ERRATA

Page 28. line 7 The sentence should read as follows: “But among these Bayesian
criteria. BIC has the most general asympiotic properties in the sense that it sausfies

the properties of a consistent criterion.”

Page 31, line 1. The sentence should read as follows: *One major hmtation of
Hocking's criterion is that it i1s not applicable {or nonstochastic regressors.”

Page 40, line 8. Read f'< f, , for f'< f,.

M

Page 47. line 12. The sentence should read as follows: “Once an equilibrium state has
been achieved for a given temperature, the temperature is reduced as defined in step 5
and the process started again taking values of the last iteration of the algorithm as the

mitial values.”

Page 182, line 5. The sentence should read as follows: “QOur goal 1s to choose the
penalty i such a wzwal none of the competing models 1s unknowingly favoured
over the others.™

Page 241, lines 4-3 from bottom should recad as follows: ““This impiies that the
optimal penaity depends not only on the sample size and the number of free

parameters, but also on the competing data generating processes.”

Page 242, last dot point should rcad as follows: “The difference between the largest
and the smallest MAPCS obtained using the SAO technique is very small, which
implics that for equi-dimensional competing alternative models, the MAPCS s

insensitive to the starting parameter values of the SAQ 1echnique.”

Page 244, linc 4. Read MAPCS for MACPS.
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ABSTRACT

This thests is concerned with model selection m the context of the lincar regression
maode! and the construction of an appropriate procedure to find the best model from a
st of ghernative competing models. Of the mamy available tcchnigues. the
iformation crterta (C) based model selection technigue s the most widely used.
There are many JC avalable m the literature. But from the luerature. 1t s observed
that none of the existing enterta perform well i all sitsauons, So from the user’'s
point of view, which eriteria one should use o select the best model for a particular
data set s a question that s unresolved. The wims of this thesis s to answer this
question by developing an 1€ procedure. which performs better on average i all

sttuations than the best of the existing enterna,

In Chapter 20we review the relevant hiterature on model selection. We begin with the
Ierature on mode! selection based on error sum of squares rules and then review
commonty used 1C based model selection procedures. We discuss the advantages and
drawbacks of the existing eritena. which motivate us to develop a new technigue. the
performance of which 1s better on average in all situations than the exisiing criteria.
We also review the simulated annealing optimisation (SAO) technique and its use in

CCONVIMCLIICS.




Abstract

A new and more efficient technique for selecting the best cumbination of parameter
drawings and number of replications for esumating the average probability of correct
selection (APCS) of the true model via simulation is presented in Chapter 3. A
generalised form of penalty functions of six existing 1C 1s also presented. In this
chapter. we also propose a new method of mode! selecuon. Simulation results show
that the mean APCS (MAPCS) obtained from this proposed method is always higher

than that of the best of the ex«suing IC.

The appheation of the SAO technigue 1o maximise the MAPCS for an additive
penalty and the maximised log-likehhood: and for a muluphicative penalty and mean
squared crror, s discussed in Chapter 4. T-rom the simulation resufts, we observe that
the MAPCS obtatned from the SAO technique with both tvpes of penalties are
alwavs higher than those of the best of the existng IC. We also sce that for the same
model. the relative penalty vanies from data set to duta set: zad for a particular data
scl. the velauve penaluies are different for those competing models with the same
number of parameters. This imphes that the penalties are not only a function of n, the
sample size. and A. the number of free parameters. but also the data generating
process, this 1s m contrast 1o existing penalty functions that are a function of n and &
only. Another interesting outcome of these simulation experiments is that exactly the
same MAPCS 1s obtained from different sets of relative penalties, which implies that

there may not be a unique form of penalty (unction.
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Abstract

In Chapter 5 we investigate the use of the additive and multiplicative penaity with the
SAOQ technigue described in Chapter 4 for the special case of cqui-dimensional
aliernative competing models. From the results of the simulation experiments. 1t is
apparcnt that m all situations the MAPCS obtained using the SAO technique 1s
higher than those of the existing critena. Another notable outcome 18 that although
the relatve penaltics are zero for the existing criteria when modcls are equi-
dimensional. the relative penaltues that maximise the MAPCS using the SAO

techmgue are different from z¢ro.

In Chapier 6 we develop a method based on the SAQ to select the best model in such
a wav that all the competing models have an equal chance on average of being
selected. We apply the SAO techmique to mmimise the standard deviation (SD)
among the APCS lor selecting the best model. The simulation results show that for
most ol the cases with competing models of differemt dimensions. the variation
among the APCS 15 zero or close to zero. which indicates that the APCS are equal or
nearly vqual. But, generally the MAPCS 1s lower than that of the best of the existing
critena. or equi-dimensional competing models, the MAPCS obtained using the
SAQ technigue is generally higher than those of the existing criteria with zero or
close 1o zero variatiop among the APCS. Therefore, for equi-dimensional competing
alternative models, the apphcation of the SAO technique 10 mimimise the variation
among the APCS seems 10 be the best way of selecting the best model without

favouring one model over another.
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and 100 for Design 5.5 together with relative penalty values and

input vajues of SAO techn.que.

Average probabilities. mean average probabilities and standard
deviations of average probubilities of correct s¢lection of models
commesponding to the smallest vanation among the average
probabilities of cormrect selection of models under different
methods for sample sizes 20. 50 and 100 for Design 5.5 together

with rclative penalty values and input values of SAO techmque.

Average probabilities. mecan average probabilities and standard

deviations of average probahilities of comrect selection of modelis

corresponding 1o the largest mean average probabilities of

comrect selection under different methods for sample sizes 20, 50
and 100 for Design 5.6 together with relative penalty values and

input values ot SAO techmque.

Average probabilities. mean average probabilities and standard
deviziions ol average probabilities of correct selection of models
corresponding to the smallest varation among the average
probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.6 together

with relative penalty values and input values of SAQ technique.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF MODELLING AND MODEL
SELECTION

In any modelling. a real-world problem 1s analysed and. as a result of the analysis. a
model that approximates the real situation 1s developed. According to Pearce (1992).
“A model is a formal or informal framework of analysis which seeks 10 abstract from
the complexities of the real world those charactenstics of an economic system which
are crucial for an understanding of the behavioural, institutional, and technical
relationships which underlie the system”™. Harvey (1981) asseried five characteristics
of a good model. namely parsimony. identifiability, goodness of fit, theoretical
consistency, and predictive power. Proper specification of the econometne model
plays an important role in the selection of the best model from a set of alternative
models. Several researchers have stressed the importance of misspecification tests in
cconometric model building process. For exampie. Malinvaud (1981) contended thut
cconometricrans should place special emphasis on the testing of model specification.
In formulating a regres:=1on model, misspecification error may arise from (i) omitted

vartables, (1) incorrect functional form, (i) autocorrelation, (iv) heteroscedasticity,
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Chapter 1 Introduction

(v) lack of regression parameter consistency. (vi) non-normality of disturbances and
(vin) invalid assumptions about the exogeneity of one or more regressors. There are a
laree number < :=sts designed to detect these misspecifications and many of these
tests are available in modem computer packages which are very comprehensive, for
example see Microfit (Pesaran and Pesaran 1987) and SHAZAM (White. 1978).
There i1s a lot of Inerature on the topic of misspecification tests. Examples are.
Eastwood and Godirey (1992). Ramsey (1969). Durbin and Watson (1951), O Hagan

and McCabe (1975). Discussions of these are bevond the scope of this thesis.

The level of sophistication of a model depends on a number of things, including the
mathematical background of the modellers. the nature of the problem. the available
inforr..ation including reliable data and so on. In econometrics and apphied statisuics,
we generally deal with sample data and usually want to draw inferences about the
relationship of the vanables in the population from which the sample data have been
drawn. Because modelling is concerned with the population. we should expect that
any model we develop on the bisis of a sample will provide an approximation of the
relationship for the population. Generally, it is possible to develop many different
models for a particular data set and set of variables, and we need to make a choice as
to0 which one of these models is the best approximation of the population,
substantively inerpretable and as simple (parsimonious) as possible. For example, if

the models with and without higher-order interaction terms fit the data well, the
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Chapter 1

simpler models are usually preferable. because higher-order interaction terms are

generally difficult to mnterpret.

Data play a vital role in the cconometric model buiiding process. Without good.
consistent and reliable data. even the most sophisticated and mathematicatly sound
models fail to represent the phenomenon of interest. In selecting the best
representative model for a particular data set, one must keep in mind the purpose of
the model. the availability and accuracy of data. ease of model application. and
accuracy of the selected model. Models with different subsets of vanables produce
very different results. raising questions about which one is the best representative
model for a particular set of variables. The selection of the best mode! for a particulas
data set and set of variables 15 an important 1ssue 1 econometrics and statisucs for
the purpose of valid estimaton, interence and prediction. The process of choosing a
model {rom a set of alternative models using the available data and set of vanables. s
known as model selection. In regression analysis, model sclection is the process of
selecting a subset of independent variables which best explain changes in the

dependent variable.

Econometnic modelling usually involves the estimation of a range of maudels, then the
choice of a rnodel that best fits the available data. There are several selection
techniques available in the literature to choose the best desirable model using the

available data. These sclection techniques can be grouped into the following four
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major classes: (i) hypothesis testing based procedures, (i1) Bavesian criteria. (1) the
use of residual sum of squares. and (iv) information cniteria (IC). Hypothesis testing
based procedures involve the use of a series of pairwise hypothesis tests 1o select the
{inal model. Several researchers have proposed various testing procedures for model
selection, see for example. Gaver and Geisel (1974). Atkinson and Fedorov (1975).
Leamer (1978). White (1982a, 1982h, 1983, 1990). MacKinnon (1983). Davidson
and MacKinnon (1984). Bunke and Droge (1985). Linhart and Zuchim (1986).
McAleer (1987). Grassa (1989). Brownstone (1990). Potischer (1991). and Maddala
(1992). Unfortunately, this method of model selection has many liminations as
mentioned by Granger er al. (1995). At each step, one model is chosen as the null
hypothesis and can be unfairly favoured because the probability of wrongly rejecting
1118 set 1o a small value hke 0L05 or 0.01. This can be particularly troublesome m
sttuations where the test being used s not particularly powerful and therefore a
choice of the null hypothesis model is the most ikely outcome. There is also the well
Known problem of pre-test bas (see for example Wallace, 1977, and Giles and Giles.
1993). Finally different researchers working on the same model selection problem
could easily end up with different final models purely because they performed the
tests 1n a different order or used different significance levels. In Bayesian criteria the
penalised posterior probability is maximised using Bayes theorem. It is a well
established concept in model selection and it uses posterior odds ratics for the
comparison of the model. DeGroot (1970) gave a detailed description of Bayesian

criteria.

o
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The available methods that use residual sum of squares for regression model
selection include the use of the coefficient of multiple determination (R°) and
adjusted coefficient of determination (R°) proposed by Theil (1961} Mallows
(1964) C, criterion. Amemivya's (1980) PC criterton (see for exampie. Judge et al.
(1985. 1988)). Nowadays - i PC are regarded as 1C and these 1C are related 1o
the 1C proposed by Rothman’s (J968) J and Hocking’s (1976) § | and are based on
minimising the mean square crror of prediction. Zhang's (1992) final prediction error
(FPE) criterion and Rahman’s (1998) generahised model selection criterion for Lincar
regression are also based (a1 residual sum of squares and used as IC. R° is a
nondecreasing function of the number of explanatory variables and gencrally is
inadequate to pick out the best model. Thus, R, which is P* adjusted for the
residual degrees of fricedom was defined to overcome this problem. Unfortunately, i
does not penubise the loss of degrees of freedom suificiently. Dhrymes (1970)
mentioned that if the purpose of the selected model ts prediction, then this technique
is nol suitable as R produces an unnccessarily large prediction error. As there are
several problems with using hypothesis testing and residual sum of squares based
model selection techniques, nowadays 1C based model sclection procedures are

frequently used by researchers to sclect the best model for a particular data set.

An IC based technique is the most widely accepted class of model selection

procedures and is bascd on cnoosing the model with the largest maximised log:
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likelihood function minus a penalty which is an increasing function of the number of
free parameters included in the model. Examples of these procedures inc.ude
Akaike's (1973, 1974) IC (AIC). Schwarz’s {1978) Bayesian IC (BIC) and Hannan
and Quinn’s (1979) procedure denoted HQ. Fox (1995) has also demonstrated how a
aumber of other model selection procedures. particularly those developed for
choosing from a set of linear regression models, can be thought of in the IC
framework. Those of interest in this thesis include Theil’s (1961) R- criterion

denoted by RBAR. Mallows’™ (1964) C, procedure denoted MCP. Schmidi’s (1975)
generalised cross-validation (GCV) procedure and Hocking's (1976) §,. criterion

denoted by HOC. As Granger er «l. (1995) and others have noted. the IC approach
has the advantages that (1) no particular model is favourcd because 1t has been chosen
to be a null hypothesis. (1i) the order of computation is irrelevant. (1ii) pretesting bias
is not an issue. (1v) i the 1C procedure 1s asymptotically consistent. the correct model
is chosen with probubility onc asymptotically. and (v) there is no need to choose an
arbitrary level of significance although there is the related issue of which penalty

function is appropriate.

The latter is a major issue. which has featured in the literature. There is currently
little agreement about what the form of the penalty function should be. The early
hterature focused on asymptotic argumenis to justify various choices of penalty
functions, see for example Akaike (1973), Schwarz (1978), and Hannan and Quinn

(1979). Since then we¢ have seen a number of Monte Carlo studies of the small
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sample properties of different model selection procedures which have shown a
iumber of problems. They sugzest ihat asvmptotic properties are no guarantee of
acceptlable small sample properties. For example. Grose and King (1994). in the
context of choosing between first-order autioregressive and first-order moving
average disturbances 1n the linear regression mow'~i. have shown that s particular
model can be unfairly favoured because of the {uncuon:* form of 1ts log-likehhood
function. Thev a'se found that the presence of nuisance parumcters can adversely

affect the probabihties of correct selection.

There are clear paralicls between the hypothesis testing literature and the model
selection literature. although 1t does appear that the latter lags the former. The
computer revolution hus meant that we can now ash what hind of tesung procedures
would we like 10 use vather than what kind of testing procedure is conveniont 10 use
(see for example King, 1987). We should be asking similar questions for modcl
selection. in the context of finite samples. We now regulasly use simulation, a
numerical techingue for conducting experiments on a digital computer, to find
critical values for nypothesis tests. Can we use similar methods to find penalty values

for IC procedures that are in some sense optimal?

The penalty function of almost all existing 1C is a function of n, the number of
¢beervations and £, the number of free parameters. Thus a change of data sct and sets

of independent variables do not have any impact on the penaity function provided n
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and % remain unchanged. Another problem of existing IC is that none of these
performs well in all situations. For example. BIC generally favour the model with the
smallest number of parameters. while R* favours the model with the largest number
of parameters. The performance of HQ is in between BIC and R*. Thus. from the
user’'s point of view, it is very difficult 10 choose an IC for selecting the best mode]l

for a particular data set and set of independent variables,

In this thesis we investigate a new approach to 1C model selection in the context of
the classici] problem of choosing between different linear regression models. We use
the idea of a data-oriented penalty function. which was first introduced by Rao and
Wu (1989). for the model selection problem in the linear regression models. For the
selection of AR ume senes models, Chen ef af. (1993) used the same 1dea for finding
penalties. For the model sclection problem i the context of classical regression
model using the general information cniteria (GIC). Bai ¢r af. (1999) also applied the
idea of data-oriented penalties. Here. we also use the same idea, but our approach
involves the use of a simulation method 1o estimate probabilities of correct selection
and choosing penalties that optimise these probabilities on average. Maximising
simulated probabilities can be a difficuh optimisation problem. We use a relatively
ncw optimisation algorithm called simulated annealing =, wercome any difticulties
in this regard. The main feature of this optimisation algorithm is that it can find the

global maximum/minimum in the presence of Jocal maximum/minimum, and it is a
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verv robust algorithm (Goffe ¢ al. (1994)). A detailed description of thys

optimisation technique is given in Section 2.4 of Chapter 2.

A similar ap~oach to model selection has been investigated by Kwek and King
(1997a. 1997b) and Kwek (2000) i the context of selecting between different
conditional heteroscedastic processes. Billah and King (2000a. 2000b) have also
considered a similar method for choosing between different time-series processes for
linear regression disturbances. Each of these studies has involved choosing between
vanance-covanance matrix functions with restnicted parameter spaces. In this thesis
we consider model selection of different mean processes with unrestricted parameter

Spaces.

The specific aims of this thesis are to:

(1} develop a generalised form of some well used IC (AIC, BIC, HOC. HQ. GCV),

(11) derive a method of model selection which performs better than all the existing
criteria in all situations,

(i1} 1 investigate the use of multiplicative penalties with mean squared error to
select the best model,

(iv) investigate the performance of the simulated annealing optimisation (SAO)
technique to find the penalty for selecting the best model using additive and

muluplicative penalties,

i m e
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(v) study the performance oi additive and multiplicative penalties with the SAO
technique using the idea of controlling the probability of correct selection. and
(vi) make recommendations for the use of appropnate methods of model selection.

all in the context of the linear regression model.

1.2 OUTLINE OF THE THESIS

In Chapter 2. we present i survey of the relevant literature 1n the tield of model
selection. The use of sum of «. wred errors for selecting the best model is discussed
in Sectiom 2.2, The idea of multiphcative penalties is introduced and the technique of
using muluplicative penalties for sclectimg the best model s alse discussed. In
Section 2.3. we review widely used 1C procedures. The major advantages and
disadvantages of using 1C for model selection purposes are also discussed. in
addition, this section contams some directions for overcoming these problems of
model selection. SAO s ntroduced in Section 240 which also contains a hierature

survey of the use of SAO in cconometrics.

A generalised form of six widely used IC 1s given in Chapter 3. A new method of
selecting the true model on the basis of the maximum average probability of correct
selection of mode's 15 introduced in Scection 2.2, In Section 3.3 1, we propose a new
method of data generating processes tor simulation experiments for sclecting a model
from 4 sct of competing alternative models in lincar regression settings. In Section

3.3.%0 0t s shown through the Monte Carlo technique that for a fixed number of

10
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simulations gN. where ¢ is the number of parameter drawings and N is the rumber of
replications. greatest accuracy is obtained by setting N=1. In this chapier. we propose
five new IC and the performance of these IC are evaluated in Section 3.3.3 via Monte

Carlo expenments.

In Chapter 4, we introduce the application of the SAO technique to selecting the best
modei from a set of competing alternative models. The idca of an additive penalty for
the maximised log-hkelihood and a multiplicative penalty for the mean squared error
18 introduced in Sections 4.2 and 4.3, respectively. simulation experiments were
conducted to evaiuadle the performance of these penalties compuared to those of
existing criteria. The experimental design of these simulations s outlined in Section

4.4 anc osults are presented in Section 4.5

In Chapter 5 we investigate selection between competing models with an equal
number of parameters, which is a special case of Chapter 4. where the models have
different numbers of parameters. For the existing 1C. the effect of the penalty
function is cancelled out in selecting the best model from a set of equi-dimensional
competing models, because the penalty functions of the existing critena are functions
of &, tirc number of free parameters and n the sample size. In this situation, selection
of the best model depends only on the maximised log-likelihood. The objective of
this chapter is to investizate the performance of the SAO technique for finding

optimum penalties, when the competing models are equi-dimensional. Section 5.2

I
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contains a description of the Monte Carlo simulation experiments and Section 5.3

presents the results of these simulation expenments.

In Chapter 6, we discuss the issue of finding penalties that make the average
probability of correct selection (APCS) equal. We propose a method of minimisation
of variation among the APCS in Section 6.2. We apply the SAO technique 1o
implement our proposed method to find the penalues for selecting the models with
the constraint that the varnauon among the APCS s as mimimal as possible. The
standard deviation among the APCS is used as a measure of vanation. Section 6.3
gives a descnplion of the Monte Carlo experniments and discussion of the results.,
when the competing models have an unequal number of paramciers. Section 6.4 is
similar 10 Section 6.3, but the competing models have uan equal number of

parameters,

Chapter 7 15 the tinal chapter of this thesis. In this chapter we summanise the findings
of our research work. make some concluding remarks and make some suggestions for

future research in the arca of model sclection,

1.3 COMPUTATIONS

We used GAUSS System Version 3.2.18 (Aptech Systems inc.) on a Pentium [i

personal computer wicth 64MB RAM for all simulation experiments used for
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generating results for this thesis. We also used SPSS 9.0 for Windows and Microsofl

Excel 97 for some of our computations.

—
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CHAPTER 2

LITERATURE SURVEY OF MODEL SELECTION AND
THE SIMULATED ANNEALING OPTIMISATION
TECHNIQUE

2.1 INTRODUCTION

In cconometrics we are often {oreed to ask the data to choose a model for us from a
set of altermative models. There is a tot of hiterature on this problem with a range of
mcthods or strategies being suggested as possible solutions. A sequence of pairwise
tests is one of the techniques often used 1o select the best model. Unfortunatety this
technique has several drawbacks. which were discussed in Chapter 1. Akaike (1974)
pointed out that the use of hypothesis testing 15 not a proper method of statistical
mode! selection. Granger er al. (1995) contend that model selection shouid be based
on weli-thought-out model selection procedures rather than a series of classical
pairwise tests and information criternia (IC) based model selection procedures provide
a good framework. These procedures overcome most of the disadvantages of
pairwise tests of hypotheses, which were discussed in the previous chapter. The
purpose of the first two seclions of this chapter is (0 survey the relevant literature on

model selection based on residual sum of squares and IC procedures,
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An IC based madel selection procedure depends on maximised log-likelihood
funcuons and a penahty function. and the model with the largest penaliscd log-
likelthood value among the competing models is selected as the best model.
Unfortunately there is hittle agreement about the forni of penalty function and none of
the existing IC procedures perform well in all situations. In this thesis we propose a
simulation based technique to estimate probabilities of correct selection and choosing
penalties that optimmse these probabilitics on average. Our objective function is made
up of averaged probabilitics which in turn have been estimated by the Monte Carlo
method; it is therctore a step function (details are discussed in Scection 3.2 of Chapter
3). These types of functions are difficult to optimise using standard numencal
iterative methods. They have many plateaux. which will cause standard optimisation
techniques great difficultics. Most of the standard derative algorithms fail to find the
global maximum or minimum for these types of objective functions. From the work
of Kirkpatrick er al. (1983). Romeo er af. (1984), Whie (1984) and Goffe er al.
(1994}, 1t does secem that the simulated anncaling optimisation (SAQ) algorithm
performs well at finding the global maxima m the presence of local maxima and for
funcuons like ours which have plateaux and other ill-behaviour. The algorithm works
well because it accepts both uphill and downhill moves in a random but systematic
manner thus allowing the algorithm to by-pass local maxima/minima and plateaux. In
Section 2.3 we will provide a brief literature review of this optimisation technique

used in econometrics. In the final section we will make some concluding remarks.
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2.2 USE OF RESIDUAL SUM OF SQUARES FOR MODEL
SELECTION

The purpose of this section is 10 survey the relevant hiterature on model selection,
which use re~idual sum of squares. The available methods in the literature that use
restdual sum of squares for model selection are the coeffictent of multiple
determination and the adjusied coefficient of determination suggested b, Theil
(1961). Mallows™ (1964) (', criterion and Amemiya's (1980) PC criterion.
Nowadays C, and PC are regarded as IC and these IC are related to the IC proposed
by Rothman (1968) denoted J, and Hocking (1970) known as S, . Zhiang's (1492)
final prediction crror (FPE) cnterion and Ruhman’s (1998) gencralised model

selection critenion are alse based on the residual sum of squares.

The coctficient of muluple determination denoted by R™ was the first criterion used
i econometrices and other arcas for model selecuon purposes. It is also used as a
goodness of fit statistic for sclecting a model. The interpretation of R° is, the
proportion of the vanation in the dependent variable that is explained by the
independent variables in the model and its value lies between zero and one. In the

linear regression model
y=Xf+u, (2.1)
where y is an n X 1 vector of observations on the dependent variable, X is an nx k’

matrix with a column vector of ones in its firs: column and in the remaining (& - 1)

16
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columns (k" —1) non-stockastic variables (i.e., there are (k° —1) non-constant

regressors), u is an nx 1 vector of random disturbances following N(0.o " hand £

is a vector of &~ parameiers. R is defined us

(2.2)

e
I

2UD oo

S (v - TSS

1
where SSR is the sum of squares due to the regression. 755 is the total sum of
squares, v is the estimated value of v, based on the ordinary least square method.
and ¥ is the mean value of v . (7 = 1.2.....n). It s clear that by simply adding new
independent variables to (2.1, the value of R® will increase and never decrease, and
R* =1 as k" —>n. This can be demonstrated in the following way. Suppose we
have a model which regresses a variable v, on the &% variables vo¥,.x . This
model is equivalent 10 the mode! which regresses y on the &' +1 variables

18 zero. So the

XX X subject to the resthction that the coetficient on x|
LY ¥

+]°
R’ value from the latter model is either greater than or equal to (if and only if the
estimated coefticient of x . | is identically zero) the earlier model. Hence the R
criterion for selecting the true model is tnadequate as the model with a larger number
of uni  ssary independent varables will produce a larger R° value. To overcome
this deficiency of R*, Theil (1961) suggesied an adjusted R*® denoted by R°,

defined by

17
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RSS
R =1tk 23
R=1-2ob (2.3)

n-1i

This adjusted coefficient of muluple determination is adjusted for the residual

RSS

degrees of freedom. Since R* =1-——.so R can be expressed as a function of R’
a= follows:
—a n—1| . -
R =l-——(1-KR"). (2.4)
n-k

As mentioned earlier, with the inclusion of an additional variable, R° cannot fall, but
R* may fall as it takes account of the residual degrees of freedom. Actually R* is
R with a penaity for the additional regressors. Dhrymes (1970) showed that the
value of R will increase by adding an additional regressor if the r-value of the
coefficient of this added regressor 1s greater than umity in absolute value. He

analytically showed that

: : (2.5)

where R?,
with k¢ and (4% - 1) non-constant regressors, respectively and t:o is the value of the

square of the r-statistics for the k™" regression coefficient of the model with ° non-

constant regressors.

18
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From this equation it is clear that R~ will increase for the added & “ non-constant
A

: n—k . : . o
regressor 1f : — < 1, which 1s only true when - > |. According 1o Theil
(n—k ~1)+1° 4

{1971), the model selected on the basis of largest R° value ‘on average is the
correct model.

One of the main problems of R~ is that it does not penalise the loss of degrees of
nneedom sufficiently. For example. suppose the number of regressors in the model is
large with all relevant regressors along with some wrelevant regressors in the model.
In this situation the estimated value of the residual variance is unbiased. but R iends
1o select the model with a large number of regressors. Another problem with K- is
its poor predictive performance. According 1o Schmidt (1973, 1975), if the model
contains variables of the true model with some irrelevant variables, then the R-
criterion tends to fail to identify the true model. Dhrymes (1970) also mentioned that
R produces unnccessarily large prediction errors, so this lechnigque may not be

appropriate if the selected model is used for prediction purposes.

If it can be assumed that the behavior of the regressors in the future is the same as in

the sample, then the mean squared error may be shown to be approximately equal to

2(k; -o’ | Rss,

, (2.6)
n n

19
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where RSS, is the residual sum of squares. (k; - 1) is the number of non-constant

<t

regressors included in the j” model and o7 is the unknown populatich error

variance. Mallows™ (', criterion and Amemiya’s PC criterion differ only in the

RSS

n-k +1

estimated value of this & . Mallows’ C, criterion uses as an estimate of

0" . where RSS is the residual sum of squares ontained from the complete model
using all (k" —1) non-constant regressors. while the estimated value of &° in

RSS, _ ‘ .
Al where RSS | 1s the residual sum of squares
n—-k, + '

!

Amemiya’s PC cntenion 1s
obtained from the madel using only (&, —1) regressors and &, <k'. So these two

criteria can be writien as follows:

2(k7 = 1) RSS
.|.

(" = . - KSS . 27
# n—-k +1 o (.7
2(k, - DRSS, ootk -1
PC= - + RSS = e————RSS . (2.8)
n—k, +1 ! n~k, +1 !

In Amemiya's PC criterion it is assumed that the model with (k] ~1) non-constant
regressors is the correct model and the model with (k£ — 1) non-constant regressors
includes a number of irrelevant regressors. Maddala (1992) argued that it is not a
rcasonable assumption that every one of the models is the true model to estimate o,

rather the asymptotic estimate of o uscd in C , 18 more rcasonable.

20
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According to Gorman and Teman (1966). Mallows™ ¢, for the multipie linear

regression model with known vanance ¢~ can be writien as follows:

RSS .
= ke (n =206 = 1)) (2.9)

" e

where RSS, is the residual sum of squares. n is the sample size and (k) = 1) is the

- NT
number of non-constant regressors for the j* model.

Under the assumption that the regressors follow a muluvanate normal distnbution,
Hocking (1976} derived the 5, criterion by minimising the conditional mean squared
error of prediction, which can be writien as:

n-k +1

d n—k

I

RSS . (2.10)

The basic difference between Mallows™ €. Ameniva's PC and Hocking's S,
criterion is that the former two depend on the assumption of non-stochastic
regressors. whereas the latter depends on the assumption of stochastic regressors,
Both Mallows’ C, and Amemiya’s PC reduce to Hocking’s §, criterion for

i

stochastic regressors (Kinal and Lahin (1984)).

Zhang (1992) mentioned that all the existing criteria can be shown 10 be

asymptotically equivalent to mimimising (with respect to icf )

21
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C(k; .= RSSG )+ k. O<k; Stk -1y, (2.11)
where RSS(k’) is the residual sum of squares when only the first k™ regressors are

entered in the j” model and 77 represent the penalty for over fitung. This criterion is

called the final prediction error (FPE) criterion. According to Zhang, AIC. €, and

BIC arc special cases of the above criterion. When 77 = 2. (2.11) corresponds to AlC

"

and C, .

and (2.11) corresponds 10 BIC when 7=1na.

It was mentioned carlier that with the inclusion of an additional variable inte an
existing model. the value of R° increases. which means that the value of the residual
sum or squares decreases. So there is a tendeney o select the model with an
uinecessanly karge nuiber of independent variables i we use the smallest residual
sum of squares as the eniteniafor model selection. Henee we need some adjustment to
the residual sum of squares. which can be done with the help of a penalty function.
Let us assume ¢, (muluplicative penalty) is the penalty function for the j* model.
Then the model with smallest J, (multiplicative information criteria for the i
modecl) will be selected. where Rahman (1998) defined J , a8 follows:

J, =R8S4,. (2.12)

J, 1s called the penalised sum of squares error and model j will be accepted over all

other models 7 if
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J,<J . oNi=L2 -+l om. (2.13)

Rahman (1998) gave the functional form of 4 possible ¢, as follows:

N

qr :(PT“k,.}“"(U:.} - (214)
where @, and «. are arbitrury constants. and &, is the number of free parameciers

included in the model under consideration,

Anaivtically he showed that all the existing crtenia are a special case of this new

b

criterion in the fincar regression setting. For example. if g, =¢” then J s

I

approximately equivalent 1o Akwike’s informat'on criterion (AIC) and if ¢, = —
n

then J, 1s approximately equivalent 1o Schwanrtz’s Bavesian information enterion

(BIC).

He also mentioned that by choosing appropriate values of «, and «, . it 15 possible to
develop an nfinite number of new cnteria which will perform well in a range of
siluations. Bul the problem with this penalty tunction is sctting the values of «, and
a, for a particular data set. Also the penalty function is a function of n, the sample
size, and & the number of free parameters: and independent of data values, i.e. for
the same set of competing models, a change of duta sets or regressors does not have

any impact on the penalty function. To overcome these problems, we redefine the
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multiphcative information critenia using mean squared error. which 1s discussed in

Chapter 4.

2.3 INFORMATION CRITERIA BASED MODEL SELECTION

The purposc of this section 1s to review the relevant ierature on information criteria
(FCY based model selection. An IC mode) selection procedure 1s based on choosing
the mede! with the largest maximised log-likelihood minus a penalty term. There are
a number of penalty functions available in the hterature. All of them are a function of
the number of free parameters in the model and many include the sample size. But
from the user’s point of view. which one is the best for 4 particular data and set of
models 15 a question 1o be answered as there s hittle agreement about what the correct
answer 1o this guestion 1s. Among the avairlable 1C. AIC, proposed by Akaike (1973),
15 the most widely used and popu o eriterion i economics and econometrics (sce for
example. Hurvich and Tsan (1991, Mills and Prasad (1992). Fox (1995) and Hughes
(1997)). Theretore. we begin our review with AIC, followed by the BIC model
selection enterion proposed by Schwarz (1978) which assumes a prior distribution of
the parameter of the proposed model. In addition to these two widely used criteria,
we will look at the literature on some other cniteria, which include Schmidt’s (1975)
Generalized Cross Vahidation (GCV) criterion, Hannag and Quinn’s (1979) criterion,
(HQ), Hocking’s (1976) cniterion (HOC), and JIC, recently proposed by Rahman and

King (1999).

24
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Akatke’s Information Cnitenon (AIC) grew out of Akake's (1973, 1973} rescarch on
sclecting the best order of an autoregressive process. It gives a measure of the
distance between estimaled model and the truc duta generating process using
Kullback-Lerbler's  (1951) informauon  theory, AIC was demved under the
assumption that the true distribution can be described by the given model when its
parameters are suntably adjusted. Several authors define AlIC in different torms, but
the most popular one for anmy general model sefection purpose can be written as the
penahised log-likelthood form

AIC, =140 1-k,. (2.15)
where I,I((A),) is the maximised log-hikehhood funcuion and (A?_, 15 the maximum
likebthood estmator of @ the vector of & frec parameters included in the model
M oj=1.20 . m AlC selects the model for which AIC | is the maximum among

the i models.

The mcan expected log-hikelihood can be used as a measure of the goodness of fit of
a model. which is defined as the mean of the cxpected log-likelihood of the
maXx,mum hikehthood. The larger the mean expected log-likelihood, the better the fit
of the model. When there are several models whose values of the maximum log-
likelihood function are the same or approximately lhc.sumc then one should choose
the model with the smallest number of parameters, which is called the principle of

parsimony. AlC was developed to measure these two properties of the model, though
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it 15 successful at measuring the first propertv rather then the second. Hurvich and
Tsar (1989) concluded trom their Monte Carlo study that AlC tends to overfit the
data for verv small samples. Sugiuro (1978 proposed a finite sample correction of
AlC for the case of data generated from a normal distnbution. To overcome the
overtiting problem of AIC. Hurvich and Tsai (1989) denived a bias corrected version
of AIC for regression and autoregressive me senes models which they called AlC,
and expressed 1t as:

(k, 4+ 1k, +2D)

AIC. = AIC + (2.16)

n-k -2

This wodiftcation of AIC is useful when the sample size 1s small relstive 16 the
dimension of the mode! and v asymproncally efficient if the true model has ifinite
dimensions, The simulation resutts of Hurvich and Tsar (1993) demonstrate that in
small samples. AIC, ts superior in terms of bias and strongly outperforms AlC for the

models that contain more unknown parameters than the univariate AR models.

A generabised form of AIC was suggested by Bhansali and Downham (1977) and is
AIC(y), = L(0,)-vk,, (2.17)

where p is a constant and greater than one. They argued that this generalisation wil

help to improve the problem of overfitting and if y increases gradually as n increases,

then tt will be a consistent criterion, which is discussed below.
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Consistency 1s an important asvmptotic property of a model selection cnterion. It
requires the model selection criterion to be able 1o select the true model from a set of
models with probabtihity tending to one as the sample size lends 10 mfinity, assuming
that truc model 1s contained in the choice set of models. Shibata (1976). who
imtroduced the 1dea of consistency. recogmsed that AIC is not a consisient crilerion.
Nishi (1988) developed a technigie to test the consistency of a criterion. which 1s

brietly discussed below.

Let iC . be the information criterion for the j* model and defined as
IC =140 )-p = L0~k D, (2.18)

where g 1s the penalty for the j* model and D, is a function of n,

By Theorem 4 of Nishii (1988). IC, will be sirongly consistent if 1) satisfies the

foliowing two conditions:

. D y D
(1) ¢ =Iim—"=0and (1) ¢, = IM—=— = too
(R ne=nlnn

and 1C will be weakly consistent if D, satisfies the conditions

N D :
(1) ¢ =hm—==0and (i) ¢. =limD, = 400,

Hope N oo

If we apply this to AIC, it is transparent that AlC is not consistent as the penalty

function for AIC is independent of n, the sample size. Some other researchers have
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also shown that AIC is not consistent (see for example. Atkinson (1980). Hannan

(1982). Shibata, (1986). and Koehler and Murphrze (1988)).

Akaike’s 1973 and 1974 research work was extended by Schwarz (1978). who gave a
Bavesian sotution 1o the problem. As it is based on the Bayesian approuch. it has
become known as the Bavesian information Cniterion (BIC). Dunng 1978 two more
Rayq sian criterion were proposed by Sawa (1978) and Leamer (1978). Bul among
these Bavesian cnitenia. BIC has the nost gencral asvmplotic properties. Rissanen
(1978) aiso proposed an IC based on the Bavesian approach, which is the same as
BIC. In a similar way to AIC. BIC can be expressed in the penalised log-likeliheod

form as follows:

.k
BIC, = L8, - Inn. (2.19)

BIC assumes a proper prior distribution of the parameters of the proposed model and
sclects the model with the highest asymptotic posterior probability. So the use of
Schwarz’s criterton may be difficult if the proper prior distribution of the parameters
is not clearly defined (Akaike, 1981). The criterion developed by Rissanen (1978,
1986, 1987, 1988) on the basis of the minimem description length (MDL) overcomes

this problem of BIC.

Hannan and Quinn (1979) derived a criterion for selection of the order of an

autoregressive model, i.e. 1o determine the most desirable lag-length, which is known

28
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as the Hannan and Quinn (HQ) criterion. This criterion is less commonly used, but is
ideal for the comparison of AIC and BIC. because 11 shares the property of both AlC
and BIC. The criterion can be wriiten in penalised log-likelihood form as

HQ,=L,(8,)-k,Inlnn. (2.20)

They recognised that BIC is a consistent criterion and the charactenstics of HQ are
similar to those of 3IC with the exception that in small samples. the two critena are
likely to select different models. Fox (1995) noted that this criterion shares a propernty
of both AIC and BIC in that its marginal penalty is constant as & increases for fixed
n. Many rescarchers showed that this 1s a consistent criterion. see for example Nishii

(1988), Hannun and Quinn (1979). and Atkinson (1981).

The variable sclection criterion proposed by Mallows (1964) has been widely used in
many social sciences including economics and econometrics. As new and more
efficient methods became available for variable and model selection purposes, the
acceptance of this criterion has decreased. The penalised log-likelihood form of this

criterion henceforth will be denoted as MCP to distinguish it from C,defined in

Section 2.2. 1t has the following form:

m—k

~ n 2k,
MCP, = ]4"(0’)_5]“(“ J,)» (2.21)

29




3

s i el

S

¥

Chapter 2 Literature Survey

where &° ic the dimension of the largest model which nests all possible models. This
is a consistent criterion (see. Atkinson (1981) and Nishn (1988)). In Maliows’
criterion. the variance estimate is obtained from a regression model which includes
the entire sct of regressors. An aliernative estimate of the vanance has been
suggesied using only the number of regressors in the model under consideration.
which results in a new criterion proposed by Roithman (1968) and can be expressed in

the following penalised log-likelihood torm.

p n _ H ]
Jp = 1.(8) -;;lnm +k Vi 3 intn-4%). (2.22)

The same enterion was sugeested by Akarke (1969) and Amemrva (1972, 1980).
Akaike called it the Final Prediction Criterion (FPC). while Amemiva called 1t the

Predicuon Criterion (PO).

Hocking (19706) suy _2sted a model selection criterion denoted by S, . The penalised
jog-hkelihood form of this criterion can be given by

HOC, = 1(0))+ ZIn(n =k, )+ S In(n —k, ~ ). (2.23)

This criterion was thoroughly reviewed by Thompson (1978). and was given an
alternative justification by Breiman and Freedman (1983). In his paper, Thompson

(1978) gave the derivation and justification of this criterion along with C, and J_.
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One major limitation of Hocking's criterion is it is not applicabie for nonstochastic

TEEressors.

Cross-validation is a statistical tool. which uses the techmque of sphiting data into
two sets. The first set is used to develop the model called the model building set.
while the second sct is used o evaluate the reasonableness and predictive ability of
the selected model. This technique was suggested by Schmidt (1971, 1974, 1975).
Allen (1971, 1974). Swone (1974) snd Geisser (1974, 1975}, Schmudt called it the
cross-validation score SSPE (Sum of Squared Predictive Error). while Allen called it
PRESS (Predicuve Sum of Squares). Typically this technrique involves deleting an
observation from the sample, then fiting the model using the reduced sample, which
15 used to predict the deleted observation. This is repeated for cach observation in the
sample and the model with the smallest mean squared error of prediction s selected
as the best model. The direct computation of the CV is burdensome. Schmidt (1971)
and Allen (1971) gave a formula to compute CV directly, but this criterion is
different in nature from the other model selecuon criterion. Craven and Wahba
(1979) gave a generalised form of CV and called it Generalised Cross Validation
(GCV). which is an approximation of CV and is a comparable form 1o the other
cnteria. Nishit (1988) showed that GCV is not a consistent critenon. According 10

“0x (1995), the penalised log-likelihood form of the GCV criterion can be written as

e

. ok
GCV,=L,(0,)+ nln[l ——,—:—) (2.24)
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Fox (1995) expressed Theil's (1961) R*® criterion in the following penalised log-
likelihood form for model sclection purpose and we will henceforth denote 1t as

RBAR 10 distinguish it from R* and R° defined in Section 2.2.
RBAR =L (8,)+ In(n-k,). (2.25)

Rahman and King (1997) derived an analytical formula for finding the probability of
correct selection of the true model from a set of competing alternative regression
models. They observed that for samples of size at least 8 and when the model with
the lowest number of regressors is true then the probabihities of correct section
obained from AIC, BIC and RBAR sausfv the incquality BIC>AIC>RBAR. On the
other hand. when the model with the highest number of regressors is true then the
picture 1s  exactly reverse, i.e. the probabilities of correct selection are
RBAR>AIC>BIC. This behaviour of BIC and RBAR metivated them to develop a
new criterion on the basis of the simple average of the penaity functions of BIC and
RBAR. They called it the joint information criterion (JIC) (Rahman and King (1999))

which can be expressed as the following penalised log-likelihood form.

- ok
J]CJ=L),(6’J)—;jfl-[lcJ lmr—nlntlﬂ-—-’—)). (2.26)

n

They showed that it is a strongly consistent criterion. which performs well in a range

of situations and therefore is a very competitive model selection criterion. In their
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paper. they mentioned that the probability of correct selection 1s directly related to the

sample size but inversely related 1o the error vanance.

The small sample performance of AJC and BIC wus studicd by Liitkephol (1984). He
conciuded that for both small and large sumples. the performance of AIC is better
than BIC in one-step-ahead forecasting for seiecung AR(1) and MA(1) models. but
worse in five-step-ahead forecasting. Meese and Gewcke (1984} also compared the
forecasting ability of AIC and BIC along with three other cntena and concluded that
AIC performed the best in most of the cases. Schwarz (1978) reported thas for large
samples, the performance of BIC differs markedly from that of AIC with respect to
sclecting the comvect model. For selecting the best model from a large set of models.
Kohn (1983) found that BIC consistently chooses a model with the smaller
dimension. From the research results of Hurvich and Tsar (1991). it 1s clear that for
small samples the modified version of AIC. AIC, | performs sigmficantly better than
AlC and BIC and marginally better than these criteria for moderately small samples.
Ir. another rescarch paper. Hurvich and Tsw (1990) reported that under certain
conditions, AlC is hikely to perform better than BIC in small samples. Crato and Ray
(1996) conducted a large-scale simulation study to compare the performance of AlC,

AIC . and BIC, and concluded that for pure fractional noise, the performance of BIC

is better than the other two criteria. In order to compare the performance of AIC,

AIC_, BIC, HQ, MLD and RBAR, Mills and Prasad (1992} conducted simulation

experiments in determining the correct data generating process in autoregressive and
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linear regression models. From their simulation results. they discovered that the
performance of AIC, is better in small samples and with an increase in sample size.
the relative performance of AIC, gradualiv becomes worse. AIC tends to over

parameterise the model. They concluded that from a user’s point of view. BIC should
be the criterion to be used for selecting the correct modet. From the simulation study
of Schmidt and Tscheming (199311t was concluded that among AlIC . BIC and HQ.
the performance of AIC, is the best and HQ 15 the worst in selecting time-series
ARIMA modcls. More detaled discussion of the above mentioned information
criteria can also be found in Hughes (1997). who denived an AlC-ivpe cnitena using
KL nformation in the presence of one-sided information on the parameters under
dispute. He pointed out that AIC out performs BIC if the larger model is the true
maodel. On the other hand. the reverse picture 1s observed 1if the model with smaller
number of parameters s the true model. From a simulation study, Kwek (2000)
found that in small samples. the performance of RBAR is the best and BIC is the
warst procedure for sclecting the correct model among autoregressive conditional

heteroscedastic (ARCH) models and generalised ARCH (GARCH) models.

Stone (1977) and Nishii (1986) noted that CV 1s asymptoticatly equivalent to AIC.
From the simulation results of Holmes and Hutton (1989), it is apparent that if there
is a weak relationship between the dependent and independent variables, then the
RBAR criterion performs better in terms of selecting the true model. But if the

relationship is strong then AIC, BIC, HQ and PC choose the correct model with high
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probabilities and in this situation the performance of BIC is the best. while the
performance of RBAR is the worst. For selecting the best prediciive model from a
class of linear regression models. Shao (1993) showed that CV 1s asvmptotically
cquivalent to AIC and MCP in terms of consisiency. Shibata (1981) showed that AIC
1s asymptotically equivalent 1o MCP. For the variable selection problem in the hnear
regression model, Thompson (1978} recommended Mallows™ MCP criterion for fixed

regressors. while for random regressors his preferred criterion is Hocking's HOC.

The penaity function of all the above mentioned critena in the penalised log-
likehthood form is a function of the number of free parameters involved in the model
under consideration and often the sample size. It implics that for a fixed sample size
and a particular set of models, changes ol the data s¢t do not have any impact on the
penalty function. This motivates rescarchers to find data onented penalty functions,
so that a change of data set will also change the penalty value in numerical terms. As
far as we know, for model selection in hinear regression setiings, Rao and Wu (1989)
first introduced the idea of 2 flexible penalty function based on data in linear
regression models. They analyucally showed that the critenon proposed by them on
the basis of a flexible penalty function is strongly consistent without making any
distributional assumptions. They argued that the performance of this type of criteria
is better than the critena based on the fixed penalties. Chen e al. (1993) used a data
oriented penalty function for selecting AR models for time series. Bai ef al. (1999

extended the work of Rao and Wu (1989) for selecting linear regression models using

7S
¥
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General Information Criterion (GIC). They argued that the fixed choice of penalties
may not be good in all sitwauons. They showed that the data-onented ponalues

guarantee strong consisiency and have some advantages over fixed penalues.

It is well known thal the performance of the existing criteria vartes from situation to
situation and none of the criteria performs well tn all situations. Some cnitena favour
the model with the smallest number of parameters. while others favour the model
with the largest number of parameters. For example. BIC always favours the model
with the smallest number of parameters among competing models. while RBAR
favours the model with the largest number of parameters. As a resull, the average
probabifities of comrect selection vary from model to model. Ideally a model selection
vritenon should sefect the true modcel without favouring one model over others. So
the idea of making the probabilities of correct selection equal has evolved. This 1s

called controlling the probability of correct selection.

King ei al. (1995) proposed an algornthm, which makes the probability of correct
selection equal. They propose s two approaches. Their first approach is based on the
idea of a common model. But the problem with this approach is that there may not
always be a common model and there is no fixed rule for finding the probabilities
when the competing modcls are nested. Their second approach is based on

representative fixed points and they proposed two techniques for selecting
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representative fixed points. The first entirely depends on the judgment of the user so

for the same data sct and models. the conclusions of different reseaichers may vary.

Forbes ¢1 al. (1993) proposed threc technigues for controtling the probability of
correct selection of one mode! over the other. Their first two methods are for the
variable selection purpose and the final one is for general model selection. but the
problem with this approach is that the penalties that control the probability of correct
selection arc approximate penaltics. Hossain (1998) proposed an empirical based
information criterion called CIC. which is based on King ¢r al. 's (1995) algorithm for
controlling probabilitics of correct selection and the bootstrap sampiimg method. He
applicd CIC 10 selecting the correct model from a set of lhincar, log-linear and Box-
Cox transformation models. From his study. 1t 1s observed that the performance of

CIC 1s better than the exisung IC for selecung the correct model.

On the opic ef finding empinical penalty funcuons. related work has been done by
Kwek (2000) for selecung conditional heteroscedastic (CH) and autoregressive
conditional heteroscedastic (ARCH) models, while Billah (2001) used the same
technique for selecting appropriate time series models including exponential
smoothing models. In her study, Kwek concluded that CH information criterion and
the optimal small sample proccdures proposed by her outperform all other existing 1C
for selecting ARCH and GARCH models in small samples. She suggested that BIC

should not be used for sclecting CH models, because it has been built without
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considering the one sided information used in the estimation of CH models. From the
simulation results, she concluded that among the existing cnteria. m small samples
the performance of RBAR is the best for selecting ARCH and GARCH models
followed by AIC, and BIC is the worst performing criterion. But in Jarge sampies,
AIC performed relatively better than RBAR. The well known tendency of BIC 1o
under fit and the tendency of AIC 10 over fitl 1a lmnear regression models was also
observed in the results of her experiments. She mentioned that although BIC has the
strongest consistency propenty, it under fits the model in small samples and as a
result, the performance of BIC is the worst in selecting both ARCH and GARCH
models. This indicates that the efficiency of an IC is not guaranteed by its consistency

property.

In order 10 scc the performance of the widely used existing 1C procedures for
selecting exponential smoothing models on the basis of mean average probability of
correct selection (MAPCS), Billah (2001} conducted a Monte Carlo simulation study.
From his study he found that the performance of BIC is the best followed by HQ and
MCP 1s the worst at selecting exponential smoothing models. He proposed two
penalty estimation methods (PEM), PEM-GS and PEM-SA on the basis of
maximising the MAPCS for the model selection problem for the linear regression
model with differet ARMA error processes. From his simulation siudy, he
concluded that for small samples the newly proposed methods consistently perform

better than the existing 1C. He also did simulation experiments for selecting models

W I AT e
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on the busis of the model's forecasting accuracy. and concluded that the model

selection methods proposed by him were better ihan available 1C methods.

2.4 SIMULATED ANNEALING OPTIMISATION TECHNIQUF

In any model building process. the madeller needs 10 estimate the mode! parameters.
There are some methods of estimation. for example the least squares method. where
the parameters can be estimated directly. But, there are many methods. for example
non-lincar least squares. maximum hkelihood and the generalised metbad of
moments. where the estimation process 1s totally dependent on a numenical
optimisation technique. which attempts to iterate to the desired solution. Several
erative search algorithms are availlabice in the hterature. For example, the Gauss-
Newton method and Newton-Rapson method. All iterative methods use the following
four steps 10 1ind the best estimates of the parameters (SAS (1992):
(1} The modeller has to provide imitial starting values for the parameter estimates,
(1) the algorithm selects updated values for the parameter estimates such that the
error sum of squares/log-likelihood for the updated values is less/greater than the
crror sum of squares/log-likelihood for the initial starting values,
(tn) the algorthm continues to select updated values for the parameter estimates that
reduce the error sum of squares/increasc the log-likelihood, and

(1v) the algorithm stops when 2 convergence criterion is met.

39
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For all iterative methods. providing good initial values can be important. because the
solution found will depend on the mital starting value. Unfortunately, for many
problems there is no way to find a starting value that guarantees the global optimum.
Bad starting values can increase computer lime and could prevent the procedure from
finding the correct estimates of the parameters, which is one of the drawbacks of
these methods. Another problem is that for some of these methods. e.g. the Newton-
Rapson method. both first and second derivatives are necessary and in some
situations these derivatives do not exist. Most of the existing iterative algorithms
assume that the funciional form of the objective function is approximately quadratic
and the function has one optimum. Unfortunately. some functions violate these
assumptions also. For muluextrema {unctions. these iterative methods cannot get
away from a local cxtrema and converge only to one of the local extrema, subject to
the starting value of the parameter. This 1s the mujor drawback of these iterative
methods and in this situation, researchers typically try o find the global optimum by
using different arbitrary starting values (see Cramer (1986) and Finch ¢r al. (1989)).
Even if the algorithm of these mcthods converges, it does not guarantee that the
estimated value is the global optimum. Most of the popular packages, for example
SAS, RATS and TSP, used for econometric and statistical analysis use these
methods. To overcome these problems, one solution would be to introduce a global
opuimisation method that can avoid local maximum or minimum, and can find the

optimum value of the parameters from the entire parameter space. The task of a
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global optimisation method is to find absolutely the best set of parameter values 10

optimise an Gbjective function.

There are a number of different ways of finding the global optimum of a functon.
The earliest methods were associated with the gnd search technique and the function
is evaluated at equi-spaced points throughout the parameter space. Although this
method is typically successful at finding the global optimum of a complicated
function, the computational time of this method is too high for a refined search
(Billah and King (2000b)). Global optimisation techmques were developed to
overcome the problems of gnd search and the conventional existing iterative
methods. The numencal opumis=thion techniques have several advantages over the
grid scarch method. There are several numencal global optimisatton techniques
available in the literature and specific optimisation methods have been developed for
many ciasses of optimisation problems. A comprehensive list includes, i) Mixed
Integer Programming, 11} Interval Methods, 111} Clustenng Methods, 1v) Evolutionary
Algorithms, v} Hybrid Mcthods, vij Statistical Methods, vii} Tabu Search and viii)
Simulated Annealing. Gray er al. (1997) did a comprehensive survey of these
methods and the description of them is available on the intemet site
http://www.cs.sadia.gov/optsurvey/main.html. There are several global optimisation
programs available to solve different types of optimisation problems. For example,
ASA-CalTech Adaptive Simulated Annealing for finding the global optimum of a

continuous non-convex function over a multidimensional interval, CURVI-Bound

4]




ET AP LY LN T

'|'i1_-"-.

BRI LS

annn e s RN R 5

Chapter 2 Literature Survey

Constrained Global Opumisation. for solving constrained and unconstrained
nonlinear optimisation problems: and SIMANN-Simulated Annealing. which
implements the continuous simuilated annealing optimisation algonthm described n
Corona et al. (1987). A review of the available global opumisation programs was
done by Pinter (1996) and is availlable on the intemet sie

http://mat.gsia.cum.edu/pinter.fil.

Selection of a global optimisation method depends on the nature of the problem. The
objective {unction we have to optimise 1s a step function. From the literature 1t 15
apparent that SAO performs well at finding the global maxima in the presence of
local maxima and for functions like ours which have plateaux and other ill-behaviour
(see Kurkpatrick et al. (1983). Romeo er al. (1984). White (1984) and Golfe ¢1 al.
(1994}). A comprehensive discussion of the theoretical and pracucal details of SAQO
is given in Aarts ef al. (1997). Simulated annealing is one of the numerical
optimisation techniques, which 1s a probabilistic method for finding the global
maximum or mintmum of a function that may possess several focal maxima or
minima (Kirkpatrick ¢r al. (1983) and Cerny (1985)). Annealing 1s a heat-treating
process that 1s applied to glass, metals or materials and tnvolves slowly cooling them
10 obtain a strong crystalline structure. The basic idea of SAO comes from the theory
of thermodynamics and it is a numerical optimisation technique based on a Monte
Carlo approach for finding the global optimum of an objective function in the

presence of several local optimum. The main advantage of SAQ is its ability to move
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from the region of a local optima 10 the region of a global optimum. Another
advantage of this optimisation technigue 1s. like the conventional algonthmes. it
assumes very littie about the function and can handle the optimisation problem very
efficiently and it is explicitly designed for functions with multiple optima (Corana ¢r

al. (1987Y. Gotfe er al. (1994)).

There are several SAQO algorithms available in the hiterawure. An early one was
introduced for the search of optima of discrete vanables called combinatorial SAQ
(Lawler (1976} and Papadimitriou and Sweightz (1982)). The combinatornial SAO
algorithm has been used successfully in computer and circuit design (Kirkpatnck et
al. 1983 and Wang ¢r af. (1988)), image processing (Carnevali er al. (1985)). re-
construction of pollycrystalline structures (Telly er al. (1987)). neural networks
(Wasserman and Schwarz (1988)), and pollution control (Derwent (1988)). Other
SAQ algorithms are for example, adaptive random search (Pronzato et al. (1984)),
fast SAO (Szu and Hartly {1987)), down hill simpiex with annealing (Vetterling er al.
{1994)) and direct search SAO (Ali ¢r al. (1997)). The implementation of a SAO
algorithm involves the application of the Metropolis algorithm (Metropolis er al.

