
ERRATA

'Such manifold, if exists' should be 'Such a manifold, if it exists'.
'by 1/2' should be 'by half.
'a one-parameter family solution' should be 'a one-parameter family
of solutions'.
'extra care shown' should be 'extra care as shown'.
'kernaP should be 'kernel'.
'kernaF should be 'kernel'.
'There is necessity' should be 'There is a necessity'.
'relation to give real' should be 'relation gives real'.
'The form of it is' should be 'The form of vw is'.
'Prom (2.33) and (*)' should be 'Prom (2.33) and (2.36)'.
'Boyd casted doubt' should be 'Boyd cast doubt'.
Omit 'Bear this in mind'.
'HMP may still be applicable to other two forcings' should be 'HPM
may still be applicable to two other forcings, secha; and exp(a;2).'
'u (order of magnitude) vs ^x2' should be 'logu vs //2>.
'was first known' should be 'was first noticed'.
'the accuary' should be 'the accuracy'.
'This can be' should be 'It can be'.
'this can be readily' should be 'it can be readily'.

'+F221V2HV should be '+V22i - V2W2'.
'In practical situation' should be 'In practical situations'.
'a well behave' should be 'a well behaved'.
Omit 'one of the ways is to'.
'system is that the persistence' should be 'system is the persistence'.
The year should be '1997' not '97'.

ADDENDUM

Add an entry in Bibliography, on page 79, ' [39] Camassa, R. and Tin, S.-K.: The global geom-
etry of the slow manifold in the Lorenz-Krishnamurthy model, J. Atmos. Sci. 53:3251-3264.'

On page 45, the integral of Eq.(4.7) has a lower limit at s = 0. This specific lower limit ensures
that the compatibility condition Eq.(4.14) for W-2 is satisfied. Otherwise, for any other values of
lower limit, the compatibility condition Eq.(4.14) will be violated in general and hence W2 will
contain exponential growth term.
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Abstract

1i
1

m

This thesis contains a study on two model systems which exhibit two-timescale

oscillations. In both models, the amplitudes of the fast oscillations are much weaker

than the slow oscillations, the fast motions are exponentially small. This smallness

makes the detection and calculation of the amplitude of such exponentially small

oscillatory motions challenging.

The existence of the fast motions in these two models is inevitable and is in-

separable from the slower motions, despite their weakness, and hence are of great

importance in the sense that researchers must take into account the long term dy-

namical effect of such fast oscillations in order to have a realistic understanding of

the models.
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Chapter 1

Introduction

This thesis contains a study on model systems which evolve with different space/time

scales. We explicitly calculate the asymptotic solutions for two very different model

systems. Both models are nonlinear. The first model system is a quadratic nonlin-

ear harmonic oscillator driven by a localised forcing term. This system is derived

from a forced KdV equation (fKdV) and only stationary solutions are sought with

prescribed far field conditions. Thus the governing equation contains one spatial

independent variable only. The forcing term has a space scale much larger than

the natural scale of the linearised harmonic oscillator. It turns out that the forcing

term determines the exact profile of the solution at far field. Before we present a

detailed analysis on this forced nonlinear oscillator, we first gives a brief account on

the development of exponential asymptotics in Chapter 2. Exponential asymptotics

is a collection of asymptotic methods which leads to a more accurate asymptotic

approximation than the conventional asymptotic expansions, the latter usually at

best give approximation which has an exponentially small error. The exponential

asymptotics, however, is designed to include exponentially small quantities in the

approximation.

Then it is followed by a derivation of the forced nonlinear oscillator from the

fKdV equation. The chapter ends with two examples to illustrate the procedures

for the use of the complex-plane matched asymptotic method which is a member of

1
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exponential asymptotics.

We devote Chapter 3 to a detailed analysis on the forced nonlinear oscillator with

a Gaussian function as a driving force. Gaussian function per se has no singularities

in the finite complex-plane. A special treatment is required to bring out the hidden

singularities from the governing equation due to such forcing term. Thus this makes

the analysis stand out from the types of forcing used in the two prior examples.

As a model this forced nonlinear oscillator has its limitation. The main limitation

is that it cannot reveal how the fast oscillatory motion affects the slower oscillator,

there is no interaction between the slow and fast oscillators.

To gain insight of the effect of interaction between two oscillators with distinct

timescale, we require a model which allows feedback effect via nonlinear coupling

between the coupled oscillators. To serve this purpose we investigate a low order

system which consists of five first-order ordinary differential equations (ODE) in

Chapters 4-5.

This low order dynamical model has its own place in study of atmospheric dy-

namics. This relatively simple atmospheric model is derived by Edward Lorenz in

1986 to numerically investigate whether a slow manifold exists for the system [27]. A

slow manifold is a subspace of the full phase space in the question. Such manifold, if

exists, contains slow evolving motions which usually have days as a timescale. Fast

oscillatory motions usually have hours as timescale, such as inertia-gravity waves,

and do not appear in the slow manifold. The implication of the existence of slow

manifold is that there exist certain relations between fast and slow motions and

such relations could be made as accurate as one requires, at least in theory. Thus,

one would only need to deal with the problem in a smaller phase space and hence

simplify the question in hand.

In Chapter 4 we analyse a conservative version of this five-dimensional system

and leave the detailed analysis on a more realistic version, which includes dissipation

and forcing in the model, until Chapter 5. The key to the analysis in Chapter 5 is

to recognise that there is a timescale at work for dissipation other than a timescale



separation between fast and slow motions. Hence the conservative version is a

limiting case of the non-conservative model.

Finally, a chapter of concluding remarks brings an end to this thesis.



Chapter 2

A Review of Exponential

Asymptotics

In this chapter we present a brief account on the development of a collection of

asymptotic methods generally known as exponential asymptotics or asymptotics

beyond all orders. We also include a method outline with two examples to illustrate

the analysis on a boundary-value problem

u~ eu2 = f(x), x G R

in Chapter 3.

2.1 Introduction

Exponential asymptotics is a term for a set of techniques used to analyse asymptotics

beyond all orders. To understand what asymptotics beyond all orders means and

why one needs to go beyond all orders in the asymptotic solution, we first have to

review the definition of an asymptotic expansion.

An asymptotic expansion is a series that provides a sequence of increasingly

accurate approximations to a function in a particular limit. The formal definition ,

given by Poincare (1886, Acta Math. 8:295) is as follows. Given a function, </>(e), the

4



series Yl^Lo ̂ n^ is said to be asymptotic to 0(e) as e —> 0 for every nonnegative

integer N,

lim = 0. (2.1)

Note:

1. (f> might also depend on another parameter, in the form (f)(x,e). Then <j)n

should be replaced by 0n(^)> and one tests the asymptoticity of the series at

each fixed x.

2. Asymptotic series can be more complicated than simple power series in e, but

they are sufficient to illustrate our main points.

At the simplest level, N = 0, (2.1) implies that 0(e)

accurate approximation is obtained at TV = 1:

0(e) - 0o

as e —> 0. A more

as e
e

0,

and so on. If the series is asymptotic to 0(e), we write

CO

(2.2)
n=0

Here we note that the limit in deciding whether the series is asymptotic is e —> 0, N

fixed. In contrast, the limit to test the convergence of a series is N —> oo, e fixed.

This difference tells us that an asymptotic series need not converge for e ^ 0. In

fact one advantage of asymptotic analysis is that one can accurately approximate a

function, using a few terms of its asymptotic series.

An important feature of an asymptotic series like Yl ^n^1 is that every term in

the series is algebraic in e. Transcendentally small terms like exp(—1/e2) are smaller

than every term in the series as e —> 0, and are not captured by it. Therefore if

(2.2) is valid, then

/—1
0(e) + exp ( — (2.3)

n=0



is also valid. Such transcendentally small terms are said to lie beyond all orders of

the asymptotic expansion.

In most applications, these tiny corrections are insignificant and they can be

safely neglected. However, exceptional problems in which these very small terms

have great practical interest are known in many branches of science, such as non-

linear waves, viscous fluid flow, dendritic crystal growth, quantum tunnelling and

others. For these exceptional problems, conventional asymptotic analysis is simply

inadequate. These problems require improved methods, designed to obtain mean-

ingful corrections that lie beyond all orders of a conventional asymptotic expansion.

Exponential asymptotics provides a means to capture these exponentially small

terms.

The reader might wonder how a transcendentally small term, hiding behind all

orders of a (divergent) asymptotic series, could have any effect to the problem being

studied. Here we mention one example as an illustration.

A singularly perturbed fifth order KdV equation,

ut + 6uu u
xxx

e2u
xxxxx

= 0 (2.4)

has been proposed by Hunter and Scheurle in 1988 [23] as a model equation for

solitary water waves of small amplitude when the Bond number is close to but just

less than 1/3. They established the existence of non-local solitary wave solutions of

(2.4) with co-propagating oscillatory tails. In the strict sense, local solitary waves are

nonlinear waves and there exists a reference frame moving with the wave where the

waveform is permanent and decays rapidly in their tail regions. However, a weakly

non-local solitary wave consists of a central core resembling classical solitary waves

but are accompanied by co-propagating oscillatory tails which extend indefinitely far

from the core with non-zero constant exponentially small amplitude. The oscillations

arise physically due to a phase speed resonance with the central core. In this problem

conventional asymptotic approach cannot reveal the existence of these oscillatory

tails. This is because the information in these tails lie beyond all orders of the

6
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asymptotic expansion in the form of (2.2). By the use of exponential asymptotics

the amplitude of these tails in addition to the relationship with the phase shifts are

established analytically [33, 21].

2.2 The Development

The development of the exponential asymptotics for nonlinear problems can be

dated back to 1987. In this year Segur and Kruskal [35] proposed an idea called

'asymptotics beyond all orders'. This is a nonlinear WKB technique that focuses on

the singularities of the conventional power series expansion (long-wave expansion)

in the power of a small parameter say e in the complex-plane, that is,

Their analysis involved the construction of a power series which is valid close to each

singularity then matched the asymptotic expansion with the long-wave expansion,

imposing appropriate boundary conditions. Their technique required numerical inte-

grations to solve the resulting differential equations in the intermediate stage. Hence

their approach is not generally applicable. The reason is that for many problems

the differential equations resulting from defining the inner problem of the original

equation could be highly nonlinear and dispersive partial differential equations. The

time required to devote to solve these resulting differential equations would be as

much as to solve the original problem numerically.

