of the parameter space to find an explanation. Once SA detected the

problem for this small region they enlarged the region. SA then found that the

optimal value of one parameter (the interest rate elasticity of money demand) often

occurs at its upper bound. This suggested that the function is decreasing in this

parameter. Goffe et al. plotted several of these minima with the elasticity varying and

the other parameters held constant. These plots also showed that the interest rate

elasticity parameter achieved a minimum at the boundary. Thus, the function

appeared to be a ditch in this parameter: as the boundary expanded, the minimum

point of the function is observed to follow this wandering ditch. This might be the

reason why the conventional algorithms could not minimize the function. Because

SA was abb to find an explanation, Goffe et al. recommended its use as a diagnostic

tool for difficult functions. In order to continue the comparison of the algorithms,

Goffe et al. fixed the interest rate elasticity parameter to 0.25 and repeated the

experiments. Their results show that SA is much more consistent in finding the

global minimum (it was 3 out of 3, while the conventional algorithms were, with

generous accounting, 64 out of 300). This led Goffe et al. (1994, p 82) to comment,

"While a single run of SA requires substantially greater execution time, this is

ameliorated by the large number of runs with a conventional algorithm a researcher

would have to make to be sure of the robustness of estimated results".

The second function they considered has steep valleys and the third function has

many local minima. None of the conventional algorithms were able to optimize the

second function whereas SA was able to find the global minimum. Because of its

nature, it is virtually impossible to optimize the third function. For this function, SA

was able to find a much better optimum than its competitors. These findings indicate

that SA can optimize functions that conventional algorithms have extreme difficulty

with or simply cannot optimize at all. Thus, the SA algorithm has many useful

features not shared by conventional algorithms. Fortunately, GAUSS and FORTRAN

programming codes for the SA algorithm are available nowadays (see Goffe (1996)

and Tsionas (1995)).

Aarts and Laarhoven (1989) derived necessary and sufficient conditions to ensure that

asymptotically, the SA algorithm finds a globally optimal solution with probability 1.

However, they observed that these conditions cannot be satisfied in finite time, so
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they advised one to find appropriate values for the parameters of the algorithm such

that in finite time, near optimal solutions are returned.

The essential starting parameters involved in minimizing a function f(x) are To, the

initial temperature, x0, the starting vector of parameters, and vm, the step length for

x0. Here x0 and vm are both vectors of length a*, the number of parameters of the

model. Because vm quickly resets from its initial value, Tsionas (1995) observed that

the input of vm is not very important. vm gives the researchers valuable information

about the function. If an element of vm is very large, it indicates that the function is

very flat in that parameter. The steps involved in minimising a function / via SA are

as follows (see Goffe et al. (1994) snd Brooks and Morgan (1995)).

(1) SA begins with an initial temperature To, and computes the function value f0 for

the initial parameter values x0.

(2) SA randomly selects another point x in the parameter space (within the

neighbourhood of the initial parameters and within the bounds set for it by the

problem of interest) and calculates the corresponding function value / . Each

element of x is obtained as follows.

where a' is a uniformly distributed random number from [-1,1] and vm( is the ith

element of vm.

(3) Then SA compares the two points in terms of their function values. If / is less

than fQ, then x is accepted and JC0 is set to x and the alg- "'hm moves downhill.

If this is the smallest / , it and the corresponding x are recorded as the best

current value of the optimum.
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If / is greater than f0 then SA accepts x based on a criteria, known as the

Metropolis criteria, as follows. Let / * = f-f0. x is accepted and SA moves

uphill if and only if a random variable b', distributed uniformly over [0,1],

satisfies

Z?'<exp(-/*/r)

where T is the current temperature. If x is accepted, as before, x0 is updated with

x and so is the corresponding function value.

(4) After repeating steps 2 - 3 Nt times, the step length vector vm is adjusted so that

50% of all moves are accepted, where Ns is the number of cycles provided by the

user. This makes SA sample values of the function widely.

(5) After repeating steps 2 - 4 Nt times, the temperature T is reduced by a factor

called rt, where, 0 < r, < 1. Usually rt will be 0.5 or 0.85 (see Tsionas (1995)).

The process then begins again from step 2 (taking as the initial state the point

following the last iteration of the algorithm). Termination of the algorithm occurs

when the optimum function value reaches a stable state (for more detail see

Tsionas (1995) and Brooks and Morgan (1995)).

A lower temperature makes an uphill move less likely, therefore, the number of

rejections increase and vm declines. The smaller steps and starting at the current

optimum focuses attention on the most promising area. "The key parameters of SA are

T, Ns, Nt and rt. Among these, rt and N, greatly influence the robustness of the

algorithm and number of function evaluations since they control how quickly the

temperature T declines and the number of function evaluations performed at each

temperature. Goffe et al. (1994) give some useful hints for determining these values.

Their suggestion is to obtain the optimum results assuming small parameter values for

r and N , and providing a seed value for the uniform random number generator of

SA and starting values for the parameters. Thereafter, they recommend increasing rt

and N , and getting the optimum results once again for a different uniform random
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number generator seed value and starting values (hence dealing with an entirely

different sequence of sampled points). If the current optimum results are the same as

before then according to Goffe et al., the global optimum is achieved, therefore, one

can proceed with small r. and N, parameter values. If this is not the case, then it is

an indication that small SA parameters are not adequate for the optimization

considered and they should be increased.

2.6 Conclusion

In this chapter, we focused on contributions to PO testing in the context of composite

hypotheses testing. Because all the applications considered in this thesis are non-

nested, we briefly discussed some popular non-nested tests as well. Other studies

relevant to this thesis were also reviewed.

King's PO tests have mainly been applied to composite non-nested testing problems

rather than to composite nested testing problems. These studies show that PO tests

have excellent finite-sample properties compared to existing popular non-nested tests.

However, King's APO test does not seem to always be reliable. These tests appear to

perform well when they are nearly optimal, otherwise there is a question mark about

their reliability. For a composite non-nested testing situation, Silvapulle (1994a)

preferred some asymptotic tests over an APOI test (which was not nearly optimal).

Similarly, for a composite nested testing situation, Rahman and King (1994) preferred

some marginal likelihood based asymptotic tests over APOI tests (which were not

nearly optimal). Thus, it is important to have a reliable APO test for testing

composite hypotheses. Also, it is interesting to see whether the marginal likelihood

based tests still dominate an appropriate APO test in finite samples.

Because it is extremely hard to obtain exact non-similar critical values, researchers

nearly always use approximate non-similar critical values in their studies. We

observed that the use of approximate non-similar critical values can produce sizes

well below the nominal size. Also, obtaining such critical values becomes extremely
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difficult when the null distribution of the test statistics depends on more than one

unknown parameter.

We observed that the SA algorithm has several advantages over conventional

algorithms. In addition, it can be used as a diagnostic tool to understand why

conventional algorithms fail to optimize a certain function. Goffe et al.'s (1992,

1994) studies show that SA can optimize functions that conventional algorithms have

extreme difficulty with or simply cannot optimize at all. Therefore, SA can be very

useful for difficult econometric problems.
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CHAPTER 3

THE g TEST: AN APPROXIMATE POINT OPTIMAL TEST OF A

COMPOSITE NULL HYPOTHESIS

3.1 Introduction

As discussed in Chapter 1, in the absence of UMP tests, King's (1987b) PO tests can

be useful. Unfortunately, PO tests cannot always be constructed when testing a

composite null hypothesis. King suggested an APO test for situations where his PO

test cannot be constructed. It seems that King's APO tests are not always reliable.

Therefore, it would be desirable to have another APO test for situations where the PO

tests cannot be constructed. In this chapter, we propose an APO test, called the g test

based on the GNPL for testing a composite null hypothesis.

Suppose the observed sample is generated by a finite number of densities under the

null hypothesis. The GNPL provides a PO test for the problem of testing for a finite

number of observable density functions against a single alternative density function.

Now, suppose the observed sample is potentially generated by one of an infinite

number of densities under the null hypothesis, the question is, can we approximate the

infinite number of densities by a finite number of densities and then apply the GNPL

to obtain a PO solution? The g test is based on this idea. Our question then becomes
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can this type of approximation based g test work well in practice? This chapter seeks

an answer to this question.

In this chapter, we construct the g test and apply it to two testing problems, namely,

testing for MA(1) errors against AR(1) errors and testing for AR(1) errors against

(non-stationary) 1MA(1,1) errors with a negative MA coefficient in the linear

regression model. Silvapulle (1991, 1994a) considered these two testing problems

and recommended APOI tests for the former problem and some asymptotic tests for

the latter. We compare the g test results with those for Silvapulle in terms of size and

power properties.

It is well known that a significant DW statistic can result from either AR(1) or MA(1)

errors. King (1983) points out that wrongly correcting for AR(1) disturbances in a

model with MA(1) disturbances can lead to inefficient parameter estimates and, more

importantly, misleading inferences. Therefore, powerful testing procedures are

desirable to distinguish these two error processes. Informal procedures such as

deciding the error process of the model based on autocorrelation and partial

autocorrelation patterns of the ordinary least squares (OLS) residuals have only an

asymptotic justification (see King (1983) and King and McAleer (1987)).

In practice many economic time series are non-stationary (see Dickey et al. (1986)).

Knowing whether nonstationarity in the data is due to a deterministic time trend or a

unit root seems to be popular in econometrics. Nelson and Plosscr (1982) argue that

many economic time series are better represented by unit roots than by deterministic

time trends. It is well known that a unit root process can be transformed to a

stationary process by differencing the series. However, differencing a dependent

variable to remove non-stationarity can give rise to an MA(1) error process (see

Schwert (1989)), Also, from the literature we observe that many economic time series

can be adequately represented by an MA(1,1) process (see Ermini (1993) and

Huberman and Schwert (1985)).

Newbold and Davies (1978) observe that the AR(1) and EV1A(1,1) error processes are

equally plausible ones. However, Wichern's (1973) study, shows that the AR(1)
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process cannot provide an adequate approximation to an IMA(1,1) process in general.

On the other hand, a significant DW statistic can result from either error process.

Newbold and Davies (1978) note that wrongly assuming an AR(1) error process, when

the true process is 1MA(1,1), can lead to misleading statistical inferences. Thus, we

need a powerful testing procedure to distinguish these two error processes as is in the

case of testing for MA(1) errors against AR(1) errors.

The plan of this chapter is as follows. The theory concerning the g test is discussed in

section 3.2. This section describes the GNPL briefly and how it can be used to

construct a PO test of a composite null. Section 3.3 explains how the g test can be

applied to testing non-nested error covariance matrices in the linear regression model.

This section also explains how testing problems of this type can be simplified using

invariance methods. The theory discussed in sections 3.2 and 3.3 is applied in section

3.4 to the above mentioned testing problems. The details of the Monte Carlo

experiment and its main findings are given in section 3.5. Two applications of the g

test to real world data are given in section 3.6. Finally, some concluding remarks are

made in section 3.7.

3.2 Theory

This section explains the basic idea behind the GNPL and how it can be used to

construct a point optimal test of a composite null hypothesis (the lemma is given in

the Appendix 3.1). When nuisance parameters are not present, the GNPL provides a

point optimal test of

Ho: x is generated by one of the densities / , , . . . , fr
(3.2.1)

against

H : x is generated by the density / ,r+l '
(3.2.2)
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where x is the observed sample. That is, under Ho, we assume that either / , is the

true density of x, or f2 is the true density of x, and so on. fr+i is the true density at

the point where we would like to maximize the power.

The point optimal test provided by the GNPL for testing hypotheses of the form

(3.2.1) and (3.2.2) is the one that rejects Ho if

(3.2.3)

For the existence of such a test, the following r size conditions,

~ / , W ] =a , - , j = 1 , . - , r , (3.2.4)

need to be solved simultaneously, by appropriate choices of values for fc,, .... kr.

Here, kt, i = 1, ..., r , are the critical values of the test and a} is the level of

significance when /y(x) is the true density. These critical values can be positive

and/or negative (see Appendix 3.2).

Suppose we wish to test composite hypotheses of the form,

Q. x has density f(x,S), (3.2.5)

against

Ha:x has density f(x,X), (3.2.6)

where 8 is a p x 1 vector of parameters restricted to the set *P and X is an q x 1

vector of parameters restricted to the set O . It is assumed that any knowledge about
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the possible range of parameter values has been incorporated to keep the parameter

sets, *F and O, as small as possible.

In order to construct a point optimal test for this problem, let us assume that X e 3> is

the point under the alternative hypothesis at which we wish to optimize power. Thus,

the testing problem given in (3.2.5) and (3.2.6) can now be written as

Q. x has density f(x,S), (3.2.7)

against

Ha:x has density f(x,X). (3.2.8)

In order to use the GNPL for this type of testing problem, we need to approximate

f(x,S), Se *¥, by a finite number of densities as in (3.2.1). That is, under Ho, we

need to select r separate S points in *F, namely £,, ..., Sr, and define the

corresponding densitier as

(3.2.9)

We regard these finite number of densities as representative densities of f(x,S).

Now the GNPL may be used to obtain a point optimal solution for this type of

approximation.

The big questions now are how to select the representative densities (this is explained

in section 3.2.1) and how many of them should be selected? For the second issue, it is

tempting to select the representative densities over a fine grid points of S. However,

the larger the number representative densities we choose, the greater the computing
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time it takes to find the appropriate k values of the test and also (because of imposing

more restrictions under the null) it may reduce the power of the test Therefore, it is

better to aim for the minimum number of representative densities and if the critical

values found for them are also sufficient to control the sizes of the test over *F then it

will result in a more desirable test. The g test we propose in this chapter is based on

this idea.

3.2.1 The gTest

The g test for testing composite hypotheses of the form given in (3.2.5) and (3.2.6) is

the one with the minimum number of representative densities under the null.

According to our experience, in the limited case of p = 1 (i.e., S is a scalar) and *F

being a closed interval, we need at least three representative densities (i.e., r = 3)

under the null. Therefore, to construct the g test in this case, basically we start with

three representative densities and find kt values, i = 1, ..., 3, such that the following

size conditions (which are evaluated via the Monte Carlo method) hold

simultaneously:

(3.2.10)

In the case of p = 1 and *P being a closed interval, 8X and £3 can be the start and

end points of *F , respectively, and <52 can be any point in between (the reasons for

selecting these points will be clear when it comes to applications, see section 3.3).

Also, instead of using different levels (as allowed by the GNPL), we use the same

significance level for all three size conditions as a standard approach.

Next, for the same kt values, we check whether the sizes over a fine grid points of S,

are reasonably (i.e., sizes should be not significantly different from a) controlled20.

20 According to our experience, two representative densities (i.e., r = 2 case) are not sufficient for this,
which is why the r = 2 case is not considered.
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If this is the case then we have finished constructing the g test, otherwise, we can

change S2 (while keeping the other two fixed) and proceed as before once again. If

this does not help much in terms of controlling the sizes then the number of

representative densities under the null can be increased by one and the whole process

repeated. This is explained in more detail in the next section. Therefore, in order to

construct the g test we start with three representative densities (i.e., r = 3 case), but

may end up with more than three representative densities (i.e., r > 3 case).

The critical values, k(, i = 1, ..., r, of the g test for r = 3 can be obtained by the

following iterative procedure and this procedure can easily be generalised to r > 3 if

need be21.

(1) Guess some possible values for kx, k2, and fc3 and obtain the sizes of the test at

S], S2, and S3, via the Monte Carlo simulation method.

(2) Fix the size at 8X as a. To do this observe the size corresponding to 8X. If that

size is greater (less) than a then increase (decrease) the fc, value (while keeping

the other two kt values fixed) and obtain the sizes once again. Repeat this process

until the size at Sx is a.

(3) Try to fix the size at S2 as a by adjusting k2 (as explained above). While doing

this, check the size at 5X. If it has changed (i.e., become not equal to a) go to

step 2. Continue this until the size at both 8X and S2 is a.

(4) Try to fix the size at £3 as a by adjusting fe3. If the size at £, (and S2) changes

go to step 2 (and step 3). Repeat this process until the sizes at Sx, S2 and £3 are

a.

21 The same can be achieved more easily from the user's point of view by using SA which is explored in

Chapter 5.
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3.3 Testing Composite Non-Nested Disturbance Covariance Matrices

in the Linear Regression Model Using the g Test: Theory

Consider the linear regression model

y=Xfi + u, (3.3.1)

where y is an n X1 vector, X is an n x k nonstochastic matrix of rank k < n, and fi

is a k x 1 parameter vector. Suppose we wish to test

Ho: ii~JV(O,(T2ni(01)), 0 < 0, < Pl (3.3.2)

against

Ha: u , Qx92< qx (3.3.3)

or

^ ) ) , Px < ex < o (3.3.4)

against

HZ: u~N(0,cr2Tl2(e2)), (3.3.5)

where, n , and n 2 are nXn positive definite matrices, 0, and 02 are the parameters

of interest, px and ^, are known numbers and /? and d1 are the nuisance parameters.

Observe that this type of testing problem is invariant with respect to transformations

of the form
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(3.3.6)

where vQ is a positive scalar and v is a fe x l vector. Therefore, the test statistics we

consider should also be invariant to transformations of the form (3.3.6). The vector

Pz

(z'zY
(3.3.7)

is a maximal invariant under the group of transformations given by (3.3.6), where z =

Pxy is the « x l OLS residual vector from (3.3.1)22, and P is an / x n matrix such

that P'P = Px and PP' = /,, in which l = n - k (see King (1983,1987b)). Here

the row vectors of the P matrix are the orthonormal eigenvectors corresponding to

the nonzero eigenvalues of the matrix Px .

Because w is a maximal invariant, any statistic invariant to transformations of the

form (3.3.6) can be expressed as a function of w and any function of w is invariant

under such transformations (see King (1983, 1987b)). Therefore, we can concentrate

on test statistics which treat w as the observed sample and use the density of w as the

likelihood function23. Ara and King (1993) showed that this type of approach is

equivalent to considering marginal likelihood based tests.

Now the hypotheses (3.3.2) to (3.3.5) can be shown equivalent to

Ho: w has density / o(w,0,) , 0 < 0, < p, (3.3.8)

against

Ha: w has density fa(.w,92), 0 < 02 < <?, (3.3.9)

22 For any full column rank matrix K , PK = /„ - K(K'K)~X K' is called the orthogonal projector.
23 Such tests are known as invariant tests.
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H~: w has density /o(w,0,) , p, < 0, < 0 (3.3.10)

against

H~: w has density fa(w,62), qx < 62 < 0, (3.3.11)

where

/o(w,0,) dw = c |pn,pf /2(w' (pn,p')V dw, (3.3.12)

and

fa(w,e2) dw = c \pn2p' (3.3.13)

are the probability density functions of w under the null and alternative hypotheses,

~lnrespectively, c = — F(/ / 2) # and dw denotes the uniform measure on the surface

of the unit / -sphere.

Observe that the restriction to invariant tests has removed the nuisance parameters ft

and a1, as the densities above involve only the parameters of interest. Therefore, we

can say that invariance has simplified the testing problem. Also we note that the

testing problem mentioned above can easily be extended to disturbances following

elliptical symmetry. That is, the distribution of any statistic that is invariant to the

scale of u is invariant to such a widening of the normality assumption (see King

(1979)).
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Now the testing problem above is similar to the one discussed in section 3.2, thus, the

g test can be applied. For testing fl0 against Ha, the g test can be constructed as

follows24. First, we have to choose three points under the null to obtain the

representative densities of w, / , (w), /2(w) and / 3 (w). Let these three points be 0,

= 0, 0, = 6\ (where, 0 < 9\ < /?,) and 0i = px. Among these, 0, = 0 and 0, = px

are assumed to be permanent points involved in the construction of the g test and so

are the densities /,(w) and /3(w). On the other hand, /2(w) can vary according to

the value 6\ takes. Let /4(w) be the density of w under the alternative hypothesis at

02 0 , the point where we want to maximise power25. For this problem, the g test can

be denoted as the g( 02 0', 0, d\, pi) test. However, for convenience we denote it as the

g( 62 0) test throughout.

As mentioned earlier, for the existence of the g(02O) test, we need to control the sizes

of the test first. This involves finding 6\ and kx, k2 and k3 values such that the

following size conditions (which are evaluated via the Monte Carlo method) hold

simultaneously.

Pr[/4(w) > kjx (w) + k2f2(w) + *3/3(w) 10, = 0] = a,

= a,

(3.3.14)

(3.3.15)

(3.3.16)

and

= a (3.3.17)

24 The construction is similar for testing HQ against Ha .
25 Actually all these densities should be written as / , ( w , 0 ) , / 2 ( w , f l J ) , / 3 (w, j> , ) and / 4 ( w , 0 2 f O ) ,

but for convenience they are denoted as above throughout this chapter.
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where, a is the nominal significance level, and a should be within the (1-a)

percent confidence interval of a when evaluated by Monte Carlo methods. If for

particular values of 0\, kx, k2 and k2, probabilities (3.3.14) to (3.3.17) hold

simultaneously, then we have constructed the g(02O) test, otherwise we can try

another 9\ value and find kx, k2 and fc3 values accordingly and proceed as before. If

this also doesn't work, as mentioned earlier, we can add another representative density

under the null (say at 02) and try to solve the following four size conditions

simultaneously by appropriate choices of 0\, 9\, fc,, k2, Jfc3, and k4:

=O] = a, (3.3.18)

Pr[/5(w)> kJ] = 0,!] = a, i = 1,2, (3.3.19)

= a, (3.3.20)

and

= a , (3.3.21)

where, / , (w) , / 2 (w), /3(w) and /4(w) are the representative densities under the

null, and /5(w) is the density under the alternative where the power is maximized.

Even if including another representative density also doesn't work as desired, one can

include yet another representative density under the null and hence solve for another

size condition and so on until the desired outcome is achieved.

The reason for including 0, = 0 in the construction of the g(02 .o) t e s t ^ f i x i nS t h e

size at this point as a is to make the power curve of the test start from a. dx=6\

(and 0, = 0*, i = 1,2,..., ( r - 2 ) , if more than three points are considered under the

null) is included in the test because it brings the sizes for 0 < 0, < p, reasonably
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closer to the nominal size. 0, = p, is included in the test because it was found to be

important in the work of SilvapuUe and King (1991) and SilvapuUe (1994a) where p,

= 1.

3.4 Applications of the g Test

3.4.1 Testing MA(1) Errors against AR(1) Errors in the Linear

Regression Model

Consider the linear regression model given in (3.3.1). If the elements of the n x l

disturbance vector u follow the MA(1) process,

e,_i» \y\ <1, t = \,...,n, (3.4.1)

where e =(eo,el,...,ej ~ N(0,<72In+i) then u ~ AT(O, cr2Q(y)) , where Q(y) is the

nxn tridiagonal matrix with \ + y2 as the main diagonal elements and y as the

nonzero o f diagonal elements. If the elements of u follow the AR(1) process,

u,=pu,_}+e,, (3.4.2)

where uQ ~ N(O,(T2/(l-p2)) and e = (ex,...,en)' - N(0,o"2/n), then

u ~ N(0, CT2E(/7)) in which E(p) is an nxn matrix whose (/,./)ffc element is

The hypotheses of interest for this problem can be written as
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(3.4.3)

against

Ha:u~N{0,cr2T.(p)) (3.4.4)

or

(3.4.5)

against

- K p < 0 . (3.4.6)

Normally positive autocorrelation is more likely in econometric applications.

However, negative autocorrelation is also likely if the dependent variable is

differenced. Therefore, both positive and negative autocorrelation are considered in

this chapter. Obviously, the hypotheses (3.4.3) to (3.4.6) are special cases of (3.3.2) to

(3.3.5), respectively, in which, 0, = y, 0\ - J , &2 = P > 2̂,0 = Po> n i = a > n a =

X and for the positive autocorrelation case, Pl = 1 and qx = 0.999 and for the

negative case, Pl = -1 and qx = -0.999. Therefore, the g test can be constructed for

this problem as outlined in section 3.3. The g tests for positive and negative

autocorrelation testing are denoted as the g(p0) and g(-p0) tests, respectively,

throughout. In particular, for this problem, we consider four versions of the g test,

namely, the g(0.3), g(0.5), g(0.75) and g(-0.5) tests.
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3.4.2 Testing AR(1) Errors against IMA(1,1) Errors in the Linear

Regression Model

Here we are interested in testing the error process given in (3.4.2) against an IMA(1,1)

error process,

(3.4.7)

where L is the lag operator such that Lut = w,_,, M, = e, and (eo,...,en)' ~

We observe that when y = -1 , equation (3.4.7) reduces to u, = et. Consequently, the

null and the alternative models become identical when p = 0 and y = -1.

Following Silvapulle (1994a), the error process in (3.4.7) may be written as

AM = H*e, (3.4.8)

where

A =

h
-1

0

0 . . -

1

. . 0
0

0

. . o
0 -1 1

(3.4.9)

for some unknown z, and
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0

0

0

0

(3.4.10)

Here the non-zero elements of H* are generated by the recursive scheme,

V. =Ku-x

(3.4.11)

From (3.4.8), under Hx,

«) = aaA-1H*H*(A-1)

(say). (3.4.12)

Thus, the hypotheses of interest for this problem can be written as,

H0:u~N(0,a2X(p)), 0<p<l (3.4.13)

against

(3.4.14)
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We consider these particular hypotheses because for this case, SilvapuUe (1991,

1994a) could not obtain King's PO test. The hypotheses given in (3.4.13) and (3.4.14)

are special cases of (3.3.2) and (3.3.5), respectively, in which 0, = p, 6\ = p , 02 =

7 * 02,o = 7o. n i = s . n 2 = 2 i» P\ = °-999 and qx = -1 . Therefore, the g test can

be constructed for this problem as outlined in section 3.3. Here we denote this test as
m e g(7o) t e s t throughout and consider the g(-0.5) test only. For this problem,

SilvapuUe (1991, 1994a) considered only an APO test, called the s(-0.5) test and

found that her APO test behaves poorly compared to the asymptotic tests she

considered. This prompted us to consider the g(-0.5) test only and compare its finite-

sample size and power properties with those for SilvapuUe's recommended

asymptotic tests.

3.5 The Monte Carlo Experiment and the Results

In order to compare our Monte Carlo results of the g test with SilvapuUe's (1991,

1994a) test results, we used her design matrices and the same values of the sample

size.

Details of design matrices used for the first testing problem namely testing MA(1)

errors against AR(1) errors are as follows:

XI: n x 3 , n = 20 and 60, the regressors are a constant, real income and relative price

of spirits. This design matrix is known as Durbin and Watson's (1951) consumption

of spirits example.

X2 : n x 3 , n - 20 and 60, the regressors are a constant dummy, the Australian

quarterly consumers' price index (CPI) starting with 1959(1), and the same index

lagged one quarter.

X3 : n x 5 , n = 20 and 60, X3 is obtained from X2 by adding the CPI lagged two

quarters and three quarters as additional regressors.
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X4: nx3, n = 20 and 30, the regressors are a constant, logarithms of Chow's (1957,

table 1) automobile stock per capita and personal money stock per capita variables for

the United States 1921-1950.

X5 : nx3, n = 2 0 and 60, the regressors are the eigenvectors corresponding to the

three smallest eigenvalues of the nxn Durbin-Watson differencing matrix Ax, which

is a tndiagonal matrix whose main diagonal elements are 2 except for the top left and

bottom right elements which are both 1 and whose elements in the leading off

diagonals are all - 1 . Here, the first regressor is a constant.

For the second testing problem namely testing AR(1) errors against MA(1,1) errors,

the following design matrices were used together with the XI, X2 and X5 matrices

outlined above.

X6 : nX 1, n = 20, 60 and 100, the regressor is the constant dummy.

X7: n x 2, n = 20, 60 and 100, the regressors are the constant dummy and time trend.

These design matrices cover a variety of characteristics. In particular, XI contains

smoothly evolving series (intended to reflect some typical time series data) and X2 and

X3 exhibit realistic degrees of muticollinearity. X5 was included because the DW test

is approximately uniformly most powerful invariant for this matrix. X4, X6 and X7

have been used in previous studies.

2000 replications were used in the two Monte Carlo experiments. For the problems

under consideration, the performance of the g test is invariant to the values of (5 and

cr2, thus, /?,., i = 1, ..., k, and a2 were all set to unity. Also, for the second

problem, following Silvapulle (1991, 1994a), we set ix = 1. The computer programs

were written using GAUSS version 3.2.11. The sizes and powers of the tests were

calculated at the 5% level of significance. For the first problem and for testing

positive autocorrelation, sizes were calculated at y =0 .1 , 0.3, 0.5, 0.7 and 0.9 and

powers were calculated at p = 0.1, 0.3, 0.5, 0.7 and 0.9. For testing negative
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autocorrelation, sizes and powers were calculated at y and p values of-0.1, -0 .3 , . . .

, -0.9. For the second problem, sizes were calculated at p = 0.1, 0.3, 0.5, 0.7, 0.9 and

0.99 and powers were calculated at y = -0.1, -0.3, -0.5, -0.7, -0.9 and -1.0. Some

selected size and power results are plotted in Figures 3.1 to 3.4.

The estimated size and power properties of the APOI tests, s(0.3), s(0.5), s(0.75) and

s(-0.5), the LM test and the best PS test (denoted as the T,(<) test26) were obtained

from Silvapulle (1991, 1994a). For the asymptotic tests, she used approximate non-

similar critical values, in order to compare asymptotic tests' powers with those of the

APOI tests at approximately the same level of significance.

The y*, kt, k2, and k3 values of the g tests for the first problem are given in Table

3.1. Unlike for the first problem, for the second problem we were often forced to

consider more than three representative densities under the null. The p*, i = 1, ... ,

(r —2), and the k values for the second problem are given in Table 3.5.

3.5.1 Monte Carlo Results for Testing MA(1) Errors against AR(1)

Errors

For this testing problem, Silvapulle (1991) and Silvapulle and King (1991) considered

six versions of the APOI tests, namely, the s(0.3), s(0.5), s(0.75), s(-0.3), s(-0.5), and

s(-0.75) tests. They found that their APOI tests have superior small-sample properties

compared to the asymptotic tests they considered. Therefore, it is appropriate to

compare our g test results with their s test results only. The size and power results for

this problem are presented in Tables 3.2 to 3.4. In the following discussion, the

abbreviation g (and s) test stands for both positive and negative autocorrelation tests.

Similarly, g(p0) (and s(p0)) test stands for all the positive autocorrelation tests

considered.

26 She named this test as the r , (<) test because it is used for testing the null against y < 0.
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Among the g test critical values, the k2 values are always far larger in absolute

magnitude than the fc, and k3 values (see Table 3.1). Thus, the / value seems to be

important in the construction of the g test. Also, the y" values and /* values of the s

tests are always similar (see Silvapulle (1991)). Moreover, for some cases, the fc, and

fc3 values are not very different from zero. Consequently, for such cases, the g test

statistic coincides with King's POI test statistic described in Chapter 2. We now

compare the performance of the g and s tests under the null.

The sizes of the s tests are always less than or equal to the nominal size whereas the

sizes of the g tests are always not significantly different from the nominal size27. On

average, the g and s test sizes are comparable though sometimes the g test sizes can be

as high as 0.058 (and 0.062 on one occasion).

The sizes corresponding to the g(-0.5) test are always closer to the nominal size

compared to the sizes of the s(-0.5) test and g(0.5) test for all the design matrices

when n = 20 (and for X4 when n - 30). The g(-0.5) test's sizes become similar to

those of the g(0.5) test when the sample size increases to 60. Because the g test sizes

are successfully controlled, we now turn our attention to the power properties of the s

and g tests.

The power results are encouraging. The g(0.5) and g(0.75) tests are always more

powerful than the s(0.5) and s(0.75) tests, respectively. Interestingly, the g(0.5) test is

always more powerful than the s(0.75) test except on two occasions when n - 20.

Similarly the g(0.3) test is always more powerful than the s(0.3) test except for a few

cases when n = 20. Even for such cases, the power differences between the tests are

small. Also, the g(0.3) test is always more powerful than the s(0.75) test when n =

60. For this testing problem, the s tests (which are nearly optimal) also perform

equally well, therefore the power differences between the s and g tests are small.

Among all the design matrices, the power superiority of the g(p0) tests over the s(p0)

tests ranges up to 0.052 for n = 20 and to 0.076 for n = 60.

