ADDENDUM

Abbreviations to be added to page xvii:

[’H}-CTOP [>H]-H-b-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH,
[*H]-DADL [’H]-DADLE

[*H]-DADLE [’H]-D-Ala’-D-Lew’-Enkephalin

[;H]-DAGO [2H]-Tyr-D-AIa-Gly-MePhe—Gly-ol

[PH}-DAMGO [*H]-DAGO

[’Hj-DPDPE [*H]-[D-Pen®,D-Pen’]-Enkephalin

[’H)-DSLET [*H]-D-Ser’-Leu’-Thr*-Enkephalin

[PH]-EKC [’H]-ethylketocyclazocine

['*I]-FK 33-824 ['Z1]-D-[Ala’-Me-Phe*-met(0)-o0l}-Enkephalin
[H]-U69-593 [PH}<(53,7a,8b)(+)-N-methyl-N~(7-[1-pyrrolidiny!}-1-

oxaspiro[4,5)dec-8-yl)-benzeneacetamide)

Chapter 3

page 74, paragragh 3, line 5/6:
“and RVLM (+28%)” showld read “and decreased in the RVLM (-28%)”

page 89, paragraphs 2 and 3:
delete paragraphs 2 and 3 and replace with:

“The RVLM is the third relay nucleus in the central sympathetic loop that has a
pivotal role in the control of cardiovascular homeostasis (Dampney, 1994). In
the present study, prepro-ENK mRNA was found fo be significantly decreased
in the RVLM of SHR compared to WKY. These results are in agreement with
the findings of Boone and colleagues (Boone & McMillen, 1994b), where SHR
were found to have a reduced expression of prepro-ENK mRNA in the RVLM,
CVLM and NTS when compared to WKY. Regions implicated in central
cardiovascular control that receive enkephalin-containing projections from the
RVLM, such as the LC and spinal cord, may also be affected by an altered
expression of prepro-ENK mRNA in RVLM neurons (Menetrey & Basbaum,
1987; Drolet et al., 1992; Guyenet ef al., 2001). Thus, decreased expression of
prepro-ENK mRNA in the RVLM may contribute to the elevated BP status of
SHR when compared to their normotensive WKY controls.”
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SUMMARY

The present thesis investigated the neurochemical changes in the opioid, galanin (GAL) and
neuropeptide Y (NPY) systems in the rat central nervous system (CNS) induced by exposure to a
restraint stress paradigm. More specifically, restraint-induced changes in prepro-enkephalin
(prepro-ENK), proDynorphin (proDYN), prepro-galanin {prepro-GAL) and prepro-neuropeptide
Y (prepro-NPY) mRNA expression, and in the density of opioid (y, 8 and k) and GAL receptors,
were quantified and compared in selected regions of the CNS of normotensive Wistar-Kyoto
(WKY) and Spontaneously Hypertensive (SHR) rats. In addition, the role of the opioid system
in the neural response to a single period of restraint was investigated in WKY to determine
whether the changes in gene expression and receptor density previously observed in the thesis

contribute to the central stress response.

Using oligonucleotide probes and a standard ir sity hybridisation histochemistry protocol,
chapter 3 investigated the central expression of prepro-ENK, proDYN, prepro-GAL and prepro-
NPY mRNA in WKY and SHR in the resting and stressed state. Significant neuropeptide- and
region-specific changes in expression were observed for each of these neuropeptide precursors in
multiple brain regions of SHR when compared to WKY. Examples of discrete CNS regions
exhibiting significant alterations in gene expression in SHR compared to WKY include the
supraoptic nucleus (SON; proDYN, prepro-GAL), arcuate nucleus (ARC; prepro-NPY), dentate
gyrus (DG; proDYN), rostral ventrolateral meduila (RVLM; prepro-ENK, prepro-GAL) and
nucleus of the solitary tract (NTS; proDYN).

WKY and SHR rats were exposed to a 60 min session of restraint for 0, 1, 3, 5 or 10
consecutive days and the subsequent effects on gene expression were determined in chapter 3.
In WKY, 1 session of restraint induced significant changes in expression of neuropeptide
precursor mRNA in regions such as the central nucleus of the amygdala (Ce; prepro-ENK,
prepro-GAL), vent:omedial hypothalamic nucleus (VMH; proDYN), perifornical nucleus of the
hypothalamus (PeF; prepro-ENK) and ARC (prepro-NPY), while regions such as the VMH
(proDYN), locus coeruleus (LC; prepro-ENK), RVLM (prepro-ENK) and NTS (prepro-ENK) in
WKY exhibited a significantly altered level of gene expression after periods of repeated

restraint. In contrast in SHR, acute restraint produced significant changes in the SON (proDYN),
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Ce (proDYN), LC (prepro-GAL) and VLM (prepro-NPY). A number of regions in the CNS of
SHR were sensitive to chronic restraint, including the SON (proDYN, prepro-GAL), Ce
(proDYN, prepro-GAL), LC (prepro-ENK, prepro-NPY) and NTS (proDYN). Following
comparison of the temporal response profile between WKY and SHR, significant differences
between strains were observed in the PeF (prepro-ENK), SON (proDYN, prepro-GAL), ARC
(prepro-NPY), Ce {(proDYN, prepro-GAL) and LC (prepro-ENK).

In chapter 4, in vitro receptor autoradiography was used to visualise p-opioid (['*I-FK 33-
824), &-opioid ([*H]-naltrindole), k-opioid (PH]-U69-593) and GAL (['*’I]-GAL) receptors in
the CNS of WKY and SHR. The basal density of each of these receptors were compared
between strains, and significant differences were detected in regions such as the paraventricular
nucleus of the hypothalamus (PVN; x), thalamus (}t), basolateral nucleus of the amygdala (BL;
), medial nucleus of the amygdala (Me; x), caudal ventrolateral medulla (CVLM; &) and NTS
(8, x). Thus, the results of chapters 3 and 4 demonstrate that gene expression and receptor
density in the opioid, GAL and NTS systems are significantly different between WKY and SHR.
Moreover, as some of the significant differences between strains are localised in brain regions
reported to be implicated in the control of blood pressure (BP), nociception and movement, they

may contribute to the phenotypic variations previously observed in SHR.

Similar to chapter 3, the experiments outlined in chapter 4 compared the density of receptors
for GAL and the 3 opioid receptor subtypes in the CNS of WKY and SHR rats exposed to a 10
day restraint paradigm that consisted of a single 60 min restraint session per day. In WKY, acute
restraint induced significant changes in receptor density in regions such as the VMH (9), Ce
(['**1)-GAL), Me (["1]-GAL), basomedial nucleus of the amygdala (BM; 3) and cortex (j).
Furthermore, significant alterations in receptor density were observed after repeated exposure to
restraint in WKY in regions such as the VMH (3, ['*I]-GAL), Ce ((**’I]-GAL), parabrachial
nucieus (PB; p) and medial NTS (x). Different regions in SHR exhibited significant changes to
both acute and chronic restraint stress. Following acute restraint, the PVN (x), Me (x), BL (u)
and NTS (8) of SHR contained significantly altered receptor density, while after periods of
repeated restraint, significant changes in receptor density were detected in the PVN (k), Me (x),
BL (n), lateral PB (['**1]-GAL), NTS (8, x) and CVLM (8) when compared to unstressed SHR.
Statistical comparison of the temporal response to the restraint stress paradigm between WKY
and SHR revealed that regions such as the BL (p), Ce ([]25[}-GAL), PB (1), LC (8) and NTS (&)

exhibited a significantly different response profile between strains.
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Summary

The results described above clearly show that psychological stressors such as restraint can
induce significant changes in gene expression or receptor density in the central opioid, GAL and
NPY systems, and furthermore, these changes are dependent on the rat strain, neuropeptide and
region under investigation, as well as the duration of exposure to the stressor. These data also
demonstrate that the neural response to restraint is significantly altered in the CNS of SHR when
compared to WKY, and the findings may provide a basis for further experiments that correlate
restraint-induced changes in CNS regions that modulate particular physiological functions (such
as those described in chapters 3 and 4) with the atypical physiclogical response to stress

previously observed in SHR.

