MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
ON. N............ 4 October 2002
\checkmark Sec. Research Graduate School Committee
Under the copyright Act 1968, this thesis must be used only under the normal conditions of scholarly fair dealing for the purposes of research, criticistn or review. In particular no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

THE RENAL MEDULLARY CIRCULATION AND BLOOD PRESSURE CONTROL

Anabela G Correia
B.Sc. (Hons) Monash University

Department of Physiology
Monash University
Clayton, Australia

February 2001

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy

Man's main task in life is to become what he potentially is. The most important product of his efforts, is his own personality.

Erich Fromm.

To my dad

TABLE OF CONTENTS

SUMMARY i
DECLARATION iv
ACKNOWLEDGMENTS v
PUBLICATIONS PRODUCED DURING CANDIDATURE vi
ABBREVIATIONS vii
CHAPTER 1 LITERATURE REVIEW
1.0 Hypertension and the community 1
1.1 Synopsis of experimental aims and findings 2
1.2 The kidney and blood pressure control mechanisms 5
1.2.1 The renin-angiotensin system 6
1.2.1.1 Circulating renin-angiotensin system 6
1.2.1.2 Tissue renin-angiotensin system 7
1.2.1.3 Paracrine and autocrine effects of angiotensin within the kidney 8
1.2.1.4 Renin-angiotensin system and hypertension 9
1.2.2 Pressure diuresis/natriuresis 9
1.2.2.I Pressure diuresis/natriuresis and hypertension 10
1.2.2.2 Autoregulation of renal medullary blood flow 11
1.2.2.3 Medullary blood flow and tubular sodium reabsorption 13
1.2.2.4 Renal interstitial hydrostatic pressure 14
1.2.3 The putative renal medullary depressor hormone 16
1.3 The renal circulation 20
1.3.1 Cortical mi ،ocirculation 22
1.3.1.1 Afferent arterioles 22
1.3.1.2 Efferent arterioles 23
1.3.2 Renal medullary blood flow 23
1.3.2.1 Medullary microcirculation 23
1.3.3 Outer medulla 23
1.3.4 Inner medulla 25
1.3.5 Renal medullary interstitial cells 26
1.4 Possible sites involved in the regulation of renal meduliary blood flow 27
1.5 Differential control of cortical and medullary blood flow by nerves and hormones
1.5.1 Renal nerves 30
1.5.2 Arginine vasopressin 32
1.5.3 Endothelin 33
1.5.4 Angiotensin II 34
1.5.5 Atrial natriuretic peptide 35
1.5.6 Prostaglandins 35
1.5.7 Kinins 36
1.5.8 Adenosine 37
1.5.9 Nitric oxide 37
1.6 Summary and aims of studies undertaken in this thesis 38

CHAPTER 2 GENERAL METHODS

2.0 lntroduction 40
2.1 Rabbits: breeds and housing 40
2.2 Surgical procedures for acute non-recovery experiments 41
2.2.1 General surgical preparation for acute studies in anaesthetised rabbits 41
2.2.1.1 Renal preparation 41
2.2.2 Transit-time ultrasound flowmetry for renal blood flow 42
2.2.3 Construction and implantation of acutely positioned medullary interstitial catheters 42
2.2.4 General preparation and establishment procedures of the extracorporeal circuit 43
2.2.5 Preparation for renal fixation 44
2.2.6 Laser-Doppler flowmetry 44
2.3 Recovery surgery 47
2.3.1 General 47
2.3.2 lmplantation of chronic medullary interstitial catheters 47
2.3.3 Implantation of ascending aortic flowprobes 48
2.3.4 Post-operative care of rabbits 49
2.4 Renal fixation and casting 49
2.5 Analysis of methacrylate casts 50
2.5.1 Preparation of methacrylate casts for scanning electron microscopy 50
2.5.2 Scanning electron microscopy 50
2.6 Autoradiography 51
2.7 Measurement of haemodynamic and renal variables 51
2.7.1 Measurement of systemic and renal haemodynamics in anaesthetised rabbits2.7.2 Processing of blood and urine samples52
2.7.3 Plasma renin activity 52
2.8 Calculations 53
2.8.1 Calculations of renal clearance variables 53
2.8.1.1 Renal plasma flow 53
2.8.1.2 Glomerular filtration rate 54
2.8.1.3 Effective renal blood flow' 54
2.8.1.4 Filtration fraction 54
2.8.1.5 Fractional sodium excretion 55
2.8.1.6 Fractional urine excretion 55
2.8.2 Calculation of vascular lumen resistance and conductance values 55
2.9 Overview of statistical analyses 55
CHAPTER 3 METHODS FOR RENAL MEDULLARY INFUSION OF VASOACTIVE COMPOUNDS: METHODOLOGICAL CONSIDERATIONS
3.0 Summary 57
3.1 Introciuction 58
3.2 Methods 59
3.2.1 Experimental preparation 60
3.2.2 Implantation of medullary interstitial catheters 60
3.2.2.1 Acutely positioned catheters (9 rabbits) 60
3.2.2.2 Chronically positioned catheters (23 rabbits) 60
3.2.3 Experimental protocols 61
3.2.3.1 Renal medullary interstitial infusion of $\left.l^{3} H\right]$-noradrenaline 61
3.2.3.2 Chronic renal medullary interstitial infusion (6 rabbits) 61
3.2.4 Autoradiography 62
3.2.5 Statistical analyses 62
3.3 Results 62
3.3.1 Intra-renal distribution of radiolabel: acute catheters 62
3.3.2 Intra-renal distribution of radiolabel: chronic catheters 62
3.3.3 Comparison of intra-renal distribution 63
3.3.4 Intra-renal distribution of radiolabel using chronic catheters: effect of infusion site 63
3.3.5 Chronic medullary interstitial infusion 63
3.4 Discussion 67
3.5 Conclusions 72
CHAPTER 4 EFFECTS OF RENAL MEDULLARY AND INTRAVENOUS NORADRENALINE ON RENAL ANTIHYPERTENSIVE FUNCTION
4.0 Summary 73
4.1 Introduction 74
4.2 Methods 75
4.2.1 Experimental preparation 75
4.2.2 Extracorporeal circuit 76
4.2.3 Measurements 76
4.3 Experimental protocols 77
4.3.1 General 77
4.3.2 Effects of outer medullary interstitial noradrenaline: protocol 1 77
4.3.3 Effects of intravenous noradrenaline: protocol 2 77
4.4 Statistical analyses 78
4.4.1 Phase 1 78
4.4.2 Phase 2 79
4.5 Results 79
4.5.1 Phase 1: Effects of renal medullary interstitial and intravenous noradrenalite infusions 79
4.5.1.1 Effects of renal medullary interstitial noradrenaline on systemic and renal haemodynamics 79
4.5.1.2 Effects of intravenous noradrenaline on systemic and renal haemodynamics. 79
4.5.2 Phase II: Effects of increasing renal artery pressure in anaesthetised rabbits4.5.2.1 Renal haemodynamic variables (vehicle infusion)80
4.5.2.2 Regional renal blood flow (vehicle infusion) 80
4.5.2.3 Renal excretory variables (vehicle infusion) 80
4.5.2.4 Systemic haemodynamic variables (vehicle infusion) 80
4.5.2.5 Plasma renin activity (vehicle infusion) 81
4.5.3 Effects of medullary interstitial and intravenous noradrenaline on responses to increased renal artery pressure 81
4.5.4 Effects of re-setting renal artery pressure to $\sim 65 \mathrm{mmHg}$ 81
4.6 Discussion 91
4.6.1 Pressure diuresis/natriuresis 92
4.6.2 Putative renal medullary depressor hormone 93
4.7 Conclusions 94

CHAPTER 5 ROLES OF PRESSURE DIURESIS/NATRIURESIS AND INHIBITION OF THE RENIN-ANGIOTENSIN SYSTEM, IN THE DEPRESSOR RESPONSE TO INCREASED RENAL ARTERY PRESSURE

5.0 Summary 96
5.1 Introduction 97
5.2 Methods 99
5.2.1 Experimental preparation 99
5.2.2 Implantation of cardiac output flowprobes 101
5.2.3 Minor procedures on the experimental day 102
5.2.4 Surgical preparation and establishment of the extracorporeal circuit 102
5.2.5 Measurements 102
5.3 Experimental protocols 103
5.3.1 General 103
5.3.2 Responses to angiotensin I 103
5.3.3 Statistical analyses 104
5.3.3.1 Systemic and renal haemodynamic variables in conscious rabbits, and during establishment the extracorporeal circuit 104
5.3.3.2 Systemic and renal haemodynamic variables, and renal excretory responses to increased renal artery pressure 104
5.3.3.3 Angiotensin I infusion 104
5.4 Results 105
5.4.1 Observations during establishment of the extracorporeal circuit 105
5.4.1.1 Conscious rabbit recordings 105
5.4.1.2 Anaesthetised baseline recordings (A) 105
5.4.1.3 Heparin bolus (B) 105
5.4.1.4 Occlusion of the aorta (C) 105
5.4.1.5 Starting the peristaltic pump: $70 \mathrm{ml} / \mathrm{min}$ (D) 106
5.4.1.6 Increasing the peristaltic pump to $110 \mathrm{ml} / \mathrm{min}(E, F)$ 106
5.4.1.7 Establishment of the extracorporeal circuit (G) 106
5.4.2 Hatmodynamics during conscious, anaesthetised, and extracorporeal states
5.4.3 Renal haemodynamic responses to increased renal artery pressure 107
5.4.3.1 Time control (Group 1) 107
5.4.3.2 Effects of increasing renal artery pressure on renal haemodynamic variables
108
5.4.4 Renal excretory responses to increased renal artery pressure
5.4.4.1 Time control (Group I) 108
5.4.4.2 Effects of increasing renal artery pressure on renal excretory function 108
5.4.5 Systemic haemodynamic responses to increased renal artery pressure 109
5.4.5.1 Time control (Group 1) 109
5.4.5.2 Effects of increasing renal artery pressure on systemic haemodynamic variables 109
5.4.6 Plasma renin activity 110
5.4.7 Effects of angiotensin I infusion on mean arterial pressure 110
5.5 Discussion 124
5.6 Conclusions 127

CHAPTER 6 EFFECTS OF ACTIVATION OF VASOPRESSIN-V ${ }_{1}$-RECEPTORS ON REGIONAL KIDNEY BLOOD FLOW AND GLOMERULAR ARTERIOLE DIAMETERS

6.0 Summary 128
6.1 Introduction 129
6.2 Methods 130
6.2.1 Experinental preparation 130
6.2.2 Surgery 130
6.2.3 Experimental protocols 131
6.2.3.1 Haemodynamic variables 132
6.2.3.2 Analysis of urine and blood samples 132
6.2.3.3 Preparation of methacrylate casts for scanning electron microscopy 133
6.2.3.4 Vascular diameter, resistance and conductance 133
6.2.4 Statistical analyses 134
6.2.4.1 Haemodynamic data 134
6.2.4.2 Glomerular arteriole dimensions 134
6.3 Results 134
6.3.1 Baseline levels during control period 134
6.3.2 Haemodynamic and renal responses to $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Or}^{8}\right]$-vasopressin and vehicle treatment 134
6.3.3 Vessel lumen dianeters and calculated relative resistances 135
6.4 Discussion 141
6.5 Conclusions 144
CHAPTER 7 GENERAL DISCUSSION
7.0 Introduction 145
7.1 Renal handling of infused $\left.{ }^{3} \mathrm{H}\right]-$ nc: : drenaline 145
7.2 Role of renal medullary blood flow in renal antihypertensive responses to increased renal artery pressure 146
7.2.1 Effects of selectively increasing medullary blood flow during increased renal artery pressure on renaomedullary depressor response 147
7.2.2 Renal medullary autoregulation during increased renal artery pressure 148
7.3 Factors mediating depressor responses to increased renal artery pressure 149
7.3.1 Role of pressure diuresis/natriuresis and renin-angiotensin system in depressor response 149
7.3.2 Is the renal medullary depressor hormone released within a specific physiological range? 150
7.3.3 Cross perfusion studies 151
7.3.4 Unclipping effects of renal hypertensive rats 151
7.3.5 Role of pressure natriuresis in depressor response to unclipping of renal hypertensive rats 152
7.4 Vasopressin V_{1}-agonist effects on renal blood flow and glomerular arterioles 155
7.4.1 Possible future directions in measuring in-vivo changes with ex-vivo microscopy 156
7.5 Conciusions 157
BIBLIOGRAPHY 158

SUMMARY

The experiments described in this thesis have examined the hypothesis that the renal medullary microcirculation plays a significant role both in the long and short-term regulation of arterial pressure. This hypothesis is based on the notion that increased renal arterial pressure stimulates the activation of three renal antihypertensive mechanisms; twin release, pressure diuresis/natriuresis, and stimulation of release of the putative renal medullary depressor hormone. It is hypothesised that the latter two mechanisms are dependent on poor autoregulation of the renal medullary microcirculation, for their expression.

In Chapter 3, a method was devised and tested, for the delivery of vasoactive agents (noradrenaline) to the renal medullary interstitium of rabbits. Both chronic and acutely implanted catheters were tested, and the renal distribution of radiolabel was determined after infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline for 20 min into the outer and inner medullary interstitium. Autoradiographic analysis determined that after outer medullary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, radiolabel was most concentrated in the outer medulla and inner cortex. Therefore this technique was deemed suitable for the delivery of vasoactive substances to the renal medulla, as the infused substance appears to concentrate in the regions, which house the vasculature most likely to contribute to the regulation of medullary blood flow.

Employing the technique developed in Chapter 3, we were then able to test the effect of reducing medullary blood flew on the renal antihypertensive responses to increased renal artery pressure. Renal arterial pressure was increased step-wise from ~ 65 to $\sim 180 \mathrm{mmHg}$ using an extracorporeal circuit to attached to a roller pump. Medullary interstitial infusion of noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) reduced medullary blood flow $\sim 30 \%$ and blunted both the pressure diuresis/natiruresis response, and the fall in arterial pressure during increased renal artery pressure. Evidence available at that time suggested that the acute depressor response to increased renal artery pressure resulted chiefly from release of an unidentified hormonal factor from the renal medulla. Intravenous infusion of the same dose of noradrenaline produced $\quad \therefore$ eduction in cortical blood flow only, and did not

 medullary depressor hormone. 5 , wive ounclusion regarding the putative renal medullary depressor hormone remained contreversal, particularly since the observation was made that the
diuresis/natriuresis increased exponentially with step increases in renal arterial pressure. This prompted the experiments carried out in Chapter 5.

In Chapter 5, we tested the role of the pressure diuresis/natriuresis mechanism, and the inhibition of renin release, in mediating the acute depressor response to increased renal artery pressure. As in Chapter 4, an extracorporeal circuit was established in anaesthetised rabbits, and we tested the effects of increasing renal artery pressure on systemic arterial pressure, the pressure-natriuresis mechanism, and levels of plasma renin activity. Furthermore, we tested the effects on the depressor response to increased renal artery pressure on blocking the systemic haemodynamic effects of pressure diuresis/natriuresis by infusing compound sodium lactate at a rate equivalent to urine flow, and 'clamping' the renin-angiotensin system. Four groups of rabbits were studied. In a control group, renal artery pressure was maintained at $\sim 65 \mathrm{mmHg}$. In the remaining three groups renal artery pressure was increased to $\sim 160 \mathrm{mmHg}$. In two of these groups, compound sodium lactate was infused at a rate equivalent to urine flow. In addition, in one of these groups the renin-angiotensin system was 'clamped' by simultaneous intravenous infusion of enalaprilat and angiotensin II. We found that the depressor effect of increased renal artery pressure is abolished if the systemic haemodynarric effects of pressure natriuresis/diuresis are blocked by preventing cardiac output from falling. Based on these findings, we conclude that the depressor response, to increased renal artery pressure in the extracorporeal circuit preparation in anaesthetised rabbits, occurs chiefly due to negative salt and water balance secondary to the pressure diuresis/natriuresis mechanism. In supplementary experiments (described in Chapter 7) we obtained data indicating that similar mechanisms mediate the acute depressor tesponse to unclipping the renal artery in 1-kidney, 1-clip hypertensive rats.

The vascular elements that regulate medullary blood flow in vivo remain unknown. In the experiments described in Chapter 6 we attempted to determine the vascular sites within the kidney, responsible for reducing medullary blood flow in response to activation of the V_{1}-receptors. The vasopressin V_{1}-agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin was infused intravenously into anaesthetized rabbits and its renal effects were monitored using laser-Dopoler flowmetry. This reduced renal medullary blood flow approximately 30% without reducing cortical blo slow. Since medullary blood flow is supplied entirely from the efferent arterioles of juxtamedullary glomeruli, we tested whether vasoconstriction of juxtamedullary glomerular arterioles contributes to V_{1}-receptor mediated reductions in medullary blood flow. On completion of the infusion (30 min), kidneys were immediately perfusion fixed at the final recorded MAP, and filled with methacrylate casting material. The diameters of afferent and efferent arterioles in the outer, mid and juxtamedullary cortex of the left kidneys were determined by scanning electron microscopy. We were, unable to
detect any significant differences, between V_{1}-antagonist and vehicle treatments on afferent or efferent arteriole diameters in and region of the cortex. These results do not support a role for juxtamedullary arterioles in producing V_{1}-receptor mediated reductions in MBF, suggesting that downstream vascular e'ements (e.g. outer medullary descending vasa recta) might possibly be involved.

In conclusion, through the development of new techniques and experimental approaches, we are gaining a better understanding of how the renal medullary circulation contributes to the regulation of arterial pressure (both in the short and the long term), and how the medullary circulation is regulated. Many issues surrounding the extent and level of involvement of so called 'renal medullary antihypertensive mechanisms', particular'y the putative renal medullary depressor hormone, require furthersstigation. The results of the studies conducted and described in this thesis have contributed to our understanding of these issues. However, there is a clear need for further research in this area. In the future, vital information derived from such studies will move us towards prevention or cure of hypertension, rather than just its control.

Declaration

I hereby declare that this submission is my own work, and that to the best of my knowledge, contains no material previously published or written by another person, nor material which has been accepted for the award of any other degree of diploma at Monash or any other university or tertiary institution, except where due acknowledgement is made in the text. I also declare this thesis to be less than 100,000 words in length, exclusive of tables, and bibliographies.

Anabela G. Correia
Monash University, Clayton, Australia.

Department of Physiology

Acknowledgements

Sincere thanks, to all who contributed to and influenced this thesis. Particularly....
Dr. Roger Evans
Providing me with the ' PhD ' opportunity and challenge Teaching me how to ask a question, and find its truth

Sharing your gift
Inspiration
Thank-you for being by teacher, and my friend
Associate Professor Göran Bergsrtöm
inte!lectual input and advice throughout
the past 3 years, particularly with Chapter 4
Teleological explanations
Opportunity and time spent in Göteborg
Strong rebuttals to my version of the 'medullipin' story

Dr. Andrew Lawrence
Autoradiography technique
Advice and input in Chpater 3
Dr. Kate Denton
Renal fixation and casting techniques
Advice and input in Chapter 6
Professor Wawrick Anderson
Advice and direction with experiments in Chapter 5
Professors Ross Young, and Bob Bywater
Sitting in on my lab presentations and agreeing to be on my PhD committee

Anna Madden
Teaching me how to set-up and implement the extracorporeal circuit AAS, the tricky aspects of data analysis and being a friend (arriving to work on time)

Katrina Worthy
Processing renin samples, AAS, and being so reliable
Gunta Jaudzems and Joan Clark
Teaching me how to use the scanning electron microscope
OJAY girls
Years of gossip, entertainment, and serious distraction
Famous Five
Sonia Alfaiate, Christine Morley, Kirsty Scott, Peta Austeberry, and Jacinda Cottee
Your support (in my life) can never be measured. May your personalities continue to amaze and amuse me.

My Family

Samuel: Free entry into Seven, and reminding me what life is really about;
following your heart and never asking why.
Mum: for tireless support, endless phone calls, and giving me strength.
Dad: for being my best friend, knowing the right thing to say, and showing me how to grab stars from the sky.

PUBLICATIONS PRODUCED DURING CANDIDATURE

Published papers arising directly from this thesis

A.G. Correia, G. Bergström, A.J. Lawrence, and R.G. Evans (1999) Effects of renal medullary interstitial infusion of norepinephrine in anesthetized rabbits. American Journal Physiology 277 (Regulatory Integrative Comp. Physiol. 40): R112-ri122.
A.G. Correia, G. Bergström, A.C. Madden, and R.G. Evans (2000) Effects of renal medullary and intravenous norepinephrine on renal antihypertensive function. Hypertension 35: 965-970.
A.G. Correia, K.M. Denton, and R.G. Evans (2001) Effects of activation of vasopressin V_{1-} receptors on regional kidney blood flow and glomerular arteriole diameters. Journal of Hypertension 19: in press.

Published papers arising from work performed during PhD candidature
R.G. Evans, A.C. Correia, S.R. Weeks, and A.C. Madden (2000) Responses of regional kidney blood flow to vasoconstrictors in anaesthetized rabbits: dependence on agent and renal artery pressure. Clinical and Experimental Pharmacology and Physiology 27: 1007-1012.

Conference proceedings

A.G. Correia, G. Bergström, A.J. Lawrence, and R.G. Evans (1997) Influencing renal medullary blood flow in the rabbit by local infusion of noradrenaline; effect of catheter position. Proceedings of the High Blood Pressure Council of Australia: (19 Annual scientific meeting, Freemantle), 19, 50.
A.G. Correia, G. Bergström, A.C. Madden, and R.G. Evans (1998) Effects of medullary interstitial infusion of noradrenaline on the response to increased renal arterial pressure in anaesthetised rabbits. Proceedings of the High Blood Dressure Council of Atstralia: (20 ${ }^{\text {th }}$ Annual Scientific Meeting, Melbourne), 20, 104.
A.G. Correia, K.M. Denton, and R.G. Evans (1999) Do cortical vascular sites mediate reduced medullary perfusion during activation of vasopressin V_{1}-receptors in the kidney? Proceedings of the High Blood Pressure Council of Australia: (21 ${ }^{\text {si }}$ Annual Scientific Meeting, Melbourne), 11, 21.
A.G. Correia, K.M. Denton, and R.G. Evans (1999) Effects of Vasopressin V_{1}-receptor activation on renal cortical and medullary blood flow, and glomerular arteriole dimensions. Journal of Hypertension: 18 (Suppl. 4), S69.
A.G. Correia, A.C. Madden, G. Bergström, and R.G. Evans (1999) Effects of renal medullary interstitial, and intravenous norepinephrine, on renal antihypertensive function. Journal of Hypertension: 18 (Suppl. 4), S216.
A.G. Correia, G. Bergström, W.P. Anderson and R.G. Evans (2001) Role of pressure diuresis/natriuresis in the acute depressor response to increased renal artery pressure. Submitted to the $24^{\text {th }}$ International Congress of Physiological Sciences (Christchurch, New Zealand).

LIST OF ABBREVIATIONS

α	Alpha	1	Liter(s)
β	Beta	M	Medulia
${ }^{\circ} \mathrm{C}$	Degrees Celsius	MAP	Mean arterial pressure
$<$	Less than	$\mu \mathrm{g}$	Microgram(s)
>	Greater than	mg	Milligram(s)
\%	Percent	$\mu \mathrm{l}$	Milliliter(s)
\% \triangle	Percent change	min	Minute(s)
\pm	Plus/minus	MBF	Medullary blood flow
ANOVA	Analysis of variance	ml	Milliliter(s)
AP	Arterial pressure	mm	Millimeter(s)
AVR	Ascending vasa recta	mM	Millimole(s0
Beats/min	Beats per min	mmHg	Millimeters of mercury
C	Cortex	NaCl	Sodium chlorid*
Ci	Curie	ng	Nanogram(s)
cm	Centimeter	OD	Outside diameter
CO	Cardiac output	OS	Outer stripe
CVP	Central venous pressure	P	Papilla
CBF	Cortical blood flow	PBF	Papillary blood flow
DVR	Descending vasa recta	PRA	Plasma renin activity
$\mathrm{FE}_{\mathrm{Na}^{+}}$	Fractional excretion of sodium	PU	Perfusion units
$\mathrm{FE}_{\text {VOL }}$	Fractional excretion of urine	RAP	Renal artery pressure
FF	Filtration fraction	RBF	Renal blood flow
g	Gram(s)	RVR	Renal vascular resistance
GFR	Glomerular filtration rate	SAP	Systemic arterial pressure
Het	Haematocrit	SHR	Spontaneously hypertensive rat
hr	Hour(s)	SV	Stroke volume
HR	Heart rate	SVR	Systemic vascular resistance
ID	Inside diameter	TPR	Total peripheral resistance
IM	Inner medulla	$\mathrm{U}_{\mathrm{VOL}}$	Urine flow
IU	International units	$\mathrm{U}_{\mathrm{Na}^{+}} \mathrm{V}$	Urinary sodium excretion
i.v.	Intravenous	w / v	Volume per unit volume
Kg	Kilogram	w/v	Weight per unit volume
		WKY	Wistar-Kyoto rat

Chapter One

LITERATURE REVIEW

1.0 Hypertension and the community

Essential hypertension, or high blood pressure of unknown aetiology, is a leading cause of human cardiovascular morbidity and mortality in most developed countries. It remains largely asymptomatic until late in its course when organ and vessel damage become irreversible. Despite the numerous investigations undertaken to clarify the various mechanisms involved in the regulation of blood pressure, the primary determinants of essential hypertension remain largely unknown. Both environmental and genetic factors contribute to the development of hypertension but while the role of some environmental exposures, such as high salt consumption or stress, appears likély, the underlying determinants, genetic or otherwise, remain unknown.

Cardiovascular disease is a prevailing health problem amongst Australia's population, killing more people alone than any other disease, thus producing enormous strain on the health care system. In 1997, deaths related to cardiovascular disease claimed more lives than those related to cancers and other ailments (Armstrong et al., 1999).

Since the recognition of the prevalence of hypertension and its impact on the community, researchers have taken various approaches to elucidate the factors underlying the development of hypertension. A major recurrent theme has been the dependency of hypertension on interactions between genetic predisposition and environmental factors. Although research directed towards treatment of hypertension will always be required, it is important to direct more attention toward research focused on generating knowledge of the underlying cause, so that a cure can be offered, ahead of treatment.

The kidney appears to play major roles in the genesis of essential hypertension, as demonstrated by experiments that show that hypertension can be 'transplanted'; so that when a kidney from a
hypertensive subject is donated to a normotensive recipient, the recipient develops hypertension. The reverse is aiso true (Churchill and Churchill, 1992). Hypertension is common in patients with renal disease, but may occur in the absence of reduced renal function (i.e., glomerular filtration rate). By gaining a more complete understanding of the regulation of kidney function, and its role in the regulation of arterial pressure, we can move towards prevention and cure, rather than just treatment of this costly condition.

The renal medulla appears to play an important regulatory role in the long-term maintenance of arterial blood pressure. Briefly, it has been proposed that the renal medulla, through its poor autoregulatory capacity, has the ability to detect changes in the level of arterial pressure, via associated changes in medullary blood flow (MBF) (Roman and Smits, 1986; Cowley et al., 1992). Sodium and water reabsorption appears to be highly dependent on the level of MBF, through mechanisms that remain to be completely defined (Cowley, 1997). This allows the kidney to adjust the level of sodium and water excretion through the pressure diuresis/natriuresis mechanism and return arterial pressure to normal, by adjusting the excretion of salt and water. Furthermore it is hypothesized that the renal medulla possesses its own endocrine function. According to this hypothesis the renal medulla releases a putative vasodepressor substance into the circulation, presumably in response to increased renal artery pressure (RAP) (Muirhead, 1991; Cowley et al., 1992; Thomas et al., 1994; Bergström and Evans, 1998; Bergström and Evans, 2000).

The global aim of the experiments detailed in this thesis was to develop a greater understanding of the role of the renal medulla, and the medullary microcirculation in particular, in blood pressure regulation, and to attempt to determine the vascular elements responsible for MBF regulation. In this chapter, a synopsis of the experimental aims and major findings of each of the studies undertaken in this thesis will be given. This will then be followed by a review of the literature and relevant background information concerning the kidney, with particular attention paid to the renal medulla and its involvement in blood pressure regulation.

1.1 Synopsis of experimental aims and findings

The experiments described in Chapter 3 (Method for local delivery of vasoactive compounds to the renal medullary interstitium), involved the development of methods for the local delivery of vasoactive compounds to the renal medulla, so that blood flow in this region could be manipulated both in acute and chronic experimental settings in conscious and anaesthetized rabbits. Briefly, $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline was delivered to the renal medullary interstitium via acutely and chronically
positioned catheters. The kidneys were then removed, 'snap frozen', and sectioned and processed for the determination of radiolabel concentration throughout the renal cortex, outer and inner medulla, anil the papilla, using autoradiography. Taken together with our previous study investigating these techniques (Correia, 1997), these experiments demonstrated that vasoactive compounds could be targeted to the renal outer medullary interstitium to reduce blood flow to this region. Specifically, our present experiments demonstrated that infused radiolabel was concentrated within a short distance from the infusion site. Our experiments also demonstrated that the catheters were suitable for use in both chronic and acute experimental settings.

Having established a method for selectively reducing MBF by targeting vasoactive compounds to the renal medulla (Chapter 3; Correia, 1997) our next aim (Chapter 4; Effects of renal medullary and intravenous noradrenaline infusion on renal antihypertensive function) was to employ this technique to investigate the role of MBF in renal antihypertensive mechanisms. An extracorporeal circuit was established in anaesthetized rabbits, which allows RAP to be progressively increased without direct effects on the systemic circulation. Thus, this technique allows activation of renal antihypertensive mechanisms; reduced renin release, pressure diuresis/natriuresis, and perhaps also release of a putative renal medullary depressor hormone. To examine the role of renal medullary perfusion in these mechanisms, we tested the effects of infusion of noradrenaline, either into the renal medullary interstitium (selective reduction of MBF) or intravenously (selective reduction of cortical blood flow (CBF)), on responses to increased RAP in anaesthetized rabbits. When RAP was increased in a stepwise fashion urine flow and sodium excretion increased exponentially and plasma renin activity (PRA) and mean arterial pressure fell. Medullary interstitial but not intravenous noradrenaline blunted the increased diuresis and diuresis/natriuresis, and the depressor response to increased RAP, suggesting that reduced medullary blood flow caused by noradrenaline infusion may blunt these renal antihypertensive mechanisms.

The depressor response to increased RAP observed in the extracorporeal circuit model used in the experiments described in Chapter 4 has been attributed to release of a depressor hormone from the renal medulla (Christy et al., 1991). However, in studies performed in Chapter 4 (Effects of renal medullary and intravenous noradrenaline \cdot renal antihypertensive function), it was observed that the pressure-natriuretic and diuretic responses increased exponentially in conjunction with increases in RAP and that this was blunted by medullary interstitial infusion of noradrenaline. Given the important role of salt and fluid balance in the control of arterial pressure, it seemed likely that the antidiuretic/anti-natriuretic effect of medullary interstitial noradrenaline played some role in its ability to blunt the depressor response to increased renal artery pressure. Therefore, the aim of the
studies described in Chapter 5 (Roles of pressure diuresis/natriuresis and inhibition of the reninangiotensin system in the depressor response to increased renal artery pressure) was chiefly to determine the extent of the involvement of the pressure diuresis/natriuresis mechanism in the depressor response to increased RAP in this model. Briefly, an extracorporeal circuit was established in rabbits equipped with ascending aortic flow probes and RAP was increased and maintained at 160 mmHg . During the period of increased RAP the excreted urinary volume was measured on a minute per minute basis. In some animals, the excreted urine volume was then returned intravenously during this period, in the form of compound sodium lactate. In other animals the renin-angiotensin system was also "clamped" by intravenous enalaprilat ($2 \mathrm{mg} / \mathrm{kg}$ plus 10 $\mu \mathrm{g} / \mathrm{kg} / \mathrm{min}$) and MAP and RBF were returned to their original 'control' levels by an intravenous angiotensin II infusion ($40-50 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$). The results of these experiments demonstrated that the depressor response to increased RAP is abolished when cardiac output is maintained by maintaining salt and fluid balance. Thus, neither the renin-angiotensin system, nor a putative renal medullary depressor hormone, appear to play major roles in the depressor response to increased RAP in this experimental model.

There is now considerable information regarding the effects of vasoactive hormones on MBF. However, there is little information, particularly from in vivo studies, about the precise vascular sites responsible for hormonal control of MBF. In the experiments described in Chapter 6 (Effects of activation of vasopressin V_{1}-receptors on regional kidney blood flow and glomerular arteriole diameters), renal MBF was selectively reduced ($\sim 30 \%$), by an intravenous infusion of the V_{1} agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin. Kidneys were then perfusion fixed in vivo, filled with methacrylate, and removed and processed for determination of afferent and efferent arteriolar diameters throughout the outer, mid and juxtamedullary cortex, by scanning electron microscopy. Although [Phe ${ }^{2}$, $\mathrm{rle}^{3}, \mathrm{Om}^{8}$]-vasopressin selectively reduced MBF by $\sim 30 \%$, we could detect no effect of this agent on vessel diameter throughout each of the kidney regions (outer cortex, mid cortix, and juxtamedullary cortex). These observations raise the possibility that reductions in MBF in response to activation of V_{1}-receptors might be mediated by vascular elements downstream from the efferent arteriole, possibly the outer medullary descending vasa recta.

1.2 The kidney and blood pressure control mechanisms

When RAP is acutely increased in animal models, renal antihypertensive mechanisms are stimulated which act in concert to restore arterial pressure to normal levels. Renal renin release is reduced, so that the activity of the pro-hypertensive renin-angiotensin system is inhibited. Urinary excretion of salt and water increases exponentially with the increased RAP, so reducing cardiac output. Thirdly, there is now considerable evidence for the release of a putative renal medullary depressor hormone in response to increased RAP. Each of these systems, and their involvement in blood pressure regulation, will be discussed below (see Figure 1.1).

Figure 1.1 Proposed sequence of events by which increased RAP initiates renal antihypertensive mechanisms. Arrows with solid lines indicate the hypothesized mechanisms mediating pressure diuresis/natriuresis. Arrows with dotted lines indicate the hypothesized control mechanisms for the release of the renal medullary depressor hormone. Factors that modify medullary blood flow (i.e. nerves and hormones) should therefore modulate these antihypertensive responses. Figure modified from (Bergström and Evans, 2000).

1.2.1 The renin-angiotensin system

1.2.1.1 Circulating renin-angiotensin system

The renin-angiotensin system plays a significant role in the long-term regulation and maintenance of arterial blood pressure and sodium balance. Within the kidney the renin-angiotensin system plays a major regulatory function which responds to changes in systemic arterial pressure or extracellular fluid volume, through actions of angiotensin II at specific recepters within the renal vasculature, mesangial and tubules to alter both renal vascular resistance and salt excretion (Admiraal et al., 1990). Hypernatremia, hypovolemia, hypotension, and activation of the sympathetic nervous system stimulate the renin-angiotensin system.

The classical description of the renin-angiotensin system focuses on the circulating hormonal system, where renin is released from specialized smooth muscle cells of the juxtaglomerular apparatus of the afferent arteriole (Johns et al., 1987; Hackenthal et al., 1990). The main stimuli for renin release are salt depletion, plasma volume reduction, and decreased arterial pressure (Navar et al., 1996). Others may includ?; renal sympathetic nerve activation (β-adrenergic stimuli stimulation), a reduction in circulating angiotensin II, vasopressin, and low plasma potassium concentrations (Mene and Dunn, 1992).

Once released into the circulation renin cleaves angiotensinogen of hepatic origin to generate angiotensin I, which is thereafter converted to angiotensin II through the action of angiotensinconverting enzyme. This action is predominant in the lungs, which contain an abundance of the angiotensin-converting enzyme in the luminal side of the capillary endothelium, but also occurs in other organs (see below).

Having entered the systemic circulation, angiotensin II acts to raise arterial pressure, by affecting both vascular tone (acute) and structure (chronic) (Guyton and Hall, 1996; Navar et al., 1996). Within the kidney angiotensin II contributes to blood volume regulation through the enhancement of sodium reabsorption either by direct stimulation of tubular sodium transport mechanisms, or indirectly, through aldesterone release from the adrenal cortex which also promotes renal tubular sodium reabsorption (Mene and Dunn, 1992; Guyton and Hall, 1996). Angiotensin II also has important effects on regional renal haemodynamics, including the glomerular microcirculation, as well as trophic functions where it acts on many renal and vascular cell types, to regulate cell growth. Furthermore, direct links with other systems, such as kallikrein-kinins and the
prostaglandins, and the sympathetic nervous system suggest that the renin-angiotensin system is part of an inter-related neuro-humoral system involved in the control of kidney perfusion and renal cellular function (Mene and Dunn, 1992).

In the circulation, the vasoconstrictor actions of angiotensin II are short lived due to its rapid metabolism. However, it does produce concentration-dependent vasoconstriction of resistance vessels in virua ${ }^{14,11}$ organs, although skeletai muscle and lung vessels display reduced sensitivity to angiotensin II (Palmer et al., 1987; Mene and Dumb, 1992).

Aldosterone is secreted by the zona glomerulosa of the adrenal cortex, in response circulating leveis of angiotensin II. Its major physiological role is the stimulation of sodium transport from the ascending limb of the loop of Henle, in exchange for potassium or hydrogen. Thus, it regulates the balance of sodium and potassium concentration in the blood (Sherwood, 1993).

An indication of the significance of the renin-angiotensin system in the regulation of renal function, and therefore arterial pressure, came from Siragy and colleagues who blocked components of the intra-renal renin-angiotensin system by simultaneous renal artery infusions of an angiotensin converting enzyme inhibitor and an angiotensin II receptor antagonist. This treatment produced increases in glomerular filtration rate ($\sim 60 \%$), and renal plasma flow ($\sim 100 \%$), a ten fold increase in urinary sodium excretion, and an approximately six fold increase in urine flow in conscious, uninephrectomized dogs (Siragy et al., 1990). Similarly, intra-renal iniusion of an angiotensin converting enzyme inhibitor in the anaesthetized dog significantly increased glomerular filtration rate, urinary sodium excretion and urine volume (Levens, 1990). These and other studies provide evidence that angiotensin II tonically inhibits salt and water excretion, and constricts the renal vasculature, so increasing arterial pressure.

1.2.1.2 Tissue renin-angiotensin system

The concept of tissue specific renin-angiotensin systems is now recognized, and it is now accepted that both renal and non-renal tissues express local angiotensin II biosynthetic ability. Such systems have been identified in the brain, and in peripheral tissues such as the kidney, systemic vasculature, adrenal glands, and heart, all of which locally produce angiotensin II (Navar et al., 1996). These systems chiefly act directly within the organ, or may even secrete angiotensin II into the circulation to act on angiotensin II receptors which have been localized on various tissues including vascular smooth muscle cells, epithelial cells, and cells of the adrenal cortex and medulla, heart, and brain
(Navar et al., 1990). The kidney itself has a well developed tissue renin-angiotensin system. Recent evidence indicates that this system is regulated independently of the classic circulating reninangiotensin system, and plays a role in the regulation of renal function (Navar, 1986; Navar et al., 1996).

1.2.1.3 Paracrine and autocrine effects of angiotensin within the kidney

As discussed above, the actions of the renin-angioiensin system on renal function and blood pressure control may not be entirely dependent on sirculating angiotensin 11 being delivered to the kidncy. In the kidncy also, some cells house all the necessary components for the production of angiotensin II, which may be synthesized intracellularly, and then secreted (Navar et al., IOYの). Immunohistochemical studies have shown that renin and angiotensin II are both present in juxtaglomerular cells of the afferent arteriole within the same secretory granules (Hackenthal et al., 1990) and that monolayer cell cultures of juxtaglomerular cells conain renin, angiotensinconverting enzyme, and both angiotensin I and II (Rightsel et al., 1982). Proximal tubular cells may also be able to synthesize their own angiotensin II from angiotensin I (Yanagawa et al., 1991). These cells may also secrete angiotensin II into the surrounding interstitial environment, contributing to the elevated interstitial angiotensin Il levels (Navar et al., 1990).

The presence of functional angiotensin-converting enzyme in the kidncy has been shown by experiments demonstrating the conversion of $\sim 20 \%$ of circulating angiotensin I to angiotensin II during passage through the kidncy (Rosivall et al., 1983; Rosivall et al., 1984; Navar et al., 1996). This activity has been localized to the vascular endothelial cells of the renal arteries, afferent and efferent arterioles, and glomerular and peritubular capillaries, but is also present on both the brush border (luminal) and basolateral membranes of the proximal tubule eells (Navar et al., 1990).

Collectively, data suggests an infrarenal generation of angiotensin II, providing it with both paracrine and/or autocrine functions as well as the classical endocrine hormone functions. In turn, angiotensin II acts at angiotensin receptors found throughout the kidncy on glomerular mesangial cells, pre and postglomerular arterioles, vasa recta bundles of the inner stripe of the outer medulla, medullary interstitial cells, and several tubular segments of the nephron (Brown and Venuto, 1988; Navar et al., 1990).

1.2.1.4 Renin-angiotensin system and hypertension

The renin-angiotensin system appears to be involved in the development of renovascular hypertension and may be implicated in the pathogenesis of essential hypertension (Waeber et al., 1986). One proposition is that in hypertensive patients the basal level of arterial pressure is set at a higher level because the kidney requires a higher perfusion pressure for the suppression of renin release (Guyton and Hall, 1996). Angiotensin-converting enzyme inhibitor drugs and AT_{1} antagonists are beneficial in the treatment of certain cases of hypertension. By blocking the generation or actions, respectively of angiotensin II, they blunt the ultimate salt and fluid conserving actions and arteriolar constrictor effects of the renin-angiotensin system. There is however no obvious correlation between measured plasma renin activity and blood pressure in human essential hypertension or in the spontaneous-hypertensive rat (SHR), two forms of hypertension characterized by relatively low levels of plasma renin activity (Folkow, 1982).

1.2.2 Pressure diuresis/natriuresis

According to the classical 'Guytonian' view of the role of the kidney in long-term blood pressure control, whenever arterial pressure is elevated, sodium and water excretion is increased, until arterial pressure is returned to control levels (Guyton et al., 1972; Cowley, 1992). This mechanism is believed to be non-adaptive and largely responsible for the long term control of arterial pressure (Cowley et al., 1992). According to this hypothesis, hypertension can only occur if the excretory ability of the kidney is impaired. The mechanism(s) responsible for pressure diuresis/natriuresis remain uncertain, however evidence indicates that it may be dependent on a poor autoregulatory capacity of the renal medullary circulation relative to whole kidney blood flow, since increased sodium excretion in response to increased RAP occur without changes in total renal blood flow (RBF) or glomerular filtration rate (GFR) (Cowley et al., 1992; Roman and Zou, 1993; Cowley, 1997;Cowley and Roman, 1997;Tornel and Madrid, 2000;).

According to this theory, an increase in RAP produces a concurrent increase in inner MBF, which triggers a sequence of events which act in concert to inhibit tubular sodium reabsorption, (Cowley et al., 1992). Thus, increased RAP results in increased MBF, and so vasa recta blood flow, which in turn leads to (i) washout of the medullary solute gradient, (ii) increased vasa recta capillary pressure and so increased renal interstitial hydrostatic pressure, and (iii) presumably also the release of diuretic/natriuretic autocoids such as nitric oxide and prostaglandins (Cowley et al., 1992; Cowley and Roman, 1997; Bergström and Evans, 2000).

1.2.2.1 Pressure diuresis/natriuresis and hypertension

The kidneys of hypertensive patients (Omvik et al., 1980) and genetically hypertensive rats (Roman and Cowley, 1985b; Roman and Zou, 1987; Khraibi and Knox, 1988; Roman and Kaldunski, 1988b;) require an elevated level of MAP in order to achieve similar levels of sodium and water excretion, as do the stroke-prone strain of spontaneously hypertensive rat (SHR) (Nagaoka et al., 1981). The reason for the inability of 'hypertensive kidneys' to effectively excrete sodium and water when perfused at normotensive pressures remains uncertain, however an intrinsic impairment of the pressure diuresis/natriuresis mechanism, rather abnormalities of the neural and/or endocrine control of the kidney seem likely (Liard, 1977; Cowley and Roman, 1983).

Under experimental conditions in which the neural and hormonal backgrounds are controlled, through renal denervation, and maintenance infusion of vasopressin, aldosterone and noradrenaline, increases in RAP of $\sim 50 \mathrm{mmHg}$ produce a nine-fold increase in urine flow and sodium excretion in the normotensive Wistar-Kyoto normotensive rat (WKY), compared to only a four-fold increase in the SHR (Roman and Cowley, 1985b). Not only does this response occur independently of external irfluences, but also of changes in RBF, and glomerular filtration rate (GFR), which remained similar between the two groups (Arenshorst, 1979; Roman and Cowley, 1985b). Therefore, under these conditions, the diuretic and natriuretic responses to elevations in RAP are blunted in SHR when compared to WKY normotensive rats, which is believed to contribute to the functional resetting of the kidney toward higher perfusion pressures necessary for the development of hypertension (Roman and Cowley, 1985b). Furthermore, these studies indicate that the level of RAP markedly influences tubular reabsorption, indicating that small changes in arterial pressure may have a greater influence on sodium and water excretion than had been previously recognized (Roman and Cowley, 1985a).

Reduced renal MBF is the most apparent renal haemodynamic abnormality in the development of hypertension in SHR, since total RBF, CBF, and GFR remain similar in young and adult SHR and WKY rats (Khraibi and Knox, 1988; Roman and Kaldunski, 1988b). On the other hand, MBF is reduced in SHR, even before hypertension has developed, and therefore renal medullary vascular resistance is elevated in the SHR model (Roman and Kaldunski, 1988b; Lu et al., 1994). Based on this evidence, it is hypothesized that in order for hypertension to occur, MBF must be reduced, which in turn contributes to the haemodynamic resetting of the pressure diuretic/natriuretic relationship (Cowley, 1992). This hypothesis was tested in vivo using a chronic infusion technique, which allowed delivery of captopril ($5 \mathrm{mg} / \mathrm{kg} /$ day) to the renal medullary interstitium to increase

MBF, which was in turn monitored by chronic laser-Doppler flowmetry. The results confirmed that a chronic increase in MBF in SHR, produced a left-ward shift in the pressure natriuretic relationship and lowered arterial pressure (Lu et al., 1994).

The role of changes in MBF in the development of hypertension has not been widely studied. Ganguli et al. reported that papillary blood flow (PBF), measured using the albumin accum:ulation technique, was lower in 17 week old SHR compared with WKY (Ganguli et al., 1976). Relationships between RBF, CBF, PBF and RAP were compared in 3-5, 6-9, and 12-16 week old SHR and WKY (Roman and Zou, 1987). It was found that MAP was $\sim 19 \mathrm{mmHg}$ greater in $3-5$ week old SHR than in age matched WKY rats, and that PBF measured at equivalent RAP was significantly lower (about 30%) in all age groups of SHR compared with values measured in WKY (Roman and Zou, 1987). These results are in general agreement with previous observations made in adult SHR, which support the notion that an irregularity in inner MBF is responsible for the abnormal pressure diuresis/natriuresis in hypertensive rats, and that this response is not attributable to a defect in whole kidney haemodynamics (Arenshorst, 1979; Roman and Kaldunshi, 1988b).

1.2.2.2 Autoregulation of renal medullary blood flow

Autoregulation is the intrinsic ability of an organ to maintain constant blood flow despite changes in arterial perfusion pressure. The question of whether or not MBF is autoregulated has provoked much research and debate (Pallone et al., 1990). Several studies, employing various techniques to measure MBF, support the notion that it is efficiently autoregulated (Cohen et al., 1983; Majid and Navar, 1996; Harrison-Bernard et al., 1996; Majid et al., 1997), while both earlier and more recent reports indicate the converse (see below).

Thurau et al. studied autoregulatory behavior in the medulla by measuring the transit time of Evans Blue dye (Thurau, 1964). As blood pressure increased, transit time decreased, indicating an increase in MBF with increased MAP. Later studies using the H_{2} washout technique (Aukland, 1968), the transit time of labeled red cells (Graensgoe and Wolgast, 1972), or the laser-Doppler technique (Roman and Smits, 1986), however have produced varied results. Cohen et al.. demonstrated autoregulation in the medulla up to a MAP of 120 mmHg , but at higher pressures MBF increased (Cohen et al., 1983), even though total RBF continued to be autoregulated up to higher pressures ($\sim 140-150 \mathrm{mmHg}$) (Zimmerhackl et al., ; 985 F).

Recent studies by Cowlev, Roman, and colleagues, employing laser-Doppler flowmetry have indicated that blood flow to the inner medulla in volume expanded rats is poorly autoregulated. In these experiments RAP was altered in a stepwise fashion in hydropenic rats, from $\sim 150 \mathrm{mmHg}$ (Roman and Smits, 1986; Roman and Cowley, 1988). They found that MBF reduced almost linearly with the fall in perfusion pressure even though blood flow in the deep cortex and outer medulla remained efficiently autoregulated (see als: Roman and Zou, 1993; Cowley and Roman, 1997). This is difficult to reconcile with the evidence that MBF is predominantly derived from the efferent arterioles of juxtamedullary glomeruli, the pre-glomerular vasculature of which exhibits autoregulatory capacity (; Casellas and Moore, 1990; Cohen et al., 1983; Gonzalez et al., 1994; Bouriquet and Casellas, 1995). Further investigations employing laser-Doppler flowmetry, demonstrated that the superficial and deep cortex are autoregulated as well as is whole kidney blood flow in volume expanded rats, but outer and inner MBFs are not well autoregulated (Mattson et al., 1993; Roman and Zou, 1993).

The lack of inner MBF autoregulation in volume expansion is difficult to understand, since the juxtamedullary glomeruli, which supply the renal medullary blood vessels, demonstrate efficient autoregulation of single nephron glomerular filtration rate (Goransson and Sjoguist, 1984) and glomerular capillary pressure (Carmines et al., 1990). The most plausible explanation for this is that blood flow may be redistributed within the medullary post-glomerular circulation in response to changes in RAP. The increase in shear stress resulting from an increase in flow through these vessels may release vasoactive agents, which may act on the contractile elements in the vascular network between the descending and ascending vasa recta in the outer medulla to redistribute postglomerular blood flow (Pallone et al., 1990). A study by Fenoy and Roman supports this explanation, showing that local release of nitric oxide may play a role in the lack of autoregulation of PBF in rats (Fenoy and Roman, 1992). In support of this, other studies have shown that PBF is influenced by humoral factors (Kiberd et al., 1987a; Kiberd et al., 1987b; Zimmerhackl et al., 1987), and renal sympathetic tone (Hermansson et al., 1984), and that plasma levels of vasopressin, angiotensin, atrial natriuretic factor, and renal nerve activity are all affected by changes in blood volume (Roman and Cowley, 1988). Videomicroscopy studies indicate that the number of perfused vasa recta capillaries and the velocity of RBC in these vessels increased significantly after RAP is elevated (Roman and Cowley, 1988). The increase in PBF is caused by an increase in blood flow through perfused capillaries as well as the recruitment of flow in non-perfused capillaries (Roman and Cowley, 1988). This study therefore confirmed, using another method, that PBF is poorly autoregulated in volume-expanded rats.

Conversely, studies in dogs, by Majid and Navar also employing laser-Doppler technology found that MBF measured throughout different regions of the renal medulla (outer and inner medullary blood flows were measured) was well autoregulated (Majid and Navar, 1996; Majid et al., 1997). Differences in experimental preparations, as well as the precise techniques used to measure MBF may have contributed in part to these inconsistencies in the literature. The resolution of this issue remains a key goal of research aimed at understanding the role of the medullary circulation in the control of blood pressure.

1.2.2.3 Medullary blood flow and tubular sodium reabsorption

The concept that changes in renal MBF can alter tubular reabsorption of sodium first emerged nearly 40 years ago. Early and Friedler observed that the natriuretic response to intravenous saline was associated with a fall in urine osmolality and the renal extraction of para-aminohippurate (Early and Friedler, 1965a; Early and Friedler, 1965b). With the assumption that para-aminohippurate is only extracted in the renal medulla and that increased MBF reduces para-aminohippuric acid (PAH) extraction, they concluded that volume expansion (or increased RAP) produces increases in MBF, which inhibits water reabsorption in the thin descending loop of Henle, secondary to loss of the medullary solute gradient. They suggested that the fall in water reabsorption from the thin descending limb of Henle's loop reduces the sodium concentration of the fluid entering the ascending limb of Henle's loop, and so reduces sodium reabsorption in this portion of the nephron (Early and Friedler, 1965a; Early and Friedler, 1965b).

Similar findings have since been produced using the micropuncture technique, which have demonstrated that elevations in RAP inhibit sodium reabsorption in the proximal tubule of superficial nephrons and even more so in the proximal tubule and thin descending limb of the loop of Henle of deep nephrons (Haas et al., 1986; Roman and Cowley, 1988). Other suggested sites include the proximal tubule, thick ascending limb of Henle's loop and the collecting duct (Arenshorst, 1979; Roman and Cowley, 1988). The pressure-diuresis phenomenon has also been studied in isolated blood-perfused kidney preparations, which have provided results consistent with these conclusions. However, these experiments have been difficult to interpret because autoregulation of RBF and GFR is not as efficient in vitro as it is in the intact animal (see Roman and Cowley, 1985a).

Thus, increased MBF dissipates the medullary urea gradient, which likely contributes to the pressure natriuretic response through the inhibition of water reabsorption in the thin descending
loop of Henle, and therefore increased reabsorption in this nephron segment (Roman and Zou, 1993) and by increasing the conductance of the paracellular pathway to ions in the prozimal tubule, thin descending loop of Henle and thin ascending loop of Henle, (which in the rat, are all highly permeable to sodium and chloride) (see Roman and Zou, 1993). Furthermore, as discussed below, elevations in vasa recta capillary pressure may inhibit water re-uptake from the medullary interstitium and increase medullary interstitial pressure, which may participate in the pressurediuresis/natriuresis response by inhibiting tubular reabsorption of sodium and water (see Cowley, 1997).

1.2.2.4 Renal interstitial hydrostatic pressure

It is proposed that increased MBF is accompanied by increases in vasa recta capillary pressure, and a transient inhibition of water uptake from the renai medullary interstitium, thereby increasing renal interstitial hydrostatic pressure (RIHP) (Roman and Cowley, 1988; Roman and Zou, 1993). Elevations in RAP in male Sprague-Dawley rats significantly increase RIHP, diuresis/natriuresis and diuresis, but this response is blunted in the SHR (Roman and Cowley, 1985b; Roman, 1986; Khraibi and Knox, 1988). The blunted effect of RAP on RHP in the SHR may be responsible for the blunted pressure diuresis/natriuresis and diuresis response observed in these rats, since this relationship is shifted to higher pressures, when compared to WKY rats (Norman et al., 1978). Furthermore, evidence exists in support of the notion that the brisk diuresis/natriuresis and diuresis observed in WKY rats, is related to the transmission of RAP to the renal interstitium due to poor MBF autoregulation, leading to a significant increase in RIHP, decreases in sodium reabsorption in various segments of the nephron, and thus diuresis/natriuresis and diuresis (Roman and Cowley, 1985b) (see Figure 1.2).

Intra-renal infusions of vasodilators such as acetylcholine, bradykinin (Mertz et al., 1984), and prostaglandin E_{2} produce significant increases in sodium excretion which are associated with increases in MBF and RIHP (Knox et al., 1983; Haas et al., 1984; Granger and Scott, 1988; Cowley et al., 1995). Furthermore, this rise in RIHP may be prevented by renal de-capsulation, which greatly blunts renal visodilation-induced increased in sodium excretion (Haas et al., 1984; Granger and Scott, 1988). Thus, alterations in MBF, either secondary to changes in RAP or tone in vascular elements that regulate MBF, appear to be closely linked with changes in RIHP and tubular sodium reabsorption. On the other hand, there are a number of aspects of this hypothesis that merit further testing. In particular, the evidence that alterations in MBF shift the pressure diuresis/natriuresis relationship arises from experimental models that allows RAP to be set to levels
at or below systemic arterial pressure. It remains to be seen whether the influence of MBF on pressure diuresis/natriuresis also holds true when RAP is increased to levels above systemic arterial pressure (hypertensive levels), which might better reflect the antihypertensive function of the pressure diuresis/natriuresis mechanism. This can be achieved using an extracorporeal circuit model developed in our laboratory, which allows RAP to be set to any level, above or below RAP (Christy et al., 1991; Evans et al., 1995). Thus, a major aim of the experiments described in this thesis was to examine the effects of reducing MBF on pressure diuresis/natriuresis in this experimental model.

Figure 1.2 Summary of proposed mechanisms responsibie for pressure diuresis/natriuresis. (a) Renal cortical responses to changes of renal arterial pressure (AP) show good autoregulation of cortical blood flow and absence of measurable changes of peritubular capillary pressure (PTC) as arterial pressure is changed. (b) Renal medullary responses indicate lack of autoregulation of medullary blood flow with vasa recta capillary pressure and medullary interstitial fluid pressure rising with arterial perfusion pressure. This rise of interstitial pressure transmitted throughout the kidney is associated with an increase in renal excretion of sodium and water. $\mathrm{U}_{\mathrm{Na}} \mathrm{V}$, urinary sodium excretion; gkwt, g kidney weight. From (Cowley, 1992).

1.2.3 The putative renal medullary depressor horr: ue

A proposed third renal antihypertensive mechanism, the patative renal medullary depressor hormone, has been the center of much debate and extensive research. This depressor substance dubbed 'medullipin' by the late Eric Muirhead, is thought to be released from the renal medullary interstitial cells, in response to increased RAP (Muirhead, 1991; Muirhead, 1993). However, despite strong evidence for the release of such a depressor substance from the medulla, the physiology and identity of this hormone and its involvement in the aetiology of hypertension require elucidation.

The idea that the renal medulla possesses the ability to release a depressor substance in response to increases in RAP arose initially from three lines of experimental evidence. The first line of evidence was initiated by Grollman et al., who compared the effects of ureteal ligation, with uretocaval anastomoses. Ureteal ligation causes atrophy of the renal medulla, and development of a 'hydronephrotic kidney' (Grollman et al., 1949). Dogs prepared with ureterocaval anastomoses, and therefore deprived of excretory ability failed to develop hypertension, whereas those with ureteral ligation did. Muirhead and colleagues later discovered that the renal papillae of the ligated kidney preparations were destroyed whereas the papillae of the anastomosed preparations were intact (Muirhead et al., 1960a). This finding prompted Muirhead to propose that cells in the renal papilla were involved in the prevention of hypertension in dogs with ureterocaval anastomoses (see Muirhead, 1980). This hypothesis was supported by the finding that transplants of the renal medulla (and no other region of the kidney, i.e. the cortex) prevented renoprival hypertension (Muirhead et al., 1S60b).

He then went on to report findings using transplants of fragmented renal medulla, cortex and other tissues (liver and spleen) in experimental models of hypertension (in rats), including accelerated renoprival hypertension, one-kidney, one clip hypertension, malignant hypertension, and extreme salt loaded renoprival hypertension (Muirhead et al., 1975). Renomedullary tissue was antihypertensive in all instances whereas renocortical and other tissues were not (see Muirhead, 1980). Similar transplantation studies from other laboratories have confirmed these findings (Solez et al., 1976; Susic et al., 1978).

Murhead's next observation was that the main cells surviving the transplants were in close association with the capillaries (Muirhead et al., 1972a). His next challenge was to isolate these
cells and determine their content. Using tissue culture techniques he was able to grow these cells and determine that they contained abundant lipid dropiets (Muirhead et al., 1972b). He was finally able to link the antihypertensive effect of these renomedullary interstitial cells in vivo by showing that transplantation of these cultured cells into hypertensive rats produced antihypertensive effects (Muirhead et al., 1975) (see above). In other studies, Muirhead was able to provide lipid extracts, from cultured renal medullary interstitial cells, whole renal medulla, and the venous effluent of kidneys perfused at high pressure, that had blood pressure lowering effects (Muirhead et al., 1991a; Muirhead et al., 1991b). The ultimate goal of complete chemical characterization of the active principle(s) in these lipid extracts has remained elusive.

The second line of evidence came from studies in rats, which demonstrated that arterial pressure could be rapidly 'normalized' following the removal of the renal arterial clip from renal hypertensive rats (see Bing et al., 1981). This rapid reduction in MAP, according to several studies, cannot be explained by either normalization of structural vascular changes, prostaglandins, the renal kallikrein-kinin system, the renin-angiotensin system, vasopressir, endogenous opioids or the pressure diuresis-natriuresis mechanism (Russell et al., 1982a; Russell et al., 1982b; Muirhead et al., 1985). On the other hand, when rats were pretreated with 2-bromothylamine to chemically ablate the renal medulla, the reversal of the hypertension following renal artery unclipping occurred much more slowly, suggesting that the depressor substance was released from the renal medulla (Bing et al., 1981).

Thirdly, cross-circulation studies in rats, in which RAP could be increased by means of a pump, cross-circulated in series with an intact 'assay rat', demonstrated that a humoral depressor mechanism which lowered MAP was activated in the 'assay rat' (Karlström et al., 1989). A depressor response could also be obtained under similar cross-circulation conditions, using spontaneously hypertensive rats, although much higher perfusion pressures were required for the activation of the depressor response, than in normotensive (WKY) rats (Karlström et al., 1991). There is at least indirect evidence for a role of MBF in this depressor response, since it is blunted by blockade of nitric oxide synthesis and electrical stimulation of the renal nerves; treatments that can reduce MBF (Rudenstam et al., 1992; Bergström, 1995; Bergström et al., 1995; Rudenstam et al., 1995; Bergström et al., 1996).

Our group has confirmed and exiended these findings using a novel approach applied in rabbits and dogs. In these studies, an extracorporeal circuit was established to perfuse the kidney in situ with the animals' own blood. A pump was used to circulate biood drawn from the aorta, and return it to
the vena cava (rabbits, or the iliac vein in dogs), and the renal artery. By altering flow in the venous limb of the circuit using a Starling resistor (but not altering total flow through the circuit), RAP and RBF can be set and maintained to any level, without producing direct effects on the systemic circulation. Using this model, powerful hypotensive responses were observed in response to the doubling of RAP ($170-190 \mathrm{mmHg}$) in both anaesthetized dogs and rabbits. It was also found that the depressor response to increased RAP was abolished when the animals were pre-treated with 2 bromoethylamine to chemically ablate the renal medulla (Christy et al., 1991), (Figure 1.3). It was -gued in these experiments that the falls in MAP in these experiments were not due to volume depletion triggered by the pressure-natriuretic-diuretic response, as all experimental animals were in positi'. \quad id balance all all times (Christy et al., 1991). Other experiments indicate that the depressor response is not due to prostaglandins, platelet activating factor, or suppression of the renin-angiotensin system (Christy et al., 1993), nitric oxide release (Evans et al., 1995; Thomas et al., 1995), or products of cytochrome P450 metabolism of arachidonic acid (Evans et al., 1998b).

Figure 1.3 Mean systemic arterial pressure (SAP) before, during and after increasing renal perfusion pressure, using the extracorporeal circuit. Responses are shown for individual rabbits. (a) Response in rabbits pretreated with 2 -bromoethylamine to produce 'chemical medullectomy', (b) response in normal rabbits. Adapted from (Christy et al., 1991).

Although there is no direct evidence linking the factor(s) responsible for mediating these depressor responses of increased RAP to 'medullipin', the depressor substance is presumed to be housed in the renal medullary interstitial cells. This remains to be shown definitively. The characteristic component of these cells are their lipid inclusions, visible using both light and electron microscopy.

These cells are interposed by cytoplasmic extensions between the tubules and blood vessels of the renal medullary intersititum (Lemley and Kriz, 1991), closely resembling the rungs of a ladder (Kriz, 1981), and anchor through cytoplasmic processes into the basement membrane of Henle's loop and the vasa recta (Kriz, 1981).

Pitcock and colleagues (Pitcock et al., 1982; Pitcock et al., 1984; Pitcock et al., 1985), have reported various morphological changes in renal medullary interstitial cells in some forms of genetic hypertension, and a reduced number of these cells (and fewer lipid granules) in Dahl saltsensitive rats compared to salt-resistant rats. They also reported that Dahl salt-resistant rats, but not Dahl salt-sensitive rats, respond to an increased salt diet with an increase in the number and size of renal medullary interstitial granules.

While the components of the lipid inclusions have not been fully characterized, histochemical studies have shown them to comprise largely of saturated and unsaturated lipids. Three possible antihypertensive factors have been identified from isolated renal interstitial cells and also from renal venous effluent from isolated kidneys perfused at high pressures (Muirhead et al., 1991a): prostaglandin E_{2}, antihypertensive polar renomedullary lipid (APRL; known to be identical to platelet activating factor, PAF) and the antihypertensive neutral renomedullary :ipid, collectively known as medullipin I. Other components of these cells are; triglycerides, cholesterol esters and free fatty acids as well as precursors of prostaglandins, (mainly prostaglandin E_{2}), and glycosaminoglycans, mainly hyaluronic acid (see Thomas et al., 1996). Medullipin I is inactive, but appear to require 'activation' by cytochrome P-450 during the passage through the liver to form medullipin II, which has powerful depressor actions (Muirhead et al., 1991b). Despite intense efforts in determining the molecular structure of both medullipin I and II, their identities remain unknown.

One possible stimulus for the release of this putative renal medullary depressor hormone is increased MBF in response to increased MAP. If MBF is poorly autoregulated (see discussion above), the medullary microcirculation is in an ideal position to detect increased MAP, and in turn initiate a cas sde of events leading to release of this putative hormone. This hypothesis has to date received little attention, and is a major focus of the experiments described in this thesis. We can only speculate at present as to the precise mechanisms that might allow increased MBF to stimulate release of the putative renal medullary depressor hormone. They might include changes in intravascular sheer stress, inner medullary concentrations of ions or metabolites, medullary interstitial osmolarity or hydrostatic pressure, or medullary oxygen levels.

Although the experiments described above provide evidence of a depressor substance released from the renal medulla in response to increased RAP, this evidence remains indirect. One of the major focuses of the experiments described in this thesis is to more stringently test the hypothesis that this hormone exists, and is released in response to increased RAP. Specifically, this hypothesis can only be maintained if the depressor response to increased RAP can be demonstrated under conditions where the other major renal antihypertensive mechanisms, inhibition of renin release and pressure diuresis/natriuresis, are controlled for.

1.3 The renal circulation

The significance of local flow changes in the kidney was first suggested by Trueta and colleagues (see Ofstad and Aukland, 1985), who claimed that 'redistribution' of intrarenal blood flow could cause cortical hypoxia and tubular necrosis, as well as other types of renal abnormalities. Subsequently, several hypotheses implied that important renal functions such as the maintenance of the corticomedullary osmotic gradient (important for the concentration of urine and the excretion of sodium chloride) might be regulated in part through regulation of local blood flow in the medulla. Hence, the notion that the renal medullary circulation plays a significant role in the regulation and maintenance of salt and fluid balance and circulatory homeostasis was born.

The unique arrangement of the cortical and medullary microcirculation is shown diagrammatically in Figure 1.4. The cortical and medullary microcirculations are virtually 'in-series' and 'in parallel' simultaneously. They are in series because all blood that flows to the medulla must first pass through the cortex. On the other hand, however, MBF is derived from a sub-population of glomeruli at the corticomedullary junction, so redistribution of blood flow between these juxtamedullary glomeruli and those in other cortical regions could theoretically lead to large changes in MBF yet little or no change in total CBF. As will be described in more detail below, there are also more subtle mechanisms that could possibly allow for differential control of CBF and MBF. First, however, we must consider the structural aspects of the renal circulation in detail.

Figure 1.4 The renal circulation, and the microcirculatory resistance segments in the cortex and outer medulla. The kidney is divided into the cortex, which contains glomeruli, neprhron segments (not shown) and a dense capillary plexus (rhich: branches from peritubular capillaries; not shown). An arcuate artery gives rise to interlobular arteries from which afferent arterioles originate at an angle that varies with corticai location. Blood is supplied to the renal cortex and medulla principally from the efferent flow of superficial and juxtamedullary glomeruli, respentively. Efferent arterioies of juxtamedullary glomeruli give rise to descending vasa recta (DVR) in the outer stripe of the outer meedulla. In the inner stripe of the outer medulla, the DVR and ascending vasa recta (AVR) returning from the inner medulla (IMi) (not shown) form vascular bundles. The DVR from the bundle periphery supply the interbundle capillary plexus of the inner stripe, while those in the center supply blood to the inner medulla. The extent to which blood flow to the medulla is supplied by pre-glomerular 'shunt' pathways is uncertain. 「aken from (Pallone et al., 2000).

1.3.1 Cortical microcirculation

The cortical circulation begins with the branching of the renal artery into (6-10) interlobar arteries. These then ascend within the renal pelvis, penetrate the renal parenchyma, change direction, and follow an arc-like direction near the corticomedullary border as arcuate arteries. The arcuate arteries give rise to the interlobular arteries which ascend through the sortex isward the renal capsule and give rise to afferent arterioles. The afferent arterioles enter the glomeruli, and exit as efferent arterioles to form a peritubular capillary network (Beeuwkes, 1980; Pallone et al., 1990; Bertram. 2000).