(1953)), which is the heait of the SAO 1echnique.

The combinatorial SAO algorithm was modified by Vanderbilt and Louie (1984),

Bohachevsky er al. (1986) and Corana er al. (1987) to optimise functions of

continuous vanables. Among these, the Corana ¢t al. (1987) implementation of SAO
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appears 1o be the best in terms of combination of ease of use and robustness (Goffe ¢
al. (1994)). Goffe e ul. (1994) tested the effectiveness of the SAQ technique against
some well known optimisation algorithms, namely, the Nelder and Mead simplex
method and a general purpose global opumiser using Adaptive Random Scarch
(ARS). From their test results it was observed that SAQO never failed to reach the
minimum of the function and is the best of the three mcthods with respect to
rehiability foilowed by simplex method. ARS is the least reliable of the three

methods.

Gofle ¢t al. (1994) compared the Corana er al. (1987) implementation of SAO with
three multivanable optimisation algorithms in the IMSL library on four econometnc
models of four different natures. The first model was an exampie of muitiple minima.
which contains only two parameters (Judge ¢7 al. (1985, pp.956-957)) und the second
was a rational expectations exchange rate model with 14 parameters. The third model
was an cfficiency study of the banking industry using a translog cost frontier system
with 02 parameters and the fourth fits a neural network to a chaotic time series with
35 parameters. On the Judge er al. function, SAO correctly diffcrentiated between the
loca: and the global minima and finds the global optima, while the conventional
algorithms failed. All conventional algorithms failed to find the optimum of the
second model and did not offer any reason for their failure, but SAQ was able to
identify the reason. After correcting the problem, SAO found the optimum easily, but

conventional algorithms were successful only 21% of the time. None of the
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conventional algorithms was able to find the optimum of the third model. while SAO
did it easily. In the case of the fourth model. SAO found 4 much better optimum than
did any of the conventional algorithms. They concluded that if SAO was not able to
find the global optimum. then the nature of the function makes it impossible for any

other method to find the global optimum.

Let ¢ =(¢, ¢, @,) bean nx1 parameter vecior to be estimated each ranging in a
fimite continuous interval and f(¢) be the bounded function to be maximised. The
implementation of the Corana ¢r «l. (1987) SAO algorithm requires the step length
vector for ¢ say v and the temperature 7. For maximising a function the following

steps are required for implementing Corana er «f. (1987) algorithm.

Step 1 (Initialisation)
Let the initial values for 2. v and T be ¢, v, and 7. respectively. Let the vajue
of the objective function at the initial parameter vector ¢, be f,,. Also set ¢, =@,

and f,, = [, . where opt stands for optimum.

Step 2 (Selection of new point)
Randomly select another point ¢ in the parameter space within a neighbourhood of

the original parameter vaiue using the following equation.

[ e
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Q. =@ +r. (2.27
where r is a random number generated in the range {-1.1] by a pseudorandom number
generator and v, 18 the i” component of the step vector v, If ¢ lies outside the
definition domain of f(¢) then a new pomnt is randomly generated until a point 1s

found nside the definttion domain.

Step 3 (Aceepr or reject the point and nise of Metropolis criterion)

Let the value of the objective furction at this new point be f'= f(¢). }f f'> f

"
(uphill move) ther accept the new point and set ¢, =¢  and f =/ It ['< ]
then accept or reject the point with acceptance probability p. computed using the

Mctropolis criternion as follows:

"y

p= cxn(j—-"'i]- (2.28)

This computed value of p is then compared with a pseudorandom number p’, which
is generated from the uniform distribution in the range {0,1). If p'< p, the point is
accepled (downhill move) otherwise it 1s rejected. In the case of acceptance the

values of ¢, and f_ = are updaied by ¢ and [, respectively, and in case of

rejection, there is no change in ¢, and f . Lower temperatures and larger

differences in: the function values are the two factors that decrease the probability of a

down hill move.
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Step 4 (Adjustment of step length vector ¥ )

As mentioned by Corana er al. {1987), both a higher number of acceptances or higher
number of rejections wastes computational effort. On the contrary, 50% of moves
accepted and 50% rejected indicates that the algorithm 1s running well. To make this
the case. after N_ steps through all elements of ¢, the step length vector v is
adjusted so that 50% of all moves are accepled. The objective of doing so 15 16
sample the function widely. if more than 60% of thz points are accepted for ¢ . then
the relevant elements of v are enlarged by the factor 1+25¢ (¢, / N -0.6), where «,
is the number of points accepted and ¢, is the i” element of the vector that controls
step variatton. The clement is declined by, 1425 (04—« / N ). if less than 40% of
the points are accepted. Once an equilibrium state nas been achieved for a given
temperature, the temperature s roduced to a new emperature as defined in step 5 and
the process started again taking values of the fust iteration of the algorithm as the

mmitial values.

Step 5 (Temperature reduction)
After N, times (N, is the number sct by the user for temperature reduction test)
through the steps 1 to 4, the temperature, T, is reduced. The new temperature is
given by

T =nT, (2.29)

where r, is the temperature reduction coefficient which lies between 0 and 1.
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Step 6 (Termunating criterion)

The last N, ( N, is a number set by the user for successive temperature reductions to
test for termination) values of the largest function vilues from the end of each
temperature reduction are recorded and compared with the most recent value. The

algorithm will terminate if all of these N, differences from the most recent value are

less than the terminating criterion €. a very small number.

Goffe er al. (1994) introduced four extensions of the Corana er al. algorithm. The
first modification allows the rescarcher to test if SAO has indeed found the global
optima; the second modification allows the researcher to restrict the search area 1o a
subselt of the parameter space. The third extensicn permiuts the researcher 1o
determine a crntical imtial parameter for the algorithm and the final one directs the
sclection of the inttial temperature. an essential parameter that controls the robustness
of the algonthm. This allows the rescarcher to minimise the execution time of the

algonthm.

The simulated annealing  algonthm  has  several potential advantages over
conventional optimisation algorithms. First, it can distinguish between different local
maxima and can escape from local maxima by moving both uphill and downhill. The
algorithm makes very few assumptions regarding the function to be maximised. It is
robust with respect 1o non-quadratic surfaces so the function need not be

approximatcly quadratic: and even nced not be differcntiable (see Corana et al.
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(1987)). Second. a very large element in the step length vector of SAO indicates that
the function is very flat in that parameter. which is valuable information for the
researcher about the function. Third, SAO can idenufy comer solutions because 1
can snuggle up to a corner for functions that do not exist at that corner. The final and
the most important advantage of SAO is that it can optimise functions that are very
complex or impossible to optimise. Sitmulated annealing requires high computational
power. which is the only drawback of this method. However. recent developments
with respect 10 computer power largely eliminases this problem. As compared to
other global optimisation metheds, SAO has many advantages. These include the
relative case of implementation, applicability to aimost any problem and the ability to
provide reasonably good solutions tor most problems. Depending on the problem to
which it 1s applied, SAO appears 1o be competitive with many of the best heunstc
methods (Johnson er af. (1997)). In this thesis we use SAO 10 estimate penalties (bt
maximise the average probability of correct selection of hincar regression models in

small samples.

2.5. CONCLUDING REMARKS

The main purpose of this chapter was 10 review different model selection procedures,
This chapter also contains a review of relevant literature on the global optimisation
technique SAO and iis applications in econometrics. Several researchers have argued
that a sequence of pairwise tests has several drawbacks, so may not be appropriate for

the purpose of model sclection. We reviewed the literature of two alternative
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methods. mode! selection based on residual sum of squares and model selection

based on IC.

There are several model selection procedures available i the literature which are
based on residual sum of squares. We discussed the following: coefficient of multiple
determination and adjusted coefficient of determination by Theil (1961). Mallows’

(1964) C, criterion. Amemiya's (1980) PC criterion, Rothman’s (1968) J and
Hocking's (1976) S, . Zhang's (1992) final predicuon error (FPE) cntenon and

Rahman’s (1998) gencralised model selection cniena are also based on residual sum
of squarcs. The advantages and disadvantages of residus! sum of squares based
model selection was also discussed. In Chapter 4 a new information critcnon based

on residual mean square will be proposed for model selection.

Nowadays 1C based model selection procedures are widely accepted for rnodel
sclection purposes in different areas of rescarch. There are several I procedures
avatlable in the hicrature. We selected some of the widely used IC procedures, for
example, AIC, proposed by Akaike (1973), BiC proposed by Schwarz (1978),
Schmidt’s (1975) Generalized Cross Validation criterion (GCV), Hannan and
Quinn’s (1979) criterion (HQ), Hocking’s (1976) criterion (HOC), and JIC, proposed
by Rahman and King (1999). We discussed some of the main features of these

procedures mainly in relation to selection of linear regression models.
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The {inal section of this chapter contaras some background on global optimisation
techniques with particular emphasis on the SAO technique. This section also contains
a review of the literature on SAO and its application in econometrics. From the
Interature. it is apparent that for finding the global opumum of any function which has
several jocal optima, SAQ s nearly always successful in contrast to the outcomes

from standard iterative methods.




CHAPTER 3

IMPROVED PENALTY FUNCTIONS FOR
INFORMATION CRITERIA BASED MODEL
SELECTION!

3.1 INTRODUCTION

One of the principal decision making protiems faced by applied statisticians and
econometricians is that of choosing an appmpriate mide) {from a number of
competing models for a particular data sct. Thig pro®? i can be solved in several
ways. One. and probably the most popular way, is 10 use an information criterion (1C)
1o make the choice. In general, an 1C rodel selecuon procedure 1s based on choosing
the model with the largest maximised log-likeliheod function minus a penalty
function which depends o the number of parameters and in most cases the sampie
size. At present, a number of modef selection critenia that fall into this category are
available. They include AIC. 2IC, GCV, HQ, RBAR and HOC. These criieria were
discussed in Chapler 2. Many of these procedures were originally developed with

particular types of models in nind, and not necessarily as IC procedures. Fox (1995)

" A paper based on some of the findings reporied in this chapter and Chapter 4 has been accepted for
publication in Computer Aided Econometrics, edited by D .E.A Giles, see King and Bose (2002).
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expressed these procedures in this framework by finding their implied penalty

functions in the context of choosing between different lincar regression models.

A small number of rescarchers have conducted Monte Carlo studies comparing
various subsets of the above criteria in a vanety of different scttings; see for example
Bora-Senta and Koumias (1986). Hurvich and Tsai (1989, 1994). Mills and Prasad
(1992) and Hughes (1997). The general conclusion one draws from these and other
studies is that no one procedure dominates: for models with fewer parameters. BIC
does well but at the expense of sclecting targer models when these are indeed the true
model. AIC and RBAR. on the other hand, favour larger models with lower relative
probubilities of selecting smaller models when these models are true. HQ s
somewhere between these two extremes. not bemng as harsh as BIC nor as gencrous

as AIC and RBAR on larger models when they are true.

As noted by Potscher (1991), maximizing an 1C is equivalent to testing each modcel
against all other models by means of a standard likelihood rauo test and selecting that
model which 1s accepted against all others. The choice of penalty function determines
the values of the cnitical values of the tests. In hypothesis testing, when critical values
are changed, this either increases the probability of a Type 1 error while decreasing
the probability of a Type 1l error, or vice versa. Clearly, in the context of model

selection, a change in penalty function induces similar changes in the probabilities of
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various types of errors. Therefore it is not surprising that no one JC procedure

dominates all other procedures.

We are then left with the question of which IC procedure 1o use m practice. Given
that many of the above procedures have an asvmpiotic jusufication, it 1s far from
clear which procedure shouid be favoured in small samples. In this chapter. we
outline an alternative approach for calculating a penalty function based on (1) treating
all models equally: (i1) calculating the average probabahity of correct selection for a
given model using a Bayesian prior distnibution to weigh different parameter values:
and (i) optimizing the mean of these average probailities of correct selection. In
related work. similar ideas have been proposcd Tor JC model selection procedures in
the context of selecing ARCH and ARCH type models by Kwek and King (1998),
selecting a structural break v a lincar regression by Azam and King (1998) and
selecting an ARMA time senies model by Billah and King (1998). A major problem
in this work has been the high computational cost involved in finding the penalties.

The approach outlined in this chapter is much more manageable in this regard.

The plan of this chapter is as follows. A new model selection technique is outlined in
Scction 2. In Section 3, we outline and discuss two sets of Monte Carlo experiments.
The purpose of the ftirst set of experiments is to investigate what is the mos
appropriate combination of the number of parameter drawings (g) and the number of

replications (M) for a fixed total gN when estimating the average probability of
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correct selection of the true model using simulation methods. The second set of
experiments is conducted to compare the performance of our new approach with
selected existing criteria 1n the context of selecting the true mode! in the classical
linear regression sctuing. In Section 3.3.1, we discuss the data generating process
used 10 conduct Monte Carlo simulation experiments. Section 3.3.2 contains an
outline of the expenments and discussions of results for the first set of expenments.
The outline of the experniments, results and discussions of the second set of
experiments are presented in Section 3.3.3. Section 3.4, the final section. contains

some concluding remarks.

3.2 PROPOSED TECHNIQUE
We are interested in selecting a modoi from s alternative models, M, M, ..
M, . foragiven data set. Letthe model M, j=1,2... . m be represented by

y= /(X .0.u). 3.1
where y is an X | vector of observations on the dependent variable. @ is a vector of
k, free parameters, X, is an nxk mateix, & :(—k‘, - l). and u, isan nx i vector of
random disturbances distributed as N(O,a°1) . X, contains a column vector of ones
in 1ts st column and (k_: -1 vector of observations on non-stochastic variables
(e.g., in linear regression model there are (k; - 1) non-constant regressors) in the

remaining (k; =) columns. Let the log-likelihood function for the model M, be
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L,(8,) and the maximised value of L (6) be L:(é; ). where 9 1s the maximum
likelihood estimator of #, . Let p  denote the penalty for model Af,. In almost all 1C
based mode! selection procedures. the model with the largest I, is selected. where

7, is given by

I =L@)-p, (3.2)

This I, is called the penalised log-likelihood. Following Fox (1995). the penalised

iog-likelithood forms of AIC, BIC. HQ. RBAR, GCV and HOC are given by.

AIC, = L(B)-k,. (3.3
.k
BICr = Lr_{(?‘,)*?ln{n). (3.4
HQ, = L (0 ) -k In(in(n)) . (3.5)
RBAR = L (0,)+>In(n-k,). (3.6)
A n—k
GCV, = L (0))+nln(-——1) (3.7)
7, .
and
- n
HOC, = LJ(()_,)+§1n{(n ~k)n~k, -h}. (3.8)

The penalty functions of AIC, BIC and HQ for the j” model can be written in the

general form
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k. (3.9)

p} = A’i 1
where /, is a known function of n and

A, =1for AlC.

i

-i—ln n for BIC. and

= In(In n} for HQ.

* model can be written as

Alsc the penalty function of GCV for the
ninn-nln(n—k ). Since ninn 1s constant for a particular sclection problem. a

criteiion with penalty function nlna —nin(n—% ) is equivalent to one with penalty

fenction —nln(n—-4& ). The penalty function of HOC can be wnten as

n 7 : _
-3 In(n—k,)- -k -1 which approaches —niIn(n -k ) as n-» eo. Hence the

penalty functioms of REAR, GCV and HOC (asymptotically) for the j* model can
be written in the common form

p,=An(n-k )}, (3.10)

where A, 1s 4 known constant depending on the criterion and

A, = ~;:— for RBAR.

.

= —n for GCV, and

= - for HOC (asymptotically).
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Thus the penalty function of any of these six listed criteria for the j* model is either
of the form A, k, or A.In(n—k ). These can be generalised to 4,k +A.In(n—k ).

Here A, and A. may be functions of sample size n.

We know that the performances of different mode! sclection critena vary ‘rom
sitation 10 situaiion. For example. 1n the context of selecting the true model] from a
set of hnear regression models, Rahman and King (1997) ohserved that for a sample
size of at least 13, and when the model with the Jowest number of regressors 1s true,
then the performance of BIC s better than that of GCV., which 1s betier than that of
AIC, and which in turn is beuer than that of the RBAR cnterion in terms of
probability of comrectly selecting the model. On the other hand, when the sample size
is at least 130 and the model with the ighest number of regressors 1s true, then the
pertormances of BIC, GOV AIC and the RBAR critena are exactly reversed. The
performances of different model selection eritera also vary from data set to data set.
Therctore, the question arises as to which IC procedure should be used for a
particular data set and group of competing models. Is there one we can have

confidence in {or all situations?

Given that we have seen that the penalty functions of six of the main IC procedures
can be generalised to

pJ:/I,k;-i-/I:ln(n—kj), 3.1
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then the choice of procedure (at least out of these six procedures) just involves a
choice of A, and A, values for this penalty function. Clearly we would hke to make
the best cheice of A, and A, values for a particular sample size and set of models to
be choszn from. Also we should not restrict A4, and A, to the six sets of valuecs
imp'ied by the above six procedures. but allow 4, and A4, to be chosen to suit our

sarticular circumstances.

The penalty function (3.113 1s obained by adding the penalty functions (3.9) and
(3.10). We can define another penalty function by multiplying the penaity functions
(3.9) and (3.10) us,

p,=Aktn-k). (3.12)

In equation (39). A, is a function of n# the sample size and &, is the number of free
parameters in the ;' model. Instead of & , - il we consider a fractional power of k|
then we can define a new penalty function as.

p,= /l] k;“ . (3.13)

The question then is, how do we find optimal values of A, and A, tor our proposed
penalty functions? Our suggestion is as {ollows. TFor each model under consideration
and for a given choice of penalty values, we estimate the average probability of

correctly selecting this model when it is indeed the true model. For the same penalty

et kimadiisin 1 e
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ompat a nte

set, we then average these probabilities of correct sclection (thus treating all models

equally). A, and A. are then chosen to maximise this average.

In order to understand more closely what 1s involved. Tet CS denote the event of

correct selection and P(CS|M .8 .A,.4.) denowe the = “ahility of correct selection

when the model M, s true with parameter vector &, and A, and A. arc used in

(3.11).

Therefore.

P(CS]MJ.GN/!,‘/I:)-—P[u_,-1,)>uiM,.r')_,./11./t_\;f’:1.2 ..... {j-l}.(j+l)....‘m]
:P[(L_rl_bfj"Lﬁé,})>('p,-;{ WAL O A A= 12 1;,(_,;”;.....».»}

= u/(()_l,ﬂ.,.;l:) (say).
then the average probabiiity of comrect selection when the model M is true will be

E[P(CSIM,.0,.4, A, )|= [wio. 2,4, )¢(0,}d0,. (3.14)

where g(() J) is the prior density function of the vector of parameters @,. Thus the

mean of average probahility of correct selection will be

iE[P(CSI M,.0,.4,.4,)]

=1

m

which involves the unknown constants A, and A.,.
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For our approach 10 be operational. we need a method of estimating (3.14). Given

that g @, ) is a joint density function. the Monte Carlo estimate of (3.14) can be found

by first taking a large sample of drawings from g(&)which we will denote by @ (i}.

1 ¢ Na s
i=1.2....4. and then calcvluting — Y P(CS|M .0 (i) 4,.4.).
- | ,

This then requires us 10 cstmate P(CS|M,J}'r(:')./L./%:] for given M. 0 .(i). A,.
A.. which can he achieved by a straightforward Monte Carlo simulation of N
replications. After some experimentation with a range of settings, we find that for
fixed total number of simulations gN. good results are achieved by using only one

replication (N = 1) in the estimation of P{CS|M .0 .(i).A,.A.). and the maximum

number of drawings of ¢ from g(ﬂ_, ) . Results of these simulation experiments are

reported in the Section 3.3.2.

Unfortunately, the problem of maximizing our estimate of (3.14) with respect to A4,

and A, requircs considerable computational effort. We suggest that foc each of the m
models, ¢ random drawings of 6_f are obtained from g(@_,) and then model (3.1} is

used 1o gencrate ¢ y vectors. For each y vector the likelihood tunctions of cach of
the models are then maximised, and the maximised values are stored. This is

repeated for each model so that in total = file of m’¢ maximised likelihoods is

6l
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generated. This can then be used 10 estimate (3.14) for different values of A, and A..

Inourstud. . - .:d g = 2000 and N=1.

3.3 THE MONTE CARLO STUDIES

in this section we describe two sets of simulation expeniments. The purpose of the
first set of expenments 1s to find the best combination of N, the nu.iber of
replications. and ¢. the number of parameter drawings. for a simulation expeniment.
The second set ol experiments was conducted 10 evaluate the periormance of the
newly proposed critena against the existing I listed above. The plan of this section
is as foltows. In Section 3.3}, we desenbe the data generating process used for the
simulation exneriment. Section 3.3.2 15 devoted 1o the first set of expenments while

in Section 3.5.3, we geseribe the second set of experiments.

3.3.1 DATA GENERATING PROCESS

th

Suppose we have n obscervations on each varizble. then the j™ model can be writien

I matrix notation as
y;x'ﬂj_'_uf‘ (3.15)
where y isnx 1 ¥ s nxk:, 3, 1s k> x| veetor of coefficients, and u isannxl

disturbance vecten <isributed as N(O. o 1).
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We used different designs for the simulation experiments. In each case. the random
vector y is generated for a set of randomly selected values of £, and o~ obtained
from the prior distribution suggested by Zeliner (1971). namely the inveried camma

distribution for ¢~ and multivariate normal distribution for B . That is. the values of
B, and ¢ are randomly and independentiy chosen from independent multvariate

normal and nverted gamma distributions, respectively. Therefore, 1o generate
random vectors ¥ and for estimatng (3.1, the foilowing steps were followed.

- pit

Step 1: We randomly selected a value of o for the j” model frem an invested

gamma distribution. as follows.

A random sample ol size (n—k i is drawn from the N(O.1) distribution. where & is

the number of regressors including the constant in the /" model. Let the sample

J'I'J«t

values be z.z.....2 o Then we compute y . = E 7, which is distributed as a
1)

T

chi-squared variable with (n-4) degrees of freedom. Finally a value of o7 is

a2 » 1 ! * . *
obtained by using the formula o) = -k )& —— . vhere & 15 an arbitrary

" i:

positive value held constant for the expeniment.
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Step 2: We randomly sclected a vector of parameters fi, = ( B..B,.

ﬂH] for

the j" modei in the following wav,

We drew a random sample of size & from the NiO.4) distribuiion. Let the sample

values be w ow,

......

w. ] and &, is a randomly sclected value of the error

standard deviation obtained by appiving step 1 again for another arbitrary positive

value say s, and &, is independent of 7.

The arbitrary values of s7 instep 1 and s; are used 1o generate data. These values are
chosen by a trial and ervor mcthod, so that the expected probability of correct
selection 1s a middle level of probabihity (say 0.5) for small sample for a particular

simulation expenment. (Low average probabilines and high average probabihities are
of less interest.)

Step 3: To generate the dependent random vector y for the j* model, we drew a
random

Voo

sample of size n from the N(O,1) distribution and let the sample values be
IS A

...# . Then we obtained y by using the following formula
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Chapter 3 Improved Penalty Functions for IC Based Model Selection

Step 4: Using the gencrated random vector y . we fit all the plausible models in the

set and found the maximised log-likelihood value say L_,(/Af!.('f,) for the " model.

. .. uu, _ e
where ﬂ,=(x_’,x_,)"‘x1y. o= -~ anc uw, =Vv- X /4.

) i J

I p, 1s the penalty
n

function for the 7" model. then the information ¢riterion, ior the j* moder wifl be
I,=L(f,.6,)-p,. We computed I, for all j in the set and ranked them.
Evidently of £, >1 forall i =1, 2. 0= 1L g+, .., a0 then we have correct

. . .
seiection of the j% model.

Step 5: We repeated steps 1 10 4 g nmes, replicated N times Tor a fixed nember ¢
Step §: We repeated sieps 1 10 4 g tim plicated N ¢ for a fixed nember gN
(we used gN = 2000 for our simulation expeinments} and calculated the Monte Carlo
probabilities of correct sclection by using the rvlative frequency deitmition of

probability.

Steps | 10 5 are used for finding the probubihity of correct selection under any

information criterion just by replacing p, by the penalty function of that critcrion in
step 4. In the case of a penalty p, involving unknown constants A and 4, we find

the Monte Carlo probabilitics of correct selection for all feasible values of' A, anc

05




B
i
5

B e T P L e L

vl MR a1, el
T ™

Chapter 3 Improved Penalty Fuactions for IC Based Model Selection

A.. Then we identify those values of 4, and A, for which the mean of the expected

probability of correct selection 1s 2 maximum. This was done for the second set of

expermments for our pronosed method.

322 CHOICEOF NAND g

In this scction. we nvestigate different choices of V. the number of repheations. and
¢. the number of parameter drawings. via simulation experiments. which involve
sclecung a model from a set of competung altermative models in hinear regresston
sci ngs. The a = s o find the best choice of 7 and ¢ values for fixed gN. In
Subsection 332,51, we outhne the simulabon expenments conducted tor this
purpose. The results of these simulation experiments are presented in Subsection

3322

3.3.2.1 OUTLINE OF THE SIMULATION EXPERIMENTS

We conducted the simulation experiments with two sets of data and one set of

models as follows in order to find the optimal values of g and N.

ata set I: v is Australian retail trade quarterly data from 1959(1) to 1982(4) and

X,

,, 1s the same series lapged one quarter. We have used dats from Australian Burcau

of Statistics. Here we set s” =55and s, =6.
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Chapter 3 Improved Penalty Functions for IC Based Model Selection

s’ and s; are arbitrary positive values held constant for the experiment. The reasons

for choosing these values were discussed in Section 3.3.1.

Data set 2: x, 1s the reul per capita GDP and 1., 1s the investment of a country. We
used the annual data from Summers and Heston (199}1) revised vers.on 5.6 and

World Bank world tables. Here we sct s7 = 2.5and s, = 0.002.

Model Set: We used the following four linear regression modcis for our evaluation.

M,: o=yt w, ~ IN(O.a; ) (3.16)
M. v=f,+x0 +u,. , ~ Nt (3.17)
M, o= ta . u, ~IN(.a) . (3.18)
Mo v =g+ a, g+ x0T u, ~ INW, L), (3.19)

where v, is the 1™ observation of the dependent variable. v, is the 1" observation
+ . . ) . .
of the i regressor. 3 1s a constant for the % maodel, =L 23& S5 andi=1
1 . H
& 2) is a scalar regression cociicient associated with the  j” model and regressor

x,;and «, is a random disturbance term that is indepenacntly normally distributed

with zero mean and variance o .
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Chapter 3 Improved Penalty Functions for IC Based Model Selection

Consequently we have two designs for our simulauon experiments. Design 3.1 1s the
combination of data sct |1 and our mode! set. and Design 2.2 is the combination of

data set 2 and our mode) set.

We generated the duta using the techmque described 1n Section 3.3.1. The sample
sizes used for the simulation study were = 20, 50 and 96 tor Design 3.1, and nn = 20,
50 and 100 for Design 3.2, For the stmulation expenments. we used the lollowrae

fifteen combinations of N and ¢ so that ¢N is equal 10 2000.

. | S S
N 12000] 1000 500 2507 200] 100] 5ol g0 200 o] 8! 54

|

ta

SO0T 1000] 2000

g T TS 10] 201 307 S0, mni 2008 2507 400

i ; i
e B R g — e I e ——]

|
j 1 ! . |

Because our aim 1s to find the combinaton of ¢ and & values that gives the greatest
accuracy in estimating mean probability of correct selection, we repeated the whole
experiment 20 times in order 10 calcul.te the standard deviation of the estimated
mcan probabilitics of correct selection. Then we computed the average of this mean
probability of correct selection over the competing models (nere we have four
competing models). We also computed the average of the standard deviations of
mean probability of correct selection over the competing models to see the trend of
this standard deviaticn as ¢ changes. We used average standard deviation averaged
over the range of competing models (ASD) as a measure of the efficiency and the

cocfficient of variation (CV) as a measure of reliability of the estimated mean
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probability of correct selection of the true model. That combination of g and N,
where both ASD and CV are the lowest. will be judged 1 pe the best combination to
estimate the mean probability of correct selection. We also found the mathematical
relatonship between ASD and ¢. and estmated the value of ¢ for the simulation

experiment where ASD is the mimmum.

3.3.2.2 RESULTS AND DISCUSSIONS

The results of these simulation expenments are presented in Tables 3.1 and 3.2, From
these tables, 1t is evident that with an increase 1in ¢, the value of ASD decreases. For
both the designs and for all sample sizes. the highest esumated mean probability of
correct sclection averaged over four models (AAPCS) under cach critena 1s obtained
when the parameier 18 gencrated once and replicated 2000 times. But for this
combinanon of ¢ (= }) and N (= 2000}, the ASD 1s also the highest compared 1o all
other combinations of ¢ and N, for all cited entena and sample sizes considered for
the expertment. The CVs obtained for this combinauon of ¢ and N are also ihe
highest (minimum 10% and maximuni 33% )} compared (o all other combanations of ¢
and N, for all cited critena, sample sizes and for both the designs. This indicates that
the estimated mean probability of correct selection obtained from a single drawing
and replicated 2000 times is not efficient and reliable. In almost all cases, the lowest
ASD 15 obtained when the parameter is gencrated 2000 times and replicated once
with the estimated AAPCS being very close to those obtained from the combination

g = 1 and N = 2000. For this combination of g and N, the CVs are als) the lowest
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(minimum 1% and maximum 2.5% ) for all cited criteria. sample sizes and for both
the designs. This means that the estimated average probability of correct selection
obtained from the maximum number of drawings of parameters and rephicated once,
is more efficient, less vanable and more reliable than that of a single drawing of the

parameters replicaied the maximum number of times.

To find the muthematical relattonship between ASD and g4. we first plotted the data
and got the impression that the relatonship between ¢ and ASD may be represented
by the following mathematical model:

ASD = A'¢™ . (3.20)
where 4" and B are parameters and v 1s a random disturbance term. Model (3.20)
may be w stien i the following log hincar form:

INCASD) = A+ BIn(g)+v,, (3.2D)

where A=In A" . I Iny, . and v, lN{().O’f,) i

We estimated this mode! for both the designs and for all sainple sizes under all cited
criteria. We let A and B be the estimated values of A and B, respectively. It s
observed that A and B are highly signtficant and the adjusted coefficients of
determination ( R°) are also high and highly significant (Table 3.3) for both the
designs and all sample sizes under all cited criteria. But for the sample sizes 20 and

50 under all cited critena and for both the designs, there is strong evidence of
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significant positive autocorrelation in the residusls. as the calculated values of the
Durbin-Watson (DW) test statistic are always less than their respective tabulated
lower bourds of the critical values, suggesting the possibility of functional
misspecification. So to establish a more accurate relationship between ASD and ¢ for
all the sample sizes and designs, we tested several allernalive models. From these test
resulls. we came to the conclusion that the following model explains the relationship

satisfactonly for all sample sizes, under all cited criteria and for both the designs:
ln(ASD')=a+hln(q)+('(ln(q))2 + e, (3.22)

where u, is IN(0.5°) .

We estimated the values of a. b and ¢ {for alf cited enteria and sample sizes for both
designs. We let a. b and ¢ be the estimated values of a, b and ¢, respectively. By

differentiating the right hand side of (3.22) with respect to In(y). and equating it to

zero, and using the estimated values of b and ¢. we can find ¢ . the estimated value of

g¢. for which the value of In(ASD) and hence ASD is the minimum, This value turns

out to be

b

j=e ¥, (3.23)

The estimated values of a, b and ¢ with their respective significant levels and ¢ are

given in Tables 3.4 and 3.5 for Designs 3.1 and 3.2, respectively,
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From Tzbles 3.4 and 3.5. 1t 1s observed that the adjusted cocfficient of determination
( R*)is always highlv significam ( R* > 0.97 for Design 3.1 and R~ > 0.95 for Design
3.2). and the estimated coefficienis are highlv significant. but none of the DW
statistics are sigraficant for all combimaiions of data sets and sample sizes. This
indicates that the relationship between ASD and ¢ is satistactonly represented by the
mathematical model (3.22). and the cstimated coefficients are also efficient. For all
sample sizes and for boih the data sets except for n = 20 of Design 3.2, ¢. the
estimated value of ¢, produces the minimum ASD and ¢ is alwavs higher than that
of the value of gN (2000). This provides turther proof thit gencrating the parameter
vector the maximum number of times (here 2000 tmes) and repheating only once (N
= 1), 15 the best way to obtain an efficient estimale of mean probability of correct

selection for a fixed number ¢V,

3.3.3 PERFORMANCE OF THE PROPOSED CRITERIA

This section describes the models and designs used o examine the performance of
the proposed methed over the listed existing 1C. We defined five penalty functions in

(3.9), (3.10). (3.12). (3.13) and (3.11). and their corresponding IC, named NICI, .

NIC2,, NIC3,, NIC4, and NICS , for the J™ model are,

NICI, = 1(8,) - Ak, (3.24)
NIC2, = L(f,) - A, In(n~k ), (3.25)
NIC3 =140}~ Ak, Intn ~£,), (3.26)
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NIC4, = (B )~ A k™, (3.27)

NICS, = L(§,) [ Ak, + 2, In(n -k )] (3.28)

We compare the performance of these newly proposed 1C with the hsted existing 1C

in a classical linear regression seting.

3.3.3.1 MODELS FOK THE MONTE CARLO STUDIES

The following four linear regression models. along with the four models descrnibed in
Subsection 3.3.2.1, were used in the siudy to examine the performance of the

proposed IC compared to the listed existing IC.

M,: x, =0,+x,8,+u,, u, ~IN0.03): (3.29)
M, : V=B X, B0+ 4, B iy, - u, ~IN(.6)): (3.30)
M,: ¥, =Py v 3,0 45, Bt u, ~IN(0,03), (3.31)
Moo ¥ = B 2,80+ 33,8 + 3, B i, w, ~IN(0.0}); (3.32)

th th

where y, is the " observation on the dependent variable, x, is the ¢ observation
on the i" regressor, jo 18 @ constant for " model, B,G=4,67&8 andi=1,2,
& 3) is a scalar regression coefficient associated with j* model and regressor x, ;

and u, 1s a random disturbance term foliowing the normal distribution with mean

zero and variance o .
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3.3.3.2 THE DESIGNS FOR THE SIMULATION EXPERIMENTS

We have three sets of data and two sets of competing models. one with four
competing models and the other with eight competing models. Altogether we have
six designs. Design 3.2 1o Design 3.7, for the simulation experiments. A description
of Design 3.2 was given in the Subsection 3.3.2.1. A bnef descrniption of the

remaining five designs is given oelow.

Design 3.3: x, and x,, are randomly and independently generated values from the
N(0.1) distribution. Here we consider four non-nested models M,, M., M, and M,
given by (3.16), (3.17). (3.18) and (3.19) with s” =5, =1 for samples of sizes 20, 50

and 100.

Design 3.4: x,, x,,, and x, are randomly und independently generated values from
the N(0.1) distribution. Here we consider eight non-nested models M,, M.. M,.
My, Mg, M, M, and M, given by (3.16), (3.17), (3.18), (3.29), (3.19), (3.30),
(3.31) and (3.32), respectively, with ' = =01 for samples of sizes 20, 50 and

100.

Design 3.5: This is an extension of Design 3.2 to more models using one extra

th

variable x, as the price level consumption of the t* country. Here we consider eight

non-nested models M, M, M,, M, M, M, M, and M, given by (3.16),
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(3.17). (3.18). (3.29). (3.19). (3.30). (3.31) and (3.32). respectively, with

s-=25and s5; =0.02 for samples of sizes 20. 50 and 100.

Design 3.6: Australian cross-scetion data for 1961 and 1976 was classified according
o eight categories of sex/marital status and eight categories of age. x, is the
nousehold population and x,, 1s the number of households whose head beiongs to the
given population category, We have used the data from Williams and Sams (1981).
Here we consider four non-nested models M,. M. M, and M, aiven by (3.16),

(3.17). (3.18) and (3.19), respectively with .\f =01l and ” =002 for samples of s1zes

20, 50 and 100.

Design 3.7: This 1s an extension of Design 3.6 to more models using one extra
variable x, as the houschold headship ratio which is the proportion of people in any
giver: population category. Here we consider eight non-nested models M,, M., M,.
M,, M, M, M, and M, given by (3.16), (3.17), (3.18), (3.29). (3.19). (3.30),
(3.31) and (3.32), respectively, with s” = 0.1 and s; = 015 for samples of sizes 20, 50

and 100.

We estimated the probabilities of correct selection for AIC, BIC, HQ, GCV, RBAR.

HOC, NIC1, NIC2, NIC3, NIC4 and NICS from 2000 drawing of parameters for each

design separately.
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3.3.3.3 RESULTS AND DISCUSSION

Tables 2.6. 3.7, 3.8. 3.9, 3.10 and 3.11 contain the probabilities of correct selection of
the true model for each of the Designs 3.2, 3.3, 2.4, 3.5 3.6 and 3.7. respecuvely.
under different criteria, namely AIC. BIC. HQ. GCV. RBAR. HOC. NICI. NIC2.
NIC3, NIC4 and NIC5. The mean average probability of correct selection (MAPCS)
and the standard deviation among the average protabilitics of correct selection
(APCS) for selecting various modeis swithnn a particular design under each critena are
also provided. A criterion with maximum mean average probability of correct

selection end minimum vanation among the probabilities of correcily selecting the

true model for a fixed sample size 1s, always the mot desirable.

Several interesting phenomena are apparent in the tabies. The performance of the
selected existing criteria vanes from data set 1o data set. Even for a particular data
sct, the performance of the selected criteria vanes from sample size to sample size.
The probabilities of comrect selection gradually increase as the sample size »
increases for all designs under consideration, which s desirable. The variation among
the probabilities of correct selection for selecting various models within a particular
design under any criteria decrcases as the sample size increases for all designs.
Among the six existing criteria that we have considered. for nine out of I8 (six
designs and three sample sizes) experiments, the MAPCS are the highest for AIC

followed by BIC, for which eight experiments produce the highest MAPCS. But in
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most of the experiments. the vanation amorg the probabilities of correct seiection 1s

the lowest for RBAR.

In terms of correctly choosing the true model. the new preposed criterta NIC 1. NIC2.
NIC3, NIC4 and NIC5 perform better than all the lisied existing critena for all
designs and for all sample sizes. Among the new proposed cniena. the performances
of NIC4 and NICS are marginally better than those of the remaning three proposed
criteria. but the performances of NIC4 and NICS are very similar for all designs and
sample sizes. The penalties that maximise the MAPCS obtained from the new critena
are different from those of the existing eritena. The vanation among the APCS
obtaincd uaing proposed criteria is kigher for some designs and lower 1or other
designs. Because of the exisuing entena. AlC and BIC are the most widelv used. and
thus we wili compare the lowest MAPCS (LMAPCS). obtained from the proposed
criteria with AlC's and BIC's MAPCS. We choose the lowest MAPCS, so that our

proposed 1C are not favoured in the companson.

For Design 3.2. with n = 50 and 100, the highest MAPCS is obtained {from NiC4, and
NIC5 produces the highest MAPCS for sample size 20. Among the new criteria, for »
= 20 and 100, NIC2, and, for n = 50, NIC1 produces the lowest MAPCS, which are
nigher than the corresponding highest MAPCS obtained from the existing critenia.
BIC produces the highest MAPCS among the existing criteria for # = 20 and 50,

while for n = 100, HQ produces the highest MAPCS among the existing criteria.
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There are 3.9. 2.9 and 3.6 percent increases in LMAPCS over that of AIC observed
for sampie sizes 20. 50 and 100, respectively. These increases are 1. 0.6 and 1.4
percent over the MAPCS of BiC for n = 20. 50 and 100. respectively. The varation
among the APCS obtained from the proposed cniteria 1s higher than thit of all the

existing critenia for n = 20, and lower than that of BIC tfor n = 50 and 100.

FFor Design 3.3, the highest MAPCS is obtained from NIC5 for n = 50 and 100, and
both NIC4 and NICS produces the highest MAPCS for the sample size 20. Among
the new critena, the lowest MAPCS 1s obtained from NIC3 and NIC2 for n = 20 and
50. respectively, while both NIC3 and NIC2 produce the lowest MAPCS for the
sample size 100. The jowest MAPCS obtained from the new critena for different
sampie sizes are higher than the corresponding highest MAPCS obtained from the
existing criterta. Among the existing criteria. AlC, BIC and GCV choose the true
mode] with the highest MAPCS for 2 = 20. 50 and 100. respectively. there are 1.1,
0.3 and 0.3 percent improvements of LMAPCS over that of AlIC observed for n = 20,
50 and 100, respectively. These improvements over BIC are 8.8, 7.1 and 6.9 percent,
respectively. For n = 20 and 50, the vanations among the APCS for the proposed
criteria are lower than those of all cited existing critena except RBAR. But for
sample size 100, the variatons among Lthe APCS obtained from the proposed criteria

are lower than those of BIC and HQ and higher than those of the other criteria.
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For Design 3.4. the highest MAPCS 1s ohtained from NIC4 for sample sizes 20 and
50. while both NIC4 and NICS produce the highest MAPCS for sample size 100.
Among the new criterta. NIC3. NIC2 and NIC1 produces the lowest MAPCS for n =
20. 50 and 100, respectively, which are mgher than the corresponding h:ghest
MAPCS obtained from the existing critena. For all sample sizes. among the existing
critenia the highest MAPCS 1s obtained from AIC. There is 0.8 percent increase in
LMAPCS over that of AIC for n = 20, and for n = 50 and 100, LMAPCS are very
similar to those of AIC. But these mcreases over the MAPCS of BIC are 9. 9.5 and
9.4 percent for sample sizes 20, S0 and 100. respectively. The variation among the
APCS under the new criteria 1s always lower than that of all existing ¢crilena excepl
RBAR for » = 20 and 50. For & = 100, the proposed criteria produced lower
vanations compared to BIC and HQ. and higher than those of RABR. and in other

cases the results are very simifar to those of existing critera.

For Design 3.5, NIC4 produces the highest MAPCS for n = 50 and (). while for
sample size 20. the highest MAPCS is obtained from NICS. Among the new criteria
for ail sample sizes, the lowest MAPCS 1s obtained from NIC2, which are higher
than the corresponding largest MAPCS obtained from the existing criteria. For all
sample sizes among the existing criteria, BIC produces the highest MAPCS, which
also t.as the highest vanation among the APCS. The increase in MAPCS that results
from using the worst of the new IC over AIC are 11.7, 14.2 and 17.1 percent for n =

20, 50 and 100, respectively. The increase of LMAPCS over that of BIC are 2.4, 1.1
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and 0.4 percent for n = 20. 50 ang 100. respecuvelyv. For all cases. the vanations
among the APCS oblained from the proposed technique are higher than those of
existing critenia except for n = 100. where RBAR has the highest variatior among the

APCS.

For Design 3.6, and sample s1Zes 20 and 50, the highest MAPCS is obtained from
NICS. while NIC4 produces the highest MAPCS for n = 100. For all sample sizes
among the new cniteria. the iowest MAPCS is obtained from NIC3. Among the
existing criteria, the highest MAPCS for sample sizes 20 and S0 is obtained from
RBAR with the lowest variation among the APCS, while AIC produces the highest
MAPCS for n = 100 with the Second highest vaniation among the APCS. There are
2.3, 1.6 and 0.7 percent increases of the LMAPCS over thuse of AIC and 9.1, 14.8
and 11.9 percent increases over those of BIC observed for #n = 20, 50 and 100.
respectively. For all sample siZes. the vanations among the APCS obtained from the

new critcria are alwavs lower thun those of the existing criteria.

For Design 3.7 and all sample sizes, the highest MAPCS is obtained from NIC4.
Among the new criteria, the lowest MAPCS is obtained from NIC2 and NIC1 for
sample sizes 20 and 100, respectively. while hoth NIC] and NIC2 produce the lowest
MAPCS among the new cniena for sample size 50. For all sample sizes, among the
existing criieria, the highest MAPCS is obtained from AJC. There are 1.1, 0.4, and

0.5 percent increases of the LMAPCS observed for the new technigue over those of
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AIC for n = 20, 50 and 100. respectively. These increases over the MAPCS of BIC
are 6.5, 13, and 13.8 percent for n = 20. 50 and 100. respectively. The vanations
among the APCS obtained from new method are lower than those of all listed

existing cniteria except RBAR.

3.4 CONCLUDING REMARKS

The main purpose of this chapter was to mtroduce a neyv: method for seiccting the
truec model from a set of competing altiernative models, that performs better on
average compared 10 existing IC. The general form of the penalty functions of AIC.
BIC and HQ for the j* model is p. = A, k, and that for RBAR, GCV and HOC s
p, =Adn(n- k). The penalty functions of all six of these 1C can be genaralised to a
single penalty function p =4,k +A,In(n-k ). For the histed cxisting criteria,

A, and A, are determined by the sample size n, For example if A, =)and A, =0,

the penalty is the AIC penaity, if A, =0and 4, = ~;. it is the RBAR penalty. In

our proposed method, we did not restrict A, and A, 1o these six sets of values but
allowed A, and A, to take any values that maximise the MAPCS. Another two
penalty functions are also defined as p, = A,k Intn-k,) and p, =/1,kj-‘. We
investigated the performance of the new method with these proposed penalties over

the listed existing criteria in a linear regression setting.
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We conducted simulation experiments 10 nvestigate how the efhciency of the
esumated AAPCS increases with increases in the number of parameter drawings (g)
for a simulation experiment with a {ixed number of overall simulations. namely y¢N.
where N i1s the number of stmulations conducted tor each drawing of the parameters.
The average standard deviation averaged over the number of competing models
(ASD) was used as a measure of efficiency and CV as a measure of rehability of the
estimated AAPCS. From the simulation experniments. 1t was apparent that the number
of parameter drawings for a simufaton expennment and ASD is negatively correlated.
For all cited criteria and for all sample sizes, the ASD and CV are the highest when ¢
= | and N = 2000, which indicates that when ¢ = 1. the AAPCS has the greatest
variability and unrcliability. With an increase in ¢. the value of ASD and CV
decreases and n almost all cases the lowest ASD and CV is ohbtained when ¢ = 2000,
the maximum value of ¢. thus indicating that the AAPCS obtained using maximum ¢

1s more efficient and reliable,

Our regression sesults indicate that the relationship between ASD and ¢ is well
represented by the model In(ASD)=a +b ln(q)+c-(ln(q)): + u,. The estimated value

of g, where ASD is the minimum. is always higher than the maximum value of gN
(here 2000) used for our simulation experiment except for n = 20 in Design 3.2, This
mcans that maximum number of parameter drawings with single replication is the
best way to obtain an efficient estimate of mean probability of correct sclection for a

fixed gN. At this combhination of ¢ and N, the CV is also the lowest in almost all
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cases. indicating thut the ¢csumated mean probability of correct selection of the true

model obtained using the maximum number of parameter drawings is more reliable.

We conducted a second set of simulation experniments to investigate the performance
of our proposed new critcna over the existing hsted critenia. The simulation results
demonstrate that the performance of the proposed criterna alwavs dominates the
existing cntenia in terms of MAPCS of the true model. Also. in general, the
variations among the APCS obtained from new 1C are smuller than those of all the
listed existing IC except RBAR. From the simulation results, it is revealed that the
performances of the six hsted existing model selection criteria. vary from situation o0
situation and from data sct to data set. Even tor a particular data set. the pertormance
of the selected criteria varies {from sample s17¢ to sample size. In all designs under
study, the MAPCS increases as the sample sizes increases. Within a particular design
under any criteria. the variation among the APCS decreases as the sample size
increas2s. Among the hsted existing critenia in most cases, RBAR produces the
lowest vanation among the APCS. Although none of the existing criteria performs
well in all sitvations in terms of MAPCS. the performance of all proposed new

criteria are always better than the best of the existing listed criteria.

The performances of all new proposed IC are very similar. though NIC4 and NICS
perform better than the others. The estimation of two paramcters is required for N1C4

and NICS5, and this can be time consuming. The improvements of MAPCS obtained
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by NIC4 and NICS5 over NIC1, NIC2 and NIC3 are not significant. So considering the
computational time and imprevement in MAPCS. we recommend the use of any one

of the criteria NIC 1. NIC2 and NIC3.
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Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.1.

Number of AIC BIC 1 GCV HOC HQ RBAR MCP JIC |
beta Average |Average | Average [Average | Average |Average [Average | Average | Average | Average | Average | Average | Average | Average |Average | Average
drawings | of average | SD of average (8D of average | 5D of average | SD of average |SD of average [ SD of average |SD of average |SD
Sample size = 20

1 0.4564  0.1527 0.4553  0.1647 0.4581 0.1565 0.4586  0.1577 0.4580 0.1563 0.4337 0.1232 0.4567 0.1532 0.4572 01537

2 0.4334 0.1072 0.4264 01133 0.4338 01435 04335 0.1103 0.4336 01097 0.4187 0.0898 0.4336 0.1074 0.4335 0.1080

4 0.4229 0.0904 0.4167  0.0947 0.4228 £, 520 0.4226  0.0926 0.4229  0.0920 04079 00779 0.4230 0.0905 0.4230 0.0908

8 0.4294  0.0601 04223  0.0638 0.4303  ..0617 0.4302  0.0620 0.4303  0.0618 04123  0.0494 04296  0.0604 04299 0.0609

10 0.4295 0.0453 0.4225 0.0467 0.4299 0.0463 0.4294 0.0464 0.4296  0.0459 0.4101 0.0397 0.4296 0.0456 0.4207 0.0458
20 04295 0.0343 0.4224 00373 G.4291 0 G350 04287 0.0353 G.4289  0.0351 04129 00289 0.4295 0.0343 04296 (0344
40 04316  0.0287 0.4251 0.0292 0.4318 0.0294 0.4315  0.0298 0.4313 00293 0.4158 0.0259 04316 00288 0.4316 0.0285
50 0.4307 0.0288 0.4247 0.0333 0.4308 0.0300 0.4305  0.0300 0.4307 0.0299 0.4122 0.0253 04309 00290 0.4311 Q0292
100 0.4307 0.0196 04238 0.0214 04313 0.0203 0.4312  0.0206 04313 00205 0.4156 0.0169 0.4306  0.0200 0.4308 00199
200 04318 0.0140 4265 0.0150 0.4321 0.0142 0.4322 0.0139 0.4322 0.0142 0.4137 00137 04319 00139 04322 00141
250 0.4307 00154 0.4254 (0142 0.4313 0.0157 G431 0.0148 0.4212 (0150 0.4136 0.0150 0.4307 0.0153 04308 00152
400 0.435¢ 0.0137 04292 0.0128 0.4350 0.0141 0.4350 0.0140 0.4349 00142 04158 0.0137 0.4350 1.0139 04348 0.0138
500 0.4328 0.0139 0.4274 0.0138 0.4333 0.0139 0.4330 0.0138 0.4332 00139 04152 00107 0.4332 0.0139 0.4330 0.0136
1000 0.4314 0011 0.4252  0.0107 0.4312 0.0113 04312 00114 04312 0.0113 0.4134 001N 04313 00112 04315 0.0%10
2000 0.4329 00111 0.4263  0.0069 0.4330 0.0107 243”29 00105 0.4330 0.010% 0.4171 Q0127 0.4331 0.0108 0.4330 00108

Sample size = 50

1 0.6769 02022 0.7040 < 2571 06803 02060 06817 02068 06979 02303 06004 0.1457 06770 02023 06932 02215

2 06649 0.1482 0.6952 (1744 0.6685  0.1482 06693 01486 06883 0.1609 05890 01112 QB651  (.1463 06822 Q1565

4 0.6648  0.1060 07025 01311 (.6686 0.1077 0.6698  (.1083 06905 0.1182 05853 040785 06649 0.1080 0.6840 0.1144

8 06814 0D.0776 07213 00941 0.6853 0.0790 06863 00793 0.7080 0.0870 0.5988 00570 0.6815 00777 0.7010 0.0842

10 0.6806  0.0685 0.7164  0.0B17 06845  0.0695 0.6857 00697 0.7059 0.0750 0.5999 0.0532 06808  0.0685 0.6994 (0728
20 06758  0.04089 0.7126  0.0495 0.6800 0.0418 06810  0.0417 07008 (.0447 05947 0.0314 0.6760 ©0.0410 0.6945 00431
40 08628 0.0297 0.6962 00354 0.6665 0.0299 0.6674 0.0299 0.8867 0.0323 0.58587 00235 0.8630 0.0297 0.6805 Q0319
50 0.6730 00258 0.7085 0.0296 0.€758 0.0261 0.677%  0.0263 0.6976 0.0277 05835 0.0228 0.6731 00259 06910 00277
100 0.6741  0.0260 0.7105  0.0292 0.6783  D.0258 0.6795  0.0256 06997 0027 0.5959  0.0221 0.6743 00261 06935 0.0262
200 0.6724 0.0157 0.7086 00184 0.6766 0.0161 06776 0.0162 06976 0.0174 0.5931 0.0150 06725 0.0157 06914 00164
250 06706  0.0147 07045 00177 0.6745 0.0145 0.6756 0.0144 G.6948 Q.01862 Q5919 0.0128 06708 00148 06883 00160
400 0.6711 0.0154 0.7066 0.0150 0.6748 0.0154 06759 0.0153 0.6985 Q0.0154 0.5928 00146 0.6712 00153 0.6896 0.0160
500 0.675¢  0.0143 0.7125 00138 0.6791 0.0143 0.6801 0.0140 07010 0Q.0140 05543 0.0126 0.6752 0N143 06945 00137
1000 06728 0.0129 07094 0.0118 0.6767 1.0130 06777 0.0130 06983 0.0127 0.5928 0.0127 06729 0.0130 06920 00122
2000 06704 20109 0.7074  0.0099 0.6745  0.0109 0.6755 0.0109 06955 0.0104 0.5905 0.0109 06705 00109 06886 0.0103
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Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard
deviations for these 2() iterations averaged over 4 models for Design 3.1 (continued).