The fully analytic approach was not devised until Pomeau et al. in 1988 [33] con-

sidered the singularly perturbed fifth order KdV equation (2.4). The KdV equation,

famous for having been solved by inverse scattering methods, appears in various

physical contexts and is generic in the sense that it is a nonlinear equation obtained

by balancing nonlinearity with dispersion for weakly dispersive waves in shallow wa-

ter. Indeed it is possible to continue the expansion beyond the order where Korteweg

and de Vries stopped.



Following the ideas of Kruskal and Segur, but instead of using numerical meth-

ods, they used Borel summation to sum a divergent series which was supposed to be

a solution of the leading order differential equation resulting from the inner expan-

sion. This approach was based on the Borel summability of the algebraic asymptotic

power series say U(X). If the coefficient of Xn grows only as n!, by Watson's lemma

[5] we can sum the series through a Borel summation. The Borel transformed series

has a finite convergence radius and the nature of the singularity closest to the origin

can be found. Then an exponentially small term associated to the closest singularity

can be found by formally inverting the Borel summation. In turn, this exponentially

small term can be related to the behaviour at infinity of the physical problem. This

procedure is essentially Watson's lemma applied in reverse; they sought an integral

expression for a function that has the known asymptotic expansion. Eventually they

calculated the amplitude of the oscillatory tails but their result quantitatively dif-

fered from the result obtained by Grimshaw and Joshi [21] by 1/2. Also they failed to

established a one-parameter family solution of the fifth order KdV equation whose

existence was proved in 1992 by Amick and Toland [4].

The use of exponential asymptotics in the context which is relevant to the work

shown in Chapter 3 can also be found in Grimshaw [19], Akylas & Grimshaw [1],

Grimshaw [20], Grimshaw k Joshi [21], Akyias & Yang [2] and Boyd [11].

In [19], Grimshaw re-examined the problem of the nonexistence of certain trav-

elling wave solutions of the Kuramoto-Sivashinsky equation using Borel summation.

The aim of his paper is to show that Borel summation can lead to the main result in

a simpler and more robust manner. The procedures of Borel summation were set up

systematically and formed the layout for the use of this method. In [1], the equation

to be solved by Akylas and Grimshaw is a partial differential equation, hence, the

actual procedures of the calculation were very difficult. In [20], the main calculation

"involved solving two coupled ordinary differential equations. Grimshaw and Joshi

[21] re-examined the fifth order KdV equation(2.4). This time the amplitude of

the oscillatory tails was found explicitly and the one-parameter family solution was

8
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established which relates the phase shift and the amplitude of the tails. The am-

plitude found agreed well with the numerical results of Boyd [8]. Since the analysis

of [1, 20, 21] was done in the complex-plane, their approach is called complex-plane

matched asymptotics.

A somewhat different method was taken by Akylas &: Yang [2]. They used a

forced KdV equation with zero-wave condition at far downstream with three different

forcing terms;

1. f(x) = sech2x,

2. = sechrc

3. f(x) = exp(-z2)

as an example to show that the idea suggested by Karpman [25] and Milewski [31]

is not generally valid. In [25] and [31] these authors suggested, using the fifth-order

KdV equation as an illustration, by linearising about the long wave solution the

information of the tails of weakly nonlocal solitary waves could be uncovered. In

fact the structure of the tails depends very much on the nature of the equation. In

this case, the fKdV equation, the forcing term determines the nature of the equa-

tion. More specifically, the nature of the singularities of the forcing term determines

the trailing tail's features. Note that the singularity of the above forcing terms are

a double pole, a single pole and no singularity in the finite complex-plane respec-

tively. Surprisingly at first, the difficulty accompanying the analysis in [2] grows

as the strength of the singularity of each forcing diminishes. Furthermore in [2]

the authors claimed that using Fourier transform the analysis can be done without

matching asymptotic equations in the complex plane. They also showed that their

wavenumber-domain approach is suitable for determining the amplitude of the tails

of weakly nonlocal solitary waves. The method used in [2] is called here a Fourier

transform matched asymptotics because the analysis is done in a wavenumber plane

via Fourier transform.

9



Further Boyd [11] suggested a technique which incorporates the use of 'quasi-

Newton' numerical algorithms and the idea of 'Hyperasymptotic Pcrturbative

Method' (HPM) to calculate the amplitude of the fKdV equations induced oscil-

latory tail with the forcing f(x) — sech2rc.

HPM is a modified version of an optimally truncated asymptotic series. An

optimally truncated series is a series which is truncated at the N +1 th order of the

regular asymptotic expansion exclusively and has an error term O [exp(—1/e)] where

e is a perturbation parameter much smaller than unity. This truncated expansion

represents an approximation with a smallest error. Including more terms in the

expansion beyond this point will give an approximation with a larger error [5].

This intrinsic limitation of such series forbids any exponentially small quantities

uncovered from the calculation. By applying the regular expansion to the fKdV

equation, the second order derivative and the nonlinear term are dropped out from

the calculation of such optimally truncated asymptotic series because these term

are 0{e2) smaller than the u. Boyd then pointed out when the Fourier transformed

optimally-truncated error term peaks at wavenumber k = ±1 , w^+1 is as large

as uN+1 but the nonlinear term is still small. This implies that neglecting the

derivative term is no longer justifiable beyond where the series is truncated. Then

HPM increases the accuracy of the approximation by retaining the second order

derivative term in the expansion which is carried out beyond where the optimally

truncated series stops.

Without going through all the details, instead we refer the interested reader to

Boyd's book [13], we outline the principle of his method via the fKdV equation with

/ = sech2x and fj? = e. We first write

N

) (2-5)

where ^ represents an optimal truncated long wave expansion, N is the number

of terms in such expansion, u is exact solution and A is a measure of difference

between the other two terms. One would obtain an exact equation for A in terms

10



of u, Uj and / by inserting (2.5) into the fKdV equation.

= eAxx + A - eA2 -
(2.6)

= «***-«(£)-£•"(£)*•
where r ( ^ ) is called by Boyd as residual function of the 'basic state' £) [12]. By

scaling argument, when the long wave expansion has terms less than N then one can

safely neglect the second derivative and the nonlinear term in the RHS of (2.6). As

explained above the Fourier transform of r peaks at k = ±1 at N, then one must use

different scaling and retain the second derivative in (2.6) for expansion beyond the

iVth term. To solve for A one can use the quasi-Newton iterative scheme suggested

by Boyd.

Basically the matched asymptotics method and HPM both share the same fun-

damental. That is one needs to rescale the original problem when the independent

variable is getting close to the singularity or in the language of HPM when the resid-

ual function peaks at the certain wavenumbers. After the rescaling one then obtains

a new equation to solve. In the literature for matched asymptotics and hyperasymp-

totics, this new equation is called inner problem or hyperasymptotic approximation

respectively.

2.3 Background

A forced KdV equation (fKdV) can be written as

UT + SUX + u2UUx + XUXXX = Fx (X) (2.7)

where T, X, 5, u and A are temporal coordinate, spatial coordinate, linear long-wave

phase speed, measures of nonlinearity and dispersion respectively. The forcing term

Fx is a function of space only representing, for example in the context of water

waves, a local topography. Thus,

F —>0 as \X\ —> oo.

11



We assume the forcing is weak and has a large length scale, the three parameters

are all order of unity and we assume A > 0 without loss of generality.

We seek stationary solution hence from now on we drop the temporal derivative.

That is

+ SUX + = Fx {X).

In order that an oscillatory solution exists in the far field we require

\8>0.

The above requirement indicates the model is to be subcritical. If the inequality sign

is reversed the model is termed supercritical and implies nonexistence of oscillatory

solution for the fKdV equation.

We then integrate the above once and get

We note that a transformation

, F )—»(- [ / , -

gives us

SU - vU2 = F{X). (2.8)

This transformation tells us that changing the sign of v will change the sign of

the solution. Effectively this makes solving the fKdV equation with a negative

nonlinearity the same as solving with a positive nonlinearity. Since F is small with

a long length scale, the dominant balance is between 8U and F, after some rescaling

on (2.8), it yields

H2uxx + u- eu2 = /(re), xeR (2.9)

where

0 < e,n « 1

12



with boundary conditions—symmetric or one-sided. This is interesting to note that

now (2.9) can be viewed as a forced simple harmonic oscillator with the lowest

degree of nonlinearity. The forcing terms are chosen so that this small (length) scale

nonlinear harmonic oscillator is driven by a much larger (length) scale oscillator.

•i

2.4 Method Outline

We present a brief method outline on complex-plane matched asymptotics in this

section and two examples subject to two types of boundary conditions respectively.

1. For 0 < e, //. « 1, develop a formal asymptotic expansion (long wave expan-

sion or outer problem) for the core region in the power of e or ^:
oo

Us

n=0

2. Note the singularities xSing in the expansion us in the complex z-plane. Focus

on the singularity which is closest to the real axis in the upper rr-plane.

3. Define an inner problem by rescaling the independent variable

and the dependent variable

4"

u = e v

where A and r are to be determined according to the problem in hand. They

are to transform the originally singular perturbation problem to regular per-

turbation problem [32]. Also, need to generalise an appropriate boundary

condition from real line to the complex g-plane and set a matching condition.

4. Sum the divergent series in inverse powers of q representing the leading order

term, vQ, of the inner expansion in the form of a Laplace transform
/»00

v0 = exp(—sq)V'(s)ds.
Jo

This step is motivated by the aim to us*1

13
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5. Identify the singularities of the integrand in the transformed s-plane. Work

out the residue at the singularity which is the one closest to the real s-axis.

6. Impose the symmetry condition on VQ by adding appropriate terms to VQ to

make the asymptotic expansion complete.

7. Match the solution back to the real z-axis.

The aim of steps 4-6 is to generate the exponentially small corrections on the imag-

inary a;-axis then relate them to the oscillatory tails of u(x) on the real axis. These

two steps are not necessary if the inner problem is linear which is exactly the case

with the Gaussian forcing. Also the itep of matching can be subtle and requires

extra care shown in the second example below.

2.4.1 Example 1: f{x)= sech2a;

The analysis for this forcing starts by setting fi2 = e to balance the effect of nonlin-

earity and of dispersion. The boundary condition for this example is

u(x) —> 0 as x —> oo.

2.4.1.1 Long Wave Expansion

Upon substituting

oo

n=0

into (2.9),

= sech2x

= ul - uOxx

14
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We find that us contains singularities in the complex z-plane at

xsing = ±(2n + l)iir/2 n G J.

Then we proceed to step 3 to define an inner problem by assuming the most influ-

ential singularity is the one closest the real axis. There are two such singularities

We note that the solution of (2.9) is analytic in a strip |Im x < TT/2|.