1.3.1.1 Afferent arterioles

The angles at which the afferent arterioles arise from the interlobular arteries are dependent on their position in the cortex. Those of the outer cortex enter the glomeruli in line with the parent vessel, but those that supply the juxtamedullary glomeruli leave at a recurrent angle. Most afferent arterioles are branches of the cortical radial (interlobular) arteries, although some juxtamedullary afferent arterioles are direct branches of arcuate arteries (Bertram, 2000).

The afferent arteriole enters the glomerulus at the vascular pole and branches to form the glomerular tuft. The wall of the afferent arteriole is composed of one to three layers of muscle cells and elastic tissue (Pallone et al., 2000). These vascular components gradually diminish near the glomerulus, as some muscle cells are replaced by renin containing granular cells of the juxtaglomerular apparatus (Pallone et al., 2000). The afferent arterioles of juxtamedullary nephrons contain fewer granular cells than those of the mid and outer cortical regions, possibly implying a lower renin content.

In some species, muscular intra-arterial cushions exist at the origin of juxtamedullary afferent arterioles. Their purpose is uncertain, but two possible roles have been hypothesized; their position is well suited to the modulation of MBF, since it is accepted that the majority of MBF arrives from these vessels. The second possible function of these cushions is a possible skimming role which acts to reduce the haematocrit of meduilary blood (Pallone et al., 1990).

1.3.1.2 Efferent arterioles

Efferent arterioles begin inside the glomerular tuft. As with afferent arterioles, those of the juxtamedullary region are larger in size and have 2-4 layers of smooth muscle cells, compared with the smaller arterioles of the mid and outer cortical regions, which contain only 1-2 layers (Bertram, 2000). This has been documented across many species, including; rabbits, dogs, rats, and humans (Pallone et al., 1990; Pallone et al., 1998). Juxtamedullary efferent arterioles are also longer, and cross the corticomedullary junction to enter the outer stripe of the outer medulla where they give rise to the descending vasa recta (Pallone et al., 2000).

1.3.2 Renal medullary blood flow

1.3.2.1 Medullary microcirculation

Although the renal medulla receives only $\sim 10 \%$ of total RBF it serves the important functions of supplying oxygen and nutrients and removing carbon dioxide and metabolic end products from its surrounding tissue. MBF also plays a significant role in blood pressure regulation through urine concentration and dilution (Ullrich et al., 1962; Thurau, 1964; Fadem et al., 1982), and may stimulate the release of the putative depressor hormone (Bergström and Evans, 1998).

Blood enters the renal medulla chiefly via the efferent arterioles of juxtamedullary glomeruli, although alternate routes have been postulated (Kriz, 1981; Kriz, 1982; Pallone et al., 1990). These efferent arterioles have larger diameters and a thicker endothelium than those of the cortex. They are surrounded by two to four layers of emooth muscle cells, and are accompanied by sympathetic innervation. As these vessels descend further into the renal medulla, the smooth muscle cells are gradually replaced by pericytes, so that most, if not all contractile function, along with sympathetic innervation is probably lost at the junction of the outer and inner stripe (Pallone et al., 1990). On the other hand, contractile protein expression has been detected in inner medullary pericytes (Park et al., 1997a), although its functional significance remains to be determined.

1.3.3 Outer medulla

The renal medulla is structurally divided into three sections; the outer medulla, which has two sections of its own, the outer and inner stripe, and the inner medulla (Edwards, 1956; Smith, 1956).

In the outer stripe, the efferent arterioles divide into as many as thirty descending vasa recta, to resemble a 'horse tail' arrangement. At intervals these descending vasa recta branch off to form a capillary plexus, which is most dense in the inner stripe, less dense in the outer stripe and even less dense in the inner medulla (Kriz, 1981; Jamison and Kriz, 1982; Zimmerhackl et al., 1987).

The most prominent characteristic of the medullary circulation is the distinct division of the vascular and interbundie regions of the inner stripe (Pallone et al., 1990), which spatially separates blood perfusing different areas of the medulla. As the descending vasa recta travel further towards the papilla, the endothelium thins and becomes fenestrated (Schwartz et al., 1976; Jamison and Kriz, 1982; Pallone et al., 1990). The capillaries forming the plexus are also lined with a thin fenestrated endothelium, and gradually become ascending vasa recta, which serve to remove biood from the medulla and return it to the interlobular and arcuate veins. The capillaries forming the plexus and the ascending vasa recta are morphologically indistinguishable from systemic capillaries (Schwartz et al., 1976; Jamison and Kriz, 1982), except that they have larger diameters (Steinhausen et al., 1981; Zimmerhackl et al., 1985a; Zimmerhackl et al., 1985b).

The inner stripe of the outer medulla remains the most constant (across species) of the medullary circulesion. It is present in all species, and its complexity appears to be related to urine concentrating ability. The least complicated arrangement is found in rabbits, guinea pigs, dogs, cats, some species of monkey, and humans. This 'simple' vascular arrangement comprises solely of descending and ascending vasa recta (Kriz, 1981), with most of the ascending vasa recta originating from within the bundles of the inner medulla (Pallone et al., 1990), and ascending directly to the cortex.

The 'complex' vascular bundle is more common in species with greater urine concentrating ability, including rats, mice, Meriones, and Psammomys obesus (Kaissling et al., 1975; Pallone et al., 1990). This complex arrangement incorporates the descending thin limbs of nephrons with short loops of Henle together with the descending and ascending vasa recta, such that the ratio of ascending to descending vasa recta is $\sim 4: 1$ in the Psammomys (see Pallone et al., 1990). In some species, this complex bundle becomes even more complex, through the positioning of the descending thin limbs of Henle's loop within the bundles, such as in the rat, and the incorporation of extensive invaginations of the pelvis in the Psammomys. The structural arrangements act to ensure optimum opportunities for countercurrent exchange between descending and ascending vasa recta (see Pallone et al., 1990).

1.3.4 Inner medulla

The number of microvessels in the medulla decreases from the corticomedullary junction to the papillary tip such that the vascular cross sectional area of the medulla decreases exponentially (Knepper et al., 1977; Kriz, 1981). Soon after the junction of the inner and outer medulla, the vascular bundles disappear and individual descending and ascending vasa recta become dispersed amongst the tubular structures of the inner medulla (Lemley and Kriz, 1987). The proportion of medullary tissue occupied by the interstitium is now increased from $\sim 5 \%$ in the outer medulla to almost 30% near the papillary tip (Knepper et \boldsymbol{c} k. . 1977). The inner medullary interstitial cells are arranged between these structures and it has been postulated that they act to provide structural support, and may act to inhibit the axial diffusion of solutes, preventing dissipation of corticomedullary gradients (Kriz, 1981; Bankir and deRouffignac, 1985).

As in the outer medulla, ascending vasa recta outnumber descending vasa recta and have larger diameters. In vivo observations (Zimmerhackl et al., 1985d) and mass balance calculations (Pallone et al., 1984; Zimmerhackl et al., 1985d), have established that the ascending vasa recta out-number the descending vasa recta by a ratio of approximately 2.3:1 in the Munich-Wistar rat, and 1.7:1 in the hamster (Pallone et al., 1990).

Descending vasa recta have a non-fenestrated endothelium and are selectively permeable, but gradually develop fenestrations as they turn to become ascending vasa recta. In the inner medulla, the fenestrations cover $\sim 50 \%$ of the surface area, but as they ascend closer to the cortex, these fenestrations decrease to cover $\sim 15-30 \%$ of the ascending vasa recta wall. The highly fenestrated structure of the ascending vasa recta endothelium suggests a high permeability to water and small solutes, and the increase in size and number of the ascending vasa recta (relative to descending vasa recta) implies a larger surface area for transcapillary exchange and a slower blood flow rate, thereby optimizing the time available for countercurrent exchange and reabsorption. At the corticomedullary border, the ascending vasa recta of the medulla ennpty into the arcuate veins or into the basal parts of interlobular veins. However, in some species (with high urine concentrating ability) such as the rat, guinea pig, and especially the desert rodent Psammomys obesus, some of the venous medullary vessels continue to ascend within the medullary rays of the cortex and finally empty into middle or even upper parts of interlobular veins (see Pallone et al., J990).

1.3.5 Renal medullary interstitial cells

Renal medullary interstitial cells are unique to the renal medulla and are most prevalent towards the papillary tip (Lemley and Kriz, 1991). They are best known for their ability to synthesize large quantities of vasodepressor lipids or lipid precursors, including PGE_{2} and perhaps also medullipin I (Muirhead et al., 1972b; Muirhead, 1991) The number of lipid droplets varies from species to species, and amongst individuals within the same species, and from cell to cell within the same individual. They are also frequently absent from cells (Kriz, 1981). It has been suggested that the number of lipid droplets is correlated with the salt and water balance of the animal, however, these data are controversial (Mandal et al., 1974; Pitcock et al., 1982). The renal medullary interstitial cells typically bridge the interstitium between medullary blood vessels and thin limbs of Henle's loops, forming a ladder-like arrangement with the long axis of the cells perpendicular to the long axis of the papilla (Pallone et al., 1990). This anatomic arrangement suggests a number of functions. The most frequently considered possible function of the medullary interstitial cells has been the production of the medullary prostaglandins and the storage of prostaglandin precursors (Muirhead et al., 1972b). However, these cells are not the only and possibly not the most important source of renal prostaglandins, so this role remains open for speculation. Morphologically, due to their position a structural role has also been considered, particularly in the prevention of vascular collapse in situations where volume reabsorption is dependent on interstitial hydraulic pressures that exceed those within the (ascending) vasa recta Jumen (Pallone et al., 1998). In addition, due to their orientation it has been proposed that they may hinder axial diffusion in the medulia thereby limiting dissipation of the solute concentration gradient (Kriz, 198I). With respect to this latter point, it is interesting to note that the kangaroo rat, which has the ability to produce highly concentrated urine, has the greatest abundance of papillary renal medullary interstitial cells known (see Pallone et al., 1990). A further function for these cells has been postulaied - contraction. Renal medullary interstitial cells have contractile elements and cytoplasmic fibrils which are anchored to adjacent blood vessels and Henle's loop (see Hughes et al., 1995; Park et al., 1997a). This putative contractile function might add weight to the argument that these cells play a regulatory role in urine production, as well as regulation of other renal medullary functions.

1.4 Possible sites involved in the regulation of renal medullary blood flow

The medullary circulation is complex and unere are many possible sites which could govern or contribute to the control of MBF, either actively or passively (Pallone et al., 1990; Bergström and Evans, 2000; Pallone et al., 2000). These are discussed in detail below (see Figure 1.5).

Since it is accepted that MBF is delivered almost entirely from the efferent arterioles of juxtamedullary glomeruli, and that these constitute only about 10% of all glomeruli, vasoconstriction or vasodilation of either the afferent or efferent arteriole(s) of these glomeruli could theoretically produce a change in flow to the renal medulla but little or no change in total RBF (Pallone et al., 199(). Furthermore, it has been suggested that 5-10\% of the juxtamedullary glomeruli possess shunt pathways, which run between afferent and efferent arterioles, allowing blood supplying the renal medulla via these shunts to bypass the juxtamedullary glomeruli. Therefore MBF could theoretically be altered without any change in glomerular perfusion and filtration in deep nephrons. However these shunt pathways comprise only a small percentage of total MBF and their functional significance requires clarification (Pallone et al., 1990).

Ròughly 20% of juxtamedullary glomerular efferent arterioles supply only the inner cortex, and do not enter the medulla (Chou et al., 1990). Differential control of blood flow to the two different types of glomeruli would alter blood distribution between the inner cortex and medulla, although this seems unlikely, because they represent such a small percentage of the overall blood flow to this region.

The outer medullary descending vasa recta contain contractile elements (smooth muscle cells), are innervated by the sympathetic nervous system, and respond to vasoactive agents in vitro (HarrisonBernard and Carmines, 1994; Silldorff et al., 1995). Contraction of these vessels will produce a change in conductance of the vessels supplying the medulla, and may provide a mechanism by which blood, when passing through the vascular network in the outer medulla, can be directed either into the inner medulla or shunted back to the inner cortex (Pallone et al., 1990).

As described in previous sections of this chapter, renal medullary interstitial cells are irregular star shaped cells with long cytoplasmic projections, interposed bewveen vasa recta and the thin limbs of the loop of Henle throughout the medulla, forming a ladder ble strangement. It is believed that these medullary interstitial cells might participate in the coneol of I ABF by constriction of their cytoplasmic processes and thereby the interstitium and vasculature (Park et al., 1997a; Bergström
et al., 1998). A further possible paracrine role of these cells in control of MBF might result from local secretion of vasoactive substances, including PGE $_{2}$ and medu!lipin I (Zusman and Keiser, 1977; Mairhead, 1991).

A further hypothesized mechanism which might be involved in the regional distribution of MBF is the occurrence of passive changes in the vasculature responsible for the venous outflow from the medulla, as the proximity of tubular structures to the venous drainage of the renal medulla might alter outflow resistance in this region of the vasculature (Pallone et al., 1990). Renal kinins might also participate in this response, since kinins are the chief mediators of increased MEF in response to captopril treatment in rats, perhaps by reducing the vasa recta outflow resistance (Mattson and Roman, 1991).

Afferent arterioles of juxtamedullary glomeruli are also distinctive by virtue of having specialized structures at their origin from the interlobular artery. These, intra arteriolar 'cushions', contain a smooth muscle cell like structure which protrudes into the lumen of the afferent vessel. They are found in rat, cat, and dog, but not in rabbit guinea pig, hamster, pig, sheep, ox, or man (Zimmerhackl et al., 1985b). Although the function of these cushions is uncertain, their location makes them ideal candidates for the regulation of blood flow in the medulla (Pallone et al., 1990).

As the descending vasa recta reach further towards the renal papilla, the smooth muscle cells are gradually replaced by pericytes which form an incomplete layer around these vessels. Pericytes are considered as 'hybrid' cells as they contain microfilaments, suggesting a contractile capacity (Hughes et al., 1995; Park et al., 1997a).

Despite this abundance of information regarding the sites that could theoretically regulate MBF, there is surprisingly little information about the vascular sites that regulate MBF in vivo. In one sense this is hardly surprising, given the inaccessibility of the medullary microcirculation. One of the aims of the experiments described in this thesis, thercfore, was to begin to investigate this issue. Although the sites responsible for the control of MBF in vivo remain to be definitively determined, there is now little doubt that circulating and locally acting hormones, and the renal sympathetic nerves, can differentially regulate CBF and MBF. The diversity of responses of CBF and MBF to these regulatory factors is discussed below.

Figure 1.5 Schematic representation of the microcirculation of the renal medulla. The descending vasa recta are shown on the left side while the ascending vasa recta and venous vasculature are shown on the right. Numbered arrows represent potential sites for control of medullary blood perfusion.: (1) the afferent and efferent arterioles of juxtamedullary glomeruli; (2) shunt pathways running between afferent and efferent arterioles, some connect afferent and efferent atterioles in parallel with the glomeruli while others replace the glomerular circulation; (3) the efferent arterioles of some of the juxtamedullary glomeruli only supply the inner cortex ($\sim \mathbf{2 0 \%}$) while others descend into the medulla; (4) the outer medullary descending vasa recta and the vascular network in the outer medulla; (5) passive components of vascular resistance in the inner medulla; (6) putative contractile elements in inner medullary vasa recta; (7) passive changes in the venous outflow resistance from the medulla; (8) renal medullary interstitia! cells. Taken from (Bergström and Evans, 2000).

1.5 Differential control of cortical and medullary blood flow by nerves and hormones

Intravenous infusion of vasoconstrictor agents can produce diverse effects on regional kidney blood flow in intact conscious rabbits (Evans et al., 2000b). This provides support for the notion that circulating and locally acting hormones, as well as renal sympathetic innervation, can differentially regulate CBF and MBF under physiological conditions. There is accumulating evidence that the medullary microcirculation plays an important role in the long-term control or arterial pressure, via its influence on tubular sodium handling (Cowley, 1997) and perhaps also through its endocrine function (Bergström and Evans, 1998) (sec above). It seems likely therefore, that hormones and nerves can influence the long-term control of blood pressure by their individual and interactive effects on the intrarenal distribution of blood flow.

1.5.1 Renal nerves

The kidney is innervated with post-ganglionic sympathetic nerve fibers, which contribute to the modulation of renal renin release, tubular function, and renal vascular resistance (Malpas et al., 1996; DiBona and Kopp, 1997; Malpas and Evans, 1998; Pallone et al., 1998). However, until recently the influence of renal nerves on regional kidney blood flow, and in particular blood flow in the renal medulla, has been little understood.

Noradrenaline is the chief neurotransmitter of the sympathetic nervous system. It is stored in vesicles aggregated in sympathetic nerve varicosities, and released by a calcium-dependent process of exocytosis during depolarization of the post-ganglionic sympathetic cell membrane (see Esler et al., 1985). Several lines of evidence support a physiological role for the sympathetic nervous system in the regulation of renal function (see Bradley and Hjemdahl, 1984). Within the kidney, noradrenaline is released from the sympathetic nerve endings, which innervate the smooth muscle cells of the renal vasculature, the juxtaglomerular cells, and some tubular segments in the cortex and outer medulla (Bradley and Hjemdahl, 1984; Hesse and Johns, 1985), and distal tubules. Neuronally released noradrenaline has profound effects on the regulation of RBF, sodium reabsorption, and renin secretion (DiBona and Kopp, 1997).

In vitro, noradrenaline causes contraction of outer medullary descending vasa within a concentration range of $10^{-9}-10^{-6} \mathrm{M}$ (Edwards, 1983; Yang et al., 1995). Vasoconstriction of outer medullary descending vasa recta by noradrenaline may therefore reduce medullary perfusion, and thereby increase sodium and water reabsorption. In the isolated perfused rabbit (superficial
microvessels) (Edwards, 1983), and hamster (Click et al., 1979) kidney, noradrenaline has a direct vasoconstrictor effect on the interlobular artery and the afferent and efferent arterioles. Direct microscopic observations of afferent and efferent arterioles have confirmed their ability to constrict in response to noradrenaline (Yang et al., 1995).

Renal nerves are found on the afferent and efferent arterioles of juxtamedullary glomeruli, and along the descending vasa recta throughout the outer, but not inner medulla (Chou et al., 1990). Physiological studies on the influence of the renal innervation on MBF have been scant and sometimes contradictory, but it seems that MBF may be reduced in response to increases in nerve activity (Rudenstam et al., 1995).

Recent studies by our group, utilizing electrical stimulation of the renal sympathetic nerves and simultaneous recordings of RBF, CBF, and MBF in anesthetized rabbits, suggest that the renal nerves differently influence CBF and MBF (Leonard et al., 2000). MBF appears to be less sensitive than CBF to a mean increase in renal sympathetic nerve activity, but is capable of responding to higher frequencies of stimulation (Leonard et al., 2000; Navakatikyan et al., 2000). The relative insensitivity of the medullary microcirculation to renal sympathetic nerve activity also appears to extend to reflex increases in sympathetic drive, since chemoreceptor stimulation (hypoxia or chemical stimulation) can reduce CBF but not MBF in anaesthetized rabbits (Leonard et al., 2001), and conscious rats (Ledderhos et al., 1998). Collectively, these observations are largely consistent with those of Rudenstam et al., who found a biphasic dependence on the frequency of stimulation (in rats), such that papillary perfusion is increased at 2 Hz but decreased during stimulation at 5 Hz (Rudenstam et al., 1995). On the other hand they do differ from some earlier studies using methods other than laser-Doppler flowmetry, for example, Hermansson and colleagues found renal denervation to produce increases in MBF (Hermansson et al., 1984).

The physiological mechanisms underlying a differential sensitivity of CBF and MBF to renal sympathetic nerve activity still requires further investigation. Regional differences in innervation density, the post-junctional responsiveness to noradrenaline or in the amount of vascular smooth muscle (Kriz, 1981; Pallone et al., 1998) may contribute (see Leonard et al., 2000). There is-both structural and functional evidence that the renal innervation could differentially regulate regional kidney perfusion by actions on the juxtaglomerular vasculature. Barajas and colleagues (Barajas et al., 1984) reported that, in rats, afferent and efferent arterioles are endowed with dense adrenergic innervation. McKenna and Angelakos provided similar observations in the dog and specifically pointed out the innervation of vasa recta in the outer medulla (McKenna and Angelakos, 1968).

Studies of the regional responses of afferent and efferent arteriojes to renal nerve stimulation were performed by Chen and Fleming (Chen and Fleming, 1993) in the hydronephrotic kidney. They found that the afferent arterioles of juxtamedullary glomeruli were less responsive to renal nerve stimulation than their outer cortical counterparts. Furthermore, juxtamedullary afferent and efferent arterioles have greater diameters than their outer and mid cortical counterparts (see Pallone et al., 1990), and according to Poiseuille's relationship an equivalent level of smooth muscle fiber shortening, will produce greater changes in vascular resistance in the smaller vessels outside the juxtamedullary region. Thus, differences in responsiveness to nerve stimulation per se, as well as differences in vessel geometry, probably contribute to the lesser sensitivity of MBF.

There is now good evidence that increased sympathetic nerve activity, particularly that directed at the kidney, plays a role in the pathogenesis of hypertension. Elevated renal sympathetic nerve activity manifested as increased renal vascular resistance and decreased RBF has been demonstrated in human essential hypertension (Plato and Osborne, 1996). Greater increases in RBF are observed in response to intrarenal arterial administration of phentolamine (α - antagonist) in human essential hypertensive patients than in normotensive control subjects (Hollenberg et al., 1975). Also, SHR exhibit greater renal sympathetic nerve activity than age matched normotensive WKY rats as evidenced by both whole nerve and single fiber recordings (Judy et al., 1976; Judy and Farell, 1979). The onset of hypertension in these models may be delayed or blunted by renal denervation (Liard, 1977; Norman and Dzielak, 1982; Plato and Osborne, 1996).

In further support of the importance of renal sympathetic drive in the long-term control of arterial pressure intrarenal noradrenaline infusions in chronically instrumented dogs (Katholi et al., 1977; Cowley and Lohmeier, 1979; Reinhardt et al., 1995) and rats (Kleinjans et al., 1984; Smits et al., 1987) caused significant reductions in RBF and increases in plasma renin activity, and resulted in sustained hypertension. Additionally, similar doses of noradrenaline administered intravenously were not capable of producing chronic arterial hypertension, which also appears to be the case in humans (see Katholi et al., 1977).

1.5.2 Arginine vasopressin

In the kidney, receptors for arginine vasopressin ($\mathrm{V}_{1 \mathrm{a}}$ and V_{2} subtypes) are located predominantly in the medulla (Ostrowlski et al., 1992). The $\mathrm{V}_{1 \mathrm{a}}$ receptor subtype is primarily associated with vascular structures in the inner stripe of the outer medulla (Ostrowlski et al., 1992) and mediates
vasoconstriction through activation of phospholipase C (Howl and Wheatley, 1995), while the V_{2} receptor mostly exists on tubular structures and stimulates recruitment of aquaporin molecules into the cell membrane, by stimulation of adenylate cyclase (Howl and Wheatley, 1995; Park et al., 1997b).
V_{1} receptor activation in the kidney produces a variety of responses, including selective reduction in MBF, and diuresis and diuresis/natriuresis (Franchini et al., 1997; Evans et al., 1998a). For example, in anesthetized rats and rabbits, acute renal medullary interstitial or intravenous infusion of the vasopressin V -agonist, [$\mathrm{Phe}^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}$]-vasopressin, selectively reduces MBF and paradoxically increases urine flow and sodium excretion (Nakanishi et al., 1995b; Ledderhos et al., 1995; Evans et al., 1998a). It may also act to inhibit the release of the putative renal medullary depressor hormone in response to increased RAP (Bergström and Evans, 1998). Chronic infusion of [Phe $\left.{ }^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin either intravenously (Cowley et al., 1994) or directly into the renal medulla (Szczepanska-Sadowska et al., 1994) causes sustained hypertension, in normotensive animals, which may be reversed by renal medullary administration of a V_{1} antagonist [Cowley, 1994 \#403; (Szczepanska-Sadowska et al., 1994). Also, chronic antagonism of arginine vasopressin receptors attenuates the development of hypertension in SHR (Feng and Arendshorst, 1996).

Physiological concentrations of arginine vasopressin also decrease MBF without changing the much larger cortical flow (Zimmerhackl et al., 1985c; Kiberd et al., 1987a; Nakanishi et al., 1995b). This action seems to be chiefly mediated through activation of the V_{1}-receptor, although there have been reports that V_{2}-receptor activation can produce both increases and decreases in MBF (Nakanishi et al., 1995b; Kiberd et al., 1987a). In vitro studies of isolated perfused vessel preparations have found that the afferent arterioles of juxtamedullary glomeruii are most sensitive to the vasoconstrictor effects of arginine vasopressin compared with the other vessel segments studied (Turner and Pallone, 1997; Harrison-Bernard and Carmines, 1994). On the other hand, arginine vasopressin does constrict both outer medullary descending vasa recta as well as upstream pre- and postglomerular arterioles (; Harrison-Bernard and Carmines, 1994; Navar et al., 1996; Turner and Pallone, 1997)

1.5.3 Endothelin

As the level of renal MBF appears to be an important determinant of long-term arterial pressure, the relative insensitivity of the medullary microcirculation to the vasoconstrictive effects of endothelin1 may have important implications for the influence of endothelins on the iong term control of
arterial pressure. Endothelin-1 is the most potent vasoconstrictor known to exist, and has been implicated in the pathogenesis of kidney disease and animal models of hypertension (Fujita et al., 1995a; Fujita et al., 1995b; Hocher et al., 1996). Small increases in the circulating concentration of endothelin-1 produces hypertension in rats, dogs, and sheep (Mortensen and Fink, 1992; May et al., 1993; Wilkins et al., 1993). Similarly, endothelin blockade lowers arterial pressure in normotensive human subjects (Haynes et al., 1996) and rabbits (Evans et al., 2000c).

Within the kidney endothelin receptors have been identified on collecting ducts, vascular bundles and renal medullary interstitial cells (Terada et al., 1992a) and endothelin constricts afferent and efferent arterioles, arcuate and interlobular arteries (Navar et al., 1996; Pallone et al., 1998) and outer medullary descending vasa recta (Silldorff et al., 1995).

In contrast to these in vitro observations, endothelin- 1 appears preferentially to reduce blood flow in the renal cortex, with little or no effect on MBF, in anaesthetized rats and dogs, and rabbits (see Evans et al., 1998c; Evans et al., 2000b; Evans et al., 2000c;). Bolus injection of endothelin-1 (a mixed endothelin ET_{A} and ET_{B} receptor agonist) have been shown to selectively reduce CBF while transiently increasing MBF, and these effects were inhibited by blocking ET_{A} and ET_{B} receptors respectively (Gurbanov et al., 1996). These findings are consistent with the hypothesis that endothelins do not constrict vascular elements controlling MBF when delivered to the vessel lumen in vivo. However, the resuits of in vitro studies (Silldorff et al., 1995), and those in the hydronephrotic kidney (Endlich et al., 1996), suggest that endothelin-1 may produce vasoconstrictor effects on outer medullary descending vasa recta when applied to the adventicia.

1.5.4 Angiotensin II

Despite the fact that a large number of studies have investigated the impact of angiotensin II on regional RBF, its effects on MBF remain unclear. A high density of angiotensin II receptors have been located on the inner stripe of the outer medulla in association with vasa recta bundles, suggesting that angiotensin II could have a direct effect on vasa recta function.

In vitro, angiotensin II constricts outer medullary descending vasa recta (Pallone, 1994). Consistent with this, renal arterial infusion of low doses of angiotensin II reduces PBF in dogs (Chou et al., 1990). However, the effect of angiotensin II on the medullary circulation may be dependent on the dose and the species to which it is administered. For example, studies in rats and rabbits have shown that exogenous angiotensin II either does not alter MBF (Parekh et al., 1996; Zou, 1996;

Evans et al., 2000b; Parekh and), or can increase MBF (Nobes et al., 1991; Evans et al., 1998a; Evans et al., 2000a).

However, despite the controversy regarding the effects of angiotensin II on the medullary circulation resulting from its administration, pharmacological blockade of angiotensin II formation by inhibition of angiotensin-converting enzyme has generally resulted in an increase in MBF, independent of effects on CBF (Roman and Kaildunski, 1988a), and changes to vasa recta diameter (Cupples et al., 1988; Navar et al., 1996). Under most experimental conditions this effect appears to be largely due to increased bradykinin levels, although there is some experimental support for a role of reduced angiotensin II formation, particularly in salt-replete dogs (Mattson and Roman, 1991; Omoro et al., 1999; Omoro et al., 2000).

1.5.5 Atrial natriuretic peptide

Atrial natriuretic factor is released from the heart in response to volume expansion, and is believed to play a role in sodium and water homeostasis (Cowley, 1992). Atrial natriuretic peptide increases PBF in rats (see Chou et al., 1990; Pallone et al., 1990) and enhances the diuresis and diuresis/natriuresis associated with elevations in RAP, suggesting a possible role in biood pressure control mediated by alterations in medullery haemodynamics (Pallone et al., 1990). However, although much research has been directed towards the mechanism by which atrial namiuretic peptide produces these effects it remains unknown whether the increased MBF occurs as an indirect effect secondary to increased volume reabsorption in the collection duct, or a direct effect mediated by vasodilation of the renal microvasculature (see Roman et al., 1991; Bergström and Evans, 2000). Much of the evidence suggests that both mechanisms operate, and this notion is supported by the observation that atrial natriuretic peptide vasodilates resistance vessels in the juxtamedullary circulation (Pallone et al., 1990).

1.5.6 Prostaglandins

Prostaglandins have been implicated in the control of both CBF and MBF (Pallone et al., 1990). They are synthesized by renal medullary interstitial cells and by medullary collecting duct cells (Zimmerhackl et al., 1985b). PGE_{2} and PGI_{2} are vasodilators, and appear to sustain MBF by counteracting the effects of other vasoactive agents. Prostaglandin synthesis inhibitors consistently decrease MBF in anaesthetized animals (Chou et al., 1990; Roman and Lianos, 1990; Roman et al., 1991; Parekh et al., 1996). The mechanism of their actions on MBF remains to be determined,
however it is believed that prostaglandins selectively dilate the vasculature in the juxtamedullary region. This notion is supported by the observation of redistribution of CBF toward the inner cortex and juxtamedullary nephrons during stimulation of prostaglandin production, while during inhibition of prostaglandin production, blood flow is directed towards the superficial cortex (Itskovitz et al., 1973; Larsson and Anggard, 1974; Lemley et al., 1984). There is little information regarding the influences of specific prostaglandins on MBF (i.e. $\mathrm{PGE}_{2}, \mathrm{PGI}_{2}, \mathrm{PGF}_{2 \alpha}$).

1.5.7 Kinins

Kinins are formed frem circulating kininogen by the enzyme kallikrein, located in the cells of the distal and collecting tabules. Bradykinin is a vasodilator that appears to increase MBF. Within the kidney, bradykinin B_{2} receptors are found on tubular structures and on the renal medullary interstitial cells (not the vasculature), and are most concentrated in the outer stripe (Manning and Snyder, 1989). B2-kinin receptor antagonists decrease PBF withuut affecting CBF or GFR, and further studies using these antagonists have demonstrated a role for endogenous bradykinin in increasing PBF during volume expansion (Fenoy and Roman, 1992). Increasing intrarenal kinin levels, either by inhibition of kinin breakdown or intrarenal infusion of bradykinin, selectively increases inner CBF and PBF (Bailie and Barbour, 1975), and this effect can be blocked by inhibition of nitric oxide synthesis with L-NAME (Mattson and Cowley, 1993). Additionally, sodium excretion is reduced by B_{2}-receptor antagonism during volume expansion, indicating a role for endogenous kinins in baseline PBF and the natriuretic response to volume expansion (see Navar et al., 1996).

Bradykinin also appears to play a role in the increased MBF following inhibition of angiotensinconverting enzyme (Omoro et al., 2000). The site at which endogenous bradykinin acts to increase inner MBF remains to be determined. As well as an involvement with the pressure diuresis/natriuresis mechanism, there is evidence of interactions between the kinin and angiotensin systems in the control of MBF. In the isolated perfused rat kidney, angiotensin II increases bradykinin levels, which in turn attenuates the vasoconstrictor effects of angiotensin II (Gardes et al., 1990). Thus there is compelling evidence that renal kinins may influence the distribution of RBF and the excretion water and electrolytes through paracrine mechanisms.

1.5.8 Adenosine

Intra-renal infusion of adenosine in dogs produces an initial decrease followed by an increase in RBF, which (during the latter response) produces a preferential increase in blood flow to the inner cortex (Spielman et al., 1980; Hall et al., 1985). The effect of adenosine on MBF has only recently been examined. High doses ($15 \mu \mathrm{~g} / \mathrm{min}$) of adenosine administered to the renal artery of rats almost doubled blood flow to the ascending and descending vasa recta. However, lower doses ($2-15$ $\mu \mathrm{g} / \mathrm{min}$) produced a marked diuresis and diuresis/natriuresis, but no effect on vasa recta blood flow (Miyamoto et al., 1988). In vitro, low concentrations ($1 \mathrm{pM}-10 \mathrm{nM}$) of adenosine produce vasoconstriction, presumably via activation of A_{1}-receptors, while A_{2}-receptor activation produced by higher concentrations of adenosine ($>100 \mathrm{nM}$) causes vasodilation (Silldorff et al., 1996) of outer medullary vasa recta. These results led to the notion that A_{1}-receptors mediate reduced MBF, while A_{2}-receptors mediate increased MBF. More recent studies using laser-Doppler flowmetry have confirmed this hypothesis (Agmon et al., 1993), and demonstrated a potential role of adenosine acting at A_{2} - receptors in the physiological regulation of MBF (Zou et al., 1999).

1.5.9 Nitric oxide

Evidence now exists in support of an important role for nitric oxide in the control and modulation of renal MBF and in the regulation of arterial pressure. All isoforms of nitric oxide synthase have been detected in the renal inner and outer medulia (Mattson and Higgins, 1996). The first indication that endothelial cells of vasa recta were capable of producing nitris oxide was provided by Biondi et al., who demonstrated that cyclic guanosine monophosphate (cGMP) production in both rerial cortical and medullary slices increases in response to endothelium dependent (i.e. acetyliholine, bradykinin) vasodilators, and that the highest cGMP levels are found in the inner and middle portions of the inner medulla (Biondi et al., 1990). Nitric oxide synthase III mRNA has been localized in the inner medullary collecting duct and glomeruli with smaller signals in the inner medullary thin limb, vasa recta, and arcuate artery (Terada et al., 1992b). These data suggest that the renal medulla is a major site of constitutive synthesis of nitric oxide in the kidney.

Expeninental evidence from both in vivo and in vitro studies indicate that the renal medulary microcirculation is more dependent on nitric oxide than the cortical circulation in terms of resting nitrerergic vasodilator tone (Bergström et al., 1996; Navar et al., 1996). In vitro, isolated descending vasa recta from the inner stripe of the outer medulla contract when superfused with
nitric oxide inhibitors (Yang et al., 1995). The effects of blockade of nitric oxide synthase on renal MBF have been documented in a number of studies, with reduced MBF being observed after both acute and chronic administration. Systemic blockade of nitric oxide synthesis reduces both CBF and MBF in anaesthetized rabbits (Bergström and Evans, 1998) and rats (Parekh et al., 1996). On the other hand, Lockhart et al. foind that systemic inhibition of nitric oxide synthase with L-NMMA in volume expanded rats increased blood pressure and selectively decreased MBF without changing CBF (Lockhart et al., 1994). Furthermore, intravenous infusion of N^{G}-nitro-L-argnine methyl ester in conscious rats reduces MBF but not CBF (Nakanishi et al., 1995a). Long term administration of nitric oxide synthase inhibitors produces sustained hypertension (Mattson et al., 1092; Mattson et al., 1994) that appears to be related to a shift of the renal pressure diuresis/natriuresis :elationship to higher levels of arterial pressure (Majid et al., 1993; Cowley et al., 1995; Evans et al., 1995). In support of this finding, acute inhibition of nitric oxide synthase is associated with a fall in RBF (Baylis et al., 1993; Majid et al., 1993), and GFR (Baylis et al., 1993), and increases in both preand post-glomerular vascular resistance (Salom et al., 1992). Collectively, these data suggest that nitric oxide plays an important role in regulating MBF.

1.6 Summary and aims of the studies undertaken in this thesis

The renal medulla appears to play an important role in the long-term control of arterial pressure (Cowley et al., 1995). The precise mechanism(s) involved, remain uncertain, however considerable evidence supports the notion that the poor autoregulatory capacity of the renal medulla plays a key role in mediating pressure diuresis/natriuresis (Cowley et al., 1995). It is also possible that the relationship between RAP and MBF plays a key role in mediating the release of the putative renal medullary depressor hormone (Bergström and Evans, 1998). On the other hand, definitive evidence for the existence of this hormone is still lacking. If the level of MBF plays important roles in regulating these renal antihypertensive mechanisms, circulating and locally acting hormones, and the renal nerves, might influence long-term control of arterial pressure through their effects on MBF. There is certainly good evidence for differential control of CBF and MBF by nerves and hormones, although little definitive information is available about the vascular sites that regulate MBF in vivo. The main focus of the experiments performed in this thesis has therefore been to determine the role of the renal medullary circulation in the renal antihypertensive responses to increased RAP, and to obtain more information of the y/ascular sites responsible for the regulation of MBF.

The specific aims of each experimental study were;

- To develop a method for the local delivery of vasoactive compounds (noradrenaline) to the renal medulla, and specifically, to determine the regional distribution of infused radiolabelled noradrenaline through the utilization of autoradiographic techniques (Chapter 3).
- To investigate the effect of reducing MBF on the renal antihypertensive response to increased RAP. This was addressed using an extracorporeal circuit in anaesthetized rabbits. We tested the effects of reduced MBF (medullary interstitial noradrenaline) and CBF (intravenous noradrenaline) on the pressure diuresis/natriuresis response, the inhibition of plasma renin activity, and the depressor response to increased RAP (Chapter 4).
- To determine the role of the pressure diuresis/natriuresis mechanism and inhibition of renal renin release in the depressor response to increased RAP (Chapter 5).
- To determine in vivo, the roles of juxtamedullary afferent and efferent arterioles in mediating reduced MBF in response to activation of vasopressin V_{1} - receptors.

Chapter Two

GENERAL METHODS

2.0 Introduction

In this chapter the methods employed in the experiments conducted in this thesis are described in general terms. Experimental protocols, and methods unique to particular studies, are described in the experimental chapters themselves (Chapters 3-6).

Studies investigating the regional renal distribution of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, following renal medullary interstitial infusions administered via either acute or chronically positioned catheters in anaesthetised rabbits are described and discussed in Chapter 3. The common methods employed in these experiments are outlined within Sections 2.2.1, 2.2.3, 2.3.2, and 2.6, of this chapter.

Studies investigating the renal antihypertensive responses to increased RAP are described in Chapters 4 and 5 , and the methods common to these experiments are described below Sections 2.2.1 and 2.2.3. Section 2.2.6 is specific to $w o$ otocols in Chapter 4 , and 2.3.3 to Chapter 5 .

Studies investigating the role of the afferent and efferent glomerular arterioles in the control of regional blood flow are described in Chapter 6. The general methods employed in these studies are outlined in Sections 2.2.2, 2.2.5, 2.2.6, 2.4, and 2.5 below.

2.1 Rabbits: breeds and housing

All experiments were performed on rabbits bred specifically for experimental purposes (Monash University Central Animal Services, Gippsland and Baker Medical Research Institute, Prahran). Prior to experimentation, rabbits were housed individually in special purpose built cages, where they had visual but not physical contact with rabbits in adjoining cages. Water was made available
ad libitum. Rabbits were either meal fed (100 g of pellets, Lucerne chaff and oat chall in a 4:1:1.2 mixture; Chapters 5 and 6), or food was available ad libiium (Chapters 3 and 4). All experiments were conducted in accordance with the Australian Ccue of Practice for the Care and Use of Animals for Scientific Purposes and were approved in advance by the Monash University Department of Physiology/Central Animal Services Animal Ethics Committee. At the conclusion of the experiment, rabbits were killed with an intravenous overdose of pentobarbitone sodium (300 mg).

2.2 Surgical procedures for acute non-recovery experiments

2.2.1 General surgical preparation for acute studies in anaesthetised rabbits

Catheters were placed in both central ear arteries and marginal ear veins under local anaesthesia (1.0% lignocaine; Xylocaine; Astra Pharmaceuticals, North Ryde, NSW, Australia). Rabbits were then anaesthetised with pentobarbitone sodium ($90-150 \mathrm{mg}$ i.v. Nembutal; Boehringer Ingelheim, Artarmon, NSW, Australia) which was immediately followed by endotracheal intubation and artificial ventilation (Model 55-3438 Respirator, Harvard Instruments; MA, USA). Throughout surgery and subsequent experimentation, anaesthesia was maintained by intravenous pentobarbitone infusion ($30-50 \mathrm{mg} / \mathrm{hr}$). To replace lost fluids, and maintain plasma volume during surgery rabbits received an intravenous infusion of Hartmann's solution (compound sodium lactate; Baxter Healthcare Pty. Ltd., Toonagabbie, NSW, Australia) at a rate of $0.18 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$. Surgery was performed on a heated table (Baker Medical Research Institute, Model 165) and oesophageal temperature was maintained between 36 and $38^{\circ} \mathrm{C}$ throughout the experiments using a servocontrolled infrared lamp (Digi-Sense temperature Controller; Cole Palmer Instrument Company, Chicago, IL, USA).

2.2.1.I Renal preparation

Renal denervation (Chapter 3) or nephrectomy (Chapters 4, and 5) of the right kidney occurred via a right retroperitoneal incision. Renal denervation was performed by manually stripping all visible nerves from the renal artery and vein, and painting the area with 10% w/v phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right.$; Sigma Chemical Co. St Louis, USA) in ethanol. To perform a right nephrectomy the renal artery and vein were cleared and tied in two places along their length away from the kidney with 3-O silk suture (Dynek. Pty. Ltd. Sydney, Australia), the vessels were then cut between the ties, and the kidney removed. The right retroperitoneal wound was also closed with 3-O silk suture (non-sterile, Dynek Pty. Ltd.).

The left kidney was exposed and denervated (as above) via a left flank retroperitoneal incision and the rabbit was placed and supported in an upright crouching position. Ureters were cannulated for urine collection (Silastic tubing, $0.5 \mathrm{~mm} \mathrm{ID}, 0.95 \mathrm{~mm}$ OD; Dow Corning Co. Midland, Michigan, USA). For experiments using laser-Doppler flowmetry (Section 2.2.6) the left kidney was freed from the peritoneal lining and surrounding fat and placed dorsal side up in a stable cup (cushioned by gauze soaked in Hartmann's solution).

2.2.2 Transit-time ultrasound flownetry for renal blood flow

The transonic ultrasound flowprobe uses large crystals which generate ultrasonic waves so that the transit time of these waves between upstream and downstream signals can be calculated. Due to its availability in many sizes, its main advantage is that it may be used to measure blood flow irrespective of the vessel size. Absolute flow values can be obtained and several probes can be placed in the same animal, both in acute and chronic studies (Welch et al., 1995; Evans et al., 1997). The technical limits, are the set sizes of the probes and their cost.

In experiments other than those involving the extracorporeal circuit, a transit time ultrasound flow probe (type 2SB, Transonic Systems, Incorporated, Ithaca, NY, USA) was placed around the renal artery, and coupled acoustically with Nalco absorbent gel (Nalco Chemical Company, Maperville, IL, USA). For measurements of RBF in extracorporeal circuit experiments (Chapters 4 and 5), an in-line flow probe (type 4 N , Tansonic Systems) was incorporated into the renal limb of the circuit.

2.2.3 Construction and inplantation of acutely positioned medullary interstitial catheters

Catheters constructed from two 30 gauge needles, were positioned 2 cm apart on the midline aspect of the kidney, on either side of the medullary laser-Doppler flow probe (Section 2.2.6). Their tips were advanced 8.5 mm below the cortical surface, so that they lay in the outer medullary interstitium or 10.5 mm below the cortical surface for inner medullary interstitial infusion. To maintain catheter patency, sodium chloride solution ($154 \mathrm{mM} ; 10 \mu 1 / \mathrm{kg} / \mathrm{min}$) was infused via each catheter until the experimental procedures commenced.

2.2.4 General preparation and establishment procedures for the extracorporeal circuit

A right nephrectomy was performed to remove the confounding influence of the right kidney, which would otherwise be perfused at systemic arterial pressure (Section 2.2.1.1). The rabbit was positioned in an upright crouching position and a left flank incision was made for exposure of the abdominal aorta, vena cava and renal artery. These vessels were then cleared for cannulation and establishment of the circuit. The renal artery was denervated (as above; Section 2.2.1.1), except phenol was not used, as this was founc to vasoconstrict the renal artery and so impede its cannulation. The left ureter was cannulated (silastic catheter., $0.5 \mathrm{~mm} \mathrm{ID}, 0.95 \mathrm{~mm} \mathrm{OD}$), and the rabbit received an intravenous bolus dose of heparin ($15,000 \mathrm{IU}$ in 3.0 ml ; Monoparin, Fisons Pharmaceuticals, NSW, Australia) prior to the circuit being established.

The circuit dead space (24 ml) was filled with 10% ($\mathrm{wt} / \mathrm{vol}$) dextran 40 in 154 mM NaCl (Gentran 40, Baxter Healthcare, NSW, Australia) containing $50 \mathrm{IU} / \mathrm{ml}$ heparin (Monoparin, Fisons Pharmaceuticals, NSW, Australia). First the aorta was cannulated, distal to the branching of the renal artery (2.60 mm ID, 3.00 mm OD), followed by the vena cava ($1.58 \mathrm{~mm} \mathrm{ID}, 2.16 \mathrm{~mm} \mathrm{OD}$). A roller pump (Masterflex, model 7521-45, Barnant Co., Barrington, IL. USA) was used to circulate blood through the circuit. The circuit was initially set at to withdraw blood from the distal aorta and returned to the vena cava at a rate of $70 \mathrm{ml} / \mathrm{min}$. The renal artery was then cannulated $(0.80 \mathrm{~mm}$ ID, 1.60 mm OD), and the pump rate increased to $90-110 \mathrm{ml} / \mathrm{min}$ and blood was now also returned to the renal artery. Averaged across all experiments, renal ischemic time was $4.6 \pm 0.17 \mathrm{~min}$. Blood flow to the renal artery was controlled by a starling resistor on the venous return limb and a windkessel was used on the renal artery limb to dampen the pulse pressure. RAP was measured directly via a side arm catheter proximal to the cannula inserted into the renal artery (PE 10, 0.28 mm ID, 0.61 mm OD) (Figure 2.1).

Once the circuit was established, RAP was set at $\sim 65 \mathrm{mmHg}$ for a $60-90$ minute equilibration period. At the beginning of this period, rabbits were given a bolus dose of $\left[{ }^{3} \mathrm{H}\right]$-inulin $(4 \mu \mathrm{Ci}$. NEN Research Products, Boston, MA, USA), administered in 1.0 ml of $154 \mathrm{mmol} / \mathrm{L} \mathrm{NaCl}$. An infusion of 10% ($\mathrm{vol} / \mathrm{vol}$) polygeline (Haemaccel, Hoechst; Melbourne, Australia) containing $200 \mathrm{JU} / \mathrm{ml}$ sodium heparin and $0.3 \mu \mathrm{Ci} / \mathrm{ml}\left[{ }^{3} \mathrm{H}\right]$-inulin was then initiated (replacing the maintenance infusion of Hartmann's solution). This infusion ($0.18 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$) continued throughout the duration of the experiment.

Figure 2.1 Diagram of the extracorporeal circuit used to perfuse the left kidney. Blood is drawn from the distal abdominal aorta and returned to the rabbit via the renal artery or inferior vena cava. (A), Pump draws blood from aorla (E) at constant rate. (B), Renal perfusion pressure, and (C), RBF can be set at any level by adjusting resistance of the Starling resistor (D) on the venous return limb. Systemic arterial pressure is measured via rear artery catheter. (F), vena cava. Taken from Anderson et al., 1995.

2.2.5 Preparation for renal fixation

Rabbits were prepared for surgery as outlined above. A left flank incision was made and the left kidney, aorta (superior and inferior), vena cava, and left ureter were exposed. The left and right ureters were cannulated with silastic tubing (OD 0.037 in , ID 0.02 in ; Dow Corning, Midland, MI, USA). The left kidney was denervated by manually stripping all visible nerves, and placed in a stable cup for the positioning of laser-Doppler flow probes so that MBF and CBF could be measured. A transit-time ultrasonic flow probe (2SB, Transonic Systems, lhaca, NY, USA) was
placed around the left renal artery for RBF measurements. A heparin bolus (5,000 IU i.v., Fisons Thomleigh, NSW, Australia) was administered, and an infusion of $30 \mathrm{IU} / \mathrm{min}$ was commenced. A large bore cannula ($3 \mathrm{~mm}, \mathrm{OD} ; 2 \mathrm{~mm}, \mathrm{D}$) was placed in the aorta distal to the renal arteries, which was later connected to a perfusion apparatus. The abdominal aorta was also exposed rostral to the renal arteries, and a ligature was placed around it so that it was readily occluded during the fixation process.

2.2.6 Laser-Doppler flowmetry

The laser-Doppler technique was first used to measure regional kidney blood flow in rats by Stern et al. (1977), and the technique has since been extensively evaluated (Stern et al., 1977; Stern et al., 1979; Hansell, 1992; Roman and Smits, 1986; Takezawa et al., 1987; Hansell et al., 1990; Fenoy and Roman, 1991). For example Roman and Smits demonstrated a linear relationship between the laser-Doppler flow signal obtained from the renal cortex of rats with whole kidne blood flow, and a linear relationship ($\mathrm{r}=0.92$) between the laser-Doppler blood flow signal from the papilla of rats with papillary blood flow rates determined by the accumulation of ${ }^{51} \mathrm{Cr}$-labeled red blood cells (Roman and Smits, I986; Smits et al., 1986).

The laser-Doppler flowmeter emits a beam of monochromatic light, which travels through a fibre optic probe, to illuminate the tissue under study $\left(\sim 1 \mathrm{~mm}^{3}\right)$. The laser beam is scattered by reflective components within the tissue, and a portion of the light is reflected back via the probe's receiving fibre, and received by a photo detector inside the flowmeter. Two different signals are recorded; one is proportional to the velocity of moving particles in the measured volume and the second signal is the reflected amplitude, which is proportional to the amount of moving particles in the measured volume. These signals together produce a laser-Doppler flow signal, which is represented as a flux value. Although the technique does not enable measurement of absolute flow, it provides a continuous measurement and relative index of tissue perfusion within various regions of the kidney (Bonner et al., 1981; Vongsavan and Matthews, 1993).

The technique also provides a means with which to study blood flow simultaneously, in multiple regions in both conscious and anaesthetised preparations. The laser-Doppler flowprobes are relatively non-invasive, and produce little tissue damage (Evans et al., 2000). Histological damage is confined to within $200 \mu \mathrm{~m}$ of the fibre track, and produces no disruption to the microcirculatory region beyond the fibre tip where flow is determined (Hansell, 1992). The technique also allows for
inter animal and between group comparisons of tissue red blood cell flows (Roman et al., 1991; Cowley, 1997).

However, laser-Doppler flowmetery does have some limitations. For example, it cannot calibrated against other methods, is unable to distinguish the direction of flow (i.e. between ascending and descending vasa recta in the renal medulla), or determine whether a change in flow has occurred due to capillary recruitment (Roman et al., 1991). Despite these concerns, agreement between laserDoppler and videomicroscopy (Fenoy and Roman, 1991) and ${ }^{51} \mathrm{Cr}$-labeled red blood cell accumulation (Roman and Smits, 1986) has been demonstrated.

In the experiments described in Chapter 3, three laser-Doppler flow probes were used to simultaneously monitor cortical and medullary perfusion. A 19gauge needle (Thermo Medical Co. Elkton, MD, USA) was used to pierce the renal capsule (midline aspect) for the insertion of a single fibre laser-Doppler flow probe (0.5 mm diameter; University of Linköping, Sweden) 10 mm below the cortical surface, using a micromanipulator (Narishige, Japan). Two cortical laser-Doppler (single fibre) flow probes were also positioned 0.5 mm below the cortical surface, on opposite sides of the dorsal aspect of the kidney. Insertion of laser-Doppler flow probes resulted in minimal bleeding, which stopped within a few minutes. Blood flow is measured in front of each laserDoppler flow probe (approximately $1 \mathrm{~mm}^{3}$), away from any tissue damage (Lu et al., 1993). On completion of experimental preparation, the rabbits wounds were covered with gauze soaked in Hartmann's solution, which was then covered with silicone gel (Wacker Chemie, Munich, Germany; 10 parts RTV-E 604A, 1 part RTV.E 604B, 1 part KATLY.DL) to minimize fluid loss during both the equilibration and experimental periods.

Alternatively, in experiments described in Chapters 4 and 6, a 26 gauge needle type probe (DP4s, Moor Instruments Ltd., Millwey, Devon, England) was advanced 10 mm below the mid-region of the lateral surface of the kidney, so that it lay in the outer medulla using a micromanipulator (Narashige, Tokyo, Japan). A laser-Doppler flow probe (Standard plastic straight probe (DP2b), Moor Instruments Ltd.) was placed on the dorsal surface of the kidney, for measurement of superficial MBF. The wounds of these rabbits were covered in gauze soaked in Hartmann's solution and coated with a layer of melted agar which cooled to form a seal over the wound and helped to minimize fluid loss during experimental procedures.

2.3 Recovery surgery

2.3.1 General

Prior to any incisions being made, sabbits were shaved in the operative area, and the region was washed with an aqueous antiseptic solution ($0.05 \% \mathrm{w} / \mathrm{v}$ chlorohexidine acetate $0.5 \% \mathrm{w} / \mathrm{v}$; Centrimide; Baxter Healthcare, NSW, Australia). Rabbits subjected to medullary interstitial infusion of noradrenaline (Chapter 3) and those in which CO was to be measured (Chapter 5), underwent preliminary surgery 7-21 days prior to acute experimentation. A marginal ear vein was catheterized (Jelco, 24 gauge, Joinnson \& Johnson Medical, NSW, Australia), and anaesthesia was induced with propofol ($10 \mathrm{mg} / \mathrm{kg}$ Diprivan; ICI, Melbourne, Australia). Following endotracheal intubation, general anaesthesia was maintained with halothane ($1-4 \%$, Fluothane, ICI, Victoria, Australia). Prior to any incision being made, rabbits received an intramuscular injection (0.2 ml) of a broad spectrum antibiotic (Tribressen; Trimethoprim $80 \mathrm{mg} / \mathrm{ml}$, Sulfadiazine $400 \mathrm{mg} / \mathrm{ml}$; Jurox Pty. Ltd. Silverwater, NSW, Australia), and a subcutaneous injection (0.1 ml) of the narcotic analgesic buprenophine hydrochloride $(0.065 \mathrm{mg}$; Temgesic; Reckitt and Colman Pharmaceuticals, West Ryde, NSW, Australia). Additional analgesia was provided by instillation of $1 \% \mathrm{w} / \mathrm{v}$ lignocaine (Xylocaine; Astra Pharmaceuticals, North Ryde, NSW, Australia) at wound sites. Throughout surgery rabbits received an intravenous infusion of $\mathrm{NaCl}(0.1 \mathrm{ml} / \mathrm{min})$ to maintain extracellular fluid volume. Surgery was performed on a heated table, under sterile conditions.

2.3.2 Implantation of chronic medullary interstitial catheters

Rabbits were prepared as above (Section 2.3.1). Chronically positioned catheters were implanted 7 14 days prior to the acute experiment. A left flank incision was made, and the kidney was gently exteriorized. The tip of a single polyethylene catheter (ID $0.28 \mathrm{~mm}, \mathrm{OD}, 0.61 \mathrm{~mm}$; Critchley Electrical) was introduced into the ventral side of the kidney, slightly rostral to the midline aspect, at an angle directed toward the renal pelvis. The catheter was then advanced so that its tip lay either $8.5(n=8)$ or $10.5 \mathrm{~mm}(\mathrm{n}=9)$ below the surface of the kidney. Correct insertion resulted in minimal bleeding, which stopped almost immediately. A small piece of nylon mesh (1.5 cm diameter; Hilton Hosiery, Coolaroo, Victoria, Australia) attached to the catheter was anchored to the surface of the kidney with cyanoacrylate glue (Loctitie; Caringbah, NSW, Australia). The catheter was tunneled subcutaneously so that its end lay between the shoulder blades, and a pre-primed osmotic mini pump (Alzet 2ML2; $5 \mu \mathrm{l} / \mathrm{h}$ for 14 days, Alza Co., Palo Alto, CA, USA) filled with 154 mM saline was attached to the end of the catheter to maintain catheter patency.

In preliminary studies it was found that the depth of 8.5 mm (outer medullary interstitial catheters) corresponds approximately with the junction of the inner and outer stripes of the outer medulla, whereas the depth of 10.5 mm placed the catheter in the inner medulla. When possible, gross postmortem examination of the kidneys was performed and the catheters were always found to be positioned correctly. Furthermore, no evidence of gross disruption of kidney tissue or scar tissue due to implantation of the medullary interstitial catheters was found from examination of the frozen sections taken for further analysis.

2.3.3 Implantation of ascending aortic flowprobes

Rabbits were prepared as above (Section 2.3.1) and instrumented with flow probes around the ascending aorta $2-3$ weeks prior to the date of the acute experiment. This period allows the formation of scar tissue around the probe, which provides acoustic coupling of the probe and vessel. An incision was made above the left second intercostal space, and the heart was exposed via thoracotomy. The second and third ribs were spread using a retractor, for access to the ascending aorta. Once the pleural cavity was open, rabbits were artificially respired (Phipps and Bird; Richmond, Virginia). A space around the ascending aorta was cleared and a transit-time ultrasonic flow-probe (6SB, Transonic Systems, Ithaca, NY, USA) was positioned around the aorta, so that when secured the probe lay parallel with the vessel. The lungs were inflated by occluding the expiratory tube from the ventilator and the ribs were brought together and secured with a single suture (3.0 propylene, Johnson and Johnson Medical, Sydney, NSW, Australia).

The wound was closed with a series of sutures, first the two separate muscie layers (5.0 Surgilene; Davis and Geck, Wayne, NJ, USA), the first acting as a seal for the wound made above the intercostal space, which was made at a right angle to the ribs. The second muscle layer was itade in line with the muscle fibres and ran parallel to the ribs. The subcutaneous layer (5.0 Surgilene), and finally the cutaneous layer (3.0 silk; Davis and Geck, Wayne, NJ, USA) were then closed. Care was taken not to tighten sutures too firmly, to avoid post operative tissue necrosis. Supporting stitches were also made around the cutaneous layer to hold the wound in place, and Neosporin antibiotic cream (Polymyxin Sulphate, zinc bacitracin, neomycin sulphate; Glaxo Wellcome; Boronia, Victoria, Australia) was applied to the closed wounds to prevent infection.

The flow probe cable was tunneled subcutaneously so that its plug lay between the shoulder blades, for retrieval and connection to a frow-meter on the experimental day (Transonic systems, model

T208). This wound was closed with a silk suture (3.0 Dynek, Pty. Ltd., Australia). An infant feeding tube filled with sterile NaCl solution had also been tunneled through the same wound once the probe was in position. Once all wounds were closed, the lungs were re-inflated, and the infant feeding tube was connected to a $20-\mathrm{ml}$ syringe, used to drain out any air still remaining in the pleural cavity.

Throughout surgery, halothane anaesthesia was gradually reduced to promote spontaneous breathing once the lungs were re-inflated and, the respirator was turned off. Not all rabbits responded immediately, in which case the respirator was turned back on for 1-2 breaths and off again until rabbits resumed breathing on their own.

2.3.4 Post-operative care of rabbits

On completion of surgical procedures, rabbits were kept in a warm environment and closely monitored until fully conscious, and all signs of anaesthesia had worn off (2-4 hours). They were then returned to their individual housing, which was lined with straw. Normal eating and drinking habits returned almost immediately. Rabbits were monitored daily for signs of discomfort or irritation, and wnunds were checked to ensure that sutures and supporting stitches were still intact. Any wound break-down was repaired under local anaesthesia (0.5% Lignocaine; Astra Pharmaceuticals, North Ryde, NSW Australia) and an antibiotic (Tribressen; Trimethoprim 80 $\mathrm{mg} / \mathrm{ml}$, Sulfadiazine $400 \mathrm{mg} / \mathrm{ml}$; Jurox, NSW, Australia) was injected into the wound and Neosporin antibiotic cream was re-applied to the exterior, to prevent infection.

2.4 Renal fixation and casting

Rabbits were prepared for surgery as outlined above (Section 2.2.5). One liter of 2.5% paraformaldehyde in 0.1 M phosphate buffer ($\mathrm{pH} 7.3-7.4$) at room temperature was perfused retrogradely through the distal aorta at a pressure equivalent to MAP (during the final minute of the experiment for each rabbit). The aorta was clamped rostral to the kidneys, and the vena cava vented as soon as perfusion of the fixative commenced. Immediately following the fixation process, a mixture of methacrylate and accelerator (20:1) (Mercox CL-2B-5;MIII, Japan) was perfused into the aorta (and so the left and right kidneys) at the same "physiological" pressure. Both kidneys were then clamped above the renal hilus, and the methacrylate solution was allowed to harden in situ for 30 min .

2.5 Analysis of methacrylate casts

2.5.1 Preparation of methacrylate casts for scanning electron microscopy

Only the left kidneys were examined. Following removal from the rabbit, each kidney was stored individually in the remaining fixative to allow complete polymerization of the methacrylate (24-48 hours). To eliminate the tissue from the vascular casts, each kidney was sliced coronally ($2-3 \mathrm{~cm}$ thick) and placed in fresh containers of potassium hydroxide (KOH) solution ($20 \% \mathrm{w} / \mathrm{v}$) for 1 week, or until the tissue was completely dissolved. The casts were rinsed daily in distilled water and fresh KOH solution was added, so that all the dissolved tissue surrounding the casts was removed. The containers were incubated in a water bath at $55^{\circ} \mathrm{C}$. Once the tissue had been completely dissolved, the remaining casts were rinsed in distilled water, and placed in $5 \% \mathrm{w} / \mathrm{v}$ sodium hipchlorite for 1 hour at room temperature. The casts were then rinsed several more times in distilled water, and were air dried in individual containers, on filter paper. At this stage the casts were coded so that the observer was blinded to treatment.

Dried vascular casts were mounted on scanning electron microscope stubs and gold coated (S150B sputter coater, Bal-Tec, Liechtenstein) for 4 min under 30 mA of current, which was increased to 6 \min at 20 mA for larger samples.

2.5.2 Scanning electron microscopy

Once coated, samples were ready for examination under the scanning electron microscope (Hitachi S-570, Hitachi City, Japan) at $2 \hat{0} \mathrm{kV}$. Diameters of afferent and efferent arterioles of inner and outer cortical glomeruli were assessed from scanning electron microscope micrographs (saved to a CD and printed, magnification 350 X). Diameter measurements were made along each vessel from its s: $: e$ of entry or exit to or from the glomerulus to its first branching point and measured at $25 \mu \mathrm{~m}$ intervals using a digitizing tablet (Summagraphics; resolution 100 lines $/ \mathrm{mm}$, accuracy (0.25 mm , Calgraph, Fullerton, CA, USA)) and the MEASURE program (Capricorn Scientific Software, Victoria, Australia).

Six afferent and efferent vessels were randomly selected for analysis from each region of the cortex (superficial, mid, and juxtamedullary). However, not all data sets were complete. Afferent arterioles were identified by locating their origin on interlobular arteries, and efferent arterioles began at the glomerulus and branched into peritubular capillaries. Glomeruli pertaining to different regions of
the cortex were classified as; (i) superficial glomeruli were attached to afferent arterioles at the junction to the interlobular artery, and had efferent arterioles which were thinner and tended to branch less than those in other regions, (ii) mid-cortical glomeruli were defined as those having shorter afferent arterioles attached to the interlobular arteries ant thoir efferent arterioles were often also short, and branched several times to form peritubular capillaries, (iii) juxtamedullary glomeruli were defined as those having afferent arterioles which branched close to the arcuate arteries, and their efferent arterioles were often noticeably thicker and longer. Occasionally their branching into the unique "horsetail" arrangement of the vasa recta (Kriz, 1982; Pallone et al., 1990) could be observed.

2.6 Autoradiography

Frozen kidneys which had received medullary interstitial infusion of [$\left.{ }^{3} \mathrm{H}\right]$-noradrenaline (Chapter 3) were sliced into $50 \mu \mathrm{~m}$ coronal sections at $-19^{\circ} \mathrm{C}$ using a cryostat (Leica, CM 1800), and mounted onto glass slides (subbed with 10% gelatin; BDH Chemicals Ltd. Poole, England). These sections were left to dry ovennight at room temperature in trays, which were covered with foil to prevent dust from settling on them. Once dried, the slides were mounted on to sheets of Hyperfilm- $\left[{ }^{3} \mathrm{H}\right]$ (high performance autoradiography film, Amersham International, Sweden) in cassettes. The cassettes were stored in the dark for a suitable time to allow development ($6-8$ weeks). Developed autoradiograms were quantified using an MCID M4 image analysis system (Imaging Research, St. Catherines, Ontario, Canada) as previously described (Ashworth-Preece et al., 1997). Each kidney section was divided into four regions, cortex, outer medulla (outer stripe), medulla (excluding the outer stripe and papilia), and the papilia (defined as the portion of the inner medulla that protrudes into the renal pelvis), for separate quantification.

2.7 Measurement of haemodynamic and renal variables

2.7.1 Measurement of systemic and renal haemodynamics in anaesthetised rabbits

Systemic arterial pressure was measured by connecting an ear artery catheter (Chapters 3,4, and 6) or side branch of an abdominal aortic catheter (Chapter 5), to a pressure transducer (Cobe; Arvada, CO, USA) calibrated at the levci of the rabhit's heart using a mercury manometer. Heart rate (HR; beats $/ \mathrm{min}$) was measured via a cardiotachometer aciivated by the arterial pressure pulse. RAP (mmHg) in protocols involving the extacorporeal circuit (Chapters 4 and 5) was measured via a side-arm catheter, 3 mm proximal to the tip of the cannula inserted into the renal artery. In these
studies left RBF ($\mathrm{ml} / \mathrm{min}$) was measured as blood flow through the renal limb of the circuit, using an in-line transit time ultrasound flow probe (type 4N, Transonic Systems Inc, Ithaca, NY, USA). In rabbits not connected to the extracorporeal circuit, left RBF was measured by a perivascular transit time ultrasound flow probe placed around the renal artery (type 2SB, Transonic Systems Inc.) which was coupled acoustically with Nalco gel (Nalco Chemical Company, Maperville, IL, USA). Cardiac output (Chapter 6) was measured using the previously implanted ascending aortic transittime ultrasound flow probe (6SB, Transonic Systems, Ithaca, NY, USA). The transit time flow probes were connected to a flowmeter (Transonic systems, model T208). Laser-Doppler flow probes were connected to a laser-Doppler flowmeter (DRT4, Moor Instruments Ltd., Devon, England) These signals were amplified, recorded, and digitized, as previously described (Bergström and Evans, 1993), to provide 60 second means. CBF and MBF were expressed as perfusion units (equivalent to the instrument output in $\mathrm{mV} \times 10$). Signals were amplified and recorded on a Neotrace pen recorder (Neomedix Systems, Sydney, Australia) and monitored on-line using an analogue-to digital converter on an Olivetti M280 computer which provided 20 second and 60 second means of each variable.

2.7.2 Processing of blood and urine samples

Arterial blood samples were centrifuged (Model C312; Jouan) at $4^{\circ} \mathrm{C}$ for 10 minutes at $3,000 \mathrm{rpm}$ to separate plasma from red blood cells. Haematocrit was determined by the capillary tube method using a mirco-haematocrit reader (Hawksley and Sons, England) before the samples were centrifuged. The volumes of the timed urine samples were measured gravimetrically (Denver Instrument XL-410, Denver, USA). Twenty $\mu \mathrm{l}$ triplicates of plasma and urine samples were taken and added to (5 ml) scintillation vials containing 2 ml of scintillation fluid (Ecoscint A; National Diagnostics, Atlanta, Georgia, USA). The remaining piasma was aspirated and the saınples frozen and stored at $-20^{\circ} \mathrm{C}$ for later analysis. The concentration of radiolabel in each of the samples was measured by liquid scintillation counting (Model LS 500 TA , Beckman; Beckman Instruments; Fullerton, CA, USA). Sodium concentrations were measured by flame photometry (Instrumentation Laboratory 943, Milan, Italy).