As described above, restraint produced significant alterations in the expression of opioid
peptide precursors, as well as the density of the 3 opioid receptor subtypes in the CNS of WKY.
Chapter 5 investigated whether the significant changes in the opioid system induced by acute
exposure to restraint were translated into changes in neuronal activity in the same nucleus or in
the regions that receive efferent projections from that particular nucleus. Thus, the non-selective
opioid receptor antagonist, naloxone, was injected centrally (i.c.v.; 100nmol in 5ul) to block all
opioid receptor subtypes in the CNS of rats that were subsequently exposed to a single 60 min
session of restraint. One hour after conclusion of the restraint paradigm, the rats were
anaesthetised (sodium pentobarbitone; 80mg/kg; i.p.), transcardially perfused, brains processed
for Fos immunohistochemistry using a standard protocol and the numbers of Fos-positive cells in
selected regions were quantified. Fos, an immediate early gene, is a commonly used marker of

neuronal activation.

In unstressed WKY rats, 100nmo] naloxone (i.c.v.) had no significant effect on resting MAP
or on Fos expression in regions such as the PVN, Ce, Me, RVLM and NTS in unstressed rats. In
rats exposed to a single period of restraint, i.c.v. naloxone significantly increased the number of
Fos-positive cells in the parvocellular subregion of the PVN (pPVN), while the number of Fos-
positive cells in the magnocellular SON were significantly reduced in the SON of naloxone-
pretreated rats when compared to restrained rats receiving i.c.v. saline. In regions such as the
Me, Ce, LC, RVLM and NTS, naloxone had no significant effect on Fos production during
exposure to restraint. These results therefore suggest that the restraint-induced release of opioids
within the CNS is apparently producing a net inhibition of neurons in the pPVN and a net
activation of SON neurons. Thus, considering that the pPVN and SON have been implicated in
the modulation of the release of hormones such as vasopressin, oxytocin and corticotrophin-

releasing factor, as well as the modulation of sympathetic outflow, the opioid system may be
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Summary

modulating the function of any one of these systems during restraint. Further experiments
investigating the functional effects of antagonism of opioid receptors in the pPVN and SON
during restraint are therefore requirec to gain a greater understanding of the role of the opioid

system in the response to restraint ar.d other stressors,

Furthermore, the restraint-induced changes in the PeF (prepro-ENK) and VMH (proDYN) of
WKY observed in chapter 3 may correlate with the results of chapter £, as both of these regions
have been shown to project to the pPVN. These data therefore demonstrate that at least some cf
the neurochemical alterations observed in the CNS of rats exposed to acute restraint may be
contributing to one or more components of the stress response. Further experiments that focus
on the GAL and NPY system will determine the level of their involvement in the various facets

of the response to stressors such as restraint.

In conclusion, the present thesis clearly demonsirates that acute and chronic restraint stress
can induce dynamic, significant changes in the activity of a number of central neuropeptide
systems in both WKY and SHR, and these changes may contribute to the modulation of a variety

of neural and physiological components of the stress response.
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CHAPTER 1 -
GENERAL INTRODUCTION

1.1 STRESS

One of the earliest definitions of stress was published by Hans Selye (Selye, 1935), where
stress was described as a “non-specific response or syndrome produced by diverse noxious
agents such as exposure 0 cold, surgical injury, or excessive doses of a variety of drugs”. A
more confusing description of stress was published more than 50 years later — “It seems as if
stress, in addition to being itself and the result of itself, is also the cause of itself” (Jewell &
Mylander, 1988). This latter definition recognises that the word “stress” can be used as a verb, |
noun or adjective, and therefore depending on the required context, stress can be defined as

either a particular set of stimuli, the physiological state of the animal or the behavioural

response.

Another definition achieves a distinction between the stressor and ensuing response — “stress g
is the recognition by the body of a stressor and therefore the state of threatened homeostasis;
stressors are threats against homeostasis, and adaptive responses are the body’s attempt to
counteract the stressor and re-establish homeostasis” (Chrousos er al., 1988). The common
theme of these definitions is the alteration to the body’s homeostasis, or resting state, following
exposure to a noxious stimulus. Keeping this in mind, a concise definition of stress is a “state of
threatened homeostasis”, and the stress response is the body’s attempt to regain and maintain

homeostasis.

Noxious stimulation elicits a response known as the “general adaptation syndrome” that can
be divided into three sequential stages (Selye, 1946):

1 — The initial “alarm reaction”, associated with activation of the peripheral sympathoadrenal

system and hypothalamo-pituitary-adrenal (HPA) axis that generally occurs over a period of a
few hours.
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2 — A “stage of resistance”, where neuroendocrine signals from the sympathoadrenal system
and HPA axis aftempt to contain the stress.

3 — The final “stage of exhaustion™, where there is a gradual decline of stress resistance after

repeated acute challenges or stimuli present for a number of days (i.e. chronic stress).

Even at this early stage of research into stress, the acute and chronic stress responses could be
delineated. The acute “fight or flight” response that was first described by Cannon in 1929
(Cannon, 1929) has been conserved through multiple stages of evolution and is mediated
primarily by the sympathoadrenal system. Activation of the sympathoadrenal system results in a
rapid tachycardia and pressor response, and a redirection of blood from regions such as the skin
and gastrointestinal tract to the voluntary muscles. These physiological changes can be achieved
directly or indirectly via projections originating in the central nervous systermn (CNS) that may
ultimately result in the release of the catecholamines such as adrenaline and noradrenaline
(NAdr). Studies have subsequently reported increased plasma levels of these catecholamines

following various stressors (Marson ef al., 1989; Kvetnansky ef al., 1993).

