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Addendum

Page 32: Figure 2.12: Replace "£" with V

Page 56: Paragraph 3: After "implementations respectively." insert:

"The colours in figures 4-4 and 4-5 (as well as figures 4-9 - 4-1%) refer to the

speed of the particle, similar to the figures presented in chapter 3.)"

Page 60: Figure 4.6: After "In thes" experiments" insert "W = 40cm,"

Page 72: Figure 4.13: Replace full stop after "the experimental results in section

4-1" with ", allowing for the factor of two difference in the definition of W."

Page 77: Paragraph 1: Replace "The north eastern inlef with "The north western

inlef.

Page 79: Equation 5.3: Replace "xi," by "yt" in the second partial derivative.

Page 85: At the end of paragraph 4 insert:

"The artificial viscosity used in the solid body calculations is the same as

that used in the incompressible fluid calculations (2.16), except that a larger

value of the artificial viscosity parameter a — 0.5 is used in the solid body

calculations."

Page 138: Figure 6.20: Replace uVf = 1 x 10"4" with "Vf = 1 x 10"3"



" As far as the laws of mathematics

refer to reality they are not certain,

and as far as they are certain,

they do not refer to reality "

Albert Einstein (1879-1955).
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Summary

This thesis begins with an historical survey of caldera collapse events and their

effects. We then review a range of numerical methods which are suitable for the

solution of the Navier-Stokes equations. We discuss the suitability of Smoothed

Particle Hydrodynamics (SPH) because of the ease with which it can handle com-

plicated free surface motions, and also because it can be extended to include the

physics required for the computation of problems in rock mechanics and fracture for

the modelling work in this thesis.

In chapter two we describe the SPH method and detail its application to free

surface fluid mechanics. We discuss the implementation of boundary conditions in

SPH and show that ghost particle formulations are superior to the use of boundary

particle forces.

We validate our code and boundary conditions on a range of test problems in

chapter three. We find good agreement for our SPH calculations with experimental

and theoretical results, we also compare to the results of other numerical methods.

Different forms of caldera collapse are reviewed in chapter four. A simplified

model for piston subsidence is introduced and we present wavetank experiments for

the generation and runup of waves produced using this piston model. We compare

these experiments to SPH calculations and discuss extensions of our calculations to

gain an understanding of wave generation in the more realistic case.

Having considered calculations for the generation of waves from caldera collapse

we alter course to investigate the modelling of stresses and fault formation around

magma chambers and the relation of these faults to collapse structures. We outline

the addition of a deviatoric stress tensor to our numerical equations in chapter

five. The deviatoric stress tensor is introduced to provide resistance to material

deformation, consistent with Hooke's law. The formulation of a damage model

suitable for the simulation of brittle materials is described.

SPH calculations are known to be affected by a crippling short wavelength in-

stability when particles are acted upon by large tensile stresses. Artificial stress

terms are introduced into the SPH equations to combat this instability. Dispersion
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relations for stress waves are derived, the SPH equations are shown to agree with

the continuum equations in the long wavelength limit. The short wavelength limit

of the dispersion relation is found and used to calculate the stability properties of

SPH under the application of tensile stresses when the artificial stress terms are

implemented.

Various test problems of solid body dynamics are presented in chapter six. These

problems demonstrate the effect of artificial stress terms to remove the numerical

fracturing caused by the tensile instability. Simulations of elastic, plastic, ductile

and brittle materials are shown. The concentration of stress around a circular cavity

is described.

Chapter seven begins with a review of the physical processes involved in crack

formation in rock surrounding magma chambers and caldera collapse. Basic calcula-

tions illustrate the effects of the important physical processes and conditions. More

realistic calculations illustrate possible fracture regimes and the suitability of SPH

as a useful tool for the further analysis of these problems.

Concluding remarks are made in chapter eight with a summary of results and a

discussion of areas in which further investigation should proceed. Three appendices

are provided, outlining that thermodynamic effects can be neglected in the study

of wave generation, a detailed derivation of the dispersion relation of chapter five,

and conclude with a commentary on the animations of simulations contained on the

accompanying CDROM.
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How Deep is the Valley?

How Deep is the Valley?"

Brian Wilson

IX



Chapter 1

Introduction

she aim of thesis is to investigate the modelling of events associated with

; caldera collapse eruptions and examine if these collapse events can lead to

^tsunami production. Caldera collapse occurs when the ejection of magma

from a volcano leads to the rock overlying a partially empty magma chamber to

become unstable and collapse into the chamber. Tsunamis or tide waves are large,

fast moving, long wavelength waves and are typically caused by undersea earth-

quakes or landslides. Though tsunamis can be produced by any displacement of a

significant amount of water. Tsunamis carry vast amounts of energy and can be

very destructive when they come into contact with land.

1.1 Physical Motivation

Latter (1981) outlines ways that events associated with volcanic eruptions can lead

to tsunami generation. A proposed mechanism is that the collapse of a volcano in a

marine environment leads to the formation of a cavity into which an influx of water

can flow and generate waves. This thesis focuses on this mechanism, though the

techniques used would be equally applicable to modelling production of tsunamis

from volcanically initiated earthquakes or landslides.

One question we wish to understand is how waves form when a caldera in contact

with the sea collapses. In chapter four we consider how waves are produced in

simplified models of caldera collapse, using both numerical simulations and wave

tank experiments. We then progress to examining the effects of altering the geometry

of the cavity on the waves produced.

The initial motivation for this study (on the connection between caldera collapse

and tsunami production) is the theory that the Bronze Age eruption (~ 1,500BC)

of the Mediterranean island of Santorini led to the demise of the Minoan civilisation

in nearby Crete (Marinatos 1939). The island of Santorini lies in the sea between
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Greece and Crete and possesses a rich history. It has been linked to tales in Greek

mythology (Jason and the Argonauts (Luce 1970) and the legend of the lost city of

Atlantis) and has been the site of many volcanic eruptions including a large eruption

in the Bronze Age. Some of the eruptions on Santorini have led to caldera collapse

events (chapter four). The subsidence of large parts of the island into the sea has

led to the creation of large cliffs which has meant that not only has the island been

transformed into a region of extreme beauty, it has also led to the creation of an

area of extensive scientific interest.

In figure 1.1 we present a recent map of the island1. The island complex is

approximately lAkm in diameter with interior cliffs up to 300m high. The northern

section of the interior basin is almost 370m deep, with the southern section having

depth around 275m. The present day caldera was formed in a series of distinct

eruptions and collapse events (Druitt and Prancaviglia 1992). A flooded caldera

existed before the Bronze Age eruption which increased the area and depth of the

depression. There has been extensive geological research into the volcanology of the

island (Sparks and Wilson (1990), Heiken and McCoy (1984) and references therein).

The Greek archaeologist Marinatos proposed a theory that the Bronze Age erup-

tion of Santorini led to the demise on the Minoan civilisation on Crete (Marinatos

1939). The Minoan civilisation was one of the earliest European civilisations and

lies at the roots of Western culture (Graham 1967). Marinatos' motivation was that

the Minoans seemed to mysteriously disappear soon after the eruption of Santorini.

Page (1970,1978) and Luce (1970) have examined the effects the eruption may

have had on life on Minoan Crete. The dumping of volcanic ash may have rendered

Crete uninhabitable for some years, or a damaging earthquake may have been initi-

ated by the eruption. Komlos, Hedervari, and Meszaros (1978) discuss a correlation

between earthquakes in the months both preceding and following volcanic eruptions

" of Santorini. This connection is found to be consistent with research into other

volcanoes.

Archaeological digs at the town of Akrotiri on Santorini, failed to uncover the

remains of human skeletons. Heiken and McCoy (1990) attribute this to the residents

being pre-warned of impending disaster and fleeing before the eruption. There are

1 "Santorin Island Ancient Thera Surveyed by Captain Thomas Graves F.R.G.S. H.M.S. Volage
1848" from The Journal of the Royal Geographical Society, Volume 20, 1850. obtained from the
Perry-Castaiieda Library Map Collection at "http://www.lib.utexas.edu".
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Figure 1.1: Recent map of Santorini. The bays in the centre of the island were
formed by caldera collapse. Small islands in the middle were formed
by recent volcanic activity.
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signs of buildings being repaired after an earthquake, covered by a small ash deposit
which is thought to have come from volcanic activity a few weeks or months prior
to the beginning of the major eruption. The presence of ash in the air could have
made breathing difficult and possibly frightened inhabitants into leaving.

An alternative way that volcanic eruptions can lead to destruction is through
the initiation of tsunamis (Meszaros 1978; Yokoyama 1978). The 1972 eruption of
Ritter island (Papua New Guinea) picked up seismic signals which may have been
caused by either caldera-collapse or an explosive eruption. An eruption which led to
tsunami production (Cooke et al. 1976). The original report into the 1883 eruption
of Krakatau (Indonesia) (Verbeek 1884) attributed the collapse of the northern part
of the mountain as the origin of a large tide wave.

The 1883 eruption of Krakatau produced tsunamis which killed 36,000 people
on surrounding islands. There are many similarities between the 1883 eruption of
Krakatau and the Minoan eruption of Santorini. Both occurred in island settings
that had pre-exisiing calderas and involved caldera collapse of large sections of the
centre of an island, though the Minoan eruption of Santorini was larger. Using the
recorded events at Krakatau (Verbeek 1884) as a guide we expect a complicated
eruption sequence at Santorini with many tsunamis generated. Thornton (1996)
reviews how the eruption is thought to have occurred and examines the way the
ecosystem on Krakatau was rebuilt after the 1883 eruption.

Even though a tsunami may not be responsible for the downfall of the Minoan
society, the possibility that a similar eruption in some other situation could cause
significant damage is not precluded. Decker (1990) estimates that an eruption at
least as big as the Minoan eruption on Santorini is likely to occur somewhere on
earth every 300 years or so. It is therefore important that we are able to predict the
possible effects of such an eruption.

Thermodynamic effects in the event of caldera collapse are undoubtedly im-
portant if one is to gain a complete understanding of the problem. The possible
interactions between molten lava and sea water must be considered, along with the
effects that different temperatures have on rock properties and fracture mechanisms.
However, in this thesis the focus will be on the mechanical effects rather than the
thermodynamic effects. We feel that there are interesting fluid dynamics problems
that need to be solved before including the complications of thermodynamics.

In appendix A we show that over the short time scale for which caldera collapse



1.2 Numerical Me thod

may lead to significant wave production the thermodynamic effects have only a

small effect on the mechanics of the wave generation and flow. The thermodynamic

effects are important and can lead to the dynamic mixing of lava and water and

explosions in situations where equal volumes of lava and water are present (Colgate

and Sigurgeirsson 1973).

A distinct (yet related) factor we examine is the way in which fracture of the rock

surrounding the magma chamber occurs. The issue of the origin of calderas in con-

troversial (McBirney 1990; Lipman 1997). Numerical modelling provides a method

to investigate how different magma chamber geometries, rock types and loading con-

ditions affect where faults occur and how calderas form. An understanding of the

mechanism of collapse is scientifically interesting and vital for the determination of

possible effects from caldera collapse eruptions.

Furthermore, the numerical modelling of rock mechanics is important in other

areas. Applications of rock mechanics in geophysics can be found in the review by

Sammonds (1999) who investigates deformation of the earth's crust and the break-

up of ice sheets. The fracture and break-up of rocks and metals are also importf. >;,

in many, astrophysical, engineering, material science and mining applications. Rock

mechanics is a relatively new discipline, a review of the history of rock mechanics is

found in Jaeger (1979).

1.2 Numerical Method

Many factors have to be considered when choosing a numerical method which is

suitable for a particular application. Primarily one must ensure that the numerical

method is capable of computing the particular task, the accuracy, speed and ease of

use of the method must also be examined.

In this thesis there are two areas we wish to investigate. The first involves the

computation of complex free surface flows of water, the second area is the compu-

tation of the dynamics and fracture of solid bodies. It is in many ways preferable

that the same method be employed for both areas as this then makes it much easier

to eventually combine the two areas.

Free surface flow reviews have been given by Scardovelli and Zaleski (1999) and

Ferziger and Peric (1996) (pg.321-335) discussing many of the numerical methods
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used for multiphase and free surface flows. Yeung (1982) presents a review for the

solution of free surface flow problems using a potential (stream function) approach

to solve the governing equations of fluid dynamics. Raad (1995) looks at the use

of computational fluid dynamics in the solution of water wave problems with par-

ticular emphasis on Marker and Cell (MAC) techniques. The methods we discuss

are concentrated on primitive variable techniques (pressure, velocity) as they lead to

fewer dependent variables and therefore are better for three dimensional calculations

(Fletcher 1988) (pg.387).

Finite element methods have many attractive features, although we base the

discussion in this section more on the use of particle methods. Lyard and Genco

(1994) and Xing et al. (1998) discuss the use of finite element methods in the

computation of water waves. Curnier (1993) outlines the use of finite elements in

solid body mechanics.

When using finite differences free surface flows are more difficult to model than

standard confined flows as they involve a moving boundary (the free surface) the

shape and position of which is previously unknown. The difficulty in computing

free surface motion lies in how to track free surfaces. One possibility is to fit a grid

along the free surface, then adjust and regrid the problem as the free surface moves.

These techniques are known as boundary fitting, they are fully Eulerian but can be

difficult to regrid for complicated surface motions.

A way to remove the problems of regridding is to remove the grid from the

simulation. The Particle In Cell (PIC) method (Harlow 1964) was the first step

in this direction. PIC was originally developed to model fluid problems with large

distortions and/or colliding interfaces. It is a hybrid method, taking features of

Lagrangian and Eulerian approaches.

In the Eulerian approach a fluid is divided up into a number of computational

cells which are fixed in space. The fluid then passes through the cells subject to the

governing partial differential equations. Large fluid motion and distortion are easily

handled. The major disadvantage of these schemes in modelling free surface flows

is that they handle material interfaces poorly.

The Lagrangian approach divides the computational fluid into cells which move

with the fluid. In the limit of extremely high resolution, one can imagine each com-

putational cell representing a molecule of the fluid. As the computational domain is

following the fluid Lagrangian techniques are better at tracking interfaces, though
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can breakdown when the fluid has undergone large distortions.
The PIC method involves a stationary grid of points on which the filed variables

are calculated. These variables are then interpolated onto a Lagrangian mesh of
particles which represent the fluid and its motion. As the variables are calculated
on a stationary grid, large distortions of the fluid are possible without the grid
becoming tangled. As the fluid is represented by a set of Lagrangian particles,
interface tracking is simple.

The approach used by the MAC and Volume of Fluid (VOF) methods is to
define a fixed grid over which the simulation is to be computed and then track the
movement of the interface around this grid. The MAC method (Harlow and Welch
1965) does this by using a series of marker particles which define the free surface and
are followed to track movement of the free surface. There is Lagrangian tracking of
marker particles which rely on an Eulerian grid for the velocities. The VOF method
Hirt and Nichols (1981) tracks the free surface by solving an equation for the void
fraction of liquid in each cell. In this case the free surface is found from the Eulerian
tracking of a colour function representing whether or not a particular cell contains
a fluid fully, partially or not at all.

The method we choose to use is the Lagrangian particle method Smoothed Par-
ticle Hydrodynamics (SPH) (Monaghan 1992). The major difference between SPH
and the other methods we have discussed is that it doesn't require the use of a grid
in its computations. Instead particles consist of interpolating functions, which in-
teract with surrounding particles, in this way it can be considered intuitively similar
to the interactions between particles in a real fluid. The advantage of not having a
grid is that there are no grid tangling problems when fluid deformations are large.
As a bonus the method is simple, easy to use and complicated physics can be easily
incorporated.

An example of the ease with which physics can be incorporated is that solid
body problems can be handled by essentially only adding a resistive term to the
stress tensor. The size these resistive stress terms is found from a version of Hooke's
law. The addition of these terms to the stress tensor was first proposed by Wilkins
(1964) and Petschek and Hanson (1968) in a finite difference context. It was later
examined by Libersky and Petschek (1991) and Benz and Asphaug (1994) in the
SPH framework.

The calculations that we perform are two dimensional, the main reason for this
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being that the computational effort involved in three dimensional calculations would
require programming in parallel. Also the experiments that we perform and compare
to are two dimensional. Axisymmetric calculations can be performed using SPH
(Petschek and Libersky 1993; Coleman and Bicknell 1985). Though the problems
that we are investigating are not axisymmetric problems, and are better performed
in two dimensions as there are both interesting two dimensional problems and an
obvious extension into the third dimension.

1.3 Thesis Outline

This thesis began with an introduction of it's primary motivation, the eruption of
Santorini and an outline of our reasons for choosing the SPH numerical method for
the numerical modelling of the production of water waves and rock fracture.

Chapter two outlines the SPH technique as it applies to the modelling of hydro-
dynamic flows. The chapter begins with a brief introduction of the method and a
derivation of the appropriate equations. It concludes with a discussion on the use
of boundary conditions in SPH.

In the third chapter, the SPH code is validated against simple test problems. The
problems that are presented have both a connection to the flows that are generated
in the caldera collapse of an island volcano, but more importantly they have either
experimental or theoretical solutions to which we can compare our results. The
purpose of this chapter is that once we are confident that the numerical models
behave suitably for a series of simple test cases, we can be confident that they can
correctly model more complicated situations that cannot be replicated by experiment
or theory.

A review of caldera collapse is given in chapter four. Wave tank experiments for
a simple model of the waves produced due to piston subsidence are presented and
replicated by numerical simulations. Effects of changes to the geometry of the cavity
are studied. The application of these experiments and simulations to the realistic
case of Santorini is discussed.

In chapter five the hydrodynamic equations are extended to model elastic-plastic
media by the addition of a deviatoric stress tensor. The equations used for the
modelling of ductile (plastic) materials and a damage model for brittle fracture are
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introduced. A method to combat the SPH tensile instability is implemented and a
dispersion analysis is undertaken to study the stability of the method.

We follow the lead of Libersky and Petschek (1991), Benz and Asphaug (1994)
in using SPH to model the deformations and fracturing of solid materials in chapter
six. We begin by looking at the collision of elastic balls and the oscillations of elastic
and plastic plates, the concentration of stress around a circular hole is calculated.
We also present simple tests of our fracture model by simulating the fracture of
plates in tension. The simulations that we present are two dimensional, this allows
us to obtain the fundamental results without the extra computational effort and
geometry complications of three dimensional calculations.

In chapter seven we present SPH calculations which examine the stress fields
and formation of fractures around magma chambers, we compare SPH results with
the surface stress fields of Gudmundsson (1998). The effects of important physical
processes are examined and computations illustrate possible fracture regimes and
the suitability of SPH in the further analysis of these problems. This chapter applies
to the formation of calderas in both inland and marine environments.

We conclude in chapter eight with a brief review of the work conducted and areas
in which further investigations should be concentrated.



Chapter 2

Smoothed Particle Hydrodynamics

n this chapter we outline the equations of Smoothed Particle Hydrodynam-

ics (SPH). We begin by describing the method, showing how it is applied

to the modelling of hydrodynamic media. We then disci;ss boundary con-

ditions and their implementation in SPH.

The SPH method originated in the late seventies with papers by Lucy (1977)

and Gingold and Monaghan (1977) as a means of solving gas dynamics problems

in astrophysics. Since then the method has been used to solve many astrophysical

problems with modern reviews given by Benz (1990) and Monaghan (1992).

SPH can be modified to handle incompressible fluids such as water (Monaghan

1994) and used to simulate free surface flows such as a breaking dam and waves

on a beach. SPH is a gridless, Lagrangian method which is ideal for computing

free surface flows, as particles are free to move wherever they please without the

restrictions of a grid.

The problems associated with a grid in finite difference type calculations restrict

their ability in solving free surface problems, for example breaking waves, that in-

volve large grid movements and distortion.

Other methods have been able to simulate the travelling motions of waves, but it

is only recently that overturning waves have been simulated beyond the stage where

they hit the water. Chen et al. (1999) use a Volume of Fluid (VOF) variant to model

plunging breakers and wave splash-up. Variations of the finite difference Marker and

Cell (MAC) method (Miyata 1986; Mader 1986) are able to handle breaking waves

but are complicated to code. The fully nonlinear potential flow model of Grilli et al.

(1997) is capable of handling the breaking and overturning of waves but cannot

simulate flow once the overturning wave has rejoined the body of the fluid.
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2.1 The SPH Method

The SPH method involves approximating a function, say A, by a summation of the
values of A at a set of disordered points (the particles),

6=1

-n,h) (2.1)

where, n is the number of particles and W is the kernel. An SPH kernel is a function
that is an approximation to a <5-function,

(2.2)lim W(r — r', h) = 5{r — r').

It is also important that the kernel is normalised,

W(T - r', h)dr' = 1. (2.3)

In theory the summation is over all particles involved in the calculation, but in
practice the kernels used are non-zero only near the particle, and the summation
is only carried out over particles in each others neighbourhoods. Early calculations
used a Gaussian for the kernel although Monaghan and Lattanzio (1985) define a
spline based kernel.

Cubic spline kernels are used as they have compact support (that is they have
non zero value within a finite domain), they also have a continuous second derivative
so that minor perturbations to particle positions give only minor variations to the
resulting summation. In two dimensions a cubic spline kernel is,

3 fr\2 , 3

W(r) = ••
10

Yirh2

: f

if

<T ^ <
- h -

(2.4)

0 if 2 < £ < oo.

The kernel is a differentiate function and ^(r^) is just the value of A at the
point rj, so that the derivative of A can be calculated exactly as,

(2-5)
6=1

In SPH the spatial derivatives are exact derivatives of approximate interpolating
functions.
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2.2 Equations for Fluid Dynamics

Like many fluid dynamics calculations we wish to solve the full Navier Stokes equa-

tions. These are the momentum equation (for constant viscosity, fi),

— = — V P + - V 2 v + F e i t , (2.6)
dt p p

where, v is velocity, P is Pressure, p is density and Fe i j is any external forces such

as gravity, and the continuity equation,

Tt = -pv'v- (2'7)

To use equations (2.6) and (2.7) in the SPH technique we must use equations

(2.1) and (2.5) to convert them into SPH form. We take a simplified momentum

equation (neglecting viscosity and external forces),

di
at

(2.8)

This could be converted straight into SPH form although the resulting equation

would be unsymmetric in particles a and b meaning that momentum will not be

accurately conserved. Instead we make use of the relation,

P P
(2.9)

So that (2.8) becomes,

(2.10)
dt \p

In SPH interpolation form equation (2.10) becomes,

dt - 2-smbyp2 p2j a

To account for viscosity, the one dimensional momentum equation with viscosity,

(2.11)

dv _ \dP ld_( dv\
dt~ pdx+pdxV"fa) (2-12)
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can be rewritten as,

dt pdx \ dx)
(2.13)

It is clear from (2.13) that the viscosity term is acting as an artificial pressure
term. When particles are moving together (dv/dx < 0) density is increasing, the
artificial pressure also increases to resist the density increase. Using this idea a
symmetric viscosity term IIob is added to equation (2.11) such that,

x

Leading to a suitable SPH viscosity term,

TT i Ca

TLab = ah—

(2.14)

(2.15)

where cab = (ca + cfc)/2, pa6 = (pa + pb)/2 and ra6 = ra - r6. The symmetry of this
term ensures conservation.

The idea of using an artificial viscosity term is taken from Von Neumann and
Richtmyer (1950) who used it to model hydrodynamic shocks by smearing out the
shock front to remove discontinuities in the system.

There is also a kinetic pressure term in the viscosity which is used to handle pen-
etration in the case of high Mach number collisions. This term is usually negligible
in the incompressible form of SPH where small Mach number flows are considered.
In low Mach number flows the velocity of bulk fluid motion, v is much less than the
soundspeed, cs. The second term of (2.16) scales like ftfo^+ffi compared to the first
term which is like acab, as v <C cab the term involving alpha will usually be larger.

= an
• Tab (2.16)

PabKb + V Pab Kr'ri + TfJ

Artificial viscosity was introduced into SPH gas dynamics problems to stabilise
the calculations by limiting the motions of particles which are moving together, this
is the reason we use artificial viscosity. The flows we are computing are fast moving
and often turbulent, viscous boundary layers do not form. That we obtain good
agreement with experiment indicates that the neglect of a realistic viscous term
does not seriously effect these calculations. Morris, Fox, and Zhu (1997) introduce
a realistic viscous term in their low Reynolds number computations.

•!

I.

•1
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Note that there is no change in the way the viscous term is calculated when the

boundary particles (to be introduced in section 2.4) are involved in the summation.

So the final momentum equation is,

dt

We take typical values of a = 0.01 and (3 = 3a, so that,

•ra6

Pab \
(2.18)

<b + V

For compressible flows in SPH density is determined by the simple summation,

,Wab. (2.19)

Although as pointed out by Monaghan (1994), this is unsatisfactory when deal-

ing with fluids such as water where the density falls disconlinuously to zero at the

surface. If (2.19) is used to calculate the density the smoothing performed by the

kernel means that the density drops to zero over the smoothing distance 2h, in-

stead of instantaneously, leading to an incorrect pressure being calculated from the

equation of state.

Instead density is determined via the continuity equation,

d± = - V • (pv) + v • Vp, (2.20)

or in SPH summation form,

] T a - v6) • VaWab. (2.21)

Monaghan (1989) noted that it is not necessary for the velocity at which a particle

is moved to be equal to the actual velocity of the particle. In the XSPH variation

of SPH particles are moved at an average velocity of neighbouring particles, to keep

an orderly arrangement of particles in non-viscous compressible flows.

Particles are moved according to,

— = va + f Y"1 ~^{vb - va)Wa6 (2 22)
[ dt ^ pah

i
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where, typically, £ = 0.5.

Monaghan (1994) proposes a way to model incompressible flows by modifying

the compressible SPH technique. The idea makes use of the artificial compressibility

method used by Chorin (1967) (see also Hirt and Nichols (1980) who use a similar

idea to model compressible flows with an incompressible code). Chorin uses the fact

that fluids such as water are actually slightly compressible. Usually water is modelled

as an artificial fluid that is more incompressible than it actually is. Incompressible

SPH takes a different path, modelling water with an equation of state that gives a

higher compressibility than the actual fluid.

It can be shown from the momentum equation that,

5p vL

for bulk fluid motions v ~ L/T SO that,

(2.23)

(2.24)

If we wish to keep density variations down to 1% we need to choose a Mach

number M = 0.1. The best way to do this is to choose a soundspeed much greater

than a typical velocity. A good compromise between small density variations and a

large timestep (5t ~ h/cs) is to take cs = 10V^ where Vo is the largest (or typical)

velocity expected.

The equation of state used is (Batchelor 1973),

(2.25)

where B = poc
2

a. For most of the cases considered we take c2 — 200gh where H is

a measure of the depth of the fluid. B is therefore a problem dependent constant.

We take 7 = 7.

An alternative approach for the modelling of incompressible flows using SPH

is the projection technique of Cummins and Rudman (1999), in which a pressure

Poisson equation is solved, ensuring the incompressibility condition (V • v = 0) is

met. Here pressure is not used as a thermodynamic variable, and sound waves are

not present. This technique has the advantage of allowing larger timesteps, though

there is an increase in the amount of work required per timestep.
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2.3 Fluid Dynamics Implementation

Finding Particles Although the SPH algorithm doesn't require the use of a grid
for computing derivatives, it has long been established that a grid can be of use in
determining particle positions (Monaghan 1985). SPH requires that particles within
a distance 2h of each other are included in the summations. Linked lists (Hockney
and Eastwood 1981) (pg.278) are an efficient way of determining which particles are
within the smoothing distance.

The idea is to place a grid of square cells (with sides of length 2h) around the
particles in the simulation. Each cell then has a pointer (Head of Chain) that gives
either the identifying number for the first particle in the cell, or zero if the cell
contains no particles. The first particle in the cell then contains a pointer (link) to
the second particle in the cell and so forth.

At the start of each timestep. The grid is constructed and the Head of Chain
(HOC) array is initialised to zero. Each particle is tested to see in which cell it
belongs. The particle is then placed at the Head of Chain for that cell with its link
(LL) pointing to the previous particle at the Head of Chain. To illustrate this we
use the setup in figure 2.1. Cells B and F do not contain any particles so we find
HOC(B) = 0 and HOC{F) = 0. Cell G contains particles 3 and 4. This cell will
have HOC{G) = 4, a pointer to particle 4. The link list of particle 4 then has a
pointer to the next particle in the cell, LL(4) = 3 and LL(3) = 0 to signify that
there are no more particles in the cell.

<—
A

• 1

B

C

2h *•

• 9

• 1 0

D

F

• 2

m
Up

c
• 4

• 3

H
• 8

1 . »13

• 1 2

• 1 1

Figure 2.1: Diagram to illustrate the use of a grid and linked lists in determining
which particles are neighbours and will contribute to a summation.
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When we wish to find the particles required for summations we traverse each
cell and treat it as the homecell. We examine particles in the homecell with all
the particles in the neighbouring eight cells, and include them in the summations if
they are within the 2h smoothing distance. However we only need to include half
the neighbouring cells if we make use of the symmetry of the interactions between
particles. Taking cell E of figure 2.1 as an example, we only treat the lightly shaded
cells as neighbouring cells, as interactions between cell B and E would have been
accounted for when cell B was the homecell and similarly for other cells.

Integration Scheme In this section the SPH summations that give the rate of
change of force, position and density are written as F, v and D. A subscript of
o indicates a quantity at the beginning of a timestep, a p indicates a predicted
quantity and no superscript refers to the value after the timestep integration has
been completed.

Position is integrated using a leap frog integrator (Lattanzio et al. 1985).

r = ro + Aivo + i(Ai)2F0 (2.26)

Velocity and density are then integrated by a predictor-corrector scheme (Mon-
aghan 1989). We have a predictor step,

(2.27)
pp = p + AiD

We now calculate new values of F and D before using a corrector step,

(2.28)
v = v p + | A i ( F - F o )

p = Pp + iAt(D - Do).

Damping As described later in section 2.4 we require for our system to be damped
down at the start of the calculation to remove any energy inherent in the initial
setup. This energy is due to external forces (gravity, boundary forces) not being in
equilibrium with the initial set up and an adjustment of particle positions is required
to bring these forces into equilibrium.

Damping is conducted by reducing the particle velocities by the factor F during
the damping period. F is a factor typically equal to 0.998 during damping, otherwise
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r = 1. The Predictor and Corrector steps for velocity then become,

vp = F(vo + AiFo) Predictor Step
v = r(vp + | A i ( F - F 0 ) ) Corrector Step

(2.29)

Time Stepping The size of the timestep (5t) is limited by the Courant condition
and a gravitational condition. The timestep used being the minimum of the two. The
gravitational timestep is calculated from the speed of sound and the typical velocity
that the fluid can reach due to the gravitational force. The Courant condition
(Monaghan 1989) is based on the speed of sound and particle viscosity.

=-MIN

Atcour =MIN (2.30)

2C+C

5t=MIN(Atgrav,

In the current case of (nearly) incompressible fluids where the soundspeed is high
(c ̂ > y/gh) and the timestep is essentially determined by the Courant condition.

2.4 Boundary Conditions

In order to be able to determine the flow of fluid in a specified domain, one is required
to know the initial state of variables in the domain and boundary conditions on the
spatial edge of the domain (the spatial edge of the domain also includes any obstacles
that may be in the interior of the fluid). Different conditions are required to account
for the different effects that boundaries can have on a fluid.

There are generally two ways that boundary conditions can be imposed in a
numerical computation. Dirichlet conditions where the value of a variable is given
on the boundary, and Neumann conditions where the derivative is specified at the
edge of the domain.

2.4.1 Types of Boundary Conditions

Solid Boundaries The major feature of solid boundaries such as the bottom and
sides of a tank is that they do not allow the fluid to pass through them. Another

1

t!

j ? i

a
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h
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way of expressing this is that the normal component of the velocity of the fluid is

zero at the boundary. A nonzeio normal velocity near the boundary must decrease

to zero at the boundary. Mathematically this condition is expressed that on the

boundary,

vn = 0, (2.31)

where, v is the fluid velocity and n is the direction normal to the boundary.

For moving boundaries, such as a plate being lifted through a fluid, this condition

must be generalised. The normal component of fluid velocity must now match the

normal velocity component of the boundary. The condition is now,

(v - vB)-n = 0, (2.32)

where, v# is the velocity of the boundary.

We now consider the tangential component of velocity on the boundary.

No-Slip Boundary On a no-slip boundary the tangential velocity component on

the boundary is zero. On the boundary we take,

v • t = 0, (2.33)

where, t is the direction tangential to the boundary.

No-slip boundaries are important in cases of viscous boundary layers. At the

interface between boundary and fluid friction holds the fluid to the boundary, both

the normal and tangential components of velocity are zero.

Free-Slip Boundary If we were to study the flow of low viscosity fluids across

boundaries we would notice that the boundary layers are much thinner and the

majority of the fluid is allowed to freely slip along the boundary/fluid interface. At

a free-slip boundary viscous effects are ignored and the tangential component of

velocity can be non-zero at the boundary.

Inflow Boundary Inflow and outflow boundaries occur at points where fluid is

entering or leaving the domain respectively. At an inflow boundary the velocity of

the flow is specified with a Dirichlet condition. That is on an inflow boundary,

v = A(t), (2.34)

where A(t) can either be a constant or vary with time.
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Outflow Boundary For an outflow condition, the velocity at which the fluid

leaves is in general dependent on the flow inside the domain and an outflow ve-

locity cannot be denned similar to the inflow condition. In this case there is zero

acceleration of the flow at the boundary, so that on an outflow boundary,

| - a (2.35)

Free Surface Boundary Free surface boundaries can be complicated as their

position is not previously known. The usual condition at a free surface is that the

pressure at the surface is equal to the atmospheric pressure. We denote atmospheric

pressure to be Pa and at a free surface boundary take,

P = Pa. (2.36)

In practice we find P » Pa for the interface between water and the atmosphere

and it is sufficient to take,

P = 0. (2.37)

We do not consider the effects of surface tension as our length scales are large

and curvatures are usually small. The reviews of Dias and Lharif (1999) and Perlin

and Schultz (2000) consider the effects of surface tension on waves.