2.4.1.2 Inner Problem

W( only consider the singularity in the upper-half plane in the following. The effect

of the one located in the lower-half plane merely adds a complex conjugate of its

counterpart to the final result. Thus we set

x — V \/eq
2

where q now is the inner variable. The inner problem then takes the form

vqq + v — v2 = -e cosech2\/eg

where

v = eu

Next we let vs ~ IC^Lo6"^*?) an<^ expand the right hand side of the inner

problem in terms of power series as well. At leading order this yields then

o - 1
vo

qq

and a matching condition

VQ ~
- I 7

+
as \q\ —> oo in Re q > 0, Im q < 0.

(2.10)

(2.11)

To solve the inner problem we seek solution of v0 in the form of a Laplace

transform

exp(—sq)V'(s)ds.

This step is motivated by the aim to use Borel summation.

/•oo

(2.12)

15
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2.4.1.3 Borel Summation

Upon substitution of the integral into (2.10) we require the kernal to satisfy the

integral equation

(s2

By assuming

'(s) - / V'(\)V'(s - X)dX = -s
Jo

V'(S) =
n=0

(2.13)

and substitute it back to (2.12), we then get

oo

n=0
q2(n+l) •

(2.14)

It can be shown by putting (2.14) into the (2.10), an satisfies the recurrence relation

H —1 fn • , - \ i

a
- 2i - 1)!

= 0, n > 1 (2.15)
i=0

where a0 = —1 from (2.11). As n —> oo, the coefficient of the nonlinear term in

(2.15) is O (1/n2). As a result

On - {-l)nK

where K is found by computing the exact value of an up to some large value. This

is found K = -1.55 • • •. Thus,

Ks
V'(s) - r for \s\ < 1

Hence, there is a pole singularity at s = ±i in the complex s-plane. Only s = i is in

the allowed region. Thus in our subsequent development of the theory we focus on

the contribution from the singularity at s = i.

There are two possible contours (see Fig.2.4.1.3), we denote them as 7+ and 7_.

The corresponding solution v0 is denoted by v+ and V- respectively. For the contour

7_, as \q\ —> 00 in Re q < 0 and Im q < 0, 7_ must be shifted across the imaginary

16
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Figure 2.1: The contours in the transformed s-plane.

s-axis and thus generates a term proportional to -{-niK exp(-iq). However, in the

region Re q > 0 and Im q < 0, contour 7_ does not have to cross the imaginary

s-axis. So v_ has no trailing oscillations as x —> oo but it has a trailing oscillations

as x —v —oo. By similar reasons, in Re q > 0 and Im q < 0, j+ must be shifted

across the imaginary s-axis generating a term proportional to -niK exp(-iq). In

the region Re q < 0 and Im q < 0, 7+ does not have to cross the imaginary s-axis

hence v+ contains trailing oscillations as x —> 00 but not as x —> —00.

For the reasons stated above we choose u_ since it satisfies the far field condition

i. e. v0 —> 0 as \q\ —>• 00 in Re q > 0, Im q < 0. However as \q\ —> 00 in Re q <

0, Im q < 0 the contour 7_ must be moved across the imaginary s—axis generating

the residue -{-inK exp(—iq). As a result,

V- + iwKexp(-iq).

17
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2.4.1.4 Matching

We have to ensure (2.16) indeed matches (2.11) as \q\ —> oo, Im q < 0. To see

that, we deform the contour 7_ into Re s > 0, away from the singularities on the

imaginary s—axis. Then V- satisfies the matching condition (2.11). Now we change

the variable back to x from q and let Re x —> — oo and Im x —> 0. Simultaneously

we collect the corresponding contribution from the singularity at x = —in/2. We

then obtain, as x —> - co ,

( 7T ix \ 27r/C / 7T i£
u ~ ws + exp -T—p 7= 7=r exp -—7= + -7=

e

As mentioned in the preceding sections, the nature of the singularity of the

forcing determines the details of the solution. This point now becomes apparent.

The double pole belonging to the forcing term generates a single pole belonging to

V, the kernal of (2.12). This single pole singularity of V is the reason the calculation

for this forcing term being easier than the calculation in the next example. The next

example shows that if the forcing term contains a single pole, V then possesses a

double pole. The increase of pole order in Laplace transform space leads to a more

involved calculation.

2.4.2 Example 2: f(x) = sechx

We replace sech2£ in the forcing term by sechx. Consequently, to bring the effects

between the nonlinear term and the dispersive term to balance, we set e = //. Then

we have

e2uxx + u — eu2 =

| with a symmetry condition

u(x) = u{-x) for x e R. (2.18)

18
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Despite the simple look of this forcing, it actually requires more attention on the

stage of fulfilling a symmetry condition and of matching the solution to the real

axis.

if

2.4.2.1 Long Wave Expansion

We proceed as in the previous section, assuming

OO

(2.19)
n = 0

where us denotes core region. Substituting (2.19) into (2.17) then gets

u0 — sech x (2.20)

= Uo

Again, as in the preceding example, us is singular in the complex .T-plane at

xsing — ±(2n + l)z7r/2

where n £ /. There is necessity to consider the structure of the solution near these

points. To do this, for the singularity closest to the real a>axis in the upper-half

plane we put

ITT

Note that the singularity is a single pole.

Then from (2.20) and (2.21) we find as eq —> 0,

(2.21)

- i

q q<
(2.22)

Now (2.18) is replaced by

7T
Im {u(x)} = 0 Re re = 0, |Im x\ < - (2.23)

Next we investigate the inner problem.

19



2.4.2.2 Inner Problem

To define an inner problem, put (2.21) and v = eu into (2.17) then we have

Vga -f v — v2 = ie cosecheg. (2.24)

Assuming

n=0

Substituting (2.25) into (2.24), yields

(2.25)

2 (2.26)

From (2.22), we obtain the matching condition

-i 1
+ • • • , as \q\ —y oo in Re q > 0 and Im q < 0- (2.27)

In general,

2_" bnq
 n, as \q\ —y oo in Re q > 0 and Im q < 0. (2.28)

Also the symmetry condition becomes

Im {vo(q)} = 0 on Re q = 0, Im q < 0. (2.29)

Now substituting (2.28) into (2.26) then gets

oo

E
n=3

n - 1

(n - 2)(n - l)6n_2 - _i + bn

-1 + (62 -

Hence bx = —i and b2 = —1. This is consistent with (2.27). Also

7 1 - 1

(n - 2)(n - l)6n_2 - Y, bibn-i + bn = 0, n> 3. (2.30)

Now we are ready to move to the next stage — Borel-summation.

20



2.4.2.3 Borel Summation

We seek a solution of (2.26) in the form of a Laplace transform

vo= I exp{-sq)V'(s)ds (2.31)

where 7 runs from s — 0 to infinity in the upper-half plane provided Re {sq > 0) in

order (2.28) to be bounded. Substituting (2.31) into (2.26), implies

(1 + s2)V'{s) - [S V'(X)V{s - X)dX = -i. (2.32)
Jo

We seek solution of (2.32) as a power in s,

0

2 s n - (2-33)
0 0

n=o

Putting then (2.33) into (2.31) gets

n=0

So we have

an = -^- n > 0. (2.34)
n!

Using (2.34), (2.30) becomes

^ ji._ian_i-fc(A; - l ) ! ( n - 1 - fc)!

where a0 = —i and ai — — 1. To ensure the recurrence relation to give real values,

we let

n aneR (2.36)

then (2.35) becomes

^V)\ n~3 ^ '
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where

a0 = 1 = ax.

As n —> co, the nonlinear term in (2.37) becomes less important, we find that

a D + 0 (-) as n —> oo.
\n

(2.38)

Note that D can be determined as follows. First expand (2.37) then we have

2 2Q:1QVJ_3 , ^ / 1 \
a n~ 3 + a"~1 n - 1 ( n - l ) ( n - 2 )

Using (2.38) with a next order term included

71°
(2.39)

n \ 7i2

the left hand side of (2.39) becomes

2D
r\j —— — — _ — —

7 2 - 1

We can conclude that D = 0. Therefore

r
71

C is found approximately equal to 0.94 by computing the exact value of an in (2.37)

up to some large value of n.

Recall
oo

hence

j/'(s) = \ ansn as 7i —> oo
n=0

T Tl I \

V \S) = + is)2 1+is'

Equation (2.40) indicates 5 = i is a double pole of V'(s). So

1 1

(2.40)

f= / iC
1 + is {1 + is)2

where the residue of the integrand at s = i is

exp(-sq)ds

2TrCqex\>(—iq) + 27riC exp(-iq).

Note that the above expression contains a secular term as a result of s

double pole.

(2.41)

i being a
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2.4.2.4 Imposing Symmetry Condition

At this stage we know that v0 = J exp(—sq)V'(s)ds cannot satisfy the symmetry

condition (2.29). Part of the reason is that the asymptotic expression for the solution

i>o is not complete because of the exponentially small imaginary term on the Im s-

axis. In addition to this reason, we also have a secular term which although still

subdominant to vs, is O(q) relative to exp(-iq) as \q\ —> oo. So to see what

appropriate terms we should add to balance the effect of this secular term we need

to rewrite v0 as

= v. + vv (2.42)

where vs represents the outer expansion which has the form, from (2.28),

oo

n=l

and vw represents the trailing oscillations. The form of it is to be determined.

Putting (2.42) into (2.26) and neglecting the nonlinear term then we get

T" U. (2.43)

Let

oo
n exp{-iq)

= W exp(-iq).

Note that in the above expression n is summed from n = — 1. This is to balance the

secular term. Substituting the above into (2.43) then yields

-2iWn = 0. (2.44)

We observe from the above that each (3n is proportional to j3-\ thus

vw ~ P-\{q + * H ) exp(-ig).
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Hence we add vw to f exp(—sq)V'(s)ds to form a complete asymptotic solution

v0 ~ / exp(-sq)V'(s)ds + 0-i(q + i +~ •)exp{-iq) (2.45)
J-y

which can now be made satisfy the symmetry condition.

To impose the symmetry condition (2.28), we let q = —iy, y E R+ and put the

contour 7 onto the imaginary s-axis where s = ia, a & R.. Then (2.45) now becomes

VQ ~i 4- exp(—ay)V(ia)da — inCyexp(-y)
Jo

-;p(- i/) + i/3_i(l - y + ••-)exp(-y),

where the integral is a principal va'v.° integral. From (2.33) and (*),

So we can infer that

n=0

0 0

i •*• exp(—ay)V'(ia)da
Jo

gives a real value.