Hormonal systems are also integral to the body’s stress response, with a considerable
proportion of research investigating the response of different components of the HPA axis to a
variety of stressors. These studies have reported elevated plaéma levels of adrenocorticotrophic
hormone (ACTH) and corticosterone in response to stimuli such as restraint and ether inhalation
(McMurtry & Wexler, 1981; Chen & Herbert, 1995). Similar to the sympathoadrenal system,
the release of corticotrophin-releasing factor (CRF), ACTH and corticosterone is controlled by
the CNS. In particular, the paraventricular nucleus (PVYN) of the hypothalamus has an integral
role in the translation of neural information from the CNS into neuroendocrine signals that
control the activity of the HPA axis. Neuronal cell bodies within the parvocellular PVN (pPVN)
contain CRF and vasopressin, and these neurons project to the median eminence and anterior
pituitary where they induce the release of ACTH (Gillies et al., 1982; Swanson et al., 1983).
ACTH then acts as a secreiagogue for corticosterone that is synthesised in the adrenal cortex
(Bohus & de Kloet, 1981). The sensitivity of the neurons within the pPVN to various stressors
has been well documented, with elevated levels of the mRNA encoding the immediate early gene

(IEG) c-fos and its protein product Fos detected in the PVN of rats exposed to stressors such as

restraint, demonstrating that neurons within this region are activated by stressful stimuli (Chen &
Herbert, 1995; Cullinan er al., 1995).
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Many other physiological and hormonal systems are sensitive to the effects of noxious
stimulation, with studies reporting alterations in the release of hormones such as insulin and
testosterone during exposure to stressors such as restraint (Orr & Mann, 1990; Vargas et al.,
1994). The neuroendocrine and behavioural responses to stress represent the outputs occurring

~as a result of signals from the CNS and despite the range of physiological systems that are
perturbed by stress, they all apparently act in synchrony 1o produce a united response to the
stressor (e.g. Dallman et al., 1995; Kvetnansky ef al, 1995). The stress response can be

summarised in a concise network:

INPUTS| = PERCEPTION/INTEGRATION| = ;OUTPUTS:

The inputs consist of the sensory cues, such as sight, smell, pain and sound that activate the
CNS and initiate the central acute stress response. The CNS is responsible for perception of the
stressor, where sensory signals are interpreted and if required, modified according to previous
experiences. The final stage of the central stress response is the integration and translation of the

perceived stressor into a physiological response.

The central stress response circuitry involves a complex network of nuclei from the
autonomic control centres in the medulla to the integrative regions of the forebrain. Studies that
map the distribution of c-fos mRNA, Fos-immunoreactivity (ir) or other markers of neuronal
activation throughout the CNS of rats exposed to various stressors provide an indicator of the
level of involvement of central regions in the stress response. Forebrain regions activated by
stress include a variety of cortical subregions, including the orbitomedial, frontal (Fr), piriform
(Pir) and cingulate (Cing) cortices, caudate putamen (CPu), thalamus, hypothalamus (PVN,
dorsomedial hypothalamus (DM), supraoptic nucleus (SON)), amygdala, such as the medial
subnucleus of the amygdala (Me), and hippocampus. Midbrain, pontine and medullary regions
sensitive to stressful stimuli include the periaqueductal gray (PAG), parabrachial nucleus (PB),
locus coeruleus (LC), raphe nuclei, rostral ventrolateral medulla (RVLM), caudal ventrolateral
medulla (CVLM), area postrema (AP), nucleus of the solitary tract (NTS) and cerebellum (Melia
et al., 1994; Beck & Fibiger, 1995; Chen & Herbert, 1995; Cullinan et al., 1995; Del Bel ef al,,
1998; Emmert & Herman, 1999; Baffi & Palkovits, 2000; Chowdhury et al., 2000).

Particular brain regions such as those above were shown to be sensitive to some, most or all
types of stressors, leading some researchers to propose a theory of two distinct types of stressors

based on the central pathways utilised for the production of the stress response (Herman &
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Cullinan, 1997; Emmert & Herman, 1999). Psychological or neurogenic stressors activate
“processive” pathways that involve higher brain centres such as the amygdala and hippocampus.
Stressors such as restraint, novelty and fear do not pose an immediate threat to physiological
homeostasis. Use of the processive circuitry permits integration and processing of the stressor,
so that prior experience determines the magnitude of the response to the perceived stressor. Itis

these stressors that will be discussed mainly in the next section (section 1.1.1).

In contrast, physical stressors represent a real challenge to homeostasis, and include stimuli
such as haemorrhage, exposure to ether and respiratory challenge. Physical stressors activate the
so-called systemic pathway that directly stimulates central output regions such as the
hypothalamus. The systemic pathway is thought to contain a lesser number of neuronal
connections than the processive circuitry, as there is no requirement for higher order processing.
This theory has been supported by investigations that have compared the pattern of ¢-fos mRNA
expression in the CNS of rats exposed to processive and systemic stressors (Del Bel er al., 1998;
Emmert & Herman, 1999).

1.1.1 CHRONIC STRESS

Repeated exposure to a stressor often produces a response that is smaller in magnitude than
the initial acute response. This phenomenon, firstly termed the final stage of exhaustion, has
been called adaptation, habituation or coping behaviour. Adaptation has been observed at all
levels of the body, ranging from the CNS, to physiological markers and finally to the behavioural
response(s) elicited by the stressor. In the CNS, regions such as the hippocampus, PVN,
amygdala (Me), septum and NTS express relatively lower levels of ¢c-fos mRNA in chronically
stressed rats when compared to rats acutely exposed to the same stressor (Melia e al., 1994;
Umemoto et al., 1994; Chen & Herbert, 1995; Stamp & Herbert, 1999). The results of
adaptation in the CNS are often manifesied as changes in the activity of physiological systems.
Compared to the peak levels detected during the acute stress response, reduced plasma levels of
ACTH, corticosterone, adrenaline and NAdr have been observed in rats exposed to repeated
restraint, swim and cold stress, although stressor intensity affects the level of adaptation
(Konarska ez al., 1990a; Lachuer et al., 1994; Stamp & Herbert, 1999).

Adaptive changes in the stress response have also been observed in the cardiovascular

system. The peak tachycardic response does not differ markedly between acutely and
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chronically stressed rats. Instead, it is the time required for this maximal tachycardia to return
towards resting levels that is altered by repeated stress, with chronically stressed rats exhibiting
the characteristic tachycardia followed by a rapid, dynamic fall in heart rate (HR) after a 10-15
minute period (Chen & Herbert, 1995; Stamp & Herbert, 1999). Stress-induced changes in body
temperature follow a similar pattern, with the time required to regain normal levels decreasing as
the number of stress sessions increase (Stamp & Herbert, 1999). Differences in stress-induced
behaviours have also been observed in rats exposed to acute and chronic restraint, electro-

acupuncture and running (Bucinskaite er al., 1996; Thorsell et al., 1999).

Some researchers have investigated the occurrence of cross-tolerance to different stressors.
More specifically, they have looked at how adaptation to one stressor affects the acute response
to a new and different stressor. One study measured Fos expression in the CNS of rats that
received an acute session of restraint after being exposed to intermittent cold stress for 7 days
(Bhatnagar & Dallman, 1998). The results of the study indicate that rats exposed to chronic cold
stress have an increased sensitivity to the restraint stressor. Interestingly, another study found
that physiological alterations and improvements in the respiratory and cardiovascular systems
associated with habituation to chronic restraint provided a better natural reaction and response to
subsequent exposure to hypoxia (Meerson ef al., 1994). Moreover, other studies have reported
that cross-tolerance is stressor-specific, with chronic exposure to restraint having no effect on the

physiological response to ether inhalation (Terrazzino ef al., 1995).