27 For 2000 replications, estimated sizes in the range 0.041-0.060 (0.038-0.063) are not significantly
different from the nominal size of 0.050 at the five (one) percent level.
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One could suggest that these power results are to be expected because the g(p0) tests'

sizes are generally higher. However, compared to the s(p0) tests, the g(p0) tests

often have exact sizes and good power properties. Also, there are some cases where
t n e g(Po) t e s t s are m o r e powerful than the s(p0) tests while the corresponding test

sizes are similar.

Like the s(p0) tests' powers, the g(p0) tests' powers are always greater than or equal

to the nominal size. Also, the g(p0) tests' powers always increase with p and n.

We would expect the g(0.3) test, g(0.5) test and g(0.75) test to be the most powerful

test for small, medium, and large values of p, respectively. However, we find that

this is not always the case, for example, for the X3 matrix, when n = 60 and p = 0.3,

the powers of the g(0.3) and g(0.5) tests are 0.153 and 0.164, respectively, and the

corresponding average sizes are 0.052 and 0.055 respectively. Similarly, for the X5

matrix, when n = 60 and p = 0.7, the powers of the g(0.5) and g(0.75) tests are 0.890

and 0.883, respectively, and the corresponding average sizes are 0.057 and 0.054,

respectively. Thus, the size differences of the g(/?0) tests may be causing this

unexpected behaviour.

Finally, we observe that the size and power results of the g(p0) tests are largely

unaffected by the choice of p0 value. The g(0.5) test seems worth focussing on in

terms of powers, but only just.

The g(-0.5) test is always more powerful than the s(-0.5) test, except for some cases

where the power differences between the two tests are small. Surprisingly, for such

cases, the average sizes of the g(-0.5) test are always greater than or equal to those of

the s(-0.5) test. The powers of the g(-0.5) test always increase with p and n. Among

all the design matrices, the power advantage of the g(-0.5) test over the s(-0.5) test

ranges up to 0.029 and 0.067 for n = 20 and n = 60, respectively.

The power results indicate that when the s test is nearly optimal, little gain can be

achieved by applying the g test.
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3.5.2 Monte Carlo Results for Testing AR(1) Errors against IMA(1,1)

Errors

For this problem, Silvapulle (1991, 1994a) found that the asymptotic tests such as the

LM test and pure significance test (denoted as the T,(<) test) behave better than her

s(-0.5) test (which is not nearly optimal) and the other asymptotic tests she considered.

In particular, she recommended the r,(<) test for small to moderate values of n and

the LM test for large n. Therefore, for this case, we compare our g(-0.5) test results

with the LM and T,(<) tests results and also with the s(-0.5) test results. The size and

power results for this problem are presented in Tables 3.6 to 3.7.

For all the design matrices considered, we observe that the middle k values of the

g(-05) test are always larger in absolute magnitude than the first and last k values

(see Table 3.5). This indicates that the p*, i = 1, 2, . . . , ( r - 2 ) , values are important

in the construction of the g(-0.5) test.

I

The sizes of the g(-0.5) test are always not significantly different from the nominal

size, whereas, the other tests' sizes are always less than or equal to the nominal size.

The T,(<) test has its maximum size at p - 0.1 when n = 20, and its sizes decrease

as p increases. A similar pattern can be seen for n = 60. For n = 100 and 0.1 < p

< 0.9, the Tj(<) test' sizes are closer to zero in absolute value and its size becomes

exact when p = 0.99. Like the g(-0.5) test, the LM test tends to have its maximum

size at different values of p for different X matrices and sample sizes. Among the

tests considered by Silvapulle (1991, 1994a), generally, the LM test sizes are much

closer to the nominal size. The T, (<) test sizes are also better for small to moderate

sized samples. On the other hand, the s(-0.5) test behaves poorly. Its sizes always

decrease from 0.05 to 0 and then increase to 0.05 as p increases from 0 to 1. Also the

s(-0.5) test sizes are similar for all the design matrices.

The g(-0.5) test sizes are generally not significantly different from the nominal size,

and they vary between 0.038 to 0.058. On the other hand, as noted above, the other
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test sizes are sometimes closer to zero in absolute value or vary between 0.010 to

0.050. This makes it difficult for us to compare the powers of the tests at

approximately same level of significance.

The power results of the g(-0.5) test are very encouraging. Its powers are always well

above the powers of other tests when y varies over -0.1 to -0.9 and becomes exactly

equal to 0.050 when y - ~\. The power result at y - -1 is not surprising, because as

mentioned earlier in section 3.4.2, the null and the alternative models of interest

become identical when p = 0 and y = -1 . Therefore, the power at y = -1 , should be

equal to the size of the test at p = 0, which in our case is fixed as 0.050.

Among all the design matrices, the power advantage of the g(-0.5) test over the T,(<)

test when n = 20 and 60 are 0.148 and 0.354, respectively. Similarly, the power

advantage of the g(-0.5) test over the LM test is 0.369 when n = 100. Here the T,(<)

and LM tests are the ones recommended by Silvapuile (1991, 1994a) for small to

moderate and large samples, respectively. The g(-0.5) test is always more powerful

than these tests, Figures 3.1, 3.2 and 3.3 clearly illustrate this. On the other hand, the

s(-0.5) test performs poorly in terms of power properties, for example, the power

advantage of the g(-0.5) test over the s(-0.5) test is 0.969 when n = 100 (see Figure

3.4). The power dominance of the g(-0.5) test over the other tests may seem due to its

higher sizes. However, there are many cases where the g(-0.5) test has better sizes

and higher powers than its competitors. For example, for X6, y = -0.3 and n = 60,

the powers of the T,(<) and g(-0.5) tests are 0.261 and 0.615, respectively, while the

corresponding average sizes are 0.040 and 0.051, respectively. Similarly, forX7, n =

100 and y = -0.7, the powers of the LM and g(~0.5) tests are 0.520 and 0.882,

respectively, while the corresponding average sizes are 0.044 and 0.050, respectively.

The g(-0.5) and LM tests' powers always increase with sample size, whereas, the

T,(<) test powers increase when n increases from 20 to 60 but not when n increases

from 60 to 100. The g(-0.5) and r,(<) tests' powers always first increase and then
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decrease as y decreases. The same happens for the s(-0.5) test when n = 20 and for

the LM test when n = 60 and 100.

Compared to other tests, the g(-0.5) test detects the fact that the null and the

alternative models are the same when y = -1 and p = 0, perfectly well as its power

always becomes equal to 0.050 at y = -1 . The g(-0.5) test is also very good in

detecting the difference between y = -0.9 and y = -1 compared to other tests. The

distinct power difference between these two y points is more obvious in large

samples. For example, for X6 and n = 100, the g(-0.5) test powers corresponding to

y = -0.9 and -1 are 0.506 and 0.050, respectively. The second best test in this regard

for the same data matrix and sample size is the LM test, which has powers 0.178 and

0.046, respectively.

Based on our results, we strongly recommend the g(-0.5) test for this testing problem.

3.6 Applications of the g Test to Real World Data

In this section, two applications of the g test to real world data are outlined.

3.6.1 Application 1

Here, we consider the model used by Silvapulle (1991), which is a simple quarterly

linear regression model for Australian real interest rates given by

Ar, = A + P2SU + P,Slt + J34S3t + u, (3.6.1)

where A denotes first differences, r, =R,-Tl, is the ex post real interest rate, R, is

the nominal interest rate measured by the 90-day bank accepted bill rate, n , is the

annual inflation rate calculated as 11, =400x[ln(CP/,)-ln(L(CP/,))], CPI, is the

unadjusted weighted average of consumer price indices of all eight cities in Australia
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at time t, and Su, S2t, and S3t are quarterly seasonal dummies. The CPI data we

used here is different from Silvapulle's because her data is not currently available.

She used an unadjusted weighted average of consumer price indices of six cities in

Australia excluding Darwin and Canberra,. Using quarterly Australian data for the

period 1969(2) to 1987(1), estimation of (3.6.1) by OLS results in

Ar = -2.991 + 7.878 Su + 2 A31 S2t + 2.096 S,,
' (-2.604) (4.852) " (1.497) " (1.290) il

R1 = 0.274 , d = 2.903.

(3.6.2)

The DW statistic, d, indicates significant negative first-order autocorrelation at the

one percent level of significance because the one percent exact critical value is given

as 2.525 (see King (1981)). Although, our OLS results are slightly different from

Silvapulle's, the finding is the same. Therefore, following her, we assume that the

error term in (3.6.1) follows a negative MA(1) process. An obvious alternative

hypothesis is that ut follows a negative AR(1) process.

In order to construct the g(-0.5) test for this problem, we have to find y*, (where, -1 <

y < 0) and fc,, k2 and fc3 values such that the following size conditions (which are

evaluated via Monte Carlo method) hold simultaneously.

= 0] = a, (3.6.3)

= f] = a,

= -1] = a,

(3.6.4)

(3.6.5)

and

Pr[/4(H0>'- 0] = a\ (3.6.6)
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where f^w), / 2 (w) , and /3(w)are the densities corresponding to y = 0, y = y

and y = -1 , respectively, and /4(w) is the density corresponding to p = -0.5, the

point where the power is to be maximised. The solution found at a = 0.05 is / = -

0.4229, kx =0.0000115, k2 =3.23 and *3 =0.000024. For these values the calculated

value of the statistic is

(3.6.7)

where £2(7,), /= 1,...,3, correspond to Q. evaluated at y =0 , y = -0.4229, and y =

-1 , respectively. Because the calculated value of the test is less than one, we do not

reject the null hypothesis that the error term follows a negative MA(1) process at the

five percent level of significance. This finding coincides with Silvapulle's.

3.6.2 Application 2

For this case, we obtained data from Griffiths et al. (1993, p.516). They model the

response of an area of sugarcane sown in a region of Bangladesh by the linear model,

(3.6.8)

where A is the area for sugarcane production (in thousands of hectares), Ps is the

price of sugarcane (in taka/tonne) and P} is the price of jute (in taka/tonne). Using 34

annual observations, estimation of (3.6.8) by OLS results in

ln(A)= 6.12+1.0041n(/>v,
^ (0.214) (0.141)

R2 =0.614, d =1.093.

(3.6.9)
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The DW statistic, d, indicates significant positive first-order autocorrelation at the 5

percent level of significance. Griffiths et al. assume that the errors of their model

follow an AR(1) error process. Therefore, here we test an AR(1) error process against

an IMA(1,1) error process using the g(-0.5) test.

The parameter solution found at the 5% level of significance is kx = 0.125, k2 =

1.499, *3 = 1.53, k4 = 0.43, p\ = 0.38 and p\ - 0.74. For these values the

calculated value of the statistic is 0.055 which is less than one, therefore we do not

reject the null that the error term follows an AR(1) process at the five percent level of

significance. This finding coincides with Griffiths et al.'s.

3.7 Conclusions

In this chapter, we proposed a new APO test, called the g test, based on the GNPL, for

testing a composite null. This new test will be helpful for situations where King's PO

test cannot be constructed. The small-sample properties of the g test were

investigated using Monte Carlo simulations and the results were compared with those

for APOI tests and asymptotic tests of Silvapulle (1991, 1994a). In particular, we

applied the g test to two testing problems, namely, testing for MA(1) disturbances

against AR(1) disturbances and testing for AR(1) disturbances against IMA(1,1)

disturbances with a negative MA coefficient in the context of the linear regression

model. Because she could nrt construct King's POI test for these two composite non-

nested testing problems, Silvapulle (1991, 1994a) constructed King's APOI tests

which performed extremely well for the former problem but performed poorly for the

latter. Our g test performed well for both testing problems, in terms of size and power

properties.

The power results for the first problem indicate that when King's APO test is nearly

optimal, little gain can be achieved by applying the g test. For the second problem,

Silvapulle (1994a) recommended two asymptotic tests, T,(<) and LM, for small to

moderate and large samples, respectively. Our Monte Carlo results clearly show that
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the g(-0.5) test is always far superior to these two tests in terms of power properties.

Therefore, we strongly recommend the g(-0.5) test for testing AR(1) errors against

IMA(1,1) errors with a negative MA coefficient in the linear regression model.

The performance of the g test for these two problems is highly encouraging. In this

chapter, we analysed the performance of the g test in situations where the nuisance

parameters can be avoided via invariance methods. But in practice there are situations

where the nuisance parameters cannot be avoided via invariance or by any other

means. It is interesting to see the performance of the g test in such situations. This is

explored in Chapter 5.

In the next chapter, we discuss how to obtain exact (and near exact) non-similar

critical values and exact size critical values (by assuming knowledge of the unknown

parameters) of general non-similar tests, via S A.
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Table 3.1: k, and? values for the g tests at the 5% level for testing MA(1) vs AR(1) errors

Test

g(0.3)

g(0.5)

g(0.75)

g(-0.5)

k;

k,
k2

k3
*

7

kj

k2

k3
•

T

* i

k2

k3

*
Y

kj

k2

k3

*
7

X/

n =20

0.0295

1.5025

-0.000987

0.28

0.0105

2.37

0.0066

0.405

0.00249

3.1

0.001

0.5

0.00045

2.828

0.2

-0.5

n =60

0.0045

2.04

0.0000001

O.?77

0.0000845

2.872

0.000026

0.405

6.2 x 10'7

0.8

0.000065

0.495

0.00003

3.1

0.0029

-0.44

X2

n =20

0.04809

1.4255

-0.001922

0.28

0.01894

2.287

-0.00712

0.405

-0.0005

2.78

0.095

0.48

0.0051

2.541

0.286

-0.5

n =60

0.0035

2.11

9.0 x 10'9

0.28

0.000148

2.95

0.00009

0.4105

4.1 x 10'7

0.614

0.000208

0.4995

0.000045

3.18

0.001

-0.439

ll = 2 0

0.0206

1.368

0.000681

0.27

0.025

2.03

-0.0009

0.405

-0.0032

2.64

0.107

0.48

-0.00582

1.815

0.824

-0.5

X3

n =60

0.00276

2.04

7.8 x 10"7

0.28

0.00016

2.843

0.00023

0.414

4.4 x 10'7

0.682

0.00048

0.505

0.000045

2.94

0.0024

-0.439

H = 2 0

0.014

1.48

0.00007

0.27

0.01986

2.315

-0.0044

0.405

0.0083

3
0.027

0.499

0.002

2.755

0.145

-0.5

X4

n =30

0.0113

1.727

-0.000052

0.278

0.00183

2.798

0.00251

0.405

0.00029

2.496

0.009

0.499

0.00144

3.162

0.1056

-0.46

X5

n =20

0.0394

1.4112

-0.000594

0.27

0.023

2.13

-0.00092

0.39

-0.0002

2.8

0.025

0.46

-0.00295

2.0085

0.82

-0.5

n =60

0.00361

2.04178

7.5 x 108

0.277

0.00023

2.803

0.000027

0.406

1.08 x 10"6

0.835

0.00008

0.492

0.000018

3.21

0.004

-0.44
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Table 3.2: Sizes and powers of the s(p0) tests and g(pb) tests at the 5% level
for n = 20, when testing for MA(1) errors against AR(1) errors

VI
JLJ

X2

X3

X4

XS

v —01
J — U.I

0.3
0.5
0.7
0.9

n — 0 1
p — u.i

0.3
0.5
0.7
0.9

y=0.1
n%\jtj

0.5
0.7
0.9

p =0.1
0.3
0.5
0.7
0.9

y = 0.1
0.3
0.5
0.7
0.9

/?=0.1
0.3
0.5
0.7
0.9

y = 0.1
0.3
0.5
0.7
0.9

/j=0.1
0.3
0.5
0.7
0.9

y = 0.1
0.3
0.5
0.7
0.9

/3=0.1
0.3
0.5
0.7
0.9

s(0.3)

0.046
0.045
0.046
0.047
0.048

0.052
0.079
0.116
0.335
0.515

0.048
0.044
0.046
0.049
0.049

0.052
0.076
0.156
0.311
0.504

0.045
0.044
0.044
0.046
0.048

0.052
0.070
0.130
0.252
0.418

0.046
0.044
0.044
0.046
0.048

0.054
0.076
0.152
0.293
0.438

0.046
0.045
0.046
0.049
0.050

0.053
0.075
0.141
0.250
0.343

s(0.5)

0.044
0.043
0.045
0.048
0.049

0.051
0.076
0.163
0.337
0.526

0.047
0.045
0.046
0.048
0.049

0.051
0.077
0.156
0.324
0.529

0.046
0.045
0.045
0.047
0.049

0.053
0.071
0.133
0.261
0.435

0.045
0.044
0.045
0.048
0.049

0.053
0.076
0.155
0.310
0.484

0.045
0.043
0.045
0.048
0.050

0.052
0.073
0.139
0.251
0.348

s(0.75)

0.044
0.043
0.044
0.046
0.048

0.051
0.075
0.159
0.336
0.536

0.046
0.O44
0.O45
0.O48
0.049

0.050
0.073
0.154
0.324
0.540

0.047
0.045
0.045
0.048
0.050

0.053
0.071
0.132
0.264
0.447

0.046
0.045
0.045
0.047
0.048

0.053
0.074
0.150
0.317
0.539

0.045
0.043
0.044
0.047
0.049

0.053
0.072
0.137
0.249
0.350

s(0.3)

0.053
0.049
0.042
0.042
0.047

0.056
O.0S5
0.168
0.323
0.508

0.056
0.046
0.044
0.042
0.049

0.058
0.089
0.160
0.310
0.518

0.052
0.051
0.052
0.052
0.050

0.056
0.082
0.154
0.276
0.453

0.051
0.050
0.048
0.050
0.049

0.054
0.077
0.158
0.304
0.459

0.052
0.052
0.050
0.048
0.049

0.055
0.085
0.150
0.248
0.345

e(0.5)

0.055
0.051
0.054
0.053
0.050

0.060
0.088
0.190
0.365
0.556

0.055
0.052
0.043
0.047
0.050

0.057
0.082
0.170
0.338
0.548

0.056
0.058
0.049
0.053
0.051

0.060
0.088
0.158
0.285
0.472

0.055
0.053
0.048
0.046
0.051

0.056
0.081
0.164
0.312
0.493

0.055
0.054
0.049
0.049
0.049

0.059
0.091
0.160
0.266
0.361

E(0.75)

0.053
0.049
O.050
0.051
O.050

0.054

0.082
0.182
O.360
0.562

0.049
0.052

0.049
0.053
0.053

0.050
0.074
0.166
0.349
0.578

0.049
0.046
0.049
0.052
0.048

0.052
0.075
0.149
0.295
0.480

0.053
0.053
0.050
0.050
0.049

0.055
0.088
0.170
0.329
0.562

0.O48
0.054
0.050
0.053
0.051

0.053
0.082
0.150
0.267
0.363
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Table 3.3: Sizes and powers of the s( p0) tests and g(p0) tests at the 5% level for

n = 60*, when testing for MA(1) errors against AR(1) errors

XJ

X2

X3

X4

X5

7 = 0.1
0.3
0.5
0.7
0.9

p = 0.1
0.3
0.5
0.7
0.9

- 0 1
0.3
0.5
0.7
0.9

p=0.1
0.3
0.5
0.7
0.9

- 0 1
0.3
0.5
0.7
0.9

p=0.\
0.3
0.5
0.7
0.9

- 0 1
0.3
0.5
0.7
0.9

- 0 1
0.3
0.5
0.7
0.9

7 = 0.1
0.3
0.5
0.7
0.9

p = 0.1
0.3
0.5
0.7
0.9

s(0.3)

0.047
0.042
0.044
0.046
0.048

0.054
0.131
0.434
0.839
0.975

0.046
0.043
0.045
0.048
0.049

0.053
0.136
0.455
0.870
0.990

0.045
0.043
0.045
0.048
0.049

0.058
0.132
0.441
0.859
0.989

0.044
0.043
0.045
0.048
0.049

0.052
0.094
0.243
0.543
0.778

0.045
0.043
0.044
0.047
0.049

0.058
0.133
0.435
0.840
0.977

s(0.5)

0.044
0.039
0.042
0.044
0.047

0.052
0.122
0.426
0.842
0.979

0.044
0.042
0.043
0.047
0.049

0.052
0.132
0.453
0.875
0.991

0.044
0.041
0.043
0.047
0.049

0.056
0.127
0.436
0.862
0.989

0.045
0.043
0.044
0.048
0.049

0.054
0.092
0.244
0.538
0.792

0.043
0.042
0.043
0.047
0.050

0.056
0.130
0.434
0.844
0.979

s(0.75)

0.046
0.039
0.042
0.044
0.047

0.051
0.119
0.419
0.845
0.984

0.043
0.041
0.042
0.046
0.049

0.051
0.126
0.442
0.872
0.992

0.044
0.041
0.042
0.047
0.050

0.057
0.123
0.429
0.862
0.990

0.044
0.042
0.043
0.048
0.050

0.054
0.090
0.238
0.538
0.803

0.042
0.040
0.042
0.047
0.050

0.054
0.122
0.423
0.842
0.979

g(0.3)

0.056
0.050
0.053
0.054
0.054

0.065
0.159
0.489
0.877
0.984

0.056
0.049
0.047
0.049
0.050

0.061
0.148
0.486
0.892
0.993

0.055
0.048
0.050
0.054
0.052

0.064
0.153
0.493
0.891
0.991

0.051
0.049
0.044
0.047
0.048

0.061
0.101
0.254
0.546
0.786

0.054
0.049
0.051
0.055
0.055

0.065
0.159
0.486
0.876
0.985

g(0.5)

0.055
0.049
0.054
0.058
0.056

0.067
0.156
0.500
0.890
0.990

0.057
0.052
0.050
0.055
0.052

0.065
0.154
0.512
0.908
0.995

0.059
0.054
0.053
0.060
0.050

0.069
0.164
0.512
0.901
0.994

0.052
0.049
0.049
0.053
0.053

0.058
0.107
0.274
0.584
0.818

0.062
0.054
0.054
0.061
0.054

0.071
0.164
0.508
0.890
0.989

K(0.75)

0.056
0.050
0.049
0.055
0.055

0.065
0.147
0.486
0.889
0.992

0.058
0.053
0.050
0.055
0.053

0.065
0.154
0.513
0.908
0.996

0.056
0.050
0.050
0.058
0.055

0.062
0.151
0.500
0.894
0.994

0.054
0.048
0.051
0.053
0.052

0.061
0.112
0.278
0.582
0.837

0.056

0.048
0.051
0.057
0.056

0.066

0.149
0.492
0.883
0.988

* For X4, sample size, n = 30 was used
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Table 3.4: Sizes and powers of the s(-0.5) and g(-0.5) tests at the 5% level,
when testing for MA(1) errors against AR(1) errors

XI f = -0.1
-03
-0.5
-0.7
-0.9

n
s(-0.5)

0.048
0.045
0.046
0.048
0.050

= 20
e(-0.5)

0.048
0.048
0.050
0.052
0.050

n
s(-0.5)

0.051
0.041
0.043
0.047
0.049

= 60*

0.057
0.050
0.051
0.056
0.053

X2

X3

X4

X5

>=-0.1
-03
•05
-0.7
-0.9

y = -0.1
f

-03
-0.5
-0.7
-0.9

o=-0.1
-0.3
-0.5
-0.7
-0.9

y = -0.1
-0.3
-0.5
-0.7
-0.9

/3=-0.1
-0.3
-0.5
-0.7
-0.9

y = -0.1
-0.3
-0.5
-0.7
-0.9

o = -01r " k

-0.3
-05
-0.7
-0.9

r = -0.1
-0.3
-0.5
-0.7
-0.9

p=-O.\
-0.3
-0.5
-0.7
-0.9

0.051
0.083
0.216
0.538
0.883

0.047
0.043
0.045
0.048
0.050

0.050
0.081
0.217
0.546
0.889

0.047
0.045
0.046
0.049
0.050

0.050
0.078
0.188
0.484
0.855

0.049
0.044
0.043
0.045
0.047

0.053
0.082
0.217
0.544
0.887

0.049
0.045
0.047
0.049
0.050

0.052
0.083
0.216
0.540
0.885

_ _ _ _ _ _ _ _ _ _
- « = 10 and

0.051
0.085
0.215
0.527
0.877

0.050
0.051
0.050
0.052
0.051

0.056
0.099
0.246
0.553
0.894

0.049
0.048
0.050
0.050
0.050

0.052
0.086
0.203
0.489
0.849

0.052
0.052
0.050
0.049
0.051

0.055

1

0.092 1
0.235
0.559 |
0.887

0.049
0.052
0.050
0.049
0.051

0.054
0.093
0.234
0.531
0.878

-
n = 30 were used

0.053
0.135
0.499
0.930
0.999

0.047
0.041
0.045
0.049
0.050

0.053
0.136
0.508
0.933
0.999

0.047
0.043
0.044
0.048
0.050

0.052
0.134
0.482
0.919
0.999

0.048
0.042
0.044
0.046
0.047

0.051
0.096
0.299
0.711
0.967

0.050
0.042
0.043
0.047
0.049

0.059
0.137

0.501
0.931
0.999

_—_——̂—-""""̂

0.062
0.165
0.553
0.947
1.000

0.057
0.050
0.053
0.056
0.052

0.064
0.173
0.553
0.947
1.000

0.055
0.049
0.052
0.055
0.050

0.064
0.175
0.549
0.940
0.999

0.050
0.051
0.050
0.050
0.050

0.057
0.115
0.332
0.731
0.962

0.052
0.047
0.051
0.055
0.051

0.060
0.160
0.547
0.949
1.000
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Table 3.5: k,- and p {* values of the g(-0.5) test at the 5% level for testing
AR(1) errors against IMA(1,1) errors

n k4 Pi P2

XI

20
60

0.1185
0.01435

2.09
2.21

0.285
0.8725 0.0443

0.4
0.43 0.74

X2

20
60

0.0656
0.0052

1.2865
1.399

1.2234
1.48

0.0096
0.029

0.32
0.42

0.69
0.73

20
60

X5

0.571 1.188 0.00938
0.0104 1.93 1.75 0.0075

X6

0.4
0.36 0.64

20
60

100

0.195
0.00131

7.7 x 10'6

2.71
0.646

0.0346

0.57
1.32

0.192

-
0.0416

0.054

-
-

0.00264

0.595
0.454

0.404

-
0.799

0.643

20
60
100

X7

0.414
0.00042
0.00011

1.996
1.169
0.192

0.026
1.98

0.663

-
0.0118
0.045 0.00018

0.5
0.37
0.402

0.72
0.6461

0.848

0.853
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Table 3.6: Sizes and powers of the s(-0.5) and g(-0.5) tests at the 5% level forXi ,
X2 andX5, when testing for AR(1) errors against IMA(1,1) errors

XI

X2

X5

p=0.1
0.3
0.5
0.7
0.9
0.99

y = -0.1
-0.3
-0.5
-0.7
-0.9
-1

/?=0.1
0.3
0.5
0.7
0.9
0.99

y = -0.1
-0.3
-0.5
-0.7
-0.9
-1

p=0.1
0.3
0.5
0.7
0.9
0.99

y = -0.1
-0.3
-0.5
-0.7
-0.9
-1

0.G50
0.049
0.040
0.031
0.018
0.020

0.031
0.067
0.100
0.073
0.051

0.048
0.045
0.050
0.040
0.038
0.028

0.059
0.126
0.170
0.128
0.061
0.051

0.050
0.042
0.042
0.035
0.025
0.023

0.046
0.085
0.092
0.077
0.054
0.055

n =
LM

0.050
0.039
0.029
0.022
0.019
0.018

0.012
0.018
0.025
0.037
0.045
0.057

0.050
0.043
0.038
0.033
0.024
0.020

0.016
0.018
0.029
0.034
0.049
0.052

0.049
0.050
0.048
0.049
0.046
0.048

0.032
0.026
0.031
0.041
0.052
0.049

20
s(-0.5)

0.029
0.009
0.000
0.001
0.033
0.046

0.045
0.056
0.064
0.059
0.054
0.051

0.030
0.010
0.001
0.001
0.034
0.046

0.045
0.056
0.063
0.059
0.055
0.052

0.032
0.007
0.002
0.003
0.033
0.044

0.046
0.053
0.064
0.059
0.055
0.053

g(-0-5)

0.047
0.047
0.052
0.052
0.048
0.050

0.085
0.163
0.172
0.116
0.056
0.050

0.044
0.051
0.048
0.048
0.050
0.052

0.082
0.166
0.188
0.127
0.061
0.050

0.054
0.056
0.050
0.045
0.048
0.048

0.071
0.107
0.101
0.068
0.053
0.050

0.050
0.044
0.046
0.043
0.032
0.018

0.050
0.239
0.425
0.312
0.085
0.052

0.023
0.022
0.021
0.036
0.040
0.050

0.111
0.350
0.519
0.379
0.068
0.039

0.050
0.045
0.050
0.045
0.034
0.027

0.090
0.327
0.465
0.301
0.077
0.050

n =
LM

0.050
0.043
0.034
0.023
0.015
0.014

0.021
0.089
0.193
0.128
0.054
0.049

0.050
0.040
0.032
0.022
0.016
0.011

0.007
0.065
0.188
0.129
0.044
0.055

0.034
0.033
0.036
0.041
0.050
0.045

0.017
0.051
0.101
0.051
0.027
0.030

60
s(-0.5)

0.024
0.010
0.000
0.000
0.020
0.044

0.040
0.038
0.029
0.029
0.035
0.045

0.022
0.008
0.000
0.000
0.015
0.045

0.043
0.040
0.030
0.030
0.038
0.045

0.024
0.012
0.000
0.000
0.024
0.047

0.045
0.039
0.030
0.038
0.045

*

g(-0.5)

0.053
0.049
0.052
0.055
0.056
0.052

0.145
0.551
0.727
0.518
0.118
0.050

0.046
0.044
0.056
0.050
0.051
0.049

0.143
0.538
0.752
0.593
0.131
0.050

0.053
0.049
0.055
0.049
0.045
0.046

0.117
0.404
0.580
0.394
0.087
0.050

•This value is not reported in Silvapulle (1991)
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Table 3.7 : Sizes and powers of the s(-0.5) and g(-0.5) tests at the 5% level for
X6 and X7\ when testing for AR(1) errors against IMA(1,1) errors

LM s(-0.5) g(-0.5) LM s(-0.5) g(-0.5)

n=20,X»

/>=0.1
0.3
0.5
0.7
0.9
0.99

p=0.1
0.3
0.5
0.7
0.9
0.99

p=0.1
0.3
0.5
0.7
0.9
0.99

p=0.1
0.3
0.5
0.7
0.9
0.99

p=0.1
0.3
0.5
0.7
0.9
0.99

p=0.1
0.3
0.5
0.7
0.9
0.99

0.050
0.045
0.037
0.028
0.022
0.032

0.050
0.049
0.045
0.031
0.024
0.019

0.048
0.047
0.050
0.044
0.025
0.031

0.049
0.046
0.050
0.045
0.031
0.019

0.002
0.002
0.001
0.001
0.010
0.050

0.001
0.002
0.002
0.006
0.009
0.050

0.050
0.050
0.048
0.044
0.046
0.032

0.050
0.048
0.042
0.050
0.038
0.040

0.041
0.046
0.045
0.050
0.043
0.031

0.041
0.044
0.043
0.050
0.047
0.035

0.046
0.046
0.049
0.050
0.045
0.040

0.049
0.049
0.045
0.050
0.045
0.031

0.028
0.008
0.000
0.002
0.032
0.045

0.018
0.012
0.001
0.003
0.025
0.048

0.021
0.009
0.000
0.000
0.018
0.041

0.027
0.009
0.000
0.003
0.017
0.043

0.018
0.003
0.000
0.000
0.015
0.042

0.020
0.002
0.000
0.000
0.014
0.043

0.054 7 = -0.1
0.058 -0.3
0.049 -0.5
0.046 -0.7
0.053 -0.9
0.049 -1

w=20,X7

0.052 y = -0.1
0.055 -0.3
0.050 -0.5
0.050 -0.7
0.050 -0.9
0.050 -1

« = 6 0 , X 5

0.055 y = -0.1
0.044 -0.3
0.053 -0.5
0.054 -0.7
0.048 -0.9
0.054 -1

n = 60, X7

0.038 y = -0.1
0.043 -0.3
0.058 -0.5
0.050 -0.7
0.045 -0.9
0.049 -1

n = 100, X6

0.055 y = -0.1
0.048 -0.3
0.057 -0.5
0.052 -0.7
0.051 -0.9
0.050 -1

n -100, X7

0.056 y = -0.1
0.045 -0.3
0.055 -0.5
0.048 -0.7
0.046 -0.9
0.049 -1

0.041
0.083
0.170
0.152
0.070
0.055

0.041
0.084
0.124
0.075
0.050
0.050

0.064
0.261
0.549
0.619
0.168
0.052

0.069
0.317
0.515
0.403
0.096
0.049

0.027
0.222
0.536
0.521
0.033
0.002

0.004
0.086
0.323
0.257
0.068
0.001

0.019
0.025
0.042
0.039
0.044
0.047

0.022
0.015
0.016
0.030
0.045
0.049

0.037
0.248
0.519
0.434
0.061
0.041

0.026
0.125
0.255
0.152
0.036
0.042

0.067
0.548
0.882
0.802
0.178
0.046

0.046
0.400
0.697
0.520
0.055
0.047

0.043
0.055
0.065
0.058
0.051

*

0.048
0.053
0.067
0.055
0.048
0.050

0.041
0.039
0.029
0.030
0.035
0.042

0.047
0.035
0.026
0.034
0.043

0.030
0.024
0.015
0.017
0.021
0.034

0.038
0.025
0.013
0.014
0.023
0.035

0.091
0.220
0.318
0.253
0.078
0.050

0.085
0.163
0.176
0.125
0.059
0.050

0.160
0.615
0.880
0.802
0.260
0.050

0.138
0.475
0.735
0.574
0.113
0.050

0.209
0.856
0.984
0.962
0.506
0.050

0.192
0.769
0.946
0.882
0.264
0.050

•These values are not reported in SilvapuUe (1991)
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Figure 3.1: Comparing the PS and g(-0.5) tests for X6
20, when testing for AR(1) errors against IMA(1,1)
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Figure 3.2: Comparing the PS and g(-0.5) tests for X6
60, when testing for AR(1) errors against IMA(1,1)
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Figure 3.3: Comparing the LM and g(-0.5) tests forX7 with n =
100, when testing for AR(1) errors against IMA( 1,1) errors
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Figure 3.4: Comparing the s(-0.5) and g(-0.5) tests for X6 with n =
100, when testing for AR('l) errors against IMA(l.l) errors
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APPENDIX 3.2

The Generalised Neyman-Pearson Lemma (GNPL)

Here we give the theorem only. For full mathematical details see Lehman (1986).