2.7.3 Plasma renin activity

Arterial blood (2.5 ml) for measurement of plasma renin activity was collected into chilled tubes containing $20 \mu \mathrm{l}$ of an inhibitor cocktail ($0.21 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.74 \%$ (w/v) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, 1.0% neomycin sulphate, $3.72 \%(\mathrm{w} / \mathrm{v})$ ethylenediaminetetraacetate, and $1.0 \%(\mathrm{v} / \mathrm{v}) 2,3$ dimercaptol-

1-propanol: a renin inhibitor, pH 7.4). Plasma renin activity was measured as the rate of angiotensin I generated from endogenous angiotensinogen in vitro and is therefore expressed as ng Angiotensin $\mathrm{I} / \mathrm{ml} / \mathrm{hr}$. Angiotensin I was measured by radioinmunoassay using the method outlined by Oliver et al. (Oliver et al., 1990). The radioimmunoassay for angiotensin I was performed over two consecutive days. On the first day plasma samples were slowly thawed in iced water and $50 \mu \mathrm{l}$ of the sample was added to $50 \mu \mathrm{l}$ of ice cold incubation buffer ($0.53 \%(\mathrm{w} / \mathrm{v}) \mathrm{Na}_{2} \mathrm{HPO}_{4}, 2.5 \%$ (w/v) $\mathrm{Na}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 3.7 \%$ (w / v) Na_{2} ethylenediaminetetraacetate, 0.1% (w / v) neomycin sulphate, 0.24% (w/v) 1,10 , phenanthroline; pH 6.2) and the sample was then incubated at $37^{\circ} \mathrm{C}$ for two hours. Incubation was stopped and $300 \mu 1$ of ice cold assay buffer (0.64% (w/v) $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 0.37 \%$ (w/v) Na_{2} ethylenediaminetetraacetate, $0.1 \%(\mathrm{w} / \mathrm{v})$ neomycin sulphate, $0.1 \%(\mathrm{w} / \mathrm{v})$ casein, 0.9% (w / v) NaCl and $\left.0.08 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaH}_{2} \mathrm{PO}_{4} .2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{pH} 7.4\right)$ was then added to the sample. Fifty $\mu \mathrm{l}$ of the incubated sample was then added to $100 \mu \mathrm{l}$ of the primary antibody ($1: 30,000$ dilution; angiotensin I antibody raised in rabbit; Baker Medical Research Institute, Prahran, Victoria, Australia). One hundred $\mu \mathrm{l}$ of the trace (${ }^{125} \mathrm{I}$-angiotensin $\mathrm{I}, 10,000$ counts per min: Amersham, UK) was then added to the sample and all tubes were then vortexed and left at $4^{\circ} \mathrm{C}$ for $20-24$ hours. On the second day, 2 ml of dextran- 10 coated charcoal (2.5% (w / v) activated charcoal, 0.25% (w / v) concentrated HCl ; 1:5 dilution with cold $0.9 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$) was added to each sample. The samples were then centrifuged (Minifuge GL, Heraeus Christ, Hanover, Germany) at 4500 rpm for 20 min at $4^{\circ} \mathrm{C}$. The supernatant was aspirated and the number of disintegrations in the pellet were then determined over a one minute period (model 550, Auto gamma counter: Packard, Downers Grove, IL, USA).

2.8 Calculations

2.8.1 Calculations of renal clearance variables

2.8.1.1 Renal plasma flow

RBF (determined by transit-time ultrasound flowmetry) was multiplied by the proportion (by volume) of the blood that is plasma 1-haematocrit.

In rabbits receiving $\left[{ }^{3} \mathrm{H}\right]-\mathrm{PAH}$ infusion, this was determined by dividing the urine volume by the plasma PAH concentration (determined by scintillation counting) to determine the amount of plasria flowing through the kidneys, and multiplying it by the urinary PAH concentration, since P / AH is filtered and not reabsorbed to determine the overall renal plasma flow.

2.8.1.2 Glomerular filtration rate

$\left[{ }^{3} \mathrm{H}\right]$-Inulin is a polysaccharide which is freely filtered and not reabsorbed from or secreted into the tubules. Since all the glomerular filtrate formed is cleared of inulin, the volume of plasma cleared of inulin per minute equals GFR, which is calculated as the urinary concentration of inulin divided by the plasma concentration of inulin, all multiplied by the urinary volume per min. In some experiments these values were divided by the kidney dry weight to achieve units as $\mathrm{ml} / \mathrm{min} / \mathrm{g}$ dry kidney weight.

2.8.1.3 Effective renal blood flow

Para-aminohippuric acid (PAH) is freely filtered but not reabsorbed, but differs from inulin in that it is actively secreted from the peritubular capillaries into the tubules. Thus, PAH is virtually completely ($90-95 \%$) removed from all of the plasma that flows through the kidneys. The plasma clearance for PAH is therefore used to estimate renal plasma flow. Effective RBF was calculated as renal plasma flow divided by 1 - haematocrit.

2.8.1.4 Filtration fraction

Filtration fraction (FF) is the fraction of the plasma flowing through the glomerulus that is filtered, and was calculated as GFR ($\left[{ }^{3} \mathrm{H}\right]$-inulin clearance) divided by renal plasma flow $\left[{ }^{14} \mathrm{C}\right]-\mathrm{PAH}$ clearance or determined from transit-time ultrasound flowmetry corrected for haematocrit. In this thesis it is presented as a percentage value.

2.8.15 Fractional sodium excretion

This was calculated as the clearance of sodium divided by the clearance of $\left[{ }^{3} \mathrm{H}\right]$-inulin (GFR), and is expressed as a percentage. The clearance of sodium was derived by dividing the concentration of sodium excreted by the kidney (mM) by the concentration of sodium in the urine by the concentration of sodium in the plasma, and multipying this figure by urine flow. This value is expressed as percentage in this thesis.

2.8.1.6 Fractional urine excretion

This was calculated as the excreted urine volume (measured either volumetrically or gravimetrically) divided by the clearance of $\left[{ }^{3} \mathrm{H}\right]$-inulin (GFR). This volume is expressed as a percentage.

2.8.2 Calculation of vascular lumen resistance and conductance values

The relative vascular resistances of the arterioles were calculated according to Poiseuille's equation;
$\mathrm{R}=8 \mathrm{\eta l} / \pi r^{4}$
Where $\quad \mathrm{R}=$ calculated vessel resistance
$\eta=$ viscosity of the fluid (blood),
$l=$ length of the vessel, and
$r=$ radius of the vessel.

In the calculations presented in Chapter $6, l$ was assumed to be constant, so that values of vessel resistance are expressed per unit vessel length. Blood viscosity was also assumed to be constant and treated in the same way as l. A mean value for the radius was calculated for each vessel from the measurements made along the vessel length including the one closest to the glomerulus, and relative resistances were therefore expressed as $\mathrm{R}=1 / \pi r^{4}$. Vessel conductance for the entire vessel length was calculated as $1 / R$.

2.9 Overview of statistical analyses

Full details of the specific statistical analyses are described in the relevant chapters. Listed below the statistical methods used in each of the experimental chapters.

$$
\left.\begin{array}{cc}
\text { Chapter } 3 & - \\
\text { Chapter } 4 & \text { analysis of variance } \\
\text { paired } t \text { test, repeated measures analysis of } \\
\text { two way analysis of variance }
\end{array}\right\}
$$

All statistical tests were performed using the computer software package SYSTAT (Wilkinson, 1990), except t-tests which were performed using EXCEL spreadsheets (Microsoft office 1995) and P values ≤ 0.05 were considered to be statistically significant.

To protect against the increased risk of comparison-wise Type 1 error resulting from compound asymmetry, all of the P values derived from repeated measures analysis of variance were conservatively adjusted using the Greenhouse-Geisser correction factor (Ludbrook, 1994).

Chapter Three

METHODS FOR RENAL MEDULLARY INFUSION OF VASOACTIVE COMPOUNDS: METHODOLOGICAL CONSIDERATIONS

3.0 Summary

1. There is accumulating evidence implicating the renal medullary microvasculature in the long term regulation of arterial pressure. To study the role of the medullary microcirculation in arterial pressure regulation we required a technique for selectively altering MBF.
2. The aims of the current study were to develop and validate techniques for the delivery of vasoactive compounds to the renal medulla, to determine the optimal position of the catheter tip for maximum distribution of the radiolabel in the renal medulla and to determine whether chronically implanted medullary interstitial catheters would remain patent at least 6 weeks after implantation.
3. $\left.{ }^{3} \mathrm{H}\right]$-Noradrenaline was infused into either the renal medullary interstitium of anaesthetised rabbits via catheters that were positioned in the outer medulla or the inner medulla, and were either chronically or acutely positioned. The intrarenal distribution of radiolabel was determined by autoradiography.
4. In a supplementary study, catheters were chronically positioned in the outer medullary interstitium so that conscious rabbits could receive a saline infusion for up to six weeks.
5. Radiolabel concentration was eight times greater in the medulla than the cortex, of kidneys receiving outer medullary interstitial infusion of $[3 \mathrm{H}]$-noradrenaline.
6. Inner medullary interstitial infusion of the radiolabel resulted only in low levels of radiolabel within the kidney.
7. When tested 6 weeks after implantation, chronically implanted outer medullary interstitial catheters remained patent.
8. We conclude that outer medullary interstitial infusion is a useful technique for the delivery of rapidly metabolized vasoactive agents to the renal medulla, that the level of distribution is
largely dependent on the infusion site, and that this technique is adaptable to chronic infusion in conscious rabbits.

3.1 Introduction

Increasingly more evidence is being presented which implicates a role of the renal medullary microvasculature in the regulation of arterial pressure. Although the renal medulla receives only $\sim 10 \%$ of total RBF, evidence indicates that the level of renal MBF may be an important determinant of sodium and water reabsorption, (Cowley et al., 1995; Cowley, 1997), and may also play a role in the release of the putative renal medullary depressor hormone (Bergstöm and Evans, 1998). The renal medullary microcirculation may therefore be well placed to transduce changes in arterial pressure into homeostatic responses that restore normal arterial pressure.

One technique for studying the role of the renal medullary microcirculation in the long-term control of arterial pressure has been the infusion of vasoactive agenis into the renal medulla. Cowley and colleagues (Cowley et al., 1992; Lu et al., J992; Lu et al., 1994; Mattson et al., 1994; SzczepanskaSadowska et al., 1994; Cowley et al., 1995; Cowley, 1997), have employed this technique in rats, combined with laser-Doppler flowmetery. Their studies have shown that chronic medullary interstitial infusion of vasoconstrictor agents such as N^{G}-nitro-L-arginine methyl ester (Mattson et al., 1994) and the vasopressin V_{1}-agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin (Szczepanska-Sadowska et al., 1994), at doses that reduce MBF but not CBF, results in the development of sustained hypertension. Conversely, medullary interstitial infusion of the vasodilator captopril in SHR, which increases MBF but not CBF, ameliorates their hypertension (Lu et ol., 1992).

In longitudinal studies such as those described above, there are considerable advantages to employing larger species such as the rabbit which would allow simultaneous long term recordings of hormonal status (Evans et al., 1994), cardiac output (Evans et al., 1993), RBF (Tomoda et al., 1996), regional kidney blood flow (Evans et al., 2000), and renal sympathetic nerve activity (Malpas and Evans, 1998).

In a previous study (Correia, 1997), we performed a number of experiments aimed at validating techniques for the delivery of vasoactive agents to the renal medulla of rabbits. Noradrenaline was chosen as the vasoactive agent because it is readily available in tritiated form and rapidly metabolized in vivo, minimizing the confounding effects of spillover into the systemic circulation. These studies attempted to correlate the systemic and renal haemodynamic effects of infused $\left[{ }^{3} \mathrm{H}\right]$ -
noradrenaline with the regional distribution of the intrarenal infused radiolabel. In brief, we found that outer medullary interstitial infusion of noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$), using acutely or chronically positioned catheters reduced beth CBF (15\%) and MBF (23-31\%). Inner medullary infusion did not affect renal haemodymanics, whereas intravenous infusion of the same dose selectively reduced CBF (15\%) without significantly affecting MBF. During outer medullary infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, much of the radiolabel spilled over into the systemic circulation ($\sim 40 \%$ with chronically positioned catheters). Nevertheless, tissue solubilization analysis showed the concentration of radiolabel was about seven fold greater in the infused medulla than the cortex. Inner medullary infusion resulted in much of the radiolabel being excreted in urine. We concluded that outer medullary interstitial infusion in rabbits provides a useful method for targeting compounds to the renal medulla, but given the considerable systemic spillover with outer medullary infusion, its utility is limited to substances that are rapidly metabolized in vivo (Correia, 1997).

Although our previous analysis of the regional distribution of radiolabel within the kidneys after outer and inner medullary infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline indicated some localisation of the radiolabel within the medulla, the absence of autoradiographic data meant that no information regarding local tissue distribution was obtained, and furthermore any differences between the two infusion sites could not be quantified. The present study had two aims. The first was to use tissue obtained in our previous study, to more slosely characterize and quantify the anatomical distribution of radiolabel after medullary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline. To achieve this, we used autoradiographic techniques. Our second aim was to establish whether chronically positioned medullary interstitial catheters remained patent 6 weeks after implantation.

3.2 Methods

In order to test the regional kidney distribution of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline after medullary interstitial infusion ($16-24 \mathrm{nCl} / \mathrm{kg} / \mathrm{min}$ in $100 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$ noradrenaline), twenty six rabbits of a multicolored English strain of either sex and weighing 2.3-3.1 kg (mean 2.7 kg) were used in acute experimental studies. Of these rabbits, nine received the infusion via acutely positioned catheters, while the remaining 17 received the infusion via chronically implanted catheters, positioned either in the outer medullary ($n=8$) or inner medullary $(n=9)$ interstitium. After medullary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, the left (infused) kidneys of these rabbits, were removed and subjected to autoradiographic analysis for quantitative determination of concentration of the radiolabel throughout the kidney.

To investigate the adaptability of these techniques to chronic longitudinal studies, a supplementary study was conducted using six rabbits, also of the same strain and of either sex, weighing 2.3-2.8 kg (mean 2.6 kg). These rabbits received a chronic infusion of saline for up to 6 weeks via catheters that were chronically implanted such that their tips lay in the outer medullary interstitiun. On completion of these studies, the infused kidneys were removed, and Evans Blue dye was injected for visual determination of catheter patency.

3.2.1 Experimental preparation

The surgical preparation of rabbits receiving a $20 \min \left[{ }^{3} \mathrm{H}\right]$-noradrenaline infusion, administered via either acute, or chronically positioned catheters is described in detail in Chapter 2, Sections 2.2.3, and 2.3.2. Briefly, following the induction of anaesthesia, both kidneys were denervated, and both ureters were cannulated. A transit-time ultrasound flow probe was placea around the renal artery, and the tips of three single-fiber laser-Doppler flow probes (0.5 mm diameter) were placed 0.5 (cortical), 0.5 (cortical) and 10 mm (medullary), espectively, below the cortical surface. Haemodynamic data from these studies have been repr ted elsewhere (Correia, 1997).

3.2.2 Implantation of medullary interstitial catheters

3.2.2.1 Acutely positioned catheters (9 rabbits)

Catheters, constructed using 30 gauge needles, were placed 2 cm apart on the midline aspect of the kidney, on either side of the medullary laser-Doppler flow probe, with their tips positioned 8.5 mm below the cortical surface (in the outer medullary interstitium). Sodium chloride ($154 \mathrm{mM} ; 10$ $\mu 1 / \mathrm{kg} / \mathrm{min}$) was infused via each catheter throughout the experiment.

3.2.2.2 Chronically positioned catheters (23 rabbits)

Chronically positioned catheters were implanted 7-14 days prior to the experiment, under halothane anaesthesia and employing sterile conditions. This procedure is explained in detail in Chapter 2, Section 2.3.2. Briefly, a left flank incision was made, and the kidney was gently exteriorized. The tip of a single polyethylene catheter was introduced into the ventral side of the kidney, at an angle directed toward the renal pelvis. The catheter was then advanced so that its tip lay either 8.5 (8 rabbits subjected to one acute infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, and a further 6 rabbits subjected to longitudinal study) or 10.5 mm (9 rabbits, all subjected to acute infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline)
below the kidney surface. A small piece of nylon mesh attached to the catheter was anchored to the kidney surface with cya:. oacrylate glue. The catheter was tunneled subcutaneously so that its end lay between the shoulder blades, and was kept patent by attachment to an osmotic pump (Alzet 2ML2; $2.5 \mu / / \mathrm{h}$ for 28 days, Alza Co., Palo Alto, CA, USA) filled with 154 mM saline.

3.2.3 Experimental protocols

3.2.3.] Renal medullary interstitial infusion of $\left[{ }^{3} H\right]$-noradrenaline

On the experimental day, rabbits were anaesthetisedand prepared as outlined above. Following a 1 hour equilibration period [$\left.{ }^{3} \mathrm{H}\right]$-noradrenaline ($16-24 \mathrm{nCi} / \mathrm{kg} / \mathrm{min}$ in $100 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$ noradrenaline) was infused into the medullary interstitiem for 20 min . This entire dose was delivered directly to the outer ($n=8$) or inner medullary interstitium ($n=9$) of rabbits that had chronically implanted catheters, and was divided so that one half of the dose was equally distributed between the two acutely positioned outer medullary catheters ($n=9$). Urine produced by both kidneys was collected during the 2 min before the infusion commenced and for each 2 min period throughout the $\left[{ }^{3} \mathrm{H}\right]$ noradrenaline infusion. Ear arterial and renal venous blood samples (0.5 ml each) were collected at the mid point of each urine collection period. Data derived from these measurements, which characterize the disposition of radiolabel by the kidney during the infusions, have been reported elsewhere (Correia, 1997). At the completion of the $20 \mathrm{~min}\left[{ }^{3} \mathrm{H}\right]$-noradrenaline infusion, the infused kidney was quickly retrieved, de-capsulated, and halved coronally. Kidney halves were frozen in liquid nitrogen and stored at $-70^{\circ} \mathrm{C}$ for subsequent analysis.

3.2.3.2 Chronic renal medullary interstitial infusion (6 rabbits)

Following a 2 -week recovery period, the osmotic mini pump positioned between the rabbits' shoulder blades was changed to a fresh saline (154 mM NaCl) infusion. Osmotic pump volumes were 2.0 ml for each pump and pumped at a rate of $2.5 \mu 1 / \mathrm{h}$ over 28 day periods. Prior to their implantation, osmotic pumps were primed by being filled with sterile saline, and kept in sterile containers also containing saline. On completion of these experiments (6 weeks after catheter implantation), kidneys were removed, and Evans Blue dye was injected through the catheter. Patency of the catheter was determined by dissection and visual inspection of the kidney.

3.2.4 Autoradiography

These methods are described in detail in Chapter 2, Section 2.6. Briefly, coronal $50 \mu \mathrm{~m}$ sections of the frozen left kidney were cut on a cryostat at $-19^{\circ} \mathrm{C}$ and mounted on glass slides (subbed with 10% gelatin; BDH Chemicals, Poole, UK). These sections were left to dry for $1-2 \mathrm{~h}$ at room temperature. Subsequent to drying, slides were apposed to tritium sensitive film (Aitiersham Hyperfilm, Sweden) in the presence of tritium microscales (Amersham) for 6.8 weeks. Developed autoradiograms were quantified using an MCID M4 image analysis system (Imaging Research, St. Catherines, Ontario, Canada) as previously described (Ashworth-Preece et al., 1997). Each kidney section was divided inio four regions; cortex, outer stripe of the outer medulla (outer stripe), medulla (excluding the outer stripe and papilla), and the papilla (defined as the portion of the inner medulla that protrudes into the renal pelvis), for separate quantification.

3.2.5 Statistical analyses

The levels of radioactivity in the various kidney regions for the infused kidneys were subjected to ANOVA, the factors comprising rabbit, and the kidney region (cortex (C), outer medulia (OS), medulla (M), and papilla (P)).

Comparisons made beiween specific kidney regions and different infusion sites (outer mcdullary vs. inner medullary) were conducted using paired and unpaired t-tests respectively.

3.3 Results

3.3.1 Intra-renal distribution of radiolabel: acute catheters

Autoradiographic analysis of the coronal kicney sections demonstrated that the levels of radioactivity in the cortex of the infused kidney were $3.4 \pm 0.6,5.6 \pm 0.8$, and 8.0 ± 0.8 fold lower than those in the outer stripe, medulla, and papilla, respectively (Figures 3.1a and 3.2a).

3.3.2 Intra-renal distribution of rad:olabel: chronic cathesers

Autoradiographic analysis of the coronal kidney sections demonstrated that with outer medullary infusion, the levels of radioactivity in the cortex of the infused kidney were $10.3 \pm 2.3,14.0 \pm 3.3$, and 8.8 ± 2.8 fold lower than those in the outer stripe, medulla, and papilla, respectively. After inner
medullary infusion, the levels of radioactivity in the cortex of the infused kidney were $6.6 \pm 1.6,8.7$ ± 2.2 and 8.2 ± 2.4 fold lower than those in the outer stripe, medullary, and papillary regions, respectively (Figures 3.1 and 3.2).

3.3.3 Comparison of intra-renal distribution

Densiometric analysis of outer medullary infused kidneys revealed that radiolabel infused via chronically positioned catheters resulted in greater concentrations of radiolabel in the outer stripe of the outer medulla ($180 \pm 20 \mathrm{dpm} / \mathrm{mm}^{2}$) and in the medulla ($209 \pm 33 \mathrm{dpm} / \mathrm{mm}^{2}$), than was the case with acutely positioned catheters (79 ± 11, and $140 \pm 19 \mathrm{dpm} / \mathrm{mm}^{2}$ respectively). Radiolabel concentrations in the cortex and papilla were similar with the two infusion sites (Figure 3.2).

3.3.4 Intra-renal distribution of radiolabel using chronically positioned catheters: effect of infusion site

A comparison of radiolabel concentration throughout the kidneys receiving their infusions via chronically positioned catheters in the outer or inner medullary interstitium demonstrated that outer medullary interstitial infusion resulted in greater concentrations of radiolabel being isolated in the outer stripe of the medulla ($179 \pm 20 \mathrm{dpm} / \mathrm{mm}^{2}$), and the medulla ($209 \pm 33 \mathrm{dpm} / \mathrm{mm}^{2}$), when compared to inner medullary infusion (74 ± 15, and $88 \pm 16 \mathrm{dpn} / \mathrm{mm}^{2}$). Radiolable concentration in the cotex and papilla were similar with the two infusion sites (Figure 3.2).

3.3.5 Chronic medullary interstitial infusion

At post mortem, Evans Blue dye ($\sim 0.5 \mathrm{ml}$) was infused into the medullary interstitial catheter and was found to stain areas within the renal medulla (Figure 3.3).

Figure 3.1 Typical autoradiograms, showing radiolabel distribution throughout kidneys foilowing [$\left.{ }^{3} \mathrm{H}\right]$-noradrenaline ($16-24 \mathrm{nCi} / \mathrm{kg} / \mathrm{min}$ in $100 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$ noradrenaline) infusion via two acutely positioned catheters (A), or chronically positioned catheters, so that the tip lay in the outer medullary interstitium (B), or in the inner medullary interstitium (C). C, cortex; OS, outer stripe of outer medulla; M , medulla; P , papilla.

Figure 3.2 Density of radiolabel expressed as disintegrations per minute per square $\mathrm{mm}\left(\mathrm{dpm} / \mathrm{mm}^{2}\right)$, determined from autoradiographic analysis of infused kidneys at end of 20 min infusions of [$\left.{ }^{3} \mathrm{H}\right]$ noradrenaline ($16-24 \mathrm{nCi} / \mathrm{kg} / \mathrm{min}$ noradrenaline in $100 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$ noradrenaline), administered via; A, 2 acutely positioned catheters in outer medullary interstitium ($\mathrm{n}=5$), B, chronically positioned catheter in outer medulla ($n=7$), C, chronically positioned catheter in inner medulla ($n=9$). Columns and error bars represent means \pm SE. P values represent outcomes of a partitioned ANOVA testing for a difference between levels of radioactivity in the cortex compared with other three kidney regions. C, cortex; OS, outer stripe of outer medulla; M, medulla; P, papilla. See Methods for definitions of these regions.

Figure 3.3 Photographs of kidneys following chronic infusion catheters. positioned in the outer medullary interstitium. Evans Blue Dye infused at post mortem shows that the dye reached the tenal medulla. Thus, these catheters remained patent for at least 6 weeks.

3.4 Discussion

The aim of this study and our previous study (Correia, 1997) was to design and validate techniques for the delivery of pharmacological agents into the renal medullary interstitium of rabbits, and to dsurmine the renal distribution and disposition of the infused radiolabelled substance. Similar techniques have been developed in rats (Lu et al., 1992; Lu et al., 1994; Mattson et al., 1994; Szczepanska-Sadowska et al., 1994), and have helped provide considerable information regarding the role of the renal medulla, and in particular the renal medullary microcirculation, in the control of blood pressure (Cowley et al., 1992; Cowley et al., 1995; Cowley, 1997).

Taken together with our previous results (Correia, 1997), the results of the present study suggest that in the rabbit, outer medullary interstitial infusion of pharmacological agents, administered via either acutely or chronically implanted catheters, provides a useful method for targeting pharmacological agents to the renal medulla, for alteration of MBF. In this respect, the key finding of the present study was that infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline into the outer medulla resulted in a much greater concentrations of the infused radiolabel in the medulla than in the cortex.

Previously (Correia, 1997), we found that medullary interstitial infusion of noradrenaline delivered to the outer medulla of the rabbit kidney, via either acutely or chronically positioned catheters caused an increase in MAP and reductions in HR, total RBF and both CBF and MBF. The reduction in CBF was significantly less than that of MBF ($P<0.001$, for acutely positioned catheters) and appeared to have occurred chiefly due to the systemic spillover and re-circulation of noradrenaline ($\sim 40 \%$) during infusion. This conclusion was based on our observation of similar redzetions in CBF when the same dose of noradrenaline was administered intravenously. Inner medullary interstitial infusion of noradrenaline caused a slight increase in MAP, but had no significant effect on either total RBF or CBF or MBF. We concluded that the absence of renal haemodynamic effects of noradrenaline via this route was due to the fact that most of the infused noradrenaline (measured as $\left[{ }^{3} \mathrm{H}\right]$) was excreted in the urine. We found that intravenous infusion of noradrenaline (300 $\mathrm{ng} / \mathrm{kg} / \mathrm{min}$) also increased MAP, and while it reduced total RBF and CBF similarly to outer medullary interstitial infusion, did not affect MBF. This suggests that the intravenous route might provide a useful control for the systemic and renal cortical effects of outer medullary interstitial infusion of noradrenaline.

A tissue solubilization technique also employed in our previous study demonstrated considerable variation associated with the levels of radiolabel in the kidney tissue, particularly during outer
medullary infusion of radiolabel (Correia, 1997). It was clear, however, that much greater levels of the radiolabel remained in the kidney during outer, compared with inner medullary infusion of $\left[{ }^{3} \mathrm{H}\right]$ noradrenaline. However, although these results provided useful information regarding the renal distribution of radiolabel in gross tissue sections, we were unable to assess the tissue distribution of radiolabel in detail.

Therefore in the current study, autoradiographic analysis was employed, using tissue from our previous study so that the regional renal distribution of the infused radiolabel could be more precisely determined. Using this technique, we were able to analyze the distribution of radiolabel in specific regions; the cortex, outer stripe of the outer medulla, inner medulla, and the papilla. These data confirm and extend those from our previous study (Correia, 1997), and clearly show that the concentration of infused radiolabel was much greater in the medulla of the infused kidney, than in the cortex or papilla, after outer medullary interstitial infusion. Furthermore, outer medullary interstitial infusion achieves high concentrations of this agent at regions of the kidney likely to contain the vascular sites important in the control of MBF. Since MBF is derived entirely from the efferent arterioles of juxtamedullary glomeruli (Kriz, 1982), of the juxtamedullary cortex, then vasoconstriction of either the afferent or efferent arterioles of these glomeruli should result in reduced MBF. Contractile elements are present in the outer medullary descending vasa recta in the outer medulla, but for the most part disapear as these vessels form the "typical" horsetail arrangement (Pallone et al., 1990; Harrison-Bernard and Carmines, 1994). Since high concentrations of radiolabel were detected in the outer medullary and medullary regions of the kidney following both tissue solubilization and autoradiographic analysis, it seems likely that the infusion could have acted on these vascular elements to produce a vasoconstriction and therefore reduction in blood flow to this region of the kidney. Indeed, our previously reported measurements of regional kidney blood flow during this experiment confirm this hypothesis (Correia, 1997).

An important aspect of our previous study was the information we obtained about renal handling, and therefore disposition, of the infused substance with respect to the infusion site. Outer medullary infusion of the radiolabel caused much of the infusion to be spilled over into the systemic circulation ($\sim 40 \%$), whereas during inner medullary infusion approximately 60% of the infused radiolabel was excreted by the infused kidney associated with much lower concentrations of the radiolabel in the kidney (Correia, 1997; present study). The reason for this difference between the outer medullary and inner medullary infusions remains to be determined but may relate in part to the presence of mechanisms for tubular secretion of noradrenaline (Kopp et al., 1983) and to the relatively lower levels of blood flow in the inner medulla compared with the outer medulla (Pallone
et al., 1990). It is unlikely to reflect leakage of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline due to damage to the papillary tissue from implantation of the catheter, because no such damage was observed in the frozen sections submitted for autoradiography.

Renal handling of infused substances appears to differ between rats and rabbits (Lu et al., 1992; Correia, 1997). For example during outer medullary interstitial infusion in rabbits, a large percentage ($\sim 40 \%$) of the infusion spilled over into the systemic circulation, whereas inner medullary infusion in rats resulted in a much greater localization of the infused radiolabel being concentrated in the medulla and papilla (92%; outer zone, inner zone, and papilla), with limited spillover and re-circulation to the renal cortex, resulting in the infused kidney retaining a radioactivity level forty seven times greater than the contralateral kidney (Lu et al., 1992). An important point to note is that although autoradiography provides a more accurate method of quantification, the data presented are only representative of the $50 \mu \mathrm{~m}$ sections of tissue subjected for analysis, even though these sections were collected from along the line of the catheter and therefore infusion site. In the current study, because onij the infused kidney was subjected to autoradiography, half of each of the infused and contralateral kidneys were subjected to tissue solubilization. Although this is a more 'crude' method of analysis, it does provide a complete indication of the regional distribution throughout the entire kidney (infused and contralateral) (Correia. 1997).

In our raobit studies, although it was found that the infused kidney retained a much greater concentration of the radiolabel than the contralateral kidney, this difference was only twenty two and twenty four times greater for the medulla and papilla respectively, during outer medullary infusion (acute catheters), (Correia, 1997). A further possible explanation for this variance, aside from less spillover in the rat, may have related to the differences in methods of analysis employed in these studies, autoradiography (Lu et al., 1992) versus the tissue solubilization technique (Correia, 1997). Our present experiment allowed us to test this hypothesis, since we now have data using both methods from our experiment. A comparison of these two techniques in the rabbit, indicates similar results in terms of regional distribution of radiolabel throughout the infused kidney, suggesting that species differences in the handling of infused substances are likely.

A further possible explanation for the apparent differences between the handing of substances infused into the medullary interstitium in these two species may arise due to varying abilities of the renal medulla to "trap" substances infused into the interstitium and could reflect differences in medullary structure between the two species (Kriz, 1981). For example, the rabbit renal medulla has

Abstract

a "simple" structure, with relatively small vascular bundles containing only ascending and descending vasa recta. In the more "complex" rat renal medulla, larger vascular bundles are found that also contain descending thin limbs of short loops of Henle (Pallone et al., 1990). Conversely, our results are in agreement with those of Cowley and colleagues (Lu et al., 1992; Cowley et al., 1995), in rats, at least to the extent that in both species during medullary interstitial infusion of a radiolabelled small molecule ($\left[{ }^{14} \mathrm{C}\right]$-clentiazem in their case and $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline in the present study), the radiolabel within the infused kidney was mostly concentrated in the medulla and papilla with very little radiolabel in the cortex of the infused kidney or in the contralateral kidney.

A strength of our previous study was the estimation, during medullary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$ noradrenaline, of the amount of radiolabel spilled cver from the infused kidney into the renal vein, the amount of this radiolabel that re-entered the kidney via the renal artery, and the amount of radiolabel excreted by both the infused and contralateral kidneys. Although it should be acknowledged that much of the radiolabel in these biological fluids reflect metabolites of $\left[{ }^{3} \mathrm{H}\right]$ noradrenaline, we argue that most small, uncharged molecules should be handled similarly by the kidney during medullary interstitial infusion (in rabbits). In the case of noradrenaline and other molecules that are rapidly metabolized in vivo, the proportion of the radiolabel that represents intact $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline must become less in proportion with the distance traveled from the infusion site. A limitation of our studies is that although we were able to determine the level of radiolabel exiting and re-circulating from and to the kidney, we were unable to determine the concentration of "active", non metabolized noradrenaline. Nevertheless, the dose related pressor effects which were observed indicate that significant quantities of intact noradrenaline do spill over during o.ter medullary interstitial infusion. This demonstrates that the technique must be limited to substances that are rapidly metabolized, or to experimental settings where the effect of spillover can be controlled for. Using this technique, we were also able to establish that during inner medullary interstitial infusion of the same dose of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, $\sim 60 \%$ of the infused radiolabel exited the kidney via the ureter, and therefore produced no significant systemic effect.

The aim of the current study was to develop a method for the for the delivery of substances to the renal medulla of rabbits and to establish the optimum catheter design and catheter length for these infusions. Two different catheter lengths were tested, and chronically implanted, so that their tips lay in the outer medullary (8.5 mm below the cortical surface) and inner medullary (10.5 mm below the cortical surface) interstitium. Our results indicate that catheter position within the kidney was important, since outer medullary interstitial infusion produced a greater concentration of radiolabel within the areas of the kidney likely to control regional MBF. Inner medullary infusion resulted in
much of the radiolabel bein sxited from the kidney, and produced no change in regional kidney blood flows (Correia, 1997).

Having established that a catheter tip positioned in the outer medullary interstitium is optimal for infusions intended to manipulate MBF, a further comparison was made to establish any possible differences between acute and chronically positioned catheters. It was found that although both catheter types produced similar levels of radiolabel concentration throughout the kidney, chronically positioned catheters achieved significantly higher concentrations throughout the outer stripe, when compared to acutely implanted catheters. On the other hand, a disadvantage of the chronically implanted catheter is the need for a preliminary surgical procedure.

Another important finding of our current study was that catheters chronically implanted in the kidney remain patent in vivo for up to six weeks following implantation. This result combined with the acquired knowledge of how the rabbit kidney handles infused substances with respect to regional distribution (current study) and disposition (Correia, 1997) has provided us with the information required for the adaptation of this technique to longitudinal studies in rabbits.

This technique is therefore suitable for acute and chronic medullary interstitial infusion of substances that are rapidly metabolized in vivo. With the caveats discussed above in mind, there are considerable advantages to employing a larger species to longitudinal studies. In the case of the conscious rabbit, it is possible to obtain long-term and simultaneous data regarding hormonal status (Evans et al., 1994), cardiac output (Evans et al., 1993), RBF (Tomoda et al., 1996), renal sympathetic nerve activity (Malpas and Evans, 1998), and more recently MBF and CBF (Evans et al., 2000), therefore providing more complete data regarding the responses to short and long term changes in renal MBF.

3.5 Conclusions

Taken together with those of our previous study (Correia, 1997), the findings of the current study show that outer medullary interstitial infusion is a useful method for targeting vasoactive agents to the renal medulla. This is tne not only for acutely positioned catheters, but also for chronically implanted catheters, that remain patent for at least 6 weeks. On the other hand, at least in the rabbit, this technique is apparently limited to the use of compounds which are readily metabolized, since the infused radiolabel is circulated and redistributed throughout the animal and the kidney. In the experiments described in the next chapter, we used this technigue to investigate the effects of reduced MBF on renal antihypertensive mechanisms.

Chapter Four

EFFECTS OF RENAL MEDULLARY AND INTRAVENOUS NORADRENALINE ON RENAL ANTIHYPERTENSIVE FUNCTION

4.0 Summary

1. Evidence suggests that increasing RAP activates three renal antihypertensive mechanisms; reduced renin release, pressure diuresis/natriuresis, and the release of a putative renal medullary depressor hormone.
2. In previous studies, we found that intravenous noradrenaline infusion ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) selectiveiy reduces CBF, whereas medullary interstitial infusion of the saine dose selectively reduces MBF. This provides a useful tool for studying the role of MBF in a variety of different experimental settings.
3. Therefore in the current study, medullary interstitial and intravenous infusions of noradrenaline were employed to study the role of MBF responses to increased RAP.
4. In order to test the involvement of MBF in renal antihypertensive mechanisms, an extracorporeal circuit was established in anaesthetised rabbits. This circuit enables RAP to be altered independently of the systemic circulation. A right nephrectomy was performed, and the left ureter was cannulated for urine sample collection. CBF and MBF were determined by laserDoppler flowmetry, and total RBF was measured by transit-time ultrasound flowmetery.
5. The experiment consisted of two phases. During Phase I, RAP was set at $\sim 65 \mathrm{mmHg}$ and rabbits received either an intravenous or medullary interstitial infusion of noradrenaline (300 $\mathrm{ng} / \mathrm{kg} / \mathrm{min}$). During phase two, these infusions were continued, and RAP was increased in stepwise fashion frem ~ 65 to $\sim 160 \mathrm{mmHg}$.
6. With RAP at $\sim 65 \mathrm{mmHg}$, intravenous and medullary interstitial noradrenaline infusions similarly increased MAP (by $12-17 \%$ of baseline), and reduced total RBF (by $16-17 \%$) and CBF (by $13-19 \%$), but only medullo: y interstitial noradrenaline reduced MBF (by 28%).
7. When RAP was increased to $\sim 160 \mathrm{mmHg}$, urine output and sodium excretion increased exponentially, while plasma renin activity and MAP fell.
8. Medullary interstitial but not intravenous noradrenaline attenuated the increased diuresis and natriuresis and the depressor response to increased RAP.
9. Our findings indicate that noradrenaline can act within the renal rnedulla to attenuatc the pressure diuresis/natriuresis response and perhaps also release of the putative renal medullary depressor hormone.

4.1 Introduction

It has been hypothesized that the level of renal MBF is an important determinant of urinary sodium excretion, and may be the key initiating factor in the pressure diuresis/natriuresis response (Cowley, 1997). In turn, the impact of MBF on the pressure natriuretic mechanism provides an explanation for the effects of chronic changes in MBF on the long-term control of arterial pressure (Cowley, 1997). Thus, in rats, chronic reductions in MBF shift the pressure diuresis/natriuresis relationship toward higher pressures and lead to hypertension in normotensive animals. Conversely, chronic increases in MBF shift the pressure diuresis/natriuresis relation toward lower pressures and ameliorate hypertension in spontaneously hypertensive rats (Cowley, 1997).

From studies using an extracorporeal circuit in anaesthetised rabbits (Bergstöm and Evans, 1998), our group have obtained preliminary evidence indicating that influences on the release and/or actions of the putative renal medullary depressor hormone might also contribute to the impact of MBF on the long-term control of arterial pressure. In this model, three major renal antihypertensive mechanisms can be studied simultaneously. Thus, when RAP is acutely increased in this model, plasma renin activity (PRA) is reduced (indicating reduced renal renin release), urine flow and urinary sodium excretion increase exponentially (pressure diuresis/natriuresis), and systemic MAP is reduced. The depressor response to increased RAP appears to be largely independent of the reduced activity of the renin-angiotensin system, in view of the fact that it is little affected by blockade of angiotensin-converting enzyme (Christy et al., 1993). Presently available data also indicates that it is largely independent of the associated diuresis and diuresis/natriuresis, in view of the fact that haemoconcentration is not observed (Christy et al., 1991; Christy et al., 1993; Bergstöm and Evans, 1998). There is, however, clear evidence for a role of the renal medulla, in that the depressor response is abolished by chemical medullectomy (Christy et al., 1991).

In a recent study performed in our laboratory, the depressor response to increased RAP was blunted by medullary interstitial infusion of $\left[\mathrm{Phe}^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}\right]$-vasopressin, a treatment that selectively reduced MBF (Bergstöm and Evans, 1998). These results indicate a possible role of MBF in the release of this putative hormone. However, it was difficult to determine whether this effect of medullary interstitial infusion of the V_{1}-agonist was specifically due to reduced MBF or to some other action of the infused agent. For example, this treatment also reduced total RBF and CBF. It was also no possible to exclude roles of non-flow-mediated extra-vascular actions on V_{1}-receptors in the kidney, or even extra-renal V_{1} receptors, which might blunt the release and/or actions of the putative renal meduilary depressor hormone (Bergstöm and Evans, 1998).

The aim of the current study was to more directly test the role of the medullary microcirculation in modulating the antihypertensive responses to increased RAP. The development and validation of the technique of renal medullary interstitial infusion of noradrenaline now makes this possible (Correia, 1997; Chapter 3). In particular, we showed that medullary interstitial infusion of noradrenaline reduces MBF twice as much as CBF, whereas intravenous noradrenaline reduces only CBF , in rabbits. Therefore, the effects of medullary interstitial infusion and intravenous infusion of noradrenaline were compared, on the antihypertensive responses to increased RAP. The use of this experimental design makes it possible to control for the effects of noradrenaline exerted outside the renal medulla. The results of this study provide further support for the hypothesis that MBF plays a critical role in the long term regulation of arterial pressure, through its imyst on pressure natriuretic/diuretic mechanisms and perhaps also via its effects on the release of the putative renal medullary depressor hormone.

4.2 Methods

4.2.1 Experimental preparation

Twenty-nine male New Zealand White rabbits, weighing $2.50-2.94$ (mean 2.62) kg , were studied. On the experimental day, catheters were placed in both central ear arteries and marginal ear veins, the rabbits were anaesthetized, a right nephrectomy was performed, and an extracorporeal circuit was established. To test the effects of noradrenaline infusion on systemic and renal haemodynamics, rabbits received either an intravenous ($n=7$) or medullary interstitial ($\mathrm{n}=6$; outer medulla) infusion of noradrenaline, or its vehicle. Intravenous noradrenaline infusion was previously shown (Correia, 1997) to cause a selective reduction in CBF with no significant effect on MBF, whereas outer medullary interstitial infusion causes a marked reduction in MBF.

Therefore these infusions were continued throughout the remainder of the experiment during which RAP was progressively increased from ~ 65 to $\sim 160 \mathrm{mmHg}$, in order to test the effects of reduced CBF and MBF on responses to increased RAP.

4.2.2 Extracorporeal circuit

Rabbits were prepared for surgery, according to Section 2.2.1 of Chapter 2. Briefly, a right nephrectomy was first performed to remove any confounding influence of the contralateral kidney, and an extracorporeal circuit was then established, as described in detail in section 2.2.4 of Chapter 2. This circuit allows RAP to be set to any level, above or below systemic arterial pressure without changing total flow through the circuit or directly affecting systemic haemodynamics. Regional kidney blood flow was monitored throughout the experiment by the positioning of lascr-Doppler flow probes in the outer medullary interstitium and on the superficial cortical surface, as described in detail in Section 2.2.6 of Chapter 2. In fourteen rabbits, medullary infusion catheters were acutely positioned laterally, 10 mm either side of the laser-Doppler flow probe, and advanced so that their tips lay at the junction of the outer and inner stripes of the outer medulla (8.5 mm below the cortical surface) (Section 2.2.3, Chapter 2).

Once the extracorporeal circuit was established, RAP was set at $\sim 65 \mathrm{mmHg}$ for a 60 min equilibration period. A bolus dose of $\left[{ }^{3} \mathrm{H}\right]$-inulin ($4: \mathrm{Ci}$, NEN Research Products) was administered in 1.0 ml of 154 mM NaCl . An infusion of 10% (vol/vol) polygeline (Hemaccel, Hoechst, Melbourne, VIC, Australia) containing $200 \mathrm{IU} / \mathrm{ml}$ sodium heparin and $0.3 \mu \mathrm{Ci} / \mathrm{ml}\left[{ }^{3} \mathrm{H}\right]$-inulin was then initiatat ($0.18 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$) which continued for the duration of the experiment.

4.2.3 Measurements

Systemic (MAP and HR) and renal haemodynamics (RAP, RBF, CBF, MBF) were measured throughout the experiment, and are described in detail in Sections 2.7.1, Chapter 2. Briefly, RAP was measured in a side-arm catheter, 3 mm proximal to the tip of the cannula inserted into the renal artery while MAP was measured via a catheter in a central ear artery. Blood flow through the renal limb of the circuit was measured with an in-line ultrasonic flow probe (type 4 N , Transonic Systems Inc). These signals were amplified, recorded, and digitized, as described in Section 2.7.1 of Chapter 2.

Plasma renin activity and urinary concentrations of $\left[{ }^{3} \mathrm{H}\right]$-inulin and sodium were determined as detailed in Sections 2.7.2 (processing of blood and urine samples) and 2.7.3 (plasma renin activity), $\left[{ }^{3} \mathrm{H}\right]$-inulin clearance was used to estimate glomerular filtration rate (GFR). At the completion of each experiment, the left kidney ws removed, decapsulated and desiccated, and its dry weight was determined. All values of renal blood flow, GFR, urine flow, and urinary sodium excretion are therefore expressed per gram of dry kidney weight (expressed as g [mean $1.77 \pm 0.03 \mathrm{~g}$]).

4.3 Experimental protocols

4.3.1 General

Each experimental protocol consisted of 2 phases. Phase 1, which followed the 60 minute equilibration period, tested the effects of either outer medullary interstitial (Protocol 1) or intravenous (Protocol 2) infusion of noradrenaline on systemic and renal haemodynamics. The second phase of each protocol involved testing the effect of these treatments on the responses to increased RAP (Figure 4.2).

4.3.2 Effects of outer medullary interstitial noradrenaline: protocol I

After 10 minutes of stable baseline recordings, outer medullary interstitial infusion of either noradrenaline ($300 \mathrm{ng} / \mathrm{kg}$ ' $\mathrm{min} ; \mathrm{n}=6$) or its vehicle ($154 \mathrm{mM} \mathrm{NaCl}, 20 \mu \mathrm{l} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=8$) commenced and continued for the remainder of the experiment. Twenty minutes later, RAP was set at $\sim 65,85$, 110,130 , and 160 mmHg for consecutive 20 minute periods and, once set, was not readjusted. Urine produced by the left kidney was collected during the final 15 minutes of each period. Arterial blood (1 mi) for clearance measurements was collected from an ear artery catheter at the midpoint of each 15 minute clearance period, and samples (1 ml) for determination of plasma renin activity, were collected at the midpoint of the first, third, and fifth clearance periods. Blood volume was replaced by an equivalent volume of 10% polygeline solution (Hemaccel). At the end of the fifth clearance period, RAP was returned to $\sim 65 \mathrm{mmHg}$ for a further 20 min .

4.3.3 Effects of intravenous noradrenaline: protocol 2

This protocol was identical to protocol 1 , except noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$) or its vehicie ($20 \mu 1 / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=8$) were administered intravenously via an ear vein catheter.

Figure 4.1 Schematic representation of experimental protocol. During a $60-\mathrm{min}$ equilibration period, renal artery pressure (RAP) was set and maintained at 65 mmHg . Phase 1 ; following 10 min of stable baseline recordings, rabbits received a $20-\mathrm{min}$ infusion of either noradrenaline (300 $\mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or vehicle ($20 \mu / \mathrm{kg} / \mathrm{min}$) delivered either intravenously or to the outer medulla. This infusion was continued until the end of the experiment. During Phase 2; RAP was re-set and maintained at $65,85,110,130$ and 160 mmHg for consecutive 20 -min periods. During the final 15 \min of each $20-\mathrm{min}$ period urine was collected for urinary clearance measurements (shaded areas; U1-U5), 1 ml blood samples were collected at the mid point of each collection period (A1-A5) for renal clearance measurements and haematocrit, and at every second period a further 1 ml blood sample was collected for determination of plasma renin activity (Rnn1-Rnn3).

4.4 Statistical akatysis

4.4.1 Phase I

These data were first submitted to repeated measures analysis of variance, to determine whether responses to noradrenaline differed from those of the saline vehicle. To test whether each of the noradrenaline or vehicle treatments altered baseline systemic and renal haemodynamics, average levels of each variable during the period 10 to 20 minutes after the initiation of the infusion were compared with the levels during the 10 minute control period by paired t test.

4.4.2 Phase II

These data were analyzed by ANOVA adapted for repeated measures analysis of variance. To test whether increasing RAP altered each variable, a 1-way analysis was first performed on all vehicle treated rabbits to provide the main effect of increasing RAP ($P_{\text {RAP }}$). The interaction term between RAP and treatment (vehicle or noradrenaline) was then determined from 2 -way analyses for each route (intravenous and medullary interstitial). This tested for effects of noradrenaline infusion on the responses to increased RAP.

4.5 Results

4.5.1 Phase 1: Effects of renal medullary interstitial and intravenous noradrenaline infusions

4.5.1.1 Effects of renal medullary interstitial noradrenaline on systemic and renal haemodynamics

Renal medullary interstitial infusion of noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) was accompanied by progressive haemodynamic changes that reached steady state by 10 minutes after the infusion began (Figure 4.2). The changes included increases in RAP (by $19 \pm 4 \%$ of its baseline level during the period 10 to 20 minutes after beginning the infusion) and MAP (by $17 \pm 4 \%$) and reductions in RBF ($16 \pm 3 \%$), CBF ($13 \pm 2 \%$) , and MBF ($28 \pm 9 \%$) but no significant change in HR ($1 \pm 2 \%$ change). Medullary interstitial infusion of the vehicle had no significant effect on any of these variables (Table 4.2).

4.5.1.2 Effects of intravenous noradrenaline on systemic and renal haemodynamics

Intravenous noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) was also accompanied by reductions in RBF (by $17 \pm$ 9% of its baseline value) and CBF (by $19 \pm 3 \%$) and by increases in MAP ($12 \pm 4 \%$) and RAP ($4 \pm$ 1%). However, unlike renal medullary noradrenaline, intravenous noradrenaline had no significant effect on MBF ($1 \pm 8 \%$ change). Intravenous infusion of the vehicle was accompanied by small variations in MAP $(4 \pm 1 \%), \operatorname{HR}(1 \pm 1 \%)$, and RBF $(-4 \pm 2 \%)$ but no significant changes in RAP, CBF, or MBF (Figure 4.3, Table 4.1).

4.5.2 Phase II: Effects of increasing renal artery pressure in anaesthetised rabbiss

4.5.2.I Renal haemodynamic variables (vehicle infusion)

As shown in Figure 4.4, as RAP was increased from 66 ± 1 to $158 \pm 3 \mathrm{mmHg}$, there were progressive increases in RBF (from 13 ± 1 to $29 \pm 2 \mathrm{ml} / \mathrm{min} / \mathrm{g}$) and GFR (from 0.8 ± 0.1 to 3.0 ± 0.4 ma/rinin $/ \mathrm{g}$ ($P_{\text {RAP }}<0.001$). Renal vascular resistance and filtration fraction responded biphasically. As RAP was increased from ~ 65 to $\sim 110 \mathrm{mmHg}$, renal vascular resistance increased from 5.9 ± 0.8 to $7.7 \pm 2.3 \mathrm{mmHg} / \mathrm{ml} / \mathrm{min} / \mathrm{g}$ before decreasing to $6.9 \pm 0.6 \mathrm{mmHg} / \mathrm{ml} / \mathrm{min} / \mathrm{g}$ when RAP was increased to $\sim 160 \mathrm{mmHg}$ ($P_{\mathrm{RAP}}=0.05$). Filtration fraction also responded in a similar manner, increasing from $3.5 \pm 1.1 \%$ to $9.3 \pm 1.9 \%$ as RAP was increased from ~ 65 to $\sim 110 \mathrm{mmHg}$, before decreasing to $8.0 \pm 1.4 \%$ when RAP was increased to $\sim 160 \mathrm{mmHg}$ ($P_{\text {RAP }}<0.001$) (Figure 4.4, Table 4.2).

4.5.2.2 Regional renal blood flows (vehicle infusion)

As shown in Figure 4.5 , as RAP was increased from 66 ± 1 to $158 \pm 3 \mathrm{mmHg}, \mathrm{CBF}$ increased progressively from 235 ± 31 to 329 ± 45 perfusion units ($P_{\mathrm{RAP}}=0.01$) whereas alhough MBF did not change significantly.

4.5.2.3 Renal excretory variables (vehicle infusion)

As shown in Figure 4.6, as RAP was increased form ~ 65 to $\sim 160 \mathrm{mmHg}$, there were progressive increases in urine volume (from 0.09 ± 0.02 to $1.24 \pm 0.09 \mathrm{ml} / \mathrm{min} / \mathrm{g}$) and urinary sodium excretion (from 12 ± 2 to $161 \pm 13 \mu \mathrm{~mol} / \mathrm{min} / \mathrm{g}$) and in the fractional excretions of urine (from $12 \pm 1 \%$ to 43 $\pm 3 \%$) and sodium (from $11 \pm 2 \%$ to $40 \pm 3 \%$) ($P_{\mathrm{RAP}}<0.001$).

4.5.2.4 Systemic haemodynamic variables (vehicle infusion)

As shown in Figure 4.7, as RAP was increased from ~ 65 to $\sim 160 \mathrm{mmHg}$, MAP fell progressively from 78 ± 3 to $50 \pm 5 \mathrm{mmHg}$ and at an increasing rate of 0.04 ± 0.06 to $0.96 \pm 0.15 \mathrm{mmHg} / \mathrm{min}$ ($P_{\text {RAP }}<0.001$). Haematocrit decreased gradually from $22.1 \pm 0.9 \%$ to $21.6 \pm 0.9 \%$ as RAP was increased from ~ 65 to $\sim 110 \mathrm{mmHg}$ and increased thereafter to $22.5 \pm 0.9 \%$ when RAP was increased to $\sim 160 \mathrm{mmHg}\left(P_{R A P}=0.04\right)$. Heart rate tended to decrease (from 266 ± 5 to 253 ± 8 beats $/ \mathrm{min}$) as RAP increased to $\sim 160 \mathrm{mmHg}\left(P_{\mathrm{RAP}}=0.05\right)$.

4.5.2.5 Plosma renin activity (vehicle infusion)

Plasma renin activity fell as RAP was increased, averaging $14 \pm 3,12 \pm 2$, and $7 \pm 3 \mathrm{ng}$ angiotensin $\mathrm{I} / \mathrm{ml} / \mathrm{h}$ when RAP was $\sim 65,110$, and 160 mmHg , respectively ($P_{\text {RAP }}=0.04$), Figure 4.8 .

4.5.3 Effects of medullary interstitial and intra:2nous noradrenalite on responses to increased renal artery pressure

The RAP-dependent increases in RBF and CBF were significantly attenuated by medullary interstitial noradrenaline (Figures 4.4and 4.5). RAP dependent increases in urine volume and urinary sodium excretion (Figure 4.5) and decreases in MAP (Figure 4.6) were significantly attenuated, but no significant effect on plasma renin activity was observed. Medullary interstitial noradrenaline also significantly altered the response of haematocrit to increased RAP, attenuating the increase in haematocrit as RAP was increased to $\sim 110 \mathrm{mmHg}$. Intravenous infusion of noradrenaline did not significantly influence any of these responses to increased RAP (Figures 4.3 4.7).

4.5.4 Effects of resetting renal artery pressure to $\sim 65 \mathrm{mmHg}$

When RAP was reset to $\sim 65 \mathrm{mmHg}, \mathrm{RBF}$ returned to levels similar to those observed during the initial period (most leftward point in Figure 4.4) in vehicle-treated rabbits ($-3 \pm 4 \%$ different from its previous level, during the period 15 to 20 minutes after RAP was reset to $\sim 65 \mathrm{mmHg}$) and in rabbits treated with medullary interstitial noradrenaline ($-13 \pm 4 \%$) and intravenous noradrenaline ($39 \pm 27 \%$). MAP rose when RAP was reset to $\sim 65 \mathrm{mmHg}$ but did not completely recover to its previous level in vehicle-treated rabbits $(-28 \pm 5 \%)$ and in rabbits treated with outer medullary noradrenaline ($-14 \pm 6 \%$) and intravenous noradrenaline $(-30 \pm 10 \%)$.

Time from Commencement of Medullary Noradrenaline Infusion (min)
Figure 4.7 Ifects of renal medullary interstitial infusion of noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) on systenic and renal haemodynamic variables. (O) Vehcile ($20 \mu 1 / \mathrm{kg} / \mathrm{min}$; 154 mM NaCl ; $\mathrm{n}=8$). (${ }^{\circ}$) Noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=6$). Lines show 1 min means, while symbols show 5 \min means \pm SEM for each variable. P values test whether the response to noradrenaline differed from that of its vehicle ($\mathrm{P}_{\text {Tine }} \cdot$ Treammen).

Time from Commencement of Intravenous Noradrenaline Infusion (min)
Figure 4.3 Effects of intravenous noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$), on systemic and renal haemodynamic variables. (O) Vehicle ($20 \mu / \mathrm{kg} / \mathrm{min} ; 15 \ddagger \mathrm{mM} \mathrm{NaCl} ; \mathrm{n}=8$). (\bullet) Noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$). Lines, symbols, error bars, and P values are as for Figure 4.2.

Figure 4.4 Effects of renal outer medullary interstitial and intravenous infusion of noradrenaline on renal haemodynamic variables. Symbols are as for Figure 4.2, and are the mean value for each 15 min at each level of RAP. Etror bars are as for Figure 4.2. Outcomes of repeated measures analyses of variance, testing for the effects of increasing RAP ($P_{\text {Treaturent }}$) and RAP dependent ($P_{\text {Pressure }} \cdot T_{\text {Tratuent }}$), and independent ($\mathrm{P}_{\text {Treanum }}$) effects of these treatments are given in Table 4.2. ($\mathrm{P}_{\text {Pressure- }{ }^{\text {Treanment }} \text {) tested whether noradrenaline treatment altered the response }}$ to increased RAP.

Figure 4.5 Effects of renal outer medullary interstitial and intravenous infusion of noradrenaline on responses of renal cortical and medullary perfusion to progressively increasing RAP. Symbols, error bars, and P values (given in Table 4.2) are as for Figure 4.4.

Figure 4.6 Effects of renal outer medullary interstitial and intravenous infusion of noradrenaline on renal excretory responses to progressively increasing RAP. Symbols, error bars, and P values (given in Table 4.2) are as for Figure 4.4.

Figure 4.7 Effects of renal outer medullary interstitial and intravenous infusion of noradrenaline on systemic haemodynamic responses to progressively increasing RAP. Symbols, error bars, and P values (given in Table 4.2) are as for Figure 4.4

Figure 4.8 Effects of renal outer medullary interstitial and intravenous infusion of noradrenaline on responses of plasma renin activity to progressively increasing RAP. Symbols, error bars, and P values (given in Table 4.2) are as for Figure 4.2.

Table 4.1 Effects of medullary interstitial and intravenous noradrenaline on systemic and renal haemodynamics (Data presented as percentage change).

	Medullary Interstitial Infusion		Intravenous Infusion	
	Vehicle	Noradrenaline	Vehicle	Noradrenaline
MAP	2.4 ± 1.4	17 ± 4	3.5 ± 0.6	12 ± 4
$\mathbf{H R}$	-0.7 ± 2.3	2 ± 1	1.3 ± 0.5	-0.02 ± 3.0
$\mathbf{R A P}$	-0.3 ± 2.0	19 ± 4	0.8 ± 1.0	-17 ± 9
$\mathbf{R B F}$	0.8 ± 2.5	-16 ± 3	-3.7 ± 5.8	-17 ± 9
$\mathbf{C B F}$	0.3 ± 2.3	-13 ± 2	0.3 ± 5.8	-19 ± 3
$\mathbf{M B F}$	3 ± 10	-28 ± 9	-0.4 ± 4.1	-1.3 ± 7.5

MAP, mean arterial pressure; HR, heart rate; RAP, renal arterial pressure: RBF, renal blood flow: CBF, cortical blood flow; MBF, medullary blood flow.

Table 4.2 Outcomes of repeated measures analyses of variances for the data depicted in Figures 4.4-4.8.

Variable	Pressure	Medullary Noradrenaline		Intravenous Noradrenaline	
		Treatment	, Press*Treat	Treatment	Press*Treat
Renal Haemodynamics: Figure 4.4					
RAP	<0.001	0.39	0.51	0.39	0.57
RBF	<0.001	0.05	0.003	0.10	0.76
GFR	<0.001	0.53	0.76	0.33	0.72
RVR	0.05	0.15	0.01	0.16	0.27
FF\%	0.001	0.44	0.06	0.65	0.82
Regional Kidney Perfusion: Figure 4.5					
CBF	0.005	0.31	0.01	<0.001	0.62
MBF	0.34	0.47	0.55	0.49	0.13
Renal Excretory Function: Figure 4.6					
Uvol	<0.001	0.01	0.04	0.29	0.58
$\mathrm{FE}_{\text {vol }}$	<0.001	0.20	0.07	0.91	0.68
$\mathrm{U}_{\mathrm{Na+}} \mathrm{~V}$	<0.001	0.01	0.03	0.32	0.39
$\mathrm{FE}_{\mathrm{Na}+}$	<0.001	0.14	0.16	0.44	0.84
Systemic Haemodynamics: Figure 4.7					
MAP	<0.001	0.02	0.05	0.38	0.11
DMAP/dt	<0.001	0.03	0.92	0.52	0.89
HR	0.05	0.75	0.19	0.05	0.40
Het	0.04	0.12	0.02	0.27	0.17
Plasma Renin Activity: Figure 4.8					
PRA	0.04	0.98	0.39	0.22	0.29

Each P value was derived from a repeated measures ANOVA which tested whether noradrenaline treatment altered the responses to increased RAP. Press*Treat, Pressure*Treatment. RAP= renal arterial pressure, $\mathrm{RBF}=$ renal blood flow, $\mathrm{GFR}=$ glomerular filtration rate, $\mathrm{RVR}=$ renal vascular resistance, $\mathrm{FF}=$ filtration fraction, $\mathrm{CBF}=$ cortical blood flow, $\mathrm{MBF}=$ medullary blood flow, $\mathrm{U}_{\text {voL }}=$ urine flow, $\mathrm{FE}_{\mathrm{voL}}=$ fractional excretion of urine, $\mathrm{U}_{\mathrm{Na}+} \mathrm{V}=$ urinary sodium excretion, $\mathrm{FE}_{\mathrm{Na}^{2}+}=$ fractional excretion of sodium, MAP $=$ mean arterial pressure, $\mathrm{HR}=$ heart rate, $\mathrm{Hct}=$ haematocrit, PRA= plasma renin activity.

4.6 Discussion

We have recentity shown in anaesthetised rabbits that medullary interstitial infusion of noradrenaline ($300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) reduces MBF more than CBF, and that intravenous infusion of the same dose only reduces CBF (Correia, 1997). Consistent with this observation, medulary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline resulted in greater levels of radiolabel in the medulla than in the cortex (Chapter 3). In the present study, we used these findings as a tool to examine the role of MBF in modulating the renal antihypertensive responses to increased RAP. Our major finding was that medullary interstitial noradrenaline, but not intravenous noradrenaline, attenuated both the pressure diuresis/natriuresis response and the depressor response to increased RAP. These observations provide further support for the hypothesis that MBF plays an important role in the control of arterial pressure, both thiough its involvement in the mechanisms mediating pressure diuresis/natriuresis and possibly also in the mechanisms mediating release of the putative renal medullary depressor hormone.

Consistent with our previous observations in a conventional anaesthetised rabbit preparation (Correia, 1997), in the extracorporeal circuit model, infusion of noradrenaline increased MAP and reduced RBF and CBF similarly by the two routes. This indicates significant systemic spillover into the renal cortex, consistent with our previous extensive characterization of this method (Correia, 1997; Chapter 3). However, our results also indicate that these renal cortical and extra-renal effects of noradrenaline can be effectively controlled for by intravenous infusion. The striking difference between the effects of noradrenaline infused by the two routes was that medullary interstitial infusion of noradrenaline reduced MBF by $\sim 30 \%$, whereas intravenous noradrenaline had little or no effect on MBF. Thus, our present experimental design provided a good paradigm for examining the effects of reduced MBF on the renal antihypertensive responses to increased RAP. We can also be fairly confident that these infusions provided relatively constant renal haemodynamic effects, inasmuch as in all experimental groups, RBF levels were similar at the end of the experiment, when RAP was reset to $\sim 65 \mathrm{mmHg}$, compared with RBF levels during the initial period at this level of RAP.

One surprising finding in this study was that MBF did not increase as RAP was increased. On face value, these data suggest that MBF is well autoregulated in the extracorporeal circuit model. On the other hand, data concerning MBF througho the course of Phase II of the experiment may have been confounded by changes in kidney size in response to changes in RAP. Since the medullary laser-Doppler flow probe was held and supported in a stable position independent of the kidney, as
the kidney increased in size, it is likely that it was forced to move back along the line of the flow probe. This action would have resulted in MBF being measured in different regions of the medulla throughout the course of the experiment, tending towards the papilla as RAP is increased. Evidence suggesting poor autoregulation of MBF in response to increased RAP (Roman and Zou, 1993) would indicate that throughout the course of phase II MBF should have increased. Since blood flow to the renal papilla is substantially less than that in the outer medulla (Pallone et al., 1990), it remains possible that the relative stability of MBF in the face of increased RAP reflects a technical limitation of the laser-Doppler flowmetery technique under the conditions of our experiment.

Our major finding (i.e. medullary interstitial, but not intravenous, infusion of noradrenaline attenuates both the pressure diuresis/natriuresis response and the depressor response to increased RAP) provides evidence for a role of the renal medulla in renal antihypertensive mechanisms. Because intravenous infusion of noradrenaline did not significantly affect these responses, we can confidently exclude roles of noradrenaline mediated outside the kidney that are related, for example, to its systemic pressor effect, modulation of hormone release from extra-renal sites, or inhibition of the peripheral response to the putative renal medullary depressor hormone. We can also probably exclude contributions mediated solely in the cortical microvasculature, inasmuch as RBF and CBF were similarly reduced by medull ry interstitial and intravenous infusions of noradrenaline. Roles for the renin-angiotensin system also appear unlikely in view of the fact that plasma renin activity in rabbits receiving medullary interstitial infusions of noradrenaline was indistinguishable from that in vehicle-treated control rabbits.

4.6.1 Pressure diuresis/natriuresis

Medullary interstitial, but not intravenous noradrenaline attenuated the diuretic and natriuretic responses to increased RAP. This effect is also likely to account for the statistically significant influence of medullary interstitial noradrenaline on haematocrit responses to increased RAP, because the redised diuresis/natriuresis would attenuate haemoconcentration at high leveis of RAP. Tubular element probably play a key role in mediating the attenuated diuresis/natriuresis, because medullary interstitial noradrenaline did not significantly affect the relation between GFR and RAP. Our results indicate a role of the renal medulla in mediating the effects of medullary interstitial infusion of noradrenaline on the pressure diuresis/natriuresis response, but our present experiment does not definitively demonstrate that these effects were mediated by the actions of noradrenaline on MBF. In particular, a direct effect of noradrenaline on tubular function in the medulla cannot be
discounted, because tubular adrenoceptors are certainly known to directly influence fluid and sodium reabsorption in the kidney (Hesse and Johns, 1984; Gellai, 1990).

On the other hand, our present results are consistent with the large body of work by Cowley and colleagues (Cowley, 1997) showing that treatments that alter MBF, but not those that influence CBF alone, profoundly influence the pressure diuresis/natriuresis response. They have argued that the chief initiating factor in the pressure diuresis/natriuresis response is increased MBF and that this leads to a rise in renal interstitial hydrostatic pressure, which in turn inhibits tubular sodium reabsorption (Cowley, 1997).

However, there is still considerable controversy regarding this hypothesis (Majid et al., 1997), so its further critical evaluation is important. In this respect, the present study is significant because it has used an experimental model, with an extracorporeal circuit, that differs from conventional models for studying pressure diuresis/natriuresis, in which RAP is altered by adjustable clamps on the aorta or renal artery (Roman and Cowley, 1985; Majid et al., 1997). In our laboratory, other experiments performed using this experimental model have previously shown that another treatment that reduces MBF, blockade of nitric oxide synthesis with N^{6}-nitro-L-arginine, also attenuates the pressure diuresis/natriuresis response (Evans et al., 1995). Conversely, manipulating CBF only by intrarenal infusion of endothelin-i, or systemic administration of endothelin antagonist, has little effect on pressure diuresis/natriuresis responses in this model (Weekes et al., 2000).

Importantly, our experimental model allows RAP to be set at levels considerably greater than MAP, so that the pressure diuresis/natriuresis response can be investigated over a wide range of RAP. The renal vascular responses to increased RAP in the extracorporeal circuit model differ from those in conventional preparations (Roman and Cowley, 1985), in that RBF and CBF increases considerably as RAP is increased. However, as has been argued previously, autoregulation in this model is seen as an increase in renal vascular resistance in response to increased RAP, but its effect on RBF is limited by the fixed rate of the pump and high resistance of the vena caval limb (Christy et al., 1993).

4.6.2 Putative renal medullary depressor hormone

As has been observed previously (Bergstöm and Evans, 1998), increased RAP was accompanied by pressure-dependent reductions in MAP. This response has been extensively characterized previously and appears to be unrelated to the accompanying inhibition of the renin-angiotensin
system (Christy et al., 1993), or increase in urinary volume and urinary sodium excretion (Christy et al., 1991; Bergstöm and Evans, 1998). On the basis of the finding that the depressor response is abolished by chemical medullectomy, it has been proposed that this response to increased RAP is mediated chiefly by release of an as yet to be characterized depressor hormone from the renal medulla (Christy et al., 1991; Thomas et al., 1996). It may be that this putative hormone is identical, or similar, to "medullipin", which has been isolated but not yet fully chemically characterized (Brooks et al., 1994).