To ensure the other terms to be real-valued we put

- T T C = Re

We write /?_i in the polar form

thus

Hence

6-\ = rexp(i5)

TCOSS = —wC.

vw ~ r(q + i exp(-iq + iS). (2.46)

Eventually we established an asymptotic solution of (2.26) and 'his asymptotic

solution satisfies the symmetry condition. Next step, is to match the solution back

to the real rc-axis.
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2.4.2.5 Matching

Using v = eu, (2.25) and (2.42), we have

u ~ ux + u. (2.47)

Putt ing (2.47) into (2.17) then yields for a; on the real x-axis,

€2uwxx + uw - 2eusuw « 0. (2.48)

Prom (2.19) we know us ~ sech.x + O(e) and u2
w is neglected.

Next we try

uw ~ Aexp(—i(j))

where A and </> arvi real. Substituting this into (2.48) then from the imaginary part

gives

<px A
2 = const.

From the real part,
- 2eus) A3

e2 A

where Axx/A = 0 (e) so neglected in the following. Thus

€
O(e)

where 0o is an integration constant and implies

A = A0(l - eus) 2

where Ao is a constant. Using (2.21) and recall Reg > 0 then

Thus, as |g| -> o c

exp ^— - iq -
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Prom v = eu, (2.25), (2.42), (2.4G) and (2.47), matching at leading order, gives

-Aoeq
exp (—) exp (—iq — i(f)0) = — exp (—iq + iS)

Ao = —J- exp

Since Ao is real

Therefore as .T —> oo

5 — 7T
e

and

Aoexp(-i(j)) ~ —exp - — - i (- - 5p ^ y

to the leading order.

Finally, taking into account the singularity at x = —in/2 gives

u

AT ( ir\ (x

)

to the leading order, for x —> co. Since the solution is symmetric,

AT / 7T

for all x.

2.5 Discussion

We have seen how the complex-matched asymptotics can be applied to two quali-

tatively different forcing terms. Our method yields the same results as obtained by

Akylas & Yang [2].
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Applying HPM to the case of f(x) = sech2, Boyd [11] also found the magnitude

of K without specifying what boundary condition that the fKdV equation is subject

to. Boyd casted doubt on HPM's feasibility for the other forcings, especially for the

Gaussian forcing f(x) = exp(—x2) [11]. We believe that our examples shed light on

this issue. As shown in §2.4.1 - 2.4.2, the type of the singularity of V determines

the details of the calculations. Bear this in mind we believe that the principle of

HMP may still be applicable to other two forcings however the algorithm, which is

shown suitable for the forcing sech2a; only, requires modifications which take into

account the qualitative difference between different forcings.

In next chapter we solve the fKdV equation with a forcing term / = exp(—x2).

This forcing is different from the previous two because it has no singularity in a

finite complex plane. This property has an important effect on the final result and

makes the analysis stand out from the previous two examples.
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Chapter 3

A Forced Nonlinear Oscillator

We present a detailed asymptotic analysis on

fi2uxx + u — eu2 = f(x) (3.1)

where

/(x)=exp(-rc2),

subject to two types of boundary conditions

u(x) = u(—x) for x c R

(3.2)

(3.3a)

or

u(x) —> 0 as i —»• oo (3.3b)

This forcing term is special because it has no singularities in the finite complex-plane

and this makes the analysis very different from the examples shown in the preceding

chapter.
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3.1 Long Wave Expansion

We first follow [2] setting e = fi2 to bring the effect of nonlinearity and dispersion

into balance. We get

uxx -f u — fiu = exp(—x ) (3.4)

Then we expand u as a power series in e,
oo

n = 0

We obtain, correct up to 0(/i4),

u ~ exp (—x2) [l — /i2(4x2 — 2) + fj

+ exp (-2a:2) [/i2 - //4(20x2 - 6) -f • • • ]

12)

0 0

+ exp (~3x2) (2/i4 H ) + 22 exp(-ma;2)5m_4(a:; //).
m=4

The above expression contains a nonuniformity caused by secular terms. To handle

this nonuniformity we set, suggested by the above expression,
oo

u = Y^ii2(-n~1^ exp(-nx2)Pn(X) where A" = fix.

Upon substitution of the above into (3.4), we have for n = 1,

}i4Pi' - i?Z [2XP[ + P1) + (l + 4X2) Px =

and for n > 2,

(3.5)

n - l

t = l

Note that (3.5) is equivalent to solving a linear version of (3.4) by setting

u = Pi(X) exp(-z2) where X = jix. (3.7)

We devote the next section to this linear case and the nonlinear case will be dealt

with in the section after.
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3.2 An Associated Linear Problem

As mentioned above solving (3.5) is equivalent to solving the linear version of (3.4)

in the interest of the asymptotic behaviour of u. That is solving

= exp(-a?2),

subject to specified boundary condition (3.3a). Then

(3.8)

u = A cos I — 1 H— / exp(—t2) sin (
x — t

dt

which is an even function of x and A is an arbitrary constant.

As \x\ —> oo,
"CO / x \

x /u ~ B cos I - I + - / exp(-r) cos - dt

_ fx\ y/Z ( 1 \ . (X\
= B cos ( - ) + ^ - e x p - — sin -

/
sin —

where

B = A- exp (-t2) sin ( - ) dt.

However in the spirit of exploring the use of asymptotic method, we tackle this linear

problem in complex plane.

3.2.1 Outer Expansion

Having substituted (3.7) with the replacement of u by u\ into (3.8), we obtained

(3.5) which is our outer problem arising from long wave expansion. At leading order

balance,
l

P i - : 4X2 '

therefore Pi is singular at

These are the only singularities for Pi. Thus we set

(3.9)
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where Im £ < 0. The inner limit of the outer expansion as

matching condition

0 in Re £ > 0 is our

3.2.2 Inner Expansion

In terms of the inner variable £, (3.5) becomes

- 2iP{) =

which is our inner problem. At leading order,

Pl exp(-A2) dX (3.10)

where Ci is to be determined by the boundary condition.

3.2.3 Symmetry Condition

At this stage we are to impose boundary condition to determine the constant C\. We

first apply the symmetry condition (3.3a). The case of radiation condition, (3.3b),

is treated in §3.5.

We first generalise (3.3a) from real line to complex plane. That becomes

Im [Pi(f)] = 0, o

Then we let ^ — —iy where y > 0,

Pl - exp(-y2) exp(-A2) d\ + fexp(-A2)

Since the first integral gives real value, this implies

1 f°°
/ exp(-A2) dX = Im Cx

2i\i JQ

Im C, = -f-.
4
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Indeed we can be more general by setting

where a is an arbitrary real number. By virtue of the above, (3.10) becomes

Pl

4ifi 4//

where

f°exP(-A
2)dA.

3.2.4 Matching

Now we have to match our solution back to the real axis ( Ima; —> 0). Using (3.7)

and (3.9) we have

exp(-a;2) f y/n d\/ir\ ( 1 IX
exp (3.11)

2(l + i2A") \4ifi 4/J

We must include the corresponding contribution from the singularity at X = —i/2.

This simply adds a complex conjugate to (3.11). We then obtain for all a;, as \x\ —> oo

exP(-a;2)
_ x (3.12)

where

sin 5 = a.

We have established the first order asymptotic solution for (3.4) satisfying the

symmetry condition (3.3a). Eq.(3.12) agrees with the solution obtained from the

exact linear theory shown in §3.2. Note that (3.12) forms an one-parameter family

solution. This parameter relates the phase shift to the amplitude of the tails.

In the nexj; section we establish an asymptotic solution for (3.6) which takes into

account the nonlinear effect of (3.1).
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3.3 A Nonlinear Problem

In regard of (3.6) the leading order balance is

w h e r e

Note that for each Pn the singularity closest to the real axis is at

Xn = ±— where n > 2.
2n

These singularities, for each Pn, contribute the dominant effect to the tails of the

wave so we only include these points in the following analysis and the singularities

which are further away from the real axis are not relevant. Following the same route

of §3.2.4 we set

and

n - l

The matching condition as (i£ —> 0, in Ref > 0 and Im£ < 0 is

where

3.3.1 Inner Expansion

In terms of the inner variable, (3.6) then becomes

- 2nPn
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At leading order balance,

exp(n£2) /*OO

/ exp(—nXA) dX -f A exp(—n£2) (3.13)

Following the same line of reason as in §3.2.3 by imposing a symmetry condition on

Pn in the complex plane, we find

A = a -f-

Hence

Pn~Mn(X)-^ e x p « 2 ) .

where

Mn (0 = ^ e^p(n£") /°°exp(-nA2)dA
2iyi Jc

Next stage is to match Pn to real axis. At the same time we have to include the

contribution from the neighbourhood of X = —i/2n. We get, for all x as \x\ —>• oo

and n > 2,

\x
Any?

. (\x\ \
i sin ( ±-± + S ) . (3.14)

3.4 The Full Asymptotic Solution

From the results obtained in §3.2.4 and §3.3.1, we have established a solution for

large x. That is combining (3.12) and (3.14) we have

xu ~ AmpDi sin — +• 6
l

(3.15)

where

**-n\n ~~~
VI

exp
.2n

n-2
An/j,2
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3.4.1 The Amplitude of the Tails

Adopting the principle of the stationary phase method [32] we can evaluate the

infinite sum in (3.15) provided /i « 1. Note that when

n = N

where

N =
y/fJL2-8\HfJl

8 In fi 8(i In /J,

the phase of the terms in the infinite sum (i. e. fi2n, y/n and the exponential term)

attains a stationary point. Since, however, n can only take integer and /J, is much

smaller than unity we then neglect the first term and the quadratic term of [i above

and conclude the terms of the sum peak sharply around n = N where N is the

integer closest to as, /J, —> 0,
1

2/iy/-2\n fi.

So the main contribution to the sum comes from the neighbourhood n = N -t- q

where \q\/N « 1 and

exp -
\l-fi2N\q2

Note that n2N « 1, we neglect this term from the above expression from now on.

Accordingly,

\Z7TRN
exp - •

°0 / 2
V^ ( q

> exp — -
q=—oo ^

(3.16)

TTRN
exp —
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3.5 Radiation Condition

In this section we consider the fKdV equation with boundary condition

u —)• 0 as x —» oo.

In the complex plane the above condition is equivalent to

u 0 as Re £ —>• oo and Im£ < 0.

For n = 1, C\ in (3.10) must be zero in order to satisfy the radiation condition in

complex plane. Hence

Ci=0.

