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Summary

1

Stochastic resonance is a mechanism whereby the addition of noise can aid in signal

detection. Specifically, additional input noise can result in the detection of an otherwise

sub-threshold periodic signal. A general description of stochastic resonance with an

emphasis on the matching of time-scales, a resonance, and its relevance to biological

systems is given. In the context of the narrower definition of stochastic resonance, one

involving a matching of time-scales, a review of the biological systems that have been

proposed to exhibit stochastic resonance is given. It is found that the majority of

biological systems have not been examined thoroughly enough to determine if they are

capable of exhibiting stochastic resonance.

A novel measure of the output signal-to-noise ratio of a series of action potentials,

based on the cycle histogram, is developed. A comparison of the new measure with an

existing measure based on the inter-spike interval histogram is made with the aid of the

Hodgkin-Huxley model. It is found that the new measure is capable of being utilised to

observe stochastic resonance, subject to specific constraints.

Several experimental observations of stochastic resonance, including a matching of

time-scales, are then made. It is found that Golgi tendon organs, muscle spindle primary

and secondary endings and slowly adapting Type I cutaneous mechanoreceptors are all

capable of exhibiting stochastic resonance. The conditions under which these receptors

are likely to exhibit stochastic resonance are discussed.

It is found that the sinusoidal detection threshold during psychophysical experiments is

reduced by the addition of noise to the sinusoidal stimulus. It is proposed that this

improved detection is a result of stochastic resonance. Interestingly, the detection of

small sinusoidal movements of the elbow does not appear to be improved with the

addition of noise.

Finally, the conditions under which stochastic resonance may have a functional benefit

in a variety of biological systems is discussed with the aid of an example.
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Chapter One

Stochastic Resonance

In systems that are designed to detect small signals it is usual to attempt to reduce the

level of ambient noise, as it is believed that an optimal output signal-to-noise ratio

(SNR) is achieved when there is the largest input SNR. However, this is not always true

and stochastic resonance is a theory that explains this.

Ice Ages

Stochastic resonance was first proposed as an explanation for a possible periodicity

observed in earth's ice volume record (Benzi, Sutera & Vulpiani, 1981; Benzi, Parisi,

Sutera & Vulpiani, 1982). There are two stable states for the earth's climate: ice ages

(where there is a large proportion of the earth's surface covered in ice), and non-ice ages

(such as the current climate). The two states are stable because of the reflective

properties of ice. When the earth's surface is largely covered in ice, a large proportion of

the sun's energy is reflected away from earth. Conversely, when only a small fraction of

the surface is covered by ice, the oceans absorb the energy from the sun, re-enforcing

the non-ice age.

The ice record shows a tendency to oscillate between these two stable states every

100,000 years (Figure 1.1). Day-to-day, or even year-to-year, fluctuations in the amount

of energy delivered to the earth by the sun are too rapid to produce the apparent periodic

changes in ice volume. On the time-scale of the proposed periodicity, the fluctuations

appear as random changes around an essentially zero mean change. A rapid random

change about a signal of interest is usually considered noise, so the fluctuations in the

amount of energy from the sun are considered to be a 'noisy' input to the climate

system. Terrestrial events, such as volcanoes, also affect the amount of energy the earth

absorbs from the sun by altering the atmospheric conditions. The time-scales of these

events are also rapid compared to the ice volume fluctuations, and therefore they would

also be considered a 'noisy' input to the climate system.

The time course of the apparent periodicity in the ice volume record is similar to the

time course of a slight eccentricity in the orbit of the earth. However, the eccentricity is

1
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Figure 1.1 The apparent periodic fluctuations in the total volume of ice (hluc line) have a period of

approximately 100,000 years, indicated by the fitted sinusoid (black line). The ice volume data was taken

from Figure 3 of Wiesenfeld & Jaramillo (1998). The sinusoid was fitted used a least-squares method and

has a period of 97,000 years.

If
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too small to cause a shift from an ice age to a non-ice age. Therefore, it was proposed

that there is an interaction between the small periodic effects caused by the eccentricity

of the orbit and the rapid fluctuations caused by changes in the sun and terrestrial

events. The proposed mechanism is stochastic resonance, where a resonance (or

matching of time-scales) occurs between the period of the eccentricity of the earth's

orbit and the climate changes caused by the 'noisy' inputs.

One of the predictions of stochastic resonance is that with the addition of an appropriate

noise signal at the input, a system can respond to an otherwise sub-threshold signal.

This prediction was the basis of the link between the period of the eccentricity of the

earth's orbit and the apparent periodicity in the ice ages. Another prediction of

stochastic resonance is that a sub-threshold periodic stimulus with a higher frequency

would require the addition of a larger noise signal. The ice volume record does not

allow the testing of such a prediction, and therefore it is possible that the apparent

periodicity in the ice volume record may not be a result of stochastic resonance.

Simple Mode!