2.5 Solid Boundaries in SPH

In the astrophysical applications of SPH (Gingold and Monaghan 1977; Lucy 1977)

to stars explicit boundary conditions were not required. However, the problems

considered in the extension of SPH to model fluid flows (Monaghan 1994), require

that solid boundaries be included. Originally boundary conditions were treated by

assuming that the effect of a boundary was to provide a force to the fluid to ensure

that the fluid is unable to pass through the boundary.

The early SPH fluid calculations employed a Lennard-Jones type boundary force,

Monaghan (1994) develops a force that was based on an idea of Peskin (1977) which

allowed for calculations of irregular boundary shapes and complex geometries.

Problems of disorder near boundaries suggest boundary prescriptions based on

ghost particles. These methods are in someways analogous to a Neumann boundary
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condition, where properties near a boundary are found by mirroring the properties

across the boundary.

There are two different ways of incorporating ghost or imaginary particle bound-

ary techniques into SPH simulations. Obviously it can be done by actually incor-

porating the ghost particles into the SPH simulation (Morris, Fox, and Zhu 1997).

Or alternatively by altering the SPH equations to include the boundary effects in

the simulation without scoring boundary particle properties (Takeda, Miyama, and

Sekiya 1994; Randies and Libersky 1996). Randies and Libersky give a good dis-

cussion of the problems of modelling boundary conditions in SPH.

There are many different ways of employing boundary conditions in SPH. Here

we look at three of them, Lennard-Jones forces, boundary particle forces, and ghost

particle boundary implementations.

Lennard-Jones Forces The Lennard-Jones form for a boundary particle force

is based on known forces between molecules (Lennard-Jones 1931), (Baker 1963)

(pg-7).
s J *» v Yl i y M v Yin v v*

3 (2.38)

The Lennard-Jones force is purely repulsive and is set to zero if r > r0, where

ro is the initial particle spacing. The p constants must satisfy pi > p2, and D has

dimensions of velocity squared. D is chosen depending on the physical situation

being considered. We take px = 12, p2 = 6 and D = gh for our Lennard-Jones

calculation.

Boundary Part ic le F ^ c e s Peskin (1972,1977) studied the flows associated with

blood transfer through ,ie heart. These flows become complicated as the boundaries

(heart walls, valves) ii ,<:ract and move with the fluid (blood). Peskin introduced the

idea of having boundary forces consisting of a force at the boundary, which could

be approximated by a delta filiation (a similar technique is used by Sulsky and

Brackbill (1991) to study the effects of a suspension of particles in a fluid). This

leads to a natural implementation in SPH where all fluid particles are smoothed

out by an approximation to a delta function. A boundary force based on the SPH

kernel would seem appropriate because the pressure forces involve the gradient of
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the kernel. A suitable form is,

f(rx) =

2/Zh if 0 < rjh < 2/3

(r±/h2)(2 - \rjh) if 2/3 < rjh

{l/2h)(2-r±/h)2 if 1< r±//i

(2.39)

< 2

0 if 2 < r_i_//i < oo

where rj_ is the perpendicular distance between the fluid particle and the boundary

particle and v is a free parameter which determines the strength of the boundary

force, typically v = 0.01.

Monaghan (1995) introduces a way for such a boundary force to be used which

also allows for a constant force to be given to a particle moving parallel to the

boundary and can be easily extended to complicated geometries. It is important for

the boundary to apply a smooth force, otherwise a fluid particle travelling parallel to

the boundary would notice differences in the force (disorder in the flow) as it passes

from being directly over the top of a particle, to between two particles and then over

the top of a particle again. The method consists of assigning each boundary particle

a normal direction n and then calculating the perpendicular r± and tangential r\\

distances to interacting fluid particles.

The boundary force -F&nd, is then calculated as,

where,

| ( 1 -f-

= /(rj.)P(rn)n,

f- cos(7iT||/Ap)) if |r||| < Ap

0 if |rii| > Ap.

(2.40)

(2.41)

Ghost Particle Methods The major problem with the above boundary prescrip-

tions is that they produce disorder near the boundaries. The boundary force is only

dependent on the distance a fluid particle is away from the boundary with no (or

little) consideration of the velocity or pressure of the fluid near the boundary. A

stationary fluid particle with low pressure is given the same boundary force as a
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fluid particle with a high velocity and pressure, even though it is clear that the

second case requires a higher force to keep the fluid particle from passing through

the boundary. This inconsistency leads to higher disorder and particle movement

away from the boundary (see figure 2.2) near the free surface than at the bottom of

the tank.
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Figure 2.2: How the use of boundary particle forcing alters the positioning of
particles from an initially ordered state to the raised and disordered
state in the second frame.

The boundary force methods also employ the use of a free parameter (y in (2.39))

which determines the strength of the boundary force. Whilst it would be possible to

have a variable parameter which is dependent on the pressure and velocity of fluid

particles the best way to handle these contributions is unknown.

Randies and Libersky (1996) give a review of ghost particle boundary conditions.

One way to approach the problem is to add terms in the integration by parts when

the equations are being derived that are only used when boundary particles are

present. Takeda, Miyama, and Sekiya (1994) model the boundaries in their viscous

flow calculation by using imaginary particles outside the domain which contribute

to the density and viscous force terms of their equations.

The alternative to this is to model boundaries using SPH particles which supply

a viscous term to ensure that fluid particles do not pass through the boundary. This

idea was used by Morris, Fox, and Zhu (1997) in their modelling of low Reynolds

number flows which require a no-slip boundary condition. Libersky and Petschek

(1991) implement boundaries by reflecting the properties of particles near a bound-

ary to ghost particles across the boundary. The general idea is that when a boundary
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and fluid particle interact the boundary particle is given a mirror velocity from the ;•;•

fluid particle. The mirror velocity is then used in the calculation of the viscosity : |;-;

term. J;>/i|j;i'i'̂

In the following examples the ghost particle boundaries of Morris, Fox, and Zhu . t}'$$M

(1997) have been implemented. Our examples only deal with straight boundaries ?!:||i;ir

and right angles although it is possible to easily extend to more complex topography. f; !̂? ji-

Each boundary consists of several lines of boundary ghost particles, the number w^'ll;!;*

of lines is kernel dependent. We ensure that we have ghost boundary particles within |: i!|; ft

the 2h smoothing length. The lines of ghost particles are aligned on a Cartesian :|- :J^i0

grid. |jS|i::
The mirror velocity of a boundary particle is found by taking a linear extrap- ;!§iif?|S

olation across the boundary to give a zero velocity at the boundary. This is done $£f!jwi|.

by calculating the perpendicular distance between the boundary particle and the ;]jNjpffff:;

boundary D&, and the distance between the fluid particle and the boundary Dj. nl^l^H

P — •*• ~>—pr" v^-^ 1 "/ i ••'--I'ftii';

There is a limit, /3max = 1.5 placed on (3 to ensure that large velocities do not ©-ijilfp

arise when a fluid particle approaches very close to a boundary. The velocity of the iflSjlRi

ghost particle is assigned by, jj|

Vb=(l-0)Vf. (2.43)
[fipiv

This velocity is then used in the calculation of the SPH viscosity term. Although |§t | | |

not in the XSPH term and determination of densities. The mirror velocity of the , ;

boundary particles Vj, and the actual velocity of the fluid particle are placed into the ilfeisi'fe

equation for the viscous term (2.16). The calculation for the density of boundary

particles is conducted in exactly the same way as that for fluid particles. Ĵftsspif,

It is not altogether clear or intuitive as to how one should handle the corners of fttllSsfe

a boundary. The problem is how does one work out which boundary or part of a |l!l|!IS

boundary should interact with a fluid particle. The approach taken by Monaghan

(1995) for a single row of particles is to assign a normal to each boundary particle -^w..,,.,

with a 45° normal being given to the particle at the intersection of two boundaries. ^*:! ?

The situation becomes more difficult when one is dealing with several rows of lilll'j-;

ghost particles, as one has to decide which particles should be given a 45° normal
^';i;,.'^-r'-1'1';
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Figure 2.3: Relation between the actual velocity of a fluid particle and the mirror
velocity assigned to an interacting boundary particle. The boundary is
the solid black line. The circles denote the 'ghost boundary particles',
with the open square representing a fluid particle. The number of lines
of ghost particles is dependent on the smoothing length.

V,:':s;

when a corner is encountered. The approach taken in this investigation is to break

the boundary up into three regions as seen in figure 2.4. Those boundary particles

found in region 1 are given a horizontal normal, those occurring in region 3 are said

to have a vertical normal, with those in region 2 deemed to be those having a 45°

normal. However, it must be pointed out that this may not necessarily be the best

solution to this problem.

Problems would arise in our prescription if one wished to model a boundary that

contained sharp edges such as the spike in figure 2.5. It is unlikely that the tip of

the spike would contain enough ghost particles to prevent fluid particles on opposite

sides of the boundary from interacting, so care must be taken in the case of sharp

boundaries.

2.5.1 One Dimensional Boundary Conditions

The easiest way to study boundary conditions is to look at a one dimensional problem

where complications associated with corners do not occur. The simulations shown

in this section are conducted with a cubic kernel and a smoothing length h = 1.2Ap.

Similar results were found when using a quartic kernel with smoothing length h —

lAAp.

j j - . - ' - y j ; • • : • • ;
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Figure 2.4: How the normal direction associated with a corner is assigned. Area
1 is assigned a normal which is horizontal. Particles in area 2 are
assigned to have a 45° normal. The boundary particles in area 3 have
a vertical normal.
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Figure 2.5: An example of a sharp boundary that could cause problems with our
ghost particle boundary treatment as the tip of the boundary is unlikely
to contain enough ghost particles to fill the smoothing length of fluid
particles adjacent to the boundary.
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We consider the, one dimensional problem of water under gravity g, with damp-

ing, to produce a steady state for which P = pog(D — y) where D is the depth of

fluid of density po.

In general our SPH computations start with particles initially laid out on a

Cartesian lattice. This is not the most stable configuration and the particles slowly

adjust themselves to preferred positions. Also, because the fluid is treated as being

compressible and relies on sound waves to transport information, we do not end up 3^ l|ij^

with instantaneous hydrostatic balance in our system. For these reasons we allow -iiSl-ifl.

most of our simulations to settle down by damping for a few thousand timesteps | | ' i i ! | i |

before beginning our simulations. As the timestep is very short, sound waves are J^M-VS .̂

probably allowed to travel the domain back and forth in the order of fifty times in

the damping period. We introduced a damping factor in section 2.3 which reduces

the velocity at which particles are allowed to move in the damping period, allowing t;:;^H

them to slow down and reach a stable state. j:;|#|(IS

Figure 2.6 shows the pressure against distance for the steady state of an SPH

simulation with Lennard-Jones boundary forces (2.38). A density of water of po =

1.0kg/m3 is used, the acceleration due to gravity is taken to be g = l.Om/s, and lE-ilif?

the initial fluid height was 0.15m. The peak pressure is and should be 150Pa. The i-'^M,

gradient is also correct although there is an amount of disorder introduced into the JBM®!

pressure and density profiles near the bottom boundary. This disorder does not

affect the profile near the free surface.

As illustrated in figure 2.7 a large amount of disorder is introduced when a ^ p f &

boundary force based on an SPH kernel is employed. This simulation is conducted

with fifty particles. Figure 2.8 is the same calculation but with ten times the amount

of particles. It is clear that the disorder is reduced at the free surface, although

spurious pressures are still found down towards the boundary. Again the pressure

towards the boundary fluctuates around the correct value of 150Pa. The calculation

took 2,000 steps when fifty particles were used which corresponds to a time of pf|!|;§

0.66 seconds, the five hundred particle simulation took 7,000 steps to reach an 1'H^P

equilibrium, but it must be pointed out that this corresponds to a time of 0.23 illftliî -

seconds. |Si|j-;-£:'!

Even though there is a zig-zag pressure variation between adjacent particles we 4t;0:-f:

still find that the total force on a particle (—VP/p+g) is small, in the vertical direc- •fi?il& '̂

tion. The term associated with the pressure gradient balances with the gravitational |v:pt-
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0.02 0.04 0.06 0.00 0.1 0.12 0.14

Figure 2.6: Pressure P, against distance y, using Lennard- Jones boundary forces
after 2, 000 steps of damping (D.663 seconds). The calculation uses 50
particles, h = 1.2 and a cubic kernel.

mmm
:.i;V..vi||i.fl;;;v-

force. Forces in the horizontal direction are also small.

Figure 2.9 is a graph of steady state pressure versus distance when ghost particle

boundary conditions are used. The pressure variation is much smoother than in the

other two cases. There is only a minor variation in pressure near the boundary with

the pressure clearly reaching the correct value at the boundary.

2.5.2 Two Dimensional Boundary Conditions

While it is important to know that we can correctly model boundaries in one di-

mension it is much more interesting and important that we can handle boundaries

in two dimensions, as these are the situations which we are modelling.

Figure 2.10 illustrates the settling down of the specific kinetic energy over time

for the two dimensional case of kernel based boundary force boundaries. As our

calculations are in two dimensions we define the specific energy as the energy per

unit thickness with units of J/m. The initial stationary particles quickly gain a large

amount of kinetic energy as they move to their preferred conditions. The specific

kinetic energy then settles down in a rather ragged fashion until most of the kinetic

energy has been dissipated.
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0.02 0.04 0.0S 0.08 0.1 0.12 0.14

Figure 2.7: Pressure against distance using kernel boundary forces after 2,000
steps of damping f0.663 seconds). The calculation uses 50 particles,
h = 1.2 and a cubic kernel. Notice that there is a much larger amount
of disorder at the left hand boundary than in the Lennard- Jones case
(figure 2.6).

Figure 2.11 is a plot of specific kinetic energy versus time for the damping period

of a tank of water modelled using a ghost particle boundary implementation. The

major point to notice is that the ghost particle boundaries provide a smoother

damping down of the fluid than that obtained with boundary forces. The specific

kinetic energy decrease is reminiscent of a decaying oscillatory solution for a damped

forced simple harmonic oscillator. Note also that the maximum kinetic energy is

one tenth of that reached in the case of kernel boundary forces (figure 2.10).

Figure 2.12 shows the pressure profile for hydrostatic balance after 10,000 steps

of damping for a simulation of a tank of water using a boundary force boundary

implementation. The first thing to notice is that particles are pushed away from the

bottom boundary. It should also be observed that all the particles have experienced

a vertical shift with the initial water depth of 15 cm increased to 16 cm. There is also

a large amount of disorder towards the bottom boundary. The pressure variation

at each depth is due to effects caused by the side boundary meaning that there is

a variation of pressure as one moves across the tank, but like the one dimensional

example the variation in the total force is small.
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0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 2.8: Pressure against distance using kernel boundary forces after 7,000
steps of damping (D.23 seconds). This calculation uses 500 particles,
h = 1.2, and a cubic kernel. Note that the higher resolution brings the
disorder closer to the boundary and evens out once the interactions
don't reach the free surface. k

I *

0.02 t'.O* O.OB 0.08 0.1 0.12 0.14

Figure 2.9: Pressure against distance using a ghost particle boundary implemen-
tation after 2,000 steps fO.663 seconds). The calculation employs 500
particles, h = 1.2 and a cubic kernel. It is clear that this type of
boundary condition gives a significantly less varied pressure profile.
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O2 0.25

Figure 2.10: Damping for 1,500 steps using a kernel based boundary implemen-
tation. Note the 'random' way in which the particle velocities settle
down.

0.25

Figure 2.11: Damping for 1,500 steps using a ghost particle boundary implemen-
tation. Here the settling period occurs in a more ordered and struc-
tured way than for the case of boundary force boundary conditions.
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0.05 0.1 0.15

Y(m)

Figure 2.12: Pressure against vertical distance in a two dimensional simulation
after 10,000 steps using kernel based boundary forces. The simula-
tion has 30 particles in the vertical direction with equal horizontal
resolution. The smoothing length h = 1.2A.p, with the viscosity pa-
rameter a — 0.01 and the parameter which controls the size of the
boundary force £ = 0.02. The simulations use a cubic kernel.
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Figure 2.13: Pressure against vertical distance in a two dimensional simulation
after 10,000 steps using a ghost particle boundary implementation.
All other details of the simulation are as for figure 2.12.
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Figure 2.13 shows the case of two dimensional ghost particle boundaries with
a graph of pressure against distance, again as in the one dimensional case a two
dimensional ghost particle boundary produces less disorder in the simulation. The
y positions of the the particles are not overly changed, and the water depth stays at
the initial depth (15cm). There is a slight variation in the pressure values towards
the bottom boundary, again this is caused by the side boundaries. The problem is
less pronounced near the surface as the particles there are more able to change their
positioning to remove the disorder. The shift in the horizontal direction is always
less than 10% of the particle spacing in the ghost particle case. In the boundary
force case the shift is as large as 100% near the side boundaries though it is typically
20% away from the side boundaries.
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Chapter 3

Water Wave Code Validation

efore modelling complex flows we must first validate our SPH code by

comparing computations for simple flows with experimental and analytic

• solutions. These test cases have been chosen as they involve similar phe-

nomena, to those we expect to find in the production of waves by caldera collapse.

The first case we present is the propagation and run up of solitary waves. We

then consider SPH models for the generation of waves via a moving piston. The

problem of a breaking dam has been simulated to show that we can correctly model

the collapse of a column of water and its motion as it surges across a boundary.

Some simple undular bores have been used as test cases as they highlight some

features of the flows that we will consider later in the caldera collapse case. Finally,

we consider weir flow in the case of zero gravity. Other authors have carried out

similar tests using SPH (Monaghan 1994; Morris, Fox, and Zhu 1997; Monaghan

and Kos 2000) though we present this section as we use a different version of the

SPH code of Monaghan (1994) and implement the boundary conditions differently.

3.1 Solitary Wave Propagation

Simulations were performed to see how accurately SPH modelled the extent of runup

of a solitary wave against a wall, with the results compared to similar computations

using a MAC method and experiments (Chan and Street 1970). The agreement

with experiment is excellent.

Our initial test is to compare the runup of a solitary wave on a vertical wall.'

Solitary waves are known to satisfy the Kortweg de Vries (KdV) equation (Lighthill

1980),

)
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Vt + 6Wx + Vxxx = 0. (3.1)
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Where subscripts denote derivatives so that r}t = dr]/dt, r)x = dr)/dx and r)xxx =

x*. The standard solution to this equation has the form,

77 =
H

cosh2
(3.2)

Where H is the wave amplitude, D is the depth of water on which the wave is

propagating and U is the wave speed. The theory of this solution is based on small

amplitude waves, so that H <C D.

In the simulations the particles were initially set up on a Cartesian lattice with

those fluid particles above the free surface of the wave omitted. Because the particles

are set up with a constant density, the equation of state (2.25) means that the

particles in the simulation will also have a constant pressure, and a readjustment is

required to attain a hydrostatic pressure profile.

The usual SPH technique is to damp the system for a time to remove some of this

excess energy, allowing the particles to arrange themselves in a stable configuration.

This is not suitable in this case as the initial set up contains a position and velocity

profile of the particles which is not preserved through the damping process, so that

the profile at the end of damping, would be vastly different to the initial profile. An

alternative is to damp down the system and allow particles to arrange themselves

with particles above the free surface of the wave present. Then remove those particles

that do not make up the wave or base of water on which the wave is to propagate,

and assign the velocity profile to the particles. Though the creation of a new free

surface when the particles are removed introduces a different pressure profile and

the problem reappears. For this reason the simulations of solitary waves (with initial

profile given by (3.2)) presented in this section do not use damping.

It was found that when particles were set up on a Cartesian grid there was a ten-

dency, especially for particles near the free surface to band together, giving a poorly

resolved wave. This can be overcome by applying a small sinusoidal perturbation to

the initial x and y positions of the particles. This gave an initial setup which was

less prone to the problem of particles banding together.

Boundaries were modelled by the use of boundary particles (section 2.5), which

provide a boundary force dependent on the distance a particle is from the boundary.

As already outlined this leads to fluid moving away from the boundaries, and is more

If
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pronounced for particles near the surface as they don't have large pressure forces

above them to force them back towards the boundary. As this only occurs over a

distance O(h) from the boundary, it has minimal effect on the final computation of

these free surface waves.

1
Figure 3.1: Solitary wave running up a wall. The tank is 1.68m long with the

same scale being employed in the vertical direction. The wave propa-
gates on water of depth 21cm, with the wave amplitude being half the
undisturbed depth. Particles are coloured according to their speed, with
the key at the bottom referring to all three frames. The times of each
of the above frames are 0.0, 0.28 and 0.55 seconds from top to bottom
respectively.

Figure 3.1 shows a sample simulation of the initial state and the wave running

up the wall. The horizontal length scale of these waves is found by V
/(4D3)/(3F),

this quantity decreases as the amplitude is increased. The smallest amplitude wave

we modelled was H = 2cm, the depth of water on which our waves propagate was
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D = 21cm and the length of the tank was 168cm. The horizontal length scale in

this case is 79cm or approximately half the length of the tank. It is important that

the tank remains longer than the horizontal length scale of the waves for correct

simulation.

We can see the wave moving towards the right and running up the wall of the

tank in figure 3.1. The small disturbance near the left boundary is due to the

fluid initially moving away from the left boundary and forming a small return wave.

Particles are coloured according to their speed, with lighter colours denoting higher

speeds. The lower velocities (darker colours) found in the third frame of figure 3.1

are due to the loss of kinetic energy of the wave as it climbs the wall, gaining in

gravitational potential energy.

Figure 3.2 compares a series of SPH results for the extent of run up against a

wall to those obtained by Chan and Street (1970). It is clear that both numerical

methods are in excellent agreement for low amplitude waves HjD < 0.3 (H is

the wave amplitude and D is the depth of water underneath the wave), with good

agreement for higher amplitudes with the SPH simulations being in better agreement

with the experimental results. The minor differences for larger amplitudes reflect

the non linearity of the higher amplitude waves.

The initial setup used by Chan and Street (1970) is based on a power series

expansion given by Laitone (1960), which is different to the initial setup used for

the present computations. Because the SPH simulations are in excellent agreement

with experiment even though the initial state (3.2) is only an approximation, it is

clear that the wave in the simulation quickly adjusts to a form consistent with the

equations of motion.

It is to be expected (for small amplitude waves) that after the interaction with

the wall the wave will reform with the same profile as before although travelling in

the opposite direction. When H/D = 0.2 the agreement between the incident and

reflected waves was good, this is also in agreement with the method of Chan and

Street (1970). As expected large amplitude waves produced a reflected wave with a

different profile to the incident wave.
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Experimental Results
Chan and Street
SPH Results

0.1 0.2 0.3 0.4 0.5 0.6

H/D

Figure 3.2: Comparison of SPH results for the run up against a wall to those of
Chan and Street (1970) and the experimental results of Camfield and
Street (1968). H is the amplitude of the wave, D is the depth of water
on which the wave propagates and R is the maximum extent of run up
on the wall.

3.2 Wave Generation

A weakness in the previous test was that the initial state was not consistent with

the exact equations. One of the advantages of SPH is that it is possible to simulate

actual experiments, where the fluid is initially at rest and the wave is initiated by

moving part of the boundary or other solid surface (see Monaghan and Kos, 2000).

We simulate runup experiments where the solitary wave is generated by moving

the left boundary into a fluid at rest. This has the advantage that the fluid can

be damped into hydrostatic equilibrium before the wave is initiated. We specify

the velocity of the left hand boundary as follows. Taking g as the acceleration

due to gravity, for 0 < t < t* \/D/g we (constantly) accelerate the velocity to

V = (l/10)Uy/g~D, for UyfDjg < t < {Z^U^/WJg we set V =
We then (constantly) decelerate the wall velocity down to rest for (3/2)i»

t < (5/2)t*y/D/g after which the wall is stationary, V = 0. The non dimensional
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3.2 Wave Generation 3.9

parameter t* was chosen in the domain 1 < £* < 5 to generate waves of different

amplitude.

Figure 3.3: Wave generated by a moving left hand boundary in a 1.8m long tank.
The times of the frames are 0.0, 1.06, 1.72, 2.31 seconds from top to
bottom respectively. Particles are coloured according to their speed,
with 10,937 particles being used in the simulation. This is the case of
i* = 3, a = 0.01 and water depth D = 0.16m, we take /i/Ap = 1.2.

It is important that the velocity is decelerated back down to zero as it was found

that if the motion of the wall was instantaneously stopped (at t = (3/2)£* y/D/g)

the water close to the wall retained the velocity of the wall. This led to a gap as the

fluid moved away from the wall and the production of a smaller secondary wave as

water curled back towards the wall.

In figure 3.3 we illustrate the wave generated by a moving left hand wall in a

tank 1.8m long, 0.16m deep, with t* = 3 at four times; the initial setup before

the wall motion has begun, the incident wave at midtank, the wave running up the

wall and finally the reflected wave at midtank. One notices in the case depicted

in figure 3.3 that the wave is reflected without significant change. The only major

difference between the reflected and incident waves is a small amount of dispersion.
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All cases except for i* = 5 were conducted with a tank length of 1.8m. The length

was doubled (to 3.6m) in the t* = 5 case as the wave did not have enough time to

properly form and propagate in the smaller tank.

We find qualitative agreement with the experimental results of Chan and Street

for the relation between wave amplitude and runup height. These results are shown

in figure 3.4. The three distinct ways of modelling the wall runup of waves (experi-

ment, computer simulation with a given initial condition, and a computer simulation

which generates the wave by a moving wall) all produce similar results.

in
d

Experimental Results

SPH Results-Moving Wall

H/D

Figure 3.4' Comparison of SPH results for the r-un up against a wall with the
experimental results of Cornfield and Street (1968).

The interactions between potential and kinetic energy in a simulation of our

generated waves is shown in figure 3.5. During the initial 0.33 seconds damping is

applied. The system is allowed to settle down to a steady state characterised by an

initial increase in the kinetic and potential energies, the kinetic energy is damped to

zero, but the potential energy increase remains due to a raising of the water depth as

particles are pushed away from the bottom boundary. Between 0.33 — 0.70 seconds

the wall is accelerating, Eg and Ek steadily increase. For 0.70-0.85 seconds the wall

is moved at a constant velocity. The potential energy increase is greater than the
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Figure 3.5: Plot oj Etot, Eg and Eg during a simulation of a wave generated by
a moving left hand wall. The interchange between E^ and Eg is due
to the wave running up and down both walls. Enlarged frames show
the total, gravitational and kinetic energies, the scale of the energy is
three times the normal scale, scale on the time axis is unchanged.

increase in the kinetic energy. The increase in energy slows during the time interval

0.85 - 1.27 seconds as the wall is brought to rest. Work done by the moving wall-

results in a wave being produced, the interchange between E^ and Eg as the wave

runs up and down both the left and right walls is clear.

A few minor energy fluctuations occur as the wall is decelerating, these fluctua-

tions are caused by the body of water attaining a slightly higher velocity than the

fluid and a small gap appearing between the wall and the fluid. These variations do

not occur when the wall is accelerating as then the wall velocity is always greater

than that of the fluid. A small (~ 2%) total energy loss occurs over the course of

the simulation.

To further study the waves we measure the amplitudes and half-widths of the

waves that are produced and compare them to solitary waves of the form (3.2)

assuming the same amplitudes and half-widths. We study the cross sectional area
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I

and energy of the waves, we do not expect exact agreement between our simulations

and these calculations due to the approximations in assuming a waveform and also

because the moving wall raises the average water level. We do however expect the

results to be similar.

The cross sectional area of a two dimensional wave of the form 77 (3.2) is given

by,

A = ndx = [ rS-rrrdz = 2Hb.
-00 J-00 cosh?(x/b)

(3.3)

Table 3.1 compares the area of water displaced by the wall to the equivalent

cross sectional area A, calculated from the measured amplitude and half-width of

the simulated wave. The differences are typically 10 — 15%, except for the smaller

waves £„ = 1,2 which produce the weakest waves. This indicates that most of the

water displaced by the moving wall appears in the wave. The remainder contributes

to an overall increase of the water depth. The larger percentage differences when

£» = 1,2 are due to the waves being small.

u
1

2

3

4

5

HAx {cm2)
27

108

242

430

672

2Hb (cm2)
34

175

269

505

599

Table 3.1: Comparison of area displaced by the wall and the cross sectional area
of the wave. Wave area calculated from measurements of the amplitude
and half width assuming the wave to be of the form given by equation
(3.2).

If we assume that we have a wave of the form (3.2), we can calculate the gravi-

tational energy of the wave by,

E,
1 r
* J - c

rfdx = 2gpH2b (3.4)

where, b = 1.135Xx/2 and Xi/2 is the half width at half height of the wave. The

units of Eg are J/m in these two dimensional calculations.

We analyse the energy of the generated waves in table 3.2. We find that the'

increase in potential energy in the simulation is (in the order of) twice that found

> V
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u
1

2

3

4

5

AEpot {J/m) -
2.6

11.2
28.3
58.2
91.6

2gpH2b (J/m)
0.2

5.6

13.7
36.6
66.9

Wall Work (J/m)
3.0

14.0
36.7
75.2
134.7

AEto1 {J/m)
2.7

12.5
33.1
69.0
124.6

43

Table 3.2: Comparison of the change in potential energy before and after wave
production with the potential energy of the solitary wave solution of
the KdV equation (3.2) with the same amplitude and half width as the
computed toave. The third column shows the calculated work done by the
moving wall compared with the total energy change in the simulations
in column four.

in a wave of the assumed form (3.2) with the same half width and amplitude. The

difference is in part due to an overall increase in the water level but also indicates

that the waves are of a slightly different form to those given by the solution of the

KdV equation.

We also compare the work done by our moving wall with the increase in total

energy in our simulation. The work done by the moving wall is given by, the integral

/ F- dx on each of the wall particles. The total energy given by the calculated differ-

ence in energy between the beginning and end of wave generation in the simulation.

We find that 90% of the work done by the wall contributes to our waves with the

remainder being lost during the generation mechanism.

Measurements have shown that for a given amplitude, waves generated by this

method have comparable (generally within 10%) cross sectional areas to waves of the

form (3.2), although the half-widths were different. The waves were of a similar form

to the initial wave in the previous section although not strictly the same. The high

amplitudes of some of the waves means that they are also likely to have a different

waveform as the KdV solution assumes that the waves are of small amplitude.
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3.3 Collapsing Column of Water

The problem of a collapsing column of water was investigated experimentally by

Martin and Moyce (1952). The experiments involved tracking the amount of surge

of the front of a collapsing water column. The experiments were three dimensional,

though the behaviour is largely only two dimensional.

The experiments have been simulated using the Marker and Cell (MAC) method

(Nichols and Hirt 1971). The results agree within the experimental error to those

of the experiments. Morton (1997) uses a finite difference scheme, with a Volume

of Fluid (VOF) approach to track the interface. He also obtain good agreement

between computations and experiment.

SPH simulations of the collapse of a rectangular column of water have been

conducted using two different implementations of ghost particle boundaries. In the

first case an incompressible bo mdary was used in which the density of boundary

particles was not altered. In the second case the density of boundary particles

was changed dependent on the fluid motions near the boundary. We call this the

compressible boundary approach.

The following graphs for the collapse of a column of water are presented in the

scaled units.

-
a

T =
(3.5)

Where,

a = length of the base of the column,

z = the amount of movement of the surge front,

n = the ratio of column height to length,

g = gravitational acceleration.

In figure 3.6 we show an SPH simulation of the n2 = 1 case of Martin and Moyce

(1952). In this case the fluid has a width a = 0.0572m and height b = 0.0572m =

with the tank being 0.3432m long. In this simulation the resolution is 120 x 120

particles making up the fluid. The colours represent speed, with lighter colours

corresponding to higher speeds.

The best agi • .ment between SPH and experimental results was obtained using

the incompressible boundary approach (figure 3.7). The SPH results have the surge
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Figure 3.6: Pictures of collapse of a rectangular column of water. At scaled times
0.280, 0.550, 1.006, 1.450, 2.047, 2.523, 3.031 and 3.499.

•

1.5 2.5 3.5 4.5

Figure 3.7: Normalised comparison between the case of 120 particles wide and
the experimental results of Martin and Moyce (1952) using an incom-
pressible ghost particle boundary, a = 0.0572m and n2 = 1. The dots
indicate experimental results. The solid line denotes the SPH compu-
tation.
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15 Particles Wide

30 Particles Wide

60 Particles Wide

120 Particles Wide

1.5 2.5 3.5 4.5

Figure 3.8: The convergence for the case of an incompressible boundary, a =
0.0572m and n2 = 1. The number of particles refers to both the width
and depth of the initial fluid column.

front travelling faster than that found experimentally. Nichols and Hirt (1971) found

a similar error in their computations and thought that it may be due to uncertainty

of the time at which motion began in the experiments (Nichols and Hirt 1971),

although Martin and Moyce (1952) normalised their data to have the same time

T = 0.8 at the point Z = 1.44. We have also normalised our data in this way, so

this should not be a major source of error.

Figure 3.7 shows our results normalised to the same point as the experimental

result to remove any uncertainty present in the time of wall removal. Excellent

agreement is obtained up until T = 3.0 after which a slight divergence occurs. The

agreement is within 6% of the experimental results. The convergence to this solution

with increasing particle resolution is shown in figure 3.8.