Previous studies have shown that some (Rudenstam et al., 1992; Bergstöm et al., 1995; Bergstöm and Evans, 1998), but not all stimuli that reduce MBF (Evans et al., 1995), attenuate the depressor response to increased RAP. In the present study, we found that the depressor response to increased RAP was greatly blunted by medullary interstitial, but not intravenous, infusion of noradrenaline. Thus, our results provide the most direct evidence yet obtained, suggesting that the level of MBF influences the release of the putative renal medullary depressor hormone.

Nevertheless, we cannot as yet completely exclude the possibility that some other action of noradrenaline in the renal medulla, such as the direct action on renal medullary interstitial cells, the proposed site of storage and release of medullipin (Thomas et al., 1996), inhibits the release of the putative renal medullary depressor hormone. However, given our previous finding that medullary interstitial infusion of $\left[\mathrm{Phe}^{2}, \mathrm{lle}^{3}, \mathrm{Orn}^{5}\right]$-vasopressin reduces MBF and attenuates the depressor response to increased RAP (Bergstöm and Evans, 1998), a role for the medullary microvasculature seems worth of further investigation. To this end, future studies should replicate this experimental paradigm with other pharmacological agents that might selectively decrease and increase MBF.

4.7 Conclusions

Our findings indicate that noradrenaline can act within the renal medulla to attenuate the pressure diuresis/ratriuresis response and the release of the putative renal medullary depressor hormone. At present, we cannot be certain that this effect of noradrenaline is mediated by the accompanying reduced MBF, but we have strong circumstantial evidence that this is so. Any vasoactive agent is likely to have extravascular effects that might influence the antihypertensive responses to increased RAP. Therefore, the only way we can dissect out the relative role of effects on MBF from other actions mediated within the renal medulla is to examine the effects of a range of agents that alter MBF. Our experience so far with extracorporeal circuit models such as that used in the present study is that only treatments that alter MBF influence these renal medullary antihypertensive
mechanisms (Rudenstam et al., 1992; Bergstöm et al., 1995; Evans et al., 1995; Bergstöm and Evans, 1998;). Therefore, it seems likely that the medullary microvasculature plays a key role in the mechanisms controlling blood pressure in the long term, not only via actions on the renal handling of salt and water but also by influencing the release of the putative renal medullary depressor hormone.

On the other hand, to date there have been no studies that have directly tested whether the depressor response to increased RAP is completely independent of the changes in urinary salt and water excretion, and the renin-angiotensin system, that accompany increased RAP. This is the subject of the next chapter of this thesis.

Chapter Five

ROLES OF PRESSURE DIURESIS/NATRIURESIS AND INHIBITION OF THE RENIN-ANGIOTENSIN SYSTEM, IN THE DEPRESSOR RESPONSE TO INCREASED RENAL ARTERY PRESSURE.

5.0 Summary

1. Increasing RAP activates renal antihypertensive mechanisms; reduced renin release, pressure natriuresis/diuresis, and perhaps also release of the putative renal medullary depressor hormone, which act together to reduce MAP.
2. Evidence indicates the involvement of the renal medulla and MBF in the long-term regulation of systemic arterial pressure. Treatments which reduce MBF shift the pressure diuresis/natriuresis relationship to higher pressures, and also blunt the depressor response to increased RAP.
3. The aim of this study was to determine the extent to which these antihypertensive mechanisms are linked. That is, we tested the involvement of the pressure diuresis/natriuresis mechanism and inhibition of renal renin release in the depressor response to increased RAP.
4. Ascenaing aortic flowprobes were implanted 2-3 weeks prior to the acute experiment so that cardiac output could be monitored throughout the establishment of the extracorporeal circuit, and the experimental manipulation of RAP.
5. We tested the effects of increasing RAP on systemic MAP, the pressure diuresis/natriuresis mechanism, and levels of plasma renin activity. Furthermore, we tested the effects on the depressor response to increased RAP by blocking the systemic haemodynamic effects of the pressure diuretic/natriuretic response by an infusion of compound sodium lactate at a rate equivalent to urine flow, and 'clamping' the renin-angiotensin system by simultaneous administration of enalaprilat and angiotensin II.
6. Four groups of rabbits were studied. In a control group, RAP was maintained at $\sim 65 \mathrm{mmHg}$. In the remaining three groups RAP was increased to $\sim 160 \mathrm{mmHg}$ during which time urine volume was measured each minute. One group received no other treatment, but in the other two
compound sodium lactate was infused at a rate equivalent to urine flow. One of these groups also received intravenous infusions of enalaprilat and angiotensin II to 'clamp' the reninangiotensin system.
7. Our results show that the depressor effect of increased RAP is abolished if the haemodynamic effects of the pressure natriuretic/diuretic response are blocked by preventing cardiac output from falling by infusion of compound sodium lactate. No further efiect of enalaprilatangiotensin II pretreatment was observed.
8. We conclude from these studies that the fall in MAP seen when RAP is increased in this extracorporeal circuit preparation in the anaesthetised rabbit, occurs chiefly due to negative salt and water balance secondary to the pressure diuresis/natriuresis mechanism, and not due to inhibition of renal renin release or the release of a putative renal medullary depressor hormone.

5.1 Introduction

As observed in the experiments described in Chapter 4, an acute increase in RAP in anaesthetised animals stimulates the activation of renal antihypertensive mechanisms which act in concert to restore arterial pressure to normal levels. Renal renin release is reduced, so that the activity of the pro-hypertensive renin-angiotensin system is inhibited (Navar et al., 1996). Urinary excretion of salt and water increases exponentially with the increased RAP, so reducing cardiac output (Cowley et al., 1995). Thirdly, evidence now exists to support the release of a putative depressor hormone from the renal meduila in response to increased RAP (Muirhead, 1993; Thomas et al., 1996; Bergström et al., 1998).

Evidence provided by Muirhead et al (Muirhead, 1980; Muirhead, 1993), in a series of elaborate experiments indicates the presence of a putative vasodepressor hormone, which is housed in the renal medullary interstitial cells, and released in response to an increase in RAP. The identity of this depressor substance has proven difficult to determine, contributing to the difficulty in confirming and extending Muirhead's experimental findings. Several physiological models have been employed in an effort to elucidate both the chemical identity of the medullary depressor substance and to determine the physiological processes mediating its release and activation within the circulatory system. One of the experimental approaches used has been to employ experimental models which allow perfusion of the kidney in vivo, and allow the effects of increased RAP on systemic haemodynamics to be observed.

Perhaps the simplest of these models is that produced in renal hypertensive rats, in which arterial pressure is 'normalized' following the removal of the renal arterial clip (Muirhead and Brooks, 1980). In these models, the depressor response to unclipping is blunted by chemical medullectomy by BEA-pretreatment (Bing et al., 1981; Taverner et al., 1984), and by pre-treatment with a cytochrome P450 inhibitor (Zou et al., 1995), consistent with the hypothesis that it is dependent at least in part on the release of 'medullipin' from the renal medulla.

In our laboratory, we have used a technique based on the same general principle, in which a pump is used to circulate blood drawn from the aorta, and return it to the vena cava (rabbits, or the iliac vein in dogs), and the renal artery (Anderson et al, 1995). RAP can be set and maintained at any pressure, independently of the systemic circulation by altering the resistance in the venous limb of the circuit, using a Starling resistor.

A major advantage of this experimental paradigm is the perfusion of the kidney in situ at any level above or below systemic arterial pressure (Anderson et al., 1995). Using this model, powerful hypotensive responses are observed in response to increased RAP in both anaesthetised dogs and rabbits (Christy et al., 1991; Thomas et al., 1996). The depressor response appears not to be due to prostaglandins, platelet activating factor, or suppression of the renin-angiotensin system (Christy et al., 1993), nitric oxide release (Evans et al., 1995; Thomas et al., 1995), or products of cytochrome P450 metabolism of arachidonic acid (Evans et al., 1998b). It has further been argued that the depressor response to increased RAP in this model is not due to hypovolaemia secondary to the associated pressure diuretic/natriuretic response, as all experimental animals were said to be in positive fluid balance at all times (Christy et al., 1991; Christy et al., 1993).

On the other hand, the depressor response to increased RAP in this model has been attributed to a depressor hormone housed in the renal medulla, since this response was prevented in animals subjected to prior chemical medullectomy (Christy et al., 1991). This concept has also been examined in cross-circulation studies in rats in which RAP is increased by means of a pump to a kidney, cross-circulated in series with an intact 'assay rat' (Karlström et al., 1989). In this model, increased RAP in the pump-perfused kidney reduces MAP in the 'assay rat' (Bergström, 1995). This depressor response could also be obtained under similar cross-circulation conditions, using spontaneously hypertensive rats, although much higher perfusion pressures were required for the activation of the depressor response than in normotensive (WKY) rats (KarIström et al., 1991).

Although the experiments described above provide evidence of a depressor substance released from the renal medulla in response to increased RAP, this evidence remains indirect. Studies described in the previous chapter (Chapter 4) provided the observations that increases in RAP from ~ 65 to ~ 160 mmHg were accompanied by an exponential increase in renal sodium and water excretion, and a progressive fall in MAP, and that these responses were both blunted by selective reduction of MBF (medullary interstitial noradrenaline) but not CBF (intravenous noradrenaline). The objective of the current experiments was to directly determine the extent of the involvement of the pressure diuresis/natriuresis mechanism in the depressor response to increased RAP. As discussed above, previous studies using this preparation have provided indirect evidence that the depressor response to increased RAP is independent of the accompanying increased salt and water excretion and reduction in plasma renin activity. However, this hypothesis remains to be tested directly, which is the chief aim of the present study.

As in the experiments described in the previous chapter (Chapter 4), an extracorporeal circuit was established in anaesthetised rabbits so that the left kidney could be perfused in situ and RAP could be increased to levels above systemic arterial pressure. Four groups of rabbits were studied, all of which were instrumented with ascending aortic flow probes three to four weeks prior to the experimental day. We determined the magnitude of the depressor response to increasing RAP from ~ 65 to $\sim 160 \mathrm{mmHg}$ for 30 min , and how this response was affected by (i) infusion of compound sodium lactate at a rate to replace urine flow and so maintain cardiac output ('cardiac outrut clamp') and (ii) additionally 'clamping' the renin-angiotensin system by combining angiotensinconverting enzyme blockade with an intravenous infusion of angiotensin II. We also made detailed observations of the haemodynamic status of animals during establishment of the extracorporeal circuit, so as to determine whether they diverge greatly from normal physiological conditions.

5.2 Methods

5.2.1 Experimental preparation

Twenty four New-Zealand White, male rabbits were studied (body wt $2.10-2.93 \mathrm{~kg}$; mean $2.53 \pm$ 0.03 kg). On the experimental day, rabbits were prepared in a similar manner to the experiments described in Chapter 4 with an extracorporeal circuit being established so that RAP could be controlled and altered independently of direct effects on systemic haemodynamics. Rabbits were randomly assigned to four groups. In the first group, RAP was maintained at a constant control level of $\sim 65 \mathrm{mmHg}$, and urine volume was collected and recorded each minute during the control,
experimental and recovery phases (30 min each). In group two, after the 30 min control period, RAP was increased to $\sim 160 \mathrm{mmHg}$ for 30 min and, urine volume was also collected and recorded (volumetrically). RAP was also increased to $\sim 160 \mathrm{mmHg}$ in groups 3 and 4 , during the 30 min experimental phase of the experiment. These animals also received an intravenous infusion of compound sodium lactate at a rate equivalent to urine flow ('cardiac output clamp'). The protocol for Group 4 differed slightly, in that angiotensin converting enzyme was blocked to prevent production of angistansin II (by enalaprilat ($2.0 \mathrm{mg} / \mathrm{kg}$ plus $10 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$), and angiotensin II was infused intravenously to restore MAP and RBF to their control levels ('renin-angiotensin system clamp'). This experiential model allowed us to directly determine the relative roles of pressure diuresis/natriuresis and inhibition of the renin/angiotensin system in the depressor response to increased RAP (Figure 5.1). Furthermore, as the extracorporeal circuit remains a useful tool for manipulating RAP in anaesthetised rabbits, preliminary observations were made in these studies between conscious, anaesthetised, and extracorporeal circuit states. These comparisons were made to enable a better understanding of the circulating conditions present in the extracorporeal circuit model.

Figure 5.1 Schematic diagram of the experimental protocol. Following establishment of the extracorporeal circuit, renal artery pressure (RAP) was set and maintained at 65 mmHg for a 60 min equilibration prior to the start of the experiment. Four groups of rabbits were studied ($n=6$ in each group). In all rabbits were RAP was set and maintained at 65 mmHg for a 30 min period, and was
either maintained at 65 mmHg (group 1) or increased to 160 mmHg (groups 2-4) for a further 30 min , before being returned again to 65 mmHg . Each period comprised two consecutive 15 min periods during which urine was collected (U1-U6). Ear arterial blood samples (1.0 ml) were collected for plasma sodium determination and haematocrit at the mid-point of each period. A further 1 ml arterial blood sample was collected at the mid-point of each 30 min period for determination of plasma renin activity (Rnn 1-3). The excreted urine volume (Ul-U6) was measured volumetrically on a minute per minute basis for all rabbits. In rabbits in groups 3 and 4 (CO; 'cardiac-output clamp') and equivalent volume of compound sodium lactate was infused intravenously. At the end of $U 6$, nine rabbits were selected at random, and the effects of alternating doses of angiotensin I were tested on arterial pressure. Rabbits in group 4 ('renin-angiotensin system' clamp (RAS)) were given intravenous enalaprilat ($2.0 \mathrm{mg} / \mathrm{kg}$, plus $10 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$) and angiotensin II at a dose which restored MAP and RBF to their original control levels.

5.2.2 Implantation of cardiac output flowprobes

Rabbits were instrumented with flow probes 2-3 weeks prior to the experiment to allow the formation of scar tissue around the probe, which provides acoustic coupling of the probe and vessel. Flow probes were implanted around the ascending aorta (6 SB , Transonic Systems, Ithaca, NY, USA), under halothane ($1-4 \%$ Fluothane; ICI, Victoria, Australia) anaesthesia and sterile conditions (Shweta et al., 1999). This procedure was explained in detail in Sections 2.3.1 and 2.3.3 in Chapter 2 and will only be described briefly here. Firstly an incision was made above the left second intercostal space and the muscle layers were opened individually. The heart was exposed via the second intercostal space so that a space around the ascending aorta could be cleared for the positioning of a transit-time ultrasound flowprobe. The lungs were then re-inflated, and the ribs were brought together and secured. The skin wound was closed with a series of sutures, so that each muscle layer was sealed and the subcutaneous and cutaneous layers could be closed. The flowprobe plug was then tunneled subcutaneously so that its end lay between the shoulder blades, and it could be retrieved and connected to a flowmeter on the experimental day. This skin wound was closed with a silk suture (3.0 Dynek, Pty. Ltd., Australia). Following surgery rabbits were kept in a warm comfortable environment and closely monitored until fully conscious ($2-4$ hours). They were then returned to their individual housing and cared for as described in Section 2.3.4, Chapter 2.

5.2.3 Minor procedures on the experimental day

On the experimental day, prior to induction of anaesthesia, MAP, HR and CO were measured in conscious rabbits for 30 min . To prepare for this, the flow probe plug was exteriorized under local analgesia (0.5% Lignocaine; Astra Pharmaceuticals) for connection to a transit-time ultrasound flowmeter (Transonic systems, model T208) to provide ascending aortic flow. Catheters were placed in the central ear arteries and ear veins. MAP and HR were measured by connecting an ear artery catheter to a pressure transducer (Cobe, Arvarda, CO, USA). HR was measured by a tachometer activated by the pulse pressure. During these preparations and the recordings each rabbit was individually housed in a $15 \times 40 \times 18 \mathrm{~cm}$ box, fitted with a wire mesh lid.

5.2.4 Surgical preparation and establishment of the extracorporeal circuit

This has been described in detail in Chapter 2, and was similar to that for the experiments described in Chapter 4. Induction of general anaesthesia was by intravenous pentobarbitone sodium ($90-150$ mg). Artificial ventilation was commenced, and an incision was made in the neck for exposure of the jugular vein. A catheter (SV 50; $0.75 \mathrm{~mm} \mathbb{D}, 1.45 \mathrm{~mm} \mathrm{OD} ;$ Dural Plastics and Engineering, Dural, NSW, Australia) was then introduced into the jugular vein and advanced $\sim 5 \mathrm{~cm}$ for measurement of central venous pressure (CVP). The extracorporeal circuit was then established (see below). After its establishment, RAP was set and maintained at $\sim 65 \mathrm{mmHg}$. A bolus dose of $\left[{ }^{3} \mathrm{H}\right]$ inulin ($4 \mu \mathrm{Ci}$) was then administered in 1.0 ml of 154 mN NaCl . The infusion of Hartmann's solution $(0.18 \mathrm{ml} / \mathrm{kg} / \mathrm{min})$ that was given throughout the surgery was replaced with $10 \% \mathrm{vol} / \mathrm{vol}$ polygeline (Haemaccel) solution containing $200 \mathrm{IU} / \mathrm{ml}$ sodium heparin, and $0.3 \mu \mathrm{Ci} / \mathrm{ml}\left[{ }^{3} \mathrm{H}\right]$ inulin. On completion of the surgical preparations, the rabbit's wounds were covered with gauze soaked in 154 mM NaCl solution to minimize fluid loss.

5.2.5 Measurements

Systemic (MAP, HR, CVP and CO) and renal (RAP and RBF) haemodynamics were measured throughout the experiment, as described in Section 2.7. Plasma renin activity, and urinary concentrations of $\left\{{ }^{3} \mathrm{H}\right\}$ inulin and sodium were determined as detailed in Sections 2.7.3 and 2.7.2. At the completion of each experiment, the left kidney was removed and desiccated, and its dry weight determined. All values of $\mathrm{RBF}, \mathrm{GFR}, \mathrm{U}_{\mathrm{VOL}}$, and $\mathrm{U}_{\mathrm{Na}}{ }^{+} \mathrm{V}$ are therefore expressed per gram of dry kidney weight (expressed as g [mean $1.65 \pm 0.05 \mathrm{~g}$]).

5.3 Experimental protocols

5.3.1 Genera:

MAP, HR and CO were measured in conscious rabbits for 30 min prior to induction of anaesthesia. Haemodynamic variables were also monitored during establishment of the extracorporeal circuit, to provide detailed information about the status of the circulation under these conditions, relative to normal circulatory conditions in conscious and anaesthetised rabbits. Following establishment of the extracorporeal circuit and a 60 min equilibration period, rabbits were randomly assigned into one of the 4 experimental groups ($n=6$ for each group). RAP was first set to 65 mmHg for a 30 min control period in all groups. RAP was then either set at 160 mmHg for 30 min (3 groups) or remained at 65 mmHg (1 control group). This period was then followed by a 30 min recovery period ($\mathrm{RAP} \sim 65 \mathrm{mmHg}$). In all rabbits, urine output was determined each minute during the 90 min experimental period. The three groups in which RAP was increased to 160 mmHg received either (i) no treatment, (ii) a 'cardiac output clamp', consisting of intravenous infusions of compound sodium lactate (Hartmann's solution) to replace urine output each minute during the period when renal artery pressure was increased, or (iii) a 'renin-angiotensin system clamp', consisting of enalaprilat ($2.0 \mathrm{mg} / \mathrm{kg}$ plus $10 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$) to block angiotensin converting enzyme and an intravenous infusion of angiotensin II ($40-50 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) to restore MAP to its pre-enalaprilat level (Christy et al., 1993), as well as the 'cardiac output clamp'. The bolus dose of enalaprilat was administered intravenously after 30 min of stable baseline recordings after establishment of the extracorporeal circuit (that is, at the mid-point of the 60 min equilibration period), and the infusion of angiotensin II commenced 10 min later.

5.3.2 Responses to angiotensin I

To test the effectiveness of the 'angiotensin II clamp', following the recovery period 9 rabbits (4 from the 'renin-angiotensin system clamp' group and 5 from the other groups) received bolus intravenous doses of angiotensin I (10 and $100 \mathrm{ng} / \mathrm{kg}$). These doses were given in random order approximately 20 min apart.

5.3.3 Statistical analyses

5.3.3.1 Systemic and renal haemodynamic variables in conscious rabbits, and during establishment of the extracorporeal circuit

Data collected from rabbits during the preparative phase of the experiment were analyzed as two separate groups; those that received the enalaprilat/angiotensin II treatment (group 4) and those that did not (groups 1-3). Average levels were determined for conscious (15 min before induction of anaesthesia), anaesthetised (15 min before establishing the extracorporeal circuit) and extracorporeal circuit states (final 15 min of the 60 min equilibration period). Analysis of variance was used to make comparisons between each state (conscious, anaesthetised and "circuit established") within each of the two groups, and also between the two groups. These analyses of variance were partitioned so we could make specific contrasts between the various states (Table 5.1). To protect against the increased risk of type 1 error as a result of these multiple comparisons, P values were adjusted using the Dunn-Sidak correction (Ludbrook, 1994).
5.3.3.2 Systemic and renal haemodynamic variables, and renal excretory responses to increased renal artery pressure

To determine the effects of increasing RAP within each of the 4 groups, paired t-tests were used to contrast the levels of variables during the final 15 min of the period of increased RAP, with the final 15 min of the control period (see Figure 5.1). To determine whether these responses differed across the 4 groups, unpaired t-tests were used to contrast the $\%$ changes in each variable between these experimental periods.

5.3.3.3 Angiotensin I infusion

Unpaired t-tests were used to contrast responses to angiotensin I between 'renin-angiotensin system clamp' rabbits and rabbits not receiving this treatment.

5.4 Results

5.4.1 Observations during establishment of the extracorporeal circuit

5.4.1.1 Conscious rabbit recordings

Recordings of conscious MAP, HR and CO were made for 30 min prior to induction of anaesthesia. Data for the final 15 min of this period are presented in Figures 5.2 and 5.3, which show that systemic haemodynamics had stabilized during this period. Across all 24 rabbits, MAP averaged 85 $\pm 2 \mathrm{mmHg}, \mathrm{HR}$ averaged 218 ± 5 beats $/ \mathrm{min}$, and CO averaged $153 \pm 7 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ (Figure 5.2, Table 5.1). SV and SVR were also calculated for this period and averaged $0.73 \pm 0.03 \mathrm{ml} / \mathrm{kg}$ and $0.58 \pm$ $0.04 \mathrm{mmHg} / \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ respectively (Figure 5.3 , Table 5.1).

5.4.1.2 Anaesthetised baseline recordings (A)

Baseline levels of haemodynamic variables in anaesthetised rabbits during the 15 min prior to establishment of the extracorporeal circuit are shown as (A) in Figures 5.4-5.5. When averaged across all rabbits, MAP was $25 \pm 1 \mathrm{mmHg}$ less, CO was $28 \pm 1 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ less, and SV was $0.21 \pm$ $0.01 \mathrm{ml} / \mathrm{kg}$ less than in the conscious state. HR , increased (35 ± 1 beats $/ \mathrm{min}$) after anaesthetisia but, SVR remained unchanged (Table 5.1).

5.4.1.3 Heparin bolus (B)

Intravenous administration of a 2.5 ml bolus dose of heparin (2,500 IU) caused a transient reduction and then sustained increase in MAP. That is, it initially fell $3 \pm 2 \mathrm{mmHg}$ before increasing to be $6 \pm$ 2 mmHg greater than before heparin administration. This was accompanied by reduced HR by $20 \pm$ 3 beats $/ \mathrm{min}$ during the first 2 min after administration of the heparin bolus, compared with the 2 \min before it was administered (from 251 ± 10 to 231 ± 7 beats $/ \mathrm{min}$). Little or no changes were observed in CVP, CO, SV or SVR (Figures 5.4 and 5.5).

5.4.1.4 Occlusion of the aorta (C)

The most pronounced response to tying off the aorta (distal to the renal arteries) was an increase in MAP of $7 \pm 2 \mathrm{mmHg}$ during the first 2 min after aortic occlusion. MAP then continued to increase so that it was a further $11 \pm 2 \mathrm{mmHg}$ greater during the final 2 min of this period (C) when
compared to (B). This was accompanied by increases in CVP ($1.0 \pm 0.6 \mathrm{mmHg}$) and SVR ($0.13 \pm$ $0.02 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$) during the first 2 min of (C) and reductions in $\mathrm{SV}(0.04 \pm 0.01 \mathrm{ml} / \mathrm{kg})$ and $\mathrm{CO}(7 \pm$ $2 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$), which continued to decrease a further $20 \pm 2 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ during the final 2 min of this period. Little or no change was seen in HR.

5.4.1.5 Starting the peristalic pump ($70 \mathrm{ml} / \mathrm{min}$) (D)

When the peristaltic pump was set to withdraw blood from the abdominal aorta ($70 \mathrm{ml} / \mathrm{min}$) and return it to the vena cava, MAP fell by ($12 \pm 1 \mathrm{mmHg}$). SV initialiy decreased $0.04 \pm 0.01 \mathrm{~m} / \mathrm{kg}$ in the first 2 min of this period before increasing to be $0.21 \pm 0.01 \mathrm{ml} / \mathrm{kg}$ greater than in the final 2 min of the previous period. CO and SVR also behaved similarly, initially decreasing $12 \pm 5 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ and $0.06 \pm 0.03 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ respectfully, before each increasing a total of $49 \pm 1 \mathrm{~m} / \mathrm{min} / \mathrm{kg}$ and 0.37 $\pm 0.06 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ by the end of that period (D) (Figures 5.4 and 5.5). CVP and HR each fell ($0.7 \pm$ 0.2 mmHg and 7 ± 4 beats $/ \mathrm{min}$ respectively) in the first 2 min after the pump was started, but recovered slightly (during equilibrium) to only $0.1 \pm 0.3 \mathrm{mmHg}$ and 4 ± 3 beats $/ \mathrm{min}$ less than that prior to the start of the period.

However, if blood flow through the extracorporeal circuit is excluded from these calculations, values of CO was found to initially fall $40 \pm 3 \mathrm{~m} / \mathrm{kg} / \mathrm{min}$ during the first 2 min of the pump being increased, before increasing to $23 \pm 5 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ greater than at the end of the previous period (C). SVR showed the opposite response, initially increasing $0.5 \pm 0.2 \mathrm{mmHg} / \mathrm{m} / \mathrm{kg} / \mathrm{min}$ during the first 2 min after the pump commenced. However by the end of this period (D) it had reduced 0.27 ± 0.05 $\mathrm{mmHg} / \mathrm{m} / \mathrm{kg} / \mathrm{min}$ to equilibrium at the end of (C) (Figure 5.6).

5.4.1.6 Increasing the peristaltic pump rate to $110 \mathrm{ml} / \mathrm{min}(\mathrm{E}, \mathrm{F})$

Once the renal artery catheter was implanted and tied in position (E), the kidney was included in the perfusion circuit, and the pump rate was increased to $110 \mathrm{ml} / \mathrm{min}(\mathbf{F})$. This had little or no effect on any of the measured variables (Figures $5.4-5.6$).

5.4.1.7 Establishment of the extracorporeal circuit (G)

Point ' G ' in Figures 5.4-5.6 shows the beginning of the final 15 min of the equilibration period, after the circuit had been established for at least 60 min and all variables had stabilized. The average levels of these variables during this period are shown in Table 5.1. Apart from a small difference in

MAP, which was $3 \pm 1 \mathrm{mmHg}$ greater during the first 2 min of this period, as compared to the final 2 min of (F), all haemodynamic variables were similar to their level when the circuit was first established.

5.4.2 Haemodynamics during conscious, anaesthetised, and extracorporeal states

Once the circuit had been established, systemic haemodynamic variables returned to similar levels to those observed in the conscious state. In rabbits which did not receive the angiotensin II block, MAP was $17 \pm 1 \mathrm{mmHg}$ less in the anaesthetised than the conscious state, but increased 12 ± 1 mmHg once the circuit was established. CO was also similar in the conscious and extracorporeal circuit states in these rabbits, but was $22 \pm 1 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$ lower in the anaesthetised state, compared to the conscious state. SV showed a similar pattern to CO. HR was greater once anaesthesia was induced. All other variables were similar across the three states for this group of rabbits (Table 5.1).

Levels of all haemodynamic variables, including RBF and RVR were closely similar in rabbits treated with enalaprilat/angiotensin II ('renin-angiotensin system clamp') compared with those in rabbits not given this treatment (Table 5.1).

5.4.3 Renal haemodynamic responses to increased renal artery pressure

5.4.3.1 Time control (Group 1)

As depicted in Figure 5.7 and Table 5.2, RBF and RVR remained relatively stable across the 90 min course of the experiment when RAP was maintained at $\sim 65 \mathrm{mmHg}$.

5.4.3.2 Effects of increasing renal artery pressure on renal haemodynamic variables

Group 2

When RAP was increased to $\sim 160 \mathrm{mmHg}$ RBF increased from 12 ± 2 to $39 \pm 6 \mathrm{ml} / \mathrm{min} / \mathrm{g}$ and RVR did not change significantly (Figure 5.7, Table 5.2).

Group 3 ('cardiac output clamp')

When RAP was increased to $\sim 160 \mathrm{mmHg}$ and the excreted urine volume was returned as intravenous compound sodium lactate, RBF increased $331 \pm 64 \%$ from 14 ± 2 to $57 \pm 8 \mathrm{ml} / \mathrm{min} / \mathrm{g}$ (during the period 15-30 min after RAP was increased) and RVR decreased $40 \pm 6 \%$ from $5.4 \pm$
0.95 to $3.1 \pm 0.43 \mathrm{mmHg} / \mathrm{ml} / \mathrm{min} / \mathrm{g}$. These responses were not significantly different from those seen in group 2 (Figure 5.7, Table 5.2).

Group 4 ('cardiac output clamp' plus 'renin-angiotensin system clamp')

When RAP was increased to $\sim 160 \mathrm{mmHg}$, together with both 'cardiac output' and 'reninangiotensin clamp', RBF increased $254 \pm 50 \%$ from 12 ± 2 to $39 \pm 3 \mathrm{~m} / / \mathrm{min} / \mathrm{g}$ and RVR decreased 26% from 6.1 ± 0.7 to $4.3 \pm 0.4 \mathrm{mmHg} / \mathrm{ml} / \mathrm{min} / \mathrm{g}$. These responses were not significantly different from those seen in group ${ }^{\circ}$ (Figure 5.7, Table 5.2).

5.4.4 Renal excretory responses to increased renal artery pressure

5.4.4.1 Time control (Group 1)

As depicted in Figures 5.8 and Table 5.2, all renal excretory variables remained relatively constant, during the 90 min experimental period when RAP was maintained $\sim 65 \mathrm{mmHg}$.

5.4.4.2 Effects of increasing renal artery pressure on renal excretory function

Group 2

When RAP was increased to $\sim 160 \mathrm{mmHg}$ GFR increased $304 \pm 133 \%$ (from 1.5 ± 0.5 to 4.3 ± 0.7 $\mathrm{ml} / \mathrm{min} / \mathrm{g}$), urine flow increased $2846 \pm 50 \%$ (from 0.07 ± 0.04 to $1.47 \pm 0.33 \mathrm{ml} / \mathrm{min} / \mathrm{g}$), sodium excretion increased $575 \pm 93 \%$ (from 9 ± 5 to $186 \pm 14 \mathrm{ml} / \mathrm{min} / \mathrm{g}$), and the fractional excretion of sodium and urine increased (from 9 ± 1 to $45 \pm 3 \%$ and from 7 ± 1 to $41 \pm 2 \%$ respectively). Filtration fraction did not change significantly.

Group 3 ('cardiac output clamp')

When RAP was increased and maintained at $\sim 160 \mathrm{mmHg}$ and the excreted urine volume was returned as an intravenous infusion of compound sodium lactate, all aspects of renal excretory function significantly were increased, with the exception of FF. GFR, urine flow and sodium excretion increased from 1.24 ± 0.03 to $5.4 \pm 0.9 \mathrm{ml} / \mathrm{min} / \mathrm{g}$, from 0.07 ± 0.02 to $1.7 \pm 0.2 \mathrm{ml} / \mathrm{min} / \mathrm{g}$, and from 7 ± 2 to $101 \pm 22 \mu \mathrm{~mol} / \mathrm{min} / \mathrm{g}$, respectively. The fractional excretion of sodium and urine also increased from 10 ± 3 to $37 \pm 4 \%(P \leq 0.001)$ and from 13 ± 4 to $47 \pm 4 \%$ respectively. These changes were not significantly different from those in group 2, (Figure 5.8, Table 5.2).

Group 4 ('cardiac output clamp'plus 'renin-angiotensin system clamp')

When RAP was increased to $\sim 160 \mathrm{mmHg}$, together with both cardiac output and renin angiotensin clamps, renal excretory function responded similarly to group 3 (Figure 5.8, Table 5.2). GFR, urine flow, and sodium excretion each increased from 1.1 ± 0.1 to $6.0 \pm 0.6 \mathrm{ml} / \mathrm{min} / \mathrm{g}$, from 0.06 ± 0.01 to $1.8 \pm 0.1 \mathrm{ml} / \mathrm{min} / \mathrm{g}$, and from 6 ± 2 to $200 \pm 12 \mu \mathrm{~mol} / \mathrm{min} / \mathrm{g}$, respectively). Fractional excretion of sodium and urine also increased from 5 ± 2 to $22 \pm 3 \%$ and from 10 ± 2 to $42 \pm 2 \%$ respectively. Filtration fraction also significantly increased (from $9 \pm 2 \%$ to $13 \pm 2 \%$) but this response was not significantly different from that seen in group 3 .

5.4.5 Systemic haemodynamic responses to increased renal artery pressure

5.4.5.1 Time control (Group 1)

As depicted in Figures 5.9 and 5.10 and Table 5.2, systemic haemodynamic variables remained relatively stable during the 90 min experimental period when RAP was maintained $\sim 65 \mathrm{mmHg}$.
5.4.5.2 Effects of increasing renal artery pressure on systemic haemodynamic variables

Group 2

When RAP was increased to $\sim 160 \mathrm{mmHg}$, MAP fell ($35 \pm 5 \%$) from 83 ± 4 to $54 \pm 5 \mathrm{mmHg}$. SVR also decreased from 0.63 ± 0.04 to $0.52 \pm 0.05 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$. CVP was also reduced from 2 ± 2 to $0 \pm$ 1 mmHg .
When RAP was increased to $\sim 160 \mathrm{mmHg}$, CO fell $(20 \pm 5 \%)$ from 132 ± 6 to $105 \pm 4 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$, while SV, HR and Het remained relatively constant across the 90 min experimental period.

Group 3 ('cardiac output clamp')

When RAP was increased to $\sim 160 \mathrm{mmHg}$ and CO was maintained by intravenous infusion of compound sodium lactate, CVP was reduced 2 ± 1 to $1 \pm 1 \mathrm{mmHg}$ while MAP and SVR did not change significantly, $\mathrm{CO}, \mathrm{SV}, \mathrm{HR}$ and Hct also did not change significantly.

Group 4 ('cardiac output clamp' plus 'renin-angiotensin system clamp')
When RAP was increased to $\sim 160 \mathrm{mmHg}$, together with both 'cardiac output' and 'renin angiotensin clamps', systemic haemodynamic responses were similar to those of group 3. CVP was
reduced from 2 ± 1 to $1 \pm 1 \mathrm{mmHg}$ while MAP, SVR, CO, SV, HR and Het did not change significantly.

When RAP was increased to $\sim 160 \mathrm{mmHg}$, systemic haemodynamic responses were similar for groups 3 and 4, but MAP was reduced significantly more in group 2 which had not received the 'cardiac output clamp', when compared to group $3(P=0.001)$. MAP fell $36 \pm 5 \%$ in group 2 , but only $8 \pm 4 \%$ and $6 \pm 5 \%$ in groups 3 and 4 respectively. Furthermore, CO was reduced significantly more in group $2(20 \pm 5 \%)$ than group $3(2 \pm 2 \%)(P=0.008)$, as was SV (group $2,18 \pm 4 \%$; group $3,3 \pm 2 \% ; P=0.03$).

5.4.6 Plasma renin activity

Plasma renin activity did not change significantly over the course of the experiment in any of the 4 groups (Figure 5.11, Table 5.2).

5.4.7 Effects of angiotensin I infusion on mean arterial pressure

These data are depicted in Figure 5.12. In rabbits from groups 1-3, angiotensin I administered at 10 $\mathrm{ng} / \mathrm{kg}$ caused MAP to increase by $3 \pm 1 \mathrm{mmHg}$ from, 66 ± 10 to $69 \pm 10 \mathrm{mmHg}$. At a dose of 100 $\mathrm{ng} / \mathrm{kg}$, angiotensin I caused an even greater increase in MAP of $8 \pm 2 \mathrm{mmHg}$, (from 66 ± 9 to 71 ± 9 mmHg). In rabbits from group 4 ('angiotensin II clamp'), neither dose of angiotensin I significantly increased MAP.

Figure 5.2 Final 15 min of stable baseline recordings of conscious rabbits prior to induction of anaesthesia. Data shown are 1 min averages, (mean $\pm \mathrm{SEM}$) of 24 rabbits. MAP, mean arterial pressure; HR, heart rate; CO, cardiac output.

Figure 5.3 Final 15 min of stable baseline recordings in conscious rabbits prior to induction of anaesthesia. Data shown are 1 min averages, (mean \pm SEM) of 24 rabbits. SV, stroke volume; SVR, systemic vascular resistance.

Figure 5.4 Systemic haemodynamic variables during establishment of the extracorporeal circuit in anaesthetised rabbits. MAP, mean arterial pressure; CVP, central venous pressure; SVR, systemic vascular resistance. Thick and thin lines show the mean \pm SEM respectively for 24 rabbits. A, anaesthetised baseline recordings; B, heparin bolus; C, aortic occlusion; D, set peristaltic pump to $70 \mathrm{ml} / \mathrm{min} ; \mathbf{E}$, tie renal artery; \mathbf{F}, increase peristaltic pump to $110 \mathrm{ml} / \mathrm{min} ; \mathbf{G}$, established extracorporeal circuit. Note that the time-scale (abscissa) is not standardised, to ensure clarity of presentation.

Figure 5.5 Cardiovascular variables during establishment of the extracorporeal circuit in anaesthetised rabbits. HR, heart rate; CO, cardiac output; SV, stroke volume. Lines, and events marked A- G are as for Figure 5.4.

Figure 5.6 Cardiac output, and systemic vascular resistance during establishment of the extracorporeal circuit in anesthetized rabbits. For this figure, flow through the extracorporeal circuit has been excluded from the calculations. CO, cardiac output; SVR, systemic vascular resistance. Eiror bars, and events marked A- G are as for Figure 5.4.

Figure 5.7 Renal haemodynamic responses to increased RAP. Each point is the average of the final 15 min during each event. Symbols and error bars are the mean \pm SEM for each variable. P values are given in Table 5.2 and are the outcomes of a paired t-test which contrasted levels of each variable during period $4(15 \mathrm{~min}$. end of experimental phase), with period 2 (15 min , end of control). During the first 30 min (periods $1-2$), renal artery pressure (RAP) was set at $\sim 65 \mathrm{mmHg}$ in all four groups. In groups $2-4$. RAP was set to $\sim 160 \mathrm{mmHg}$ for 30 min (periods 3-4), before being returned to $\sim 65 \mathrm{mmHg}$ for a further 30 min (periods $5-6$). In groups 3 and 4, urine volume during the period of increased RAP was returned to the animal as an equivalent volume of compound sodium lactate ('cardiac output clamp'). In group 4, the effects of increased RAP on the renin-angiotensin system were controlled for by intravenous administration of enalaprilat ($2 \mathrm{mg} / \mathrm{kg}$ plus $20 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$) and angiotensin II ($40-50 \mu \mathrm{l} / \mathrm{kg} / \mathrm{min}$).

Figure 5.8 Renal excretory responses to increased RAP. Lines. symbols and ertor bars are as for Figure 5.7. P values (given in Table 5.2) are as for Figure 5.7. GFR, glonerular filtration rate: $\mathrm{U}_{\mathrm{vol},}$, urine flow; $\mathrm{FE}_{\mathrm{vol},}$, fractional excretion of urine: FF . filtration fraction; $\mathrm{FE}_{\mathrm{Na}+}$. fractional excretion of sodium: $\mathrm{U}_{\mathrm{Nat}} \mathrm{V}$, urinary sodium excretion. GFR. U_{VO}. and $\mathrm{U}_{\mathrm{Nat}} \mathrm{V}$ are expressed per gram of dry kidney weight.

Figure 5.9 Systemic haemodynamic responses to increased RAP. Lines. symbols and error bars are as for Figure 5.7. P values (given in Table 5.2) are as for Figure 5.7. MAP: mean arterial pressure: SVR, systemic vascular resistance; CVP. central venous pressure.

Figure 5.10 Systemic haemodynamic responses to increased RAP (continued). Lines, symbols and error bars are as for Figure 5.7. P values (given in Table 5.2) are as for Figure 5.7. SV, stroke volume; HR, heart rate: CO, cardiac output; Hct, haematocrit.

Figure 5.11 Plasma renin activity for each of the four groups. Bars and error bars are the mean \pm SEM for plasma renin samples collected at the mid point of each 30 inin period. P values (given in Table 5.2) are as for Figure 5.7.

Figure 5.12 Effects of intravenous bolus doses of angiotensin I ($10 \mathrm{ng} / \mathrm{kg}$ and $100 \mathrm{ng} / \mathrm{kg}$) on mean arterial pressure (MAP) in control (empty bars; $\mathrm{n}=5$) and 'renin-angiotensin system clamped' rabbits (hatched bars; $\mathrm{n}=4$). Data are the \% change from baseline values. P values are the outcomes of paired t -test which compared MAP after each angiotensin I bolus to baseline MAP values.

Table 5.1 Resting haemodynamic variables in rabbits according to state (conscious, anaesthetized or with the extracorporeal circuit established) and group (control or 'renin-angiotensin system clamp').

MAP	HR	CO	CVP	SVR	SV	RAP	RBF	RVR
Control ($\mathrm{n}=18$)								
Conscious (15 min)								
84 ± 2	224 ± 6	157 ± 7		0.58 ± 0.04	0.68 ± 0.03			
Anaesthetised (15 min)								
$62 \pm 5^{* * *}$	$256 \pm$ 6* *	132 $\pm 11^{*}$	1.13 ± 1.84	0.54 ± 0.07	0.53 ± 0.06			
Circuit established (15 min)								
$83 \pm 3^{\text {ttt }}$	$260 \pm 6 *$	143 ± 9	1.75 ± 0.69	0.61 ± 0.04	0.56 ± 0.04	66 ± 0.4	14.2 ± 1.2	5.5 ± 0.4
$\mathrm{P}_{\text {STATE }} \ll 0.001$	0.02	0.29	0.56	0.58	0.05			

'Renin-angiotensin system clamp' ($\mathrm{n}=6$)
Conscious (15 min)

$$
9 \pm .
$$

201 ± 6
151 ± 19
0.62 ± 0.06
0.77 ± 0.08
Anaesthetised (15 min)
$67 \pm 5 *$
$246 \pm 9^{*}$
$109 \pm 10^{*}$
0.08 ± 1.02
0.67 ± 0.09
$0.45 \pm 0.04^{*}$
Circuit established ($\mathbf{1 5} \mathbf{~ m i n}$)
80 ± 4
$250 \pm 7 * * \quad 157 \pm 8$
$0.83 \pm 0.75 \quad 0.5 i \pm 0.03$
0.63 ± 0.04
66 ± 0.4
$10.9 \pm 0.7 \quad 6.2 \pm 0.3$

$\mathrm{P}_{\text {STATE }}$	0.02	0.006	0.08	0.57	0.38	0.02		
$\mathrm{P}_{\text {GROUP }}$	0.89	0.42	0.65	0.81	0.80	0.40	0.97	0.12

Values are given as the mean \pm SE mean. MAP, mean arterial pressure; HR, heart rate; CO, cardiac output; CVP, central venous pressure; SVR, systemic vascular resistance; SV, stroke volume: RAP, renal arterial pressure; RBF, rena' blood flow; RVR, renal vascular resistance. $\mathrm{P}_{\text {Group }}$ tests whether the mean levels of variables differed between the two groups of rabbits (df 1,22-42), $\mathrm{P}_{\text {STATE }}$ tests for heterogeneity according to state within each group (df 12, 4-42). Specific contrasts within each group were also made: * $\mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.01,{ }^{* * *} \mathrm{P}<0.001$ for difference from conscious state; ${ }^{\dagger} \mathrm{P}<0.05,{ }^{\dagger 1} \mathrm{P}$ $<0.01,{ }^{t+t} \mathrm{P}<0.001$ for difference between anaesthetized state and extracorporeal circuit (df 1,4-32).

Table 5.2 Outcomes of paired t-tests determining whether variables changed within each group across the course of the experiment. Data are depicted in Figures 5.7-5.11.

	Control	RAP 160	RAP 160 volume replacement	RAP 160 return volume replacement plus 'RAS clamp'
Renal Hemodynamics: Figure 5.7				
RAP	0.58	≤ 0.001	≤ 0.001	≤ 0.001
RVR	0.84	0.51	0.03	0.04
RBF	0.80	0.02	≤ 0.001	≤ 0.001
Renal Excretory Function: Figure 5.8				
$\mathbf{U}_{\text {voL }}$	0.56	≤ 0.001	≤ 0.001	≤ 0.001
FF\%	0.82	0.45	0.22	0.001
GFR	0.60	0.01	0.003	0.003
$\mathrm{U}_{\mathrm{Na}^{+}} \mathbf{V}$	0.94	≤ 0.001	≤ 0.001	≤ 0.001
$\mathrm{FE}_{\mathrm{N}+\mathrm{+}} \%$	0.71	≤ 0.001	≤ 0.001	≤ 0.001
FE ${ }_{\text {vol }} \%$	0.50	≤ 0.001	≤ 0.001	≤ 0.001
Systemic Hemodynamics: Figures 5.9 and 5.10				
MAP	0.16	0.003	0.10	0.29
\% \triangle MAP	0.55	0.01	0.11	0.54
SVR	0.60	0.02	0.24	0.97
CVP	0.37	0.004	0.01	0.05
CO	0.10	0.02	0.49	0.09
SV	0.34	0.09	0.07	0.10
HR	0.32	0.46	0.15	0.85
Het	0.12	0.30	1.00	0.46
Plasma Renin Activity: Figure 5.11				
PRA	0.44	0.88	0.65	0.07

Average levels of each variable during the second (control) and fourth ($15-30 \mathrm{~min}$ after RAP was increased in groups 2-4) experimental periods were compared by paired t-test. RAP, renal arterial pressure; RVR, renal vascular resistance; RBF, renal blood flow; $U_{\text {voL }}$, urine flow; FF, filtration fraction; GFR, glomerular filtration rate; $\mathrm{U}_{\mathrm{Na}+} \mathrm{V}$, urinary sodium excretion; $\mathrm{FE}_{\mathrm{Na}+}$, fractional excretion of sodium; $\mathrm{FE}_{\mathrm{voL}}$, fractional excretion of urine; MAP, mean arterial pressure; $\% \triangle \mathrm{MAP}$, \% change in MAP; SVR, systemic vascular resistance; CVP, central venous pressure; CO, cardiac output; SV, stroke volume; HR, heart rate; Hct, haematocrit; PRA, plasma renin activity; RAS, renin-angiotensin system.

5.5 Discussion

The major novel finding of the current study was that the depressor response to increased RAP could be abolished in rabbits in which salt and fluid balance, and so cardiac output, was maintained by intravenous infusion of compound sodium lactate. We conclude that the depressor response to increased RAP in this model can be completely accounted for by reduced cardiac output, secondary to increased salt and water excretion. Therefore, neither release of the putative renal medullary depressor hormone, nor inhibition of renal renin release appear to contribute significantly to the depressor response to increased RAP in this experimental model.

Comparisons made across animals throughout the three different states; conscious, anaesthetised, and once the extracorporeal circuit had been established, demonstrated that MAP and CO were substantially reduced and HR increased in anaesthetised rabbits, when compared to the conscious state. On the other hand, CO and MAP in rabbits with an established extracorporeal circuit were closely similar to that observed in the conscious state. These observations further validate our major findings and conclusions, in that they show for the first time that systemic haemodynamics in the extracorporeal circuit model remain within a physiologically relevant range.

The 'cardiac output clamp' employed during these studies in rabbits in groups 3 and 4 worked effectively as CO was titrated and maintained throughout the experiments. The 'renin-angiotensin system clamp' was also effective in blocking the renin-angiotensin system since (i) bolus doses of angiotensin failed to increase MAP, in rabbits which had received this treatment, and (ii) resting systemic and renal haemodynamics and renal excretory variables in rabbits that had received this treatment were similar to those in rabbits from the other three experimental groups.

When RAP was increased in anaesthetised rabbits which did not receive the 'cardiac output clamp', MAP fell. This depressor response was associated with increased urine flow and sodium excretion, and reduceal CVP and CO, and a small but significant reduction in SVR. Thus, it appears to result chiefly from the pressure diuresis/natriuresis mechanism that caused CO to fall due to negative salt and fluid balance. This hypothesis was confirmed by the results from the group of rabbits treated with the 'cardiac output clamp'. In this group, in which the reduction in CO was prevented by maintenance of salt and fluid balance, no significant depressor response was observed. This treatment also abolished the reduction in SVR seen in group 2, suggesting that this mighi be secondary to the depressor response itself, either through local autoregulatory mechanisms or inhibition of sympathetic drive due to acute central hypovolaemia (Evans et al., 2001).

Our results also suggest that the renin-angiotensin system plays little or no role in mediating the depressor response to increased RAP, since responses to increased RAP in rabbits receiving both the 'cardiac output clamp' and the 'renin-angiotensin system clamp' were indistinguishable from those in the group receiving only the 'cardiac output clamp'. This hypothesis is further supported by our observations of unchanged PRA throughout the course of the experiment, indicating that although renal renin release might be inhibited by increased RAP, the relatively long circulating half-life of renin prevents substantial changes in circulating levels of this enzyme.

These present findings seem to be at odds with those of Christy et al. (1991) who first tested this circuit in rabbits. Those experiments were conducted with the intention of determining the effect of increased RAP on MAP in rabbits with intact and chemically ablated renal medullas. It was hypothesized that increases in RAP would produce a depressor response due to the release of a putative hormone from the renal medulla. Consistent with this hypothesis, they observed that the depressor response was abolished in rabbits in which the renal medulla had been ablated by BEAtreatment. However, they also observed that the pressure diuresis/natriuresis response was significantly blunted in chemically medullectomized rabbits. Therefore, the blunted depressor response may have occurred due to a reduced ability of these rabbits to excrete sodium and water, rather than removal of the source of the putative renal medullary depressor hormone.

Our present observations also seem at odds with another study performed in our laboratory. Bergström and Evans, found that selective reduction of MBF by renal medullary interstitial infusion of the V_{1}-agonist [$\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}$]-vasopressin also blunted the depressor response to increased RAP (Bergström and Evans, 1998). This study is a little more difficult to reconcile with our present findings since in rabbits receiving the vasopressin V_{1}-agonist, the pressure natriuresis-diuresis response was if anything slightly greater than that of the control rabbits. However, our recent study of the disposition of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline during medullary interstitial infusion has shown that renal medullary interstitial infusion of vasoactive compounds results in spillover into the systemic circulation. In the case of [$\left.{ }^{3} \mathrm{H}\right]$-noradrenaline, around 40% of the infused radiolabel spilled over into the systemic circulation (Correia, 1997). Based on comparison of the systemic effects of medullary interstitial and intravenous [$\mathrm{Phe}^{2}, \mathrm{Ile}^{3}$, Orn^{8}]-vasopressin (Evans et al., 1998a), it seems likely that this agent has comparable systemic spillover when administered into the medullary interstitium. Thus, we cannot exclude the possibility that $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin acted outside the kidney to blunt the depressor response to increased RAP. We can probably exclude a non-specific effect secondary to the pressor action of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin, since intravenous noradrenaline,
which also had a pressor action, did not blunt the depressor response 10 increased RAP (Chapter 4). One possibility that merits investigation is that $\left.h^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}\right]$-vasopressin acts in the central nervous system, to support arterial pressure in the ace of faling cardiac output. In this regard it is of interest that the systemic haemodynamic response to increased RAP resembles that to haemorrhage and other maneuvers that acutely reduce central blood volume (Evans et al., 2001). Furthermore, there is some evidence for roles of both central nervous system (Johnson et al., 1998) and peripheral (Schadt and Hasser, 1991) V_{1}-receptors in recovery from decompensated hypovolaemia, although vasopressin itself seems to play little role in the acute response to central hypovolaemia (Evans et al., 2001).

Based on these observations it may be necessary to reinterpret previous studies which employed the extracorporeal circuit, as observations of the systemic haemodynamic responses to increased RAP have been largely interpreted in the context of the putative renomedullary depressor hormone, which according to these findings, appears to be an incorrect assumption. On the other hand, although the findings of this study provide convincing evidence that the pressure diuresis/natriuresis mechanism as the main cause of the depressor response in this experimental model, these findings in no way indicate that the depressor substance is not released or does not exist. They simply show that this experimental model is not an assay for its release.

In the experiments described in Chapter 4, we found that the depressor response to increased RAP was blunted by medullary interstitial infusion of noradrenaline, which reduced MBF. However, the pressure diuresis/natriuresis relationship was also blunted by medullary interstitial noradrenaline. Taken together with the results of the present study, it seems likely that the effect of medullary interstitial noradrenaline on the depressor response to iricreased RAP was due chiefly to the effect of this treatment on the pressure diuresis/natriuresis relationship, rather than (as we had previously concluded) on release of the pulative renal medullary depressor hormone. This conclusion is consistent with the notion that MBF has a profound impact on long-term blood pressure control, chiefly through its role in modelating urinary salt and water excretion (Cowley, 1997).

In summary, the results of this study indicate that the depressor response to increased RAP in the extracorporeal circuit model is abolished if extracellular fluid volume is maintained by a 'cardiac output clamp' indicating that in this particular model the depressor response occurs due to the effects of the pressure diuresis/natriuresis mechanism and not the putative renal medullary depressor hormone. This finding implies that the extracorporeal circuit model is not suited for

Abstract

experiments aimed at studying the putative depressor hormone, even though the circuit provides a presumed stimulus for the release of this hormone; increased RAP.

\subsection*{5.6 Conclusions}

The extracorporeal circuit model provides a useful tool with which to study renal antihypertensive mechanisms in anaesthetised rabbits, because it allows perfusion of the kidney independently of the systemic circulation. The results of these studies provide evidence that the pressure diuresis/natriuresis mechanism dominates the kidneys ability to regulate arterial pressure under these experimental conditions. This is based on our observation that the depressor response observed during increased RAP was abolished in rabbits in which the oressure diuretic/natriuretic response was blocked. Inhibition of the renin-angiotensin system appears to play little or no role in mediating the acute depressor response to increased RAP in this model, presumably because to the long circulating half-life of renin. We also conclude that release of the putative renal medullary depressor hormone makes little or no contribution to the depressor response to increased RAP in this extracorporeal circuit experimental model in anaesthetised rabbits.

Chapter Six

EFFECTS OF ACTIVATION OF VASOPRESSIN-V ${ }_{1}$-RECEPTORS ON REGIONAL KIDNEY BLOOD FLOW AND GLOMERULAR ARTERIOLE DIAMETERS

6.0 Summary

1. Intravenous infusion of the vasopressin V_{1}-agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin selectively reduces renal MBF in anaesthetised and conscious rabbits. Since MBF is derived entirely from the efferent arterioles of juxtamedullary glomeruli, the aim of the current study was to test whether vasoconstriction of juxtamedullary glomerular arterioles contributes to V_{1}-receptor mediated reductions in MBF.
2. Experiments vere performed in anaesthetised rabbits. The right kidney remained innervated while the left kidney was denervated and placed in a stable cup. Regional and total kidney blood flows were measured by a perivascular flow probe placed around the renal artery, and by laser-Doppler flow probes positioned in the outer medulla, and on the cortical surface. Throughout the experiment urine was collected via catheters placed in each of the ureters, and a perfusion apparatus was connected to a large-bore catheter in the abdominal aorta for fixation of the left kidney.
3. Following a 30 min control period, rabbits received a 30 min intravenous infusion of the V_{1} agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle. During this time, left and right kidney urine samples, and arterial blood samples were collected. On completion of the infusion, kidneys were immediately perfusion fixed at the final recorded MAP, and filled with methacrylate casting material.
4. The diameters of afferent and efferent arterioles in the outer, mid and juxtamedullary cortex of the left kidneys were determined by scanning electron microscopy.
5. Intrevenous [$\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}$]-vasopressin increased MAP ($19 \pm 3 \%$) and reduced MBF ($30 \pm$ 9%), but had no effect on CBF or total RBF. Vehicle treatment did not affect these variabies. There were no significant differences in afferent or efferent arteriole diameter, in any of the cortical regions, between $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin and vehicle treated rabuits.
6. These results do not support a role for juxtamedullary arterioles in producing V_{1}-receptor mediated reductions in MBF, suggesting that downstream vascular elements (e.g. outer medullary descending vasa recta) might possibly be involved.

6.1 Introduction

Although only about 10% of total RBF perfuses the renal modulla, there is now evidence that the medullary microcirculation plays a key role in the long-term regulation of blood pressure, chiefly through its influence on renal salt and water handling (Cowley, 1997). Therefore, in order to understand the mechanisms underlying the long-term regulation of blood pressure, we require a more complete understanding of the factors regulating MBF.

In both conscious and anaesthetised rats and rabbits, intravenous infusion of low doses of arginine vasopressin (Zimmerhackl et al., 1985; Franchini et al., 1997) or the selective the V_{1}-agonist [$\left.\mathrm{Ptse}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin (Evans et al., 1998; Evans et al., 2000) can reduce MBF without affecting CBF or total RBF. There is also good evidence that arginine vasopressin plays an important role in the physiological regulation of MBF (Franchini and Cowley, 1996). The precise mechanisms mediating the selective effect of arginine vasopressin on MBF remain unknown, but they could theoretically involve vasoconstriction of afferent and/or efferent arterioles of juxtamedullary glomeruli (the source of MBF), or downstream vascular elements (vasa recta) (Pallone et al., 1990). On the other hand, we can exclude vasoconstriction at vascular sites upstream from the afferent arteriole, which would be expected to also reduce CBF and RBF. We can probably also exclude a role for proposed contractile elements in inner medullary descending vasa recta (Pallone et al., 1990), since Zimmerhackl et al., (1985), using video microscopy, were unable to detect arginine vasopressin induced changes in the diameters of these vessels, even though erythrocyte velocity within them was significantly reduced (Zimmerhackl ct al., 1985).

In support of the hypothesis that V_{1}-receptor mediated decreases in MBF are mediated by vasoconstriction of juxtamedullary arterioles and or outer medullary descending vasa recta, V_{1} receptor milt has been located in these vascular elements (Park et al., 1997). There is also good evidence from in vitro studies that arginine vasopressin can constrict juxtamedullary arterioles (Edwards et al., 1989; Harrison-Bernard and Carmines, 1994;Tamaki et al., 1996) and outer medullary descending vasa recta (Edwards et al., 1989). On the other hand, in the study by Harrison-Bernard and Carmines (1994), using the blood perfused juxtamedullary nephron preparation, arginine vasopressin at physiological concentrations ($>10^{-12} \mathrm{M}$) was found to constrict
afferent arterioles of juxtamedullary glomeruli but not outer medullary descending vasa recta. Furthermore, in the one study demonstrating vasoconstriction of outer medullary descending vasa recta to vasopressin in vitro, the concentrations required ($\sim 10^{-10} \mathrm{M}$) were about one order of magnitude greater than those encountered in plasma under physiological conditions (Turner and Pallone, 1997). Thus, on balance this evidence supports a role for vasoconstriction of juxtamedullary glomerular arterioles in mediating reduced MBF in response to activation of V_{1} receptors. However, as yet there is no evidence from in vivo studies to confirm or reject this hypothesis.

Therefore, in the current study we directly tested this hypothesis in anaesthetised rabbits by examining the effects of an intravenous infusion of $\left[\mathrm{Phe}^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}\right]$ vasopressin on $\mathrm{RBF}, \mathrm{CBF}$, and MBF and employing the technique of vascular casting to measure the luminal dimensions of afferent and efferent arterioles in the outer, mid, and juxtamedullary cortical regions (Denton et al., 1992; Denton et al., 2000).

6.2 Methods

6.2.1 Experimental preparation

Fourteen, New-Zealand White, male rabbits were used (body weight $2.18 \pm 2.62 \mathrm{~kg}$; mean $2.41 \pm$ 0.03 kg). Preparation of the rabbits on the experimental day is described in detail in Chapter 2, Sections 2.2.1, 2.2.2, 2.2.5, and 2.2.6. Briefly, catheters were placed in both central ear arteries and marginal ear veins, the rabbits were anaesthetised with pentobarbitone ($90-150 \mathrm{mg}$), and prepared for measurement of RBF, CBF, and MBF, and collection of urine from both kidneys. Rabbits received an intravenous infusion of either $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$ vasopressin ($n=7$) or its vehicle ($n=7$). Thirty minutes later, the left kidney was perfusion fixed and methacrylate filled for later analysis of the glomerular arterioles using scanning electron microscopy.

6.2.2 Surgery

Rabbits were prepared for surgery according to Section 2.2.1 of Chapter 2. Briefly, the left kidney was denervated and plac»d in a stable cup for the positioning of laser-Doppler flow probes in the inner medulla and on the sujerficial cortex. A transit time ultrasound flow probe was placed around the renal artery for measurement of RBF. Both ureters were cannulated for urine collection. A large bore cannula was placed in the aorta distal to the renal arteries, which was later connected to the
perfusion apparatus for fixation. The abdominal aorta was isolated above the renal arteries so it could be occluded during the fixation process.

6.2.3 Experimental protocols

On completion of the surgery, bolus doses of [$\left.{ }^{3} \mathrm{H}\right]$-inulin $(4 \mu \mathrm{Ci}$; NEN Research Products, Sydney, Australia) and $\left[{ }^{14} \mathrm{C}\right]-\mathrm{PAH}(1 \mu \mathrm{Ci}$; NEN Research Products) were administered intravenously, and the maintenance infusion of Hartmann's solution ($0.18 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$) was replaced with a solution containing $300 \mathrm{nCi} / \mathrm{ml}\left[{ }^{3} \mathrm{H}\right]$-inulin and $\left.83 \mathrm{nCi} / \mathrm{ml}^{[4} \mathrm{C}\right]-\mathrm{PAH}$, in 4 parts Hartmarn's solution and $]$ part $10 \% \mathrm{v} / \mathrm{v}$ polygeline (Haemaccel; Hoechst, Melbourne, Australia). Following a 60 min equilibration period, and a 30 min control period, rabbits received a 30 min intravenous infusion of either the V_{1}-agonist [$\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}$] vasopressin (Peninsula Laboratories Inc., Belmont, CA, USA; $30 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$), or its vehicle ($50 \mu \mathrm{l} / \mathrm{kg} / \mathrm{min} 154 \mathrm{mM} \mathrm{NaCi} ; \mathrm{n}=7$) for 30 min . Urine produced by the left and right kidneys was collected during the final 20 min of both the control and infusion periods. Arterial (3.0 ml) blood samples were zollected at the mid point of each period for determination of plasma renin activity, plasma sodium concentration and haematocrit (Figure 6.1).

Perfusion fixation of both kidneys commenced immediately at the end of the second urine collection. One liter of 2.5% paraformaldehyde in 0.1 M phosphate buffer ($\mathrm{pH} 7.3-7.4$) at room temperature was perfused retrogradely through the distal aorta at a pressure equivalent to wiAP during the final 2 minutes of the $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$ vasopressin or vehicle infusion for each rabbit. The upper aoria was clamped above the kidneys and the vena cava vented as soon as perfusion of the kidney commenced. Immediately following fixation, a mixture of methacryiate and accelerator (20:1) (Mercox CL-2B-5; MIII; West Chetrr, PA, USA) was perfused into the left and right kidneys at the same pressure as the fixative. Both kidneys were than clampes above the renal hilus, and the methacrylate resin was allowed to harden in sia for 30 min . The left kidneys were removed, weighed ($13.37 \pm 0.33 \mathrm{~g}$) and stored in 2.5% paraformaldehyde for later processing.

Figure 6.1 Schematic diagram of experimental protocol for study investigating the effect of [Phe $\left.{ }^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$ vasopressin infusion on afferent and efferent arteriolar diameters and systemic and renal haemodynamics. Following a 90 min equilibration period, and 10 min of stable baseline recordings, urine was collected from both the right and left ureters for 20 min (U1), at the mid point of this period, ear arterial blood samples (3.0 ml) were collected for determination of plasma renin activity (Rnnl) and plasma sodium concentration and haematocrit (A1). During the second phase of the experimental period, an infusion of either the V_{1}-agonist ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle (50 $\mu 1 / \mathrm{kg} / \mathrm{min}$) was commenced, and following 10 min the first experimental period was repeated. Shaded areas represent urine collection periods. The left kidney was perfusion fixed and filled with methacrylate at the end of the second urine collection period (U2).

6.2.3.I Haemodynamic variables

MA.P was measured throughout the experiment using a side arm catheter, 3 mm proximal to the tip of the cannula inserted into the aorta. The remaining haemodynamic variables, HR and rena! haemodynamics (RBF, CBF, and MBF) were measured throughout the experiment as described in detail in Section 2.7, Chapter 2.

6.2.3.2 Analysis of urine and blood samples

Blood and urine samples were processed for measurement of plasma renin activity, baematocrit, and determinations of sodium, $\left[{ }^{3} \mathrm{H}\right]$-inulin and $\left[{ }^{14} \mathrm{C}\right]-\mathrm{PAH}$ concentrations. GFR and effective RBF were calculated as detailed in Sections 2.7.2 ard 2.7.3 (Figure 6.1).

6.2.3.3 Preparation of methacrylate casts for scanning electron microscopy

Only the left kidneys were examined. Following removal from the rabbit, each kidney was stored individually in fixative to allow complete polymerization of the methacrylate ($24-48$ hours). The preparation of the vascular casts for scanning electron microscopy is explained in detail in Section 2.5.1 of Chapter 2. Briefly, the kidneys were sectioned and incubated for 1 week in tissue solubilizer potassium hydroxide (KOH) for removal of the tissue from the casts. The remaining casts were then washed, mounted, and gold coated (SCD 005 Sputter Coater; Bal-Tec, Liechtenstein) before being examined in a scanning electron microscope at 20 Kv (Hitachi S.570, Hitachi City, Japan).

Luminal diameters of afferent and efferent arterioles of outer, mid, and juxtamedullary glomeruli were measured from scanning electron micrographs (final magnification 660 X). Diameter measurements were made at $25 \mu \mathrm{~m}$ intervals (Figure 6.2) along each vessel from its junction with the glomerulus to its first branching point. Six afferent and efferent vessels from each region of the cortex were measured. These were selected and classified as previously described (Denton et al., i992; Denton et al., 2000). The vascular casts were coded and randomised before the micrographs were taken. Measurements along the arteriolar lengths were made using a digitizing tablet (Summagraphics; resolution 100 lines $/ \mathrm{mm}$, accuracy $\pm 0.25 \mathrm{~mm}$, GTCO Calcorp, USA) and the MEASURE program (Capricorn Scientific Software, Victoria, Australia). Vessel selection and measurement procedures are described in greater detail in Section 2.5.2 (Scanning electron microscopy) in Chapter 2.

6.2.3.4 Vascular diameter, resistance and conductance

These calculations are explained in Section 2.8 .2 of Chapter 2. Briefly, mean values for the radius (r) and diameter of each vessel were derived from the measurements made along the vessel length. Relative resistances (R) were calculated according to Poiseulle's relationship ($\mathrm{R}=1 / r^{4}$) and expressed per unit length (Denton et al., 1992; Denton et al., 2000), see Table 6.2.

6.2.4 Statistical analysis

6.2.4.1 Haemodynamic data

To test whether $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin or its vehicle altered baseline systemic and renal haemodynamic variables, the average levels of each variable during the first $10-30 \mathrm{~min}$ after commencing the infusion were compared with levels during the initial control period by paired t test.

6.2.4.2 Glomerular arteriole dimensions

To test whether the $\left[\mathrm{Phe}^{2}, \mathrm{Il} \mathrm{e}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treatment altered vessel diameter in comparison to vehicle infusion, the average diameter of the treated vessels in each cortical region (outer, mid, juxtamedullary) were compared with those in control animals by unpaired t-test. Paired t-tests were used to test for differences between afferent and efferent arteriole diameters in the various regions of the cortex.

6.3 Results

6.3.1 Baseline leveis during the control period

Systemic and renal baemodynamic variables (Figures 6.3 \& 6.4), and renal excretory variables (Figure 6.4) during the control period were similar to those previously observed by us under similar experimental conditions (Denton et al., 1992; Correia, 1997; Evans et al., 1998; Denton et al., 2000). There were no systemic differences in these variables between the two groups of rabbits ($P>$ $0.05)$.