Therefore

•OO

2z>
exp(—A2) dX. (3.17)

Then as Re£ -co and Im£ < 0, (3.17) becomes

n exp(n ir-f]
exp(-A2) dA + - i - j

Having done the above and included the contribution from the singularity at X =

—i/2n we then get, after matching the solution to the real axis,

sin (-w 1 ~ e x p ( - x 2 ) P i ( X ) -

Similarly, for n > 2, we have

wn ~ exp(-na;2)Pn(X) -

The asymptotic behaviour of u for re —>• —oo is, combining (3.18) and (3.19),

(3.18)

( I \ . (X
exp —-—- sin - (3.19)

u exp - — r- > - p i

sin —
(3.20)
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The amplitude,

r~
V71" 2n I

exp —

is evaluated using the same strategy as in 3.4.1

(3.21)

Eq.(3.21) has the same form as its counterpart obtained by Fourier transformed

matched asymptotics in Akylas and Yang [2] except the recurrence relation Rpj.

Despite this apparent difference between the two expressions, the plot of (3.21)

shows no appreciated distinctions between the two expressions for the amplitude of

u at far field. The plot of (3.21) is shown in Fig.3.1.

3.6 Discussion

From the previous sections, we see that the tail's amplitude depends on the non-

linearity. The solution of the associated linear problem does not have significant

contribution to the amplitude of the tail. The solution of (3.1) also reveals that a

fast oscillator driven by a much slower oscillator is still capable of producing fast

oscillatory behaviour. Adding nonlinearity to this fast oscillator cannot suppress

the fast oscillatory motion although this nonlinearity term is very important for an

accurate estimate on the solution at the far field.

In next chapter we investigate a model system which consists of two oscillators

with different timescales nonlinearly coupled together.
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Figure 3.1: The plot of eq.(3.21); u (order of magnitude) vs /J,2.
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Chapter 4

A Low Order Conservative Model

4.1 Introduction

In the study of numerical weather forecast, raw field data cannot be used as ini-

tial conditions of a primitive-equation (PE) model. Otherwise unrealisticaily large

high-frequency oscillations occur after a short time of numerical integration. This

numerical phenomena was first known by Lewis Richardson [34].

Later, Charney realized that this anomaly is associated with free gravity waves

which mainly come from measurement errors [15]. He then devised a new set of

equations known as 'quasi-geostrophic theory' as a remedy. In this theory sound

waves and gravity waves are filtered out and only low frequency Rossby waves prevail.

In fact, quasi-geostrophic model is just a member of family of balanced models.

A balanced model is derived from its parent model, usually the PE, as a reduced

set of equations by invoking some approximate relations such that the reduced set

of equations represents the slow time behaviour of the flow on a lower dimensional

manifold in phase space and the high frequency oscillations are filtered out. A

balanced model then consists of balance dynamics and balance conditions. Balance

dynamics defines a prognostic equation for a chosen slowly evolving variable, e.g.

pontential vorticity (PV). Balance conditions consist of the invoked approximate
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conditions, define diagnostic equations as constraints between the slow time variable,

described in the prognostic equation, and the other state variables of the flow .

For example, in the quasi-geostrophic theory mentioned above, the prognostic

equation for potential vorticity and a set of diagnostic equations denote a balance

dynamics and balance conditions respectively. Once the PV is found by integrat-

ing the PV-evolution equation forward in time, one then reconstructs other state

variables, such as pressure field and wind fields from the balance conditions via PV

inversion [22].

Balanced models, as an approximation of PE, provide qualitative insight of our

geophysical fluid system due to the reduced d3^namics. However as a tool of weather

prediction balanced models succumb to the failure of capturing the so called sponta-

neous emission of inertia-gravity waves by the vortical flow in an unsteady stratified,

rotating vortical flow [16]. This emission affects the mass, energy and momentum

budgets of the flow and hence has profound implication on the accuracy of balanced

models compared to the PE. (For detail discussion on the issue over the accuarcy of

some balanced models versus a PE model see Mclntyre et al.[30].)

An other approach to minimise the effect of high frequency waves is to project

the initial data onto a balanced state before feeding it into the PE. The projection

of the initial data onto the balanced state is known as initialization. In 1980 Leith

[26] introduced a concept of slow manifold as an idealized stage of any good ini-

tialization scheme. A slow manifold is a hypothetical subspace of the dynamical

variables' phase-space. Onto this slow manifold, which is devoid of high frequency

gravity waves, slow oscillations loosely called Rossby waves, remain slow. The fast

oscillations should never be able to penetrate into the vicinity of slow manifold.

Accordingly, initialization schemes are to attempt to purify the field data so

that the purified data can force the primitive equations to evolve entirely on the

slow manifold, which is a slow-mode-only subspace of the full phase space of the

model. On the other hand a balanced model is to describe the dynamics of the flow

totally onto a slow manifold where balanced conditions define the slow manifold by

40



relating the fast variables to the slow variables.

Since the introduction of the slow manifold concept, debate over its definition

and hence its existence led to a stream of publications (see Warn 1997 [37]; Lorenz

1986 [27]; Lorenz and Krishnamurthy 1987 [29]; Jacobs 1991 [24] Lorenz 1992 [28];

Boyd 1994, 1995 [9, 10]; Camassa 1995 [14]; Bokhove and Shepherd 1996 [7]) via

theoretical and numerical studies of some simplified low order models. As a result,

instead of this highly idealized concept, people now tend to employ a refined concept

called fuzzy slow manifold as first postulated by Warn [37]. A fuzzy slow manifold

or a slow quasi manifold [17] can be thought of a stochastic layer having varying

thickness in the full phase space. This stochastic layer is expected to be very thin

in the fast direction in which some fast oscillations will eventually occur but the

amplitudes could be minimized up to exponentially small [10].

The most studied model in this area is a highly truncated five-mode model

devised by Lorenz [27] and its extension [29]. Various methods have been exploited

to understand the qualitative properties of these models and hence the large time

behaviour of the system viz dynamical analysis [14, 7]; asymptotic perturbation

[9, 18]; and numerical methods [27, 29].

In this chapter we obtain explicit results for the large time behaviour of this

model using asymptotic expansion by expanding the dynamical variables to the

fourth order of the small coupling parameter in the problem. We discuss the effect

of feedback by the first order fast modes to the slow modes, the frequency shift and

aspects in long term averaging. Compatibility conditions are established in order

to prevent a growing system which is not possible for the model because of the

conservation of energy of this system.

4.2 The Lorenz Model

The model being studied in this chapter was developed by Lorenz in 1986 [27] later

extended by Lorenz and Krishnamurthy [29] by including dissipation and forcing
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into the model. Here the former model will be referred as L86 and the latter will

be referred as LK87 and is a subject of next chapter, The model, LK87, is a set

of five ordinary differential equations which couples three slow mode amplitudes,

representing Rossby modes, and two fast mode amplitudes, representing gravity

modes, including dissipation and forcing via two non dimensional parameters shown

below,

Ut = -VW + eVz-aU

Vt = UW - eUz - aV + F

Wt = -t/F-aW

#f = —2 — aa:

zt = x + eUV — az,

(4.1)

where a is the damping coefficient, e is a coupling parameter and F is the forcing

which is a constant. L86 is obtained by putting a = 0 and F = 0. Hence this a logical

first step to investigate L86 before we turn to a more realistic model, LK87. L86

can be understood as a nonlinear pendulum, denoted by the slow modes, coupled to

a simple harmonic oscillator, denoted by the fast modes, via the parameter e. The

parameter e can be regarded as rotational Froude number [7]. Another parameter

will appear from the following analysis. For the record we write L86 explicitly

Ut = -VW + eVz

Vt = UW - eUz

Wt = ~UV

xt = -z

zt = x + eUV.

Note that there are two integrals of motion for this model

U2 + V2 = E

(4.2a)

(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.3)

(4.4)
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hence all variables stay bounded. It can be expressed in Hamiltonian form
as

u, = J

or

vt

wt

0

-W

0

0

W

0

U

0

-eV eU

0

-V

0

0

0

0

0

0

0

1

eV )

-eU

0

- 1

0 ) \

-2U

-V

W

X

z

\

/

where H = (K — E) /2 represents the Hamiltonian of the system.

In the following analysis we set the dynamical variable

oo

n=0

and expand it up to n = 4. Also (4.2) possesses symmetries. If (U, V, W, x, z) is a so-

lution of (4.2) so are {-U, -V, W, x, z), (U, -V, -W, -x, -z) and (-U, V, -W, -x, z).

4.3 The Leading Order

Consider the zeroth order system, we see that equations for xo and z0 are uncoupled

from the slow variables UQ,VQ and Wo, so the fast variables form a homogeneous

system. Since minimum fast oscillations are desirable, we set

Then we are left with

x0 = 0 =

WJ

- -Wo

= U0W0

= -uovo.
(4.5)
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At this order, th^ slow oscillations come with two integrals of motion

Ul + V2 = Eo (4.6a)

Ul - W2 = Ko (4.6b)

where (4.6) can be obtained from (4.3) and (4.4) respectively. Therefore

Uo = R sech{Rt)

Vo = Rt<inh{Rt)

Wo = R. sech{Rt)

is one of the solution sets of (4.5) where R = \fEu.

Here R is the other parameter which can characterize the time-scale separation

between the slow modes and the fast modes. The time-scale and the amplitudes

of the slow modes at the leading order is 0(1 /R). This implies R needs to be

small to get a meaningful time-scale separation. Indeed, R plays a role as a Rossby

number here. To simplify the following analysis, we can choose E = R2 so that

En = 0 for n ^ 0 which can be done with no loss of generality.

4.4 The Existence of Fast Oscillations

To the first order, 0(e), we observe that XQ and ZQ are zero and this in turn makes

U\,V\ and W\ form a homogeneous system. Thus the solutions are determined up

to the integration constants. We choose the constants so that the slow modes are

zero at this order. Therefore

Ux = Vi = Wx = 0.

On the other hand the gravity modes receive excitation from the slow modes of the

previous order due to the coupling effect. We get

* 1 =

2i = U0V0.
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The above can be rewritten as

= -R2 sech(Rt) tanh(itt)

sint- UQ(s)V0(s) s'm(t - s)ds (4.7)
Jo

Note that the integral is an odd function of t. As t -> — oo

= (Ci -h Df) cos t + (C2 + D2) sin t

where

Dx = — UQVQ sin sds,
J -00

° ^0^0 cos 5 ds.
/

—00

Similarly as t —> 00,

+ Df) cosi + (C2 + I>J) sin*

where

/•OO

t = U0
Jo

Dt = sin s

(4.8)

(4.9)

D2 = — UQVO COS S ds.
1/0

Since these two integrands are even and odd functions respectively, we have

Df = -D~ and D£ = D2~.