In figure 3.9 we show the motion of the surge front using the compressible bound-

ary approach. In this case particles are less affected by the boundary and the front

eventually moves faster than in the incompressible approach.
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Figure 3.9: Normalised comparison between the case of 120 particles wide and the
experimental results of Martin and Moyce (1952) using a compressible
ghost particle boundary approach, a = 0.0572m and n2 — 1. The
dots indicate experimental results. The solid line denotes the SPH
computation.

3.4 Tidal Bores

A bore occurs in situations where there is an abrupt increase in fluid depth associated

with an accompanying change in flow rate. In this way they are similar to shocks

in gas dynamics. The best known bores are tidal bores which occur in some rivers

due to tidal forces of the moon. Rayleigh (1908,1914) first discussed the theory of

tidal bores, a description of various bore types is given by Simpson (1997). Undular

bores consist of a series of solitary waves associated with a change in the water level.

They occur if the change in the water level is less than 0.28 of the undisturbed depth

on which the bore is propagating (Peregrine 1966). Bores with depths greater than

this are known as turbulent bores and consist of a series of breaking waves.

Hirt and Shannon (1968) used a Marker and Cell method to calculate tidal

bores, they were able to correctly model bore heights and velocities. Peregrine

(1966) calculate the growth of undular bores using a finite difference technique to

solve an equation similar to the KdV equation. Peregrine found that if the difference
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between the levels of the bore becomes too large, the pressure profile is no longer

hydrostatic because of the vertical acceleration of the water. In the case of a viscous

bore a train of uniform waves appear on the bore. In the inviscid case, the leading

wave breaks away to form a solitary wave, so that the bore moves into a train of

successive solitary waves. The existence of undular bores has also been studied in

the atmospheric context (Crook and Miller 1985).

The velocity of propagation of a tidal bore is given by Lamb (1932) (pg.280),

(3-6)

H,

Figure 3.10: Schematic diagram of a tidal bore. (Vi,Hi) and (V2,H2) refer to
the water (velocities,depths) before and after the bore respectively.

The bore in figure 3.11 was simulated by having a 600m long tank with water

at a depth of 10m given a velocity of 8.5m/s towards the left hand wall. In this

example we took a = 0.01, h = 1.2Ap, with Ap = 0.66m. To reduce the amount

of splash and disorder at the left hand wall the 10m of water next to the wall was

given a zero velocity and a depth of 20m.

The theoretical bore speed for a bore of height Hi = 18.4m and H2 = 9.6m is

8.46m/s. This compares with our SPH simulation velocity of 8.58m/s (figure 3.11).

The bore velocity was calculated by measuring the position of the first peak of the

bore ~ 100m apart. The errors involved in the measurements of the position of

the peak were small compared to the size of the measurements. Alternatively if we

have a viscosity of a = 0.1 (figure 3.12) we find that the bore that is produced has

heights Hi = 14.92m, H2 = 9.86m. With a corresponding theoretical bore speed of

9.01m/s. The measured bore speed of the simulation was found to be 8.98m/s.

I , ; i
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Figure 3.11: SPH simulation of a tidal bore. H\ = 18.4m and, H-i = 9.6m refer
to the water depths before and after the bore respectively. Frames
occur at times 5.54 , 11.95 and 19.28 seconds respectively, a = 0.01,
tank was 600m long. Initial velocity 8.5m/s. The colours refer to
the speed of the fluid in m/s

We notice that the simulation with a = 0.01 (figure 3.11), was more turbulent

than the a = 0.1 (figure 3.12) case. Monaghan (1994) shows that the viscosity in

the calculation is given by \i = (apcsh)/8. It is known that the Reynolds number

Re is given by, Re = VL/JJ,, where V and L are typical length scales, it then follows

that the Reynolds number is given by,

Re=\-
a

(3.7)

The quantity V/cs is the Mach number of the flow which we take as 0.1, a typical

value of L/h is 15. so that Re = 12/a and it is to be expected that the a = 0.1,

Re = 120 case is laminar with the a = 0.01, Re = 1,200 case more turbulent.

In figure 3.13 we show a bor^ (a = 0.01) which was started with a lower ini-

tial velocity of 5m/s. The resulting bore has a lower amplitude, waves are clearly

produced at the front of the bore making it undular and consistent with Peregrine

(1966).

These results are comparable to those of Monaghan (1994), who used SPH with

a boundary force implementation for the boundary conditions.
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Figure 3.12: SPH simulation of a tidal bore. Hi = 14.52m and H2 — 9.86m refer
to the water depths before and after the bore respectively. Frames
occur at times 5.60, 11.38 and 20.07 seconds respectively, a = 0.1.
(The tank was 600m long but only the left 400m is shown.) Initial
velocity 8.5m/s.

Figure 3.13: SPH simulation of an undular bore in a 600m long tank with the
left 300m shown, a = 0.01. Times of frames are 11.14, 2.4.71 and
33.37 seconds respectively. Initial velocity is 5.00m/s
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3.5 Weir Flow

Another important class of flows that have been extensively studied both numerically

and experimentally are those of weir flow. Weir flows are steady non-uniform flows,

where the velocity is constant over time but varies over the spatial extent of the

channel due to obstructions (weirs) in the channel. They involve free surfaces which

present considerable difficulties for analytic solution (Dias, Keller, and Vanden-

Broeck 1988) except for simple geometries and steady flow. Dias and Tuck (1991)

present results for a variety of configurations of weir flow, their solutions are found

numerically using a series truncation method. They formulate the problem using a

potential and stream function approach, transforming to the complex plane (Vanden-

Broeck and Keller 1987).

If gravity is neglected Dias and Tuck (1991) show that it is possible to find a

solution for the angle 6, of the jet which forms as fluid passes over a weir of different

weir heights w. In figure 3.15 we present a comparison between numerical results

using our SPH code and the Dias and Tuck solution.

The simulations involve injecting fluid in from the left side at constant velocity

and height and measuring the angle that the jet makes with the horizontal after

hitting a wall at the opposite end. The angle 9 is plotted against the dimensionless

wall height w, where w = W/H, W is the wall height and H is the downstream

fluid height. Obviously the w = 0 solution should be a horizontally propagating jet

(9 = 0). With the limiting solution for high walls being a perpendicular propagating

jet (0 = TT/2) where the fluid is unable to pass over the boundary.

Simulations were conducted in a tank 4.2m long, 0.3m high with fluid being

input at the left hand side with input velocity U{n = 0.5m/s. The weir was at the

right hand end of the tank with the weir height w varying between 0.25 and 3.0. The

downstream flow was input 50 particles high when required, this gives a resolution

of Ap = 0.006m. Calculations proceeded until a steady state was reached at which

time the angle of the jet over the weir was measured. There is an amount of scatter

in the SPH results due to error in the measurement of the angle 6.
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0.5

Figure 3.14: Zero gravity weir with w = 0.5, initial set up and state att = 1.90
seconds.

w

Figure 3.15: Comparison of the angle 8 between the horizontal and the jet moving
over a weir of height w in the case of zero gravity. Continuous line
is the result of Dias and Tuck, dots represent SPH results.
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3.6 Water Wave Code Summary

In this chapter we have tested our SPH simulations against analytical solutions,

experiments and the results of other numerical methods for a range of situations.

We began by looking at the propagation of solitary waves. Initially we set up

solitary waves using an analytic solution of the KdV equation and measured the

extent to which these waves ran up a vertical wall. The SPH results were in good

agreement with experiment and the MAC method.

In section 3.2 we generated waves with the motion of the left hand wall in our

computational tank. By varying the motion of the wall we were able to generate

waves with a large range of amplitudes. Although the waves v^ere of a different

form to those in section 3.1, there was still reasonable agreement between the wave

amplitude and the extent of runup with the waves in section 3.1.

The next problem considered was the collapse of a breaking dam. In section 3.3

we found agreement with experimental results and other numerical methods for the

horizontal distance moved by the surge front of a collapsing water column.

In section 3.4 we investigated the phenomena of tidal bores. We compared SPH

results to the theoretical result for the speed of a bore. We also showed the ease

with which SPH can be used to produce different bore types.

The SPH results for the jet angle formed when water passes over a zero gravity

weir are compared with the result of Dias and Tuck in section 3.5. Good agreement

is found between SPH and the two methods.

We have seen in this chapter that the SPH numerical method is able to accurately

model a range of free surface fluid dynamics problems. We can then conclude that

the SPH algorithm and our computer program performs satisfactorily. The test

problems we have considered are similar to the situations we expect to find in our

experiments and simulations of the waves produced during caldera collapse. So we

furthermore conclude that the following computations for these waves will also be

adequate.



Chapter 4

Waves and Caldera Collapse

> caldera is a large bowl shaped crater or depression which is formed during a

i major explosive volcanic eruption. It is produced by subsidence of the roof

; of a volcano into its underlying magma chamber. Subsidence occurs when

the eruption of magma reduces the pressure in the chamber, so that the chamber

is no longer able to support the weight of the volcano roof which collapses into the

chamber, much like the downward movement of a piston in a cylinder (figure 4.1).

Caldera volcanoes are responsible for some of the worlds largest volcanic erup-

tions, with examples being Crater Lake and the islands of Krakatau and Santorini.

Calderas can vary from several to ninety kilometres in diameter.

Caldera occurrence is inferred from the similarity between the volume of erupted

magma and the volume of the depression resulting from the subsidence. A common

feature of calderas is that they are bounded by ring fractures. As the name suggests

a ring fracture is a fracture that has a circular (ring) shape. Ring fractures are often

the sites of vents from which the magma is erupted as the chamber roof subsides.

Lipman (1997) gives a review of the different types of caldera that can occur.

Calderas which are formed in association with a ring fault are known as piston

collapse calderas, as they subside as a single coherent block of rock into the chamber.

A schematic illustration of piston subsidence is shown in figure 4.1.

There are also more complicated caldera types including piece-meal (non-coherent)

calderas which are formed when the subsiding piston breaks up into several differ-

ent pieces. Trap door calderas occur when the fault only exists on one side of the

chamber. In this case collapse occurs in an asymmetric manner with the roof being

hinged off the still connected side of the chamber.

Not all calderas are associated with faults. One such type is downsag calderas in

which roof flexure allows the rock to subside into the chamber without the occurrence

of significant faulting. Funnel calderas (those which have a distinct funnel shape) are

associated with explosive eruptions from a single central vent and do not involve the
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Figure J,..!: Schematic diagram of caldera collapse, (a) The existence of a magma
chamber with an overlying block of rock surrounded by a ring fracture.
(b) As the magma erupts it can lead to a partially evacuated chamber.
(c) The decrease in pressure due to the evacuated chamber leads to the
block subsiding down into the chamber.

movement of a coherent block, but multiple collapses of slices of rock from the sides of

a large circular crater. Walker (1984) presents a study of caldera types, classifying

the calderas of various volcanoes around the world, with particular emphasis on

calderas that do not fit the previously described ring fault, piston model.

The 1883 eruption of Krakatau and many other caldera forming eruptions have

been observed to generate tsunamis. Krakatau produced waves up to 14.5m in am-

plitude (Symons 1888) (pg.96). Tsunamis can be initiated by the sudden displace-

ment of a large volume of water. Latter (1981) discusses the events associated with

volcanic eruptions which are possible source mechanisms for tsunami production.

The motion of a pyroclastic flow into the sea can displace water and produce

waves (Monaghan, Cas, Kos, and Hallworth 1999). This mechanism is interesting

as pyroclastic flows can travel several kilometres from the volcano and may lead to

the production of tsunamis from inland volcanoes. Similarly, the motion into the

sea of a large amount of rocks and debris during a landslide is a further example of

wave production by objects moving into the sea.

Alternatively, the impulse of energy released in a submarine explosions can lead

to the production of small tsunamis (Latter 1981). The sudden motion of earth

during a volcanically initiated earthquake is another possible cause. In this chapter

we investigate tsunamis generated when water flows into the cavity formed by the

collapse of a significant portion of an island into the sea.
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4.1 Waves Generated by Caldera Collapse

In this section we describe both wave tank experiments and numerical simulations

of the waves generated during the collapse of a simple model caldera. The simple

model is illustrated in figure 4.2, it consists of a tank of width L, with water in two

outer compartments seperated by a central cavity of width W. The walls defining

the inner cavity are of height D — D\ -\- D2 with the top Di of the two walls being

removable, this is denoted by the thinner vertical lines in figure 4.2. The caldera

collapse is modelled by the removal of these upper sections of the wall which allows

water to flow into the cavity and potentially produce waves.

Smpta Coldwu Model

Figure ^.2: Initial setup for our simple caldera model

The experimental results shown in figure 4.3 illustrate a selection of ten frames

of our simple caldera model with dimensions D\ = 18cm, D2 = 12cm, L — 200cm.

and W = 40cm. The width (measured perpendicular to the front wall seen in figure

4.3) of the experimental wave tank was 40cm. The numerical results assume the

flow is two dimensional. The experimental setup contained guides to support the

removable walls that protruded 2cm into the tank (the width of these guides parallel

to the front wall was 2.6cm) and perturb the flow slightly. The effects of the guides

are small because the front and back walls of the tank are 40cm apart.

Figures 4.4 and 4.5 illustrate SPH simulations with the same dimensions as the

experiment shown in figure 4.3 using boundary force and ghost particle boundary

implementations respectively. The experimental behaviour is qualitatively the same

as the SPH computations. The numerical systems were damped for two thousand

steps before the walls were instantaneously removed. As the flow originates from

the bottom of the removable walls there are only minor differences in the results if

wall movements are included in the calculation. Once the simulation starts water
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Figure 4-3: Experimental waves produced by caldera collapse with D2 = 12cm,
D = 30cm, W = 40cm and L = 200cm.

proceeded to flow into the central cavity splashing up to form a large central column

of water. The central column grows, filling up the cavity and increasing in height

until the height of the column is greater than that of the surrounding water. The

column then breaks up into three parts, two waves emerge travelling left and right,

and the central column over the cavity subsides and disperses over time. The two

travelling waves reached the end walls and ran up the sides before reforming into

two waves reflected off the walls propagating in the opposite direction back towards

the caldera centre.

We conducted a series of wave tank experiments to compare with numerical SPH

results. Experiments were performed in a tank of L = 200c??x, W = 40cm and total

depth D — 30cm. Four different heights for D2 were employed, these heights being
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Time = 0.000 Time = 0.087

Time = 0.146 Time = 0.184

Time = 0.293 Time =.0.709

Time = 1.186 Time = 1.560

Time = 1.931 Time = 2.400

Figure 4-4: Simulation of experiment shown in figure 4.3 with a boundary force
boundary implementation.

0, 5, 12 and 17cm.

In figure 4.6 we plot the extent of wave runup, R/D at each end of the tank

against the dimensionless height of the cavity, D2/D for these experiments, compar-

ing them to the numerical simulations using ghost particle boundaries. R and D are

measured from the bottom of the tank so that in the undisturbed state R/D = 1.

To ensure that the experimental results were correct, and not merely a result of

experimental error, the experiments were conducted three times for each height D2-

The. run up on both the left and right hand walls was measured (from still frames

taken from the video) giving the six experimental points at each wall height shown

in figure 4.6. The measurement error in the computational results is of the order of

the particle spacing h.

The SPH simulation using ghost particles was more accurate than those using
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Time = 0.000 Time = 0.094

Time = 0.138 Time = 0.180

Time = 0.308 Time = 0.725

Time = 1.183 Time = 1.601

Time = 1.921 Time = 2.394

Figure 4-5: Simulation of experiment shown in figure 4-3 with a ghost particle
boundary implementation.

boundary forces. The reason appears to be that the boundary forces give a poor

representation of flow around the top of the fixed boundary. In figure 4.4 this shows

up as an asymmetric flow compared to the symmetric flow in figure 4.5.

We note in figure 4.6 that the dimensionless runup R/D is in some cases less

than one. This is because the flow into the cavity reduces the depth in the region

of the tank outside of the initial cavity. The spread in the experimental results was

40% of the amount of runup above the base water level in each case.

The height of the central column (formed when the two jets projecting out from

the wall meet, form a vortex and mix with the trapped air) is underestimated by 10%

in the SPH computations. There is a significant amount of splashing produced in the

formation of this column that is not present in the computations. This is possibly

due to the neglect of air in the computation reducing the mixing and turbulence
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Wall Run up for Simple Caldera Model

CO

CM

Wave Tank Experiments

* SPH Computations

0.2 0.4 0.6

D2/D

Figure 4..6: Comparison of SPH results and experiment of the run up against a
wall for the simple caldera model. R is the extent of runup, D is the
initial depth of water in the tank and D2 is the height of the wall that
remains in the tank. The solid lines join the points found from our
computations. In these experiments D = 30cm, and D2 = Ocm, 5cm,
12cm and 17cm.

in this central column and may also be due to the amount of numerical viscosity

used. The computational results in figure 4.6 appear to be a lower limit of the

experimental results due to these factors.

It is interesting to note that in the experiments with £>2 = 0.12m and D-z = 0.17m

the two jets met each other before they hit the floor of the tank. In the Di = 0.05m

case the jets impact with each other and the tank floor at the same time. To see at

which wall heights this should occur we calculate the time taken for the fluid jet to

reach the middle of the cavity, TM and the time for it to reach the bottom of the

tank, TB.

A typical horizontal velocity of the jet is given by Vjet — y/2g{D - D2), where g

is the gravitational acceleration and D\ is the fluid depth above the wall. Assuming
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that Vxei is constant as it moves through the air. the time t to travel a distance Aa;

is given by, t = Ax/^2g(D - D2). In this case Ax = W/2 is the distance to the

middle of the cavity and TM = W/2y/2g(D - D2).

Motion in the vertical direction is governed by the acceleration due to gravity.

Assuming the initial vertical motion to be zero, we can show TB = yf2D2/y. We

plot both of these times against D2 in figure 4.7. The value of D2 for rM = rB is

D2 = D/2 ± 1/Ay/AD2 — W2. In the experiments and simulations discussed so far

we have D = 0.3m and W = 0.4m so that the two times are equal at D2 = 0.04m

and D2 = 0.26m. For D2 < 0.04m and D2 > 0.26m the jet contacts the bottom of

the tank before meeting with the opposing jet. These results are consistent with the

experimental results which show that the jets meet at the bottom for D2 = 0.05m

when D = 0.3m.
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Figure J^.l: Comparison between times for the jet to reach the middle of the cavity)
TM and the bottom of the tank, TB in a cavity of total depth 0.3m
and width 0.4m where D2/D is the dimensionless height of the lower
interior wall. D2/D =• 1 corresponds to the limiting case where no
water is able to flow into the cavity.

For the case considered in figures 4.3-4.5 we find in numerical calculations that

when the boundary conditions are implemented with boundary forces that jets do

not impact with each other as found in the experiments and expected from our
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simple theory. To see this compare the fourth frame of the experimental results in

figure 4.3 where the two jets impact with each other before reaching the bottom of

the tank with the corresponding frame in the boundary force boundary simulation

(figure 4.4) in which the jets touch the bottom of the tank before reaching each

other. The problem arises because the boundary particles keep fluid particles from

coming within a particle spacing of the boundary. This increases the effective height

of the boundary, restricting fluid flow near the top of the central walls. It is known

that simulations involving boundary particles lead to a bulging of fluid near the free

surface (figure 2.2). The bulging is due to the boundary force being independent of

the pressure of the fluid and its effect is more pronounced near a free surface. We

note in the simulation performed using ghost particle boundaries (figure 4.5) that

this problem is removed and the jets impact in the air before touching the bottom

of the tank.

Several rows of particles are used to make up a ghost particle boundary. Only

one row is used for our boundary particle implementation. As a result the ghost

particle boundaries appear thicker in figure 4.5 than the boundary force boundaries

in figure 4.4. However, the two approaches are consistent as the boundary forces

keep particles a distance in the order of a particle spacing away from the boundary.

A major difficulty with the experiments is in ensuring that they are symmetrical,

so that they can be modelled effectively. If one wall was lifted quicker than the other,

the two incoming jets would not necessarily meet in the middle and an asymmetry

would result. Our experiments were conducted with different colours in the two

compartments, we see in figure 4.8 that the experiments are initially symmetrical.

This can be seen by the straight interface between the different coloured bodies of

water. Small perturbations are amplified during the splashing of the central column

and the experiments become asymmetric after this point.

One notices a few particles breaking away from the bulk of the fluid in the sixth

frame of figure 4.4. This asymmetry is in a calculation incorporating boundary force

boundary conditions and is more than likely due to slight differences in the particle

setup introduced during the damping period, these differences then affect the size

of the interaction between particles and lead to an asymmetry. However, as pointed

out by Monaghan and Lattanzio (1985) the cubic spline kernel has a continuous

second derivative so these variations are small. Simulations employing ghost particle

boundary conditions (figure 4.5) have a much greater degree of symmetry after the
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Figure ^..8: Experimental frame indicating the symmetry of the experiments.

damping period and are more symmetrical.

Comparing the numerical and experimental results (figures 4.3 and 4.5) we notice

an initial discrepancy of 0.1 seconds in the timing of features of the flow, with events

occurring earlier in the simulations. This may be an effect of the wall not being

instantaneously removed in the experimental case. However, as this error follows

through for the duration of the experiment it is not of serious concern.

In this section we have introduced a simple model of the fluid motions that

occur and lead to wave production in caldera collapse. We have presented wave

tank experiments and compared them to the results of SPH simulations for varying

cavity depths. In the next section we extend the analysis to cover cavities of varying

widths.

4.2 Different Cavity Widths

In this section we explore how varying the cavity width affects the size of the waves

that are produced. We again use the extent of runup as a measure of the size of

a wave. In these calculations we use a ghost particle boundary implementation

and make use of symmetry in our model by placing a wall in the middle of the

cavity and only following fluid motions in one of the compartments, this allows us

to increase the length of the tank without increasing the number of particles in and

computational time of the simulation. The advantage of increased tank length is

that waves are more able to form unaffected by boundary effects.

One expects that for a very narrow cavity only a small wave will be produced,

as only a small amount of water is disturbed, meaning only a small amount of water

can form into the wave. Alternatively, if we have a wide cavity we again expect
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only minimal amplitude waves. In this case the energy released by a large fraction

of water falling into the cavity is dissipated by a disordered flow.

For cavity widths in between we get significant waves. Taking a narrow cavity

and increasing the width, we find the extent of runup to increase until the jet impacts

the bottom of the side wall. When the width is increased further the jet strikes the

floor first, then breaks into two flows which move in opposite directions, rebound of

the sides of the cavity and run back into each other producing disordered motion

and reducing the runup.

We conducted a series of numerical simulations in a 200cm long tank, which

included a cavity of width W at one end of the tank. The simulations were carried

out for different widths, 2.5cm < W < 75cm for a range of cavity depths, 5cm <

D2 < 20cm. The depth of the water was D = 30cm with the removable wall of

height Di = D — D2 being instantaneously removed.

In figures 4.9-4.12 we show a series of simulations of the waves produced with

different cavity widths. All of these simulations were carried out with D2 = 12.5cm,

water depth D = 30cm and tank length L = 200cm. As L is fixed as we vary

the width of the cavity we find that differences arise in the average water level

in the tank due to the flow of water into the cavity. If the cavity width is much

smaller than the length of the tank, W <C L the water level outside the cavity is not

significantly affected by the flow of water into the cavity, as only a small percentage

of the total amount of water is required to fill the cavity. As the cavity width

increases, the amount of water required to fill the cavity increases and the average

water level outside the cavity decreases. Eventually we find that when W ~ L,

there is insufficient water in the tank to fill the cavity, and the flow will largely be

contained inside the cavity.

We begin in figure 4.9 with the case of a very thin cavity, W = 5cm. (Note

that as we have included a wall in the middle of our cavity the equiv.. ent width of

the cavity for the models presented in section 4.1 is W = 10cm.) When the wall is

removed fluid flows into the cavity, the jet impacts with the side wall long before

fluid reaches the bottom of the cavity by essentially sliding down the side wall. As

only a small amount of fluid is required to fill the cavity the majority of fluid in the

tank is undisturbed by the filling process. A small column of water forms above the

cavity and forms a small amplitude wave which travels across the tank followed by

a secondary wave. The maximum runup on the right hand wall had R/D = 1.07 in
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this case i.e. 2.1cm above the initial water level.

The next simulation we present (figure 4.10) has W — 15cm and turns out to

give the wave of maximum amplitude for D2 = 12.5cm. The maximum runup in this

case had the value R/D = 1.17, 5.1cm above the initial reference level, and 7.4cm

above the average (reduced by flow into the cavity) water level. The outpouring jet

impacts towards the bottom of the side wall near the junction with the tank bottom,

a vortex forms, the cavity fills and a column forms above the cavity. A much higher

amplitude wave develops than in the W = 5cm case followed by a smaller secondary

wave. We found in the previous case that there was only a minimal effect on the

average water level in the tank. In this case the effects of a larger amount of water

flowing into the cavity are more dramatic. The opening of the cavity leads to a rush

of water to the left side of the tank, by the time the wave has reached the middle of

the tank, the depth at the right hand side of the tank is significantly less than the

initial depth.

In the case of W = 25cm (figure 4.11) we find that the jet reaches the bottom of

the tank before impacting with the side wall, a vortex still forms with a dimension

similar to that of the cavity as the cavity is filled. Although the jet is broken up

into two streams, one running towards the left hand wall with the other moving

to the right towards the right side of the cavity. The competition between these

two jets means that some of the energy that was previously transferred into the

wave is now trapped in the cavity, the effects of the lowering of the water depth are

again increased over the previous two cases. The maximum runup of R/D = 1.09 is

subsequently decreased. R is now equal to 32.7cm while the actual (average) water

depth over which the wave propagates has dropped to 26.3cm. Therefore the wave

runup above the actual water depth is 6.4cm.

We now discuss the W — 40cm case depicted in figure 4.12. The maximum value

of runup was R/D — 1.0, however this does not mean that no wave was produced

because, as mentioned above the average water level in the tank is reduced as water

flows into the large cavity. In this case the cavity is so wide that the vortex formed

as the cavity fills is on a length scale much less than the width. A column of water

builds up over the cavity and forms a wave before the cavity is filled, this wave is

unable to propagate out of the cavity. Eventually a second column builds up over

the cavity (although not as high as the previous cases) and develops into a low

amplitude long wavelength wave.
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The factors described above are illustrated in the results of the numerical sim-

ulations shown in figure 4.13 where each line represents a different cavity height,

D2. We find that initially the extent of runup increases with increasing cavity width

up to the point where energy is trapped in the cavity and the size of the runup

decreases. The hypothesis breaks down at the lowest cavity height (D2 = 5cm)

where violent disorder dissipates a large proportion of the energy. For a cavity of

zero width there is no displacement of the water and we expect R/D = 1 indicating

that the maximum runup height is the initial depth. We also note that R/D may

be less than 1 due to a decrease in the initial depth of the water as fluid flows into

the cavity.

As in section 4.1 we find that the amplitude of the waves increases as D2 decreases

and more water is allowed to flow into the cavity at a higher initial velocity (due to

the larger hydrostatic pressure with smaller D2). We find that the variations in the

parameter space of JD2 and W are ordered and that it is theoretically possible to

define a scaling relation for the variation in runup height R, in terms of the water

depth D, cavity width W, cavity height D2 and the length of the tank L. We do

not present a scaling relation that picks out all the features in figure 4.13, but do

present one that explains some of the features.

We find from figure 4.13 that, in general, as the height D2 decreases, there is an

increase in the cavity width at which the maximum runup occurs WMax. We find

that WMax is approximately given by,

WMax = - ^ - . (4.1)

In general the extent of runup can be given by the function,

(4.2)
D \L* L' L

However, the simulations we have conducted in this section are conducted in a

tank of fixed length, L. We also note that the curves for each cavity height can be

approximated by a parabola with a maximum given by (4.1). We find the results in

figure 4.13 can be fitted by an approximate relation between R, W and D2,

(4.3)=1 + (
D D\SD2 D
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Substituting (4.1) into (4.3) we find the maximum runup is given by,

R
~D

Max

= 1 +
D

(4.4)

The scaling relation (4.3) predicts minimal runup R/D = 1 for the cavity width

W — 0, which is the case of no cavity. As the cavity width is increased we also

expect minimal runup when W = D2/(3D2) due to the cavity width being too large

for significant wave production, this is an underestimate of the experimental value,

but it still gives a reasonable estimate.

A defect of (4.3) is that R/D —> oo as D2 —t 0, indicating a change in behaviour

of the system. In fact the simulations show that as D2 —> 0 complicated breaking

waves form and the runup is reduced from that expected from the scaling relation.

The scaling relation does give reasonable agreement for larger cavity heights.
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Time = 0.025

Time = 0.189

Time = 0.521

Time = 1.100

Time = 1.504

Time = 1.857

Time = 0.097

Time = 0.300

Time = 0.696

Time = 1.277

Time = 1.705

Time = 2.134

Figure ^..9: Wave generation in a thin cavity with dimensions W = 5cm,
D2 = 12.5cm, D = 30cm, L — 200cm and parameters Ap = 0.01,
h/Ap = 1.2, a = 0.01, f = 0.5. A discussion of the amplitude of
waves produced is given in the text.
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Time = 0.097 Time = 0.165

Time = 0.239 Time = 0.307

Time = 0.515 Time = 0.673

Time = 0.888 Time = 1.063

Time = 1.313 Time = 1.591

Time = 1.966 Time = 2.191

Figure ^.10: Wave generation in a medium width cavity with dimensions W =
15cm, D2 = 12.5cm, D = 30cm, L = 200cm. Other parameters as
for figure 4-9. A discussion of the amplitude of waves produced is
given in the text.
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Time = 0.118

Time = 0.229

Time = 0.439

Time = 0.770

T-m* = 1.641

Time - 2.090

Time = 0.187

Time = 0.312

Time = 0.568

Time = 0.946

Time = 1.939

Time = 2.290

Figure J^.ll: Wave generation in a medium width cavity with dimensions W =
25cm, D2 = 12.5cm, D = 30cm, L = 200cm. Other parameters as
for figure 4-9- A discussion of the amplitude of waves produced is
given in the text.
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Time = 0.118 Time = 0.165

Time = 0.230 Time = 0.318

Time = 0.417 Time = 0.642

Time = 0.962 Time = 1.737

Time = 2.290 Time = 2.516

Time = 2.715 Time = 3.064

Figure 4-12: Wave generation in a very wide cavity with dimensions W = 40cm,
D2 = 12.5cm, D — 30cm, L — 200cm. Other parameters as for
figure 4.9. A discussion of the amplitude of waves produced is given
in the text.
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Figure 4-13: Comparison of the extent of runup (R/D) for different cavity widths
W where each line represents a different cavity height Di- R is the
maximum value of runup (measured from the bottom of the tank)
and D = 30cm is the initial water depth. These results are obtained
from numerical simulations and are consistent with the experim,ental
results in section 4-1-
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4.3 A Train of Waves

The situations we have discussed so far are in tanks with simple geometries involving

only square boundaries, one of the advantages of SPH is that it can be easily adapted

to complicated terrains and geometries. We now discuss a simulation conducted in

a much larger tank that includes a sloping beach on which the waves run up and

can break. The bonus in using a larger tank is that we can see the wave motions

when they are fully formed and unaffected by reflections from the tank ends.

The bottom of the tank was flat for 3.8m, after which a sloping beach at an

angle of 10° from the horizontal was positioned. In figure 4.14 the water was of

depth D = 0.3m, the cavity width was W = 0.4m, with the height of the bottom

static wall being D2 = 0.05m. The resolution was given by Ap = 0.5cm, with

h/Ap = 1.2, a = 0.01 and £ = 0.5. The scale of figure 4.14 is exaggerated in the

vertical direction. Vertical distances are plotted five times greater than those in the

horizontal direction to more clearly show .< rtures of the wave.

The mechanism of wave generation L *'_ie same as for the cases where the length

of the tank was smaller (sections 4.1 and 4.2). An outpouring jet forms a vortex

and a column of water is built up over the cavity which is higher than the average

water level. We then find that this column breaks up into a series of (at least) four

waves, with the later waves being of smaller amplitude.

The speed of the first wave was 1.1m/s with the half width and amplitudes

having values of 18.6cm and 3.9cm respectively. The wave train travels across the

tank towards the sloping beach. Water withdraws from the beach as the wave

approaches. The wave profile steepens as it runs up the beach before it breaks and

surges up the beach. The later waves do not break. The present calculation does

not contain a high enough resolution to accurately follow the breaking motions of

the wave.

Breaking waves have been studied in detail by Grilli, Svensden, and Subramanya

(1997) using a Boundary Element Method. However, this technique cannot follow

the breaking wave after its tip hits the fluid in front of the wave. The ability of SPH

to effortlessly handle the overturning and reconnection of fluid after wave breaking

make it a potentially useful method in a comprehensive study of wave breaking.
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Time = 0.36 Time = 0.54

Figure 4-14: Wave generation in a tank Qm long with a sloping beach. Vertical
lengths are exaggerated and are five times greater than horizontal
lengths.
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4.4 Summary and Conclusions

We have reviewed different types of caldera collapse and discussed how caldera

collapse may be related to the production of tsunamis when it occurs in a marine

environment. We began by introducing a simple model for piston subsidence and

presented the results of wave tank experiments conducted using this model. We

computed numerical simulations of these experiments and found the features were

best represented when a ghost particle boundary implementation was imposed (as

opposed to the use of boundary forces). We found the wave amplitude to increase as

the cavity height Do was decreased and more water was able to flow into the cavity.

The effect of changing the width of the cavity was studied in section 4.2. We

found that for each cavity height D2 there was a certain cavity width at which the

maximum runup occurred. Below this width wave production was inhibited as only

a small amount of water was disturbed and formed into waves. At higher widths the

energy of the incoming water was trapped and dissipated inside the cavity during

the filling process, as a result of these losses smaller waves were generated. An

approximate scaling relation linking the extent of wave runup at the end of the tank

to the cavity width and height was found.