6.3.2 Haemodynamic and renal responses to $\left[P^{2} e^{2}, I e^{3}, O n^{8}\right]$-vasopressin and vehicle treatment

Intravenous [$\left.\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) increased MAP ($19 \pm 3 \%$) and haematoc it ($7 \pm 2 \%$), and reduced $\mathrm{HR}(16 \pm 2 \%$) and MBF ($30 \pm 8 \%$), but RBF, CBF and renal vascular resistance did not significantly change (Figure 6.2, Table 6.1). Vehicle treatment did not significantly affect any of the measured variables with the exception of haematocrit, which decreased by $3 \pm 1 \%$ (Figure 6.2, Table 6.1).
[Phe $\left.{ }^{2}, \Pi e^{3}, \mathrm{Om}^{8}\right]$-vasopressin treatment had no significant affect on effective RBF in either kidney. In both the left (denervated) and right (and innervated) kidney, $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treatment significantly increased GFR (58 ± 13 and $109 \pm 38 \%$, respectively), urine flow (166 ± 32 and $355 \pm 78 \%$, respectively) and sodium excretion (118 ± 21 and $290 \pm 82 \%$, respectively). Following vehicle treatment there were small but statistically significant increases in GFR in the right kidney ($33 \pm 10 \%$), urine flow in the left kidney ($32 \pm 14 \%$), and sodium excretion in both the left ($36 \pm 15 \%$) and right ($42 \pm 16 \%$) 6.4).

6.3.3 Vessel lumen diameters and calculated relative resistances

No evidence of focal constriction was observed along the length of any of the arterioles. Therefore, mean diameter was calculated for each afferent and efferent arteriole in the different regions, as an arithmetic mean of each measurement (every $25 \mu \mathrm{~m}$) along the length of the vessel from the glomerulus.

There were no significant differences in glomerular afferent or efferent arteriole lumen dimensions between vehicle and [Phe $\left.{ }^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin agonist treated rabbits (Figure 6.5). In particular, juxtamedullary afferent and efferent arteriolar diameters were closely similar in the two groups of rabbits. There was, however, a tendency for mid cortical efferent arteriolar diameter to be less in [Phe $\left.{ }^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treated than in vehicle treated rabbits ($P=0.07$, Figure 6.5). Calculated relative resistance per unit vessel length was closely similar in vehicle and $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin agonist treated rabbits for all arterioles (Figure 6.4), except for mid cortical efferent arterioles in which a tendency for increased relative resistance was observed in the $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin treated rabbits ($P=0.07$).

When averaged across both groups of rabbits, afferent arteriole lumen diameters in the outer, mid, and juxtamedullary cortex were $15.06 \pm 0.70,13.87 \pm 0.52$, and $15.48 \pm 1.20 \mu \mathrm{~m}$, respectively. Compared with these afferent arterioles, the corresponding efferent arterioles had smaller diameters in the outer cortex ($12.37 \pm 1.00 \mu \mathrm{~m}, P=0.02$) and mid cortex $(12.13 \pm 0.61 \mu \mathrm{~m}, P=0.03$), but greater diameters in the juxtameduilary cortex ($17.62 \pm 1.48 \mu \mathrm{~m}, P=0.02$).

Figure 6.2 Scanning electron microscope image of juxtamedullary glomeruli. A. afferent arteriole; E, efferent arteriole; G, glomerulus: OMDVR, outer medullary descending vasa recta.

Figure 6.3 Effects of intravenous infusion of $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle ($154 \mathrm{mM} \mathrm{NaCl}, 50 \mu \mathrm{l} / \mathrm{kg} / \mathrm{min}$) on systemic and renal haemodynamic variables. MAP, mean arierial pressure; HR, heart rate, lys'T, haematocrit; RBF, renal blood flow; CBF, renal cortical perfusion, and MBF, renal medultary mean \pm SEM of data ($n=7$) during the fina) 30) of the control period (open columns), and the final 20 min of the period of infusion of enicle (hatched columns) or [Phe ${ }^{2}$, $\left.\mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin (filled columns). P values mpresent outcomes of paired t-tests, testing whether variables changed significantly during infusions of vehicle or $\left[\mathrm{Phe}^{2}, 11 \mathrm{e}^{3}, \mathrm{Om}^{8}\right]$-vasopressin.

Figure 6.4 Effects of intravenous infusion of $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle ($154 \mathrm{mM} \mathrm{NaCl}, 50 \mu 1 / \mathrm{kg} / \mathrm{min}$) on renal clearance variables in the denervated (left) kidney and the intact (right) kidney. ERBF, effective renal blood flow; GFR, glomerular filtration rate; $\mathrm{U}_{\mathrm{voL}}$, urine flow, $\mathrm{U}_{\mathrm{Na}+} \mathrm{V}$, urinary sodium excretion. Columns, error bars and P values are as for Figure 6.3.

Figure 6.5 Diameters of vascular casts of glomerular arterioles in the superficial, mid, and juxtamedullary cortex, after intravenous infusion of $\left[\mathrm{Phe}^{2}, 1 \mathrm{ll}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin (filled columns; $30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle (hatched columns; $154 \mathrm{mM} \mathrm{NaCl}, 50 \mu / \mathrm{kg} / \mathrm{min}$). Columns and error bars represent the between rabbit mean \pm SEM ($\mathrm{n}=7$). P values represent the outcomes of unpaired t -tests, testing whether diameters of vessels in $\left[\mathrm{Phe}^{2}, \mathrm{Il}{ }^{3}, \mathrm{Om}^{8}\right]$-vasopressin- treated rabbits differed from the corresponding vessels in vehicle-treated rabbits.

Table 6.1 Effects of intravenous infusion of vehicle ($50 \mu / / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$) or $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$) on systemic and renal haemodynamic variables. Data are presented as percentage change from baseline measurements.

	Vehicle	$\left[\mathbf{P h e}^{2}, \mathbf{l l}^{3}, \mathbf{O r}^{8}\right]$ vasopressin
MAP	-1 ± 3	$19 \pm 3^{*}$
HR	-1 ± 2	$-16 \pm 2^{* * *}$
HCT	$-3 \pm 1^{*}$	$7 \pm 2^{*}$
RBF	3 ± 1	6 ± 4
CBF	-1 ± 2	-1 ± 5
MBF	-5 ± 4	$-30 \pm 10^{*}$

Each value represents the mean \pm SEM of the percentage difference for each variable, between the baseline levels, and the levels $10-30 \mathrm{~min}$ following commencement of the infusion of V_{1}-agonist or vehicle. ${ }^{*} P \leq 0.05,{ }^{* *} P \leq 0.01,{ }^{* * *} P \leq 0.001$ for outcome of paired t-test. MAP, mean arterial pressure; HR, heart rate; HCT, haematocrit; RVR, renal yascular resistance; RBF, renal blood flow; CBF , renal cortical blood flow; MBF, renal medullary blood flow.

Table 6.2 Effects of intravenous infusion of [Phe $\left.{ }^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$) or its vehicle ($50 \mu 1 / \mathrm{kg} / \mathrm{min}$) on relative resistance.

TREAT	VESSEL	OUTER CORTEX	MID CORTEX	JUXTA MEDULLARY
Vehicle	Afferent	0.051 ± 0.018	0.064 ± 0.017	0.060 ± 0.021
\mathbf{V}_{1} - agonist	Afferent	0.087 ± 0.041	0.080 ± 0.022	0.128 ± 0.058
Vehicle	Efferent	0.293 ± 0.051	0.189 ± 0.039	0.124 ± 0.036
\mathbf{V}_{1} - agonist	Efferent	0.417 ± 0.073	0.375 ± 0.083	0.174 ± 0.059

6.4 Discussion

As previously demonstrated (Evans et al., 1998; Evans et al., 2000), intravenous infusion of the V_{1} -receptor agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin selectively reduced MBF compared with CBF and RBF in rabbits. Our present aim was to determine whether this selective effect of the V_{1}-receptor agonist [$\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}$]-vasopressin on MBF is mediated by selective vasoconstriction of juxtamedullary glomerular arterioles, using a previously characterized vascular casting technique (Denton et al., 1992; Denton et al., 2000). We found that intravenous infusion of $\left[\mathrm{Phe}^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}\right]$] vasopressin reduced MBF by $30 \pm 8 \%$ but we could not detect a change in the diameters of afferent or efferent juxtamedullary arterioles. These data are not consistent with a role of juxtamedullary arterioles in mediating the effects of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin on MBF. Since vasoconstriction of vascular elements upstream from glomerular arterioles (i.e. interlobular or arcuate arteries) should produce reductions in CBF (and RBF) as well as MBF, our data raise the possibility of a role for downstream vascular elements in mediating MBF responses to [$\left.\mathrm{Phe}^{2}, \mathrm{He}^{3}, \mathrm{Om}^{8}\right]$-vasopressin. The outer medullary portions of the descending vasa recta are the most likely candidates, since these have previously been shown to be responsive to both arginine vasopressin and [Phe ${ }^{2}$, Ile ${ }^{3}, \mathrm{Om}^{8} \mathrm{~J}$-vasopressin in vilro (Turner and Pallone, 1997).

In the current study, our combination of in vivo measurements of RBF, CBF and MBF together with data from ex-vivo analysis of vascular casts from the same animals, provided a unique opportunity for direct correlation of the actions of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin on regional kidney blood flow and glomerular arteriole dimensions. The laser-Doppler technique for measurement of regional kidney blood flow has previously been validated (Hansell, 1992), and used extensively by others (Franchini and Cowley, 1996; Cowley, 1997; Franchini et al., 1997) and ourselves (Correia, 1997; Evans et al., 1998; Evans et al., 2000; also Chapter 4) to demonstrate the diversity of responses of regional kidney blood flow to hormonal agents. The vascular casting technique used in the present study involves rapid tissue fixation at physiological pressure, after which the renal vasculature is filled with methacrylate resin material. Although some artifact is associated with the vascular casting procedure, the vascular casting technique has previously been extensively validated (Gattone et al., 1983; Gattone and Evan, 1986; Kimura et al., 1990; Denton et al., 1992; Denton et al., 2000). Importantly, the glomerular arteriole diameters derived from the vascular casts in the present study are comparable to those previously reported in rabbits using several techniques, including vascular casting (Denton et al., 1992; Denton et al., 2000), stereology (Kaissling and Kriz, 1979), and isolated arteriole preparations (Ito and Carretero, 1990; Weihprecht et al., 1991) We also observed regional differences in glomerular arteriole diameters, which is consistent with
previous studies in this (Kaissling and Kriz, 1979; Denton et al., 1992; Denton et al., 2000) and other species (Gattone et al., 1983; Dwarkin and Brenner, 1996). Furthermore, previous studies using the technique of vascular casting have demonstrated vasoconstriction in glomerular arterioles in response to angiotensin II (Denton et al., 1992; Denton et al., 2000) and noradrenaline (Kimura et al., 1.990) and vasodilatation in response to atrial natriuretic peptide (Kimura et al., 1990). We can therefore be confident that the vascular casting technique can be used to detect changes in renal arteriole dimensions.

Consistent with the lack of effect of [Phe $\left.{ }^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin on CBF and RBF, we observed no significant differences between vehicle and $\left[\mathrm{Phe}^{2}, \mathrm{Ie}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treated rabbits in the diameters of afferent or efferent arterioles in supirficial and mid cortical regions of the cortex. If the 30% reduction in MBF were entirely due to vasoconstriction in juxtameduliary arterioles, we would have expected (based on Poiseulle's relationship, where resistance is inversely proportional to the fourth power of the vessel radius) juxtamedullary arteriole diameter to have been about 9% less in $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin treated compared with vehicle treated rabbits. However, the diameters of juxtamedullary afferent and efferent arterioles were indistinguishable in the two groups of rabbits, and indeed if anything were numerically ($\sim 3 \%$) greater in [$\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}$]-vasopressin treated than in vehicle treated- rabbits.

Our failure to detect significant differences in juxtamedullary glomerular arteriole diameter between vehicle- and $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treated rabbits reflect some inherent insensitivity of the casting technique. However, we believe this is unlikely, since previous studies in our laboratory have detected decreases of $\sim 1 \mu \mathrm{~m}$ in outer cortical efferent arteriole diameter in rabbits receiving renal arterial infusions of angiotensin II ($1 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$), that caused a 35% reduction in RBF (Denton et al., 2000). In the current study, to decrease MBF by $\sim 30 \%$, mean juxtamedullary afferent arteriole diameter would have had to decrease by $\sim 9 \%$, which corresponds to changes in arteriolar diameter of $1.4 \mu \mathrm{~m}$ (afferent) to $1.6 \mu \mathrm{~m}$ (efferent).

Our ex-vivo data are therefore not consistent with a role of juxtamedullary glomerular arterioles in mediating the selective effects of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Or}^{8}\right]$-vasopressin on MBF, and in this respect are at odds with the results of in vitro studies showing constriction of juxtamedullary afferent arterioles in response to physiological concentrations of arginine vasopressin (Harrison-Bernard and Carmines, 1994). Nevertheless, this is the first study we are aware of that has addressed this issue under in vivo conditions, and it is likely that the responsiveness of renal vascular elements to activation of V_{1} receptors is highly dependent upon the intrarenal hormonal milieu. Furthermore, although they
appear less sensitive than afferent arterioles under in vitro conditions (Harrison-Bernard and Carmines, 1994), outer medullary descending vasa recta do respond to arginine vasopressin and [Phe $\left.{ }^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin (Turner and Pallone, 1997). Taken together, these data suggest a possible role for outer medullary descending vasa recta in mediating the selective effect of $\left[\right.$ Phe ${ }^{2}$, $\Pi e^{3}, \mathrm{Om}^{8} \mathrm{~J}$ - vasopressin (and so perhaps also that of arginine vasopressin) on MBF. This hypothesis will be difficult to test under in vivo conditions, since there are considerable technical impediments to the use of casting techniques for measuring the dimensions of outer medullary descending vasa recta. This could not be achieved in the present study, because the outer medullary descending vasa recta were either inadequately filled with casting material, or when adequately filled, they often detached from the efferent arterioles during preparation of the cast. In future studies we hope to overcome this problem, and also increase the resolution of the technique so as to investigate the role of outer medullary descending vasa recta in mediating reduced MBF during activation of renal $\mathrm{V}_{1^{-}}$ receptors.

The present study also allowed us to make a number of interesting observations about the systemic haemodynamic and renal effects of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin. Intravenous infusion of this agent increased MAP, GFR, urine flow, and sodium excretion. The diuretic and natriuretic effects of [Phe^{2}, $\mathrm{Ile}^{3}, \mathrm{Om}^{8}$]-vasopressin have been described previously in both rats (Ledderhos et al., 1995) and rabbits (Evans et al., 1998). These effects appear to result chiefly from a direct tubular action of activation of V_{1}-receptors, and are at least in part independent of the pressor effect of [Phe ${ }^{2}$, $\mathrm{Ile}^{3}, \mathrm{Om}^{8}$]-vasopressin (Ledderhos et al., 1995). In the present study we also found that [Phe ${ }^{2}$, $\left.11 e^{3}, \mathrm{Om}^{8}\right]$ vasopressin increased GFR. This effect has not been previously described, but is consistent with the pressor effect of this agent, and the lack of evidence in our casting data for autoregulatory vasoconstriction in $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treated rabbits. Indeed, the only vessels in which there was any evidence of vasoconstriction were the efferent arterioles of mid cortical glomeruli, in that the average diameters of these vessels tended to be about 11% less in $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$-vasopressin treated than in vehicle treated rabbits ($P=0.07$). Our casting data are therefore consistent with the hypothesis that glomerular capillary pressure increases during intravenous infusion of doses of $\left[\mathrm{Phe}^{2}, \mathrm{Ml}^{3}, \mathrm{Orn}^{3}\right]$-vasopressin that increase MAP. This hypothesis merits direct testing with micropuncture.

6.5 Conclusions

In conclusion, the results of the present study are not consistent with an important role of juxtamedullary glomerular arterioles in mediating the selective effect of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$ vasopressin on MBF. A role for downstream vascular elements, and in particular outer medullary descending vasa recta, remains possible. However, since our present in vitro cata are at odds with the results of previous studies, they require confirmation by future experiments.

Chapter Seven

GENERAL DISCUSSION

7.0 Introduction

The main impetus for the studies described in this thesis came from the hypothesis that the renal medullary microcirculation plays a significant role in the long term control of arterial pressure, chiefly through modulation of the pressure diuresis/natriuresis response, and possibly also the release of a putative renal medullary vasodepressor hormone. In this final chapter, I will summarize the main findings from this thesis, and discuss future directions for research aimed at answering some of the important questions that arise from my work.

7.1 Renal handling of infused [$\left.{ }^{3} \mathrm{H}\right]$ - noradrenaline

Renal medullary interstitial infusion of $\left[{ }^{3} \mathrm{H}\right]$-noradrenaline, delivered to the outer medullary interstitium, results in the infused radiolabel being most concentrated in the juxtamedullary region; the inner cortex and the outer medulla. This finding was consistent with our previous observation that MBF was selectively reduced during medullary interstitial infusion of noradrenaline, adding further weight to the argument that the juxtamedullary and outer medullary vasculature is chiefly responsible for regulating MBF (Correia, 1997). Furthermore, the results of this study, taken together with our previous findings (Correia, 1997), indicate that outer medullary intersitial infusion of vasoactive substances provides a useful tool for studying the role of MBF (in rabbits) in the regulation of arterial pressure.

However, the scope of these studies were limited, in that only one agent, noradrenaline, was tested. It is likely that the intrarenal distribution, and effect of the infused substance on the renal circulation (in particular MBF), will depend on its handling by the kidney. In the case of $\left[{ }^{3} \mathrm{H}\right]$ noradrenaline, it was previously shown that approximately half of the outer medullary interstitially infused radiolabel spilled over into the systemic circulation (40%), or exited the kidney via the
ureter (4%), limiting this technique to substances which are rapidly metabolized and therefore produce their strongest effect within a small distance from the infusion site (Correia, 1997).

If the use of this technique is extended to other substances, the physico-chemical and biological characteristics of each substance will likely influence its effects and distribution within the kidney. These characteristics might include: (i) the size and charge of the molecules involved, (ii) possible interactions with other hormones in the interstitium and circulation, such as nitric oxide and eicosanoids, (iii) any potential involvement of renal uptake mechanisms, particularly within the renal tubules, (iv) direct/indirect effects on renal water and sodium handling, (v) vasoactive actions, (vi) possible regionally specific effects within the kidney (i.e. vasopressin reduces MBF but usually not CBF, irrespective of its site of administration), (viii) systemic effects resulting from spill-over and, (vii) the rate of metabolism of the substance, and any metabolic by-products.

With these considerations in mind, and based on the observations of our previous studies (Correia, 1997; Evans et al., 1998), and those of others in rats (Lu et al., 1992;, it may be postulated that substances of a comparable charge and size to noradrenaline might be handled in a similar manner. Thus, following renal medullary interstitial infusion of most water soluble molecules, it might be expected that approximately half of the infused substance will spillover into the systemic circulation, and a much smaller portion ($\sim 5 \%$) will exit via the ureter. The distribution and disposition of larger, non-polar, or highly charged polar molecules, on the other hand, might be very different from that of noradrenaline. Clearly therefore, future use of this technique with other substances requires detailed information about the factors that determine their distribution within the kidney.

7.2 Role of renal medullary blood flow in renal antihypertensive responses to increased renal artery pressure

Having developed a method for the selective reduction of MBF in anaesthetised rabbits, we were then able to test the effects of reducing MBF on responses to increased RAP. This was tested through the establishment of an extracorporeal circuit, which enabled RAP to be manipulaied independently of direct effects on systemic arterial pressurc. In the experiments described in Chapter 4, the effects of increasing RAP were tested during both reduced CBF (intravenous noradrenaline infusion; $300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$), and reduced MBF (medullary interstitial noradrenaline infusion; also $300 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$). Using this circuit we were able to test the roles of the cortical and medullary circulation in three proposed renal antihypertensive mechanisms; pressure natriuresis,
the renin-angiotensin system, and the putative renal medullary humoral depressor mechanism. With regard to the latter mechanism, at the time we performed these experiments it was believed that the depressor response to increased RAP in this model was at least in part due to release of this putative humoral depressor substance.

It was concluded that medullary interstitial noradrenaline infusion blunted both the pressure natriuresis response and the release of the putative renal medullary depressor hormone, since the depressor response in these rabbits was blunted in comparison to those receiving intravenous noradrenaline (reduced CBF). Since a reduction in CBF did not affect these responses, these findings add further weight to the hypothesis that MBF plays a significant role in the regulation of arterial pressure. This conclusion is further supported by the results of other studies using this experimental model, showing that other treatments that reduce MBF such as blockade of nitric oxide synthase (Evans et al., 1995), and medullary interstitial infusion of $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin (Bergström and Evans, 1998) can inhibit one or both of these antihypertensive responses to increased RAP. In contrast, they appear to be little affected by treatments that only affect CBF , such as renal arterial infusion of endothelin-1 or $\mathrm{ET}_{\mathrm{A}} / \mathrm{ET}_{\mathrm{B}}$-receptor blockade (Weekes et al., 2000). This conclusion is also supported by the large body of work by Cowley and colleagues, showing the pro-hypertensive effects of medullary interstitial infusions of vasoconstrictors in rats (see Cowley, 1997). Therefore, it seems likely that the nedullary microvasculature plays a key role in the mechanisms controlling blood pressure in the long term. On the other hand, future studies are required to further delineate the precise mechanisms underlying the role of MBF in blood pressure control.

7.2.1 Further approaches to understanding the roles of medullary blood flew in blood pressure control mechanisms

One approach which has not been tested in the extracorporeal circuit model, and may warrant investigation, is to determine effects of selective increases in MBF, on responses to increased RAP. This would further test the hypothesis that the level of MF, m modulates the pressure diuresis/natriuresis mechanism, which predicts that treatments that in ease MBF should enhance the diuretic/natriuretic responses to increased RAP.

In order to selectively increase MBF, vasodilators could be infused into the renal medullary interstitium using the technique developed in Chapter 3. Renal arterial infusion may provide a method for selectively increasing CBF with the same vasodilator substance. Suitable vasodilator
substances for such studies might include acetylcholine, adrenomedullin, or nitric oxide donors. In preliminary studies, these agents have been shown to produce sustained increases in total RBF during renal arierial infusion, and do not spill-over in sufficient quantities to reduce arterial pressure (Guild et al., 2001).

Future studies, therefore, should compare the effects of renal arterial and renal medullary interstitial infusions of these agents. The results of these experiments should provide the background information necessary for the design of an experiment along the lines of that described in Chapter 4, to test whether increased MBF enhances pressure diuresis/natriuresis in this extracorporeal circuit model. On the other hand, this approach has already been taken in experiments in hypertensive rats, using a more conventional model of pressure diuresis/natriuresis (Lu et al., 1992). These experiments showed that when MBF is increased by medullary interstitial infusion of the calcium antagonist diltiazem, the pressure diuresis/natriuresis relationship is shifted to the left. The experiments I propose in rabbits should confirm this finding under different experimental conditions, and with an experimental design that allows the systemic and renal cortical effects of the vasodilator agent to be controlled for.

7.2.2 Autoregulation of medullary blood flow

A further unresolved issue arising from this study was our inability to detect increases in MBF during increased RAP. There is presently considerable controversy as to the degree to which MBF is autoregulated (See 1.2.2.2), but given that even CBF is relatively poorly autoregulated in this extracorporeal circuit model, our finding with regard to MBF is surprising. One possibility is that our observation reflects a technical problem with our measurement of MBF under the conditions of the extracorporeal circuit model. When RAP is increased in this model, the kidney expands. Given tnat the medullary probe is held in place outside the kidney, renal expansion might result in the probe moving further towards the papilla, and so into medullary regions of lower relative flow. This issue requires clarification by further experiments.

One approach might be to chronically implant a laser-Doppler flowprobe so that its tip is positioned in the outer medullary interstitium ($\sim 8 \mathrm{~mm}$ from surface) and the probe is adhered to the renal capsule. This technique has previously been used in rabbits in our laboratory (Evans et al., 2000). Using this method in the extracorporeal circuit setup would allow a different approach to the measurement of MBF. Using this approach, if the kidney expands when RAP is increased, if anything the probe tip would retract out towards the cortex, since it is no longer held stationary by a
micromanipulator, but adhered to the renal capsule. This should allow us to determine whether the observations described in Chapter 4 were artifactual, due to movement of the probe tip when MBF is increased.

On the other hand, if our observation is correct, and MBF is well autoregulated in the extracorporeal circuit model, this might have important consequences for our understanding of the mechanisms underlying pressure diuresis/natriuresis. As outlined in detail in Chapter 1, poor autoregulation of MBF is thought to be critical for the full expression of the pressure diuresis/natriuresis mechanism (Cowley, 1997). On the other hand, others (Majid and Navar, 1996; Majid et al., 1997; Majid et al., 1998) have observed pressure diuresis/natriuresis in the absence of measurable changes in MBF. It may be then, that the extracorporeal circuit model provides a new way to address this issue, and perhaps further resolve a role of MBF in mediating, as opposed to modulating, the pressure diuresis/natriuresis mechanism.

7.3 Factors mediating depressor respönses to increased renal artery pressure

7.3.1 Role of pressure diuresis/natriuresis an the renin-angiotensin system in the depressor response to increased renal artery pressure

A probing question arising from the experiments conducted in Chapter 4 was, to what extent did the pressure diuresis/natriuresis mechanism contribute to in the depressor response to increased RAP. This question arose from the observation that renal excretion of sodium and water increased exponentially when RAP increased from ~ 65 to $\sim 160 \mathrm{mmHg}$ kidney dry weight. For example, urine flow increased from 0.1 to $1.5 \mathrm{ml} / \mathrm{min} / \mathrm{g}$, which one might predict, would lead to a fall in extracellular fluid volume, and therefore cardiac output, and arterial pressure.

The design of the studies described in Chapter 5 allowed us to test the roles of pressure diuresis/natriuresis and inhibition of renin release in the depressor response to increased RAP. In brief, these experiments demonstrated that the depressor response was chiefly the result of increased salt and water excretion, and not the actions of a putative renal medullary depressor substance, or inhibition of the renin-angiotensin system. These results suggest that, the extracorporeal circuit is not a good model of 'medullipin' release. On the other hand, the results of the experiments described in Chapter 5 do not prove that a depressor substance was not released from the medulla under the conditions of our experiment, although if it was, any effect it might have had was obscured by the powerful depressor response resulting from pressure diuresis/natriuresis and so
hypovolaemia. It is also possible that our experiment did not provide the optimal conditions for stimulation of release of this putative renal medullary depressor hormone. Specifically, we did not test the effects of gradually increasing RAP. It may be that $\sim 160 \mathrm{mmHg}$ is outside the physiological range for release of this putative depressor hormone.

7.3.2 Is the renal medullary depressor hormone released within a specific physiological range?

It remains possible that the renal medullary depressor hormone is released only within a certain physiological range of RAP, and this mechanism is blunted outside that range. In this context, it is of interest to note that Thomas et al (Thomas et al., 1994) found that depressor responses could be observed in this extracorporeal circuit model when RAP was increased in steps from 95 mmHg up io 185 mmHg . As in the studies described in this theses, the fall in blood pressure in these experiments was accompanied by natriuresis and diuresis that were both pressure related and progressive with each increase in $\operatorname{RAP}(95,125,155$, and 185 mmHg$)$. In these experiments urine excretion was $0.39 \pm 0.11 \mathrm{ml} / \mathrm{min}$ when RAP was set at $\sim 95 \mathrm{mmHg}$ but increased to 2.06 ± 0.36 $\mathrm{ml} / \mathrm{min}$ when RAP was $\sim 185 \mathrm{mmHg}$. This was accompanied by reductions in MAP of 4.2 ± 0.7 (at $R A P \sim 9: \mathrm{mmHg}$) and $18.1 \pm 5.3 \mathrm{mmHg} / \mathrm{min}$ (at RAP $\sim 185 \mathrm{mmHg}$) respectively. These figures are comparabis to those presented in Chapter 5, in that we observed a urinary excretion rate of 1.5 ± 0.3 $\mathrm{ml} / \mathrm{min}$ whel. RAP was set at $\sim 165 \mathrm{mmHg}$ and a fall of $16.3 \pm 3.7 \mathrm{mmHg} / \mathrm{min}$ in MAP. Thus, despite previous clai..s these animals were not in positive fluid balance at all times during these extracorporeal circuit experiments (Floyer, 1975; Neubig and Hoobler, 1975).

Therefore, an observation which was overlooked in the Thomas et al studies was that although the fall in blood pressure continued proportionally with the rise in RAP and therefore urine production, the intravenous maintenance infusions in these rabbits remained constant ($10 \mathrm{ml} / \mathrm{kg} / \mathrm{hr}, \sim 0.4$ $\mathrm{m} / / \mathrm{min}$). In our experiments we were able to show that the fall in blood pressure could be prevented in rabbits in which these maintenance infusions were adjusted to maintain fluid balance.

Nevertheless, the experiments described in Chapter 5 should be replicated with a design involving step-wise increases in RAP, from $\sim 65-\sim 160 \mathrm{mmHg}$. The probability that the putative vasodepressor hormone produces physiological effects outside this 'physiological' range is unlikely since we have shown that the fall in arterial pressure at RAP of $\sim 160 \mathrm{mmHg}$ occurs chiefly due to negative salt and water balance and hypovolaemia.

7.3.3 Cross perfusion studies

Before the implementation of the extracorporeal circuit in larger species, such as the dog and rabbit, the most convincing physiological evidence for the release of the putative renal medullary depressor hormone came from the cross circulation studies in rats, where an isolated kidney was extracorporeally perfused with blood from an intact 'donor' rat (Karlström and Gothberg, 1987). This setup is similar to the extracorporeal circuit detailed in Chapters 4, and 5 in that it allows RAP of the isolated kidney to be regulated independently of direct effects on the systemic circulation of the intact 'assay' rat, since blood flow through the circuit remains constant (Gothberg and Karlström, 1991).

In this model it has been demonstrated that increased RAP in the cross perfused isolated kidney produces a reduction in blood pressure in the assay rat, possibly via release of a humoral depressor substance from the renal medulia. It was suggested that the stimulus for the release of this depressor substance was increased RAP and/or the concomitant increase in RBF (Gothberg and Karlström, 1991). It was even suggested that the renal medullary depressor hormone stimulated a diuretic/natriuretic response in these rats, since urine flow and sodium excretion increased not only in the isolated kidney perfused at high pressure, but also in the recipient kidney, in which arterial pressure fell (Karlström et al., 1988). This observation also raises the question as to whether the depressor response to increased RAP in this model could be due to hypovolaemia secondary to increased salt and water excretion. My calculations, based on the data in Karlström et al. (1988), are equivocal on this matter. Taking the urine produced by both the isolated recipient kidney and the kidneys of the donor rat during high pressure perfusion (about $70 \mu 1 / \mathrm{min}$) and subtracting that from the maintenance infusion (about $50 \mu 1 / \mathrm{min}$), we can predict a negative volume balance of about 20 $\mu 1 / \mathrm{min}$. This seems unlikely to account for the dramatic depressor response to increased RAP in this model. On the other hand, given my present resuits, this possibility warrants testing by direct experimentation.

7.3.4 Unclipping effects of renal hypertensive rats

Another model employed in studies aimed at studying the physiology of the putative renal medullary depressor hormone is the rapid depressor response after unclipping the 1-kidney-lclip renal hypertensive rat (Ledingham and Cohen, 1962; Liard and Peters, 1973). It is stated in these reports that the depressor response to unclipping occurs independently of urinary volume losses, even though an increase in sodium and water excretion was observed (Liard and Peters, 1970).

However, it should be noted that while 'fluid loss' was prevented in these experiments by maintenance infusions, these infusions were not increased in a compensatory manner proportional with increases in renal excretory volumes, after unclipping (Ledingham and Cohen, 1962; Liard and Peters, 1970; Liard and Peters, 1973).

In the 2-kidney, 1-clip hypertension model it was found that the initial fall in blood pressure in response to unclipping was 'blunted' in rats in which the renal medulla had been chemically ablated, leading to the interpretation that the depressor response to increased RAP occurred due to the release of a depressor hormone from the renal medulla (Bing et al., 1981; Taverner et al., 1984). It should be noted however that little attention was given to the level of urinary excretion or activity of the renin-angiotensin system in these studies, system so roies for these factors in the depressor response to unclipping cannot be completely excluded.

In a study by Neubig and Hoobler, (Neubig and Hoobler, 1975) a volume of saline, equal to the volume of urine excreted, was infused intravenously every $15-30 \mathrm{~min}$ following removal of the renal arterial clip. It was found that MAP in this group of rats behaved in a similar manner to that of rats, in which volume was not maintained after unclipping. That is, similar depressor responses were observed in both groups. These observations are consistent with those of Liard and Peters (1973), who observed that ligation of the ureter did not abolish the initial (6 hr) depressor response to unclipping 1 -kidney, 1 -clip hypertensive rats. On the other hand, they contrast with those of Muirhead and Brooks (1980), who showed that the normalisation of arterial pressure after unclipping 1-kidney, 1-clip rats was prolonged by ureto-caval anastomosis or ureteral ligation. Thus, despite the widespread presumption that the initial depressor response to unclipping 1-kidney, 1-clip hypertensive rats reflects, at least in part, a humoral depressor mechanism arising from the renal medulla, an important role for the pressure diuresis/natriuresis mechanism in this phenomenon has still not been excluded. Thus, an experiment directly assessing this issue was called for.

7.3.5 Role of pressure diuresis/natriuresis in the depressor response to unclipping of renal hypertensive rats

I was recently (August-September 2000) granted the opportunity to undertake such a study. I took a similar approach to that described in Chapter 5, but using the unclipping model in renal hypertensive rats. These experiments were performed at the University of Göteborg (Sweden), under the supervision of Associate Professor Göran Bergström. It should be noted that my time spent in Goteborg was limited (4 weeks) and therefore insufficient for completion of the study.

During my time there I did manage to develop a suitable protocol and conduct several preliminary studies, including some experiments used in the final analysis. I would like to take this opportunity to thank Dr. Jia Jing for teaching me how to perform the procedures described below in rats, as my experience to this time was limited to rabbits, and to further thank her for completing the remaining experiments and compiling the data presented below. I also thank Associate Professor Bergström and Dr. Jing for allowing me to present the results of these studies here.

The objective of these studies was to test the role of the pressure diuresis/natriuresis mechanism in the depressor response to unclipping of renal hypertensive rats. In brief, under anaesthesia a right nephrectomy was performed and a clip was placed around the left renal artery of normotensive rats (WKY rats; body weight $150-210 \mathrm{~g}$) 8 weeks prior to the date of the acute experiment. Only rats with arterial blood pressures greater than 150 mmHg were used in the acute experiment. On the experimental day, rats were weighed, anaesthetized (Inactin; $150 \mathrm{mg} / \mathrm{kg}$, subcutaneously) and subjected to the following protocol.

Experimental preparation following anaesthesia; Once a surgical level of anaesthesia was reached (i) a tracheotomy was performed (PE 240), (ii) the tail artery was cannulated for measurement of MAP and blood sample collections for haematocrit determination, (ii) the jugular vein was cannulated (PE 50; 0.75 min ID, 1.45 mm OD) for measurement of CVP, and the delivery of saline and haemacell for plasma volume riainterance throughout surgery and the experiment, (iii) the left ureter was cannulated for urine collection (PE $10 ; 0.28 \mathrm{~mm}$ ID, 0.61 mm OD), and (iv) scar tissue surrounding the renal artery and arterial clip was cleared for later easy removal of the clip. Following surgery, a 60 min equilibration period was allowed for blood pressure and volume levels to stabilize. A further 30 min of stable baseline measurements were then made prior to experimental manipulations.

Experimental groups; Following 30 min of stable baseline recordings, rats were subjected to one of the three following procedures (i) In a control group, the clip was manipulated but not removed, (ii) in the second group, the renal artery clip as removed, (iii) in the third group, the clip was removed and the rat received an intravenous infusion of 154 mM NaCl equivalent to urine flow. Urine flow was determined in all animals at five minute intervals for the 60 min experimental duration, which commenced immediately following removal of the renal artery clip, or sham unclipping. Two haematocrit readings were made (collected directly into capillary tubes), one at the mid-point of equilibration and another 30 min following sham/renal artery unclipping (see Figure 7.1).

Figure 7.1 Schematic diagram of the experimental protocol. Following a 60 min equilibration period, stable baseline recordings of mean arterial pressure, central venous pressure (not shown) and heart rate were taken for 30 min prior to sham/removal of the renal artery clip. For the remaining 60 min of the experiment urine was collected and measured gravimetrically at 5 min intervals and two arterial blood amples were collected for haematocrit determination ($(\mathrm{H} 1, \mathrm{H} 2)$; data not shown). Three groups of rats were studied (i) sham unclipping, (ii) unclipping of the renal artery, and (iii) unclipping of renal artery, and intravenous infusion of 154 mM NaCl at a rate equivalent to urine flow.

The data presented in Figure 7.2 show that, as has been shown previously, renal artery unclipping is followed by a rapidly developing depressor response (Muirhead and Brooks, 1980). These data also show that his depressor response is abolished if urinary excretion is compensated for by saline infusion. Thus, like the depressor response to increased RAP in the extracorporeal circuit mode, the rapid depressor response to unclipping 1-kidney, 1-clip hypertension seems to be chiefly dependent on hypovolaemia secondary to pressure diuresis/natriuresis. Neither of these models, therefore, appear to be appropriate 'assays' for the putative renal medullary depressor hormone.

Two important points arise from these findings. The first is that the pressure diuresis/natriuresis mechanism seems to play a dominant role in blood pressure regulation, even over the relatively short time periods of these experiments. The second important point relates to the existence of the renal medullary depressor hormone. These experimental models have played a major role in
underpinning the physiological evidence supporting the concept of the renal medullary depressor hormone. Thus, we should now critically re-evaluate this concept.

Figure 7.2 Mean arterial pressure (MAP) and heart rate responses to renal unclipping or sham unclipping of anaesthetised renal hypertensive rats. The line with no symbols represents the sham unclipping group. Open triangles represent rats in which the renal artery clip was removed. Closed triangles represent rats in which the renal artery clip was removed, and an infusion of 154 mM NaCl was administered to compensate for urinary excretion.

7.4 Vasopressin \mathbf{V}_{1}-agonist effects on renal blood flow and glomerular arterioles

The experiments described in Chapter 6 concentrated on the mechanisms controlling MBF, rather than the role of MBF in blood pressure control. This study was designed to provide more information about the vascular sites responsible for the control of MBF. MBF in anaesthetised rabbits was selectively reduced) by an intravenous infusion of the V_{1} agonist $\left[\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}\right]$ vasopressin. The rabbits' kidneys were then perfusion fixed, and renal casts were made by methacrylate infusion. The main findings were, that intravenous $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin produced a selective reduction in MBF, but we were unable to detect changes in the diameters of juxtamedullary afferent or efferent arterioles. This finding gives rise to two possible explanations, either (i) the vascular elements responsible for the reduced MBF in response to the V_{1}-agonist are
not in the renal cortex, but instead in the outer medulla (outer medullary descending vasa recta ?), or (ii) that the casting technique was not sensitive enough to detect changes in juxtamedullary glomerular arterioles.

The main advantage of the experimental approach taken in Chapter 6, was the combination of in wivo measurements of regional and total RBFs together with ex-vivo analysis of vascular casts from the same animals. However, this approach did present its disadvantages. Firstly due to the terminal nature of the experiment, within animal comparisons between $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin and vehicle infusion could noi be made, and secondly due to the delicate nature of the casts and excessive handing, some degree of artifact is likely to be associated with this procedure.

It is accepted that the supply of MBF is derived (almost) entirely from the efferent arterioles of juxtamedullary glomeruii (Pallone et al., 1990). Therefore it may been reasoned, that in order for [$\left.\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin to produce a selective reduction in blood flow to the renal medulla, vasoconstriction of either the juxtamedullary arterioles or outer medullary descending vasa recta must occur. Although V_{1}-receptors have been located in the outer medullary descending vasa recta (Park et al., 1997), and they have been shown to constrict in response to V_{1}-receptor activation in vitro (Turner and Pallone, 1997), to date there is no information from in vivo studies that bears on this issue. In a large part, this is due to the inaccessibility of this region of the kidney. Clearly, resolution of this issue is of major importance for an understanding of the factors regulating MBF in vivo.

7.4.1 Possible future directions in measuring in-vivo changes with ex-vivo microscopy

If the observed reduction in MBF in response to infusion of $\left[\mathrm{Phe}^{2}, \mathrm{Il}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin is chiefly due to vasoconstriction of outer medullary descending vasa recta, then based on the results presented in Chapter 6, this may be difficult to resolve using scanning electron microscopy. This arises particularly because comparisons have to be made between animals, rather than within the same vessels in the same animal. An alternate approach may be through the implementation of a more sensitive technique, which preferably allows measurements to be made in real time in vivo. These techniques await development.

One approach that I have trialed in preliminary studies is confocal microscopy. Although it still requires vascular casting and between-group comparisons, it does provide certain advantages over the scanning electron microscope technique. For example: (i) Following staining of the renal casts,
no further processing is required and the size of the cast is limited only by the size of the stage under the microscope lens, not the size of the stubb used in the scanning electron microscope, (ii) 3dimentional images of vessels selected under the microscope are compiled and generated, by computer, and in most instances 2-dimentional measurements may be made, as well as 3dimentional determination of the 'volume' of the scanned image, which can be calculated 'on screen' and does not require the use of a digitizing tablet, and (iii) perhaps the most important advantage of this method is greater image resolution.

However, a major limitation of confocal microscopy which we encountered, was that the computer program used for calculating arteriolar dimensions was unable to distinguish these vessels as a separate entities from the glomeruli. Various approaches were taken to circumvent this problem, which included mathematical formulas, and communication with the software developers, but in the end we were limited by the time restrictions of my PhD candidature, and returned to the previously validated scanning electron microscope method. However, this technique may warrant further investigation since, due to the minimal tissue handling required, and higher resolution, it may in the near future be possible to make measurements of outer medullary descending vasa recta, as well as glomerular arterioles.

7.5 Conclusions

Clearly, we have only just begun to develc; an understanding of how the renal medullary circulation contributes to the regulation of arterial pressure, both in the short and the long term. Many issues surrounding the extent and level oi sivolvement of these mechanisms, particularly the renal medullary depressor hormone still warrant further investigation. My experimental results certainly reinforce the 'Guytonian' view, that the pressure diuresis/natriuresis mechanism plays an overriding dominant role in the long-term control of arterial pressure. Further understanding of the factors underlying this mechanism, including MBF, must therefore be a central goal of hypertension research in the future. This information may help us towards prevention or cure of hypertension, rather than just its treatment.

Renal medullary interstitial infusion of norepinephrine in anesthetized rabbits: methodological considerations

ANABELA G. CORREIA, ${ }^{1}$ GORAN BERGSTROMM, ${ }^{2}$ ANDREW J. LAWRENCE, ANABELA G. CORRELA,
 Departments of ${ }^{1}$ Physiology and ${ }^{3}$ Pharmacology, Monash University, Clayton, Victoria 3168, Australia; and 2Department of Physiology, University of Gobteborg, Clayton, Gbteborg S-419 90, Swede:

Correia, Anabela G., Göran Bergström, Andrew J. Lial infusion of norepinephrine in anesthettzed rabbita: meth dological considerations. Am. J. Physiol. 279 (Regulatory Integrative Comp. Physiol. 46): R112-R122, 1999.- We tested
methods for delivery of drugs to the renal medulle of anesthemathods for delivery of drugs to the renal medulla of anesthe-
tized rabbita. Outer medullary infuaion (OMD) of norepinephrine ($300 \mathrm{kr}^{\cdot} \mathrm{kg}^{-1 \cdot} \cdot \mathrm{~min}^{-1}$), unging acutely or chronically posi to
tond cat eters, reduced both cortical (CBF; 15\%) and
medullary perfurion (MBF; 2S-31\%). Inner medullary infumedullary perfusion (MBF; 23-31\%). Inner medullary infuvenous infusion reduced CBF (15\%) without changes in MBF -40% with chronically positioñed cathaters) apilled over gystemically. Never theless, autoradiouraphle analysis showed the conceatration of radiolabel was about fourfold greater in
the infused medulla than the cortex. In contrast, during IMI, nely $\rightarrow 6 \%$ of the infusad radiflabel apilled over into the onyy \quad asatemic circulation and -64% was expreted by the infused kidney. The resultant intrarenal levels of raidolabel were considerably leas with IMI compared with OML. In rabbita OMI therefore providea a useful method for targeting agents
to the renal medulla, but given the considerable gystemito pillover with OMI, its utility is probsbly limited to aub otances that are rapidly degradad in vivo.
hypertension; laser-Doppler fowmetry; renal blood fow; re-
$\xrightarrow{C-2}$

There is accumulatong evidence implicating the renal medullary microvasculature in the control of arterial pressure. In particular, the level of renal medullary blood fow (MBF) appears to be an important determinant of sodium and water reabsorption $(4,5)$ and is perbaps also important for the release of the putative renal medulary depressor hormone (2). Furthermore,
although thers is evidence to the contrary (16, 17), although thers is evidence to the contrary (16, 17),
some siudies have shown that renal MBF can be poorly ome sindies have shown that renal MBF can be poorly autoregulated, at least under volume-expanded conditherefors be well placed to transduce changes in arterial pressure into homeostatic responses that reatore ormal arterialpressure.
One technique that has been a usefuil tool for study ing the role of the renal medullary microcirculation in the long-term control of arterial pressure has been
infusion of vasoactive substances into the renal me-
dulla. Cowley and colleagues ($4-6,13,14,19,23$) employed this technique in rats, combined with laser-Doppler flowmetry for evaluation of regional lidney blood flow (22). of vasocond that chronic medullary interstitial infusion nethyl ester (19) and the pasopressin V_{1}-agonis Phe ${ }^{2}$, Il ${ }^{3}$, Orn 4]vasopressin (23), at doses that reduce medullary but not cortical blood fow (CBF), results in the development of sugtained hypertension. Conversely nedullary interstitial infusion of captoprin inepontane not CBF, ameliorates their hypertension (13)
In longitudinal studies such as those described above, here are considerable ackantages to employing larger apecies. In the case of conscious rabbits, we are able to obtain long-term and simultaneous data regarding hormonal status (10), cardiac output (months; 9), rena lood fow (weeks; 25), and renal sympathatic nerve investigated methods for infusion of vasoactive agents into the renal medulla of rabbits. We chose norepineph rine (NE) as our test agent, because it is rapidly broken down in vivo, minimizing the confounding effects of spillover into the systemic circulation. We irst tested whether outer medullary interstitial infusion of NE via acutely implanted needle catheters in anesthetized rakbits affected renal hemodynamics and function in the infused and contralateral kadney. We paid particular attention to the effects of the infusion on cortical flowmetry. This was correlated with examination of the distribution of radiolabel after medullary interatitial infusion of $\left[{ }^{3} H\right] N E$ and the removal of the radiolabel from the infusion site via the renal venous and urinary excretory routes. Subsequently, similar studies were performed 7-14 daya after implantation of cathetera designed for chronic implantation, in which we compared the effects, distribution, and disposition of NE/ tnner medulla. These studies auggest thet ontedullary interstitial infusion of vasoactive agents provides a useful method for selectively manipulating renal MBF in rabbits. However, the positioning of the cathetar tip is critical for the distribution of the infused agent and the effects observed.

methods

The coats of publication of thin articlo were defrayed ta part by the
aymunt of page chargen. The orticle muact thorfore be hereby

Before experinentation all rabbits were ellowed food and bleeding, which stopped almost inmediately. A small piece of water ad libitum. On completion of experimental procecures, nylon mesh (1.5 cm diameter, Hilton Hosiery, Coolaroo rabbits were kalled with an intravenous overdose of pentobar- Victoria, Australia) atached to the catheter was anchored to
bital sodium (300 mig). All procedures were performed in the surface of the kidney with cyancocrylate glue (Lortite; sital sodium (300 mg). All procedures were perrormed are with the Auscralian Code of Practice for the Care and Use of Animels for Scientific Purposes and were approved by the Animal Ethics Committee of the Department of Physiology, Monash University

Experimental Preparation

This has been described in detail previously (8), so is lebcribed only briedy here. Cachelers were inss collection arterial blood, measurement of arterial pressure, and intrave now infusion. Anesthesia was induced and maintained b intravenous administration of pentobarbital sodium ($90-150$ mg plus $90-50 \mathrm{mg} / \mathrm{h}$ Nembutal; Boehringer Ingelheim, Artav-
mon NSW Australia) and tmmediately followed by endotramon, NSW, Australia) and inmediately (ollowed by endotra-
cheal intubation and artificial remgiration. Depth of anesthesia was monitored by corneal and toe pinch reflexes and alsa by monitoring arterial pressure and heart rate (HiR). During surgery. Hartmann's solution (compound eodium lactate Baxter Healthcare, Tbongabbie, NSW, Australia) was infuse On completion of the preparative surgery, this infusion was changed to a 4:1 Hartmann's. Haemacel (polygeline and electrolyte solution; Hoechst, Melbourne, Vietoria, Australia) infusion, which was maintained until completion of the $120 \min$ after completion of the aurgery.
Both kidneys were denervated, and both ureters were cannulated. A transit-time ultrasound flow probe (type 2 SB; Transonir Systoms, Ithace, NY was placed around the rena artery, and the tips of three singie-fiber laser-Doppler fow
probes (0.5 mpro diameter; University of Linksping, Sweden) probes (0.5 mpp diameter; University or Linkoping, Sweden)
were placed 0.5 (cortical), 0.5 (cortical), and 10 mm (medullary), reapectively, below' the cortical surface (see Ref. 8 for detailed description). For protocols 2 and 3 (see below), a branch of the ileolumbar vein was isolated and cannulated
(polyvinyi chloride tubing, $0.8 \mathrm{~mm} I D, 1.2 \mathrm{~mm} O D$; Critchley (polyvinyl chloride tubing, 0.8 mm ID, 1.2 mm OD; Critchley being advanced so that it lay in the renal vein for collection of renal venous blood. To maintain catheter patency, heparin-
ized ($50 \mathrm{IU} / \mathrm{ml}$ heparin
godium, Monoparin, Fisons) Hartired ($60 \mathrm{IU} / \mathrm{ml}$ heparin sodium, Monoparin,
mann's solution was infused at a rate of $2 \mathrm{ml} / \mathrm{h}$.

Implantation of Medallary Interstitial Catheters
Aculely positioned catheters. Cathetera, constructed using $30-g a u g e$
aspect of the kididney, on either aide of the medulary laserDoppler flow probe, with their tips positioned 8.5 mma below the cortical surface. Sodium chporide (154 miNi $10 \mu \mathrm{\mu}$. $\mathrm{g}^{-1} \cdot \min ^{-1}$) was infused (via each catheter) into the recal cosumenced.
Chronically positioned catheters. These were implanted 7-14 daye before the experiment under halothane (1-4\%, Fluothane; ICI, Victoria, Australia) anesthesia end sterile conditions (see, Ref. 25). A left flank incision was made, and the lidney was gently exteriorized. The tip of a single
polyethylene catheter (DD 0.28 mm , OD 0.61 mm ; Critchley Electrical) was introduced into the ventral side of the kidney, lightly rostral to the midline aspect, at an angle directed toward the remal pelvis. The catheter was then advanced so that ita tip lay either $8.5(n=8)$ or $10.5 \mathrm{mmn}(n=9)$ below the
surface of the kidney. Correct insertion resulted in minimal
period throughout the [JH]NE infusion. Ear arterial and ranal venous blood samples (0.5 ml each) were collected at the did the completion of the 20 in 3 HIN fufused and contralateral kidneys were quickly retrieved decapsulated, and halved coronally. For half of eech hiden, portions of the cortex, medulla, and papill were dissected and weighed in separate preweighed 20-fil vials, to which 50 Mu of tissue solubiliter (NCS II, 0.5 N solution, Amerskam, weight. Radiosctivity in each region of the ledney was subsequently detarnined by liquid scintillation counting (see below). For five of these rabbits, the remaining kidney talves were frozen in liquid nitrogen and stored at
Protocol S. Chronically positioned outer and inner medul. 2ury catheters (17 rabbits). First, increasing doses of NE (0 ,
30,100 , and $300 \mathrm{ng} \mathrm{kg}^{-1} \cdot \mathrm{~min}-1$) were infused into the inner 30,100 , and $\left.300 \mathrm{ng} \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$ were infused into the inner
($n=9$) or the outer $(n=8)$ medulla ria the catbeters ($n=9$) or the outer $(n=8)$ medulla zia the catheters
implanted $7-14$ daya previously. Each dose of NE wes infused for 20 min . Socond, ater a 20 to 40 -min recovery period,
 NE ($3000 \mathrm{pg}^{1} \mathrm{~kg}^{-1}$. min ${ }^{-1}$) was infused intravenously for for
min. Finally, atter a further $200-40$ min was ellowed for recovery from intravenous NE , (JHINE ($16-24 \mathrm{nCl} \cdot \mathrm{kg}^{-1} \cdot \min ^{-1}$
in $100 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \min ^{-1} \mathrm{NE}$ was infused via the chronically in $100 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1} \mathrm{NE}$) was infused via the chronically and ransl venous blood samples and urine samplea were collected during the infusion, and the kddaeys were harvasted and processed at the completion of the infusion, as described for protocol 2.

Mescurements

Systemic ard renal hemodymanic uariables. Mean artarial
ressure (MAP, rumHg), HR (beates/min), lest renal blood fow (tressit-time ultrasound fowmetry, RBP meters mi/min), and (trandit-time ultrasound fownetry, $\mathrm{RBP}_{\text {nowe }} \mathrm{ml} / \mathrm{min}$), and
cortieal and medullary laser-Dopplar fuxes (CBF and MBF, raspectively, V) were determined as described previoualy (8). Renal function (prolocol 1). Clearance measurements of zjomenclar filtation rete (GFR, milmin) and effective reag plaswan flow (whilch waan corrected for hernatocrit to provide
effective renal blood flow: ERBF, mintn) and determinations of urins and sodium excretion were made as praviously described (B). At the completion of experiments in which renal tianrance measuremente were made (protocol 1), the hidneys were removed and desiccated, and the dry weight was deter-
mijed. Therefore, for this protocol. RBF minine flow rate, and urinary sodium excretion are erpressed por gram of kidrey dry weight (mean $=1.86 \pm 0.07 \mathrm{~g}$). Disposition of radiolabel during infusion of PBINE (protocols 2 and 3). The concentrations of (THINE and its metaboHites in each of the samples were measured by liquid scin tillation counting and expressed in terms of the total dose of N
infused $\left(100 \mathrm{ng}^{-1} \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$. The rate of disposition of infused (ivo ng' ${ }^{\text {kf }}$ calculated as the concentration (above) multiplied by the flow rate ($\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$). Urine flow was detormined gravimetrically. Renal vanous blood fow was taken as renal arterial
blood flow determined by the transit-time utrasound flow probe and was not corrected for urine flow.
Aralysis of solubilized hidney tissue (protocole 2 and 3).
Once dissolved (after at least 7 days of incubation in tissse Once dissolved (atter at least 7 days of inculbation in tissue
solubilizer at room tomperature), tripipicate $20-\mu 1$ samples of each solubilized tissue semple were added to a water-soluble
Bcintillation fluid (ACS, Aqueous counting fuid; Ancersham) and rubjected to liquid scintillation counting.

Autoradiography (protocols 2 and 3). Coronal $50-\mu \mathrm{m}$ sec Hons of the frozen ier maney were cut on a cryostat at $-19{ }^{\circ} \mathrm{C}$ Chemicals, Poole, UK). These sections were left to dry for 1-2 b at room temperature. Subsequent to drying, slides wer apposed to tritium-sansitive film (Amersham Hyperfilm) in the presence of tritium microseales (Amersharn) for 6-8 wh Developed autoradiograms were quantified uting an MCD
M4 image amalysis system (Imaging Research) as previoual M4 image amalysis system (Imaging Research) as previously regions, cortex, outer atripe of the outor medulla coute stripe), medulla (excluding the outer stripe and papilla), and
 protrudes into the renal pelvis), for separate quantification
We chase to tuse both methods (analycis of solubilized kidney tissue and autoradiography) because both have inher ent edvantages and disadvantages and provide complemen tary data. For example, the results from counting solubilize
tissue are potentially subject to variation due to the disee tissue are potentially subject to variation due to the dissee
tion, the degree of solubilization, and extrapolation ermor from counting aliquots. On the other hand, whereas the autoradiograms provide grester sensitivity and anatomi resolution, the data they provide are representative only of the relatively thin ($50 \mu \mathrm{~m}$) sections taken.

Statistical Aralyses

Data were analyzed by ANOVA using the computer coft comparison-wise type I error reatulting from repeated meagures deaigna, P values were conservatively redjusted where appropriate, using the Greenhouse-Geisser correctio where
(15).
Prot
Protocol 1. The data were analyzed as the average level of each variable over earch 20 -nin clearance period, because, at least for the renal cleazance measurements, this was the interstitial infurion of aslin. Ib test for an efrect of medunary contrast the levels of each variable during the 20 -min salin infuaion (the second experimental period of the first emperi mental rum) with the 20 -min perioda before and after the saline infurion. To test for effects of medillary taterstitial infusion of NE on systemic and renai hemodynamic variables, we used the interaction term of time and treatment (vehicle
or NE). For renal clearance variables, the interaction term of time and kidney (infuged and contralaterai) was used to control the confounding effects of changes in arterial pressure on renal function. To test for differences between the re sponses of CBF and MBF during NE infusion, the main effect
of kjidney region (cortex and medulla) tested whether, across all three doses of NE, changes on MBF were greater than those in CBF.
Probocol 2. The levels of radioactivity in the various kidney regions were subjected to ANOVA, the factore comprising region. region.
Protoool 3. ANOVAs were partitioned to test the specific
bypotheses that medullary interstitial infusion of NE dose hypotheses that medullary interstitial infuxion of NE dose relatedly infuenced the levels of sytemic and rapal hemodynamsic variables and that intravonous infusion of NE influ and inner medullary interstitial [${ }^{3} \mathrm{H}$ I/NE infusion in terms of the levels of radiosctivity entering the kianey via the rena artery and exiting the kddney via the urine and the renal vein, me interaction term between catheter pooition (outer or inner radiolabel in the infused and contralateral hidneys were analyzed as for protocol 2.
results
Protocol 1. Acutely Positioned Outer Medullary Interstitial Catheters: Effects of Medullary Interstitial Hemodynamics ind Renal Excretory Function
Medullary interstition infusion of saline. Outer med ullary interstitial infusion of the vehicle (154 mM the gystemic and renal hemods on the levels of any of ance variables in both the infused and contralateral kidney (data not shown).
Medullary interntitial infusion of NE. Medullary interstitial infusion of NE (30,100 , and 300 ng $\mathrm{kg}^{-1} \cdot \min ^{-1}$) was accompanied by dose-related in creases in MAP (by $3 \pm 4,10 \pm 2$, and $16 \pm 4 \%$ of resting, respectively) and small but statistically aignifi cant reductions in $H R$ by ($1 \pm 1,3 \pm 1$, and $3 \pm 1 \%$ of resting, respectively). In the infused. (left) kidney
$\mathrm{ABF} \mathrm{F}_{\text {probe }}$ was dose relatedly reduced by ($8 \pm 1,16 \pm 3$ anf mome was dose relatedy reduced by ($8 \pm 1,16 \pm 3$, and 30 ± 490 of resting, respectively), as was CBF (by MBF' by $17 \pm 5,37 \pm 11$, and $45 \pm 9 \%$ of resting respectively). The reductions in MBF were significantly greater than those of CBF ($P<0.001$) (Fig. 1), consistent with the notion that tissue levela of NE are greater in the medulla and/or inner cortex than in the outer cortex during medullary interstitial infusion. In later protocols, this hypothesis was more directly tested by analysis of tue intrarenal distribution of radio
During medullary interstitial infusion of saline for four consecutive 20 -min periods, the patterns of the esponses of ERBF, GFR, urine flow, and sodium excre tion were indistinguishable in the infused (left) and contralateral (right) kidneys. In contrast, during medul ary interstitial infusion of NE, ERBF, GFR, and urine contralaseral kidney. A similar pattern of responses was observed for urinary sodium excretion, although this was not statistically significant ($P=0.09$) (Fig. 2) Neither medullary interstitial infusion of saline nor NE ppeared to affect the rractional excretion of urine urine flow/GFR) or sodium (sodium clearance/GFR) (P always ≥ 0.3; data not shown).

Protocol 2. Acutely Positioned Catheters: Disposition and Distribution of Radiolabel During Intramedullary Infusion of $P H / N E$
Disposition of radiolabel. The amount of radioactivity leaving the infused (lett) kidney via renal venous ity leaving the infused (leat) kianey via renal venous ; via the renal artery, and the amount leaving the contralateral (right) kidney in its urine increased progressively during the $20-\mathrm{min}$ [${ }^{3} H \mathbb{N E}$ infusion. With the
exception of renal arterial delivery of radiolabel, all of exception of renal arterial delivery of radioiabel, all of these variables appeared to reach steady state during across the final 6 min of the [${ }^{3} \mathrm{H}$] NE infusion, $134.5 \pm$ cidney via the ranal vein Almost one-tenth $(12.9 \pm 16$

Fig. 1. Effecta of medullary interntitid infurion of norepinephrine (0 ,

 detormined by tranaitefime iltrabound flow probe; C日E, remalicorticel porfuation (later-Doppler flux dignili) MBF, renal medullary parfu-
 flownetry was not employtd to 2 rabbits), for average fovelo over ench 20-min experimental period P velves reppresent outcomsono of
 (degrees of fivedom $3,30-42$)
to rehicle and noreplopphrine
$\mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$) of this radiolabel reentered the infused kidney via the renal artery. A similar amount of radtoactivity probably entered the right kidney from its renal artery, because EREF io this preparation is similar for the two kidnays (see Fig. 2). During the final 6 min of the infusion, ihe amount of radiolabel excreted by the mately sixfold ereater then that excreted by the right kidney ($3.8 \pm 0.7 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)

Fig. 2. Effecto of medulary Interattial infution of norepinaphrine (0, 30,100, and $300 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}{ }^{-1}$, rizh $)$ or is vehice NaCl 164 mM remel blood fow ditarmined by [1'Clparo-aminobipporate clearance

 Tor nonperajieliom in reaponact of laft (Infused, solid bars) and righ
(
Intrarenal distribution of radiolabel. The concentration of radioactivity datermined from the colubilized didney-tissue, was ajgnificantly greater in the infueed compared with the contralateral kidney (P value of
infused vs, contralateral bidnay $=0.03$; Fis. $4 A$).

Because these data were clearly not normally distrib uted, as evidenced by the proportionality of the means and their attendant SEs, they were log transformed and subjected again to ANOVA Aralysis of the log transformed data showed significant heterogeneity of variance according to region in both the infused and contralateral kidney. Within the infused kidney, this can be attributed to the fact that the radiolabel was nore concentrated in the medula (495 ± 388 ngg $)$ and ng / g). The opposite appeared to be the case in the contralateral kidney in which radiolabel was more concentrated in the cortex ($49 \pm 29 \mathrm{ng} / \mathrm{g}$) than the medulla ($23 \pm 12 \mathrm{ng} / \mathrm{g}$) or papila ($25 \pm 10 \mathrm{ng} / \mathrm{g}$).
Consistent with the above observations, autoradio graphic analygis of the coronal kidney sections demonstrated that the levels of radioactivity in the cortex of he infused be nan those in the outer and papillo reapectively (Fiz $4, B$ and C)
Protocol 3. Chronically Positioned Outer and Protocol 3. Chronically Pos
Inner Medullary Catheters
Effects of outer and inner medullary infusion of NE The effects of outar medullary infusion of NE $(30,100$ and $300 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot$ min $^{-1}$) via a chronically implanted catheter were similar to those observed when acutely positioned catheters were used (Fig. 5, left). Thus MAF was dose dependently increased by $5 \pm 1,14 \pm 3$, and $27 \pm 7 \%$ of its resting level, respectively, whereas $14 \pm 8,16 \pm 8$, and $16 \pm 6 \%$ of its resting level respectively) and MBF (by $10 \pm 4,18 \pm 6$, and $24 \pm 8 \%$ of its resting level, respectively).
In contrast to outer medullary infusion, the dosedependent pressor responses to inner medullary infuion of NE (30,100 , and $300 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \min ^{-1}$) were lesser in magnitude (increasing by $3 \pm 3,6 \pm 3$, and $8 \pm$ 4% of its resting level, respectively), and no significen ffects on CBF or MBF were observed (Fig. 5 , right). E/fects of intravenous infusion of NE. Ihtravenous its reating level) and reduced $\mathrm{RBF}_{\text {probe }}$ (by $15 \pm 5 \%$ of its resting level) and CBF (by $14 \pm 7 \%$ of its resting level) but did not significantly alter MBF ($-4 \pm 4 \%$ change) (Fig. 6).

creted by contralatoral (right) lidney.

Time From Start of Norepinephrine infualon (min)

A
$P_{\text {side }}<0.001$

B

C

Fig. 4. A: distribution of radiolabeel in infused Qeft, solid bara) and contedaterth $100 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ Doropinephrine) vie 2 actuty positioned cation
 epinephtine equivalenta (og/y). Colurnnt and error bara represen
mearrio $\#$ SE for 9 rabbits. P valuet are patcomes of ANOVA tosting for

bel, expressed as dierinterations per minute on . B : levels of radiol

- between lovels of radioseth vity in cortax compared with other thres hidney repions. C: typical autoradiogram frow an infuged hidhey. C,
corter; $0 S$, outer stripe of outer medulla; M, medula; $;$, paptlla. See scrthons for deffittone of these revions.

Disposition of radiolabel during outer and inner medullary infusion of PHINE. The profile of renal infusion of $\left[{ }^{3} \mathrm{H}\right]$ NE was similar to that found using
acutely positioned catheters (protocol 2). That is, much of the infused radiolabel spilled over into the renal vein $39.1 \pm 25.2 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ during the final 6 min of the infusion), but only small amounts were excreted by the infused kidney ($3.7 \pm 2.0 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ during the inal 6 min of the infusion). Not surprisingly therefore, radiolabel reentering the infused kidney vis the renal artery $\left(9.6 \pm 0.4 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right.$ during the final 6 min of the infusion) and the amount excreted by the contralateral kidney ($1.1 \pm 0.1 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ during the Gnal 6 min of the infusion) (Fig. 7, left $)$.
In contrast, during inner medullary infusion of $\left[{ }^{3} H \mathbb{N E}\right.$, only small amounts of the radiolabel spilled over into the renal vein of the infused kidney (4.8 ± 2.7 ng kg min during the anali mina of the infusion), whereas most of the innused radiolabel was excreted by the funal 6 min of the infusion). Consistent with this, only small quantities of radiolabel reentered the infused kidney via the renal artery (1.6 ± 1.1 $\mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ during the final 6 min of the infusion) or were excreted by the right kidney (0.1 ± 0.1 $\mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ during the finai 6 min of the infusion) Fig. 7, right)
intrarenal distriturion of radiolabel. There was con siderable variation associated with the levels of radiols outer medullary infusion of radiolabel It wss cloan however, that much greater levels of the radiolabe remained in the kidney during outer medullary, com pared with inner medullary, infusion of ! ${ }^{3} \mathrm{HINE}$ (Fig 8A).
Autoradiographic analysis of the coronal kidney aec tions demonstrated that with outer meduliary infusion the levels of radioactivity in the cortez of the infuse lower than those in the outer strige, medulla, and papilla, respectively. During inner medulary is, tivion the levels of radioactivity in the corter of the infused kidney were $6.6 \pm 1.6-8.7 \pm 2.2$, and 8.2 ± 2.4 fold lower than those in the outer stripe, medullary, an papillary regions, respectively (Fig. B, B and C).

DISCUSSION

The primary objective of this atudy was to design and validate techniques for delivery of pharmacological agents into the renal medulary interstatium of rabbits 19, 23), and these have helped provida cansiderabl information regarding the role of the renal medulla and in particular the renal medullary microcirculation in the control of blood pressure (4-6). Our results suggest that in the rabbit, outer medullary interstitial infusion of pharmacological agenis, using either acutely or chronically implanted catheters, may be a useful method for targeting pharmacologisal agents to the renal me of NE into the outer medullary interstitium via delivery positioned or chronically implanted catheters dose relatedly reduced MBF more than it did CBF or RBF

 ods. Columar and mror bars represeat meags $\pm \mathrm{SE}$ of
each veritilee over final 10 -msin period when will variables

 outcome of $\&$ Praticioned ANOVA toesting for 2 doae dependeot affect of iníusiona oo ench hemodyamic
able. Recovery period was excluded for this analyzis.

contrast, intravenous infusion of NE reduced RBF ${ }_{\text {prole }}$ and CBF but not MBF. When $\left[{ }^{3} F\right]$ NE was infused into the outer medulla, the concentration of the radiolabel the infused kidney than in its cortex or in the contralat -eral kidney. We therefore conclude that outer medullary interstitial infusion of NE achieves high concentra tions of this agent at vascular sites important in the control of MBF, in the medulla, end/or in the inner cortex.
One of the strengths of the present study was the eatimation, during medullary interstitial infusion of $\left[{ }^{2} \mathrm{HINE}\right.$, of the amount of radiolabel spilled over from rgdiolabel that reentered the tidney vis the renal artery, and the amounts of radiolabel excreted by the infused and contralateral kidneys. Although much of the radiolabel in these biological fluids probably reflects metabolites of $\left[{ }^{4} \mathrm{H}\right] N E$, we argue that most small, uncharged molecules should be handled similaris by the kidney during medullary interstitial infusion In other words, the pattern of renal disposition of radiolabel during ${ }^{2} H$ INE infusion probably reflects that ex case of NE and other molecules that are rapidly metabo
lized in vive the proportion of the radiolabel that represents intact [JHNE must become less in propor therefore we should not expect complete agreement between the localization of the radiolabel and the effects of the NE infisions. Nevertheless, with this caveat in mind, we suggest that this analybis provide two important observations that ilfustrate the limita tions of the medullary interstitial infusion technique. Ftrst, although we were able to achieve much greate concentrations of radiolabel within the medulla com pared with the cortex during outer mecullary innusion (-40% using the chronically implasted catheter) spilled over into the reall vein and so recirculated systemically. This spillover is unlikely to greatly confound the interpretation of studies in which relatively unstable compounds (e.g., NE and angiotensin II) or compound that are metabolized in the pulmonary circulation (e.g. bradykinin and endothelin-1) are infused. Neverthe less, the dose-related pressor effect that we observec NE do spill over durins medullary interstitial infusion Furtinermore, in studies where more stable compounds

Intravenous Norepinephrine Infusion (ng kg ${ }^{-1} \mathrm{~min}^{-1}$) Fig. 8. Effects of intravedoue infusion of norepinaphrine
 17). Columna and error bars roprosent monns $\pm S E$ of each variabie
during final 10 min of each 20 -min Infugion period. Opair bart, during inal io min of eash io-mia nfubion period. Opar barn, infumiti. P Palues rupresent outcomene of partitloned ANOVA, testive wiether levele of each variable during fatravenoun nor

- are infuged, spillover into the systemic circulation will almost certainly confound the interpretation of the result. This appears to have been the case in a recent
study in which we compared the effects of outer rued a
 The pressor and bradycardic effects of this agent were indistinguighable by all three routes, as was the reductinterstitial infurion therefore appeare not to be unique property of NE but also occurs with other smail molecules.