Number of AlC BIC GCY HOC HQ RBAR MCP JC
beta Average | Average |Average Average [Average {Average [Average  jAverage [Average  ( Average { Average [ Average [Avcrage | Average [ Average [ Average
drawings | of average | SD of average [SD of average | SD of average |SD of average 15D , ol average | SD of average | 3D ol average [ SD
Sample size =96
1 0.834Q0  0.0801 0.8359 (.1002 0.8376  0.0809 0.8336  0.0811 0.8973 0.0922 07058 00438 08341  0.0800 0.8865 0.0000
2 0.7996  0.0943 0.8830 0.1226 0.8029 0.0953 0.8038 00953 08549 0.1097 0.881C  0.0707 0.7997 0.0043 0.8459 01064
4 0.8222  0.0544 09129 0.0719 08258  0.05514 0.8267  0.0552 08807 00635 06588 0.0388 0.8222 0.0545 08707 0Q.0612
8 0.8113  0.0430 0.2015  0.0569 0.8146 0.0433 0.8156 0.0433 0.8686 0.0504 06919 00332 0.8114 0.0420 0.8588 0.0491
10 0.8168 00323 0.9095 0.0398 0.8202 0.0325 G.8211  0.0326 0.8761  0.0362 0.6941 00262 08169  0.0323 0.8658 0.0352
20 0.8171 0.0236 0.9078  0.0286 0.8207 0.0240 0.8215  0.0240 0.8741 0.0259 0.6540 00203 08172 00236 Q.8647 Q.0256
40 0.8149 0.0221 0.9027 0.0271 0.8187 0.0221 0.8197  0.0221 0.8716  0.0247 0.6939 00176 0.81580  0.0221 0.8620 0.0241%
50 08135 0.0173 0.8002 0.0208 0.8142 00172 0.8152 0.0171 0.8679 0.0186 0.6868  0.0151 08106 0.0172 0.8580 0.018%
100 08146 0.0140 0.9060 0.0155 0.8183 0.0141 08192 0.0141 8728 Q.0148 06908 00137 08147 00140 08627 00147
200 0.8120 0.0131 0.9021 0.0138 0.8156  0.0133 081656 00132 0.8694 0.0138 06900 00119 08121 0.013 08600 00135
250 0.8144 00120 0.9086 0.0122 08179 0.01189 08187 (¢.0120 0.8728 00125 0.6828 COQIN 0.8145 0.0120 08631 0D.0126
400 08124 00103 0.8G37 0.0094 0.8159 0.0103 d.8167 0.1104 0.8707 00099 0.6927 0.0103 0.8124 0.0102 0.8609 0.0097
500 0.8115 00109 0.9029  0.0087 08153 0.0112 0816 0.0112 0.8693 0.0095 06894 00112 08116 0.0109 08596 00099
1000 08120 0.0094 0.801¢  0.007 0.8158 0.0092 0.8165 0.0092 0.8697  0.0087 0.6901 0.0106 0.8120 0.0094 08599 00093
2000 0.8116  0.0091 0.902%  0.0067 0.8151 0.0089 0.8160  0.0089 0.8693 0.0077 0.6896  0.0098 08117 0.0030 08588 0.0078
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Table 3.2 Average over 4 models of mean over 20 iterations of estizuated mean probabilities of correct selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.2,

Number of AlC BIC GCV HOC HQ RBAR MCp JIC
beta Average | Average | Average |Average |Average |Average {Average |Average | Average |Average | Average | Average |Average | Average [Average | Average
drawings | of average | SD of average | SD of average } SD of average |SD of average | SD of average | SD of average {SD of average | SD
Sample size = 20
1 0.5006 0.0633 05180 00618 0.5061 0.0634 05075 0.0632 6.5081 0.0634 0.4605 00564 05011 00632 05019 0.0632
2 0.4858  C.0630 0.5007  0.0655 0.4906 0.0840 0.4815  0.0643 0.4909 0.0639 0.4493  0.0509 0.4863  0.0631 0.4869 0.0633
4 0.4804  0.0306 0.8073 0.0282 0.4950 0.0298 0.4961 0.0293 0.4949 0.06299 04514 0.0303 0.4910 0.0306 0.4919 00305
8 0.4926  0.0223 0.5093 (0.0218 0.4973 0.0228 04987 0.0228 04971 0.0227 04550 0.0220 04932 0.0224 0.4938 0.0224
10 0.4938  0.0225 0.5103 0.0203 04588  0.0218 0.5000 0.0218 0.4983 0.0218 0.4544 00216 0.4944  0.0225 0.495¢ 00224
20 Uv.4918 0.0165 0.5071 0.0184 0.4960 0.0182 0.4969 0.0163 0.4962 0.0161 04525 00153 04924 0.0166 0.4934 00164
40 0.4931 0.0160 05096 0.0148 0.4974 0.0167 0.4892 0.01€5 04975 0.0168 04543 00146 04935 0.0162 0.4942 0.0164
50 0.4880 0.0148 05049 00144 0.4924 0.0149 0.4940 00149 04926 (Q.0128 04493 00154 04885 0.0147 0.4890 0.0149
100 0.4922 0.0136 05085 0.0107 0.4971 0.0 04882 00129 0.4970 0.0132 0.4541 0.0130 04928 (0.0136 04937 001
200 0.4917 0.0105 0.5080  0.0099 0.4969 0.0103 0.4982  0.0099 0.4969 0.0104 04518 00114 0.4923 0.0102 04533 00103
250 0.4931 00116 05104 00101 0.4980 0.0117 0.4994 oo 0.4582 00115 0.4559 D.0105 0.49368 0.0119 0.4943 00120
400 04916 0.0114 0.5077 0.0088 0.4958 0.0108 0.4969  0.0105 0.4957 0.0107 04524 00111 04920 00113 0.4931 00111
500 0.4916 0.0118 0.5087  0.0092 04964 0.0115 0.4978 00114 0.4964 00115 04537 00113 04920 00116 0.4926 0.0117
1000 0.4943 0.0108 05089 0.0090 0.4981 0.0105 04995 00104 0.4984 00104 0.4563 0.0107 04949 00107 0.4953 00106
2000 04909 0.0102 0.5088 0.0083 0.4959 0.0092 04573  0.0088 0.4960 0.0093 04517  G.0094 0.4914 0.g101 0.4920 00099
Sample size = 50
] 05448 00952 05568 00924 05463 00056 05465 00956 05566 00974 05004 00809 05449 00852 05536 00978
2 05316 0.0744 0.R432 0.0749 0.5331 00748 0.5333 0.075C 0.5420 ©.0770 04862 00615 05317 00744 0.65397 0.0785
4 0.5451 0.0676 0.5584 0.0670 0.5471 0.0580 0.5477 0.0679 0.5570  G.0699 04972 0.0544 0.5452 0.0676 0.5545 0.0689
& 0.5537 0.0368 0.5670 00338 0.55585 0.0369 0.6558  0.0369 0.5654  0.0378 05038 0.0324 0.5537 0.0368 05632 00370
10 0.5421 0.0357 0.5549  0.0307 0.5440 0.03¢0 0.5445 0.0358 08535 0.0351 0.4970 00319 0 5421 0 0356 05513 00358
20 0.5505 0.0265 0.5637 0.0247 0.5522 0.0269 03529 0.0268 05629 0.0258 05026 00233 05504 0.0266 0.5599 0.0264
40 0.5492 0.01%0 0.5608 0.0163 0.5511 Q.01 05514 Q.01 0.5603 0.0180 05017 0.0182 0.5493 001N 05578 00183
50 05497 0.0198 0.5626  0.0185 0.5519 0.0166 05526 0.0196 05620 00193 05000 0.0186 05499 001989 0.5593 00200
100 0.5471 0.06164 0.5602 0.0140 0.5488 0.0166 0.5492  0.0166 05594 0.0163 04994 0.0146 05472 00165 0.5562 0.0165
200 0.5520 006118 0.5668 0.0102 0.5542 5.0120 0.5544 00121 .5645 0.0107 G.5039 00113 0.5520 0.a119 08621 00115
250 0.5480 0.0132 0.5616  0.0103 0.5494 0.0132 G.5489  0.0135 05607 (0.0133 05005 00128 0 5481 0.0132 05575 00136
400 0.5460 0.0103 05583 0.0084 0.8479 0.0103 0.5485 0.0103 0.5581 0.0099 0.4984 0.0114 0.5461 0.0103 0.5557 0.0098
500 0.5491 0.0108 0.5613  0.0088 0.5510 0.0108 0.5512 00105 0.5607 0.0100 05015  0.0105 05492 00108 0.5579 0.0109
1000 0.547¢ 0.0113 0.5629 0.0088 0.549 00112 3.5486  0.0111 05600 00115 04993 0.0125 0.5471 00113 05871 0.0110
2000 0.5489 0.(099 0.5620 0.0067 0.5507 0.0087 0.5512  0.0096 0.5609 0.0082 0.4992 0.0108 05491 00099 0.5585 0._9082}
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Table 3.2 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correci selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.2 (continued).

Number of AIC BIC GCV 10C HQ RBAR MCP JC
beta Average [ Average | Average Average | Average | Average | Average Average | Average Average | Average Average | Average Average | Average Average
drawings | of average [ SD of average | SD of average | SD of average | SD of average | SD of average | SD of average 15D of average | 5D
Sample size = 10H)
1 0.60686 0.1313 06212 0.1449 0.607¢  0.1323 0.6083 0.1324 0.6255 0.1442 05453 01036 0.6066 01214 0.6235 0.142C
2 0.6126 0.0938 0.6195 0.1082 0.6141 0.0944 0.6143 0.0944 0.6284 0.1034 0.5516 0.0734 0.6126 0.09238 0.6271 01020
4 {1.6028 0.0599 06129 0.0626 0.6040 0.0601 0.6045 0.0601 0.6194 (0.0634 0.5421 0.0493 0.6028 0.0599 0.6182 0.063Q
8 0.6039 0.0530 0.6143  0.0578 0.6053  0.0532 0.6056  0.0534 0.6205 0.0569 0.6443 0.0410 0.6039 0.0530 0.6193 0.0566
10 0.6170 0.0484 0.6319  0.0483 0.6183 0.0486 06186  0.0487 0.6358  0.0506 0.5519  0.0408 06168 0.0485 0.6334 00504
20 0.6224 0.0412 0.6341  0.0428 06235 0.0413 0.6238 0.0413 0.6408 0.0439 0.5565 0.0335 06224 0.0412 0.6393 0.0434
40 0.6162 0.0274 0.6308 0.0261 06175  0.0272 06178 00272 0.6356 0.0.76 05513 0.0220 06162 0.0274 0.8337 00272
50 0.6207 0.0260 0.8329 0.0254 0.6219 6.0264 0.6223 0.0264 06395 0.0267 05558 00221 06208  0.0260 06379 0.0271
100 0.6190 0.0218 0.6324 0.0195 0.6201 0.0216 06204 00216 0.6373  0.0207 0.5544 00471 0.6190  0.0217 0.6359 00210
200 06171 0.0148 0.6320 0.01 0.6184 0.0148 0.6187 0.0148 0.63714 0.0137 05507 0.0134 061714 00148 06343 00144
250 06173 0.0161 06313 0013 0.6185 0.0159 0.6190 0.0159 0.6361 0.0156 0.5530 0.0143 06173 0.0161 0.6345 0.0158
400 0.6171 0.0129 0.6323 0.0107 0.6184 0.0128 06188 0.0128 06377 00124 05514 00117 06171 00129 0.6353 0Qo0128
500 06190 0.0125 0.6321  0.0104 0.6204 00125 0.6208 00125 0.6381  0.0115 05536 0012 06190 00126 0.6369 0.0119
1000 0.6192 0.0097 0.6330  0.0081 0.6204  0.0099 0.6267  0.0099 0.6361  0.0095 05548 00112 06192  0.0097 08361 0.0097
2000 0.6185 0.0111 0.6341 0.0071 0.6198 0.0113 0.6202 00113 0.6382 0.0093 05550 00120 0.6185 001114 06361 00097




Table 3.3 The estimated models® of the relationship between ASD and 4 under

different criteria
Sample size | Criteria Design 3.1 Design 3.2
Al g IR 'DW| 4 | 5 | R |DW
20 AIC 2081 0385 0958 0852 |-3.086  -0239 (0832 0595
BIC 19797 0385 0970" o768 |-30707 02707 o8e8 0745
GCV 20897 03697 0963 05717 |-30697 -0-477 0880 0688
HOC 20357 03737 0964 0575 [-3.085° -0.252° 0855 0712
HQ 20477 03707 0964 0549 [-3.0727 -0.246 848 0676
RBAR |28~ -0338 0932 0713 31787 02287 0863  0.456
MCP 2076 -0.386 0960 0540 |-3.0817 02407 0836 0628
Jic 2068 0368 0961 0558 |-3078  -0.2427 0839  0.644
50 AlC 788 -0.403 0957 0581 |.2524 0321 0934 0674
BIC 15137 .0.4447 0979 0706 {2508 .03627 0953 0814
GCV 1,768 -0.406 0958 0552 [-25t4 -0.3237 0938 0689
HOC 1763 0408 0958 0546 |[-25187 03247 0940 0731
HQ | -1.646". -0,424_“ 0.969". 0.560“ -2.435"‘ -0.333"' 0.935". 0.911“
RBAR |21 0358 09427 0603 [-2744" -02827 0908 0578
MCP -1.7877 04037 0957 0580 [-25247 .03217 0935 0.689
JIC 16817 04217 0871 0607 |-24797 03377 0946 0967
96 for AIC 2537 0328  0.939 0916 |-2214 0346 0974  1291"
Design 3.1 |BIC 2515 04077 09747 1727™ |-20437 .0407 0988  1667™
and GCV 25247 -03317 0940 0832 {22117 -0345 0972 1231
100 for ‘[HOC  |25237 03317 o941 o827 [-22107 03457 09727 1.205™
Design 3.2 HQ 2329 -0,369:: 0.959: 1.254:‘s -2,098: -0.375: 0,980:: 1.363‘".5
RBAR |2888" 027" 0804 0727 {-2518" -0303" 0944”0624
'MCP  [25377 .c239” 09397 0812 |-22147 03467 09747 1.299™
JIC 237117 0360 0955 1.174™ |.24187  .0368° 0980  1.346™

% Significant at 0.1 percent level
**  Sigmficant at | percent level
*  Significant at § percent level
ns  Not signficant

nd No decision

® In(ASD)= A+ Blng

g musl be greater than or equal to |
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Table 3.4 The estimated models® of the relationship between ASD and ¢ under

different criteria for Design 3.1.
Samplesize [Crieria | 5 | ;| ¢ | g [DW ] 47 ]
20 AIC -1.800  -0.594" 00301 0988 17097 19286 |
BIC 17547 0569 0.0242° 0987 1.720™ 127542
GCV -1.788 0582 0.0280° 0.98¢ 1861™ 32626
HOC 17787 05837 00276 0988 18571™ 38623
HQ 1788 0582 0.0278" 0989 1593™ 35159
i RBAR (197 0803 00353" 0979 1682™ 5121
MCP 18017 0580 00285 0988 1665™ 22026
JIC -1.796 0591 0.02937 0.980 1665™ 23088
50 AIC -1478 0565  0.0333° 0.987 1692™ 4834
BIC -1.2807 06337 00249 0.993 1.817™ 331321
GCV 14597 -0659° 003337 0987 1583™ 19829
HOC -1.4517 0661 0.0335 0987 1542™ 19258
HQ 1.368 -0649° 002977 0991 1§22™ 55599
RBAR |-1807" 0630 00359 0989 1898"™ 6466
MCP 1478 -0.655  0.0332 0987 1895™ 19234
JC 1,406 -06447 002057 0991 1.740™ 58009
96 AIC 2264 6551 00203 0972 2.243™ 12121
BIC 20267 D507 L.0132™ 0877 2159™ 218591634
GOV |-225¢7 05517 00200 09727 2261 13360
HOC  |-225¢7 0550 00288 09737 2249™ 14025
HQ 21207 05397 0.0225 09747 2211™ 159178
RBAR [-2573" -0528" 0.0338" 0969 2495™ 2467
MCP 2263 05527 00204 09727 2237™ 11941
JIC 21487 05427 0.0239 0973 2257™ 84029
% Significant at 0.1 percent level
** - Significant at | percent level
*  Significant at 5 percent level
ns  Not significant
#  Estimated value of ¢ where ASD is the minimum
® IN(ASD)=d+bIng+é(Ing)
4 must be greater than or equal (o |
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Table 3.5 The estimated models® of the relationship between ASD and ¢ under

different criteria for Design 3.2.
Sample size [Criteria | 4 b ¢ | R | DW q*
20 AlC -2.681 -0.568 002434 0962 2.335™ 695
BIC 26827 0587  0.0417 0964  2553™ 1140
GCV 26837 -0554 00404 0955  2300™ 950
HOC -2.692 0856 00400 0955  2.328™ 1043
HQ 2892 0556 00408 0957 2302™ 910
RBAR 28297  -0.5127 00375 973 1.843™ 922
MCP -2.682 -0.566 0.0429 ¢ 961 2418™ 733
1IC 2685 08561 ,o0421 09568  2.364™ 783
50 AIC 22127 0575 00334 o981 2172 5474
BIC 2236 0583 0.0292° o098t 2513™ 21653
GCV 2211 0570 00325 0982 2205™ 6433
HOC -2.218 -0.566 00319 0.8982 2271™ 7126
HQ 2.186°  -0.582° 00321 0974 2.417™ 8651
RBAR 24007 -05627 00369 0.981 2.219"™ 2029
MCP -2.215 -0.573 0.0332 0.981 2196"™ 5594
J11C 2205 -0.560  €0204 0978  2528™ 13582
100 AlC 2035 -0.491 00192 0887 2235 357345
IBIC (9267 05027 o125 ceee” 2537 £26573182
GCV 20237 0499 00202 0.986 2123™ 231303
HOC -2.0227° 0499 00202 0987 2129™ 231303
HQ -1.938 -0.505 0.0 0.989 2.285™ 2587187
RBAR  |22437 0528 00295° 0986 1449 7701
MCP -2.035 -0.49 0.0192 0.967 2.244™ 357345
JIC 1955 0500 00174 0990 2363™ 1737254

**%  Significant at 0.1 percent level

¥ Significant at 1 percent level

*  Significant at 5 percem level

ns  Notsignificant

nd  No decision

¥  Estimated value of ¢ where ASD is the minimum

e In(ASD)=a+blng+é(ng)

¢ must be greater than or equal to 1

9




_——-

26

Table 3.6 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.2.

Sample | Model Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria

size AIC | BIC ] HQ | GCV | RBAR | WOC TTTNIG ] NIC2 | NIC3 | NIC4 NICS

20 M, 06715 08115 07120 07085 04705 07205 | 08745(18600) 08605 (-953098)  0.8765(1.9726) 08750 (1 8900) 0.8795 (-28.16439)
M: 0.8100  0.8850  0.8260 0.8315 06785  0.8365 | 0.2160(3.7200) 0.9165(-83.6480)  0.9140(3.8731) 09160(3.7539)  0.9165 (-26.34372)
M; 0.2170  0.1595 02050  0.2085 02805 0.2070 | 01335(3.7200) 0.1425(-93.6480)  0.1310(3.8731)  0.1330(3.7539)  0.1350 {-26 34372)
M: 0.2045  0.1940 02720  0.2635 04385 02565 | 0 1505(55800) 0.1510(-91.7961)  0.1530 (56048} 0.1510(5.6081)  0.1510 (-24.49213)
Mean | 0.4983 05125 05038 0.5033 04670  0.5051 | 0.5186 0.5178 0.5186 0.5188 0.5205
SD 02874 03891 03110 03134  0.1636 03198 | 04353 0.4289 0.4353 0.4354 0.4362

50 M 07080 09055 08110 07195 04780  0.7225 | 0.8570 (1.6000) 0.8570(-299.6702) 0.8705 (1.6735)  0.8570 (1.5900)  0.8555 (- 153.9669)
M: 0.8255 09435 08910 08365 06690 08370 | 0.9160(3.1900) 0.9225(-298.0825)  0.9235(3.3292) 0.9190(3.180C)  0.9190 (-151.3924)
M; 03090 02060 02645 03045 03620 03040 | 0.2445(31900) 0.2445(-298.0825) 0.2315(3.3292) 0.2454 (3.1800)  0.2460 (-151.3924)
Ms 0.3580  0.1945 02735  0.3430 05000 03405 | 02445(47600) 0.2d00 (-296.4614)  0.2375 (4 9667) (2445 (4.7700)  0.2445 (-149.8008)
Mean | 05501 05624 05800 05509 05023 05510 | 0.5656 0.5660 0.5658 0.5685 0.5683
SD 0.2555 04185 03376 02670 01266 02687 | 0.3714 0.3748 0.3831 0.3721 0.3716

100 M, 07175 09370 08455 07255 04770 07265 | 0.8610(1.6200) 0.8905(-817.9313) 0.8820(1.7462) 0.8645 (1.6800) 08780 (-339.0689}
M. 0.8470 09670 09190 08535 06800 08545 | 0.9255(3.2400) 0.9430 (-816.1242)  0.9365(3.4846) 0.9255(3.3137)  0.9365 (-337.3476)
M, 0.4145 03325 03900 04140 04185  0.4130 | 0.3880(3.2400) 0.3720(-816.1242)  0.3770 (3.4846) 0.3870 (3.3137)  0.3815 (-337.3476)
Ms 04810 02765 03875 04775 06120 04770 | C.3745 (4.8600) 0.3425 (-814.2986)  0.3545 (5.2152)  0.3745 (4.9305)  0.3550 (-335.6186)
Mean | 0.6150 06283 086355 06176  0.5469  0.6178 | 0.8373 0.0370 0.6375 0.6379 0.6378
SD 02021 03747 02865 02069 01202 02079 | 0.2968 0.3240 0.3147 0.2980 03123

Penalties for NIC1, NIC2, NIC3, NIC4 and NICS are A, k. A, Intn - &) A & Inin - &) A, k™

and }»l kl + A-z Inn - k). respectively.
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Table 3.7 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.3.

Sample | Model Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria

size AIC BIC HQ GCV | RBAR | HOC NIC1 NIC2 NICZ T NICY NICS

20 M; 0.9080 09685 09200 09180 07205 09245 | 08455(0.7690) 08305 (-406333) 0.8575(0.8539) 08000 (0.4200) 0.8460 (-27 9966)
M: 06425 05955 06345 06420 06645 06365 | 0.6615(1.5780} 0.6695 (-39.8871)  0.6555 (1.6764)  0.6870 (1.0931)  0.6660 (-27.2075)
M. 05935  0.5395 05885 05900 06340 05975 | 0.6155(1.5780) 0.6230 (-39.8871)  0.6065 (1.6764)  0.6415(1.0931)  0.6180 {-27 2075)
Ms 0.4200 03200 04005 03920 05495 03835 | 0.4830(23670) 04830 (-39.0983) 04820 (1.4649) 04790 (19128)  0.4775 (-26.3889)
Mean 0.6433 0.6059 0.5359 0.6355 0.6421 0.6343 0.6514 0.6515 0.6504 0.8519 0.6519
SD 0.1987 02694 02148 02170 00714 02228 | 0.1499 0.1433 0.1562 0.1331 0 1521

50 M; 09265 09950 09715 08310 07420 09330 | 0.9115(0.9100) 08075 (-169.294) 09140 (0.9340) 0.9170(0.7700) 09110 (-98.8614)
M> 07600 06975 07425 07595 07375 07595 | 0.7590(1.8200) 0.7600 {-168.397) 07590 {1.8582) ©.7690 (1.7087) 0 .7605 (-97.9556)
M. 0.7145 06450 06855 0.7125 07220 07135 | 0.7245(18200) 0.7275(-168.397) 0.7235(18582) 07270(1.7087) 0.7265 {-97.9556)
M 05750  0.4500 05150 05685 06895 05650 | 0.5915(2.7300) 0.5915 (-167.481) 0.5915(2.7721) 05735(2.7238)  0.5910 (-97.0388)
Mean | 0.7440 06971 47286 07429 07228  0.7428 | 0.7466 0.7466 0.7470 0.7466 0.7473
SD 0.1449 02254 686 01494 0.0238  0.1516 | 0.1315 0.1297 5.1326 0.1413 0.1314

100 M 08330 09985 00805 089390 07545 09400 | 0.9460 (10600) 0.9545 (-510.058) 09575 (1.1488) 09435 (0.9900)  0.9460 (-229 206)
M- 0.7985 0.7455 0.7885 0.7970 0.7750 0.7970 | 0.7985(2.1200) 0.8000 (-508.931) (.7975{2.2925) 0.8010(2.0357) 0.7990 (-228.148)
M, 07880  0.7135  0.7565 07885  0.7470  0.7875 | n.7875(2.1200) 0.7850 (-508.931)  0.7845 (2.2925) 0.7885 (20357}  0.7875 (-228.140
M- 0.7000 05620 06425 06980 07790 06975 | 0.6950 (31800} 0.6870 (-507.793) 06870 (3.4310} 0.6940 (3.1034)  0.6950 {-227.086)
Mean 0.8044 0.7549 0.7928 0.8056 0.7638 0.8055 0.8068 0.8066 0.8066 0.8068 0.8069
SD 00962 01811 01402 00996 00156 01003 | 01038 0.1106 0.1120 0.1029 G 1038

Penalties for NICI

.NIC2.NIT2 NIC4 and NICS are A k.. A, Intn

k) A k}ln(n k) A k]"’

and ll ki + }\._, Intn - k). respectively.
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Table 3.8 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.4.

Samp | Model Average probabilities of correct selection with penaltics (given in the parenthesis for new criteria only) under different criteria

le size AIC BIC HQ GCV | RBAR | HOC NIC NIC2 NIC3 NIC4 NICS

20 M, 0.8630 0.9545 0.8915 0.8875 0.6185 0.8945 0.7770 (0.8000}  0.7590 {-41.2221) 0.8070 (0.8833) 0.6875 (0.3500) 0.7710 (-31.609%)
M: 05590 05310 05560 05670 0.5330 05650 | 0.5525(1.6000) 0.5625(-40.4652)  0.3465 (1.7342) 0.5885 (0.9763)  0.5595 (-30.8360)
M. 0.5780 0.5415 0.5745 0.5830 0.5400 0.5840 0.578u (1.6000)  0.5840 (-40.4652) 0.5735(1.7342) 0.8110{0.9763) 0.5830 (-30.8380)
M, 0.6205 06055 06230 06290 05680 06265 | 0.6120(1.6000) 0.6175(-40.4652)  0.6050 (1.7342) 0.6415(0.9763)  0.8175 (-30.8360)
My 0.4005 0.3265 0.3845 0.3845 0 4635 0.3780 0.4290 (3.4000)  0.4335 {-3%.6650) 0.4235(3.5499) 04390 (1.7791) 0.4315(-30.0287)
M 0.3850 03060 03710 03650 04520 03595 | 0.4210(3.4000) 0.4245{-39.6650)  0.4145(3.5490) 04275 (1.7791)  0.4210(-30.0287)
M 0.4200  0.3505 04100 04025 04825  0.3980 | 0.4580(3.4000) 0.4635(-39.6650)  0.4525(3.5499) 0.4720(1.77¢1)  0.4620 (-30.0287)
Ma 0.3290 02385 03135 02930 04280 02845 | 0.3730(3.2000) 0.3545(-38.8162)  0.3760(3.3271) 0.3395 (3.7234)  0.3560 (-29.1840;
Mean 0.5205 0.4818 0.5155 0.5139 0.5107 0.5113 0.5251 0.5249 0.5248 0.5258 0.5252
SD 0.1732  0.2318  0.1882 01929 00650  0.1976 | 0.1322 0.1307 0.1408 0.1228 0.1340

50 M 0.8900 09920 0957¢  0.8965 06565  0.8980 | 0.8770(0.9500) 0.8715(-175.1319)  0.8805 (0.9730)  0.8800 (1.0900)  0.8730 (-136.0037)
M; 07055 06650 05990 07110 06200  0.7100 | 07055 (1.9000) 0.7065{(-174.2041)  0.7035 (1.9356)  0.6940 (2.0482)  0.7085 (-135.0720)
M 0.7450  0.7195  0.7495 07485 06320 07490 | 07380 (1.9000) 0.7405 (-174.2041)  0.7380 (1.9356)  0.7285 (2.0482)  0.7395 (-135.0720)
M. 07200  0.6905 0.7285 07250  0.6300 07250 | 0.7175(1.9000) 0.7180(-174.2041)  0.7170(1.9356) 0.7120 (2.0482) 0.7180 (-135.0720)
M 0.5745 0.4580 0.5280 0.57.% 0.6180 0.5710 0.5795 (3.8500) 0.5810(-173.2566) 0.5795(3.8876) 0.5830(3.9622) 05815 (-134.1252)
Mo 0.5785 04615  0.5345 05710 06145 05690 | 0.5870(3.8500) 0.5885(-173.2566)  0.5860 (3.8876) 0.5905 (3.9622)  0.5890 (-134.1252)
Ms 0.5805 04690 05330 05730 06090 05725 | 0.5815(3.8500} 0.5830(-173.2566)  0.5800 (3.8876) 0.5865 (3.9622)  0.5830 (-134.1252)
Ma 0.5335 04125 0.4825 0.5200 0.6310 05175 0.5440 (3.8000) 0.5405 (-173.2889) 0.5455 (3.8286) 0.5590 (3.8486) (1.5420 (-133.1625)
Mean 0.6659 0.6085 0.68515 0.6646 0.6264 0.6640 0.6663 0.6662 0.6663 0.6667 0.6666
SD 01206 01969 C.1615 01272 00148 01284 | 01132 0.1121 0.1140 0.1089 J.1121

100 M, 09040 09960 09750 0.9080 06575 09120 | 0.9040(1¢.78) 0.9030(-450.3218) 09050 (1.0109) 0.8950 {0.8500) 0.9050 {-123.3382)
M; 0.7740 07365  0.7745 07775 06645  0.7765 | 0.7690 (2164)  C.7760 (-449.3268)  0.7740 (2.0174)  0.7785 (1.8094)  0.7760 (-123.3341)
M, 07840 07540 0.7820 07845 06655 G 7845 | 0.7B60{2.0164) 07855 (-449.3268)  0.7830 (2.0174)  0.7895 (1.8084)  0.7845 (-123.3341)
M, 0.7855 07500 07925 0.7880  0.6590  0.7880 | 0.7858(2.0164)  0.7865(-449.3268)  0.7855(2.0174)  0.7895 (1.8094)  0.7865 (-123.3341)
M 0.6605 05350 06095 06590 06620 06590 ! 06619(3.0195) 0.6610(-448.3217)  0.6605(3.0193) 0.6620 (3.8150) 0.6610 (-121.3272)
M 0.6660 05575 06205 06630 06716 08830 | 0.6676(3.0195) 06660 (-448.3217)  0.6660 (3.0193)  0.6675 (3.8150)  0.6660 (-121.3272)
Ms 06420 05260 05990 06400 06485 06305 | 06422(3.0195) 06420 (-448.3217} 06420 (3.0193) 0.6435(38150) 0.6420 (-121.3272)
M; 0.6550 0.5105 0.5900 0.6495 0.7360 0.6475 0.6550 (4.0167)  0.6530 {-447 3061) (0.6555 (4.0166) 0.6d495 (3.8518) 0.6540 {-120.3174)

{ Mean 0.7339 06707 0.7179 07337 06705 07338 | 0.7339 0.7344 0.7339 0.7344 0.7344

SD 0.0929  0.1685  0.1366  0.0958 00273 00971 [ 0.0924 0.0931 0.0930 0.0918 0.0934

Penalties for NIC1, NIC2, NIC3, NIC4 and NICS are %, k. A, In(n -

ky. Ak tntn - ki y A kj}" and Ak, + A, lInin - k). respectively.




Table 3.9 Average probabilities, mean average probabilities and standard deviations of average probabilities of coerrect selection of
models for samples of different sizes and under different criteria for Design J.5.

Sample | Model Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria

size AlC BIC | HQ ] GCV ; REAR ) HOC NIC1 ] NIC2 NIC3 NIC4 NICS

20 M) 05520 07200 0.5945  0.5885 03115  0.6015 | 0.8780(3.3200) 0.8585(-119.5442) 0.B830 (3.4733) 0.8785 (3.2900) 0.878C (-9.6778)
M 06440 07830 06820 06970 0.4595  0.7085 | 0.9005(4.6400) 0.9005(-117.3491})  0.8965 (4.8558) 0.9015(4.6119) 0.8010 (-7.3615)
M 0.3800  0.4095  0.3930  0.4030 03090 04060 | 0.3815(4.6400) 0.3930(-117.3491)  0.3770 (4.8558) 0.3820 (4.6119)  0.3820 {-7.3615)
M. 0.5685  0.6815 05985 06150 04250 0.6235 | 0.7505(46400) 0.7550 (-117.3491)  0.7455(4.8558) 0.7510(4.6119)  0.7515 (-7.3615)
Ms 0.4360 04180  0.4380 04435 04330 04425 | 0.3530(6.9600) 0.3545(-115.0285) 0.3540(7.1397}  0.3520 (6.9459)  0.3525 {-5.0329)
M, 06990 07475 07135 07215 06200 07350 | 0.7665(6.9600) 0.7745(-115.0285) 0.7630 (7.1397)  0.7685 (6.9459)  0.7685 (-5.0329)
M 0.4195 03870  0.4135 0.41'0 04205 04125 | 0.3290(6.9600) 0.3315(-1150285) 0.3295(7.1397)  0.3295 (6.9459)  0.3300 (-5.0329)
M, 05180 04520 05040 0.4855 06035 0.4305 | 0.3505{9.2800) 0.3415(-113.5671) 0.3725(9.3159) 0.3570 (9.2879)  0.3570 (-3.6804)
Mean 05271 05748 05421  0.5468  0.4478  0.5514 | 0.5898 0.5886 0.5901 0.5906 0.5801
SP 01116 01723 01230  0.1291 01155  0.1330 | 0.2554 0.2543 0.2536 0.2564 0.2561

50 M 05780  0.8540  0.7520  0.5890 03165 05975 | 0.9310(3.4900) 0.9240 (-461.1807)  0.9365 (3.6075) 0.9320 (3.4400)  0.9320 (-126.5901)
M 0.7030  0.8885  0.8415  0.7215  0.4645  0.7240 | 0.9370(4.9800) 0.9375 (-458.7373)  0.0425 (5.1874)  0.0405 (4.9481)  0.9405 {-124.0696)
M, 0.4920 05485 05320 05035 03660 0.5040 | 0.5410(4.9800) 0.5460 (-458.7373)  0.5415 (5.1874)  0.5435 (4.9481)  0.5430 (-124.0696)
M, 0.6625  ©.8360 07550  0.6810  0.4370  0.6830 | 0.8725(4.9800) 0.8730 (-458.7373)  0.8745(5.1874)  0.8750 (4.9481)  0.8750 {-124.0696)
Ms 0.5675  0.5620 0.5860  0.5740  0.5210  0.5745 | 0.5330(7.4700) 0.5325(-456.2425) 05290 (7.7388) 0.5205 (7.4826) 0.5295 (-121.5349)
Mg 0.7705  0.8685  0.8240  0.7840 06520  0.7845 | 0.8805 (7.4700) 0.8835(-456.2425)  0.8805 (7.7388)  0.8835 (7.4826)  0.8835 (-121.5349)
M- 05756 05570 05830 05785 05495 05785 | 0.5290(7.4700} 0.5300 (-456.2425)  0.5235(7.7388) 0.5265 (7.4826)  0.5265 (-121.5349)
Ma 0.7080 05945  0.6595  0.7005 0.7850  0.6975 | 0.5510(9.9600) 0.5470 (-4536940) 0.5495 (10.261) 0.5470 (10.034)  0.5470 (-118.9852)
Mean | 06321 07136  0.6854 06415 05114 06420 | 0.7219 0.7217 0.7222 0.7222 0.7221
Sp 00932 01596  0.1113  0.0942  0.1526  0.0937 | 0.1974 0.1966 0.2007 0.1997 0.1997

100 M, 0.6140 09025 07795 06220 0.33%0 06235 | 0.9175(3.5000) 09170(-1121.209) 0.9190(3.5273) 0.5145(3.2000}) 0.9245 (-103.3678)
M: 0.6975 00460  0.84i0  0.7075 04575 07145 : 0.9570(5.0000) 0.9570{(-1118.732) 00570 (5.0435) 0.9570 (46188} 0.9585 (-100.8143)
My 0.5710 06845 06510 05775 04080 05775 | 0.6860 (5.0000) 0.6865(-1118.732)  0.6845 (5.0435) 0.6905 (4.6188)  0.6855 (-100.8143)
M 06945 09010 08175 07025 0.48%0  0.7045 | 09105(50000) 09105(-1118.732) 0.9105(5.0435) 0.9110(4.6188) 0.9120 (-100.8143)
M 06710 06730 06860 0.6740 (5935 06740 | 0.6695(7.5000) 0.6695 (-1116.229)  0.6695 (7.5483) 0.6705(7.1276}  0.6645 (-98.25840)
M, 07930 09125 08570 0.8000 06505 0.AR005 | 0.9210(7.5000) 0.9215(-1116.229) 0.9210 (7.5483) 09236 (7.1276)  0.9235 (-98.25840)
M, 06730 07055 07040 06755 0.5735 06750 | 0.7000(7.5000) 0.7005 (-1116.229)  0.6995 (7.5483) 0.7010(7.1276)  0.6980 (-98.25840)
Mg 07800 06825 07315 0.7745 08370 07740 | 0.6715(10.000) 06690(-1113.701) 0.6715(10.042) 0.6670(9.6968) 0.6670 (-95.70000)
Mean 0.6868 08009 0.7584 0.6917 05433  0.6926 | 0.5041 0.8039 0.8041 0.8044 0.8042
SD 0.0749 01236 00765 00731  0.1567 00731 | 0.1319 0.1321 0.1323 0.1317 0.1351

Penalties for NIC), NIC2, NIC3, NIC4 and NIC5 are A, k. A,y Innn - k). A kjInin - k). A k ,.*'1

and l, k,- + )L: Infn - k). respectively.
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Table 3.10 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.6.

Sample | Model Average probabilities of correct selection with penaltie~ {given in the parenthesis for new criteria only) under different criteria

size AlIC l BIC | HQ | GCV | RBAR | HOC NICI | NIC2 [ NIC3 ] NIC4 | NICS

20 M; 0.9285  0.9795  0.940C 09395 07685  0.9440 | 0.8950 (0.8200) 0.8830 (-43.9888)  0.8945 (0.8639) 0.8950 (. .2200) 08915 (-13.3855)
M: 04815 04300 04780 0.4805 05265 04745 | 0.5020 (1.6400) 0.5070 (-43.1994)  0.4980 (1.6764) 0.5020 i 5.00)  0.5045 (-11.5776)
M; 0.4670  0.3995  0.4520 0.4545 05120 04515 | 0.4865(1.6400) 04910(-43.1984)  0.4825(16764) 04B65(' " o) 0.4875 (-11.5776)
My 01185 00625 04040 00855 02330 00915 | 0.1630(3.4600) 0.1615(-41.3649)  0.1670 (3.4649)  0.1630 {34400}  0.1635 (-10.7561)
Mean 0.4989 0.4679 0.4930 0.4925 0.5100 0.4904 0.5116 0.5106 0.51056 0.5116 0.5118
SD 0.3320 0.3796 0.3431 0.345%8 0.2190 0.3496 0.2996 0.2049 0.2980 (.2996 0.2978

50 W, 09430 0.9950 09765  0.9465 0.7805 0.9480 | 0.8625(0.*300) 0.8580 (-1284301)  0.8625(0.7005) 0.8615 (0.7900)  0.8625 {-40.3941)
M: 0.6765 05885  0.6475  0.6745 06680 06735 | 0.6805(1.3800) 0.6830 (-127.7496)  0.6790 (1.3936)  0.6760 (1.4742)  0.6815 (-39.7076)
M, 05525  0.4420 05075 05505 05910 05495 | 0.5855(1.3800) 0.5890 (-127.7496)  0.5835(1.3936) 0.5805(1.4742)  0.5880 (-39.7076)
M 03120 01730 02385  0.2985 04525 02975 | 0.3975(2.0700) 0.3965 (-127.0549)  0.3980 (2.0791)  0.4085(3.1234)  0.3975 (-39.0166)
Mean 0.6210 0.5496 0.5925 0.6175 0.6230 0.6171 0.6315 0.6318 0.6308 0.6318 0.6324
sSD 0.26268 0.3432 0.3071 0.2694 0.1378 (.2704 0.1938 0.1923 0.1938 0.1890 0.1937

100 M 09355 09985  0.9840 0.9355  0.7860  0.9355 | 0.9040 (0.8200)  0.904D (-373.2047)  0.9040 (0.8271) 0.9170 (1.0000)  0.9040 (-243.2614)
M; 0.7660 07000 07425 07690  0.7345  0.7690 | 0.7690 (1.6400) 0.7695 (-371.3824)  0.7685 (1.6506)  0.7650 (1.9784)  0.7700 {-243.4433)
My 0.6855 05940  0.6495  0.6840 06765  0.8835 | 0.6930 (1.6400) 0.6940 (-371.3824)  0.6925 (1.8506) 0.6865 {1 9784)  0.6940 (-243.4433)
M; 0.4845 02905 03870 04795 06050 04785 | 0.5255(3.4600) 0.5240 (-370.5516) 0.5255(3.4703) 0.5250 (3.8038)  0.5250 {-241.5197)
Mean | 0.7179 06458 0.6908 07170 07005 0.7t66 | 0.7229 0.7229 0.7226 0.7234 0.7233
SD 0.1873 02923 02467 01897 00778  0.1901 [ 0.1579 0.1585 0.1579 (.1632 0.1581

Penalties for NIC1. NIC2, NIC3, NIC4 and NIC3 are AI kj. ;Lz In(n - k), ll k}- infn - k), A., kj}': and At kl + KZ In(n - k). respectively.




Table 3.11 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.7.

Sample | Model Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under diffcrent criteria

size AIC BIC | HQ | GCV [ RBAR | HOC NICH | NIC2 NIC3 NIC4 | NICS

20 My 0.8935 00690 0.9110 09110 06945 00165 | 0.8500 (0.8400) 08100 (-40.63326)  0.8520 (0.8833)  0.8620 (1.0800) 0.8300 (-9 98998)
M; 07300 07495 07410 07460  0.6510 07485 | 0.7105(1.6800) 0.7105(-39.88713)  0.7060 (1.7342)  0.7050 (1.9602)  0.7090 (-9.18534)
M; 0.6945 07095 07035  0.7085  0.5860 07105 | 0.6710(1.6800) 0.6580 (-39.88713)  0.6655 (1.7342)  0.6660 (1.9602)  0.6680 (-9.18534)
M, 0.2395 01855 02300  0.2325 02915 02290 | 0.2595(1.6800) 0.2785(-38.88713)  0.2560(1.7342)  0.2530 (1.9602)  0.2685 (-9.18534)
M 0.4425 03720 04265 04225 05025 04180 | 0.4670(35200) 0.4735(-39.09834)  0.4670 (3.5489) 0.4660 (3.7781)  0.4715 (-8.36957)
Me 0.1620 01625  0.1480  0.1425  0.2395  0.1405 | 0.1885(3.5200) 0.1995{-39.09834)  (.1915(3.5499) 0.1810(3.7781)  0.1920 (-8.36957)
M+ 0.1225 00700  0.1065  0.1025  0.2025  0.0985 | 0.1545(3.5200) 0.1655(-39.09834)  0,1595 (3.5499) 0.1585(3.7781) 0,165 (-8.36957)
Ms 00810 00350 00705 00600 01555 00570 { 0.1040(33600) 0.1055(-38.26172)  (0.1200(3.3271) 0.1185(3.5579)  0.1075 (-7.54132)
Mean | 0:4207 03991  0.417%  0.4158  0.4154  0.4148 ) 0.4256 0.4251 0.4272 0.4275 0.4260
SD 03159 03624  (.3284  0.3324 02169 03356 | 0.2888 0.2747 0.2847 0.2874 0.2816

50 M, 0.9045 09870 09550 0.9105 06785 09125 | 0.8190(0.7500) 0.8055(-134.2678)  0.8255 (0.7784)  0.8540 (1.4400) 0.8180 (-13.9514)
M; 0.8410 08570 08610  0.8510 07215  0.8505 | 0.7€35(1.5000) 0.7910(-133.5564)  0.7955 (1.5485) 0.7800 (3.2912)  0.7925 (-13.2092}
M, 07610 07575 07720 0.7665  0.6665 07685 | 0.7305(15000) 0.7265(-133.6564)  0.7310(1.5485) 0.7175(3.2912) 07295 (-13.2092)

bt M, 03655 02455 03115 03620 04060 03590 | 0.3960(1.5000) 0.4015(-133.5564) 0.3915(1.5485) 0.3735(3.2912)  0.3975 (-13.2092)

Ms 0.6455 0.5665 06275  0.6450  0.6430  0.6430 | 0.6530(3.2500) 0.6550(-133.8301)  0.6520(3.3101) 0F390 (3.0083)  0.6530 (-11.4655)
M 03225 01920  0.2585  0.3135 04045 03120 | 0.3640(3.2500) 0.3690(-133.8301)  0.3615(3.3101) 0.3650 (3.0063)  0.3655 (-11.4655)
M- 0.2330 01110  0.1765 02260  0.3265  0.2260 | 0.2750(3.2500) 0.2810(-133.8301)  0.2725(3.3101)  0.2765 (3.0063}  0.2785 {-11.4655)
Mg 0.1905 00715  0.1335  0.1805  0.3350  0.1776 | 0.2500 (3.0000) 0.2615(-132.0881)  0.2495 (3.0629)  0.2870 (3.6454)  0.2510 (-10.7202)
Mean | 0.5320 0.4735 05119 05319 05227  0.5311 ] 0.5351 0.5351 0.5349 0.5366 0.5357
SD 0.2672 03634 03293 02944 01691  0.2057 | 0.2382 0.2330 0.2407 0.2358 0.2367

100 My 09175 09956 09770 0.8200 07190 09215 | 0.8790(0.8200) 0.8755(-367.6096] 0.8790 (0 R277) 0.9120 (1.2800) 0.8770 (-146.5538)
M; 0.8695 0.8865 08950 08740 07210  0.8745 | 0.8415(1.6400) 0.8415(-366.7974)  0.8410(1.6506) 0.8495(3.2597)  0.8415 (-145.7389)
M; 08235 08430 0.8495 0.8260 (6980 08265 | 0.8015(1.6400) 0.8015(-366.7974)  0.8015(1.6506) 0.8105(3.2597)  0.8005 (-145.7389)
M. 05155 03685 04520 05160 05185  0.5140 | 0.5240(1.6400) 0.5265(-366.7974)  0.5235 (1.6506)  0.5080 (3.2597)  0.5265 {-145.7389)
Ms 0.7345 06620 07150 07335 07040 07335 | 0.7360 (3.4600) 0.7380(-365.9769}  0.7355(3.4703) 0.7335(3.1510)  0.7360 (-144.9208)
M, 0.4565 03055 0.3910 04535  (0.5200 0.4525 | 0.4795(3.4600) 0.4795(-365.9769) 0.4795(3.4703) 0.4715(3 Y510)  0.4805 (-144.9208)
M+ 03775 0.2185 03005  0.3740 04640  0.3736 | 0.4105(3.4600) 0.4110(-365.9760)  0.4105(3.4703) 03960( '510)  0.4130 (-144.8208)
Ms 03135 0.1410 02340 03060 04610 03055 | 0.3610(3.2800) 0.3600 (-365.1479)  0.3615(3.2863)  0.3585 (: 193}  0.3610 (-144.0991)
Mean | 0.6260 05527  0.6018  0.6254  0.6007  0.6252 | 0.629% 0.6292 0.6290 0.6299 0.6285
Sp 0.2377 G.3337 02913 02412 Q1196 02420 | 0.2076 0.2071 0.2075 0.2202 0 2065

Penalties for NIC1, NIC2. NIC3. NIC4 and NICS are A, k.. A, in(n - k). A K Inn - k1 A, kJ"":

and A, Kk o+ A, Ingn - k), respectively.




CHAPTER 4

MAXIMISATION OF MEAN AVERAGE PROBABILITY
OF CORRECT SELECTION USING ADDITIVE AND
MULTIPLICATIVE PENALTIES'

4.1 INTRODUCTION

In the previous chapter. we discussed some of the widely used information critenia to
select the best model from a set of competing alternative models. But one of the main
problems of existing critena is that their performance vances from data set 10 data set
and none of the existing criteria performs well in all situations. So from a user’s point
of view, which criteria one should use o select the best model for a particular data
set is a question that is unresolved. Also. there is no guarantee that an existing
criterion will select the true model with the highest average probability in all

situalions.

In this chapter we investigate the problem of maximisation of mean average

probability of correct selection (MAPCS) of the model using additive and

' A paper based on some of the findings reported in this chapter and Chapter 3 has been accepted for
publication in Computer Aided Econometrics, edited by D.E.A Giles. sce King and Bose (2002).




Chapter 4 Maximisation of MAPCS U'sing Additive and Multiplicative Penalties

muitiplicative penaities. The theory of the use of APCS and the technique used 10
estimate APCS were discussed 1in Section 3.2. We used the Simulated Annealing
Optimisation (SAQ) technique 1o find penalties that maximise the MAPCS. Here we
are not imposing a particular functional form of the penalty: instead we give upper
and lower boundarnies of the penalty, a set of starting values. and a temperature
reduction value. Then, we use the SAO technique (discussed in Section 2.4 of
Chapter 2) 1o find the penaities for the competing models, which maximise the
MAPCS of the true model. This chapter is divided into five sections. In Section 4.2,
we describe the technique of maximisation of APCS using additive penaities with
maximised log-hikebhood functions. The maximisation of MAPCS  using
multiplicative penaities apphied 1o cach model’s mean squared error 1s descnbed in
Secuon 4.3. The designs of Monte Carlo experiments are given 10 Sechon 4.4
Section 4.5 contains results and discussion, and some concluding remarks are

presented in the last section.

4.2 ADDITIVE PENALTY

Suppose we are interested in selecting a model from m aliernative models, M, M,

.. M, . foragiven data sct. Let the model M, j=1.2...., m berepresented by

y=X48, +u (4.1)

where y 1s an nx 1 veclor of observations on the dependent variable. X is an

nxk; matrix, k; :-r(k} —l), B, is a vector of k; paramet:ys, and u, is an nx 1
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vector of random disturbances distributed as N(Q. cril). X, contans a column vector
of ones n its first column and observations on (k_: —1) non-stochastic vanables in
the remaining (k, —1)columns. Let the jog-hkelihood function for model M, be
L (f,.07) and the maximized value of L (5,.07) be L,(B;»&i y. where B_; and 0,
are the maximum likelihood estimates of 8, and oi. respectively. Then

X , =X AY(y-X
L}([)’!.a;}=—~2 Ina;+ln(2m+-(~1‘ ’['}(f A) : (4.2)
2 no

The maximum of the log-likelinood. L (f3,.5°). can be written as

LB, =-2{In&" +n2m) +1]. (4.3)

y-XA)Yv-X8) | o | .
= ! “ 1 is the maximum likclihood estimator 6f o, and
n

where &

— b

-~

B, =X’X,)'Xy is the maximum likelihood estimator of 3, .

Let p, denote the penalty for model M. In almost all IC based model sclection

procedures, the model with the largest 1 is selected, where 1, is given by

1,=L.B,.6)-p,. (4.4)

This 1, is called the penalized maximised log-likelihood. Then the j” model will be

selected if
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1, >1, Vi=1L2 . (j-D.j+D....m (4.5)

For all existing cniteria. p, are a function of n. the sample size, and &, . the number of
paramelers in the j* model. The functional form of p. for different existing criteria

was presented in Chapler 3. One of the main disadvantages of using these penaltv
functions is: that they are independent of the data set. 1.e. for a particwar model. the
penalty remains the same for different data sets. To overcome this problem. we
suggest the use of the SAO techmque to {ind the opimum penalty, which maximises
the MAPCS for the data set in hand. Ttus approach does not involve a functional
form of penalty. instead it requires an arbitrary starting value of the penalty set with
appropriate upper and lower bounds of the penalties, and a temperature reduction
value. A dctailed description and discussion of the advantages of this optimisation
technigue was given in Section 2.4 of Chapter 2. The theory and the computational

techniques for calculating MAPCS were discussed in Scction 3.2 of Chapter 3.

4.3 MULTIPLICATIVE PENALTY

Equation (4.3) can be written as a function of the residual sum of squares as follows:

4

- . A _
Lj(ﬁ,,cr;)-—_—% N2 + 27+ 1], 4.6)
1

where S;f =(y— X}:BJ)’(y - XJBJ) is the residual sum of squares for the j* model.
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From this equation it 1s obvious that the sclection of a model using the largest value

of {4.6) is equivalent to the selection of a mode] with the smallest value of § ,” But

one of the main problems in using the smallest S7 is that the residual sum of squares

alwavs decreases or remains constant (i.e.. never increases) with the inclusion of
additional regressors. So there is a tendency towards seleciing models with a
needlessly large number of regressors. Hence in order 1o use residual sum of squares
for model selection purposes. we need some adjusiment so that models with an
unnecessanly large number of parameters will not be favoured. This is achieved by
using a penalty function. Rahman (1998) defined the penalised error sum of squares
as follows:

J, =S84, (4.7)
where ¢ 1s called the muluplicative penalty and J| is the penalised error sum of
squares. The model with the smallest J, (multiphcative information criterion for the
7" model) will be selected if

J,<Jd Yi=120 =D+ Dm. (4.8)

The functional form of a possible ¢, 1s also given by Rahman (1998) as

l]’

g, =~k )"(a)", (4.9)

where a, and a, are arbitrary constants.

102




Chapter 4 Maximisation of MAPCS Using Additive and Multiplicative Penalties

He mentioned that all existing criteria can be expressed as a special case of this new
criterion in linear regression settings and he analytically showed how the widely used
cnteria AlIC. BIC, HQ. GCV, HOC. Mallows™ C, and RBAR. were a special case of
this criterion. He also mentioned that by choosing the appropnate values of ¢, and
a, it is possible to develop an infinite number of new criteria, which will perform
well 10 a range of situauons. But a problem with this penalty function is the need 1o
{ind the values of a, and a, for a particular data set. Also the penalty function is a
function of n, the sample size, and 4, ., the number of free parameters, but 1s
independent of data values, i.e. for the same set of competing models, a change of
duia sets does not have any impact on the penalty function. Another problem with
this penalty function is that. for a particular data set, like the existing additive 1C. the
same dimensional models have the same penalty. To overcome these problems. we

redefine the multiplicative information criteria J, forthe " model as J;, where

I =E g, (4.10)
S: f.“.
in which Ef = JA' is the mean squared error and ¢, =(n—k )" '(a,)" is the
n—k ' '

!

multiplicative penalty.

Then, instead of searching for the values of a, and «,, we use the SAO techmque to

find the value of ¢, which maximiscs the MAPCS by minimising J, in equation
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(4.10). The advantage of using the mean squared error over the error sum of squares

15 that we are taking account of the residual degrees of freedom.

4.4 THE DESIGNS OF THE MONTE CARLO STUDIES

In order to evaluate the performance of the additive and multiplicative penalties
discussed in Sections 4.2 and 4.3 and compare them 1o the performance of the
sclected existing criterta. we conducted some simulation expenrae:’s. In these
experiments the assumed models are the same as used 1n Chapter 3. We use the same
technique as descnibed in Section 3.3 of the previous chapter for generating the data

and computing the APCS. The designs used for the experiments are as follows.

Design 4.1: x,, is the rea! per capita GDP of the 1" country and x, is GDP as a
percent of USA GDP. We used the annual data from Summers and Heston (1991)
revised version 5.0 and World Bank world tables. Here we consider four non-nesied

models M,, M,, M, and M, given by (3.16), {3.17), (3.18) and (3.19) with

s; =0.1ands; =0.5.

Design 4.2: x,, is Australian retail trade quarterly data commencing the {irst quarter
of 1959 and u,, is the same series lagged one quarter. We have used the data from

the Australian Bureau of Statistics. Here we consider four non-nested models M,

M,, M, and M, given by (3.16), (3.17), (3.18) and (3.19) with s’ =55 and .\',f =6.
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Design 4.3: x,, and x. are randomly and independently generated values from the

N(0.1) distribution. Here we consider four non-nested models M, M.. M. and M,

given by (3.16). (3.17). (3.18) and (3.19) with s” = 0.12 and 5” =0.08 .

Design 4.4: This is an extension of Design 4.1 10 more models using one extra
variable x, which is the price levei of consumption of the " country. Here we
consider eight non-nested models M, . M. M. M, M. M M, and M, aiven
by (3.16). (3.17). (3.18). (3.29), (3.19), (3.30). (3.31) and (3.32), respectively. with

52 =035and s] =002.

Design 4.5: This is an exiension of Design 4.2. Here we add one more vaniable x, .
which is x,, (in Design 4.2) lagged two quarters. Eight non-nested models. i.e. M,.
M,. M, M, M, M, M, and M_, given by (3.16). (3.17). (3.18). (3.29), (3.19),

(3.30), (3.31) and (3.32). respectively, with .\-f = (0.1 and s,f = (.15, ave considered.

Design 4.6: This is an extension of Design 4.3 with x,, randomly and independenily

generated from the N(0,1) distribution. Here we consider eight non-nested models

M, M,, M, M, M, M,, M, and M, given by (3.16), (3.17), (3.18). (3.29).

(3.19), (3.30), (3.31) and {3.32), respectlively, with sf =012 and s,f =008.
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The sample sizes used for the Designs 4.1. 4.3. 4.4 and 4.6 are 20. 50 and 100: and

for Designs 4.2 and 4.5, sample sizes are 20, 50 and 96.

To apply the SAO technique with maximised log-likelih~~ functions and additive
penalties, we experimented with the use of different sets of starting values, upper and
lower boundiries, and temperature reduction values, which are requirements of the
SAO techrique. It is well known that among the existing criteria, AIC and BIC have
wider use in econometrics and physical sciences for model selection. So we used the
relative penalties” of AIC and BIC as starting values of the penalties for the SAD
technique. Ir addition, we also used zero penalties as the starting values. One of the
conditions of the SAO technique is that the starting value of the parameter (here
penalties) cannot be outside the boundary values of the parameters. So when
selecting the boundaries of the penaltics, we had to keep this condition in mind. We
considered the maximum number of free parameter (k) among the competing models.
the number of competing model (m). Am and an arbitrary value of 10 as upper
boundaries with starting penalties relative AIC and zeros. For these starting values,
we used two types of lower boundaries, namely zeros and the negative of upper
boundaries. We used kIn(n)/2, min(n)/2. an arbitrary value of 10 and km as upper

boundaries with starting penalties being relative BIC. In this case we also have two

: Suppose we have four competing alternative models M,, M,. M, and M, with number
of free parameters k,, k,. k, and k, . respectively. Then the relative penalties of AIC for
the models M,, M,. M, and M, are O, k, —k, k,—k, and k, — Kk, respectively.
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tvpes of lower boundaries, namely zeros and the negative of k. m, 10 and &m. When
maximising the MAPCS using maximised log-likelithoods with additive penalties, we

used the following initial «alues for Designs 4.1. 4.2 and 4.3.

Three sets of starting values of the penalties were {0. 0. 0. 0},
{(k, =1k, =Dk, = 1).(k, — 1)}, and

k,~1 k-1 k-1 K,
{ - In(n), 3 ln(nl.———;wln(n). p

!.n{;n:b}._ where & . j = 1. 2. 3 4,15 the

number of free parameters ivi the j” model.