In section 4.3 we followed the production and propagation of waves in a long

tank. T'he advantage of using a long tank is that we are able to view the waves (and

their travelling motions) unaffected by wave reflections. A train of waves was seen to

develop. The distinction between waves which are affected by boundary reflections

and waves that are not is also important in realistic applications.

We can imagine two regimes, one where the tsunami wavelength is approximately

the same as the characteristic lengthscale of the environment and boundary effects

are important. This situation covers islands 5 — 10km from the caldera where the

runup and reflection of waves occurs near the source and has an effect on the gen-

eration of further waves. This situation is similar to the first set of simulations and

experiments (section 4.1) and is what might be expected from the caldera collapse

(S of Santorini.

In the other regime the tsunami wavelength is many times smaller than the

L distance propagated and wave reflection effects do not affect the generation of waves.

This was shown in the simulation of the long tank (section 4.3) where a train of waves

was seen to develop. This regime is relevant to those waves produced during the
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eruption of Santorini which propagate to the beaches of Crete and other islands.

One of the major achievements of this work has been to benchmark the SPH

numerical code for the simulation of the generation and propagation of water waves.

This has been done both in the previous chapter by comparing results of the code

to a range of test problems and experiments and in the present chapter where we

have compared computations to a series of experiments for a simple caldera collapse

model. The benchmarking of the code is important as it allows us to apply the code,

to a range of different problems with confidence in the accuracy of the results.

The problems we have used to benchmark our code have all been on a laboratory

lengthscale (~ lm). In order to be able to apply our results on a larger lengthscale

(~ lOOfcm) we must ensure that the important physical phenomena are the same

on both length scales. Essentially this means that the test problems were largely

unaffected by surface tension and boundary layer effects. We find that both these

conditions hold, and that we are able to apply our results.

Another achievement was to obtain a scaling relation for the extent of wave

runup between many of the important lengths in our model of wave generation due

to caldera collapse. The two dimensional nature of the simulations used to obtain

this relation mean that its applicability to the realistic case is limited due to the

neglf ct of the complicated three dimensional geometry. The breadth of the cavity

and varying depth of the floor are ignored, even though they have an effect on the

volume of water which is displaced and the subsequent size of the waves that are

produced.

Before discussing wave amplitudes, we need information on the geometry of

Santorini immediately before and after the Minoan erupiion. The models we have

presented are very simple, they contain flat floors and vertical walls and are almost

certainly only an approximation to the realistic situation. The geometry of Santorini

is complicated, it has been fashioned by a series of volcanic events spanning 100,000

years (Heiken and McCoy 1984; Druitt and Prancaviglia 1992).

A shallow, flooded caldera fed by a shallow inlet in the south western corner of

the island formed during an eruption 21,000 years ago and was present immediately

prior to the Minoan eruption (Druitt and Prancaviglia 1992). The Minoan eruption

occured 3,500 years ago and increased both the size and depth of the caldera.

The modern day caldera floor (figure 1.1) consists of a northen basin approxi-

mately 370m deep, the southern half of the caldera is around 275m deep with the



4.4 Summary and Conclusions ^_^ 77

recently formed Kameni islands in the middle of the caldera complex. There is a
20m deep inlet on the south western side of the caldera with the surrounding sea
having a depth of 370m. The north eastern inlet is 300m deep although the water
around this entrance is only 50 — 100m deep.

In section 4.2 we found the maximum extent of wave runup to be given by
(4.4). To convert from runup to wave amplitude we note from section 3.1 that the
extent of runup is approximately twice the amplitude of the initial wave. We assume
H ^ (R — D)/2, where H is the wave amplitude and we find,

D~2D\3D2 D

During the Bronze age eruption of Santorini reasonable values of the appropriate
heights are D = 370m and D2 = 270m for the northern inlet. For large cavity widths
(4.4) and (4.5) do not apply, they predict runups much less than the initial water
depth and waves of negative amplitude. The simulations exhibit waves of minimal
amplitude at such widths. The relation (4.5) is only valid for W < D2/(3D2).
Taking a width in the order of 5,000m for the northern inlet of Santorini we have
W » D2/(3D2). Either waves were not produced from the collapse or a different
wave generation mechanism applies for large cavity widths.

The ratio of height to width of the cavity is significantly lower in the case of
Santorini {HjW ~ 0.08), than in our simulations and experiments (H/W ~ 1). It
is likely that this difference means that the scaling relation (4.4) is not applicable
and may indicate that a different mechanism is involved in the production of waves.
Although our initial motivation was to determine the magnitude of waves produced
at Santorini, our models do not apply. Further investigation is required to achieve
this motivation.

It is theoretically possible to calculate the flow of Santorini with realistic dimen-
sions, although such a calculation is very computationally expensive. The resolution
of SPH is determined by the particle spacing, to be able to resolve the amplitude
of waves to within a metre we require a particle spacing, Ap = lm. In a two di-
mensional simulation of Santorini we need to model an area at least 400m deep
by 16,000m long. A minimum of 400 x 16,000 = 6.4 x 106 particles are required.
A typical timestep r can be found from the Courant condition and is given by
T = Ap/cs ~ Ap/(lbgD) where the soundspeed is given by (2.25). This leads to a
timestep r = 1/60000 seconds.
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In comparison, the simulations in section 4.2 involved 6,000 particles and a

timesiep r = 1/4500 seconds. These simulations had 20,000 steps and took 15 min-

utes of computational time on a 466MHZ ev6 Alpha CPU. The increased particle

resolution means each timestep will take 1,000 times as long. The increased resolu-

tion decreases the size of the timestep by a factor of 10 and the simulation has to be

| conducted for a longer time due to the longer time it takes for waves to travel over

the increased length of the tank. This indictates a simulation using the dimensions

of Santorini would be computationally prohibitive as it would take many weeks to

complete.

An important factor which will determine whether or not collapse will lead to

wave production is the time it takes for subsidence to occur. Instantaneous collapse,

(where the rate of collapse is similar to an earthquake) will probably lead to the

production of waves of maximum amplitude. Conversely, slow gradual collapse over a

timescale of hours or days, will almost certainly lead to smaller waves being produced

(probably none). The fundamental question of which timescales and subsidence rates

lead to the production of significant waves requires further investigation.

We have shown that it is possible to accurately model the waves produced in a

simplified model of caldera collapse on a laboratory scale. The limitations in our

model are discussed along with extensions required to obtain an estimation of wave

amplitudes. Whilst it is possible to scale our simulations to handle bigger lengths,

the geometry and resolution required for the realistic simulation mean that such a

simulation is prohibitive in a serial computing environment.
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Solid Body Equations

n this section we outline a way the SPH method for fluid dynamics can

be extended to model elastic solid bodies. The essence of the method

is to introduce a stress tensor into the equations that account for elastic

effects. If we take a gas and pull it apart there is nothing to resist the tensile

forces (neglecting self-gravity) so it expands. In a solid, the strong bonds between

molecules resist the extension by producing stresses in the solid.

The idea of using hydrocodes for the simulation of elastic-plastic flow has been

around since the sixties (Wilkins 1964; Petschek and Hanson 1968) in a finite differ-

ence context. In the SPH framework it has been pioneered by Libersky and Petschek

(1991), Libersky et al. (1993) and Ben^ and Asphaug (1994,1995).

5.1 Elastic Material Equations

The stress tensor can be written as,

where P is the pressure and Sa/3 is the deviatoric part of the stress tensor.

The simplified momentmn equation (without viscous and forcing terms) then

becomes,

dva

~dt

or in SPH form,

ab

Pi

(5.2)

Pi ) dxb

The SPH equation for density is different to the one we used for water waves

(2.20). This form is used as it gives zero divergence at the interface with two different

density fluids.

i i
1 ' i
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First we write the SPH continuity equation as,

dpa

dt ^ Pb
vo Va**ab- (5.4)

Then we use the fact that the derivative of a constant is equal to zero. To write,

ab. (5.5)= pava • Y, —
Pb

Adding (5.4) and (5.5) we find that,

dpa _
dt ~ p b—(v« - v6) •

Pb

The rate of change of the deviatoric stress 5Q / 3 is given by Hooke's Law (Wilkins

1964; Libersky and Petschek 1991). The equations take the form,

- eyy)

:» 3xyeyy - e*x) -

- sxxnxy.

(5.7)

dS_xy

'dt

Where, // is the Shear Modulus, Q,a/3 are rotation terms,

5
2

nyx = -
and ial3 are strain rates given by,

dvy

dx (5.8)

•XX =
dvx

dx

dr. (5.9)

e-4 'dvx dvtl

dx

The rotation terms 'ire important as we want our stress rates to be objective,

which means chat they are invariant with respect to rotated observer frames (Atluri

1984). For large deformations alternative rotation terms are required (Dienes 1979;

Flanagan and Taylor 1987) to retain objectivity.
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The use of (5.7) means that we find natural strains, where the strain of an element

corresponds to the current configuration and not the original material configuration.

The strain rates are found by the summation,

ab

dx?
(5.10)

where, v refers to the XSPH smoothed velocity (2.22). Note that the rotation terms

fixy are similar to the strain rates exy with the second derivative being subtracted

instead of added.

We follow Melosh, Ryan, and Asphaug (1992) and use a Murnaghan-type equa-

tion of state with n = — 1 (Murnaghan 1951) (pg.68),

(5.11)

Randies and Libersky (1996) use the Mie-Gruneisen equation for solids, but

for the present problem the simplified equation of state (5.11) is sufficient because

thermal effects are negligible.

In the present calculations the elastic constant Poisson's ratio v is determined

in terms of the shear modulus \i and the bulk modulus K according to,

3K- 2a
v = (5.12)

5.2 Plastic Material Equations

In an elastic material, the strain is proportional to the stress (Hookes's law) up until

the stress reaches the yield strength of the material, Yo. After the yield strength

has b rsn exceeded plastic (permanent) deformation occurs. Yield strength is both

material and condition (e.g. temperature) dependent. Below the yield strength we

can remove the stress and the material will return to it's original shape.

Following Libersky and Petschek (1991) and Benz and Asphaug (1994) we intro-

duce the Von Mises yielding criterion to our elastic equations to allow us to account

for plastic deformation. The Von Mises criterion is implemented by limiting the

deviatoric stress. Limiting the size of the deviatoric stress tensor in the plastic re-

gion reduces the resistance of the material to expansion and leads to permanent
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deformation. The deviatoric stress tensor for plasticity is given by,

O =T* JO

where f is found from,

The second invariant of the deviatoric stress tensor J2 is given by

J2 = -(SXXSXX + 2SxySxy + SyySyy).

(5.13)

(5.14)

(5.15)

5.3 Artificial Stresses and the Tensile Instability

It has long been known that SPH can become unstable when particles are in tension

(Swegle 1992; Morris 1994; Swegle, Hicks, and Attaway 1995; Randies and Libersky

1996). A short wavelength instability also occurs when using SPH for magnetic field

problems (Phillips and Monaghan 1985). Here we take the approach of Monaghan

(2000) to combat this instability.

The tensile instability occurs when particles acquire negative pressures and begin

to clump together. In the context of elastic materials, this leads to premature

(numerical) fracturing. A variety of methods have been proposed to remove- the

tensile instability. Among them is the idea that the stresses can be calculated

at different points in space to the other variables, this is known as the Stress Point

technique (Dyka, Randies, and Ingel 1997; Vignjevic, Campbell, and Libersky 2000).

The Conservative Smoothing approach is proposed by Swegle, Hicks, and Attaway

(1995). The Moving Least Squares (MLS) method Dilts (1999,2000) replaces the

usual SPH interpolants with moving least square interpolants to slow the growth of

the tensile instability.

Monaghan (2000) overcomes the tensile instability problem in the fluid case

by adding artificial stress terms which lead to a repulsive force in the momentum

equation. The artificial stresses take effect when particles become close together and

the stress is positive (in tension). In this section we discuss the implementation of

the artificial stress.
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For the case of gao- dynamics and fluids where the stress tensor consists of just

a pressure term on the diagonal Monaghan (2000) takes a repulsive force based on

the smoothing kernel,

W(rab)
fab — (5.16)

W(Ap)'

This force is equal to 1 for two particles the average particle spacing Ap apart and

increases for particles which are closer together. This results in the force increasing

as particles clump together, resisting the clumping.

The momentum equation is then changed from,

Pb Pa

to

4 + 4
Pb Pa

(5.17)

(5.18)

Where,

R a —

0 if P > 0 (Attraction)

ePa/pl if P < 0 (Expansion).

(5.19)

The artificial stress Ra is only active for negative pressure, which is when the

tensile instability becomes a problem, and scales the force (fab) so that it is smaller

than the usual stress terms. The power of n is high which means that the force

drops off rapidly for particles further than a particle spacing apart.

Monaghan (2000) shows from an analysis of the dispersion relation that stability

can be achieved for e = 0.3 and that by taking, 2 < n < 6 the errors in the long

wavelength limit are minimized. The dispersion relation for long wavelengths then

becomes,

= k2cl I 1 + 0.02e P-Po
Po

(5.20)

Although the error does not vanish in the limit Ap —> 0, it is negligible in practical

applications.
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We now express the extension of this artificial stress to elastic bodies. Including

the deviatoric stress terms for the solid body case, the momentum equation is then

changed from,

Pb

to

ab aa

~PJ + ~P1
?i+i#)/n-

(5.21)

(5.22)

Where,

RlJ =
• " • a

0 if alj < 0 (Compression)

if o» > 0 (Tension).

(5.23)

As a13' = —SijP + §y , negative pressure in this case corresponds to a positive

stress tensor. For stability we again take e = 0.3 and 2 < n < 6 to minimise the

long wavelength errors.

The question then arises as to the best way to implement this on each of the stress

components. The alternatives are to apply the term to each of the stress components

as they are or to rotate to a frame where the principal stress occurs. Monaghan

(2000) illustrates the colliding ball problem (Swegle 1992) using the former approach.

We prefer the latter since the stress component associated with tension is then clear.

It is well known that the angle 9a required to rotate to a plane of Principal stress

is given by,

tan(20a) = ' xy
(7XT. —

(5.24)
'yy

The principal stresses in this rotated frame are given by,

-xx _ oxx CQS2 Q^ + axy2 g i n Qa c o g Qa + ayy ^2 ^

ay
a

y = axx sin2 9a + axy2 sin 9a cos 9a + ayy cos2 9a.
(5.25)

In the case oxx = ayy the denominator in (5.24) is zero and care must be taken.

In practice this case corresponds to cos(20o) = 0, and if the two deviatoric stress

components are equal we take 9a = 45°.
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If the stress is iensional the correction terms R*x and B%y are calculated by,

(5.26)

These corrections are rotated back to the original coordinates,

' 9 + Ryy sin2 9

i?*1 sin2 0a + / j ^ cos2 (5.27)

Finally, the artificial stress terms are added to the momentum equation,

dWabdvl
dt

p»i\ rnRb)f dxb
(5.28)

5.4 Solid Body Implementation

The implementation of the solid body code is the same as for the earlier fluid code
(section 2.3) except that we do not use damping as in these problems the initial state
is in equilibrium. Unlike the fluid problems, boundaries and gravitational forces are
not involved an initial readjustment of particle positions does not occur.

Dimensionless Units The solid body calculations in the following sections have
been conducted with normalised coordinates, scaled in terms of p0 and co. We take
the unit of length Lo to be lcm. In the following a prime refers to a variable in our
dimensionless coordinate system.

Velocities are scaled by the soundspeed, v = cov . Similarly for density p = pop .
The scaled time t' is found with a combination of the length scale Lo and speed of
sound co such that, t = (Lo/co)t'.

The bulk modulus K is scaled by, K = -(l/V)(dP/dV) = pdP/dp. Taking the
equation of state (5.11) we have K = p0<?0- We normalise the elastic moduli and
stresses by dividing by poc

2
o so that K' = 1, fj,' = /j./(pcl) and a = a/{pc2

o).
A drawback of introducing dimensionless units is that there is a loss in any

physically intuitive feel one may have for the magnitudes and effects of stresses. For
most metals the bulk modulus and Young's modulus are approximately equal. For
rocks there may be a factor of two or three difference (Jaeger 1964) (pg.58). We
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can gain an understanding of the expected size of our dimensionless stresses if we
assume E ~ K. From Hooke's law we then find,

a a ,
e = — — — ~ a

E K
(5.29)

That is our dimensionless stress is also a rough estimate of the strain a material is
undergoing.

Another way to quantify the dimensionless stress is to compare it to a materials
ultimate tensile strength ars, converted into the dimensionless coordinates. We take
values of the bulk modulus and tensile strength from (Jaeger 1964) (pg.58,75) and
find for steel that GTS/K = 2.8 x 10~3 and granite has a value of CTTS/K = 1.5 X 10~4.
These are estimates of the strength of the material in the dimensionless coordinates
and we conclude that stresses greater than one percent of the materials bulk modulus
(a = 0.01) are very high.

For convenience we remove the primes when referring to the dimensionless coor-
dinates from now on.

Double Precision Variables It was found that when the axes are rotated to the
directions of principal stress computational problems can arise if axx ~ ayy. The
equation for the principal axis rotation angle (5.24) will then have a term that is
divided by a number that is very close to zero. This has been overcome by using
double precision variables. Alternatively a term similar to rj in the momentum
equation (2.18) that ensures that particles on top of each other do not lead to a
singularity can be incorporated. A suitable term is ACT = ±pc% x 10~6 where the
sign of ACT is taken to be the same as the stress difference (axx — ayy), to ensure
that the compressive or tensile state of the particle is retained.

Integration The same integration scheme as for the fluid calculations is used.
With the integration of the stress terms in the present case being treated the same
as density in the fluid case. That is a predictor-corrector scheme is again used,
writing dSlj/dt = T" the predictor step is,

Vp = V, AiFo,

pp = po + A«DO> (5.30)
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We now calculate new values of F, D and Tij before using the corrector step,

v = vp + |Ai(F - Fo),
p = pp+iAi(D-D0), (5.31)

^ - T?).

5.5 Damage Model and Equations

It was only recently (1821) when Navier gave the equations for the equilibrium and
motion of elastic solids (Todhunter and Pearson 1960) (pg-1). However similarities
between the basic materials of buildings and tools employed by ancient civilisations
and those we use today indicate that much was learned about material strength
before this time via trial and error.

Galileo Galilei theorised in the 1630's as to what things affected the strength of
solids and their resistance to fracture (a translation of this work is given by Crew and
De Salvio (1914)). He proposed that an objects resistance to fracture depended on
things like it's composition, shape and size, as well as the magnitude and orientation
of applied forces. These macroscopic factors are still considered important today in
modern fracture theories, based on the formation of cracks at atomic scales.

The modern idea of material fracture which was developed by Griffith in the
1920's (Sammonds 1999) is that if a large enough force is applied to a material
the atoms are no longer able to hold themselves together and the material fails.
The theoretical strength of materials is based on the strength of the bonds between
atoms and is much larger than the strength found in practice (Ashby and Jones
1980) (pg.86-88). The reason is that bonds between atoms in real materials are not
perfect, but instead contain flaws that reduce the strength of the material (Marder
and Fineberg 1996). The flaws act like holes and magnify the size of an applied
stress near the flaw. The stress near a flaw is able to reach the critical failure stress
whilst the remainder of the material is at lower stress. Once a flaw fails, a small
crack can develop and grow.

Solid materials can be either brittle or ductile, the distinction between the
regimes is temperature dependent and varies for different materials. Materials are
brittle at low temperatures and ductile at high temperature. The behaviour of brit-
tle and ductile materials is similar up to the elastic limit. After the elastic limit has
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been reached a brittle material will fracture and break, whereas a ductile material

will undergo stretching and plastic extension.

We have already outlined the equations which deal with elastic and plastic (duc-

tile) materials. We now turn our attention to a numerical description for brittle

fracture. A damage model was first useu in SPH by Benz and Asphaug (1994)

who implemented a variation of the numerical fracture and fragmentation work of

Grady and Kipp (1980). Benz and Asphaug (1994) proposed a model of explicit and

implicit flaws. Each particle was assigned an explicit flaw threshold above which

damage was allowed to accumulate.

As the resolution of a numerical simulation is not high enough to account for

each flaw in the material explicitly, implicit flaws were allowed to accrue damage

on a subgrid length scale. The growth of these implicit, flaws was based on the

statistical approach of Grady and Kipp.

Benz and Asphaug (1995) proceeded in a different way. The implicit flaws were

removed, with each particle being given a number of explicit flaws with different

failure strains. In this way a larger number of explicit flaws could be introduced

at the same spatial resolution. Meaning that the statistics involved larger numbers

and were better represented. This approach is also computationally clearer as we do

not have to worry about the effects of implicit subgrid scale flaws. It is also similar

to the SPH statistical fracture model of Mandell, Wingate, and Schwalbe (1996),

although they assign their failure strains differently.

In the above models the amount and shape of the cracks that develop depend on

the distribution of flaws in the material and the rate of tensile loading experienced

by the material. The model is based on a Weibull distribution of flaws

n(e) = keT' (5.32)

where, n is the number of flaws in a unit volume which can activate below a tensile

strain of e, k and m are material constants which affect the number of active flaws

at a given strain. The value of k can vary largely depending on the type of rock and

its history. The constant m typically ranges from 6 to 12. We show in figure 5.1

the Weibull distribution for the case of k = 1 x 1019 and m = 8.5, along with some

minor variations to these parameters. Higher values of k mean that the material

has more flaws and result in a higher number of active flaws for a given strain. An

increase in m results in a decrease»in the number of active flaws at a given strain.
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Figure 5.1: Examples of the Weibull distribution for a range of k and m.

The basic idea behind the models of Benz and Asphaug is to give each particle

a damage variable D, where 0 < D < 1. Zero damage means that the particle is

undamaged and behaves as a plastic-elastic material. A particle in compression with

a damage D = 1 feels no stresses and in a sense behaves as a fluid. If a particle is in

tension with D = 1 the stress is set to zero so that fully damaged particles do not

attract each other.

The stress tensor (5.1) is replaced by,

P* is defined by,

P* =
P if P > 0

if P<0 .

(5.33)

(5.34)

The factor (1 — D) is introduced to account for the reduction in stress as a

particle becomes damaged.

Flaws are randomly assigned to particles. Damage begins to accumulate once the

strain activation threshold of a flaw has been reached. A series of flaws is assigned
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to each particle in ths simulation. A flaw is activated and damage is allowed to

grow in the particle when the particle undergoes a strain higher than the activation

threshold for the flaw. The strain on each particle is found from,

e = 'Max
2,1(1 - D*)

(5.35)

where o"*̂ ax is the maximum principal stress for the particle.

If e > e/iaw damage is allowed to accumulate up to a maximum amount deter-

mined by the number of active flaws in the particle. That is,

D < ^01, (5.36)
•**flaws

where, Nactive is the number of active flaws, and Nflaws is the total number of flaws

in the particle. In this way a particle that has one weak flaw and three strong flaws

does not have its strength governed by only the weakest flaw.

The half length of a growing crack (initiated at time r) is,

a = Cg(t - r ) (5.37)

where cg is the crack growth speed (cg ~ 0.4cs). Walsh (1965) found that cracks had

an effect on the compressibility of rock proportional to the cube of their length. It

is therefore reasonable to assume that in two dimensions cracks lead to stress relief

in a circular area around the crack. Our derivation is slightly different to that of

Grady and Kipp (1980) as we are dealing with only two dimensions.
_ 7T o

= -r a (5.38)

dP1'2 /7T\l/2do_ /7T\V2 da _ /7T

dt ~ \A) ~dl ~ \A) "s

For a propagating crack it is shown that damage accrues according to,

where Rs is the radius of the circle relieved of stress by the crack. If we look at the

Weibull distribution (5.32) the weakest flaw in an area, A will fail at a strain, emjn,

kA

l / m (5.40)
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Prom this we see that the smaller the size, the stronger a piece of material is.

This is consistent with real 1 neks. The larger the material size, the more likely it is

to contain a weak flaw and is thus weaker. Smaller volumes are less likely to contain

weak flaws and are therefore more likely to be stronger.

Particles are assigned explicit flaws where the strength of the flaw is random.

Each flaw is assigned a random number p(i), such that 1 < p(i) < iVlogiV, where

N is the number of particles in the simulation. The failure strain of each flaw is

then given by,

(5.41)y
kAJ

Flaws are assigned to particles randomly until every particle contains at least

one flaw. This means that on average each particle will be assigned NlogN flaws

in a simulation. We set the maximum number of allowed flaws per particle to be

twenty to conserve memory.

T'he rate of growth of damage in a particle with active flaws is given by,

i r £ • <5-42>
We remember that there is a limit placed on the maximum damage that can

accumulate in a particle that does not have all of its flaws active (5.36).

5.6 Dispersion Relation

The corre-1 propagation of elastic waves is fundamental to the solution of problems

in solid body dynamics. It is important that elastic waves are allowed to propagate at

the correct velocities and that their propagation is stable. To study the propagation

of elastic waves we calculate the dispersion relation for them.

We begin by calculating the dispersion relation for the exact elastic equations.

We do this as the long wavelength behaviour of our SPH equations is required to

match that of the exact equations. We follow by calculating the dispersion relation

for the SPH equations and showing that it agrees with the exact dispersion relation

in the long wavelength limit. The tensile instability is a short wavelength instability,

we study the short wavelength dispersion relation to gain an understanding of the

instability and appropriate ways to remove it.
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The derivations in this section are included with more detail in appendix B. The
work presented in this section involves work done in conjunction with Joe Monaghan.

5.6.1 Dispersion relation: Exact Equations

In this section we calculate the dispersion relation for waves in an initially uniform,
infinite, elastic material with constant initial stress. We choose Cartesian axes to
give an initial diagonal stress, and assume that the velocity is small. Variables are
in the form,

(5.43)

v =

r = r +

p = p +
P = P +
gij _ gij

where overbars refer to unperturbed quantities. The components of V are Vx and
Vy. Components of R are X and Y.

Substituting these expressions into the equations of motion we find,

pujVx = kx(c
2

0D -

puVy = ky(c
2

0D -

The continuity equation is,

(5.44)

U)
(5.45)

and the rate of change of stress becomes,

IF* = -gQW, - kyVy)
yVy - k,VX)

where,

Substituting for T^ and D in (5.44) we find,

(5.46)

(5.47)

(5.48)
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The solution of these equations leads to a quartic equation for UJ,

= 0, (5.49)

where,

A = - \ {{Pel + ¥) *2 + (/* + 0 *2 + 0* - 0 &
r = - 4 (pC2 + f ) e ({n + o kl + (/* -

(5.50)

This can be solved to give a longitudinal mode with frequency

(5.51)

and the propagation speed of longitudinal sound waves is given by

(5.52)

There is also a (nearly) transverse mode with frequency

(1,2 _ i,2\(qyy _ Cxx\

2P
(5.53)

and components of velocity

V,,
(5.54)

If the initial deviatoric stresses are zero, this reduces to the standard transverse

mode, V • v = 0. The differences from the standard transverse mode arise because

of the use of rotation terms to retain objectivity in the deviatoric stress rates (5.7).

To test that the long wavelength behaviour of the SPH algorithm is correct we

simulate the propagation of the longitudinal mode and check its velocity. This was

done by placing a Gaussian velocity distribution onto a periodic two dimensional

array of particles and measuring the speed of the waves that are produced. In

figure 5.2 we show T'x against a; at a range of times in the simulation. The initial

disturbance was given by 14 = 0.05e((l~100)/20Al)2 the elastic material was 200cm

long and 20cm high with a resolution of 400 x 40 particles.

We consider cases with co — 1.0, \JL = 0.22 and p0 = 1.0 for a range of different

values of h/Ap. For these parameters we find the theoretical longitudinal wave
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Figure 5.2: Test of the propagation of longitudinal waves. Frames show the mo-
tions of an initial Gaussian velocity perturbation on a periodic array
of particles with parameters e = 0.0, a = 0.5, fi = 0.22, h/Ap — 1.0,
po = 1.0, co = 1.0. Further details in the text.

velocity is, vi = 1.137. The theoretical speed compares well with the measured wave

speeds in the computations of 1.164, 1.148 and 1.131 for the cases h/Ap equal to

1.0, 1.3 and 1.5 respectively.

It is clear from figure 5.2 that there is an amount of dissipation and dispersion

as the waves interact. The amplitude of the perturbation decreases by 40% and the

wavelength increases by 40% over the course of the simulation.

5.6.2 SPH Dispersion Relation

In this section we calculate the dispersion relation for the SPH equations. In section

5.6.3 we compare the long wavelength behaviour of this relation to the dispersion

relation of the exact equations. We will also study the short wavelength behaviour

and its stability in section 5.6.5.

We assume the SPH particles are initially placed at the vertices of a regular grid,

for example a grid of square cells each of side Ap. The mass of each particle is then

p(Ap)2. We denote the initial position of particle a by fa and write the perturbed
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position as,

We write the velocity va in the form,

V = yei(k-f«-wl)

(5.55)

(5.56)

and note from XSPH with £ = 1/2 that the relation between the normal velocity V
and the smoothed velocity V is,

V = V - cos(k (5.57)

For sufficiently long wavelengths the summation can be replaced by an integral
and, in this limit,

V = i v ( l + Wn, (5.58)
2

where W denotes the Fourier transform of W. This expression shows that V intro-
duces additional dispersion coming from the Fourier transform of the kernel. The
absence of complex terms show that the XSPH velocity is not dissipative.

All perturbed variables associated with particle a are denoted by a subscript a
and they take the same form as those in the continuum case above except that k.r
is replaced by k.fa

It is convenient to begin with the standard SPH equations and include the arti-
ficial stress terms later. To simplify the analysis after substituting the perturbation
variables into the equations of motion we define the summations,

d2W,ab

d2W,
ab (5.59)

- cos(k • tai))Wat.
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The x component of the acceleration equation becomes,

.*-*--*£(*. AM.+ a ^ = i
pu> (5.60)

- TxyAy).

The equation for the y component is identical except for an interchange of x and y.
Substituting the perturbations into the equations for the rate of change of stress

components we find,

T** = -£(2VxAx-VyAy)

(5.61)

= -^(yxAy + VyAx) + -̂
U) OJ

Substituting the stress components, replacing V by V and taking note of/? (5.57)
in the acceleration equation we find,

1-0
= - (2(P - S**) - pcl)Ax(A • V) + (2P - 2SXX){BXXVX + BxyVy)

ltf - VyAx)Ay.

(5.62)

5.6.3 Long Wavelength Limit

For sufficiently long wave lengths we can approximate the summations defining A
and Bij by integrals. We solve the integrals using an integration by parts and find,

A = -kW
(5.63)

where W is the Fourier transform of W which, in the long wave approximation, can
be taken as being equal to one. Correspondingly, we can take 0 as zero and the x
component of acceleration becomes,

pu2Vx = Vxkl{pc2
o + | Vy(c

2
0 Q)kxky (5.64)
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Which agrees with the continuum equation for the dispersion relation of the
exact equations (5.44). This result shows that the SPH perturbation equations are
correct in the longwavelength limit and that the dispersion introduced by the SPH
formulation can be determined from the Fourier transform of the kernel.

5.6.4 The Artificial Stress

In the present analysis, where the axes have been chosen so that the stress tensor
is diagonal, we only need to add a term (Rxx + Rxx)fn to the x component of the
acceleration and a term (R%y + Ryy)fn to the y component. In general, however,
there is a term Rx% after rotating from the local principal axes to the original axes.
Since the initial state is uniform we take,

TyXX T?xx I?xx (C RVi\

Ka — nb — it [b.ob)

so that Rxx + Rxx = 2RXX, and similarly R™ + Ryy = 2R™.

The right hand side of the x component of the SPH acceleration equation includes
a term from the artificial stress,

(5.66)

where,

(n + l)Wn(Ap)
- cos(k • ra6))

d2W
dxl

n+l

yv (n + l)Wn(Ap)

{Apf
xy (n + l)Wn(Ap) -

(5.67)

- COs(k
d2W n + 1

dxadya

Prom the velocity equation (2.22) we can show X = tVx/uj so that (5.66) becomes,

2ipRxx

UJ*
-(VxFxx + VyFxy). (5.68)

The dispersion relation (5.62) is now,
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= - (2(P - §**) - pc2
o)Ax(A • V) + (2P - 2SXX)(BXXVX + BxyVy)

r^.'nir A \r A \ \ < .(tr A , tr A \ A (5.0jJ1, + VyAX)Ay

\y - VyAx)Ay + 2(?RXX(VXFXX + VyF^).

We now consider how to chose i?y to prevent short wavelength instabilities.

5.6.5 Short Wavelength Limit

The tensile instability is a short wave length instability initiated by the clumping

of pairs of particles. The rate of growth of the instability depends on the initial

configuration of particles, kernel, smoothing length, and equation of state. See

Morris (1996) tor the non elastic case. In this section we study the stabilit}' of some

simple particle configurations.

In the first case particles are placed on the vertices of a grid of square cells of

side Ap. The second and third cases involve what we term fa.ce centred lattices.

These face centred lattices have a similar configuration to the square cells except

that every second row of particles is shifted by a distance Ap/2 in the x direction, to

form an x shifted face centred lattice. A slight variation is to form the y shifted face

centred lattice by shifting alternate columns of particles in the y direction. These

lattices are illustrated in figure 5.3.

In each case we consider waves propagating along the x axis with kx = Tr/Ap,

ky = 0. The dangerous modes are the longitudinal modes with Vx / 0 and Vy = 0

since clumping occurs if these modes are unstable. The transverse modes with

Vx — 0 and Vy ^ 0 are benign because, if they become unstable, they result in lines

of particles moving vertically very slowly (Morris 1996).