Second, we observed a major effect of the site of the medullary interatitial infusion on the way in which the daney hanaled the infused ('HINE. Thus, in contrast the outer medulary infusion, where much of the infused radiolabel spilled over inta the aystemic circulation, during inner medullary infusion -60% of the The reason for this difference between the outer medul. ary and inner medullary infusions remains to be determined unequivocally but may relate in part to the presence of mechanisms for tubular secretion of NE 11) and to the relatively lower blood flow in the inner medula compared with the outer medulia (20). It is unlikely to reffect leakage of ${ }^{3} \mathrm{H} I N E$ due to damage to the papillary tissue from implantation of the catheter, because no such damage was observed in tire frozen the infugion site on the disposition of the infused radiolabel probably explains why the levels of radiogc.
 Time From Start of $\left.3^{3} \mathrm{H}\right\}$-Norespinephrina infission (min) Fig. 7. Disposition of radiolabel (expreased as \boldsymbol{r}^{2} Gimoreplnaphrioe equivalents; $\mathrm{ng}^{2} \mathrm{~kg}^{-1} \cdot \mathrm{mla}^{-1}$) during a 20 -min Infusion of $(\mathrm{H} \mathrm{H}$]horepi-

 of 8 (outor medullary infusion) or θ (inner medullary infuselon) sents of
 ANOVA, tasting what her locettion of catheter tip louter ve. Inrer

A

 meanits. P values are as for Pigit. Note different calee for difirerent routes. B: leveis of radiolabel, expreszed
as dpm/mmm, determined froin autoradiographic apalyas don/mm, doternined froun nutoradiographe analyvaluer arfers in Fig. 3 B. C: typical autoradiograies for
infuged xidneys.

C

ivity were considerabiy leas in the es id sidneys that had received an inner medullary infusion of NE com pared with those that had received the outer medullary infusion. This, in turn, may help explain why MBF was not reduced during inner medullary infusion of NE and why the pressor effect of NE was considerably less with inner medullary infusion than with outer medullary Some of the
Some of the present observations are at odds with imilar studies performed in lats. For example, in rats dulla reduces MBF, whereas similar infusions of vasodilator agents can increase MBF (4-6, 13, 14, 19). In contrast, in the present study we found that outer nedullary, but not inner medullary, infusion of NE educed MBF. There are a number of possible explana tons for this apparent species difference, the most obvious being the difference in dimnensions of the renal medula in these two specles. We hypo hesize therefore, reater hidney weight) agents infused into the inner medulla may easily diffuse the relatively short distance
to the outer medulla and inner cortex to influence vascular elements controlling MBF. It is also possibl that differences in medulary countercurrent mecha nisms bitween the two species might alter the renal handing of substances infused into the renal meduila Indeed, Cowley and colleagues (5) argued previously that substances infused into the inner medula ar axchanger in the vasa recta circulation. The reaults of the present study indicate that this is not the case in rabbits recei 'ng medullary interstitial infusions of I'HINE, in whych much of the infused rediolabel either spilled over into the systemic circulation (outer medul lary infusion) or was excreted in the urine of the infused kidney (innermedullary infusion). These appar ent differepces between rats and rabbita in the ability of the inner medulla to "trap" substances infused into the interstitium could reflect the differences in medul ample, the rabbit renal medulla his a "simple" struc ture, with relatively small vascular bundles containing only ascending and descending vasa recta. In the more
"complex" rat ranal medulla, larger vascular bundles cotain descending thin limbs of short lcops of Henle.
On the other hand, our results are in agreement with previous studies by Cowley and colleagues $(5,14)$ in beled amall medulary interstitial infusion of a raciola ${ }^{9} \mathrm{HINE}$ in the present study) the radiotahel writhin th infused kidney was mostly concentrated ta the medulla and papilla, with very little radiolabel in the cortex of Consistent with they or in the contralaterai kidney ial infusion of pharracological agents in rats (23) and rabbits (present study) can have effects quite distinct rom those of intravenous infusion of theae agents. In he case of NE , we found that in contrast to intravenous NE, which reduced CBF and RBF pross without aignificantly affecting MBF, outer medullary infusion of NE dose relatedly reduced MBF but had considerably maller effects on CBF and RBF
Although we cannot be certain of the precise vascular outer medullary infusion of NE, we can at least suggest some likely candidateg. Within the kidney, NE can mediate vasconstriction directly by acting on vascular α_{1} - and α_{2}-adrenoceptors (7,27) or indirectly by β-adre-noceptor-mediated stimulation of renin release (24). The fact that intravenous mfision of NE reduced CBF ut not MBF suggests that an indirect stimulus, via renin release, is unlikely. NE directly constricts outer cortical afferent and efferent arterioles in aitu (3) and is also possible that vescular sites in the inner medulla olay some role in mediating the reduced MBF, beceuse contractile elements have recently been identified in inner medullary descending vasa recta in rats (21). Ous anding that inner medulary infusion of NE did not arect MBF does not exclude this possibility, because nfusion of ${ }^{3} H$ IINE by this route resulted in relatively ow levels of accumulated radiolabel in the inner me dulla.
of the infused NE, because CBF and RBF of the infused NE, because CBF and RBF probe were reduced, and, at least in the case of the acutely posireductions in urine flow and aodium excretion during outer medullary infusion of NE could be completely accounted for by the reduced GFR, indicating no net cange in tubular adium and water reabsorption. This latter observation seems at odds with the notion that reduced MBF should enhance tubular salt and water ing impact of the pressor ffect of the medullary interstiing ME infusinn. Clearly further studies in which renal perfusion pressure is controlled are required to delineate the direct effects of medullary intergtitial NE infusioa on renal excretory function.
Perspectives
The results of the present study show that NE reduces MBF when infused acutely into the outer
medullary intergtitium and that this effect is depen dent on the selective distmbution of ans compand the present results and the extensive previous studies by Cowley and colleagues (4-6, 13, 14, 19, 23), that the general principle that medullary intergitial infusio provides a useful technique for targeting drugs to the renal medulla (and in particular the microvasculature) can be generalized to a wide range of small molecule pharmacological agents. However, the technique ap pears to be limited (at least in the rabivit) by the systemic spillover that occurs with outer medullary infusion and by excretion of the infused substance with inner medullary infusion. For this reason and because probably depends on their physicochemical properties appropriate controls (intravenous and renal arterial infusions) combined with studies of the renal handlin of the infused agent are probably necessary for correct interpretation of observations made with this method. Nevertheless, with these caveats in mind, the adapta tion of this technique for chronic stidies in rabbits, pecies well suited or invasive longitudinal experimen kation (see introduction), may in the future provide important infurmation regarding the long-term consequences of alterations in MBF. In support of this contention, we recently found that chronically im least 6 wh after implantation (unpublished observe tions).

The authors are grateflu 10 Emroa Coticill for ceehnical asals. cance.
Thes. Thase experimenta wore supporied by grants from the Nattonal Heart Foundstion of Australia (G 96M 4653), the National Health
and Medical Research Council of Australio (97713), and the Clive and Vera Ramaciotti Foundetions. Dr. Bergstrom was eupported by an for High Blood Pressure Research (Auatralia) and the Swedinh Kedical Resenrch Council (Grant 12680).
Addrans for reprint requesto end other correspondence: R. Evans,
 Recrived 2 November $1998 ;$ nccepted in final form 3 March 1999.

aEFERENCES

1. Ashworth-Preece, ML, E. Kritew, B. Jarrott, and A J. Lewrence. Functional GABA receptors on rat vagal efferont 2. Berrootrom, G., and R. G. Evens. Effecta of reoel medullary mectanisma to rabbita. Am. V_{1}. Physiol. 275 (Regutatory Integra. tive Comp. Phytid. 44): R76-R25, 1999. Chen, J., and J. T. Fleming. Juxtarodullery afferent aud Inl. 44: 684-691, 1993. Cowley, A. W., Jr. Role of the reand medula in volume and arterin pressure regulation. Am. J. Phyziol. 273 (Regulatory
Integrative Comp. Phytiol. 42): R1-Ris, 1997. Cowley, A. W., Jr, D. L. Mattson, S. Eu, and R. J. Roman The renal medulla and bypertension Hypertension 25: 663-673,
2. Cowiley, A. W., Jr. R J. Roman, F. J. Fenoy, and D. L. sure. J. Hypertens. 10, Suppl. 7: S187-5193, 1992.
3. Evens, R G., and W. P. Anderson. Fenal effecto of infution of pertpheral and central nierrous cysteman aradrenoceptort. Br. J. Penpheral and central nerrovs 51

 gional kidnay perfusion and renal axcretory functicn in ane Gvans, R. G., J. M. Haynes, and J. Eudbrook. Effect 5-HTreceppor and aredrenoceptor Ligaode on the hitemody anmic repposse to arute central hypora
nibbith. Br. J. Pharmacol. 109:37-47,1893.
 of bockade of nitric oride ynthawe end uapiotensin.envertions

4. Eapp, J. T. Eracley, and P. Byemdahl. Henal venoua outaowe and azinary excretion of nortepineplarina, epinephrine, and dopq-

5. Briz, Wi Stucturai organization of the repal medisise compara tive and tupttional sapects. Am. J. Phytion. 241 (Regulatory
 captopril delivary lowens blood pressure in gponteneoualy hyper-
6. La, $\mathrm{B}_{\mathrm{n}} \mathrm{R}, \mathrm{J}$. Rorase, D . L. Mattson, and A. W. Cowley, Jr.

 16. Majid, D. S. A, M Godtroy, and L. G. Naver. Presure natidiurestin and trand yedullary, blood flow In dogn. Hypertration
29: 1055-1057, 1997. 17. Melid, D. S. A. MI Goderey, and S. A Omoro. Praceure netruaresin and outoregiletion, of funser medullary blood fow in
cacint tidacy. Hypertersion $29: 210-215$, 9997 .
7. Malpas, B. C. and R G. Evans. Do difierent levels and pathernis ofrympathe isc activation all provoke renal vesoconstric-
tion?. Aution. Ners Syst. $30: 1-11,1996$.
 Anhibition on bloof preasuras. Am. J. Physiol. 266 (Heart Circe.
Physio. 35): H19is-H1928, 1994.

8. Pallona, I Lim C. R Roberthon, and R. L. Jomikon Rops
 Evidence for the presepee of smooth muscle alpha-actin within Integrotive 0 Onp. Physiol. 42): R1742-R1748, 1997 .

 V_{1} vasopreasin receptors results in oustained hypatiension.
Am. J. Physiol. 267 (Regulatory Jntegrative Comp. Physiol. 36): 4. R1217-R1220, 18944 .

Takagi is K Atarach 4 Matruako and T Sugimoto A biphazic effoct of noradranislline on resini releade frour rat jurta.
 T. Endocrinol. 132: 133-140, 1992.

Tomoda, P, R.A. Lew, A. I Smith, A. C. Maiden, and R. G.
Evans, Role of bradyhinin recoptors in the renal effiecta of inhifition of enviotontin convertiftors in the renal effecta of 24.11 emd 24.15 in conctionat rabbits. Br. JJ. Pharmepol. 118:
26.
7. Woteri 1990.

Yine and asetyicholize on outer medullary devaenof of porepineph

Effects of Renal Meduliary and Intravenous Norepinephrine on Renal Antinypertensive Function

Anabela G. Correia, Anna C. Madden, Göran Bergström, Roger G. Evans

Abstract-Incteasing renal aterial pressure activates at least 3 antihypertensive mechanisns: reduced renin release, pressure nariuresis, and release of a putative renal medullary depressor hormone. To examine the roie of reial medullary perfusion in chese mechanisms, we tested the effects of the infusion of norepinephrine, either infussion into he renal medullary interstitium or incravenous infusioa, on responses to increased renal arteral prassure in
 and medullary interstitial norepinephrine ($300 \mathrm{az} \cdot \mathrm{kg}^{-1} \cdot$ min $^{-1}$) similarly increased mean arerisi pressure (by 12% to 17\% of bueline) and reduced lotal renal blood flow (by 16% to 17\%) sad cortical perfusion (by 13% to 19\%), but only medultery norepinephirine redured medullary perfusion (by 28\%). When renal arterial pressyre was increased to $\sim 160 \mathrm{~mm}$ Hg, in steps of $\sim 65 \mathrm{~mm}$ Hg. urine outpur and sodium excretion increased exponentially, and plasma renin activity and mean arterial pressure fell. Medullary Interstital but not intravenous notepinephrine stenuated the increased diuresis and natriuresis and the depressor response to inctreased renal arterial pressure. This suggeste chat norepinephtrine can act within the renal medvila to Intibitithese renal antihypertensive mechanisms, pechaps by reducing medullary perfusion. These observations support the concept that medallary perfusion plays a critical role in the long-crem control of atcerial pressure by is imaence on pressure duresisinatiuresis mechanisms and also by affeting the relesce of the putative renal medullary depressor hormone. (Fingertension. 2000;35:965-970.)

Thas been hypolhesized that the level of medullary blood I has heen hypochesized that the level of medullary blood excrotion ($U_{s m}{ }^{*} V$) und, tnded, may be Dhe key initiating factor in the pressure natriuizesis response., In tum, the limpact of MBF on the pressure natriuretic mechanism provides an explanation for the effectis of chronic changes in MBF゙ on the long-tem conteol of atteral presture., Thus, is ra ch snic reductions in MBF shift the pressure natriuresis relation towzed higher pressures and leed to hypertension in notmolensive enimuls. Conversely, chrronic increases in MBF shitt the pressure attriuresis relation toward lower pressures and ameliorate hypertension in spontaneoously hypertensive rats.' From sudedes uting mextracoporeal circult in meestreIzed nabis.s.2 we resently obtalneet preliminary evidence ndicading that ini...ances on the reler., andor tcluons of the potbue to the mpeci of reril! presure It bis model 3 heior terl corturo of
 real treial peevis (PAP) is cutely theced is wh renal aterial piessue (axi) is acuely increased in whis reduced renal renin release), urine flow $\left(U_{y z 2}\right)$ and $U_{n 4}{ }^{+} V$
increase exponenially (pressure diuresisnatriursis), and emic mean artetial pressure (MAP) is reedeced. The emile mean aretial pressure (MAP) is redected. The deppressor response trincressed
nodependent of the reducefl activety of the renin-angiotensin syfiem, in view of the fact that it is litite nffected by the blockade of anglocensin-converting enzyme.' It also appears to be largely independent of the associatec diuresis and natuiuresis, in view of the for that hemoconcentradion is not observed.t. Thert-is, ho er, elear eviderse for a rote of the renal meduvila, lassmuch as the depressor response is abolished by chemical medullectomy.
We receatly found that his depressor response to increased RAP was blunted by meduliary intersatital infusion of [Phe? Ine, Orat' ${ }^{2}$ vasppressin (V_{r}-agonist), a treaument that selectively reduces $M B F$, indiceting a possible role of MBF in the release of this putative hormone. However, we were unable to determanne whether this sffect of medtliary intersdtial infusion of the V_{r}-2zonist was specificanly due to redutec MBF of to some other action of the egenen for example, this cerical bood possibility of non-flow-mediated extravascular ections on $\mathrm{V}_{\mathbf{1}}$

[^0]eceptors in the kidney or even extrarenal V, receptors. which might blunt the release and/or actions of the putative renal medullary depressor hommone.
The sim of the present sudy wis to mare directly test for role of the medulary mictocirculation in modulating the unibypertensive responses to increased RAP. To chis end, we made use of oue recent obsecration that medullary Itutersititial infusion of norepinephrine (NE) reduces MBF twice as much as $C B E$, whereas intervenous NE reduces only CBF,' Therefore, we compared the effects of medullary interstitial infusion and 10 incresed PAP. Thus using this experimertal crign, we could concol for the effect of NE exerted ouride design, we cral medulls in a way that was not possible in our he renal meddin in 2 way ψ, the concept that MBF plays a key role in the regulation of arterial pressure, not only through its impact on pressure natriuretic/diuretic tnechanisms but elso via its effects on the release of the putative renal meduilary depressor hormone.

Methods

Animals
Twenty-nines mase New Zecasad Whle zabbits, welghilag 2.50 is
 the experiment hey wers kifted with an fantavenous overlose of penteburfited sodium. All expettments were approved in advaches by
he Monash Usiversity Standiag Commiute on Ethics in Aaimat Experimensation.
Extracorporeal Clicult

 Nembutala, Boehringer-Ingetheim) artificially resplred mbbite os praviously desertbed. 4 Blood was withdrawn from the goxta 18 a ate of $90 \mathrm{~mL} / \mathrm{mln}$ by 4 roller purnp (Masterflex model $7521-45$. Burnant the ouher mo the vena cara. RAP was coascolled oy bjusting : Storiag retistor inoomported into the vena coval limb, while totai dow througt the cireuit remsined constant For example, increasing

 (t tvol) dextran 40 in 154 mm mol NaCl (Cenitran 40 . BSXXer Healhecre) comzitulng 2 IU/mL hepario (Monofizrln, Fisons Pharhe cirsuit ws esclabished; thus, hemntocit was reloilvely bw (ree Resulsa).
To remove the confounding influeace of che right kidney, which Would oherwise be perfisued at, syytempe atierial pressurts, a right eitrecoriony was performed in preparstion for estublishment of the aidnorporeal cirauil The keft uretier was then cennuluatel, and the kidney wis denervated and placed in a stable cup for positioning of lase-Doppler flow probes. For messurenent of MBF, a $26-$ gavee
needje-ype probe (DP4s, Moor Intruments Ldd) was advenced 10 man below the nid region of the loteral surface of the kidney wits
 probe (DP2b. Moor lastruments Lis) wes placed on the doran surfase of the kidney for measuremens of CBP. In 14 ntebits,
medultiary infusion catheteri were tcillely posicioned lotrailly,
 bat their tips lay 8.5 mm beloest the corticoul surfoee (at the junction

The extracomporeal eircuit was then establisted, end RAP was set

mis of 154 mmolh NaCl . An infusion of 10% (volvol) polygeline (Fienaced. Hoecths) conshinning $200 \mathrm{IU} / \mathrm{mL}$ soditum heparin and 0.3
 tmainained berween $36^{\circ} \mathrm{C}$ and $3 \mathrm{a}^{\circ} \mathrm{C}^{3}{ }^{3}$

Measurement

Systemic aterial preasure was measwer by cannezuing un ear arter catheter to a
a preassure trasaduter (Cobed. Hest race (HR) was mesured in a side-arm eatheeter, 3 man proximal to the top of th ensaula laserted frow tie renal antery. Blood ficw through the rea limb was messured whic an in-line ultrusonic fow probe (rppe $4 N$ Transonsic Systems Inc). The laser-Doppler flow probes were co These signats wero maplinec. recorded, and digitized, as paviounly described, to provide 60 -second meams expressed as followa systemic MAP, mm Hg. HR, bpm; RAP, mm Hg: RBF, mL/min; an CBF and MBF , pertision unlo (enditar Ia $\operatorname{mRXP}_{\text {PRA }}$ and
odium werg plasma and urinary toncenteradons of ['H]inulin and
 Was used to estimate glomseniar iftration are (GFR), At the completion of eache experiment the eett kidney was temoved an
desiceated, med its dry weight was deternined. All values of RBF
 kidney weigbe (expiessed is $\mathrm{g}[$ (nean $1.77 \pm 0.03 \mathrm{~g}]$).
Experimental Protocols
General
Ench experimental protocol consisted of 2 phases. Phase 1 , which either outer 60 -minute equillibetioc period, rested the elferss of
 second phase of each protegeol favolved testing the effert of thes πI were unable to relisbly to inocresesed RAP. For lesehnical treason
 of the experiment
Protocol I; Effects of Outer Medullary Interstitial NE

 consseukive 20 -minuta periods sad, onece set, was not ceadjustod

 of esch 15 -minute clearance period. and Esinples (1 me) for deternination of PRA were collected st the milypoin of the first third ond fifth clearance periods. Blood volutes forts syitzeed by in equivalent volume of ios polygeline solucion (hernacted). AI
end of the fith clearance perlod, RAP wes set to ~ 65 mem Hz for further 20 minsites.
Protocel 2: Effacts of Intravenous NE
Thals presecol was identical to proweol 1 . excere : : $\mathrm{EE}\left(300 \mathrm{ng} \cdot \mathrm{kg}^{-1}\right.$ idminiscered intrevenously via an ear vein cesteler.

Statistical Analysis

Phase I
To test whether eath of the NE or vebiete treatments aliered bascline
 were compared with the levels duting tis 0 -miaule contul period by pried ices.

Phate II
Thess data were sinalyzed by ANOVA addapted for repested messurtes with the use of SYSTAT solware (veraison S.OS. To protect ag aint the increased tink of comparision-wise type I erfor resulding from
 aleced each variable. : 1 .wny analyest wa first performed on all
 $N E)$ was then determined from 2 .way unalytes for each route

Resuits

Effects of Renal Medullary Interstitial NE on Effects of Renal Medullary Interstitia
Systemic and Renal Hertodynaraics
Systemic and Renal Herrodynaraics
Renal medullary interstitial lnfusion of NE
N00 Renal medulary interstitial infusion of NE ($300 \mathrm{ng} \cdot \mathrm{kg}^{-1}$.
min \mathbf{n}^{-1}) was accompanied by progressive hemodynamic changes that reached steady state by 10 minutes after the infusion began. The changes involved increases in RAP foy $19 \pm 4 \%$ of its baseline level during the period 10 to 20 minutes after beginni, g the infusion) and MAP (by $17 \pm 4 \%$) and reductions in RBF ($16 \pm 3 \%$), CBF ($13 \pm 2 \%$), and MBF ($28 \pm 9 \%$) but no significant change in $K R$ ($1 \pm 2 \%$ change). Medullary interstital infusion of the vehicle had no significant effect on any of these variables.
Effect of Intravenous NE on Systemic and Renal Hemodynamics
Intravenous NE ($300 \mathrm{ng} \cdot \mathrm{kg}^{-1} \cdot$ min $^{-1}$) was also accompanied CBF by 19 ± 3) and by incretees in MAP (12449) and RAP ($4+18$) הiowever, unitike renal meduliary NE in risuenous NE had no signitieant effect on MBF ($1 \pm 8 \%$ change) Intravenous infusion of the vehicle was accompanied by small variations is MAP ($4 \pm 1 \%$), HR ($1 \pm 1 \%$), and RBF ($-4 \pm 2 \%$) but no signifieant changes in RAP, CBF, or MBF.
Effects of Increasing RAP in
Vehicie-Treated R=bblts
Renal Hemodynamic Varlables
As shown in Figure 1, as RAP was increased from 66 ± 1 to $15 B \pm 3 \mathrm{ma} H \mathrm{H}$, there were progressive inctrasess in RBF (from 13土i to $29 \pm 2 \mathrm{~mL} \cdot \mathrm{~min}^{-1} \cdot \mathrm{~g}^{-1}$) and GFR (from 0.8 ± 0.1 to $\left.3.0 \pm 0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-1} \cdot \mathrm{~g}^{-1}\right)\left(P_{x w}<0.001\right)$. Renal vascular resistance and filtration fration responded biphasically. As RAP was increased from ~ 65 to -110 mmHg , renal vascular tesistance incteased from 5.9 ± 0.8 to $7.7 \pm 2.3 \mathrm{~mm} \mathrm{Hg} \cdot \mathrm{mL}^{-1} \cdot \mathrm{~min} \cdot \mathrm{~g}$ before decreasing to $6.9 \pm 0.6 \mathrm{~mm} \mathrm{Hg} \cdot \mathrm{mL}^{-1} \cdot \min \cdot \mathrm{~g}$ when RAP was increased to $-160 \mathrm{~mm} \mathrm{Hg}\left(P_{w}=0.05\right.$). Filtration fracticn also responded in a similar manner, increasing from $3.5 \pm 1.1 \%$ to $9.3 \pm 1.9 \%$ as RAF was increased from \sim es to $\sim 110 \mathrm{~mm} \mathrm{Hg}$ before decreasing to $8.0 \pm 1.4 \%$ when RAP was increased to $\sim 160 \mathrm{~mm} \mathrm{Hg}\left(P_{\text {me }}=0.001\right)$

Ranal Excretory Vartables

As shown in Figure 2, as RAF' was increased from ~6S to $\approx 160 \mathrm{~mm} \mathrm{Hg}$, there were progressive increases in $\mathrm{U}_{\text {vat }}$ (from 0.09 ± 0.02 to $1.24 \pm 0.09 \mathrm{~mL} \cdot \mathrm{~min}^{-1} \cdot \mathrm{~g}^{-1}$) and $\mathrm{U}_{\mathrm{m}} \cdot \mathrm{V}$ (from 12 ± 2 to $161 \pm 13 \mu \mathrm{~mol} \cdot \mathrm{~min}^{-1} \cdot \mathrm{~g}^{-1}$) and in the fractional

 the top rifht conser of asch Panel are tha literaction torms,

excretions of urine (from $12 \pm 1 \%$ to $43 \pm 3 \%$) and sodium (from $11 \pm 2 \%$ to $40 \pm 3 \%$) ($P_{\text {ev }}<0.001$).
Systemic Hemodynamic Vartables
As shown in Figure 3, as RAP was increased from ~65 to -160 mm Hg. MAP fell progressively from 78 ± 3 to $50 \pm 5 \mathrm{~mm}$ Hg and at an increasing rate of 0.04 ± 0.06 to $0.96 \pm 0.15 \mathrm{~mm} \mathrm{Hghoin}\left(P_{u *}<0.001\right)$. Hematocit decreased gradually from $221 \pm 0.9 \%$ to $21.6 \pm 0.9 \%$ as RAP was increased form ~ 65 to $\sim 110 \mathrm{~mm} \mathrm{Hg}$ and fricresed chereafler to $22.5 \pm 0.9 \%$ when RAP was increased to $\because 160 \mathrm{~mm} \mathrm{Hg}$ (Puwn 0.04). HR tended to decrease (from 266 ± 5 to 253 ± 8 pm) as RAP increased toward $\sim 160 \mathrm{~mm} \mathrm{~Hz}\left(P_{w}=0.05\right)$. Plasma Renin Activty
PRA progressively fell as RAP was increased, averaging
$14 \pm 3,12 \pm 2$, and $7 \pm 3 \mathrm{ng}$ engiotensin $I \cdot$ mat $14 \pm 3,12 \pm 2$, and $7 \pm 3 \mathrm{ng}$ engiotensin $I \cdot \mathrm{~mL}^{-1} \cdot \mathrm{~h}^{-1}$ when RAP was $\sim 65, ~ \$ 10$, and 160 mm Hg, respectively
$\left(P_{\text {enem }}=0.04\right)$ (PM $_{\text {M }}=0.04$).
Effects of Medullary Intersitital and Intravenous NE on Responses to Increased RAP attenuated by

 thereased dAP. Symbola,
dependent increases fin $\mathrm{U}_{\mathrm{ver}}$ and $\mathrm{U}_{\mathrm{m}}{ }^{+} \mathrm{V}$ (Figure 2) and dectreases in MAP (Figure 3) were significantly atenuated, but no significant effect on PRA was observed. Meduliary intersitial NE also signiticantly altered the response of hemacorit to increased RAP, attenuating the increase in hematocrit as RAP was incteased above $\sim 110 \mathrm{~mm} \mathrm{Hg}$. Intraverous intusion of NE did not significantly influence any of the responses to incereased RAP (Figures 1 to 3).
Effects of Reseting RAP to $\boldsymbol{= 6 5} \mathrm{mm} \mathbf{~ H g}$ When RAP was reset to $m 65 \mathrm{~mm} \mathrm{Hg}$, RBF retumed to levels similar to thoss observed during the inital period trost lefewand point in Figure 1). in vehlele-trented rabbits ($-3 \pm 4 \%$ different from its previous level during the period (15 to 20 minutes Ifer RAP wis feset to .065 mm Hg) and In rabbits treated with medullary interstial NE ($-13 \pm 4 \%$) and intravenous NE ($39 \pm 27 \%$). MAP rose when RAP was reset to $\sim 65 \mathrm{~mm} \mathrm{Hg}$ but did not completely recover te ist previous tevel in velicie-treated abbits ($-28 \pm 3 \%$) and in tabbis treater with outer metallary NE ($-14 \pm 6 \%$) and Intravenous NE ($-30 \div 10 \%$).

Discussion
We have recently shown in enestheized rabbts that medullary interstitial infusion of $N E$ ($300 \mathrm{ng} \cdot \mathrm{kg}_{8}$ min ${ }^{-1}$) reduces MBF more than CBF and that intravenous infusion of the

Itgure 3. Eflecta of ovter madultary interstual and Iftravenous hduckon of NE on arytermichermotynumle ropponses to progres.

same dose reduces CBF only. 5 In the present study, we used these findings as a tool to examine the roie of MBF in modulating the reral antihypertensive responses to increased RAP. Our major finising was that meduliary intersitidel NE, but not intrivenous NE , attenuated both the presure diurssidnatiuresis response and the depressor response to increased RAP. These observitions provide further support for he hypothesis that MBF plays in importint role in the control of arterial pressure, both throughi its involvement in the mechanisms mediatigs prenure dioresivnaniuresis and in me mechanisms mediaing the reiease of the putstive ranal medullary depreasor hormione.
Consistent with our previoue observations in a converdonal anesthatized rabbit prepartion's in the extricoporeal cirruit model, infusion of NE incressed MAP und reduced RBF and CDF similarly by the 2 routes. This indicates agnuicint systetuc spiliover of NE infused into the renal nedulie and, probably aiso. spillover into the renal cortex, consistent with our previous extensive charaterization of this method.' However, our resuls also indicate that these rena cortica! end extrarenal effects of NE can be effectively controlled for by Intravencus infusion. The striking difference between the effects of NE infused by the 2 routes war that meduilary interstitial infusion of NE reduced MBF by $m 30 \%$, hereas intravenous NE hud litule or no effect on MBF. Thus, our present experimental design provided a good paradigm for examining the effects of reduced MBF on the renal antihypertensive responses to increased RAP. We can also be airly confident that these tafusions provided relaively contant renal hemodynamic effects, inastuuch as in all experi mental groups. RBF levels were similar at the end of the
experiment, when RAP was reset to $\sim 65 \mathrm{~mm} \mathrm{Hg}$, compared with RAF ievets during the intital period at this level of RAP. Thus, our finding (ie, meduilary intersticial, but not incr:venous, infusion of Ne attenuates bou the pressure diuresis' natriurests response and the depressor response to increased RAP) provides evidence for a role of the reaal madullia In both these rend antihypertensive mechanisms. Because intravenous infusion of NE did not significantiy sflect these responses, we can confidently exclude roles for NE mediated outside the kidney that are related, for example, to its sysumic pressor enech, modulacion of hormone relese to exrave sha, orlullary depessor porone we cen also probably exclude concributions mediated solely in the cortical microvaceulaure, inasmuch as RBS and CBF were similariy reduced by medullary trterstitiat and intravenous infurions of NE. Roles for the renin-angiotensin system also appear untikely in view of the fact that levels of PRA tn rabbits recelving medutiary interstitial infusions of NE were indistinguishable from those in vehicle-rreated control rabbits.

Pressure Natriuresis

Medullary interatdal, but not intravenoiss, NE attenuated the diuretic and natriuretic responses to increased RAP. This effect likely also accounts for the statistically signilicant infuence of medullary interstitial NE on hematocric responses to Increased RAP, because the reinsed diuresig/ of RAP. Wubular elementa probably play a sey inle in mediating the atrenuated diuresis/natriuresis, because medullacy incertidial NE did not significantly affece the relation between OFR and RAP. Our results indicate a role of the renal medulla in mediating the effects of medullary interstitial infustion of NE on the pressure diuresis/natriuresis retponse, but our present experiment does not deत̆initively demonstrate that these effects were mediated by the effect of NE on MPF. In particular, a direct effect of NE on rubular function in the medulla cannot be discounted, because tubular adrenoceptors ue cerainly known to jirectly influence fluid and sodium resbsomption in the kldney. ${ }^{\text {.n. }}$
On the other hand, our present results are consistent with the large body of work by Cowley' showing that treatments that alter MBF, but not those that influence CBF alone. profoundly influence the gressure diuresisinatriuresis response. Cowiey has argued that the chief initiating factor in the pressure narriuresis response is increased MBF and that this leads to a rise in renal interstitial hydrostatic pressure. which in turn inaibis tubuiar socluan reabsoiption. How. ever, there is sall considerable confroversy tegaring this hypolnesis, so is turder crical evaluedon is importank. In. used an experimental model with to exinacc. oreal circuit that differs trom conventionsl modeis for st. \therefore ing pressure natiurests, in which RAP is atered by ndius: ie clames on the worte or ronal artery 9,10 Using this experimental model we have previously shown that another treament that reduces MBE blockade of nitric oxide synthesis with No-nitro-1trindne, also attenuates tie pressure matriuesis response 211 Importanty, our experimental model allows RAP to be set at
levels considerably greàsr than MAP, so that the pressure natriuresis relation can be investigated over a wide range of RAP. The renal vascular responses to inereased RAP in the extracorporeal citcuit model differ from those in conventional preparations. ${ }^{10}$ in that RBF increases considerzbly as RAP is increased, However, as has been argued previously, attoregulation in this model is seen as an increase in renal vesculap reslssance in response to increased RAP, but its effect on RBF is limited by the fixed rate of the pump and high resistance of the vena caval limb.?
Putative Renal Medullary Depressor Hormone As we have observed previously. 2 increased RAP was secompanied by pressure-dependent reductions in MAP. This response has been extensively chasacterized previously and renin-angiotensin syatem' or increase in U_{voc} and $U_{\text {se }}{ }^{+} v .26$ On the basis of the finding that the depressor response is abolistied by chemical medullectomy,4 we have proposed that this response to increased RAP is mediated chiefly by release of ar at-yel-to-be-characterized depressor hornone fivm the renal medulia ${ }^{2}$ It may be that this putative hommone is Identical, or similar, to "medullipin," which has been isolated but not yet fully chemically characterized. ${ }^{13}$
Previous studizes have strown that some, ile,ta bat not all, stimuli stat reduce MBFII.14 attenuate the depressor response to increased RAP. In the present study, we found that the depressos response to increased RAP was greatly blunted by Theduliary Interstitial, but not inaravenous, infusion of NE. Thus, our ressilts provide the most direet evidence yet
obtained, suggesting that the level of MBF influences the releaso of the putative renal medullary depressor homone. releaso of the putative renal medulary depressor hormone.
Nevertheless, we cannor as yet completely exclude the possibility that some other action of NE in the renal medulla, puch as a direct action on renal medullary interstitial cells, the proposed sle of storage and release of medullipin, ${ }^{12}$ inhibits the release of the putative renal medullary depressor hormone. However, given our previous finding thas medulary interstitial infusion of $\left[\mathrm{Phe},{ }^{3} \mathrm{Tle},{ }^{3} \mathrm{O}^{2}\right.$) vasopressin reduces MBF and attenuates the depressor response to increased RAP., ' role for the medullary microvasculature seems worthy of turther investigation. To this end, future stadies should replicate this experimental paracigm with ocher pharmacological agents that might selectively decrease and increase MBF.

Concluslons.

Our findings indicate that NE can aft within the renal mefulia to atremuate the pressure natriutesis response and the release of the pulative renal mredultiry depressor hormore. At present, we carnot be certuin that this effect of NE is mediated by the evidence the his is so Any vasoactive sigen is tikely to have extravascular effects that mishr influence the entibyertensive responses to increased RAP. Therefore the only way we can dissect out the relative moles of effectes on MGF from owher sections mediased within the renal medult is to examine the
 with extracoroneal cirruit models such as that wed in the
present stuxdy is that only meements that alter MBF infuence these renal medullary antihypertensive mechanisms. $21.164,13$ Therefore, it seems pizely that the meduliary microvasculatare plays a key tole in the reechurisms controuifig blood pressure and water but also by influencing the release of the putative rena meatullary depressor hormone.

Acknowledgments
This wudy was supported by grans trom the Natonal Heut
 Council of Austrlia (977) [43). DT Bergbeens's work was supported by the Swerist Medical Research Council (grant No. 12580) und the Sw sdish National Heart and Liung Foundation. We ate
Kartian Worthy for pafoming the PRA determinadions.

Referénces
 terulution Am \mathcal{P} Pyriol. $19572727:$ R1-R15.
 Pruytiot 198s; 275:R76-Rss.
Chisey D. Wosed RL Anderion up. Metiaton of ise tro 1
 Chriby U, Woods RL, courneye CA, Dentoo KM. Aodersoa WP

5. Hpprrannion 1s97:18:323-333.

6. Ludbrook 1, Repected maccuuremennta and auplupila comparisoas in exs diovarsular Reserch. Cordiovare Res. 1996;38:303-311.
 neurnl control of renal ubuluer sodium rebhorpulan io the rabbic 1 Phyytol 1. Gettal M. Modelntion of veroperssic anciditrecic ution by renal

 1997:29:210-211.

 1995:2:94-101.

 Phamacol PhyrioL 1996;23:777-:is.
 KR, Muxcy X. Praifestion of elss: ! Tredolitipiss from Une veaco

 1995:155:103-191.
 and haempoyamenic effects of niricic aride bockade io a Wistar issey on

6. Thamas C. Anderion WP, Wods RLL Nitic acide fatibition does not

RESPONSES OF REGIONAL KIDNEY PERFUSION TO VASOCONSTRICTORS TW ANAESTHETIZED RABBITS: DEPENDENCE ON AGENT AND RENAL ARTERY PRESSURE

Roger G Evans, Anabela G Correia, Simon \mathbf{R} Weekes and Anna C Madden Departnent of Physiology, Monash Universiry, Clayton. Victoria, Australia

SUMMARY

1. We terted the eflects at intravenous inturtoas of angiotensin (A ngII; 300 ngkg per mins) and the vasopressin V_{1} recepto equint (Phe, me , Orn J-vasopressia ($30 \mathrm{ng} / \mathrm{kg}$ per min) on haesthetioed rabbits to which renal artery prestre (Rapicen be tet independenty of systemic seean arterial oressure. To test whether the level of RAP oun infuence the renal yascular
 when RAP was Intelally set at approximately 65 mmHg with those when RAP was ret at approximately 130 mmHg .
2. Whan RAP was Inltolly set st spproximately $65 \mathrm{mmHg}_{\text {; }}$: 20 min infusion of Angli hicerased RAP (13\%) and reduced renal blood fow (PBFF_{7} 50\%) and cortical periusion (CBE; 439). Mt dullary parfuslon (MBP) translently increased during tha first 10 min of infusion, but was not algnificantly different froen control tevels during the ftomel 5 min of Infustion.
3. When RAP was Intially wet at approximately $65 \mathrm{nmm} \mathrm{II}_{\mathrm{g}}$ 20 alin iafusion of (Phe', $11{ }^{\circ}$, Ora ${ }^{\top}$) vasoprassin increased Cut CBF was reduced by only 15%. In contrani, when PAP

 RBF (33%). In these experiments, MBF was reduced by 38%, but CBF increauted by 6%.
4. Our experiments thow that Angll preterentially reduces CBF, whlle (Phe', ile?, Orn']-vasopressin pretereatially reduces MBE. The renai veiculer responsea to $\left[\mathrm{Phe}^{1},\left[1 e^{3}, \mathrm{Orn}^{4}\right]\right.$ vasopressin appear to be profoundly affected by the level of RAP, becouse incereasing RAP from approximately 65 to pproximately 130 mmH e transforms its corticel wistocon strictor effect Into cortical vasodilatation whille leaving the response of the medullary miecovasculatare relatively unchanged. Whether renal vascular responser to other vesoactive agents (e.g. Angए) are slmallarly aftected by the level of RAP reatains to be determined.
Key words: angiotensin H, laser Doppler fowmeiry, medullipin, [Phe $\left.{ }^{2}, 1 e^{2}, O_{1}^{2}{ }^{2}\right]$-vasopressln, renal blood flow, renal cortex, renal medulla.
[^1]
INTRODUCTION

There is now considerible evidence chat the renal vasectarure does
 intravenous infurion of angiocenain (Ang)II in zonaeshecized rats and talbits reduces cortical perfusion (CBF), but eidher insreases'-3 or faik to reduce ${ }^{\text {th }}$ periusion of the medutita or papilla. In contrash intraverous infusion of arginine vasopressin' or the V_{1} receppor agonist (Phe ${ }^{2}$,Ie ${ }^{3}$.Orn']-vasopressin ${ }^{2}$ can reduce medullary these renal vasculas responses to vasoconstrictor agens may have imporaat imptications for the impaet of cirtulating and locally acting hormones on the contiol of Diood pressure, especinlly beeause the medultary miecrocirevalation appears to have an imporiane eftect on the renal handling of talk and waler.'
However, one intrepretaional problem with some of these experimenss concerns the confounding influeace of changes in systemic baemedyusules. particularly arterial pros-wre, that oceus during intravenous infusion of vasosctive agents. Tim avoid rici: in Uhe present stady, we used an extracopesial circuit model in conroulied independently of systrmic arreriel rresure \rightarrow ellowed us to examine the renal viscelier effocis of A infil nad [Phe? He^{3}, Ora] - vasoperssin in itolation from their eficits of the. extrarenal circulation. We also hypothesized that tw level oi RAP may affect the renal vasertar response to yasconastictor agent, possibly by alering the irezerenal hormonal milieu. To teat his hypothesis, we comparea the rentl haemodynamic effecis of [Phe , Ife', Orn']-veropressin when RAP was selat the lowisi and of the range found in nom mensive tonscious rabbits (epproximately $65 \mathrm{mmHig}^{14}$) with its effiects when RAP was doubled (approximately $(30 \mathrm{mmHg})$.

METHODS

Antmals

Twenty New Zeoband white crbbiss (2.49-3.65kg: mean 2.94 kg) of
 Rubbits wert allowed food and water od fibimun uabil dee experimental procedures beyan. At dre conclusiox of the experiment mbbitr were killed ia sccordnare with the Austrition Code of Pructice for de Cere ond USe of Antmals for Scientific Puppes wode of Pructice for de Cere and Use of Antmals for Scientific Pupposes und werc appraved in adyance by the Monash University Depuranent of Physiofogycentryt Animat Services
Animul Emics Commitue. The experimens tirewit by which RAP cun be adjusied whoul dirextly alke:ing systemic

 diftred from that to vehicle. MAP, meza

Experimental preparations
Thex have been deseribed in demil previousty，＊11 so will only be described briefly hera Gemerd＇anectunesia was induced by i．v．adminituration of Pentoburtiosse sectivn（70－150 mg plus $30-50 \mathrm{mg} / \mathrm{m}$ ：Nembutal：Boerminger Ingelkeim，\uparrow rarmon．NSW，Ausralita）and wa immedizely follewed by endoricitied intubation and arificinill reppintun．During surgery，a balanced
butcered salt mototion（Hartmann＇ss Buxer Healtheare，Toongabbie，NSW，
 stipping all vistiole aerves sumrounding the renol atery and vein and it was then plased in a slable cup for he measurement of CBF and MBF by laser－
 wes then esublished to withdraw blood（ot a constrat nife of 90 midmin）

Time from start on［rhe ${ }^{2}$ ，$f 1 e^{3}$ ，Orn ${ }^{8}$ ］－vasopressin infusion（min）

Fom the dixal aorta by measns of a roller pump and retum it to the animal Woth through the renal ariey and the yena erva．A Siarling resiitor of blood through tis limb and， 20 ，incressea in prexuruce and flow in the tenal iimb．The circevit was primed wihh 10% wiv dextren 40 in 154 mmoln $\mathrm{N}_{2} \mathrm{Cl}$

 puce of the tierulit wes 24 mL
Imanefliarely following exazatishtment of the extrscorporeal eicrevit，RAP wase and meirtained at $60-70 \mathrm{manHz}$ and dee infrasion of Hartmann＇s belu－
 heparia．

Recording of haemodyramic veriables

Anetial presure was measured by comnecting the ear arary catheter to a
 presures wos meesured in a side－erm calteter． 3 mm proximad to the tip of the cansulute inered into the renal areery，we dexcribed previously，＂glood how drougt the ronal lint was rectyred with in in intine utrasionic fow frobe（type AN，Transonic Systemt Inc Ithice，NY，USA）connected to prober were connected to e laser－Doppler fowmeter（DRT4；Moor Instrunems Li，Millwey．Devon．Engiund）．These signols were suplifies Ind recorted it described previousity to provide 601 means of yyzemic
 medullis At the completion of eacch experiment，the elen kididiny wan femoved und desicecued so hat its dry weigftx could be delermined．Therefors．RBF values ure expressed per of dry didncy wrighe

Experimental protocols

At leant 60 min afier establiyhrient of the extrecoporeal eirevit end once systernic and renal hoemodynamic veriables had sabilized，RAP was sel to Etiher approximancty 65 mmHzg （croups $(1-3)$ or 130 mmHE （eroup 4）． reached a retaivecty constemet tevel，i，v，infiuxions of either saline vethicle

Statistical analysis

 andyrin of veriance to 2 zes whether the reaponse to Angild differed to th wes dependers on whe level of RAP（Fis，2）．To protect arainal the incereseded

 whether hae nody mamic wariubles differnd the finat 5 min of euctit 20 min Infuslon．

RESULT

Veticle
Levels of all variables remained relatively stable during infusion of the saline vehicle（Fig．I：Table 1）

Anglotensin 11

Intravenous infusion of Angll was accompanled by changes systemic and renud boemodynamic variables，which，wills th infusion（Fis，1）．During the equal 5 mitm by the final S min of the increased 43 ± 7 and $13 \pm 2 \%$ ，respectively，companad with the 10 min control period，while RBF and CBF were reducel by 50 ± 0 and $43 \pm 12 \%$ ，respectively（Table 1）．In contrast the response of MBF wos more complex and variuble．During the firs！ 10 min of infusion，MBF was increased in at five robbits，averraing $82 \pm 33 \%$ more than during the control period．In the final 10 rain of Infusion MBF returned to control levels in two of five rabbits，but remained峪 control leveis in the other liree rabitu．The CMBC was no gnicianaly afreced in eliker the cortex or medula，averagin $3 \pm 3 \mathrm{~h}$ and $12 \pm 7 \%$ greater，respectively，during the final 5 min of infusion compared with control levels．

Phe ${ }^{2}$ ， $11 e^{3}$ ，Orn ${ }^{\text {d }}$－Vasopressln

When RAP was initially set at approximately 65 mmHg ，iv afusion of（Phe？tice．Om ）－vasopressin wat accompanied by hacreased MAP（by $30 \pm 3 \%$ of control levels during the final 5 min of tafusion）and RAP（9さ2\％：Fig．2；Table 1）．Renel blood fow was reduced by 21\％7\％．The reduction in MOF（ 57 ± 108 ）was considerably greacer than that of CBF（15士4\％）．The CMBC was 2 significantly affected in either the cortex or medulla，averag in 2 1 and 12 ± 8 ，less，respectively，during the final 5 min of When RAP wat itially set at app

 ncreased（by 13 ± 2 and $6 \pm 2 \%$ ，respectivcly），but MBF was redured $38 \pm 11 \%$ ）．The CMBC was no significunily affected in either the cortex or medulla，averaping 3 ± 2 and $0 \pm 5 \%$ less，respectively， during the final 5 min of infurion compared with control levelt．

Agent	Restiag RAP （ $\mathrm{m} / \mathrm{mHg}$ ）	$\begin{gathered} \text { MAP } \\ \text { (\% change) } \end{gathered}$	$\underset{\substack{H R \\ \text { (\% change) }}}{\text { Hent }}$	$\begin{gathered} \text { RAP } \\ \text { (※ change) } \end{gathered}$	$\begin{gathered} \text { RaF } \\ \text { (\% change) } \end{gathered}$	$\begin{gathered} \text { CBF } \\ \text { (} \$ \text { thange) } \end{gathered}$	$\begin{gathered} \text { MBF } \\ \text { (} \% \text { changa) } \end{gathered}$
Saline velicle（ $50 \mu \sim / \mathrm{ctg}_{\text {per mind }}$	65	1－5	0 ± 2	2 ± 4	－353	－954	$-\mathrm{t}=1 \mathrm{t}$
Aoglil（300 nefks per min）	65	$43=71$	－1＊2	13土2 ${ }^{\text {＋}}$	$-50 \pm 6^{+}$	－43＊12＊	100＝65
	65	30＊s ${ }^{\text {＋}}$	－22＊5	$9 \pm 2^{*}$	－21＊7＊	－1524＊	$-59 \pm 10^{\prime}$
	130	$\rightarrow-17$	$-18 \pm 4^{*}$	－7\＃1	$13 \pm 2^{\prime}$	6 $2^{\text {－}}$	$-38 \pm 11{ }^{\text {－}}$
Yelues are the meas \pm SEM of percentage cha eontrol period（ $n=5$ ）．The tevel to which rena） comparing hevels before and during（ $15-20 \mathrm{~min}$ ） RAP，read enter；prexturci；MAP，mear arteria perfurion anis：Anglt anziotentin it．	s during the pe riery pressure ench infusion． ressure：HR，	iod 15－20 was initially art tate：f ：	Afer comm is shown nal blood	$\begin{gathered} \text { ceing each io } \\ \text { n the secan } \end{gathered}$	sion from the olumin．＂${ }^{\circ} \ll$ al perfuasion：	roge level ＇$P<0.01$ F，medutla	the 10 min prired i－mesi

DISCUSSION

The preseat findings with regard to the efficts of iv. infurion of Angll and [Phe ${ }^{2}$ tle', Onld]-vasopressin in the exracorporeal circuit model wete simular to those we have obsarved previoustly in anaesthetized and conscious intaet rabbits...Thus, with RAP Mer AngI 1300 ogikg per min) reduced CBy but cot MEF indeed MPE transiently incressed in all five cabbius sandied, sathough the magniude of th's response was highly varfable. In concrest, under the same conditions, the vasopressin V, receptor agonist (Phe $, 70^{3}, \mathrm{Om} \mathrm{m}^{1}$-vasopressin ($30 \mathrm{ng} / \mathrm{kg}$ per min) reduced MBP epproximatety four-fold more than it did CBF. Because nope of these reatmencs significandy affected CMBC in either the cortex or medalla, we can be confident that the chenges in CBF and MBP observed resulted predominantly from changes in red blood rell velociry (rather then concenartion), secondary to alterations in vascular tone.
In our prevlous study io intact ansesthetizad rabbis, ${ }^{2}$ i.v. infusions of these doses of AngI and (Phe ${ }^{2}$ De ${ }^{2}, 0$ on ${ }^{0}$-vesopressin were accompanied by inereases in Mrip of spproximately 84 and 14\%, respectively. Therefore, it remained possible that the differences we obterved between the effects of these agents on regional $\mathrm{k} d$ ney perfusios resulted secondarily from tixid different effects on systemic haemodynemice. For eximple, it could be hypothesizod that MBF did not fall during infusion of Angll because of the treompanylng large locrease in MA. Thix bypothesir is supported by has only limited autoregulatory cepacity compared with the cortex ${ }^{\text {D }}$ has only limited autoregulatory capacity compared with the cortex. possibility, because our experimenal model allowed us to sest the renal haeraodynamice effects of these agents in trolation from their systemule haemodynamic effects. Thus, altbough both agents systemic haemodynamic effects. Thus, altbough both agents
produced considerable iocreates in MAP, we observed similar produced considerable increates ia MAP, we observed similer
modest lnereaseas (by approximatey 10% of resting) in RAP with both Therelore, these observations provide strong evidence that the heterogeneous effects of these agens on CBF and MBF in nosenthecized rabbits arise from differences in meir direct actions within the reanl vasculature:
Our observations and cosclusiong are atso consistent with those of previous studies in rats thowing that Augli and erginine vasoprestio can differentually affect CBF and MBF independently of effects on arterial pretsurat. For example, Nobes et at. found that AngII iccretsed papillary pertusion in athesthectized rats, even when reaal pertusion presure was masintained at a constant level by use of an eartic clamp.' Simedlarly, Franchiai et al. found that infusion of appinine vasoprassin in decerebrate rats, at a dose inat increased the plasme arginine vasopressin concentration from 3 to $11 \mathrm{pg} / \mathrm{mI}$, reduted MBF without effecting CBF or mean crterial precsure. ${ }^{1 / 17}$ There is aloo evidence that these hornoones differentially regulate $C B F$ and MBF under physiological conditions. Thus, increased $\mathrm{N}_{2} \mathrm{Cl}$ hatake ic rats recures plasma levels of AngII and increasec CBF but min. Morove, hed f Angil ${ }^{18}$ Si 1 Ang in simularl, 48 h water restricion in rass increased plesma efters of win visiction eficets of water restricion on MBF were atcenuated by medulary

The precire mechanisms underlying the disparate effects of visoconsuricior agents an regional kioney perfusion temain unknown Howavec, it is likely that they include not only differences in the vascular distribution of receptors for bese agents, but also dif Ferences in therr effects on secondary, locally asiing (maioly enso theilit) factors, arech as nitric oxide (NO) and prostanoids. ${ }^{\text {S. } 6}{ }^{\circ} \mathrm{Fo}$ example, in encesthetized rets, the interease in papilary perfusion the presence of NO pecause it is abolished by biockede of No the presence of NO, because it is aboiushed by blocksde of No
 is also evideace that both piostanoids and $\mathrm{NO}^{3 n}$ act in vivo to ment of these locel counter-regulatory mechanisms in modulating responses of regional kidney perfusion to Angill may explain, al least ia part, appréeat discreptencies between observations made in vivo and those made vader in vitro conditions. For example, AngII bas been shown to constrict both juxtamedullary affereat and efferen arterioles ${ }^{23}$ and outer medullary descending vasa recta ${ }^{2 i}$ in vitro. It may be trat the netivity of counter-regulatory vasocilator mechianisms (e.g. NO, prostanoids) is blunted under in vitro conditions, exposing the underiying visoconstritor effecis of AngII on vascular elements regulating MBF.
In the group of isbbits in which RAP was set to approximately 130 montg. RBF and CBF (but not MBF) was considerably greater thas in the group in which RAP was set et approximately 65 mmifg. However, there was ciear evidence of attoregulation of RBF because reating fenal vaytular resistance was 63% greater at the visher vasopressin reduced RAP Hower simiar magmiace, is was seea at and CBF these were increased. Indeed, RAP was reduced during and CBF, these were increased. Indeed, RAP was reduced duriigg
 vaseular resiatacece. In courrst, the fact that MBF was stid rectuced
by [Pbe ${ }^{2}$,ned, Om')-vesopressin in the face of reduced global recal
 scivation of V_{1} receptors in vascular elemeots regulating MBP (e.g. vasoconstriction of afferent and effereot areitoles of juxtamedullary glomeruli and/or outer medullary descending vase reea) compared with thase vascular elements regulatins perfusion in the outer and mid-cortex (e.g. vasodilatation in nfierent sod effereat erterioles of glomerdi whose efferent arterioles lead to cortical perimbular cupilleries andfor vasoditatation in apstream vascular sites).
We car only speculase, at presear, as is the mechanismas tesporsible for chis apparent conversion of the rent vasocoastrictor effect of [Phe ${ }^{3}, \mathrm{Ne}^{3}, \mathrm{Om}^{2}$]-vasopressin into vasodilatation (at least in vessets ather than those conmoling MBF), but it likely relates to the impect of RAF on the intrarenal hormonal milieu. For example. there is some evidence for the release of a putative renal mediullary depressor hormore under tieste experimenal conditions,-13, which may be responvible for the abolition of the sysiemic pressor effect of Phe', ile, Omblvasopressin we observed. It may also be respoasible ior the renal vasodileranion we observed in the present tudy, either as 1 direct effect of the putative hormone par se or as that the fo mer posibility is urikely, beceuse we ha W be hast the former possibility is unlikely, because we have previousty mental model when RAP is ser to this tevel la,12 Furthermen fall in RAP and lincreases in RBF and CBF during infusion of
[Phe', De^{2}. Om" $\}$-vasopressin occurred over a similar time-course as the fall in HR and over a similar time-course to the systemic and renal haemodynamic ettects of this agent observed when RAP was renal haemodynamic titects of yis agent
initially set to approximately 65 mmHg .
lucreased retense of numerous locully seting hormones, incluad
Increased retease of numerous locully octing hormones, including NO, pressianoids and endocheelins, is is alsn believec io occuz modulation of the renal vascetar effects of $\left[\mathrm{Phe}^{2} . \pm 1 e^{3}, \mathrm{Ora}^{2}\right]$ vasopressin by the level of RAP merits further investigation. There is certainly good evidence that NO contributes to arginin vasopressin-induced renal vasodiatation, ${ }^{24}$ although previous sudies have suggested that this is predominanuly mediated by activation of V_{2} receptars. ${ }^{29}$ In contrast, the results of the presers sudy suggest that V_{1} teceptors can atso mediate renal vasocijatation, at least tuder some expectimental conditions. This hypothesis should be lested in future experiments using antagonists selective for V_{1} and V_{2} recepturs.
In cooclusion, the results of the present swdy show that at levels of RAP ar the lower eod of the range nornally observed io intact conscious rabbits, the vasocoastrictor agents Angil and Whe. Om -vasopressin have dispararr effects on CBF and MBR We also found that inseresises RAP can profoundly influence the least in the case of $\left[\mathrm{Ph}^{2} \mathrm{Ir}^{3}\right)^{1} \mathrm{~m}^{3}$-vatopressin. This latter least in the case of (The',is'Onn'j-vasopressin. This latter circulating and locally acting visoactive hormones and prevailing haemodynamic faciors in the regulation of intrarenal blcod flow in vivo.

ACKNOWLEDGEMENTS

This work was supporied by grana from the Nationat Hears Founcation of Ausrolin (C96M 4653), the Ramacionti Foondations (A6370, RA159/98) and the National Health and Medical Research Council of Acssralia (977713,980841).

REFERENCES

1. Nobea MS, Hianis PJ, Yumado H. Mendelesoby FAO. Efferts of angiotensia on recal cortcest and papillary biood dows measweed by
Laser-Doppier fowmery. A.t. J. Phytioh 1991; 261: F998-1006.
2 Evins RG, Bergystom Co Lawrecce A. EEtects of the vasoppressin v
 tenal excericry fumction in anesthetized rabsima, I. Candiovefe Phammool 1988: 32: 571 -81.
2. Walker TL, Rejizratne ANJ. Blixir-West JR, Harris PJ. The efferse of anglosessin Π roa thood pertusios in dhe rat renal papilin. f. Physiai 1999; 519: 273-8.
on perfusion throurgh the connex enw papille of the ont kidney, Ern Phytiot 1981; 76: 787-98.
3. Parekh N, Dobrowelski L, Zou A.P. Steiahzuven M. Nitric oxide modWater tagiovensin 11- mod norepineptarine-depon
4. Pareld N, Z Zou A-P. Role of prostizglascins in fenal medullary circu-

5. F65anchiai KG, Cowrey Jr AW. Sensitivity of the renal medultary: Franchiai KG. Cowley Jr AW. Sensituriy of hat renal medultary
cirevlation to plasma vasppressin. Amo \%. Physiol. 1996; 271:
8647-53.
6. Cowicy Jr AW. Rute of the renal mejilla in volu
prexwre regulation. AmL A. Physiot, 1997; 273: RI-15. Christy U. Woods RL. Coumeya CA. Denton KM, Anderion WP. Hyidence for a renomedullury vis
7. घergsurom G. Evans RC. Effect of tenat medollary infusion of a rasopressin V_{1} xubonist on renal aruitypenensive mechenishea rabbis. Ant. δ. Physiol. 1990; 275: R76-85.
 pressure natriuresis in enaesthetized ribbils. Clin Epp. Phormaed
Physiof 1995; 22: $94-101$.
12 Evans RG, Day KH, Roman RJ. Hopp KH, Anderson WP. Effecte of

8. Tochenis AGs. Mandenten AC, Berestem C. Evanis RC. Etteces of renul redullay asd incavenows norepinephrine on retri' antihyjizerensivo Iunction, Hypercenjiar 2000; 35: $965-70$.
9. Evers RG, Remkir: AJ, Anderson WP, Inuenctions of blockade of nutric

10. Lustrook I. Repesaxd masturements and muldipes comperisous in
11. Everiownateutar resecert. Condiovox. Res 1994; 28: 103-11.
12. Eviase RG. Madiden AC. Denton iMM. Diversigi of responsee of renais cortical rad medullary blood flow 10 vesoconstric
rabbits, Acra Physioh Scand 2000; 169: 297-308.
13. Frounchinit KG, Marsoo Did Cewiey Jc AW. Vasog of medullary blood dow and pressure-aptriurcsis-dianesis in the

14. Gross V, Kurth TM, Skelion MM, Mration DLL Cowley Jt AW. Effess

15. Fravchini KG. Cowtey jrAW. Reral torrieal and medultary blood tow responses durting waitr
1996: 270: R1257-64.
16. bifferent responsen of cortical and juxtanmedullary artritiolecs to noreping
2NO-P. Wu F, Cowley Je AW. Protertive effect of angloinnsia Hypercession 1997: 31: 271-6.
n Sreativini tr

17. Carmines PK, Marison TX, Navar LG. Angiocessin it effecte on microvescular dianecerts of in virn blod-perfised juxumetullery sepphront. Aor. J. Physiot 1986: 251 : F610-1t.
18. Pallone TL. Vasoconatricioa of outer rredullary vasa recta yy 266: FBSO-7,
19. Thomos CJ, Woot RL Evant RC, Accom D, Crisiy U.Anderisn W.

 on papiary
$25: 40 \mathrm{~B}-14$.

 blood fow in sponata
Res. 1997; 20: 5-10.
 $100-5$.
 renal vazoditration via

Effects of activation of vasopressin-V ${ }_{1}$-receptors on regional
kidney blood flow and glomerular arteriole diameters
Anabela G. Correia, Kate M. Denton and Roger G. Evans
objectives Wa tested whother vasocanstriction of juxtamedullary glomerular arterloles contributes to wasoprasiln V_{1}-receptor-mediated raductions in medullary pertusion (MBF).
ousign and methoots The laft kdaney of pentobarbitone anaesthetized rabbita was denervatod, a perivaseuler fow probe placed around the renel artery and laser-Dopples low probes positioned in the inner medulla and on the cortleal surface. Rabbits then recolved a 30 min antravenous intuslon of (Phe ${ }^{2}$,lla', Orn ivasopressin ($V V_{1}$ AG; $30 \mathrm{ng} / \mathrm{kg}$ per min; $n=7$) of its vahlele ($n=7$). Kidnays were perfusion fixad at the finut recorded mean arterial preasure (MAP) and filled with methecrylate casting material. Dlameters of afferent and efferent afterfoles were determined by scanning electron microseopy.

Results $V_{1} \cdot A Q$ increased MAP (19 ± 343) and reduced MBF ($30 \pm 8 \%$) but not cortical gerfuslon or total renal bload fiow. Vehiclo-treatment did not sloniflcuntly affect hese varables. Ahter vehicie- ind V_{1}-AG-treainent
 (0 $=0.92$) whlle furtamedullary efferent antolole luminal P-0.82), whlie fuxtamedullary efferent artortole lumine
diameter averaged 17.75 ± 1.86 and $18.36 \approx 2.2 .414 m$ respectivaly ($P=0.93$).

Concluslons $V_{1}-A G$ reduced MBF but did not signtifeantly affect huxtamedullary arteriolar diameter. Our rasults therefore do not support a role for fuxtamedullary artorioles in producing V_{1}-recaptor-madated reductions in MBF, suggesting that downstream vascular alemonts (e.s. outer medullary descending vasa recta) might be lnvolved. fHypartans 19:648-657 e 2001 Lipplncott willams a Wulkink.
Journal of thpoertanaton 2001, 17:349-857
 juxtemedultiry
Deparmem of Phyrology, Meraah Univeraty, Vict ite, Austafe

Recolved 28 Anquit 2000 Revised 20 November 2000
Aceopled 20 Nowerber 2000

Introduction

Although only approximately 10% of total renal blood low encers the renal medulta, there is now good evidence that the medullary microcirculation plays a key role in long-term blood pressure regulation, chiefly chrough lis influence on senal salt and water handling 1]. Therefore, in ordet to understand the mechanisms underlying the long-term regulation of blood pressure, we require a more compiete understanding of the factors regulating medulary blood perfusion (MBF).

In both conscious and anaesthecized rats and rabbits intravenous infusion of low doses of afginine visopres
 $\left[l e^{3}, O n^{3}\right]$ vasopressin $\left(V_{4}-A G\right)[4,5]$ can reduce MSF without affecting cortical perfusion (CBF) or total renal blood fow (RBF). There is also good evidence that arginine vasopressin plays an important sole in the physiological regulation of MBF [6]. The precise mechanisms mediating the selective effect of arginine 0253 -351 02001 Lppincou WGiana 4 Whaina
evidence from in-vitro studies that arginine vasopressin can constrict juxzamedullary arcerioles [10-12] and ousef medullary descending vass reeta [13]. On the ocher hand, in che saudy by Harrison-Bernard and Carmines [10], using the blood-perfused juxcameduliary nephton preparation, arginine vasopressin at physiological concentrations ($>10^{-12}$ mmolf) was found to constrict afferent arterioles of juxtamedullary glomeruli but not outer medullary deseending vzsa recta. Furthermore, in one srudy demonstrating vasoconstriction of outer medullary descending vasa recta in response to arginine vasopressin in eifro, the concentrations required (ap proximately 10 mmolh) wein approximately one orplasma under physiological conditions [13). Thus, on balance, this evidence supports a role for vasoconstriccion of juxtamedullary glomerular arterioles in mediating reduced MBF in tesponse to activation of V_{1} receptors. However, as yec, there is no evidence from in-vivo studies to confirm or reject chis hypothe'is.
Therefore, in the curtent study, we directly tested this hypothesis in anaesthetized rabbits by examining the CBE CBralar casting co mensure the luminal dimentions of
 uxtamedullas

Methods

AnImals
Fourteen, New-Zealand White, male rabbiss were used (body weight $2.18-2.62 \mathrm{~kg}$; mean $2.41 \pm 0.03 \mathrm{~kg}$. $p_{\text {rio: }}$ to experimencation, all rabbits were meal fed and allowed water ad libitum. At the conclusion of the experiment, they were killed with an intravenous overdose of pencobarbitone sodiun (300 mg). All expeciments were performed in accordance with the Australian Code of Peacrice for che Care and Use of advance by the Monash University Deparement of Physiology/Central Animal Services Animal Ethics Commitree.

Surgleal preparation

Catheters were placed in both cencral ear arteries and marginal ear veins under local anaesthesia (0.5% Lig. octaine; Ascrz Pharmaceuticals, North Ryde, NSW, Australia). Rabbics were anaesthetized with pentobarbicone sodium ($90-150 \mathrm{mg}$ i.v. Nembutal: Boehringer Ingelheim, Artarmon, NSW, Auscraliz) and this was immediacely followed by endorracheal intubation and artificial vencilation (Model 55-3438 Vencilator, Hacvard nstruments: MA. USA). Anaesthesia twas mainkined during surgery and throughout the experiment by incravenous pencobarbitone infusion ($\mathbf{3 0}-50 \mathrm{mg} / \mathrm{h}$). Plasma volume was maintained throughout the experiment by
on inteavenous infusion of Harmann's solution (compound sodium factate; Baxcer Healthcare Pry Led, Toongabbie, NSW. Australis; $0.18 \mathrm{~m} / \mathrm{kg}$ per min), Surgery was performed on a heated cable, and oesophaout the experiment using a servo-corcrolled infrared lamp (Digi-Sense temperature Concroller; Cole Palmer Instrument Company, Chicago, Illinoia, USA).