1.2 RESTRAINT

Restraint is a robust psychological stressor that involves the containment of an animal in a
perspex tube small enough to prevent the animal from turning around. This stress does not pose
an immediate threat to homeostasis, but the novelty of the experience and the fear associated
with being confined nevertheless activates the stress response. Familiarity with the protocol and
surroundings following repeated exposure to the same paradigm often produces an adapted
response (Chen & Herbert, 1995; Chowdhury e al., 2000). Restraint may also be used to
describe the stronger stress of immobilisation, where the animal is physically restrained or

attached to a frame in an upright or supine position so that any movement is extremely difficult.
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Comparison of the central stress response between rats exposed to restraint and immobilisation
demonstrates that immobilisation is a much more stressful experience as indicated by elevated
levels of c-fos mRNA/Fos-ir in the CNS of immobilised rats (Chowdhury et al., 2000). In
addition, increased levels of ACTH are observed in the plasma of immobilised rats compared to

rats exposed to restraint (Campmany et al., 1996).

Rats have been exposed to different periods of restraint, ranging from 2 min to 6 hours
(Sakaguchi & Nakamura, 1990; Boone & McMillen, 1994a), but in general most authors restrain
their rats for 30 min to 2 hours (Melia ¢t al., 1994; Chen & Herbert, 1995; Cullinan et al., 1995;
McDougall et al., 2000). The neurochemical markers or physiological parameters that are under
investigation govern the length of the restraint period. For instance, changes in HR and gene
expression were evident after 2 min of restraint (Boone & McMillen, 1994a), abrogating the
need for extended periods of restraint if HR or prepro-enkephalin (prepro-ENK) mRNA
expression following acute stress is the sole focus of the study. However,
immunohistochemistry often requires much longer time periods, sometimes waiting for 1 or 2
hours after cessation of the restraint stimulus to allow stress-induced protein production to
achieve detectable levels. Extension of the restraint period for long periods of time is limited by

habituation of the stress response (see section 1.2.1).

Many studies have used restraint as a psychological stressor and characterised various facets
of the physiological and behavioural response. As seen with many stressors, the activity of the
sympathoadrenal system in the rat is increased during exposure to restraint, with elevated plasma
levels of adrenaline and NAdr reported by a number of studies (Kiritsy-Roy et al., 1986; Marson
ef al., 1989; Konarska et al., 1990b). Moreover, catecholamine concentrations were found to be
increased in regions of the rat brain that participate in sympathetic regulation (Lachuer et al.,
1991). The physiological consequences of elevated sympathetic activity include a rapid
tachycardia, often increasing by as much as 200 beats per minute (bpm) in the first couple of
minutes of restraint (Chen & Herbert, 1995; McDougall e al., 2000). A pressor response to
acute restraint that accompanies the tachycardia has also been reported in the rat (Barron & Van
Loon, 1989; McDougall er al., 2000).

Like all stressors, restraint activates the HPA axis. Increased synthesis of CRF mRNA has
been detected in the pPVN following restraint, and is associated with an elevated release of CRF
into the hypophysial portal circulation (Hashimoto et al., 1989b; Harbuz es al, 1994). The
expression of the mRNA encoding pro-opiomelanocortin (POMC), the precursor for ACTH, is
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increased in the anterior pituitary by CRF. As expected, it has been demonstrated that POMC
mRNA levels were increased in the adenohypophysis of restrained rats (Larsen & Mau, 1994).
Moreover, increased synthesis of POMC mRNA in the anterior pituitary during restraint was
found to be translated into elevated concentrations of B-endorphin and ACTH, protein products
of POMC (Hashimoto et al., 1989b; Kjaer et al., 1995a; Yamauchi ef al., 1997). Although 8-
endorphin belongs to the opicid family, it has been shown to depress pituitary portal plasma
levels of CRF under resting conditions (Plotsky, 1986), while during restraint stress, Yamauchi
and colleagues demonstrated that f-endorphin may potentiate the synthesis and/or release of
ACTH (Yamauchi ef al., 1997). ACTH is well known as a potent stimulator of corticosterone
release (Bohus & de Kloet, 1981). Elevated plasma corticosterone levels are widely accepted as
an indicator of the level of siress in animals, and not surprisingly, many studies have reported an
increase in plasma concentrations of corticosterone following restraint stress (Herbert & Howes,
1993; Ray ef al., 1993; Chen & Herbert, 1995; Stamp & Herbert, 1999; Thorsell ef al., 1999).

Vasopressin mRNA expression was also found to be elevated in the pPVN of rats exposed to
restraint (Herman, 1995). Vasopressin is a potent stimulator of ACTH release in the
adenohypophysis, and acts synergisticaliy with CRF to activate the HPA axis during restraint
(Gillies ef al., 1982). Interestingly, some studies have suggested that during chronic exposure to
stressors such as restraint, vasopressin assumes a much more prominent role in the stimulation of
ACTH release from the anterior pituitary (Scaccianoce et al., 1991; Makino ef al., 1995).
However, vasopressin released into the portal circulation during stress does not contribute
significantly to global vasopressin plasma levels, with a number of studies reporting no change
in peripheral plasma vasopressin concentration in rats exposed to restraint (Gibbs, 1984;
Hashimoto et al., 1989b; Kjaer ef al., 1995b).

The plasma concentration of testosterone was reduced in male rats exposed to acute restraint
when compared to unstressed controls (Aloisi ef al., 1998). This gonadal hormone appears to
interact with the HPA axis, as Viau and colleagues have demonstrated that testosterone can
attenuate the release of vasopressin from the PVN (Viau & Meaney, 1996), and as a
consequence, reduce the plasma levels of ACTH and corticosterone in restrained rats. Further
investigation found that the medial preoptic area (POA) was a central region critical for this

negative regulatory relationship between testosterone and the HPA axis.

The release of hormones other than those intrinsic to the HPA axis have also been altered by

acute restraint. Plasma levels of prolactin and oxytocin are increased following exposure to a
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restraint stress paradigm' (Gibbs, 1984; Hashimoto et al., 1989b; Larsen & Mau, 1994; Kjaer ef
al., 1995b). Together with corticosterone and the catecholamines, prolactin and oxytocin assist
in the mobilisation of glﬁcose and energy stores for utilisation in the stress response (Dallman ef
al., 1995). In contrast, insulin is a hormone that prorotes energy storage, and considering this
role, it was not surprising that plasma insulin levels were decreased by restraint (Vargas et al,,
1994; Makino et al., 2000). Another anabolic hormone is testosterone, and as described in the

previous paragraph, testosterone levels are also red~ed by restraint.

Core body temperature has been the focus of a few studies investigating the physiological
effects of restraint (Herbert & Howes, 1993; Chen & Herbert, 1995; Stamp & Herbert, 1999).
These studies have observed a hypothermic response during acute exposure to restraint that is
maximal within 10 minutes of the initiation of the stressor. As the restraint period continues,
body temperature returns towards resting values. While swim stress was also found to produce a
hypothermia, previously published studies have reported mainly increases in core body
temperature following exposure to stressors such as a novel environment (Long ef al., 1989;
Pavlovic ef al, 19%6a). An additional study has found that restraint also produced a
hyperthermic response, although it is unclear whether the increase in core temperature was due
to the i.c.v. injections administered to the rats during the course of the experiment (Saiki et al.,
1997). However, some insights into the underlying mechanisms controlling stress-induced
changes in body temperature have been reported. One early study suggested that restraint
produced an inhibition of shivering thermogenesis, which consequently resuited in a fail in body
temperature (Shimada & Stitt, 1983). Furthermore, peripheral (i.p.) administration of the non-
selective opioid receptor antagonist, naloxone, in rats acutely exposed to restraint potentiated the
drop in body temperature (Herbert & Howes, 1993), implicating the opioid system in this

component of the physiological stress response.