We used the eight boundary sets (0. 3 (0, 43¢0, 10). (0. I2). (- 3.3% (-4, 4), (- 10,
10), and (=12, 12) with the first and s cond starting penalty sets, and the eight
boundary sets {0, 3In(x¥2). (0, 2In(n}). (0. 10). (0. 12). (= 3. 3In(nV/2), (— 4, 2In(m)),
(=10, 10). (=12, 12} ‘aith the third penalty. In all cases, we used four temperature
reductinn values nariely 0.1, 0.01. 0.004, and 0.0001: so. we have 96 combinations

of iniins: seis of values lor the SAO technigue to estivnate APCS,
The siarting values and boundary values for Designs 4.4, 4.5 and 4.6 (eight

competing modsis) were also chiosen considering the same reasons given for Designs

4.1,42 and 4.3,
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The three sets of starting values for additive penaliies for Designs 4.4. 4.5 and 4.6

are. {0.0,6.0,0.0.0. 0}. {(k_r - l)} and{ '_} 1n(n)}. where &, .j=1.2.3.4.5.6.

7. 8, is the number of free parameters in the j* model.

We used the eight boundary sets (0. 4). (0. 8) (U. 10). (0, 32). (- 4,4). (~ 5. 8). (- 10.
1), and (~ 32, 32), with the first and second starting penalty sets, and the eight
boundary scts (0, 10). (0. 32). (0. 2in(m)). (0. 4in(n)/2), (— 10, 10), (=32, 32). (~4.
2in(n)) and (- 8. 4In(n))} with the third penalty set. In all cases. we used four
teimperature reduction values, namely 0.1, 0.01, 0.001. and 0.0001; s0. we have 96

combinations of initial sets of values for the SAQ technique to estimate the APCS.

In the case of multiplicative penalties. we have 1o multiply the mean squared esror by
the penalties selected in such a way that the MAPCS is maximised with the
minimsaton of mean squared error and the penahsed value of mean squared error
being non-negative. Considering these constraints, we have o select the starting and
boundary values of the penalties. Because the penalised mean squared error cannot be
negative and the mean squared error is positive, the value of the penalties must be
postiive. As mentioned carlier, AIC and BIC are widely used IC, so we used AIC and
BIC as the starting values for the SAO technique. In addition, we used no penalty as

the starting value. Here we use zero as the lower boundary. The upper boundaries are
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k. m and some arbitrary value: and a combination of these. These boundaries were

selected so that the conditions required by the SAO techmique were satisfied.

The three sets of starting vajues for multiplicative penalties for Designs 4.1. 4.2 and
a3are {1 11 1), {kkok ok, ) and ] & ingn. &2 inom. K2 ingm. K2y 1
. oare, { N I N ]. { ELELIT 4}. an ]-:2'- n(n).«—_‘— I’I(!I).—_‘* H(H)‘T n(n); . where

a— — A

k,.j=1,2.3.4.is the number of free parameters in the j* model.

We used the six boundary sets. (0. 1). (0, 3). (0. 10). (G.12). {0, 20) and (0. 36). with
the first starting penalty set; the four boundary sets, (0. 10}, (0, 12), (0. 27) and (0,
48), with the second starting penalty set; and the four boundary sets (0. 3In(n)/2), (0,
3lngn)). (V. 4lnr)) and (O, Sin(n)), with the third starting penaity set. For each
combination of boundary and penalty sets, we used the same four temperature
reduction values used for the additive penalty. Thus we have 56 combinations of

initial sets of values.

The three sets of starting values of multiphicative penaliics for Designs 4.4, 4.5 and

46are, {1, 1L L1 L L L1}, {k, ko ok, ok K &

[

k?,ks}. and

2

- s

kl k? ’\T k,. kﬁ k{r k‘? kﬁ , . 8 4
{—5ln(n),—-iin(rr),?in(n).—é—ln(n)—z—ln(n),—z—ln(n),——ln(n),-;’- In(n);, where k.7

t

=1,2,3,4,5,6,7,8, is the number of frec parameters in the j” model.
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We used the five boundary sets (0. 1), (0, 4). (0, 8). (0, 2() and (0. 22) with the first
penalty set: the five boundary sets (0, 2In(n)). (0. 4), (0. 8). (0. 20) and (0, 32) with
the second penalty set; and the five boundary sets (0. 2In(n)). (0, 4In(n)). (0. 8in(n)).
(0. 20) and (0. 32) with the third penalty set. For each combination of boundary and
penalty sets. we used the same four temperature reduction values used for the

additive penalty. This adds up to 60 combinations of initial scts of values.

4.5 MONTE CARLO RESULTS

The results of the simulation experiments for the SAO technique with additive and
multiplicative penalties are presented in Tables 4.1a—c 10 Tables 4.0a~c¢. In cach
tabie there are three types of penalties: Type |- additive, which are penaltics of the
existing criteria; Type 2 - additive. which use maximised log-likelthood with the
SAQ techmque: and Type 3 - multiplicative, which use mean squared error with the
SAOQO technique. There ave eight Type 1 criteria. namely AIC, BIC, GCV, HOC, HQ
RBAR, MCP and MC. The largest MAPCS. smallest varation among the APCS,
modal MAPCS and median MAPCS obtained from the SAO technique are uscd as
criteria under Type 2 and Type 3 penalties. A comparative study between Type 1 and
Type 2 penalties for all designs under consideration is given in Section 4.5.1. The
comparison between Type 1 and Type 3 penalties is presented in the Section 4.5.2

and in Scction 4.5.3 we give a comparative study of Type 2 and Type 3 penaluies.
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4.5.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

The average probabilities of choosing the true model along with MAPCS and the
periaities for Designs 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 are presented in Tables 4.1a—c,

42a-c.43a~-c.44a~c.4.5a-c and 4.6a - c. respectively.

The Monte Carlo experniments indicale that the apphcation of the SAQO technique has
a great effect on the performance of model selection in terms of APCS. For Designs
4.1, 4.2 and 4.3 and for all sample sizes under consideration. the MAPCS obtained
using Type 2 penalties is always greater than that of the largest MAPCS (here that of
BIC) among the listed existing IC (Tabie 4.}1a 10 Tabie 4.3¢). Also the vanation
among the APCS under Type 2 penalties is smaller i an that of cited IC for all cases
of Design 4.1 and some cases of Design 4.2 and 4.3, For all designs and sample sizes,
in comparison o BIC, there 1s an increase in APCS {or the model with the largest
number of regressors ( M) and a decrease in APCS for the model with the smailest
number of regressors (M) for the largest MAPCS obtained from the SAO
technique: but the picture is reversed in the case of the largest MAPCS obtained from
the existing IC (here that of BIC). The mode” and median MAPCS obtained from the
SAQ technique are very close to the lurgest MAPCS obtained from the SAO

technique and in some cases these are identical to the laroest MAPCS. For Design

*We have 96 MAPCS for 96 combinations of initial parameter values for the SAO technique
applied to Type 2 penalties. We computed the mode and median of these 96 MAPCS.

111




Chapter 4 Maximisation vf MAPCS Lising Additive and Multiplicative Penalties

4.1. the MAPCS corresponding 1o the smallest standard deviation of APCS among
the competing models obtained from the SAO technique is very close to the largest
MAPCS for all sample sizes. For Designs 4.2 and 4.3, the gap between the largest
MAPCS and the APCS cormesponding to the smallest standurd deviaton among the
MAPCS obtained from the SAC technique increases as the sample size increases. but
the value of standard deviauon decreases with an increase 1n sample size. In general
it is observed that among the existing critenta. RBAR selects the true model with the
fowest MAPCS and the varation among its APCS 1s also the lowest. But this lowest
variation is generally higher than the corresponding smallest variation among the
APCS obtained from the SAO techmque with higher MAPCS obtained from this

technique compared to RBAR.

The results obtained for Designs 4.4, 4.5 and 4.6 are very similar to those of Designs
4.1, 4.2 and 4.3 even though the number of competing models are double. For all
designs and sample sizes, the largest MAPCS obtained using Type 2 penalties are
always higher than that of BIC, the largest MAPCS among the existing listed 1C with
lower v giation among the APCS compared to BIC (Table 4.4a to Table 4.6¢). A
decrease in the APCS for the model with the lowest number of regressors ( M, ) and

an increase in the APCS for the modei with the highest number of regressors ( M, ) is

observed compared to the corresponding APCS oktained from BIC, for all sample
sizes of Design 4.4, n = 20 of Design 4.5, and n = 50 and 100 of Design 4.6. For the

remaining sample sizes of Designs 4.5 and 4.6, the APCS for the modei with the
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lowest number of regressors and the mode} with the highest number of regressors are
increasing compared to BIC. For all sumple sizes and designs. the mode and median
MAPCS obtained from the SAO technique are very close to the largest MAPCS
obtained from the SAQ technique and some cases these are identical to the largest
MAPCS obtained from the SAO technique. An increase in the difference between the
largest MAPCS and the MAPCS corresponding to the smallest standard deviation
among the APCS is observed with an increase in sample size, but the numerical
value of the standard deviation decreases as the sample stze increases. Among the
existing criteria. RBAR chooses the true model with the lowest MAPCS and in some
cases the variation among the APCS 1s also the lowest. But this lowest varation
among the PCS is always higher than the smallest variation among the APCS

obtained from the SAO technigque with Jarger MAPCS compared 10 RBAR.

The number of competing models in Designs 4.1, 4.2 and 4.3 arc the same; and we
used three different sets of data 1o test the performance of the application of the SAO
technique with additive penaltics. The relative penalty for a particular model under
the existing criternia remains the same for Designs 4.1. 4.2 and 4.3 as the existing
penalties are a function of n, the sample size, and &, the number of free parameters.
But for the same set of starting values, boundary values and temperature reduction
factars, the relative penalty obtained using the SAO technique for the Designs 4.1,
4.2 and 4.3 are different. For exampie, for sample size 20, starting value (0, 0, 0, 0),

boundary (0,10), and temperature reduction factor 0.1, the relative penalties for
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models M,. M.. M, and M, that maximise the MAPCS are (0, 7.6894. 0.5024,

8.0203). (0, 1.6146, 1.3136, 3.7060) and (0. 2.1953. 1.8668. 3.5430) for Designs 4.1.
4.2 und 4.3, respectively. It indicates that the penalties do not depend only on n and .

but also the data generating process. It 15 also notable that although the models M,
and M. have the same number of parameters and the penalties of these models under

the existing criteria are the same. while the penalties are different under the SAO
technique. Another notable finding from the stmulation experiments using Type 2
penalties is that for a particilar data set and a set of competing models, exactly the
same MAPCS and the same variation among the APCS is obtained from different
sets of relative penalties. For example. for Design 4.1 and sample size 50, the largest
APCS and SD among the APCS are 0.6290 and 0.1687, respectively. These MAPCS
and SD values are obtained from 21 different relative penalty sets, e.g. (0, §.9402,
1.2482, 9.2081). (0. 11.4229. 1.2439, 11.6918). (0. 17.5325, 1.2462. 17.8005). This
result implies that there is no unique set of penalties for a particular data set to
maximisc the MAPCS. Further it is probable that there may be no unigue functional
form for the penalties for a particular data set. A similar picture is also observed for

Designs 4.4, 4.5 and 4.6.

4.5.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

Here we compare the MAPCS and vanation among the APCS obtained using the
Type 1 penalties, which are existing penalties, and the Type 3 penaities

(muluplicative), which are those obtained using the SAQO technique applied to
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penalised mean squared error. The results of the experiments are presented in Tables

4la-c. 42a-c.43a-c. 44a-c,45a~cand4.6a—c.

The simulation results demonstrate that in 100 percent of the cases under
consideration for Designs 4.1, 4.2, and 4.3 and for all sav . 2 sizes. the MAPCS
obtained using the SAO technigque with multiplicative penalties (Type 3 penalties) is
greater than that of the largest MAPCS among the cited critena (here BIC). 1t 15 also
evident from the simulation results that in 100% of the cases for Design 4.1, the
variation among the APCS 1s also lower than the vanation for the Jargest MAPCS
among the cited eriteria. But in the case of Designs 4.2 and 4.3, the variation among
the APCS is comparatively higher than that of the exisung critena. For Design 4.1
with n = 20, all sample sizes of Design 4.2 and sample sizes 20 and 100 of Design
4.3, the mode® and the median MAPCS coincide with the lurgest MAPCS obtained
{from Type 3 penahies. In other cases. the mode and the median MAPCS are very
similar to the largest MAPCS obtamed wsing Type 3 penaltiecs. The MAPCS
corresponding to the smatlest standard deviation among the APCS is very close to the
largest MAPCS. The variztion among the APCS increases as the sample size

increases for Designs 4.2 and 4.3, but the reverse picture 1s observed for Design 4.1,

“We have 56 MAPCS for 56 combinations of initial parameter vaiues for the SAO technique
applied to Type 3 penalties. We computed the mode and median of the<e 56 MAPCS.
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The resuits obtained from Designs 4.4, 4.5 and 4.6 are very similar to the results
obtained from Designs 4.1. 4.2 and 4.3 although the number of competing models 1s
double in Designs 4.4. 4.5 and 4.6. In 100 percent of the cases. the MAPCS obtained
using Type 3 penalties is greater than the corresponding largest MAPCS obtained
from the existing IC, for n = 20 and 50 of Dzsign 4.4, for all sample sizes of Design
4.5, and n = 20 of Design 4.6. For the remaining designs and sample sizes, in more
than 95 percent of the cases. the MAPCS obtained fron: Type 3 penalties is higher
than the corresponding largest MAPCS obtained from the existing IC. For all sample
sizes of Design 4.4, and n = 20 of Design 4.5, an increase of APCS in the model with
the largest number of regressors ( M, ) and a decrease of APCS in the modei with the
smalicst number of regressors ( M) is observed, compared 1o the largest MAPCS
from the existing IC. The reverse picture is observed for the remaining sample sizes

.ﬂ;

of Design 4.5 and all sample sizes of Design 4.6. For all designs and sample sizes.
the mode® and median MAPCS are very close to the largest MAPCS obtained 1rom
Type 3 penalties and in some of the cases these are identical. The MAPCS

corresponding to the smallest variation among the APCS 1s very close to the largest

MAPCS obtained using Type 3 penalties.

As for additive penalties, in the case of multiplicative penaities we find. for the same

set of starting values, boundary and temperature reduction factors, the relative

*We have 60 MAPCS for 60 combinations of initial parameter values for the SAQ technique
applied to Type 3 penalties. We computed the mode and median of these 60 MAPCS.
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pe....i.  obtammed .. >y the SAO technique for Designs 4.1. 4.2 and 4.3 are different.
For example. 1.. n = 20. staring penalties (1. 1. 1. 1). boundary (0. 3), and
temperature reduction factor 0.1, the relatise penalties for models M,. M.. M. and
M, that maximise the MAPCS are (1. 3.16E1, 0.9959. 0.309C6). (1. 1.1127. 1.0804.

1.2957) and (1. 1.1806. 1.1412. 1.2887) far Designs 4.1. 4.2 and 4.2, respuctively.
Like Type 2 penalties, foi the samz dimensional model. the peaaltics are different
under the SAO technique although the penaltics of these models under the exisung
criteria are the same. Another remarkable finding from the simulatuc  experiments is
that for a particular data set and sct of competing models. exactly the same MAPCS
and same vaniation among the APCS 15 obtained from different sets of relative
penalties for the SAO technique. For example, for Design 4.1 and sample size 100,
the APCS 0.7331 and SD 0.202] is obtwined Trom 12 combinations of imtial
parameter values for thc SAO techmique. But the relative penalues that maximise this
MAPCS. are different e.g. (1.000, 3.5512, L0257, 3.5727). and (1.000. 1.6630.
1.0257. 1.6731). It contirms the hinding concerning Tvpe 2 penalties. that there i1s no
unique set of penalties that maximise the MAPCS. A simiiar picture is also observed

for Designs 4.4, 4.5 and 4.6.

4.5.3 COMPARISON O¥ TYPE 2 AND TYPE 3 PENALTIES
The Monte Carlo experiments indicate that the results obtained from udditive
penalties used with maxinnsed log-likelihood functions (Type 2) and from

muluplicative penaliics used with mear squared error (Type 3). are very simiiar for
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all designs and sample sizes under consideration. h implies that there 1s no
significant etfect of the form of penalties on the MAPCS of the model. So. from the
user's point of view. one can use either of the penalties with the SAO technique 10
select the true model from a set of competing aiternative models 1n linear regression

settings.

4.6 CONCLUDING REMARKS

In this chapicr. we introduced the apphcation of the SAQO techmgue to model
sclection. We used two types of penalty with the SAO technigue to maximise the
MAPCS. namely additive penalties apphied 1o maximised log-hikelthood functions
and multiplicative penalties applied to mean squared ervor. The emplovment of this
technique has a great effect on the performance of model selection procedures with
respect to the seiection of the true model in terms of MAPCS. Simulation results
show that the MAPCS obtained using the SAO technique s always higher than that
of the existing criterta for all designs and sample sizes. Also. the variation among
APCS obtained from the SAO techmique decreases or remains very close to that of
existing critend. In some expernmental designs, an exceptional improvement in the
APCS for the model with the highest number of regressors i1s observed. In ti-

cases, a drastic reduction of the variation among the APCS is also observed.

The simulation results demonstrate that the optimal penalty for a particular model

does not depend only on the sample size and the number of free parameters, but also
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on the data generating process. The results for the SAO iechmque indicate that
exactly the same MAPCS and variation among the APCS for a particular data set and
a set of competing models can be obtained with different sets of penalues. It means
that there is no unique set of penalties which maximise the MAPCS. We found from
our simulation results that {for the same dimensional model. the penalties oblained
using the SAO technigue viry from data set to data set although they are the same in
the case of existing criena. Billah and King (1998) conducted simulation
experiments for hinear regression models with white noise. AR(1). AR(2) and MA(})
disturbances 10 estimate the penalties which maximise the MAPCS of the model. It s
also apparent from their simulation results that although the AR(1) and MA(L)
disturbance modcls have the same number of parameters, the penalties that maximise
the MAPCS are different. Thoe, in the context of selecting the best model from a set
of models with cqual number of parameters, the 1dea of penalising their
cotresponding maximised log-likelihood or mean sguared error functions is
inevitable 1n order to maximise the MAPCS. In the next chapter, we will discuss this

1ssue of model selection.

Our simulation results indicate that the application of the multiplicative penalty 10
mean squared error and the additive penalty to the maximised log-likelihood function
have very similar effects on the selection of the true model among a set of competing
alternative models. So from the user’s point of vicw, one can use cither of these

technigues for model selection purposes.
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In this chapter. 1t has been asserted that the application of the SAO iechnique to
additive penalties appited 1o maximised log-likelihoods and multiplicaiive penalties
applied to mean squarcd error. can be used 10 select the true model with higher APCS
compared to existing criteria. It would seem that the numencal evidence from our
simuiation ¢xperiments is a good reason to recommend the use of the SAQ technique
for model selection purposes with either additive penalties applied to maximised 1na-

likelihoods or multiplicative penalties applied to mean squared error.
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Table 4.1a Average probabilities, mean average probabilities and standard deviations of average probalilities of correct selection of
models for sample size 20 for Design 4.1 together with relative penalty values and input values of SAQ technique.

l_'_['ype of Criteria Average pobabilities of correct selection of model Relative penatties Input values for simulated annealing §
penalty —— Starting values of penaities | Boundaries | TRF™
M, M. M- M. Mcan sh P, P s TR S, |8 _|1wB] UB

Additive: AIC 06860 0.8060 01580  G.2220 04665 03244 | 10000 10000 20000

Existing criteria | BIC 08225 08815 0.1150 01345 04384 04206 | 14979 14879 29057

(Type 1) GCV 07125 (8305 0.1495 G.1865 04698 03521 | 10813 10813 22245
HOC 07195 0.8395 01450 0820 04715 03693 | 19123 11123 22901
HQ 07135 08205 01455 04960 04689 0.5476 | 10972 10972 21944
[ REAR 04710 06790 02195 03695 04347 01928 . 15407 05407 11123
MCP 06810 08080 01565 02155 04655 03772 . 10059 1.0059  2.0220
I 06850 0810E 01550 0.2125 04657 03305 | 10193 10193 20540

[ Additive: Largest 0.6245 05435 04550 05080 05328 00712 | 130759 04639 134040 O 14978 14979 29957 | -t2 12.0000 | 0.0%00 |

Using log- MAPCS

likelihood with | Smallest | 05535 05440 04845 05080 05225 00320 | 26281 03685 29563 | O 10000 10000 20000 | ©  3.0000 [ 0.1000

SAQ technique ilg égnong

(Type 2) “Modal | 06255 05435 04535 05080 05326 00721 . 82473 04660 85757 | 0 14979 14979 209957 [ -10  10.0000 | 0.0001
MAPC,
Mediun 06490 05460 04265 05055 05318 00926 51629 05032 54936 | 0 14979 14979 2997 | 0 59915 | 0.1000
MAPCS

Multiplicative: | Largest 06485 05400 04325 05120 05333 00683 371681 09959 305006 1 10000 10000 10000 | O 3.0000 | 01000 |

Using mean MAPCS i !

squared error | Smallest | 0.5845 05460  0.4940 05055 05325 00412 | 22807 09852 22362 | 1 10000 10000 1.0000| O  1.0800 | 0.1000

with SAO 5D among ' |

. A ;

technique Modal 0.6485 05400 0.4325 05120 05333 0093 @ 31681 09959 30906 | 1 10000 10000 10000 © 30000 | 0.1000

(Type 3) MAPCS |
Median 05480 5400 04320 05120 05330 00493 | 17426 09959 16909 | 1 20000 20000 30000 | G 120000 | 01000
MAPCS ‘f !

* Additive penalty for model M, 15 zero and multiplicative penalty for model M, 1s one

** TRF Temperature reduction factor
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Table 4.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.1 together with relative penalty values and input values of SAQ technique,

Type of Criteria Average probabilities of correct selection of model Relative penalties’ Input values foF simulated annealing
penalty _ Starting values of penalties Boundartes TRE™
M | M, | M, [ M. | Mean | SD e, I po T e s, | s 1 s ] s 1B uB
Additive: AIC 0.7560 0.8230 0.3165 0.z080 05259 03088 10000 10000  2.0000
Exisiing criteria |_BIC 0.9260 09450 0.2840 00BO0 05587 04430 | 19560 19560 39120
(Type 1) !wGC\/ | 0.7630 0.8320 0.3155 0.2010 0.5279 0.3161 il 1.0310 2.0836
. HOC 07670 0.8340 0.3150 0.1990 0.5287 ¢ 3185 1 (418 1.0418 Z 1058
HQ 08450 0.8865 0.3085 01430 0.5457 03780 ' 13641 13641 27281
' RBAR 0.5145  0.6660 03070 03660 04634 .1508 | 05155 0.3155 10418
MCP 0.7560 0.8240 0.3168 0 2075 0.5260 03093 1.0009 1.0009 2.0035
JiC 08175 08650 03150 01830 0.5401 0.3537 12357 12387 24769
Additive: Largest 0.8770 05170 $.5935 0.5285 0.6280 0.1R387 8.9402 1.2482 9.2081 | 0.0000 0.0000 0.0000 0.0000 0 12.0000 0.1000
U.ing log- MAPCS
likeithood with Smallest 0.7765 0.518C 0.6275 0.5275 06124 0.1201 2.6381 0.8357 2.9068 | 0.0000 00000 00000 00000 0 3.0000 0.0100

- SIy among .
SAQ technique APCS |

(Type 2) Modal 0.8770 0.517¢ 0.5935 (.5285% 0.6290 0.1R87 f 8 9402 1 2482 92081 | 00000 00000 Q0000 00000 a 12.0000 J.10G0
MAPCS ;
Median i 0.8745 0.5170 0.5920 0 5285 0.6280 6.1576 | 5.4455 1.247% 57132 | ¢.0000 Q.0000 0.0000 00000 0 10.0000 0.0100
MAPCS | |

Multiplicative: | Largest 0.8770 05200 06930 05145 06284 01692 | 16936 10203 16774 | 1.0000 10000 10000 1.0000 | ©  1.0000 | 01000

Using mean MAPCS

squared error Smallest 0.8730 0.5280 G.5910 0.5145 0.626% 01574 . 1.0923 1.0294 1.1309 [ 19560 9120 39120 58680 Q 19 5601 0.0010

with SAO o ! :

, A

tF.Chmq.‘ue Mndal 0.8770 0.5290¢ 0.5930 0.5145 0.6284 01692 16936 1.0293 16774 | 10000 1.0000 10000 10000 9] ¥ D000 0.1000

(Type 3) MAPCS |
Median 0.8770 0.5285 0.5930 0 514C 0.6281 0.1594 2 9855 1.0293 2.9570 1.0000 10000 10000 10000 0 36.0000 0.1000
MAPCS |

* Additive penalty Yor model A, is zero and multiplicative penalty for model M, is one
** TRF Termperature reduction factor




eCl

Table 4.1c  Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.1 together with relative penalty values and input values of SAQ technique.

Type of Criteria | Average probabilities of correct selection of model Relative penalties’ Input values for simulaled_gnl;ealin
penalty Starting values of penalties Boundaries | TRF
M. i M; | M. | ruq l Mean I Sy Pz I . | p_{ S,« | 5‘2 I SJ | S( IB [ i'B -
Additive: AIC 0.7¢15 C.845C 05215 04040 06330 02052 | 10000 10000  2.0000 :
Existing criteria | BIC , 09435 09580 05130 02095 06590 03631 ! 23026 23026 46052
iType 1) GCV ] 0.7645 08520 05225 03970 0.6340 02107 1.0152 1.0152 2.0409
HOC 07665 (8520 (.5220 (0.3970 0.6344 02112 1.0204 1.6204 20514
HOQ U.B745 09170 05305 (02990 06552 0.2939 1.8272 1.5272 3.0544
RBAR 05380 06835 0.4825 05435 05644 (0904 0.5076  0.5076 1.0204
MCP 0.7615 0.8450 05215 ¢.4035 06329 0.2054 1.0002 1.0002 2.0009
JiC 08585 09065 05270 0321 (6533 02784 1.4051 1.4051 28284 00000 L
Additive: Larzest 0.9340 0.7990 07380 04635 07336 01978 ; 152409  1.7396 16,0419 | 0.0000 00000 00000 00000 | -12 120000 | 0.1000
Using log- MAPCS
likelihood with Smalicst 0.8450 0.753¢ 0.7405 05040 07106 0.1454 23308 1.1201 29778 § GQO00 00000 00000 00000 0 3.0000 0.0010
SAO iechnique i‘; é’g’“"g
|
(Type 2) Modal 0.9340 07990 0.7375 04635 07335 (1978, 7487t 17373 82880 | 0.0000 0.0000 00000 00000 ) © 100000 ! 0.1000
MAPCS i
Median 0.8340 07990 07355 0.4635 07330 01978 6. 1524 1.731 £6.9534 | 30000 23026 23026 46052 -3 6.9078 0.1000
: MAPCS — —— . SV SOOI N
Multiplicative: | Largest 0.9365 0.8040 0.7355 G4570 07332 02022 { 12291 10257 12366 | 23026 46052 46052 69078 0 230258 | 61000
Using mean | MAPCS |
squared error Smallest 09365 07850 £.7355 0.47.5 07329 0.1923 3.7588 1 7257 37764 | 23026 46052 46052 69078 0 138155 0.0010
with SAO igcag“’"g
technique Modal 0.9365 08035 0.735¢ 4570 07331 02021 | 16630 10257 16731 | 23026 46052 46052 69078 | 0 6078 | 0.0009
Median 0.9365 07855 07355 04745 07330 01924 | 17747 10257 17830 | 23026 46052 46052 60078 | O 69078 | 01000
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor




Table 4.2a Average probabilities, mean average probabilities and standard deviutions of average probabilities of correct selection of
models for sample size 20 for Design 4.2 together with relative penalty values and input values of SAQ technique.

¥l

Type of Criteria A verage probabilities of correct selection of mode! Relative penalties’ Input values for simulated annealin;
u . S
penalty . _ | Starting values of penalties Boundaries TRF
M; L Mz ] M, ‘ MR l Mcan { Sll Pg { £ ] P .'3'; I Sz J] SJ l AY LB l ”_E_"_“ ]
Additive: AIC 06690 06545 03850 02605 04923 02023 | 10000 10000 20000
Existiag criteria |_BIC 0.7970  0.6850 0.3485 0.1700 05001 02911 | 14970 14976 29957
(Type 1) GCV 0.6985 0.6710 0.3900 0.22095 0.4973 0.2265 10813 10813 2.2245
HOC 0.7095 G.6745 0.3885 0.2245 (0.4992 0.2329 1.1123 1.1123 2.2901
HQ 0.7035 0.6635 0.3835 0.2370 (0.4959 0.2242 10872 1.0872 2.1944
RBAR 0.4505 0.5775 0.4190 0.3785 0.4564 0.0860 0.5407 05407 t+.73
MCP 0.6715 06585 03850 02545 (4019 (2050 1.0059 10059  2.0.20
[Tl 06765 0.6580 (.3870 0.2480 0.4926 02095 10193 10193 2.0540
Additive: Largest 0.8015 07255 03375 01095 05085 03186 | 16079 13140 36832 | 0.0000 0.0000 0.0000 ©0.0000 | -12 120000 | 0000
Using log- MAPCS !
likelihood with Smallest 0.7940 0.6075 0 3535 0.2465 0 8029 0 2455 i 15974 13141 25162 { 00000 10000 10000 20000 0. 3.0000 0.0001
SAQ technique SADP ggwng |
(Type 2) Modal 0.8015 0.7255 0.3975 0.1095 0.5085 0.3186 168079 1.3149) 36832 | 00000 O0D00C OQODDO OODOO | -t2 12 0000 0.1000
MAPCS :
Median 0.8015 0.7255 3.3975 G.1095 0.5085 (0.3186 h 1.6079 13140 36832 | 00000 Q0000 00000 00000 | -12 12,0000 0.1000
MAPCS | L ) [ R SO
Multiplicative: | Largesi 0.8015 07255 0.3975 01095 05085 03185, 1.1125 10804 1.2930 T 14977 29957 29957 4 4936 0 149787 | 01000
Using mean MAPCS
squared error Smallest 0.8015 .7255 0.3975 0.1095 0 5085 03186 1.1125 1.0804 1.2930 14979 29957 29957 44936 )] 14 9787 0 1000
with SAO SD among
: APCS I
technique Modal 0.8015 07255 03975 01095 05085 03186 1.1125 10804 12930 | 14979 29957 20957 44936 | O 149787 { 0.1000
(Type 3) MAPCS 1
Median J.8015 0.7255 0.397% 0 1095 (0.5085 0.3186 } 1.1125 1.0804 12930 | 14979 20067 290057 44936 H 14 9787 0.1060
MAPCS i

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor




Table 4.2b Average probabilities, mean average probabilities and s .ndard deviations of average probabilities of correct selection of
models for sample size S0 for Design 4.2 together with relative penalty values and inpat values of SAQO technique.

4|

Type of Criteria Average probabilities of correct selection of model Relative penalties’ Input values for simulated annealing
penalty L o ] Starting values of penalties _Boundaries [ TRF
M U M, LMo T M T Mean | SO L T Ty S, 08 s; s fwsl um
Additive: AIC G.7190 07780 06655 0.5925 06887 (0789 10000 10000 20000
Existing criteria | BIC 0.9095 0.8830 07100 0.4530 0.7389 02101 | 19560 19560  3.9120
(Type 1) GCV 07290 07920 06715 05840 0.£941 0.0984 1.6310 1.0310 20836
HOC 07325 07940 06720 05815 06950 0.0906 1.0418 1.0418 2.1058
HQ 08125 08335 06925 03315 07175 0.1387 1.3641 1.3641 27281
: RBAR 04900 06390 05800 06915 06001 0.0364 0.5155 05155 1.0418
MCP 07190 07785 ©.6660 0.5915 0.6887 0.0795 | 1.0009 10009 20035
J§C 07830 08230 Co870 05525 07114 01203 12357 12357 2.4769
Additive: Largest 0.9745 0.BESO 07185 (0.4210 0.74483  0.2400 33286  2.8476 52849 | Q0000 Q0000 0.0000 0.0000 0 12.0000 0.1000
Using log- MAPCS
likelihood with Smallest 0.8680 08165 (6840 05460 0.7289 0.1446 | 17732  1.6949 29996 ; 0.0000 00000 00000 ©.0000 0 3.0000 0.0010
SAO technique i]gé';"“"g i
(Type 2) Modal 0.9745 08650 07185 04210 07448 02400 ' 33:96 28476 52849 | 00000 00000 00000 00000 | O 12.0000 | 0.1000
MAPCS ,;
Median 09745 08350 07185 Q4210 Q7448 0.2'1001 33296 28476 52849 ) 00000 00000 00000 0.0000 0 120000 2.1000
MAPCS )
Multiplicative: | Largest 09745 08650 07185 04210 07448 02400 . 11194 10978 11852 | 1.0000 10000 10000 10000 | & 30000 [ 0.1000
Using mean MAPCS ‘
squared error Smallest 09635 08740 08785 04600 07440 0.2236 1.0922 1.0988 11561 . 1.0000 10000 10000 1.0000 0 120000 0 0001
! SD among i
echmaue ARG |
T q.; Modal 09745 G8650 07185 04210 0.7448 02400 : 1.1194 10978 1.1852 | 1.0000 1.0000 1.0000 1.0000 0 3 0000 0.1000
(Type 3) MAPCS
Median 09745 08650 0.7185 Q4210 07448 0.2400 1.1194 1.0978 1.1852 | 1.0000 1.0000 1.000G 1.0000 0 3.0000 0.1000
MAPCS 1

* Additive penaity for model M/ is zero and mulupiicative penalty for model M/ is onc
** TRF Temperature reduction factor
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Table 4.2¢ Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of

models for sample size 96 for Design 4.2 together with relative penalty values and input values of SAQO technique,

Type of Criteria Average probabilities of correct selection of model ' Relative penalties’ Input values for simulated annealing
penalty Starting values of penalties Boundaries  j TRF
M | M T M, T M, T Mean [ SD p, 1P, P S, Lo | oso bosy 1] vs ]
Additive: AIC 07415 08155 0.8035 08830 08108 00580 | 10000 1.0000 20000
Existing criteria | BIC 0.9390 0.9445 0.9160 0.8255 0.9063 0.0552 2.2822 2.2822 4 5643
(Type 1) GCV 0.7455 08195 08080 0.8815 08136 00567 | 10159 10159  2.0426
’ HOT 0.7480 0.8205 0.8085 0.8815 0.8146 0.0547 1.0213 1.0213 2.0536
HQ 0.8665 0.8905 0.8740 0.8595 0.8726 00133 15183 1.5183 3.0366
RBAR 0.5290 0.6600 0.6610 0.8155 0.6914 0.1618 0.5079 0.5079 10213
MCP 0.7415 0.8155 0.B035 0.8830 0.8109 00586, 109003 1.0003 2.0009
JC 0.8375 0.8745 08595 0.8625 08585 00154 . 13951 13951 27928 N
Additive: Largest 09940 09530 09550 07920 09235 00897 | 47801 41070  7.6732 | 0.0000 00000 00C)) H00C0 | -4 40000 | 01000
Using log- MAPCS :
likelihood with Smallest 0.8650 0.8205 0.8820 0.8600 0.8719 0.011¢ 1.5598 1.4537 29997 | 00000 00000 00000 Q0000 0 3.0000 0.1000
SAO technique i?,é‘;m“g
(Type 2) Modal 09940 09530 09550 07520 09235 00897 | 47801 41070 76732 | 00000 0000C 00000 00000 | -4 40000 | 0.1000
MAPCS
Median 0.9940 0.9530 0.9550 0.7920 0.8235 0.0897 47801 41070 76732 ¢ 0.0000 0Q.0000 0.0000 0.0000 -4 4.0000 01000
MAPCS
Multiplicative: | Largest 0.9940 09530 09550 0.7920 09235 00897 | 1094t 10778 1.1486 | 10000 20000 20000 30000| O 480000 | 00100
Using mean MAPCS
squared error Smallest 0.9970 0.9395 (.9480 £.8070 09229 00813 11118 1.0860 11569 | 1.0000 2.0000 20000 30000 0 48 0K 0.001
with SAO i‘;é’s“""g
technique Modal 09940 09530 09550 07920 09235 00897 | 10931 10778 11486 | 10000 20000 20000 30000 | O 480000 { 06100
(Type_'j) |__M g
Mcczén | 0.9940 0.9530 0.9550 0.7920 0.9235 0.0897 1.0934 10778 11486 | 10000 20000 20000 3.0000 0] 48 0000 0.0100
MAPCS |

* Additive penalty for model M, is zero and muldtiplicative penalty for model M, is one
** TRF Temperature reduction factor

T T T S
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Table 4.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of

maodels for sample size 20 for Design 4.3 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of model Relative peraltics’ Input values for simulated annealing
penalty . Starting values of penalties Boundaries TRE
M, | M | M, | M; | Mean | SD R s; | 8, 5, s || us
Additive: AIC 06355 05995 05725 05085 05790 00536 10000 10000  2.0000
(Type 1) { 6Cv ' 06650 06155 05815 04810 05857 0.0778 | 10813 10813 22245
7 | HOC 6755 06165 05825 04740 05871 00846 | 11123 11123 22901
| HQ | 06695 0.609¢ 05735 04900 05855 00750 | 10972 10972  2.1944
RBAR | 0.4305 0.5365 05320 06100 05272 0.0737 | 0546° 05407  1.1123
MCP 06400 06025 05750 05075 05813 0.0559 5005y 1 0058 2.022G
JIC 0.6450 0B0656 05750 05050 (.5829 (0.0593 1.0193 10193 2.0540
Additive: Largest 0.8740 05745 05590 04110 06046 01941 ] 21992 18608 3.6479 | 0.0000 00000 0.0000 00000 | © 120000 | 0.1000
Using log- MAPCS
likelihood with Smallest 0.8000 06100 05330 04590 06005 0.1466 1.5052 1 6540 2.8529 | 0.0000 0.0000 0.000G 0.0000 0 3.0000 0.0100
SAOQ sechnigue igg;""“g
(Type 2) Modal 08740 05745 (05590 04110 086045 0.1941 21392 1.8608 36479 | 00000 0GO000 00000 O 0000 ¢ 12.C000 0.1000
MAPCS
Median | 9.8740 0.5745 05590 04110 06046 0.1941 | 21992 18608 37479 | 0.0000 00000 00000 00000 | O 120000 | 0.1000
MAPCS | | |
Multiplicative: | Largest | 08740 05745 05590 04110 06046 0.1941 | 11806 11412 12887 ; 10000 10000 1.0000 10000 | O  10.0000 | 0.1060
Using mean MAPCS | |
squared error Smallest 0.8315 05915 0.5590 04330 (6038 0.1665 | 1.1389  1.1221 12321 | 10C00 20000 20000 30000 | O 480000 | 0.000
with SAO i‘; Jomong
technique Modal 0.8740 05745 05500 04110 06046 01941 | 11806 11412 12887 | 1.0060 1.0000 10000 1.0000] 0 10.0000 | 01000
(Type 3 MAPCS
Median 0.8740 05745 (05590 (.4110 0A046  0.1941 11806 1.1a12 12887 | 1.0000 10000 10000 10000 | © 100000 { ©.1000
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reducrtiom factor
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Table 4.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.3 together with relative penalty vatues and input values of SAO technique.

Type of Criteria Average probabilities of correct selection of model Relative penalties’ Input values for simulated annealing
penalty Starting values of penalties Boundaries | TRF
M, | M M, M Mean | SD P, | P 1 P S | s, 18 S« (Bl uB
Additive: AlC 0.7050 07140 06610 06610 06853 00282 | 10000 1.0000 20000
Existing criteria | BIC 0.8985 07660 0.6980 0.5605 07308 01408 | 19560 19560  3.9120
(Type 1) GCV 0.7140 0.7235 06720 O0.6L65 06915 00323 | 10310 10310  2.0836
HOC 0.7165 07265 06740 06545 06929 00342 | 10418 10418 21058
HQ 0.7945 07460 0.6875 06140 07105 00778 | 13641 13641 27281
RBAR 0.4735 06145 05735 07455 06018 01127 | 05155 06155  1.0418
MCP 0.7050 0.7145 0.6615 06805 06854 00284 | 1.0009 10008 20035
JIC 07670 07395 0.6880 0.6290 07059 00608 | 12357 12357 24769
Additive: Largest 0.8060 07665 07035 05560 07330 01452 | 20228 19573  4.0287 | 0.0000 0.0000 00000 00000 O 10.0000 [ 0.1000
Using log- MAPCS
iikelihood with | Smallest 0.8005 07780 0.7010 05930 0.7181 00937 | 13051 14416 29445 | 00000 00000 00000 Q0000 | O 30000 0.1000
SAO technique i‘;cafs“"“g
(Type 2) Modal 0.9060 0.7665 0.7035 05560 0.7330 0.1452 | 20229 19573  4.0287 | 0.0000 0.0000 00000 0.0000| O 100000 [ 0.1000
MAPCS
Median 0.9060 07665 0.7035 0.5560 0.7330 0.1452 [ 20229 1.9573 40287 | 0.0000 00000 (0000 O0.0000; O 100000 [ 0.1000
MAPCS
Multiplicative: | Largest 0.9065 0.7665 0.7035 05560 0.7331 0.1454 1.0624 10593 1,1271 | 1.0000 20000 2.0000 3.0000 0 100000 G.1000
Using mean MAPCS
squared error Smaliest 08015 07630 07075 95590 07328 01417 | 10624 10568 11244 | 1.0000 10000 10000 10000| O 360000 { 00001
with SAO i‘ggg“’“g
technique Modal 09070 07655 07035 05560 07330 0.1455 | 1.0626 10593  1.1272 | 1.0000 20000 20000 3.0000{ O 12.0000 | 0.0010
{Type 3) MAPCS
Median 0.9070 0.7655 0.7035 05560 0.7330 0.1455 | 1.0626 10593  1.1272 | 1.0000 20000 20000 30000 O 122000 00010
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor




6C1

Table 4.3¢ Average probabilities, mean average probakiiities and standard deviations of average probabilities of correct selection of
models for samnle size 166 for Design 4.3 together with relative penalty values and input values of SA(Q) technique.

Type of Criteria Average probabilities of correct selection of model Relative penalties’ Input values for simulated annealing
pena tarting values of penalties oundaries | TRF
ity Starting values of penal Bound IR
M | M L M, | My | Mean | SD P, 1P P S, | s T s 1T s 1] uB L
Additive: AIC 0.7025 07665 07125 07515 07332 003061 10000 10000 20000
Existing criteria | BIC 0.9315 0.8325 07580 06375 0.7899 (1240 | 23026 23026 46052
(Type 1) GCV 07090 07710 07170 07475 07361 002861 10152 10152 20409
HOC 07080 0.7710 07175 07470 07361 00284 | 10204 10204 20514
HQ 08450 08095 07605 06980 07782 00637 ] 15272 158272  3.0544
RBAR 0.4575 0.6440 0.6056 0.8275 06336 01522 | 05076 05076  1.0204
MCP 07025 07665 07125 07515 07332 00306 10002 10002 20009
JIC 08215 08010 07550 07030 0.7716 00502 ] 14051 14051 28128 L
Additive: Largest 0.8905 08330 08165 06305 0.7926 01126 21758 15387 42676 | 00000 00006 00006 0.0090 0 120000 | .01000
Using log- MAPCS
likelihood with | Smallest 0.8485 07945 07700 ©0.7065 07799 00589 | 16293 14306 29826 | 0.0000 10000 1.0000 20000 0 30000 | 0.0010
SAO technique ilgé?ong
(Type 2) Modal 0.8905 08330 08160 06305 07925 01126 | 21811 15461 42745 | 00000 10000 10000 20000 | -3  3.00001{ 0.1000
MAPCS
Median 0.8905 0.8330 08160 06305 0.7925 01126 | 21811 15461 42745 | 0.0000 1.0000 10000 20000 | -3  3.0000 | 01000
MAPCS
Multiplicative: | Largest 08950 0.8320 0.8175 06270 0.7929 01156 | 10350 1.0213 10692 [ 10000 1.0000 1.0000 1.0000 0 10.0000 | 01000
Using mean MAPCS
squared error Smallest 0.8895 0.8160 0.8235 06400 07923 01067 | 10366 10193 10655 10000 10000 10000 10000 0 120000 | 0.0001
with SAO S0 among
. APC
technique Modal 08950 08320 08175 06270 07920 01156 | 10350 10213 10692 | 1.0000 10000 10000 1.0000| O 10.0000 | ©.1000
(Type 3) MAPCS
Median 0.8950 0.8320 03175 06270 07923 01156 | 10350 10213 106692 | 10000 10000 7000 10000 0 10.0000 | ©.1000
MAPCS

* Additive penahy for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor




Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of corvect selection of
models for sample size 20 for Design 4.4 together with relative penalty values and input values of SAQ) technique.

Type of Criteria Average probabilities of correct selection of model Relative pemalties o
penalty M, T M T M M, | M. M, | M- | My | Mecan | SD r, [ e T op 1 s T s 1T P 1 g
Additive; AIC 0.5445 0.6280 0.2395 05015 02985 06275 0.2335 03330 04257 0.168% | 1.0000 1.0000 10000 20000 20000 20000 3.000G
Existing criteria | BIC 0.7240 07735 02325 05660 0.2300 0.6555 0.1855 02420 04511 02519 | 1.4979 14979 14979 29957 29957 29957 44936
(Type 1) GCV 05865 06825 02485 05325 02765 056440 0.2250 02915 04359 01935 1.0813 1.0813 10813 2.2245 22245 22245 34370
HOC 0.6000 0.69%10 0.2515 0.5390 0.2780 06485 0.2210 02860 04394 0.1983 | 1.1123 11123 1.1123 22901 22901 22901 35417
HQ 05885 0.6630 0.2400 05205 02825 06295 02265 023140 04331 014852 [ 1.0972 10972 1.0972 2.1944 21944 21944 32916

RBAR | 03175 0.4285 0.2200 03775 03450 05635 02735 04380 03706 01075 0.5407 05407 05407 1.1123 11123 11123 17185
MCP 0.5465 06340 0.2415 05055 02955 06290 02320 03280 04265 01706 | 1.0058 1005 1.0059 20220 20220 20220 3.0538

nc 0.5550 0.6410 02425 05080 02930 0.6305 0.2310 0.3230 04280 01738 ! 1.0193 10193 10193 20540 2.0%40 2.054(1__3._19?1_1
Adaditive: Largest 66815 07115 04390 05085 03670 05375 03600 0$.3455 0.4939 (01433 | 47017 07324 (15757 55869 65864 22801 74196
Using log- MAPCS

likelihood with Smallest | 05180 06290 (.4205 (5150 04040 05270 03115 03915 04734 00992 | 1.8258 0.4346 12583 25177 12.3279 20440 20924

o { SAO technique SDon
o |, among
(Type 2) APCS
Modal | 0.6830 0.7120 04415 05045 03675 05375 03550 03455 04933 01441 | 41549 07339 16192 50393 60374 23214 6.8702
MAPCS
Median | 0.6770 07015 0.4350 05070 0.3625 0549C 0.3570 0.3490 04922 01416 | 38050 07321 15763 46895 55458 22803 6.3889
MAPCS
Multiplicative: | Largest | 06855 07110 04445 05230 03670 05375 03375 03455 04939 01472 [ 15420 10195 1.1138 1591C 17583 11374 17988
Using mean MAPCS
squared error Smalicst | 06835 06650 (.4420 05050 04235 G5310 0.3555 03395 04931 0.1205 | 1.4543 1.0194 11142 14755 16746 11288 17131
with SAO 5D
technique ;n;%nsg
(Type 3) Modal | 0.6865 0.70575 0.4475 0.5230 0.3660 05285 0.3370 03515 04934 01455 ; 16716 16393 1.1151 17249 19060 11389 1.9438
MAPCS
Median | 07825 06580 0.3725 0.4885 0.4405 0.5095 0.3485 03415 04927 01570 | 1.7008 10510 14533 17209 20067 11686 20464
MAPCS

* Additive penalty for model M, is zerc and muitiplicative penalty for model M, is one




Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.4 together with relative penalty values and input values of SAQ technique (continued).

Type of Criteria Input values for simulated annealing
penalty Starting values of penaltics Boundaries TRF
S 1.8 S: 1 S 1 S Se  Sr | 8 1B _| UB

Additive: Largest | 0.0000 00000 0.0000 0.0000 ©.0000 00000 00000 0.0000 | 00000 80000 | 0.1000

Using log- MAPCS

likelihood with Smallest | 0.0000 1.6000 1.0000 1.0000 20000 2.0000 20000 3.0000 ) 0.0000 4.0000 0.0010

SAQ technique | 5O e

Type ) APCS
Modal 0.0000 10000 10000 10000 20000 20000 20000 3.0000 0.0000 8.0000 0.1000
MAPCS
Median 00000 00000 00000 00000 00000 00000 COO02 00000 | -40000 4 0000 0.0010
MAPCS

2 | Using mean MAPCS

SC]Uill'Cd error Smallest | 1.0000 1.0000 10000 10000 10000 10000 10000 1.0000 0.0000 8.0000 0.001¢

with SAO SD

technique ;‘;(g?

(Typc 3) Modal 1.07%0 140000 +1.0000 1.0000 1.0000 10000 10000 1.06000 Q.0000 20,0000 0.1000
MAPCS

l Median 14979 2.9957 29957 290857 44936 449368 44936 0.0000 32 0000 01000
MAPCS

** TRF Temperature reduction facter




Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct setection of |
modeis for sample size 50 for Design 4.4 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of model  Relative pe“r‘l;l-(ic;: m““m:___J
penalty M (M. | My | M, | M My | M- | Mg [ Mecan [ SD P, 1 P [ ro [ b T ma [ 0 1 Py
Additive: AIC 05775 06915 03595 06210 03875 0.7475 03975 04700 05315 0.1485 | 1.06000 1.0000 1.0000 20000 20000 20000 30000
Existing criteria | BIC 0.8535 08860 03410 07820 03020 0.8140 03325 03125 05779 0.2755 | 1.9560 19560 19560 3.9120 3.9120 39120 58680
(Type 1) GCV $.5910 0.7100 03660 06340 03815 07605 03955 0.4595 05373 01566 | 1.0310 10310 10310 20836 20836 20836 3.1589
HOC 05965 07165 03675 06365 03790 07600 03950 04565 05384 0.1584 | 10418 10418 1.0418 21058 21058 219058 31929
HQ 0.7120 07950 03710 07015 03505 0.7900 03725 04045 05621 02036 | 13641 13641 13641 27281 27281 27281 40922
RBAR | 03215 04665 0.2800 04230 (3965 06115 041065 05760 04368 01124 { 65155 05155 05155 10418 10418 10418 15795
MCP 05795 0.6925 03595 062w 0.3875 07485 03970 04690 05318 01491 | 1.0009 10009 10009 2.0035 20035 2.0035 30084
JIC 06730 07605 03725 06805 03620 07795 003840 04260 065548 01847 | 1.2357 12357 12357 24769 24769 24768 37238
Additive: Largest | 07875 0.7685 05530 07260 05260 07060 04620 04450 06218 0.3402 { 49667 09045 24313 57810 77208 35824 87929
Using log- MAPCS
likelihood with | Smallest | 0.5950 0.68Y0 05380 06675 05035 07055 04875 04905 05826 00910 17772 06178 12365 25019 31335 20651 39976
= | SAO technique | 5P
g (Type 2) among
APCS
Modal 0.7955 0.7585 05560 07090 05200 07165 04650 04485 06211 01387 | 5415% 09033 27843 62300 77770 38351 884N
MAPCS '
Median | 07845 07660 05505 07245 05220 07095 04565 04465 06200 01407 | 39549 09037 24215 47714 65256 35734 75972
MAPCS
Multiplicative: | Largest | 0.7800 07660 05560 07310 05255 07050 04555 04440 06218 01419 | 15637 10156 10808 15819 17006 11099 17465
Using mean MAPCS
squared error Smaltest | 0.7355 0.7560 ©0.6030 0.7180 05195 0.7175 04675 04485 06207 01276 | +2183 1008 10704 12324 13074 14080 12357
witk SAO 5D
technique ;n;t[):nsg
(Type 3) Modal | 0.7895 0.7325 05560 0.7300 05555 0.7065 04560 0.4450 06214 01346 | 1.2955 10156 10810 1.3048 14108 11098 14414
MAPCS
Median | 08410 0.7540 05205 07095 05190 07145 04500 04480 06106 01523 | 13158 10226 11129 19387 20563 11425 2 1007
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model A, is one
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Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size SO for Design 4.4 together with rolative penalty values and input values of SAQ technique (continued).

Type of Criteria Input values for simulated annealing il
penalty Starting values of penalties | B.oundaries TRIT
S, | S | 5. 1 S, | 8 Se | S | S 1B | uB | |
Additive: Largest | 00000 1.0000 1.0000 10000 20000 20000 20000 3.0000| -8.0000 80000 | 00010
Using fog- MAPCS
Likelihood with Smallest | 0.0000 000060 6.0000 00000 0.000C 0000C 00000 0.0000 0.0000 40000 0 4001
SAO technique :n?ong
(Type 2) APCS
Modal 0.0000 1.000C t0CO0 10000 20000 20000 20000 3.0000 -10.0000 10.0000 01000
MAPCS
Median 00000 0.0000 00000 00000 GO0 00000 00000 0.000C -4 0900 4.0000 0.0010
MAPCS
Maultiplicative: | Largest | 1.0000 20000 20000 20000 3.0000 30000 30000 4.0000 0.0000 200000 0.0001
Using mean MAPCS _
squared error Smallest | 1.9560 39120 39120 39120 58680 58680 58680 7820 0.0000 32 0000 Q.00
with SAQ 5D
technique aArrl;(():nSg
(Type 3) Maodal 1.0000 20000 20000 20000 30000 30000 30000 40000° 0.¢000 8.0900 0.1000
MAPCS :
Median 19560 3.9120 39120 39120 58680 58680 58680 7.8240 E 0.00C0 20.0000 00010
MAPCS i

*#* TRF Temperature reduction factor




Table 4.4¢c Average probabilities, mean average nrobabilities and standard deviotions of average probabilities of correct selection of
models for sample size 100 for Design 4.4 together with relative penalty values and input vatues of SAQ technique.

— — : e e e
Type of penalty |Criteria Average probabilities of correct selection of model 1 Relative penaltes =~~~ |
' M | M, | oM M | M M, { M | Mg | Mean | SD P, | r e | R T y
: Additive: AIC 05980 (7005 04750 06650 05105 07875 05170 0632C 06107 01070 100063 10000 10000 20000 20080 20000 30000
Existing criteria |BIC 0.9100 09230 05005 0.8325 04215 0.8740 04630 04610 0.6732 02288 23026 23026 23026 46052 46052 46052 69078
! (Type 1) GCv 0.6030 07100 0.4810 06735 05125 07950 05170 0.6250 06146 0.1090| 1.0152 10152 10162 20409 20409 20409 30772
: HOC 06050 07110 04820 06750 05130 0.7970 05175 (06245 06156 01094, 10204 10204 10204 205'4 20514 20514 3090
HGQ 07755 08345 05230 $.7650 04920 08420 05030 065560 (.6614 0.1560] 35272 15272 15272 30544 30844 30544 45815
RBAR 0.3435 04670 0.3640 04550 04860 0652C 0486C 07355 04986 01337 05076 05076 05076 10204 10204 10204 15384
MCP 65980 0.7010 04750 0.6850 05110 07875 05176 06310 08107 0.1070; 10002 1.0002 10007 20009 20009 20009 3002%
JiC 0.7450 0.8160 05215 07460 05030 08285 _Q,SGQO 05700 (.6549 01424 14051 14051 14051 28128 28128 248128 42232
Additive: Largest 0.8955 0.8545 04525 07545 O5735 07690 05875 08070 07130 0.1230] 75854 14027 33902 B.8113 104567 45752 11 5759'I
Using log- MAPCS
likelihood with Smallest 06770 07736 06115 07580 05480 071685 05820 06775 06680 00817) 16036 09039 12082 26533 132260 23071 39943
§ SAQ technique i[; ég“’"g |
(Type 2) Modal 08925 0.8705 06560 07540 ©0.5690 07580 05980 06040 07127 61253, 71341 13768 33912 B4ATH 107632 45705 118638
MAPCS
Median 0.B755 0.8635 06440 07560 05850 0.7760 06210 05910 07115 0.1224: 259405 1.3755 £ 50B1 272264 289419 36079 30 1568
Multiplicative: |Largest 0.8925 08640 0.6560 0.7540 053635 07810 05985 05930 07128 01279] 12124 10175 10594 12317 12709 10736 12888
Using mean MAPCS :

squared error with Smallest 08955 0.8590 0.6525 07540 05810 07235 05980 06060 (07088 (O 1206; 27717 1(MAG 10595 2AMte 30264 10737 30584
SAO technique  |SD among ?