Theorem (Lehman (1986, p. 96)): Let / , , . , . , / r + ] be real valued functions defined on

a Euclidean space A and integrable fi, and suppose that for given constants a , , ...,

ar there exists a critical function 0 satisfying

(A3.1)

Let b be the class of critical functions <p for which (A3.1) holds.

1) Among all members of b there exists one that maximises

(A3.2)

2) A sufficient condition for a member of b to maximise (A3.2) is the existence of

constants kx, ..., kr such that

= 1 when

r

= 0 when /r+1 (*) < £ kf; ( (A3.3)

3) If a member of b satisfies (A3.3) with fc,, ..., kr Z 0 then it maximises (A3.2)

among all critical functions satisfying
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/z^a,-, i = l,...,r. (A3.4)

4) The set R of points in r—dimensional space whose coordinates are

for some critical function <j>, is convex and closed. If an i = 1, ..., r, is an inner

point of R, then there exist constants fc,, ..., kr, and a test 0 satisfying (A3.1) and

(A3.3), and a necessary condition for a member of b to maximise (A3.2) is that

(A3.3) holds.

Notes

The size conditions (A3.1) can also be written more simply as

Pr [ reject HQ l/ ;] = a,, i = 1,..., r , (A3.5)

where the a, 's are ones preferred levels of significance, like, 0.05, 0.01 etc.

Generally, we would like to fix the nominal size at one level. However, the GNPL

does allow flexibility in this area when testing a composite null hypothesis.

The power of the test (A3.2) can also be written more simply as

Pr [ reject Ho
(A3.6)

The GNPL states that provided one finds appropriate critical values fc,., i = 1, ..., r,

such that the r size conditions (A3.1) hold simultaneously, then for those critical

values, the test (given in A3.3) will be the most powerful test among the tests of size

equal to cc;, i = 1, ..., r . If all the critical values satisfying (A3.1) happen to be
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positive then the test will be the most powerful test among all tests of size less than or

equal to an i = 1,..., r.
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Chapter 4: Exact non-similar critical values for general non-similar tests

CHAPTER 4

EXACT NON-SIMILAR CRITICAL VALUES FOR GENERAL NON-

SIMILAR TESTS

4.1 Introduction

In the previous chapter, we considered two testing problems for which the nuisance

parameters can be avoided by using invariance methods. However, in practice one

often has to work in the presence of unavoidable nuisance parameters. The presence

of nuisance parameters can make tests non-sim^ar.

The classical approach to non-similar tests is to find exact non-similar critical values,

for which sizes are never greater than the nominal size for all possible values of the

nuisance parameters. Because there are no analytical tools proposed in the literature

to derive or approximate these critical values for particular tests, the critical values

have to be obtained by using the Monte Carlo method. Consequently, there are few

existing studies based on non-similar critical values (see Inder (1985), Grant (1987),

King and McAleer (1987) and Silvapulle (1991)).
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As noted in Chapter 2, previous studies based on non-similar critical values (except

studies involving PO and APO tests) are actually based on approximate non-similar

critical values. Approximate non-similar critical values are obtained by varying the

key nuisance parameters (those which if we knew their value we could apply a

standard exact test) only, keeping the other nuisance parameters constant.

Researchers (who used approximate non-sin? ilar critical values) checked whether their

critical values are adequate to control the sizes over a part of nuisance parameter

space only. Therefore, we can say th.: the performance of approximate non-similar

critical values over the entire nuisance parameter space is unknown. Also, these

critical values may not work well for all testing problems, tests and design matrices.

Hence, the need for a method of finding exact non-similar critical values.

In this chapter, we propose a new approach to obtaining exact non-similar critical

values based on the simulated annealing (SA) algorithm. This involves an iterative

process as follows. First we allow SA to find values for the nuisance parameters

(over the nuisance parameter space) such that the size of a non-similar test is at its

maximum28. Then for those values of the nuisance parameters, we obtain the exact

size critical value. Using SA and the new exact size critical value, we again obtain

the maximum size of the non-similar test. If the maximum size obtained at this stage

is equal to the nominal size then we stop this process, otherwise we obtain the exact

size critical value for the new parameter solution and proceed as before, until the

maximum size obtained is acceptable. This iterative procedure will eventually lead

one to an exact non-similar critical value of a non-similar test. If ones aim is to obtain

sizes that are always less than or equal to the nominal size, one can follow this

iterative process. However, this can be an extremely computer intensive procedure.

Therefore, a more practical approach might be to stop the iterative process after one

full round of the procedure and hope the exact critical value obtained at this stage is

close to the exact non-similar critical value (this assumes, little change in the values

of the nuisance parameters that maximise size for different critical values). Critical

values obtained this way can be regarded as near exact non-similar critical values. In

this chapter, we investigated the performance of near exact non-similar critical values.

28 The same could not be achieved by using the Newton-Raphson method, not surprisingly, because it
is not designed to optimize a step function such as the size function estimated via simulation.
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The exact non-similar critical values (involving Monte Carlo methods) mentioned

above can be thought of as approximate because they are subject to sampling error.

The size of this error can be controlled by the number of iterations taken. As noted in

Chapter 1, our SA based approach will not only lead us to exact (and near exact) non-

similar critical values but also allows us to assess whether an approximate distribution

is a good approximation to the exact distribution of the test statistic under the null

hypothesis. We also show how SA can be used to obtain exact size critical values of

non-similar tests, assuming knowledge of the nuisance parameters.

In this chapter, we apply the SA based approach to two non-similar tests, namely, the

DW test and Durbin's t test in the context of the dynamic linear regression model.

Because Durbin's h test is known to perform poorly in finite samples and because it

cannot be defined sometimes, we did not include it. The critical values for the DW

and t tests are obtained from the approximate small disturbance asymptotic (ASDA)

distribution and large-sample distribution of the statistics, respectively. Therefore, for

this case, our SA based approach can be expected to indicate which asymptotic

approach is best. The SA based approach can also be used to check, for example,

whether the standard normal distribution or Student's t distribution is appropriate for

the null distribution of Durbin's t test statistic in finite samples. Also, in this chapter,

we compare SA based near exact non-similar critical values with approximate non-

similar critical values obtained following Inder (1985). Further, an extensive Monte

Carlo study is conducts to see whether SA based near exact non-similar critical

values are indeed wor1 •. ig well in terms of controlling the sizes of the tests over the

auisance parameter space.

The plan of this chapter is as follows. The theory including how SA can be

effectively used to obtain exact (and near exact) non-similar critical values and exact

size critical values of tests is discussed in section 4.2. This theory is applied in

section 4.3 to the problem of testing for autocorrelation in the dynamic linear

regression model. Section 4.4 presents the details of the Monte Carlo experiment and

its main findings. Finally, some concluding remarks are given in section 4.5.
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4.2 Theory

Let y be an observable nx 1 vector which has probability density

(4.2.1)

where tf, </> and £ lire wxl , v x l and w x l vectors of unknown parameters.

Suppose we wish to test

against

Ha: (or or (4.2.2)

where t?0 is a known wxl vector. Then <p and e are vectors of nuisance

parameters. Suppose we have a test statistic T(y) whose null distribution is invariant

with respect to <p but depends on e. In other words, the T(y) test sizes vary with

values of £, thus, the test is non-similar. In sections 4.2.2 and 4.2.3, we discuss how

to obtain exact size critical values (by assuming knowledge of the unknown

parameters) and exact (and near exact) non-similar critical values, respectively, for

such tests.

4.2.1 Finding the Maximum Size of a Non-Similar Test via SA

In order to apply SA, the function to be optimized first has to be defined. Usually one

is able to provide this function explicitly. However, our case is different, because, the

function, namely, the size function, has to be estimated via simulation. Therefore, this

SA based approach may seem unattractive in terms of computation, however, this

should not be the case, especially with the highly advanced computing facilities
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available nowadays. Also, a computational gain in terms of time can be achieved by

noticing which parameters need to be varied and which do not over the nuisance

parameter space.

To find the maximum size of a non-similar test over the nuisance parameter space we

can define the function to be minimized as either

/ = 10000X5

or

/ = lOOOOxs2, (4.2.3)

where s - (1 -g) and g = size of the test (over the nuisance parameter space) at the

a nominal level of significance. The rationale behind (4.2.3) is simple. We want S A

to find values for the nuisance parameter vector, €, such that s is as small as

possible. In other words, we want SA to find values for the nuisance parameters such

that the test size is as big as possible. Therefore, by multiplying 5 by a big number

(such as 10000) we are in a way forcing the SA algorithm more towards minimizing

s. Here one is included in s, because we wish SA to find a size (if any) closest or

equal to one.

4.2.2 A New Approach to Obtaining Exact Size Critical Values via SA

By assuming knowledge of the nuisance parameters, the exact size critical value of a

non-similar test can be found via Monte Carlo methods. This involves taking

repeated samples under the null hypothesis and finding the value for which the correct

percentage of statistics are in the rejection region. Here we apply SA to do the latter

part. That is, our method involves calculating the test statistic values for the number

of Monte Carlo replications, and then applying SA to find the exact size critical value

for the calculated test statistic values. That is, SA's role here is to vary the critical

value of the test until the test size becomes equal to the nominal size.
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If we wish to achieve an exact size critical value of a test at the a level of

significance, the function to be minimized can be provided as

= 10000x/, (4.2.4)

where, s = (a -g). Here, we strictly prefer to work with s2, instead of s, because

s can also take negative values in this case. The rationale behind (4.2.4) is as

explained above, that is, we want SA to find a critical value such that (4.2.4) is as

small as possible, thus by multiplying by a big number this is ensured. In other

words, we want SA to find a critical value such that the test size equals to a, which is

why a is included in the function to be optimized.

4.2.3 A New Approach to Obtaining Exact (and Near Exact) Non-

Similar Critical Values via SA

In this section, we provide the steps involved in obtaining an exact non-similar critical

value of a non-similar test.

(1) Start the iterative process with (probably an asymptotic) critical value of a non-

similar test.

(2) Apply SA (as explained in section 4.2.1) to find the nuisance parameter values

such that the test size is at its maximum.

(3) Apply SA (as explained in section 4.2.2) to find exact critical value at these values

of nuisance parameters.

(4) Using the new critical value repeat steps 2 and 3 continuously until convergence

(i.e. repeat this process until maximum size obtained is equal to the nominal size).
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As mentioned earlier, following all four steps will lead to an exact non-similar critical

value and following the first three steps will lead to a near exact non-similar critical

value of a non-similar test.

4.3 Testing for Autocorrelation in the Dynamic Linear Regression

Model

Consider the dynamic linear regression model

y, = ut, t =2,...,n (4.3.1)

where y, is the t th observation on the dependent variable, x, is a k x 1 vector of

observations on the exogenous variables at time t, fi and /? are unknown parameters

with \ju\ < 1 (as noted in Chapter 2, fi is believed to be non-negative in economic

applications) and ut is a stochastic disturbance term which follows an AR(1) process,

u,=Pui-\ (4.3.2)

where, |p| < 1, and et ~ IN(0,<j2).

Suppose we wish to test

against

Hl:p>0 (4.3.3)

As a result of the dynamic nature of the model, it is necessary to make further

assumptions about y, and w, before the model is completely defined. Following

Inder (1985) and King (1996), we make the following two assumptions.
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(1) The mean of y, is stable at t - 1. That is, £(y,) = E(y0).

(2) The variance of y, is the same for all t = \,...,n.

According to these two assumptions, it can be shown that

y, = (4.3.4)

where £ =1 and u, = (see Inder (1985)). Thus, the model
( l - /zp)( l - / / 2 )

is now completely specified by equations (4.3.1), (4.3.2) and (4.3.4).

For this testing problem, /J, fi and cr are nuisance parameters. However, this testing

problem is invariant with respect to the constant coefficient, /?,, and is affected by cr

only in the same way as a scaling of the f3* - (P2,...,/3k)' vector (see Inder (1985)).

That is, the testing problem is invariant to rescaling such that the ratio /?* I cr is

preserved. This means, /?* can be fixed and cr can be varied or vice versa. Because

<j can take only positive values, it is better to vary fi*. Therefore, for the testing

problem, fi and /T (or cr) are unavoidable nuisance parameters. Consequently, tests

applied to this problem will be non-similar in nature and the critical values of the tests

can be obtained following section 4.2.3.

It will be useful to represent the model in vector notation. For any time series zt,

define z = (z2,z3,...,znY and z_, = (z,,z2,...,zn_,)'. For example, y stands for

(y2,...,yn)' and y_, for (yi,...,yB_i)'. Similarly for any matrix H, H' =

(/i2,...,/in), and H'^ = (/i,,...,/!„_,), where h' is the row of H representing the fth

observations. For example, X' stands for (x2,...,xn) and X', for (x,,...,*„_,).
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Following Inder (1985), the OLS estimates of fi and p, and the OLS residual vector

from (4.3.1) can be written as

(4.3.5)

(4.3.6)

and

(4.3.7)

respectively, where Px is the orthogonal projector of X

4.3.1 The Tests

Durbin and Watson (1950, 1951) proposed the famous DW test for AR(1)

disturbances in the context of the static linear regression model, based on the statistic

uAxu

uu
(4.3.8)

where A, is the first differencing matrix as defined in section 3.5. For the testing

problem considered, the null hypothesis is rejected for small values of d.

The construction of Durbin's t test for testing Ho: p = 0 amounts to the following.

First u has to be regressed on y_x, X, and M_, , thereafter, the significance of the

coefficient of M_J is tested using the usual t test, which is called Durbin's t test. For

any time series vector, wt, by defining w" = (w3, w>4,..., wn)' and wZx -

(w2, W3,...,wn_,)', Inder (1985) showed that Durbin's t statistic can be written as
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«I, Pzii -Jn-k-4

_
Pzu .«_, PzuZx - (u_ , PZU

(4.3.9)

where Z = [y_pX ]. The t test, under regularity conditions outlined by Durbin

(1970), follows the standard normal distribution asymptotically.

4.4 Monte Carlo Experiment Design and Main Findings

An extensive Monte Carlo study was conducted to see whether SA based near exact

non-similar critical values work well in terms of controlling the sizes over the

nuisance parameter space. For this a variety of design matrices with different

characteristics were used, namely:

X8: n x 4 , n = 20 and 60, the X matrix is the same as X5: The cr values used for n =

20 and 60 are a = 0.7,2, and 40 and a = 0.64,1.35, and 8, respectively.

X9: n x 4 , n =20 and 60, the regressors are a constant and eigenvectors associated

with the largest characteristic roots of A,. The a values used for n = 20 and 60 are

G = 0.25,0.54, and 6 and a - 0.4,0.86, and 5, respectively.

X10: n x 4 , n = 20 and 60, regressors are a constant the natural log of quarterly

observations on three Australian series: nominal interest rates, CPI and GDP starting

1969(3). The a values used for n = 20 and 60 are a = 0.2, 0.5, and 3 and <J = 0.3,

0.8, and 4, respectively.

XI1: nx2, n = 32 and 76, the regressors are a constant dummy, and Maddala and

Rao's (1973) GNP data. The a values used for n =32 and 76 are a = 26.5, 53, and

210 and cr = 57,116, and 465, respectively.

X12: This design matrix is identical to XI! except that the GNP series is replaced by

another series with less serial correlation generated by adding a random variable ot to
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the GNP series, where ot ~ /N(0,1600). The o values used for n = 32 and 76 are

a = 31, 64.2, and 250 and a = 72,147, and 580, respectively.

XI3: nx5, n = 3 0 and 60, the regressors are a constant, three quarterly seasonal

dummy variables, and the quarterly Australian CPI commencing 1959(1). The a

values used for n = 30 and 60 are G - 0.5, 5, and 150 and G = 10, 20, and 250,

respectively.

XI4: n x 3 , n =30 and 60, theX matrix is the same as XL The o values used for n

= 30 and 60 are G = 0.035, 0.081, and 0.68 and G = 0.085, 0.185, and 0.95,

respectively.

Among these, X8 to X10 were used by Grant (1987) and the rest by Inder (1985).

These design matrices cover a variety of characteristics. In particular, X8 and X9 (as

noted in Chapter 3) reflect some extreme data sets, XI0 is typical economic data, XI1,

X13 and X14 are smoothly evolving series, and X12 possesses a high degree of

randomness.

In order to check whether the SA based near exact non-similar critical values are

adequately controlling the sizes, sizes were estimated via simulation for a variety of

P and a values. Accordingly, /? vectors over a range of directions were used, for

example, for X14, the p vectors used were: (0,0,0)', (0,1,1)', (0 , -1 , -1) ' ,

(0,-1,1)', (0,1,-1)', (0,1,0)', (0 , -1 ,0 / , (0,0,1)' and (0 ,0 , - i ) ' , and P was made

larger or smaller along each of eight directions by decreasing or increasing <r. The

complete list of ft vectors used for each design matrix is given in the footnotes below

each table of results. For each of these p directions and G values, sizes were

estimated for ju =0.1, 0.3,0.5, 0.7, 0.9, and 0.99. When p ~ 0, results are invariant

with respect to G , therefore, for this case, size calculations were done for only one G

value. All other studies conducted in a similar setting, calculated sizes for only one p

vector and for some G values (see Inder (1985) and Grant (1987)).
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To ensure that reasonable values of cr were used, three a values that made the

average R2 (coefficient of determination) approximately 0.3, 0.7 and 0.9,

respectively, were chosen. The average R2 for all /? directions used was obtained

by assuming // =•• 0.5 and p = 0 and for each P vector with 100 iterations being

used.

A nominal significance level of five percent and 5000 iterations were used

throughout. The ASDA distribution based critical values for the DW test are obtained

from Inder (1985) and Grant (1987). Because the testing problem of interest is

invariant with respect to j$x and is affected by <x only as a scaling of fi* =

(/32,...,/3kY vector, we set /?, = 0 and a = 1 throughout. Here a is fixed as one,

purposely, because it allows us to see the size changes with respect to true /?* (over

the nuisance parameter space). The random normal numbers of the model were

generated using seed value 98726679. The uniform random numbers of SA were

generated using seed value 6696. The computer programs were written in GAUSS for

windows NT/95 version 3.2.35 and Tsionas's (1995) program code for the SA

algorithm was used.

For the testing problem considered, following Inder (1985), approximate non-similar

critical values are obtained by setting /T to zero and experimenting with fi values

until the smallest (and largest) critical value for the DW (and t) test is found. Eleven

values of ju between 0 and 1, namely, ft = 0.001, 0.1, 0.2, 0.3, ... , 0.9 and 0.999

were used in a grid search. On the other hand, SA based near exact non-similar

critical values are obtained by varying ft* and jU over the nuisance parameter space.

Before applying SA to find values for the nuisance parameters, /?* and jti, we should

note an important issue. That is, Tsionas's program code is not intended for

optimizing functions which need to be evaluated via the Monte Carlo method, such

as, the size functions. Perhaps because of this or may be this is a problem specific to

GAUSS, we observed that the SA algorithm gets confused when mere is a seed value
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present inside the main procedure in which the function to be optimized is evaluated29

and tends to consider only that seed value and ignore any other seed value present

outside the main procedure such as the one used for generating uniform random

numbers. Consequently, the experiment cannot be repeated if it needs to be30.

Therefore, in order to avoid this problem, we were forced to generate the normal

random numbers of the model beforehand, outside of the main procedure where the

function to be optimised is evaluated. This means we had to generate, an n x 5000

matrix of random normal numbers (using seed value, 98726679) beforehand31. This

effectively avoids the presence of a seed value inside the main procedure, which

makes SA work properly. The need to generate random numbers beforehand is the

only undesirable aspect of the SA based approach because this may cause trouble if

one wants to consider an even larger number of replications. For a large number of

replications, this amounts to using a vast amount of computer memory, which will

slow down the computer. This hurdle may be overcome in the future, because,

Tsionas (1995) commented that he is going to write another programming code for

SA and others might do this too. If this problem is rectified then it will increase the

use of SA in econometric.

In order to obtain the maximum sizes of the tests, we optimised (4.2.3) by setting the

SA parameters as, N, = 2, r, = 0.5, Ns = 2 and T = 2. The starting values for the

parameters provided were, fi* = 0 and ji =0 .5 . For these parameter values, SA

quickly finds the optimum solution. We observed that the maximum time it takes to

provide the results is about one and a half hours (for n = 76) and the minimum time it

takes is about three minutes (for n = 20) when using Pentium II400 or Pentium IQ

500 machines.

In order to check whether SA has indeed achieved the global maximum size,

following Goffe et al.'s (1994) suggestion, we obtained the optimum solution once

again for a different uniform random number generator seed value, namely, 123

29 T o obtain sizes via the Monte Carlo method, naturally, a seed value for the random number generator
of the model has to be provided.
30 Even if the seed values involved in programming, are defined separately as seedl and seed2, and
even if they are used in separate procedures, the SA algorithm still considers one seed value and
ignores the other.

If a seed value is permissible inside the main procedure, we would have generated an n X 1 vector
of random numbers for each iteration.
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(because SA is largely independent of starting values, the same starting values were

used). If the maximum sizes obtained for both me seed values were roughly the same

then we stopped, if not, we increased the S A parameters and proceeded as before. We

observed that, overall, the small SA parameter values (as above) are adequate to find

the global maximum size, except for a few cases. For such cases, increasing the SA

parameter values led to the global maximum size, except for X12, n - 76 and the DW

test. Also, for both the uniform random number generator seed values, we noted that

approximately the same maximum sizes occur, but for different parameter values.

This is possible with size functions because they are step functions. That is, for

different parameter values it is possible to obtain the same size. To check why SA

appeared to have failed for X12, n = 7 6 and the DW test, we obtained sizes via

simulation for a variety of nuisance parameter values. These sizes suggest that (for

this case) the size function is almost always bounded below by 0.057 and reaches

0.085 only when /? = 0 and jj. > 0.9. Therefore, for the starting values we used,

there will be no significant change in the function value for quite some time,

consequently SA stops at the local maximum size, 0.057. For this case, by increasing

the SA parameter values further or by providing starting values close to p - f- and ji

> 0.9, we could have achieved the global maximum size. However, for this case, we

used the local maximum size in order to see its impact on the performance of an near

exact non-similar critical value.

In order to obtain exact size critical values (by assuming knowledge of the unknown

parameters), we optimised (4.2.4) by setting Nt = 2, Ns = 6, rt = 0.5 and T = 2.

According to our experience, these parameters are adequate to obtain the exact size

critical values. If they are not adequate, obviously, one can increase these parameters

slightly and proceed. For these parameters, SA will take less than three seconds to

produce the result.

The maximum sizes of the tests over the nuisance parameter space and the

corresponding parameter values are given in Table 4.1. Tables 4.2 and 4 3 report

approximate non-similar critical values and SA based near exact non-similar critical

values of the DW test and Durbin's t test, respectively. The size results using near

exact non-similar critical values are given in Tables 4.4 through to 4.17.
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4.4.1 The Results

Our study clearly indicates that neither the ASDA distribution based DW test nor the

large-sample distribution based t test is best under the null because both tests can

have significantly higher than nominal sizes over the nuisance parameter space (see

Table 4.1). Sometimes, both tests have approximately the same (higher than nominal)

maximum sizes. For example, for X10 and n = 20, the DW test and Durbin's t test

have maximum sizes of 0.109 and 0.114, respectively, over the nuisance parameter

space. The DW test behaves markedly better than Durbin's t test only on three

occasions. For example, for X9 and n = 20, the maximum sizes observed for the DW

test and Durbin's t test are 0.093 and 0.281, respectively. Similarly, Durbin's t test

outperforms the DW test on two occasions. Across all the design matrices, the

highest sizes observed for the DW test and Durbin's t test over the nuisance

parameter space are, 0.205 and 0.281, respectively.

Sometimes, the performance of Durbin's t test improves with sample size. For

example, for X9, the maximum sizes observed for n = 20 and 60 are 0.281 and 0.057,

respectively. Apart from this example, strangely, there is no notable improvement in

the t test's maximum sizes with respect to the sample size. In some cases, the

maximum size increases with sample size as well. The DW test also has similar

behaviour.

The DW test's maximum size generally occurs for small /T values and for ji

between 0.84 to 0.98, however, on one occasion, the same happens for big /T values

and n closer to zero. The maximum size of Durbin's t lest occurs for small 0*

values and for // between 0.27 to 0.92.

For the DW test, approximate non-similar critical values and near exact non-similar

critical values are approximately the same, except for a few cases. For Durbin's t

test, approximate non-similar critical values are generally higher than near exact non-

similar critical values, except for X12 when n = 32.
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For the problem of interest, (any) fi approaches 0 when G increases, therefore, the

size results for p = 0 and for big a can be expected to be alike. Thus, in the

discussion below any findings reported for /? = 0 also apply to big a.

The near exact non-similar critical values we proposed are working well in terms of

controlling the sizes for almost all the design matrices considered. Only for X12, n =

76, // > 0.9 and the DW test, do we have sizes that are slightly above the nominal

size. However, these sizes are never greater than 0.075 (see Table 4.8). Except for

this cas^, the SA based approach works extremely well for all the design matrices and

sample sizes. Recall that only for X12, n = 76, and the DW test, we used the local

maximum size in order to achieve the near exact non-similar critical value.

Therefore, according to our results, if we make sure that the SA algorithm achieves

the global maximum size at step 2 of section 4.2.3, then near exact non-similar critical

values can be expected to work well.

The sizes based on near exact non-similar critical values are generally less than or

equal to the nominal size and on some occasions marginally above the nominal size.

If the tests were to be ranked on the basis of their sizes, overall Durbin's t test is

superior. Of the 1668 cases, the t test has sizes that are not significantly different

from the nominal size in 688 cases. Similarly, the DW test sizes are not significantly

different from the nominal size in 319 cases. If we consider sizes above 0.030 the

superiority of Durbin's t test is even more marked.

As noted above, the near exact non-similar critical values work well for Durbin's t

test compared to the DW test. Recall that the approximate non-similar critical values

of Durbin's t test are almost always greater than the near exact non-similar critical

values, therefore, if we use the former critical values they will unnecessarily make the

test under reject. This in turn will make the test's sizes low and hence reduce the

powers. Therefore, the approximate non-similar critical values do not seem suitable

for Durbin's t test. The DW test seems to be less affected in this regard.

Inder's (1985) results based on approximate non-similar critical values, show that the

DW test performs better than Durbin's asymptotic tests. However, his study also
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shows that Durbin's t test always has reasonable powers which are not far behind

those of the DW test. The above observation led us to wonder whether the inferiority

of Durbin's i test is due to the approximate non-similar critical values Inder used.

4.5 Conclusions

How to successfully deal with non-similar tests in finite samples is an important

problem that econometricians often face. This is because the sizes of such tests vary

with nuisance parameter values. The classical approach to this problem is to use

exact non-similar critical values, for which the size is never greater than the nominal

size for all possible values of the nuisance parameters. Because these critical values

are extremely hard to compute, researchers nearly always use approximate non-

similar critical values. In this chapter, we proposed a new approach (based on the SA

algorithm) to obtain exact non-similar critical values of general non-similar tests. Our

I'iA. based approach involves controlling the maximum size of a non-similar test over

the nuisance parameter space, therefore this approach also allows us to assess any

approximate distributions under the null. Because this approach is extremely

computer intensive, in this chapter, we also suggested and investigated the

performance of near «xact non-similar critical values. In addition, we showed that SA

can be used to obtain e-xact size critical values (by assuming knowledge of the

unknown parameters) of non-similar tests.

In the case of testing for autocorrelation in the dynamic linear regression model, our

Monte Carlo results almost always support the new SA based near exact non-similar

critical values. Only for one design matrix, // > 0.9 and the DW test, do we have

sizes that are slightly above the nominal size. Apart from this case, none of the (near

exact non-similar critical values based) sizes are significantly above the nominal size.

Therefore, near exact non-similar critical values seem to be a good approximation to

the exact non-similar critical values. For this study, we used the ASDA distribution

based DW test and the large-sample based Durbin's t test.
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Chapter 4: Exact non-similar critical values for general non-similar tests

Our study clearly indicated that neither the DW test nor the t test is best, under the

null in small and large samples. On many occasions, both the tests have

approximately the same (higher than nominal) maximum sizes over the nuisance

parameter space. In some cases, the DW test seemed better than Durbin's t test and

vice-versa. Therefore, Inder's (1985) claim that the ASDA based approach is better

than the large-sample based approach is questionable.

Based on our size results using near exact non-similar critical values, we conjecture

that approximate non-similar critical values are not ideal for Durbin's t test because

they may make the test's sizes unnecessarily low, and hence reduce the powers.