Surgery
A left flank inc.sion was made and the left kidney, aorta, vena cava, and ufeters were exposed. The lefr and right ureters were cannulated with silastic rubing (outer diameter 0.94 mm , inner dianater 0.51 mm ; Dow Corning, Midiznd, Michizan, USA). The left kidney was denervated and ploced in a sable cup for the positioning of laser-Doppler dow probes. For measurement of MBF, 226 -gauge needle rype probe (DP4 s, Moor Instruments Ltd, Millwey, UK) was advanced 10 mm below the mid-region of the latera! surface of the kidney, using a micro-manipulator (Narashige, Tokyo, Japan). A laser Doppler flow probe mencs Led) wase placed or che dorsal surface of the idney for measurement of CBF A ound flow probe wes placed around the reral artery for measurement of RBF iape 2SB Tranonic Syerem loc Ithaca New York USA A bolus of heparin odium (5000 IU iva Fises, Thornleigh NSW, Austre is) was adminiscered atd in infusion of 30 lU/min was adminiscred, and an infusion of large-bore cannula (outer diameter 3 mm , inner diameter 2 mm) was placed in the aorra discal to the tenal arteries, which whs later connected to the perfusion apparamus. The abdominal norta was also isolated above the tenal atteries, so that it could to ve occluded diring the fixation process.

Upon completion of the surgery, bolus doses of [${ }^{3} \mathrm{H}$] inulin ($4 \mu \mathrm{Ci}$; NEN Research Products, Sydrey Austra ia) and (${ }^{14} \mathrm{Cl}$-paraminohippuric acid ($\mathrm{PAH} ; 1 \mu \mathrm{Ci}$; NEN Reseach Products) were adminiscered intravenously, and the maintenance infusion of Harmann's solution ($0.18 \mathrm{~m} / \mathrm{kg}$ per min) was repi- ced with a solution contzining $300 \mathrm{nCi}(\mathrm{ml}[\mathrm{P} \mathrm{H}]$-inulin and 83 nCl all [$\left.{ }^{1+} \mathrm{C}\right]$-PAH, in four parts Hartmann's and one part $0 \% \mathrm{viv}$ poiygeline (Haemaccel, hoechst, Meibourne Australiz).

Experimantal protocol
Following a 60 min equilibration period, and a 30 min contsol period, rabbits received a 30 min intraveno afusion of eititer V_{1}-AG (Peninsula Laboratories Inc. Belmonc, California, USA; $30 \mathrm{ng} k g$ per min; $n=7$), or its vehicle (50 uliag per min 154 mmoll $\mathrm{NaCl}: n=7$). rine produced by the left and right kidneys was collected dusing the final 20 min of both the control
and infusion periods. Eat arterial (3 ml) blood samples were collected ac the mid-point of each period for determination of plasma sodium concentration and haernatocrit.

Perfusion fixation of both kidneys commenced immediately after completion of the second urine coliection One litte of 2.5% paraformaldehyor in $0.1 \mathrm{mmol} / \mathrm{l}$ phos Fhate buffer ($\mathrm{pH} 7.3-7.4$) ac room temperature was perfused retrogradely through the distal 20rta at a pressure equivalent to mean arterial pressure (MAP) during the fina! 2 min of the V_{1}-AG or vehicte infusion for each rabbir The upper gorta was clamped above due kidneys and the vena cava venced as soon as peltowin the che facive commenced. Immediately hece and acceleraior (20.1) (M+COx CL $2 \mathrm{~B}-5, \mathrm{SPL}$ Wear Chescer, PA USA) was perfused into the left and ight kidneys at che same pressure as the fixarive. Both kidneys were then clamped above the renal hilus, and the merhacrylate resin was allowed to harden in sify for 30 min. The lefe kidneys were removed, weighed $13.37 \pm 0.33 \mathrm{~g})$ and stored in 2.5% paraformaldehyde for lazer processing.

Haernodynamic verlables
Arterial pressure was measured throughour the experiment using a side-arm cachecer, 3 mm proximal to che ip of the cannula inserted into the aorta. This wa connected to a pressure transducer (Cobe, Arvada, CO USA), and heart rate was measured by a tachomete Model 173; Baker Medical Research Instirute, Meloutne, Victoria, Australia), secivaced by the pressute pulse. Left RBF tras measured by connecring the cransit-cime ultrasound low probe to an ularsonic olurae flow meter (Mode1 T108, Transonic Systems lnc.). The laser-Doppler fowprobes were connerted to laset-Doppler flowmeter (DRT4, Moor Instruments Led). The signals were amplified and recorded on a ouratia) and relayed to an IBM Compstible Sydney, Auviood with an analog-co-lieital converer compurer vided 20 s means of arerial pressure (mm Hi hear te (beatin) PRE (mllain) CBF and MBF (Per fion Unita, PU) aquivalent to the instur (Per sion $\times 1, \mathrm{PU}$), equivalent to the instrument outpu in $\mathrm{mV} \times 10$.

Analysis of urine and blood samples

Haematocrit was measured by the capillary eube mechad, and the remaining blood was centrifuged at $4^{\circ} \mathrm{C}$ for 10 min at $3000 \mathrm{f}, \mathrm{p}, \mathrm{ml}$. Plasma and urine samp aspirated and frozen for laver analysis. [${ }^{3} \mathrm{H}$)-inulin ciearance was used to estimace giomentar filteration rate (GFR) and (${ }^{14} \mathrm{CJ}$-PAH clearance was correcred for hatmatocric to provide effective renal blood flow (ERBF), as previously described [6]. Sadium and potassium concentrations were mensured by acomic
absorption spectrophotometry (Avanta, GBC Scientific Equipment, Dandenong, Vietoria, Auscralia).

Preparation of methacrylate casts for microseopy Onty che left kidneys were examined. Following removal from the rabbit, each kidney was stored individuaily in fuxasive to nilow complece polymerization of the mechacrylate (24-48n). To eliminate che tissue from the casc, each kidney was sliced coronally ($2-3 \mathrm{~cm}$ chick) and placed in pocassium hydroxide ($20 \% \mathrm{w} / \mathrm{V}$ KOH) for 1 week (fresh KOH every 24 h). The concain ers were incubared in a water bath at $55^{\circ} \mathrm{C}$. Once the cissice had been digested away, the casts were rinsed in discilled water and placed in $\mathbf{5 \%}$ w/v sodium hipochlor ite for 1 h . The clean vaseviar casts were then dried, majunted and gold-coaced (SCD 005 Spucter Coater Bai-Teg Liechrenstein) before being exanuined in Hitachi City, Japan).

Luminal diameters of afferent and efferent atterioles of outere, mid- and juxtamedullary-cortical glomenuli were measured from scanning electron mieroscope miero graphs (Ennai magnification $\times 660$). Diameter measure ments were made ar 25 um incervals along each vesel from its junction with the glomerulus to its first beanching poins, Six afferent and efferent vesseis from each region of the cortex (outer, mid-cortical and juxtamedullary) were measured. These were selected and classified as previously described [14,15]. The vasculat eases were coded and randornized befote the micrographs were taken. Measurements were made using a digitizing tablet (Surnmagraphics; resolution 100 lines/mm, accuracy (0.25 mm , Calgraph, Fullerton CA, USA) and the MEASURE program (Capricorn Sciencific Sof(ware, Victoria, Australia).

Vascular diamater and resistance

Mean values for the radius (r) and diameter of each vessel were derived from the measuremenes made along the vessel length. Relative resistanses (R) were calculated according to Poiseuille's relationship ($R=1 /$ $\left.r^{4}\right)$ and expressed per unic length $\{14,15\rceil$.

Statistical analysis

All data are reported as the mean \pm SEM. Hypocheses were tested using Surdent's puired and unpaired (as approptiate) t-teses. $P<0.05$ was considered scatistically significant.

Results

Asselline fevels durtion the control period
Systemic and renal haemodynamic variables (Figs 1 and 2), and renal excretory vatiables (Fig. 2) during the concrol period were similar so chose previously observed by us under similat experimental condizions (4,14-16].

mo. 1

Oenemitad Dolly Yehey
lruxect (rgovel 5daney

There were no systernatic differences in these variables berween the rwo groups of rabbics ($P>0.05$).

Haemodynamile and renal responses to $V_{1}-\hat{A G}$ and vehicle.

 treatmentIncravenous V_{1}-AG (30 ng/kg per min) increased MAP ($19 \pm 3 \%$) and haematocric ($7 \pm 2 \%$), and reduced hear rate ($16 \pm 2 \%$) and MBF ($30 \pm 8 \%$), but RBF, CBF and renal vascular resistance (data not shown) did not significandy change (Fig. 1). Vehicle-treatment did not significantly affect any of che measured variables with the exception of haematocrit, which increased by $3 \pm 1 \%$ (Fig. 1).
V_{1}-AG-trearment had no significant effect on ERBF in eicher kidney. In both the left (denervared) and right (intact) kidney, 1 -AG-deazment signiticandy incteased (166 +32 ind $355 \pm 78 \%$, resperively) and sodium (x crecion (118 ± 21 and $290 \pm 82 \%$ tespetively) Fol lowing vehicle-treatment there were small but traisti lowing vehicle-ce $(33 \pm 10 \%)$, uine flow in the left kidney $\{32 \pm 14 \%$) and sodium excretion in boch the lefi $(36 \pm 15 \%)$ and phe ($42+16 \%$) kidney, bur $n 0$ signifcant changes in kidneys, but the signifcant changes in ERBF (Fig. 2).

Vessollumen

No evidense of focal constriction was observed along the length of the any of the arcerioles and a mean diameter was calculated for each afferent and efferent arteriole in the different regions, as an arithmecic mean of eenh measurement (every $25 \mu \mathrm{~m}$) along the length of the vessel from the glomerulus.

There were no significant differences in glomerula artetiole lumen dimensions between vehicle- and V_{1} AG-created rabbits (Fig 3). In particulat, juxtamedul lary afferent and efferent arteriolat diameters were closely similar in the two groups of tabbis. However, there was a tendency for mid-cortical efferent artericia. diameter to be less in V_{1}-AG-treated than in vehicle treated rabbits ($P=0.07$, Fig. 3). Calcu'ated relative resistance per unit vessel lengeh was closely simuar in vehicle- and V_{1}-AG-reated rabbis for all arterioles (data not shown, $p \mathbf{0 . 4 0 \text {), excepc for mid-cortical }}$ efferent arteides in which 2 eendency for increased relative resistance was observed in the $V_{1}-A G$-rreated rabbits ($P=0.07$)

When averaged across boch groups of cabbits, afferent arteriole lumen dismeters in the outer, mid and juxtamedulary cortex were $15.06 \pm 0.0,13.87 \pm 0.52$, and $15.48 \pm 1.20 \mu m_{1}$ tespectively. Compared with these afferent arterioles, the corresponding efferent anteriole had smaller diameters in the outer cottex ($12.37 \pm$
$1.00 \mu \pi, P=0.02$) and mid-cortex ($12.13 \pm 0.61 \mu \mathrm{~m}$, $P=0.03$), but greater diameters in the juxamedullary cortex ($17.62 \pm 1.48 \mu \mathrm{~m}, P=0.02$).

Discussion

Intravenous infusion of V_{1}-AG selectively reduces MBF compared with CBF and RBF in rabbits [4,5]. Ous present aim was to determine whecher che effeer of V_{1}. AG on MBF is mediated by vasoconstriction of juxsamedullary glomerular arterioles. Intravenous $V_{1} \cdot A G$ teduced MBF by $30 \pm 8 \%$, but we could rot deteet reductions in afferent or efterent juxtameduliary arteriolar diameter. These data ate not consistent with \& role
of juxtamedullary arcerioles in mediating the effects of of juxtamedullary atcerioles in mediating the effects of V_{1}-AG on MBF. Since vasoconstriction of t" tular elements upstream from glomerular arterioles (e.g. tions in CBF (and RBF) as wall es MBF, our dace taise the possibilicy of a sole for downstream vercular elemencs in mediating MBF cesponses to V - AG. The murer medullary portions of the destendiag vasa reca ace the most likely candidates, since chese are responsive to both arginine vasopressin and $V_{1}-A G$ in virro [13].

In the eutrent study, our combinstion of in-vivo meas. In the ef RBF CBF ${ }^{2}$ MBF together with dast utements of RBF, CBF and MBF, rogether wid dalx from ex-vivo analysis of viscular caser from the same
animals, provided a unique opportunity for direct mimals, provided a unique oppormanity for ditrect
correlation of the aetions of $V_{1}-A G$ on regional kidney correlation of and actions of V_{1}-AG on regional kions The
blood flow and glomerular ateriole dimensions. The laser Doppler technique has previously been validated [17] and used extensively to dermonstrate the diversity of responises of regional kidney blood flow to hormonal agents $[1,3-6,16$). Although some arteface is associated with the vascular casting procedure, it has previously been extensively validated [14,15,18-20]. Importantly, our estimates of glomerulas arteriole diameters ate comparable co those previously reported in rabbits using several techniques, including vasculat casting 14,15), stereology [21), and isolated arteriole preparations $\{22,23\}$. We also observed regional ditferences in glomeruiar arteriole diameters, which is consistent with previous studies in this $[14,15,21$) and other species (19,24]. Furthermore, previous studies using the vaseular casting technique have demonstrated vasoconscriction in glomerular arcenoles in response co anglocensin If [14,15], noradrenaline (18) and vasodilatation in respense to actial natturectic peptide [18]. We can therefore be confident that it can be used to decect changes in renal arterioie dimensions.

Consistens with the lack of effect of $V_{1}-A G$ on $C B F$ or RBF, we did not decect differences berween vehicleand V_{1}-AG-4eated rabbits in atteriolat diameters in supertic!al and medecorical regions. If the 30% rejuction in MBF were entirely due to vasoconstriction in

juxtamedultary acterioles, we would prediec (based on Poiseville': relationship, where resiscance is inversely proportional to vessel radius to the power of 4) juxta meduilary atteriole diameter to have been approximately 9% less in V_{1}-AG-teated- compared to vehicletreated rabbics. However, juxtamedullary arteriole diamecers were indistinguishable in the two groups of macely 39) greacer in V_{1}-AG-treated than in vehiclecreated rabbits.

Our fallure ω detect V_{1}-AG-induced reductions in juxtamedullary glomerular arteriole diameter might reficer some inherent insensitivity of the casting tech nique. However, we believe chis is unlikely, since we previously detecred decreases of approximately $1 \mu \mathrm{~m}$ in outer cottical efferent atteriole diameter in rabbic receiving tenai arcerial infusions of angiotensin II (1 nai kg per min), that cause a 35% decrease in RBF [15]. By compatison, in the currene sudy a 9% decrease in juxcameduliary asteriolar diamerer (predicted from : 30\% decrease in MBF) corresponds to reductions in arceriolar diameter of $1.4 \mu \mathrm{~m}$ (afferent) to $1.6 \mu \mathrm{~m}$ (efferent).
Our in-vivo daca are therefore at odds with the result: of in-vitro studies showing constrietion of juxtamedullary afferent arterioles in response to physiological lary afferent atterioles in response to physiological lets this is che first swudy we are aware of that has adiressed shis issue under in-vivo cenditions, and it is adoressed this issue under in-vivo conditions, and it is likely that the responsiveness of renal vascular elemencs to activation of ${ }^{\text {up }}$-receptors is highyy dependens
upor sithough they appear less sensitive than afferent arterioles under invitro conditions [10], ourer medullary descendirg vase ecta do respond to arginine vasopres\sin and V_{1}-AG [13]. Taken wogecher, these data suggest a possible role for outer medullary descending vasa 2 pocsa in mediating che seleecive effect of $\mathrm{V}_{1}-\mathrm{AG}$ (and perhaps also that of atginine vasopressin) on MBE. This hypothesis remains to be rested ditectly.

The present study also allowed us to make a number of inceresting observations about the systemic haemody. ammic and renal effects of V1-AG. Intravenous infusion this agent increased MAP, GFR, Uitine how and sodium excrecion. The diuretic and natriuretic effects of $V_{1}-A G$ have been described previously in both ras and tabbits, and appear to result chiefly from direct ubular action of activarion of V_{1}-receptors $[4,25$). In the present study, we also found that $\mathrm{V}_{\mathrm{i}} \cdot \hat{A G}$ increased GFR. This effect has not been previously described, but is consiztent with the pressor effect of this agent, and the lack of eviderice in out casting data for autoregulatory vasoconscriction in V_{1}-AG-treated taboits. Iradeed, the only vessels in which these was any
evidence of vatoconstriction were the efferent atcerioles of mid-cortical glomeruli, in chat che average diameters of these vessels tended to be approximately 11\% less in V_{1}-AG-treated- than in vehiele-treated rablits ($P=0.07$). Our data are therefore consistent with the hypochesis chat glomerulat capillary pressure inereases during incravenous infusion of doses of $V_{1} \cdot A G$ chas increase MAF. This hypochesis merits direct testing with micropuncture.

In conclusion, the results of the present study are not consistent with an impoctant role of juxcamedullaty glomerular attetioles in mediating the selective effect of $V_{1}-A G$ on MBF. A role for downstream vasculas elernenta and, in particulat, outer meduilary descending vasa recea, is possible. however, since our present invivo data are at odds wich the resules of previous invirro sudies, they require confirmation by furuse experimencs.

Acknowledgement

We thank Mj Arina Madden for assistance with the animal expetimeres and Mrs Gunta Jaudzems and Mrs microucopy We also thant Dr Michelle Kuts for hes arisunce during the experiments and her advice dute ing the preparation of che manuscript.

Reterences

1

 Tot Am JPhraid 1097: 272:R1 471 -R1479. -

 1024: $32: 371=591$.
(102t: 32:571-SAL. Mrroo scand 20co, 109: 289.060.

 Phypiof 1t97; 273:R1742-R1743.

10
10

"Dominance of pressure natriuresis in acute depressor responses to increased renal artery pressre in rabbits and rats

Anabela G. Correia, Göran Bergström*, Jing Fia*, Warwick P. Anderson and Roger G. Evans

Incrensing renal artery pressure (RAP) activates pressure diuresis/natriurctis and inhibits renal renin ralease. There is into evidence that intreasing RAP stimulates release of a putative depressor hormone from the renal medula, although this hypotheris remains controversial. We examined the relative roles of these antihypertensive mechanisms in the acute depressor responses to increased
RAP in ansesthetized rubbita and rats. In rabbits, an extracorporeal circuit was established which dlows RAP to be set and controlled without direct effects on systemic haemodyoarnice. When RAP wes maintained at -65 mmHg , cardiac output (CO) and mean arterial pressure (MAP) did not wes maintained at -65 mmig, cardiac output (CO) and aean arterial pressure (MAP) did nol $20 \pm 5 \%$ and $36 \pm 5 \%$, respectively, over 30 min. Urine fow also ingeased more than \hat{i} - fold when RAP was increased. When compound sodium lactate was infused intravenously at a rete equal to urine dow, neither CO nor MAP fell significanty in response to incressed RAP. In I kidneq-I elip hypertensive rats, MAP fell by $54 \pm 10 \mathrm{mmHg}$ over a 2 h period after unclipping. In rats In whith fsotonic NaCl was administered intravenously at a rate equal to urine flow, MAP did not change aignificently after undipping ($-14 \pm 9 \mathrm{mmHg}$). Our results suggest that the depressor responses to increasing RAP in these experimental models are chiefly attributable to hypoyolsemia secondary to pressure diuresis/natruretis. These models therefore appear not to be bionssays for release of a putaive renal medullary depressor hormone.
(hecelved 17 Seplember 2001; cecepled alter revition 7 November 20011

The kidneys play an important role in long-term blood The kianers play an important roce in long-term blood is inceased, renal renin release is reduced, so that the is inceased, renal renin release is reduced, so that the
activity of the pro-hypertensive renin-angiotensin system activity of the pro-hypertensive renin-angiotensin 5 sstem
is inhibited (Cowley, 1992). Also, urinary excretion rates is inhibited (Cowley, 1992). Also, urinary excretion rates of salt and water increase with elevated RAP (pressure diuresis/natriuresis), so reducing plasma volume which, if not compensated for, leads to a zeduction in cardiac output (Cowley, 1992). Thirdly, evidence now exists to support
the release of a putative depressor hormone from the renal he release of a putative depressor bormone from the renal 1985; Muirhead, 1990; Thomas et al 1996; Bergotrom en 1. 1998). Muirhead and colleagues provided the initial afidence supporting the eoleagues provided the initial evidence supporting the exastence of a renal meduliary
depressor hormone, which they dubbed medullipin. In a depressor hormone, which they dubted medullipin. In a series of experiments spanning four decades, they thowed (particularly renal medullary interstitial cells), and to (paruicularly renal medullary interstital cells), and to eflluent of kidneys perfused at high pressure. They concluded that medullipin could be a neutral lipid hormone or pro-hormone housed in the medullary
interstitial celis, and released in response 50 increased RAP (Muirhead \& Piteock, 1985; Mitirhead, 1990). However neither they nor others have definitively purified and themically identified the active principle in these exaracts (Brooksetal 1994).

Exparimental models have been employed to determine the physiological processes medieting release of this putative homone, and its biological effects. The common feature of these models is that they allow RAP to be increased in vivo, and for the resulting effects on systemic haemodypamics to be observed. For example arterial pressure falls rapidly after removal of the renal attery clip in Goldblatt hypertension (Muirhead \& Brooks, 1980). The depressor response to unclipping is blunted by chemical medullectomy (bromoethylamine (BEA)-pretreatment) (Bing et al. 1981), and by inhibition of intrarenal cytochrome P450-dependent arachidonate metabolism (Zou et al. 1995), consistent with the hypothesis that it is dependent, in part, on release of a lipta hormone from the renal medulla. Another approach is to establish extracorporeal circuits in anaesthetized animals, so that RAP can be set at levels greater than systemic arterial
pressure. In rats, this has been achieved by crosscirculating an isolated kidney from a "donor' rat with blood from an anaesthetized 'recipient' rat (Karlstrom \& G8thberg, 1987). In rabbits and dogs, autoperfused kidney preparations have been used (Christy et al 1991, 1993; Thomas erat 1994, 1995, 1996; Evens et al 19986; Correia at at 2000). In these models, depressor responses to increased RAP can be blunted or abolished by chemical medullectomy (BEA) (Christy et al 1991), and treatments that reduce renal medullary perfusion (Bergstrom at al 1995; Bergstrytur \& Evans, 1998; Correia et al 2000) Thus, the experiments performed by Muirhead's group (Muirhead $\&$ Pitcock, 1985; Muirhead, 1990; Brooks er al. 1994), combined with the more recent physiological experimentation cited sbove, have provided strong renal medulliary depressor hormone.

On the other hand, there bas been no definitive demonstration hat the acule depressor responser oo increased FAP in these modeis are independent of the associated pressure diuresis/catriuresis. To address this issue, in the present study we deternined the relative contributiors of changes in cardiae output and total peripheral resistance to the depressor response to increased RAP in anaesthetized rabbits. In some rabbits, we aimed to maintain cardine output constant when RAP was increased, by infusion of compound sodium lactate at a rate equal to urine low ('ceardiac output elamp'). This allowed us to eliminate the systemic haemodynamis effects of pressure diuresis/natriuresis. In a further group of rabbits stebjected to the 'cardiec output clamp', we also tested whether inhibition of the renin-angiotensin systern contributes to the depressor response to increased Ras. analogous experiments in 1 kidney- 1 clip (IK1C) bypertensive rats, we tested the effects of intravenous isolonic sodium chloride, administered at a rate equal to uris flow, on haemodynamic responses to unclipping.

METHODS

Rabbit extracorporeal edrentestudies Animals. Twenty-fou: New-Zealand White, male rabbits were studied (2.10-2.92; mean $2.53 \pm 0.03 \mathrm{~kg}$). They were housed individually, in purpose built cages (500 cm high, 740 cm long and 680 cm wide) with two ciers for envioronmental enrichment. This housing allowed visuad, but not physical fed (Evans et al. 2000) and allowed water ad libitum. The experiments were approved in edvance by the Monas University Department of Physiology/Central Animal Services Animal Ehics Committe.
Preliminary surgery. Each rabbit underwent a preliminary operation for implantation of an ascending aortic flowprobe (65 B, Transonic Systems Inc., Ithace, NY, USA) via a left thoracotomy (Shweta es al. 1999). The plug of the llowprobe was buried subcutaneoushy

Ohnson Medical, Brussels, Belgium) was placed in a marefinal ar vein under hocar analge.i. (\% was then induced with intravenous propofol ($10 \mathrm{mg} \mathrm{kg}^{21}$ Diprivan, ICI, Vietoria, Australia) and after endotrachea intubation, maintained with inhaled halothane (1 ow $\%$ floothane, ICI). Depin of anaesthesia was monitored by esting corteal and tes-pinch reflexes, Priar to comimencing he sargery itself, each rabbit was given an intraniuscular cimethoprim and 80 mg sulphadiarine containing 16 mg Nimethoprim and 80 mg suphadiazine (Inbrissen, yuros analgesic buprenorphine ($80 \mathrm{\mu g}$, Temgesic, Reckitt and Coleman, NSW, Australio). Lignocsine ($1 \%, 2-4$ mil) was instilled subcutencously into the wound sites to enhance analgesia Thirty milliitres of 154 mumol $1^{-1} \mathrm{NaCl}$ was given by intravenour drip during the surgery, which took $30-50 \mathrm{~min}$. At the completion of the surgery, animuls were closely monitored heat pad. Therestier, the rabbit's welibeing was moritores daily by visual inspection and determination offood and water intake, until the day of the acute experiment (2-3 weeks afier the preliminary surgery).
Procedures on the day of the aente experiment. These were cartied out under loeal analgesia (1% lignoceaine). The plug of the flowprobe was retrieved from its subcutaneous position and catheters were placed in both central eararteries (22 gauge Optiva) and marginal ear veins (24 gauge, Optiva). The eaf pressure, and for collection of arterialblood semples. The ear vein catheters were used for intravenous infusions of anaestheti and phyxiological solutions (see below). Following a 30 mu peniod to allow tull recovery from these preparaive procedures systemic arterial pressure, cardiac output and
monitored for 30 min in the conscious state.

All subsequent experimenal procedures were earried ou under pentobarbitone anaesthesia ($90-150 \mathrm{mg}$ for induction plus $30-50 \mathrm{mg} \mathrm{h}^{-1}$ for maintenance, i,, ; Nembutal, Boehring as previously described (Bergstrom $\&$ E Evans, 1998), The leva as previously cescribed (Bergstrom \& Evans, 1998). The leve reflexes, and adjusted by altering the rate of infusion of pentobarbitone and, if necessary, administration of further bolu doses of $5-10 \mathrm{mg}$. Surgical procedures induded implantation of a catheter via the jugular vein for meesuring central venous pressure (Shwets et al. 1999), a right nephrectorny, cannulation extracorporeal circuit (Betrstiom \& Evans, 1998). At the completion of the experiment, the rabbits were humanely kille with an intravenous overdose of pentobarbitone (300 mg).
Extracorporeal circuit. Blood was withdrawn from the corta a rate of $110 \mathrm{mi} \mathrm{min}^{-1}$ by a roller pump and returned to th rabbit via two limbs; one oo the renal artery and the other to th vena cava (Christy et aL 1991; Bergstroti \& Evans; 1998). RA was controlled by adjusting a Starling resistor incorporate into the vena cavai limb, while total dow through the circuit remained constant. For example increasing the mechanical resistance in the vena caral limio using the Starling resisto
diverts blood 勆 The circuit dead space (24 ml) was filled with 10% w/v dextran 40 in $154 \mathrm{mmol}^{-1} \mathrm{NaCl}$ (Gentran 40, Baxter Healtheare

Toonagabbie, NSW, Australia) containing $50 \mathrm{iu} \mathrm{mm}^{-1}$ heparin Thus the establishment of the cicals, Sydney, NSW, Aus iniz) haemodilution, and consequendy a relatively low haematocril (see Resalts).
Once the extracorporen circuit was established, RAP was set at - 65 mumig for a 60 min equilibration period A bolus dose of Ph) -inulin (4 p Ci) (NEN Research Products, Sydney, NSW, Australia) was administered in 1.0 ml of 154 mmol $l^{-1} \mathrm{NaCl}$ An infusion of polygeline solution (Haemacece, Hoechst, heparin end $0.3 \mathrm{KCiml}^{-1}\left\{\mathrm{P}^{\mathrm{H}} \mathrm{K}\right\}$-inulin then commenced (0.18 ral kg^{-1} min ${ }^{-1}$), which continued for the duration of the aperimeril Body temperature was meintained between 36 and $38^{\circ} \mathrm{C}$. Mexp arterial pressure (MAP) and central venous pressure were measured by connecting en ear artery catheter and the jugular vein catheter, respectively, to pressure
transducers (Cobe, Avarda, CO, USA). Heart rate (HR) was transducers (Cobe, Avarda, CO, USA). Heart rate (HR) Was Researed Institute, Melbourne, Victoria, Australia) activeted by the arterial pressure trace. Cardiac output ($C O$) and renal lood tow (RBF) wree measured by connecting the ascending aortic fow probe, and an insline fow probe in the renal arm of he extracorporeal circuit (Type 4N, Transonic Systems Inc), Syxeris tne). Analogue to digital conversion of these signals, us well as measurement of plasma renin activity, plasma and arias concentrations of $[\mathrm{H} H$-inulin and sodium, and hueriatocrit were made as previously described (Bergstrom \& Evans, 1998). (H)-inulin clearance was used to estimate
glomerular Eitrution rute (GER) (Bergitrom \& Evans, 1998). clomerylar Miltation rite (GIR) (Bergrtrom \& Evans, 1998). At the completion of each experiment the Nat kidney was ralues of RBF, GFR, urine flow ($U_{\text {mit }}$) and sodium excretion ($U_{m, n}$ V) are therefore expressed per gram of dry kidney weight (g mean $1.65 \pm 0.05 \mathrm{~g}$).
Experimental protocol MAP, HR and CO were measured in constious rabbits for 30 min prior to induction of anaesthesia Haemodynamic variables were also monitored during trablishment of the excracorporeal circuif, to provide detriiled information about the status of the circulation under these coascious and ansesthetized rabbits. Following establishment of the extracoporet circuit and a 60 minequilibration period, rabbist were rundomly asigned to one of the four experimental roups ($n=6$ for cach group). RAP was first set to -65 mmHg or a 30 min control period in all groups. RAP was then either maintained at -65 mming (group 1) or set at -160 marifg for 30 min recovery period ($\mathrm{RAP} \sim 65 \mathrm{~mm}$ Hg). In all rabbits, brine output was determined each minute during the 90 min of the xperiment. The three groups in which RAP was increased to 160 manig received either no treatment (group 2), 2^{*} cardiac output damp', consisting of intravenous infusions of compound
 exacdy match urioe output each minute during the period when RAP was increased (group 3), or the combination of a cardiae output clamp' with a 'renin-angiotensin system
 $10 \mathrm{\mu g}^{\mathrm{kg}}$
(40-50 $\mathrm{ng}_{g}^{-1} \mathrm{mg}^{-1} \mathrm{mmin}^{-1}$)) Ausp an intravenous infusion of angiotensin II
titrated to restore MAP to its pre-enalapriat level. The bolus dose of enalaprizat was administered intraverously after 30 min of stable basceine recordings following establishment of the extracorporeal circuit (that is, at the mid-poin! of the 60 min equilibration period), and the Iofusion of angiotensin II commenced 10 min later. Inhibition of angiotensin converting doses of angiotensin 1 (10 and $100 \mathrm{ng} \mathrm{kg}^{-1}$; Auspep).
Unclipping of 1 KIChypertensive rats
Unclipping of 1 KIChypertensive rats
Anlmals, Male Wistar rats ($200-220$ g) Animas. Male Wistar rats (200-220 g) were purchased from housed $2-4$ per cage, in a room maintained between 23 and $25^{\circ} \mathrm{C}$ with a 12 h lightdark cyde. Standard sat chow ($\mathrm{R}-34_{1}$ Lactamin, Vadstena, sweden) and water were provided ad libitum. The study was performectater prior approval from the Ulthics Committee for Animal Experimentation at Coteborg University.
Surgical and expertmental methodology. Under Ketarnine (58 mig kg^{-1} i.p.; Parke Davis, Warner Lambert Nordic $A B$, Solna, Sweden) and xyiazine $\left(7 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{I} . \mathrm{p}\right.$, Bayer Sweden $A B$,
Goteborg, Sweden) anaesthesia, is silyer dip (inner dizmeter 0.2 mm , width 1.5 mm) was positioned around the left renal artery and the right kidney was removed (Bergstrome et al 2001). Buprenorphine ($0.03 \mathrm{mg} \mathrm{kg}^{-1}$, Temgesic, ScherringPlough AB, Stockholm, Sweden) wes administered postoperatively for analgesia
Four to six weeks later, the terminal seute experiment was performed under sodium thiobutibarbitone ($120 \mathrm{mg} \mathrm{kg}^{-1}$,, US', Inectin, Research Biochemicals Ioternation al, Natick, MA, surgery and experiment by periodically testing corneal and toepinch refiexes, and cupplemented if necessary by additional intravenous bolus doses ($5-10 \mathrm{mg} \mathrm{kg}$) of thiobutabarbitone. The trachea was cannulated (PE-240), the tail artery was canaulated (PE 50) for measurement of MAP, the right jugular vein wes cannulated (PE 50), with the tip of the cannula pasitioned near he ngitatrium, for measurement of CVP and
infusion of bovine serum albumin ($2 \% \mathrm{w} / \mathrm{i}$ in $154 \mathrm{mmol} \mathrm{l}^{-1}$ $\mathrm{NaCl}, 4 \mathrm{ml}$ b=) throughout the surgery and expetiment, and the lef ureter was cunnulated (PE-10) for collection of urine. Heparinized 154 sumol $1^{-1} \mathrm{NaCl}\left(5 \mathrm{iu} . \mathrm{ml}^{-1}+1.2 \mathrm{ml}^{-1} \mathrm{~h}^{-1}\right.$) was infised via the tail attery catheter to maintain its patency. At the completion of the experiment, each rat was humanely
killed with an intravenous overdose of thiobutababitone (50 mg).
Experimental protocol. Ninety misutes after completion of the surgery, the anaesthetized rats were randomited to three diffecent experimental groups. In group 1 , the renal artery clip was manipulated but not removed, while in groups 2 and 3 the renal artery dip was removed. Group 3 was given 154 mmol 1^{-1} $\mathrm{NaCl}_{\text {intrivenously every } 5 \mathrm{~min} \text {, at a volume equal to urine }}$ flow over the preceding 5 min, acrass the 2 hexperimental periodional rabbit exiracopporeal circuit experiment. Urinury sodium concentration was measured by flame photometry as previously described (Bergstróm et all 2001), in pooled samples from the 30 min control period, and each of the two 60 min periods after unclipping or sham unclipping. Haematoerit was metsured in $100 \mu 1$ blood samples taken 30 min before the
unclippingfsham unctipping procedure and at the cormpletion
of the experiment, All vilues of $U_{n 1}$ and $U_{N_{2}} V$ are expressed per gram of wet kidney weight (g, mean $1.57 \pm 0.05 \mathrm{~g})$.

Stadistieal analyses

Data collected during the preparative phase of the rabbit experiment were subjected to andyyis of variance, partitioned to make specific comparisons between each state (conscious, anaesthetized and "circuit established'), and between animals receiving the 'angiotensin II clamp' (group 4) and conttol animais (groups 1,2 and 3). P values were conservatively forusted usiag he Ryan-Ho (Ludbraok, 1998).

Flgura 1. Renal haemodynamic responses io increased renal arterial pressure (Rap)
$5 y$ mbols and ector berr eepreseat the mean \pm s.e.M. of average In group 1 (O), RAP was muintuined at -65 mmHg fot the entre 90 min of the aperlment. In groupt 2-4, RAP was incerested to -160 mumis durfog periods 3 and $4(30$ min io total). Croup 2 (s) recelved no further restment, but groups 3 (1) and 4 (Δ) recelved $2 n$ intavenour infusion of compound sodtum lactate equal to
urine flow, durins periods 3 and 4 ("ardiat output clamp'). In addidion, group 4 had been pre-tretted with the angiotensin converting enyyme inhibitor enalapritat ($2 \mathrm{mg} \mathrm{kg}{ }^{+}$plus $10 \mathrm{gg}_{\mathrm{kg}} \mathrm{kg}^{-1} \mathrm{~min}^{-1} t \mathrm{v}$.) and also received an Lotravenous infurion of argiotensin Π ($40-50 \mathrm{ng} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$) to restore mean arserial pressure and renal blood fow to basclioe levels (anglotensin sesistance In this and subsequent figures, tome gymbols see obscured because the data points are coincident

In the rabbit experiment, we compared the levels of variable during the final 15 min of the period of incteased RAP, with the final 15 min of the eonerct period. In the rat experiment, we compared the levels of variables during the final 15 min of the experiment ($105-120$ min after unclipping) with those during the 30 min control period Our specicic hypotheses were th whe changes in these variables between these two time petiods used unpaired t tests to specifically compare the changes in group 1 with group 2 , group 2 with group 3 , and (in the rabblt experiment) group 3 with group 4. Pyalues were conservativel adjusted using the Ryin-Holm-Sidak (Ludbrook, 1998) procedure to sccount for the fact that muitiple comparisons
were made (three for the rabbit experiment and wo for the rat experiment). $P<0.05$ was considered to be statistically significant.

RESULTS
Baseline haemodynamic variables in rabbits Levels of haemodynamic variables in conscious and anaesthetized states were ximilar to those we have observed previously (Evans \& Bergström, 1998; Shweta et al 1999)
 and $4 R$ was 35 I 11 beats min ${ }^{-1}$ greater in the anaesthetized compared with the consclous state Once the ertracorporeal circuit was established, MAP and CO returned to level similar to the conscious itate, although $H R$ remained elevated (by 39 ± 7 beats min^{-1}) compared with the conscious state (Table 1). Resting levels of all haemodynamie variabies, including RBF and renal vascular resistance (RVR), were elosely similar in rabbits treated with enalaprilatangiotensin II (group 4; 'anglotensin clamp') compared with those in rabbitu not given this treatment (Table 1). The enalaprilat treatment completely abolished increases in MAP in response to 10 and $100 \mathrm{ng} \mathrm{kg}^{-1}$ angiotensin t , which Iveraged $3 \pm 1 \%$ and $8 \pm 2 \%$, respectively, in rabbits from and $t=3 \%$, respectively, in rabbits from group 4 .
Responses to increased RAP in rabbits
Group 1. In these animals, in which RAP was maintalned at -65 mmHg for the entise 90 min of the experiment, at -65 mmlig for the entire 90 min of the expeniment, (Fig, 2) and systemichaemodynarnic(Figt 3 and 4) vertables and levels of plasma renin activity (Fig. 5) zemained relatively stable.
Group 2. When RAP was increased to -160 mmHg , P. Br increased from 12 ± 2 to $44 \pm 5 \mathrm{~m} / \mathrm{min}^{-1} \mathrm{~g}^{-1}$ and RivR was reduced from 5.8 ± 0.7 to $3.8 \pm 0.4 \mathrm{mmHg} \mathrm{mil}^{-1}$ ming (Fig. 1). As the same time, GFR increased from 1.5 ± 0.5 to $5.7 \pm 1.0 \mathrm{ml} \mathrm{min}^{-1} \mathrm{~g}^{-1}, U_{\mathrm{rdx}}$ increased from 0.07 ± 0.04 $t 0.1 .88 \pm 0.22 \mathrm{ml} \mathrm{min}^{-1} \mathrm{~g}^{-1}, U_{\mathrm{w}}, V$ increased from 9 ± 5 to $186 \pm 14 \mu \mathrm{~mol} \mathrm{~min}^{-1} \mathrm{~s}^{-1}$, and the fractional excretions of sodium and urine increased from 7 ± 1 to $41 \pm 2 \%$ and from 9 ± 1 to $45 \pm 3 \%$, respectively (Fig. 2). Fillration fraction didnot change significantly (Fig. 2).

Tabio 1. Resting haemodynamic varlables according to state (consclous, anaesthetized or with the extracorporeal clrcult established) and group									
	MAP	HR	CO	CVP	SVR	SV	RAP	RBF	RVR
Control ($n=18$, graups $1-3$)									
Consciout	84 ± 2	224 ± 5	137 ± 7	-	0.55 ± 0.03	0.68 ± 0.03	-	-	
Anateshetixed				1.1 ± 1.1					
Circuitestrolished	83 ± 3	$260 \pm 6^{*}$	143 ± 9	1.9 ± 0.7	0.51 ± 0.04	$0.36 \pm 0.04^{*}$	66 ± 0.4	14.2 ± 1.1	5.5 ± 0.4
'Renin-20statensin									
Conseloss	90 ± 3	201 ± 6	152 ± 19	-	0.62 ± 0.06	0.77 ± 0.08	-	-	-
Anseshecized	$70 \pm 5{ }^{\circ}$	241 ± 90	117さ6*	0.0 ± 1.1	0.61 ± 0.07	$0.49 \pm 0.01{ }^{* *}$			
Circultestablinhed	82 ± 3	253 ± 7	157 ± 9	1.2 ± 0.7	0.53 ± 0.03	0.62 ± 0.05	66 ± 0.5	11.1 ± 0.7	6.1 ± 0.4
$P_{\text {Pmem }}$	<0.001	<0.001	0.006	0.22	0.99	<0.001	0.83	-	- 0.21
 groupt 1-3 compared with group 4 (d.f. 1,5-40). Pan tests for hetero genely according to state (d.f. 2, 45). Specific comparisons were made wilhin tach group by patitioning the ansi-yis af variance: $p<0.05$, were derived for each vatiable (except for RAP, RVR and RBF), the Ryan-Holmo-sldak (step-down) procedure was applidit these P viluestoprotect agzinst heingessed risk of type i error.									

There was also 1 drainatic depressor response to increasing RAP. MAP fell from 83 ± 4 to $54 \pm 5 \mathrm{mmHg}$, and systemle
$0.52 \pm 0.05 \mathrm{~m}^{2} \mathrm{~m}$ (m^{-1}) decreased from 0.63 ± 0.04 to
$0.52 \pm 0.05 \mathrm{mmHg} \mathrm{mal}^{-1} \mathrm{ming} \mathrm{g}$. CVP wat also reduced
from 2.4 ± 1.7 to $-0.2 \pm 1.3 \mathrm{mmHg}$ (Fig. 3). CO fell
from 132 ± 6 to $105 \pm 4 \mathrm{ml} \mathrm{min}^{-1} \mathrm{~kg}^{-1}$ and SV fell from 0.49 ± 0.02 to $0.39 \pm 0.01 \mathrm{mal} \mathrm{kg}^{-1}$. Haemstoctit increased by $1.5 \pm 0.6 \%$. HR remained relatively constant across the 90 min experimental period (Fig. 4).

Figure 2 . Renal excretory responses to incrased renal artery pressurt 5 smbol, ecror bars and treatruenta ate a for F, oftration fraction; FE, fitation rate; ofurlnc; $U_{\text {rad }}$ urine liown FE_{m} frtactional sodlum excretion; $U_{M L} V$, sodium excretion.

increased to -160 mmHg during this period, developed a markedly negative sodiam balance ($-14.4 \pm 2.2 \mathrm{mmol}$ $\mathrm{Na}^{4}, P_{\text {puit }}=0.004$ compared with group 1). In group 3, in which RAP was set to -160 mumHg during this petiod, and compound sodium lactate was infused at 1 rate equal to arine low, cumulative sodium balance was not significantly different from that in group $1(-3.7 \pm 26 \mathrm{mmol} \mathrm{Na}$; $\left.P_{\text {rewp }}>0.14\right)$. However, despite volume replacement and a stable MAP in group 4, a smill but significant negative
sodium bancr Seveloped ($-6.7 \pm 1.9 \mathrm{mmol} \mathrm{Na}$ 0 dium balaner, Seveloped ($-6.7 \pm 1.9 \mathrm{mmol} \mathrm{Na}$; $p_{\text {poup }}=$ 0.03 compared with group 1)

Responses to unclipping of IKIC hypertensive rats Compared to control levels, MAP had fallen by $54 \pm 10 \mathrm{mmHg}$ during the period $105-120 \mathrm{~min}$ after unclipping in group 2 rats. This was essociated with increased $U_{\text {rad }}\left(\right.$ from 4 ± 2 to $156 \pm 26 \mu 1 \mathrm{~min}^{-1} \mathrm{~g}^{-1}$) and $U_{\mathrm{ma}} V$ (from 0.2 ± 0.1 to $\left.17.1 \pm 3.3 \mu \mathrm{~mol} \mathrm{~min}^{-1} \mathrm{~g}^{\prime \prime}\right)$ during he first 60 min after unclipping. In the second hour after nnelipping, $U_{\text {ted }}\left(58 \pm 11 \mu \mathrm{~min}^{-1} g^{-1}\right)$ and $U_{\mathrm{Na}} V$ ($7.6 \pm$ $2.1 \mu \mathrm{~mol} \mathrm{~min}^{-1} \mathrm{~g}^{-1}$) reduced towards baseline levels. In contrast $U_{\text {rad }}$ and $U_{\text {me }} V$ remained relatively stable in group 1 rats, in which the elip was manipulated but not removed, and MAP did not change $(+3 \pm 6 \mathrm{mmHg}$ change). In group 3 rata, which received 154 manol l^{-1} NaCl intravenously after unclipping, at a rate exactly matched to $U_{v i t} U_{\text {wa }}$ remained elevated for the 2 h of the study (249 ± 46 and $265 \pm 57 \operatorname{\mu l~min}^{-1} \mathrm{~s}^{-1}$. respectively), ar did $U_{s,} V\left(30.4 \pm 5.9\right.$ and $32.8 \pm 6.6 \mathrm{\mu mol} \mathrm{~min}^{-1} \mathrm{~g}^{-1}$. respectively). MAP fell by $14 \pm 9 \mathrm{mmHg}$ in group 3 , signiacandy less than that observed in group 2 ($P_{\text {vew }}=$ 04 , bserved 1 her shan

Flgure 5 . Responses of plasma renin activlty to increased enal artery pressure
Columas and etror bars represent the mean \pm s.em of plasma renin activity t the ends of periods $1,3(\mathbb{Z})$ and $5(n=6)$. Groups
are as for Fig 1. Ang 1 , angiotensin I .
groups across the course of the experiment (Fig. 6). frematocrit fell simiarly in all groups, averaging $43 \pm 1 \%$ uring the 30 min tontrol period, and $37 \pm 2 \%$ at the completion of the experiment
In group 1, cumulative sodiam balance was slighty positive ($+1.03 \pm 0.20$ minol $\mathrm{Na} \mathbf{a}^{+}$). Group 2 , in which the ciip was semoved from the renal artery, developed a negative sodium balance compared with group 1 ($-0.76 \pm$ $0.41 \mathrm{mmolna}{ }^{+}, P_{\text {pow }}=0.04$). In group 3 , in which the clip was removed and isotonic NaCl was infused at a rate equal to Una, cumulative sodium balance was positive and ignificandy greater than that in group $1(+3.10 \pm$ $0.31 \mathrm{mmol} \mathrm{Na}{ }^{+}, P_{\text {axp }}=0.006$).

DISCUSSION

Our important new finding was that in two models that have been used for stadying the putative satihypertensive hormonal function of the kianey, the terte depressor responses to inctrased RAP were abolished or greatly hunted when urinary fluid excrecion whs matehed with ntravenous infusions of isotonic salt solutions. We bese modis an be chiefly scounted for by hese models can be chielly acco exce prob, depressorhormone

Figure 6. Systemic haemodynamic responsos and urine output atter removing the dip from the renal artery (undipping) of $1 \mathrm{kldng} \mathrm{y}-\mathrm{i}$ dip hypertenslve rats Groups ate sham-undipping (group 1; 0), undipping (igroup 2; Co urine fow (fing in rate CVP, sentrol venaus pressute, U, urine fiow (expressed per 8 of tissue wet weight).
lecause our conelusions draw heavily on results obtained using the rabbit extracorporeal circuit model, our first zim was to assess the status of systemic haemodynamics inder these experimental conditions. MAP and CO were substantially reduced and HR increased in anaesthetized rabbits, when compared to the consciour state. In contrast, CO and MAP in rabbits with an established extracorportal creuit were closely similar to values obsen RAP was maintained at -65 mmHg over the 90 min course of the experiment Thus, our observations of the responses to ocreated RAP are unlikely to be confounded by the haemodynamic conditions of our experiment. Furthermore, the 'cardiac output clamp' (rabbits in groups 3 and 4) effectively maintained heernatocrit, SV and CO in the fate of incerased $U_{\text {mat }}$, when 只AP was increased to $\sim 160 \mathrm{mmHg}$. The aim of the 'angiotensin clamp' (group 4) was to provide inhibition of endogenous engiotensin II generation, while avoiding the potential γ confounding effects of hypotension and renal visodilatation that normsily attend ahibition of angiotensin converting enzyme. This sim was met, as evidenced by the abolition of responses to intravenous angiotensin 1 , while resting gystemic and renal haemodymanles were similar to those in anaesthecized abits from the other three groups.
When RAP was incressed from 65 to 160 mmHg in the extracorporeal circuit model, RBF and GFR increased, and RVR decreased. This apparent absence of autoregulatory behaviour prodabiy reflects the relatively narrow range of utoregulation is this preparation, which extends only from bout 80 to about 110 mmHg (G. A. Eppel \& R G. Evens, unpublished observations). The great merit of this preparation is that it ajows Rap to be increased in vivo, to evels greater than systemic arterial pressure. In the present kudy, dis allowed us of inver ugate we factors contributing ot the scute depressor response to increased RAP.
When RAP was increased in anaesthetized rabbits that bad not received the 'ca:diac output clamp' (group 2), MAP fell. This depressor response was associated with increased $U_{t a}$ and $U_{4} V$ negative sodium balance, increased
 significant reduction in SVR. Thus, it appears to result predominately from reduced CO mediated by pressure diurecis/natriuresis. This bypothesis was confirmed in abits treated with the 'cradiac output clamp' (group 3). this group cumulative sodium balance was maintained, so that reductions in haematocric SV and CO were prevented, and no significant depressor response was observed. The response to incressed RAP in rabbits from roup 2 resembles that to haemornhage in constious rabbits fter sino-noric baroreceptor denervation, in which SVR fellis as CO is reduced (Schadt \& Ludbrook, 1991; Evans et al. 2001). In contrast, the usual response to haemorrhage
or acute central hypnvolatmia in unanaesthecired rabbits (and indeed all mammals in which th has been studied). consists of two distinet phases. In the first (compensatory) phase MAP is maintained in the face of a falling CO, chiefly by reflex increases in sympathetic vasomotor drive and so SVR. This is followed by a decompensatory phase in which this reflex sympthetic activation fails, and SVR and MAP fall precipitously (Schadt \& Ludbrook, 1991). However, some general anaesthetic agents blunt the compensatory phase, presumably. by inhibiting baroreceptor-mediated increases in sympathetie vasomotor drive (Evans of at 2001). Pentobarbitone aneesthesiz also greatly bunts cardiovascular reीlexes (Morita et al. 1987), so it is hardly urprising that SVR did not increase in response to increated RAP in rabbits from group 2. SVR actualiy fell in cesponse to incressed RAP in rubitu from group 2 , which. like the reduction in SVR seen during haemorrhage in ino-aortie baroreceptor denervated rabbits, might be secondary to the depressor response itsell, perhaps arough local autoregulatory mechanisms (Schadt \& Ludbrook, 1991). Consistent with this, the 'eardiac output clamp' also abolished the progressive reduction in SVR during increased RAP.
Our experiments using IKIC hypertensive rats complement our rubbit experiments, in that they show that the depressor esponse to unclipping is associated with tr ansient diurela and natriuresis, and is greaty blunted when fiuid and sodiurn depletion is prevented by administration of isotonic salire. However, in contrast to the rabbit experiments, our volume replacement regimen in rats resulted in a stighty positive cumulative sodium balance. This is unlikely to have confounded our observations, since administration of even large volumes of isotonic saline has litue effect on AP in normovolaemic, inacin-anaesthetized, rats (Keelc: \& Wison, 1969). Our observations therefore contrast with those of Neubig and Hoobler (1975), who found similar depressor responses to undipping in IXIC hyperiensive rats, regardiess of whether sodium buance was maintained by intravenous infusion of isotonic saline. However, they are consittent with studies showing that the normalization of arterial pressure after unclipping is deleyed or blunted by 4 surgical utetero-caval enastumosis or saline losding (liard \& Peters, 1970; Muithead \& Brooks, 1980). All of these earlier studies were confounded by the fact that unclipping was performed under relatively long-aeding anzesthessa (pentobarbitone of ether), from which the animals recovered during the experimental period. This was obviated in the present study by performing the enuire study under tighly controiled and stabie (inactin) anaestiesia. We therefore conclude that the acute depressor response to increasing RAP by unclipping 1KIC hypertensive rats is most probably chiefly dute to reduced extracellular fiuid volume, resulting from pressure diuresis/natriurests.

Our tesults also confirm and extend previous evidence indicating that the renin-angiotensin system plays litue or no role in mediating the depressor response to increased RAP in the rabbit extracorporeal circuit model (Christy at al. 1993). since systernic haemodynamic responses to increased RAP in rabbict receiving both the 'cardiac output clamp' and the 'angiotensin clamp' were indistinguishable fom those in the group receiving only the cardiac outpu clamp. This hypothesis is further supported by our be course of the opriment plasma tenin activity does the course of the experiment .lasma renin acaviy does protocils using this model (Bergstrom \& Evars, 1998. protocols using ehis nodel (Decgratm \& Now, lating hatf-life of renin probably prevented substantial changes in its circulating activity aross the relatively short timein its circuiabing activity actoss the relatively short ime
course of the present experiment.

Our present observations prompt reinterpretation of our previous studies emploping the rabbit extracorporeal circuit model. because observations regarding the depressor response to increased RAP had previcusly been interpreted in the context of release of a putative renomeduliary depressor hormone. For example the fact that the depressor response to increasec RAP was aboushed in et at 1991) and in rabbits in which meduther blood ef ah igh). and in rabbis in which medalkry blood now was reduce by med nuparting thenotion hat increased medullary blood fiow supporing here of the putetive rent medulary depressor mediates telease of the putative renal medulary degresso
hormone in response to increased PAP. However, these treatments also blunced the pressure diuresis/natriurecis response (Curisty et ot 1991; Correia et al 2000), which probably made important concributions to thetr efferts on the systemic haemodynarnic responses to increased RAP.
In contrast, our present results are difficult to reconcile with oar previous observation that medullary interstitial infusion of the V_{1}-agonist [$\left.\mathrm{Phe}^{2}, \mathrm{D}=, \mathrm{On} \mathrm{In}^{\prime}\right]$-vasopressin blunted the depressor response to increased RAP, since the pressure diuresis/natriuresis response during V_{1}-receptor stimulation was, if anything, slighty greater than that of control rabbits (Bergstrotm \& Evans, 1998; Evans et al. 1998a). interpreted in the lightor our present Endings, this previous observation could posibly reliect en effect of V_{1}-receptor activation on the systemic haemodynamic response to hypovoiaemia. Ihis notion is consistent with the proposed roles of both central nervous system (Johnson er ail 1988) and peripheral (Schadt \& Ludbrook, 1991) V_{1}-teceptors in recovery from severe hypovolaemia. Furchermore, because significant systemic spill-over occurs when agents are infused into the renal medullary interstitum of tabbits (Evans et al 1998a; Correia et at.
1999). (Phe', Me', Orn')-vasopressin could have gained access to these sites when administered via this route.

In conclusion, the results of this study indicate that the depressor responses to increased RAP, in both the extacorporeal circuit model in rabbits and after unclipping in 1 KIC hypertensive rats, is chiefly due to hypovolaemia secondary to pressure diuresis/natriuresis, and not to release of a putative renal medullary depressor hormone: This conclusion is based on our finding that the depressor or greaty blunted when urinary fuid losses are replaced by or greaty blunted when urinary huid losses are replaced by mances renal medullary depressor hormone ever though they renal medullary depressor hormone, even though they RAP. This calls for reinterpretation of previous studies by ourselves (Chrity et at 1991, 1999; Bergite ${ }^{\circ}$ at al 1995, 1998, 2001; Thomat es al 1994, 1995, 1996; al. 1995, 1998, 2001; Thomat et aL 1994, 1995, 1996;
Bergstrom \& Evans, 1998: Evans et al 1999b; Correia etal. 2000) and others (Muirhesd \& Brooks, 1980; Bing et al. 2000) and Others (Muirhesd \& Brooks, 1980; Bing et al.
1981; Muirhead \& Pitcock, 1985; Karlstrem \& G8thberg 1981; Muirhead \& Pitcock, 1985; Karlstrem \& Gothberg.
1987; Muirhead, 1990; Zou et al 1995) using uhese models. Furthermore, allhough our findings do not provide direct Furthermore, al though our indings do not provide direct
evidence against the existence of 2 putative renal Iredulary evidence against the existence of a putative renai reedullary prescure diuresis/natriuresis in mediating the scute antilypertensive function of the kidney.

REFERENCES

Beagrtaiow, G. \& Evans, R. G. (1998). Effect of renal medullary Infusion of a veogreasia V, rgocitit on renal antihypertensive R76-45.
Bingstrid, G., Gothaznc, G, Kanlotion, G. \& Ruozmith, J. (1998). Renal medulary blood fow and renal medullary antihypertensive mechanisers Clinical and Experiniental Hypertention 20, 1-26.
 Effects of cbe ET/AET, anta gonist, TAK-O44, on blood pressure ikidner-one-dip hypertensive rate fournal of H inpertension 19 . 659-655.
 KuxLTTSOM, G. (1995), Renal and haemodymaraic effect of nitric oxide blockade in a Wistar esay rat during high pressure cors Scorefínatica 154, 241-252.
Bime. R E. Rusinll G.1.Swales.J. D..Thunston, H. \& FLetcrzh, A.(1981). Chenical tenal mefullectomy effect upon reveral of two-sidnty, one-dip hypertension in the rat. Clinial Science $61,3355-3385$.
 PItcock, , M, MADDtPATt, K. R. \& Maxty, K. M. (1994).
Purification of dass I medulipins from isolated noimal kidneys perfused under high pressure with saline. BloedPrennarr 3.407-117.
 Hyperiension 21, 149-154.

Chaistr, 1.J., Woods, R. L, Cournezx, C. A. Denton, K. H. 2 ANDERSON, W. P. (1991). Evidence for I tenomedullaty visodeprestor sptem in rabbiss and dogs. Hyportension it 325-333
Conkith, A. G., Bencstribu, G. inwzwer, A. I. \& Evans, R. G. (1ss). Aenna medutlar thterstitial infusion of nocepinepphrine tix foumal of Phytioleg 277, R112-122.
O O O O
 (2000). Effectoof tenzi Anedulary ind incravenour noteppinephin
on renal an! hypertensive functien. Hephen of arterial blood ziessucte. Phyriological Reviews 7, 231-300.

 regioned kidner perfustion and renal ecretory function in
anesthedred fabb
571-581. 571-581.
 Wcid on cenal . Anterts of intrarenal liffuion of 17 -octadeçno

 Acta Physiolegica Scendinavita 169, 30ヶ-316.
Evans, R. G., Ventuma, S. V., Dampary, R.A.L. \& Ludzeoos, (2001). Neural mechantims in the crediovasuular raponder seuts centril byporolatmia. Clinicelastd Expzrintenta

 12, 405-412.
Canistasa, G. 2 (Gornama, G. (1987). The humorally mediated entihypettensive system of the rot kidner: s physiological depressor mechenism! Journal of Hypertensions (suppl. 5) 591-594.
hypervolemis is thseat in rats with papilitry necrosis. American hypernitemin is staseat in rats with
Journat of Phypioleg 257 , R422-26
LAARO. I - F. \& Pertik, G. (1970). Mechanism of the fall in blood presure after' unclamping' in rats with Geldblat-tppe hypertension. Experatria 26, 743-745.
Ginicolend Experimental Pharmocology and Phricioa 25 , 1032-1033.
 of pentobarbital antetheia on cent itympzitetic nerve activity in Muraume, E. E. (1999). Medulipin vistem ofbleod presure concral. News in Physiological Sdienced 5, 14i-244.
Murakend, E. E \& Bxooki, B. (1900). Reversal of one-kdidney, onedip hypertention by unclipping the renal, sodium-volume relationship teexamined. Procerding of the Sojiey for

 Nsuatc, R. R. \& Hocitat, s. W, (1973). Revetsal of chronic renal hypertension: role of nsit and water errection. P10, 254-236.
Sociey for Experinitennal Biatagy and Medifine 150, Schadt, J.C. \& Lubaroox, I. (IS91). Hemodymamile and neurohumeral responses to atute hypovolemla in consecious Shwzta, A., Macten, S. C., Andenton, W. P.\& Evans, R. G. (t999) Effects oinaloxone on die haterodymanic and renal functional eesponses to plasma volume expansion in conscious rabibitu. Pflayert Anchiv d39, 150-157.
THoNAS, C.) ANDIKSON, W. P. \& WOODA, R, L. (I998), Nitric oxide lnhblition does not prevent the hypotensive responus to Pharnatceleng and Phystiology 22, 345-351.
Thomas, C. I., Woops, R.L. Evans, R. C., Atconn, D. Chitern i. f. \& Antextow, W, P. (1996). Evdence for a renomedulaty veodepressor hormone Clinitict and Experinceural Phammesolegy and Physiolory 23, 777-7as.
Trosas, C. In Woins, R. L., Gno, Y. \& Anosnsow, W. P. (t594).
 ZOU, A.-P., MUIAMIAD, E. E, COWL
 trial hem the cremel otomithar the reversal to one kidney, one dip hypertension. Journel of

Acknowledgertents
This work was supported by grants from the National Health and This work was supported by grants from the National 14edin),
Medical Research Council of Autralia (977713, National Heart Foundation of Australia (G OOM O633), the Ratmaciotit Found Fitiont (A6370), the Swedish Medical Rejearch Council (12880), the Inga Britt and Arme Lundberg Foundation and the Swedish National Heart and Lung Foundation.

Responses to examiners reports

I would like to thank both examiners for their thoughtful comments regarding my thesis. In response to the majority of Professor Lumbers comments, I have made specific changes by means of this addendum, which is to be attached to the back cover of the thesis. I also include here reprints of the 4 papers that have arisen directly from the work described in this thesis (Correia et al. 1999, 2000, 2001 and 2002). I also include a $5^{\text {th }}$ reprint, describing work that was carried out during my PhD candidature (Evans et al. 2000), but was not included in my thesis because it also included the work of others. You will also note that some of the experiments described in Correia et al. (1999) were also not included in my PhD thesis, since they formed the basis of my B.Sc. Honours thesis (Correia 1997).

For the most part, I have responded directly to each comment with a specific entry in the addendum. However, I do disagree with one or two of these comments, and so my rebuttal to these are given below.

Chapter 4: Noradrenaline infusion and renal antihypertensive mechanisms

The examiner raises the interesting issue that plasma renin activity does not seem to fall in response to increased renal artery pressure in rabbits receiving medullary interstitial infusions, but does in rabbits receiving intravenous infusions. I did not formally test whether this apparent effect is statistically significant, since it was not one of our a priori hypotheses. I have no plausible explanation for it, other than it might simply reflect biological variation between rabbits, so have elected not to discuss this issue in detail in the thesis.

Chapter 5: Factors mediating depressor responses to increased renal artery pressure

The examiner raises the issue of autoregulation of renal blood flow under the conditions of the extracorporeal circuit. In the extracorporeal circuit model, RAP is increased by diverting blood from the vena caval arm of the circuit towards the renal arm of the circuit using a mechanical (Starling) resistor, but without changing the total flow through the circuit. There are a number of differences in the nature of the renal vascular responses observed in this extracorporeal circuit model compared with conditions under which autoregulatory behavior is nomally studied. The most commonly used method for studying renal autoregulatory behaviour involves placing adjustable clamps either on the aorta (especially in smaller species such as rats) or renal artery (especially in larger species such as dogs), so that renal artery pressure can be reduced to levels below systemic mean arterial pressure. In contrast, the model we have used in this study allows renal artery pressure to be set to any level, above or below systemic arterial pressure. We chose to set renal artery pressure at levels ranging from the lower end of normal for a conscious rabbit (65 mmHg) to levels clearly in the 'lypertensive range' (160 mmHg). Thus, as shown in the adjacent figure, our experiment examines renal vascular responses over a different range of perfusion pressures than does the 'conventional' preparation.
The other important difference between these two experimental paradigms concerns the relative abilities of the renal vasculature to modulate flow in response to changes in renal aricry pressure between

Autoregulation of Renal Blood Flow

Renal Artery Pressure the two preparations. In the 'conventional' preparation in the rat, where clamps are placed on the aorta, there are a number of resistive vascular beds in parallel, so that when renal vascular resistance increases in response to increased perfusion pressure, blood flow can be diverted to other (less well autoregulating) vascular beds. In contrast, in the extracorporeal circuit preparation the renal vascular bed is the only non-mechanical resistor in the system, so that renal blood flow
must increase when renal artery pressure is increased. Under these circumstances, autoregulation is seen as an increase in renal vascular resistance when renal artery pressure is increased, up to levels of around 110 mmHg (see Figure 4.4 in thesis). Nevertheless, it is correct to say that both renal blood flow and glomerular filtration rate increase when renal artery pressure is increased. Renal blood flow increases, despite the fact that renal vascular resistance increases as RAP is increased up to 110 mmHg , because the autoregulatory response is limited by the fixed rate of the pump and the high resistance of the vena caval limb. In this respect, the extracorporeal circuit model differs from the 'conventional' model for studying autoregulation, in which these variables remain reasonably stable as RAP is altered. Recently, a member of our research group (Dr Gabriela Eppel) performed a systematic study of the behaviour of total renal blood flow, and cortical and medullary blood flow, when renal artery pressure is altered with the extracorporeal circuit, and with a supra-renal aortic cuff. The major impetus for this new work, which has recently been submitted to American Journal of Physiology, was my findings in Chapters 4 and 5.

Chapter 6: V_{1}-receptors, medullary blood flow, and glomerular arterioles

The examiner questions whether previous studies have investigated the effects of medullary interstitial infusion of a vasopressin V_{1}-agonist. This has been done previously within our laboratory (Evans et al. 1998a; Bergström and Evans, 1998). Interestingly, the effects of intravenous, renal arterial and medullary interstitial [Phe $\left.{ }^{2}, \mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$-vasopressin were indistinguishable, but did not include increased GFR. The increased GFR observed in my experiment during infusion of [$\mathrm{Phe}^{2}, \mathrm{Ile}^{3}, \mathrm{Om}^{8}$]-vasopressin might be secondary to its pressor effect, as discussed on page 143 of my thesis

Other Attachments

1. Specific Amendments to the Thesis

2. Reprints of papers published during PhD candidature

Correia AG, Bergström G, Lawrence AJ, Evans RG (1999) Renal medullary interstitial infusion of norepinephrine in anaesthetized rabbits: methodological considerations. American Journal of Physiology, 277, R112-R122.
This paper describes work from my B.Sc. Honours thesis, and from Chapter 3 of my PhD thesis.
Correia AG, Madden AC, Bergström G, Evans RG. (2000) Effects of renal medullary and intravenous norepinephrine on renal antihypertensive function. Hypertension, 35, 965-970. [Chapter 4]

Evans RG, Correia AG, Weekes SR, Madden AC. (2000) Responses of regional kidney perfusion to vasoconstrictors in anaesthetized rabbits: dependence on agent and renal artery pressure. Clinical and Experimental Pharmacology and Physiology 27, 1007-1012.
This paper describes experiments that were performed during my PhD candidature, but were not included in my thesis.

Correia AG, Denton KM, Evans RG. (2001) Effects of activation of vasopressin- V_{1}-receptors on regional kidney blood flow and glomerular arteriole diameters. Journal of Hypertension 19, 649-657. [Chapter 6].

Correia AG, Bergström G, Jia J, Anderson WP, Evans RG. (2002) Dominance of pressure natriuresis in the acute depressor response to increased renal artery pressure in rabbits and rats. Journal of Physiology, 538, 901-910. [Chapter 5, plus the supplementary experiment described in Chapter 7].

Specific Amendments to the Thesis

Summary

Page (i), paragraph 1, replace $2^{\text {nd }}$ sentence with:

This hypothesis is based on the notion that increasing renal artery pressure (RAP) sets in train three mechanisms that exert antihypertensive influences; renal renin release is reduced, thereby inhibiting the activity of the prohypertensive renin-angiotensin system, urinary excretion of salt and water increases and thirdly, the putative renal meduilary depressor hormone may be released.

Page (i), paragraph 2, add udditional sentence at the end:
These regions include the juxtamedullary cortex and outer medulla, which house vascular elements likely to be important in the control of medulla:y blood flow, the arterioles of juxtamedullary glomeruli, and the outer medullary descending vasa recta respectively.

Page (i), sentence beginning on the last line should read:

However, our conclusion regarding the putative renal medullary depressur hormone remains controversial, particularly since the observation was made that the diuresis/natriuresis increased exponentially with step increases in renal arterial pressure.

Page (ii), last paragraph, line 5-6 should read:

The vasopressin agonist reduced renal medullary blood flow approximately 30% without reducing cortical blood flow.