Square Cells In the square lattice case we find Ax, Ay, Bxy and Fxy are all equal

to zero. The equations of motion simplify to,

(5.70)
= 2(VxBxx(P-Sxx)-VxR

xxp2Fxx)

U0 = 2(VyByy(P-Sxx)-VyRyy?Fyy).
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Figure 5.3: Particles within the 2h smoothing distance for various initial par-
ticle placements. The left frame shows the square cell arrangement.
The middle frame shows the case where a face centred arrangement
obtained by shifting every second row of particles a distance Ap/2 in
the x direction. The frame on the right shows the particles within the
2h smoothing distance in the case where a face centred arrangement is
obtained by shifting every second column of particles a distance Ap/2
in the y direction.

The first equation in (5.70) specifies the longitudinal mode with Vx

frequency given by,

pun2

= 2{Bxx{P-Sxx)-Rxxp2Fxx).

0 and

(5.71)

We now calculate the coefficients in the case h = Ap and kx = n/Ap, ky — 0.

(5.72)

We consider this case as the coefficients are simplified by the fact that only the

eight nearest neighbours contribute. The tensile instability involves short wavelength

particle clumping, so we chose kx = it IAp to study changes over short wavelengths

and ky = 0 so that the analysis is simplified. In any case coefficients for higher values

of h/Ap are tabulated in appendix B and discussed later in the present section.

Complex values of u are unstable so for stability we wish to find values of a>2

which are positive. As Both Bxx and (1 — (3) are positive, the longitudinal mode is

stable for oxx < 0 (recall that axx — —P + Sxx) which corresponds to the material
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being compressed. Hence if axx < 0 we can chose Rxx = 0 and the system will be

stable. If axx > 0, the system is in tension and the longitudinal mode is unstable

unless we chose,

Rxx < -
BXX\P-SXX\

Fxxp
2 '

(5.73)

Which corresponds to,

Rxx < -
3 \P- Sxx\

Zn + 2 p2 (5.74)

This result agrees in the limit of no deviatoric stress (Sxx = 0), with the results

obtained by Monaghan (2000). The limit of no deviatoric stress is the standard

SPH for gas dynamics. It is possible to minimise the error in the long wave length

dispersion relation due to the artificial stress by taking into account the way Fxx

varies with n. It is found that for 1 < h/Ap < 1.5 the optimal choice of n has only

a slight dependence on h. In the following examples we take n = 4 as a suitable

value.

Taking n = 4 the variation of Bxx and Fxx with h/Ap is shown in the left frame

of figure 5.4. The stability criteria is illustrated in the right frame of figure 5.4, the

longitudinal mode is stable in compression for positive values of (1 — (3)BXX/FXX.

A steady decrease in the coefficient required for stability (when the system is in

tension) is clearly seen as smoothing length is increased. The system remains stable

up until h/Ap = 1.7 where it briefly becomes slightly unstable before again becoming

stable for higher h/Ap.

The second equation in (5.70) describes the transverse mode for the case of

particles placed on a square cell with Vy ^ 0 and frequency found from,

= 2(Byy(P-Sxx)-Ryyp2Fyy). (5.75)

When h = Ap, Byy is negative (figure 5.5) and the mode is unstable when ayy < 0

if Ryy is zero. This instability causes lines of particles to move in the y direction

rather than clump. The effect is generally weak as the particles move slowly to the

more stable face centred array. The stability of this transverse mode changes as

the smoothing length is increased. It becomes stable when h = 1.2Ap and unstable
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Figure 5.J,.: Left Frame shows the square cell variations of Bxx and Fxx with
smoothing length. The right frame shows the criterion for stability
of the longitudinal mode. The mode will be stable in compression for
positive (1 - P)BXX/FXX.

again at h — 1 ZAp. We do not look for a value of Ryy which will stabilise this mode

as it doesn't lead to clumping and we instead chose Ryy to stabilise the longitudinal

mode travelling in the y direction which can lead to the tensile instability.

Figure 5.5: Stability of the transverse mode for a square cell particle arrangement.

Swegle, Hicks, and Attaway (1995) looked at the stability properties of SPH by

studying a square two dimensional array with fixed particle boundaries to stop wave

propagation relieving the initial stress. We now look at similar examples although

we incorporate periodic boundary conditions instead of fixed boundaries.

In figure 5.6 we see what happens to a group of particles in compression. Here
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we expect the simulation to be stable with no clumping due to the tensile instability.

In the left frame we show our initial set up. A lcm square grid where each of the

particles have been given a small random velocity. The second frame shows what

happens in ';he case of h — l.OAp, the initial particle velocities settle down before

the particles arrange themselves by shifting every second column half a particle

spacing vertically to the stable face centered arrangement. The final frame shows

the motions for the case of h = 1.5Ap, the final configuration here is much more

complicated that the h = l.OAp case, though it is still stable.

;--\:>v;:^';;-:>.:/vV:\:>>
.;;-."-'.-;-;.v./V:-;-.v.v.-:: ;:•»:•
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Figure 5.6: Periodic box of particles in compression fi = 0.22,Ap = 0.025, e = 0,
p = l.ly0o- The left frame shows the initial square cell set up. The
middle frame shows the particle positions after 10, 000 time steps at
t = 100.1, for h = Ap. The right frame shows the particle positions
after 10,000 timesteps att = 149.8, for the case of h = 1.5Ap.

We now look at the stability of initially face centred arrays. As mentioned earlier

these arrays are formed by the displacement of alternate rows by an amount Ap/2.

In the real case where there are waves propagating in both x and y directions the

difference is unimportant, however in this analysis we only have waves propagating

in the x direction and the results are slightly dependent on the direction of the shift.

Face Centred Cells: y direction shift In this case we again find Ax and Ay

equal to zero and the stability criteria is similar to the square cell case. The lon-

gitudinal mode is stable in compression and still requires the implementation of .an

artificial stress for stability in tension.

The stability of the transverse mode oscillates as in the square cell case. However,

the move to a face centred array means that the transverse mode is now stable in
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the h = Ap case. This explains why the initially square cell array arranges itself

into a stable face centred array (figure 5.6).

Face Centred Cells: x direction shift The stability criteria in this case are

complicated by the fact that Ax now has a non zero value. The frequency of the

longitudinal mode is now described by,

( 5 . 7 6 )

As the term A2. (|/z + pc£) is always positive, its contribution is to stabilise the

system. The first frame of figure 5.7 shows the weight of the first two terms in (5.76)

for a range of smoothing lengths. Prom figure 5.7 it is clear that for h < 1.3Ap the

(P — Sxx) term will dominate and the stability properties of the longitudinal mode

are almost identical to the case of square cells (compare figures 5.7 and 5.4). For

larger smoothing lengths the |^t -t- pel term becomes important though the system

still retains stability.

h/(4P)

Figure 5.7: Stability of the x shifted longitudinal mode. Left frame shows the vari-
ation of (Ap)2(Bxx — A\) and (Ap)2Ax with smoothing length. The
right frame shows the stability criterion for the longitudinal mode.
Particles will be stable in compression for positive (1 - (3){BXX —
Al)/Fxx.

In this case the transverse mode is described by,

(5.77)
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For the h = Ap case we have Byy ~ §A2
X. We find that the transverse mode is

stable in compression for both the x and y shifted face centred cell cases.

5.6.6 Effect of Artificial Stress in Tension

In this section we study the effects of the tensile instability on a periodic array of

particles by initially placing the array particles in a tensile state. Similar calculations

have been performed by Swegle, Hicks, and Attaway (1995) and Monaghan (2000)

though not on periodic arrays. Particles are given an initial negative pressure by

modifying the equation of state (5.11) to,

(5.78)

The parameter A is given values of 0.99, 0.95 and 0.90 to simulate different magni-

tudes of tensile stress. In the following calculations we take po = cs = 1.

Our first example (figure 5.8) is the case where A = 0.99. We show the initial

particle set up followed by the paioicle positions after 10,000 steps with e = 0.0 and

e = 0.3 in the left, middle and right frames respectively. We notice little difference

between all three frames. The tensile instability is having minimal effect at this low

stress, and the artificial stress terms do not degrade the calculation.

Figure 5.8: Periodic array of particles under a small tensile stress, parameters
A = 0.99, h/Ap = 1.0 and Ap = 0.025. The left hand frame shows the
initial state. The middle frame shows particle positions after 10,000
steps when e = 0.0, clumping effects of the tensile instability are not
obvious. The right hand frame shows the calculation with epsilon =
0.3 at step 10, 000 and is similar to the initial state.
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In figure 5.9 we increase the tensile stress by setting A = 0.95. We find that the

tensile instability has led to particles beginning to clump together in groups of four

in the middle frame where e = 0.0. This particle clumping does not lead to artificial

fracturing in this case. We see in the right hand side frame that the inclusion of

the artificial stress terms (e = 0.3) in the calculation has resulted in the removal

of particle clumping from the simulation, and the particles do not move from the

initial square cell state.

Figure 5.9: Periodic array with parameters and frames as for figure 5.8 except
that now A = 0.95. The middle frame illustrates the particle clumping
which occurs due to the tensile instability. The clumping effects have
been stabilised in the right frame which is a calculation with e = 0.3.

:::::•:::::::::

Figure 5.10: Periodic array with parameters and frames as for figure 5.10 except
in the case of A = 0.9. The tensile instability leads to numerical
fracturing (middle frame). The use of artificial stress terms, e — 0.3
(right frame) remove the effects of the tensile instability.
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The final example in this section has a much larger tensile stress (A = 0.9) and

does lead to numerical fracturing at the bottom and left boundaries of our periodic

particle array as can be seen in the middle frame of figure 5.10. We again find that

effects of the tensile instability can be removed by setting e = 0.3, which leads to

the initial particle positions being retained.

In this chapter we have outlined an extension of our free surface fluid dynamics

SPH code which enables the modelling of elastic, plastic and brittle materials. The

SPH tensile instability has been discussed along with a method which appears to be

effective in removing this instability. An analysis of the stability of the solid body

SPH method has been conducted and simple calculations on periodic arrays have

been presented to illustrate the effects of short wavelength instabilities.



Chapter 6

Solid Body Code Validation

> ow we turn our attention to some more practical test problem for elastic

materials. Some of these tests have been performed by other authors and

'as such are good tests cases for our SPH code. We firstly look at the

problem of colliding balls, this problem was shown by Swegle (1992) to fail when

using SPH due to the tensile instability. We then study the behaviour of oscillating

beams, comparing to theory. We look at beams in tension, and then incorporate a

damage model to study the brittle fracture of beams in tension. The tests with the

damage model are similar to those presented by Benz and Asphaug (1995) although

our beams are only two dimensional. Finally we turn our attention to the modelling

of stresses around cavities.

6.1 Colliding Balls

Swegle (1992) ran into problems when using SPH to model the collision of two tennis

balls. The calculations which we present are two dimensional the balls are really

cylinders, though we will refer to them as balls or rings. Physically we expect that

the collision of two balls will involve a contraction as the balls slow down before

rebounding off each other and travelling in the opposite direction. Finite difference

codes are able to model this without difficulty. Swegle (1992) found that effects of the

tensile instability when SPH was used to model the collision meant that artificial

fracturing of the materials occurred in regions that were in tension. A range of

particle configurations and viscosities were tried but the standard SPH was unable

to model the collision satisfactorily. Monaghan (2000) simulated the rings with a

similar algorithm to prevent the tensile instability as the algorithm described in

section 5.3 although he did not rotate to the axes of principal stress before applying

the artificial stress.

Vignjevic, Campbell, and Libersky (2000) overcome the problem of tensile in-
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stability by using a stress point approach and are able to successfully model the

colliding rings. Sulsky, Zhou, and Schreyer (1995) were able to model the collision

of a cylinder with a rigid wall using the FLIP technique.

We model the balls as two rings of particles on a square grid. Each of the rings

has an inner radius of 3cm and an outer radius of 4cm. They approach each other

with a velocity of 50m/s which corresponds to a speed of 5.87 x 10~3 in our scaled

units. We take /J, = 0.22, and the resolution is given by Ap = 0.1. All calculations

in this chapter use the smoothing length h = 1.5Ap.

In the following pictures (and most pictures in this chapter) the colours refer to

the mean stress (axx + ayy) and times are presented in the dimensionless coordinates

of section 5.4. It can be shown from linear algebra that the trace (sum of the diagonal

elements) of a tensor is invariant to axes rotation. We define the mean stress to be

the trace of the stress tensor. The invariance of the mean stress to axis rotation

makes it a suitable measure of the stress field.

In figure 6.1 we show the results for when e = 0.0. This is standard SPH without

the fix for the tensile instability and we find that artificial fragmentation occurs in

regions of tension as the stresses become too large in the collision. The fracturing

means that the rings are unable to return their elastic energy back into kinetic

energy and the rings do not bounce off each other.

Figure 6.2 shows the rings fo*- the case e = 0.3. Artificial fracturing that occurs

due to the tensile instability in the standard SPH case has now been removed. We

are able to model the collision, interaction and bounce of the rings without difficulty.'

Figure 6.3 shows the rings in the case of zero viscosity. The simulation works

reasonably until the cylinders begin to rebound off each other, particles begin to

penetrate each other and the simulation becomes extremely disordered and unstable.

Figure 6.4 shows the rings in a format similar to that found in Swegle (1992),

Sulsky et al. (1995) and Vignjevic, Campbell, and Libersky (2000). The frames

shown are the time of impact and then intervals of approximately 500/J.S. The

colours in figure 6.4 refer to the horizontal particle velocity, so that the results

presented are consistent with other authors.

In tables 6.1 and 6.2 we show measurements for the width, height and separation

of the elastic rings for our SPH results and the TOODY finite difference results of

Swegle (1992) respectively. The results are in excellent agreement for the collision

before the rings change direction and begin their bounce (~ 500//s). The bounce
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Time

0

507

994

1498

1811

Width

8.0

5.1

5.8

8.0

9.2

Height

8.0

9.8

9.7

8.2

6.8

Separation

0.0

0.0

0.0

0.3

1.4

Table 6.1: SPH results for colliding rings. Values of ring width, height and sep-
aration in cm at various times in /J,S. Distances are measured in cm,
time is measured in //s.

Time

0

500

1000

1500

Width

8.0

5.1

6.4

7.2

Height

8.0

9.9

9.9

8.7

Separation

0.0

0.0

0.0

1.4

Table 6.2: TOODY results of Swegle (1992) for colliding rings. Values of ring
width, height and separation at various times. Distances are measured
in cm, time is measured in /xs.

occurs quicker in the finite difference calculation. At 1000//5 the qualitative shape

is like a D with a flat interface between the balls and pointed ends on the opposing

sides, the shape is similar for both methods although the width has expanded quicker

for the TOODY results. The separation at 1500^ is greater in the TOODY results

(1.4cm) than the SPH results (0.3cm). In both cases the rings are egg shaped

although the sharpest point of the egg points inwards in the SPH case and outwards

for the TOODY case. In both the SPH and TOODY codes the rings oscillate after

the bounce, the difference in direction of the pointed end of the rings are due to

the phase of oscillation being different in each of the cases. The SPH case reaches

a separation of 1.4cm at t = 1811/^s and the ovals are in the same direction at this

point although the width of the rings at this separation is greater in the SPH case.

The SPH calculation is able to follow the collision of rubber rings without diffi-

culty. There are differences in the results when compared to the TOODY results of

Swegle (1992), the rings take longer to rebound off each other in the SPH case.
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Time = 0.(3

oo
Time = 27.6

0 0.2 0.4 0.6 0.8 1 -0.1 -0.05 0 0.05 0.1

Time = 62.8 Time = 96.3

-0.1 0 0.1 0.2 -0.1 -0.05 0 0.05 0.1

Time =132.8 Time =169.3

-0.1 -0.05 0 0.05

Time =206.2
-0.05 0 0.05

T i m e = ' 3 . 1

-0.1 -0.05 0 0.05 -0.1 -0.05 0 0.05

Figure 6.1: Colliding rings. Standard SPH (e = O.Oj with artificial viscosity
(a = 0.5) in which artificial fracturing occurs.
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Time = 0.0

oo
Time = 27.6

0 0.2 0.4 0.6 0.8 1 -0.1 -0.05 0 0.05 0.1

Time = 63.6 Time = 99.4

-0.1 0 0.1 -0.1 -0.05 0 0.05 0.1

Time =133.7 Time =170.8

-0.02 0 0.02 -0.05 0 0.05

Time =207.9 Time =245.0

-0.02 0.02 -0.05 0.05

Figure 6.2: Colliding rings. SPH with artificial stress (e = 0.3j and artificial
viscosity (a = 0.5) which simulates the collision without fracturing.
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Time = 0.0

oo
Time = 24.5

0 0.2 0.4 0.6 0.8 1 -0.1 -0.05 0 0.05 0.1

Time = 53.0 Time = 76.0

-0.1 0 0.1 0.2 -0.2 0 0.2
Time = 96.8 Time =116.5

-0.2 0 0.2

Time =134.5
-0.4 -0.2 0 0.2

Time =151.5

-0.5 0 -0.5 0 0.5

Figure 6.3: Colliding rings. SPH with artificial stress (e = 0.3j but without arti-
ficial viscosity (a —- O.Oj.
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Tinw - 0.0 Urn*- 507 J

-50
11m*- 894.6

0 20
Tim* - 1498.1

-40 -20 20 40 -50

40

50

Figure 6.4: Colliding rings. SPH with artificial stress (e = 0.3 j . Colours show
horizontal velocity. Speeds in m/s, distances in cm, time in fj,s. The
balls are touching at t = 0.
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6.2 Bending of a Plate

The next test we undertake is to check the period of the lateral oscillations of a fixed-

free plate. We choose this problem as an analytic solution exists and we are able to

study the shape and dynamics of the oscillation of the beam in detail. An analytic

solution is known from the Euler-Bernoulli thin beam theory and can be found in

standard engineering texts, see for example Rao (1990) (pg.394-400), Landau and

Liishitz (1970) (pg.46-51).

It can be shown that the natural frequency of a plate is given by,

(6.1)

(6.2)

12p( l -^ 2 ) '

Young's modulus is related to the shear modulus by,

E = 2/i(l + v),

i 1 1

so that

" 6p{l-v)' K^J

where, /.t is the shear modulus and v = (3K — 2/i)/(6/c + 2\x) is Poisson's ratio. The

height and length of the plate are given by h and L respectively. The parameter 15

depends on the mode of oscillation.

The assumptions made in arriving at the solution are that the thickness of the

plate is thin compared to its length and breadth, and also that the deformations

of the plate are small. As our calculations are two dimensional the assumption for

the breadth always holds. Further assumptions are that the stresses involving the z

direction (axz, cryz, azz) are equal to zero.

Boundary conditions on the beam are that the displacement and gradient of the

beam are zero at the fixed end. A zero gradient corresponds to the beam remaining

horizontal.

For a fixed free-beam /3 is determined from the equation,

cos(PL) cosh(/5L) =

For the fundamental mode,

- 1 .

0 =
1.875

(6.4)

(6.5)
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For our simulations we take two beams 28cm long, one with a thickness of lcm

and the other of thickness 2cm. As the analytic solution assumes the plate to be

thin, we take two different thicknesses to assess the validity of this assumption. We

fix the end 8cm of the beam two sets of particles which are fixed and do not move.

This ensures the boundary conditions for the analytic solution, of no deflection, and

zero gradient at the fixed end are met.

We then apply a shear force to the beam by setting the velocity to each particle

dependent on its horizontal position along the beam. This force sets the beam in

oscillation. The initial velocity of a particle at position x is given by,

. Vf (sin PL + sinh j3L) (cos j3x — cosh /3x)
2 cos PL sinh PL — sin pL cosh (3L , ,

Vf (cos pL + cosh pL)(sin px - sinh px) * ' '
2 cos PL sinh PL — sin pL cosh PL

where, L is the length of the beam that is allowed to oscillate (Lbeam = 28cm is

the total length of the beam) and Vf is a parameter which governs the size of the

perturbation. This form is based on the analytic solution for the displacement of the

beam. We take Vf to be 0.01, 0.03 and 0.05. The beams shown in this section have

been run with a smoothing length h = l.bAp. Though the results are consistent

with those run with the smaller smoothing length of h = l.ZAp.

Our first example (figure 6.5) shows the case where e = 0.0, Vf = 0.05, h = 2cm

and the tensile instability takes effect. There are 20 particles across the height of

the beam. The beam bends upwards, artificial fracturing begins at the bottom of

the beam, at the end of the support where tensile stress is at a maximum. This

fracture propagates up through the beam.

Figure 6.6 shows the same simulation except that now e = 0.3. The beam no

longer fractures and continues to oscillate for many cycles without any artificial

fracture. The final frame in figure 6.6 shows the beam after five cycles have been

completed, some noise in the stress field of the beam can be seen. The noise in the

stress field is less than 10% in an oscillation.

Oscillation periods of the beam simulations are compared with theoretical results

in tables 6.3 and 6.4 for the 2cm and lcm high beams respectively. The average

percentage error in the 2cm high beams is 9.5%, compared with 3.2% in the lcm

high beams. This improvement is consistent with the assumption of thin beams in

the analytic solution.
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Vf
0.001

0.01

0.03

0.05

0.001

0.01

0.03

0.05

0.001

0.01

0.03

0.05

0.22

0.22

0.22

0.22

0.30

0.30

0.30

0.30

0.60

0.60

0.60

0.60

Tsph
1674.6

1671.5

1688.2

1705.0

1473.6

1469.8

1482.1

1495.4

1131.6

1127.2

1130.7

1136.1

•» theory

1557.0

1557.0

1557.0

1557.0

1341.9

1341.9

1341.9

1341.9

1030.4

1030.4

1030.4

1030.4

Table 6.3: Oscillation periods for a plate with H = 2cm and L = 20 for various
Vf and ix.

In figure 6.7 we show that there is good agreement between the actual and

theoretical shape of the beam for a given displacement. The blue particles show the

numerical position of the beam where the black line indicates the analytic solution

for the fundamental mode beam displacement. The analytic solution is given by

(6.6) if Vf is taken to be the maximum displacement.

Figure 6.8 shows the convergence of beam oscillations with increased particle

resolution. The vertical displacement of the centre of the free end of the beam

is plotted against time. The cases shown are of h = 2cm, fj, = 0.22, Vf = 0.01,

with resolution Ap = 0.2, 0.1 and 0.067. Figure 6.9 shows a close up of the initial

stages of the simulations. All resolutions agree up to the point where the beam first

approaches its maximum displacement. The period of oscillation and maximum

displacement decrease as the resolution increases. There is a 13% decrease in the

amplitude of the oscillation over the three cycles shown due to dissipation.

In figure 6.10 we see the effects of the artificial stress used to remove the tensile

instability in a case that doesn't fracture artificially when using standard SPH (Vf =

0.01, h = 2cm, \i = 0.22). The dashed line shows the standard SPH case. The

solid line the case using the artificial stress with e = 0.3. There are only minimal
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Vf
0.01

0.03

0.05

0.01

0.03

0.05

0.01

0.03

0.05

A*
0.22

0.22

0.22

0.30

0.30

0.30

0.60

0.60

0.60

Tsph

3333.6

3385.7

3322.8

2902.0

2977.7

2934.9

2214.4

2221.7

2200.4

T-L theory

3213

3213

3213

2833

2833

2833

2175

2175

2175

Table 6.4.: Oscillation periods for a plate with H = lcm and L = 20cm for various
Vf and \x.

differences in the period of oscillation. The difference between the two cases first

becomes noticeable as the beam is completing it's first upward motion where tensile

stresses are at a maximum. The major difference in the two cases is that the

standard SPH case contains a much larger decrease in the maximum amplitude

of the oscillations. Over three oscillations damping reduces the amplitude by 13%

in the case of e = 0.3 compared to a reduction of 53% in the e = 0.0 case. This

indicates that even though the simulation doesn't undergo numerical fracturing due

to the tensile instability, the initial effects of particle clumping still have an effect

on the stresses in the system.

Figure 6.11 shows a beam in a case (Vf = 0.05, h = lcm, /J, = 0.22, e = 0.3) with

a very large deformation. The beam shows no sign of the tensile instability despite

the large overturning displacement it is encountering. This shows that the method

of using an artificial stress to remove the tensile instability is effective in removing

the instability.
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Time = 11.9

118

Time = 107.0

-5x10"3 0 5x10~3

Time = 153.8
-0.05 0 0.05

Time = 199.9
0.1

-0.1 0 0.1
Time = 211.5

-0.1 0 0.1 0.2

Time = 246.6

-0.1

Figure 6.5: Oscillating plate with parameters \i = 0.60, V) = 0.05, Ap = 0.1,
e = 0.0. Note the clear breakage at T = 211.5 due to the tensile
instability.
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Time = 11.9 Time = 293.9

-5x10"" 0 5x10

Time = 575.8

,-3 -0.1 0 0.1

Time = 870.0

-0.01 0 0.01 0.02

Time =1152.4
-0.1 0 0.1

Time =5687.2

-0.02 0.02 0.05

Figure 6.6: Oscillating plate with parameters fj, = 0.60, Vf = 0.05, Ap = 0.1,
e = 0.3. Note that the breakage caused by the tensile instability in
figure 6.5 has been removed with the inclusion of our artificial stress.
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15 20 25

Figure 6.7: Comparison of the beam shape in an SPH simulation with the analytic
solution for fi = 0.60, Vf = 0.05, H = 2cm, Ap = 0.02. Black line
indicates the analytic solution for the shape of the beam. Blue particles
are the positions of the SPH particles which make up the beam.

6000

Figure 6.8: Convergence of the vertical position of the middle of the right hand
end of a plate for different particle resolutions. The plate had 10, 20
and 30 particles across its height H = 2cm. Other parameters were
li = 0.22, Vf = 0.01, e = 0.3.



6.2 Bending of a Plate 121

1500 2000

Figure 6.9: Close up (first period of oscillation) of the convergence of the vertical
position of the middle of the right hand end of a plate for different
particle resolutions. The plate had 10, 20 and 30 particles across its
height H = 2cm. Other parameters were \i = 0.22, Vf = 0.01, e = 0.3.

>- o

1000 5000 6000

Figure 6.10: Comparison between the vertical movement of the right hand end
of the plate between simulations with e = 0.3 and e = 0.0. Other
parameters were fx = 0.22, V/ = 0.01, H = 2cm, Ap = 0.1.
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Time = 842.9

•

-0.1 -0.05 0 0.05 0.1
Figure 6.11: Illustration of the large distortions and displacements our beams are

able to undergo without the onset of the tensile instability, fj, — 0.22,
Simulation parameters were Vf = 0.05, H = lcm, Ap = 0.05.
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6.3 Plastic Deformation of a Plate

Plastic flow begins to occur in a material when it becomes distorted to such an
extent that it can no longer store any elastic energy and the material undergoes a
permanent change of shape. In elastic flow the energy used to stretch a material
is stored and released when the stretching forces are removed. In plastic flow the
stretching energy is used to permanently deform the material and only elastic energy
is released when the applied forces are removed.

In figure 6.12 we illustrate the effects of plasticity on the oscillation of the elastic
beams in the previous section. We take a shear modulus /J, = 0.60, with the pa-
rameter determining the size of the initial velocity Vf = 0.05, and a yield strength
one tenth of the shear modulus Yo = 0.06. We take a plate height H = 2cm and
resolution Ap — 0.2.

As in the case of elastic beams the initial condition for the movement of the
beam is upwards. The plastic effects first take hold on the bottom of the beam
near the support where the tensile stresses are highest. The material here becomes
permanently deformed as the beam reaches the top of its oscillation. As the beam
attempts to swing back down to the starting position, the plastic extension at the
base means that it is unable to reach its original position. The beam does not sweep
down below the support as in the purely elastic case as the boundary condition at
the support has changed. Plastic effects mean material at the base of the beam near
the support does not return to its original position and the remainder of the beam
cannot swing down lower than the support.

The maximum amplitude of vertical oscillation of the plastic beam is larger than
the elastic case and there is a corresponding increase in the period of oscillation.
This can be seen in figure 6.13 where we compare the vertical displacement of the
right hand end of the beam with a purely elastic case with the same parameters.
The increase in the maximum vertical displacement is due to the material being less
able to resist the tensile stresses it is encountering. One can think of the forces in
an elastic material being in competition, a tensile force extending the material and
an elastic force to resist the extension. A reduction in this resistive force (due to
plasticity) means that the material is stretched further for the same applied force.
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Time.= 11.8 Time = 281.3

0 0.05

Time = 865.7
-0.1 0 0.1

Time =1159.0
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Time =1749.2
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Time =2339.3
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Figure 6.12: The effect of including plasticity using a Von Mises yielding criterion
on the oscillating beams of section 6.2. This is the case of \i = 0.60,
Vf = 0.05, H = 2, Ap = 0.2, Yo = 0.06.
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Figure 6.13: Comparison between vertical position at the end of beams with and
without plastic effects. The beam that has plastic effects has a yield
strength Yo = 0.06. Both the elastic and plastic cases have parame-
ters n = 0.60, Vf = 0.05, H = 2, L = 20, Ap = 0.2.

6.4 Plates in Simple Tension

As the short wavelength instability in SPH manifests itself when an elastic body is

in tension perhaps the most instructive test case to study is that of plates in simple

tension. We begin with a purely elastic-plastic beam, which means a damage model

is not included in the calculations. We see how this beam is seriously affected by the

tensile instability when using standard SPH. We then show that by adding artificial

stress terms with e = 0.3 the effects of the tensile instability are removed, the beam

in SPH calculation undergoes necking, ductile extension and finally failure.

After studying the elastic-plastic case we add flaws to the material and include a

Benz-Asphaug damage model (section 5.5) to investigate the brittle failure of beams

in tension. We see that an effect of the formation of cracks is to relieve the stress in

an area local to the crack, that brittle behaviour is largely unaffected by the SPH



6.4 Plates in Simple Tension 126

tensile instability and that our damage model converges with increasing resolution.

6.4.1 Pure Elasticity-Plasticity: No Flaws

The example in figure 6.15 is of a rectangular plate under tension, without the

artificial stress fix for the tensile instability, that is e — 0.0. The block is lcm high

by 3cm long. Tension is applied by moving the particles within 0.2cm at each end

with the constant horizontal acceleration Af — 5 x 10~6 in the x direction. In the

case shown \i = 0.3 and plasticity is modelled using a yield strength of Yo — 0.03,

we take a resolution of Ap = 0.0167 and h = 1.5Ap.

In this case as we include only elastic and plastic effects and we expect behaviour

similar to a ductile material. The plate is stretched without the appearance of

artificial fracturing up until the dimensionless time t — 110 (the dimensionless time

is defined in section 5.4). After this time the tensile instability takes hold and

artificial fractures can be seen at each end of the plate. The distance moved in a

time t is given by 2.5 x 10~6i2 cm, so at the time t = 110 the horizontal strain

on the plate is 0.01. We illustrate the tensional extension of the same plate, with

e = 0.3 in figures 6.16 and 6.17. The first five frames of figure 6.16 correspond to

the same times as the first five frames in the e = 0 case (figure 6.15). The two cases

are similar up until t = 110 where the tensile instability takes effect. Unlike the

standard SPH case (shown in figure 6.15) the e = 0.3 calculation is able to sustain

a strain of 0.15 without difficulty. As the strain is increased the material begins to

neck and then fractures consistent with a real ductile material.

Continuity implies that the volume of material in the plate is conserved as it

undergoes extension. An increase in the length of our two dimensional material is

accompanied by a decrease in its height (cross sectional area). A tensile force applied

to the ends of the plate must be supported by each cross section through the plate.

Necking occurs when one of the cross sections develops an area less than the rest of

the material, leading to an increase in the stress and longitudinal extension in this

area. An instability develops as the increased extension leads to a further decrease

in the height of the material at the point of necking and eventually leads to fracture

of the material. This fracture is a result of the physical geometry and not the tensile

instability.

Ductile extension occurs by shear and is a result of plastic flow (Ashby and Jones
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1980) (pg.103). Ap'plying a tensile stress to a plate results in the material feeling a

shear stress at some angle to the applied stress.

Materials fail in tension when adjacent atoms become too far apart and the

bonds between them break. Large strains (without fracture) are possible if plastic

flow occurs and the extension results in adjacent planes of atoms sliding over each

other. Plastic strain is accommodated by the permanent deformation of the atomic

lattice structure.

The Lagrangian nature of SPH particles mimic the slip over adjacent planes

without difficulty. We see in figure 6.17 that necking results in an increasingly thin

region at the centre of the beam as the longitudinal strain increases.

Eventually the particulate nature of the material (SPH algorithm) takes over

when there are no longer any particles which are able to slip and the material

breaks. This is what occurs in real materials, although our current SPH algorithm

results in fracture that is not quite realistic. Shear fractures are expected to result

in a cup and cone fracture (see figure 6.14 (Jaeger 1964) (pg.74)). It would be

interesting to include a description of damage in shear to the computations (Randies

and Libersky 1996) to see if it results in more realistic failure during the final stages

of the simulation.