It is ideal to use an exact non-similar critical value for a non-similar test. However, it

may be extremely difficult to obtain an exact non-similar critical value as outlined in

this chapter. Our study in the case of the DW test and Durbin's t test suggests that

near exact non-similar critical values are a good approximation to the exact non-

similar critical values. Also, it seems that if we make sure that the SA algorithm

achieves the global maximum size at step 2 of section 4.2.3, then we can expect near

exact non-similar critical values to be successful in terms of controlling the sizes over

the nuisance parameter space. It takes about the same time to calculate approximate

non-similar critical values and SA based near exact non-similar critical values. In

addition, the SA based approach allows one to assess the accuracy of any approximate

distribution of the test statistic under the null. Furthermore, there may be design

matrices or tests for which approximate non-similar critical values may not work well,

whereas, near exact non-similar critical values may be helpful. Also as noted above,

for some tests, the use of approximate non-similar critical values may unnecessarily

make the test sizes low and hence reduce the powers. Therefore, based on our results,

we recommend the use of SA based near exact non-similar critical values. Because,

the SA based approach worked well for this problem, we apply it to a more

complicated testing situation in the next chapter.
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APPENDIX 4.1

Tables of Results for the DW test and Durbin's t test

Table 4.1: Maximum sizes of the DW and t tests together with the nuisance
parameter values at this maximum size

n i Max Size

Pi

Ps
P4

Ps

n 2 Max Size

Pi

Ps
PA

Ps
V-

n, Max Size

Pi

Ps
P4

Ps '

n 2 Max Size

Pi

Ps
P4

Ps

X8
DW

0.199

-0.651

-0.118

0.137

-

0.841

0.205

-0.680

0.356

0.323

-

0.946

t

0.232

0.006

-0.014

-0.001

-

0.767

0.190

0.368

0.039

-0.052

-

0.911

X12
DW

0.077

0.C01

-

-

0.975

0.057

0.501
-

-

0.063

t

0.085

0.001

-

-

-

0.513

0.089

0.000

-

-

-

0.645

X9
DW

0.093

-111.654

9.792

199.417

-

0.003

0.073

-0.408

0.002

-

-

0.975

X13
DW

0.082

-0.041

1.043

-0.315

0.005

0.899

0.096

1.904

-2.396

8.211

-0.008

0.987

t

0.281

-0.029

-0.108

-0.840

-

0.506

0.057

0.153

0.180

-0.151

-

0.272

t

0.065

0.304

0.307

0.017

0.000

0.831

0.118

0.809

-0.738

3.298

-0.020

0.802

X10
DW

0.109

0.134

-0.974

0.987

-

0.872

0.105

-0.591

0.713

-0.332

-

0.963

t

0.114

0.157

-0.330

0.221

-

0.700

0.114

0.157

-0.330

0.221

-

0.700

X14
DW

0.127

0.441

-0.457

-

-

0.952

0.124

0.143

-0.007

-

-

0.953

t

0.121

-0.504

0.184

-

-

0.500

0.124

0.044

-0.594

-

-

0.635

XI1
DW

0.090

0.009

-

-

-

0.864

0.104

0.000

-

-

-

0.979

t

0.128

-0.001

-

-

-

0.515

0.099

-0.001

-

-

-

0.900

n, and n 2 are the small and large sample sizes, respectively
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Table 4.2: Comparison of near exact and approximate non-similar
critical values of the DW test

Critical
values

Approx
Near exact

Approx
Near exact

X8

1.4452
1.4451

1.5214
1.5271

X9
n=20

0.9663
0.8949

n = 6 0

1.5886
1.5887

X10

1.3351
1.3378

1.5425
1.5486

Xll X12
n =32

1.3827 1.3857
1.3823 1.3850

n = 7 6

1.5771 1.5901
1.5797 1.6330

X13 X14
n=30

1.3017 1.3971
1.3020 1.4024

n =60

1.4961 1.5446
1.4954 1.5361

Table 4.3: Comparison of near exact and approximate non-similar
critical values of Durbin's t test

Critical
values

Approx
Near exact

Approx
Near exact

X8

2.8808
2.8350

2.4480
2.4500

X9
n =20

2.8206
2.8087

n =60

1.6918
1.6901

X10

2.1864
2.1635

2.0512
2.0361

Xll
n

2.1614
2.1467

n

1.9922
1.9736

xn
= 32

1.9293
2.1286

= 76

1.9240
1.9453

X13
n

2.1515
2.1468

n

2.1114
2.0752

X14
= 30

2.1919
2.1772

= 60

2.1224
2.0932
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Table 4.4: Sizes of the DW test at the 5% level forXS, and selected J3, a, and
ju values, using near exact non-similar critical values

n

20

60

a

0.7

2

40

0.64

1.35

8

M

0.1

0.3
0.5
0.7

0.9

0.99

0.1

0.3
0.5
0.7
0.9

0.99

0.1

0.3

0.5

0.7
0.9

0.99

0.1

0.3

0.5
0.7

0.9
0.99

0.1

0.3
0.5
0.7
0.9

0.99

0.1

0.3
0.5
0.7

0.9
0.99

Pi

0,003
0.008

0.019
0.036

0.049

0.050

0.000

0.000
0.002
0.014

0.046

0.054

Pi

0.008

0.013
0.014
0.010

0.010

0.006

0.005
0.008

0.019
0.032
0.036

0.024

0.004

0.008

0.019

0.036

0.048
0.050

0.000

0.000
0.003

0.019
0.015

0.010

0.000
0.000
0.003
0.017

0.029
0.015

0.000
0.000

0.002
0.014

0.046
0.047

Ps

0.008
0.012

0.017
0.017

0.033
0.008

0.005
0.008
0.019
0.034
0.047

0.025

0.004

0.008

0.019

0.037
0.048

0.050

0.000

0.000
0.003
0.019
0.019

0.022

0.000
0.000
0.003
0.017
0.034

0.040

0.000
0.000
O.O02
0.014

0.046
0.053

04

0.008

0.012
0.013
0.009

0.007

0.044

0.004
0.010
0.019
0.028

0.027
0.049

0.003
0.008

0.019

0.036
0.049
0.050

0.000

0.000

0,005
0.018
0.011

0.010

0.000
0.000
0.002
0.017
0.022

0.013

0.000

0.000
0.002

0.015

0.047
0.048

Ps

0.007

0.011
0.016
0.017

0.021

0.007

0.004
0.009
0.018
0.031
0.045

0.023

0.004

0.009
0.018

0.035
0.048
0.050

0.000

0.000
0.005
0.018

0.017
0.012

0.000
0.000
0.002
0.016

0.033

0.026

0.000
0.000
0.002

0.015

0.047
0.052

Pe

0.008

0.013
0.016

0.010

0.011
0.032

0.005
0.008
0.020
0.031
0.039
0.048

0.004

0.008

0.019

0.037
0.048

0.050

0.000

0.000

0.003
0.019
0.013
0.010

0.000

0.000
0.003
0.017
0.028

0.022

0.000
0.000

0.002
0.015

0.046

0.049

Pi

0.008
0.013
0.017

0.013

0.023
0.018

0.005
0.008
0.019
0.032
0.044

0.040

0.004

0.008

0.019

0.037

0.049
0.050

0.000

0.000
0.003
0.019
0.014

0.019

0.000

0.000
0.002

0.017
0.030

0.035

0.000
0.000

0.002
0.014

0.046
0.053

Ps

0.003

0.009
0.021
0.030

0.020
0.020

0.003
0.009
0.018

0.036
0.043
0.042

0.003

0.008
0.019
0.036

0.049
0.050

0.000

0.000
0.002
0.016

0.033
0.014

0.000

0.000
0.002
0.015
0.044

0.031

0.000
0.000
0.002
0.014

0.046
0.052

P9

0.004

0.009

0.019
0.034

0.041

0.011

0.004

0.009
0.019
0.035
0.047

0.039

0.003
0.008

0.019
0.036

0.049
0.050

0.000
0.000

0.002
0.015
0.043

0.027

0.000
0.000
0.002
0.014

0.046

0.042

0.000
0.000

0.002
0.014

0.046
0.053

,,..., p9 are (0,0,0,0)', (0,1,1,1)', (0,-1,1,1)', (0,-1,1,-1)', (0,0,-1,-1)', (0,0,0,?)', (0,-1,0,1)', (0,1,-1,0)', (0,1,1,0)',

respectively
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Table 4.5: Sizes of the DW test at the 5% level for X9, and selected 0, a, and
values, using near exact non-similar critical values

n

20

60

a

0.25

054

6

0.4

0.86

5

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
05
0.7
0.9
0.99

0.1
0.3
Oi
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

Pi

0.001
0.002
0.004
0.010
0.027
0.032

0.000
0.001
0.002
0.013
0.039
0.049

P2

0.011
0.010
0.013
0.017
0.013
0.012

0.003
0.003
0.007
0.014
0.018
0.014

0.001
0.002
0.004
0.010
0.028
0.031

0.026
0.026
0.027
0.027
0.032
0.030

0.016
0.018
0.019
0.022
0.035
0.038

0.000
0.001
0.004
0.013
0.040
0.050

Ps

0.012
0.011
0.014
0.016
0.014
0.013

0.004
0.005
0.010
0.017
0.018

0.014

0.001
0.002
0.004
0.011
0.026
0.031

0.028
0.027
0.027
0.027
0.032
0.030

O.C/19
0.021
0.022
0.024
0.036
0.037

0.000
0.001
0.004
0.013

0.039
0.048

PA

0.002
0.003
0.005
0.013
0.022
0.015

0.002
0.002
0.005
C.011
0.026

0.023

0.001
0.002
0.004
0.010

0.028
0.031

0.008

0.011
0.014
0.021
0.036
0.044

0.000
0.002
0.007
0.016

0.039
0.049

0.000
0.001
0.002
0.014
0.039
0.049

Ps

0.008
0.008
0.011
0.017
0.015
0.013

0.003
0.004
0.007
0.015
0.018
0.016

0.001
0.002
0.004
0.011
0.027
0.032

0.027
0.027
0.027
0.028
0.031
0.031

0.018
0.020
0.023
0.025
0.035
0.038

0.000
0.001
0.004
0.014
0.039
0.048

Pe

0.005
0.004
0.005
0.012
0.028
0.032

0.001
0.002
0.004
0.011
0.027
0.032

0.001
0.002
0.004
0.010
0.027
0.031

0.018
0.019
0.020
0.023
0.033
0.041

0.004
0.007
0.011
0.018
0.037
0.045

0.000
0.001
0.003
0.013
0.038
0.049

P?

0.007
0.005
0.007
0.014
0.025
0.022

0.003
0.003
0.005
0.011
0.027
0.027

0.001
0.002
0.004
0.010
0.028
0.031

0.021
0.021
0.023
0.025
0.033
0.040

0.008
0.011
0.014
0.019
0.038
0.045

0.000
0.000
0.003
0.014
0.041
0.049

Ps

0.004
0.005
0.009
0.016
0.018
0.013

0.003
0.003
0.006
0.013
0.025
0.019

0.001
0.002
0.004
0.010
0.028
0.031

0.017
0.019
0.021
0.024
0.034
0.037

0.006
0.010
0.013
0.018
0.038
0.044

0.000
0.000
0.003
0.014
0.040
0.050

P9

0.003
0.004
0.009
0.017
0.017
0,014

0.001
0.003
0.005
0.014
0.023
0.019

0.001
0.002
0.004
0.011
0.027
0.032

0.022
0.023
0.025
0.026
0.036
0.035

0.009
0.012
0.014
0.020
0.039
0.043

0.000
0.001
0.003
0.013
0.039
0.049

respectively
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Table 4.6: Sizes of the DW test at the 5% level for XIO, and selected /?, c\ and p,
values, using near exact non-similar critical values

n
20

60

cr
0.2

0.5

3

0.3

0.8

4

0.1
0.3
05
0.7
0.9
0.99

0.1
0 3
05
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

Pi
0.006
0.010
0.020
0.039
0.051
0.052

0.000
0.000
0.004
0.019
0.047
0.054

Pi
0.016
0.021
0.022
0.016
0.012
0.013

0.007
0.014
0.024
0.031
0.031
0.028

0.006
0.010
0.020
0.036
0.051
0.048

6.001
0.002
0.009
0.024
0.024
0.019

0.000
0.001
0.005
0.021
0.038
0.019

0.000
0.000
0.003
0.019
0.047
0.041

Ps
0.014
0.017
0.018
0.017
0.013
0.013

0.009
0.014
0.021
0.028
0.031
0.034

0.006
0.009
0.020
0.038
0.050
0.052

0.000
0.002
0.008
0.023
0.032
0.021

0.000
0.001
0.003
0.021
0.044
0.034

0.000
0.000
0.004
0.020
0.047
0.052

PA
0.010
C.O16
0.019
0.017
0.013
0.013

0.007
0.011
0.020
0.031
0.035
0,034

0.006
0.010
0.019
0.038
0.050
0.053

0.000
0.002
0.007
0.023
0.034
0.038

O.000
0.000
0.004
0.022
0.044
0.050

0.000
0.000
0.003
0.020
0.047
0.05:*

Ps
0.007
0.011
0.021
0.039
0.045
0.032

0.005
0.011
0.019
0.038
0.049
0.046

0.006
0.010
0.020
0.039
0.052
0.051

0.000
0.001
0.005
0.020
0.028
0.019

0.000
0.000
0.004
0.018
0.046
0.021

0.000
0.000
0.003
0.019
0.047
0.045

Pe
0.008
0.010
0.022
0.038
0.049
0.050

0.006
0,010
0.021
0.037
0.052
0.053

0.006
0.010
0.021
0.039
0.051
0.053

0.000
0.001
0.004
0.020
0.046
0.030

0.000
0.000
0.003
0.018
0.047
0.046

0.000
0.000
0.003
0.019
0.048
0.053

Pr
0.014
0.017
0.018
0.016
0.013
0.013

0.009
0.015
0.021
0.029
0.029
0.029

0.006
0.009
0.020
0.037
0.051
0.052

0.000
0.002
0.009
0.022
0.028
0.021

0.000
0.001
0.004
0.021
0.042
0.034

0.000
0.000
0.004
0.020
0.047
0.051

Ps
O.tfl5
0.021
0.023
0.018
0.014
0.013

0.009
0.014
0.024
0.031
0.034
0.036

0.006
0.009
0.020
0.037
0.052
0.049

0.001
0.003
0.010
0.024
0.032
0.025

0.000
0.001
0.005
0.020
0.043
0.043

0.000
0.000
0.003
0.019
0.047
0.051

P9
0.016
0.021
0.021
0.015
G.O12
0.013

0.008
0.015
0.025
0.030
0.029
0.026

0.O05
0.009
0.020
0.037
0.052
0.049

0.001
0.003
0.010
0.023
0.024
0.019

0.000
0.001
0.005
0.021
0.038
0.020

O.000
0.000
0.003
0.019
0.047
0.044

respectively
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Table 4.7: Sizes of the DW test at the 5% level for XI1, and selected /?, cr,
and jn values, using near exact non-similar critical values

n

32

76

cr

26.5

53

210

57

116

465

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

Pi

0.001
0.001
0.005
0.019
0.046
0.050

0.000
0.000
0.001
0.011
0.038
0.051

Pi

0.001
0.002
0.011
0.026
0.019
0.015

0.001
0.001
0,006
0.021
0.028
0.018

0.001
0.001
0.005
0.019
0.043
0.039

0.000
0.000
0.001
0.016
0.031
0.020

0.000
0.000
0.001
0.013
0.036
0.024

0.000
0.000
0.001
0.011
0.038
0.044

Ps

0.000
0.002
0.009
0.023
0.018
0.015

0.000
0.001
0.005
0.024
0.026
0.018

0.001
0.001
0.005
0.019
0.044
0.039

0.000
0.000
0.002
0.013
0.032
0.020

0.000
0.000
0.001
0.011
0.038
0.024

0.000
0.000
0.001
0.011
0.039
0.044

are (0,0)', (0,1)', (0,-1)', respectively
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Table 4.8: Sizes of the DW test at the 5% level for X12, and selected J3, a,
and ju values, using near sxact non-similar critical values

n

32

64.2

250

76 72

147

580

Pi 02

p,,p2ip3 are(0,0)',(0,1)',(0,-1)',respectively

fis

0.1
0.3
0,5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

O.V
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.001
0.001
0.005
0.022
0.046
0.051

0.000
0.000
0.004
0.028
0.067
0.075

0.031
0.028
0.027
0.027
0.031
0.032

0.016
0.019
0.022
0.028
0.037
0.038

0.002
0.003
0.008
0.022
0.045
0.051

0.020
0.026
0.036
0.042
0.044
0.042

0.004
0.008
0.022
0.042
0.046
0.042

0.000
0.001
0.005
0.031
0.062
0.058

0.036
0.034
0.032
0.033
0.033
0.036

0.020
0.023
0.024
0.031
0.038
0.043

0.002
0.003
0.007
0.023
0.043
0.050

0.024
0.027
0.036
0.043
0.043
0.042

0.005
0.010
0.021
0.039
0.048
0.043

0.000
0.000
0.007
0.029
0.063
0.060

104



Table 4.9: Sizes of the DW test at the 5% level for XI3, and selected J3, a, and fi
values, using near exact non-similar critical values

n

30

60

ex

0.5

5

150

10

20

250

M

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

01

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.013
0.043
0.049

02

0.018
0.021
0.023
0.021
0.020
0.021

0.001
0.001
0.007
0.024
0.034
0.025

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.014
0.038
0.028

0.000
0.000
0.001
0.013
0.040
0.040

0.000
0.000
0.001
0.012
0.043
0.050

03

0.016
0.020
0.022
0.019
0.020
0.021

0.000
0.002
0.007
0.024
0.032
0.023

0.000
0.001
0.005
0.020
0.045
0.049

0.000
0.000
0.002
0.014
0.035
0.029

0.000
0.000
0.001
0.013
0.039
0.040

0.000
0.000
0.001
0.012
0.043
0.050

04

0.018
0.022
0.023
0.020
0.020
0.020

0.001
0.001
0.007
0.025
0.033
0.023

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.014
0.037
0.028

0.000
0.000
0.001
0.013
0.040
0.039

0.000
0.000
0.001
0.012
0.043
0.050

0S

0.018
0.021
0.022
0.020
0.021
0.021

0.001
0.001
0.007
0.022
0.035
0.027

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.014
0.038
0.028

0.000
0.000
0.001
0.013
0.041
0.042

0.000
0.000
0.001
0.012
0.043
0.049

06

0.000
0.001
0.005
0.022
0.036
0.027

0.000
0.001
0.005
0.021
0.045
0.048

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.012
0.043
0.051

0.000
0.000
0.001
0.012
0.043
0.050

0.000
0.000
0.001
0.013
0.043
0.049

07

0.016
0.020
0.022
0.019
0.021
0.021

0.000
0.002
0.007
0.024
0.034
0.024

0.000
0.001
0.005
0.020
0.045
0.049

0.000
0.000
0.002
0.014
0.036
0.029

0.000
0.000
0.001
0.013
0.039
0.040

0.000
0.000
0.001
0.012
0.043
0.050

08

0.015
0.021
0.022
0.019
0.020
0.021

0.000
0.002
0.008
0.024
0.031
0.022

0.000
0.001
0.005
0.020
0.046
0.049

0.000
0.000
0.001
0.014
0.035
0.028

0.000
0.000
0.001
0.013
0.038
0.040

0.000
0.000
0.001
0.012
0.042
0.049

09

0.018
0.021
0.022
0.021
0.020
0.021

0.001
0.001
0.007
0.023
0.034
0.027

0.000
0.001
0.005
0.020
0.045
0.050

0.000
0.000
0.001
0.014
0.038
0.028

0.000
0.000
0.001
0.013
0.040
0.041

WOO
0.000
0.001
0.012
0.043
0.050

P,,...,09 are (0,0,0,0,0)', (0,1,1,1,1)', (0,-1,-1,-1,-1)'. (0,-1,1,1,1)', (0,1,-1,-1,1)', (0,1,0,1,0)', (0,-1,0,-1,-1)',

(0,0,-1,-1,-1)', (0,1,0,0,1)', respectively

105



Table 4.10: Sizes of the DW test at the 5% level for XI4, and selected p, a, and //
values, using near exact non-similar critical values

n

30 0.035

0.081

0.68

60 0.085

0.185

0.95

Pi 02

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.000
0.002
0.007
0.025
0.048
0.051

0.000
0.000
0.002
0.017
0.046
0.045

0.006
0.011
0.017
0.018
0.015
0.014

0.002
0.004
0.014
0.025
0.019
0.014

0.000
0.002
0.008
0.025
0.046
0.045

0.001
0.005
0.014
0.019
0.018
0.015

0.000
0.000
0.006
0.021
0.022
0.016

0.000
0.000
0.003
0.017
0.043
0.033

0.005
0.011
0.018
0.020
0.016
0.014

0.001
0.003
0.012
0.024
0.020
0.015

0.000
0.002
0.007
0.025
0.046
0.045

0.001
0.004
0.012
0.017
0.017
0.015

0.000
0.001
0.004
0.018
0.024
0.016

0.000
0.000
0.003
0.016
0.040
0.032

0.002
0.007
0.015
0.022
0.019
0.016

0.001
0.003
0.009
0.027
0.036
0.028

0.000
0.002
0.007
0.026
0.048
0.051

0.001
0.005
0.013
0.020
0.018
0.016

0.000
0.001
0.006
0.021
0.024
0.019

0.000
0.000
0.003
0.017
0.042
0.043

0.004
0.009
0.017
0.022
0.019
0.014

0.001
0.003
0.011
0.026
0.034
0.024

0.000
0.002
0.008
0.026
0.048
0.050

0.001
0.004
0.013
0.018
0.016
0.015

0.000
0.001
0.005
0.020
0.023
0.017

0.000
0.000
0.002
0.017
0.043
0.043

0.003
0.007
0.016
0.021
0.017
0.014

0.000
0.002
0.010
0.026
0.026
0.016

0.000
0.002
0.008
0.026
0.047
0.048

0.000
0.001
0.005
0.021
0.020
0.015

0.000
0.000
0.003
0.019
0.030
0.016

0.000
0.000
0.002
0.017
0.044
0.041

0.002
0.005
0.016
0.024
0.018
0.014

0.001
0.002
0.010
0.025
0.029
0.017

0.000
0.002
0.007
0.026
0.047
0.047

0.000
0.001
0.005
0.019
0.021
0.015

0.000
0.000
0.003
0.017
0.029
0.017

0.000
0.000
0.002
0.017
0.043
0.040

0.003
0.007
0.014
0.021
0.020
0.016

0.001
0.003
0.009
0.024
0.032
0.024

0.000
0.002
0.008
0.025
0.043
0.050

0.001
0.003
0.011
0.020
0.019
0.016

0.000
0.000
0.005
0.021
0.028
0.020

0.000
0.000
0.003
0.017
0.043
0.044

0.002
0.006
0.015
0.022
0.020
0.016

0.000
0.003
0.008
0.025
0.034
0.023

0.000
0.002
0.007
0.025
0.047
0.050

0.001
0.003
0.012
0.018
0.017
0.015

0.000
0.001
0.005
0.018
0.027
0.018

0.000
0.000
0.002
0.017
0.042
0.042

P, p9 are (0,0,0)', (0,1,1)', (0,-1,-1)', (0,-1,1)', (0,1,-1)', (0,1,0)', (0,-1,0)', (0,0,1)', (0,0,-1)', respectively
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Table 4.11: Sizes of Durbin's t test at the 5% level for X8, and selected J3, ert

and ju values,, using near exact non-similar critical values

n

20 0.7

40

60 0.64

1.35

Pi PI PS Ps Pe fit

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.012
0.025
0.040
0.047
0.050

0.022
0.036
0.039
0.042
0.049
0.051

0.005
0.007
0.004
0.002
0.001

0.014
0.021
0.032
0.031
0.015

0.012
0.024
0.040
0.047
0.050

0,020
0.030
0.030
0.018
0.003
0.001

0.022
0.036
0.037
0.035
0.016
0.002

0.022
0.036
0.038
0.042
0.047
0.043

0.007
0.010
0.010
0.009
0.016

0.015
0.023
0.035
0.043
0.044

0.012
0.025
0.040
0.047
0.050

0.021
0.033
0.030
0.023
0.005
0.007

0.022
0.036
0.039
0.036
0.024
0.028

0.022
0.036
0.038
0.043
0.048
0.050

0.005
0.005
0.002
0.000
0.000

0.012
0.021
0.025
0.020
0.009

0.011
0.026
0.039
0.048
0.053

0.015
0.029
0.028
0.013
0.001
0.001

0.020
0.037
0.038
0.033
0.008
0.001

0.023
0.038
0.039
0.042
0.047
0.038

0.006
0.010
0.009
0.006
0.003

0.013
0.022
0.031
0.039
0.033

0.012
0.027
0.039
0.048
0.053

0.016
0.030
0.030
0.019
0.004
0.001

0.019
0.036
0.037
0.036
0.023
0.009

0.022
0.037
0.039
0.041
0.049
0.048

0.006
0.007
0.004
0.002
0.001

0.015
0.022
0.032
0.034
0.027

0.011
0.024
0.039
0.048
0.050

0.021
0.031
0.031
0.020
0.002
0.001

0.022
0.035
0.039
0.036
0.015
0.005

0.023
0.037
0.038
0.042
0.047
0.045

0.007
0.008
0.005
0.003
0.008

0.015
0.023
0.032
0.035
0.040

0.011
0.024
0.040
0.048
0.049

0.021
0.031
0.032
0.022
0.003
0.004

0.021
0.036
0.040
0.036
0.017
0.020

0.022
0.036
0.039
0.042
0.047
0.049

0.012
0.022
0.031
0.022
0.002

0.012
0.026
0.039
0.045
0.034

0.011
0.025
0.040
0.047
0.051

0.021
0.037
0.041
0.039
0.018
0.001

0.021
0.037
0.041
0.041
0.039
0.012

0.021
0.037
0.040
0.042
0.050
0.048

0.011
0.020
0.026
0.021
0.006

0.011
0.025
0.037
0.041
0.030

0.012
0.025
0.038
0.047
0.051

0.023
0.038
0.042
0.040
0.040
0.010

0.023
0.037
0.040
0.041
0.049
0.029

0.023
0.036
0.039
0.042
0.050
0.050

ft, ft, are (0,0,0,0)', (0,1,1,1)*, (0,-1,1,1)', (0,-1,1,-1)', (0,0,-1,-1)', (0,0,0,1)', (0,-1,0,1)', (0,1,-1,0)', (0,1,1,0)',

respectively
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Table 4.12: Sizes of Durbin's t test at the 5% level for X9, and selected ft, a, and //
values, using near exact non-similar critical values

n

20

60

a

0.25

0.54

6

0.4

0.86

5

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
05
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

Pi

0.041
0.050
0.049
0.045
0.040
0.036

0.049
0.050
0.037
0.031
0.039
0.040

Pi

0.021
0.031
0.033
0.017
0.005
0.004

0.032
0.042
0.042
0.038
0.016
0.005

0.044
0.046
0.049
0.046
0.040
0.035

0.018
0.018
0.018
0.018
0.020
0.018

0.021
0.017
0.017
0.017
0.025
0.026

0.040
0.039
0.030
0.027
0.038
0.039

Ps

0.015
0.029
0.034
0.022
0.005
0.004

0.026
0.043
0.042
0.036
0.015
0.006

0.042
0.051
0.051
0.046
0.041
0.036

0.016
0.016
0.017
0.017
0.020
0.019

0.025
0.023
0.019
0.019
0,026
0.025

0.044
0.043
0.033
0.029
0.037
0.037

PA

0.031
0.041
0.046
0.040
0.023
0.009

0.040
0.046
0.048
0.045
0.037
0.021

0.042
0.050
0.048
0.045
0.041
0.034

0.030
0.026
0.022
0.021
0.029
0.032

0.039
0.035
0.029
0.025
0.036
0.038

0.047
0.049
0.037
0.031
0.040
0.040

Ps

0.016
0.027
0.033
0.025
0.008
0.004

0.027
0.040
0.043
0.038
0.022
0.010

0.043
0.049
0.050
0.046
0.040
0.036

0.016
0.016
0.016
0.018
0.021
0.020

0.026
0.023
0.020
0.020
0.026
0.027

0.047
0.043
0.033
0.030
0.037
0.039

Pe

0.019
0.031
0.040
0.038
0.032
0.030

0.027
0.043
0.046
0.044
0.040
0.036

0.044
0.051
0.048
0.046
0.040
0.035

0.020
0.017
0.017
0.019
0.025
0.028

0.030
6.022
0.019
0.020
0.030
0.035

0.046
0.045
0.035
0.030
0.040
0.040

Pi

0.019
0.032
0.036
0.034
0.028
0.017

0.031
0.040
0.045
0.042
0.038
0.031

0.043
0.047
0.050
0.044
0.040
0.034

0.020
0.017
0.016
0.016
0.023
0.028

0.030
0.024
0.019
0.019
0.030
0.034

0.047
0.045
0.032
0.030
0.039
0.040

Ps

0.020
0.032
0.037
0.033
0.012
0.005

0.034
0.043
0.046
0.042
0.031
0.014

0.042
0.047
0.049
0.045
0.040
0.035

0.022
0.018
0.017
0.017
0.024
0.026

0.029
0.025
0.021
0.021
0.031
0.033

0.049
0.046
0.032
0.030
0.039
0.040

P9

0.028
0.041
0.046
0.039
0.013
0.005

0.035
0.045
0.049
0.045
0.031
0.015

0.042
0.049
0.049
0.045
0.041
0.036

0.022
0.019
0.018
0.019
0.025
0.024

0.033
0.027
0.022
0.O23
0.032
0.033

0.050
0.049
0.037
0.030
0.038
0.040

Pi £ 9 a
respectively
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Table 4.13: Sizes of Durbin's t test at the 5% level for XIO, and selected p, a, and /i
values, using near exact non-similar critical values

n

20

60

0.2

0.5

3

0.3

0.8

4

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

Pi

0.014
0.024
0.039
0.052
0.047
0.042

0.028
0.043
0.051
0.050
0.046
0.043

P2

0.007
0.008
0.006
0.001
0.000
0.000

0.013
0.026
0.030
0.026
0.016
0.009-

0.012
0.025
0.041
0.050
0.048
0.041

0.023
0.032
0.034
0.024
0.008
0.004

0.027
0.041
0.046
0.046
0.025
0.005

0.027
0.043
0.051
0.051
0.044
0.025

Ps

0.004
0.004
0.004
0.003
0.002
0.002

0.009
0.015
0.020
0.021
0.018
0.021

0.012
0.024
0.036
0.047
0.047
0.042

0.017
0.022
0.022
0.020
0.016
0.005

0.025
0.037
0.044
0.043
0.037
0.017

0.029
0.044
0.050
0.050
0.045
0.042

04

0.007
0.008
0.007
0.004
0.003
0.003

0.008
0.016
0.024
0.026
0.022
0.021

0.014
0.024
0.038
0.049
0.048
0.044

0.018
0.026
0.029
0.026
0.022
0.023

0.026
0.040
0.046
0.047
0.038
0.039

0.029
0.045
0.050
0.051
0.046
0.044

Ps

0.011
0.016
0.028
0.033
0.025
0.012

0.013
0.023
0.038
0.048
0.044
0.032

0.014
0.025
0.039
0.050
0.048
0.042

0.023
0.034
0.045
0.047
0.017
0.004

0.026
0.041
0.048
0.049
0.038
0.007

0.028
0.043
0.050
0.050
0.047
0.034

fie

0.011
0.019
0.028
0.038
0.038
0.032

0.011
0.023
0.036
0.047
0.046
0.041

0.012
0.024
0.038
0.053
0.047
0.041

0.026
0.038
0.044
0.047
0.044
0.013

0.030
0.043
0.049
0.049
0.045
0.036

0.028
0.043
0.051
0.050
0.045
0.043

fir

0.004
0.004
0.003
0.002
0.002
0.002

0.009
0.016
0.020
0.021
0.014
0.014

0.012
0.024
0.036
0.047
0.046
0.044

0.019
0.022
0.022
0.020
0.014
0.006

0.025
0.036
0.043
0.042
0.036
0.021

0.029
0.043
0.051
0.050
0.046
0.042

Pa

0.006
0.008
0.007
0.003
0.001
0.002

0.014
0.023
0.027
0.026
0.023
0.026

0.012
0.024
0.040
0.051
0.048
0.043

0.023
0.031
0.032
0.024
0.020
0.010

0.025
0.041
0.047
0.044
0.039
0.028

0.027
0.041
0.049
0.051
0.046
0.042

P9

0.006
0.008
0.005
0.002
0.000
0.000

0.014
0.024
0.028
0.026
0.016
0.008

0.012
0.024
0.041
0.051
0.048
0.042

0.023
0.030
0.029
0.021
0.008
0.004

0.025
0.041
0.046
0.045
0.025
0.005

0.027
0.042
0.050
0.051
0.044
0.028

respectively

109



Table 4.14: Sizes of Durbin's rtest at the 5% level for XI1, and selected /?, cr,
and // values, using near exact non-similar critical values

n

32

76

a

26.5

53

210

57

116

465

M

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

fit

0.031
0.044
0.048
0.050
0.047
0.043

0.039
0.048
0.051
0.051
0.051
0.048

?2

0.022
0.029
0.024
0.017
0.003
0.002

0.028
0.040
0.041
0.033
0.011
0.003

0.028
0.047
0.051
0.052
0.042
0.025

0.033
0.043
0.044
0.040
0.024
0.010

0.035
0.047
0.050
0.047
0.037
0.013

0.038
0.049
0.052
0.050
0.050
0.039

03

0.021
0.027
0.023
0.015
0.004
0.002

0.023
0.038
0.037
0.032
0.010
0.003

0.026
0.042
0.045
0.047
0.043
0.025

0.035
0.047
0.049
0.041
0.025
0.009

0.037
0.049
0.050
0.049
0.039
0.014

0.040
0.049
0.050
0.053
0.048
0.039

fiK are (0,0)', (0,1)', (0,-l)\ respectively
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Table 4.15: Sizes of Durbin's t test at the 5% level for XI2, and selected^, a,
and JJL values, using near exact non-similar critical values

n

32 31

64.2

250

76 72

147

580

Ps

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.022
0.028
0.031
0.031
0.029
0.028