APCS :

oy _

(Type 3) Modal 0.8920 0.8650 0.6560 0.7540 0.5665 07585 05990 OC6035 0.7118 01245 17619 10175 10592 17894 18618 14734 18Ra4
MAPCS |
Median 0.8955 (8645 086525 07540 05830 07215 05990 05935 07079 012281 21047 10181 1 0QR9G 21360 23482 10739 23767
MAPCS | ] e ‘

* Additiv: penalty for model M; is zero and multiplicative penalty for model M, 14 one
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Table 4.4c Average probabilities, mean average probatilitics and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.4 together with relative penalty values and input values of SAQ technique (continued).

Type of Criteria Input valucs for simulated annealin
penalty Starting values of penalties Boundaries TRE™
s, | 5 Foso 1 s, T s Se | S; | S 8 | tm L

Additive: Largest | 00000 23026 23026 23026 46052 46052 46052 69078 | 00000 184207 | 0.1000

Using log- MAPCS

likelihood with Smallest | 0.0000 G.0000 0.0000 0.0000 00000 000CO 00000 O0.0000 1 0.0000 40000 | 00100

SAQ technique asn?ong

(Type 2) APCS |
Moedal 0.0000 0Q.0000 0.0000 0.0000 00000 00000 0000C 0.0000 0.000C 32.0000 | 0.10006
MAPCS
Median | 0.0000 0.0000 0.0000 0.0000 0.0000 00000 Q0000 00000 ; -320000 32.0000 | 0.1000
MAPCS —

Multiplicative: | Largest | 10000 20000 20000 20000 30000 30000 30000 40000 | 00000  8.0060 | 0001

Using mean MAPCS _

squared error | Smallest | 1.0000 20000 20000 2000C 30000 30000 30000 40000 | 00000 92103 ; 00010

with SAO SD

technique ;“:E“Sg

(Type 3) Modal 10000 10000 10000 1.0000 10000 10000 10000 1.000CG 0 G000 1.2000 | 01000
MAPCS
Median 23026 46052 46052 46052 69078 69078 69078 92103 0 GO00 200000 | 00100
MAPCS i i

** TRF Temperature reduction factor




Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAQ) technique,

Type of Criteria Average probabilities of correct selection of model ‘ Relative penalties’ _ _ﬂ__]

penalty M, L M L M M| M M, | M. 1 Mg | Mean | SD p e e L e e 1o

Additive: AIC 05320 0.3800 03635 0.3470 02760 02625 02560 0.2585 023344 00946 | 1.0000 1.0000 10000 20000 20000 200 3.0000

Existing criteria | BIC 0.7105 0.4060 03755 0.3655 0.2280 02185 02160 01905 0.3388 0.1726 | 1.4379 14979 14979 29957 29957 29957 44936

(Type ) GCV 05730 0.3955 0.3745 03625 02670 02590 (2475 02210 03375 0.1156 | 10813 10813 10813 22245 22245 22245 34370
HOC 0.5880 0.4000 0.3760 0.3635 028655 02570 02435 0.2160 0.2387 0.1219 ) 11123  1£.1123 11123 22901 22901 22901 25417
HQ 0.5760 0.3865 0.3630 0.3555 0.2675 02585 0.2470 02380 03365 01131 | 10972 10972 1.0972 21944 21944 21944 32916
RBAR {02990 62990 03220 02910 03155 03016 02905 03500 03096 00228 | 05407 05407 05407 11123 11123 11123 17185
MCP 0.5325 0.3820 03640 03460 02740 02615 02525 (02505 03329 00965 | 10059 10059 100688 20220 20220 202:0 3.0538
neC 0.5385 03840 03655 03470 02715 02610 02515 02465 03332 00994 | 1.0193 10193 10193 20540 20540 20540 3 1061

Additive: Largest | 0.6320 04095 04280 03425 02650 02550 O0.1870 02305 0.3437 0.1444 | 1.2311 11016 14259 24117 25093 28040 37523

Using log- MAPCS

likelihood with | Smallest | 0.5695 0.3850 04620 03745 0.2410 02810 02320 01955 03426 01290 | 12359 08975 11031 25051 22600 23944 38528

> | SAO technique "DO
N among

{Type 2) APCS
Modal 06255 0.410C 04115 03345 02685 02555 02465 01950 03434 0.1381 | 12383 1.1034 13851 24199 25278 24925 39504
MAPCS
Median 0.6245 0.4170 G470 (03395 02650 02555 02345 01930 03433 01405 ) 12046 11027 VY2873 24320 2537t 25755 40098
MAPCS

Multiplicative: | Largest | 0.3490 0.3570 03645 03470 03625 03600 03430 0399 03603 00175 | 10000 10000 10000 10000 10000  1.0000 1 000G

Using mean MAPCS

squared error Swallest | 0.3490 0.3570 0.3645 03470 0.3625 03600 0.3430 0.3990 03603 00175 10000 1.0000 1.0000 10000 10000 10000 1.0000

with SAO SD |

‘ among |

technique APCS

(Type 3) Modal | 03490 03570 0.3545 03470 03625 03600 03430 0.3990 0.3603 0.0175 I 10000 1.0000 10000 10000 1.0000 10000 1.0000
MAPCS
Median | 0.5935 04250 0.4380 04085 02140 (2470 02230 01915 03426 01444 | 10715 10559 10543 11881 11501 1.1585 12719
MAPCS l ]

* Additive penalty for model M, is zero and multiplicative penalty for model M;1s one




Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.5 together with relative penalty values and input values of SA() technique (continued).

Type of Criteria Input values for simulated annealing ,
penalty Starting values of penalties Boundaries | TRF
S, | s, | s 1 s | s Ss | S- | S 1B | UB
Additive: Largest | 00000 10000 10006 10000 20000 20000 20000 3.0000 | -8.0000  8.0000 | 0.0100
Using log- MAPCS
likelihood with | Smallest | 0.0000 1.0000 10000 10000 20000 20006 20000 30000 | 00000 80000 | 0.0100
SAO technique Zf: )
| ) e
{Type 2) APCS
Modal | 0.0000 10000 10000 10000 20000 20000 20000 30000 00000 40000 | 0.0001
MAPCS
Median | 0.0000 1.4979 14979 14979 209957 29957 29957 44936 | 00000 119829 | 00001
MAPCS
~ | Muitiplicative: | Largest | 1.0000 1.0000 10000 10000 10000 10000 3.0000 1.0000 | 00000 1.0000 | ©.1000
¥ Usi: MAPCS
g s11g mean |
squared error Smallest | 1.0000 10000 10000 10000 10000 10000 10000 *0000 | 00000 1.0000 | 01000
with SAO SD
technique :r;(énsg
(Type 3) Modal 10000 10000 10000 10000 10000 10000 10000 10000 ! 00000 10000 | 0.1000
MAPCS
Median | 1.0000 20000 20000 20000 3.0006 30000 30000 40000} 00000 80000 | 00010
MAPCS

** TRF Temperature reduction factor




Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.5 together with relative penalty values and input values of SAQ technigue.

Type of Criteria Average prol_Jabilities of correct selection of model L Relative penalties’ - ,:___l
pesslty M ] M T m [ m ] M M [ M T M [Men [ SD TR [ [ [ re [ R P Py
Additive: AIC 0.6240 0.5700 0.5005 0.5945 05540 05290 05635 05725 05747 00286 | 10000 10000 10000 20000 20000 20000 3.0000
Existing criteria | BIC 0.8770 07125 07325 07300 05280 05115 05400 04565 0.6360 0.1467 | 13560 19560 19560 3.9120 39120 39120 58680
(Type 1) GCV 0.6450 05870 06040 06085 0.5530 05305 05675 05580 05817 00368 | 1.0310 10310 1.0310 20836 20836 20836 3.1589
’ HOC 0.6505 0.5900 0.6050 0.8130 05530 05315 065685 05575 05836 00385 1.0418 10418 10418 21058 21058 2.1058 3.1929
HQ 0.7530 06470 06640 06765 05535 05300 06690 05200 06141 00831 | 13641 13641 13641 27281 27281 27281 40922
RBAR [ 0.3620 04010 0.4220 04090 05010 04765 05230 0.6650 04680 00958 [ 0.5155 05155 0.5155 10418 10418 10418 15795
MCP 0.6255 0.5710 05910 0.5955 05540 05295 05635 05720 05753 00290 { 1.0009 10009 10009 20035 20035 20035 50084
J1IC 07145 06290 06460 06505 05535 05300 05675 05365 06034 00662 | 12357 12357 12357 24769 24769 24739 57238
Additive: Largest | 0.9255 06685 0.7245 07180 05625 05330 05300 04530 08419 0.1519 | 25078 23976 24758 41494 42778 4.4728 £2899 1
Using log- MAPCS
likelihood with Smallest | 07720 06845 06485 06845 (05685 04940 05335 05475 06166 00052 | 12583 14758 14544 26422 20266 29284 3944
| SAQ technigue SD
o (Type 2) among
APCS
Modal | 0.9135 0.6940 0.7250 07275 05665 05320 05160 04580 06416 01503 | 22996 22837 22696 39580 4.1045 444R5 62200
MAPCS
Median | 0.9135 06240 07250 0.7275 0.5665 05320 05160 04580 06416 01503 | 22096 22887 22696 39580 4.1045 44485 62200
MAPCS
Multiplicative: | Largest | 0.9260 06895 07230 07160 05610 05335 05320 04540 06419 01515 10831 10786 10818 11330 11384 1.1485 12118
Using mean  MAPCS |
squared error Smallest | 0.9260 06835 07230 07160 05610 05335 05320 (4540 06419 01515 | 10831 10786 1.0818 11330 11384 11465 12118
with SAO SD |
technique ;r;%nsg
‘Type 3) Modal | 09275 06910 07225 07210 05640 05345 05130 04595 06416 01532 | 10831 10320 10821 11331 11387 11557 12130
MAPCS
l Median | 0.9275 0.6910 0.7225 07210 05640 05345 05130 04595 06416 0.1532 | 10831 10820 10821 11331 11387 11557 12130
! MAPCS | - - ) I

* Additive penalty for model M, is zero and multiplicative penalty for model M; 15 one
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Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

———

Type of Criteria Input values for simulated annealing
penalty Starting values of penalties Boundaries TREF™
s, | S 1 8 [ 8 | S S, 5. | S LB | UB
Additive: Largest | 0.0000 19560 19560 1.0560 239120 3.9120 39120 58680 | -10.0620 10.0000 | 0.000)
Using log- MAPCS
likelihood with Smallest | 0.0000 0.0000 0.0000 0.0000 00000 00000 0.0000 0.0000 0.0000 40000 00010
SAQ technique sD
{Type2) APes
Modal 0.0000 1.0000 1.0000C 1.0000 20000 20000 20000 3.0000 0.0000 8.0000 0.0010
MAPCS
Median 00000 10000 10000 1.0000 20000 20000 20000 3.0000 0.0000 8.0000 0.0010
MAPCS ]
Multiplicative: | Largest | 1.0000 20000 20000 20000 30000 30000 30000 40000 0.0000 32.0000 | 0.1000
Using mean MAPCS
squared error | Smallest | 10000 20000 20000 20000 30000 30000 30000 4.0000 | 0.0000  32.0000 | 0.1000
with SAQ SD
technique T;,%"Sg
{Type 3) Modal | 1.9560 39120 39120 3.9120
MAPCS
Median 1.9560 3.9120 3.9120 3.9120
MAPCS
** TRF Temperature reduction factor
i St ek, |
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Table 4.5¢ Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technigue.

Type of Criteria Average probabilities of correct selection of model Relative penalties
penalty M, | M [ M M, | M | My | M, | My [ Mean | SD Pr | P | P s | e | ry |
Additive: AlC 06895 06565 06860 06630 0.7480 07490 07210 08735 07233 00702 | 1.0060 1.0000 1.0000 2.0000 20000 20000  3.0000
Existing criteria | BIC 0.9525 0.8850 0.8905 0.8840 08340 08030 0.8055 08135 08585 00531} 22822 22822 22822 45643 45643 45643 68465
(Type 1) GCV 0.6990 0.6660 06935 06715 07535 0.7535 0.7235 08720 0.7291 00667 | 1.0159 10159 10159 20426 20426 20426  3.0805
HOC 0.7025 0.6685 0.6945 0.6750 0.7555 0.7545 07250 08720 07309 60657 | 10213 10213 10213 20536 20536 20536  3.0979
HQ 0.8525 07895 0.8130 0.7945 0.8065 07845 07780 08460 08081 00278 | 15183 15183 15183 30366 30366 30366 45548
RBAR | 0.3975 04445 04600 04486 06270 06345 06070 09040 05654 D.1658 | 0.5079 05079 05079 1.0213 10213 10213 15402
MCP 0.6895 0.6575 0.6860 06635 07480 0.7490 0.7210 08735 07235 C.0700 | 1.0003 10003 10003 20009 20009 20009  3.0023
JIC 08245 07635 07915 07705 08000 07780 07700 08520 0.7937 00308 [ 13951 13951 13951 27928 27928 27928 41034
Additive: Largest | 0.9970 09230 089395 09300 08380 08150 07870 0.7690 06748 00831 | 44921 4.4030 45470 7.7022 7.5448 B2B79 114742
Using log- MAPCS
likelihood with | Smallest | 0.7145 08480 08470 08285 07920 07465 07720 08475 07995 00515 ( 0.8333 0.8190 08562 26041 27918 25156 39997
SAQ technique Sn?ong
(Type 2) APCS
Modal | 0.9970 00230 009395 09300 0.8380 08150 07870 07690 08748 0.0831 | 44921 4.4030 45470 77022 75448 B2B79 114742
MAPCS
Mecdian | 09970 00240 09350 0.9310 0.8390 0.8140 0.7825 07745 08748 00825 | 44892 45413 45984 7.6989 76223 £.4281  11.3691
MAPCS
Multiplicative: { Largest | 09970 09225 09395 039305 08375 08150 0.7670 07695 08748 00830 | 10884 10856 10888 11513 11468 11645 12313
Using mean MAPCS
squared error Smallest | 08970 09235 09350 09310 08395 08140 0.7825 07745 08746 00825 | 10833 10845 10860 11455 11438 11636 12245
with SAO SD
. among
technique APCS
(Type 3) Modal | 09970 09225 09395 09305 08375 08150 07870 07695 08748 (0830 | 10084 10856 10888 11513 11469 11645 12313
MAPCS
Median | 0.8970 0.9255 0.9345 0.9305 08400 08135 078256 07745 08747 00826 | 10825 10854 10866 11457 11445 11642 12247
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
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Table 4.5¢ Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of Criteria Input values for sirmtated annealing
penalty Starting values of penalties Boundaries TRF
S | s 1 s 1 s | S Se | S 1§ g | UuUB 9
Additive: Largest | 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | -32.0000 32.0000 | 0.1000
Using log- MAPCS
likelihood with Smallest | 0.0000 0.0000 0.0000 00000 00000 0.0000 O0000 0.0000 0.0000 4.0000 0.0010
SAQ technique gn[:ong
(Type 2) APCS
Modal 0.0000 00000 00000 0.0000 00000 00000 0.0000 0.0000 -32.0000  32.0000 0.1000
| MAPCS
Median 0.0000 Q0000 00000 00000 (0000 Q0030 GO0Q00 0000 -10.0000 10,0000 000410
MAPCS !
Multiplicative: | Largest | 10000 20000 20000 20000 30000 30000 3.0000  4.0000 0.0000  32.0000 | 0.1000 |
Using mean MAPCS :
squared error Smallest | 2.2822 45643 45643 45643 68465 6.8465 68465 9.1287 00000 91287 | 00100
with SAQ SD ] -‘
technique :";%nsg ;
1
(Type 3) Modal 1.0000 2.0000 2.0000 20000 3.0000 30000 3.0000 4.0000 0.0000 320000 | 01000 |
MAPCS
Median 2.2822 45643 45643 45643 68465 68465 H.8465 91287 Q.0000 36.5148 0.0010
| MAPCS

** TRF Temperature reduction factor
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Table 4.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.6 together with relative penalty values and input values of SAQ) technique.

Type of Criteria | Average probabilities of correct selection of model Relative penalties e
penalty M, | M, | M; | M, | M, My | M- | Ms | Mean | SD P P, P, P 1P Py 1oy
Additive: AIC 05310 03275 05425 05705 03325 03515 05650 03740 04493 01116 | 10000 1.0000 1.0000 2.0000 2.0000 2.0000 30000
Existing criteria | BIC 0.7065 03285 06260 0.6865 02885 03190 05770 03025 04793 0.1858 | 1.4979 14979 14979 29957 206957 29957 4 4936
(Type 1) GCY 0.5655 0.3445 0.5730 06125 0.3255 03530 05775 03385 04613 01302 | 10813 10813 10813 22245 22245 22245 3.4370
HOC 0.5775 03460 05835 06195 03220 03525 05775 03330 04633 01352 | 11123 1.4123 11123 22901 22901 22901 23.5417
HQ 0.56%0 03345 05610 06010 03280 023460 05660 03525 04572 0.1258 | 10972 10972 10972 21944 21944 21914 32916
RBAR | 0.3070 0.2810 0.4020 0.3940 0.3530 03840 05090 04890 03893 00795 | 05407 05407 05407 11123 11123 11123 17185
MCP 0.5325 03300 05455 05750 03335 03550 05680 ©0.3675 04509 01129 | 1.0059 10059 10059 20220 20220 20220 30538
JIC 0.5385 0.3295 05500 05815 03325 03555 05705 03630 04526 01161 | 1.0193 10193 10193 20540 20540 2.0540 31061
Additive: Largest | 0.7615 04425 06540 06940 03435 03455 04360 0.3675 05056 0.1702 | 1.1824 1.8443 25753 031273 39067 G0477 69209
Using log- . MAPCS
likelihood with | Smallest | 05170 05160 06735 06520 03215 03730 03760 04835 04891 01290 | 05890 1.0991 15133 23820 25223 35102 39726
SAOQ technigue SD
among
(Type 2) | APCS
Modal | 0.7520 0.4450 06540 0.6855 03450 03585 (4355 0.3665 0.5054 01648 | 11542 1808t 25115 30893 37540 49743 58478
MAPCS
Median | 0.7580 0.4515 06545 06625 03440 03720 04350 0.3605 05047 01619 | 11451 18474 27002 3.1285 38322 51673 6.0580
MAPCS
Multiplicative: | Largest | 0.7575 0.4395 0.6525 0.6865 03450 03585 04345 03680 05054 01662 | 10663 11375 1.2163 12211 13005 1.4708 15086
Using mean MAPCS
squared error Smallest | 0.7320 04735 06540 06485 03410 03875 04390 0.3635 05049 D 1514 | 10490 11374 12344 12211 12906 14793 15195
with SAO SD
. among
technique APCS
(Type 3) Modal | 0.7575 0.4485 06545 06505 03420 003845 04390 03645 05051 01584 | 10621 11392 12367 12232 12958 14826 15228
MAPCS
Median | 0.7620 0.4550 06440 06790 0.3d05 03570 04355 03655 05048 01654 | 10621 11527 12386 12374 13245 14965 15369
MAPCS

* Additive penalty for model M, is zero and multiplicative penaity for model M, is one




Table 4.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.6 together with relative penalty values and input values of SAQ technique (continued).

34|

Type of Criteria Input values for simulated annealing
penalty Starting values of penalties | Boundaries | TRI
S, | S, S. Se Ss Se | S- Sg LB LB
Additive: Largest | 00000 00000 060300 00000 00000 00000 0.0000 0.0000 | 00006 10.0000 | 0.0010
Vsing log- MAPCS
likelihood with Smallest | G.CC00 10000 1.0000 13.0000 20000 20000 20000 30000 0.0000 4.0000 0.0100
SAO technique in?ong
(Type 2} APCS
Motal 0.0000 00000 00000 00000 00000 00000 00000 00000 : -32.0000 32.0000 01000
MAPCS
Median | 0.0000 1.0000 10000 1.0000 20000 20000 20000 3.0000 | 00000 10.0000| 00010
MAPCS [
Multiplicative: | Largest | 14979 29957 20957 20057 44036 4.4936 44936 59915 | 00000 238659 | 0.1000
Using mean MAPCS |
squared error | Smallest | 10000 20000 20000 20000 30000 3.0000 R.0000 40000 | 00000 320000 | 0.0001
with SAO SD |
techmique in;c;:nsg [
(Type 3) Modal | 1.0000 1.0000 10000 10000 71.0000 1.0000 1.0000 1.0000 , 0.0000 32.0000 | G 1000
MAPCS ,
Median 1.0000 20000 20000 20000 3.0000 30000 30000 4.0000-’ 0.0000 20.0{}0'{),i G.0010
MAPCS i _

** TRF Temperature reduction factor
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Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.6 together with relative penalty values and input values of SA() technigue.

Type of Criteria Average probabilities of correct selection of model - Relative pggalti?s‘ o ‘l
penalty Mi oM Uome oM Uome Tomg T oM T Mg T Mean T SD p, e Une 1 e ] v 1 P [ #y
Additive: AIC 0.5815 0.4510 06105 05990 04730 0.4900 0681C 05505 05546 00787 | 1.0000 10000 10000 2000C 20000 20000 3.0000
Existing criteria | BIC 0.8675 04735 0.7660 0.7895 04165 04375 07155 04190 06106 01913 | 1.9560 19560 19560 39120 3.9120 39120 5.8680
(Type 1) GCV 0.5840 04575 06270 06190 04785 04945 06905 05400 05626 00828 | 1.0310 1.0310 10310 20836 20836 20836 3.1589
' HOC 0.6010 0.4600 06295 06225 04790 0.4925 (6895 05370 05633 00834 | 10418 10418 10418 21053 21058 21058 31929
HQ 0.7165 0.4770 0.6960 07055 04605 04795 06985 04955 05911 0.1213 | 1.3641 13641 15641 27281 27281 27281 4.0922
RBAR | 03105 0.3460 04265 04105 04730 04705 05695 06570 04579 0.1134 | 05155 05155 05135 1.0419 10418 1.0418 15795
MCP 0.5815 04510 06125 05995 04730 04905 06810 05500 05549 00789 | 10009 10009 1000v 20035 20035 20035 230084
JiC 0.6750 04665 06695 06735 04655 04910 06950 05135 05812 01051 | 12357 12357 12357 24769 24769 24760 37238 |
Additive: Largest | 0.8560 0.5595 0.7680 0.7210 0.4675 0.5220 06500 0.4485 06241 01486 | 1.4094 20569 3.0438 36339 4.3033 55823 71213
Using iog- MAPCS :
likelihood with | Smallest | 0.6155 06326 0.7045 07010 04880 05030 05965 05635 06006 00808 | 0.6797 1.3275 14290 24737 26022 31670 39984
SAQ technique asn?ong
(Type 2) APCS
Modal | 0.8225 0.6085 07420 07125 04655 05320 06575 04480 06236 01347 | 1.1256 23000 28629 37902 40360 53913 6.9278
MAPCS
Median | 0.8390 0.5735 0.7660 07255 04640 05195 06510 04490 06234 01450 | 15257 20568 28626 26388 41367 54097 69457
MAPCS
Multiplicative: | Largest | 0.8670 0.5625 07565 07215 04605 05230 06620 04390 06240 01524 | 10369 10740 11055 11201 11384 11982 12514
Using mean MAPCS
squared error Smallest | 0.8025 05890 0.7080 07205 05020 05130 06520 04825 06212 01180 | 1.0247 10638 10746 10915 1.1066 1.1479 1.1845
with SAO SD
. among
technique APCS
(Type 3) Modal | 0.8560 05600 07680 07200 04660 05215 06510 04490 06239 0.1487 | 10364 10638 11064 11096 11393 1.1985 12476
MAPCS
Median | 0.8190 0.6075 0.7405 0.7235 04690 0.5225 06660 04390 06234 01374 | 1.0247 10722 1.0954 19134 11280 1.9867 12395
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
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Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.6 together with relative penalty values and input values of SAQ technique (continued).

Type of Criteria Input values for simulated annealin
penalty Starting values of penalties Boundaries TRF"
s, | s, [ s | s, U & Se § 5. | 8 LB | uB
Additive: Largest | 0.0000 1.9560 1.9560 19560 39120 39120 39120 58680 { -40000 7.8240 | 0.1000
Using log- MAPCS
likelihood with Smallest ; 0.0000 10000 1.0000 10000 20000 20000 20000 3.0000 (.0000 4.0000 .0001
SAQ technique SD
among
(Type 2) APCS
Modal 0.0000 1.9560 1.9560 1.8860 39120 39120 39120 65.8680 | -10.0000 10.0000 0.0001
MAPCS
Median 0.0000 00000 00000 0.0000 00000 00000 @G.0000 0.0000 0.0000  32.0000 0.1000
MAPCS
Mulliplica!ive: Largest 1.0000 1.0000 1.0000 10000 1.0000 1.0000 10000 10000 0.00C0 32.0000 0.1000
Using mean MAPCS
squared error Smallest | 1.9560 38120 39120 390120 58680 58680 586380 7’_8240l G.0000 32 0000 0010
with SAQ sD !
technique :n];%nsg
(Type 3) Modal 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.000C 10000 00000 40000 [ 0.1000
MAPCS
Median 19560 3.9120 39120 39120 58680 58680 58680 78240 0.0000 32.0000 ©.1000
MAPCS

** TRF Temperature reduction factor




Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.6 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of model Relative penallie.-sr

penalty M, VM | My M [ M My, | M. | My [ Mean | SD Py 1 e P 1o L ore 1o Py

Additive: AIC 05860 05310 06470 06660 005245 05740 07245 06465 06124 00700 | 1.0000 1.0000 1.0000 20000 20000 20000 30000

Existing criteria | BIC 0.8865 (0.5875 0.8220 0.8540 04905 05390 0.7685 0.5065 0.6818 0.1670 | 23026 2.3026 23026 4.6052 46052 46052 69078

{Type 1) GCV 05905 05385 06515 06755 05265 05770 07300 06390 06161 00702 | 10152 10152 1.0152 20409 20409 20409 20772
HOC 0.5925 0.53%0 0.6550 06755 05265 05765 0.7315 06385 (6168 00707 | 10204 10204 10204 20514 20514 20514 30930
HQ 07540 0.5855 0.7570 0.7785 05295 05825 07590 05840 06663 0.1043 | $5272 15272 15272 30544 30544 30544 45815

RBAR 0.3105 (.3870 04345 04430 04880 05110 08160 07415 04914 01351 | 05076 05076 05076 10204 10204 10204 15386
MCP 05860 05310 06470 06670 05245 05740 07245 06435 06126 0.0701 | 10002 1.0002 10002 20009 20009 20009 30021

JIC 07285 05805 0.7360 07600 05320 0.5855 07530 05940 06587 00939 14051 14051 14051 28128 28128 28128 42232
Additive: Largest | 0.8700 06725 08025 07955 05630 06235 0.7065 05500 06979 01174 | 15508 24922 33009 40272 47063 6.0731 76431
Using log- MAPCS

likelihood with Smallest | 0.6715 06365 0.7400 07920 05590 05820 0A535 06600 06618 00764 | 10279 13596 13104 24956 26699 31693 39985

g SAQ technique asgo
ng
{Type 2} APCS
Modal | 0.8490 06855 08085 0.8010 05630 06295 06955 05520 0.6376 01130 | 14065 22542 30763 38007 44596 60289 75572
MAPCS
Median | 0.8705 06725 0.7970 0.7785 0.5585 06155 07265 05605 06974 01151 | 15488 23967 33606 40343 47452 55759 7.1319
MAPCS
Multiplicative: | Largest | 0.8670 06725 08025 08120 05830 06175 07000 05490 06979 01195 10211 10385 10537 10621 10742 13066 1.130% |
Using mean MAPCS
squared error Smallest | 0.8665 06710 0.7995 08120 05560 06105 06825 05815 06974 01159 { 1021G 19385 10508 10621 10717 10993 11159
with SAO SD !
) among
technique APCS
(Type 3) Modal | 0.8665 06710 07995 08120 (5560 06105 06825 05815 06974 01159 | 10210 10385 10508 10621 10717 10993 11159
MAPCS
Median | 0.8975 (©.6740 0.7985 07780 05660 06080 06650 05395 06908 01243 | 10233 10441 11133 10675 1.1334 1.1755 1 2002
MAPCS

* Additive penalty for mode! M, s zero and multiplicative penalty for model M, is one




Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.6 together with relative penalty values and input values of SAQO technique (continued).

Lyl

Type of Criteria Input values for simulated annealing
penalty Starting vaiues of penalties Boundaries TRF™
s Ls: b s | S | S Se 1S | % L8 { UB
Additive: Largest | 0.0000 23026 23026 23026 46052 4.6052 46052 69078 0.0000 320000 | 0.1000
Using log- MAPCS
likelihood with | Smailest | 0.0000 1.0000 1.0000 10000 20000 20000 20000 3.0000 [ 00000  4.0000 | 00100
SAQ technique asrlr?ong
(Type 2) APCS
Modal 0.0000 2.3026 23026 23026 486052 46052 46052 69078 0.0000 9.2103 0.0100
MAPCS
Median | 0.0000 1.0000 1.0000 1.0000 20000 20000 20000 30000 -8.0000 8.0000 | 0.0001
MAPCS
Multiplicative: | Largest | 23026 46052 4.6052 46052 6.9078 €.9078 69078 9.2103 | 0.0000 200000 | 01000
Using mean MAPCS
squared error Smallest [ 1.0000 2.0000 20000 20000 30000 3.0000 30000 40000 000G) 8.0000 [ © 1000
with SAO D
technique ;n;%nsg
(Type 3) Modal 1.0000 2.0000 20000 20000 3.0000 3.0000 30000 40000 0.0000 8.0000 { ©.1000
| MAPCS
Median | 1.0000 20000 20000 20000 30000 30000 30000 40000 0.0000 4.0000 | 00001
MAPCS -

** TRF Temperature reduction factor




CHAPTER 5

MAXIMISATION OF MEAN AVERAGE PROBABILITY
OF CORRECT SELECTION FOR EQUI-DIMENSIONAL
COMPETING MODELS

5.1 INTRODUCTION

In Chaper 4. we applied the Simulated Anncaling Optimisation (SAO) techmgue 10
estimate the optimal penalties to select the best model from a set of competing
alternative models with an uncqual number of regressors, with the objective of
maximising the mecan average probability of correct selection (MAPCS). In this
chapter, we investigate the issue of model sefection when the competing models have
an cqual niember of parameters. For the existing 1C based modcel selection procedures
when the competing models have the same number of parameters, there is no need to
usc a penalty function because they result in the same penalty. In this situation, the

problem reduces to choosing the model with the largest maximised log-likelihood.

For model se- .- wbon e competing models are white noise, first-order
autoregressivi T dawi - cder moving average (MA(1)) and second-order

autoregressive {4 1.0+ disturbances in the linear regression model, Billah and King
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(1998) applied a grid search method for finding the optimal penalty. The results
obtained from their simulation experiments show that, though the AR(1) and MA(I)
disturbance models have the same number of parameters. the penalty values that
maximise the APCS are different. For selecting between AR(l) and MA(])
disturbances in the linear regression mocel, Grose and King (1994) observed that the
MA(1) model is favoured because of the functional form of its log-likelihood. They
argued that for model selection in small samples. a penalty for differences mn the
functional form of the log-likelthoods is needed 10 improve the probability of correct
selection (PCS) in addition to the penalty for the number of parameters in the model.
In other words. the penalty functions need to be abie to take into account the form of

the log-likelihood functions.

The simulation results wve presented in the previous chapter indicate that for the
models with the same number of paramcters, the penalties that maximise the MAPCS
of different data sets are different. Also for a paiticular data set, penaities for models
with same number of parameteis are different. From the literature on model selection
and the simulation results we presented in the previous chapter, it is apparent that
penalty functions should depend not only on n, the sample size, and £, the number of
{ree parameters, but also on the form of the log-likelihood function. Unfortunately all
the existing penaity functions are functions of » and & but not of the form of the log-
likelihood functicn, This is the reason, when competing models are equi-

dimensional, that the penalty function has no effect. In our view, a good penalty
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function should be a function of the log-likelihood in addition to n and £ To
overcome the problem of the independence of penalty function from the data. here
we appiy the SAO technique 10 find the penalties, which maximise the MAPCS of
the model. when the competing models have the same number of parameters to be
estimated. Here. instead of using a particular functional form of penalty. we use
appropriate upper and lower limits of penaities, and starting values of penalties. Then

we apply the SAO tecinajue to find the penalties, which maximise the MAPCS.

In this chapter we use both the additive and muluplicative penalties discussed 1 the
previous chapier to select the correct model, when the competing models have an
equal number of parameters. We use the SAO technique 10 maximise the MAPCS of
the models. A detailed description of this method of optiisation technigue was
given in Section 2.4 of Chapter 2. The theory and computational technigue of

MAPCS are discussed in Section 3.2 of Chapter 3.

The plan of the chapter is as follows. In Section 5.2, we outline the Monte Carlo
experiments. A variety of computer simulation results are presented in Section 5.3,

and Section 5.4 contains some concluding remarks.

5.2 THE DESIGNS OF THE MONTE CARLO STUDIES

The main objective of the simulation experiments of this chapter is to investigate the

performance of SAQ technigue 10 select the correct mode} from a set of equi-
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dimensional competing alternative models. Another objective is 10 see how the
penalties obtained using SAO techmque differ from zero (in all exisung IC the
penalties are zero when the competing models are equi-dimensional) when the

cumpeting models have same number of parameters.

The following three sets of models and two scts of data were used 1o conduct Monte
Carlo experiments to examine the performance of the SAO technique with additive

and multiplicative penalties when competing maodels are equi-dimensional.

Data set 1: x|, is the real per capita GDP. x., is the investment of a country, x,, 1s
the price level consumption and x,, 1s 1960 GDP as a percent of USA GDP of 1960.

We used the annual data from Summers and Heston (1991) revised version 5.6 and

World Bank tables.

Data set 2: We generated data from the normal distribution with standard deviation
4,9, 11 and 17. Then, x, ~IN(0, 49): x,, ~IN(O, 9°): x,, ~IN(O, 11); and x,,~IN(O,

2

179).

We used three model sets for simulation experiments with the abuve two data sets.
Model set 1 is the single regressor model. Model set 2 and Model set 3 have two and

three independent variables, respectively.
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Chapter 5

Model set 1.

M Y, =B+ 0,8, tu,.
M,: Y =By X0
M, Yo =Bt x, B tu, .
M,: v, = Bt x, B, tuy,

Model set 2.

M,:

M, Vo = P+ 3,80 + 3, B ¥,

Mooy, =B+ x B, B+,

M. ¥y = ﬁm + .1’4,[))34 + x“ﬂs, +uy, .

Model set 3.

My v =Bo+x,80 41,00 + 3,0~ 14,
My: =Bt X80+t X B + X, Bs 1y, .
M, v =80t 500ntxuBs +x,80 tu,
M, v =B ¥ 5, By 0,00+ %5, Huys,

Here y, isthe ¢

= ﬁsu + Ilfﬂﬁl T X, ﬂs: + g,

h

observation on the dependent vanable, x, 1s the ¢

u, =IN(0.07): (5.1)
u, =IN©0.053) - (5.2)
u, =IN(O.o3): (5.3)
u, =IN(0.07) - (5.4)
u, =IN@©0,07) (5.5)
u, = IN(0,0’i ): {5.0)
1, =IN(0,07): (5.7)
1, =IN(0,07) - (5.8)
u, =IN@©O,53) " (5.9)

u,, = IN©,07,): (5.10)
u,, =IN©,0;): (5.11)

u,, = IN(0,07,) - (5.12)

y

observation on

the /" regressor, f3 j0iS a constant, B is a scalar regression coefficient associated

t




Chapter 5 Maximisation of MAPCS for Equi-dimensional Competing Models

with the j” model. j=1.2. ... 12 and x, is the 1™ value of the i" regressor. i = I.

2.2, 4: and «, is a random disturbance term following a normal distnibution with

mean zero and vanance o).

We used the various combinations of data sets and model sets as designs. This gave

2x3 = 6 designs. as follows:

Design Data set Model set
5.1 1 !
5.2 > T
53 B >
54 2 2
5.5 I 3
56 2 3|

We used the same data generating technique as described in Section 3.3.1 of Chapter
3 for these experiments using s = 50.0 and 15, and 5] = 0.02. 0.05 and 0.1. The

sample sizes 20, 50 and 100 were used for the simulation experiments for all designs.

5.3 RESULTS OF THE SIMULATION EXPERIMENTS

The results of the Monte Carlo simulation experiments are presented in Tables

S.1a—-c to 5.6a~c. There are three types of penalties in each table as mentioned in
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the previous chapter. The relative penalties for all existng cnteria (Type 1 penalties)
are zero and the APCS obtained form all the existing criteria are the same as the
competing models are equi-dimensional. We present a comparative study of Tvpe 1
and Type 2 penalties (additive penalty with maximised log-hkelihood and the SAO
technique) in Section 5.3.1. Section 5.3.2 contains the comparison of the simulation
resuits obtained from Type 1 and Type 3 penalties (multuiplicative penalty with mean
squared error and the SAO technique). We compare the simulation results obtained

from the newly proposed Type 2 and Type 3 penalties in Section 5.3.3.

5.3.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

There are several interesting and notable results from the simulation expenments. For
all destgns and sample s1zes under study, in 100 percent of the 96 combimnations of
the initial parameter valucs for the SAO technique, the MAPCS obtained trom the
simulation experiments using the SAO technique and Tvpe 2 penalty for equi-
dimensional models are higher than those obtained using the existing criteria. The
variations among the APCS are always lower than those of the existing critera for
single regressor models. For other models, the variations among the APCS of the true
models are generally higher than those of the existing criteria with an exception of
Design 5.5 for sample size 100. The relative penalties that maximise the MAPCS
uéing the SAO technique are not the same and are different from zero. An
exceptional improvement in MAPCS was observed for all sample sizes for Design

5.5. In general we see that the model having the largest APCS from existing criteria,
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has the smallest APCS from the SAO technigue and vice versa. It is evident from the
simuiation results that the MAPCS obtained from the different combinations of the
imtial parameter values for a particular sample size under any particular design are
very similar. It implies that the APCS is in general insensitive to the inibal values of
the parameters of the SAO technique when the compeung models are equi-

dimensional.

Tables S5.1a~c and 5.2a4- ¢ contain the simulation results for Designs 5.1 and 5.2,
where the compeling models have a single non-constant regressor. For these designs,
the gap between the largesl' MAPCS and the smallest MAPCS obtained {from the
SAQO techniquz 15 very small. The smallest MAPCS obtained from the SAO
techmique for Design 5.1 are 11, 14 and 17 percent mgher than those of the MAPCS
obtained from the existing criteria for n = 20, 50 and 100, respectively. For Design
5.2, the smallest MAPCS obtained from the SAO technique are 5, 4 and 4 percent
higher than those of the existing critena for n = 20. 50 and 100, respectively. For
both designs, the vanation among the APCS obtained from Type 2 penalties is lower
than the variation obtained from the existing crileria. The decrease of variation
among the APCS obtained from the SAO technique over the existing criteria for
sample sizes 20, 50 and 100 is 27, 35 and 45 percent for Design 5.1 and 71, 56 and

73 percent for Design 5.2, respectively. The mode and the median MAPCS obtained

' There are 96 MAPCS for 96 combinations of initial parameter values Jor Tvpe 2 penaltics oblained
vsing the SAQ technique. We computed the largest. smaliest. mode and median of these 96 MAPCS.
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from the SAQ technique are identical 1o ine largest MAPCS obtained from the SAO
techmque for all sample sizes of Design 5.1 and sample size 20 of Design 5.2. For
the other sample sizes of Design 5.2, the mode and median MAPCS are very similar
1o the largest MAPCS obtained from the SAQ technique. For both designs and for all
sample sizes, the MAPCS corresponding 1o the smallest vanation among the APCS
oblained from the SAO technique is very similar to the corresponding largest

MAPCS obtained from the SAO techmque.

The simulation results of the competing models with two non-constant regressors of
Designs 5.3 and 5.4 are presented in Tables 5.3a—c¢ to 5.4a-c. Like for the single
regressor models. for both designs, the difterences between the largest MAPCS and
the smallest MAPCS 1s very small. The smallest MAPCS obtatncd from the SAO
techmque are 16, 9 and 9 percent higher than those of the existing criteria for sample
sizes 20, 50 and 100, respectively for Design 5.3. The increases of MAPCS over the
existing criteria are 8, 10. and 10 percent for sample sizes 20, 50 and 100,
respectively, for Design 5.4. For both designs, the vanations among the APCS are
comparatively larger than those obtained from existing criteria. The mode and
median MAPCS are very similar to the largest MAPCS and in some situations these
are identical to the largest MAPCS. For both designs, the MAPCS corresponding to
the smallest variation among the APCS are very similar to the largest MAPCS. This

implies that the performance of Type 3 and Type 4 penalties are similar and from a
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users point of view. any of these may be used for selecting the best model when the

competing modelis are equi-dimensional.

The results of the simulation experiments for the three non-constant regressor models
of Designs 5.5 and 5.€ zre presented in Tables 5.5a- ¢ to Table 5.6a—c. The results
indicate that for both designs. for 100 percent of the combinations of the initial
parameter values for the SAO technique. the MAPCS 1s higher than that of the
existing criteria. An exceptional improvement of the MAPCS obtained from the SAQO
technique over the existing critena 15 observed for Design 5.5, For both designs, the
largest MAPCS and the smallest MAPCS obtained from the SAO technigue are very
similar. The smallest MAPCS obtained from the SAO technique for the sample sizes
20, 50 and 100 are 56, 57 and 56 percent larger than that of the existing cnitena for
Design 5.5. These incrcases in MAPCS for Design 5.6 are 14, [2 and 9 percent for
the sample sizes 20, 50 and 100. respectively. For all designs and sample sizes, the
vanation among the APCS is larger than that of the existing cnitena with the
exception for Design 5.5 and n = 100, where the variation among the APCS is
smaller than that of the existing cniterta. The mode and the median MAPCS are very
simtlar to the largest MAPCS for both designs and all sampie sizes and in some cases
these are identic-” o the largest MAPCS. The MAPCS corresponding to the smallest

variation among the APCS are very close 10 the largest MAPCS for both designs.
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For all designs. exactly the same MAPCS and SD among the APCS is obtained from
different sets of relative penalties. For example. for Design 5.1 with n = 20. the
largest MAPCS is 0.6470 with a SD amonrg the APCS of 0.2434. This MAPCS and
SD is obtained from 26 different relative penalty sets. two examples being (0, -
1.5532. -1.1620. -1.8220). and (0. -1.5495. -1.1575. -1.1879). This result confirms
the comment we made in the previous chapter. that there 1s no unique set of penalties
for a particular data set that maximises the MAPCS. It 15 also observed that for all
designs exactly the same MAPCS and SD are obtained from difterent sets of tnitial
values for the SAO technique. For example, as mentioned earher. for Design 5.1 the
largest MAPCS with SD 0.2434 is obtained from 26 different penalties. These
penalties are obtained from 26 different imitial sets of values for the SAQO technique.
The smailest MAPCS obtained from the SAO techmque for Design 5.1 and n = 20,18
0.6464 with a SD among the APCS of 0.2501. which is very close to the
corresponding largest MAPCS and SD. This means that when the competing models
have the same number of parameters, the SAO technique 1s largely insensitive to the

initial values of the SAQ 1echnique.

5.3.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

In this section, we compare the MAPCS obtained from the application of the SAQ
technique with mean squared error and muitiplicative penalties, with those from the
existing criteria. The simulation results obtained from the designs considered are

presented in the second part of Tables S.1a—c to S.6a—c.
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It is apparent from the simulation results that in 100 percent of the combimations of
the initial parameter values for the SAO technique with mean squared error for all
designs and sample sizes. the MAPCS obtained using the SAO technique are higher
than those of the MAPCS obtained from the existing cntena. For all designs and
sample sizes. the MAPCS obtained using the SAO technique with maximised log-
likelihood and additive penalties are very similar to the MAPCS obtained from the
SAO techmque with mean squared crror and multiplicative penalties. Somciimes the
largest, mode, median MAPCS und the MAPCS corresponding to the smallest
vartation among the APCS. are all identical for Type 2 and Tvpe 3 penalties. Thus for
all designs and sample sizes. the comparisons between Type | and Type 3 penalties
are very similar to the comparisons between Tvpe | and Type 2 penaities discussed in

the previous section.

5.3.3 COMPARISON OF TYPE 2 AND TYPE 3 PENALTIES

The results obtained from the simulation experiments for Type 2 and Type 3
penalties indicate that MAPCS obtained from both types of penalties are very similar.
The largest MAPCS from the additive and multiplicative penalties are identical in 16
out of i8 experiments (six designs each with three sample sizes) and in the remaining
two experiments, the numerical values of the largest MAPCS are very close, The
modal MAPCS are identical in 12 out of 18 experiments and in the other experiments
the values are very close. A similar picture is observed for median MAPCS and the

MAPCS corresponding to the smallest variation among the APCS. The smallest
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MAPCS obtained from these two types of penalues are also very close. It implies that
to maximise the MAPCS of the true model from a set of competing alternative equi-
dimensiona! models, the effect of the form of the penalty 1s insignificant. Thereforc.
either of the methods with the SAO technique can be used to maximise the MAPCS

of the true model from a set of competing eyui-dimensional models.

54 CONCLUDING REMARKS

In this chapler, we investigated the performance of the SAO technique to selcct the
truec model from a set of equi-dimensional competing alternetive models. To compare
the performance of the techmque with the existing cniteria, we conducted simulation
experiments with two sets of data in three different sets for equi~-dimensional modets.
In 100 percent of the combinations of the initial parameter values for the SAO
technique. the MAPCS is higher than those of the existing criteria for all designs and
the sample sizes considered. The vaniaton among the APCS of the true model is
smaller compared 1o that of the exisung criteria when the competing models have a
single regressor. In all other experiments, this variation is generally larger than those
of the existing criteria with the exception of Design 5.5 with sample size 100. An
exceptional increase (56%) of the MAPCS over the existing criteria is observed for

all sample sizes of Design 5.5.

The relative penalties are zero for the existing criteria, but in the new method the

relative penalties that maximise the MAPCS are different from zero. Also, for the
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same set of models. these penaltics are different for different data sets. This finding
confirms our previous finding that the penalties should not only be functions of the
sample size and the number of free parameters, but also the form of the log-
likelihood function. Exactlv eauai MAPCS were obiained from different reiative
penalties, which implies that there is no unigue sel of penziics that maximise the

MAPCS.

From the simulation results, it 1s observed thar the model having the largest MAPCS
for the existing criteria, has the smallest MAPCS from the SAO technique and vice
versa. It is apparent {from the simulation results that for a parucular sampie size under
any particular design, the MAPCS obtained from different combinations of the initial
parameters are very stmilar. The difference between the largest and the smallest
MAPCS obtained from the SAO techmque is very small for all designs and for all
sample sizes considered. This implies, for equi-dimensional competing alternative
models, that the APCS of the true model is generally msecnsitive 1o the starting
parameter values of the SAO technique. We may conclude from our simulation
results that for selecting the best model from a set of equi-dimensional competing
alternative models, the MAPCS obtained from the SAO technique will always be
higher than that of existing criteria. We also recommend the use of the SAO
technique to compute penalites for selecting the best model. when the competing

models are equi-dimensional.
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The results obtained from the simulation experiments indicate that the APCS
obtained using the SAQO technique with maximised log-likelihood functions and
additive penalties. and mean squared error with multiplicative penalues, are very
similar. S {rom the user’'s point of view, one can use either technique 10 select the

true model from a set of competing aliernative equi-dimensional models.

The perforimance of Type 2 and Type 3 penalues relative to the exisung IC for
selecting the true model from a set of equ-dimensional competing models, is
uniformly better in all the experiments we conducted. From the results of the
stmulation experiments. it may be concluded that for the equi-dimensional compeling
mode!s. the application of the SAO technique with additive or multipiicative
pericines always guarantees the selection of the true model with higher MAPCS
compared 1o the existing criteria in all situations for linear regression settings. We
presented numencal evidence in favour of using the SAO technique over the existing
IC to select the true model from a set of equi-dimensional competing alternative
models. Such evidence is the best grounds for using this technigue to improve APCS
of the true model, instead of not using a penalty as the existing critena effectively do

n this situation.
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Table 5.1a Average probabilities, mean average probabilities and standard deviations of average probabitities of correct selection of
models for sample size 20 for Design 5.1 together with relative penalty values and input values of SA(Q technique,

Type of Criteria Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing

penalty model Starting values of penalties Boundaries TRE
M, 1 M, | M, | M, | Mean | SD P Lor Py S8 oS 1o LB | uB

Additive: Allare | 09845 03905 07200 02350 0.5825 03357 | 00000 0000C 00000

Existing criteria ) Same

(Type 1)

Additive: Largest | 0.9725 03850 06395 05910 06470 02434 | -15532 -1.1620 -18220 { 00000 0.0000 0.0000 00000 | 0.0000 10.6000 | 0.1000

Using log- MAPCS

likelihood with Smallest | 0.9685 (0.3B55 0.6395 05925 0.6465 0.2414 -2 1418 -1.7502 24104 14979 14979 14979 1.4979 0.0000 8.0000 0.0001
SAO technique | SPof

APCS
(Type 2) Modal 109725 03850 06395 05910 06470 02434 | -15532 -1.1626 -1.8220 | 00000 00000 00000 00000 | 00000 100000 | ©.1000
MAPCS
Median | 0.8725 0.3850 06395 05910 06470 02434 | -15532 11620 -1.8220 | 00000 0.0000 00000 00000 | 00000 100000 | 0.1000
MAPCS
Multiplicative: | Largest | 09725 03850 06395 05910 06470 02434 | 08561 0903 08334 ) 10000 10000 10000 10000 | O0O0CO0 10.0000 | 0.1000
Using mean MAPCS
squared error | Smallest | 0.9730 03900 06110 06115 06454 02414 | 08563 09070 08335 | 10000 20000 20000 30000 | 00000 320000 | 00001
with SAQ i[;gg
teTChmc;"e Modal | 09725 03850 06395 05910 06470 02434 | 08561 08903 08334 | 10000 1.0000 1.0000 10000 | 00000 100000 | 01000
(Type 3) MAPCS
Median | 0.9725 0.3850 06395 05910 06470 02434 | 08561 08903 08334 | 10000 10000 10000 10000 | 00000 100000 | 0.1000
MAPCS

* Additive penalty for model M, is zero and multiplicative penalty tor model M| is one
** TRF Temperature reduction factor
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Table 5.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.1 together with relative penalty values and input values of SAQ technigue.

Type of Criteria Average prodabilities of correct selection of Relative penalfies Input values for simulated anncaling

penalty model Starting values of penalties Boundaries | TRF
M, | v, | M, 1 M [ Mean | SD TR s; oS, T os s, 8 | us

Additive: Allare | 0.9920 05000 08880 02065 0.6466 03618 | 00000 00000  0.0000

Existing criteria | same

(Type 1)

Additive: Largest G.9890 04225 07870 07610 07399 02348 -0.3541 0.8881 -0.8217 | 00000 00030 00000 0.0000 % -8.0000 8.0000 ¢.1000

Using log- MAPCS

likelihood with Smalfest { 0.9890 A4%95 07860 07130 0.7394 0.2145 -0.5173 08542 -08258 | 0.0000 0.0000 0.0000 0.0000 0.0000 2.Q000 0.0010

SAO technique | SPof

_ APCS
)
Type 2) Modal | 0.9890 04225 97870 0.7610 07399 02348 | 03541 08881 -0.8217 | 00000 00000 00000 00000 | -80000 80000 | 0.1000
MAPCS
Mcdian | 0.9890 0.4225 0.7870 0.7610 07399 02348 | -0.3541 08881 -0.8217 | 0.0000 00000 00000 00000 -80000 80000 | 0.1000
MAPCS ]
Muitiplicative: | Largest | 0.9890 04225 0.7870 07610 07399 02348 | 09860 10362 09677 | 10000 10000 10000 1.0000| 0.0000 80000 [ 0.1000
Using mean MAPCS
squared eror | Smallest | 0.9890 04225 07870 07610 0.7399 02348 | 09860 10362 09677 | 10000 10000 10000 10000 | 0.0000 80000 | 0.1000
with SAO ol
technique Modal | 0.9880 04225 07870 07610 07393 02348 | 009860 10362 09677 | 10000 10006 10000 10000 | 00000 80000 | ©1000
Median | 0.9890 04225 07870 07610 07399 0.2348 | 09860 10362 09677 | 1.0000 10000 10600 10000 00000 80000 | 01000
MAPCS |

* Additive penalty for model M, is zero and multiplicative penalty tor model M, is one
** TRF Temperature reduction factor
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Table S.1c  Average prebabilities, mean average probabilities and standard deviations of average probabilities of correct selection of

models for sample size 100 for Design 5.1 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of | Relative penalties Input values for simulated annealing
penalty model Starting values of penaities Boundaries TRF
M, | M, | M, | M, | Mean | SD P 1 r p s, s, T s 1 & LB | uB

Additive: Allare | 09970 06180 0.8315 02055 06880 03617 | 00000 00000  0.0000

Existing criteria | same

(Type 1)

Additive: Largest | 0.9940 0.5270 0.8585 08425 0.8055 0.1977 | -0.8184 06215 -1.4880 | 00000 0.0000 00000 0.0000 -8.0000 8.0000 | 0.1000

Using log- MAPCS

likelihood with | Smaliest | 0.9940 05285 08585 08405 08054 01969 | -08678  0.5861 -15303 | 00000 10000 10000 20000 00000 10.0000 | 0.0100

SAO technique iggg

(Type 2) Modal | 09940 05270 0.8585 0.8425 08055 01977 ' -0.8164  0.6215 -1.4880 | 0.0000 00000 00000 00000 | -8.0000 80600 | 01000
MAPCS
Median | 09940 05270 (.8585 0.8425 (8055 0.1977 | 08164 06215 -1.4880 | 0.0000 00000 00000 00000} -8.0000  BOO0O | 0.1000
MAPCS

Multiplicative: | Largest | 0.9940 05270 08585 08425 08055 01977 | 09799 10085 09669 | 10000 10000 1.0000 10000 | 0.0000 0000 | 0.1000

Using mean MAPCS

squared error Smallest | 0.9940 05270 0.8585 0.8425 08055 0.1977 | 09709 10085 00669 | 10000 10000 1.0000 10000 ) 0.0000  8.0000 | 0.1000

with SAO proil

technique Modal | 0.9940 05270 08585 08425 0.8055 0.1977 | 09796 10085 09669 | 1.0000 10000 1.0000 1.0000 | 00000 80000 | 01000
Median | 0.9940 0.5270 0.8585 0.8425 08055 01977 | 09799 10085 09669 | 1.0000 10000 10000 1.0000 { 0.0000 80000 | 0 1000
MAPCS

* Additive penalty for model M; is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor




Table 5.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.2 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of Relative penalties Input vaiues for simuiated annealing ]
‘ penalty model Starting values of penalties Boundaries TRE™
M, | M, | M, | M, { Mean | SD r. | P 1P, s, o5, Vs 1y, B | um B
| Additive: All are 0.2690 0.4950 (0.5085 0.6305 04758 01507 0 0000 0.0000 0.0000
; Existing criteria | same
(Type 1)
Additive: Largest | 05570 04770 04560 05110 05002 00441 | 03764 05043 09540 | 00000 0O0OC 00000 00000 | 00000 80000 | 0.1000
Using log- MAPCS

likelihood with Smallesy | 0.5535 04760 04560 05150 Q0.5001 00432 Q 3767 0.5043 0.9144 0000¢ 10030 10000 20000 ¢.0000 8.0000 01000
SAO technique | SPof

APCS
(Type 2) Modal | 0.5570 04770 04560 05110 0.5002 0.0441 | 03764 05043 09540 | 00000 00000 00000 0.0000| 00000 80000 | 0.1000
— MAPCS
O N
& Median | 0.5570 04770 04560 05110 05002 00641 | 03768 05043 09540 | 00000 00000 0.0000 00000 | 00000  B.0000 | 01000
MAPCS
Multiplicative: | Largest | 0.5570 04770 04560 05110 05002 00441 10384 10517 11001 T 1.0000 1.0000 1.0000 10000 | 00000 20000 | 0.1000
Using mean MAPCS
squared error Smallest | 0.5535 04760 04560 05150 05001 00432 | 10384 10518  1.0957 | 1.0000 10000 10000 100F 00000 200000 | ©0.1000
with SAQ o
technique Modal | 0.5570 0.4770 0.4560 05110 05002 00441 | 10384 10517 11001 | 10000 10000 10000 10000 | 00000 20000 | 01000
(Type 3) MAPCS |
Median | 0.5535 04760 04560 05150 05001 00432 | 10384 10518 10957 | 10000 10000 10000 10000 | 00000 200000 | 01000
MAPCS i

* Additive penaity for mode! 2, is zero and multiplicative penalty for model M, 1s one
** TRF Temperature reduction factor
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Table 5.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of

models for sample size 50 for Design 5.2 together with relative penalty values and input values of SAQ technique,

Type of Criteria Average probabilities of correct selection of Relative penalties Input values for simulated annealing
penalty model Starting values of penaities Boundaries TRF
M, | M, | My [ M, { Mean | SD P, | P | P s, s, T s, T s IB | UB
Adaditive: Allare | 0.3360 05725 06275 07180 05635 0.1631 | 00000 00000  0.0000
Existing criteria | same
(Type 1)
Additive: Largest 0.6720 0.5275 0.5245 0.6165 05851 00719 05147 0.8774 106103 | 00000 0O00GO 0.0000 0.0000 -10,0000 10.0000 0.1000
Using log- MAPCS
likelihood with Smallest | 0.6465 05235 05420 0.6265 (5846 (.0609 05123 0.7462 0.8995 | 00000 10000 1.0000 2.0000 -2.0000 2.0000 0.0010
SAO technique ilgg;
(Typez) Modal 0.6720 0.5275 0.5245 0.6165 05851 00719 0.5147 0.8774 1.0103 | 0.0000 0.0000 00N000 0.0000 -10.0000 10.0000G 0.1000
MAPCS
Median 0.6685 0.5265 (0.5285 0.6165 05850 0.0697 05143 0.8476 1.0102 19560 19560 1.9560 1.9560 0.0000 8.0000 0.1000
MAPCS
Multiplicative: | Largest | 0.6720 0.5275 0.5245 06165 05851 0.0719 10208 1.0357 10412 [ 1.0000 10000 10000 1.0000 0.0000 1.0000 [ 01000
Using mean MAPCS
squared error | Smallest | 06510 0.5235 05420 06220 0.5846 00615 | 10207 10302 10386 | 39120 39120 39120 39120 | 00000 39120 | 00010
with SAO i[;g;
technique Modal | 06720 05275 05245 06165 05851 007191 10208 10357 10412 | 10000 10000 10000 10000 | 00000  1.0000 | ©.1000
(Type 3) MAPCS
Median 0.8720 0.5275 0.5245 0.6165 05851 (.0719 1.0208 1.0357 1.0412 1.0000 1.0000 1.0000 10000 0.0000 1.0000 0.1000
MAPCS

* Additive penalty for model M, is zero and muitiplicative penalty for model M, is one
** TRF Temperature reduction factor




Table 3.2¢ Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.2 together with relative penalty vatues and input values of SAO technique.