Not surprisingly, restraint elicits many of the characteristic behaviours indicative of stressed
animals. An increase in anxiety has been observed in rats exposed to restraint, as measured by
behaviour in open field situations and the elevated plus maze (McBlane & Handley, 1994;
Smagin ef al., 1996). Central regions contributing to restraint-induced anxiogenesis appeared to
include the LC and amygdala (McBlane & Handley, 1994; Moller et al., 1997). Inhibition of
aggressive behaviour, freezing, and reduced exploratory behaviours have been observed in rats
previously exposed to restraint (Albonetti & Farabollini, 1993; Albonetti & Farabollini, 1995;
Zafar et al., 1997). Restraint can also reduce food intake, with a larger effect observed in rats

stressed at the beginning of the light cycle than in rats exposed to restraint at the conclusion of
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the light cycle. Moreover, rats stressed in the morning still exhibited detrimental effects in
feeding behaviour 2 hours into the dark cycle, with the underlying cause still awaiting further
investigation (Rybkin ef al., 1997).

The level of nociception is influenced by different stressors, with a decrease in nociception
(analgesia) often observed both during and after exposure to restraint {Kelly & Franklin, 1987,
Gamaro ef al, 1998). Further experiments showed that restraint powentiated the analgesia
produced by morphine and other more selective p-opioid agonists, therefore implicating p-opioid
receptors in the stress response {Calcagnetti ef al., 1990; Calcagnetti ef al., 1992). The immune
system is also affected by acute exposure to restraint. Farabollini and colleagues (Farabollini ef
al., 1993) reported a reduction in mitogen-induced interferon-y production by splenocytes in
restrained rais, suggesting that this particular stress does not stimulate lymphocyte or
immunological activity. Blood levels of lymphocytes were reduced by restraint, and in addition,
an increased sensitivity to immunological challenges has also been observed in restrained rats
(Dhabhar ef al., 1994; Millan et al., 1996).

1.2.1 CHRONIC RESTRAINT

As previously indicated, repeated exposure to the restraint paradigm results in adaptation and
habituation at all levels of the stress response - central, neuroendocrine, physiological and
behavioural. Within the CNS, chronic restraint caused a reduced expression of ¢-fos mRNA or
Fos prolein in various cortical structures aind regions such as the hippocampus, PVN, amygdala
(central nucleus (Ce) and Me), I.C, septum and NTS (Melia ef al., 1994; Chen & Herbert, 1995;
Stamp & Herbert, 1999). In addition, restraint has also resulted in aiterations in a variety of
neurochemical systems in specific central nuclei (see section 1.3). For example, expression of
the transcript encoding the precursors for enkephalin (prepro-ENK) and neuropeptide Y (NPY)
(prepro-NPY) in various brain regions was attenuated by repeated exposure to restraint when
compared with the initial acute response (Boone & McMillen, 1994a; Thorsell et al., 1999).

Such data indicate the plasticity of the CNS in terms of integrating responses to stressors.

Neuroendocrine adaptation has been well documented, with chronic restraint producing an
attenuated increase in ACTH and corticosterone release (Lachuer ef al., 1994; Chen & Herbert,

1995). Similarly, the restraint-induced rise in plasma catecholamine levels is reduced, and
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sometimes non-existent in chronically stressed rats compared to rats exposed to the stressor on a
single occasion (Konarska ef al., 1990b; Terrazzino et al., 1995). In the cardiovascular 5ystem,
adaptation was observed mainly within the initial restraint period, rather than during sub:+auent,
additional exposures to the same stressor in normotensive rats (McDougall er al., 2000).
However, some studies have demonstirated that while the magnitude of the initial tachycardic
response to restraint was maintained on subsequent exposures, the time required for HR to return
to baseline levels was reduced by chronic restraint (Chen & Herbert, 1995). Furthermore, in rats
where the cardiovascular system is compromised, as in Spontaneously Hypertensive (SHR) rats,
adaptation of blood pressure (BP) and HR to chronic restraint was found to be attenuated when

compared to normotensive rats (McDougall ez al., 2000) (see section 1.4.4).

Chronic restraint causes interesting effects on nociception. Compared to unstressed rats in
the control group, chronically stressed rats had a lower threshold for pain (i.e. an increased level
of nociception). Similarly, there was no stress-induced anaigesia observed in chronically
restrained rats; instead, a hyperalgesia was reported (Gamaro et al., 1998). The reason for this
response 18 presently unknown. Comparison of the hypothermic response of rats exposed to
acute and chronic restraint revealed a similar temporal profile. However, the fact that restraint
consistently produced a fall in body temperature during the first 10 minutes that returned towards
resting levels as the restraint session continued suggests that habituation was occurring over this
much shorter timic span. General behavioural deficits, including increased depression as
indicated by reduced exploratory activity in the open field, have been observed in Wistar-Kyoto
(WKY) rats exposed to both acute (1 day) and chronic (8 days) restraint (Zafar et al., 1997).
Similarly, reductions in the number of leukocytes and lymphocytes induced by acute restraint
were still evident after 11 days of restraint (Steplewski & Vogel, 1986). Almost 2 weeks after

cessation of the restraint paradigm, some (but not all) immunological markers had returned to

basal levels, demonstrating the long term effects of this particular psychological stressor
(Steplewski & Vogel, 1986).

10
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1.3 NEUROPEPTIDES

Techniques such as Fos immunohistochemistry, which provide a measure of the level of
neuronal activation induced by a particular stimulus or stressor, provide a great deal of insight
into which regions are implicated in the central stress response. However, these c-fos/Fos
<rudies do have their shortcomings. While regions that are activated by a particular stimulus are
easily identified, the lack of c-fos mRNA or Fos protein in a specific region does not necessarily
mean that the region is not involved in the stress response. A reduction in baseline activity,
which can be achieved through an increase in inhibitory afferent input, would not necessarily
translate into detectable changes in c-fos mRNA or Fos-ir. Similarly, c-fos/Fos studies alone do
not give any indication of the neurotransmitters/neuromodulators contributing to the stress
response in the particular nucleus. Immunohistochemical studies using a combination of
antibodies directed at Fos and a marker for a neurotransmitter such as a precursor, enzyme,
receptor or the neurotransmitter itself can provide a great deal of information regarding the
phenotype of activated neurons.  Similarly, techniques such as in sirw hybridisation
histochemistry (ISHH) (see chapter 3), membrane binding and in vifro receptor autoradiography
(see chapter 4) using specific probes and ligands can also contribute to a clearer understanding of
the neurochemical changes occurring in specific brain regions during exposure to stress. Studies
using these techniques have provided a significant body of evidence regarding stress-induced
changes in numerous neuropeptides and neurotransmitters. The following section will focus on a
number of neuropeptides and how different stressors, such as restraint, influence the synthesis of
the neuropeptides and their precursors and the density of the pertinent receptors within the CNS,
In addition, the following section also provides a relatively brief, general background on each
neuropeptide, its localisation, the different receptor(s) that recognise the neuropeptide and their

sensitivity to stressors.