Figure 6.14: Schematic diagram of a cup and cone fracture that results from the
shear fracture of a ductile plate undergoing simple tension. Neck-
ing occurs as the material becomes thinner at the middle. This re-
gion experiences higher stresses due to the necking and thins further.
Eventually the material fails due to shear, with one piece resembling
a cone which fits into a cup at the other side of the fracture.
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Figure 6.15: Tensional extension of a material with /x — 0.3, Yo — 0.03 using
the standard SPH algorithm e = 0.0. The dark band of particles
at each end indicate the edge particles which apply the extension to
the material, these particles are moved with the constant acceleration
Af = 5 x 10~6. Artificial fracturing begins to occur atT = 120.0 near
the left hand interface between the material and the edge particles.
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Figure 6.16: Tensional extension of a material with /J, = 0.3, Yo = 0.03 using
SPH with an artificial stress (e = 0.3,) to remove the effects of the
tensile instability. Edge particles are again moved with a constant
acceleration A/ = 5 x 10~6. Artificial fracturing no longer occurs,
the material begins to neck at the time T = 294.8.
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Figure 6.17: Continuation of the simulation figure 6.16. The material undergoes
ductile extensional behaviour and continues to neck. Necking contin-
ues until the middle region is stretched to an extent that the resolution
is such that the particle nature of the SPH algorithm takes over and
the material breaks. A real material is expected to eventually break in
a similar way, there is stress relief in the material as fracture occurs.
Note that artificial fracturing caused by the tensile instability is not
present and the addition of the artificial stress terms mean that the
material can undergo large strains without difficulty.
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6.4.2 Elasticity-Plasticity: With Flaws

The Benz-Asphaug damage model with a WeibuU distribution of flaws as described

in section 5.5 is now included in to the simulations. We take the material parameters

in our WeibuU distribution m and k to be 8.5 and 1.4 x 1019 respectively. The value

of k is chosen as a two dimensional value for basalt. Benz and Asphaug (1995) take

&3D = 5 x 1028 in their three dimensional calculations. As strain is a dimensionless

quantity, k has units of the number of flaws per unit volume. A one dimensional line
1/3

of particles contains k3'D flaws. A two dimensional cross section will then contain

kl'D flaws. For our two dimensional calculations we take k = k^ = 1.4 x 1019.

We now study the behaviour of brittle plates in tension by including a Benz-

Asphaug damage model into the calculations. In the previous subsection (without

the damage model) we applied a strain to the material by moving the end 0.2cm

of particles at a specified rate. When we did this in calculations with the damage

model we found that the initial stress wave quickly damaged and fractured the

particles directly adjacent to the ends, relieving the applied stress, the remainder of

the plate was never able to sustain damage. The applied boundary conditions make

the calculations inconsistent with experiment and must be improved.

To remove this inconsistency we assigned the end 0.2cm of the beam to have

no flaws and moved only those particles on the edge of the beam at the prescribed

strain rate. This allowed for the stress waves to travel into the plate without causing

catastrophic failure at the edge of the domain. We also moved the ends with a

constant strain rate in these calculations (by defining the velocity at which the ends

were moved, Vf) to allow a comparison with the statistics of fragment size given by

Grady and Kipp (1980).

Crack Propagation Velocity The tests we present in this subsection are similar

to ones given by Benz and Asphaug (1995). We begin with a test of the crack

propagation velocity. We expect cracks to grow at the velocity cg = 0.4 in our

scaled coordinates. In figure 6.19 we show the case of a beam with e = 0.3, /J, = 0.3,

Yo = 0.03 and Ap = 0.033. The beam is shown at three times, the frames on the

left are coloured by the mean stress (axx + cryy). In the frames on the right -the

colours of the particles refer to the value of the damage variable. A blue particle is

undamaged, with yellow corresponding to a fully damaged particle.
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A crack first appears in the middle of the beam. The stress in the area around
this beam is relieved. The crack then grows until the beam is broken into two
pieces. Some of the flaws were activated in other areas of the beam although the
beam is otherwise largely unaffected by damage in these areas as it is only the
weakest flaws which have been activated. As expected the crack grew in a straight
line perpendicular to the applied stress.

We measured the crack velocity to be c™eas = 0.381, this compares well with the
expected value of cg = 0.4. The difference is within the measurement error which is
limited by the particle resolution of the calculation.

Artificial Stress As cracks in a brittle material are expected to form at low strains
and long before the critical onset of the tensile instability, we expect that the results
of simulations without the artificial stress terms used to remove the tensile instability
should be similar to those in which the terms are included.

In our next example figure 6.20, we illustrate a simulation with the Benz-Asphaug
damage model and without the artificial stress terms (e = 0.3). strain is applied
to the plate by moving the ends with the constant horizontal velocity V} = 1 x
10""4. The first crack to be initiated is at the centre of the beam at the scaled time
T = 11.5, as this crack grows a second crack forms on the right hand side of the
plate. Both cracks propagate through the beam until it adjusts itself to the relieved
state of stress and the accumulation of damage ceases. The fractures formed in the
simulation including the artificial stress terms are almost identical although there
are some minor differences in the timing of crack initiation and growth. These
small discrepancies are likely effects (of small amounts) of non-disruptive particle
clumping in the e = 0.0 case. Remember the oscillating beam (figure 6.10) had an
amplitude that was damped more strongly in the e = 0.0 case, even though it did
not crack under the instability, we propose that similar differences also occur here.

Effect of Particle Resolution As with all numerical calculations it is important
that the resolution used is sufficient to gain a clear understanding of the physical
processes under investigation, and also that changes in the resolution do not change
the results of the simulation. In the present case flaws are assigned randomly, so that
changing the resolution also means changing the flaw assignment and the positions
of weaknesses in the material.
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In figure 6.22 we show the extent of damage at the scaled time of t = 4.2 for
resolutions of 20, 40 and 60 particles across the height of the beam. We apply a
higher strain rate to the beam in this case by using a larger velocity parameter
{V}- = 5 x 10~3) than the previous cases. The agreement between all three cases is
good, with finer detail being found at the higher resolutions. The majority of the
fracturing occurs around the centre of the beam, when the stress waves applied at
each end first meet.

All three cases have cracks through the middle of the plate. A series of smaller
fractures has developed out towards each end. Large cracks also form a distance of
approximately one quarter of the beams length from each end. Minimal damage has
been accumulated between these cracks and the ends of the beam. Except for the
lowest resolution where damage began to accumulate at the interface between the
beam and boundary particles which apply the stress.

Higher Strain Rates The quicker a mate' >z'> .s pulled apart the greater the num-
ber of cracks are expected to develop. The reason for this is that cracks propagate
at a finite velocity, at low stresses a single crack is able to develop and relieve the
stress applied to the plate. As the stresses increase a single crack is unable to relieve
the stress quickly enough (due to the finite velocity of its growth) so that more flaws
become active and more cracks grow in the material (Grady and Kipp 1980).

In figures 6.21 and 6.22 the plate of figure 6.19 is pulled apart with a strain rate
2 and 10 times greater respectively. The increased amount of cracks and damage
are clear to see. We find at the lowest strain rate that the plate is split in two by
a single crack. The average fragment size is 1.5cm. At the next highest strain rate
(figure 6.21) two cracks form, one in the centre and one at the right hand edge, but
again the average fragment size is around 1.5cm long. At the highest strain rate in
our calculations (figure 6.22) the beam is broken into four pieces with the average
fragment size close to 0.7cm. We now follow Grady and Kipp (1980) and Benz and
Asphaug (1994) and statistically determine the most likely expected fragment size.

Grady-Kipp Fragment Statistics In the Grady-Kipp model the effects of flaws
are accounted for with a damage parameter D. At a time t the damage in the
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material is given by a superposition of all of the active cracks.

D
• /

' dn{r)
v(t — r)dr (6.7)

,0 dt

where, dn(r)/dt is the rate of increase in the number of active flaws, and v(l — r)
describes the growth in the volume of material in which the stress is affected by the
cracks. As our calculations are two dimensional, we take v to be the area affected
by the cracks.

The rate of increase of active flaws is given by,

dn{r) dn{e) de(r)
-(1-2?) (6.8)

dt de dt

where, dn(e)/de is the increase in the number of active flaws, de(r)/dt is the strain
rate over time, and the factor (1 — D) accounts for the reduction in stress bought
about by damage.

The area of material that is relieved of stress by a crack is given by Txr2
g where rg

is the length of the crack. The Grady-Kipp model assumes that once active cracks
grow at a constant velocity cg. So that the length of the crack is given by rg = cgAt.
If a crack becomes active at a time T, the area relieved of stresses by a crack is given
by,

v(t-r) =irc2(t-T)2. (6.9)

Combining (6.7), (6.8) and (6.9) together Grady-Kipp arrived at an integral
equation for the damage,

D(t) = TTCI I
Jo

1 dn(e) dejr)

0 de dt
- r)2dr. (6.10)

Grady and Kipp then assume that a constant strain rate, de/dt = eo is applied
to the material so that,

Then from the Weibull distribution (5.32) we find,

= mkem-1 =^(!)-^m-l-

de

(6.11)

(6.12)
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Substituting into (6.10) the integral equation for damage becomes,

D{t) = nc2
gmke™ f r r a - a ( l - D(r))(t - rfdr. (6.13)

Jo
Grady and Kipp then obtain a first order series solution to this equation. This

solution is found by setting D(r) — 0 in (6.13),

ft

D(t) =i mke™ f rm-l{t - rf
Jo

dr

=7TC2
gmk€™

t2rm 2trm+1 rm+2

m
2irc2

gke™tm+2

1-
m + 2 (6.14)

D(t) =ae

where,

a =
2nc2

gk

To find the most likely fragment size, Grady and Kipp assume that fragmentation
occurs when D(tf) = 1. Taking the solution to the integral equation for damage
(6.14) this corresponds to,

m+2
(6.16)

The fragment distribution is given by,

nmk
F{L) =

OCg
(6.17)

We plot the most likely fragment distribution for the case of k = 1.4 x 1019,
m = 8.5 and strain rates of e0 equal to 3.33 x 10~3, 6.66 x 10~4 and 3.33 x 10~4

in figure 6.18. The peak of the distribution occurs at lower fragment lengths and
becomes sharper as the strain rate is increased.

We set dF/dL = 0 to find the likely maximum fragment size,

m
(6.18)
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B" =3.33E-3

e-=3.33E-4

Figure 6.18: The likely distribution of fragment size from Grady-Kipp statistics
for constant strain rates eo of 3.33 x 10~3, 6.66 x 10~4 and 3.33 x 10~4

with k = 1.4 x 1019 and m — 8.5. The distribution is more strongly
peaked at a lower maximum for the higher strain rate.

We find that LM = 0.44cm for eo = 3.33 x 10 3, this is compared to 0.7cm in

our simulation. At the lower strain rate of eo = 6.66 x 10~4, LM = 1.63cm using

Grady-Kipp statistics and 1.5cm in our computation. At our lowest strain rate

eo = 3.33 x 10~4 (seen in figure 6.19) the expected fragment size is LM = 2.87cm.

As our beam is of a similar length we cannot expect fragments of this size in the

computation which provided two fragments 1.5cm long. The computations agree

qualitatively with the Grady-Kipp statistics, the computed fragment sizes are of

the same order of magnitude as the statistically expected sizes and decrease with

increasing strain rates.
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Figure 6.19: Tensile extension of a brittle beam. Frames of left- side indicate the
evolution of the mean stress. Frames on right show the build up of
damage. Parameters of the simulation were e = 0.3, V/ = 5 x 10~4,
H = 0.3, Yo = 0.03, k = 1.4 x 1019, m = 8.5, H = 1.0, L = 3.0,
Ap = 0.0167.
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Figure 6.20: Tensile extension of a brittle beam, standard SPH case (e = 0.0).
All frames show the build up of damage. Beam ends are moved with
a higher velocity than figure 6.19, note the more extensive fracture
development. Simulation parameters were Vj = 1 x 10~4, [i ~ 0.3,
Yo = 0.03, k = 1.4 x 1019, m = 8.5, H = 1.0, L = 3.0, Ap = 0.0167.
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Figure 6.21: Tensile extension of a brittle beam with artificial stress terms. All
frames show the build up of damage. Unlike the ductile beam (fig-
ures 6.15 and 6.16), brittle beam calculations have only minimal dif-
ferences when the artificial stress is employed. Parameters of the
simulation as for figure 6.20 except that e — 0.3 in this case.
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Figure 6.22: Tes: of different particle resolutions. Material parameters of ii =
0.3, Yo ~ 0.03, fc = 1.4 x 1019 and m = 8.5. Simulation includes an
artificial stress with e •-- 0.3, and beam ends an: stretched with the
constant velocity V) = 5 x 10~3, Ap = 0.05, U.025 and 0.0167, at
the scaled times of 4.208, 4.228 and 4.201 respectively from the fop
to bottom frame. Note the muzh 7/i,?re extensive crack patterns due
to a larger strain rate.
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6.5 Stress Concentration Around Holes

As we wish t o investigate the fracture around chambers, the correct modelling of

the stress fields a round holes is vital . T h e stresses around a circular hole of radius

a, wi th a tensile stress a t infinity of pi in t he x direction and no stress a t infinity in

the y direction are given by Jaeger (1964) (pg.187).

°TT =7il

a =-j (6.19)

2a2 3 a 4 ' . . nn
—„ - ) sin 20

We saw earlier (in section 6.1) that the sum of the diagonal elements of a stress

tensor, is invariant to a rotation of axes and is thus an appropriate measure of the

stress field. We refer to this as the mean stress field.

= Trace{aij) = aTr + a69 =pi(l- 2%r cos 20

V r
(6.20)

Far away from the hole (a2 <IC r2) we find ameon = pi, this corresponds to the

applied boundary condition. For the boundary of the cavity (a2 = r2) the mean

stress oscillates, it is a minimum of —p\ when 0 = 0. When 9 = TT/4 the mean

stress is equal to the applied stress. The maximum stress concentration occurs

when 0 = TT/2 where amean — 3pi.

These qualitative effects are seen in figure 6.23 where we compare the analytic

result (6.20) with the results of an SPH calculation (right frame). The stresses have

been normalised by dividing by the stress at infinity pi, so that the colours in the

figure illustrate the areas of stress concentration.

The SPH calculation was performed on a grid 7cm x 7cm, with resolution of

140 x 140 particles. The stress is applied by moving the ends of the block at a

constant strain rate as with the beams in section 6.4.2. The ends of the block were

movecl with a velocity V) = 5 x 10~6 in the horizontal direction. The radius a of the

circle was such that a2 = 0.3125cm2.

Stress is relieved on either side of the hole in the horizontal direction, with a high

stress concentration perpendicular to the applied stress. This is consistent with the
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1

Figure 6.23: Comparison to analytic solution on the left and and SPH simulation
on the right for the mean stress concentration around a circular hole.

idea that active flaws in a material relieve the stress in a circular area around the

collection of flaws (section 5.5).

The major difference from the analytic result is that there is some noise at the

point of maximum stress concentration and the maximum numerical stress concen-

tration (3.8) is slightly higher than the analytic result (3.0) in part due to this.

We do not expect an exact comparison as our numerical discretisation of the

circular cavity is arranged on a Cartesian grid and the edges of our numerical cavity

do not agree exactly with those in the analytic solution.

One of the assumptions of the analytic solution is that the hole is in an infinite

material. Increasing the size of the numerical domain to place these boundaries

further away from the cavity has minimal effect on the computations. It appears

then that the boundaries are sufficiently far away from the cavity to fulfill this

assumption.
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6.6 Solid Body Code Summary

In this chapter we have tested our code to model the dynamics of solid bodies using
the method of adding an artificial stress to remedy the tensile instability for a range
of problems. We started with the problem of colliding rubber balls and showed that
artificial fracturing occurred in the standard SPH case. We have further shown that
this artificial fracturing can be removed with the addition of an artificial stress (5.3)
that prevents the clumping of particles which leads to an instability for particles that
are in tension. The SPH results are also compared to the TOODY finite difference
results of Swegle (1992).

In section 6.2 we look at the shape and dynamics of oscillating beams, comparing
SPH results to those of the Euler-Bernoulli theory. In section 6.3 we introduce
plasticity to these oscillating beams. We show that permanent deformation can be
modelled using the Von Mises yielding criterion.

This is followed by a look at plates being stretched in tension in section 6.4. We
begin by illustrating the effects of the tensile instability in standard SPH. The beam
is seen to fracture due to this numerical instability in a non-physical way. This
numerical instability is then removed with an artificial stress. The material necks
and fractures at a much later time and at a much larger strain. Although the final
stages are not consistent with the continuum equations (pure elasticity/plasticity, no
fracture model), the fracture can be understood from the numerical resolution being
such that the particle nature of the SPH code takes over. The particles making up
the beam are eventually drawn so far apart that they lose contact and break.

Our attention is turned to incorporating the fracture model of Benz and Asphaug
(1994) into our code to handle brittle fracture. Cracks are seen to form and propa-
gate realistically. We compare our results with the fragment size distribution of the
Grady-Kipp statistical model. We find qualitative agreement with the statistical
distribution. Fractures become more disordered and the fragment size decreases as
the strain rate increases. The predicted fragment sizes agree with our computations.

The correct calculation of the concentration of stress bought about by cavities
and cracks is vital for the simulation of fracture around magma chambers. In section
6.5 we find good agreement between the SPH calculation of the stress concentration
field around a circular cavity and the analytic solution.

As in the fluid dynamics case we have seen that the SPH algorithm and our
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computer programs are able to properly simulate some simple test problems and we
can be confident that they will be suitable to handle the magma chamber fracture
problems in the next chapter.



Chapter 7

Magma Chambers and Fracture

n this chapter we investigate the formation of cracks around magma cham-
bers and the relation of these cracks to caldera collapse. A complete anal-
ysis and solution of the broad problem of rock fracture during caldera

collapse is beyond the scope of this work and is not presented here. The suitabil-
ity of the SPH method for these applications is examined by studying simple two
dimensional systems.

The literature on volcanic eruptions and caldera collapse is large and we do not
aim to give a complete account. In this chapter we discuss the basic background of
the physics and cause of caldera collapse events and illustrate the possible areas to
which the SPH numerical method can be applied. A more complete account of the
caldera collapse problem remains to be completed as further work.

7.1 Background

We discuss some of the issues related to the eruption of volcanoes and caldera col-
lapse. A general text such as Francis (1993) gives a basic understanding of many
of the issues discussed in this section. The paper by Smith and Bailey (1968) gives
a good description of the basic events that are associated with caldera forming
eruptions. Most of the discussion in this section relates to the simple case of pis-
ton subsidence, even though other more complicated collapse forms can also occur
(Lipman 1997).

In figure 7.1 we show a schematic illustration of a normal ring fault bound caldera.
Normal faults are inward dipping faults that occur in tensional environments. Frac-
tures form in the country rock that lead to the formation of ring faults surrounding
a central block. The central block then subsides into the chamber.

The first step in determining the crack patterns that occur around magma cham-
bers is to know the appropriate stresses which lead to their formation. Once we know
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Magma Chamber

Figure 7.1: Schematic diagram of a normal fault caldera. A tensional environ-
ment in the country rock leads to the occurrence of inward dipping ring
faults and the subsidence of a central piston of rock into the magma
chamber.

these stresses we can define suitable boundary conditions for our numerical models.

7.1.1 Appropriate Boundary Stress Conditions

The mechanisms of collapse are complicated. The specific conditions and mechanism
of one particular case may be completely different to the conditions and mechanisms
of other calderas. A common feature of many calderas are the formation of ring
fractures around a block of material. This central block becomes detached from
surrounding rock and then subsides into the magma chamber which has become
partially evacuated due to the eruption of magma (Smith and Bailey 1968; Druitt
and Sparks 1984).

One theory for the development of ring type fractures is that they occur in
situations where the extension of the country rock surrounding a magma chamber
leads to a concentration of stress at the Earth's surface above the magma chamber
(Gudmundsson 1998). Faults form at places where the stress is large and propagate
down to the chamber, if these faults bound a block of material above the magma
chamber it is able to subside into the chamber. The tensional extension of the
country rock may be due to inflation of the magma chamber (Smith and Bailey 1968;
Druitt and Sparks 1984) or extension at a. divergent plate boundary (Gudmundsson
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1988).

Intrusions occur when magma moves into pre-existing rock. Dykes form when
the pressure of a magma body leads to cracks forming in the rock around the magma
chamber and magma is injected into these cracks. These dykes are known as ring
dykes if they take on a roughly circular shape at the surface. They can occur along
vertical or conical lines. They also occur in cases where the magma is pushed up
into previously formed tensile fractures.

An alternative explanation for the development of ring fractures is that a ring
dyke may propagate from the magma chamber to the Earth's surface detaching
the block from its surroundings and allowing it to subside. A combination of the
two regimes is also possible, an upward moving ring dyke may intersect with a
downward moving fault. Likewise an older fault in the rock (unrelated to collapse
causing volcanism) may be intercepted and lead to subsidence.

The doming of the surface of the Earth has been proposed (Smith and Bailey
1968; Komuro, Fujita, and Kodama 1984; Komuro 1987) as another possible cause
of fractures. Doming refers to an uplift of the Earth's surface, possibly due to the
rise and thermal expansion of underground magma (Komuro, Fujita, and Kodama
1984). The uplift is in someways analogous to the bending of a plate. We saw in
section 6.2 that the bending of a plate leads to a tensional environment on one side
of the plate and compression on the other. Tensile fractures at the Earth's surface
can form if doming is sufficiently large. From field evidence the doming has to occur
over a region much larger than that of the caldera that undergoes collapse for ring
faults to form (Smith and Bailey 1968; Druitt and Sparks 1984; Komuro, Fujita,
and Kodama 1984).

Our next question is What are the conditions inside a magma chamber that lead
to dyke injection? High pressures are able to accumulate inside magma chambers.
Explosive eruptions occur when the pressure inside a magma chamber exceeds the
tensile strength of the overlying rock (Francis 1993) (pg.167). The magma pressure
leads to fracturing of the rock, magma breaks through the rock and is ejected at
high speed. Lava forming eruptions also involve an internal magma chamber pressure
greater that the strength of the overlying rock though the magma is ejected at much
lower speeds.

The pressure can be a result of the exsolution of volatiles from a rising magma
(Sparks 1978; Wilson 1980) or an injection of extra magma into the chamber from
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another source. The mechanism of the exsolution of volatiles is complicated. A
magma contains an amount of volatile gases such as water and carbon dioxide,
as the magma rises and/or lithostatic pressure decreases volatile liquids become
exsolved (separated) from the magma, gas bubbles are produced through boiling.
The gas bubbles grow, leading to a volume and pressure increase in the magma.
Exsolution may also occur when a cooling magma crystallises, leading to volatile
saturation in the residual magma.

In appendix A we have shown that the thermodynamic effects of magma on a
large amount of water are minimal, because an insulating skin of solid material forms
around the magma. However, large explosive effects are possible if small amounts
of ground water mix with magma (Colgate and Sigurgeirsson 1973; Sheridan and
Wohletz 1983). Self sustaining mixing of magma and water can lead to a pressure
increase via the vaporisation of water under certain conditions.

Thermodynamic considerations are important in both the determination of the
correct boundary conditions that should be applied to the rock and the effects that
temperature has on crack propagation. The exsolution of gas from magma (Turcotte
et al. 1990) and explosions caused in the interaction between water and magma
that can lead to violent self sustaining mixing (Colgate and Sigurgeirsson 1973) are
events which are heavily reliant on the physics of thermodynamics. As we presently
only wish to model the effects of the thermodynamics (which applies pressure to
the boundary of the rock) we simplify our analysis and computations by neglecting
thermodynamic effects

The stress concentration at the very tip of a sharp crack are high and lead to
further crack propagation (Ashby and Jones 1980) (pg.130). The stress concen-
tration around a blunt or rounded tip is much lower and cracks are less likely to
propagate. A hot magma that has propagated to the tip of a crack in a rock of low
melting temperature may lead to the melting and blunting of the tip leading to a
lower stress concentration, inhibiting crack growth. Rock properties such as ductil-
ity and ultimate strength are also known to be temperature and pressure dependent
(Handin and Hager 1958; Griggs, Turner, and Heard 1960). We acknowledge that
these factors can be important though we do neglect them in our computations.

Just as a column of water attains hydrostatic balance to give equilibrium between
gravitational and pressure forces, the pressure of rock in the Earth's crust acquires
what is known as lithostatic balance. We have conducted tests that show that in the



7.1 Background 149

cases we present the inclusion of gravitational effects lead to only minimal differences
in the crack patterns that form.

In our two dimensional calculations we expect ring faults to occur as two vertical
or angled fractures a distance apart. If the faults are close together they are then
more like a central vent from which magma can erupt but caldera collapse is unlikely
to occur.

In the next two subsections we review the results of previous experimental and
numerical studies into the mechanisms of caldera collapse.

7.1.2 Previous Experimental Studies

Many experimental investigations into the mechanisms of caldera collapse have been
conducted (see Komuro 1987, Marti et al. 1994, Roche, Druitt, and Merle 2000).
The experiments in these investigations are all based along similar lines, and while
conceptually simple they are able to provide good results. The basic idea is to model
the brittle rock with a tank full of a powder such as sand. Forces are applied to
the sand to simulate events such as pre-collapse doming and collapse caused by the
withdrawal of magmatic support. The method of applying the forces varies for each
study.

While the use of a material such as sand to model solid brittle rock may seem
inappropriate, these are scaled experiments and the strength of the sand turns out
to be approximately appropriate for rocks on a larger scale (Marti et al. 1994).

Komuro (1987) looked at the doming effects of an ascending magma body by
moving a ball of clay up through the sand. Uplift (doming) of the sand occurs
above the ball and surface fractures develop radially from the centre of the dome.
These radial fractures are then intersected by the development of fractures which
form perpendicular to the radial fractures and eventually form a polygonal ring
fracture (a ring fracture made up of a series of short straight fractures).

Komuro (1987) also modelled the withdrawal of magmatic support with the
evaporation of dry ice under the sand. The evaporation leaves a cavity and a collapse
structure develops. The structure collapses by a ring fault moving upwards to the
surface boundary from the magma chamber.

The investigations of Marti et al. (1994) involved balloons covered by sand, the
balloons were able to be inflated and deflated. Adjustments in balloon pressure



7.1 Background 150

simulate doming and collapse. A significant difference from the experiments of
Komuro (1987) is that the powder consists of layers of sand of different colours and
cross sections are viewed to analyse the subsurface movement and fracture patterns.

Pre-collapse doming is again seen to lead to the formation of radial fractures at
the surface, although they do not propagate very deeply. Doming leads to a series
of inward dipping faults that do not quite reach the surface. These faults propagate
from the magma chamber and may be analogous to the formation of ring dykes.
Subsequent collapse leads to the reactivation of and subsidence along these faults.

The fracture structures that form when doming is not simulated before the col-
lapse are different, primarily because there are no pre-existing faults along which the
subsiding block can slip. The confining faults of the subsiding block are much clearer
and more vertical, the extent of subsidence is also larger with the block subsiding
to deeper levels.

Roche, Druitt, and Merle (2000) present a series of two and three dimensional
experiments using sand and silicon to model the formation of a caldera. They use
silicon to model the magma instead of a balloon. The pressure of the silicon is
reduced and the sand subsides into the silicon cavity. These experiments indicate
differences in the ways that fractures develop dependent on the aspect ratio of the
chamber. For low aspect ratio roofs, where the depth of overlying rock is less than
the width of the magma chamber, one set of ring faults develop propagating upwards
from the magma chamber. Higher aspect ratios subside through a series of faults.
As one set of fractures is unable to fracture the entire depth of overlying rock, the
subsiding block is delineated from its surroundings by a series of upward moving
faults.

7.1.3 Previous Numerical Studies

Using a boundary element method Gudmundsson, Marti, and Turon (1997) and
Gudmundsson (1998) studied the stress fields generated around a simplified magma
chamber and implications of these stresses on the formation of ring fractures. The
volcano is modelled as a two dimensional structure containing a hole (magma cham-
ber) to which external stresses are applied. Fracturing is inferred to occur at regions
of high stress, but the fractures and their growth are not explicitly modelled.

Doming caused by a large scale magma reservoir underneath the chamber is
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modelled by applying a vertical stress to the basQ of the plate modelling the rock

surrounding the chamber. This configuration was found to lead to the initiation

of ring fractures at the surface. The points of maximum stress can occur at the

surface at points horizontally removed from the point directly above the centre of

the chamber. Fractures at these points can propagate down to the chamber as ring

faults.

Ring faults may also develop when fractures caused by an extension at the surface

propagate down towards the chamber. Extension of the country rock is handled by

applying a horizontal tensile stress to the ends of the rock. This configuration can

also lead to surface stresses which are conducive to the formation of ring fractures.

Ring faults are presumed to be unable to be generated at the rock/magma cham-

ber interface as the injection of magma into dykes leads to a pressure decrease and

the dykes may not reach the surface. Gudmundsson (1998) infers that as ring

faults which lead to subsidence are not initiated at the magma chamber, (due to

these forming intrusions which do not reach the surface) the internal pressure of the

magma chamber cannot lead to ring fault production. This is because in this case

the maximum surface stress and displacement occurs at the centre of the chamber

and is unlikely to lead to fractures forming far enough apart to lead to ring faulting.

7.2 Basic Model Features

In the previous section we have described the features that are important to the

formation of fractures in the rock surrounding magma chambers. In this section we

present a numerical investigation of these features. The important factors are:

• Tensional extension of country rock It is well established that many vol-

canoes exist near the boundaries of crustal plates (Francis 1993) (pg.17), which

means that the tension or extension of country rock can play an important

role in the development of volcanoes.

• Large scale doming caused by an underground magma reservoir We

have also previously noted that the doming caused by a magma reservoir of a

scale around three times greater than the magma chamber is a possible cause

of the formation of ring faults. We do not investigate it here although its

effects could be modelled with the SPH technique.
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• Internal pressure from magma inside chamber Although Gudmundsson

(1998) believes that ring dykes are unable to lead to ring faults we investigate

the possibility here. Wisser (1927) studied the subsidence and fracturing in

limestone overlaying ore bodies that have shrunk due to oxidation and the

fractures propagate up from the cavity. The experimental studies we discussed

in the previous section found that in general collapse occurred on faults that

had propagated upwards from the chamber.

• Stress concentration around magma chamber Another important factor

is the concentration of applied stresses caused by the shape and positioning

of the magma chamber. This is important as the stress concentration means

that fracture can occur at lower strains.

In this section we numerically investigate the effects of these features. The simu-

lations are set up similar to those for the stress concentration around a hole (section

6.5) except that these calculations now incorporate the Benz-Asphaug damage model

(section 5.5). The damage model is used to simulate the initiation and propagation

of fractures in the rock.

Flaws are assigned randomly to each particle but in each of the examples in

this section each particle has the same flaw assignment. This ensures that weak

spots in the material are the same in each case and that differences are due to

the applied boundary conditions. Tension is placed on the material by moving the

horizontal ends of the material with the dimensionless velocity Vf = 1 x 10~5 in

the dimensionless units described in section 5.4. The model block had dimensions

7cm x 7cm, with a hole of radius a at its centre in the two cases were cavities where

included. The radius a is determined from a2 = 0.3125cm2.

The lengthscale over which these computations are conducted (~ 10cm) is much

smaller than the lengthscale appropriate for actual caldera events (~ 10km). As the

primary purpose of this section ;.s to illustrate the effects of stress concentrators and

internal magmatic pressure on the fracture of a material structure, the actual size of

the block is somewhat unimportant. It is important however that the calculations

can be scaled up to the larger geological lengthscale.

The major problem in scaling the present calculations up to a larger lengthscale is

to be able to sufficiently resolve the formation of cracks. The small scale calculations

in this section have the advantage that they are able to resolve the formation of
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smaller cracks for an equal number of particles in the simulation. In the present
cases we have a particle spacing of 0.05cm, and are able to resolve cracks in the
order of this size. In a simulation of a larger block 7km x 7km with the same
number of particles we can only resolve cracks in the order of 50m wide (which is
still a reasonable lengthscale for some flaws). Ideally, we would increase the number
of particles used in the larger lengthscale case to obtain better resolution, although
this quickly becomes computationally prohibitive when using a serial code. We do
note that as the results of later calculations (section 7.4) on a geological lengthscale
are qualitatively similar to the present case that it does appear to be possible to
scale the present calculations up to a larger lengthscale.

In figure 7.2 we see the case of a block of material without a stress concentrating
chamber present. In the first frame the block is in tension and no significant damage
has been accumulated. Cracks have developed by the second frame, one crack near
the centre of the biock and another in the top right hand corner. The reduction
of stress in an approximately circular area around these cracks can be clearly seen
(note the discussion preceding (5.38)).

The crack initiated near the middle propagates through the block. The crack
from the top is allowed to travel half way through the block before stopping when
the stress has been relieved by the other crack. A crack also forms as an offshoot of
this upper crack propagating parallel to the applied stress. This is likely to be due
to the stress field being disrupted by the formation of the cracks.

Particles in this section are coloured by the mean stress {axx + oyy). Note that
the colour scale representing stress is the same for each example in this section
although the stress concentration at the very tip of the cracks can exceed the given
range and has not been plotted to allow more detail of the stress field to be shown
in the remainder of the material.

We introduce a circular cavity which has the effect of concentrating the stress
in figure 7.3, otherwise conditions are as for figure 7.2. Fracture first occurs at the
base of the chamber where the stress concentration is largest (section 6.5). The
stress concentration is also the same at the top of the chamber and the reason for
a crack not being initiated here at the same time is that flaws are distributed at
random and by chance there are weaker flaws in the material at the bottom of the
chamber. A crack is initiated shortly afterwards at the top of the chamber and the
block is quickly split into two pieces by two straight fractures originating at the
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cavity. Notice that in this case the fractures occurred at a much earlier time in this

case (T ~ 105) than in the case with no cavity present in the material (T ~ 250).

This is due to the cavity being a stress concentrator leading to higher stresses for

the same applied strain. As with most of the quantities in this chapter the units of

time are given in the dimensionless units of section 5.4.

We also recall from (6.20) that the perturbation to the applied mean stress caused

by a circular hole scales as (1/r2). We therefore expect that at large distances from

the hole that the stress field will be largely unchanged and (as the top surface of the

material is far from the hole) it follows that we expect cracks to be first initiated

near the stress concentration and not at the surface of the block.