0.037
0.044
0.048
0.047
0.047
0.040

0.008
0.008
0.008
0.008
0.009
0.007

0.010
0.011
0.012
0.012
0.014
0.015

0.020
0.026
0.030
0.027
0.028
0.025

0.017
0.016
0.017
0.017
0.014
0.013

0.021
0.025
0.025
0.025
0.019
0.013

0.035
0.044
0.043
0.043
0.038
0.026

0.010
0.009
0.009
0.008
0.009
0.009

0.012
0.012
0.013
0.013
0.015
0.015

0.021
0.024
0.024
0.026
0.028
0.026

0.018
0.020
0.019
0.019
0.016
0.013

0.025
0.027
0.026
0.026
0.021
0.015

0.036
0.044
0.045
0.043
0.040
0.026

Pi Pi. Pi are (0,0)', (0,l)\ (0,-1)', respectively
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Table 4.16: Sizes of Durbin's t test at the 5% level for X13, and selected J3,
and // values, using near exact non-similar critical values

30 0.5

150

60 10

20

250

fis Ps PD

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.022
0.032
0.041
0.044
0.051
0.048

0.026
0.035
0.042
0.045
0.053
0.048

0.012
0.009
0.007
0.005
0.004
0.005

0.021
0.033
0.039
0.039
0.021
0.008

0.022
0.033
0.041
0.044
0.050
0.046

0.031
0.036
0.040
0.044
0.034
0.018

0.028
0.039
0.043
0.045
0.047
0.032

0.026
0.035
0.043
0.045
0.053
0.049

0.011
0.009
0.007
0.005
0.005
0.005

0.024
0.032
0.040
0.040
0.018
0.009

0.023
0.032
0.041
0.043
0.049
0.049

0.025
0.034
0.040
0.042
0.035
0.017

0.025
0.034
0.042
0.045
0.047
0.030

0.026
0.035
0 042
0.044
0.053
0.048

0.012
0.011
0.007
0.005
0.004
0.005

0.021
0.034
0.039
0.040
0.017
0.007

0.022
0.033
0.041
0.044
0.048
0.048

0.030
0.037
0.042
0.043
0.034
0.017

0.028
0.038
0.043
0.046
0.047
0.030

0.026
0.035
0.043
0.045
0.053
0.048

0.012
0.010
0.006
0.005
0.005
0.005

0.020
0.034
0.037
0.038
0.022
0.010

0.022
0.033
0.041
0.044
0.050
0.047

0.031
0.036
0.040
0.044
0.036
0.018

0.028
0.038
0.043
0.045
0.047
0.032

0.026
0.035
0.042
0.045
0.053
0.049

0.022
0.033
0.042
0.045
0.031
0.010

0.022
0.032
0.041
0.045
0.050
0.049

0.022
0.032
0.041
0.044
0.050
0.047

0.026
0.035
0.042
0.045
0.053
0.050

0.026
0.035
0.042
0.045
0.053
0.050

0.026
0.035
0.042
0.045
0.053
0.048

0.011
0.009
0.007
0.005
0.005
0.005

0.024
0.032
0.041
0.040
0.018
0.009

0.023
0.032
0.041
0.043
0.049
0.049

0.025
0.034
0.039
0.043
0.035
0.017

0.025
0.034
0.043
0.046
0.047
0.030

0.026
0.035
0.042
0.044
0.053
0.048

0.011
0.009
0.007
0.005
0.005
0.005

0.024
0.031
0.041
0.039
0.018
0.008

0.023
0.032
0.040
0.044
0.049
0.049

0.025
0.034
0.040
0.042
0.034
0.017

0.025
0.034
0.042
0.045
0.047
0.030

0.026
0.035
0.042
0.044
0.053
0.048

0.012
0.010
0.006
0.005
0.004
0.005

0.020
0.034
0.038
0.039
0.022
0.009

0.022
0.033
0.041
0.044
0.050
0.046

0.031
0.036
0.040
0.044
0.035
0.018

0.028
0.039
0.043
0.045
0.047
0.033

0.026
0.035
0.042
0.045
0.053
0.049

p, p9 are (0,0,0,0,0)', (0,1,1,1,1)', (0,-1,-1,-1,-1)', (0,-1,1,1,1)', (0,1,-1,-1,1)', (0,1,0,1,0)', (0,-1,0,-1,-1)', (0,0,-1,-1,-1)',

(0,1,0,0,1)', respectively
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Table 4.17: Sizes of Durbin's t test at the 5% level for XI4, and selected fi, cr,
and // values, using near exact non-similar critical values

n

30 0.035

0.081

0.68

60 0.085

0.185

0.95

Pi P2 Ps Pi Ps

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.025
0.041
0.051
0.046
0.041
0.037

0.031
0.046
0.050
0.052
0.050
0.040

0.010
0.008
0.007
0.005
0.002
0.002

0.017
0.020
0.017
0.012
0.005
0.002

0.025
0.040
0.048
0.043
0.035
0.025

0.016
0.017
0.016
0.011
0.005
0.004

0.022
0.029
0.029
0.024
0.011
0.005

0.030
0.044
0.050
0.051
0.043
0.021

0.009
0.008
0.007
0.005
0.003
0.002

0.014
0.018
0.018
0.013
0.004
0.003

0.025
0.039
0.046
0.046
0.036
0.026

0.013
0.015
0.014
0.011
0.006
0.004

0.019
0.027
0.029
0.025
0.012
0.005

0.030
0.045
0.050
0.048
0.042
0.021

0.013
0.014
0.010
0.009
0.005
0.003

0.022
0.031
0.032
0.028
0.019
0.007

0.026
0.043
0.048
0.047
0.042
0.035

0.015
0.017
0.015
0.011
0.006
0.005

0.022
0.030
0.029
0.024
0.012
0.007

0.030
0.044
0.047
0.049
0.044
0.034

0.011
0.012
0.011
0.008
0.004
0.003

0.018
0.028
0.030
0.027
0.018
0.007

0.025
0.039
0.049
0.046
0.038
0.036

0.016
0.018
0.014
0.009
0.007
0.004

0.022
0.029
0.030
0.025
0.010
0.007

0.032
0.050
0.051
0.051
0.046
0.033

0.013
0.015
0.012
0.006
0.002
0.002

0.021
0.029
0.028
0.021
0.008
0.003

0.026
0.039
0.047
0.046
0.039
0.031

0.023
0.031
0.030
0.022
0.008
0.004

0.029
0.041
0.044
0.042
0.018
0.005

0.031
0.047
0.051
0.053
0.049
0.029

0.014
0.015
0.011
0.007
0.003
0.002

0.020
0.031
0.030
0.022
0.007
0.004

0.026
0.038
0.048
0.046
0.040
0.032

0.016
0.025
0.027
0.021
0.009
0.005

0.024
0.035
0.039
0.040
0.020
0.006

0.030
0.045
0.050
0.052
0.048
0.031

0.014
0.015
0.014
0.012
0.006
0.003

0.020
0.029
0.031
0.029
0.017
0.008

0.025
0.041
0.051
0.046
0.039
0.035

0.019
0.019
0.018
0.013
0.007
0.004

0.027
0.033
0.033
0.030
0.015
0.008

0.029
0.043
0.049
0.050
0.045
0.033

0.012
0.014
0.014
0.010
0.006
0.003

0.019
0.030
0.034
0.028
0.016
0.006

0.026
0.039
0.051
0.047
0.041
0.034

0.017
0.017
0.016
0.011
0.006
0.004

0.025
0.033
0.032
0.030
0.014
0.008

0.031
0.047
0.050
0.049
0.047
0.031 I

P, p9 are (0,0,0)', (0.1,1)1, (0,-1,-1)', (0,-1,1)', (0,1,-1)', (0,1,0)', (0,-1,0)', (0,0,1)', (0,0,-1)', respectively
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Chapter 5: Testing a static model against a dynamic model

CHAPTER 5

TESTING FOR A STATIC LINEAR REGRESSION MODEL WITH

AR(1) ERRORS AGAINST A DYNAMIC LINEAR REGRESSION

MODEL WITH WHITE NOISE ERRORS

5.1 Introduction

In this chapter, we deal with a more complicated testing problem, namely, testing for a

static linear regression model with AR(1) errors against a dynamic linear regression

model with white noise errors. If the DW statistic for autocorrelation is significant in

the context of a linear regression model, some prefer to work with static linear

regression models with autocorrelated errors while others favour dynamic linear

regression models with white noise errors. That is, the dynamic part of the model can

be incorporated into the model through the error term or through lagged dependent

variable regressors32. Both the approaches are plausible. However, it would be

desirable to have a powerful testing procedure to distinguish these two approaches

because a correct model specification is important for forecasting purposes and also

32 This choice is similar to one discussed in the unit root testing literature. That is, some researchers
test for unit roots in errors and others test for it in the mean of their models (see Stock (1994) and
Silvapulle (1992)).
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Chapter 5: Testing a static model against a dynamic model

for the purpose of further inference. As noted in i napter 2, King and Rankin (1993)

point out that when the DW test in a static linear model is significant, and the true

model is the dynamic linear model with a large autoregressive parameter, a substantial

loss in accuracy of prediction can occur if one proceeds to correct for AR(1)

disturbances without first checking for the possibility of a dynamic linear model with

white noise errors.

Some may argue that the correct model (from the two mentioned above) can be

chosen by observing the significance of the OLS estimates and R2. However,

Griliches (1967) and Giles (1975) point out that while the true model which generated

the given sample is the regression model with AR(1) errors, if one fits the dynamic

linear regression model with white noise errors to the sample by OLS then it is likely

to explain the data rather well. Therefore, one can mistakenly select a wrong model

by using the OLS approach and this may lead to misleading inferences.

In Chapter 2, we outlined some situations where the null and the alternative models of

interest in this chapter may not be distinguished at all. We purposely selected this

difficult problem in order to see which test succeeds in every case, if such a test exists,

then we can recommend that test for other complicated testing situations with greater

confidence.

For this problem, the nuisance parameters cannot be avoided, thus tests applied can be

expected to be non-similar. The literature review of Chapter 2 reveals that, in the

presence of nuisance parameters, marginal likelihood based tests perform better than

conventional likelihood based tests in finite samples. Therefore, we consider

marginal likelihood based tests in this chapter. In particular, we compare marginal

likelihood based g tests with marginal likelihood based one-sided LR, LM and W

tests, in terms of size and power properties obtained via Monte Carlo experiments.

Because the classical tests are specially designed for nested testing, they are applied to

test for the significance of the dynamic regressor coefficient of a dynamic linear

regression model with AR(1) errors. To vhe author's knowledge, this is the first study

that investigates the finite-sample performance of marginal likelihood based classical

tests in the dynamic linear regression model with AR(1) errors. Grose (1998) applied
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Chapter 5: Testing a static model against a dynamic model

these tests to the dynamic linear model with white noise errors. The size and power

comparisons of this chapter are based on near exact non-similar critical values of the

tests obtained using the simulated annealing (SA) algorithm.

The plan of this chapter is as follows. The models and assumptions are discussed in

section 5.2. Section 5.3 describes the marginal likelihood function of the parameters

of interest and section 5.4 discusses the marginal likelihood based tests. Section 5.5

discusses how to obtain exact (and near exact) non-similar critical values of these

tests. In this section, we also discuss how (4.2.4) can be generalised in order to obtain

exact critical values of the g test. Section 5.6 presents the details of the Monte Carlo

experiment and summarizes the main findings. Finally, concluding remarks are given

in section 5.7.

5.2 Models and Hypotheses of Interest

The non-nested models (or hypotheses) of interest in this chapter are

H0:yt =xt'j3 + ut, ut-pu,_y+et, t-\,...,n

and

(5.2.1)

t=2,...,n, (5.2.2)

where y, is the dependent variable at time t, x, is a fcxl vector of non-stochastic

regressors at time t, P is a fcxl vector of coefficients, u, is the disturbance term

withO < p < 1, e, ~ IN(0,cr2) andO < n < 1.

Because positive autocorrelation is more likely in practice we consider this case only,

however, the discussion of this chapter also applies to the negative autocorrelation
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Chapter 5: Testing a static model aguinst a dynamic model

case as well. In the case of the classical tests, as mentioned earlier, we consider the

dynamic linear regression model with AR(1) errors, which can be regarded as the

general model. Because the models given by (5,2.1) and (5.2.2) are nested within the

general model, it is appropriate to discuss the theory for the general model and this

theory can be applied to each of the nested models as special cases when needed.

First consider the dynamic linear regression model with AR(1) errors,

y, = u,, t =2, . . . ,n, (5.2.3)

where u, = pu,_t + e,, 0 £ p <\, e, ~ IN(0,(J2) and 0 < /l < 1.

As discussed in the previous chapter, y, and Uj of model (5.2.3) can be written as

and

(1-p 2 ) 1

(5.2.4)

(5.2.5)

where d?
1
? (1-//PX1-//2)

(5.2.3), (5.2.4) and (5.2.5).

m Now model (5.2.3) is completely specified by equations

Model (5.2.3) can be written in matrix form as

(5.2.6)

where T(/z) is the nxn matrix
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Chapter 5: Testing a static model against a dynamic model

-M
0

•

0

0
1

-M

0 .
0

1

•

1

-M

0
.

•

0

1

(5.2.7)

y is an nx 1 vector, X is an nxk nonstochastic matrix of rank k<n, P is a fcxl

parameter vector, D(ju,p) is the nXn diagonal matrix, defined as,

diag(rf,(l-yU),l,l,...,l)and u is an n x l vector such that, u ~ A (̂0, (72S(p)) in which

X(p) is an nXn matrix whose (i,j)th element is p'1"7 ' /(1-p2) (see King (1996)).

Equation (5.2.6) implies that

(5.2.8)

where the error term,

u = r-(/z)D(//,p)«

~ tf(O, (5.2.9)

Therefore, for the classical tests, the model and hypotheses of interest can be written

as

, u~N(0,a%(ju,p)), (5.2.10)

and

(5.2.11)
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Chapter 5: Testing a static model against a dynamic model

against

Ha:ju>0, (5.2.12)

respectively, where, 0 <> p < 1 and 0 < fi < 1, X(p) = r"'(//)X and 2,(/z,p) =

Now, if fj. = 0, dx becomes 1 and T(fi) and D(/i,p) become identity matrices.

Similarly, if p = 0, dx becomes (I-//2)"1 '2 and £(/?) becomes an identity matrix.

Therefore, the hypotheses of interest can be rewritten in matrix form as

Ho: y=xp+u,u~N(0,a2I,(p)), 0 < p < 1, (5.2.13)

against

Ha: y = M, u ~ iV(0,O"%(/£)), 0 < (5.2.14)

where y, X and E(p) are as defined above, and I2(/ /) = T-l(p)D(fi)2(r~l(jLi)y.

Here we assume that M, ~ N(0,(J2/(\-p2)) and e = (cj,...,cn)' ~ N(0,(72In). In

Chapter 3, following Silvapulle (1991, 1994a), u0 was assumed to be eo/(l-p
2)m.

Here Wj is assumed to be e,/(1-p2)1 '2 in order to make it consistent with the

alternative model assumption (5.2.5).

For the testing problem at hand, /?, <J and (for the classical tests case) p are

nuisance parameters. As discussed in the previous chapter, the testing problem is

invariant with respect to the constant coefficient, (5X, and is affected by <J only in the

same way as a scaling of /?* = (J32,...,j3k)'. Therefore, one can fix a and vary fi* or

vice versa.
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Chapter 5: Testing a static model against a dynamic model

5.3 The Marginal Likelihood Function

If for a particular inference problem, one can factorise the sample density function

into the product of two parts, namely, one depending only on the parameters of

interest and the other containing no available information about the parameters of

interest in the absence of knowledge of the nuisance parameters, then the former part

can be interpreted as the marginal likelihood of the parameters of interest (see Grose

(1998) for more detail).

In the case of the general linear regression model

, u - (5.3.1)

Bellhouse (1978) has shown that the marginal likelihood function for £ and £2, is

equal to

-1/2/
(5.3.2)

where, y and « are n x l vectors, Z(£> is an nxk matrix dependent on a parameter

vector £, P is a kxl parameter vector, H, is an nxn matrix, c = — TT'"2 r\ — , /

- n-k , s2 = y'Pzy and I2 = y'Pz%a y are the sums of squared OLS and GLS

residuals, respectively, from the regression of y on Z(^), Pz =

) / is the orthogonal projector, and finally P Z A =

; ; Z ( ^ ) ' ^ 1 is the orthogonal projector for non-spherical

disturbances.

The log of the marginal likelihood function for £ and Q, can be written as
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Chapter 5: Testing a static model against a dynamic model

= Inc + i-l
2

In? 2 .
2

(5.3.3)

Model (5.3.1) covers a range of linear models including the models given in (5.2.10)

to (5.2.14). For (5.2.10), Z(£) = X(fi) and ft, = Z,(/z,p),for (5.2.13), (because ju

= 0) Z(£) = X and Q, = E(p) and for (5.2.14), Z(£) = X(/i) and (because p =0)

£2, = S2(/z). Therefore, for the problem of interest to this chapter, the marginal

likelihood function and its log form can be denoted by m(/z,^, I y) and M(//,&, I y),

respectively. But for convenience they are denoted as m and M, respectively,

throughout.

5.4 The Tests

The following discussion concerning tests applies to testing positive p and fi

parameters. The tests can easily be modified to test negative p and fi parameters if

need be.

5.4.1 The Marginal Likelihood Based g Test

For the testing problem of interest, the g test can be denoted as the g(/*0; 0,p* ,0.999)

test, where JI0 is the point under the alternative where the power is maximised and 0

< p* < 0.999. However, for convenience we denote this test as the g(//0) test

throughout. The construction of the g(^0) test for testing hypotheses of the form

(5.2.13) against (5.2.14) is as outlined in Chapter 3. That is, the g(^0) test is the one

that rejects Ho if
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Chapter 5: Testing a static model against a dynamic model

(5A1)

For the existence of such a test, the following r size conditions,

(5.4.2)
1=1

need to be solved simultaneously, by appropriate choices of values for &,, ..., kr.

Here mk, fc = 1,..., r, can be regarded as representative marginal likelihood functions

under the null hypothesis, mr+1 is the marginal likelihood function corresponding to

ju0 and a is the level of significance.

As outlined in Chapter 3, we start with the r = 3 case and select the representative

marginal likelihood functions at p - 0, p = p* and p = 0.999. Next we need to find

p*, /:,, k2 and fc3 values such that the following size conditions (which are evaluated

via the Monte Carlo simulation method) hold simultaneously.

Pr[m4 p = 0] = a,

Pr[m4 >fej/n, + k^rn^ + fc^n, Ip-p*] - a,

Pr[m4 > fc,/n, + k 1 p = 0.999] = a ,

Pr[m4 > fc,m, + fc^ + ^ 10 < p < 0.999] = a ,

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

where, a* should be within the (1 - a) percent confidence interval of « .

If for particular values of p\ kx, k2 and fc3, probabilities (5.4.3) to (5.4.6) hold

simultaneously then we have constructed the g([i0) test otherwise we can try some
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other p* value, find the A:,, k2 and fc3 values accordingly and proceed as before. If

this also doesn't work, (as mentioned in Chapter 3) we can include another

representative density under the null and hence solve for another size condition and so

on until the desirable test is found.

The critical values, £,, k2, ..., kr of the g(;£/<,) test can be found by following the

iterative procedure outlined in Chapter 3. Alternatively, the same can be done by

using SA as explained in section 5.5.3.

Here, we use marginal likelihood functions, /n(., instead of log marginal likelihood

functions, Mt, i = 1,..., r + 1, because, the GNPL based test of the form log(mr+1)

(=Mr+1) > +,.. . , +krmr) is valid, but Mr+l > &,M, + k2M2 + ... +

krMr is not valid.

As discussed in Chapter 3, the GNPL provides a PO test for the problem of testing

whether an observed sample is generated by a finite number of observable density

functions against a single alternative density function. Thus, under the null and the

alternative the observed sample is the same. For the problem of interest, under the

null, the observed sample is equivalent to the maximal invariant function value

(3.3.7). This is because, for the null model, Ara and King (1993) showed that the

marginal likelihood based approach is equivalent to considering the density function

of a maximal invariant statistic. However, the same is not true under the alternative,

therefore, the observed sample is not the maximal invariant function value.

Consequently, the marginal likelihood based g(//0) test is not perfect for the problem

at hand, however, it is interesting to see its performance. In this chapter, we consider

two versions of the g test, namely, the g(0.3) test and the g(0.5) test. We did not

consider the g(0.75) test because when fi gets bigger it becomes easier to distinguish

the null and the alternative models of interest, thus, this case is not as interesting.

Also, the asymptotic tests are expected to have good power properties for this

relatively easier case.
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5.4.2 The Marginal Likelihood Based One-Sided LR, LM and W Tests

The one sided LR, LM and W tests for testing (5.2.11) against (5.2.12) in the presence

of nuisance parameter p can be written as

= sgn(/z)[2(M-M)]1/2,

LM = qMmTm\fi=O and p=p '

(5.4.7)

(5.4.8)

and

YY — fl\l )"2 (5.4.9)

which under the standard regularity conditions (see White (1982)) follow a

distribution under the null asymptotically, where fi, and p are the unrestricted

maximum marginal likelihood estimates of fi and p, respectively, p is the restricted

maximum marginal likelihood estimate of p under the null, M = M(jj.,p) and M =

M(0,p) are the unrestricted and restricted log marginal likelihood functions,

respectively, sgn(£) = 1, -1 , 0 according to whether Ji > 0, p. < 0, or ju = 0,

respectively, and qM is the score function with respect to ii. At this point, it is

convenient to introduce the following notation. Define the marginal likelihood based

information matrix as

' y (5.4.10)

where i = (fi,p)'. Let If be partitioned as

* Uft ftp (5.4.11)
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and let lm be the block in / : ' corresponding to lm. That is, /«" = / - (/„„/:'/„„).
J f*f* ftyi Up pp fip

Because JI and p are scalars, Im is a scalar and lw = IpM. Grose (1998) derived all

these terms (see Appendix 5.2 for more detail). Among these, 1^ and / have

closed form solutions, whereas, lm does not have a closed form solution. Grose

(1998) provided two computable forms of Im, namely, Laplace approximated

information and estimated information (see Appendix 5.2). These two

approximations are asymptotically equivalent, but may differ in finite samples.

Which of these approximations is best, particularly in small samples, is unknown in

practice. Therefore, in this chapter, we study both tests' behaviour using both

approaches.

To make the W and LM tests operational we require, in addition to the maximum

marginal likelihood estimates of ft and p, suitable estimators of /? and a2. The

GLS estimators (conditional on ju and p),

(5.4.12)

and

I
(5.4.13)

are the obvious unbiased candidates, where e is the GLS residual vector from

(5.2.10).

Grose (1998, p. 168) commented that "While the marginal likelihood-based score with

respect to p is 'unbiased', in the sense that its expectation is zero, the same cannot be

said of the marginal likelihood-based score with respect to the regressor parameter / / .

Use of the marginal likelihood, therefore, results in unbiased estimating equations for

covariance parameters, but not regressor parameters". Therefore, the marginal
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likelihood based LM test may not have better finite-sample properties for the problem

at hand.

5.5 Obtaining Exact (and Near Exact) Non-Similar Critical Values via

SA

The exact (and near exact) non-similar critical values of the classical tests (because

they have standard test statistics and known asymptotic critical values) can

straightaway be obtained by using SA, as explained in Chapter 4. The g test case is

different. For a given ft and a, the g test statistic is unknown until appropriate

critical values and p* are found such that the size conditions (5.4.2) hold

simultaneously. Also, the g test has no known asymptotic distribution. Therefore,

obtaining near exact non-similar critical values of the g test involves two steps

(obtaining exact non-similar critical values involves an iterative process explained in

section 5.5.1). The first step involves constructing the test statistic assuming values

for ft and <J . For this, we assume /? = 0 and a = 1 and construct the g test33. We

denote this test the go(/*o) tes t- The second step involves applying SA to find values

for the nuisance parameters such that the go(/*o)
 t e s t s*ze 1S a t *ts maximum. For the

parameter solution provided by SA, we construct the g test again by finding

appropriate critical values and p*. We denote this test the g(//0) test. For the

classical tests, obviously, the first step is not necessary. For ease of application, we

provide the steps involved in computing exact non-similar critical values of the tests

in detail below. The following discussion concerning the g test applies for the r = 3

case, the same can easily be generalised for any r > 3 case if need be. Also, as in

Chapter 4, /?, and c are set 0 and 1, respectively, throughout.

33 As noted in the previous chapter, a can take any value in this case.
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5.5.1 Steps Involved in Obtaining Exact Non-Similar Critical Values of

the g(//0) Test

(1) Let /T = 0 and construct the go(//o) test following section 5.4.1. That is, p" and

critical values, fc,, k2, and fc,, have to be found such that the probabilities (5.4.3)

to (5.4.6) hold simultaneously.

(2) Let SA find the values for ft* and p over the nuisance parameter space such that

the size of the go( jW0) test is at its maximum.

(3) Construct the g(/*0) test for the parameter solution provided by SA. That is, as

before, new p*, fc,, k2, and fc3 values have to be found such that the probabilities

(5.4.3) to (5.4.6) hold simultaneously.

(4) Again apply SA to check whether the sizes of the g( fiQ) test are reasonably

controlled over the nuisance parameter space. Repeat steps 3 to 4 until the

maximum size obtained is equal to the nominal size.

Observe that the critical values of the go(juo) test are obtained by fixing p vector to

zero and controlling the sizes of the test over the p parameter space alone. Therefore,

the critical values of the go(/ / o ) t e s t c a n almost be interpreted as the approximate non-

similar critical values used in previous studies. Obviously, if step 2 reveals that the

approximate non-similar critical values of step 1 are adequate to control the test sizes

over the nuisance parameter space then steps 3 - 4 are not necessary.

The reason for fixing a as one and varying p* is as explained in Chapter 4. Though

p is not a nuisance parameter in the g test case, it is also varied (over its parameter

space) because the null distribution of the g test statistic depends on it as well.
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5.5.2 Steps Involved in Obtaining Exact Non-Similar Critical Values of

the LR, LM and W Tests

The following steps apply for all three classical tests.

(1) Let SA find the values for /T and p over the nuisance parameter space such that

the size of the test (based on the asymptotic critical value) is at its maximum.

(2) Apply SA (as explained in section 4.2.2) to find exact size critical value at these

values of nuisance parameters.

(3) Use SA to check whether the sizes of the test (based on the exact size critical

value of step 2) are reasonably controlled over the nuisance parameter space.

Repeat steps 2 to 3, until the maximum size obtained is equal to the nominal size.

As explained in Chapter 4, following all four (first three) steps of section 5.5.1 and all

three (first two) steps of section 5.5.2 will lead to exact non-similar critical values

(and near exact non-similar critical values) of the g test and the classical tests,

respectively.

5.5.3 Obtaining Exact Size Critical Values via SA

The finite-sample critical values of the classical tests (by assuming knowledge of the

unknown parameters) can straightaway be obtained by minimising (4.2.4). This is

because each classical test involves the finding of one critical value alone and (4.2.4)

is specially designed for this. Because the g test involves r critical values, we have to

generalise (4.2.4) in order to obtain them. How this can be done for the r = 3 case is

discussed below, the same can easily be generalised for the r > 3 case if need be. In

the following discussion, g(*) means size at *.
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For a given fiT- vector and p* value, we can use SA to find the appropriate critical

values of the g test such that the probabilities (5.4.3) to (5.4.5) hold simultaneously.

For this, we have to generalise the function (4.2.4) as,

/ = lOOOO*(sf +s2
2+ 4), "(5.5.1)

where sx = a - £(0), s2 = a - q(p), and s3 = a - £(0.999).

Here, SA finds values for fc,, k2, and k3 such that (5.5.1) is minimized. In other

words, SA tries to find values for kx, k2 and k3 such that the sizes at p = 0, p* and

0.999, are exactly equal to a . To gain in terms of computational time one can

generate the marginal likelihood functions, m,., m ,̂., m^. and m4l, i = 1, 2, ..., j t ,

where j , is the number of Monte Carlo replications, for each of p = 0, p and 0.999,

beforehand, and then apply S A. According to our experience, this is the most efficient

way to proceed.

For the problem of interest, a possible value for p* can always be guessed. That is,

p* will be closer to //0 of the g test. For example, if we are considering the g(0.3)

test then p* will be within 0.29 to 0.38 and most probably 0.31 or 0.32. Once p is

decided, the appropriate critical values can be obtained as above. Thus, the

construction of the g test is not as hard as it seems. One may wonder why p* of the g

test also cannot be obtained via SA. It may be possible to find p* (together with

appropriate critical values) via SA, but there is a practical difficulty associated with

this, which is explained next.

In order to obtain p* and critical values of the g test, the function to be minimised can

be given as

f = sf (5.5.2)
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where s, = Maximum of s*, where s* =(a- g{p,)\ i = 1.....19, and p . e (0.05,

0.1,..., 0.95), s2 = a - £(0), s3 = a - g(p*), and sA = a - £(0.999).

Here, SA finds values for p , kx, k2 and fc3 such that (5.5.2) is minimized, sf is

included in (5.5.2) in order to control the maximum size over the p parameter space.

Because we prefer sizes at 0, p* and 0.999 equal to a, (to make sure that this

happens) (s\ + sj + sj) is multiplied by a big number, such as, 10000 (as above).

This type of optimization is very time consuming, because, the function / (given in

(5.5.2)), involves twenty-two sizes (i.e., sizes at p = 0, 0.05, 0.1,..., 0.95, 0.999 and

p = p*) which have to be evaluated via the Monte Carlo simulation method. As

mentioned earlier, to gain in terms of computational time, one can generate the

marginal likelihood functions, /n,,-, wij,-, m .̂ and m4i, i = 1, 2, ..., j t , where jt is

the number of Monte Carlo replications, for each of p = 0, 0.05, 0.1, ..., 0.95 and

0.999, beforehand, and then apply SA. However, this amounts to a large amount of

computation and will not be attractive if jt is large. Therefore, finding p* via SA is

not feasible in practice.

5.6 Details of the Monte Carlo Design

Extensive Monte Carlo experiments were conducted to see the performance of the

marginal likelihood based g and one-sided LR, LM, and W tests in the presence of the

nuisance parameters. This study was based on near exact non-similar critical values

obtained via the SA based approach. We observed that this approach could be time

consuming, particularly for the classical tests because their construction involves

repeated maximum marginal likelihood estimation as well. On the other hand, it takes

less time for the g test. In addition to this, the type of study we conducted in this

chapter (which is explained below) is also time consuming, therefore, to keep the

study at a manageable level, we used only two design matrices namely:
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XI5 : nx3, n - 20, and 40, theX matrix is the same as XL The a values used for

n = 20 and 40 are a = 0.015, 0.025, and 40 and a = 0.025, 0.045, and 0.2,

respectively.

X16: n x 3 , n - 20 and 40, the regressors are a constant dummy and standard normal

random numbers. The a values used for n = 20 and 40 are a = 0.4, 0.8, and 10 and

a - 0.4,0.7, and 1.81, respectively.

Here, XI5 is a smoothly evolving series, while XI6 possesses a high degree of

randomness. In Chapter 2, we discussed some situations where the null and the

alternative models of interest may not be distinguishable, of which one is that when

the design matrix is lag invariant. That is, for a particular design matrix, if the

regressions of each regressor (lagged once) on the rest of regressors all have high R2

then the corresponding design matrix can be regarded as almost lag invariant. We

observe that X15 is almost lag invariant and X16 is not lag invariant. It will be

interesting to see the tests' performance for these two design matrices.