Chapter 1: Introduction

Page 6, following paragraph 2, the following discussion of the function of the macula densa should be

 inserted:These mechanisms operate in concert to regulate renin release, and so the activity of the renin-angiotensin system. Increased renal sympathetic nerve activity increases renin release via activation of β-adrenoceptors on the juxtaglomerilar cells. Sympathetic stimulation also has other effects on the kidney that are important in blood pressure control, and these are described in Section 1.5.1 (page 30-22)

Macula densa mechanisms

The macula densa cells occupy the epithelium of the juxtaglomerular apparatus, and detect changes in volume/solute delivery to the distal tubule (Guyton and Hall, 1996). Decreased GFR will slow the rate of delivery to the loop of Henle, and thereby reduce the concentration of sodium chloride at the macula densa cells. This reduced concentration in sodiun/chloride ions initiates a signal from the macula densa producing two effects; (i) a reduction in resistance of the afferent arterioles, which raises glomerular hydrostatic pressure and helps to return GFR towards normal, and (ii) an increase in renin release from the juxtaglomerular cells of the afferent arterioles (Figure 1.5). These two components of the tubuloglomerular feedback mechanism, and the position of the cells, on the juxtaglomerular apparatus, provide feedback signals to both the afferent and the efferent arterioles for efficient autoregulation of glomerular filtration rate during changes in arterial pressure.

Figure 1.5 (below)
Macula densa feedback mechanism for autoregulation of glomerular hydrostatic pressure and glomerular filtration rate during decreased renal arterial pressure (From Guyton and Hall, J990).

Page 6, paragraph 4, line 5:
Replace aldesterone, with aldosterone.
Page 7, insert new sentence after paragraph 3
Within the central nervous system, angiotensinergic systems stimulate thirst and sait appetite, enhance resting sympathetic drive, and can blunt responses to the loading of arterial baroreceptors (Wacber et al. 1986., Cowley, 1992., Guyton and Hall, 1996).

Page 8, Last paragraph, sentence starting on line 1 should read:
Collectively, data suggest that angiotensin II is generated within the kidney, providing it with both paracrine and/or autocrine functions as well as the classical endocrine hormone functions.

Page 10, paragraph 1, last sentence should read:

The reason for the inability of 'hypertensive kidneys' to effectively excrete sodium and water when perfused at normotensive pressures remains uncertain, however an intrinsic impairment of the pressure diuresis/natriuresis mechanism, rather than abnormalities of the neural and/or endocrine control of the kidney, seem likely (Liard. 1977: Cowley and Roman, 1983).

Page 10, last paragraph, first sentence should read:

According to studies performed by Khraibi and Knox (1988), and Roman and Kaldunski (1988), reduced renal MBF is the only notable change in renal haemodynamics, in young and adult SHR and WKY rats, since RBF, CBF , and GFR remain unchanged.

Page 13, third sentence of paragraph 2 should read:

With the assumption that para-aminvhippurate (PAH) is only extracted in the renal cortex (which is now known to be false (Hansell, 1992), and that increased MBF reduces PAH extraction, they concluded that volume expansion (or increased RAP) increases MBF, which in turn inhibits water reabsorption in the thin descending limb of the loop of Henle, secondary to the loss of the medullary solute gradient.

Page 13-14, first sentence of last paragraph should read:

Thus, increased MBF dissipates the medullary urea gradient, which may contribute to the pressure natriuretic response through the inhibition of water reabsorption in the thin descending loop of Henle, and by increasing the conductance of the paracellular pathway to ions in the proximal tubule, thin descending loop of Henle and thin ascending loop of Henle (which in the rat, are all highly permeable to sodium and chloride).

Page 16, paragraph 2

Replace 'ureteal', with ureteral

Page 17, paragraph 1, last sentence should read:

The ultimate goal of complete chemical characterisation of the active principle(s) in these lipid extracts has, however, remained elusive.

Page 18, from end of line 7 it should read:

It was argued, in these experiments that the reductions in MAP were not due to volume depletion triggered by the pressure-natriuretic-diuretic response, as all experimental animals were in positive fluid balance at all tmes.

Page 19, paragraph 3, first sentence should read:

While the components of the lipid inclusions have not been fully characterised, histochemical studies have shown them to consist largely of saturated and unsaturated lipids.

Page 19, paragraph3, lines 3-4 from bottom of paragraph should read:

Medullipin I is inactive, and appears to require 'activation' by cytochrome P-450 during the passage through the liver to form medullipin II, which has powerful depressor actions.

Page 24, paragraph 3, line 1 should read:

The inner stripe of the outer medulla remains the most constant component (across species) of the medullary circulation.

Chapter 2: General Methods

Page 43, paragraph 2, sentence beginning on line 7 should read:

The circuit was initially set to withdraw blood from the distal aorta, and return it to the distal vena cava, below the level of the renal veins, at a rate of $70 \mathrm{ml} / \mathrm{min}$ (Figure 2.1).

Page 46, (insert) below text

Figure 2.2
Sites of insertion of laser-Doppler flow probes, for measuring cortical and medullary blood flow in the kidney.
Page 51, paragraph 1 (continued from page 50) should read:
Six afferent and efferent vessels were randomly selected for analysis from each region of the cortex (superficial, mid, and juxtamedullary), although not all data sets were complete. Afferent arterioles were identified by locating their origin on the interlobular arterics, and efferent arterioles began at the glomerulus and branched into peritubular capillaries. Glomeruli pertaining to different regions of the cortex were classified as; (i) superficial glomeruli, which were attached to afferent arterioles at the junction of the interlobular artery. The efferent arterioles of these glomeruli were thinner and tended to branch less than those in the mid and inner cortex, (ii) mid-cortical glomeruli were defined as having shorter afferent arterioles attached to the interlobular arteries and efferent arterioles which were also short, and branched several times to form peritubular capillaries, (iii) juxtamedullary glomeruli were identified as having afferent arterioles which branched close to the arcuate arteries, and efferent arterioles which were noticeably thicker and longer. Occasionally these efferent vessels were observed to branch into the unique 'horsetail' arrangement of the vasa recta.

Page 54, paragraph 2, secord last sentence should read:

The plasma clearance for PAH is therefore used to estimate effective renal plasma flow.
Page 55, bottom of page relating to statistics used in Chapter 4 should read: paired t test, repeated measures analysis of variance, two-way analysis of variance

Chapter 3: Methods for renal medullary infusion of vasoactive compounds

Page 61, paragraph 2, sentence beginning on line 3 should read:

This entire dose was delivered directly to the outer ($n=8$) or inner medullary interstitium ($n=9$) of rabbits that had chronically implanted catheters. In the rabbits in which two acutely positioned catheters ($\mathrm{n}=9$) were placed either side of the outer medulla, the entire dose was divided so that its delivery was equally distributed between the catheters.

Chapter 4: Effects of renal medullary and intravenous noradrenaline on renal antihypertensive function

Page 73, Point 4, sentence beginning on line 2 should read:
This circuit enables RAP to be altered independently of the systemic arterial pressure.

Page 74, Point 7 should read:

As RAP was increased to $\sim 160 \mathrm{mmHg}$, urine output and sodium excretion increased, while plasma renin activity and MAP fell.

Page 74, sentence beginning four lines from bottom of page should read:

Presently available date also indicate that it is largely independent of the associated diuresis and diuresis/natriuresis, in view of the fact that haemoconcentration is not observed.

Page 75, paragraph 1, final sentence should read:

It was also not possible to exclude roles of non-flow-mediated extra-vascular actions on V_{1}-receptors in the kidney, or even extra-renal V_{1}-receptors, which might blunt the release and/or actions of the putative renal medullary depressor hormone.

Page 75, paragraph 2, sentence beginning on line 6 should read:
Therefore, the effects of medullary interstitial infusion and intravenous mfusion of noradrenaline, on the antihypertensive responses to increased RAP, were compared.

Table 4.1, and Figures 4.2 and 4.3 have been revised (below), and are now in complete agreement with the text:

Table 4.1 Effects of medullary interstitial and intravenous noradrenaline on systemic and renal haemodynamics (Data presented as percentage change).

	Medullary		Interstitial Infusion	
Intravenous Infusion				
	Vehicle	Noradrenaline	Vehicle	Noradrenaline
MAP	2.4 ± 1.4	17 ± 4	3.5 ± 0.6	12 ± 4
HR	-0.7 ± 2.3	2 ± 1	1.3 ± 0.5	-0.02 ± 3.0
RAP	-0.3 ± 2.0	19 ± 4	0.8 ± 1.0	3.5 ± 1.0
RBF	0.8 ± 2.5	-16 ± 3	-3.7 ± 5.8	-17 ± 9
CBF	0.3 ± 2.3	-13 ± 2	0.3 ± 5.8	-19 ± 3
MBF	3 ± 10	-28 ± 9	-0.4 ± 4.1	-1.3 ± 7.5

MAP, mean arterial pressure; HR , heart rate; RAP, renal arterial pressure: RBF , renal blood flow: CBF , cortical blood flow; MBF, medullary blood flow.

Revised Figure 4.2

Time from Commencement of Medullary Noradrenaline Infusion (min)

Renal Arterial Pressure (mmHg)

Mean Arterial Pressure (mmHg)

Heart Rate (beats/min)

Page 80, Section 4.5.2.2 should read:
As shown in Figure 4.5, as RAP was increased from 66 ± 1 to $158 \pm 3 \mathrm{mmHg}, \mathrm{CBF}$ increased progressively from 235 ± 31 to 329 ± 45 perfusion units ($P_{\text {RAP }}=0.01$), whereas MBF did not change significantly.

Page 81, section 4.5.3, sentence beginning on line 4 should read:

Medullary interstitial noradrenaline also significantly altered the response of haematocrit to increased RAP, attenuating the increase in haematocrit when RAP was increased above $\sim 110 \mathrm{mmHg}$.

Page 81, section 4.5.4 should read:

On conclusion of the experiment, the effects of returning RAP to $\sim 65 \mathrm{mmHg}$ were recorded. RBF in vehicletreated rabbits returned to levels similar $(-3 \pm 4 \%$ different) to those observed during the initial control period. In rabbits treated with medullary interstitial noradrenaline, RBF was $-13 \pm 4 \%$ and $-39 \pm 27 \%$ different from its control value. MAP rose when RAP was reset to $\sim 65 \mathrm{mmHg}$, but did not completely recover to its initial level in velicle-treated rabbits ($-28 \pm 5 \%$ different from its control level), and in rabbits treated with outer medullary noradrenaline ($-14 \pm 6 \%$) and intravenous noradrenaline ($-30 \pm 10 \%$).

Page 91, insert new sentence beginning on the $2^{\text {nd }}$ last line:
We did not directly assess kidney size in this study, but have observed on numerous occasions the swelling of the kidney when RAP is increased.

Chapter 5: Factors mediating depressor responses to increased renal artery pressure

Page 99, $\mathbf{2}^{\text {nd }}$ paragraph, insert new text before the fast sentence:
The 'renin-angiotensin' clamp enabled us to test whether inhibition of renin release contributes to the acute depressor response to increased RAP in this preparation.

Page 106, section 5.4.1.5, $1^{\text {st }}$ sentence of paragraph 1 should read:
When the peristaltic pump was set to withdraw blood from the abdominal aorta ($70 \mathrm{ml} / \mathrm{min}$) and return it to the vena cava, MAP fell by $12 \pm 1 \mathrm{mmHg}$.

Page 106, section 5.4.1.5, $1^{\text {st }}$ sentence of paragraph 2 should read:
However, if blood flow through the extracorporeal circuit is excluded from these calculations, CO was found to initially fall $40 \pm 3 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ during the first 2 minutes of the pump rate being increased, before increasing to be $23 \pm 5 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$ greater than at the end of the previous period (C).

Page 108, $1^{\text {st }}$ sentence of the last paragraph should read:

When RAP was increased and maintained at $\sim 160 \mathrm{mmHg}$ and the excreted urine volume was returned as an intravenous infusion of compound sodium lactate, all renal excretory variables increased significantly, with the exception of FF , which was not significantly altered.

Page 116, Figure 5.7, insert at the end of the legend:

Note that in this figure, and also in Figures 5.8, 5.9 and 5.10, some of the symbols are obscured because they lie at identical co-ordinates to the super-imposed symbol

Page 124, paragraph 3, sentence beginning on line 2 should read:

The 'renin-angiotensin system clamp' was also effective in blocking the renin-angiotensin system since (i) bolus doses of angiotensin I failed to increase MAP, in rabbits which had received this treatment, and (ii) resting systemic and renal haemodynamics and renal excretory variables in rabbits that had received this treatment were similar to those in rabbits from the other three experimental groups.

Chapter 6: Effects of activation of vasopressin- V_{1}-receptors on regional kidney blood flow and glomerular arteriole diameters

Page 134, reference to figure in the last line should read:

Figure 6.3.

Page 136, legend to Figure 6.2 should read:

Scanning electron micrograph of juxtamedullary glomeruli. A, afferent arteriole; E, efferent arteriole; G, glomerulus; OMDVR, outer medullary descending vasa recta.

Page 140, Non-parametric analysis of data

Table 6.2
Effects of intravenous infusion of [Phe $\left.{ }^{2}, \mathrm{Ile}^{3}, \mathrm{Orn}^{8}\right]$-vasopressin ($30 \mathrm{ng} / \mathrm{kg} / \mathrm{min} ; \mathrm{n}=7$) or its vehicle ($50 \mu 1 / \mathrm{kg} / \mathrm{min}$; $\mathrm{n}=7$) on relative resistance.

TREAT	VESSEL	OUTER CORTEX	MID CORTEX	JUXTA MEDULLARY
Vehicle	Afferent	0.051 ± 0.018	0.064 ± 0.017	0.060 ± 0.021
\mathbf{V}_{1}-agonist	Afferent	0.087 ± 0.041	0.080 ± 0.022	0.128 ± 0.058
Vehicle	Efferent	0.293 ± 0.051	0.189 ± 0.039	0.124 ± 0.036
\mathbf{V}_{1}-agonist	Efferent	0.417 ± 0.073	0.375 ± 0.083	0.175 ± 0.059

Data are expressed as the mean \pm SEM of the relative resistance (R), and were calculated according to Poisuelle's relationship ($\mathrm{R}=1 / r^{4}$). Resistance for vehicle and V_{1}-agonist infused vessels were compared for both the afferent and efferent vessels in the outer, mid, and juxta-medullary cortex. Data were subjected to both p^{2} ired t -tests, and Mann-Whitney U-tests; $\mathrm{P}>0.05$ for all six comparisons in both tests.

BIBLIOGRAPHY

Admiraal P.J., Derkx, F.H., Danser A.H., Pieterman H. and Schalekamp M.A. (1990). Intrarenal de novo production of angiotensin I in subjects with renal artery stenosis. Hypertension, 16: 555-563.

Agmon Y., Dinour D. and Brezis M. (1993). Disparate effects of adenosine A_{1} - and A_{2} - receptor agonists on intrarenal blood flow. Americin. Journal of Physiology, 265: F802-F806.

Anderson W.P., Woods R.L., Thomas C.J., Szenasi G. and Evans R.G. (1995). Renal medullary antihypertensive mechanisms. Clinical and Experimental Pharmacology and Physiology, Suppl. 2: S426-S429.

Arenshorst W.J. (1979). Autoregulation of renal blood flow in spontaneously hypertensive rats. Circulation Research, 44: 344-349.

Armstrong T., Bennett S., Davies J., Harlow T., Magnus P., Mathur S. and Senes-Ferrari S. (1999). Heart, stroke and vascular diseases, Australian facts. Australian Institute of Health and Welfare, Cardiovascular Disease Series 10: 1-55.

Ashworth-Preece M., Krstew E., Jarrot B. and Lawrence A.J. (1997). Functional GABA A_{A} receptors on rat vagal afterent neurones. British Journal of Pharmacology, 120: 469-475.

Aukland K. (1968). Vasopressin ard intrarenal blood flow distribution. Acta Physiologica Scandinavica, 74: 173-182.

Bailie M.D. and Barbour J.A. (1975). Effect of inhibition of peptidase activity on distribution of intrarenal blood flow. American Journal of Physiology, 228: 850-853.

Bankir L. and deRouffignac C. (1985). Urinary concentrating ability: Insights from comparative anatomy. American Journal of Physiology, 249: R643-R666.

Barajas L., Powers K. and Wang P. (1984). Innervation of the renal cortical tubules: a quantitative study. Americent Journal of Physiology, 247: F50-F60.

Baylis C., Engels K., Samsell L. and Harton P. (1993). Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. American Journal of Physiology, 264: F74-F78.

Beeuwkes R. (1980). The vascular organization of the kidney. Annual Review of Physiology., 42: 531-542.

Bergström G., (1995) The renomedullary depressor mechanism and its relation to the reninangiotensin system and nitric oxide., Physiology, pp. 8-12, University of Goteborg, Goteborg .

Bergström G. and Evans R.G. (1998). Effects of renal medullary infusion of vasopressin V_{1} agonist on renal antihypertensive mechanisms in rabbits. American Journal of Physiology, 274: R76-R85.

Bergström G. and Evans R.G. (2000). Integrative aspects of the renal medullary circulation. In: W.P. Anderson, R.G. Evans and K.M. Stevenson (eds.), The renal circulation: advances in organ biology. Vol. 1: pp. 235-253, JAI Press, Stamford.

Bergström G., Gothberg G., Karlström G. and Rudenstam J. (1998). Renal medullary blood flow and renal medullary antihypertensive mechanisms. Clinical and Experimental Hypertension, 20: 1-26.

Bergström G., Rudenstam J., Creutz J., Gothberg G. and Kariström G. (1995). Renal and haemodynamic effects of nitric oxide blockade in a Wistar assay rat during high pressure crosscirculation of an isolated denervated kidney. Acta Physiologica Scandinavica, 154: 241-52.

Bergström G., Rudenstam J., Taghipour K., Gothberg G. and Karlström G. (1996). Effects of nitric oxide and renal nerves on renomedullary haemodynamics in SHR and WIstar rats, studied with laser Doppler technique. Acta Physiologica Scandinavica, 156: 27-36.

Bertram J.F. (2000). Structure of the renal circulation. In: W.P. Anderson, R.G. Evans and K.M. Stevenson (eds.), The renal circulation.: pp. 2-10, JAI Press Inc., Starnford, Connecticut.

Bing R.F., Russel G.I., Swales J.D., Thurston H. and Fletcher A. (1981). Chemical medullectomy; Effect upon reversal of two-kidney, one-clip hypertension in the rat. Clinical Science, 61: S3335-S338.

Biondi M.L., Dousa T., Vanhoutte P. and Romero J.C. (1990). Evidence for the existence of endothelium-derived relaxing factor in the renal medulla. American Journal of Hypertension, 3: 876-878.

Bonner R.F., Clem T.R., Bowen P.D. and Bowman R.L. (1981). Laser Doppler continuous realtime monitor of pulsatile and mean blood flow in tissue microcirculation. In: S.H. Chen, B. Chu and R. Nossal (eds.), Scattering techniques, applied to supra-molecular and nonequilibrium systems.: pp. 685-702, Plenum, New York.

Bouriquet N. and Casellas D. (1995). Chronic L-NAME hypertension in rats and autoregulation of juxtamedullary preglomerular vessels. American Journal of Physiology, 269: F190-F197.

Bradley T. and Hjemdahl P. (1984). Further studies on renal nerve stimulation induced release of noradrenaline and dopamine from the canine kidney in situ. Acta Physiologica Scandinavica, 122: 369-379.

Brooks B., Byers L.W., Muirhead E.E., Muirhead M., Pitcock J.A., Maddipati K.R. and Maxey K.M. (1994). Purification of class I medullipins from the venous effluent of isolated normal kidneys perfused under high pressure with saline. Blood Pressure, 3: 407-17.
 vessels. American Journal of P whest, 2sse EE22.

Carmines P.K., Inscho E.W. microvasculature of juxtaneduldry urpinatis. imerican Journal of Physiology, 258: F94-102.

Casellas D. and Moore L.C. (iy90). Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. American Journal of Physiology, 258: F660-F669.

Chen J. and Fleming J.T. (1993). Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation. Kidney International, 44: 684-691.

Chou S.Y., Porush J.G. and Faubert P.F. (1990). Renal medullary circulation: Hormonal control. Kidney International, 37: 1-13.

Christy I.J., Woods R.L. and Anderson W.P. (1e93). Mediators of the hypotensive response to increased renal perfusion in rabbits. Hypertension, 21: 149-154.

Christy I.J., Woods R.L., Courneya C.A., Denton K.M. and Anderson W.P. (1991). Evidence for a renomedullary vasodepressor system in rabbits and dogs. Hypertension, 18: 325-333.

Churchill P.C. and Churchill M.C. (1992). Kidney cross transplants in Dahl salt-sensitive and salt-resistant rats. American Journal of Physiology, 262: H1809-H1817.

Click R.L., Joyner W.L. and Gilmore J.P. (1979). Reactivity of glomerular afferent and efferent arterioles in renal hypertension. Kidney International, 15: 109-115.

Cohen H.J., Marsh D.J. and Kayser B. (1983). Autoregulation in vasa recta of the rat kidney. American Journal of Physiology, 245: F32-F40.

Correia A.G., (1997) Methods for the deliver of pharmacological agents into the rabbit renal medulla., Department of Physiology, pp. 30-42, Monash University, Melbourne.

Cowley A.W.Jr. (1992). Long-term control of arterial blood pressure. Physiological Reviews, 72: 231-300.

Cowley A.W.Jr. (1997). Role of the rews medulla in volume and arterial pressure regulation. American Journal of Physiology, 273: R3-R15.

Cowley A.W.Jr. and Lohmeier T.E. (1979). Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during long-term intrarenal norepinephrine infusion in dogs. Hypertension, 1979: 549-558.

Cowley A.W.Jr., Mattson D.L., S. L. and Roman R.J. (1995). The renal medulla and hypertension. Hypertension, 25: 663-673.

Cowley A.W.Jr. and Roman R.J. (1983). Renal dysfunction in essential hypertension implications of experimental studies. American Journal of Nephrology, 3: 59-72.

Cowley A.W.Jr. and Roman R.J. (1997). Renal mechanisms in hypertension. In: A. Zanchetti and G. Mancia (eds.), Handbook of hypertension: pp. 740-783, Elsevier, Amsterdam.

Cowley A.W.Jr., Roman R.J., Fenoy R.J. and Mattson D.L. (1992). Effect of renal medullary circulation on arterial pressure. Journal of Hypertension, 10: S187-S193.

Cowley A.W.Jr., Szezepanska-Sadowska E., Stepniakowski K. and Mattson D. (1994). Chronic intravenous administration of V_{1} arginine vasopressin agonist results in sustained hypertnsion. American Journal of Physiology, 267: H752-H756.

Cupples W.A., Sakai T. and Marsh D.J. (1988). Angiotensin II and prostaglandins in control of vasa recta blood flow. American Journal of Physiology, 254: F417-F424.

Denton K.M., Anderson W.P. and Sinniah R. (2000). Effects of angiotensin II on regional afferent and efferent arteriole dimensions and the glomerular pole. American Journal of Physiology, 279: R629-R638.

Denton K.M., Fennessy P.A., Alcorn D. and Anderson W.P. (1992). Morphometric analysis of the actions of angiotensin II on renal arterioles and glomeruli. American Journal of Physiology, 262: F367-72.

DiBona G.F. and Kopp U.C. (1997). Neural control of renal function. Physiological Reviews, 77: 75-197.

Dwarkin L.D. and Brenner B.M. (1996). The kidney: p. 247-238, WB Sunders, Philadelphia.
Early L.E. and Friedler R.M. (1965a). Changes in renal blood flow and possibly the intrarenal distribution of bloo' aring the natriuresis accompanying saline loading in the dog. Journal of Clinical Investigation, 44: 929-941.

Early L.E. and Friedter R.M. (1965b). Studies on the mechanism of natriuresis accompanying increased renal blod flow and its role in the renal response to extracellular volume expansion. Journal of Clinical Investigation, 44: 1857-1865.

Edwards J.G. (1956). Efferent arterioles of glomeruli in the juxtamedullary zone of human kidney. Anatomical Record, 125: 521-529.

Edwards R.M. (1983). Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. American Journal of Physiology, 244: F526-F534.

Edwards R.M., Trizua W. and Kniter L.B. (1989). Renal microvascular effects of vasopressin and vasopressin antagonists. American Journal of Physiology, 256: F275-F278.

Endlich K., Hoffend J. and Steinhausen M. (1996). Localization of endothelin ET_{A} and ET_{B} receptor-mediated constriction in the renal microcirculation of rats. Journal of Physiology, 497: 211-218.

Esler M.D., Hasking G.J., Willet I.R., Leonard P.W. and Jennings G.L. (1985). Noradrenaline release and sympathetic nervous system activity. Journal of Hypertension, 3: 117-129.

Evans R.G., Bergström G., Coterill E. and Anderson W.P. (1998c). Renal haemodynamic effects of endothelin-1 and the $E T_{A} / E T_{B}$ antagonist TAK-044 in anaesthetized rabbits. Journal of Hypertension, 16: 1897-1905.

Evans R.G., Bergström G. and Lawrence A.J. (1998a). Effects of the vasopressin V_{1}-agonist [$\mathrm{Phe}^{2},\left[\mathrm{Il}^{3}, \mathrm{Om}^{8}\right]$ vasopressin on regional kidnty perfusion and renal excretory function in anesthetized rabbits. Journal of Cardiovascular Pharmacology, 32: 571-581.

Evans R.G., Correia A.G., Weekes S.R. and Madden A.C. (2000a). Responses of regional kidney perfusion to vasoconstrictors in anaesthetized rabbits: dependence on agent and renal artery pressure. Clinical and Experimental Pharmacology and Physiology, 27: 1007-1012.

Evans R.G., Day K.H., Roman R.J., Hopp K.H. and Anderson W.P. (1998b). Effects of intrarenal infusion of 17 -octadecynoic acid on renal antihypertensive mechanisms in anesthetised rabbits. American Journal of Hypertension, 11: 803-812.

Evans R.G., Haynes J.M. and Ludbrook J. (1993). Effects of 5-HT-receptor and α_{2}-adrenoceptor ligands on the haemodynamic respnse to acute central hypovolaemia in conscious rabbits. British Journal of Phyarmacology, 109: 37-47.

Evans R.G., Madden A.C. and Denton K.M. (2000b). Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits. Acta Physiologica Scandinavica, 169: 297-308.

Evans R.G., Madden A.C. and E. C. (2000c). ET-receptor subtypes: Roles in regional renal vascular actions of exogenous and endogenous endothelins in anesthetized rabbits. Journal of cardiovascular pharmacology, 35: 677-685.

Evans R.G., Rankin A.J. and Anderson W.P. (1994). Interactions of blockade of nitric oxide synthase and angiotensin-converting enzyme on renal function in conscious rabbits. Journal of Cardiovascular Pharmacology, 24: 542-551.

Evans R.G., Stevenson K.M., Malpas S.C., Fitzgerald S.M., Shweta A., Tomoda F. and Anderson W.P. (1997). Chronic renal blood flow measurement in dogs by transit-time ultrasound flowmetry. Journal of Pharmacological and Toxicological Methods, 38: 33-39.

Evans R.G., Szenasi G. and Anderson W.P. (1995). Effects of N^{G}-nitro-L-argininge on pressure natriuresis in anasthetized rabbits. Clinical and Experimental Pharmacology and Physiology, 22: 94-101.

Evans R.G., Ventrua S., Dampney R.A.L. and Ludbrook J. (2001). Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clinical and Experimental Pharmacology and Physiology, In press.

Fadem S.F., Hernandez-Llamas G., Ptak R.V., Rosenblatt S.G., Lifschitz M.D. and Stin J.H. (1982). Studies on themechanism of sodium excretion during drug induced vasodilation in the dog. American Journal of Medicine, 36: 604-610.

Feng J.J. and Arendshorst W.J. (1996). Enhanced renal vasoconstriction induced by vasopressin in SHR is mediated by V1 receptors. American Journal of Physiology, 271: F304-13.

Fenoy F.J. and Roman R.J. (1991). Effect of volume expansion on papillary blood flow and sodium excretion. American Journal of Physiology, 260: F813-F822.

Fenoy F.J. and Roman R.J. (1992). Effect of kinin receptor antagonists on renal hemodynamic and natriuretic responses to volume expansion. American Journal of Physiology, 263: R1136R1140.

Floys: M.A. (1975). Renal control of interstitial space compliance: a physiological mechanism which may play a part in the etiology of hypertension. Clinical Nephrology, 4: 152-156.

Folkow B. (1982). Physiological aspects of primary hypertension. Physiological Review, 62: 347504.

Franchini K.G. and Cowley A.W.Jr. (1996). Renal cortical and medullary blood flow responses during water restriction: role of vasopressin. American Journal of Piysiology, 270: R1257-R1264.

Franchini F.G., Mattson D.L. and Cowley A.W.Jr. (1997). Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat. American Journal of Physiology, 272: R1472-R1479.

Fujita K., Matsumura Y., Kita S., Miyazaki Y., Hisaki K., Takaoka M. and Morimoto S. (1995a). Role of endothelin-1 and the ETA receptor in the maintenance of deoxycorticosterone acetate-salt-induced hypertension. British Journal of Pharmacology, 114: 925-30.

Fujita K., Matsumura Y., Miyazaki Y., Takaoka M. and Morimoto S. (1995b). Role of endothelin-1 in hypertension induced by long-term inhibition of nitric oxide synthase. European Journal of Pharmacology, 280: 311-6.

Ganguli M., Tobain L. and Dahl L. (1976). Low renal papillary plasma flow in both Dahl and Kyoto rats with spontaneous hypertension. Circulation Research, 39: 337-341.

Gardes J., Baussant T., Corvol P., Menard J. and Alhenc-Gelas F. (1990). Effect of bradykinin and kininogens in isolated rat kidney vasoconstricted by angiotensin II. American Journal of Physiology, 258: F1273-F1281.

Gattone V.H.d. and Evan A.P. (1986). Quantitative renal vascular casting in nephrology research. Scan Electron Microscopy, (Pt: 253-62.

Gattone V.I.d., Evan A.P., Mong S.A., Connors B.A., Aronoff G.R. and Luft F.C. (1983). The morphology of the renal microvasculature in glycerol- and gentamicin-induced acute renal failure. Journal of Laboratory and Clinical Medicine, 101: 183-95.

Gellai M. (1990). Modulation of vasopressin antidiuretic action by renal α_{2}-adrenoceptors. American Journal of Physiology, 259: F1-F8.

Gonzalez R., Fernandez-Alfonso M.S., Rodriguez-Martinez M.A., Fuertes E., Angulo J., Sanchez-Ferrer C.F. and Marin J. (1994). Pressure-induced contraction of the juxtamedullary afferent arterioles in spontaneously hypertensive rats. General Pharmacology, 25: 333-9.

Goransson A. and Sjoquist M. (1984). The effect of pressor doses of angiotensin II on autoregulation and intrarenal distribution of glomerular filtration rate in the rat. Acta Physiologica Scandinavica, 122: 615-620.

Gothberg G. and Karlström G. (1991). Physiological effects of the humoral renomedullary antihypertensive system. American Journal of Hypertension, 4: 569S-574S.

Graensgoe G. and Wolgast M. (1972). The pressure-flow relationship in renal cortical and medullary circulation. Acta Physiologica Scandinavica, 85: 228-236.

Granger J.P. and Scott J. (1988). Effects of renal artery pressure on interstitial pressure and Na excretion during renal vasodilation. American Journal of Physiology, 255: F828-F833.

Grollman A., Muirhead E.E. and Vanatta J. (1949). Role of the kidney in pathogenesis of hypertension as determined by a study of the effects of bilateral nephrectomy and other experimental procedures on the blood pressure of the dog. American Journal of Physiology, 157: 21-30.

Guild A., Austin P.A., Barrett C.J., Evans R.C., Narakatikyan M.N., Ringwood J.V. and Malpas S.C. (2001). Interactions between neural and hormonal control of the renal vasculature: a frequency domain approach. Proceedings of the 24th International Congress of Physiological Sciences, Christchurch, N.Z., In Press.

Gurbanov K., Rubinstein I. and Hoffman A. (1996). Differential regulation of renal regional blood flow by endothelin -1. American Journal of Physiology, 271: F1166-F1172.

Guyton A.C., Coleman T.G., Cowley A.W.Jr., Sheel K.W., Manning R.D.J. and Neramn R.A.J. (1972). Arterial Pressure Regulation: Overriding dominance of the kidneys in long-term regulation and in hypertension. The American Journal of Medicine, 52: 584-594.

Guyton A.C. and Hall J.E. (1996). Textbook of medical physiology, 9 ed., W.B. Sunders Company, Philadelphia, Pennsylvania.

Haas J.A., Hammond T.G., Granger J.P., Blaine E.H. and Knox F.G. (1984). Mechanisms of natriuresis during intrarenal infusion of prostaglandins. American Journal of Physiology, 247: F475-F479.

Haas J.A., Granger J.P. and Knox F.G. (1986). Effect of renal perfusion pressure on sodium reabsorption from proximal tubules of superficial and deep nephrons. American Journal of Physiology, 250: F425-F429.

Hackenthal E., Paul M., Ganten D. and Taugner R. (1990). Morphology, physiology, and molecular biology of renin secretion. Physiological Reviews, 70: 1067-1116.

Hall J.E., Granger J.P. and Hester R.L. (1985). Interactions between adenosine and angiotensin II in controlling glomerular filtration rate. American Journal of Physiology, 248: F340-F346.

Hansell P. (1992). Evaluation of methods for estimating renal medullary blood flow. Renal Physiology and Biochemistry, 15: 217-230.

Hansell P., Nygre A. and Ueda J. (1990). Influence of verapamil on regional renal blood flow: A study using multichannel laser-Doppler flowmetry. Acta Physiologica Scandinavica, 139: 15-20.

Harrison-Bernard L.M. and Carmines P.K. (1994). Juxtamedullary microvascular responses to arginine vasopressin in rat kidney. American Journal of Physiology, 267: F249-F256.

Harrison-Bernard L.M., Navar G. and Cook K.A. (1996). Renal cortical and medullary microvascular blood flow autoregulation in rat. Kidney International, 50 (Suppl. 57): S23-S29.

Haynes W.G., Ferro C.J., O'Kane K.P.J., Sommerville D., Lomax C.C. and Webb D.J. (1996). Systemic endothelin receptor blockade decreases peripheral vascular resistance and blood pressure in humans. Circulation, 93: 1860-1870.

Hermansson K., Ojteg G. and Wolgast M. (1984). The cortical and medullary blood flow at different levels of renal nerve activity. Acta Phsyiologica Scandinavica, 120: 161-169.

Hesse I.F.A. and Johns E.J. (1984). The subtype of α-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit. Journal of Physiology, 352: 527-538.

Hesse I.F.A. and Johns E.J. (1985). The role of α-adrenoceptors in the regulation of renal tubular sodium reabsorption and renin secretion in the rabbit. British Journal of Pharmacology, 84: 715-724.

Hocher B., Rohmeiss P., Zart R., Diekmann F., Vogt V., Metz D., Fakhury M., Gretz N., Bauer C., Koppenhagen K., Neumayer H.H. and Distler A. (1996). Function and expression of endothelin receptor subtypes in the kidneys of spontaneously hypertensive rats. Cardiovascular Research, 31: 499-510.

Hollenberg N.K., Adams D.F., Solomon H., Chenitz W.R., Burger R.B., Abrams H.L. and Merrill J.P. (1975). Renal vascular tone in essential and secondary hypertension: hemodynamic and angiographic responses to vasodilators. Medicine (Baltimore), 54: 29-44.

Howl J. and Wheatley M. (1995). Molecular pharmacology of V_{ta} vasopressin receptors. General. Pharmacology, 26: 1143-152.

Hughes A.K., Barry W.H. and Kohan D.E. (1995). Identification of a contractile function for renal meduliary interstital cells. The Journal of Clinical Investigation, 96: 411-416.

Ito S. and Carretero O.A. (1990). An in vitro approach to the study of macula densa-mediated glomerular hemodynamics. Kidney International, 38: 1206-1210.

Itskovitz H.D., Stemper D., Pacholczyk D. and McGiff J.C. (1973). Renal prostaglandins: Determinants of intrarenal distribution of blood flow in the dog. Clinical Science and Molecular Medicine, 45: S321-S324.

Jamison R.L. and Kriz W. (1982). Urinary concentrating mechanism: Structure and function: p. 1-340, Oxford University Press, New York - Oxford.

Johns D.W., Carey R.M., Gomez R.A., Lynch K., Inagami T., Saye J., Geary K., Farnsworth D.E. and Peach M.J. (1987). Isolation of renin-rich rat kidney cells. Hypertension, 10: 488-496.

Johnson J.V., Bennett G.W. and Batton R. (1998). Central and systemic effects of a vasopressin V_{1} antagonist on MAP recovery after hemorrhage in rats. Journal of Cardiovascular Pharmacology, 12: 405-412.

Judy W.V. and Farell S.K. (1979). Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension, 1: 605-614.

Judy W.V., Watanabe A.M., Henry D.P., Besch H.R.J., Murphy W.R. and Hockel G.M. (1976). Sympathetic nerve activity: role in regulation of blood pressure in the spontaneously hypertensive rat. Circulation Research, 38(Suppl II): II-21- II29.

Kaissling B., Rouffignac C.D., Barrett J.M. and Kriz W. (1975). The structural organization of the kidney of the desert rodent Psammomys obesus. Anatomy and Embryology, 148: 121-143.

Kaissling B. and Kriz W. (1979). Structural analysis of the rabbit kidney. Advances in Anatomy, Embryology and Cell Biology, 56: 1-123.

KarIström G., Arnman V., Bergström G., Muirhead E.E., Rudenstam J. and Gothberg G. (1989). Renal and circulatory effects of medullipin I, as studied in the in-vivo cross-circulated isolate- kidney and intact Wistar-Kyoto (WKY) rat. Acta Physioogica Scandinavica, 137: 521-533.

Karlström G., Arnman V., Folkow B. and Gothberg G. (1988). Activation of the humoral antihypertensive system of the kidney increases diuresis. Hypertension, 11: 597-601.

Kariström G., Bergström G., Folkow B., Rudenstam J. and Gothberg G. (1991). Is the humoral renal antihypertensive activity of the spontaneously hypertensive rat (SHR) reset to the high blood pressure? Acta Physiologica Scandinavica, 141: 517-530.

Karlström G. and Gothberg G. (1987). The humorally mediated antihypertensive system of the rat kidney: a physiological depressor mechanism? Journal of Hypertension, Suppl, 5: S91-4.

Katholi R.E., Carey R.M., Ayers C.R., Vaughan E.D.J., Yancey M.R. and Morton C.L. (1977). Production of sustained hypertension by chronic intrarenal norepinephrine in conscious dogs. Circulation Research, 40 (Suppl I): 1-118-1-126.

Khraibi A.A. and Knox F.G. (1988). Renal interstitial hydrostatic pressure during pressure natriuresis in hypertension. American Journal of Physiology, 255: R756-R759.

Kiberd B.A., Larson T.S., Robertson C.R. and Jamison R.L. (1987b). Effect of atrial natriuretic peptide on vasa recta blood flow in the rat. American Journal of Physiology, 252: F1112-F1117.

Kiberd B., Robertson C.R., Larson T. and Jamison R.L. (1987a). Effect of V_{2} receptor-mediated changes on inner medullary blood flow induced by AVP. American Journal of Physiology, 253: F576-F581.

Kimura K., Hirata Y., Nanba S., Tojo A., Matsuoka H. and Sugimoto t. (1990). Effects of atrial natriuretic peptide on renal arterioles: morphometric analysis using microvascular casts. American Journal of Physiology, 259: F936-F944.

Kleinjans J.C.S., Smits J.F.M., vanEssen H., Kasbergen C.M. and Struyker-Boudier H.A.J. (1984). Hemodynamic characterization of hypertension induced by chronic intrarenal or intravenous infusion of norepinephrine in conscious rats. Hypertension, 25: 940-949.

Knepper M.A., Danielson R.A., Saidel G.M. and Post R.S. (1977). Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney International, 12: 313-323.

Knox F.G., Mertz J.I., Burnett J.C.J. and Haramadi A. (1983). Role of hydrostatic oncotic pressure in renal sodium absorption. Circulation Research, 52: 491-500.

Kopp U., Bradley T. and Hjemdahl P. (1983). Renal venous outflow and urinary excretion of norepinephrine, epinephrine, and dopamine during graded renal nerve stimulation. American Journal of Physiology, 244: E52-E60.

Kriz W. (1981). Structural organization of the renal medulla: comparative and functional aspects. American Journal of Physiology, 241: R3-R16.

Kriz W. (1982). Structural organization of renal medullary circulation. Nephron, 31: 290-295.
Larsson C. and Anggard E. (1974). Increased juxtamedullary blood flow on stimulation of intrarenal prostaglandin biosynthesis. European Journal of Pharmacology, 25: 326-334.

Ledderhos C., Gross V. and Cowley A.W.Jr. (1998). Pharmacological stimulation of arterial chemoreceptors in conscious rats produces differential responses in renal cortical and medullary blood flow. Clinical and Experimental Pharmacology and Physiology, 25: 536-40.

Ledderhos C., Mattson D.L., Skelton M.M. and Cowley A.W., Jr. (1995). In vivo diuretic actions of renal vasopressin V1 receptor stimulation in rats. American Journal of Physiology, 268: R796-807.

Ledingham J.M. and Cohen R.D. (1962). Circulatory changes during the reversal of experimental hypertension. Clinical Science., 22: 69-77.

Lemley K.V. and Kriz W. (1991). Anatomy of the renal interstitium. Kidney International, 39: 370-381.

Lemley K.V. and Kriz W. (1987). Cycles and separations: the histotopography of the urinary concentrating process. Kidney International, 31: 538-548.

Lemley K.V., Schmitt J.L., Holliger C., Dunn M.J., Robertson R.J. and Jamison R.L. (1984). Prostaglandin synthesis inhibitors and vasa recta erythrocyte velocities in the rat. American Journal of Physiology, 247: F562-F567.

Leonard B.L., Evans R.G., Navakatikyan M.A. and Malpas S.C. (2000). Differential neural control of intrarenal blood flow. American Journal of Physiology, 279: R907-R916.

Leonard B.L., Malpas S.C., Denton K.M., Madden A.C. and Evans R.G. (2001). Differential control of intrarenal blood flow during reflex increases in sympathetic nerve activity. American Journal of Physiology, 280: R62-R68.

Levens N.R. (1990). Control of renal function by intrarenal angiotensin II in the dog. Journal of Cardiovascular Pharmacology, 16: S65-9.

Liard J.F. and Peters G. (1970). Mechanism of the fall in blood pressure after 'unclamping' in rats with goldblatt-type hypertension. Experientia, 26: 743-745.

Liard J.F. (1977). Renal denervation delays blood pressure increase in the spontaneously hypertensive rat. Experientia, 33: 339-340.

Liard J.F. and Peters G. (1973). Role of the retention of water and sodium in two types of experimental renovascular hypertension in the rat. Pflugers Archives - European Journal of Physiology, 344: 93-108.

Lockhart J.C., Larson T.S. and Knox F.G. (1994). Perfusion pressure and volume status determine the microvascular response of the rat kidney to N^{G}-monomethly-L-arginine. Circulation Research, 75: 829-835.

Lu S., Mattson D.L., Roman R.J., Becker C.G. and Cowley A.W.Jr. (1993). Assessment of changes in intrarenal blood flow in conscious rats using laser-Doppler flowmetry. American Journal of Physiology, 246: F956-F962.

Lu S., Mattson D.L. and Cowley A.W.Jr. (1994). Renal medullary captopril delivery lowers blood pressure in spontaneously hypertensive rats. Hypertension, 23: 337-345.

Lu S., Roman R.J., Mattson D.L. and Cowley A.W.Jr. (1992). Renal medullary interstitial infusion of diltiazem alters sodium and water excretion in rats. American Journal of Physiology, 263: R1064-R1070.

Ludbrook J. (1994). Repeated measurements and multiple comparisons in cardiovascular research. Cardiovascular Research, 28: 303-311.

Majid D.S., Godfrey M. and Omoro S.A. (1997). Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney. Hypertension, 29: 210-5.

Majid D.S. and Navar L.G. (1996). Medullary blood flow responses to changes in arterial pressure in canine kidney. American Journal of Physiology, 270: F833-F838.

Majid D.S., Omoro S.A., Chin S.Y. and Navar L.G. (1998). Intrarenal nitric oxide activity and pressure natriuresis in anesthetized dogs. Hypertension, 32: 266-72.

Majid D.S., Williams A. and Navar L.G. (1993). Inhibition of nitric oxide synthesis attenuates pressure-induced natriuretic responses in anesthetized dogs. American Journal of Physiology, 264: F79-F87.

Malpas S.C. and Evans R.G. (1998). Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? Journal of the Autonomic Nervous System, 69: 72-82.

Malpas S.C., Shweta A., Anderson W.P. and Head G.A. (1996). Functional response to graded increases in renal nerve activity during hypoxia in conscious rabbits. American Journal of Physiology, 271: R1489- R1499.

Mandal A.K., Frolich E.D., Chrysant K., Pfeffer M.A., Yunice A. and Nordquist J.A. (1974). Ultrastructural analysis of renal papillary interstitial cells of spontaneously hypertensive rats. Journal of Laboratory and Clinical Medicine, 83: 256-262.

Mattson D.L. and Cowley A.W. Jr. (1993). Kinin actions on renal papillary blood flow and sodium excretion. Hypertension, 21: 961-965.

Mattson D.L. and Higgins D.J. (1996). Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension, 27: 688-692.

Mattson D.L., Lu S., Nakanishi K., Papenek P.E. and Cowley A.W.Jr. (1994). Effect of chronic renal medullary nitric oxide inhibition on blood pressure. American Journal of Physiology, 266: H1918-H1926.

Mattson D.L., Lu S., Roman R.J. and Cowley A.W.Jr. (1993). Relationship between renal perfusion pressure and nod flow in different regions of the kidney. American Journal of Physiology, 264: R578-ki 3.

Mattson D.L. and Roman R.J. (1991). Role of kinins and angiotensin II in the renal hemodynamic response to captopril. American Journal of Physiology, 260: F670-F679.

Mattson D.L., Roman R.J. and Cowley A.W.Jr. (1992). Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension, 19: 766-769.

Manning D.L. and Snyder S.H. (1989). Bradykinin receptors localized by quantitative autoradiography in kidney, ureter, and bladder. American Journal of Physiology, 256: F909-F915.

May C.N., Mathai M.L., MeDougall J.G. and Whitworth J.A. (1993). Cardiovascular effects of long-term endothelin infusion and responses to endothelin during ACTH infusion in conscious sheep. American Journal of Hypertension, 6: 837-43.

McKenna O.C. and Angelakos E.T. (1968). Adrenergic innervation of the canine kidney. Circulation Research, 23: 345-353.

Mene P. and Dunn M.J. (1992). Vascular, glomerular, and tubular effects of angiotensin II, kinins, and prostaglandins. In: D.W. Seldin (ed.), The kidney: Physiology and pathophysiology. Vol. Second Edition: pp. 1205-1248, Raven Press, New York.

Meriz J.I., Haas J.A., Berndt T.J., Burnett J.C.J. and Knox F.G. (1984). Effects of bradykinin on renal interstitial pressures and proximal tubule reabsorption. American Journal of Physiology, 247: F82-f85.

Miyamoto M., Yagil Y., Larson C., Robertson R. and Jamison R.L. (1988). Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. American Journal of Physiology, 255: F1230-F1234.

Mortensen L.H. and Fink G.D. (1992). Captopril prevents chronic hypertension produced by infusion of endothelin-1 in rats. Hypertension, 19: 676-80.

Muirhead E.E. (1980). Antihypertensive functions of the kidney: Arthur C. Corcoran Memorial Lecture. Hypertension, 2: 444-464.

Muirhead E.E. (1991). The medullipin system of blood pressure control. American Journal of Hypertension, 4: 556S-668S.

Muirhead E.E. (1993). Renal vasodepressor mechanisms: the medullipin system. Journal of Hypertension, 11 (Suppl. 5): S53-S58.

Muirhead E.E. and Brooks B. (1980). Reversal of one-kidney, one-clip hypertension by unclipping: The renal, sodium-volume relationship reexamined. Proceedings for the Society for Experimental Biology and Medicine, 163: 541-546.

Muirhead E.E., Brooks B., Byers L.W., Brown P. and Pitcock J.A. (1991a). Secretion of medullipin I by isolated kidneys perfused under elevated pressure. Clinical and Experimental Pharmacology and Physiology, 18: 409-417.

Muirhead E.E., Brooks B., Byers L.W., Brown P. and Pitcock J.A. (1991b). Medullipin System: Generation of medullipin II by isolated kidney-liver perfusion. Hypertension, 18 (Suppl III): III-158 - III-163.

Muirhead E.E., Brooks B., Pitcock J.A. and Stephenson P. (1972a). Renomedullary antihypertensive function in accelerated (malignant) hypertension: observations on renomedullary interstitial cells. Journal of Clinical Investigation., 51: 181-190.

Muirhead E.E., Germain G.S., Armstrong F.B., Brooks B., Leach B.E. and Byers L.W. (1975). Endocrine-type antihypertensive function of renomedullary interstitial cells. Kidney International, 8: S271-S282.

Muirhead E.E., Germain G.S., Leach B.E., Pitcock J.A., Stephenson P., Brooks B., Brosius W.L., Daniels E.G. and Hinman J.W. (1972b). Production of renomedullary prostaglandins by renomedullary interstitial cells grown in tissue culture. Circulation Research, 30-31, Suppl. 2: 161 171.

Muirhead E.E., Jones F.S. and Stirman J.A. (1960a). Hypertensive cardiovascular disease of dog. Archives of Pathology, 70: 122-130.

Muirhead E.E., Pitcock J.A., Nasjletti A., Brown P. and Brooks B. (1985). The antihypertensive function of the kidney. Its elucidation by captopril plus unclipping. Hypertension, 4 (Suppl I): 1127-1135.

Muirhead E.E., Stirman J.A. and Jones F. (1960b). Kenal auto-explantation and protection against hypertensive cardiovascular disease and hemolysis. Journal of Clinical Investigation, 39: 266-281.

Nagaoka A., Kakihana M., Suno M. and Hamajo K. (1981). Renal hemodynamics and sodium excretion in stroke-prone spontaneoulsy hypertensive rats. American Journal of Physiology, 241: F244-F249.

Nakanishi K., Mattson D.L. and Cowley A.W.Jr. (1995a). Role of renal medullary blood flow in the development of L-NAME hypertension in rats. American Journal of Physiology, 268: R317R323.

Nakanishi K., Mattson D.L., Gross V., Roman R.J. and Cowley A.W., Jr. (1995b). Control of renal medullary blood flow by vasopressin V1 and V2 receptors. American Journal of Physiology, 269: R193-200.

Navakatikyan M.A., Leonard B.L., Evans R.G. and Malpas S.C. (2000). Modelling the neural control of intrarenal blood flow. Clinical and Experimental Pharmacology and Physiology, 27: 650-2.

Navar L.G. (1986). Physiological role of the intrarenal renin-angiotensin system. Introductory comments. Federation Proceedings, 45: 1411-3.

Navar L.G., Inscho E.W., Majid S.A., Imig J.D., Harrison-Bernard L.M. and Mitchell K.D. (1990). Paracrine regulation of the renal microcirculation. Physiological Reviews, 76: 425-536.

Neubig R.R. and Hoobler S.W. (1975). Reversal of chronic renal hypertension: Role of salt and water excretion. Proceedings for the Society for Experimental Biology and Medicine, 150: 254-256.

Nobes M.S., Harris P.J., Yamada H. and Mendelsohn F.A. (1991). Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry. American Journal of Physiology, 261: F998-F1006.

Norman R.A.J. and Dzielak D.J. (1982). Role of renal nerves in onset and maintenance of spontaneous hypertension. American Journc! of Physiology, 243: H284-H288.

Norman R.A.J., Enobakhare A.J., DeClue J.W., Douglas B.H. and Guyton A.C. (1978). Arterial pressure-urinary output relationship in hypertensive rats. American Journal of Physiology, 234(3): R98-R103.

Ofstad J. and Aukland K. (1985). Renal Circulation (Ch 21). In: D.W. Seldin and G. Giebisch (eds.), The Kidney: Physiology and Pathophysiology: pp. 471-494, Raven Press, New York.

Oliver J., Korner P., Woods R. and Zhu J. (1990). Reflex release of vasopressin and renin in hemorrhage is enhanced by autonomic blockade. American Journai of Physiology, 258: H221H228.

Omoro S.A., Majid S.A., El-Dahr S.S. and Navar L.G. (1999). Kinin influences on renal regional blood flow responses to angiotensin-converting enzyme inhibition in dogs. American Journal of Physiology, 276: F271-F277.

Omoro S.A., Majid D.S.A., Dahr S.S. and Navar G. (2000). Roles of A.NG II and bradyikinin in the renal regional blood flow responses to ACE inhibition in sodium-depleted dogs. American Journal of Physiology, 279: F289-F293.

Omvik P., Tarazi R.C. and Bravo E.L. (1980). Regulation os șodium balance in hypertension. Hypertension, 2: 515-523.

Ostrowlski N.L., Lolait S.J., Bradley D.J., O'Carrol A.M. and Brownstein M. (1992). Distribution of V_{13} and V_{2} vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology, 131: 533-535.

Pallone T.L. (1994). Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglangin E_{2}. American Journal of Physiology., 266: F497-F503.

Palione T.L., Edwards A. and Kreisberg M.S. (2000). The intrarenal distribution of blood flow. In: W.P. Anderson, R.G. Evans and K.M. Stevenson (eds.), The Renal Circulation.: pp. 76-81, JAI Press Inc., Stamford, Connecticut.

Pallone T.L., Morgenthaler T.I. and Deen W.M. (1984). Analysis of microvascular water and solute exhanges in the renal medulla. American Journa! of Physiology, 247: F303-F315.

Pallone T.L., Robertson C.R. and Jamison R.L. (1990). Renal medulary micrcirculation. Physiological Reviews, 70: 885-920.

Pallone T.L., Silldorf E.P. and Turner M.R. (1998). Intrarenal blood flow: Microvascular anatomy and the regulation of medullary perfusion. Clinical and Experimental Pharmacology and Physiology, 25: 383-392.

Palmer R.M.J., Ferrige A.G. and Moncada S. (1987). Nitric oxide release accounts for the biological activity of endothelium-deribed relaxing factor. Nature, 327: 524-526.

Parekh N., Dobrowolski L., Zou A.P. and Steinhausen M. (1996). Nitric oxide modulates angiotensin II- and norepinephrine-dependent vasoconstriction in rat kidney. American Journal of Physiology, 270: R630-5.

Parekh N. and Zou A.P. (1996). Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. American Journal of Physiology, 271: F653-F658.

Park F., Mattson D.L., Roberts L.A. and Cowley A.W.Jr. (1997a). Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. American Journal of Physiology, 273: R1742-R1748.

Park F., Mattsen D.L., Sikelton M.M. and Cowley A.W.Jr. (1997b). Localization of the vasopressin $\mathrm{V}_{4 \mathrm{a}}$ and V_{2} recepiors within the renal cortical and medullary circulation. American Journal of Physiology, 273: R243-R251.

Pitcock J.A. . Grown P.S. and Brooks B. (199 P. Morphometric studies on the rat renal papilla of resistant and zansitive strains in partial nephrectomy salt hypertension. Journal of Hypertension, 2: 419-425.

Pitcock J.A., 鞇rown P. S., Brooks B., Rapp J.P., Rightse W.A. and Muirhead E.E. (1985). The morpholigy and antihypertensive effect of renomedullary interstitial cells derived from Dahl sensitive and resistant rats. Experimental and Molecular Pathology, 43: 29-43.

Pitcock J.A., Brown P.S., Rapp J.S., Crofton J. and Muirhead E.E. (1982). Morphometric studies of the renomedullary interstitial cells of Dahl-hypertension prone and hypertension-resistant rats. American Joundill of Pathology, 109: 123-128.

Plato C.F. and Osborne J.L. (1996). Chronic renal neuroadrenergic hypertension is associated with increased renal norepinephrine sensitivity and volume contraction. Hypertension, 28: 1034 1040.

Reinhardt G.A., Lohmeier T.E. and Hord C.E. (1995). Hypertension induced by chronic renal adrenergic stimulation is angiotensin dependent. Hypertension, 25: 549-558.

Rightsel W.A., Okamura T., Inagani T., Pitcock J.A., Takii Y., Brooks B., Brown P. and Muirhead ET. (1982). Juxtaglomerular cells grown as monolayer cell culture contain renin, anderotensin I-eqriverting enzyme, and angiotensin I and II/III. Circulation Research, 50: 822-829.

Roman R.J. (1980). Pressure diuresis mechanism in the control of renal function and arterial pressure. Federation Proceedings., 45: 2878-2884.

Roman R.I., Carmines P.K., Loutzenhiser R. and Conger J.D. (1991). Direct studies on the control of the renal microcirculation. Journal of the American Society of Nephrology, 2: 136-149.

Roman R.J. and Cowley A.W.Jr. (1985a). Characterization of a new model for the study of pressure-natriuresis in the rat. American Journal of Physiology, 248: F190-F198.

Roman R.J. and Cowley A.W.Jr. (1985b). Abnormal pressure-diuresis-natiuresis response in spontaneously hyertensive rats. American Journal of Physiology, 248: F199-F205.

Roman R.J. and Cowley A.W.Jr. (1988). Pressure-diuresis in volume -expanded rats: Cortical and medullary hemodynamics. Hypertension, 12: 168-176.

Roman R.J. and Kaldunski M.L. (1988a). Influence of kinins and angiotensin II on the regulation of papillary blood flow. American Journal of Physiology, 255: F690-F698.

Roman R.J. and Kaldunski M.L. (1988b). Renal cortical and papillary blood flow in spontaneously hypertensive rats. Hypertension, 11: 657-663.

Roman R.J. and Lianos E. (1990). Influence of prostaglandins on papillary blood flow and pressure-natriuretic response. Hypertension, 15: 29-35.

Roman R.J. and Smits C. (1986). Laser-Doppler determination of papillary blood flow in young and adult rats. American Journal of Physiology, 251: F115-F124.

Rorcis R.J. and Zou A.P. (1987). Altered presure-natriuresis relationship in young spontaneously hyperterisive rats. American Journal of Physiology, 9 (Suppl III): III-131 - III-136.

Roman R.J. and Zou A.P. (1993). Influence of the renal medullary circulation on the control of sodium excretion. American Joirnal of Physiology, 265: R963-R973.

Rosivall L., Carmines P.K. and Navar L.G. (1984). Effects of renal arterial angiotensin I infusion on glomerular dynamics in sodium replete dogs. Kidney International, 26: 263-268.

Rosivall L., Rinder D.F., Champion J., Khosla M.C., Navar L.G. and Oparil S. (1983). Intrarenal angiotensin I conversion at normal and reduced renal blood flow in the dog. American Journal of Physiology, 245: F408-F415.

Rudenstam J., Bergström G., Folkow B., Gothberg G. and Karlström G. (1992). Sympathetic nerve stimulation to an isolated cross-circulated kidney inhibits the pressure-induced humoral hyporensive responses but increases diuresis and natriuresis in the cross-circulating Wistar 'assay' rat. Acta Physiologica Scandinavica, 146: 529-30.

Rudenstrm J., Bergströsa G., Taghipour K., Gothberg G. and Karlström G. (1995). Efferent renal sjmpathetic arevis stmulation in vivo. Effects on regional renal hemodynamics in the Wistar rat srudied by laser Doparizr technique. Acta Physiolcgica Scandinavica, 154: 387-394.

Russell G.I., Bing R.F., Swales J.D. and Thurson H. (1982a). Effect of pharmacological inhibition of renin, prostaglandin and kallikrein systems on surgical correction of longstanding twokidney, one-clip hypertension in the rat. Clinical Science, 63: S257-S260.

Russell G.I., Bing R.F., Thurston H. and Swales J.D. (1982b). Surgical reversal of two-kidney, onte-clip hypertension during inhibition of the renin-angiotensin system. Hypertension, 4: 69-76.

Salom M.G., Lahera V., Miranda-Guardiola F. and Romero J.C. (1992). Blockade of pressure natriuresis induced by inhibition of synthesis of nitric oxide in dogs. American Journal of Physiology, 262: F718-F722.

Sckadt J.C. and Hasser E.M. (1991). Interaction of vasopressin and opioids during rapid hemorrhage in conscious rabbits. American Journal of Physiology, 260: R373-R381.

Schwartz M.M., Karnovsky M.J. and Venkatachalam M.A. (1976). Ultrastructural differences between rat inner medullary descending and ascending vasa recta. Laboratory Investigation, 35: 161-170.

Sherwood L. (1993). Human physiology, from cells to systems, 2 ed.: p. 481-490, West, New York.
Shweta A., Malpas S.C., Anderson W.P. and Evans R.G. (1999). Effects of naloxone on the haemodynamic and renal functional responses to plasma volume expansion in conscious rabbits. Pflugers Archives - European Journal Physiology, 439: 150-157.

Silldorff E.P., Kreisber M.S. and Pallone T.L. (1996). Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. Journal of Clinical Investigation, 98: 18-23.

Silldorff E.P., Yang S. and Pallone T.L. (1995). Prostaglanin E_{2} abrogates endothelin-induced vasoconstriction in renal outer medullary descending vasa recta of the rat. Journal of Clinical Investigation, 95: 2734-2740.

Siragy H.M., Hosvell N.L., Peach M.J. and Carey R.M. (1990). Combined intrarenal blockade of the renin angiotensin system in the conscious dog. American Journal of Physiology, 258: F522F529.

Smith J.P. (1956). Anatomical features of the human renal glomerular efferent vessel. Journal of Anatomy, 90: 290-292.

Smits G.J., Roman R.J. and Lombard J.H. (1986). Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. Journal of Applied Physiology, 2: 666-672.

Smits J.F., Kleinjans J.C., Janssen B.J. and Struyker-Boudier H.A. (1987). Characterization of hypertension induced by long-term intrarenal norepinephrine infusion in conscious rats. Clinical and Experimental Hypertension A, 9 (Suppl I): 197-209.

Solez K., D'Agostini R.J., Buono R.A., Vernon N., Wang A.L., Finer P.M. and Heptinstall R.H. (1976). The renal medulla and mechanisms of hypertension in the spontaneously hypertensive rat. American Journal of Pathology, 85: 555-568.

Spielman W.S., Britton S.L. and Fiksen-Olsen M.J. (1980). Effect of adenosine on the distribution of renal blod flow in dogs. Circulation Research.: 449-456.

Steinhausen M., Zimmerhackl B., Thederan H., Dussel R., Parekh N., Esslinger H., Hagens V.G., Komitowski D. and Dallenbach F.D. (1981). Intraglomerular microcirculation: Measurements of single glomerular loop flow in rats. Kidney International, 27: 17-24.

Stern M.D., Lappe D.L., Bowen P.D., Chimosky J.E., Holloway G.A.J., Keiser H.R. and Bowman R.L. (1977). Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. American Journal of Physiology, 32: H4441-H448.

Stern M.D., Bowen P.D., Parma R., Osgood R.W., Bowman R.L. and Stein J.H. (1979). Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat. American Journal of Physiology, 236: F8F87.

Susic D., Sparks J.C., Machado E.A. and Kentera D. (1978). The mechanism of renomedullary antihypertensive action: haemodynamic studies in hydronephrotic rats with one-kidney renal-clip hypertension. Clinical Science and Molecular Medicine, 54: 361-367.

Szczepanska-Sadowska E., Stepniakowski K., Skelton M.M. and Cowley A.W.Jr. (1994). Prolonged stimulation of V_{1} vasopressin receptors results in sustained hypertension. American Journal of Physiology, 267: R1217-r1225.

Takezawa K., Cowley A.W.Jr, Skelton M. and Roman R.J. (1987). Atriopeptin III alters renal medullary hemodynamics and the pressure-diuresis response in rats. American Journal of Physiology, 252: F992-1002.

Tamaki T., Kiyomoto K., He H., Tomohiro A., Nishiyama A., Aki Y., Kinura S. and Abe Y. (1996). Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles. Kidney International, 49: 722-729.

Taverner D., Bing R.F., Fletcher A., Russell G., Swales J.D. and Thurston H. (1984). Hypertension produced by chemical renal medullectomy: evidence for a renomedullary vasodepressor function in the rat. Clinical Science, 67: 521-528.

Terade Y., Tomita K., Nonoguchi H. and Marumo F. (1992a). Different localization of two types of endothelin receptor m RNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction assay. Journal of Clinical Investigation, 90: 107-112.

Terada Y., Tomita K., Nonoguchi H. and Marumo F. (1992b). Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. Journal of Clinical Investigation, 90: 659-665.

Thomas C.J., Anderson W.P. and Woods R.L. (1995). Nitric oxide inhibition does not prevent the hypotensive response to increased renal perfusion in rabbits. Clinical and Experimental Pharmacology and Physiology, 22: 345-351.

Thomas C.J., Woods R.L., Evans R.G., Alcorn D., Christy I.J. and Anderson W.P. (1996). Evidence for a renomedullary vasodepressor hormone. Clinical and Experimental Pharmacology and Physiology, 23: 777-785.

Thomas C.J., Woods R.L., Gao Y. and Anderson W.P. (1994). Pressure range for release of renomedullary depressor substance in rabbits. Hypertension, 23: 639-645.

Thurau K. (1964). Renal hemodynamics. American Journal of Medicine, 36: 698-719.
Tomoda F., Lew R.A., Smith I., Madden A.C. and Evans R.G. (1996). Role of brakyinin receptors in the renal effects of inhibition of angiotensin converting enzyme and endopeptidases 24.11 and 24.15 in conscious rabbits. British Journal of Pharmacology, 119: 365-373.

Tornel J. and Madrid M.I. (2000). Role of kinings in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure. Circulation Research, 86: 589-?

Turner M.R. and Pallone H.L. (1997). Vasopressin constricts outer medullary descending vasa recta isolated from rat kidneys. American Journal of Physiology, 272: F147-F151.

Ullrich K.J., Kramer K. and Boylan J.W. (1962). Present knowledge of the countercurrent system in the mammalian kidney.: p. 1-37, Grune and Stratton, New York.

Vongsavan N. and Matthews B. (1993). Some aspects of the use of laser Doppler flow meters for recording tissue blood flow. Experimental Physiology, 78: 1-14.

Waeber B., Nussberger J. and Brunner H.R. (1986). The renin angiotensin system: role in experimental and human hypertension. In: A. Zanchetti and R.C. Tarazi (eds.), Handbook of Hypertension. Vol. 8: pp. 489-519, Elsevier, Amsterdam.

Weekes S.R., Madden A.C., Bergström G., Anderson W.P. and Evans R.G. (2000). Effects of renal arterial endothelin-l and endogenous endothelins on regional kidney blood flow and renal antihypertensive mechanisms in anesthetized rabbits. Kidney Blood Pressure Research, 23: 366-75.

Weihprecht H., Lorenz J.N., Briggs J.P. and Schnermann J. (1991). Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles. American Journal of Physiology, 261: F273-82.

Welch W.J.s Deng X., Snellen H. and Wilcox C.S. (1995). Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats. American Journal of Physiology, 268: F175-F178.

Wilkins F.C.J., Alberola A., Mizelle H.L., Opgenorth T.L. and Granger J.P. (1993). Chronic pathophysiologyic circulating endothelin levels produce hypertension in conscious dogs. Journal of Cardiovascular Pharmacology, 22(suppl.8): S325-S327.

Wilkinson L., SYSTAT: The system for statistics, Evanston, IL (1990).
Yanagawa N., Capparelli A.W.,Jr. Jo O.D., Friedal A., Barrett J.D. and Eggena P. (1991). Production of angiotensin and renin-like activity by rabbit proximal tubular cells in culture. Kidney International, 39: 938-941.

Yang S., Silldorff E.P. and Pallone T.L. (1995). Effect of norepinephrine and acetylcholine on outer medullary descending vasa recta. American Journal of Physiology, 269: H710-H716.

Zimmerhackl B., Parekh N., Kucherer H. and Steinhausen M. (1985a). Influence of systemically applied angiotensin II on the microcirculation of glomerular capillaries in the rat. Kidney International, 27: 17-24.

Zimmerhackl B., Robertson C.R. and Jamison R.L. (1985b). The microcirculation of the renal medulla. Circulation Research, 57: 657-667.

Zimmerhackl B., Robertson C.R. and Jamison R.L. (1985c). Effect of arginine vasopressin on renal medullary blood flow; A videomicroscopic study in the rat. Journal of linical Investigation, 76: 770-778.

Zimmerhackl B., Robertson C.R. and Jamison R.L. (1985d). Fluid uptake in the renal papilla by vasa recta estimated by two different methods simultaneously. American Journal of Physiology, 248: F347-F353.

Zimmerhackl B.L., Robertson C.R. and Jamison R.L. (1987). The medullary microcirculation. Kidney International, 31: 641-647.

Zou A.P., Muirhead E.E., Cowley A.W.,Jr. Mattson D.L., Falck J.R., Jiang J. and Roman R.J. (1995). Role of changes in renal hemodynamics and P-450 metabolites of arachidonic acid in the reversal of one-kidney, one clip hypertension. Journal of Hypertension, 13: 557-566.

Zou A.-P., Nithipatikom K., Li P.-L. and Cowley A.W.Jr. (1999). Role of renal medullary adenosine in the control of blood flow and sodium excretion. American Journal of Physiology, 276: R790-R798.

Zusman R.M. and Keiser H.R. (1977). Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Journal of Clinical Investestigation., 60: 215-223.

[^0]:

 - 2000 Amercela Hest Associedza, lac.

 Hypertension t available at httpil/ww.hypartenslonaha.ors

[^1]: Conespondente: Dr Royer C Evons, Departuren of Physioloyy. PO ao
 T3F. Monash Ualivenity. Claylan.
 roger.evans \oplus med.monush.edu.uu