1.3.1 OPIOIDS

1.3.1.1 Endogenous opioid peptide precursors

The endogenous opioids are derived mainly from three known precursors - prepro-ENK
(proenkephalin A), POMC, prodynorphin (proDYN or proenkephalin B) (Drouin & Goodman,

11
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1980; Howells ef al., 1984; Civello ef al., 1985). These three precursors have been isolaied and
characterised as described below. While research into the related nociceptinforphanin FQ
peptides is still in its infancy, the lack of the characteristic C-terminal Tyr and an insensitivity to
naloxone and p-/6-/x-opioid receptor ligands separates it from the traditional opioid family of

receptors (Meunier, 1997).

Prepro-ENK

The rat prepro-ENK gene was isolated in 1984, with concurrent reports of the cloning and
sequencing of rat prepro-ENK complementary DNA (¢cDNA) (Howells ef al., 1984; Rosen et al.,
1984; Yoshikawa ef al., 1984). In addition, the human prepro-ENK gene has also been cloned
(Noda er al., 1982) and localised 1o chromosome 8q23-q24 (Litt er al., 1988). In the rat, the 5.3
kilobase (kb} prepro-ENK gene consists of 3 exons separated by 2 introns of approximately 600
base pairs (bp) and 3500 bp respectively. Once transcriptional processing has occurred, the
remaining 269 amino acids that form the prepro-ENK peptide contain a 24 amino acid signal
peptide and a 245 residue pro-ENK product (Figure 1.1) (Rosen et al., 1984). Comparison of the
amino acid sequence of rat prepro-ENK with the bovine and human gene products revealed an
82% homology with both species (Howells et al., 1984). Further comparison of the sequence of
prepro-ENK between these species demonstrated that the rat, human and bovine forms of prepro-
ENK contain 4 copies of Met-enkephalin, and one copy each of Leu-enkephalin, Met-
enkephalin-Arg®-Gly’-Leu® and Met-enkephalin-Arg®-Phe’ (Howells er al., 1984).

Detectable levels of prepro-ENK mRNA have been reported throughout the CNS and in
peripheral tissues such as the heart, lymphocytes and testis (Howells et al., 1986; Zurawski ef al.,
1986; Yoshikawa & Aizawa, 1988). Using Northern blot analysis, brain regions containing
prepro-ENK mRNA include the striatum, hypothalamus, midbrain, cerebellum, pons/medulla
and spinal cord (Yoshikawa et al, 1984). A much more detailed description of the central
distribution of prepro-ENK mRNA has been reported by ISHH studies (Harlan ef al., 1987;
Ahima ef al., 1992). This group found high levels of the prepro-ENK transcript in the cortex
(Pir, neocortex, Cing, entorhinal (Ent), olfactory), nucleus accumbens (NAcc), olfactory
tubercle, CPu, amygdala (Ce, Me), perifornical nucleus of the hypothalamus (PeF), ventromedial
hypothalamus (VMH), cerebellum, PB, median raphe, raphe magnus (RMag), NTS, spinal

trigeminal tract {sp5) and various levels of the spinal cord. Light to moderate Jevels of prepro-
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l FIGURE 1.1

Structure of prepro-ENK, together with the amino acid sequences of Met-enkephalin, the N-
terminal extensions of Met-enkephalin and Leu-enkephalin. Note that all of the peptides

shown contain the C-terminal YGGF sequence that is highlighted in blue and characteristic

|

of opioid peptides.
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Chapter 1 General Introduction

ENK mRNA were also detected in the lateral septum, bed nucleus of the stria terminalis (BNST),
other amygdaloid subregions, DM, PAG, LC, cuneate nucleus (Cu) and external cuneate (ECu).

Interestingly, the prepro-ENK gene contains a glucocorticoid response element in its
regulatory region (Jenab & Inturrisi, 1995). Binding of glucocorticoids to this region may
regulate the expression of prepro-ENK mI&NA, with studies suggesting that circulating
glucocorticoids are required to maintain basal prepro-ENK mRNA expression in regions such as
the CPu, NAcc, VMH and Ce (Chao et al,, 1989; Ahima ef al., 1992). In addition, elevated
levels of plasma glucocorticoids have induced signiﬁcant increases in prepro-ENK mRNA
expression in the CPu and hippocampus (Ahima ef al., 1992). These data suggest that prepro-
ENK mRNA expression is extremely sensitive to plasma levels of glucocorticoids. This
regulation of prepro-ENK mRNA becomes particularly important when plasma glucocorticoid

concentrations are fluctuating such as during exposure to various stressors {see section 1.1).

POMC

The structure of the rat gene encoding POMC was reported by Drouin and colleagues
(Drouin et al., 1985), with POMC genes also isolated and characterised in the human, cow and
mouse (Nakanishi ef al., 1980; Takahashi et al., 1981; Whitfeld e al., 1982; Uhler er al., 1983).
The rat POMC gene is approximately 6 kb long, and similar to the human, bovine and murine
POMC genes, it contains 3 exons and 2 introns (Drouin et al., 1985). Rat POMC mRNA has
been found to exist in two forms, with two alternate splice locations in the 5’ uncoding region
(Oates & Herbert, 1984; Drouin et ai., 1985). As reported in earlier siudies published by Oates
(Oates & Herbert, 1984) and Drouin (Drouin & Goodman, 1980), the POMC precursor peptide
consists of a 26 amino acid signal peptide and the 209 residue POMC prohormone. There are a
number of different hormones contained in POMC, including P-lipotropin (91 residues), y-
melanocyte-stimulating hormone (y-MSH; 12 residues), a-MSH (13 residues), B-MSH (18
residues), ACTH (39 residucs), P-endorphin (31 residues) and CLIP (corticotrophin-like

intermediate lobe peptide; 22 residues) (Figure 1.2).

CRF and glucocorticoids such as corticosterone provide a mechanism that finely tunes the
transcription of the POMC gene and subsequent synthesis of ACTH, B-endorphin and POMC-
derived peptides. The rat POMC gene contains a CRF-responsive element, where CRF can

promote POMC gene transcription and hence positively influence the production of ACTH (Jin
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I FIGURE 1.2

Structure of POMC and the various peptides produced after enzymatic cleavage of POMC.
The amino acid sequence of B-endorphin is also shown, with the characteristic YGGF C-

terminal highlighted in blue.
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Chapter 1 General Introduction

et al., 1994). In addition, a negative glucocorticoid regulatory element has been detected in the
promoter region of the POMC gene, and binding of the glucocorticoid receptor to this region
suppresses POMC gene synthesis (Drouin ef al, 1989). The activity of this glucocorticoid
regulatory element appears to depend on the location. Adrenalectomy, where there is a rapid
reduction in plasma corticosterone, induced an elevation in POMC mRNA Ievels in the anterior
pituitary, while POMC mRNA in the intermediate lobe of the pituitary was not affected by
fluctuations in plasma corticosterone concentrations (Pelletier, 1993; Baker & Herkenham,
1995). Contrasting reports have also been published regarding the regulation of POMC mRNA
expression in the arcuate nucleus (ARC) in the hypothalamus (Beaulieu er al., 1988; Pelletier,
1993; Baker & Herkenha:in, 1995), suggesting that further characterisation of this glucocorticoid-
mediated modulation at the level of the ARC is required.