Type of Criteria Average probabilities of correct selection of | Relative penalties Input values for siinulated annealing
penaity model _ Starting valurs of penalties Boundaries TRF
M. | M. | M. | M, | Meun | SD Pp. I P | »p, s, | s 1 8 1 s, LB | UB

Additive: Allare | 0.4290 06575 07125 08180 06542 0.1643 | 0.0000 00000  0.0000

Existing criteria | same

(Type 1) i

Additive: Largest 0.5890 0.8320 06620 07370 06800 (G446 04189 06262 14782 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 0.1000

Using log- MAPCS

likelihood with Smallest | 0.6850 06320 06620 (0.737¢ 06800 0.0446 Q4189 0.6262 1.1782 G.0000 00000 00000 00000 0.0000 10.0000 0.1000

SAQ technique i?)g; 5

(Type 2) Modal 0.6890 /320 06620 07370 06800 00446 0 4189 0.6262 11782 | 00000 0O000 00000 0.0000 G.0000 16.0000 0.1000

= MAPCS
0o Median 06390 06320 06620 07370 06800 004486 0.4189 06262 1.1782 00000 00000 900000 ©.0000 0.0000 10.0000 01000

MAPCS

Multiplicative: | Largest | 06890 06320 06620 0.7370 06800 00446 | 10084 10126 10239 | 1.0000 10000 10060 10000 | 00000 10000 | 0.1000

Using mean MAPCS

squared error Smallest | 06900 06320 06620 07355 06799 (£.0440 1.0084 1.0126 1.0242 1.0000 20000 20000 30000 0.0000 10.0000 0.00%Q

with SAO i‘;é’;

technique Modal | 0.6890 06320 06620 07370 06800 00446 | 10086 10126 10239 | 10000 10000 10000 10000 | 00000 10000 | 0.1000

(Type 3) MAPCS
Median 06890 05320 06620 0.7370 0E&500 (0448 1.0084 1.0126 1.0239 1.0000 10000 10000 1.0000 0.00C0 1.0000 0.1000
MAPCS

* Additive penaity for model M; is zero and muliiphicative penalty for model M; 15 une
** TRF Temperature reduction factor
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Table 5.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.3 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of Relative penalties Input values for simulated annealing

penalty model Starting values of penalties Boundarnies TRE™
M | M, | M. | Mg [ Mean | SD Pe 1 P, | P S« LoSe | s | % LB | us

Additive: Allare | 0.5270 0.4030 03745 04785 04457 00697 | 00000  0.0000  0.0000

Existing criteria | same

(Type 1)

Additive: Largest 0.2440 03505 07285 07470 05175 0.2581 -3.4352 -3.7546 -0.5835 2.9957 29957 29957 29957 -4.0000 5.9915 0.0001

Using log- MAPCS ~

likelihood with | Smallest | 03310 03215 07410 06680 05154 02204 | -1.8554 -223i4 -03124 [ 00000 10000 10000 20000 | 00000  3.0000 | 0.0001
SAQ technique SD of

APCS
(Type 2) Modal | 0.2440 03505 07285 07470 05175 02581 | -34352 -37546 -05835 | 29957 20957 20957 29957 | -40000 50915 | 0.0001
MAPCS
Median | 0.2800 0.3510 07285 07095 05172 02349 | -3.4126 -3.7303 -0.4440 | 00000 10000 10000 20000 | -12.0000 12.0000 | 0.0100
. MAPCS
Multiplicative: | Largest | 0.2440 03510 0.7280 07470 05175 02579 | 0.7101 06879 09433 | 1.0000 20000 20000 30000 | 00000 48.0000 | 0.1000
Using mean MAPCS
squared error Smallest | 0.2800 0.3510 07285 07095 05172 02349 | 07131 06907 00566 | 44936 4.4936 44936 4.4936 | 00000 149787 | 00010
with SAO if:g;
"f’r‘:h"'%"e Modal | 0.2440 023510 07280 07470 05175 02579 1 07101  0.6879
(Type 3) MAPCS
Median | 02440 03265 07495 0.7485 05171 02699 | 07485  0.7209
MAPCS

* Additive penalty for model M is zero and multiplicative penaliy for model M« is one
** TRF Temperature reduction factor
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Table 5.3b Average probabilities, mean average probabilities and standard deviations of average proba*ilities of correct selection of
modeis for sample size 50 for Design 5.3 together with relative penalty values and input values - . 10 technique.

0L1

Type of Criteria Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing

penalty model Starting values of penalties Boundaries TRF"
Mc | M, UM T Mg [ Mean | SD P, 1 P 1 P S 1 S 108 | 8 g | us

Additive: Allare | 0.5820 0.5045 04295 0.4845 05007 0063! ) 00000 0.0000 00000

Existing criterta | same

(Type I)

Additive: Largest | 0.3945 0.3845 07400 0.7085 0.5569 01937 | -14966 -1.8183 -0.2936 | 39120 39120 39120 38120 0.0000 12,0000 { 0.1000

Using log- MAPCS

likelihood with Smallest | 0.4210 03885 0.7345 06815 05564 01769 -14294 -1.7417 -0.2272 39120 39120 39120 39120 0.0000 7.8240 0.1000
SAO technique SD of

APCS

(Type 2) Modal | 0.4190 03850 07450 06750 05560 01806 | -207iZ -230929 -0.2262 | 3.9120 39120 39120 39120 | -12.0000 12.0000 | 6.1000
MAPCS
Median 04190 0.3850 07450 Q6750 05560 0.1808 20712 -2.3929 -0.2262 390120 39120 38120 38120 -12.0000 12.0000 01000
MAPCS

Multiplicative: | Largest | 0.3945 03840 07405 07075 (5566 0.1938 | 09403 09283 09883 | 10000 10000 10000 10000 0.0000 1.0000 | 0.1000 |

Using mean MAPCS

squared ertor Smallest | 04130 0.3865 0.7485 06370 05463 01755 | 06784 06697 09918 | 1.0000 10000 10000 1.0000 0.0000 12.0000 | 0.0001

with SAO ol

‘?lfh“‘q}"e Modal | 0.4195 0.3850 0.7445 06755 05561 0.1804 { 09238 08120 08910 | 10000 10000 10000 10000 { 00000 10000 | 00001
Median | 0.4150 03900 07425 06670 05536 01775 08733 08624 09910 | 58680 58680 58680 58680 00000  $8680 [ 0.0001
MAPCS

——_— - [EOs N

* Additive penalty for mode! M« is zero and multiplicative penalty for model M« ts one
** TRF Temperature reduction factor
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Table 5.3c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of

models for sample size 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

Type of Criteria Average probabilities of correct sefection of Relative penalties’ Input values for simulated annealin |

pe ge p g -

penalty model Starting values of penalties Boundaries TRF

Ms | My M, | My [ Mean T SD pg P 1 Py Se_ b S 1 s, | 8 LB_| UB

Additive: Allare | 06230 06085 04785 05005 05526 00737 | 00000 00000  0.0000

Existing critenia | Same

(Type 1)

Additive: Largest | 04480 0.4490 08080 07330 06095 01884 ] -1.3048 -23262 -0.3119( 00000 0.0600 00000 00000 0.0000 100000 [ (0100

Using Tog- MAPCS

likelihood with | Smailest | 0.4515 04430 08075 07290 06093 01864 | -1.8037 22247 -0.3028 | 0.0000 10000 1.0000 20000 | 0.0000  3.0000 | 0.0010

SAQ technique i?)é’;

(Type 2) Modal | 0.4460 04500 0.8105 07300 06091 01889 | -3.3369 37578 -0.3118 | 00000 00000 00000 00000 | .40000  4.0000 | 0.1000
MAPCS
Median | 0.4460 0.4500 0.8105 07300 06091 0.1889 | -3.3369 .3.7578 -03118 | 0.0000 00000 00000 00000 -40000  4.0000 | 0.1000
MAPCS

Muftiplicative: | Largest | 04480 0.4490 08080 07330 06095 01884 | 09625 09544 09938 | 1.0000 20000 20000 30000 | 0000 12.0000 | 0.1000

Using mean MAPCS

squared error Smallest | 0.4580 04405 07970 07250 06051 0.1825 | 09825 09743 (09942 | 6.9078 69078 £9078 69078 | 00000  6.9078 | 0.0001

with SAO i[;é’g

technique Modal | 0.4400 0.4500 0.8095 07370 0.5097 01910 | 06507 09447 09935 | 1.0000 1.0000 10000 10000 | 00000  1.0000 | 0.0100
Median | 0.4575 0.4445 08025 07235 06070 0.1831 0.9757 09675 09942 { 10000 10000 1.0000 1.0000 | 0.0000 10000 | 0.000%
MAPCS |

* Additive penalty for modei Ms is zero and multiplicative penalty for model M« is one
** TRF Temperature reduction factor




Table 5.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.4 together with relative penalty values and input values of SAQ technique.

Type of f Criteria |  Average probabilities of correct selection of Relative penalties’ ) Input values for simoulated .inneniing
penaity model Starting values of penalties Boundaries TR
( Ms | Mg | M. | Mg | Mcan { SD Po L P | Sc 1S T os; | s LB | uB
Additive: ;Anm 0.3790 0.4805 0.5250 03840 0.4421 00724 | 00000 00000  0.000
Existing criteria | same
(Type 1)
Additive: Largest | 07265 03540 0.2700 04720 04806 01720 0.7617 08956 (04813 | 00000 00000 OO000 00000 | -12.0000 120000} 09000
Lsing log- MAPCS
likelihood with | Smallest | 0.6180 05120 0.3185 04710 04799 012411 02855  0.894C 04780 | 0.0000 0.0000 00000 00000 | -12.0000 120006 | 00100
SAQ technique AS\DP(?;
_ (Type 2) Modal | 07135 03755 03765 04560 0.4804 0.1589 | 06810 0.8592 05009 | 29957 24357 29957 29957 | -120000 12.0000 | 0.1000
~3 MAPCS
N Median | 07135 03755 0.3765 04560 04804 0.1599 | 06810 08592 05009 ' 29957 29957 28957 29957 | -120000 120000 { Q1000
MAPCS .
Maultiplicative: | Largest | 0.7265 03540 03700 04720 04806 01720 | 1.079¢ 10936 10492 | 10006 20000 20000 30000 ] 00000 48.0000 | 0.1000
Using mean MAPCS _
squared error Smellest | 0.6805 04285 0.3400 04715 04801 01444 | 10513 10847 10502 | 10000 10060 10000 10000 0.0000  20.0000 ; ©0.0010
with SAO i[;&f;
techaique Modal | 0.7135 03755 03776 04555 04805 01597 | 10702 10894  1.0514 | 1.0000 10000 10000 10000 | 00000 200000 | 0.1000
(Type 3) MAPCS
Mcdian | 0.7135 03755 0.3775 0.4555 04805 01597 | 10702 10894 10534 ! 10000 10000 10000 1.0000 00000 20.0000 | 0.1000
MAPCS
[ o —— L. —

* Additive penalty for model M« is zero and multiplicative penalty for model M« is one
** TEF Temperature reduction factor
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Table 5.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.4 together with relative penalty values and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of _‘r Relative penalties’ _ Input vafues for simulated annealing
penaity model Starting values of penalties Boundaries TR¥
L il L Mg | M: | My [ Mean ] SD Pe P ] S 1 s 1 8- | S | B ] us
Additive: All are 04155 05910 0.6380 04610 05264 0§.1052 0.0000 0.0000 0.0000
Existing criteria | same "
(Type 1)
Additive: Largest | 0.7005 05455 04435 06305 05800 01109 | 05450 0.9479 02884 | 0.0000 0.0000 00000 00000 0.0000  10.0000 | 0.1000 |
Using log- MAPCS

likelihood with | Smallest | 0.6945 5510 0.4440 06300 05799 01079 | 05265 09294 02819 | 00000 10000 10000 20000 | 00000 30000 | ©.1000
SAO technique | S0 Of

APCS
(Type 2) Modal | 07025 0.5400 04465 06300 05797 01109 | 05604 09389 (2902 | 39120 39120 39120 39120 [ -12.0000 120000 | 00010
MAPCS
Median | 07025 05400 04465 06300 05797 01109 | 05604 0.9389 02902 | 39120 39120 3.9120 39120 | -120000 120000 | 0.0010
MAPCS
Multiplicative: | Largest | 07005 0545 04440 06305 05800 0.1107 | 10220 10385  1.0114 | 1.0000 1.6000 1.0000 10006 00000 10.0000 | 0.1000
Using mean MAPCS .
squared error Smallest | 0.6965 05500 04435 06295 05799 01089 | 10214 15381 10115 | 58680 58680 68680 5.8680 00000 195601 | 0.1000
with SAO f\';gg |
fechnique Modal | 0.6965 05500 04435 06295 05799 0.1088 | 10214 10381 10115 | 58680 58580 58680 53680 | 00000 19.5601 | 01000
(Type 3) MAPCS j
Median | 07330 05715 04195 05950 05797 0.1284 | 10213 10492 1024 | 58680 5868 58680 58680 00000 469443 | 01000
MAPCS

- —L — Jp—

* Addituve penalty for model M« is zero and multiphicative penalty for model M- is one
** TRF Temperature reduction factor
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Table 5.4c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.4 together with relative penalty vaiues and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of | Relative penalties’ Input values for simulated annealing
penalty model Starting values of penalties Boundaries | TRE
M. | M, | M. | My | Mcan [ SD r, e 1y, S Se s; I s¢ 1iB | uB
Additive: Allare | 05130 0.0520 07370 05780 06200 00965 | 00000 0000¢  0.0000
Existing criteria { same
(Type 1)
Additive: Largest | 0.7805 06545 05480 0.7465 06824 0.1042 05510 12144 05141 | 00000 10000 10000 20000 | -10.0000 10.0000 | 0.1000
Using log- MAPCS
likelib >od with Smallest | 6.7675% 0.6450 0.5580 07540 06814 00983 0.5513 1.0794 0.4080 ;: 00000 00000 00000 O0.0000 0.0000 10.0000 0.1000
SAOQ technique i“;é’;
)]
(_Typc 2 Modal 0.7785 (0.6545 05495 07455 06823 0.1030 05467 1.2017 0.5117 | 4.0000 0.0000 00000 0.0000 0.0000 4.0000 0.1000
MAPCS
Median 0.7795 0AR545 05495 (0.7455 06823 0.103C 0.5467 1.2017 0.5117 00000 00060 Q.0000 0.0000 0.0000 4.0000 0.1000
MAPLS
—_— . S -]
Multiplicative: | Lar-cst | 07805 06545 05480 07465 06824 01042 | 10111 10246 11103 59078 69078 6.9078 69078 00000 138155 ] 0.1000
tsisig mearn MAPCS
squarcd error Smallest | C.7805 0.6450 05705 07290 06813 00925 1011t 1.0218 1.0103 69078 69078 G778 69078 0.0000 6.9078 0.0001
with SAO i‘gg;
technique Modal 0.7795 06550 05485 0.7460 06823 0.1035 1.0110 1.0245 1.0103 1.0000 20000 20000 30000 0.0000 12.0000 01000
{Type 3) MAPCS
Median | 0.7795 06550 05485 07460 0.6823 0.1035 10110 1.0245 1.0103 | 10000 20000 20000 3.0000 0.0000  12.0000 0.1000
MAPCS |

* Additive penalty for model Ms is zero and multiplicative penalty for mode) Ms is one
** TRF Temperature reduction factor



Table 5.5a Average probabilities, me2n average probabilities and stancard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.5 together with relative penalty values : #d input values of SAQ technique.

_Type of Criteria Average probabilitics of correct selection of Relative pénaliies' | Input vatues for simulated caaealing
penalty L model - _ Starting values of penaltics Boundaries TRE
M | Mp | My 1T M; | Mem | SD P | Py P, So | S 1 Sy | s, 1 1B | uB _
Additive- Allare | 08410 N.3770 04650 0.3950 04695 01205 | 00006 00005  ©.0000 1
Existing criteria | same
(Type 1) |
!
. -—_ 4 —_ .- —_
Additive: Largest | 03690 08670 06530 009180 07343 ¢ 05ah | 52063 07590  -2.2686 | 00000 (000 00000 00000 | 00000 100000 | 01000
Using log- | MAPCS
likelihood wit™ Smallest | 0.3725 09855 06623 0.906C 0.7316 02760 -3.9370 -0.7641 -2 0906 00000 00000 GO000 0.0000 4.Q000 4 0000 0.1000
SAQ technique i‘; é‘g
(Type 2) Viodal | 03680 L.2.°0 ©6530 09180 07343 02845 52089 .0.7590 22686 | 00000 00000 00000 00030 | 00000 170000 ) 01000
b MAPCS
= M,
Lh Median 03695 CC985 06530 09180 07340 02838 4 2027 Q.7.95 -2 2689 44936 44936 44936 44936 0.0000 59915 0.0100
L MAPCS . R _ e ]
Muiﬁplicative: Largcsl 03090 09970 06R3C 09180 07343 (02845 35873 0.9270 07970 , 10000 YGOLO  1.60C0  1.0000 0.0000 16000 0.1000
Using mean MAPCS
squared errol Smallest | 23766 <9970 36460 09165 Q7339 02819 ll 1.5935 0.9310 QBG12 l 10000 1.000C  1.0000 1.0000 0.0000 10.0000 v. 1000
with SAQ i‘;c"é i | )
; | T t
technique Modal . 0.369C 09970 0.6530 09180 07343 02645 i 05873 09270 07970 | 10C00 10000 10000 10000 [ 00CO0  1.0000 | ©.1000
(Tvpe 3) MAPCS ;'
Mediar | 03690 09070 6830 091  ..7343 028451 05873 09270 7970 | 10000 10000 10000 1.0000 | 00000  1.0000 | 0.1000
MAPCS | } !

* Additive penalty for model Mo 1s zero and multiphicauve peraity for model My is one
** TR~ Temperature. ceduciion facior
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Table 5.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.5 together with relative penalty velues and input values of SAQ technique.

Type of Criteria Average probabilities of correct selection of Relative penaities Input values for simulated annealing
penalty model | Starting values of penalties Boundaries TRF
Mo | My | My | Mg | Mean | SD Po | Py | P So | S | Sy | 8g 1B | UB
Additive: Allare | 07685 04010 04955 04365 05254 01667 | 00000 00000  0.0000
Existing criteria | same
(Type 1)
Additive: Largest | 05175 09990 08325 009490 08245 02162 | 48874 -12990 26135 | D.0000 10000 10000 2000 | 0.0000 10.0000 | 0.0100
Using log- MAPCS
likelihood with | Smallest | 05330 0.9935 08095 0960C 08243 02099 | -39153 -10541 -27323 | 0.0000 00000 00000 0000C { 00000  4.0000 | 0.1000
SAQ technique igg;
(Type 2) Modal | 0.5175 09920 08325 09490 08245 02152 48874 -12130 -26135 | 00000 1.0000 10000 20000 | 00000 10.0000 | 0.0100
MAPCS
tedian | 05175 09990 08325 09490 08245 02162 | 48874 -1.2190 -26135| 00000 10000 1.0000 20000 | 00000 10.0000 | 00100
MAPCS
Multiplicative: | Largest | 05175 09990 08325 09495 08246 02163 | 0822¢ 09523 09002 | 10000 1.0000 1.0000 10000 | 0.0000 1.0000 T 90,1000 |
Using mean MAPCE
squared error Smallest | 0.5185 09935 08330 09540 08242 (2162 | 08488 (09523 08981 | 10000 20000 20000 30000 ; 00000 10.0000 | 0.000%
with SAO SA?,(;‘; ;
b I
technique Modal | 0.5175 09990 08325 09495 08246 02163 | 08220 09523 02002 | 10000 10000 10000 10000 | 00000 10000 | 0.1000
{Type 3) !
MAPCS -f
Mcdian | 0.5175 09990 08325 09495 08246 02162 i 08220 09523 0.9002i 10003 10000 10000 10000 | 00000 10000 | ©1000
MAPCS .

* Auditive penalty for re 731 My 15 zero and multiplicative penalty for model M. s ope
** TRF Temperature reduction factor




Tabie 5.5¢ Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.5 together with relative penalty values and input values of SAQ) technique.

Type of Criteria Average probabilitics of correct selection of |  Rekative penslties. Input values for simulated annealing .

penalty model Starting values of penalties Boundaries TRF
My | Mp | My | M; [ Mean | SD P 1 Py ! Py So 1 S | Sy [ S LB [ U8 |

Additive: Allarc [ 08505 04350 05005 04495 0558¢ 0.1964 | 0u000 00000 00000

Existing criteria | Same

(Type 1)

Additive: Largest 0.6480 0.9985 0.871C 09830 08751 01617 | 53640 .12130 30750 | 0.0000 0.0000 00000 €.0000 | 0.0000 100000 | 000U

Using log- MAPCS

likelihood with Srnaflest | 0.6530 09845 08785 09685 08711 0.1527 -24805 -1.2128  -25651 | 0.0000 1.0000 1.0000 2.0000 0.0000 4.0000 0.0010

. SD of
SA b
O tech:ique APCS

N _
(Type 2 Modal ] 06480 0399R5 08710 (9830 08751 01617 | -53640 -1.2130 30750 | 00000 00000 00000 00000 | 00000 10.0000 | 0.1000
= MAPCS
) Median | 0.6480 09985 08710 00830 08751 01617 | -53640 -1.2130 -30750 | 00000 00000 0.0000 00000 | 00000 10.0000 | 0.1000
MAPCS |
Multiplicative: | Lurgest | 06480 00985 08710 08830 08751 01617 | 08378 09760 09403 | 10000 10000 10000 10000 | ©.0000 10000 | 01000
Using mean MAPCS o
squared error | Smallest | 06520 09985 08760 09715 08745 01574 | 08964 00766 09474 | 92103 92103 92103 92103 | 00000  $2103 [ 00100
with SAQ i[;é’;
technique Modal | 06480 09985 08710 09830 08&70° 01617 ' 08978 09760 09403 | 10000 10000 10000 10000 | 00000  1.0000 | 0.1000
(Type 3) MAPCS '
Median | 0.6480 09985 0.8710 00830 08751 01617 | 08973 09760 09403 | 10000 10000 10000 1.0000 | 00000  1.0000 ! 01000
MAPCS 1

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor
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Table 5.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.6 together with relative penalty values and input values of SAQO technique.

Type of Criteria Average probabilities of correct selection of Relative penalties Input values for simulated annealing IR
penalty madel Startung values of penalties Boundaries TRE
My | My oM, | Mcan | SD Po_1 Py 1 P So | S L oSy | sy LB | Ub

Additive: Allare | 04295 08030 04520 C4ci( 0.4869 00787 | 00000 00000 00000
Existing criteria | sam¢

1 {Type )
Additive: Largest 4.8290 (02640 (05340 06330 35650 02351 1.652¢ 0.6531 0.5078 | 00000 G.0000 00000 0.0000 -4 0000 4.0000 0.1000
Using log- MAPCS

likelihood with Smaliest | 0.8275 03400 04670 05915 0.5640 0.2040 1.2607 0.7286 0.5748 0.0000 10R00Q 1.0000 20000 -10.0000 10.0000 0.0100
SAQ technique | SPof

APCS
(Type 2) Modal | 0.8290 0.2640 05340 06330 05650 02351 | 16520 06531 05078 | 0.0000 0.0000 00000 00000 | -40000 40000 | 01000
MAPCS
Median | 08265 0.2580 05360 06390 05643 023731 16989 06420 04384 | 00000 10000 10000 20000 | -10.0000 10.0000 | 00010
MAPCS
Maultiplicative: | Largest | 0.8290 0.2640 0.5340 06330 05650 02351 ; 11766  1.0675 10521 | 1.0000 2.0000 £.0000 3.0000 0.0000  10.0000 | 0.1000 |
Using mean MAPCS 1
squared error | Smallest | 0.8370 03280 (05140 05775 05641 02105 11434 10755 10657 | 10000 10000 10000 10000 | 00000  10.0000 | 0.0010
with SAQ o
‘?I_Ch"'%"c Modal | G.8290 02640 05340 06330 05650 02351 | 11796  1.0675  1.0521 | 1.0000 20000 20000 30000 | 00000 10.0000 | 0.1000
(Type 3) MAPCS
Median | 0.8265 02580 05360 06390 05649 02373 | 1.1851 10663 10500 ; 59915 59915 59915 59915 | 00000 11.9829 | 00010
MAPCS

* Additive penalty for model Mo is zero and multiplicative penalty for model My is one
** TRF Temperature yeduction factor




Table 5.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 5¢ {or Design 5.6 together with relative penalty values and input values of SAQ technique.

' Type of Criteria Average probabilities of correct selection of Relative penalties‘ Input values for simulated annealing
. . A . . (1]
penalty model . Starting values of penalties Boundaries IRF
Mo | My | My | M, | Mew | SD Po_ i Pu 1 Pg So | S 1 Sy | Sp LB__ | UuB
Additive: All are 05380 0.6960 0.5555 05520 (5849 00746 0.0000 0.0000 0.0000
Existing criteria | same
(Type 1)
Additive: Largest | 0.8325 04160 06895 07950 06583 01936 | 13174 05771 01042 | 00006 00000 00000 0.0000 | -4.0000 40000 ] 0.1000
Using log- MAPCS
Likelihood with | Smaflest | 0.8285 04225 05925 07855 06573 01871 | 1.2521 05440 0.1041 | 58680 58680 58680 58680 | -10.0000 10.0000 | 00010
SAO technique i‘; CO;
(Type 2) Modal | 0.8340 04180 05835 07965 06580 01943 | 13200 06113 01041 | 0.0000 00000 00000 0.0000 | -16.0000 16.0000 | 0.0010
S MAPCS {
o Median | 0.8340 0.4180 05835 07965 06580 01943 | 13200 06113 01041 | 00000 00000 00000 00000 | -16.0000 160000 | 00010
MAPCS i L
Multiplicative: | largest | 0.8325 04160 05895 07950 06583 01936 0541 10233 10042 | 10000 20000 20000 3.0000 0.0000  10.0000 | 01000
Using mean MAPCS
squared error Smallest | 07900 O.445C 06430 07305 06544 01523 | 10404 10113 10042 | 10000 10000 1.0000 1.0000 0.0000 160000 | 00100
with SAO i'g(_?‘;
:;Ch“'q;e Modal | 0.6325 04160 05895 07950 06583 0.1936 | 10541 10233  1.0042 | 10000 20000 2.0000 3.0000 | 00000 10.0000 | 01000
ype 3) MAPCS
Median | 0.8325 04150 05895 07950 D6583 01936 10541 10233 10042 | 10000 20000 20000 3.0000 0.0000  10.0000 | 0.1000
MAPCS

* Additive penalty for model M, is zero and multiplicative penaliy for model My is one
** TRF Temperature reduction factor
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Table 5.6¢c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.6 together with relative penalty values and input values of SAQ technique,

Type of Criteria Average probabilities of correct selection of Relative penalties Input values for simulated annealing |
penalty model Starting values of penalties Boundaries TRF
Mo | My | My | My | Mean | SD | Py | Py | Py So 1 S | Sy 1 85 L8_|_UB
Additive: Allare | 0.6290 0.7505 06785 06565 06786 00520 | 00000 0.0000  0.0000
Existing criteria | same
(Type 1)
Additive: Largest | 0.9270 05510 07080 07890 07438 0.1571 1.4753 08747 06798 | 00000 00000 0.0000 00000 | 00000 10.0000 | 0.1000
Using log- MAPCS
likelihood with | Smallest | 0.8945 065670 0.7345 07760 07430 0.1355 | 1706 05862 04886 | 00000 00000 00000 00000 | 00000 40000 | 00100
SAO tr “nique ilggg '
(Type 2, Modal | 09270 0.5510 0.7080 0.7890 0.7438 0.1571 | 1.4753 08747 06798 | 0.0000 0.0000 0.0000 ©.0000 [ 90000  10.0000 | 0.1000
MAPCS
Median 0.8005 0.5090 0.7440 0.8200 07434 (.1o88 1.5228 0.5904 04183 [ 00000 00000 00000 0.0000 0.0000 16.0000 0.1000
MAPCS
Muitiplicative: | Largest | 0.9270 05610 07080 07890 07438 0.157%| 10300 10177 106137 | 10000 10000 10000 10000 | 00000 100000 | 01000
Using mean MAPCS
squared error Smallest | ©0.8935 05670 0.7350 G.7765 07430 0.1352 1.0235 1.0116 1.0097 . 92103 92103 92103 92143 0.0000  18.4207 0.0100
with SAO el
technique Modal | 08930 05085 07445 08210 07432 01687 | 1.0308 10116 10082 | 1.0000 1.0000 10000 10000 | 00000 100000 | 0.0001
(Type 3) MAPCS
Median 08990 05085 0.7445 0.8210 07432 0.1687 1.0308 1.0148 1.0082 1.0000 10000 1.0000 1.0000 0.0000 10.0000 0.0001
MAPCS

* Additive penalty for model M, is zero and multiplvwcative penalty for mode!l Mo is one
** TRF Temperature reduction factor




CHAPTER 6

EQUAL PROBABILITIES OF CORRECT SELECTION:
A CONSTRAINED MINIMISATION OF VARIATION
AMONG THE AVERAGE PROBABILITIES OF
CORRECT SELECTION

6.1 INTRODUCTION

In the previous three chapters, we mainly concentrated on the maximisation of the
mean average probabslity of cowmect selection (MAPCS), using our proposed
technique used in Chapter 3 and the SAO technique used in Chapter 4 and Chapter 5.
In Chapter 3. we presented the generaliased form of the penalty function of six
existing 1C and a technique of maximisation of the MAPCS. In Chapter 4 and
Chapter S, we presented two different types of penalties: additive penalties with
maximised log-iikelithood and multiplicative penalties with mean squared error; and
applied thc SAO technique to maximise the MAPCS. We¢ conducted several
simutation experiments with different sets of data and competing models 10 evaluate
the performance of both types of penalties with the SAO technique. It was observer?
that the MAPCS obtainey Irom these techniques were alway: higher th n those of the
existing criteria. Unfortunately like the existing criteriz, the average probabilities of

correct selection (APCS) for each model ure uneven across differcat models for both
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tvpes of penalues, aithough in some cases the vanation among the APCS is much
less than that of existing criteria. But a desirable property of a good model selection
procedure should be that it selects the best mode] without tavouring one model over
the others. i.e. the APCS of each competing model when 1t is the true mode] should
be equal. Our goal is to choose the penalty in such a way that none of the competing
models 1s favoured over the others unknowingly. In the luerature. this 1echnique is
called controlling the probabilities of correct selection. (see for example King er al.
(1995} and Forbes er «f. (1995)). This chapter is concermed with controlling the

APCS 1n linear regression settings.

Forbes ¢r al. (1995) proposed three techntques for controlling the probabihity of
correct selection of one model over the others. Thev showed that Tor the vanable
selection problem. the relative penalty of any two competing models can be
expressed as a function of the percentile of the /7 distnbation and they called this
penalty function FIC. Their second method is also for variable seiection purposes and
is based on quasi-maximum hkelihcod functions. They showed that in this case the
penajty function could be expressed approximately as a function of a y; 1andom
vartable. Their third method gives the penalties that aim io control the probability of

correct sei.ction but are approximate penailties for general model selection problems.

The problem with using the above methods is that the penalty function is fixed

(function of F distribution or #; distribution) for a particular sample size and

182
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number of free parameters, and the form of log-likelihood function has no impact on
its value. Also, when the models are equi-dimensional, the 1mpact of these penalties
in selecting the true model 1s null. King er ai. (1995) proposed 1two approaches for
controfiing the probability of correct selection (PCS) of models and gave an
algorithm for calculating the penalties. which control the PCS. Their first approach is
based on the idea of a common model. but there are two problems with this approach.
Firstly, there may not be a common model among the competing models. Secondly.
when the competing models are nested, then there i1s no fixed rule for setting the
sclection probabilities and 1t 1s left 1o the user’s arbitrary chotce. Obviously different
users may then come to ditferent conclusions for the sume data set and set of
competing models. Their second method 1s based on a representative fixed points
approach. They proposed two techniques for selecting representative fixed pomt
models. Their first technique entirely depends on the judgement of the user. while the
second technique depends on the idea of a common model. which may not exist in ail
situations. They argued that it is possible to control probabilities of correct selection,
though their approach has some limitations as mentioned earlier. Our objective in
this chapter i3 to develop a technique of selecting the true maodel by controlling the
APCS in such a way that each competing model has an equal chance on average of

being selected.

The organisation of this chapter is as follows. In Section 6.2 we discuss the issue of

making the APCS equal and propose a new method of selecting penalties which
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makes the APCS equal when the number of parameters in the competing models are
unequal and equal. Section 6.3 contmr: the descriptions of the Monte Carlo
experiments and results of these expenments when competing models have an
unequal number of parameters. Section 6.4 contains the description of the simulation
experiments and the results of these expernimerits when competing models are equi-

dimensional. The final section contains some concluding remarks.

6.2 PROPOSED METHOD OF MINIMISATION OF
VARIATION AMONG THE APCS

In this section we propose a method of choosing the penalties in an IC based model
selection procedure so that the variation among the APCS of each model is as small
as possible. Theoretically, our main objective 1s to make the APCS of each model
equal and tt will happen if the vanation among the APCS of models is zero.
Numerically it the variation among the APCS of each model 1s close to zero, it may

be believed that the estimated APCS of the models are nearly equal.

As noied 1n the previous chapter. in almost all IC based model selection procedures,

the j” model will be selected if

(L,B,.62)=p,)>(L(B.61)=p)Vi.i=1 2. (j=1). (j+ D, . (6.1)

or,

Elq,<E’q Vi,i=12,.,(-1,G+D...m (6.2)
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where p; is the additive penalty. L (8 .67} is the maximised log-likelihood
function. B, and&> are the maximum likelihood estimaors of £ ando’.
respectively. ¢, is the multiplicative penalty and t 1$ the mean squared error for

the j" model.

in equation (6.1), L,(Zi_,.&:,),Vj,j =L 2...m andin(6.2), E. Vi j=1L2...m is
known. Our main objective is 10 find the penalties p, and c,r_:.Vj“;': L2....m in
such a way that the average probabilities of correctly choosing the j* model and the
i” models are equal. i.c.

APCS of the j/ model = APCS of the i model. Vj#i i j=1.2....,m.(6.3)
or approximately cqual. i.e.

APCS of the j" model = APCS of the i™ model. Vj#i i j=1.2...., m(6.4)

In other words, equation (6.3) will be true if the variation among the APCS of the j*
model, Vi, j=1 2.....m, 18 zero and (6.4) will be true if the vanation among the
APCS of the ;" model, Vj,j=1, 2.....,m, is cleae to zero. The literature on model

selection shows that for an IC based model selection procedure, none of the existing
penalties can satisfy these equations. This is because some IC tavour the model with
the smallest number of parameiers, while others favour the model with the largest

number of paramcters, as a result the APCS of different models are uneven in al
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situations. For example. BIC alwavs favours the model with the smallest number of
parameters. while RBAR favours the model with the largest number of parameters.
Also from our simulation studies, it 1s apparent that the APCS of different models
obtained from the existing critena are far from equal. The MAPCS obtained from our
proposed additive and multiplicative penalties with the SAO techrique in Chapter 4
and Chapter 5 are higher than those of the existing criteria. But the APCS of modeis
are generally unequal. though in some cases the varianon among the APCS of
different models is much less compared to that tor the existing IC. So. in ouder Elo
select the true model without favouring one model over the others. we need a set of
penaltics which satisfy equation (6.3) ideally or (6.4) to a reasonable extent. We used
standard devietion (SD) among the APCS of the models as a measure of variation
and applicd the SAQ wechnique to find penalties for a particular data set and set of
competing models with the objective that the SD among the APCS of the models be

the mmimum.

The APCS when the the j model, M. is true, is defined in Chapter 3 as

APCS, = EIP(CSIM .0, )] = [(0,)¢(0,)d8,j = 1. 2....om.

where g(();) is the weighting density function of the vector of parameters @,. Thus

the mean of the average probability of correct selection will be

Ll

Y E[P(CS|M,.0,) iAPCSJ
MAPCS = 2= =L

nt m
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Then the standard deviation (SD) among the APCS . j =1 2.....m_can be wniten

as

"

(APCS, - MAPCS)

SD(APCS) = E{APCS - MAPCS) = -

"
which is our objective function to be mimimised. In Chapter 3 we explained how
APCS can be estimaled using the Monte Carlo method with the objective that
MAPCS is maximised. Here we apply the same techmque but insicad of maxinmising

the MAPCS here we minimised the SD(APCS) among the APCS.

We used additive penalties  with maxsmised  log-likelihood  functions  and
multiplicative penatiies with mean squared error to compute penalties for a particular

data set, which satisfy equation (6.3) or (6.4).

6.3 MINIMISATION OF VARIATION AMONG THE APCS FOR
MODELS OF UNEQUAL NUMBER OF PARAMETERS

In this section, we have applied the method of minimisation of variation among the
APCS. discussed in Section 6.2 with the models of an unequal number of parameters
in the competing models in a linear regression setting. The purpose of tkis section is
to cvaluate the performance of the mcthod proposed in Section 6.2 over the existing
1C and the methods of maximising MAPCS discussed in the Section 4.2 and 4.3, We
conducted simulation experiments 1o provide numerical evidence of the performance

of the proposed method, and 10 compare this method with the existing IC and the
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methods discussed in Chapter 4. The designs for our simulation expenments are
discussed in Section 6.3.1. In Section 6.3.2 we compare the sitmulation results of this
proposed method with the results for the exisung IC and the methods discussed in the

Section 4.2 and 4.3.

6.3.1 THE DESIGNS OF THE MONTE CARLO SIMULATION EXPERIMENTS

Simulation experiments were conducted to evaluate the performance of the techmque
of minimisation of variation among the APCS with the models of an unequal number
of paramcicers. The same designs used in Section 4.4 were used for the present
simulation expenments. The models used for the present study are also the same
models used in Chapter 3. The same data gencrating process discussed 1 Section
.21 was also employed here. The inital parameter sets {or the SAO technigue for
this chapter are the same imtial parameter sets used with the addiive and
multiplicative penalties in Chapter 4. The main reason for using the same models.
designs. data generating process and snitial parameter values is 1o compare the results
of these simulation experiments with the simulation results of the methods discussed

in Chapter 4.

6.3.2 RESULTS OF THE MONTE CARLO EXPERIMENTS

The results of the simulation experiments are presented in two series of 1ables, Tables
6G.1a to 6.6a and Tables 6.1b to 6.6b. Each table represents three methods of

computing penalties. These are: method 1, existing IC: method 2, maximistion of
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MAPCS: and method 3. minimisation of standard deviduon {SD) umong the APCS.
We called the penaltes of method I. Tvpe 1 penaltics. In method 2. we have two
types of penalties. the additive penalty with maximised log-bkelihood. and the
multiphcatve penalty with mean squared error. In Chapier 4. we cailed these
penalties Type 2 and Type 3 penaluces. respectively. In method 3. we also have two
tvpes of penalties. addiive penalties with maximised log-likehhood functions, and
multiplicative penalties with mean squared error. Let us call these penalties Type @
and Type S penalties. respectively. In Table 6.1a 10 6.6a. we presented the Jargest
MAPCS obtained using the above mentioned five tvpes of penaities and. in Tuables
6.1b 10 6.6b, we presented the MAPCS coresponding to the smallest varation
among the APCS obtained using Type 1 10 Type 5 penaiues. Comparative studies of
Tvpe | and Type 2 penalties, Tvpe 1 and Type 3 penalties. and Tvpe 2 and Tyvpe 2
penalties were given i Sections 4.5, 4.5.2 and 4.5.3 of Chapter 4, respecuvely.
Simulation results show that MACPS obtained using method 2 (Type 2 and Type 3
penalties) are always large with high variation among the APCS, as compared to
method 3 (Type 4 and Type 5 penalties). Therefore. here we will present a
comparative study of Type 1 and Type 4 penalues, Type | and Type S penalties. and

Type 4 and Type 5 penalties.

6.3.2.1 COMPARISON OF TYPE 1 AND TYPE 4 PENALTIES

The largest MAPCS obtained from Type 1 to Type 5 penaltics along with APCS,

standard deviation (SD) among the APCS and the penalties for Designs 4.1 0 4.6 are
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presented in Table 6.1a to 6.6a. Tables 6.1b to 6.6b contuin the APCS and MAPCS
with the smallest vanation among the APCS along with SD and penalties obtained

from Tvype 1 10 Type 5 penalues for Designs 4.1 10 4.6, respectively.

The simulation results show that, in six out of 18 experiments {s1x designs times
three sampie sizes). the largest MAPCS obtained from Type 4 penaities is larger than
those of BIC (the largest MAPCS among the existing critenia for_all designs and
sample sizes). The mean. maximum and mmimum gamn of the MAPCS from these
six expeniments over BIC are 57, 9.2 and 2.7 percent, respectively (Table
6.1a~ 6.6b). In the remaining 12 experiments. the largest MAPCS are less than those
of BIC and the mean, maximum and minimum loss from these 12 experiments over
BIC are 6.0. 12.8 and 0.6 percent. respectively, 10 is well estabhished that BIC alwavs
favours models with a smaller number of parameters. so the APCS of the model with
the largest number of parameters is generally much less compared to the APCS of the
model with the smallest number of parameters. Conscquently the vanation among the
APCS is high for BIC and in ali designs and sample sizes the vanation among the
APCS obtained from Type 4 penaities is smaller than that of BIC. There are eight

experiments, where there 1s no vanability among the APCS obtained from Type 4

penalties, i.e. the APCS of the models are exactly equal.

Simulation results show that in 72 percent (13 out of 18) experiments, the MAPCS

corresponding (o the smatlest vartation among the APCS obtained from using Type 4
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penalties are higher than those of the MAPCS with the smallest vanation among the
APCS of the exisung IC. In the other experiments. the numericad values of APCS are
verv close 10 those of the exasting IC (Tables 6.1b - 6.6b) with the smallest vanation
among the APCS. Among the existing cnitena. RBAR and AIC are the dominant
criteria. which produce the smallest vanation among the APCS. RBAR produces the
jowest variation among the APCS i eight experiments. while AlIC produces the
ic west variation among the APCS in seven experiments. Among the existing IC.
there i1s no experiment where the vamaton among the APCS s zero, .i.e. in the
existing cniteria there are no experiments which produce equal APCS. But in 89
percent (16 out of 18) of the experiments with a Type 4 penalty, the variaion among

the APCS is zcro, 1.e. the APCS of the competing models are equal.

It is observed from the simulation results that the largest MAPCS obtained from the
existing IC are generally larger than those of the MAPCS corresponding to the
smallest vartation among the APCS obtained from Type 4 penalties. But there are
three expenments with Type 4 penalties, where \he MAPCS corresponding to the
smallest vanation among the APCS is higher than those of the largest MAPCS
obtzined from the existing IC (here that of BIC). But in most of the experiments the
vartaion among the APCS is zero or very close to zero. when we consider the
MAPCS corresponding to the smallest vanation among the APCS with Type 4
penalties. This means that the APCS obtained using the smallest variation among the

APCS with Type 4 penalties are equal. The average, maximum and minimum gains
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of MAPCS corresponding 10 the smullest vanation among the APCS with Tvpe 4
penalties over BIC from these three cxperiments are 3.7. 6.9 and 1 i percent.
respeclively. The mean. maximum and munmimum josses of MAPCS from the
remaining 15 experiments over BIC are 6.6, 12.0 und 1.2 percent. respectively. This
implies that. if we use the MAPCS corresponding to the smallest variation among the
APCS with a Tvpe 4 penalty 10 select the true mode!l. then on average there is a
chance of losing approximately six percent 1n MAPCS compared to the largest
MAPCS among the existing IC. But the big gain of using this tcchniduc 1s that none
of the models is unduly favoured and the APCS of models 1s cqual, i.e. there 1s no

variation among the APCS of the competing models.

6.3.2.2 COMPARISON OF TYPE 1 AND TYPE § PENALTIES

The MAPCS obtained from Type 5 penalties are also presented in Tables 6.1a—- 6.6a
and Tables 6.1b - 6.6b. From the simulation experiments, it is observed that 1in seven
out of 18 experiments the largest MAPCS obtained using Type S penalties are farger
than those of the largest MAPCS from the extsting criteria (here that of BIC). The
mean, maximum and minimum gain of MAPCS obtained from using Type 5
penaltics from these seven experiments over BIC are 5.2, 9.1 and 1.2 percent and the
losses of MAPCS obtained from using Type 5 penalties from the rematning eleven
experiments over BIC are 5.7, 11.6 and 1.0 percent, respectively. But in all
cxperniments, the vanations among the APCS obtained from Type 5 penalties are

smaller than the variations among the APCS obtained from using BIC. It was
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observed in the previous section that all of the existing critena produce some
vanation i APCS. But there are five experiments with Tvpe 5 penalties. where the
variations among the APCS are clos¢ 10 zero. 1.e. the APCS of the competing models

are almosl equal.

The simulation results demonstrate that in 56 percent of the experiments (ten out of
18). the MAPCS corresponding 10 the smaliest vanation among the APCS obtained
from Type 5 penalties are higher than those of the MAPCS with the smallest
vanation among the APCS of the existing criteria. As noted in the previous section.
among the existing critenia, RBAR and AIC produce the smallest variation among the
APCS in 44 and 39 percent of the experiments. respectively. In 67 percent of the
experiments (12 out of 18), 1118 observed that there 15 no variation among the APCS.
1.e. APCS are equal. when we used Type 5 penalties and the smallest variation
among the APCS. But for the existing criteria. none of the experiments produces

equal APCS.

The simulation results demonstrate that the largest MAPCS obtained from the
existing IC are generally larger than those of the MAPCS obtained using Type §
penalties. But in three eaperiments. the largest MAPCS obtained from Type 1
penaitics are smatler than the MAPCS corresponding to the smallest variation among
the APCS obtained from using Type 5 penaities. The average, maximum and

minimum gains of MAPCS from these three experiments over BIC (the largest
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MAPCS among the exisuing IC) are 3.5. 7.0 and 1.2 percent. respectively. The mean.
maximum and minimum losses of MAPCS obtained from using Type 5 penalties
from the remaining 15 expeniments are 6.1, 12.0 and 1.2 percent. respectively. But in
all experiments, the smallest variations among the APCS obtained from using Type 5
penalties zre zero or close to zero. implying that the APCS are equal or close to

equal.

6.3.2.3 COMPARISON OF TYPE 4 AND TYPE 5 PENALTIES

From the simulation results we presented in Section 6.3.2.2, 1t 15 u{;purem that the
fargest MAPCS obtained using Type 4 and Type § penalties are very similar for all
designs and sample sizes. However. there are some exceptions where Type 5
penalties produced marginally higher MAPCS than those of Type 4 penalties. In
fourlecn out of 18 experiments (three sample sizes across six designs). the variations
among the APCS arc higher when using Type 5 penalues compared 1o using Type 4
penalties, when we consider the largest MAPCS. But in 17 out of 18 experiments, the
variation among the APCS obtained from using Type 5 penalties is lower than that
obtained from the largest MAPCS of the existing criteria. The differences of
variaticn between Type 1 and Type 5 penalties are larger than those of Type | and
Type 4 penalties as the variation among APCS obtained from using Type 5 penalties

is higher than that when using Type 4 penalties.
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In 67 percent of the experiments (twelve out of 18). the MAPCS corresponding to the
smallest variation among the APCS of competing models obtained using Type 5
penalties are the same as those obtained from using Tvpe 4 penalties. In other
experiments, the MAPCS obtained from using Type S penalies are very similar (o

those obtained from using Type 4 penaities.

6.4 MINIMISATION OF VARIATION AMONG THE APCS FOR
MODELS OF EQUAL NUMBER OF PARAMETERS

In Section 6.3, we discussed the issue of minimisation of variation among the APCS
of the models. when the competing models have an unequal number of parameters. In
this section, we investigate the special case of an equal number of parameters among
the competing models. We consider this special case because for the exisung 1C,
when the competing models have the same number of parameters. there s no need 1o
use any penalty because the pen-ities cancel out. Thus, the problem reduces to
selecting the mode! with the largest maximised log-likelihood because all existing
penaity functions are a function of sample size and number of free parameters. In
Chapter 5, we have shown that the application of the SAO 1echnique with two
different types of penaltiecs (additive with maximised log-tikelihood and
multiplicative with mean squared error) has a great effect on selecting the true model
with higher MAPC3, when the competing models have an equal number of
parameters. It is also shown that the penalties which maximise the MAPCS are not

zero although the competing models have the same number of parameters. But like
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the existing criteria. the APCS of modcls obtained using the SAQ techmque with
these penalties are not equal and sometimes far from equal. So here we apply the idea
of Section 6.2 to find the MAPCS with the objective that the vanation among the
APCS is as small as possible; essentially, our goal is to make the vanation zero or
close to zero. We apply the SAO technique 1o find the penalties in such a way that
the SD among the APCS is the mimimum. We compare these results with those
obtained using the methods discussed in Sections 4.2 and 4.3, and the existing cited

criteria are presented in Section 5.3 of Chapter 5.

The plan of this section 18 as follows. In Section 6.4.1. we discuss the design o1 the

stmulation experiments, while the simulation results are reported in Section 6.4.2.

6.4.1 THE DESIGNS OF THE MONTE CARLO SIMULATION EXPERIMENTS

The purpose of the simulation experiments of this section is to evaluate the
performance of the tecchmque discussed in Section 6.2, when the competing modets
have the same number of parameters to be estimated. The same designs used in
Chapter 5 are used here to compule the MAPCS with the objective of minimisation
of SD among the APCS. We used the same models. data generating processes and
the initial parameter values for the SAO technique used in Chapter 5 for our present
study. The rcason for keeping everything the same for the simulation experiments, is
to compare the results of these experiments with those obtained using the methods

discussed in Chapter S.
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6.4.2 RESULTS OF THE MONTE CARLO EXPERIMENTS

Like Section 6.3, this section also contains two series of tables. The series “a” contamn
the largest MAPCS obtained using Tvpe 1 to Type S penalties. while series b’
contain the MAPCS corresponding to the smallest vananon among the APCS
obtained using Tvpe I 10 Type S penalues. The results of these expenments are
presented tn Tables 6.7a to 6.12a and Tables 6.7b 1o 6.12b. respectively. In cach
table, there are three methods and five penalty tvpes as mentioned 1n Section 6.3.2. A
comparative study of Type | and Type 2 penaltics. Tvpe 1 and Tvpe 3 penalties, and
Tvpe 2 and Type 2 penalties was given i Sections 531, S32 and 533
respectively. Simulation results show that MACPS obtined using Tyvpe 4 and Type S
penalties are always smaller with zero or close to zero vanation among the APCS
compared to Type 2 and Type 3 penalues, respectively. Therefore, in this section we
will present the comparative study of Type 1 and Type 4 penalties. Type 1 and Type

S penalties, and Type 4 and Tvpe S penalties.

6.4.2.1 COMPARISON OF TYPE 1 AND TYPE 4 PENALTIES

In this section, our concern i1s with competing models with an equal number of
parameters in linear regression settings. As mentioned earlier, in this situation the
MAPCS and APCS obtained trom all the exisung 1C are the same and the relative
penatties are zero. But the MAPCS with minimum SD among the APCS obtained
from using Type 4 penalties are different; and relative penalties are different from

zero in all designs and sample sizes. We mentioned earlier that the MAPCS obtained
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using Tvpe 2 and Type 3 penaities are always higher than those obtained from using
Tvpe 1 penalties. i.e. from the exisung IC with sometimes higher varation among the
APCS compared to Type | penalties. Here the MAPCS obtained from using Type 4
penalties are also always higher than those for Type 1 penaluies for all designs and
sample sizes and with smaller vanation among the APCS. But the MAPCS obtained
from using Tvpe 4 penalties are always less than those of Tyvpe 2 ponalties with less
variauon among the APCS. and tn most cascs the variation among the APCS are zero
or close t¢ zero. which implies that the APCS of different competing models are

equal.

For Design 5.1, in respect 1o all sample sizes and combinations of initial parameters,
the MAPCS obtained from Type 4 penaltics are always higher than those of Type 1
penaftics with less vanation among the APCS compared to the existing criteria
(Tabie 6.7a). The largest MAPCS obtained from using Type 4 penatties are 9.7, 13.1
and 15.1 percent higher than those of existing 1C with 33.6. 44.8 and 54.5 percent
less variability among the APCS for the saumple sizes 20, 50 and 100. respectively.
We mentioned earlier that all existing critenia are the same when selecting from the
competing models that have the same number of parameters, so the largest MAPCS
obtained from the existing IC, is the same as that obtained with the smallest variation
among the APCS. For n = 20, 50 and 100, the MAPCS with the smallest variation
among the APCS obtained using Type 4 penalties are 6.4, 9.2 and 12.4 percent higher

than those of the existing criteria with 45.5, 54.5 and 59.6 percent less variability
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among the APCS (Table 6.7b). The gaps between the largest MAPCS and smallest
MAPCS obtained from using Tvpe 4 penalties are small and the smallest MAPCS is
always higher than that of the existing 1C. For n = 20, 50 and 100. the smallest
MAPCS obtained using Type 4 penaities are 6.4, 9.2 and 12.4 percent higher than
those of the existing 1C with 45.5. 54.1 and 56.6 less vanabihiy aong the APCS.

respectively.

For Design 5.2, the largest MAPCS obtained from using Type 4 penalties are 3.2, 3.1
and 2.9 percent higher with 99.7. 96.0 and 8§7.8 percent smaller vanation among the
APCS than those of existing criteria {for sample sizes 20, 50 and 100. respectively
(Table 6.84). For n = 20. 50 and 100. the MAPCS with the smallest variation among
the APCS obtained using Tvpe 4 penalties are 4.0. 3.0 and 2.2 percent higher than
those of the existing criteria. respectively (Tahle 6.8b). For all sample sizes, there is
no vartation among the APCS. which implies that the APCS of the different models
are exactly equal. The MAPCS obtained from using Type 2 penalties and Type 3
penalties arc very close to those obtained from using Type 4 penalties. The smallest
MAPCS obtained using Type 4 penalties are 3.1, 3.0 and 1.5 percent higher than
those obtained from the existing criteria with no variation among the APCS for

sample sizes 20, 50 and 100, respectively.