The computer programs were written in GAUSS for windows NT/95 version 3.2.35

and Tsionas's (1995) program code for the SA algorithm was used. A nominal

significance level of five percent and 2000 iterations were used throughout. The

maximum marginal likelihood estimates of ft and p were obtained by minimizing

the negative of the relevant log-marginal likelihood subject to the constraints -1 < ji

< 1 and -1 < p < 1, with OLS estimates as starting values and the bounds set to

±0.999. Here, the OLS estimates were calculated for each iteration, therefore, the

starting values vary for each iteration.

In order to compare the powers of the classical tests (which were applied for the

dynamic linear regression model with AR(1) errors) with those of the g test (which

was applied to the non-nested testing problem of interest), the y vector was generated

assuming p - 0 under the alternative for the former test.
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The one-sided version of a classical test statistic cannot be computable if the term for

which the square root has to be taken is negative. This happened sometimes due to

sampling variability. For such situations, the test statistic was set to zero,

consequently the null was accepted.

In order to check whether the SA based near exact non-similar critical values are

indeed working well in terms of controlling the sizes over the nuisance parameter

space, we calculated the tests' sizes for a variety of fi and a values. The (5 vectors

considered for n = 20 were: (0,0,0)', (0,1,1)', (0,-1,-1) ' , (0,1,-1)', (0,-1,1)',

(0,1,0)', (0,-1,0) ' , (0,0,1)' and (0,0,-1) ' , respectively, and each p was made

larger or smaller along each of eight directions by decreasing or increasing a. For

each of these P directions and <J values, sizes were calculated for p =0 .1 , 0.3, 0.5,

0.7, 0.9, and 0.99. When fi — 0, as in Chapter 4, the size calculations were done for

only one <J value. Because this type of study is quite demanding in terms of time, for

n = 40, size calculations were done for four selected fi directions only, namely,

(0,1,1)', (0, -1 ,1 ) ' , (0,1,0)', (0,0, -1 ) ' and (0,0,0)' . The size results are reported

in Tables 5.4 to 5.15.

Power calculations were also done for the above P vectors (except, for ft = 0) and <7

values (except, for big <J of the three considered), in order to determine the most

powerful test over the nuisance parameter space. The powers were not calculated for

P = 0 and for big a because for these cases, the null and the alternative models of

interest become similar, consequently, powers can be expected to be close to sizes.

For each p and a, the power calculations were done for ft =0 .1 , 0.3, 0.5, 0.7, and

0.9. The power results are reported in Tables 5.16 to 5.21. Also, some selected power

results were plotted in Figures 5.1 to 5.5.

Though, considering a variety of p and a values takes up a lot of time, particularly

in the case of the classical tests, it is worth doing so because the finite-sample

performance of these tests in the context of the dynamic linear model with AR(1)

errors is unknown in practice. For example, for each design matrix and n = 20, it

takes about 12 days for the LR test, 10 days for the W test and 6 days for the LM test
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to do both the size and power calculations. For similar testing scenarios, as noted in

Chapter 4, researchers have calculated sizes and powers for only one p vector and for

some a values (see Inder (1985) and Silvapulle (1991)), thus, these studies can be

considered inadequate because a test might behave well in terms of size and power

properties in a particular P direction, but may behave poorly in another one.

The <y values were chosen as explained in Chapter 4. For this, the y vector was

generated assuming // = 0 and p = 0.5 and for each p vector with 100 iterations

being used. Also, in order to obtain Rz, v was regressed on y_, and X. Therefore, in

the g(//0) test case, <r values determined in this way are slightly biased because for

this case, v should have been regressed on X alone. However, in order to compare

the g(//0) test performance with that of the classical tests we use the same a values

throughout.

In order to find values for the nuisance parameters such that the size of a test is at its

maximum, the key parameters of the S A algorithm, T, Ns, Nt and rt were set as, T

= 2, Ns = 2, N, = 2 and rt = 0.5. The same SA parameter values were used to

obtain unrestricted maximum marginal likelihood estimates. Together with the other

parameter values, Ns= 3 and N, = 3 were used to obtain restricted maximum

marginal likelihood estimates. Preliminary work showed that these parameter values

are adequate for the maximum marginal likelihood estimation carried out in this

chapter34. However, we could not check whether the parameter values provided are

adequate to find the global maximum size of a test because it will be too time

consuming, particularly for the classical tests. Also, when dealing with size functions,

we cannot decide anything firmly based on a small number of Monte Carlo

replications such as 50 or 100.

According to our experience, when using Pentium II400 or Pentium HI 500 machines,

(for the above SA parameter values) for each design matrix, n = 20 and 2000 Monte

Carlo replications, S A takes about 6 days for the LR test, 4 days for the W test, 2 days

34 This observation is based on 100 iterations. We compared these small SA parameter values based optimum
results with those based on increased SA parameter values (see Goffe et al. (1994)).
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for the LM test and less than 5 minutes for the g test, to provide the nuisance

parameter values such that the respective tests sizes are at their maximum. Obviously

it takes more time for n = 40. The nuisance parameter values and the corresponding

maximum sizes are reported in Table 5.1. The p and critical values of the go(//o)

and g(//0) tests are given in Table 5.2. The near exact non-similar critical values of

the classical tests are given in Table 5 3 .

In order to obtain exact size critical values of the classical tests (by assuming

knowledge of the unknown parameters), T = 2, Ns = 3, Nt - 3 and rt = 0.5 were

used. Similarly, for the g test, T = 5, Nt = 5 , N, = 5 and rt = 0.85 were used.

According to our experience, these SA parameter values are adequate for the classical

tests to find the exact critical values. However, for the g tests, the SA parameter

values, sometimes, have to be increased slightly. If the above SA parameter values

are used, SA will take less than two seconds for the classical tests and about twenty

minutes for the g test to produce the required outcome.

In order to find values for the nuisance parameters such that the size of a test is at its

maximum, the starting values of the parameters provided were: /3* = 0 and p =0.5.

As mentioned earlier, the restricted (calculated under the null) and unrestricted OLS

estimates of each iteration were provided as the starting value? for obtaining restricted

and unrestricted maximum marginal likelihood estimates, respectively. Seed values,

9662 and 63721179 were provided for the uniform random number generator of SA

and the normal random number generator of the model, respectively. For reasons

discussed in the previous chapter, random normal numbers were generated beforehand

(i.e., outside the main procedure where the function to be optimized is being

evaluated).

As mentioned earlier, in this chapter, we consider both Laplace approximated

information based and estimated information based LM (and W) tests, in order to see

which information based test is best in finite samples. We denote these tests as

LM(L), LM(E), W(L) and W(E) tests throughout. Also, as mentioned earlier, we

denote the g test corresponding to step 1 of section 5.5.1 as the go(/zo) test, otherwise
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denote the g test as the g(//0) test. In the remaining sections of this chapter, ' j , is

closer to j 2 ' means j , is closer to j2 in absolute value, where j , and j2 are known

numbers.

we

5.6.1 Results Under the Null Hypothesis

Our study clearly shows the danger in using large-sample based tests, particularly the

LR, W(L) and W(E) tests, in small samples. For example, for XI6 and n ~ 20, the

LR, W(L) and W(E) tests can have (maximum) sizes as high as 0.748, 0.930 and

0.920, respectively, over the nuisance parameter space. The next poor performers in

this regard are the go(O.3) and go(O.5) tests which can have sizes as high as 0.245 and

0.210, respectively. The go(O.5) test is always slightly better than the go(O.3) test.

Among all the tests considered, the LM(L) test is the best because its size never

exceeds 0.120 over the nuisance parameter space. Similarly, the LM(E) test size

never exceeds 0.182, and thus can be regarded as second best. Among all the tests,

the W(L) and W(E) tests always attain the highest sizes over the nuisance parameter

space.

The poor performance of the large-sample critical value based classical tests,

particularly, the W(L), W(E) and LR tests, may seem due to the small-sample size, n

= 20, we used. However, this situation seems to worsen when the sample size

increases to 40. For example, for X16 and n = 40, the LR, W(L) and W(E) tests have

(maximum) sizes as high as 0.933 and 0.981, and 0.963, respectively, over the

nuisance parameter space. In fact the (maximum) sizes are increasing with sample

size (see the results reported for n - 20 above). For the same design matrix, both the

LM tests' respective maximum sizes also slightly increase with sample size. For

example, the LM(E) test size increases from 0.158 to 0.182 as the sample size

increases from 20 to 40. However, LM tests' (maximum) sizes seem to improve

slightly for XI5. For example, the LM(E) test size decreases from 0.169 to 0.131

when the sample size increases from 20 to 40. The go(O.3) test's (maximum) size

decreases for X16, but it increases for X/5, when the sample size increases. The only
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test whose (maximum) size always decreases when the sample size increases is the

go(O.5) test.

For the classical tests only, we further increased the sample size to 60 and observed

that the LM tests' (maximum) sizes slightly improve. For example, for XI6, the

LM(E) test size improves from 0.132 to 0.119 when the sample size increases from 40

to 60. Similarly, for X15, the LM(L) test size improves from 0.102 to 0.088. For X15,

the LR test size improves from 0.501 to 0.220, however, for X16, its size increases

with the sample size. Our study clearly shows that the large-sample based LR, W(L)

and W(E) tests are not reliable under the null even when n = 60. Though, the LM

tests' sizes are better than their competitors, they are not ideal even when n - 60.

Therefore, it is not particularly advisable to use large-sample critical value based

classical tests in finite samples.

Generally, the LR, W(L) and W(E) tests achieve their maximum sizes for small /?

values and for p between 0.85 to 0.99. For the LM tests, the same happens for p

between 0.3 to 0.99. While the go(O.3) and go(O.5) tests attain their maximum sizes

for small fi values and p between 0.6 to 0.9 or for big /? values and p closer to

zero. These observations suggest that approximate non-similar critical values used in

previous studies may work well for the asymptotic tests but not for the g(//0) tests.

Now let us discuss the performance of the near exact non-similar critical values based

tests. The near exact non-similar critical values we proposed are working remarkably

well in terms of controlling sizes. Generally, the sizes are less than or equal to the

nominal size and sometimes higher than the nominal size. All these tests' higher than

nominal sizes are almost always less than twice the nominal size. Also we observe

that such higher than nominal sizes occur more for the g(0.3) test compared to the

other tests.

For the design matrices considered, all the tests' sizes have a common pattern which

is as follows. The tests' sizes seem to change with /? for small a (this happens more

for n = 20 than for n = 40) and become stable for big a. For example, for XI5, a =
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0.015 and p = 0.99, the W(L) test sizes for p - (0,1,1)' and fi --= (0, -1 ,0 ) ' are 0

and 0.022, respectively. Also, it can be seen that the size results corresponding to big

a are always closer to those for p = 0. This is not surprising, because, for the

problem of interest, (any) p approaches 0 when G increases, hence the result. Thus,

in the discussion below, any findings reported for P = 0 also apply to big G.

We now discuss the results for n = 20. For the LM(L), LM(E), g(0.3) and g(0.5)

tests, use of near exact non-similar critical values often produces sizes that are not

significantly different from the nominal size, while for the LR, W(L) and W(E) tests

they often produce sizes well below the nominal size. For XI5, among the asymptotic

tests, the LM(E) test sizes are the best, because they generally range between 0.030 to

0.050. The g(0.5) test sizes for G = 0.015 and 0.025 are also best in this regard. For

X16, among the asymptotic tests, both the LM tests' sizes are better. The g(0.5) test

sizes are generally closer to 0.018, but sometimes closer to zero. The g(0.3) test sizes

are typically closer to 0.010, except when a = 0.8. For both design matrices, the LR

and W tests' sizes are generally closer to zero or 0.010, except when p = 0 and/or p

> 0.9. All the asymptotic tests' sizes increase and become closer to the nominal size

when <J increases, whereas, the g(0.3) and g(0.5) tests' sizes become closer to 0 or

0.01. The LR and W tests' sizes seem to increase with p, while other tests' sizes

seem to increase with p sometimes and waver otherwise.

If the tests were to be ranked on the basis of their sizes, for n = 20, overall the LM(E)

test is superior. Of the 300 cases, the LM(E) test has sizes that are not significantly

different from the nominal size in 96 cases. Similarly, the LM(L), g(0.3), g(0.5),

W(L), W(E) and LR tests' sizes are not significantly different from the nominal size in

90, 82, 69, 27, 25, and 21 cases, respectively.

Now let us discuss the results for n = 40. For XI5, among the asymptotic tests, the

LM(L) and LM(E) tests' sizes are better because they are generally closer to the

nominal size. The g(0.3) test's sizes for G = 0.025 and the g(0.5) test's sizes for G =

0.025 and G = 0.045, are also better in this regard. For X16, among the asymptotic

tests, the LM(L) test sizes seem better. The LM(E) test sizes are generally less than or
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equal to 0.010. The g(0.5) test sizes are generally closer to zero except when a -

1.81, while the g(0.3) test sizes range between 0 to 0.078. For both design matrices,

the LR and W tests' sizes behave as for n = 20. If the tests were to be ranked on the

basis of their sizes, for n = 40, overall the LM(L) test is superior. Of the 156 cases,

the LM(L), g(0.5), g(0.3), LM(E), W(E), W(L) and LR tests' sizes are not

significantly different from the nominal size in 62, 57, 53, 37, 9, 8 and 2 cases,

respectively.

Even if the sizes are successfully controlled, the tests will be of little use if they do not

have sufficient power to reject a false null hypothesis. We compare the powers next.

5.6.2 Results Under the Alternative Hypothesis

The power comparisons of this section are based on near exact non-similar critical

values. We observed that the power results for each design matrix change when (3

changes. For example, for X16, n = 20, o = 0.8 and jj, = 0.5, the g(0.3) test powers

for p = (0,1,1)' and p = (0,0,1)' are 0.873 and 0.364, respectively, while the

corresponding (average) sizes are similar. Similarly, for particular JJL and a values,

the classical tests also have markedly different powers along different /? directions.

Therefore, it seems reasonable to compare the tests' powers along each p direction.

By doing this, we observed that the main findings are largely unaffected with respect

to P. The main findings are as follows.

For XI5, n = 20 and a =0.015, the following pattern emerges always (regardless of

P). Sometimes none of the tests are powerful at // =0.1. Except for these cases, the

g(0.3) test is the most powerful test for 0.1 £ ju < 0.5 and generally it continues to

have reasonable powers for }i = 0.7. The g(0.5) test is the second best test for 0.1 <

H < 0.5, and it continues to be the most powerful test for 0.5 < fi < 0.9 along 4 (out

of 8) p directions. It may look strange that the g(0.3) test is the most powerful test at

fi = 0.5 instead of the g(0.5) test. This may be happening due to the g(0.3) test's
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higher sizes. On many occasions, the g(0.3) and g(0.5) tests have better sizes and

powers that are almost double that of the best classical test.

None of the classical tests are reliable when pi = 0.1 in terms of power. Among the

classical tests, the LM(E) test is the best for ju = 0.3 and the LM(L) test is second

best, however, their powers are much less than those for the g(0.3) test. Here, it is

difficult to compare power because the LM(E) tests' sizes are almost always higher

than those of the LM(L) test, still there are a few cases where the latter test

demonstrates superiority over the former. For example, for J3 = (0,-1,-1) ' and // =

0.5, the LM(L) and LM(E) tests' powers are 0.722 and 0.687, respectively, while the

corresponding average sizes are 0.015 and 0.030, respectively. It is worth noting that

the LR test's power for this case is 0.905, whereas, its corresponding average size is

0.010. Among the classical tests, the LR test is the most powerful test for ju > 0.5,

except for two ft directions in which the LM(E) test is more powerful at fi = 0.5.

Among all the tests, generally, the LR test is the most powerful test for /i > 0.7.

When G increases, J3 decreases, therefore for this case, it will be harder to

distinguish the null and the alternative models when ju and p are small. This can be

described as the most complicated testing situation. In addition, if the design matrix

is lag invariant then it will be impossible to distinguish the null and the alternative

models of interest. Such a situation exists when a = 0.025 and // =0.1 . Though

none of the tests are powerful in this case, the g(0.3) and g(0.5) tests manage to have

better powers along two (out of eight) p directions. When fl increases, the g(0.3)

and g(0.5) tests often have powers that are more than double those of their

competitors. The LR test overtakes the g(0.5) test only when n = 0.9 (see Figure

5.1). Surprisingly, the W tests sometimes outperform the LM tests at ju = 0.9.

Similarly, there are cases where the g(0.3) and g(0.5) tests outperform the LM and W

tests at fi = 0.9.

For X16, n = 20 and a = 0.4, generally the g(0.3) test is the most powerful test at n

= 0.1. Because of their higher sizes, sometimes, the LM tests outperform the g(0.3)
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test at ii - 0.1. The g(0.3) test is the most powerful test at ju = 0.3 and it continues

to have better powers for ju < 0.7. Whenever, the g(0.3) test sizes are higher than

those of the g(0.5) test, the former test turns out to be the most powerful test at // =

0.5 and vice-versa. The g(0.5) test is the most powerful test at // = 0.7, even when its

sizes are closer to zero.

Generally, the asymptotic tests' powers are not far behind those for the g(0.3) and

g(0.5) tests. Among the asymptotic tests, the LM(L) test is most powerful for 0.1 <

// < 0.3 and the LM(E) test is second best for ju = 0 . 1 . The LM(L) test clearly

dominates the LM(E) test on many occasions. For example, for ft - (0,1,1/ and fi

= 0.5, the LM(L) and LM(E) tests' powers are 0.967 and 0.587, respectively, while

both tests' sizes are comparable. Among the asymptotic tests, the LR test is second

best for ji - 0.3 along some /? directions and for the other directions the LM(E) test

is second best. Similarly, for fi - 0.5, the LR test is the most powerful test along

some p directions and for the other directions the LM(L) test dominates. The LR test

possesses reasonable power for n - 0.7 and it turns out to be the most powerful test

for JJ, - 0.9.

When a increases to 0.8, the only test that always successfully overcomes the most

complicated testing situation (outlined above) is the g(0.3) test. None of the classical

tests are reliable at fi = 0.1. The g(0.3) test is the most powerful test for fi < 0.3 and

it continues to have reasonable powers for fi - 0.5 and fi = 0.7. The g(0.5) test is

the second best test for ju < 0.3 and the most powerful test for 0.3 < / / < 0.7. Both

the g(0.3) and g(0.5) tests have very high powers compared to their competitors and

the LR test overtakes the g(0.5) test only when fi > 0.7 (see Figure 5.3). There are

cases where the g(0.5) test outperforms the LM and W tests at // = 0.9 (see Figure

5.3). Similarly, the W tests sometimes outperform the LM tests at /* = 0.9 (see

Figure 5.4). Among the asymptotic tests, the LM(L) test is the best for 0.1 < ji < 0.5

and the LR test overtakes thereafter.
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The W(E) and W(L) tests are generally the worst performers. Their powers are zero

or closer to zero for 0.1 < fi < 0.7 and sometimes (as noted above) they catch up

with their competitors at // = 0.9 (see Figure 5.1 and 5.4). This may be due to their

lower sizes. The W(L) test seems more powerful than the W(E) test for XI5 and the

converse is true for X16.

The power results at fi - 0.9 are worth mentioning. The LR test is always the most

powerful test at fi - 0.9 and its powers approach one, whereas, the LM and W tests'

are not always reliable. The g(0.5) test powers approach one along some p directions

and for the other p directions the test powers approach zero. Generally, the g(0.3)

test is the least powerful test at p. = 0.9 (see Figure 5.4), however, it occasionally

outperforms the W(L) and W(E) tests. This shows that the g(0.3) and g(0.5) tests are

always reliable in the neighbourhood of the point where the power is maximised and

not always reliable some distance from that point. As expected, compared to X15

(which is nearly lag invariant), all the tests' powers are generally higher for X16

(which is not lag invariant).

When the sample size increases to 40, none of the classical tests are recommendable

for XI5 when // = 0.1 and a = 0.025, however, the g(0.3) test manages to have

better powers along three (out of four) p directions. This test is the most powerful

test for ji < 0.5 and the g(0.5) test is second best. As expected, asymptotic tests'

powers improve with inrreased sample size, although, they are less powerful than the

g(0.3) and g(0.5) tests for the above parameter range. The LR test overtakes the g(0.5)

test only when ju > 0.7. However, the g(0.5) test powers are the second best at /l -

0.7. All the asymptotic tests powers approach one at fi = 0.9, whereas, the g(0.3) and

g(0.5) tests' powers approach zero (see Figure 5.2). The LM(L) and LM(E) tests'

powers are almost similar, whereas, the W(L) test is more powerful than the W(E) test

(see Figure 5.2).

When or increases to 0.045, none of the tests are advisable at ji =0 .1 . The rest of

the findings are similar to those above, .except now the LR test overtakes the g(0.5)
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test only when ji = 0.9. Also, the LR test powers (at // = 0.9) always approach one,

whereas, the other asymptotic tests' powers do the same along some fi directions

only. Moreover, compared to the LM tests, the W tests are more powerful at /i = 0.9.

For X16 (which is not lag invariant) and n - 40, all the tests' powers increase

remarkably. When a - 0.4, the LM(L) test is the most powerful test at ji =0.1 . For

this case, the LM(L) test always possesses higher average sizes than the g(0.3) test.

The g(0.3) test is the most powerful test for 0.1 < fi < 0.7 and its powers are closer to

one. The g(0.5) test is also equally powerful for 0.5 < ju < 0.7. The LM(L) test's

powers closely follow the g(0.3) test's powers for 0.1 < p. < 0.5. For this design

matrix, the LM(L) test's sizes are always higher than those for the LM(E) test, which

makes the latter test less powerful than the former. Among the asymptotic tests, the

LR test is the most powerful test for fi > 0.5 and its powers always approach one.

All the asymptotic tests' powers at // = 0.9 approach one, while the g(0.5) test also

manages to have better powers along three (out of four) /? directions.

When G increases to 0.7, the g(0.3) test is the most powerful test for // < 0.5 and it

continues to have better powers for jl = 0.7. The g(0.5) test is the second best test for

H = 0.5 and the most powerful test ft» // = 0.7. Among the asymptotic tests, the

I..M(L) test is the best for ju < 0.5 and the LR test is the best for fj. > 0.5 (see Figure

5.5). For both the design matrices, the W(L) and W(E) tests are the worst performers.

Our study supports the LM(L) test over the LM(E) test, particularly when the design

matrix is not lag invariant and n = 20. When the sample size increases, as expected,

the LM(L) and LM(E) tests tend to behave similarly. In the case of the W(L) and

W(E) tests, it is not clear which test is better. For XI5 , the W(L) test seems better

than the W(E) test in terms of power, but the converse is true for X16. Because both

the W(L) and W(E) tests are the worst performers always, neither of them are

advisable for the testing problem considered.
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5.7 Conclusion

In this chapter, we dealt with a complicated testing problem, for which the nuisance

parameters cannot be avoided. Because marginal likelihood based tests are known to

perform better in the presence of nuisance parameters, we considered marginal

likelihood based tests for this problem. In particular, we compared marginal

likelihood based g tests with marginal likelihood based one-sided LR, LM and W tests

in terms of size and power properties, using near exact non-similar critical values

obtained via SA. Both the Laplace approximated and estimated information based

LM and W tests were considered for this study.

This study clearly indicated that the large-sample based classical tests, such as, the LR

and W tests cannot be trusted under the null even when n = 60. Among all the tests

considered, the LM(L) test is found to be the best test because it always achieves the

least maximum size over the nuisance parameter space. The LM(E) test is the second

best in this regard.

The size and power calculations were made for a variety of /? and <j values in order

to determine the best test over the nuisance parameter space. The size results indicate

that, the SA based near exact non-similar critical values are generally reliable over the

nuisance parameter space. We also observed that approximate non-similar critical

values used in previous studies are not useful for the g(//0) test, whereas, our SA

based near exact non-similar critical values seem useful.

The power study conducted along each p direction revealed that the g(0.3) test is the

most powerful test for ft < 0.5 and the g(0.5) test is generally the second best test for

this range and the most powerful test for 0.5 < // < 0.7. Whenever, the g(0.3) test

sizes are higher than those of the g(0.5) test, the former test turns out to be the most

powerful test at fi = 0.5. The g(0.3) and g(0.5) tests often have powers that are more

than double of their competitors. The g(0.3) test is generally the least powerful test at

H - 0.9. The g(0.5) test's power sometimes approaches zero when fi approaches

zero or one. Therefore, these tests seem always reliable in the neighbourhood of the
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point where the power is maximised and not always reliable some distance from that

point. Consequently, the g(0.75) test might be suitable for /I > 0.7. However, this

test may lack power for small values of ji.

Among the asymptotic tests, the LM tests behave better for // < 0.5 and the LR test

overtakes thereafter. The only test whose power always approaches one at fi = 0.9 is

the LR test. The W(L) and W(E) tests are generally the worst performers. The LM(L)

test seems better than the LM(E) test, whereas, this is not clear in the W tests' case.

We observed that when fi increases it becomes easier to distinguish the null and the

alternative models of interest. Therefore, for the testing problem considered, the

g(0.3) and g(0.5) tests should be commended because they are the ones doing a

tougher job. In addition, the only test that successfully overcomes some very tough

testing situations typically is the g(0.3) test. Even though the marginal likelihood

based g tests are not perfect for the problem of interest (see section 5.4.1), they excel

in their performance. The LM tests are also not expected to have better finite-sample

properties (see section 5.4.2), yet, they are the best asymptotic tests for small values of

/ / . Another, notable performer is the LR test whose sizes are generally closer to zero

than those of other asymptotic tests, yet it possesses reasonable powers.

Based on our results, we recommend the g(0.3) and g(0.5) tests for // < 0.5 and 0.5 <

li < 0.7, respectively. The critical values of these tests can be obtained using SA, as

explained in this chapter. The asymptotic tests, particularly the LR test seems suitable

for //. > 0.7. Recall that, in the context of the static linear regression model, Rahman

and King (1994) preferred some marginal likelihood based asymptotic tests over

King's APO tests. For a more complicated testing situation, we have seen that the

g(//.o) test (which is an APO test) behaves better than the marginal likelihood based

classical tests.
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APPENDIX 5.1

Tables of Results of the Monte Carlo Experiments

Table 5.1: Maximum sizes of the asymptotic and g0 tests together with the nuisance

parameter values at this maximum size

X15

X16

X15

X16

X15

X16

LR

«=20

W(L) W(E) LM(L) LM(E) go(O.3) go(O.5)

Max Size

P2

Pi

P

Max Size

P2

Pi

P

0.373
-0.234

-0.831

0.993

0.748
-0.003

0.006

0.949

0.525
-0.258

-0.261

0.853

0.930
0.016

0.001

0.986

0.627
0.189

0.140

0.983

0.920
-0.005

0.000

0.982

0.120
-1.500

-1.175

0.922

0.094
-0.055

-0.006

0.685

0.169
-0.955

0.932

0.996

0.158
-0.015

-0.077

0.523

0.245
-72.998

-13.420

0.002

0.198
-1.068

0.308

0.912

0.210
-58.800

-8.590

0.002

0.131
-0.618

0.266

0.817

n=40

Max Size

P2

Pi

P

Max Size

P2

Pi

P

0.501
-0.013

0.030

0.955

0.933
0.000

0.004

0.960

0.847
0.051

0.507

0.949

0.981
-0.029

-0.033

0.994

0.803
0.421

3.183

0.992

0.963
0.024

0.000

0.901

0.102
-1.172

2.324

0.895

0.109
-0.021

-0.082
0.502

0.131
-0.675

-0.422

0.999

0.182
0.042

0.031

0.373

0.268
-12.375

-18.411

0.025

0.152
-0.525

0.494

0.024

0.151
-6.914

-27.567

0.381

0.087
-0.005

0.556

0.696

n=60

Max Size

P2

Pi

P

Max Size

P2

Pi

P

0.220
-1.078

0.191

0,739

0.953
0.000

0.000

0.961

0.961
0.135

-0.132

0.934

0.968
0.034

0.016

0.843

0.860
0.135

-0.130

0.934

0.946
-0.016

0.017

0.807

0.088
-0.292

-0.350

0.729

0.099
0.017

-0.005

0.353

0.107
2.531

-0.180

0.976

0.119
0.000

0.011

0.500
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Table 5.2: Critical values and p values of the g0 and g tests at the 5% level

w = 20 kj

k2

k3

•
P

«=40 kj

k2

k3

•
P

go(O.3)

-0.02494

1.4576

0.696

0.32

0.0155

1.479

0.064

0.335

X16

-0.02328

2.1277

0.000223

0.32

0.02233

2.636

0

0.353

g(0.3)

XI5

0.0312

3.0512

0.14138

0.31

-0.018

3.89

0.00405

0.31

X16

-0.081

5.35

0

0.37

0.049

4.810

0

0.353

go(O.5)

X15

-0.01151

0.675

4.4591

0.42

-0.00022

1.83

3.715

0.525

X16

-0.016799

3.5839

0.047263

0.52

0.00035

5.3745

0

0.55

g(0.5)

X15

-0.07332

3.015

2.40945

0.44

-0.0021

3.73

0.92

0.495

X16

-0.017

6.97

0.022

0.58

-0.00023

9.2

0

0.561

Table 5.3: Near exact non-similar critical
values of the classical tests

Test

LR
LM(L)
LM(E)
W(L)
W(E)

X15
K=20

2.5656
2.0789
2.5953
10.1000
10.0200

«=40

2.7121
2.0172
2.1960
10.1983
11.2518

X16
«=20

2.8538
1.8869
2.6734
16.9175
15.5300

n =40

3.3016
1.9874
2.7839

30.5770
22.7321
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Table 5.4: Sizes of all the tests at the 5% level for XI5, selected J3, a and p
values with n = 20, using near exact non-similar critical values

p

(0,1, I)1 0.015

0.025

40

(0,-1,-1)' 0.015

0.025

40

(0,-1,1)' 0.015

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.007
0.007
0.008
0.008
0.010
0.014

0.009
0.009
0.009
0.013
0.017
0.021

0.002
0.003
0.007
0.015
0.032
0.051

0.007
0.008
0.011
0.009
0.012
0.013

0.006
0.007
0.010
0.014
0.018
0.026

0.003
0.003
0.008
0.016
0.032
0.051

0.006
0.009
0.010
0.013
0.018
0.022

LM(E)

0.027
0.028
0.027
0.024
0.025
0.031

0.029
0.035
0.031
0.029
0.023
0.027

0.056
0.067
0.059
0.044
0.043
0.050

0.030
0.031
0.035
0.026
0.028
0.033

0.031
0.035
0.034
0.030
0.031
0.036

0.056
0.067
0.059
0.044
0.043
0.050

0.026
0.026
0.033
0.036
0.040
0.039

LM(L)

0.012
0.009
0.012
0.012
0.017
0.018

0.014
0.013
0.016
0.018
0.023
0.029

0.013
0.027
0.036
0.040
0.049
0.057

0.012
0.015
0.014
0.011
0.015
0.021

0.013
0.017
0.016
0.020
0.023
0.031

0.013
0.027
0.035
0.040
0.049
0.057

0.009
0.013
0.022
0.028
0.033
0.032

W(E)

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.001
0.001
0.002

0.004
0.004
0.006
0.017
0.042
0.049

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.005

0.004
0.004
0.006
0.017
0.040
0.049

0.000
0.001
0.001
0.003
0.003
0.005

W(L)

0.000
0.000
0.000
0.001
0.000
0.000

0.001
0.000
0.000
0.001
0.003
0.006

0.009
0.011
0.030
0.044
0.061
0.047

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.001
0.003
0.007

0.010
0.015
0.029
0.041
0.066
0.043

0.000
0.001
0.001
0.002
0.003
0.005

g(0.3)

0.068
0.068
0.061
0.046
'J.039
0.045

0.051
0.050
0.044
0.042
0.037
0.047

0.000
0.000
0.004
0.011
0.019
0.023

0.071
0.068
0.067
0.058
0.049
0.052

0.045
0.047
0.048
0.049
0.048
0.052

0.000
0.000
0.004
0.011
0.019
0.023

0.045
0.064
0.086
0.096
0.091
0.081

g(0.5)