The central distribution of POMC mRNA in rats is extremely limited, with the only neuronal
cell bodies containing POMC mRNA located in the hypothalamic ARC and in the NTS in the
medulla oblongata (Finley et al., 1981; Bronstein et al., 1992; Larsen & Mau, 1994), However,
neurons containing POMC-derived peptides originating from these regions project to many
different nuclei, including the Ce, POA, VTA, PAG, NTS and median eminence (O'Donohue et
al., 1979; Gray et al., 1984). POMC mRNA has alsc been detected in the intermediate and
anterior lobes of the pituitary gland, ovary, testis, gastrointestinal tract, liver, kidney and spleen
(Chen ef al., 1986; DeBold ef al., 1988).

ProDYN

The first report of the characterisation of the rat proDYN gene was published in 1985 by
Civello and colleagues (Civello et al., 1985). This group focussed on the main exon of rat
proDYN, and was able to determine a 204 amino acid sequence that codes for the majority of the
translated region of rat proDYN. Within this 204 amino acid sequence are a number of
biologically active opioid peptides, including Leu-enkephalin (3 copies), and a-neoendorphin, -
neoendorphin, dynorphin A, dynorphin A (1-8) and dynorphin B (Jeumorphin} (Figure 1.3). In
addition, the proDYN gene has been isolated in the human and localised to chromosore Z20pi2-
pter, while the sequence of porcine proDYN mRNA has also been reported (Kakidani ef af,
1982; Horikawa et al., 1983; Litt er al., 1988). A glucocorticoid response element has not been
identified in the proDYN gene; however, adrenalectomy decreased proDYN mRNA levels in the
rat hippocampus, but not in the ARC (Thai et al., 1992; Baker & Herkenham, 1995). These
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I FIGURE 1.3

Structure of proDYN and its peptide products. The amino acid sequences of Leu-enkephalin,
o-neoendorphin, dynorphin A and dynorphin B are also shown, with the YGGF C-terminal
sequence highlighted in blue in each peptide.
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Chapter 1 General Introduction

results suggest that there may be region-specific selectivity in the effects of glucocorticoids on
proDYN mRNA expression, but further siudies are required to determine whether

glucocorticoids achieve this regulation at the level of transcription.

The distribution of proDYN mRNA has been investigai>d using Northern blot analysis of
RNA extracted from various brain regions and peripheral tissues (Civello ef al., 1985). In the rat
CNS, high levels of proDYN mRNA were detected in the hypothalamus, CPu and hippocampus,
with fower levels localised in the thalamus, cortex, midbrain, cerebellum, NTS and spinal cord.
In the periphery, the highest levels of expression of proDYN mRNA were found in the adrenal
gland, with proDYN mRNA also detected in the testis, anterior pituitary and ovary (Civello et
al., 1985; Kaynard ef al., 1992). The central distribution of proDYN mRNA has been studied in
greater anatomical detail using ISHH. The highest densities of hybridisation signal to the
proDYN probe were detected in neurons in the olfactory tubercle, NAcc, SON, PVN, CPu, Ce,
dentate gyrus (DG), PB, Cu and NTS. In addition, various regions of the cortex and
hypothalamus (DM, VMH, ARC, periventricular nucleus (Pe)), BM, Me, ventral pallidum,
BNST, medial POA, PAG and LC expressed detectable levels of proDYN mRNA (Morris et al.,
1986; Mansour ef al., 1994b).

Other opioid precursors

Recently, the possible existence of additional opioid peptides has generated some interest. In
1995, Meunier and co-workers published the first report for a novel putative opioid ligand of 17
amino acids termed nociceptin, a peptide also referred to as erphanin FQ (Meunier et al., 1995).
Its classification as an “orphan” opioid peptide is due to its distinctive C-terminal sequence that
does not contain the Tyr in position 1 that is characteristic of opioid peptides. The cDNA. for
nociceptin has been identified in the rat, as has the gene for the precursor in the rat, mouse and
human (Mollereau et al, 1996; Nothacker et al., 1996)., Novel putative opioid peptides
(endomorphin—1 and -2) with a high selectivity for the p-opioid receptor have also been isolated

(Zadina et al., 1997), but the precursor for the endomorphins has not, as yet, been detected.

15

) . . o . . r s e e e e T L e e b s L s I -
e T s e it p T e e E e e 3 S i e e b et T R e it e S i R - DN - . -
TY I iz T Sond o R e S ik I i B ST 3 :




Chapter 1 General Introduction

1.3.1.2 Synthesis and distribution of the endogenous opioids

The endogenous opioids can be grouped into 3 main families, the enkephalins, dynorphins,
endorphins, and these have been extensively characterised in terms of their distribution and
biological effects. However, additional opioid peptides, such as the endomorphins have also
been postulated to have biological roles, and further research will provide a much clearer
understanding of their contribution to the regulation of physiological systems and their

associated neurochemistry.

Enkephalins

The enkephalin family consists primarily of Met-enkephalin and Leu-enkephalin, but
carboxy terminal extensions of both pentapeptides (metorphamide, dynorphins, endorphin) have
been shown to have pharmacological activity at different opioid receptor subtypes (Dray &
Davis, 1985; Wang & Ingenito, 1994b). The enkephalins are obtained from two opioid
precursors. Cleavage ol prepro-ENK mRNA generates a number of enkephalin peptides (see
section 1.3.1.1), while 3 copies of Leu-enkephalin are obtained from one proDYN peptide. Early
investigations of the affinity of the enkephalins for the three main opioid receptor subtypes, p, &
and x (see section 1.3.1.3), suggested that Met-enkephalin and Leu-enkephalin were the
endogenous ligands for the §-opioid receptor subtype (Lord ef al., 1977). Since this study, the
enkephalins have been reported to also bind to the p-opioid receptor subtype, while they do not
bind appreciably to the x-opioid receptor (Hawkins ef al., 1989; Nock et al., 1990). Substituted
enkephalin analogues that have been found to have a high selectivity for either the p- or 8-opioid
receptor subtype have been used extensively to study the role of both of these opioid receptor

subtypes.

The central distribution of the enkephalins has been mapped by immunohistochemistry. Met-
enkephalin-ir has been detected in perikarya and fibres in regions such as the lateral septal
nucleus, BNST, the preoptic nuclei, hypothalamus (ARC, PVN, Pe, VMH, DM, mammillary
nuclei), amygdala, hippocampus, cortex, ventral tegmental area (VTA), PAG, PB, LC and NTS
(Wamsley er al., 1980; Merchenthaler ef al., 1986; Sawchenko ef al., 1990).
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Dymnorphins

The dynorphins, dvnorphin A (1-17), dynorphin A (1-8) and dynorphin B (leumorphin), are
C-terminal extensions of Leu-enkephalin that are obtained from the processing of proDYN
(Figure 1.3). The dynorphins have been shown by numerous studies to have the highest affinity
for the -opioid receptor subtype. Additionally, the dynorphins can bind to the p- and &-
subtypes with considerabie affinity (Chavkin er al., 1982; Garzon et al., 1984). Interestingly,
one study has shown that the dynorphins can also bind to an NPY receptor (Miura ef al., 1994).