/•oo

Df = R2 sech(Rs) tanh(Rs) sin s ds
Jo

R Z"00

= — / sech (Rs) cos sds
* 7-00

7T / 7T \
= — sech I — I .

Z \ Aix/
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AsR 0,

Note that, there is no closed form for D%, a Fourier sine transform of sech(ifa).

Nevertheless as R —» 0, an asymptotic approximation for it is obtained by applying

integration by parts twice and found that

D} ~ R3 + O(R5)

which is not exponentially small. Since, however, J9^ is always in combination of

C2, a free constant, it is not of great importance.

4.4.1 Three Choices

At this stage there are three choices for us to prescribe C\ and C2

1. Eliminate oscillation as t —>• — 00 :

By setting C\ = —D{ and C2 = — J9J the left side of (4.8) becomes zero. This

implies, from (4.9),

X\ f cost as t —> +00.

of (4.9) becomes zero. This

Fast oscillations persist as the system evolves.

2. Eliminate oscillation as t —> co :

By setting C\ = —D* and C2 = ~Dt t n e ^e^

implies, from (4.9),

Xi ~ — 2D*cost as

Fast oscillations must exist at the beginning.

3. #i is an odd function of t:

To satisfy a compatibiLty condition which appears in next section, we put
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C\ = 0 to make xx an odd function of t. This implies fast oscillations exist

t -> i oo. I.e.

cos t + (C2 + D%) sin £ as i -> ± 00.

as

This is necessary to go higher order in the expansion to understand how these

exponentially small fast oscillations affect the slow oscillations via nonlinear cou-

pling.

4.5 The Second Order

At second order, the fast modes are identical to zero so the system reduces to

U'2 = -WQV2 - V0W2 + VoZl

V2
f = W0U2 + UQW2 - UoZl

W[ = -V0U2 - U0V2

where

with two invariants from (4.3) and (4.4) respectively

E2 = U0U2 + V0V2 = 0

K2 = x\ + zl + 2WQW2-

(4.10)

(4.11)

Now we are in the position to show that the first two choices shown in §4.4.1

not compatible with (4.11).

4.5.1 The Persistence of Fast Oscillations

are

Suppose there is no oscillation as t

becomes x\ + z\ = K2. That means

- 00, i.e. choice one. As t ->• |oo|, (4.11)

tV?lJ*l + 4) = tli?Jxl + z?)
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but this contradicts our assumption. The same argument applies to the second

choice. Hence only the third choice is compatible with (4.11) and

K2 = Dt2 + (C2 +

Also from (4.10), we have

0 as ±oo.

The asymptotic behaviour of V2 is determined.

4.5.2 The Feedback Effect

To determine the asymptotic behaviour of W2 and U2 and to obtain explicit result

of the feedback effect on the slow modes by the fast modes we need to solve the

governing set of DEs. This is more convenient to work with if the above system of

differential equations is reduced to a single DE. We choose to get a single equation

for W2.

Therefore, after some algebraic manipulations,

wa - (4.12)

This can be verified that one of the solutions for the homogeneous equation of (4.12)

is

c^ = Wi = -R2 sech (Rt) tanh (Rt).

To find the other solution base, we set u2 = UJXS then substitute this into the

homogeneous equation. By virtue of this substitution, this can be readily shown

that

R
u)2=- sinh (Rt) tanh (Rt) + R sech (Rt)

R2

- —t sech (Rt) tanh (Rt).
Li
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and uo2 is an odd function and an even function oft respectively as \t\ —> oo,

— exp (Rt).

The solution of (4.12) is given by

where

W2 = aw! + (3u2 + UJI I — di - w 2 / ^ di
Jo U Jo

R2

D = u>iu>'2 — UJ[UJ2 = (V0
2 — UQ) = Wronskian,

f(t) = - (V2 - U2) Zl

and a and (3 are two integration constants.

Recall that x[ = — ~i,

1̂ 2 = awi --—- u2x\ di+—l
•"- Jo M- Jo

1! di (4.13)

To keep W bounded we need to put the second term and the last term to balance

as |i| —> oo. For large t the first term is zero and the third term is a bounded

oscillatory function. So

2 f°°
(3 + — / u)\x\ di — 0 as t —> oo.

R Jo
Similarly,

0 +
2 /-°° ,

R" Jo
'j di = 0 as t — co .

This implies the compatibility condition

/•OO

/ Wi.X'j
J —oo

x[ di=0. (4.14)

The above can be satisfied by setting x[ to be an even function. I.e. Xi is to be an

odd function by choosing C\ to zero. Then as \t\ —> co,

p\t\ r\t\

-Rexp (R\t\) / zi exp (-Rt) di+Rexp (-R\t\) / zx exp (i2i) di

sin |t| +
2R2 (C2

cost.
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To obtain the above expression for W2 we first split up the second integral in (4.13)

into /0°° + Jjj then observe that at large time the contribution only comes from the

second part. This results the first integral shown in the first line for W2 at large

time. From

W
U2 ^ as |i| -> oo,

we also have

2RD+
R2 + l cost + sin \t\

as \t\ —>• oo.

4.6 The Third Order

At O(e3),

rr* «

Z-t —

.T3

(UQV2 + U2V0)

0V2 + U2V0).

As t -» ± oo,

R2

y [TD+ COS t-{C2 + D}) sin t]

R2

(4.15)

(4.16)

so resonant growth is expected. To prevent growth, we have to renormalise the

independent variable t by setting

r - [1 + €2co2 + O(e~4)] t.

Next is to substitute the above into

x
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where

D{ cos t + (Co + D}) sin t

2DtR2D

Then Taylor-expand the sin and cos functions around r and equate the sum of square

of coefficients assoicated wilh secular terms to zero. This gives

R2

Hence the frequency shift is

1 —> 14-
e2R2

2 (R2 4-1)

The solution for x3 can now be readily written

O(e4).

- fl
Xz = C'i cos i + Z?3 sin t + R Xi sin(t

Jo
— s)ds

where

R —

xl = D? cos [(1 *] -;- (C2 + D}) sin [(l t] ,

C3 and D3 are integration constants.

Recall that z$ = —x'3 and in next section we require 23 to be an even function so

we put C3 equal to zero. Hence

£3 = D3 sin t + R I Xi sin(t —
Jo

>)ds (4.17)

4.7 The Fourth Order

From previous sections, we have shown that the existence of fast oscillations and

its effect on the slow oscillations due to the coupling. One might argue that using
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averaging process one can average out the effect of fast modes on the slow modes at

least on the theoretical basis. To prove or disprove this statement, we arrive at the

fourth order expansion.

U'A = -WQV4 - V0W4 + VQz3 + V2zxV2W2

VI = W0U4 + U0W4 - Uoz3 - U2zx + U2W2

w'4 = -vou4 - u0v4 - u2v2

with

2C/0C/4 2V0V4 = E4 = (4.18)

As t —>• ±00 the first and third terms of (4.18) go to zero. We can write

—a-
Immediately, we can deduce that the average value of V4 at t —> ± 00 is a non-zero

constant. This non-zero constant is a consequence of non vanishing fast modes x

and z. Hence even on the sense of averaging, the effect of fast-mode behaviour must

be felt by the slow modes indicating the slow modes are under the influence of fast

time-scale motions.

To gain more insight we will find asymptotic expressions for the other two slow

variables. We choose to work with a single equation for W4.

V* 4 T / 2 TT2yy4V2 — Tf2

V° ~ (4.1S)

where

lit) = {«

-U0z3 -
U0V0U2V2 (U0U2V2
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Close examination of terms in I(t) reveals that / is an even function. The solution

of (4.19) is

R2 Jo Uo
W4 = 71W1 + 72^2 ~ ds + - ds (4.20)

since (4.19) has the same homogeneous part as (4.12).

Armed with (4.10) and U^ ~ Rz\ — RW2, we show in appendix A that / is a

function of order at least O(UQ) asymptotically. Therefore I/UO are bounded. We

can now proceed as at O(e2). As \t\ —> 00 the first term and the third term of (4.20)

is zero and oscillatory respectively. We, therefore, require

2UJ:

to be finite.

/>±oo

'±00

lull
ds

72 = -ds

poo

J—00

Iu)\
ds = 0. (4.21)

- 4.21) is identically satisfied since the integrand is an odd function.

By virtue of the above analysis, only the third term in (4.20) contributes the

residual effect to W4. In fact W4 contains constant term and fast oscillations at no

higher harmonic than those detected in W2 as t —> ± 00. To have higher harmonic

oscillations we require / to have terms like t / | a* 0I"der 0{UQ) only. However all

the terms in / which could have contributed higher harmonic are either at least of

O(UQ) or they are cancelled out by each other. Hence we infer that there is no

higher harmonic oscillations in W4. In next section the implication of the constant

terms found at this order is revealed.

4.8 Discussion -

We establish explicit asymptotic expressions for the Lorenz model of atmosphere up

to O(eA). The model is a simple model which captures the essence of the interaction
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between the fast and slow modes. The sense of fast and slow is characterised by the

other parameter, Rossby number R, which we choose E$ = R2 = E in (4.6a) where

E is one of the two integrals of motion of (4.2). In practical situation R « 1.

At leading order, the system decoupled as two oscillators. The fast modes and the

slow modes correspond to a linear oscillator and a nonlinear oscillator respectively.

At this order we can set the fast modes to zero leaving the slow modes oscillate in a

much slower period. The time-scale tor the slow modes is r = Rt also the amplitude

is proportional to R.

For the fast modes their effect kicks in at O(e). The existence of these fast

modes owe directly to the slow-mode-forcing from previous order, see (4.7). The

generation of fast modes due to slow-mode-forcing in this model is analogous to the

'spontaneous radiation of gravity waves' by the vortical flow found by Ford et al [17].

This fact illustrates that the method of slaving cannot prevent the generation of fast

oscillatory modes. In addition to the above, the elimination of these exponentially

small, i.e. 0[exp(—R"1)], fast modes at large t by imposing condition of no fast

oscillations at t = co is shown in § 5.1 not compatible with this system.

At second order, the effect on the slow modes by fast-mode oscillations shows up.

Wi exhibits oscillations with two different time-scales, (9(1) and O(R). The O{R)

oscillations can be made decay but the 0(1) oscillation cannot be removed by the

choice of integration constants. Hence this shows that an invariant slow manifold

does not exist for this system. At this order, a compatibility condition is established

to prevent W2 from growing without bound. This is reasonable, at this order, to

suggest that the effect of this fast oscillations can be averaged out by some averaging

process, that is

< U2 >, < W2 > -> 0 as \t\ -> co.