For Design 5.3, the largest MAPCS obtained using Type 4 penalties for the sample

sizes 20, 50 and 100 are 14.0, 6.9 and 6.1 percent higher than those of the existing
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criteria. with 63.3, 82.1 and 77.2 percent less varability among the APCS than those
of the existing criteria. respectively (Table 6.9a). It is interesting to note that for all
sample sizes. the MAPCS obtained using Type 2 and Tvpe 3 penalties are higher than
those obtained from using the existing criteria and are very close 1o those obtained
from using Tvpe 4 penalues. But the varianon among the APCS for Type 2 penalties
and Type 3 penalties are higher than those obtained from Type | penaliies. and even
higher than those obtained from using Type 4 penalties. The MAPCS with the
smallest vanation among the APCS obtained using Tvpe 4 penalties are 10.6, 5.8 and
4.0 percent higher than those obtained from using Type 4 penalties for # = 20. 50 and
100. respectively (Table 6.9b). The variation among the APCS obtained using Type 4
penalties is zero for 1 = 50 and almost zero for the other two sample sizes, This
implics that the APCS of the ditterent models are cqual. The MAPCS with the
stnallest variation among the APCS obtained from using Type 2 and Type 3 penalties
are higher than those obtained {rom the existing criterna and close to those obtained
from using Type 4 penalues. But the vanatons among the APCS obtained using
Type 2 penaities and Type 3 penaltes are always higher than those obtained from
using the existing criteria and are much higher than that obtained {from using Type 4
penalties. In this design there are 13.55, 8.93 and 29.8 percent of the cases where

MAPCS is less than that of the existing criteria for # = 20. 50 and 100, respectively,

For Design 5.4, the largest MAPCS obtained using Type 4 penalties are 4.6, 5.9 and

7.0 percent higher than those obtained from the existing criteria (Table 6.1 1a). The
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variability among the APCS obtained from using Type 4 penalties are almost zero for
n = 20 and 50. and 74.5 percent less than that of the existing criterta for the sample
size 100. The largest MAPCS with the smallest vanation among the APCS obtained
using Type 4 penalties are 4.5. 5.8 and 6.4 percent higher than those obtained from
the existing cniteria (Table 6.10b). The vanations among the APCS obtained using
Type 4 penalties are zero for all sample sizes. which indicates the APCS of the
different models are exactly equal. The MAPCS with smallest vanation obtained
using Type 2 penalties and Type 3 penaliies are higher than those obtained irom the
existing criteria and are marginally higher than those obtained from using Type 4
penalues. But the vanation among the APCS is the least for Type 4 penalties
compared to Type 2 penalties. Tvpe 3 penalties and the existing cniteria. The smallest
MAPCS obtained vusing Tvpe 4 penalties are 4.4, 5.8 and 6.0 percent higher than
those obtained using the exisuing criteria with 99.6. 100 and 94.8 percent less

variation among the APCS for sample sizes 20, 50 and 100, respectively.

For Design 5.5. the largest MAPCS and the MAPCS corresponding to the smallest
variation among the APCS obtained using Type 4 penalties are the same for all
sample sizes and are 20.0, 29.1 and 35.6 percent higher than those obtained from the
existing criteria for n = 20, 50 and 100. respectively (Tables 6.11a and 6.11b). The
variations among the APCS obtained using Type 4 penalties are equal to zero for all
sample stzes, implying that the APCS of the models are equal. The MAPCS obtained

using Type 2 penalties and Type 3 penaltics are bigger than those obtained from
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using Tvpe 4 penalties. but the vartation among the APCS obtained from using Type
2 penalties and Type 3 penalties are also large compared 10 those of Tvpe 4 penalties.
The smallest MAPCS obtained using Type 4 penalties are 20.0. 28.8 and 35.3 percent
higher than those obtained using the existing criteria with 100, 98.2 and 98.9 percent
less varation among the APCS for sample sizes 20, 50 and 100. respecuively.

Like for Design 5.5, for Design 5.6, the largest MAPCS and the MAPCS with the
smallest vanation among the APCS obtained using Type 4 penalues are the same for
all sample s1zes, and are 6.7. 5.1 and 3.8 percent higher than those obtained from the
existing critena for n = 20, 50 and 100, respecuvely (Table 6.12a, 6.12b). The
varialions among the APCS obtained using Type 4 penalues are equal to zero for all
sample sizes. which implies that the APCS of the different models are equal. The
MAPCS obtained using Type 2 and Tvpe 3 penaluies are larger than those obtained
from using Type 4 penalties. but the variation among the APCS obtained from Type
2 and Type 3 penalties are also large compared to those for Type 4 penalties. The
smallest MAPCS obtained using Type 4 penalties are 6.7, 5.0 and 3.7 percent higher
than those obtained using the existing criteria with 99.2, 100, 98.9 percemt less

variation among the APCS for sample sizes 20, 50 and 100, respectively.

6.4.2.2 COMPARISON OF TYPE 4 AND TYPE 5 PENALTIES

In this section, we compare the MAPCS and the varation among the APCS of

models chosen using Type 4 penalties and Type 5 penalties. Simulation results
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demonstrate that in 33 percent of the experiments. the largest MAPCS and the
variation among the APCS of models chosen using Type 4 penalues and Type 5
penalties are exactly equal and in other experiments these values are very close
(Tables 6.7a to 6.12b). In 67 percent of the experiments. the MAPCS obtained using
the smallest variation among the APCS and the variation among the APCS are
exactly equal and in the remaining experiments these values are very close. This
means that there is no significant effect of the tyvpe of penalties on the estimated
MAPCS of the model and the variation among the APCS of the competing models.
So ermther of the penalty types can be used with the SAO techmque to estimate the
MAPCS to select the true model from a set of equi-dimensional competing

alternative models.

6.4.2.3 COMPARISON OF TYPE 1 AND TYPE 5 PENALTIES

1018 apparent from the results of Secton 0.4.2.2 that the MAPCS and the vananon
among the APCS obtained using Type 4 and Type 5 penalues are similar for almost
all designs and sample sizes. So the comparison between Type 1 and Type S penaities
is very simitlar 1o the comparison between Type 1 and Type 4 penalties given in

Section 6.4.2.1.

6.5 CONCLUDY -:i: BRELREARLS

The purpose of this .. »ie (2 vevelop a technique 10 select the correct model

from a set of competing w. rnative models of both unequal and equal numbers of
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parameters. in such a way that all competing models have an equal chance of being
selecled. Here we applied the SAO techmque 10 find the penalues to select the
correct model. with the objective that the vanation among the APCS of the different
models is as small as possible. We used SD among the APCS as a measure of
variation and applied the SAQ technique 1o find the minimum value of the SD, 1o

determine the penalties to select the correct model.

The results of the simulation expertments for competing models with an unequal
number of parameters show that in six out of 18 experiments, the MAPCS is on
average 5.7 percent higher than the largest MAPCS obtained using the existing
criieria (here BIC). while for the remaining expenments, MAPCS 1s on average 6.0
percent Jower compared 10 that of the existing criteria. But i all experiments the
vanation among the APCS wotained ficm Type 4 and Type 5 penalties are less than

that of BIC.

In 13 out of 18 experiments, the MAPCS corresponding to the smallest vanation
among the APCS are higher than those obtained from the corresponding lowest
variation among the APCS in the existing IC (here RBAR and AIC). From the results
of the simulation experiments, it is evident that if the MAPCS corresponding to the
smallest vanation among the APCS is usced to select the best model, then, on average
MAPCS is approximately six percent lower than the largest MAPCS in the existing

1C (here, that of BIC). Generally, for the existing criteria, the APCS of the competing
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models are far from equal, but the APCS obtained using Type 4 and Tvpe 5 penalties

are often equal or close to equal, which is the best feature of this technique.

The simulation results demonstrate that for models with an equal number of
parameters in 100 percent of the combinations of initial parameter values for the
SAQ technique. the MAPCS obtained from using Type 4 and Type 5 penalues are
higher than those of the existing IC for al: designs with an exception of Design 5.3,
where these figures were on average &7 and 83 percent for Type 4 and Tvpe 5
penalties, respectively. For all designs except for Design 5.3, and in 100 percem of
the combinations of initial parameter values for the SAO technique, the varations
among the APCS obtained from using Type 4 and Type 5 penalties are less than
those obtained from the exisung cnitenia. For Design 5.3 these figures are on average
92 and 88 percent for Type 4 and Type 5 penalties. respectively. There are three
experiments with Type 4 penalties and four experiments with Type 5 penalties,
where the APCS are equal in 100 percemt of the combinations of initial parameter

sets for the SAO technique.

It is apparent from the simulation results that for a particular sample size and design,
the MAPCS obtained from the diiferent combinations of initial parameter values for
the SAO technique are very similar. in five out of six designs and for three different
sample sizes, the MAPCS and variation among the APCS obtained using different

initial parameter values are almost equal. This indicates that the MAFCS obtained
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from using Type 4 and Type 5 penalties are generally insensitive 10 the initial
parameter values of the SAO technique. From our simulation results. it may be
concluded that the MAPCS obtained from Type 4 and Tvpe 5 penalties will always
be higher than those of the existing critenia with no vanation among the APCS or
variation among the APCS close to zero. This means that for equi-dimensional
competing alternative models, the appiication of the SAO technique with Type 4 or
Type 5 penalues is the best way of selecting the true model without favouring any of

the competing models.
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Table 6.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes

20, 50 and 100 for Design 4.1 together with reiative penalty values and input values of SAQ technique.

Method Penalty type Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing
model Starting values of penatties | Boundaries  [TRF™
M, | M. | M, ' M. [ Mean | SD po [ops 1o, s, [ 8 T oso ] s LB UB
Sample size = 20
Existing IC Type | (BIC) 0.8225 0.8815 0.1150 0.1345 0.4884 0.4206 1.4979 1.49879  2.9957
Maximisation of | Type 2 0.6245 05435 04550 05080 05328 0.0712) 13.0759 0.4638 13.4040) 00000 1.4979 14579 29957 -12.0000 12.0000, 0.0VG0
MAPCS Type 3 06485 05400 0.4325 05120 0.5333 0.0893! 3.1681 09959 3.0906; 1.0000 1.0000 1.0000 1.0000 0.0000 2.0000) 0.1000
Minimisation of | Type 4 0.5300 0.527¢ 05300 05210 05270 0.0042] 13.8227 03070 14.1300| 0.0000 1.4979 1.4979 20957 -12.0000 12.0000; 0.0001
SD among Type 5 0.5315 0.5245 0.5320 0.5230 05278 0.0047 32600 09768 21741 10000 20000 20000 3.0000 0.0000 12.0000; 0.1000
APCS _
Sample size = §0
Existing 1C Type 1 (BIC) 09260 09450 0.2840 00800 (0.5587 0.4430 1.9560 19560 3.9120 . L
Maximisation of | Type 2 08770 05170 05935 05285 06290 0.1687; B9402 1.2482 92081 0.0000 ©0.0000 0.0000 0.0000| ¢.UCCO 12.0000] 0.1000
MAPCS Type 3 08770 0.5290 05930 0.5145 06284 0.1692 1.6936 10293 1.6774| 1.0000 10000 1.0000 1.0000 0.0000 1.0000| 0.1000
Minimisation of | Type 4 06765 0.5185 07185 05270 0610° 0.1024| 92764 05157 05453| 0.0000 1.0000 1.0000 20000| 0.0000 12.0000]| 0.0100
SD among Type 5 0.6795 0$.5280 07150 05155 06095 0.1025 1.1903 1.0001 1.1788] 1.0000 2.0000 2.0000 3.0000 0.0000 16.0000| 0.0100
APCS N
Sample size = 100
Existing | { Type | (BIC) 094895 098580 05190 ~ 2095 0.6590 03631 230256 23026  4.6052
Maximisation of | Type 2 0.9340 0.7990 07380 4835 0.7336 0.1978] 152409 17396 16.0419] 0.0000 0.0000 0.0000 0.C000| -12.0000 12.0000! Q1000
MAPCS Type 3 0.9365 0.8040 0.7355 0.4570 0.7332 0.2022 1.2291 1.0257 1.2366| 2.3026 46052 46052 689078 0.0000 23.0300[ 01000
Minimisation of |Type 4 0.7515 0.6320 08375 05955 07041 G111 65959 (06777 659833 0.0000 272026 23026 4.6052] -10.0000 1000007 0.0001
igé?ong Type 5 0.7415 06305 0.8415 05980 07029 0.1110 1.3866 1.003¢% 1.3831] 1.0000 2.0000 2.0000 23.0000 0.0000 12.0000! 0.1000

* Additive penaity for model M, is zero and multiplicative penalty for model M, is one

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaltics with maximised log-likelihood function
Type 3 and Type 5 are muluplicative penalties with mean squared error
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Table 6.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.1 together with relative penalty values and input values of SAQ

technique.
Method Penalty type Average probabilities of correct selection of Relative penalties Input values for simulated annealing
model Starting values of penalties Boundaries |[TRF
M, | M, M, M. | Mcan | SD SR s, [ s T s, T s LB | uB

Sample size = 20
Existing IC Type | (RBAR) | 04710 0.6790 02195 03695 04347 0.1928; 05407 05407 1.1123 )
Maximisation of | Type 2 05535 05440 04845 G5080 05225 00320| 26281 03685 29563 0.0000 10000 10000 20000] 00000 3.0000] 0.1000
MAPCS Type 3 05845 0.5460 04940 05055 (.5325 0.0412] 22897 09852 22352 1.0000 10000 1.0000 1.0000 0.0000 1.000C! G.1000
Minimisation of | Type 4 05220 0.5220 05225 05220 05221 00002] 37796 03072 4.0844] 00000 10000 1.0000 2.0000{ -10.0000 10.000!| 00010
SD among Typej 0.5215 0.5235 05220 0.5240 05228 092012 1.3312 049768 1.2960( 1.0000 10000 1.0000 1.0000 0.0000 10.0000{ ©.1000
APCS

Sample size = 50
Existing IC Type | (RBAR) | 0.5145 06660 03070 03660 04634 0.1608] 05155 05155 10418
Maximisation of | Type 2 0.7765 05180 06275 05275 06124 1.1201] 26381 08357 2.9068| 0.0000 0.0000 00000 000007 ©0.0000 3.0000) 0.0100
MAPCS Type 3 0.8730 05290 05910 05145 0.6269 0.1674i 1.1923 10294  1,18091 1.9560 3.9120 39120 58680 0.000C 195601 0.0010
Minimisation of | Type 4 05225 05225 06225 05225 05225 0.000C] 0.8311 04552 1.1062| 0.0000 0.0000 0.0000 00000 ©0.0000 3.0000| 0.1000
SD among Type 5 0.5205 05205 05205 05205 05205 0.0000f 10126 090975 1.0025{ 1.0000 10000 1.0000 1.0000! 0.0000 14.0000! 0.1000
APCS 1

Sample size = 100
Existing IC Type | (RBAR) 0.5380 06835 0.4825 05435 (05644 (0004 05076 05076 1.0204
Maximisation of { Type 2 0.8450 0.7530 G6.7405 05040 07106 0.1454| 23308 1.1204 2.9778: 0.0000 00000 0.0000 0.0000 0.0000 3.0000| 0.0010
MAPCS Type 3 0.9365 0.7850 0.7355 (4745 0.7329 Q.1923| 3.7588 10257 37764] 23026 46052 4.6052 6.9078 0.0000 13.8155| 0.0010
Minimisation of Type 4 06095 08085 06035 (6095 06095 00000; 09096 0.5489 1.2657] 0.0000 0.0000 0.0000 ©0.0000 0.0000 10.0000) 0.1000
SD among T)([JCS 0.6005 0.6095 06095 06085 06095 0.0000] 10081 10009 1.0050| 1.0000 1.C000 1.0000¢ 1.0000 0.0000 1000G{ Q.1000
APCS :'

* Additive penalty for model M, is zero and multiplicative penalty for model M;1s one

** TRF Temperature reduction factor

Type 2 and Type 4 are additive penalties with maximised log-likeiithood function
Type 3 and Type 3 are multiplicative penalties with mean squared error
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Table 6.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 96 for Design 4.2 together with relative penalty values and input values of SAQ technigue.

Method Penalty type | Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing

model Starting values of penalties Boundaries | TRF™

M, | M, | M. ] M. I Mean | SD PPl ps S 1 & s, ] s 18 ] uB
Sample size = 20
Existing 1C Type 1 (BIC) | 07970 0.6850 0.3485 01700 05001 02911] 14979 14979 29957 |
Maximisation of | Type 2 0.8015 0.7255 0.3975 01095 05085 0.3186] 16079 1314C 36832 0.0000 00000 0.0000 0.0000! -12.0000 12.0000| 0.1000]
MAPCS Type 3 08015 07255 03975 0.1095 05085 031486¢( 11125 10804 12930; 14979 29957 29957 44936 00000 149790 0.1000
Minimisation of | Type 4 0.4400 04400 04400 04400 04400 00000| 06965 04446 09954 0.0000 00000 0.0000 0.0000] 0.0000 10.0000{ ©.1000
SD among Type 5 0.5320 0.3830 0.5615 0.3400 0.4541 0.1091] 1.0963 0.9898 1.0629| 1.4979 29957 29957 4.4936] 00000 4.4940| 0.0100
APCS
Sample size = 50
Existing IC Type 1 (BIC) | 0.9095 0.8830 07100 0.4530 07389 0.2101] 19560 19560 39120 }
Maximisation of | Type 2 0.9745 08650 0.7185 04210 07448 0.2400] 33296 28476 52849 00000 0.0000 00000 00000] ©0.0000 12.0000] 0.1000
MAPCS _{Type3 0.9745 08650 0.7185 04210 0.7448 02400| 11164 10978 1.1852| 1.0000 1.0000 10000 1.0000] 00000 2.0000] 0.1000
Minimisation of iT!iEe" ] 08530 06530 06555 0.6505 06530 0.0020{ 09932 07299 15666| 00000 19560 19560 39120] 00000 58680 0.0001
SD among Type 5 0.6530 06530 0.6555 06505 06530 00020| 10193 1.0087 1.0212] 1.5560 39120 3.9120 58680 00000 19.5600( 0.0001
APCS | t
o Sample size = 96 _

Existing IC Type | (BIC) 0.9390 09445 0.9160 08255 09083 00552, 22822 22822 45643 N
Maximisation of { Type 2 09940 (9330 09550 07920 09235 Q.0897( 47801 41070 7.6732) 00000 00000 00000 ©.0000 -4.0000 40000 0.tQ00
MAPCS Type 3 09940 09530 069550 07920 0.98235 00897, 10931 10778 1.1486| 1.0000 20000 20000 3.0000 0.0000 480000 0.0100
Minimisation of | Type 4 0.8650 0.8650 08650 08645 08649 000021 16006 14843 29093| 00000 00000 00000 0O0O00| -40000 4.0000] 09000
SD among Types 0.8650 0.8650 0.8650 08645 08649 0.0002 1.0230 10206 1.0401. 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000( 0.1000
APCS - - B I—

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different

methods for sample sizes 20, 50 and 96 for Design 4.2 together with relative penalty values and input values of SAQO technique.

Method Penalty type Average probabilities of correct sefection of Relative penaltics’ Input values for simulated annealing
model Starting values of penaltics Boundaries | TRF
M, | M. M, M; | Mcan | SD P, P, [P s, 1os, |, Ss L.B Us

Sample size = 20
Existing IC Type | (RBAR) | 04505 05775 04190 03785 04564 00860 05407 05407 1.1123
Maximisation of | Type 2 0.7940 06075 0.3635 02465 0.5029 02455, 15974 1314t 25162, 0.0000 1.0000 1.0000 2.0000| 00000 3.0000| 0.0001
MAPCS Type 3 0.8015 0.7255 0.3975 0.1095 0.5085 0.31B§_|_1,1125 1.0804  1.2930} 14979 29957 29957 44936 0.0000 1497901 0.1000
Minimisation of | Type 4 0.4400 04400 04400 0.4400 04400 0.0000| 0.6065 04446 09954 0.0000 00000 00000 00000 0.0000 10.0000| 0.1000
SD among Type 5 0.4400 0.4400 0.4400 0.4400 0.4400 0.0000| 1.0158 0.9905 0.9885) 1.0000 1.0000 1.0000 1.0000) 0.0000 1.0000| 0.1000
APCS {

Sample size = 50
Existing IC Type 1 (AIC) 07190 07780 06655 0.5925 06887 0.0789] 1.0000 1.0000 20000 1
Maximisation of { Type 2 08680 08165 06640 05460 0.7289 0.144R; 17732 16949 2.9996) 0.0000 (.0000 0.0000 0.0000| 0.0000 3.0000{ 0.00t0
MAPCS Type 3 0.9635 0(.8740 (6785 0.460C 07440 0.223‘51 1.0922 10988 1.155%( 1.0000 1.0000 1.0000 1.0000)| ©.0CD00 12.0000; 0.0001
Minimisation of |Type 4 0.6520 06520 0.6520 06520 06520 0.0000| 09815 07386 1.5528| 0.0000 0.00C0 0.0000 0.0000] 0.0000 12.0000| 0.1000]
SD among TypeS 0.6520 0.6520 0.6520 0.6520 0.6520 0.0000 10188 1.0090 10206 1.0000 1.0000 1.0000 1.0000! 0.0000 1.00001 0.1000
APCS

Sample size = 96
Existing IC Type | (JIC) 0.8375 0.8745 08535 08625 08585 0.0154] 13951 13951 27928 T
Maximisation of | Type 2 0.8650 0.8805 0.8820 08600 0.8719 0.0110] 15598 1.4537 299971 0.0000 Q.0000 0.0000 0.0000] 0.0000 3.0000] 0.1000
MAPCS Type 3 09970 0.9395 0.9480 08070 0.9229 0.0813; 11118 10960 11569, 10000 2.0000 20000 3.0000; 0.0000 48.0000! 0.0001
Minimisation of | Type 4 0.8645 0.8645 08645 08645 08645 0.0000| 15924 14832 28994] G.0000 00000 0.0000 00000| 00000 3.0000] 0 1000
SD among Types 0.8645 0.8645 0.8645 08645 0.8645 O0O0000] 10229 90205 1.0399) 1.0060 1.0000 10000 1.0000) 0.0000 3.0000; 0.1000
APCS

* Additive penaity for model M, is zero and multiplicative penalty for model M; is one

** TRF Temperature reduction factor

Type 2 and Type 4 are additive penalties with maximised log-hkelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.3 together with relative penalty values and input values of SAQ technique.

Method Penalty type | Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing
model Starting values of penalties Boundaries | TRF™
M, | M. | M, M: | Mcan | SD P TR s, | & T s 1 s tB | uB L
Sample size = 20
Existing IC Type | (BIC) | 07815 06210 05750 04205 065995 0.1486] 14979 14979 29957
Maximisation of | Type 2 0.8740 05745 05590 04110 06046 0.1941| 21992 18608 36479 00000 00000 0.0000 0.0000] 0.0000 12.0000] 0.1000
MAPCS Type 3 0.8740 0.5745 05590 0.4110 0.6046 01941 1.1806 11412 12887 1.0000 1.0000 1.0000 1.0000] 0.0000 10.0000} 0.1000
Minimisation of | Type 4 0.5605 0.5605 05605 05605 05605 00000] 08391 07869 15818 00000 00000 0.0000 0.000C| 0.0000 10.0000| 0.1000
SD among Type 5 05605 05605 05605 05610 0.5606 00003] 10300 1.0249 10476| 523460 29957 2.9957 44936] 0.0000 89870 0.0001
APCS
Sample size = 50
Existing IC Type | (BIC) | 08985 07660 06980 05605 0.7308 0.1408; 19560 1.9560 3.9120 .
Maximisation of |Type 2 0.8C60 0.7665 0.7035 05560 0.7330 0.1452]| 20229 18573 40287, 00000 Q.0000 0.0000 0.0000{ 0.0000 10.0000| Q.1000
 MAPCS Type 3 0.9065 07665 07035 05560 07331 0.1454] 1.0624 10503 11271 1.0000 20000 20000 30000) 0.0000 10.0000| ©.1000
Minimisation of | Type 4 06760 06760 06755 0.6730 06759 00003 10194 08441 184131 0.0000 1956) 19560 39120 00000 58680| 0.0001
SDamong Type 5 0.7510 06510 0827¢ 05465 06933 01219 1.1105 10087 $.1363| 169521 2.0000 20000 3.0000| 0.0000 27.0000! (.0001
APCS . e
Sample size = 10
Existing IC Type | (BIC) | 09315 08325 07580 06375 07839 0.12407 23026 2.3026 46052 ]
Maximisation of | Type 2 0.8905 06330 08165 06305 07926 0.1126] 2.1758 15387 4267Y6| 00000 GQ00G 0.0000 Q.0000| O.0000 12.0000; G1000
MAPCS Type 3 08950 08320 0.8175 06270 0.7929 0.1156| 1.0350 1.0213 1.0692| 1.0000 1.0000 1.0000 1.0000| 00000 100000| 0.1000
Minimisation of | Type 4 0.7465 0.7465 07465 0.7465 07465 00000] 1.2720 10431 22346 00000 00000 0.0000 0.0000( 00000 100600| G.1000
SD agmng Type 5 07790 07330 0.8735 068465 0.7580 0.0946 1.05t4 1.0058 1.0663] 195147 2.0000 2.0000 3.0000] 0.0000 27.0000| 0.0010
APC i

* Additive penalty for madet M, is zero and multiplicative penalty for model M; s one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function

Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 5¢ and 100 for Design 4.3 together with relative penalty values and input values of SAQ

technique.
Method Penalty type | Average prebabilities of correct selection of Relative pem:llliee‘.T Input values for simulated annealing
model Starting values of penaities Boundaries | TRI
M, 1 M, M, M. | Mean | SD P. P, 1 P S, S, S, S 1B | up
Sample size = 20
Exjsgmg_!(: Type ! (AIC) 0.6355 05995 05725 05085 05790 0.0536 1.000G 1.0000 2.0000
Maximisation of { Type 2 0.8000 06100 05330 04590 06005 0.1466 1.5052 16540 28529 0.0000 Q.0000 00000 0.0000{ 0.0000 30000 0.0100
MAPCS Type 3 ] 08315 05915 05590 04330 06038 0.1665 1.1389 11221 1.23291 1.0000 20000 20000 3.0000] O.0000 4B.C0O00( 0.00t0
Minimisation of _Tmezi . 0.5605 05605 05605 0.5605 0.5605 0.0000| 08391 07869 15818 0.0000 00000 00000 O0.0000) 0.0000 10.0000/ 0.1000
SD among Type 5 1.5605 05605 05605 0.5605 05605 0.0000 1.0303 1.0249 10481, 09747 10000 1.0000 1.0000| 0©.0000 10.0000] 0.1000
APCS | _
Sample size = 50
Existing IC Type | (AIC) | 0.7050 0.7140 06610 06610 06853 060282] 10000 10000 20000 T
Maximisation of | Type 2 0.8005 0.7780 07010 0.5930 0.7181 00937 13051 14416 29445] 00000 00000 00000 00000 00000 3.0000{ 0.1000
MAPCS Type 3 09015 07630 0.7075 05590 0.7328 0.1417 10624 1.0568 1.1244 1.0000 1.0000 10000 1.0000| 00000 36.0000{ 0.0001
Minimisation of | Type 4 06755 06755 06755 06755 06755 00000| 10207 08426 18425 00000 00000 00000 O0000| 0.0000 10.0000| 6.1600]
SD among Type § 06755 06755 0.6755 06755 06755 0.0000 10202 10132 1.0325] 0.9523 1.0000 1.0000 10000 00000 1.0000( 01000
APCS
Sample size = 100
Existing IC Type | 0.7090 0.7710 07175 07470 07361 00284 10204 10204 20514
(HOC) ~ ]
Maximisation of | Type 2 0.8485 07945 07700 0.7065 0.7799 00589 16293 14306 2.9826] 00000 10000 10000 20000 00000 a.0000| 00010
MAPCS Type 3 0.8895 0.816C 08235 (6400 07923 0.1067 1.0366 10193 1.0655{ 10000 10000 1.0000 0000 0.0QQE 12.0000 0:9?91
Minimisation of | Type 4 07465 0.7465 07465 0.7465 07465 00000! 12720 1.0431 22346] 0.0000 0.0000 00000 0.0000( 00000 100000 0.1000
i[;(;gmng Ty'peS 0.7465 07465 07465 07465 0.7465 0.0000 1157 1.0107 102471 09755 10000 1.0000 1.0000! OQO000 1.0000; 0.1000

* Additive penaity for model M, is zero and multiplicative penaity for model M, is one

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error




Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO technique,

Method Penalty type Average probabilities of correct sefection of modet Relative penalties’

M_; [ M_-: I M_e M,; l M} I M(, ] M; I Mg I Mcan [ 5D Pg [ P_: l P; I Pj l Pﬂ ] P;.' ] P‘q
Sample size = 20

Existing [C lType 1 (BIC)) 0.7240 0.7735 0.2325 0.5660 0.2300 0.6555 0.18553 0.2420 0.4511 0.2519] 14979 14979 14879 29957 29957 29957 4.4936

Maximisation of | Type 2 06815 0.7115 04390 05095 0.3670 0.5375 0.3600 0.3455 0.4839 0.1433| 47017 0.7324 15757 55969 65864 22801 74196

MAPCS Type 3 0.6855 0.7110 04445 05230 0.367¢ 05375 03376 03455 04939 0.1472| 15420 10195 11138 +$5310 17583 11374 17988

Minimisation of | Type 4 0.4695 05045 0.4695 0.4630 05150 04350 0.4590 04405 04695 0.0280| 43512 0.3881 0.8700 4.7285 6.0333 12931 6.4804

SD among APCS [ Type 5 0.4675 0.5065 0.4675 0.4665 05515 04080 04655 0.4060 0.4674 {ZL('.M-??1 2.1299 0.9851 1.0306 20844 25428 10150 25092

Sample size = 50 |

Existing IC Type [ (BIC)| 0-8535 0.8860 0.3410 0.7820 0.3020 08140 03325 03i25 05779 0.2755! 1.9560 1.9560 1.9560 39120 3.9120 3.9120 5.868‘1

Maximisation of {Type 2 0.7875 0.7685 05530 0.7260 05260 07060 04620 0.4450 06218 0.1402| 49667 0.9045 24313 57810 7.7208 35824 9.7929

MAPCS Type 3 0.7900 0.7660 0.5560 0.7310 05255 0.7060 0.4555 0.4440 06218 (01419 15637 1.0156 10808 15819 17095 11099 17465

Minimisation of | Type 4 0.6620 {6215 06740 0.5620 06290 05520 05505 ©5415 05991 0.0538| 59632 04816 37861 63914 B6105 43210 91502

N SD among APCS [ Type § 05860 05820 05875 05940 05820 05720 0607¢ 0.5595 05846 00135 | 15821 (09988 10272 15767 16408 10259 16_4_(}{
e Sample size = 1) '

Existg IC Type 1 (BIC)| 0.9100 09230 0.5005 0.8325 04215 08740 04630 04610 06732 02288 23026 23026 2.?026 4.60_?_2 4.6052 4.6052 6.9078

Maximisation of | Type 2 0.8355 08545 0.6525 07545 (5735 07690 05975 06070 07130 01230| 75854 14027 23802 B8119 104567 45752 115769

MAPCS Type 3 0.8925 0.8640 0.6560 07340 05635 0.7810 05985 0.5830 0.7128 0.1279] 1.2124 10175 10594 12312 12709 10736 12888

Minimisation of {Type 4 7265 0.6915 0.7325 0.6795 0.6705 06825 06665 0.6820 06914 (0247 65278 06945 25233 7.1803 87208 32896 94218

SD among APCS Type 5 07300 0.7000 0.7615 063%0 0.7030 06600 06245 06400 06822 00490 1.1216 1.0027 1.1164 1.1233 12743 11229 1.282%

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5§ are multiplicative penalties with mean squared error




Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SA() technique (continued).

Method Penalty type Input values for simulated annealing TRE™
Starting values of penalties Boundaries
S s s ose bose s s [ s 1B | UB
Sample size = 20

Existing 1C Type 1 (BIC)

Maximisation Type 2 00000 Q0000 Q.0000 0.0 00000 00000 00000 0.0000 £.0000 8.0000 0.1000

of MAPCS Type 3 1.0000 20200 20000 20000 30000 30000 30000 40000 0.0000 8.0000 0.001

Minimisation of Type 4 0.0000 0.000C 00006 ¢0000 00000 00000 00000 0.0000 -10.0000 10.0000 0.0001

SD among Type 5 10000 20000 20000 20000 30000 30000 30000 40000 | 0.0000  32.0000 | 0.:000

APCS

Sample size = 50

Existing IC Type 1 (BIC)

Maximisation Type 2 00000 10000 10000 1910000 20000 20000 20000 30000 -8.0000 8.0000 0.0010
E of MAPCS Type 3 1.0000 20000 2.0000 20000 30000 3.0000 3.0000 4.0000 0.0000 20.0000 0.0001
- Minimisation of | Type 4 00600 19560 1.9560 19560 3.9120 3.9120 23.9120 5.8680 0.0000 15.6481 0.0001

SD among Type 5 1.9560 3.9120 29120 39120 58680 658680 58680 78240 ¢.0000  20.0000 0.1000

APCS

Sample size = 100

Existing IC Type | (BIC) ]

Maximisation Type 2 C.0000 23026 ©2.3026 23026 46052 46052 46052 69078 0.0000 18.4207 0.1000

of MAPCS ’]"ype 3 1.0000 20000 20000 20000 30000 30000 30000 40000 0.0000 8.0000 0.0001

Minimisation of | Tvpe 4 0.0000 00000 00000 00000 0.0000 0.0000 00000 0.0000! -8.0000 80000 | 0.0100

SD among Type 5 1.0000 0000 4.0000 10000 10000 1Y.0000 10000 Y0000 6 0000 8.0000 0.1000

APCS

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smaiiest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO

technique.
Method I Penalty type Average probabilities of correct selection of model - Relative penallles°
| Mo ] om Lome | o me T oM Mg T M ] Mg [ Mean ] SD p. e s e ] e Ly
_ Sample size = 20
Existing IC Type | 0.3175 0.4295 02200 0.3775 0.3450 0.5635 0.2735 04380 03708 0.1675| 0.5407 05407 0.5407 1.1123 11123 11123  1.7185
{(RBAR)
Maximisation of | Type 2 05190 06290 04905 05150 04040 05270 033115 03315 04738 00992| 18258 04346 1.2583 25177 23279 20440 39924
MAPCS Type3 0.6835 0.6650 0.4420 05056 0.4235 0.5310 0.3555 03395 0.4931 01295 1.4543 10194 11142 14755 16746 1.1288 1.7
Minimisation of | Type 4 0.4635 04640 0.4630 04630 04635 048635 04630 0.4635 04634 0.0004| 47577 03912 08292 51517 58582 12480 63144
SD among APCS Type 5 0.4625 04605 04625 04625 04605 04585 0.4665 04590 04616 00025 24383 09849 10280 23949 25728 1.0122 25341
Sample size = 50
Existing IC Type | 0.3215 04665 0.2890 04230 03965 06115 04105 05760 04368 0.1124] 05155 05155 05155 10418 10418 {0418 15795
(RBAR)
™ |Maximisation of | Type 2 0.5950 06810 0.5380 0.6675 0.5035 0.7055 0.4875 04905 (05836 00910 1.7772 06178 12365 25018 23.1335 20651 3.9976
w MAPCS Type 3 0.7355 0.7560 0.6030 0.7180 05195 0.7175 04675 0.4485 06207 0.1276| 1.2183 1.0081 10804 12324 13074 11060 13357
Minimisation of | Type 4 0.5710 05705 05710 05720 0.5705 05690 05740 0.5695 05702 0.0015( 22709 0.4778 1.2703 27072 35602 17593 40740
SD among APCS Type 5 0.5860 0.5820 0.5875 05940 05820 05720 06070 0.5595 065846 0.0135) 1.582% 09988 10272 15767 16408 50258 16409
Sample size = 100 L N
Existing 1IC Type 1 05986 0.7005 04750 06650 05105 0.7875 05170 06320 06107 0.1070] 1.0000 10000 10000 20000 20000 20000 3.0000
(AIC/MCP) _ 3
Maximisation of | Type 2 0.6770 0.7735 06115 07580 0.5480 0.7165 05820 06775 06680 00817] 16096 09039 12082 26533 32269 23071 39943
MAPCS Type 3 0.8955 0.8590 (.6525 0.7540 0.5810 0.7235 0.59.J 06060 07088 0.1206! 2.7717 10180 10595 28115 3.0264 10737 3.0534
Minimisation of | Type 4 0.6825 0.6855 06825 06830 06845 06795 06835 06795 06826 00021] 28171 07231 15474 35315 54163 22577 6.1205]
SD among APCS | Type 5 0.6625 0.6650 0.66835 06510 06640 0.6765 06510 06895 06654 0.0127) 1.0260 10036 10247 10281 10546 10282 1.0578

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
Type < and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are muluplicative penaltics with mean squared error
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Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAQO technique

(continued).
Method Penalty type Input values for simulated annealing TRF"
Starting values of penalties Boundaries
S | S | s oS [ oss | s 1S | S LB | UB
Sample size = 2¢
Existing IC Type |
(RBAR)
Maximisation Type 2 6.0000 1.0000 1.0000 106000 20000 20000 20000 3.0000 0.0000 4.0000 | 0.0010
of MAPCS Type 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 n.0000  8.0000 | 0.00t0
Minimisation of | Type 4 0.0000 0.0000 0.0000 0.0000 00000 0.0000 00000 0.0000 -10.0000 10.0000 | Q.1000
SD among Type 3 1.0006 20000 20000 2.0000 3.0000 3.0000 3.000C 4.0000 0.0000 4.0000 | 0.1700
APCS |
Sample size = 50
Existing IC Type 1
(RBAR)
Maximisation Type 2 0.0000 0.0000 0.0000 0.0000 00000 0.0000 0.00GC 0.0000 Q2 0000 4.0000 | 0 000%
of MAPCS Type 3 19560 39120 3.9120 389120 58680 58680 58680 7.8240 0.0000 32.0000 _ 0.0001
Minimisation of | Type 4 0.0000 0.0000 0.0000 0.0000 00000 00000 00000 0.0000 -3.0000 30000 | 00100
SD among Typc 5 1.89560 39120 39120 39120 54868C 58680 58680 7.8240 0.0000 206000 | 0.1NG ‘
APCS :
Sample size = 100
Existing 1C Type |
{AIC/MCP)
Maximisation Type 2 0.0000 0.0000 00000 00COC 00000 00000 00000 00000 0.0000 4.0000 0.0100
of MAPCS Type 3 1.0000 20000 20000 20000 30000 30000 30000 40000 0.0000 9.2103 | ¢.0010
Minimisation of { Type 4 0.0000 0.0000 00000 0.0000 00000 0.0000 0.0000 0.0000 0.0000 10.0000 3.1000
SD among Type 5 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 1.0000 0.0000 4.0000 | 0.1000
APCS

** TRF Temperawre reduction factor
Type 2 and Type 4 are additive penaities with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average prob “bilities of correct selection under different methods for sample sizes
20, 50 and 96 for Design 4.5 together with relative pensity values and input values of SAQ technigue,

Method Penalty type Average probabilities of correct selection of model Relative [Eiallies‘
My Tme T o oM T oM ) M M [Men [ SD T P T 2o TP |0 Ps | P | Iy
Sample size = 20 .
Existing 1C Type | (BIC)| 0.7105 04060 03755 03655 02280 02185 02150 0.1905 0.3388 0.1726( 14979 14979 14979 29957 20957 2.9957 4.4936
Maximisation of | Type 2 06320 04035 04280 03425 02650 02550 O0.1870 02305 03437 01444 12311 11016 1.425¢ 24117 25093 28040 3.7523
MAPCS Type 3 0.3490 0.3570 0.3645 (.3470 0.3625 0.3600 03430 0.3990 03603 0.0175] 1.0000 1.0000 *.0000 10000 1.0000 1$.0000 10000
Minimisation of | Type 4 0.3160 0.3165 0.3175 0.3165 0.3155 0.3166C 0.3180 7.3160 03155 0.0008] 0.5810 0.5883 0.5312 12147 11881 11350 10315
SD among APCS | Type 5 0.3490 0.357¢ ©0.2645 03470 03625 03600 0.3430 03990 0.3603 0.0175) 1.0000 10000 10000 40000 10000 10000 1.0400
Sample size = §0 s
Existing 1C Type 1 (BIC)| 08770 07125 07325 07300 0.5280 0.5115 05400 04565 0.6360 0.1467] 19560 1.9560 19560 39120 39120 39120 58680
Maximisation of | Type 2 0.9255 0.6885 0.7245 0.7180 0.5625 0.5330 05300 04530 0.6419 (Q.1519 2.5078 23976 24758 41494 42778 44728 63899
MAPCS Type 3 0.9260 0.6895 0.723¢ 0.7160 05610 05335 05320 04540 06419 01515{ 10831 1.0786 1.0818 11330 1.1384 11465 12118
Minimisation of | Tvpe 4 0.5730 0.5725 05715 0577¢ 05715 05925 05595 05540 05714 0.0115] 08052 09969 08544 19040 16271 19887 30404
SD among APCS 'Types |0,5855 0.5970 (5685 05960 0.55t0 0.6615 (.5355 05185 05764 0.0451) 1.0089 410391 10100 1.0595 1.0138 10653 10939
___ Sample size = 96

Existing IC Type | (BIC)| 09525 08850 08905 08840 08340 08030 08055 0A135 08585 00531| 22822 22822 22822 45643 4.5643 45643 68465
Maximisation of | Tvpe 2 0.9970 0.9230 0.9395 09300 0.8380 0.8150 07870 0.7690 08748 0.0831| 44921 44030 45470 7.7022 7.5448 B2879 114742
MAPCS Type 3 0.9970 09225 0.9395 0.9305 0.8375 08150 07870 0.7695 08748 00830| 1.0884 1.0856 10888 11513 1.1469 1.1645 12313
Minimisation of | Type 4 0.8205 08295 08295 08285 0.8530 0.8260 08245 08160 08296 0.0105] 1.2863 1.4084 1.2804 30183 29921 30599 53840
SD among APCS | Type 5 0.8495 0.8375 0.9685 0.8375 0.8295 08175 08105 (7945 08431 0.0536| 10522 10114 10528 10853 10894 10842 11404

* Additive penalty for model M, is zero and multiplicative penalty for model M, is once
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.5a Average probabilities, mean average probabilities and standard deviations of average prubzoilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under diffzrent methods for sample sizes
20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAQ technigue (continued)

L

Method Penalty type Input vatues for simutated annealing TRF
Starting values of penaities [ Boundaries
S, 10 Voso b oso ] ose bose | s- ] 8% | 1B ] UB
Sample size = 26
Existing IC Type | (BIC)
Maximisation Type 2 0.0000 10000 10000 100G0 20000 20000 20000 30000 | -80000 80000 | 00100
of MAPCS Type 3 1.0000 1.0000 10000 10000 1.0000 10000 10000 10000 0.0000 1.0000 | 0.1000
Minimisation of | Type 4 0.0000 1.0000 1.0000 1.0000 2.0000 20000 20000 3.0000 0.0000 24.0000 | 0.0001
SD among Type 5 1.0000 1.0000 1.0000 10000 10000 10000 1.0000 10000 0.0000 1.0000 | 0.0100
APCS
Sample size = 50
Existing IC Type i (BIC)
Maximisation Type 2 0.0000 19560 109560 19560 39120 39120 309120 58680 | -10.0000 10.0000 | 0.0001
‘_N_ of MAPCS T}‘PE:; 1.0000 2.0000 2.0000 20000 3.0000 _IZ@ 30000 4.0000 ¢.0000 32.0000 | 0.1000
SD among Type 5 19560 39120 3.9120 39120 58680 58680 58680 78240 ¢.0000 32.0000 | 0GOO1
APCS ]
Sample size = 96 L _ L
Existing 1C Type 1 {BIC) !
Maximisation Type 2 00000 00000 0.0000 00000 60000 0.0000 0.0000 0.0000 -32.0000 320000 ; 0.1000
of MAPCS Type 3 1.0000 2.0000 2.0000 20000 3.0000 3.0000 3.0000 4.0000 Q0000  32.0000 | 0.1000 ;
Minimisation of | Type 4 0.0000 0.0000 0.0000 0.0000 00000 0.0000 0.0000 G.0000 0.0000  10.0000 | 0.0001
SD among Type 5 1.0000 20000 2.0000 20000 30000 30000 3.0000 4.0000 0.0000 40000 | Q.00GH
APCS

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaltics with maximised log-likelihood function
Type 3 and Type 5 are muitiplicative penalties with mean squared error
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Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAQ technique,

Method Penalty type Average probabilities of correct selection of model Relative penalties‘ ]
M T Mo I M [ Mg [ M T Mg ] M [ Mg [Men ] SD | 2o e T ops T n T -y
Sample size = 20
Existing IC Type | 02990 0.2990 0.3220 02910 03155 03010 02905 0.3590 03096 0.0228] 05407 05407 05407 1.1123 11123 11123 1.7185
{RBAR) _
Maximisation of Type 2 05695 03850 04720 03745 0.2410 Q2810 02320 01955 03426 0.1290| 12359 (8375 11031 25061 22600 23944 308528
MAPCS Type 3 0.3490 03570 03645 (03470 03625 03600 03430 03990 ¢.3603 0.0175( 1.0000 1.0000 10000 1.0000 1.0000 1.0000 1.0000
Mimmisation of Type 4 03170 031685 03165 03185 (3165 03160 03165 03160 (03164 (00003, 05806 05928 (5347 12156 11892 1.143) 19356
SD among APCS Type 5 0.3490 0.3385 03335 03220 03370 03255 03415 03310 03347 (.0087| 1.0016 1.0020 10020 10020 10020 10020 1.007t
. _ Sample size = 50 B o o
Existing IC Type | (AIC)] 06240 05700 05905 05945 05540 05290 105635 05725 05747 0.0286] 1.0000 1.0000 10000 20000 20000 20000  3.0000
Maximisation of | Type 2 07720 06845 06485 06845 05685 04940 05335 (5475 06166 0.0952] 1.2583 14758 14544 26422 29266 29284 3.9798
MAPCS 1 Type 3 09260 06895 07230 0.7160 (5610 05335 0.5320 0454¢ 06419 0.1515] 1.0831 10786 10818 11330 1.1384 1.1465 12118
Minimisation of | Type 4 05670 05670 05670 0.5670 05685 05670 05670 05670 0.5669 0.0002| 08048 09248 (8605 18094 16973 18562 28751
SD among APCS Type 5 0.5665 05665 05665 0.5665 056865 0.5665 0.5865 0‘56‘35-[1%{5_5_—30?_({%&101 16 1.0165 10146 ‘_1.031?“_”1.0264 10339 1.0530
Sample size = 96 o
Existing IC Type | (HQ) | 08525 07895 08130 07945 0.8065 07845 0.7780 08460 08081 00278| 15183 15183 15183 30366 30366 30366 45548
Maximisation of | Type 2 0.7145 0.8480 08470 0.8285 0.7920 0.7465 07720 0.8475 0.7995 0.0515! 0.8333 08190 08562 2.6041 27918 25156 39997
MAPCS Type 3 0.9970 0.9235 0.9350 09310 0.8395 08140 07825 0.7745 0.8746_ 0.0825| 10833 10845 10860 11455 hllffi?ﬂl_‘l?i}?ﬂl?{{!‘b
Minimisation of | Type 4 0.8245 08245 08245 C82°5 08245 0.8245 0.8245 0.8245 08245 0.0000] 12674 14939 11999 032747 28044 29843 51177
SD among APCS Type 5 0.8250 08250 0.8250 0.8250 0.8250 0.8250 0.8250 08250 08250 0.0000( 10161 10204 10145 1,04_80 1.0380 10416~h19?_7§3

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are muliiplicative penalties with mean squared error




Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models cerresponding to the smallest variation among the probabilities of correct selection of models under different methods
for sample sizes 20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAO technique

07¢

{(continued).
Method Penalty type Input values for simulated annealing TRF™
Starting values of penalties Boundaries
S LS b oS b s b S | S s | S LB | UB
Sample size = 20
Existing IC Type |
(RBAR)
Maximisation | Type 2 0.0000 10006 10000 10000 20000 20000 20000 30000 | 00000 80000 | 0.0100
of MAPCS Type 3 10000 10000 1.0000 1.0000 10000 10000 1.000C 1.0000 : 0.0000 1.0000 0.1000
Minimisation of | Type 4 00000 14979 1.4879 14979 29957 2.9957 2.9957 44936 | 00000 24 0000 | 0.0010
SD among Type 5 1.0000 10000 10000 10000 1.0000 10000 10000 1.0000 } 0.0000 4.0000 01000
APCS
Sample size = 50
Existing IC Type 1 (AIC) |
Maximisation Type 2 0.0000 0.0000 00000 00000 O©O000G 0.0006 00000 0.0000 ! §.0000 4.0GG0 0.001Q
of MAPCS Type 3 1.0000 20000 20000 20000 30000 3.0000 30000 40000 00000 320000
Minimisation of | Type 4 0.0000 0.0000 0.0000 00000 0.0000 0.0000 00000 00000 | 00000  10.0000 | 0.1000
SD among Type 5 10000 1.000¢ 1.0000 10000 10000 tCOO0 1.0000 1.0000 ([ G.0000 4 0000 0.1000
APCS i , .
Sample size = 96
Existing IC Type I (HQ) _
Maximisation Type 2 0.0000 00000 00000 0O00G 00000 00000 GO0000 G.0000 i 4.0000 4 Q000 0.0010
of MAPCS Type 3 22822 4.5643 45643 45643 6.8465 B.Bﬁ{) 6.8465 9.1287 | 0.0000 9.1287 0.0100 ]
Minimisation of | Type 4 0.0000 1.0000 1.0000 1.0000 20000 20000 2.0000 3.00u0j 00000 24.0000 0.1000
SD among Type S 22822 45643 45643 45643 68465 68465 68465 91287 | 0.0000  18.2574 | 0.9000
APCS

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaities with maximised fog-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared ervor
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Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabililies of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAQ technique.

Method (Penalty type Average probabilities of correct selectivn of model Relative penalties’ N
M, | M 1 oM Mg | o f Mg | M- | M | Meaan | SD p. e p re ]y TP ] hy
Sample size = 20
Existing IC Type | (BIC)[ 07065 03285 06260 06865 02885 03190 05770 03025 04793 0,153*_1:49?9 14979 14979 29957 29957 29957 44936
Maximisation of | Tvpe 2 07615 04425 06540 06940 03435 03455 04360 003675 05056 0.1702| 1.1824 18443 25753 31273 239067 50477 59209
MAPCS Type 3 Q7675 0.4385 006525 06865 03450 03595 04245 03680 05054 01662 10683 11375 12163 12211 13005 14708 1.5086
Minimisation of | Type 4 0.4995 0.5120 0.4950 04705 05000 0.4640 04365 04320 04762 (0304 0.4758 11614 20909 16428 25945 34191 4.0634
SD among APCS | Type 5 0.6090 0.6605 0.4090 0.4910 0.3900 0.5030 0.3660 0.3655 04743 01127 0.9895 1.4499 1.3265 14448 13128 1.7508 1.7650
Sample size = 50 e
Existing IC Type | (BIC)] 08675 04735 0.7660 0.7895 0.4165 04375 0.7155 04130 0.6106 0.1913[ 19560 1.9560 1.9560 39120 30120 39120 5.6680
Maximisation of | Type 2 0.8560 05585 0.7680 0.7210 04675 0.5220 06500 04485 06241 0.1486; 14094 20569 30438 36339 4.3033 55823 71213
MAPCS Type 3 | 08670 05625 07565 07215 0.4605 05230 06620 04390 06240 0.1524] 10369 10740 11055 11201 11384 1.1982 1.2514
Minimisation of | Type 4 0.6620 06610 06065 05970 06130 0.5830 05600 05405 06029 00433, 06137 16517 29123 22565 36126 51529 59806
SD among APCS | Type 5 | 06360 07765 05450 05725 05265 05620 05235 05125 05806 0.0882( 09960 11785 12707 11832 12815 13926 14092
Samplesize=100 - -
Existing IC Type | (BIC)| 08865 05875 08220 08540 04905 053%0 0.7685 05065 06618 01670] 23026 23026 23026 4A062 46052 46052 6.9078
Maximisation of | Type 2 0.8700 06725 0.8025 0.7955 0.5630 0.6235 0.7065 05500 0.6979 0.1174{ 1.5503 23922 33009 .72 47063 60731 76431
MAPCS Type 3 0.8670 0.6725 0.8025 08120 05630 0.6175 07000 05490 06979 01195 10211 10385 1.0537 10621 10742 11086 1.1309
Minimisation of | Type 4 0.7425 0.7805 06490 06740 0.5185 0.6750 06260 06275 06741 00588 07452 3.3059 39003 40792 46636 64081 72420
SD among APCS | Type § 06520 06525 06480 06555 0.6465 06555 06530 06555 06523 0.0035] 1.0060 10175 10261 10211 10315 10469 10532

* Additive penalty for model M, is zero and muluphcative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error




Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAQO technique (continued).