Using immunohistochemistry, the distribution of dynorphin-ir (dynorphin A, dynorphin B)
has been described throughout the rat CNS, with cell bodies containing dynorphii-ir found in the
NAcc, BNST, hippocampus, hypothalamus (SON, PVN, VMH), CPu, Ce, PAG, NTS and
nucleus ambiguus (NAmb) (Molineaux ef al., 1982; Fallon & Leslie, 1986; Tan-No et al., 1997).
Dynorphin-ir positive fibres have also been visualised in the main efferent neuronal systems of
these regions, including the striato-nigral, striato-pallidal, mossy fibre and hypothalamo-
hypophysial pathways (Fallon & Leslie, 1986). In the periphery, dynorphin-ir has been detected
in the pituitary, gastrointestinal tract, adrenal gland, kidney, heart and pancreas (Vincent ¢ al.,
1984, Cetin, 1985; Bhargava ef al., 1988; Tan-No et al., 1997). Dynorphin-ir has been detected
in the CNS and peripheral tissues of species other than the rat, including the guinea pig and
human (Gramsch et al., 1982; Vincent ef al., 1984; Cetin, 1985).

3-Endorphin

As described in section 1.3.1.1, the precursor for B-endorphin is POMC. The POMC neurons
are mainly localised in two populations, the ARC and NTS, and it is in these regions where the
neuronal cell bodies containing -endorphin-ir are predominantly found (Finley ef al., 1981,
Bronstein ef al., 1992). In contrast to the limited distribution of B-endorphin positive cell bodies,
terminals containing the B-endorphin peptide are found in numerous CNS regions. In the
hypothalamus, PAG and NTS, a dense network of B-endorphin-ir terminals have been detected
(Finley et al., 1981). B-Endorphin-ir fibre networks have also been visualised in the PB, raphe
nuclei, NAmb and the ventrolateral medulla (VLM) (Finley er al., 1981; Schwartzberg &
Nakane, 1983; Palkovits er al., 1987). In the rat, peripheral tissues such as the gastrointestinal
tract, pituitary, testis, kidney, liver, heart, adrenals, lung and spleen contain detectabie levels of
B-endorphin (Bhargava et al., 1988; DeBold et al., 1988).
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Other endogenous opioids

Included in this additional group of putative endogenous opioids are the recently discovered
peptides such as the endomorphins. The endomorphins have been characterised by their high
affinity for the p-opicid receptor, and have been found in high concentrations in central regioﬁs
known to have dense populations of p-opioid receptors (Zadina et al., 1997; Schreff et al., 1998).
Neciceptin binds primarily to the orphan receptor, with little or no affinity for the p-, &~ and -
opicid receptors. This selectivity may be explained by the substitution of a Phe amino acid for
the initial Tyr that is normally present in position 1 at the amino end of opioid peptides (Meunier
el al., 1995). In addition, the fact that the functions and effects mediated by nociceptin are

insensitive to naloxone isolates nociceptin from the traditional opioid receptor family.

1.3.1.3 Opioid receptors

As mentioned in the sections above, there are 3 main opioid receptor subtypes (u, 6 and «),
all of which belong to the seven transmembrane domain G-protein-coupled receptor family.
These receptors will be discussed in the following section, in terms of their distribution and

second messenger systems.

p-opioid receptor

The rat p-opioid receptor was cloned in 1993 (Chen ez al., 1993a; Fukuda et al, 1993;
Thompson et al., 1993), and subsequent studies have isolated and characterised p-opioid
receptors in the human and mouse (Min et al., 1994; Wang et al., 1994a). The human p-opioid
receptor is approximately 95% homologous to the rat p-opioid receptor, and has been localised
to chromosome 6q24-25 (Wang et al., 1994a). Pharmacological studies have suggested that
there may be two subtypes of the p-opioid receptor (; and py), but at present caly one receptor
has been cloned (Wolozin & Pasternak, 1981; Thompson ef al., 1993). Interestingly, two splice
variants of the p-subtype have been isolated that differ in their sensitivity to agonist-induced
sensitisation and internalisation (Zimprich ef al., 1995; Koch ef al., 1998). The two isoforms
exhibit similar binding characteristics, suggesting that these splice variants do not represent 3

individual p; and p, receptors (Zimprich et al., 1995; Koch et al., 1998). However, a recent
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study has used immunohistochemisiry to demonstrate distinct central distributions of multiple p-
opioid receptor splice variants (Abbadie ef al., 2000).

The distribution of the mRNA encoding the p-opicid receptor has been reported in a number
of studies. Using ISHH, Mansour and colleagues (Mansour ef al., 1994c) found that p-opioid
receptor mRNA was distributed throughout many levels of the rat CNS. High levels of p-opioid
receptor mRNA were detected in neurons in the olfactory bulb (OB), accessory OB, olfactory
nuclei, CPu, NAcc, globus pallidus, ventral pallidum, septum, BNST, amygdala (intercalated,
Me, cortical), hippocampus, most thalamic nuclei, medial preoptic nucleus, posterior
hypothalamic nucleus, median raphe, RMag, LC, PB, NAmb, AP, NTS, Cu, dorsal motor
nucleus of the vagus (DMX) and spinal cord. Lower levels of the p-opioid receptor transcript
are localised in neurons in regions such as the amygdala (Ce, lateral, basolateral (BL),
basomedial (BM)), hypothalamus (ARC, DM), PAG and VTA. WNote that there was no
discernable p-opioid receptor mRNA detected in the PVN or SON (Thompson er al., 1993;
Mansour ef al., 1994c). In addition, p-opioid receptor mRNA has been detected in glial cell
membranes in regions such as the cortex, hypothalamus and striatum, although the transcript for

6- and «-opioid receptors were more abundant (Ruzicka et al., 1995).

Generally, there appears to be a good correlation between the distribution of p-opioid
receptor mRNA and p-opicid receptors visualised using ISHH and autoradiography,
respectively. In the past, different pi-selective radiolabelled ligands have been used to investigate
the central distribution of p-opioid recepiors, including [? H]-DAMGO (DAGO; Tyr-D-Ala-Gly-
MePhe-Gly-ol), [PH]-CTOP ([*H}-H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH,) and {'#1}-
FK 33-824 ['®1)-D-Ala’-Me-Phe*-met(0)-ol]-enkephalin (Rothman et al., 1987; Hawkins ef al.,
1958; Mansour ef al., 1994¢; Cowen ef al., 1999). These studies have detected highest densities
of p-opioid receptors in neurons in cortical regions such as the Cing, Par, and temporal cortex,
NAcc, CPu, septum, stria terminalis (st), thalamus, hippocampus, DG, amygdala (Me, cortical ,
lateral, BL), substantia nigra (pars compacta), median raphe, LC, PB, NAmb, AP, NTS, DMX
and spinal cord (Hawkins ef al., 1988; Mansour et al., 1994c¢). Regions where neuronal p-opioid
receptors have aiso been detected include the globus pallidus, subfornical organ, hypothalamus
(DM, lateral hypothalamus (LHy)), VTA and PAG (Rothman et al., 1987; Hawkins ef al., 1988;
Mansour e/ al., 1994c; Cowen ef al., 1999).
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Activation of p-opioid receptors expressed in COS-7 and Chinese Hamster Ovary (CHO)-K1
cells has been shown to inhibit the activity of adenylate cyclase via a pertussis toxin sensitive
mechanism {Chen ef al, 1993a; Zimprich et al, 1995). The sens