0.042
0.038
0.035
0.025
0.025
0.021

0.049
0.051
0.048
0.038
0.033
0.038

0.004
0.003
0.007
0.015
0.021
0.031

0.039
0.035
0.032
0.030
0.024
0.024

0.047
0.049
0.047
0.047
0.042
0.041

0.004
0.003
0.007
0.015
0.021
0.032

0.013
0.025
0.036
0.043
0.038
0.039
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I
Table 5.5: Sizes of all the tests at the 5% level for XI5, selected /?, <J and p

values with n = 20, using near exact non-similar critical values

(0,-1,1)' 0.025

40

(0,1,-1)' 0.015

0.025

40

(0,1,0)' 0.015

0.025

P

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.004
0.007
0.008
0.017
0.024
0.030

0.002
0.003
0.009
0.015
0.031
0.050

0.005
0.007
0.008
0.011
0.016
0.017

0.004
0.005
0.006
0.0 i i
0.024
0.029

0.003
0.004
0.007
0.015
0.032
0.049

0.008
0.008
0.012
0.022
0.031
0.035

0.006
0.006
0.010
0.014
0.035
0.046

LM(E)

0.026
0.031
0.035
0.036
0.037
0.038

0.056
0.067
0.059
0.044
0.043
0.050

0.021
0.029
0.030
0.028
0.033
0.035

0.027
0.033
0.034
0.033
0.035
0.038

0.056
0.067
0.059
0.044
0.044
0.050

0.034
0.035
0.029
0.026
0.033
0.034

0.044
0.043
0.034
0.030
0.035
0.041

LM(L)

0.012
0.016
0.027
0.030
0.034
0.040

0.013
0.026
0.036
0.040
0.049
0.057

0.007
0.010
0.017
0.017
0.025
0.031

0.011
0.018
0.024
0.027
0.034
0.037

0.013
0.027
0.035
0.040
0.049
0.057

0.015
0.015
0.021
0.023
0.028
0.031

0.015
0.019
0.027
0.029
0.038
0.041

W(E)

0.001
0.002
0.002
0.007
0.014
0.022

0.004
0.004
0.006
0.017
0.042
0.049

0.000
0.000
0.001
0.001
0.003
0.005

0.000
0.000
0.002
0.004
0.016
0.023

0.004
0.004
0.006
0.017
0.041
0.049

0.000
0.000
0.000
0.003
0.007
0.011

0.000
0.000
0.001
0.005
0.009
0.012

W(L)

0.001
0.001
0.002
0.005
0.015
0.018

0.009
0.019
0.025
0.042
0.060
0.049

0.000
0.000
0.000
0.000
0.003
0.006

0.000
0.000
0.001
0.002
0.016
0.023

0.010
0.015
0.032
0.043
0.064
0.050

0.000
0.000
0.000
0.007
0.01*.
0.016

0.000
0.000
0.001
0.005
0.013
0.018

g(0-3)

0.024
0.044
0.062
0.068
0.066
0.068

0.000
0.000
0.004
0.011
0.019
0.023

0.038
0.067
0.087
0.098
0.087
0.089

0.017
0.040
0.062
0.071
0.065
0.072

0.000
0.000
0.004
0.011
0.019
0.023

0.036
0.039
0.044
0.048
0.043
0.042

0.007
0.013
0.016
0.022
0.026
0.031

g(0-5)

0.016
0.028
0.042
0.052
0.051
0.054

0.004
0.003
0.007
0.015
0.021
0.032

0.012
0.017
0.029
0.038
0.044
0.045

0.011
0.019
0.041
0.053
0.055
0.053

0.004
0.003
0.007
0.015
0.021
0.031

0.046
0.048
0.049
0.052
0.046
0.048

0.017
0.023
0.029
0.034
0.042
0.040
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Table 5.6: Sizes of all the tests at the 5% level for X15, selected/?, a and p
values with n = 20, using near exact non-similar critical values

.(0,1,0)1 40

(0,-1,0)* 0.015

0.025

40

1
I

I (0,0,1)' 0.015

11
1
1
1
1 0.025

1

40

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0,1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.003
0.004
0.007
0.015
0.032
0.050

0.008
0.007
0.013
0.020
0.031
0.033

0.004
0.005
0.006
0.018
0.034
0.050

0.003
0.004
0.007
0.015
0.032
0.050

0.004
0.006
0.007
0.008
0.016
0.021

0.005
0.006
0.009
0.009
0.021
0.027

0.003
0.004
0.007
0.015
0.032
0.050

LM(E)

0.056
0.067
0.059
0.044
0.043
0.050

0.034
0.032
0.034
0.030
0.031
0.034

0.042
0.046
0.037
0.033
0.037
0.041

0.056
0.067
0.059
0.044
0.043
0.050

0.029
0.030
0.028
0.030
0.033
0.033

0.034
0.030
0.035
0.033
0.031
0.034

0.056
0.067
0.059
0.044
0.043
0.050

LM(L)

0.013
0.027
0.035
0.040
0.049
0.057

0.012
0.015
0.018
0.025
0.027
0.033

0.014
0.020
0.024
0.027
0.039
0.044

0.013
0.026
0.035
0.040
0.049
0.057

0.011
0.012
0.018
0.021
0.025
0.031

0.013
0.015
0.023
0.026
0.033
0.0Z8

0.013
0.026
0.036
0.040
0.049
0.057

W(E)

0.004
0.004
0.006
0.017
0.041
0.049

0.000
0.001
0.000
0.001
0.007
0.012

0.000
0.000
0.000
0.003
0.010
0.016

0.004
0.004
0.006
0.017
0.040
0.050

0.001
0.001
0.001
0.001
0.001
0.003

0.001
0.001
0.000
0.001
0.006
0.006

0.004
0.004
0.006
0.017
0.042
0.049

W(L)

0.010
0.016
0.028
0.045
0.056
0.043

0.001
0.001
0.000
0.002
0.016
0.022

0.000
0.001
0.000
0.004
0.016
0.020

0.011
0.015
0.030
0.040
0.062
0.048

0.001
0.001
0.001
0.002
0.003
0.005

0.001
0.001
0.000
0.003
0.010
0.009

0.010
0.015
0.019
0.044
0.062
0.049

g(0.3)

0.000
0.000
0.004
0.011
0.019
0.023

0.031
0.035
0.034
0.045
0.044
0.051

0.006
0.011
0.014
0.024
0.029
0.037

0.000
0.000
0.004
0.011
0.019
0.023

0.049
0.061
0.072
0.068
0.066
0.063

0.025
0.033
0.044
0.045
0.050
0.054

0.000
0.000
0.004
0.011
0.019
0.023

g(0.5)

0.004
0.003
0.007
0.015
0.021
0.031

0.042
0.045
0.043
0.044
0.047
0.051

0.017
0.019
0.027
0.033
0.040
0.051

0.004
0.003
0.007
0.015
0.021
0.032

0.024
0.028
0.034
0.040
0.036
0.038

0.023
0.027
0.032
0.040
0.041
0.045

0.004
0.003
0.007
0.015
0.021
0.032
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Table 5.7: Sizes of all the tests at the 5% level ioiXIS, selected J3, a, and p
values with n = 20, using near exact non-similar critical values

P a

CO, 0,-1)' 0.015

0.025

40

(0,0, 0)1 0.015

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.005
0.004
0.008
0.010
0.014
0.019

0.002
0.003
0.007
0.014
0.022
0.026

0.003
0.004
0.007
0.015
0.033
0.049

0.002
0.004
0.007
0.015
0.033
0.051

LM(E)

0.029
0.030
0.031
0.028
0.031
0.036

0.034
0.035
0.035
0.030
0.032
0.041

0.056
0.067
0.059
0.044
0.043
0.050

0.056
0.067
0.059
0.044
0.043
0.050

LM(L)

0.013
0.017
0.020
0.019
0.024
0.032

0.016
0.022
0.023
0.023
0.032
0.041

0.013
0.027
0.035
0.040
0.049
0.057

0.013
0.026
0.035
0.040
0.049
0.057

W(E)

0.000
0.000
0.000
0.000
0.000
0.002

0.000
0.000
0.001
0.003
0.009
0.010

0.004
0.004
0.006
0.017
0.040
0.049

0.004
0.004
0.006
0.017
0.041
0.049

W(L)

0.000
0.000
0.000
0.000
0.002
0.004

0.000
0.000
0.001
O.003
0.012
0.016

0.011
0.015
0.029
0.046
0.061
0.050

0.010
0.015
0.021

0.043
0.055
0.044

g(0.3)

0.047
0.062
0.078
0.081
0.076
0.074

0.022
0.034
0.050
0.056
0.053
0.060

0.000
0.000
0.004
0.011
0.019
0.023

0.000
0.000
0.004
0.011
0.019
0.023

g(0.5)

0.024
0.028
0.038
0 047
0.G42
0.045

0.019
0.029
0.037
0.049
0.050
0.050

0.004
0.003
0.007
0.015
0.021
0.031

0.004
0.003
0.007
0.015
0.021
0.032
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Table 5.8: Sizes of all the tests at the 5% level for X15, selected/?, cr, and/?
values with n = 40, using near exact non-similar critical values

(0,1,1)' 0.025

0.045

0.2

(0,-1,1)' 0.025

I

0.045

1
0.2

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0,5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.004
0.007
0.007
0.006
0.009
0.017

0.004
0.005
0.007
0.008
0.019
0.037

0.001
0.003
0.004
0.007
0.C31
0.078

0.004
0.004
0.004
0.010
0.C13
0.019

0.002
0.002
0.003
0.008
0.023
0.046

0.001
0.002
0.002
0.004
0.028
0.080

LM(E)

0.022
0.019
0.020
0.025
0.026
0.032

O.020
0.025
0.025
0.027
0.036
0.042

0.040
0.037
0.033
0.035
0.039
0.047

0.031
0.032
0.034
0.030
0.031
0.034

0.032
0.029
0.031
0.038
0.036
0.046

0.047
0.038
0.032
0.034
0.043
0.048

LM(L)

0.018
0.016
0.018
0.026
0.029
0.034

0.018
0.021
0.028
0.032
0.043
0.050

0.019
0.030
0.037
0.044
0.047
0.060

0.027
0.030
0.032
0.036
0.035
0.044

0.027
0.028
0,035
0.042
0.045
0.052

0.023
0.032
0.037
0.042
0.050
0.058

W(E)

0.000
0.000
0.000
0.000
0.003
0.007

0.000
0.000
0.000
0.001
0.010
0.023

0.001
0.001
0.002
0.003
0.017
0.046

0.000
0.001
0.000
0.001
0.004
0.015

0.001
0.001
0.001
0.003
0.012
0.038

0.001
0.002
0.002
0.008
0.018
0.046

W(L)

0.000
0.000
0.000
0.001
0.007
0.015

0.000
0.001
0.001
0.005
0.017
0.043

0.001
0.001
0.003
0.007
0.022
0.070

0.000
0.001
0.001
0.002
0.006
0.026

0.001
0.001
0.002
0.004
0.021
0.055

0.001
0.002
0.004
0.011
0.027
0.080

8(03)

0.048
0.052
0.046
0.041
0.046
0.051

0.019
0.020
0.022
0.023
0.040
0.051

0.000
0.000
0.000
0.005
0.031
0.045

0.038
0.049
0.057
0.061
0.059
0.056

0.008
0.017
0.022
0.027
0.045
0.050

0.000
0.000
0.000
0.006
0.028
0.042

8(0.5)

0.035
0.038
0.039
0.C31
0.029
0.031

0.041
0.046
0.048
0.049
0.048
0.057

0.006
0.001
0.005
0.028
0.050
0.068

0.031
0.040
0.055
0.057
0.049
0.043

0.021
0.029
0.947
0.057
0.057
0.058

0.005
0.001
0.005
0.026
0.057
0.069
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Table 5.9: Sizes of all the tests at the 5% level for XI5, selected j3, a, and p
values with n = 40, using near exact non-similar critical values

(0, 1, 0)' 0.025

0.045

0.2

(0, 0, -I)1 0.025

0.045

1
1

0.2

-

(0, 0,0)' 0.025

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.006
0.008
0.009
0.008
0.014
0.029

0.003
0.006
0.007
0.009
0.024
0.062

0.001
0.003
0.003
0.007
0.026
0.080

0.004
0.004
0.003
0.008
0.021
0.034

0.002
0.002
0.002
0.003
0.024
0.056

0.000
0.002
0.002
0.005
0.028
0.081

0.000
0.002
0.002
0.006
0.030
0.082

LM(E)

0.028
0.029
0.025
0.026
0.037
0.040

0.028
0.028
0.026
0.032
0.041
0.047

0.049
0.038
0.032
0.036
0.040
0.047

0.025
0.025
0.026
0.025
0.036
0.044

0.025
0.029
0.031
0.030
0.039
0.043

0.050
0.044
0.032
0.033
0.041
0.048

0.045
0.043
0.032
0.034
0.040
0.048

LM(L)

0.022
0.025
0.025
0.029
0.041
0.050

0.023
0.029
0.033
0.038
0.051
0.057

0.025
0.028
0.037
0.045
0.047
0.058

0.021
0.023
0.029
0.027
0.044
0.050

0.022
0.028
0.033
0.037
0.047
0.055

0.025
0.033
0.036
0.040
0.050
0.059

0.022
0.031
0.037
0.042
0.050
0.059

W(E)

0.000
0.000
0.000
0.001
0.005
0.021

0.000
0.001
0.000
0.002
0.011
0.035

0.000
0.002
0.004
0.006
0.017
0.052

0.000
0.000
0.001
0.002
0.005
0.020

0.001
0.000
0.001
0.002
0.011
0.033

0.000
0.001
0.003
0.007
0.018
0.046

0.000
0.002
0.004
0.009
0.018
0.048

W(L)

0.000
0.001
0.001
0.004
0.013
0.035

0.000
0.001
0.002
0.004
0.016
0.051

0.000
0.002
0.004
0.009
0.023
0.078

0.000
0.000
0.001
0.002
0.012
0.036

0.001
0.001
0.002
0.003
0.018
0.053

0.000
0.002
0.004
0.008
0.024
0.069

0,000
0.002
0.006
0.015
0.028
0.082

g(0.3)

0.033
0.035
0.038
0.041
0.049
0.051

0.003
0.007
0.009
0.013
0.041
0.049

0.000
0.000
0.000
0.006
0.029
0.049

0.024
0.028
0.034
0.048
0.052
0.051

0.004
0.006
0.011
0.025
0.039
0.051

0.000
0.000
0.002
0.007
0.030
0.047

0.000
0.000
0.000
0.005
0.029
0.048

g(0.5)

0.043
0.050
0.059
0.053
0.051
0.047

0.023
0.030
0.036
0.049
0.056
0.068

0.006
0.001
0.004
0.025
0.052
0.072

0.032
0.038
0.048
0.063
0.052
0.045

0.013
0.020
0.031
0.052
0.058
0.060

0.005
0.001
0.004
0.026
0.054
0.066

0.005
0.001
0.003
0.022
0.052
0.069

152



Table 5.10: Sizes of all the tests at the 5% level for X16, selected J3, cr, and p
vaiues with n = 20, using near exact non-similar critical values

P a
(0,1,1)' 0.4

0.8

10

(0,-1,-1)' 0.4

0.8

10

I
1

(0, -1,1)' 0.4

P
0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR
0.007
0.009
0.009
0009
0.005
0.005

0.005
0.008
0.009
0.009
0.008
0.008

0.003
0.005
0.010
0.015
0.035
0.064

0.003
0.003
0.004
0.005
0.005
0.006

0.004
0.004
0.005
0.007
0.008
0.006

0.003
0.005
0.007
0.016
0.038
0.069

0.004
0.005
0.004
0.005
0.005
0.005

LM(E)
0.021
0.023
0.028
0.025
0.018
0.018

0.022
0.024
0.027
0.023
0.019
0.016

0.047
0.052
0.045
0.029
0.014
0.017

0.025
0.030
0.027
0.023
0.021
0.022

0.024
0.032
0.027
0.025
0.023
0.021

0.047
0.055
0.052
0.034
0.017
0.015

0.017
0.023
0.022
0.026
0.024
0.022

LM(L)
0.021
0.023
0.026
0.024
0.023
0.021

0.021
0.028
0.031
0.025
0.025
0.026

0.026
0.035
0.040
0.044
0.046
0.052

0.023
0.029
0.027
0.026
0.024
0.023

0.022
0.033
0.032
0.031
0.029
0.030

0.019
0.040
0.049
0.052
0.051
0.061

0.016
0.023
0.023
0.027
0.025
0.022

W(E)
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.001
0.002
0.003
0.008
0.023
0.055

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.001
0.002
0.010
0.032
0.060

0.000
0.000
0.000
0.000
0.000
0.000

W(L)
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.001
0.002
0.003
0.006
0.020
0.052

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.001
0.008
0.029
0.056

0.000
0.000
0.000
0.000
0.000
0.000

g(0.3)
0.012
0.009
0.009
0.008
0.015
0.021

0.045
0.044
0.041
0.042
0.040
0.042

0.009
0.006
0.004
0.002
0.003
0.002

0.009
0.006
0.005
0.006
0.013
0.018

0.053
0.047
0.042
0.038
0.035
0.039

0.009
0.004
0.004
0.003
0.003
0.002

0.008
0.008
0.010
0.017
0.029
0.032

g(0-5)
0.001
0.000
0.000
0.000
0.000
0.000

0.017
0.013
0.015
0.014
0.018
0.019

0.027
0.024
0.018
0.016
0.016
0.013

0.001
0.000
0.000
0.000
0.000
0.000

0.015
0.011
0.011
0.011
0.017
0.019

0.023
0.020
0.019
0.015
0.014
0.011

0.001
0.000
0.000
0.000
0.000
0.001
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Table 5.11: Sizes of all the tests at the 5% level for XI6, selected /?, <r, and p
values with n = 20, using near exact non-similar critical values

p
(0.-1. ly

(o.i.-iy

(o, l, oy

0.8

10

0.4

0.8

10

0.4

0.8

P
0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR
0.002
0.006
0.008
0.007
0.008
0.008

0.004
0.004
0.007
0.016
0.036
0.063

0.002
0.003
0.003
0.003
0.005
0.003

0.002
0.002
0.004
0.006
0.006
0.006

0.002
0.005
0.010
0.021
0.038
0.064

0.006
0.006
0.005
0.008
0.007
0.005

0.005
0.007
0.008
0.008
0.012
0.010

LM(E)
0.019
0.022
0.022
0.024
0.021
0.019

0.044
0.058
0.045
0.027
0.014
0.014

0.015
0.015
0.017
0.016
0.017
0.018

0.016
0.017
0.018
0.016
0.016
0.014

0.044
0.056
0.047
0.029
0.013
0.016

0.022
0.023
0.022
0.021
0.023
0.021

0.025
0.024
0.024
0.022
0.019
0.021

LM(L)
0.016
0.024
0.023
0.026
0.026
0.023

0.023
0.039
0.042
0.041
0.046
0.058

0.014
0.014
0.017
0.020
0.018
0.019

0.013
0.013
0.018
0.022
0.023
0.021

0.020
0.039
0.050
0.050
0.050
0.056

0.020
0.022
0.025
0.023
0.024
0.027

0.023
0.027
0.030
0.030
0.029
0.030

W(E)
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.002
0.010
0.029
0.051

0.000
0.000
0.000
O.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.002
0.005
0.012
0.033
0.057

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.001
0.006

W(L)
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.002
0.008
0.026
0.048

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.001
0.004
0.011
0.028
0.053

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.001
0.005

g(0.3)
0.046
0.044
0.045
0.052
0.046
0.049

0.009
0.007
0.004
0.002
0.003
0.004

0.006
0.005
0.006
0.013
0.020
0.029

0.046
0.039
0.040
0.043
0.045
0.052

0.005
0.004
0.004
0.004
0.002
0.001

0.024
0.024
0.024
0.031
0.053
0.082

0.052
0.050
0.047
0.047
0.053
0.067

g(0.5)
0.018
0.016
0.017
0.023
0.025
0.023

0.023
0.022
0.018
0.014
0.012
0.012

0.001
0.000
0.001
0.001
0.001
0.000

0.013
0.009
0.010
0.015
0.017
0.023

0.022
0.014
0.C15
0.014
0.014
0.011

0.002
0.001
0.001
0.002
0.007
0.008

0.030
0.028
0.029
0.034
0.044
0.057
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Table 5.12: Sizes of all the tests at the 5% level for XI6, selected ft, cr, and p
values with n = 20, using near exact non-similar critical values

p

(o.i. oy

( 0 , - 1 , O)1

(o, o, ly

a

10

0.4

0.8

10

0.4

0.8

10

p

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.003
0.004
0.010
0.017
0.035
0.064

0.004
0.006
0.006
0.005
0.006
0.007

0.003
0.005
0.008
0.009
0.008
0.009

0.004
0.003
0.006
0.018
0.035
0.068

0.003
0.003
0.004
0.003
0.002
0.002

0.005
0.007
0.007
0.006
0.006
0.008

0.004
0.005
0.009
0.014
0.033
0.061

LM(E)

0.047
0.051
0.C46
0.027
0.014
0.017

0.019
0.023
0.026
0.026
0.023
0.022

0.017
0.026
0.026
0.026
0.022
0.024

0.051
0.055
0.049
0.034
0.015
0.016

0.024
0.024
0.021
0.019
0.017
0.015

0.028
0.028
0.022
0.019
0.013
0.012

0.044
0.056
0.040
0.030
0.016
0.017

LM(L)

0.023
0.037
0.045
0.048
0.045
0.055

0,015
0.022
0.026
0.027
0.026
0.026

0.014
0.026
0.030
0.038
0.031
0.036

0.022
0.039
0.046
0.049
0.046
0.059

0.023
0.023
0.025
0.021
0.016
0.018

0.023
0.024
0.026
0.025
0.021
0.021

0.023
0.042
0.042
0.045
0.045
0.056

W(E)

0.001
0.002
0.003
0.010
0.028
0.058

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.001
0.002

0.000
0.000
0.002
0.010
0.031
0.054

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.001
0.002
0.007
0.016

0.000
0.001
0.004
0.010
0.031
0.055

W(L)

0.000
0.001
0.003
0.009
0.022
0.054

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.001
0.001

0.000
0.000
0.002
0.009
0.029
0.055

o.ooo
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.000
0.002
0.006
0.016

0.000
0.000
0.003
0.008
0.025
0.054

g(03)

0.006
0.004
0.003
0.003
0.003
0.002

0.017
0.016
0.026
0.038
0.054
0.082

0.050
0.050
0.054
0.059
0.056
0.063

0.009
0.005
0.003
0.003
0.003
0.003

0.042
0.032
0.023
0.015
0.010
0.007

0.064
0.057
0.037
0.021
0.014
0.008

0.008
0.004
0.003
0.003
0.002
0.002

g(0.5)

0.025
0.021
0.018
0.015
0.013
0.013

0.001
0.000
0.001
0.001
0.006
0.010

0.023
0.020
0.025
0.036
0.045
0.056

0.022
0.021
0.017
0.014
0.013
0.013

0.009
0.008
0.005
0.004
0.000
0.000

0.056
0.051
0.040
0.030
0.016
0.012

0.024
0.020
0.018
0.015
0.011
0.011
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Table 5.13: Sizes of all the tests at the 5% level for X16, selected fi, a, and p
values with n = 20, using near exact non-similar critical values

(0,0, -I)1

(0, 0, 0)1

a

0.4

0.8

10

0.4

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.003
0.003
0.004
0.004
0.005
0.006

0.003
0.005
0.005
0.007
0.007
0.005'

0.004
0.005
0.009
0.019
0.037
0.066

0.003
0.005
0.009
0.019
0.036
0.065

LM(E)

0.022
0.021
0.023
0.022
0.021
0.021

0.026
0.025
0.025
0.021
0.017
0.018

0.044
0.052
0.049
0.030
0.015
0.016

0.039
0.050
0.044
0.034
0.014
0.015

LM(L)

0.018
0.019
0.026
0.027
0.026
0.025

0.020
0.025
0.029
0.031
0.031
0.030

0.021
0.042
0.053
0.053
0.051
0.057

0.023
0.044
0.046
0.051
0.051
0.059

W(E)

0.000

0.000

0.000

0.000

0.000

0.001

0.000

0.000

0.001

0.001

0.006

0.018

0.000

O.O01

0.004

0.011

0.033

0.055

0.000

0.001

0.004

0.011

0.031

0.055

W(L)

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.000
0.001
0.006
0.018

0.000
0.000
0.003
0.008
0.028
0.055

0.000
0.000
0.003
0.009
0.026
0.053

g(0.3)

0.039

0.030

0.023

0.012

0.007

0.005

0.060

0.049

0.036

0.019

0.008

0.008

0.008

0.003

0.003

0.003

0.001

O.OOi

0.006

0.004

0.003

0.003

0.002

0.001

g(0.5)

0.010
0.005
0.001
0.001
0.002
0.001

0.054
0.047
0.038
0.026
0.013
0.011

0.022
0.018
0.015
0.012
0.010
0.011

0.021
0.017
0.013
0.012
0.009
0.009
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Table 5.14 : Sizes of all the tests at the 5% level for XI6, selected J3, a, and p
values with n — 40, using near exact non-similar critical values

p

(0,1, 1)'

(0,-1,1)'

a

0.4

0.7

1.81

0.4

0.7

1.81

P

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9

0.99

LR

0.001
0.001
0.001
0.001
0.000
0.000

0.001
0.002
0.001
0.001
0.000
0.000

0.001
0.001
0.002
0.004
0.003
0.002

0.000
0.001
0.001
0.001
0.001
0.001

0.000
0.001
0.001
0.001
0.001
0.001

0.000
0.000
0.001
0.003
0.006
0.007

LM(E)

0.011
0.013
0.013
0.013
0.009
0.007

0.012
0.014
0.014
0.009
0.009
0.009

0.013
0.015
0.013
0.009
0.008
0.009

0.006
0.009
0.008
0.009
0.008
0.008

0.006
0.008
0.010
0.009
0.008
0.009

0.010
0.013
0.007
0.005
0.005
0.007

LM(L)

0.023
0.027
0.024
0.025
0.029
0.032

0.024
0.028
0.027
0.027
0.030
0.033

0.023
0.035
0.036
0.041
0.038
0.040

0.016
0.017
0.022
0.025
0.022
0.023

0.018
0.018
0.025
0.029
0.026
0.028

0.021
0.030
0.035
0.038
0.036
0.044

W(E)

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.002

0.000
0.000
0.000
0.000
0.017
0.086

0.000
0.000
0.000
0.000
0.000
0.002

0.000
0.000
0.000
0.000
0.004
0.034

0.001
0.001
0.002
0.007
0.067
0.155

W(L)

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.000
0.000
0.003
0.030

0.000
0.000
0.000
0.000
0.000
0.001

0.000
0.000
0.000
0.000
0.002
0.021

0.000
0.000
0.000
0.000
0.013
0.060

g(0.3)

0.001
0.000
0.001
0.002
0.004
0.018

0.014
0.015
0.018
0.019
0.025
0.033

0.056
0.055
0.048
0.042
0.032
0.034

0.000
0.090
0.001
0.006
0.029
0.060

0.016
0.014
0.019
0.033
0.064
0.078

0.053
0.055
0.046
0.050
0.045
0.047

g(0-5)

0.000
0.000
0.000
0.000
0.000
0.015

0.001
0.000
0.000
0.001
0.002
0.018

0.030
0.032
0.031
0.031
0.030
0.036

0.000
0.000
0.000
0.000
0.000
0.016

0.001
0.000
0.001
0.003
0.011
0.038

0.036
0.037
0.037
0.034
0.044
0.058
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Table 5.15: Sizes of all the tests at the 5% level for XI6, selected /?, cr, and p
values with n = 40, using near exact non-similar critical values

(0,1,0)'

(0, 0, -I)1

(0,0,0)'

a

0.4

0.7

1.81

0.4

0.7

1.81

0.4

P

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9

0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

0.1
0.3
0.5
0.7
0.9
0.99

LR

0.000
0.000
0.002
0.001
0.001
0.001

0.001
0.000
0.002
0.002
0.002
0.002

0.000
0.000
0.002
0.005
0.010
0.013

0.002
0.001
0.000

. 0.002
0.002
0.001

0.001
0.001
0.001
0.002
0.002
0.002

0.000
0.000
0.002
0.004
0.009
0.016

0.001
0.001
0.004
0.006
0.031
0.069

LM(E)

0.009
0.009
0.010
0.010
0.008
0.007

0.008
0.010
0.010
0.011
0.009
0.007

0.013
0.014
0.012
0.011
0.008
0.006

0.009
0.008
0.007
0.007
0.006
0.007

0.009
0.010
0.008
0.007
0.006
0.006

0.022
0.022
0.014
0.011
0.006
0.006

0.044
0.051
0.029
0.014
0.007
0.005

LM(L)

0.020
0.024
0.026
0.027
0.026
0.026

0.020
0.026
0.030
0.031
0.029
0.033

0.025
0.034
0.040
0.045
0.041
0.045

0.020
0.023
0.026
0.024
0.022
0.023

0.020
0.025
0.030
0.031
0.027
0.026

0.025
0.038
0.047
0.046
0.040
0.038

0.034
0.045
0.052
0.048
0.05Q
0.046

W(E)

0.000
0.000
0.000
0.000
0.000
0.002

0.000
0.000
0.000
0.000
0.003
0.023

0.000
0.000
0.003
0.009
0.044
0.178

0.000
0.000
0.000
0.000

o.ooo
0.005

0.000
0.000
0.000
0.000
0.005
0.030

0.001
0.001
0.001
0.005
0.022
0.093

0.002
0.005
0.006
0.007
0.047
0.134

W(L)

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0,000
0.000
0.000
0.012

0.000
0.000
0.001
0.000
0.011
0.087

0.000
0.000
0.000

o.ooo
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.004

0.000
0.000
0.000
0.001
0.002
0.032

0.000
0.000
0.000
0.000
0.005
0.045

g(0.3)

0.003
0.002
0.004
0.006
0.015
0.028

0.030
0.032
0.029
0.030
0.037
0.043

0.047
0.048
0.042
0.031
0.028
0.034

0.015
0.014
0.018
0.029
0.061
0.077

0.048
0.048
0.049
0.061
0.068
0.073

0.035
0.036
0.034
0.037
0.026
0.033

0.006
0.006
0.006
0.006
0.002
0.017

8(0.5)

0.000
0.000
0.000
0.000
0.000
0.015

0.003
0.003
0.002
0.005
0.012
0.025

0.043
0.044
0.039
0.036
0.038
0.043

0.001
0.001
0.000
0.001
0.006
0.026

0.014
0.013
0.010
0.017
0.031
0.055

0.044
0.041
0.042
0.042
0.041
0.048

0.017
0.017
0.019
0.016
0.012
0.022
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Table 5.16 : Powers of all the tests at the 5% level for X15, selected j3, a, and
pi values with n = 20, using near exact non-similar critical values

p

(0,1,1)'

(0,-1,-1)'

(0,-1,1)'

(0.1,-1)'

a

0.015

0.025

0.015

0.025

0.015

0.025

0.015

0.025

0.1.
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.024
0.239
0.895
1.000
1.000

0.016
0.076
0.438
0.961
1.000

0.022
0.261
0.905
1.000
1.000

0.010
0.079
0.462
0.959
1.000

0.016
0.119
0.491
0.907
0.999

0.009
0.035
0.153
0.468
0.851

0.017
0.122
0.504
0.900
0.997

0.010
0.031
0.160
0.464
0.837

LM(E)

0.078
0.383
0.710
0.981
1.000

0.059
0.177
0.421
0.728
0.999

0.088
0.418
0.687
0.978
1.000

0.057
0.200
0.449
0.710
1.000

0.062
0.224
0.403
0.713
0.945

0.046
0.110
0.173
0.265
0.473

0.057
0.219
0.400
0.719
0.938

0.048
0.111
0.168
0.254
0.482

LM(L)

0.037
0.255
0.711
0.986
1.000

0.025
0.109
0.316
0.677
0.999

0.032
0.294
0.722
0.991
1.000

0.023
0.112
0.354
0.682
1.000

0.025
0.130
0.345
0.728
0.959

0.020
0.064
0.134
0.276
0.537

0.023
0.132
0.332
0.727
0.956

0.019
0.061
0.134
0.271
0.533

W(E)