In the final case for this section we investigate the effects of internal pressure

inside the cavity. We place a gas in the chamber with the equation of state

P = P'las (7-1)

where we take cgas — cs/80. This is equivalent to an overpressure of the magma

inside a chamber i.e. it applies a pressure to the surface of the chamber.

As we can see from figure 7.4 the internal pressure increases the stresses around

the cavity. It is not surprising then that the fractures are initiated earlier (T ~ 80)

than the case with no pressure in the cavity. The cracks then propagate and relieve

the tensile stress in much the same way as the previous case. We next find that

several small cracks originate around the internal cavity due to the internal pressure

In summary, the computations in this section appear to exhibit sensible be-

haviour, in particular the simulations have shown:

• The block without a cavity to concentrate the stress undergoes fractures in

essentially random places.

• The inclusion of a cavity means that fracture first occurs at points of highest

stress concentration. The stress concentration caused by a cavity is seen to

foci s the areas in which fractures occur.

• The inclusion of internal pressure in this cavity leads to higher stresses around

this cavity and fracture being initiated at lower tensile strains. It also leads

to a series of fractures in radial directions being initiated at the cavity. It is

possible that these radial fractures represent ring dykes in a volcanic system.
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Figure 7.2: Effect of tensile strain on a block of material containing flaws. A
vertical cross section is shown of dimension 7.0cm x 7.0cm. The tensile
strain is applied by moving the ends with the velocity Vj — 1 x 10~4.
Fractures develop in weak spots in the material, /.i = 0.85, Yo = 0.01,
k = 1.4 x 1019, m = 8.5, Ap = 0.05.
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Figure 7.3: Effect of introducing a hole as a stress concentration on the block
of figure 7.2. Fracture is initiated earlier due to the concentration
of stress and fractures occur at points of highest stress concentration.
Radius of hole a = \/0.3125 otherwise parameters as for figure 7.2.
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Figure 7.4-' Effect of introducing an. internal pressure into the stress concentrat-
ing hole of figure 7.3. Fracture is again initiated at points of highest
stress concentration. Internal pressure leads to several small fractures
occurring near the hole. Parameters as for figure 7.3.
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7.3 Effect of Magma Chamber Depth

Here we investigate the effect of surface stresses for an elliptical chamber placed at
varying depths below the surface. We consider an elliptical magma chamber with a
horizontal semi-major axis 1.3a and a vertical semi-minor axis a placed in a block of
material which is horizontally stretched in tension. We place the chamber at three
different depths below the surface. The chamber is empty, and the only applied
stress is tension.

Gudmundsson, Marti, and Turon (1997) and Gudmundsson (1998) assumed that
ring faults were caused by tensional fractures being produced at the surface and
propagating down to the chamber. The main criteria used for the initiation of a
ring fault is that the maximum surface stress concentration must occur at a radial
distance away from the free surface point above the centre of the cavity, otherwise
fracturing will lead to a central vent instead of a ring fracture. We investigate the
stress fields here using SPH calculations.

In figure 7.5 we illustrate the change in surface stress concentration for an ellipti-
cal magma chamber at three different depths. We find that there are two maximums
of the surface mean stress concentration which occur a distance from the centre of
the chamber. The minimum occurs at a point above the centre of the chamber at
which point the stress is less than the applied stress. This is consistent with the
results of Gudmundsson, Marti, and Turon (1997).

We find that as the depth at which the chamber is situated is increased the
surface stress concentration decreases. This is not all that surprising. In section 6.5
we studied the stress concentration around a circular hole and saw in (6.20) that
in an infinite medium the deviation in the applied stress decreased proportional to
1/r2, where r is the distance from the centre of the hole. A similar proportional
decrease is to be expected in this case.

We do not expect exact agreement with a 1/r2 decrease as our boundaries are
at a finite distance. We do find that the surface stress concentration increases with
decreasing chamber depth and that the rate of this increase is larger for smaller
depths. This is consistent with a law of the type 1/r2 decrease.

We find the maximum surface stress concentration to have values of 2.19, 1.24
and 1.02 for depths of the centre of the ellipse of 1.9a, 3.1a and 4.4a below the surface.
The distance that the maximum occurs from the surface point directly above the
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centre of the chamber increases with increasing chamber depth. This implies that

the greater the depth of a chamber, faults propagating from the surface are more

likely to be produce ring faults, as the propagating faults are a significant distance

apart. However, the magnitude of the surface stress concentration and likelihood

of fault formation decreases with increasing magma chamber depth. These findings

are consistent with the boundary element models of Gudmundsson (1998).

Figure 7.5: Surface stress concentration above an elliptical cavity at varying
depths (D) of the centre of the ellipse below the surface, where the
country rock is stretched in tension. A scaled measure (x/a) of hor-
izontal distance is used, x/a = 0 refers to the point at the surface
directly above the centre of the cavity. The cavity has a vertical semi
minor axis of height a and horizontal semi major axis of length 1.3a.
The surface stress concentration has two maximums away from the
cavity centre. The distance between these maximums increases and
the stress concentration decreases with increasing cavity depth.

7.4 Caldera Models

In this section we illustrate the suitability of the SPH method to handle the problems

of the initiation and propagation of fractures and faults around magma chambers.
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As we have remarked earlier we do not present a complete account of the problem

and the relevance of our numerical results to field studies, but do show the potential

for its use in these areas.

We model a rectangular area of rock 7km wide by 4.9km high. With an elliptical

magma chamber centered at a point 3.5km from the bottom in the middle of the

chamber. We take k = 1.4 x 1019 and m = 8.5, flaws have a radius of 75m, the

weakest flaws are activated at strains exceeding 6 x 10~4. Our ellipses each have

semi-major axis of 1.75fcra in the horizontal direction. Our first examples contain

ellipses with semi-minor axis Q.Skm high in the vertical direction. The final ellipse

has a semi-minor axis of 1.12fcm which gives both a bigger ellipse and an edge which

is closer to the surface.

We begin by placing the rock into tension. Stretching each end with the velocity

Vj in the horizontal direction up until the dimensionless time T = 1 x 107 after

which the ends are kept stationary. We stop the stretching at this time as we

want to include the effects of a tensional environment, but also wish to be able to

differentiate between fractures caused by a tensional environment and those due to

internal pressure in the chamber and doming above the chamber.

We fill the elliptical chamber with a gas which exerts pressure on the rock. The

equation of state of the gas is given by (7.1). Initially we take c^as = 5 x 10~5c^, at

the time T = 1 x 107 we increase the pressure by setting c^as = 1 x 10~4c^. The gas

is representative of the pressure exerted by magma. The sudden increase in pressure

is due to causes such as the exsolution of gas or steam eruptions. We find that the

stress induced around a chamber with internal pressure, stretched with the velocity

Vf = 1 x 10~5 is typically 5 x 10~4 in our dimensionless coordinates when T = 107.

A typical stress before T = 107 in the case of no strain but with internal pressure is

atyp = 4 x 104 increasing to atyp = 10~3 after the pressure has been increased.

We consider calculations similar to those found in Gudmundsson (1998), we do

not -consider the eruption of the magma and collapse of the chamber although these

effects can be incorporated using the SPH method. Our calculations also neglect

thermodynamic effects.

Simplifications have been made in these models so that we can gain an under-

standing of the effect of stress and fracture alone on collapse mechanisms. The

models presented here are initially stretched in the horizontal direction. When the

stretching is finished, pressure inside the chamber is increased. The stretching leads
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to the rock accumulating damage and fractures. This leads to it being easier for
effects local to the chamber to initiate fault formation and caldera collapse.

In our first example (figure 7.6) we take Vj equal to zero, there is no tension
and the effects are only those due to the internal pressure. Minimal damage has
occurred up until the time at which the pressure is increased. After this time we see
fractures developing towards the upper edge of the chamber. These fractures grow
and move upwards, they do not quite reach the surface. They can be considered
to be similar to ring dykes. Doming of the surface means that the highest pressure
is over the centre on the chamber. We notice an amount of damage accumulating
there and a ring fault develops down towards the chamber, like the upward moving
dykes, this fault does not quite reach the surface. We note that the upward moving
dykes occur largely symmetrical.

In figure 7.7 we see an example with the country rock being in a tensional
environment. We find the tension introduces a degree of asymmetry (with the
two upward moving dykes propagating at different angles) even though tension has
ceased before the fracturing begins. A dyke appears on the left moving upwards from
the chamber. It develops at a more vertical angle (than the Vj = 0.0 case) and does
reach the surface. A downward fracture develops down from the surface above the
centre of the chamber. Again this fracture is vertical. Finally a fracture develops up
from the chamber on the right hand side. Although this fracture grows at an angle
much less than vertical. The strain rate of the material when it is being stretched
in tension is 1.43 x 1011, meaning that it has undergone strain of 1.43 x 10~4 when
the velocity is set to zero.

A horizontal tensile strain rate of 1.43 x 1010 is used in figure 7.8. At this
strain rate the material has undergone a strain of 1.43 x 10~3 before the tensile
stress is removed and the internal pressure is increased. Unlike the previous cases
(with lower strain rates) significant fractures have formed by this stage. A large
degree of asymmetry has resulted from the higher strain rate. There are fractures
originating from the cavity which have moved up towards the top surface and one
down towards the bottom, these fractures are largely vertical. The strain has also
lead to the formation of an upward moving dyke, this dyke halts its progression
when the tensile strain rate is set to zero, but is reactivated on a shallower angle by
the higher internal pressure.

Our final example uses the higher magma chamber which is also closer to the
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surface (figure 7.9). The first fracture to develop is a downward moving fault from
the centre of the chamber, not unsurprising as doming is much more prominent with
the chamber being closer to the surface. A set of ring dykes appear at an almost
vertical angle, quickly followed by a second set. The faults are then almost met by
faults coming down from the surface which form due to doming and the damage
surrounding the two sets of ring faults increases widening the area of the faults.

7.5 Summary and Conclusions

Cavities and cracks in a material lead to a distortion of an applied stress field, with a
concentration of stress in particular areas and stresses being relieved in other areas.
In section 7.2 we investigated the effects of stress concentrations due to a circular
hole in a brittle material. These calculations are similar to those in section 6.5 where
we compared the stress concentration around a hole in an elastic material with an
analytic result, except that they incorporate a damage model. The introduction of
a cavity is clearly shown to have a dramatic effect on the fracture mechanics, the
stress concentration around the cavity focussing fractures to form in areas of high
stress concentration.

We remarked earlier in this chapter that our aim is not to present an exhaustive
investigation into the mechanisms of collapse, though we can still make some com-
ments on these mechanisms. In section 7.3 we compare the SPH method to boundary
element results of Gudmundsson, Marti, and Turon (1997) and Gudmundsson (1998)
for the surface stress concentration above an elliptical chamber in an elastic material.
In agreement with the results of Gudmundsson we found that for a shallow elliptical
magma chamber (close to the free surface) that the surface stress concentration was
high, however the maximum concentration occurs towards the centre of the chamber
and is unlikely to lead to ring fault formation. As the depth of the chamber below
the free surface is increased the maximum stress concentration occurs at distances
away from the centre, faults initiated here are then likely to lead to the formation
of ring faults as the fractures form a radial distance apart, with the drawback being
that the amount of stress concentration at the surface is lower and a higher applied
stress is required for faults to form.

The major problem with the analysis in section 7.3 is that there is an assumption



7.5 Summary and Conclusions 163

that fractures are initiated at a point of high stress and travel from the Earth's
surface down to the magma chamber. An advantage of the SPH calculations in
section 7.4 is that they incorporate a damage model which is able to explicitly follow
crack formation anu growth. The damage model is able to account for weaknesses
in the rock which may lead to failure at points that may not necessarily correspond
to the point of maximum stress.

We investigated the fracture around a chamber that was in placed in tension and
was also subject to internal pressure. We found that as the strain rate (tensional
stress) was increased faults were likely to occur at a more vertical angle. This is
particularly important for piston type collapse events as subsidence is inhibited if
normal faults occur at angles which are far from vertical. The positioning of the
chamber closer to the surface was again seen to lead to a higher degree of fracturing
due to a higher stress concentration.

The calculations we have conducted have shown that the mechanism of caldera
collapse due to the initiation of ring faults at the Earth's surface does not on its
own appear to be a likely mechanism. Fractures formed in this way usually occurred
over the centre of the chamber and are unable to lead to ring faults, they may still
possibly lead to collapse in conjunction with an upward moving dyke (figure 7.7).
This is somewhat different to the work of Gudmundsson, Marti, and Turon (1997)
and Gudmundsson (1998) who assumed that any fractures forming at the magma
chamber would only lead to dyke formation and not ring faults. Although our study
is not comprehensive and we cannot say so with certainty.

What we can conclude is that the mechanisms of collapse are complicated and is
likely due to a range of different factors including chamber geometry, internal mag-
matic pressure, previous tectonic faults and regional doming. We further conclude
that the SPH method has been shown to be able to handle the problem of caldera
collapse with relative ease and is a suitable tool for further work in the area.
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Figure 7.6: Effect of internal pressure with no extension of the country rock.
Shortly the gas pressure is increased a fracture appears on the upper
right surface of the cavity and propagates upwards, a similar fracture
also quickly develops from the left side of the cavity. These fractures
do not reach the surface. Finally a fracture develops at the surface
close to the centre of the chamber and propagates down towards the
chamber although it doesn't quite, reach the cha?nber. Parameters used
in the simulation are Vj = 0, Ap = 5,000, k = 1.4 x 1019, m = 8.5,
/i = 0.85, yo = 0.01.
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Figure 7.7: We now investigate the effect of applying a tensional strain to our
model. The fractures that develop are now more vertically aligned
and do reach the surface. The downward propagating fracture reaches
the chamber. Parameters used in the simulation are Vf = 5 x 10"6,
Ap = 5,000, k = 1.4 x 1019, 77i = 8.5, // = 0.85, Yo = 0.01.



7.5 Summary and Conclusions 166

Time =8.70E+06 Time =9.59E+06

0.2 0.4 0.6 0.8

Time =1.02E+07

1 0 0.2 0.4 0.6 0.8

Time =1.23E+07

0.8

Figure 7.8: This case involves a tensional strain rate ten times greater than the
strain rate in figure 7.7. Fractures develop before the point where the
internal pressure is decreased, the higher strain rate is large enough for
a fracture to develop all the way through the block. A dyke is formed
and grows upwards on the left side of the material. Parameters used
in the simulation are Vj = 1 x 1(T5, Ap = 5,000, k = 1.4 x 1019,
m = 8.5, \i = 0.85, yo = 0.01.
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Figure 7.9: Effect of a cavity with a greater ratio of semi-minor to semi-major
axes, placing the top of the cavity closer to the surface. The tensile
strain rate of Vf = 5 x 10"6 is the same as the case shown in figure
7.7. Fractures develop at lower strains than the case in figure 7.7 with
a fracture propagating vertically down from, the surface over the centre
of the cavity. This is followed by a set of upward moving vertical dykes
which are followed by a second set of dykes which occur more distant
from the centre. A significant amount of doming occurs as the cavity is
nearer the surface, fractures develop at the surface and propagate down
towards the first set of dykes. Simulation parameters are Ap = 5, 000,
k = 1.4 x 1019, m = 8.5, // = 0.85, Yo = 0.01.



Chapter 8

Concluding Remarks

she basic aim of this thesis was to gain an understanding of some of the

j phenomena associated with caldera collapse. We conclude with a discuss-

.sion on our success in meeting this aim and remarks concerning further

directions in which work should proceed. This discussion is kept brief as a result of

summaries being provided throughout this thesis.

8.1 Discussion

In chapter four we have considered the problem of waves produced during caldera

collapse eruptions. Although there are several possible mechanisms for the initiation

of waves by these eruptions (pyroclastic flows, earthquakes, submarine explosions

Latter (1981)), we concentrated on the collapse of an island into the sea as the

source mechanism.

We developed a simple model for the waves produced by piston subsidence and

conducted a series of wave tank experiments to benchmark our numerical code.

Further simulations were conducted which enabled an approximate scaling relation

for the extent of wave runup (size of waves) to be developed. Unfortunately, we

could not apply our results to the realistic case of Santorini. The ratio of cavity

height to width is much smaller in the case of Santorini than in our simulations

. and it is likely a different mechanism for the generation of waves applies. The

resolution and time required for a realistic simulation of Santorini call for a parallel

SPH implementation. Areas of further investigation which would enable a realistic

estimation of the wave amplitudes on Santorini are addressed below.

The problem of how fractures form in the country rock around magma chambers

was examined in chapter seven. A range of simulations were conducted to determine

appropriate stress conditions that may lead to the formation of ring faults and

possibly result in caldera collapse.
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Magma chambers in a two dimensional structure were seen to act as stress con-
centrators of applied stresses, locally increasing the size of an applied stress and
focussing fractures to occur in the regions of high stress. Internal magmatic pres-
sure was seen to lead to the formation of ring dykes. Preliminary models of realistic
situations were presented although further work is required to pinpoint the exact
mechanisms and critical stresses which lead to the formation of ring faults and sub-
sequent collapse.

8.2 Further Work

This thesis could be divided into two areas, fluid mechanics and solid body dynamics.
Some of the directions for further work we now discuss are interlinked and are ap-
propriate improvements to both of these areas. One important improvement would
be the parallelisation of the SPH numerical code. There are two main advantages
that this would bring.

Firstly, it would enable the simulation of two dimensional calculations involving a
larger number of particles. As mentioned in section 4.4 the lengthscales involved and
resolution required in a realistic simulation of Santorini mean that such a calculation
would take many weeks to run on a serial computer, a time that can be greatly
reduced by parallelisation.

Simulations with a larger number of particles would also enable the accurate com-
putation of phenomena on a larger scale. Instead of modelling only the generation
of waves, it would be possible to follow the waves that are produced large distances
over the sea and their runup on the beaches of Crete. The forms and amplitudes
that the waves take are important in assessing how their effects on civilisation when
they reach land.

Allowing the efficient computation of higher numbers of particles would also
be useful in increasing resolution and accuracy in the simulations, which would be
particularly useful in computations involving breaking waves (section 4.3). In the
context of our models of the fracturing of magma chambers an increased number of
particles would allow us to increase the resolution of the fractures that are formed. It
would also enable us to increase the domain over which the simulation is conducted
and allow the effects of other physical boundary conditions to be examined.
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The second advantage of a parallel code would be that it would enable three
dimensional calculations to be performed efficiently. Three dimensional calculations
have the obvious improvement that the physical processes that are being modelled
are much closer to those found in the realistic situation. Simplifications are not
made in reducing to a two dimensional system. We remarked in section 4.4 that
the neglect of the cavity breadth in our simulations of wave production limited the
applicability of our computations. This limitation can be overcome with the use of
a three dimensional code.

The pleasing thing about the parallelisation of SPH is that the algorithm is well
suited to parallel computation. Essentially, as particles need only know about parti-
cles in their own neighbourhood it is easy to split different sections of a computation
onto different computational nodes (of course one also has to consider how to treat
interactions between the boundary of each section). Using a parallel implementation
such as MPI on a Beowulf type cluster is an economical way of conducting parallel
SPH computations.

Another area where the computations in chapter four were unrealistic was that
they assumed a simple flat, right angled geometry which is vastly different to the
complicated geometry found in realistic situations. It would be interesting to see
what effects the more complicated geometry, along with including a slower timescale
over which collapse occurs has on the final results of wave amplitude.

Possible extensions of the work on magma chamber fracture are many and var-
ied, increases inresolution and the extension to three dimensions have already been
discussed. In the simplest cases more simulations need to be conducted to highlight
the dominant physical processes. We have seen that t. , "tress concentration is im-
portant in determining fracture formation. Changes in the formation of cracks due
to chambers of different geometries (sizes, shapes and positions) leading to different
stress fields is worthy of further study. An indepth look at changes in physical pa-
rameters such as strength and the applied pressures and tensile strains would also
be appropriate.

The final avenue for further work we discuss is to combine the two areas of this
thesis together so that we can model the effects that the collapsing chamber has on
surrounding water as the chamber is subsiding. This is not an overly difficult task
as the implementation of both the codes is very similar.



Appendix A

Thermodynamic Effects

We outline a series of calculations in this appendix which quantify the size of the
thermodynamic effects that occur in the mechanics of the generation of waves by
caldera collapse.

We begin by assuming we have a rectangular cavity of dimension 5km x 5km x
400m deep. This is a reasonable size for a caldera cavity. At the base of the cavity
we assume to have lava and rock at 1,000°C. We allow water to flow into the cavity
and be heated by the caldera floor. The conditions we describe may not be exactly
those which occur in reality but they are sufficient to give a reasonable estimate as
to the size of the thermodynamic effects.

For thermodynamic effects to outweigh mechanical motion of the water an ap-
preciable amount of the water would be required to be converted into steam. We
thus look at the energy required to vaporise the water. As we are only looking for
a simple estimate we take physical values appropriate for fresh water, ignoring the
minor differences that are present in a salt water environment.

First we require the volume of water which will fill our cavity,

V = 5 x 103m x 5 x 103m x 4 x 102m
(A.I)

- 1010m3.

A one cubic metre volume of water corresponds to one thousand litres, we then
have a volume of water V = 1013 litres, and mass M = 1013kg.

The heat required to vaporise water consists of the heat to raise the water from
it's initial temperature to boiling temperature Qh plus the heat required to vaporise
the v/ater Qv.

We take Cw = 4190 J/{kgK) to be the specific heat of water, the amount of heat
required to heat the water from an initial temperature T{ to a final temperature 7/
is given by,

Qh = CwM(Tf-Ti). (A.2)
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We assume an initial water temperature of 20°C and atmospheric pressure so

that the boiling point is 100°C we find the energy required for heating is,

Qh = 4.19 x 103 x 1013(100 - 20)

= 3.35 x 1018 J.

If we take Lv = 2.3 x 106J/kg to be the latent heat of vaporisation of water we

find the energy required to vaporise the water is,

Qv = LVM

= 2.3 x 106 x 1013 (A.4)

= 2.3 x 1019 J.

The total energy required to convert the water at 20°C into steam is then Q =

Qh + Qv = 2.6 x 1019 J.

Similarly, we can look at the amount of energy that it takes to cool the lava

down to 100°C. For this calculation we assume equal volumes of lava and water so

that the mass of the lava is then 2.6 x 1013kg.

The values of the physical constants we use for lava are typical of the values

found in Hoskuldsson and Sparks (1997). We take the specific heat of lava to be

Ci = 1200 J/(kgK), the amount of thermal energy lost as the lava cools from an

initial temperature T{ to a final temperature Tf is given by,

Qe = ClM(Tf-Ti). (A.5)

We assume lava with an initial temperature of 1,000°C which is cooled down to

the boiling point of water 100°C we find the energy released during cooling is,

Qc = 1.2 x 103 x 2.6 x 1013 x (1000 - 100)
(A.6)

= 2.8 x 1019J.

We take Lf = 2.1 x 105 J/kg to be the latent heat of fusion of lava and the energy

released as the lava solidifies is,

Qf = LfM

= 2.1 x 105 x 2.6 x 1013 (A.7)

= 5.5 x 1018/.
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The total energy released as the molten lava at l,000°C cools to rock at 100°C
is then Q = Qc + Qf = 3.4 x 1019 J. This is sufficient energy to vaporise the water,
provided the energy can be efficiently transferred from the lava to the water.

As lava begins to cool an insulating skin appears at its surface. We now cal-
culate the amount of heat that is able to conduct through this skin. Colgate and
Sigurgeirsson (1973) define the effective skin depth 5 from the error function solution
to the thermal diffusion boundary value problem (Carslaw and Jaeger 1959) as,

(A.8)

Where k is the thermal conductivity, which we take as A.9W/(mK). The skin
depth is the length scale over which cooling occurs,

5=
(2.6 x 103) x (1.2 x 103) (A.9)

=1.25 x 10~3Vi m

After one week (i = 6 x 105s), 5 = 0.97m.

We now look at the heat flux of conduction, Fc

AT
~ ~S~ (A.10)

4.9 x 900
~ 0.97
~ 4.546 x 103W/m2

The energy that passes through the bottom of a caldera per second is then
Fc x A = 1.14 x 1011 J/s. In one week the heat energy lost by the cooling magma is
then 6.9 x 1016 J. This corresponds to 0.3% of the energy required to vaporise the
water. The water is only heated to 21.6°C. We can therefore conclude that over the
short timescale of caldera collapse that is able to produce waves, thermodynamic
effects are unimportant. Note that this analysis does not mean that phreatomag-
matic eruptions will not occur when lava and water interact by mixing (Colgate and
Sigurgeirsson 1973).
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Dispersion Relation

In this appendix we derive the dispersion relations of section 5.6 in more detail. We
assume plane waves in an infinite, initially uniform, elastic material with constant
initial stress and further assume that the perturbations to velocity and position are
small. We choose Cartesian axes which are aligned so that the initial stress tensor
is diagonal, that is Sxy = 0.

We begin by undertaking an analysis to find the dispersion relation of the exact
elastic equations and later compare this result to the dispersion relation of the SPH
equations for long wavelengths. Finally we calculate values of the coefficients in
the SPH dispersion relation for short wavelengths to assist in a discussion of stabil-
ity properties. Morris (1996) has undertaken a similar analysis for the dispersion
relation in the case of isothermal gas dynamics.

Dispersion relation: Exact equations

We assume waves with small perturbations which are of the form,

v
r
p

P

= f
= p
= P

+
+ (B.I)

where overbars refer to the initial unperturbed quantities, the other terms referring
to the perturbations. The components of V are Vx and Vy. Components of the
position perturbation R are X and Y. The wave number k has components kx and
ky.

Our first step is to substitute these waveforms (B.I) into the equations of motion.
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Continuity Equation

We first take the continuity equation,

dp =

substitute in for the perturbations,

-luDe1* = -i{p + Del+)(kxVx + kyVy)e
l<t>)

linearise (remove second order terms),

-uvDe* = -ip(kxVx + kyVy)e
l*

and divide each side by iu)et<t> to give,

D = ^(kXVX + kyVy).

Deviatoric Stress Rates

(B.2)

(B.3)

(B.4)

(B.5)

The equation for the rate of change of deviatoric stress in the horizontal direction

is,

dSxx 2
— = -fi(2exx - eyy)
(XL O

where,

2

(B.6)

(B.7)
2 \dxi da

Inserting the perturbations,

-iu)Txxel<t> = %\ii{2kxVx - kyVy)e
l<i> + %{kyVx - kxVy)e

l*(Sxy + Txye**) (B.8)

linearising (removing terms of order e21*),

-iu>Txxel<t> = i\n{2kxVx - kyVy)e
l<t> + i{kyVx - kxVy)e

l<}>Sxye%* (B.9)

dividing by —tuje^ and recalling that we choose initial coordinates with Sxy = 0

we find,

(B.10)
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where the component Tyy is found in the same way with a coordinate transfer.

The equation for the diagonal deviatoric stress is slightly different,

dSxy

— = 2fxixy

Substituting for the perturbations and linearising,

(B.ll)

l* =fiie^'{kxVx + kyVy) + {Syy + Tyye* - Sxx - Txx el<t>)UkxVx -

{kxVx + kyVy) + l-el*{Syy - Sxx){kyVx - kxVy)

Txy = - ^{

Which we express as,

kyVy) - Sxx)(kyVx - kxVy).

Txy = -^{kxVy + kyVx) + $-(kyVx - kxVy)

where,

(B.12)

Momentum Equations

Morris (1996) looked at the effect of viscosity in the case of one dimensional SPH gas

dynamics and found that while viscosity was effective in reducing the growth rate of

the short wavelength instability, it was unable to stabilise it. As we are undertaking

this analysis to eventually stabilise the tensile instability we do not consider the

effects of viscosity here.

The momentum equations for elastic bodies in the absence of viscosity are,

dVx _ 1 fdP dSxx dSxy\
p\dx dx dy Jdt

dVy

dt
'df_ _ OS™

p \dy dy

dS_xy\
~dx~ ) '

K ' }

The perturbations (B.I) are placed into the momentum equations (B.15). Putting

<f) = k • r — ut we find,

-tu>Vxe
%+(p + c2

oDe1*) = - ikxc
2
0Del<i> ikxT

xxel

= - %kyc
2
oDex<t>

el* + ikyT
xyel4>

zkxT
xyel<t>

(B.16)
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linearising we have,

e*p = -ikxc
2

oDel<t> + ikxT
xxeut> + ikyT

xyet4>

+ ikyT
yyel<t> + ikxT

xyel<t>
(B.17)

dividing by — iel<t> gives equations for the two wave velocity components,

puVy = ky(c
2

oD - Tyy) - kxT
xy.

(B.18)

Finding the dispersion relation

We now substitute the values for T l J (B.10,B.13) found from the time rate of change

of deviatoric stress and continuity D (B.5) into the equations for the velocity com-

ponents (B.18) derived from the momentum equations and find,

s = Vxkl(pc2
o + i /

Vy = Vyk
2
y(pc2

o + i/

pc2Vykxky(pc

pc2
(B.19)

Vxkxky(pc

We arrange each of these equations to find Vx/Vy,

Vx

Vy
(B.20)

and

Vy
(B.21)

vy kxky(pcl + !// — £)

The solution of these equations found by equating (B.20) and (B.21) leads to

the quartic equation for w,

where,

A = - i

u>A + Aw2 + T = 0,

pel + f

(B.22)

2 2\
yj

= 4 f c 2
 {P°2O + "T ) ((^ + ^) ̂  + (A* - 0 fcj)

P \ 6 J

(B.23)
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and k2 = kl + k2,.x y

We note similarities in these two terms and write,

£(/*-0
(B.24)

so that the quartic equation for w becomes,

= 0

- J2) = 0.
(B.25)

Which has two solutions,

= n = 0 -O)/P-
(B.26)

Elastic waves (Landau and Lifshitz 1970) (pg.102) consist of two waves which
travel independently of each other. A longitudinal wave which travels in the direc-
tion of propagation of the elastic wave and a transverse wave in which the particle
displacements are perpendicular to the direction of propagation. The longitudinal
wave velocity vj is such that it's curl is zero (V x v/ = 0). The transverse mode is
in a form such that the divergence of its velocity, vt is zero (V • vt = 0).

The first solution (found in (B.26)) gives a mode with frequency,

= k2 cl + ^_ . (B.27)

Substituting back into the equation for Vx/Vy (B.20) we find that most terms
cancel,

kxky{pc2
0 + & + 0

(B.28)
Vy (k2 + k2)(pcl + }/*) - kl{pcl + \n) - k*(ji - 0

The requirement for a longitudinal mode is that the curl of the velocity is zero.

k

V x v = dx

J
d_
dy dz

0

(B.29)
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Evaluating the curl we find,

- ikyVxe
1<f> (B.30)

= kxVy - kyVx.

Equating to zero we find that the ratio of velocities is the same as (B.28), Vx/Vy =
kx/ky. So Vxv = 0 and this solution is the longitudinal mode.

The propagation speed of longitudinal sound waves (div/dk) is given by,

(B.31)

Taking the second solution of the quartic equation (B.26) we find,

,

P P
(fc2 _

(B.32)

and

Vy (k* f/z) - k (B.33)

If the initial deviatoric stresses are zero or the diagonal components of the devi-
atoric stress are equal (£ = 0) this is the standard transverse mode (V • v = 0).

Equating this to zero, we find it can be expressed as Vx/Vy = —ky/kx so this is

the transverse mode. Again assuming C = 0, we find the standard transverse wave

velocity,

du> _ jik _ HI

dk puj V p'
(B.35)
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Dispersion relation: SPH equations

We now look at the dispersion relation for the SPH equations. We assume the SPH
particles are initially placed at the vertices of a regular grid, that is a grid of square
cells each of side Ap. The mass of each particle is then p(Ap)2. We denote the
initial position of particle a by f „ and write the perturbation to it's position in the
form,

rfl = fa + Rei<k-F"-wt). (B.36)

Our calculations are performed using the XSPH velocity equation (2.22) where
the velocity of a particle is found by using an average velocity over neighbouring
particles. For simplicity we derive our equations using the standard equation for
velocity and include the effect of XSPH later. We denote the XSPH smoothed
velocity by a hat and write the velocity vo in the form,

•0- _ V p'(k-ra
V o — V a C

(B.37)

Again for simplicity we start with the standard SPH equations and include the
terms associated with the artificial stress later. We begin by defining the following
summations which are used later to simplify our expressions. These summations
depend on the wave velocity and particle positions.

A = (Ap) ra6)

d2w,ab

dxl
d2Wcab

dyt•72
(B.38)

(5 = - cos(k • ra6))Wa6
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We assume waves similar to those used in the exact case.

va =

ra = f +

Pa = p +

Pa = p +
(B.39)

For efficiency we sometimes use the notation 6pa = Det(k'?a~""), 5Pa = c2
05pa,

Below we note a few details which we use in the following derivations.

As each particle is of the same mass we can write,

(B.40)

Using laws for exponentials we can write,

£ _ ei(kT6-k-ra) _ e»(k-(r(,-ra)) _ g - t
gtk-fo

(B.41)

To find the effect that a perturbation of the particle positions has on the kernel

derivatives we look at a Taylor Series expansion for the kernel derivatives.

dW dW d2W,r_ . . . d2W ,._ .„ .
+ {5Xa ~6xb) + dzMi5ya ~Syb)

02WdW dW d2W
+

(B.42)

dy dya ' dy2 v"i'a "'"' dxadya

In some of the derivations we require a relationship between position and velocity.