(44

Method Penalty type Input values for simulated annealing TRF
Starting values of penalues Boundaries
sy s s Tose s s TS 1 s tB [ UB

Sample size = 20
Existing IC Type 1 (BIC) ) |
Maximisation Type 2 00000 0.000C 00000 (©O00O0 0000C O0.0000 00000 00000 0.0000C 10.0000 00010
of MAPCS Type 3 1.497% 29957 29957 29957 44936 44936 44938 59915 00000 239659 0.1000
Minimisation of | Type 4 0.0000 14979 1.4979 14979 20957 29057 29957 440936 | -3.0000 44936 | 0.0001
SD among Type 5 14979 2.9957 29957 29957 44936 44936 4433€ 59915 0 0000 59915 0.0010
APCS o

Sample size = 50
Existing IC Type 1 (BIC) i_
Maximisation Type 2 00000 19560 19560 1.9560 3.9120 39120 3.9120 58680 -4.0000 7.8240 0.1000
of MAPCS Type 3 1.0000 10000 1.0000 1.0000 10000 1.0000 10000 1.0000 0.0000 32.0000 0.1000
Minimisation of | Type 4 0.0000 0.0000 ©O0000 0.0000 00000 00000 00000 0.0000] -80000  B8.0000 | 0.0010
SD among Type 5 1.0000 20000 20000 20000 3.0000 30000 3.0000 40000 0.000C  20.0000 81006
APCS L -

Sample size = 100 N
Existing IC Type 1 (BIC) _ _ ! |
Maximisation Type 2 0.0000 23026 2.3026 23026 46052 46052 46052 69078 0.00G0 32.0000 0.1000
of MAPCS Type 3 23026 46052 46052 46052 69078 69078 69078 9.2103 0.0000  20.0000 0.1000
Minimisation of | Type 4 0.0000 00000 0.0000 0.0000 000060 00000 00000 0.0000 | -8.0000 80000 | 0.0001
SD among Type 5 1.0000 10000 10600 1.0000 1.0000 10000 1000C¢ 1.0000 0.0000 8.0000 0.0100
APCS

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihoad function
Type 3 and Type 5 are multiplicative penaities with mean squared error



Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAQ

technique.
Method Penalty type A verage probabilities of correct selection of model Relative penalties‘
M oM T oM oM M ] M M Mg I Men ] 5D [ e T T T T T

Sample size = 20

Existing IC Type | 0.3070 0.2810 04020 0.3940 03530 0.3840 05090 (4890 03893 00795( 0.5407 05407 05407 1.1123 1.1123 11123 17185

[ (RBAR) S e

Maximisation of | Type 2 05170 05160 0.6735 0.6520 0.3215 0.3730 03760 04835 04891 0.1290] 0.5890 1.0991 15113 213820 25229 3.5102 39726

MAPCS Type 3 0.7320 0.4735 0.6540 06485 03410 03875 04390 03635 05043 0.1514} 1.0490 1.1374 12344 12211 12906 1.4793 15195

Minimisation of | Type 4 0.4570 0.4570 04570 04570 04570 04570 0.4570 04570 0.4570 0.0000] 04777 10568 12884 15328 1.7643 23599 2.0654

SD among APCS Type § 0.4575 0.4575 04585 0.4575 045380 04575 04570 04560 ©.4574 00007 09937 10523 10794 10424 104723 11350 11358
Sample size = 50 - _ L

Existing IC Type | (AIC)] 05815 04510 06105 0.5090 04730 04900 0.6810 05505 05546 0.0787] 10000 10000 1.0000 20000 20000 20000 30000

Maximisation of | Type 2 j 0.£155 0.6325 0.7045 0701C 0.4880 05030 05965 0.5635 06006 00808, 0.6797 1.3275 1.4290 24737 26022 3.1670 2.9984

ﬁ MAPCS Type 3 S.8228 0.5890 07080 07205 (5020 05130 0.6520 04825 06212 01180| 1.0247 1.0638 1.0746 10815 1.1066 1.1479 1.1845
' "Minimisation of Type 4 05770 05770 05770 05770 0.5755 05770 05780 05785 05771 00008| 1.0042 10302 10351 10342 10418 1.0707 10788

SD among APCS i Type S 0.5775 05775 05775 05775 05770 05775 05780 05775 05775 00003| 06204 12574 13911 18771 20773 27711 35012
Sample size = 100 |

Existing IC Type | (AIC)] 05860 05310 06470 06660 05245 05740 07245 06465 06124 00700 1.0000 1.0000 10000 20000 20000 20000 30000

Maximisation of | Type 2 06715 06365 0.7400 0.7920 0.5590 0.5820 06535 06600 06618 O0.0764| 10279 13596 13104 24956 26699 31693 3.8985

MAPCS Type 3 0.8665 0.6710 0.7995 0.812C 05560 06105 06825 05815 05974 01159, 1.0210 1.0385 1.0508 1.0621 1.0717 10993 1.1159

Minimisation of | Type 4 0.6535 0.6540 0.6540 0.6540 0.6540 06545 06540 06545 06541 0.0003| 0.6088 13326 10484 20225 27240 34613  4.2872)

SD among APCS [Type 5 06515 0.6490 0.6485 06530 06470 0.6535 0.6555 0.6555 $.6517 0.0032) 1.0061 10171 10264 1.0208 10316 1.0463 10526

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one o - o

Type 2 and Type 4 are additive penzlties with maximised log-likelihuod function

Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, S0 and 100 for Design 4.6 together with relative penalty values and input values of SAQ techhique

(continued).
Method Penalty type Input values for simulated annealing TRF™
Starting values of penalties Boundaries
S [0S s 1 ose Tse sy Ts, Tos B | uB

Sample size = 20

Existing IC Type |
{RBAR} _

Maximisation Type 2 0.0000 1.0000 1.0000 10000 2.0000 20000 20000 3.0000 0.0000  4.0000 | 0.0900
of MAPCS Type 3 1.0000 20000 20000 20000 3.0000 3.0000 3.0000 4.0000 0.0000  32.0000 0.0001
Minimisation of Tme 4 0.0000 14979 14979 14979 29957 29957 29957 44936 ~24.0000 24.0000 0.1000
SD among Type 5 1.0000 1.000¢ 10000 10000 1.000C 0000 1.0000 1.0000 0.0000 4.0000 0.1000
APCS

Sample size = 50
Existing 1C Type 1 (AIC) .
Maximisation Type 2 0.0000 10000 1.0000 10000 20000 20000 20000 3.000C 0 Q000 40000 0.0001
of MAPCS Type 3 19560 39120 39120 39120 58680 58680 58680 78240 0.0000 32.0000 09100
Minimisation of | Type 4 0.0060 10000 10000 1.0000 20000 2.0000 2.0000 3.0000 0000C 24.0000 | 0.1000
SD among Type 5 1.0000 10000 1.0000 +$0000 10000 1.0000 1.0000 1.0000 £.0000 4.0000 0.0100
APCS

Sample size = 100
Existing IC Type | (AIC) B ‘
Maximisation Type 2 Q0000 1.0000 1.0000 10000 20000 20000 20000 3.0000 0.0000 4 0000 0.0100
of MAPCS Type 3 1.0000 2.0000 20000 20000 3.0000 3.0000 30000 4.0000 0.0000 8 0000 0.1000
Minimisation of | Type 4 0.0000 23026 2.3026 23026 46052 46052 46052 69078 | -3.0000 69078 | 0.1000
SD among Type 5 1.0000 1.0000 11.0000 10000 10000 1.0000 1.0000 1.0000 0.0C00 8.0000 0.1000
APCS

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelithood function
Type 3 and Type 5 are multiplicative penalties with mean squared error




Table 6.7a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of corvect selection under d'*Yerent methods for sample sizes
2b, 50 and 100 for Design 5.1 together with relative penalty values and iaput values o€ SAQ : -+ ique.

Method | Penalty type T Average probabilities of correct selection of | Relative penalties’ | Input values for simulated annealing
i ;

} (M [ M [ M [ M [Man [ SD | o [ P [ P |8 [ 8 [ 5 [ 8 | 1B [ U

\ Sample size = 20

Existing IC Type | | 09845 03905 07200 02350 05825 0.3357] 00000 00000 0.0000]

(ANl are same) i
Maximisation of | Type 2 f
MAPCS l"[‘ype‘_{ 110.9725 03850 06395 05910 Q6470 0.243a1 08561 0.8%03 08334& 10000 10000 10000 1.0000] G.0C00 10.0000| 0.1000
Minimisation of i'[yped, iO.Q?OS 0.4875 05590 0.5400 06392 0.2229] -1.9068 -08318 -1 9929[ 00000 00000 00000 0Q0D3| 00000 2.0000] 0.0010
SD among ri"ypes J0,9625 05050 0.5575 05240 06372 0.2179| 07226 0Q.BQ70 07135] 1.0000 10000 10000 90000; 0.000D 400001 0.1000
APCS

i . .
0.9725 03850 06395 05910 0647C 0.2434] -15532 -1.1620 -1.8220{ 0.0000 0.0000 0.0000 Q.0000{ 0.0000 100000 0.1000

mode) | Starting values of pepalties | Buund,mes {JRI

H i e

Sample size = 50

E Existing IC t Type | 0.6920 05000 0.888C 02065 06466 0.3618] 0000C 00000 ©.0000 T I

(All are same) _ !
Maximisation of | Type 2 0.9890 0.4225 0.7870 07610 0.7399 023481 03541 0.8881 -0.8217| 00000 00000 00000 Q0000 -B.0000 B.00GO| 0.7000
MAPCS Type 3 0.9890 04225 07870 0.7610 0.7399 (02343 0.9860 1.0362 09677{ 1.0000 1.0000 10000 10000{ G.0000 80000| 0.1000
Minimisation of | Type 4 0.9850 05295 0.7865 0.624G 0.7313 0.1997| -12891 0.1305 -14314] 0.0000 0.0000 00000 00000| ©0000 2.0000( 0.0001
S‘Damong T)’peS $.9860 05063 08100 06285 0.7325 0.2101; 09620 1.0000C 09550 39120 39120 39120 39120} 00000 39120 O.0010
APCS [ N

Sample size = 100 -

Existing IC Type | 0.9970 0.6180 09315 02055 06880 03617 00000 0.0000 00000

(All are same) ' I _
Maximisation of | Type 2 09940 05270 08585 0.8425 0.8055 0.1977| 08164 06215 -1.4880( 00C00 0.0000 0.0000 00000 -8.0000 &~ 11000
MAPCS Type 3 0.9940 05270 08585 0.8425 08C55 0.1977! 09795 10085 09369| 1.0000 1.0000 10000 1.0000| 0.0000 80000 0.1000
Minimisation of | Type 4 0.9935 06420 08580 06750 07921 0.1645] -1.7682 00366 -19579] 0.0000 0.0000 0.0000 0.0000] 00000 2.0000! 01000
SD among Type 5 0.9840 06495 0.7755 06925 07754 0.1486] 08278 03202 068246, 1.000G 10000 1.0000 1.0000j 00000 10000, 0D.1000
APCS

* Additive penalty for model M, is zero and multiplicative penalty for modei M, is one
** TRF Temperature reduction factor

Type 2 and Type 4 are additive penaities with maximised log-likelihood function
Type 3 and Type 5 are muitiplicative penalties with mean squared error




9CT

Table 6.7b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
medels corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, S0 and 100 for Design 5.1 together with relative penalty values and input valaes of SAQ

technique.
Method Penalty type | Average probabilities of correct selection of Relative penalties‘ Input values for simulated annealing
model Starting values of penalties Boundaries [ TRF™
M I M, | Mo T M, [Mean [ SD | 2, T P 1 1 s s T s T LB [ uB
, ) Sample size = 20
Existing IC Type | | 0.8845 (0.3905 0.7200 0.235C 05825 03357 0.0000 0.000C  0.0000
(Al are same)
Maximisation of | Type 2 0.9685 0.3855 0.6395 05925 0.6465 02414 -2.1418 -1.7502 -2.4104 | 14979 1.4979 14979 14979 0.0000 B.0000; 0.0009
MAPCS Type 3 09730 (.3800 06110 06115 06464 32414] 0.B563 0.9070 0.8335} 1.0000 20000 20000 3.0000 0.0000 32.0000( 0.000t
Minimisation of | Type 4 0.8925 0.5060 05575 0.5235 06199 0.183(!-16.8792 -15.7717 -16.9344| 00000 1.0000 1.0000 2.0000| -10.0000 10.0000) 0.1000
SD among Type S 0.9265 05050 0.5575 0.525¢ 06285 0.1998] 0.3196 0.3572 0.3t73; 1.0000 20000 20000 3.0000 0.0600 1€ 0000 0.0001
APCS
Sample size = 50
Existing IC Type | 09920 05000 09880 02065 06466 0.3618) 0.0000 0.0000 0.0000
(All are same) . .
Maximisation of | Type 2 09890 0.4895 0.7860 0.7130 0.7394 02145] 05173 08542 -0.8258| 00000 0.0000 00000 0.0000] 00000 200000 0.0010
MAPCS Type 3 0.9890 04225 07870 0.7610 0.7399 0.2348! 09860 1.0362 096771 10000 1.0000 1.0000 1.0000 0.0000 8.0000| 0.1000
Minimisation of | Type 4 0.9365 05545 07000 0,340 07062 01646|-182836 -145567 -18.3989] 1.9560 1.9560 19560 1.9560| -10.0000 10.0000! 0.1000
SD among Type 5 0.81256 05750 0.6520 05960 06589 0.1074| 0.0832 0.1030 0.0830f 1.0000 1.0000 1.0000 1.0000 0.0000 12.0000| 0.0010
APCS i _ -
Sample size = 1(0)
Existing IC Type | 0.9970 0.6180 0.9315 0.2055 0.6880 0.3617T 00000 00000  0.0000 W
{All are same) - |
Maximisation of | Type 2 0.9940 05285 08585 0.8405 08054 0.1969{ -0.8678 0.5861 -1.6303;] 0.0000 1.0000 1.0000 2.0000 0.0000 10.0000| 0.0100
MAPCS Type 3 0.8940 05270 0.8585 08425 08055 01977 09799 1.0085 0.9669; 1.0000 1.0000 1.0000 1.0000 0.0000 8.0000! 0.1000
Minimisation of | Type 4 0.9785 0.6495 07735 06925 0.7735 0.1460]-17.0655 -11.€500 -17.2541] 0.0000 1.0000 1.0000 2.0000! -10.0000 10.0000| 0.1000
SD among Type § 0.912C 06495 0.7515 06930 07515 0.1149i u.t114 0.1270 0.1110] 1.0000 1.0000 1.0000 1.0000 0.0000 4.0000)] 0.0001
APCS

* Additive penalty for mode! M, is zero and multiplicative penalty for model M, 15 one
** TRF Temperature reduction factor

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.8a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
maodels corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes

265, 50 and 100 for Design 5.2 together with rclative penalty values and input values of SAQ fechniyue.

“ Aaditive penaity for model M, is zere and multiplicative penalty for model M, s one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penajties with maximised log-hikelihood function
Type 3 and Type 5 are muluphicanve penalties with mean squared error

Mzthod Penalty type | Average probabilities of correct selection of ' Relative penaities | Input valucs for simulated anuealing _____H_‘
model Starung values of penalties Boundaries LR
My T T Tome (Mean [ 5D j p T T |05 §0s F sy [ oso fo [us )
Sample size = 29 _ . ]

Existing IC Type | 02690 04950 05085 06305 0.4758 01507; 00000 00000 0.0000
{All are samej e e ]
Maximisation of Typez 05570 G.4770 0.4560 05110 0.5002 0O 0441 0.3764 05043 ¢ 75401 0.0000 0.0000 QO0UQG 00000 00000 8.0000( G.1000
MAPCS Type 3 ! 0.5570 0.4770 0.4560 05110 0.5002 00441; 10384 10517 .1001{ 10000 10000 10000 1.0000{ 00000 20000{ 0.1000
Minimisation of | Type 4 | 04970 04905 0.4905 04915 04506 00005, 0285 03017 105387 00000 10000 1070 20000| 00000 4.0000{ 00010
SD among Tyrs$s 0.4885 04910 04860 05075 04932 00097' 10281 1.0325 10960! 10000 10000 10630 10000{ 00000 10000| 0.0010
APCS : J — e
. Sample size = 50 e ]

Existing IC Type | 03360 05725 06275 07180 05635 01631] 00000 00000  6.0000
(All are same) | | | - - o e e o g
Maximisation of | Type 2 06720 05275 05245 06165 05851 007'9. 05147 08774 10103] 0000 00000 00000 ooooeI 10 6000~ 10.0000] ©0.1000]
MAPCS Type 3 0.6720 05275 05245 06165 0.5851 _:)_9?‘1%* _-1_...[_}?'0*?”1.(}357 __.1 DMEE 1.1300".} 1\;)900 1.0000 10999_,?9000“1?_0?0 910{1—(]4
Minimisation of | Type 4 05765 05770 (5805 05905 05811 00065, 02412 04600 11378; 0.0000 3.0000 10000 20000]L -2.0000  2.0000| 0.01C0
SD among Type S | 0.5750 05790 0.5695 0.6030 05816 00148 10993 10204 104181 1.0000 10000 10000 1oooo| 0.0000  1.0000{ 0.0301
APCS . l D —— ; e d
_ Sample size = 10 o _
Existing IC [Type ! 1704296 06575 07125 08180 C6542 01645 072000 00000 0 0000] o 1
| (All are same) S e ey e e
lMaxjmisatinn of Typez 0.6890 0.6320 06620 07370 0.6800 004‘“; 04183 06262 11782] 0000C 00000 ©O000C 000001 0 G000 10.0000{010(}0
MAPCS Type 3 0.68%0 06320 06620 07370 06800 00446 10084 1.0126 1.0239] 1.0000 100G 10000 1_0000] 0.0000  1.0000| ©0.1000
Minimisation of { Type 4 06625 06680 06595 07030 06733 00207 02446 05109 14754] 00000 10000 10000 20000!‘ -2.0000 2.0000[0.000s
SD among Type 5 505540 0.8570 06575 07295 06770 00351 <0057 10126 10252 10000 10000 10000 10000] 00000 10000! 0.0010
APCS : i —— —__-..-l,.____.. e ———— [ 1
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Table 6.8b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under Aifferent
methods for sample sizes 20, 50 and 100 for Design 5.2 together with relative penalty values and input values of SAQ

technique.
Method Penalty type | Average probabilities of correct selection of Relative penalties’ Input values for simulated annealing
model Starting values of penalties Boundaries | TRE™
M, | M, | M. | My, [ Meap ! SD . . 1 P | P, S 0o T T sy B | uB
Sample size = 20 ) o
Existing {C Type | 0.2690 04950 05085 06305 04758 01507] 00000 0.00G0  CO00DC]
(All are same) - _j___ _ L
Maximisation of | Type 2 05535 04760 04560 05150 05001 00432, 03767 05043 09144, 0.0000 1.0000 10000 20000 G.0000 8.0000{ 0.1000
MAPCS Type 3 05535 04760 04560 C3150 05001 @ 0432; 10384 1.0518 1.0957{ 1.0000 10002 10000 1.0000| 0.0000 20.0000| 0.1000
Minimisation of | Type 4 04905 04905 04905 0435 04905 00000, 0289 03005 1.0543i 00000 00000 00000 0O000G| 0.0000 10.0000( 0 1000
SD among T pe 5 04905 04905 04505 (04905 04905 0.0000; 0293 10306 1_1125| 1.0000 10003 1.000GC 10000 00000 1300000 0.1000
APCS '. E - —
_ — Sample size = 50 ) ]
Existing IC Typ. ! 03360 05725 06275 07180 053635 01631 i 000C0 OODOOD  OOQCDD; !
{All are si 5 o _ L |
Maximisation of | Type 2 06465 05235 05420 06265 05846 00609 05123 07462 0.8995, 0.0000 10000 10000 20000 -2.0000 2.0000| 0.0019
MAPCS Type 3 0.6510 05235 05423 06220 05846 0.0615% 1.029_7_“ 1.0302 1.0386 931?0 3?_1%0 391?0?91?9L29[2f_)0__ 3.9120| 00010
Minimisation of | Type 4 05805 05805 05805 05805 05805 0G000; 02323 04800 12438 0.0000 00000 00000 0.0000] 00000 10.0000| 0.1000
SD among Type 5 i 0.5805 0.5805 (5805 05805 G§.58G5 00000[ 10094 10186 1.0512( t0000 10000 10000 10000 O.0000 100000| 0.1000
APCS i -' L ]
Sample size = 1) o o _
Existing IC Type | 0.4290 06575 0.7125 08180 06542 0 1643] 00000 0.00006 0.0000]
~ L(Al are same) ]
Maximisation o1 { Type 2 0.6890 (6320 06620 0.7370 906800 Q0446! (4189 06262 1.1782! 00000 00000 0.0000 N.OODG, 0.0000 100000} 01000
MAPCS Type 3 06900 0.6320 06620 (§.7355 0.6799 (0440 10084 1Q126 1.0242| 10000 20000 20000 3.0000, 0.0000 10.0000! 0.0010
Mimmisation of Type 4 06685 0.6685 (.6685 06685 06685 00000 02444 05668 70418( 0.0000 20000 0.0000 0.0000| 0.0000 10.0000| 01000
SD among Type 5 0.6685 0.6685 0.6685 (.6685 0.6685 C.0000{ 10649 10114 10418 10000 ¢GUOU 1.000G 10000{ GO00G 10.000G| 0.1000
APCE - i — e — S
* Additive penalty for model M, is zero and muitipheative penalty for model Af, iy one :
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood funaction !

Type 3 and Type 5 are muhiplicative penalties with mean squared error i




Table 6.9a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under diff* ~ent methods for sample sizes
20, 50 and 100 for Design 5.3 together with relative penaity values and input values of SAQO tech: (jue.

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaitics with maximised log-hkelihood function
Type 3 and Type 5 are multiplicative penalties with m<an squared error

Method Penalty type | Average probabilities of correct selection of Relative penahties’ input values fro simulated annealing
model Starting values of penalties Boundaries | TR
. M | My | M My [ Mean | SD [ e, | P [ Py {05 [ 5 [ S: [ s {18 [ us [ )
\ _ _ Sample size = 20 e e
Existing IC Type | [ 05270 04030 0.3745 04785 0.4457 00697] 0000 0.0000 0.0000 ‘
(All are same)
Maximisation of | Type 2 0.2440 03505 07285 0.7470 05175 0.258%! -3.4352 -37546 -0.5835; 29957 29957 29957 29957{ -4.0000 59915 0.0001
MAPCS Type 3 0.2440 03510 07280 0.7470 05175 02579] 07101 06878 09433| 10000 20000 20000 30000| 00000 48.0000| 0.1000
Minimisation of | Type 4 (4780 05260 05325 04960 0.5081 00256 -35696 -3.5836 -0.0276] 0.0000 1.0000 1.0000 2.0600{ -3.0000 3.000C| 0.0100
SD among Type 5 £.4820 05295 05200 04985 0.5075 00214 0.7650 0.7646 09973| 1.0000 20000 20000 3.0000| 0.0000 120000[ 0.1000
APCS | —
. _ . ._.____Sample size = 30 )
Existing IC Type 1 [ 05820 05045 04295 04845 (5001 00631° 00000 0.0000 0.0000] 1
. {All are same) _
'3 [Maximisation of | Type 2 €30457 03645 07400 G 7985 05569 01937 -14966 -18183 -02936| 3.9120 39120 39120 39120| 00000 12.0000 571500 ]
MAPCS Type 3 | 0.3945 0.3840 07405 07675 05566 01938 09403 09283 09883| 10000 10000 10000 10000} 00000 t0000| 0.1000
Misnmisation of | Type 4 | 0.5245 05485 05395 05265 05347 0.0113] “20280 -2.0545 -0.0412]| 00DOD 1.0000 10000 2.0000] ©0000 3.0000] 00100
SD among Type 5 , 05320 0.5065 0.5040 0.5290 05179 00147, 09865 0985t (8985! 10000 1.0000 1.0000 10000{ 60000 3.0000| 01000
APCS B | !
- Sample size = 1(0) ~ _ B
"Existing IC Type | 06230 06085 04785 (.5005 05526 00737; 0.0000 (0000 O 0ONO 1l
: (Al are same) | I R S N
. Maximisation of | Type 2 0.4480 04490 08080 07330 06095 0.1884| -1.9048 -23262 -0.3118] 00000 00000 N.O0G00 0.0000] G.0000 10.0000( 0.0100
MAPCS Type 3 0.4480 04490 08080 07330 06095 01864 09625 09544 09938) 10000 20000 2.0000 3.0000) 0.0000 12.0000| 0.1000
Minimisation of | Type 4 05645 06015 05975 05825 0.5865 00163 -37893 -38600 -0.0701! 46052 46052 46052 46052 00000 6.9078| 0.1000
SD among 'Type 05605 06020 05975 05795 0.5849 00189, 08527 0.8515 0.9986| 1.0000 20000 20000 3.0000/ 00000 27.0000 0.0010 _
APCS | ;
* Additive penalty for mode! M. is zero and multiplicative penalty for model M« is one r




Table 6.9h Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.3 together with relative penalty values and input values of SA(Q)

Type 3 and Type 5 are :nultiphicative penalties with mean sqtared error

technique.
Method | Penalty type { Average probabilities of correct sefection of | Relative penaities’ Input values for simulated annealing |
| [ model i Starting values of penalires Boundarwes TRE
| L M. | My | oAt LMy Nan [ SD [ p, | P [y Uy 1S s [osy [iB ] UB ]
: _ ‘ o Sample size= ' ]
Existing iC TT)’DE i ‘ 5270 C4030 G 2745 (4785 0 4457 00597! G.0000 000U G o
{All are same) ‘ i : ) .
Maximisation of T::E p 03310 325 07410 086680 05154 0.2204;' -t r-nd 22314 .03124! 0.06000 10000 10000 2.0000] 0.0000 30000| G.0001
MAPCS | Type 3 02800 03510 0725 07095 05172 0 335_;_1 _0713) 06907 09566 44936 44936 44936 14936| 00000 14.9787| 00010
Minimisation of | Type 4 _4‘ 04955 04915 4915 04830 04329 0008, 0978 -09223 -0.0185 00000 10000 100CC 20NCHT GO0 30000 61000
SD among Type s 05000 G.4630 024740 (4350 Q04837 © 0175; £9534 009512 09984) 10000 10000 1.0000 1.000(.»& 0.00C3 2.0000![ 0.100¢
APCS _ N i . _. | —
. . Sample size = 50 ]
1o Existmg IC | Type | 0.5820 05045 04295 04845 OFIOI C.06571 00000 00000  0.0000 [ T -
3 (All are same) _ L o _ ' ]
Maximi< wion of | Type 2 | 04210 03385 07345 06815 0.5564 01769 34294 17437 022721739120 39120 38120 39120 00000 78245 0.1600
MAPCSI : Type 2 _L C413C (3865 - 7485 OG3I7C O 546:_5‘E_1_?_5f4 0A784 0.6633 0.9018 '-M‘n_:.'}_(J_E)(H)_J‘(LlOOO 1_9000 100(39 _9_0(_)?0__‘!_?5}{‘)0%_‘9?&09
Minimi-wien of | Typed 05290 05290 (5290 05290 0529 00000, 08352 08683 00364 DOOOD 10730 10000 2.0000] -40000 40000| 00100
SD among Type 5 1 05320 05065 05040 05290 05'79 00147 (9865 09851 09985 10000 10000 10000 10000/ 00000 "0000! 01000
APCS L _ e e . -
- L i Sampie size = 1060 ) N
| Existing IC Type i 0.5230 06085 04785 0.5005 05526 00737- 00000 0OCUL  0.0000 1 [
(Al are same) e . S N SR SRS
Maximisation of | Type . 04615 4490 08075 07290 06033 0.1864 18037 -22247 -0.0023| 0.0000 10000 1.0000 2.0000] O 0000 3.0000] 0.0010
IMAPCS ___ [Type3 | 0458 045 07570 07250 08051 31525 09825 097 09%2| 09070 6078 69078 69078 00000 69078 00001 |
Minimisation of 1 Type 4 05745 05740 05745 05750 05745 00004 -02432 -03146 -00603] 46052 46052 46052 48052, 00000 9.2103] 00100
$D among Type 5 15735 06726 05735 05750 05736 00010 09956 0.9941 09988, 59078 69078 69078 69078 00000 13.8155] 0.1000
AFCS o _— - e —— i
* Additive penalty for model M: is zero and siultiplicaave panaty tor model A« is one
“* TRF Temperature reduction factor
Type 2 and Type 4 ase addiive penalties with maximised log-likelihood function




Table 6.10a Average probabilities, mean average probabilities . Wl standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.4 together with relative penalty values and input values of SAQO technique.

Method | Penalty type | Average probabilities of correct selection of |  Relative penalties | Input values for simulated annealing
model | Starting values of penalties i __Boundaries TRE
Mo o My T M. | My P Mean D SD o, Do oy s T T T s [ B[ UB
Sample size = 20 e o
Existing IC Type | [ 03790 04805 05250 03840 0.4427 007241 0.0000 0.0000  0.0000] T
(All are same) i
Maximisation of | Type 2 07265 023540 03700 04720 Q4806 0.1?203‘“0‘.?317 08956 04813] 0.0000 00000 00000 0.0000| -12.0000 12.0000] 0.1000
| | MAPCS Type3 | 07265 03540 03700 04720 04305 01720| 107 1093 10492, 10000_ 20000 20000 30000| 00000 48.0000| 01000
| Minimisation of | Type 4 0.4625 04625 04620 04625 G.4624 00003, 01059 01544 00281] 00600 10000 10000 20000; 00000 4.0000| 01000
! SD among Tvpe 5 | 04625 04625 04620 04625 04624 50003, 10107 0156 10028] 10000 20000 20000 30000 00000 16.0000| 01000
APCS N - i e L
E Sample size = 50 o
| Existing IC Type | ' 4155 05910 0.6380 04610 05264 0.1052. 00000 00000 0.0000
o {All are same) | i — :
= [Maximisation of | Type 2 [ 07005 05455 04435 06305 05800 0.1109° 05450 0.9479 028841 (0000 00000 00000 C.NOMT  0.0000 100000 0.1000]
MAPCS Type 107005 05450 04440 06305 06800 1107, 10220 10385 10114) 10007 10000 10000 1oO0O| 00000 100000 0.1000
Minimisation of | Type 4 105560 05575 05555 (5565 05574 0005: 02101 02874 0.1043] 00000 0000G 0.0000 0.0000( 00000 106000 6.0001
SD among Type 5 | 05560 05575 0.5590 0.5675 05675 00012, 10085 10117 10042| 58680 58680 58680 58680 00000 58680, 0.0100
AFPCS | ,
Sample size = 100 ) . ) o
Existing IC Type | 0.5130 06520 0.7370 065780 06200 0.0865 00000 060003  0.0000
{All are same) . - - ;
Maxmmisation of { Type 2 107605 06545 0.5480 0.7465 06824 01042 05510 {2144 5141 00000 10000 1.0000 20000] -10.0000 100000 ¢.1000
MAPCS ' Type 3 0.7805 06545 0.5480 07465 06824 01042 10111 10246 19103. 69078 69078 69078 69078| 00000 1728155] 01000 :
Minimisation of | Type 4 0.6795 06885 0.6360 06500 06635 00246 02110 06355 0 44\5] 46052 46052 46052 460520 00000 6.9078| 00001 E
SD among Type 5 0.6825 06890 0634C 06475 06633 00267 10042 10134 10095| 10000 20000 20000 30000( 00000 100000( 01000 ;-
APCS i : - |
* Additive penalty for maouel Msis zero and multipitcative penalty for model M- is one

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaltics with maximsed log-likelthood function
Type 3 and Type . re muitiphicative penaities with mean squared error




Table 6.10b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods fer sample sizes 20, 50 and 100 for Design 5.4 together with relative penalty values and input values of SAQ)

technique.
Method Penalty type | Average probabilities of correct selection of Relative penalties Input values for simulated annealing
model Starting values of penalties | Boundaries | TRE
; M; | My | M. 1 My [Mean | SD | p, 1 P | Py Se 1 Se 1 8 | Ss B {tn
. ) Sample size =20 _
Existing IC Type 1 03790 04805 05250 03840 04421 00724 0000 00000 0.CA0G] ‘
{All are same) , —_ . e
Maximisation of Typcz 0.6180 05120 03185 04710 (04799 §.1241 . 2655 (.8940 047801 00000 0OULOBO 00000 0.0000) -12.0000 12.0000] 00100
MAPCS Type 3 0.6805 04285 0.3400 04715 04801 01444  5.05'3 10947 1.0502] 1.0000 1.0000 10000 10000{ 0.0000 20.0000; 0.0010|
J Minimisation of |Type 4 0.4620 0.4620 04620 04620 0.4620 0.0000: 0.1057 0.1837 002084 00000 Q0000 0.0000 0.0000 0.0000 10.0000) 0.1000
' SD among Tyvpe 5 04620 04620 04620 04620 04620 ¢0000: 10106 10155 10028| 1.00060 10000 40000 1.0000 ¢.0000 1.0000] 0.1000
APCS ‘ ) B B )
Sample size =50 L . ]
1o |Existing IC [Type | [ 04158 05310 0.6380 0.4610 05264 0.1052 00UC0 0.0000 0.0000
et {All are same) L ! o ]
Maximisation of | Type 2 06945 C5510 04440 06300 05799 01079 05285 09294 02819] (4.6060 10000 100000 20000 00000 30000 0.1000
MAPCS Type 3 06965 05500 0.4435 06295 0.5799 0.11')83i 1.0214 1.0381 1.0115’_59999“ 5 8680 5.8680 5968{1 _29_099-1?“5_991“_-_4
Sinimisation of | Type 4 05570 05570 0.5570 05570 05570 GO0000 02134 02993 0.1092| 00000 00000 00000 00000] 0.0000 10.0000| 0.1000
SDamong Type 5 10.5570 05570 05570 05570 05570 0.0000° 1.0086 10120 1.0044; 10000 10000 10000 1.0000 0.0000 1.0000| 0.1Cu0
APCS | s |
] Sample size =100 1
Existing IC Type 1 0.5130 0.6520 0.7370 05780 06200 0.0965; 0.0000 0.0000 00000
(All are same) ‘
 Maximisation of | Type 2 0.7675 06450 05500 0.7540 0.6814 00983 05513 10794 0.4080| 00000 00000 00000 0000G] 00000 10.0000; 0.1000
‘MAPCS Type 3 0.7805 0.8450 0.5705 07290 06813 0.0926) 1.0111 10219 10103] 69078 69078 69078 6.9078] 00000 69078| 10001
Minimisation of | Type 4 0.6595 006505 06595 06595 06585 00000] 02182 04622 02743! 00000 00000 00000 0.0000{ 00000 10.000¢| 0.1000 5
SD among Type 5 0.6595 0.6595 0.6555 16595 0.6595 0.0000, 1.0044 10093 1.0055; 1.0000 1.0000 1.0000 1.0000 0.0000 1.000G| 0.1000 l
APCS . ; | i
* Additive penalty for model M« is 7ero and multiplicative penalty for madel M<is ane s
** TRF Temperature reduction factor
Typc 2 and Type 4 are additive penalties with maximised log-likelihood funcuon 1
Type 3 and Type 5 are multiplicative penalties with mean squared error .
I




Table 6.11a Average probabilities, mecan average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.5 together with relative penalty values and input values of SAQ technique.

Method Penalty type | Average probabilities of correct selectionof | Relative penaltics Input vahues for simulated annealing_wj_____‘_ ]
model E Starting values of penalties Boundaries  { TRF"
M, (Mo IM);  IMp;  Mean [SD 1Py, Py P So 180 I8, % I
. Sample size = 20
Existing IC Type 1 06410 03770 04650 0.3v50 04695 0.1205 00000 0.0000 0.0000
{All are same) o ;! L o
Maximisation of | Type 2 03690 09970 06530 09185 ~7343 02845 -52089 -0.7590 -2.2686| 0.0700 00000 00000 0.0000| 0.0000 10.0000| G.1000
MAPCS Type 3 0.369C 09970 0.8530 09180 0.7342 0.2845i 0.5873__(_3 9270 07970 1.0000 10000 10000 1.000G| 00000 1.0000| 0.1000
Minimisation of | Type 4 05635 05635 05635 05635 05635 00000{ -02022 -C.1329 -0.2334| 00000 0.0000 0.0000 0.0000[ 0.0000 10.0000| 0.1000
SD among Type 5 0.5635 0.5635 75635 (5635 05635 00000: 09799 09867 0.9768] 09975 1.0000 10000 1.0000| 0.0000 1.0000| 0.1000
APCS '
Sample size = 80 L
o (Al are same) : L
% [Maximisation of | Type 2 05175 09990 08325 09490 08245 02162 -48874 12190 -2.6135] 00000 1.0000 1.0000 20000 0.0000 10.0000| 0.0100
MAPCS Type 3 0.5175 09990 € 8325 09495 08246 02163 08220 09523 0.9002! 10000 1.0000 1.0000 1.0000| 0.0000  1.0000; 0.1000
Minimisation of Type 4 08785 05785 0.6785 06785 06785 00000 -0.1841 02797 -03831| 00000 00000 0.0000 0.0000; 00000 100000 0.1000
SD among Type 5 0.6785 0.6785 06785 (.6785 06785 0,0000.: 0.9927 0.9888 09848, 0993; 10000 10000 1.0000; 0.0000 10000 0.1000
APCS _ t A
3 Sample size = 100 o _ ]
Existing IC Type 1 18505 (04350 05005 0.4495 05589 0.1964 00000 (0000 0.0000
(ANl are same) e H . e
Maximisation of | Type 2 0.6480 09985 0.8710 0983C 08751 01617; -53640 -12:30 30750 0.0000 OGO0OCO 00000 00003 00000 10.0000; 01000
MAPCS Type 3 0.6480 09985 (0.8710 09830 ©0.8751 0,16175 u._a_g_za 09760 09403 10000 1.0000 1.0000 1_(}009_ —_.0.0000 1.0000| 0.1000
Minimisation of | Type 4 07580 0.7580 0.7580 0.7580 0.7580 0.00G0| -0.3382 -0.3897 -05470| 00000 0.0000 0.Q00Q ©0.0000| 0.0000 10.0000| 0.1000 i
SD among Type 5 0.7580 0.7580 0.7580 0.7580 0.7580 0.0000: 0.9933 09920 0.9891! 0.9204 10000 1.0000 1.0000| 00000 1.0000! 0.1000
APCS o :
* Additive penalty for modei My is zero and multipiicative penalty for model My is one |
** TRF Temperature reduction factor :
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type § are multiplicative penalties with mean squared error




Table 6.11b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 26, 50 and 100 for Design 5.5 together with relative penalty values and input values of SAQ

technigue.
Method Penalty type | Average probabilities of correct selection of Relative penalties’ Input vatues for simulated annealing
model Starting values of penalties Boundaries | TRI
My My M, M  Men [SD 1P, Py trep N9 ET L [ LB_| B
Sample size = 20 . )
Existing IC Type | 06410 03770 04656 03950 04695 0.1205! 00000 0.0000 0.0000
{All are same) i B
Maximisation of | Type 2 03725 09855 06625 09060 07316 02760; -39370 -0.7641 -2.0906] 0.0000 00000 00000 00000| 0.0000 4.0000| 0.1000
MAPCS Type 3 0.3760 0.9970 0.6460 09165 07339 02819 05935 09310 08012| 1.0000 10000 10000 1.0000| 0.0000 10.0000| 0.1000
Minimisation of | Type & 05635 05635 0.5635 03:c35 0.5635 00000, 02022 -0.132¢ -0.2334| 0.0000 0000 00000 0.0000| 0.0000 100000| 0.1000
SD among Type S 0.5635 05635 05635 (¢5635 05635 00000 09799 09867 0.9769; 09975 1.0000 1.0000 1t.000G0| O.0000 1.0000( 0.1000
APCS ) S , _
- ____ Sample size = S N
9 Existing IC Type | 0.7685 0.4010 0.4955 G.4365 05254 0G.1667| (0000 G.0000 0.0000
g {All are same) ._
Maximisation of | Type 2 05330 09935 08095 0.9600 06240 02099, 39153 -1.0541 -27323] 0.0000 00000 00000 00000] 0.0000 4.0000] 0.1000
MAPCS Type 3 05165 09835 0.B330 0.9540 (8242 0.2152; 0 8438 09523 08981-]_090(1-329_00 3@99___3,(2_09 _.8?900 10.0000 ‘{3...0001
Mininvisation of | Type 4 06785 06785 06785 06785 06785 00000: -01841 -02797 -03831{ 000G 00000 00000 00000| 00000 10.0000| ¢ 1000
SD among Type 5 06785 0.6785 06785 05785 0.€785 0.0000; G.9927 (9889 09848; 09932 10000 10000 1.0000| 00000 1Q00O0|( 0.1000
APCS . e RN S
Sample size = 1} N } . :
Existin IC Type | 0.8505 04350 05005 04495 05589 0.196d; 0.0000 00000 G M0CO 1
{All are same) )
Maximisation of | Type 2 (05530 09845 0.8785 09685 (8711 01527 -34805 -1.2128 -25651| 00000 10000 10000 20000] 00000 40000| 00010
MAPCS Type 3 06520 09985 0.8760 09715 0.8745 0.1574; 0b364 09760 (.9474 9.210:% 9.2103 9_.2103_."—9_..2103 (_)_0999_921_03 .P_E*O_E
Minimisation of Type 4 0.7580 0.7580 0.7530 0.7580 ©0.7580 0.0000: -03382 -03997 -05470] 00000 00006 ~0000 00000| 0000 10.0000] 0.1000
SD among Type 5 0.7580 0.7580 0.7580 0.7580 €.7580 0.0000 0.9933 09920 0.9891| 0.9204 1.0000 :.0000 1.0000, ©.O000 1.00600{ 01000
APCS _ ,. L
* Additive penaity for model Mo is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor '
Type 2 and Type 4 are additive penalties with maximised 10g-likelihood function '
Type 3 and Type 5 are multiplicative penalties with mean squared error




Table 6.12a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
madels corresponding to the largesi mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.6 together with relative penalty values and input values of SAQ technique.

Method Penalty type | Average probabilities of correct selection of Relative penalties‘ i Input values for simulated annealing
model Starting values of penalties Boundaries | TRE
Ms Mg |My Mg [Mean §SO_ (P, iPy (P So 18w sy B B | uB
Sample size = 20
Existing IC Type | 04295 06030 04520 04630 04869 00767 00000 0.0000  0.0000
{All are same) !
Maximisation of | Type 2 08290 02640 03340 06330 05650 0.2351: 16520 06531 05078] 0.0000 0.0000 0.0000 0.0000| -4.0000 4.0000( 0.1000
MAPCS Type 3 0.8290 02640 0.5340 0.633¢ 05650 02351 1.1796 1.0675 1.0521| 1.0000 20000 20000 3.0000! 0.000C 10.0000| 0.1000
Minimisation of |Type 4 0.5195 05195 05195 05195 05195 O.OOOOI 0.1446 00096 0.0178| 60000 0.0000 G.0000 0.0000[ 0.0000 10.0000; 0.10G0
SD among TypeS 05185 05195 05195 05195 05195 0.0000: 1.0146 1.0010  1.0018] 1.0000 1.0000 10000 1.0000| 00000 10000( 0.1000
APCS
Sample size = 50 _
Existing IC Type | 05360 06960 05556 05520 05349 00746 0.0000 00000 ©0.0000
o (AH are same) . - o
2% {Maximisation of | Type 2 0.8325 04160 0.5895 07950 0.6583 01936 13174 05771 0.10421 00000 0.0000 00000 0.0000| -4.0000 4.0000! 01000
I MAPCS Type 3 0.8325 0.4160 0.5895 (7950 06583 0.1936: 1.0541 10233 1.0042| 10000 20000 20000 30000 00000 100000) 0.1000
_ Ynimisation of | Type 4 0.6150 06145 06140 05145 06145 0.5v0s) 01459 00133 00150 0.0000 0.0000 0.0000 0.0000] 0.0000 4.0000] 0.1000
SO among Type 5 06145 06140 06145 06150 06145 00004 1.0058 1.0005 1.0005{ 1.0000 1.0000 10000 1.0000| 00000 10.0000| 0.0100
APCS | !
Sample size = 100 o
Existing IC Type 1 0.6290 07505 0.6785 0.6865 0.6786 0.0520; 0.0000 0.0000 0.0000
(All are same) e [ _
Maximisation of | Tvpe 2 0.9270 05510 07080 07890 0.7438 0.1571i 1.4753 08747 06798} 00000 00000 00000 0G000{ 0.0000 10.0000! Q.1000 !
MAPCS Type 3 0.9270 05510 0.7080 07890 0.7438 0.1571; 1.0300 10177 1.0137) 1.0000 1.0000 1.0000 1.0000| 0.0000 10.0000] 0.1000]
Minimisation of | Type 4 0.7045 (.7045 0.7045 0(.7045 0.7045 O\OOOOi 0.7476¢ 00514 (0.0328 00000 0.0000 00000 0.00007 000G 10.00001 0.1000
SD amang TypeSI 0.7045 07045 0.7045 0.7045 0.7045 o,oooo' 1.0022 10010 1.0007; 1.0000 1.0000 1.0000 14.0000[ 0.0000 1.0000| 0.1000
APCS ,
* Additive penalty for model Mg is zero and multiplicative penalty for model M, ts one
** TRF Temperature reduction factor

Type 2 and Type 4 are additive penalties with maximised iog-likelihood function i
Type 3 and Type 5 are multiplicative penaities with mean squared error




Table 6.12b Average probabilities, mean average probabilities and stz:derd deviations of average probabilities of correct selection of
models corresponding to the smallest variation antong the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.6 together with relative penalty values and input values of SAQ

technique.
Method Penalty type | Average probabilities of correct selection of |  Relative penaltiesi Input values for simulated annealing
model | Starting values of penalties Boundaries TRF
Mo iMg iMy (M [Mean {SD 1P, |Py L7 Se IS (S [$i LB [ us
Sample size = 20
Existing IC Type | 04295 0.6030 0.4520 04630 0.4869 00787 GO0CDO ©.0000 0.0000
(All are same) . ]
Maximisation of | Type 2 0.8275 03400 04970 05915 05640 02040 12607 07286 05748] 0.0000 10000 1.0000 2.0000{ -10.0000 10.0000| 0.0100
MAPCS Type 3 ‘_ 0.8370 0.3280 0.5140 05775 C.5641 0.2105! 11434 10755  1.0657| 1.0000 1.0000 1.0000 1 ON00 . 00009“10_0(39?__0“095(_)
Minimisation of | Type 4 0.5195 05195 05195 05195 05195 GO0000; 0.1446 0.0096 0.0178] 0.0000 00000 00000 00006 0.0000 100000{ 0.1000
SD among Type § 05195 05195 05195 0.5195 05195 0.0000! 1.0146 1.0010 1.0018| 1.0000 1.0000 1.0000 10000 0.0000 1.0000} 0.1000
APCS ' b ] o
Sample size = 5¢ )
Existing IC Type 1 0.5360 06950 05555 (5520 0.5848 0.0746, 0.0000 0.0000 0.0000 ]
{All are same) .
Maximisation of | Type 2 0.8285 04225 05925 0.7855 06573 0.1871] 12521 05440 0.1041| 58680 58680 58680 58680] -10.0000 10.0000| 0.0010
MAPCS Type 3 0.7900 0.4450 0.6430 0.7395 0.6544 015?} 10404 10113 1.0042 1.0_000 10_000 1,090_0_ 1,00004"-_9‘.0000 16.0000) 0.0100
Minimisation of | Type 4 0.6140 06740 06140 0.6140 06140 00000| 01453 00121 0.0143| 0.0000 0.0000 ©.0000 GOOON] O OO0D 10.0000] 0.1000
5D among Type 5 06140 06140 06140 06140 06140 00060 1.0058 10005 1.0006; 1.0000 t.000C 1.0000 1.0000 G.0000 1.000¢] 01000
APCS |‘
Sampie size =100 i
Existing IC Type 1 0.6290 07505 0.6785 06565 06786 0.0520: 0.0000 00000 0.0000
(All are same) |
Maximisation of T‘_Ez 0.8945 0.5670 0.7345 0.7760 0.7430 (0.1355| 1.1706 05862 0.4886; 00000 00000 00000 0.0000 0.0000 4.0000| 0.0100
M*g_‘WWh:TL@Q 0.8935 0.5670 0.7350 0.7765 (.7430 0.1352] 10235 10116 1.0097; 92103 92103 9.2103 92103 0.0000 18.4207( 0.0100
Minisnreation of | Type 4 0.7045 07045 0.7045 0.7045 0.7045 00000] 0.1476 00514 00328] 00000 00000 0.0000 0.0000! 0.0000 10.0000{ 0.1000
iDPégor'g, Type 5 0.7045 (0.7045 0.7045 (.7045 07045 Q.0000} 1.0029 +.0010 1.0007; 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000| 0.100C
- pa—

* Additive penalty for model M, s zero and multiplicative penalty for mode! M, is one
** TRF Temperature reduction factor
Type 2 and Ty} . 4 are add:tive penalties with maximised log-likelihood function
Type 3 and Type § are muluiplicative penaities with mean squared error




g s . o - . - " el e n L s e o TL R A A o R | ok o B Al i st dEd e R ek aER D e e gl L M € T ok B o) I P ) S B R E AR e e A
i TP R B URITT M et o T AT n ek i et oy S e R e LI i Tk e i L - - R e S R S R B o 1 Sk il bt i o i RS L LA o L R 5 el L B 1> "
P e v MR e e £y s et i o ST i e R AT s S S H R T ST oo, SR PN R REL, T e At . = 't S e TGP TN, =T S ] N N .

CHAPTER 7

SUMMARY AND CONCLUSIONS

One of the important decision making problems in econometrics and statistics s 10
choose an appropriate model 10 represent a particular data sct from a set of alternative
models. There are several ways of solving this problem and the most popular way is
the use of an informauon critena (JC). In an 1C based model selection procedure. the
model which has the largest maximised log-likehthood minus a penalty function 1s
chosen as the best model. Several 1C based model selction procedures have been
proposed in the fiterature. The penalty function of ail existing IC procedures depend
on the number of free parameters in the model and, in most of the cases, the sampie
size. One of the main disadvantages of these 1C procedures s that their performance
varies from data set to data sct and none perform well in all sitvations. Some 1C
procedures favour the model with the smallest number of parameters while others
favour the model with the largest number of parameters. One of the unresolved
questions is which criteria one should use to seiect the best model for a partscular
data set. Also, the penalty functions used in these IC are independent of the data set.
Thus for the same set of modcls, a change of data does not have any impact on the

penaity function. When the competing models have the same number ot parameters,




Chapter 7 Summary and Conclusions

there is no need to use a penalty function and the problem reduces to choosing the
model with the largest maximised log-likehhood, which is a weakness of this
approach. Thus, it is our belief that bett=r handling of the penalty function will
improve the probability of selection of the correct model. The main aim of this thesis
is to investigale the ways in which the information in the data can be used to
caiculate the penalty function, so that the mear. average probability of correct

selection (MAPCS) is increased or optimised.

A survey of relevant litcrature on model selection was presented in Chapter 2. We
first reviewed the literature on model selection based on sum of squared errors and
then we surveyed model selection based on IC. It was argued that nore of the existing
IC performs well in all situations, so a new technique of model selection, which
performs well on average in all situations was needed. Finally, we introduced the

SAO technique and reviewed its applications in econometrics.

The main purpose of Chapter 3 was twofold. First 10 introduce a new method for
computing penalties for selecting the best model from a set of competing models,
which assure the best average probability of correct selection. Another purpose was
to find the most efficient combination of the number of narameter drawings (g) and
replications (N) for estimating APCS via a simulation experiment for a fixed number

of total simulations, gN. We used the average standard deviation averaged over the

238




Chapier 7 Summary and Conclusions

number of competing models (ASD) as a measure of efficiency und coefficient of

variation (CV) as a measure of reliability of the estimaied MAPCS.

We found that the relationship between ASD and 4 5 well represented by the
regression model IN(ASD)Y= a+b In(g)+¢{In(g)) . as the adjusied R® are large

(>0.95), the estimated coefficients of the model are also highly significant and there
is no significant autocorrelation. The value of ¢, where the vaiye of ASD is at a
mimmum. is almost in all cascs greater than the maximum value of gN (here 2000).
This implies that the maximum numbcer of drawings of parameters produces the most
efficient estimate of the MAPCS. For this combination of ¢ and N, the value of CV is

also the lowest.

We observed that the penalty functions of AIC, BIC, HQ.RBAR, GCV and HOC for
the j* model can be generalised o a  Single  penalty  function
p,=Ak,+A.In(n-k,). For the listed existing criteria, 4, and A, are determined
by the sample size n. In our proposed method of computing penalties for 1C based
model selection, we allowed A, and A. 1o take any Valucs thal maximise the
esitmaled MAPCS. We proposed five 1C, and for the J" model the criteria are as
follows:

NlClJ = L(éj)“‘ﬂl’\'},

NIC2, = L(8,) - A, In(n~k,),
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NIC3 = L(0)- Ak, Intn—k ),
NIC4 = L(6)- Ak’ and

NICS, = LU0 )~ (A&, + 2, Intn - k).

We conducted simulation experiments 1o evaluate the performance of ihese proposed
IC compared 10 the performance of existing cited IC in linear regression model

settings.

The simulation results revealed that the performances of the six histed IC vary from
situation 10 sitration and from data sct to data set. Even for a particular data sct. the
performance of the sclected cniteria vanes from sample size 10 sample size. In ail
designs under study, the MAPCS increases as the sample sizes increases. Within a
particular design under any criterta, the vartation among the APCS decreases as the
sample s1ze increases. In terms of MAPCS, none of the listed criteria performs well
in all situations. But for all designs and sample sizes, the MAPCS obtained using the
new method and the proposed IC are always higher than that of the largest MAPCS
obtained from the listed existing cniteria, Also, in general, the variation among the

APCS s smaller than that of all the listed criteria except RBAR.

The performances of all new proposed 1C are very similar, although the performances

of NIC4 and NIC5 are better than those of the others. The estimation of two
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parameters is required for NIC4 and NICS and this can be time consuming. The
improvements of MAPCS obtained from NIC4 and NICS over NIC1. NIC2 and I3
are not significant. So considering the computational time and improvement of
MAPCS, NIC1. NIC2 and NIC3 seem to be better than N#C4 and NICS5 for selection

of hinear regression models.

In Chapter 4 we introduced the application of the simulated annealing optimisation
(SAO) technique for penalty function calculation in linear regression settings. Two
types of penalties were used with the SAO technique to maximise the MAPCS.
These arz an additive penalty used with the maximised log-likelihood tunction and a
muitiplicative penalty used with the mean squared error. We conducted simulation
experiments to compare the performance of the existing 1C procedures with the SAO
technique as a method for finding penalty function values in terms of maximising the
MAPCS. Simulation results demonstrate that the MAPCS obtained using the SAO
technique with additive and multiplicattve penalties are always higher than those of
the existing critenna. We found (hat the relative penalties that maximise the MAPCS
for a particular model are different for different data scts, Also for competing models
of the same dimension, the relative penalties that maximise the MAPCS are different,
but for the existing 1C they are zero. This imphies that the optimal penalty does not
depend only on the sample size and the numbcer of free parameters, but also on the
data generating process. Simulation results show that the APCS obtained using a

multiplicaive penalty with mean squared error are very similar to those obtained
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using an additive penalty with maximised log-hkelihood funcuon. So. one can use

etther of these techniques 1o select the best model.

In Chapter 5 we investigated the use of the SAQO 1echnigue to select the best model
from a set of equi-dimensional alternative inodels. We conducted simulation
experiments to evaluate the performance of the SAO techmque in selecting the best
model and used three types of penalties. The penalties are existing IC (Type 1),
maximisation of MAPCS using addiuve penalties (Tvpe 2) and multiplicative

penalties (Type 3).

From the simulation results we observed the following:

e The SAO techmique with additive penaltics always produced a larger MAPCS
than any of the existing criteria.

¢ For the same sct of equi-dimensional competing models the relative penalties that
maximise the MAPCS are diftferent and non-zero for different data sets. In
contrast these are always equal to zero {or the existing criteria.

e Exactly the same MAPCS 1s obtained from the different sets of relative penalties,
which indicates that there s no unique set of penalties that maximises the
MAPCS.

e The gap between the !.urgcst MAPCS and the smallest MAPCS obtained using the

SAO technique is very small. which indicatcs that the maximised MAPCS is
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insensitive 10 the intal parameter values for the SAO techmque. when the
competing modeis have the same number of parameters.

e The MAPCS obtained from addiuve and muhiplicative penaliies are very simular.
Therefore. from the user’s point of view. one can use cither of the penalty types

to select the best model.

In Chapter 6 we investigated an alternative approach of finding the penalties that
makes the APCS for each model equal or nearly equal based on the SAO techmque.
We used the standard deviation (SD) among the APCS as a measure of vanation and
applied the SAQO techmique 10 find the penalties for a particular data set and set of
corapeting models with the objective that the SD among the APCS of the different
model is a minimum. For the purpose of companson. we delined five types of
penalties. These are existing 1C (Type 1. maximisation of MAPCS (Type 2. addiuve
and Type 3. multplicative) and minimisation of vanation among the APCS (Type 4.

additive and Type 5. multiplicative).

From the simulation results we found that for models with an unequal number of
parameters, the MAPCS obtained from additive (Type 2} and multiplicative (Type 3)
penalties by minimising the vanation among the APCS using SAO technique are
generally lower (around six percent) than those obtained from the existing criteria
(Type 1). But for most of the experiments, the MAPCS corresponding to the smallest

variation among the APCS is higher (2.9%-15.1%) than the corresponding MAPCS
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for the existing cntena. Generally, the APCS obtained from the existing criteria are
far from equai. but the APCS obtained using Tvpe 4 and Tvpe 5§ penalties are ofien

equal or very close to equal.

For equi-dimensional competing models. the MACPS obtained from using Tvpe 4
and Type & penalues are gencrally higher than those of the exisuing cnitena. The
variation among the APCS obtained from Type 4 and Type S peaalues is always
lower than that of the existing critenia and in some experiments, the APCS were
equal for all combinations of the initial parameter scts used for the SAO technigue.
From the simulation experiments it is observed that Type 4 and Type 5 penalties are
msensitive 1o the gl paramcter scts for the SAO techmque for selccting the best

model from a set of models of equal dimensions.

To find the best combination of the number of parameter drawings (¢) and
replications (N) for estimating APCS via simulation experiments for a fixed total
number of stmulations, gN. for selecting the best model with reliable MAPCS, we
recommend the method proposed in Chapter 3. The performance of the technique we
proposed to maximise the MAPCS for selecting the best model from a set of lincar
regression models with an unequal or an cqual number of parameters is better then
that of the existing critena in all situations. The MAPCS obtained from our proposed
method of minimising the variance in the average probability of correct selection is

better than that of existing criteria most of the time, in particular the performance is
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always better when the competing models are equi-dimensional. So. for selecling the
best model from a set of competing hinear regression models with an uregual number
of parameters. the method of maximisation of MAPCS proposed in Chapter 4 secems
to be the best method. But for equi-dimensional competing linear regression models
the techmque of making APCS ecqual proposed in Chapter 6 1s our recommended

method.

Finally, the results from our experiments raise several interesting questions, which
ivite future sescarch on the arca of model seiection. For example, our proposed
method of model selection for lincar regression models assunung ideal conditions
can be extended for the models with heteroscedastic errors, senallv correlated errors,
non-normal error distibutions and the models that violate some ot the assumptions
of regression analysis 1o test the robusiness of the methods. The performance of the
proposed methods can be tested for the seiection of other types of models, which
hiave not been considered in this thesis, for example non-lincar models and models
with lagged dependent variables. This technique may be used 1o select the best hinear
forecasting models. All the existing model selection cnitena are hikelihood based. For
non-likelihood based methods such as selection of regression models based on
generalised estimating cquations (GEL}, there is a lack of rode] selection critena.
Recently Pan (2001) proposed a modification of AlC for selection of regression
models based on GEE and the use of a quasi-likelihood in place of the standard

likelihood in AlC. Our method of model sclection with SAO and proposed penalty
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types could be examined as an alternative solution with the quasi-likelthood

replacing the likehhood function.
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