0.000
0.001
0.017
0.478
0.986

0.000
0.000
0.003
0.084
0.815

0.000
0.000
0.015
0.491
0,991

0.000
0.000
0.001
0.091
0.816

0.000
0.003
0.048
0.480
0.952

0.001
0.002
0.012
0.149
0.614

0.000
0.001
0.060
0.463
0.943

0.000
0.000
0.013
0.155
0.616

W(L)

0.000
0.001
0.025
0.553
0.983

0.001
0.001
0.005
0.123
0.848

0.000
0.000
0.021
0.571
0.988

0.000
0.000
0.003
0.125
0.854

0.000
0.004
0.072
0.589
0.975

0.000
0.002
0.016
0.211
0.737

0.000
0.001
0.078
0.563
0.970

0.000
0.000
0.018
0.210
0.727

g(03)

0.J58
0.637
0.991
0.996
0.790

0.082
0.337
0.805
C.928
0.687

0.169
0.654
0.989
0.992
0.811

0.087
0.367
0.802
0.933
0.717

0.102
0.509
0.882
0.319
0.001

0.048
0.221
0.505
0.385
0.024

0.104
0.512
0.889
0.329
0.001

0.043
0.221
0.512
0.372
0.026

g(0.5)

0.090
0.432
0.955
1.000
1.000

0.083
0.285
0.722
0.981
0.963

0.099
0.458
0.956
1.000
0.999

0.082
0.310
0.734
0.974
0.963

0.036
0.276
0.803
0.800
0.015

0.029
0.145
0.462
0.571
0.076

0.028
0.256
0.802
0.799
0.016

0.022
0.152
0.465
0.580
0.082
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Table 5.17 : Powers of all the tests at the 5% level for XI5, selected f3, a, and
ju values with n = 20, using near exact non-similar critical values

p

(0.1,

(0.-1,

(0.0,

(0,0,

0)1

oy

i)1

-i)1

0.015

»

0.025

0.015

0.025

0.015

0.025

0.015

0.025

0.1
0.3
0.5
0.7
0.9

O.I
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0,9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.013
0.050
0.228
0.826
1.000

0.008
0.021
0.064
0.382
0.981

0.010
0.043
0.257
0.841
1.000

0.004
0.013
0.071
0.406
0.977

0.016
0.131
0.593
0.979
1.000

0.007
0.033
0.195
0.666
0.992

0.011
0.130
0.610
0.975
1.000

0.005
0.036
0.206
0.679
0.987

LM(E)

0.052
0.125
0.311
0.589
0.932

0.049
0.081
0.143
0.286
0.685

0.053
0.135
0.329
0.599
0.938

0.052
0.085
0.149
0.309
0.674

0.058
0.226
0.409
0.819
1.000

0.047
0.124
0.211
0.306
0.844

0.061
0.251
0.439
0.815
1.000

0.051
0.123
0.239
0.325
0.834

LM(L)

0.022
0.067
0.200
0.512
0.972

0.020
0.042
0.081
0.197
0.625

0.020
0.075
0.222
0.532
0.969

0.018
0.048
0.094
0.221
0.620

0.032
0.148
0.352
0.812
1.000

0.021
0.074
0.164
0.306
0.863

0.029
0.161
0.366
0.811
1.000

0.023
0.071
0.169
0.332
0.851

W(E)

0.000
0.000
0.006
0.031
0.249

0.000
0.000
0.002
0.011
0.030

0.000
0.001
0.002
0.020
0.257

0.000
0.000
0,002
0.005
0.036

0.001
0.001
0.022
0.382
0.960

0.001
0.001
0.005
0.101
0.629

0.000
0.000
0.028
0.387
0.964

0.000
0.000
0.003
0.110
0.627

W(L)

O.000
0.001
0.008
0.046
0.357

0.000
0.000
0.006
0.019
0.051

0.001
0.001
0.004
0.046
0.368

0.001
0.000
0.004
0.011
0.058

0.001
0.002
0.033
0.470
0.970

0.001
0.002
0.009
0.147
0.712

0.000
0.000
0.041
0.473
0.973

0.000
0.000
0.007
0.150
0.720

g(0.3)

0.058
0.199
0.563
0.887
0.962

0.013
0.050
0.175
0.497
0.833

0.058
0.231
0.583
0.873
0.965

0.009
0.049
0.196
0.523
0.832

0.113
0.491
0.909
0.672
0.016

0.047
0.216
0.534
0.602
0.103

0.115
0.502
0.909
0.692
0.018

0.042
0.231
0.575
0.623
0.126

g(0.5)

0.073
0.200
0.547
0.909
0.995

0.026
0.083
0.233
0.569
0.904

0.077
0.238
0.574
0.911
0.996

0.025
0.081
0.273
0.591
0.905

0.056
0.300
0.831
0.960
0.293

0.037
0.171
0.497
0.758
0.348

0.055
0.324
0.837
0.956
0.316

0.033
0.176
0.523
0.770
0.362
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Table 5.18 : Powers of all the tests at the 5% level for XI5, selected /?, a, and
ji values with n = 40, using near exact non-similar critical values

P <r

(0, 1,1)' 0.025

0.045

(0,-1, 1)' 0.025

0.045

(0, 1, 0)1 0.025

0.045

(0.0, -1)' 0.025

0.045

M

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.013
0.233
0.920
1.000
1.000

0.005
0.042
0.397
0.939
1.000

0.012
0.100
0.618
0.970
1.000

0.003
0.022
0.149
0.607
0.995

0.012
0.086
0.611
0.979
1.000

0.004
0.016
0.138
0.702
1.000

0.006
0.036
0.354
0.876
1.000

0.004
0.006
0.045
0.348
0.959

LM(E)

0.063
0.421
0.487
0.977
1.000

0.038
0.155
0.373
0.253
1.000

0.053
0.249
0.412
0.451
1.000

O.043
O.095
0.199
0.131
0.742

0.051
0.221
0.432
0.485
1.000

0.039
0.088
0.208
0.107
0.987

0.045
0.169
0.323
0.275
0.992

0.036
0.075
0.134
0.128
0.447

LM(L)

0.052
0.380
0.476
0.977
1.000

0.033
0.137
0.355
0.273
1.000

0.048
0.227
0.394
0.472
1.000

0.038
0.092
0.190
0.138
0.777

0.043
0.202
0.413
0.508
1.000

0.032
0.084
0.199
0.113
0.991

0.036
0.156
0.306
0.290
0.994

0.029
0.068
0.130
0.133
0.491

W(E)

0.000
0.000
0.011
0.876
1.000

0.000
0.001
0.001
0.149
1.000

0.000
0.000
0.002
0.382
1.000

0.001
0.001
0.001
0.028
0.966

0.000
0.001
0.004
0.389
1.000

0.000
0.000
0.002
0.033
0.999

0.000
0.000
0.001
0.108
0.997

0.000
0.000
0.001
0.015
0.712

W(L)

0.000
0.001
0.025
0.951
1.000

0.000
0.001
0.006
0.284
1.000

0.000
0.000
0.009
0.590
1.000

0.001
0.001
0.002
0.076
0.990

0.000
0.001
0.006
0.583
1.000

0.000
0.001
0.004
0.085
0.999

0.000
0.000
0.003
0.205
0.999

0.000
0.001
0.002
0.043
0.844

g(03)

0.132
0.615
0.989
0.602
0.000

0.044
0.255
0.779
0.722
0.000

0.077
0.446
0.942
0.453
0.000

0.018
0.126
0.507
0.637
0.002

0.074
0.384
0.910
0.567
0.000

0.012
0.086
0.450
0.691
0.000

0.047
0.270
0.763
0.743
0.000

0.006
0.043
0.214
0.519
0.073

g(0.5)

0.088
0.441
0.973
0.988
0.000

0.076
0.281
0.761
0.899
0.002

0.053
0.326
0.870
0.845
0.000

0.035
0.159
0.534
0.725
0.027

0.078
0.331
0.860
0.892
0.000

0.040
0.157
0.533
0.762
0.006

0.058
0.277
0.725
0.869
0.038

0.021
0.087
0.364
0.630
0.151
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Table 5.19 : Powers of all the tests at the 5% level for X16, selected /?, a, and
ju values with n = 20, using near exact non-similar critical values

(o, l, iy 0.4

0.8

(o.-i.-iy 0.4

0.8

(0,-1, iy o.4

0.8

(o,i,-iy o.4

0.8

M

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.060
0.750
0.989
0.999
1.000

0.018
0.171
0.569
0.876
0.994

0.057
0.758
0.989
0.999
1.000

0.017
0.175
0.582
0.873
0.993

0.044
0.638
0.964
0.998
1.000

0.012
0.128
0.407
0.702
0.893

0.049
0.646
0.961
0.997
1.000

0.015
0.126
0.403
0.703
0.896

LM(E)

0.193
0.533
0.587
0.972
1.000

0.070
0.341
0.502
0.410
0.629

0.196
0.560
0.614
0.966
1.000

0.071
0.335
0.490
0.395
0.628

0.173
0.558
0.540
0.816
0.984

0.062
0.282
0.470
0.523
0.437

0.174
0.558
P.536
0.806
0.979

0.071
0.284
0.475
0.514
0.417

LM(L)

0.198
0.885
0.967
0.988
1.000

0.072
0.372
0.577
0.508
0.878

0.198
0.877
0.963
0.987
1.000

0.070
0.368
0.579
0.493
0.876

0.174
0.811
0.970
0.994
0.994

0.058
0.293
0.531
0.591
0 572

0.179
0.811
0.975
0.991
0.994

0.067
0.293
0.523
0.572
0.562

W(E)

0.000
0.000
0.055
0.863
1.000

0.000
0.000
0.001
0.159
0.992

0.000
0.001
0.061
0.881
1.000

0.000
0.000
0.003
0.155
0.993

0.000
0.000
0.010
0.144
0.657

0.000
0.001
0.003
0.023
0132

0.000
0.001
0.006
0.148
0.654

0.000
0.000
0.004
0.027
0.140

W(L)

0.000
0.000
0.042
0.840
1.000

0.000
0.000
0.001
0.137
0.991

0.000
0.000
0.049
0.857
1.000

0.000
0.000
0.003
0.139
0.993

0.000
0.000
0.008
0.135
0.697

0.000
0.001
0.002
0.020
0145

0.000
0.000
0.005
0.137
0.697

0.000
0.000
0.004
0.022
0.155

g(0.3)

0.132
0.935
1.000
0.999
0.047

0.153
0.558
0.873
0.828
0.038

0.131
0.933
1.000
1.000
0.043

0.156
0.571
0.87V
0.842
0.039

0.144
0.893
1.000
0.992
0.332

0.148
0.493
0.720
0.600
0.162

0.140
0.894
0.999
0.993
0.315

0.147
0.493
0.731
0.608
0.157

g(0*5)

0.007
0.506
0.998
1.000
0.003

0.057
0,389
0.855
0.969
0.048

0.005
0.509
0.997
1.000
0.000

0.054
0.377
0.855
0.971
0.058

0.009
0.559
0.987
1.000
0.957

0.073
0.390
0.760
0.878
0.616

0.011
0.543
0.991
1.000
0.954

0.075
0.386
0.748
0.S80
0.614
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Table 5.20 : Powers of all the tests at the 5% level for XI6, selected /?, cr, and
jii values with n = 20, using near exact non-similar critical values

(0,1,

(0,-1,

(0,0,

(0,0,

0)1

cy

i)1

•iy

a

0.4

0.8

0.4

0.8

0.4

0.8

0.4

0.8

M

C.I
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.035
0.411
0.849
0.966
1.000

0.012
0.069
0.247
0.527
0.843

0.030
0.402
0.865
0.964
0.999

0.008
0.067
0.257
0.525
0.843

0.024
0.282
0.770
0.974
0.999

0.010
0.050
0.199
0.506
0.861

0.024
0.291
0.779
0.975
0.999

0.011
0.054
0.201
0.498
0.859

LM(E)

0.122
0.497
0.631
0.697
0.815

0.054
0.199
0.262
0.174
0.123

0.122
0.480
0.633
0.700
0.820

0.062
0.173
0.252
0.174
0.129

0.097
0.481
0.667
0.807
0.876

0.058
0.186
0.329
0.324
0.166

0.103
0.482
0.664
0.786
0.866

0.062
0.187
0.305
0.317
0.168

LM(L)

0.121
0.593
0.746
0.721
0.943

0.052
0.189
0.290
0.234
0.329

0.119
0.575
0.741
0.726
0.941

0.053
0.185
0.282
0.250
0.341

0.095
0.562
0.878
0.899
0.968

0.050
0.189
0.366
0.400
0.380

0.107
0.559
0.861
0.878
0.964

0.047
0.193
0.349
0.389
0.365

W(E)

0.000
0.000
0.005
0.306
0.995

0.000
0.000
0.001
0.026
0.584

0.000
0.000
0.009
0.294
0.997

0.000
0.001
0.002
0.028
0.592

0.000
0.000
0.003
0.160
0.993

0.000
0.000
0.003
0.028
0.625

0.000
0.000
0.006
0.153
0.996

0.000
0.001
0.005
0.032
0.638

W(L)

0.000
0.000
0.005
0.274
Q.994

0.000
0.000
0.001
0.021
0.569

0.000
0.000
0.007
0.267
0.996

0.000
0.001
0.002
0.024
0.579

0.000
0.000
0.002
0.147
0.992

0.000
0.000
0.001
0.025
0.616

0.000
0.000
0.004
0.145
0.996

0.000
0.001
0.004
0.027
0.617

g(03)

0.139
0.796
0.992
0.980
0.032

0.119
0.354
0.563
0.500
0.058

0.151
0.803
0.993
0.982
0.039

0.128
0.356
0.565
0.506
0.069

0.177
0.698
0.942
0.887
0.016

0.126
0.265
0.364
0.298
0.045

0.177
0.702
0.949
0.896
0.018

0.122
0.250
0.355
0.291
0.045

g(0.5)

0.019
0.429
0.961
0.993
0.062

0.066
0.289
0.628
0.811
0.275

0.016
0.427

' 0.961
0.993
0.075

0.071
0.293
0.632
0.814
0.280

0.061
0.494
0.920
0.995
0.217

0.115
0.299
0.544
0.686
0.307

0.063
0.484
0.926
0.996
0.203

0.113
0.303
0.538
0.686
0.297
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Table 5.21 : Powers of all the tests at the 5% level for XI6, selected /?, cr, and
fi values with n = 40, using near exact non-similar critical values

p

(0,1.

(0,-1,

(0,1,

(0,0.

I)1

.1)'

0)1

•1)'

a

0.4

0.7

0.4

0.7

0.4

0.7

0.4

0.7

M

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

LR

0.107
0.992
1.000
1.000
1.000

0.019
0.596
0.979
0.999
1.000

0.057
0.935
1.000
1.000
1.000

0.011
0.332
0.858
0.988
1.000

0.033
0.826
0.997
1.000
1.000

0.007
0.210
0.729
0.956
0.997

0.018
0.594
0.981
0.999
1.000

0.005
0.114
0.555
0.904
0.993

LM(E)

0.367
0.705
0.806
1.000
1.000

0.114
0.766
0.930
0.973
0.998

0.241
0.872
0.898
0.999
1.000

0.078
0.551
0.752
0.739
0.819

0.176
0.884
0.936
0.998
1.000

0.059
0.452
0.706
0.666
0.689

0.105
0.734
0.909
0.970
1.000

0.048
0.289
0.416
0.384
0.592

LM(L)

0.519
0.999
1.000
1.000
1.000

0.192
0.865
0.981
0.993
1.000

0.365
0.984
1.000
1.000
1.000

0.148
0.688
0.852
0.870
0.949

0.275
0.968
0.998
0.999
1.000

0.111
0.606
0.815
0.833
0.895

0.185
0.847
0.960
0.993
1.000

0.084
0.420
0.591
0.610
0.839

W(E)

0.000
0.000
0.019
0.949
1.000

0.000
0.000
0.000
0.206
1.000

0.000
0.000
0.000
0.227
0.994

0.000
0.000
0.000
0.005
0.517

0.000
0.000
0.000
0.167
1.000

0.000
0.000
0.000
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0.899

0.000
0.000
0.000
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1.000

0.000
0.000
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0.011
0.972

W(L)

O.000

o.ooo
O.003

0.631

1.000

O.OOO

O.OOO

o.ooo
0.027
1.000

0.000
0.000
0.000
0.023
0.903

0.000
0.000
0.000
0.000
0.170

o.coo
0.000

0.000

0.018
0.999

0.000

0.000
0.000

0.001
0.700

0.000
0.000

0.000

0.039

1.000

0.000

0.000
O.OOO

0.000

0.851

g(0-3)

0.067
0.999
1.000
1.000
0.423

0.146
0.926
1.000
1.000
0.176

0.112
0.990
1.000
1.000
0.920

0.181
0.849
0.997
0.999
0.680

0.114
0.972
1.000
1.000
0.024

0.161
0.771
0.982
0.982
0.082

0.141
0.930
1.000
1.000
0.124

0.154
0.664
0.953
0.968
0.084

g(0.5)

0.000
0.635
1.000
1.000
0.990

0.008
0.525
0.995
1.000
0.733

0.001
0.627
1.000
1.000
1.000

0.023
0.489
0.977
1.000
0.965

0.003
0.596
0.999
1.000
0.640

0.032
0.470
0.943
0.996
0.501

0.010
0.501
0.994
1.000
0.971

0.046
0.394
0.894
0.993
0.683
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Figure 5.1: Comparison of powers for X15, j3 = (0,1,1)', a = 0.025 and
n = 20, using near exact non-similar critical vah
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APPENDIX 5.2

Terms Involved in Marginal Likelihood Based One-Sided LR, LM and W

Tests

Following Grose (1998), we define the following terms, in which Q and Z stand for

Z,(/z, p) and X(fi), respectively. Similarly C, I \ D and X stand for C({i,p), T(fi),

D(ju,p), and E(p), respectively.

2(172) CA5.1)

and

n ) -

(A5.2)

lil-2)

{tr((Pz)uQ)}2+2tr((Pz)uQ)

2{tr(PzQ)}2

tr(RQ)
(A5.3)
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7 = q —
e e e e e e

2
7 (A5.4)

where / ^ and / ^ are the Laplace approximated information and estimated information,

respectively, Bz = (Z/Z)~i Z ' , Bzn = (Z'Q^Z)"1 Z'Q'1 and

(A5.5)

The first derivatives of Q with respect to p and fi are given below, in which, Rx (S)

stands for the diagonal matrix with the scalar 8 in the top-left corner, zeros otherwise.

" + CLpC + CZC'p (A5.6)

in which, C = T~lD, Cp = -CC:lC,

- L,'), 5, is a nxn

diagonal matrix with diagonal elements (1,0,...,0,1), L, is the nxn matrix with ones on

the first lower off-diagonal, zeros otherwise,

(A5.7)

in which, C ' = #,< j - i
.2 '•

171



The first and second derivatives of Z with respect to // are as follows.

Z , = (A5.8)

and

(A5.9)

where ¥(//) = T"1 (i?, + L,).

By letting P7 - ZBZ, the first and second derivatives of Pz with respect to /i can be

written as

(A5.10)

(A5.ll)

where, % =-

The score function with respect to // can be written as

(A5.12)

where,

(/ - ZBZ a)y are the OLS and GLS residual vectors, respectively.
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Chapter 6: Summary and Conclusions

CHAPTER 6

SUMMARY AND CONCLUSIONS

In this thesis, we have proposed a new APO test, called the g test, for testing

composite null hypotheses and a new approach to obtain exact (and near exact) non-

similar critical values of general non-similar tests. The g test is based on the

generalised Neyman-Pearson lemma (GNPL) and it involves the finding of multiple

critical values. We have also outlined two methods for finding these critical values.

The new approach to obtain exact (and near exact) non-similar critical values involves

controlling the maximum size of a non-similar test over the nuisance parameter space,

thus it also allows one to assess whether an approximate distribution is a good

approximation to the exact distribution of the test statistic under the null hypothesis.

In Chapter 1, we discussed the motivations for constructing the g test and for a new

approach to finding exact non-similar critical values. In this chapter, we briefly

summarise the main observations and conclusions which can be drawn from this

thesis. These conclusions include a recommendation regarding the best test procedure
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for the testing problems considered. Some issues which require further research are

also discussed.

A review of hypothesis testing was presented in Chapter 2. This chapter mainly

focuses on studies involving King's (1987b) PO tests in the context of composite

hypothesis testing. Because all the applications considered in this thesis are non-

nested, some popular non-nested tests were also briefly discussed. In addition, other

studies that are relevant to this thesis, such as, studies based on non-similar critical

values and those based on SA were also discussed. This chapter reveals the

importance of developing tests which have excellent finite-sample properties, such as,

PO tests, rather than relying on large-sample based tests. PO tests cannot always be

constructed when testing a composite null. For situations where his PO test cannot be

constructed, King suggested an APO test. APO tests seem to perform well when they

are nearly optimal, otherwise there is a question mark about their reliability. For

example, in the context of composite nested testing, Rahman and King (1994)

preferred some marginal likelihood based asymptotic tests over the APO tests (which

were not nearly optimal). Similarly, in the context of composite non-nested testing,

Silvapulle (1994a) preferred some asymptotic tests over an APO test (which was not

nearly optimal). Studies like these indicate the need for a reliable APO test for testing

a composite null.

Also in Chapter 2, we observed that approximate non-similar critical values can be

difficult to obtain when the number of nuisance parameters is large. Because

researchers conducting simulation studies always used a limited number of nuisance

parameter values, the reliability of approximate non-similar critical values over the

nuisance parameter space is largely unknown. Studies on SA confirm that the SA

algorithm is much more robust than conventional algorithms in finding the global

maximum and less likely to fail on difficult functions. Also, SA has several

advantages compared to the conventional algorithms. It can be used to optimize

functions with multiple optima and functions that are not defined for some parameter

values, it assumes very little about the shape of the function to be optimized and it is

largely independent of the starting values. In addition, Goffe et al. (1994) recommend

that SA to be used as a diagnostic tool to understand how conventional algorithms

fail. The only undesirable aspect of the SA algorithm is that it takes greater run time.
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Because it is much more reliable thar +he conventional algorithms this problem has to

be stomached.

In Chapter 3, we discussed the theory behind the g test and how it can be applied to

testing composite non-nested disturbance covariance matrices in the linear regression

model. The g test was applied to the problems of testing for MA(1) errors against

AR(1) errors and AR(1) errors against IMA(1,1) errors with a negative MA

coefficient in the linear regression model. For the first problem, we considered four

versions of the g test, namely, the g(0.3), g(0.5), g(0.75) and g(-0.5) tests and for the

second problem, we considered the g(-0.5) test only. Silvapulle (1991, 1994a)

investigated the testing of these two problems using King's APO tests and some

asymptotic tests. Based on her results, she recommended APO tests for the former

problem and some asymptotic tests for the latter. We compared our g test results with

those of Silvapulle. Also, the use of the g test has been illustrated by its application to

two real world data sets.

For both testing problems considered, the g tests performed better than the APO tests.

For the first problem, the performance of the g test was largely unaffected by the

choice of the point under the alternative where the power is maximised. For this

problem, the APO tests (which were nearly optimal) also performed equally well,

therefore, the power advantage of the g tests over the APO tests was small in

magnitude. But for the second problem, the g(-0.5) test always has a significant

power advantage over its competitors. In particular, the g(-0.5) test always

outperformed Silvapulle's recommended asymptotic tests in terms of size and power

properties. On many occasions, the g(-0.5) test is observed to have exact sizes and

higher powers than its competitors. Therefore, based on our results, we strongly

recommend the g(-0.5) test for the second problem. The power results for the first

problem indicate that when King's APO tests are nearly optimal, little gain can be

achieved by applying the g test.

In Chapter 4, we explained how SA can effectively be used to obtain exact size

critical values (by assuming knowledge of the unknown parameters) and exact (and

near exact) non-similar critical values of general non-similar tests. In this chapter, we

investigated the performance of near exact non-similar critical values. For this study,
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Chapter 6: Summary and Conclusions

we used two non-similar tests, namely, the DW test and Durbin's t test in the context

of the dynamic linear regression model. In order to obtain the near exact non-similar

critical values of these tests, we used approximate small disturbance asymptotic

(ASDA) and large-sample based critical values, respectively, and SA. In this chapter,

we calculated the sizes of the tests for a variety of nuisance parameter values and

design matrices, in order to check whether the SA based near exact non-similar

critical values are indeed working well in terms of controlling the sizes over the

nuisance parameter space. We also compared near exact non-similar critical values

with approximate non-similar critical values used in previous studies.

Our study clearly showed that neither the large-sample based t test nor the ASDA

distribution based DW test is best under the null because both tests can have

approximately the same (higher than nominal) maximum sizes over the nuisance

parameter space. For the nuisance parameter values considered, the SA based near

exact non-similar critical values controlled the sizes remarkably well, indicating that

these critical values are reliable over the nuisance parameter space. Also, the use of

near exact non-similar critical values often produced sizes that are insignificantly

different from the nominal size. Based on our size results, we conjecture that

approximate non-similar critical values are not ideal for Durbin's t test because they

may make the test's sizes unnecessarily low, and hence reduce the powers. Also, for

the tests considered, it takes about the same time to calculate near exact non-similar

critical values and approximate non-similai critical values. In addition, (as mentioned

earlier) the SA based approach has an advantage, it can be used to assess any

approximate distributions under the null. Therefore, we recommend SA based near

exact non-similar critical values over approximate non-similar critical values. Our

study suggests that if SA achieves the global (instead of local) maximum size then

near exact non-similar critical values can be expected to work well in terms of

controlling the sizes. Therefore, the SA parameters need to be chosen carefully,

otherwise S A might fi id the local maximum size.

In Chapter 5, we explored the problem of testing for a static linear model with AR(1)

errors against a dynamic linear model with white noise errors. Here, we compared

marginal likelihood based g tests with marginal likelihood based one-sided LR, LM

and W tests. Both Laplace approximated information based and estimated
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information based W.(and LM) tests were considered in order to see which test is best

in finite samples. Two versions of the g test, namely the g(0.3) and g(0.5) tests were

considered. The size and power comparisons of this chapter were based on near exact

non-similar critical values obtained via SA. Here, the size and power calculations

were made for a variety of nuisance parameter values in order to determine the best

test over the nuisance parameter space.

When the exogenous coefficient vector, /?, is close to zero and the dynamic

coefficient, /z, and the autocorrelation coefficient, p, are similar in magnitude, it

may be impossible to distinguish the null and alternative models of interest. In

addition, if exogenous regressors are lag invariant, it is virtually impossible to

distinguish between the models. We regard these testing situations as the toughest

testing situations. On the other hand, distinguishing between the null and alternative

models becomes easier when ju approaches one.

Our study clearly showed that the large-sample based LR, W(L) and W(E) tests are

not reliable under the null even when the sample size is 60. In particular, these tests

can have maximum sizes close to one, over the nuisance parameter space. Of all the

tests considered, the LM(L) test is found to be the best in this regard and the LM(E)

test is the second best. For the nuisance? parameter values considered, near exact non-

similar critical values generally controlled the sizes remarkably well, but sometimes

produced sizes that are approximately twice the nominal size. This indicates that

these critical values are generally reliable over the nuisance parameter space. For the

g(0.3), g(0.5), LM(L) and LM(E) tests, the use of near exact non-similar critical

values often produced sizes that are not significantly different from the nominal size,

while for the LR, W(L) and W(E) tests, they produced sizes well below the nominal

size. Obtaining near exact non-similar critical values of the asymptotic tests (via SA)

can be quite demanding in terms of time, because the tests involve repeated maximum

marginal likelihood estimation. On the other hand, it takes much less time for the g

tests.

Power results using near exact non -similar critical values led to the following

conclusions. The g(0.3) and g(0.5) tests generally outperformed the classical tests
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when JI < 0.9. In many situations, the g tests possess powers that are more than

double those of their competitors. Generally, the g(0.3) test is the least powerful test

at ju = 0.9. The g(0.5) test's powers also sometimes approach zero when ju - 0.1

and // = 0.9. These observations suggest that the g tests are always reliable in the

neighbourhood of the point where the power is maximised, but not always reliable

some distance from that point. Therefore, it seems that the g(0.75) test might be

suitable for ju > 0.7. However, this test might lack power for small values of ii.

Among the asymptotic tests, the LM(L) test was found to be the best for ju < 0.7,

though its powers are lower than those for the g tests. The LR test outperforms the g

tests only when ju is closer to one. Both the W(L) and W(E) tests were found to be

the worst performers always. As expected, when the sample size increases, the

asymptotic tests' powers improve, but they are still lower than those for the g tests,

particularly for fi < 0.5.

The only tests that generally overcome the toughest testing situations (discussed

above) are the g tests, particularly the g(0.3) test. The asymptotic tests seem

trustworthy only when fi approaches one (which is a relatively easier testing situation

as noted above). Therefore, compared to the asymptotic tests the g tests should be

commended on their performance. Also, the overall performance of the g tests seems

largely unaffected with respect to the nuisance parameter values. For reasons

discussed in Chapter 5, marginal likelihood based g tests are not perfect for the

problem of interest, still they perform better than the asymptotic tests for fi < 0.9.

Similarly, the LM tests are also not expected to have better finite-sample properties,

yet, they are found to be the best asymptotic tests for small values of ju. Based on

our results, we recommend the g(0.3) test for ju < 0.5, the g(0.5) test for 0.5 < fi <

0.7 and the LR test for ju > 0.7.

The overall recommendation of this thesis is that, if a PO test is suitable for a

particular testing problem it should be used. If the null hypothesis is composite and

the PO test cannot be constructed then the g test should be the next preferred

candidate. However, our study suggests that when King's APO test is nearly optimal,
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there is little gain in applying the g test in terms of power properties. According to

our study, the g test is always reliable when the nuisance parameters can be avoided

via the invariance method. When these nuisance parameters cannot be avoided, the g

test is always reliable in the neighbourhood of the point where the power is

maximised and not necessarily always reliable some distance from that point. In the

context of the dynamic linear model, the large-sample based LR, W(L) and W(E) tests

seem unreliable under the null even when the sample size is 60. Of all the tests, the

LM(L) test seems always reliable in this regard. The LM(L) test seems better than the

LM(E) test in finite samples, whereas, this is not clear in the case of the W tests. Our

study also supports SA based near exact non-similar critical values over approximate

non-similar critical values. We observed that approximate non-similar critical values

are not useful for the g test, whereas, near exact non-similar critical values are useful.

This indicates that the SA based non-similar critical values may be helpful for

situations where approximate non-similar critical values fail to control the sizes.

Finally, there are a few areas in which further research could be undertaken. In this

thesis, we applied the g test to three composite non-nested testing situations, with

encouraging results. How well the g test works for composite nested testing situations

is clearly an interesting area which requires further research. By construction the g

test has sizes not significantly different from the nominal size, therefore, for

composite nested testing situations, it is possible that its powers at some points under

the alternative hypothesis will be not significantly different from the nominal size.

The only problems we have investigated in this thesis are those were the parameter

under test is reduced to an interval (after using invariance method or due to economic

beliefs). The g tests performed well for this case. The question is, can this test be

applied for testing problems involving null hypotheses defined over an open interval,

such as, (-00, 0), (0, 00) or (-00, 00)? In order to apply the g test for this case, we

might have to use a function that can map an infinite interval to a finite interval. For

this, a logistic function might be a useful way to map an infinite interval to a finite

interval [0, 1]. How well the g test performs for this type of testing problems is an

interesting question which requires further research.
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All the testing problems we have investigated in this thesis are one dimensional in

nature and the g test performed well. It would be interesting to see how well this

approach extends to two and higher dimensional cases. For this, the general ideas

developed in Chapter 3 and Chapter 5 could be extended to cover (1) testing higher

order MA against higher order AR processes, (2) testing higher order non-stationary

error processes involving IMA(1, q), q> 1, (3) testing higher order non-stationary

against higher order stationary disturbances and (4) testing higher order non-nested

processes in the dynamic linear regression model. Similarly it would be interesting to

apply the g test to higher order composite nested testing problems as well. Finally

robustness of the g test to non-normal errors can also be explored.

Our study clearly showed that SA is very useful for optimizing difficult functions, like

a size function, which is a step function when obtained via simulation. This indicates

that SA should be used for difficult econometric functions. Also, for the problems

considered, SA effectively found near exact non-similar critical values and exact size

critical values. How well this result translates to more complicated problems is

clearly an another interesting area for further research.
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