To determine whether the same is true at higher order we need to extend the analysis

to higher orders.

At third order, the analysis reduces to a classical problem of prevention of sec-
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ular growth. After renormalisation, we found that the frequency of the fast mode

oscillations is shifted. The shifted frequency is

Since the correction term is of O(e2R2), there is no adverse correction on our previous

results and we believe this shift has no qualitative effect on the evolution of the

system.

So far the asymptotic analysis of (4.2) only shows that the long term dynamics

of slow modes, U, V and W, must be modified by the existence of fast modes hence

exhibits fast oscillations, albeit the response is exponentially small. One might still

hope that averaging process can smooth out the effect of the fast modes. However

at O (e4) even the averaging process fails to take away the effect of fast modes on the

slow modes. The important consequence of nonvanishing gravity waves at t = ±00

turns up at the fourth order expansion. The expansion of (4.3) to O(e4) together

with (4.16) shows that

<VA> =
R

as t ± 00

< V4 > 7̂  0 as t -> ± 00.

Hence

<V > a non zero correction term.

The size of this correction term depends on the amount of fast oscillations in the

system. So fast and slow motions are mutual and inseparable. To conclude, the

slow manifold of (4.2) which does not contain any fast oscillations does not exist.

However, as pointed out by Boyd [9, 10], a manifold which contains fast oscillations

whose amplitude is an exponential function of the reciprocal of the Rossby number

can be constructed. This type of manifolds resembles the definition of fuzzy slow

manifold.
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Chapter 5

A Low Order Non-Conservative

Model

5.1 Introduction

In Chapter 4 we established analytic solutions up to the fourth order of e which is

a Proude number. The results show that the generation of fast oscillations are in-

evitable meaning no any set of initial conditions can lead the system to a, so called,

slow manifold. In other word, nonexistence of slow manifold for this model. In addi-

tion, the influence of these fast oscillations on slow modes can't be eliminated by the

process of averaging. The strength of fast oscillatory influence is of O [exp (—l/R)]

where R is Rossby number. This implies that in principle, any type of balanced

model can only be viewed as an approximation to the parent model with irreducible

error. This irreducible error represents the mutual existence and the inseparable of

fast and slow waves when there is an absence of dissipation and external force acting

on it.

Since this is rare to observe in reality that a dynamical system not being subject

to any amount of external force and dissipation, we extend the analysis to include

forcing and dissipation in the model.
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The main aim of this chapter is to understand quantitatively how dissipation

and forcing modulate the fast and slow activities and, especially, the influence of

fast gravity waves on the slow Rossby waves. We find that dissipation brings in

a longer time scale than Rr1 and this longer time scale it> at O (a) where a is a

coefficient of dissipation which is smaller than unity to be realistic. The existence of

such dissipation does not affect the generation of gravity waves due to the coupling

between the fast modes and the slow modes. The only function of such dissipation

is to dissipate these generated gravity waves in the longer time scale. To bring out

this two-time-scale behaviour of the model the method of matched asymptotics is

employed.

5.2 The Lorenz-Kristnamurthy Model

(5.1a)

(5.1b)

(5.1c)

The dynamical system is

Ut = -VW + eVz - aU

Vt = UW - eUz -aV + F

Wt = ~UV - aW

xt = —z — ax

zt — x-\- eUV — az

where e is a Froude number much smaller than unity, a is a dissipation parameter

and F is a positive constant forcing term. The solution of (5.1) possesses a set of

symmetries

• U —•> -U,V —* -V,F—> -F

• V —> -V,W ~> -W, x —> -x, z —> -z, F —> -F

e U —> - U, W —> - W, x —> -x,z—> -z

A point H = (0, F/a, 0,0,0) is a critical point of (5.1). A linear stability analysis

shows that H is hyperbolic (i. e. no pure imaginary eigenvalues) and a stability
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criteria is given by Lorenz and Krishnamurthy [29]. If \F/a\ > Fc where

Fc — (5.2)
, l + a2-{-a2e2

there is an one dimensional unstable manifold and a four dimensional stable mani-

fold. In such case there are other two critical points which are located at

(U, V, W, x, z) =

where U ~ y/Fc{F/a - Fc).

Next we set up two energy-type relations for the system. They are

dK
dt
dE_
~dt

= -2aK

= -2aE + 2FV

(5.3a)

(5.3b)

where E = U2 + V2 and K = x2 + z2 + W2 - U2. Immediately the solutions of (5.3)

can be written down as

(5.4a)

(5.4b)

K = Kin exp (-2a*)

E = Ein exp (-2at) + 2F I V(s) exp [2a (s - t)] ds
Jo

where Kin and Ein are the values of K and E at t = 0 respectively. Clearly, the

above expressions indicate that (5.1) evolves with time scales T — O(at) as well as

t.

5.3 Scaling

With the intention of treating (5.1) as a perturbation of a heteroclinic orbit in the

case of zero dissipation, zero forcing and zero coupling, i. e. an orbit in a U-V-W

phase space which originates from a fixed point and ends at another fixed point, we

let a = e27,jP = e2/ and T = e2t where y and / = 0(1) relative to e. We then

transform (5.2) in terms of 7 and / , to

/ >
1 -f 72e4

2e472e4-f
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This scaling effectively means the time domain is divided into three regimes, a

short-time regime t and two long-time regimes T±. We define a short-time regime,

t, as a region of the time domain where the solutions of (5.1) exhibit only one time-

scale behaviour, the short time scale t. On the contrary, in the long-time regimes

T± multiple time-scales will show up in the solutions where the subscripts represent

positive time and negative time. In our study we only have two time scales at work

t and T where T is termed as long time scale.

The thickness of the i-regime is O(e~2) on T-scale. The solutions valid in the

i-regime and T±-regimes are called inner-solutions and outer-solutions respectively.

The matching between these two types of solutions is done by treating the inner-

solutions as initial conditions of the governing equations valid in the T-regimes.

Mathematically, we require an intermediate region to exist where both solutions are

valid In this region, as e —)• 0

/(*-> ±oo)~f(T->0±).

This justifies the use of inner-solutions as initial conditions of outer governing equa-

tions. The converse is also true that if the inner-solution can match with the outer-

solution then there is an intermediate region. This idea is depicted in fig. 5.1

negative long-cime region

T
positive long-time region"

-OU/E2 ) 0

short-time
region t

Figure 5.1: Schematic figure of 'short' and 'long' time regions.

Next we have to emphasize that, a priori, in the T-regions the leading order of

slow modes, UQ, WQ and VQ, are functions of T only and only the leading order of slow

modes have this property. This argument makes sense because the leading order of

the slow modes are not subject to any influence which is a function of t through
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coupling with the fast modes nor through dissipation. On the contrary, we expect

Xi and zi will, when they enter into the T-region, inherit some fast-time influence

from the coupling with lower order slow modes. Therefore in the T±-regimes, (5.1)

is transformed to

d d 2 &

di = di + € dT

with

(5.5)

U = U0(T) + e2U2(t,T) + h.o.t.

W = W0(T) + €2W2(t, T) + h.o.t.

V = V0(T) + e2V2(t,T)+ h.o.t.

a: = exi(t,T) + e x$(t,T) + h.o.t.

~ c~ f.i np\ i , 3 _ /•* rp\ j _ v> /-i +•
Z — tZi^C, 1 ) ~T t Z$\Z, 1 j ~r n.O.t.

where h.o.t. represents higher order terms.

Using the above scaling and (5.4a), we infer that K is a function of T only to all

orders, i.e.

K = K(T).

5.3.1 List of Initial Conditions

We list, for the reader's easy reference, the initial conditions we need to use in

the forthcoming analysis. These expressions are obtained from Chapter 4 and thus

only valid in the i-regime. The asymptotic sign, ~ , is used to indicate that the

expressions arej valid in the intermediate region i. e. t —> ± oo. At leading order

UQ =±R seek (Rt)

VQ =+fttanh(/ft)

Wo =±Rsech(Rt)

(5.6a)
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or

Uo = ±Rsech(Rt)

Vo =-Rt<mh{Rt) (5.6b)

where R is a constant amplitude of slow modes at this order which also characterizes

the time scale separation between fast and slow modes to all orders. In the following

analysis we choose only to work with the positive branch of (5.6a), i. e.

(Uo, Vo, Wo) = [R sech(Rt), Rtanh(Rt), R sech(Jtt)].

since the analysis is the same to the negative branch and (5.6b). The above implies

that in the intermediate region

Uo -> 0 (5.7a)

Wo -» 0 (5.7b)

Vo ~ ±R (5.7c)

as t —> ±oo.

For the fast modes valid in the fast-time regime, we have

ft
Xi = Asint — / Uo(s)Vo(s) sin(t — s)d£

Jo
f*

= —Acost + / Uo(s)Vo(s)cos(t — s)ds
Jo

(5.8a)

(5.8b)

where A is an arbitrary constant and x\ and zx are related by the relation

dt

In the intermediate region, \t\ —> oo,

f cos t + (A + D%) sin * (5.9a)
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where

\f = \ s e c h (5.9b)

/»OO

D} = -R2 / sech (Rs) tanh (Rs) sin s ds.
Jo

At second order, we have

(5.9c)

V2 (5.10a)

2RD+
cos i + sin t , (5.10b)

(5.10c)

We omit x3 since its analytic form is not required in the following analysis instead

we state

VA~-
2R'

(5.11)

This completed our list of initial conditions.

5.4 Solutions in the Long-Time Regimes

In T-t-regimes, we immediately see that at 0(1)

-VoWo = 0

UQWo = 0

-U0V0 = 0.

We rule out the trivial solutions and deduce from their initial conditions,

Uo = 0 = V/o
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in the T± regimes.

The asymptotic behaviour of Vo can be discovered by considering (5.3b) at O(e2).

Using (5.5) and equating same order terms, we get

^ T ) + ~EQ{T) = -27E0(T) + 2fV0(T).

To prevent a secularity in E2 we need to set

^ + 27E0 - = 0. (5.12)

In the T-regimes, EQ — Vo
2 due to UQ = 0. Substituting this into (5.12) gives an

equation that governs Vo in T± regions,

dVo
dT

(5.13)

1
(5.14)

Using (5.7c) thus yields,

T < 0

T>0.