The standard equation (excluding XSPH) for velocity is,

dra

dt = vn. (B.43)

Inserting the position and velocity we show,

X = -vx (B.44)

u>
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Continuity Equation

As with the exact equations we again begin with the continuity equation, which in
SPH form is given by,

= > mb(v
x-vx)

dx
mh{vy

a - vl ab
(B.45)

dy
b b

Substituting for the perturbations (B.39.B.42) and linearising we have,

OX
(B.46)

We make use of (B.41) when we divide by e
l(kfa~a; t),

1 = p{Ap)2 ^ M4(l - e~lk?ai

we write,As e"^ = cos(</>) +

= +p(Ap) - cos(k • ra6) + isin(k • ra6))
dW
dx

• p{Ap)2 ^2 Vy (1 - cos(k • ra6) +1 sin(k • fa&)) —-
6 ^

(B.48)

The (1 — cos(k • ra;,)) terms do not contribute to the summations as they form
an ODD function when multiplied by the kernel derivatives, they disappear as the
summation is taken over all space. We have,

-tu>D =
dW _ dW\

. sin(k • ra6) — + %Vy sin(k • ra6) — I (B.49)

(X + VyAy).

Dividing by — %UJ we are left with,

A
u>

(B.50)

where A is defined in (B.38). If we compare this expression to the one obtained

from the continuity equation in the dispersion relation of the exact equations (B.5)

we notice a correspondence between the summation A and the wave number k.
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Deviatoric Stress Terms

Taking the equations for rate of change of deviatoric stress,

rf9 2
— =-n(2exx - eyy)
(XL tjdS_xy

~dt

With the rotation terms defined by,

(B.51)

nxysyy - sxxnxy.

dvx

2 V dy dx

We express the rate of change of velocity as,

(B.52)

dv 1 / 5 dy .

dx- = -pWpv)-vd-x
]>

(B.53)

so that the summations for the velocity derivatives in SPH form are symmetric,

(B.54)
dv

~dx dx

As we require only linear terms in the analysis we expand the inverse of the

density using a Taylor series.

1 1 1 £>
p p + JDop p p

(B.55)

The 1/p is the only term in (B.55) that survives linearisation when we substitute

into (B.54) as the velocity terms are of the order e*(k-?-<"'). This means that the

higher order terms of the Taylor series for the density generate second order terms

when multiplied by the velocities and can be neglected.

We write the linearised form of the SPH velocity equation,

uux x V~̂  T/ / t(k-fo-wt) ^i(kfb-wt)\uvy m cc\

~7T-=——/ Tni,Vx\e
K ' — ev " )~^zr- (D.ODJ

dx p t—' dx
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Substituting into the equation for the rate of change of deviatoric stress (B.51).

tir- - \ 1 4 v~^

b

A
S1 - cos(k • fab) + i sin(k • fa6))

(Ap)2-fi V* mbVy(l - cos(k • ra6) +1sin(k • ra6))
3 *-^

dW
dx

dW
dy

(B.57)

Dividing by — iu and removing the EVEN terms which do not contribute in the
summation as the kernel is an ODD function.

Txx = 2VX sin(k - fof,)^^ Vy sin(k • fa6)-^^
dx dyJ (B.58)

= ^-(2VXAX - VyAy)

and similarly

X - VyAy)

^ y - VXAX)

= -^(VxAy + VyAx) + ^

(B.59)

- VyAx).

We again note (in a comparison with the results from the exact equations of the devi-
atoric stress tensor (B.IO, B.13)) a correspondence between A in the SPH dispersion
relation and k in the dispersion relation of the exact equations.
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Momentum Equation

To linearise the momentum equation (B.61) we use a Taylor series.

1 _ 1 1 25 p 5j?

+ +
(B.60)

The SPH form of the momentum equation in the absence of viscosity is,

g^ = v-m. IIs" ~p° + s" -p>\™L+(3L + S.\ ?E\
dx

(B.61)
b \ \ ra Pb

Substituting for perturbations and linearising, we find that second order deriva-
tives of the kernel appear.

d2Wdv^
dx

dW d2W._ _
+ &^ a ~ h

P2

dya

dW
dx

2S*» (dW d2W/s. _ . d2W ,. . A
rnh—— -—r + -^-{oya - 5yb) + {5xa - 5xb)p2 \dy dyl dxadya ')

SSxy+6Sxy\ dWj
P2 J dya

(B.62)

To avoid a long string of complicated equations we handle each line in (B.62)

separately. The left hand side yields,

dvx

dx
(B.63)

As we eventually wish to find Vx we divide the terms on the right hand side of
the following derivations by x — —2we^k'?o~w^, leaving Vx on the left hand side.

We consider the first line of (B.62) and eliminate the (2(~P + Sxx)/p2) {dW/dx)

term as the first derivative of the kernel is an ODD function and this term disappears
when the summation is taken over all space.
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Then the first term becomes,

1

p p

x22(- d2W

~

_ 5 ,

- c o s ( k

_ cos(k

2 f{p-sxx
^j{BxxVx + BxyVy).

The X is changed to a Vx in the second last line subject to Vx

The second term becomes,

(B.64)

u (B.56).

;
p

9a;

TXX(1

fab))--_Txxtsm(k.fab))
P )

dW
dx

dW
dx

I (l{P-Sxx)-pc

(B.65)
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The third term is derived in the same way as (B.64) without the pressure term,

(B.66)

O ( Qxy\

This term ends up being equal to zero as we choose our initial coordinates so
that Sxy = 0.

The fourth term of (B.62) is similar to the second term (B.65), we find,

a; p )
(B.67)

Putting this together we find that the equations for Vx and Vy are given by,

VB =

Vy,

) _ 5ra M
pu

) {2{P _
pa;2 pu>

(B.68)

XSPH Smoothed Velocity

Our calculations use a smoothed particle velocity to prevent particle penetration.
We now determine the effects of this smoothing on the dispersion relation. When
using XSPH a smoothed velocity is calculated by,

^(Vb - Va)Wab. (B.69)

Substituting th« velocity perturbation (B.37) into the XSPH velocity equation

(B.69).
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yei(kfo-u;t) _ \ —(Ven b~

v = v

= V

v = v

- cos(k • fa6) + isin(k

- Cos(k • rab))Wab

(B.70)

As we take the summation over all space and the kernel is an EVEN function,
any ODD terms cancel themselves out (i.e. sin(k • ?ai>)) and we note that for XSPH
the relation between V and V is

V = V(l - 0) (B.71)

with p denned in (B.38).
This smoothed velocity is used in the calculation of position, density and stress.

When applying this to our dispersion relation for the SPH equations each of the
velocities on the right hand side of (B.68) is multiplied by the factor (1 - P). This
is equivalent to dividing the left hand side by (1 — P).

Substituting for continuity (B.50), the stress components (B.59), and XSPH
(B.71) into the momentum equations (B.68) we find,

u2pVx

1 - / 3
- Sxx) - 5c2

o)Ax(A • V) + (2P - r* + 5 iyyv)

Ly - VyAx)Ay

y + BxyVx)

[x - VXAV)AX,

(B.72)

with the y component is derived in a similar way to the x component.

+ 2-^{2VxAx - VyAy)Ax + fi(VxAy + VyAx)Ay -

= - (2(P - §yy) - pc2
o)Ay(A • V) + (2P

+ 2-£{2VyAy - VxAx)Ay + fx(VyAx + VxAy)Ao
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The Artificial Stress

In this section we calculate the contribution of our artificial stress terms to the
numerical dispersion relation. We calculate these contributions so we can later
study the effect that these artificial stress terms have on the short wavelength tensile
instability.

We begin by finding 82Wn+1/dx2 as we make use of it shortly.

dWn+1 ,
dx

d2Wn+1
dx

ox~ dx )

(B.73)

We can then say that,

1 d2Wn+1

n + 1 dx2 =Wn d2wn

Ix^ J

n + 1 dy2

i 1 Q Q

n + 1 oxoy

dy2 \dy J

n_x ZdWdW\
\dx dy J'

(B.74)

3zdy

In this analysis we have chosen axes so that the stress tensor is diagonal (Txy =
0). This means that we only have two artificial stress terms to add to the momentum
equations. A term (Rxx + Rx*)fn which is added to the x momentum equation
component and a term (R™ + Rfy)fn which is added to the y component of the
momentum equation. Since the initial state is uniform we can take,

Rti = R[j = Rij. (B.75)
G O v *

So that, Rg + R{
b
j = 2Rij. The right hand side of the x component of the SPH

momentum equation will now include a term,

+R:•XX

(B-76)
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The first term of the artificial stress (B.76) consists of an EVEN function by an
ODD function so it will not contribute when the summation is taken over all space.
Recall that / = W(rab)/W(&p) and using (B.74),

2Rxxp(Ap)2

x ay a

2RX

1
"I X (n + 1)W(Ap)n

2Rxxp{Apf

dxady

d2Wn+1

t 2Rxxp(Ap)

2Rxxp{Apf
ijj (n

i 2Rxxp{Ap)2

w (n + 1)W(Ap)n

X ^ ( 1 - cos(k z sin(k • ra6))

Y cos(k • rot)

• COs(k • f at)'

82Wn+1

dxl
Q2Wn+l

2Rxxp{Ap)2

(n + l)W{Ap)n
 b

2Rxxp{Apf ,
:(n + l)W(Ap)n

\2

dxadya

- cos(k • ra6))

" c o s ' k
d2Wn+1

u<
(B.77)
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Where,

(Apf

F — -ryy r

F —r*y r

n + l)Wn(Ap)

(Ap)2

n + l)Wn(Ap)

- c o s ( k

The equations for the dispersion relation (B.72) now become,

= - (2(P - Sxx) - p c 2 ) ^ ( A • V) + (2P -

, 2/xi

VyFxy)

+

= - (2(P - S») - pc2
0)Ay(A • V) + (2P -

- VsAy)A,

Long Wavelength Limit

VyAx)Ax

y + VXFxy).

(B.78)

(B.79)

We now investigate the long wavelength behaviour of the SPH equations, in this

limit we expect the SPH dispersion relation to agree with the dispersion relation

of the exact equations. For sufficiently long wavelengths we can approximate the

summation defining A (B.38) by an integral. That is,

)A = (Ap)2 ̂ s i n ( k • ra6)VoWa6 ~ f sin(]
b J

Making use of e1* = cos (f> +1 sin <f) we express (B.80) as,

(B.80)

A=Im

=Im

(B.81)
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We express the difference in position of particles a and b by the vector sb such
that,

(B.82)r& = ra + s6

Our first step is to calculate the integral involving the complex exponential, we
will later take only the imaginary part. As we use kernels which are even functions
we take, W(s) = W(-s).

- A W ( _ S 6 ) j dSb = - ^ W ( s 6 ) ) ds (B.83)

Integrating by parts (B.83) becomes,

lkSb + f W{sb)(-ik)e-lk-Sbd

Iks" - ik f W{sb)e-*Sbdsb.
(B.84)

Taking the imaginary parts, we find that the first term is an ODD function and

does not contribute.

= - k f W(sb)e-lkSbdsb = -lsW (B.85)

Where W is the Fourier transform of W. In the long wavelength approximation we
can take W = 1. This relationship for A is not surprising considering our previous
noted similarities between A and k in the results of the continuity and deviatoric
stress rate equations. It can be similarly shown that,

Bij = kikjW. (B.86)

We also calculate the effect of XSPH on the dispersion relation by calculating
the value of the summation (3. In the second line we make use of the fact that the
SPH kernels are normalised (2.3), so that f W(rab)drab = 1.

0 = £ f(l - cos(k • sb)W{rab)drb

W(rab)drab - f / cos(k • sb) W(rab)drb

J % % (B.87)
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Correspondingly, as- W is equal to ono in the long wavelength limit we can take

j3 as zero and the x component of acceleration becomes,

j ^ j = - (2(P - Sxx) - pc2
o)Ax(& • V) + (2P - 2SXX)(BXXVX + BxyVy)

+ '2j{2VxAx - VyAy)Ax + n(VxAy + VyAx)Ay - C,(VxAy - VyAx)Ay

pVxu
2 = ( - 2 P + 2SXX + pc2){k2

xVx + kxkyVy) + (2P - 2Sxx){k2
xVx + kxkyVy)

+ — (2kxVx — kxkyVy) + n{k2Vx + kxkyVy) — C{kyVx — kxkyVy)

= + pc2
o{k2

xVx + kxkyVy) + -jk^Vx ~ ~Tk
xkyVy + tuk2

yVx + fikxkyVy

- (k2
yvx + (kxkyvy

/ A \ / C\ \

(B.88)

Which agrees with the dispersion relation of the continuum equations. This result

shows that the SPH perturbation equations are correct in the long wavelength limit

and that the dispersion introduced by the SPH formulation can be determined from

the Fourier transform of the kernel. We now consider how to chose R1^ to prevent

short wavelength instabilities.

Short Wavelength Limit

The tensile instability is a short wave length instability initiated by the clumping of

pairs of particles. The rate of growth of the instability depends on the initial config-

uration of particles, the kernel, the smoothing length, and the equation of state. See

Morris (1996) for the non elastic case. In this section we calculate coefficients used

in the discussion of the stability of some simple particle configurations in section

5.6.

In the first case particles are placed on the vertices of a grid of square cells of

side Ap. The second and third cases involve what we term face centred lattices.

These face centred lattices are similar except that every second row of particles is

shifted by a distance Ap/2 in the x direction, to form a face centred lattice. A slight
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variation is to form a face centred lattice by shifting alternate columns of particles

in the y direction. These lattices were illustrated in figure 5.3.

In each case we consider waves propagating along the x axis with kx — n/Ap,

ky = 0. The dangerous modes (which lead to instability) are the longitudinal modes

with Vx ^ 0 and Vy = 0 since clumping occurs if these modes are unstable. The

transverse modes with Vx = 0 and Vy ^ 0 are benign because, if they become

unstable, they result in lines of particles moving vertically very slowly (Morris 1996).

The cubic kernel and it's derivatives

Before we calculate values of A, Bxx, Byy, Bxy, (3, Fxx, Fyy and Fxy, we first need

to calculate values of the kernel and kernel derivatives.

We use the cubic spline kernel, with q = r/h,

Wiq) = ^ U (B.89)
{ \(2-qf if 1 < 9 < 2 .

The first derivative of the cubic spline kernel is given by,

, -Sq + h2 if 0 < g < l
1 0 ' (B.90)

Differentiating again we find the second derivative of the kernel,

—3 H- | g if 0 < ? < l

dq2 7-Kh2

| (2 - q) if 1 < q < 2.

We require derivatives of g,

r (a:2+y2)2
q=T =

h h
dq _ x _ x
dx~ = h(x2 + y2)k2 ~ hi- ( B - 9 2 )

dq_ _ y _ y_

dy h(x2 + y2)1* hr'
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Second derivatives of q are obtained using the quotient rule,

Pq

d2q

dy2

d2q

1
h
1
h

r2-
r3

r2-
r3

xy

X2

y2

1
hr

hr
y2

(B.93)

dxdy hr3

To find derivatives with respect to x and y we make use of the chain rule,

dW dW dq

i

i

•i

X

{
1
i

Square Cells

dx
dw
dx

d2W
dx2

d2W

dy2

d2w
dxdy

dq dx
dWdq
dq dy

dWd2q
dq dx2

dWd2q
dq dy2 '

dW d2q
dq dxdy

d2W
dq2 '

d2w ,

d2W

' dq2

dqV
[dxj
(dqV
{dy)

{ dq dq
\dxdy

(B.94)

Figure B.I illustrates the particles that interact in a grid of square cells with par-

ticle spacing Ap and smoothing length h = Ap. The grey particle in the middle

interacts with the eight surrounding particles. The particles on the boundary are

just outside the interaction zone. Table B.I shows all the particles that contribute

to the summations in this case. We assume a wave of short wavelength travelling in

the x direction, the wave numbers are kx = rc/Ap, ky = 0.

In table B.2 we calculate values of the derivatives of each of the particles that

interact with the central particle in figure B.I. We write xp = 5/147r(Ap)2. The first

half of the table shows derivatives of W with respect to q and the derivatives of q

with respect to x and y. The second half of the table combines these derivatives

using the chain rule (B.94) to give derivatives of the kernel with respect to x and y.

We then calculate the values of the summations (B.38) for the square cell setup

using tables B.I and B.2. We begin by calculating the values of Ax = (Ap)2 ^ sin(k-

rab)dW/dx and Ay = (Ap)2 £ 6 sin(k • rab)dW/dy. When the particles are setup on
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square cells the value of sin(k • ra6) is always zero we find that Ax and Ay are also

zero.

O O..--O-..O O

o/
/ 7 5'.\o

o

o\
O

8

O
Figure B.I: Diagram showing particles within the 2h smoothing distance for an

initial square cell particle placement for a cubic kernel with h = Ap.
The grey particle at the centre of the circle has interactions with the
eight numbered black particles. Dotted line denotes the edge of the
circle of influence of the kernel of the grey particle.

Num

1

2

3

4

5

6

7

8

Ax

Ap

—Ap

0

0

Ap

Ap

- A p

- A p

Ay

0

0

Ap

- A p

Ap

- A p

Ap

- A p

sin(k • r)

0

0

0

0

0

0

0

0

1 — cos(k • r)

2

2

0

0

2

2

2

2

q
1

1

1

1

V2
V2

V2

Table B.I: Properties of position and wavenumber for particles in the square cell
setup of figure B. 1 with h = Ap and for a wave propagating only in
the x direction with wave numbers kx = 7r/Ap and ky = 0. Values
of sin(k • r) and 1 — cos(k • r) are used in determining the coefficients
(B.38) in the dispersion relation.
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Table B.2: Values of kernel derivatives for square cell setup.
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Looking at Bxx we find that particles numbered three and four in table B.I, have
a value of 1 — cos(k • rQ;,) = 0 and do not contribute to the summation. All of the
other particles have a contribution of 1 — cos(k • rob) = 2. We find that,

d2W,
Bxx = (ApY ^ J l - cos(k • rQ6))

b

d2Wab

ux" 1,2,3,4,5,6,7,8

ab

(B.95)

= 2 (l2ip + 6</>(3 - \/2)(2 -

= 12ip (2 + 6 - 3V2 - 2 ^ + 2)

= n ft v>(10-5>/2).

Similarly, we find the value of Byy to be given by,

Byy = - cos(k • ro6))
d2Wab

1,2,3,4,5,6,7,8

= (Ap)22 -
Zip

+0+0+4 (B.96)

2 ^-GV' + 6^(3 - \/2)(2 -

( -1 + 6 - 3V2 - 2v^ + 2)

= ^ j ( 7
77r(Ap)2 V

In the case of i?Iy we find that the four nearest neighbours (particles one, two,
three and four) all have a second derivative d2Wab/dxadya = 0 and do not contribute
to our summation. We also find that the contributions of the remaining particles
cancel with each other so that Bxy = 0.
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BX!/ = (Ap)2^J(l-cos(k

d2Wab

dya 1,2,5,6,7,8 (B.97)

= 0.

The value of /5 is introduced with our use of the XSPH smoothed velocity. Again
particles three and four have no contribution as they have a value of 1 — cos(k-rO{.) =
0. f is the XSPH parameter.

0 = - cos(k • rab))Wab

4(V'(2 -
(B.98)

The use of our artificial stress introduces the coefficients Fxx, Fyy and Fxy (B.78)
into the dispersion relation. We require the value of d2W"(n+1)/dx2, which we have
shown previously is given by,

i V ^ = (n
dx n W

d2W
dx2 (B.99)

As the size of our artificial stress is dependent on a high power of the kernel and
the value of the kernel is less than one and drops off sharply for particle spacings
greater than Ap, particles that are not the nearest neighbours have only a negli-
gible contribution to these summations. We conduct the summation over nearest
neighbo'irs (particles one, two, three and four), we find that particles three and four
have 1 — cos(k.ra6) = 0 and do not contribute. We calculate the summation only
for particles one and two which both have q = 1 and we find,
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Fxx =
• l)Wn(Ap)

(Ap)2

fa))
d2w"+l

~dxl
rn+1

(n n(Ap)

. n - l

\ dx
rd

2W
dx2

( 9V;
V

(B.100)

30

7TT(AP)

For Fyy we find,

+ 2)

r(3n

7TT(AP)2 "

As 0\^/9y and d2W/dxdy are both equal to zero we find that Fxy = 0. To

calculate the values of these summations for different values of h we have resorted

to the use of a computer program and obtain numerical values. In table'B.3 we

show the values of these summations for smoothing lengths 1.0 < h/Ap < 2.0, we

have taken the constant power in the artificial st- .ss to be n = 4.
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h/Ap

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

P
0.6375

0.7607

0.8473

0.9086

0.9517

0.9798

0.9940

0.9991

1.0006

1.0007

1.0007

Axx

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ayy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Bxx

3.9956

2.3166

1.4234

0.8721

0.5167

0.1655

0.0239

0.0004

-0.0203

-0.0080

-0.0048

Byy

-0.0969

-0.2245

0.0023

0.1169

0.1423

0.0122

-0.0542

-0.0315

-0.0238

-0.0110

-0.0078

Bxy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Fxx

19.1163

12.9669

8.6243

5.8022

3.9900

2.8637

2.0804

1.5383

1.1528

0.8727

0.6657

Fyy

-1.3464

-1.1202

-0.8800

-0.6508

-0.4610

-0.2621

-0.1542

-0.0866

-0.0471

-0.0260

-0.0158

Fxy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Table 3.3: Square cells. Values of the coefficients in the dispersion relation for
various h/Ap.

Face Centred Cells

We do not evaluate exact values of the summations in the face centred case here.

These can however be evaluated following the steps previously outlined for the case

of square cells. Numerical values of the face centred summations for a range of

smoothing lengths are presented in tables B.4 and B.5 for the x shifted and y shifted

^ases respectively. We have again assumed a value of n = 4. An analysis of the

stability of these face centred particle arrangements was presented in section 5.6.5.

The major difference between the square cell case is that the values of A are no

longer equal to zero in the x shifted face centred case, these values are equal to zero

in the y shifted face centred case. This is a result of assuming wavenumbers only in

the x direction.
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h/Ap

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

P
0.7702

0.8621

0.9208

0.9579

0.9805

0.9928

0.9984

1.0005

1.0006

0.9998

0.9990

A-xx

-0.4304

-0.3323

-0.2336

-0.1448

-0.0777

-0.0392

-0.0184

-0.0082

-0.0017

0.0025

0.0056

Ayy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.c

Bxx
2.8138

1.4554

0.7143

0.3001

0.1127

0.0282

0.0253

0.0147

0.0042

0.0077

0.0107

Byy

0.5162

0.2588

0.1029

0.0091

-0.0399

-0.0685

-0.0496

-0.0313

-0.0090

-0.0005

0.0043

Bxy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Fxx
19.6767

13.4473

8.9561

5.9602

4.0013

2.7169

1.8668

1.2975

L 0.9117

0.6595

0.4780

Fyy

1.5789

1.7259

1.6295

1.3271

1.0120

0.7420

0.5301

0.3711

0.2550

0.1762

0.1177

Fxy
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Table B-4' Face centred cells
dispersion relation

• x direction shift,
for various h/Ap.

Values of the coefficients in the

h/Ap
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0
0.6309

0.7506

0.8470

0.9154

0.9573

0.9805

0.9921

0.9972

0.9992

1.0001

1.0004

Axx
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ayy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Bxx
3.7608

2.8894

1.6095

0.7964

0.3526

0.0999

0.0295

0.0087

0.0236

0.0014

-0.0066

Byy

0.1708

0.2002

-0.0099

-0.1320

-0.0910

-0.0132

0.0230

0.0367

0.0431

0.0118

0.0000

BXy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

F xx

5.8861

5.8235

5.2326

4.2707

3.3429

2.5618

1.9445

1.4715

1.1145

0.8558

0.6560

^yy

1.1561

1.0718

0.8771

0.6307

0.4194

0.2600

0.1484

0.0745

0.0280

0.0247

0.0133

Fxy
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Table B.5: Face centred cells - y direction shift. Values of the coefficients in the
dispersion relation for various h/Ap.



Appendix C

Animations

In addition to presenting images from SPH simulations throughout this thesis we
present and describe a series of animations of simulations in this appendix. The
animations are provided on an accompanying CDROM. An advantage of viewing
animations (instead of a series of still images) is that it is intuitively easier to detect
and follow changes over the course of the simulation as we can see more information.

Also contained on the CDROM are electronic versions of this thesis in PDF
and postscript formats. All of these files can be accessed by loading the file CCAT-
GOW.html (found on the CDROM) into a web browser and following the appropriate
links. The animations are provided in the MPEG format.

Water Wave Tests

We begin by presenting animations of the tests we conducted in chapter three to
validate our code. We demonstrate the runup and generation of solitary waves, the
breaking of a dam and an example of an undular bore.

Solitary Wave Run up

Animationzsolwave.mpeg

Here we present an example of a simulation for the run up of solitary waves against a
wall (section 3.1). The colours indicate particle speed, with blue denoting the slowest
particles and green denoting the fastest moving particles. We show a solitary wave
of amplitude H/D = 0.5 and see the wave lose kinetic energy as it climbs the wall
(and changes colour from green to blue). The wave reforms as the water falls down
the wall and propagates across the tank in the opposite direction.



APPENDIX C - Animations 204

Solitary Wave Generation

Animation: wa.vetl.mpeg

Animation: wavet4.mpeg

We show simulations of waves generated by a moving boundary (section 3.2). The
first example is the £* = 1 case, the boundary moves only a small distance and the
wave that develops from this motion is also only small. The deviation to the water
level is minor although the motion of the wave can be seen by the changes in particle
speeds (colours) as it propagates along the tank. The second example we show is
the U = 4 case. The wall travels further in this case and displaces a larger amount
of water. The wave that develops is clear to see both from its profile and speed
(colour variation). The fluid slows down as it runs up the wall, before accelerating
down the wall and reforming as a wave.

Breaking Dam

Animation:dambreaic.mpeg.
The next test we present is that of a breaking dam, this animation is the n2 = 1
case of Martin and Moyce (1952). Units of time are in the scaled units of (3.5). The
animation shows water surging out from the bottom of the column after the wall is
removed. The initial sharp and square profile quickly adjusts to a smooth profile as
the front surges across the tank.

Tidal Bore

Animation: bore.mpeg

The last animation of our water validation tests that we present is of an undular
bore (section 3.4). The bore is pushing water towards the tank wail. After impacting
with the wall a splashing motion occurs which forms into the first wave. This wave
propagates across the tank followed by two smallei amplitude waves which are also

generated.
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Caldera Collapse Animations

This series of animations shows some of the simple models of caldera collapse (section

4.1), simulations of different cavity widths and a simulation in a tank with a sloping

beach.

Colliding Breaking Dams

Animation:damcoiiide.mpeg
The first animation in this section is for the collision of two collapsing water columns.
As expected the initial profile is similar to that of just a single breaking dam
(dambreaicmpeg). The two surge fronts collide, sending water up in a large col-
umn at the centre of the tank. This column disperses away as two breaking waves
travelling in opposite directions form. The waves run up the sides of the tank and
reform as two non breaking waves, which propagate and meet in the middle of the
tank before passing through each other.

Experimental Caldera Model

Animation:caidexperiment.mpeg
Here we present an example of one of the wave tank caldera collapse experiments
(section 4.1). This is the case of Di = 12cm, D = 30cm, W = 40cm and L = 200cm.
Two jets are seen to develop when the walls are removed. They meet in the Centre
of the tank form a vortex and a column of water. The column breaks into waves
that propagate across the tank. These waves runup the sides of the tank and reform
as waves travelling in the opposite direction towards the centre of the tank.

Boundary Force Caldera Model

Animation:caldbforce.mpeg

This animation shows a caldera collapse model with a boundary force implemen-
tation of the boundary conditions. The initial part of the animati6n shows the
damping of the system to a relaxed state. There is a lot of noise generated by
the tops of the inner walls. The flow is quantitatively similar to the corresponding
experiment caldexperiment.mpeg.
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Ghost Particle Caldera Model

Animation-.caidgparfc.mpeg
The problems with noise at the inner boundaries in the boundary force animation
(caldbforce.mpeg) have been removed with the use of a ghost particle boundary
implementation. Again we see the damping of the system before the wall is removed
and two jets are produced. The jets meet before they touch the tank bottom (in
agreement with experiment), before forming a head of water which disperses away
as waves, which oscillate back and forth across the tank.

Different Cavity Widths

Animation: widOS.mpeg
Animation: widl5.mpeg
Animation: wid25.mpeg
Animation: wid40.mpeg

These animations show differences in the mechanism of wave generation as the cavity
width is varied (section 4.2). In the first example wid05.mpeg the jet contacts the
side wall long before reaching the cavity floor, only a small amount of water is
displaced and the resulting wave amplitude is also small. The wave amplitude is
larger in the next example widl5.mpeg, in this case the jet impacts near the bottom
of the side wall at the intersection with the floor. As the cavity width is increased
further (wid25.mpeg,wid40.mpeg) the amplitude of generated waves decreases, the
jet impacts with the cavity floor and breaks into two flows.

Waves in a Long Tank

Animation:iongtanlc.mpeg

Here we present an animation of the calculation of waves produced in a long tank
with a sloping beach. As in section 4.3 the scale is such that the vertical dimension
is exaggerated to five times the horizontal scale. This scaling allows us to better
view the waves which are produced. Complicated motions can be seen as water fills
the cavity. A train of waves develops and propagates across the tank preceded by a
drop in the water level. The first wave in the train steepens and breaks as it runs
up the beach.
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Elastic and Plastic Material Tests

The third set of animations involve test cases of solid bodies. We begin by present-
ing a test for the propagation of longitudinal waves before demonstrating tests of
colliding rings, oscillating plates and the tensional extension of plates.

Longitudinal Waves

Animation: waveprop.mpeg
In this animation an initial 5% Gaussian velocity distribution propagates through
a periodic block of SPH particles 200cm long by 20cm wide. See section 5.6 for
more details. In this simulation co = 1.0, p = 1.0, fi = 0.22, h = Ap. With these
parameters longitudinal waves have a theoretical wave speed (in our dimensionless
units) of 1.137, compared to a measured speed of 1.164 for the simulation.

Colliding Rings

Animation:ringeps0.inpeg
Animation:ringeps22.mpeg"
We present animations of the collision of elastic rings of section 6.1. The first
animation ringepsO.mpeg illustrates how the colliding rings artificially fracture and
break up in the standard SPH case. The second animation shows that when the
tensile instability is removed (by adding artificial stress terms) SPH is able to model
the collision of elastic rings with ease. Particles are now coloured according to the
deviatoric stress, lighter colours (yellow) denote tension and darker colours (blue)
indicate compression.

Oscillating Plates

Animation: beamvl.mpeg

Animation: beamv5.mpeg

We demonstrate some of the oscillating plates of section 6.2. Particles are again

coloured according to their stress. The first example beamvl.mpeg shows a small
amplitude oscillation, Vf = 0.01. The variation in stress from tension to compression
on opposite sides of the plate can be seen as the plate oscillates. The second example
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beamvS.mpeg is a case with Vj = 0.05, the amplitude of the oscillation is much larger

and higher stresses also occur.

Plastic Oscillating Plate

Animationrplasticbeam.mpeg
We introduce the Von-Mises criterion (section 5.2) into our simulations of oscillating
plates to model plastic effects. Instead of going through a full oscillation, plasticity
takes over, the underside of the plate is stretched past the elastic limit and remains
extended. The plate is unable to travel beyond its initial position, instead it pivots
at a point along the plate near the support and travels upwards again.

Ductile Plates in Tension

AnimationrepbeameO.inpeg
Animation:epbeame3.mpeg
Here we illustrate the effects of the tensile instability in standard SPH on a plate
stretched in tension. In epbeameO.mpeg we show the standard SPH case (e = 0.0).
Artificial fracturing quickly develops and the plate breaks in an unphysical way.
The simulation epbeame3.mpeg employs artificial stress terms with e = 0.3 and
illustrates the necking of a ductile plate in tension. The artificial stress terms remove
the destructive effects of the tensile instability.

Brittle Plates in Tension

Animation: brittlefracl .mpeg

Animation: brittle frac2.mpeg

These animations demonstrate the initiation and growth of cracks of brittle plates in
tension with high and low strain rates (section 6.4.2). The first part of the simulation
shows the stress waves which develop in the material. In the second half particles
are coloured according to their state of damage and the development of cracks can
be seen. In agreement with theory the extent of damage is much greater in the
higher strain rate case (brittlefrac2.mpeg).
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Fracture Around Magma Chambers

In this series of animations we show some of the simple models for the fracture of
rock during caldera collapse found in chapter 7. The animations begin with particles
coloured according to their mean stress (section 6.1) and conclude by repeating the
simulation again, coloured according to damage.

Plate without a Chamber

Ammationrnociiajmber.inpeg

Here we show the effect of tensile stress on a material with no stress concentrators.
The cracks appear randomly and act to relieve material surrounding them from the
applied stress. The cracks are initiated at weaknesses in the material and there is a
small amount of damage distributed through the material at the conclusion of the
simulation.

Chamber without Internal Pressure

Animation: chamber.mpeg
The effect of including a chamber in the material, concentrates the stress in the
area directly above and below the chamber. Fracture is initiated earlier (than in the
nochamber.mpeg simulation) at the points of maximum stress concentration and
breaks the material into two clear pieces. Damage is almost only accumulated in
the region of highest stress concentration, with few flaws activated elsewhere.

Chamber with Internal Pressure

Animationrgas.mpeg
In this simulation we see the effect of including an internal pressure into the chamber.
The internal pressure further increases the stress around the chamber (compared to
the case with no magmatic pressure (chamber.mpeg)). Fracture is again initiated
earlier due to this stress concentration which results in radial fractures forming
around the cavity due to the internal pressure in addition to the break down the
centre of the plate caused by the applied tensile stress.
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