(5.15)

Clearly on T-scale, Vo approaches a positive value f/j from negative infinity, as

T increases from —00 to oo, with a rapid change of value from —R to -\-R in a region

which has thickness O(e~2). The unboundedness of Vo at infinite negative time is

caused by moving a dissipative system backward in time. On the other hand, (5.13)

is just a linearized version of (5.1b), hence Vo —> f/y is expected. In the following

analysis we will consider solutions in the T+-regime only.

63

i.



5.4.1 Solutions of the Fast Modes

To describe the evolutions of xx and z\ we require to consider equations at O(e) and

0(e2). First at O(e);

dt

dt

This gives

Xl = d (T) cos t + C2{T) sin t.

Using (5.9b) and (5.9c) as initial conditions for Ci and C2 we get

At O(e2);

= \ sech

C2(0+) =

dt

dV2

dt

- VQW2

= 0

(5.16a)

(5.16b)

(5.17a)

(5.17b)

Thus,

dW2

dt
= -U2V0

V2 = V2(T).

(5.17c)

Indeed we can determine V2 from (5.3b) with the same argument used to find Vo in

§5.4. Since

E2 = 2VQV2)
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B2 is a function of T only. Then at O(e4), we have

Setting the inhomogeneous terms equal to zero to prevent any secularity we then

get,

—(2V0V2) + 4ryV0V2 = 2fV2

Using (5.10a) as initial condition and with (5.13) the above becomes

V2 = 0.

Moreover from (5.17a) and (5.17c) we get

The general solution of U2 is

c/2 = #(r)exp[r(0] + QCr)exP[-

where

V0C2smt

voc2 .
sintVn

2

upon substitution of T1 = e2i in (5.15).

The first term above would lead to an unbounded solution in finite time. However

we know from (5.10b) that U2 is a well behave function in the ^-regime, therefore

we have to set K to identically zero. In theory Q can be determined by matching

the outer solution to the inner solution, which requires a more accurate expression
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than we have in (5.10b). However, in practice, Q bears no significance since its

association with an exponentially decaying term where T gives positive values only.

We do not consider it in the rest of the analysis. Thus, W2 can be determined from

... 1 dU2
W

Having done the above we can proceed to next order where C\ and C2 are to be

determined.

At O(e3);

8x3
at = -Z3 -

dxx

dT

dT

Using the previous results the inhomogeneous terms can be rewritten as

sin

1
2

cost.

To prevent a secularity we then have to set the first two coefficients above to

zero and get

dv
dT

= Mv (5.18)

where

C2 \QT -7
and 0 r =

dT 2(1 + V0
2)'

To solve this set of first order variable coefficient linear ODEs, one of the ways is to

diagonalise M to decouple the equations then transform the solutions back to the
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original coordinate system. The solutions of (5.18) are

„ / cos 0 — sin 0 \
v(T) = e->T v0

\ s i n 0 cos© /
where v0 is an initial condition. Indeed, asymptotically

d ~ exp(- 7 T)[C 1 (0 + )cos(5T)-C 2 (0 + )s in(5r)] ,

C2

where

s —-

(5.19)

(5.20)

(5.21)

The above result implies that X\ and z\ decay due to the presence of dissipation

but only on the T-scale that is much longer than the oscillatory frequency of these

waves.

5.4.2 Higher Order

From (5.3b) V4 can be found as follows. Recall that

dE.
~dt

'- = 0.

Hence

= BA(T)

= Vn
[ 2(1 + v0

2)2
V°ClCl sin2t + ^ ^ J ) c o s 2 « + 2K4

2(1 +
Prom this we can construct the solution of V4 so that E4 is a function of T only, we

get

V4 =
2(1 + sin it —

4(1 + V?)2 cos 2t (5.22)
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where g(T) will be determined in the next section. Substituting (5.22) into the

above yields,

2(1
+ 2g{T) ,

which is a function of T only.

5.4.2.1 Another Slow-Time Function

At O(e6) of (5.3b)

Then we are required to set

IT + 2jE4 - 2 / 0 =

(5.23)

(5.24)

(5.25)

after substituting (5.22) into (5.24) in order to prevent a secularity from happening

toE6.

Substituting (5.23) into (5.25) and using (5.12) we then get an equation for g(T),

dT + 19 2(1 +
d

Vo dT [ 4(1 + V?) (5.26)

- exp(-7T) / exp(75)
Jo

ds (5.27)
VodT[ 4(1+ V?) J

where C is a constant which can be determined from initial condition of V4. However

the exact value of C does not bear qualitative importance and we will not pursue

its value. Eq.(5.27) can be evaluated since Ci,C2 and Vo are all known functions.

Nevertheless the form of (5.27) above can serve the purpose of this study and we
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do not evaluate the integral. By inspection we infer that #'s main contribution to

V4 at large T is adding a constant term to it.

Therefore V4 contains second harmonic oscillations in the T+-regime which is sub-

ject to exponential decay on T-scale represented by C\ and C2 and adds a constant

term to V.

5.5 Discussion

The fate of (5.1) is different from the conservative system in the way that first we

cannot consider the system in arbitrary large negative time because of the unbound-

edness occurrence at infinite negative time. Secondly, the fast oscillations will be

dissipated in the time scale of T = e2t. However the generation of gravity waves is

not eliminated by the presence of dissipation.The generation of such waves is totally

control by the nonlinear coupling terms. The dissipation rate is at 0{e2). This means

the system will in theory eventually becomes gravity waves free but this stage takes

a long time to arrive.

The orbit under our investigation shows tendency to move towards a fixed point

H = (0, F/a, 0,0,0). We know from linear stability analysis on H that H indeed is

a hyperbolic fixed point, however, the fact of UQ and Wo being zero in the long-time

regime masks the effect of instability of H at least up to the order four. We hence

infer that the instability of the orbit may eventually show up from higher order

terms of expansion. In fact any instability around H must be caused by the modes

U and W at orders higher than we have considered in this chapter since from linear

analysis V is a stable mode around H.

Despite our objective of this chapter is the quantitative effect of dissipation and

constant forcing, we nevertheless conjecture the fate of the orbit without proof that

the orbit will come close to H and then the instability of H will eventually show up

and hence the orbit will move away from H.

By observation gravity waves are dissipated much quicker than the Rossby waves,
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so a modification to (5.1) will be to allow different strength of dissipations to these

two types of waves. A smaller dissipative coefficient of Rossby waves will make the

system more realistic.
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Chapter 6

Concluding Remarks

In this thesis we have analysed two model systems and established their asymptotic

solutions.

In the first case study, we revisit a model system which was first studied by Akylas

and Yang [2] using the complex-matched asymptotics, a member of the collection of

exponential asymptotics. This model is a slowly driven nonlinear oscillator satisfying

either a symmetric condition or an one-sided radiation condition at far field. Three

different types of functions were used as a forcing term,

2. f(x) = sechx

3. f(x) = exp(-.T2).

The analysis for each forcing term is modified according to the type of the singulari-

ties and their location. The first two forcing terms possess a double pole and a single

pole respectively and the third one has no singularities in the finite complex-plane.

A double(single) pole singularity in the forcing term induces a single(double) pole

singularity in the Borel-transformed inner problem. Thus, the analysis for the first

forcing is not adequate to handle the second forcing. Hence algorithms that are

applicable to the first forcing is not necessary applicable to the second forcing
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For the third forcing, the singularities of the problem are masked by the Gaus-

sian forcing. To bring out the hidden singularities we are required to use a special

transformation suggested by the expression resulted from the regular asymptotic

expansion of the equation. Once the singularities of the transformed problem are

located, the complex-matched asymptotics can be applied. It turns out that linear

theory is enough to handle the transformed problem. Despite the fact that the trans-

formed problem is linear, linearisation of the original equation cannot give useful

estimate of the far field solution. The reason is that in the transformed problem, the

forcing term appears in each order of expansion is a result of the nonlinearity from

the original problem. If one neglects the nonlinear term in the original problem, a

forcing term will be absent in each order of expansion of the transformed problem

except at the leading order. As shown in §3.4.1, the contribution of the tail's am-

plitude comes mainly from the higher order expansion of the transformed problem,

thus, an accurate estimate of the tail's amplitude must include the contribution from

the nonlinearity of the original problem.

The analysis on these three different types of forcing indicates the robustness

of the complex-plane matched asymptotics. As Boyd pointed out in his book [12],

this method, and as many other members of exponential asymptotics, lack some

mathematical rigours on the assumptions made in the procedures. One of such

assumptions is the dominant role played by the singularity closest to the real axis in

the outer problem over the other singularities which are further away from the real

axis. Another point to note from this model system is that the persistence of fast

oscillatory waves at far field despite they are exponentially small and the forcing

has a much larger timescale. And this led us to consider a second model system in

Chapters 4-5.

The second model system is a low order system called Lorenz model in this

thesis. This model allows interactions between fast modes and slow modes and

includes dissipation and forcing.

For this model, we found that the generation and persistence of fast oscilla-
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tions are inevitable although these fast oscillations are exponentially small, i.e.

O[exp(-l/2J?)j where R is a timescale separating the fast modes from the slow

modes. This implies there is no any point in the phase space where the orbit origi-

nates from there can be totally devoid of fast oscillatory motions. The slow modes

must exhibit some fast oscillatory behaviour during their excursion in the phase

space. The persistence of such fast behaviour in the slow modes also means even in

the sense of averaging the slow modes cannot be totally freed from the influence of

the fast modes. Therefore a slow manifold for this system does not existence but a

fuzzy slow manifold does [37].

This is correct to claim that, at least up to the order considered in this thesis, the

dissipation and the constant forcing cause the fast oscillations decay asymptotically

with a slow timescale as shown in (5.19).

That would be interesting to consider a Lorenz model with a variable forcing

and/or the dissipative coefficients associated with the fast and slow modes being

scaled differently.
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Appendix A

The Scale of I(t) in Eq.(4.20)

Recall that

= < u2w2 - - U2zx 4- ~ yz-ui 2 \V0
2-Ul

U0V0U2V2 (UQU2V2\\

V"2 u V v 2 — f/2 / I '

We require / to be at least O (UQ) or higher as a necessary condition for the integrals

in (4.20) to converge. The posssible candidates in / which are 0(1) relative to UQ

are the first, the third and the fifth terms.

Let us expand the term

we then have

2 \Vi-UlVi-Ul
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Recall that as \t\ —> oo,

'~R

W" ~ -1

% - R2W2

R2

where the last expression is obtained from

Substitute the above into

U2W2 -U- 2 . U*V°U*

W2 W2

= 0

as \t\ -> 00.

Therefore the quantity I/UQ in the integrands of (4.20) are bounded.
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