It is not intuitively obvious how stochastic resonance occurs, so it is most convenient to

discuss it with the aid of a simple model. The most commonly used model to

demonstrate stochastic resonance is based on an over-damped particle in a symmetric

bistable potential well, the double-well model. The potential well is given by Equation

1.1, and illustrated in the top-left panel of Figure 1.2. The output of the system is

designated as the location of the particle within the well. If the particle is released from

any position in the well, it will settle to the bottom of either the left half-well or the right

half-well, depending on its initial position. These positions correspond to the stable

states of the system, much as an ice age or non-ice age is a stable state for the earth.

U(x) = - x 4 - - x2

4 2
Equation 1.1

If the particle is now subjected to zero-mean white Gaussian noise, £(t), it will

randomly move around the well. The particle will randomly change between the left

half-well and the right half-well (Figure 1.2, middle-left panel). The rate of these



0.1 1 10 100
Frequency (Hz)

10
0,1 1

Frequency (Hz)

Figure 1.2 The unmodulated symmetric bistable potential (top-left panel) can be modulated by a

periodic input (top-right panel). The particle randomly changes between half-wells under the influence of

a Gaussian distributed random input (middle-left panel). The power spectrum (bottom-left panel) of the

resulting output has a Lorentzian distribution, emphasising the random nature of the transitions. With a

small periodic signal (2 Hz sinusoid, indicated by the red line in the middle-right panel) added to the

input, the transitions between wells becomes phase locked to the stimulus and the power spectrum has

peaks at 2 and 4 Hz (bottom-right panel).



Stochastic Resonance Chapter One

transitions between wells OK) can be predicted using Kramers' rate (Kramers, 1940) and

is given by Equation 1.2 (Gammaitoni, Hanggi, Jung & Marchesoni, 1998), where D is

the input noise intensity given by Equation 1.3 and 5(t) is the unit impulse function.

Jin
4D

:i

= 2D<5(t)

Equation 1.2

Equation 1.3

It is worth emphasising that although there is an average rate of transitions, rK, for a

given input noise intensity, the actual transitions are randomly distributed in time. With

the ice ages example, the transitions between ice ages and non-ice ages caused by the

fluctuations in the sun and terrestrial events cause the rapid fluctuations in ice volume

that are not linked to the 100,000 year oscillations illustrated Figure 1.1. The output

power spectrum for the noise-alone response of the simple double-well is shown in

Figure 1.2 (bottom-left panel), and follows a Lorentzian distribution, indicative of the

random transitions (Moss, Pierson & O'Gorman, 1994).

In response to a periodic driving of the system, the motion of the particle is given by

Equation 1.4, where A is the amplitude of the periodic driving and a) is the frequency of

the periodic driving. This driving can either be interpreted as acting directly on the

particle or by modulating the shape of the well, as illustrated in the top-right panel of

Figure 1.2 and in Appendix A. The effect of the periodic driving depends on the

amplitude of the driving relative to the height of the barrier between the two half-wells,

AU, and also on the input noise intensity, D.

x = - U"(x) + Acos((01) + £(t) Equation 1.4

The simplest situation is with no noise, D = 0. In this case if the amplitude of the

periodic driving is below threshold, A < AU, then the particle will not have enough

energy to overcome the barrier and change between half-wells. This is similar to the

eccentricity of the earth's orbit not being large enough to cause the transition from a

non-ice age to an ice age. If, however, the periodic driving is large enough, A > AU,

then the particle will change between half-wells with each cycle of the periodic driving.
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When noise is added to the system, D > 0, the particle will change half-wells due to the

noise, but the timing of the transitions will be influenced by the periodic driving. The

periodic driving can be imagined to change the probability of a transition occurring by

modulating the height of the barrier (Figure 1.2, top-right panel). The modulation of the

effective barrier height leads to a phase locking of the transitions between half-wells

and the periodic driving (Figure 1.2, middle-right panel). The output power spectrum

has peaks at the driving frequency (2 Hz) and at harmonics of the driving frequency,

superimposed on the noise-alone Lorentzian background (Figure 1.2, bottom-right

panel).

A common measure of the output SNR, is the ratio of the power at the signal frequency

compared to the background power, SNRPS. The SNRPS for the double-well system

driven by a periodic signal and a noise signal is a complex function of the input noise

intensity (Figure 1.3, top panels). For a sub-threshold periodic input the SNRPS has

several distinct regions. One region is for small values of D that do not result in

transitions between half-wells. Under these conditions the particle would oscillate

within one of the half-wells. This oscillation would result in a large SNRpj, as the power

spectrum would be a spike at the periodic stimulus frequency on a very small noise

background. In the limit of no noise the SNRPS would be infinite, as the background

noise level would be zero. If the particle does not change half-wells it is desirable for

SNRPS to be low, as the system has not changed from one stable state to another.

Therefore, the output of the system is designated to be the state (or half-well) the

particle is in, rather than the precise position of the ball within the well. The resulting

two-state output can be used to calculate SNRps, resulting in an undefined SNRPS if the

particle never changes state.

As the intensity of noise increases the particle begins to make transitions between the

half-wells. The SNRPS increases with increasing noise intensity to a maximum. As the

noise intensity is further increased the SNRPS begins to decrease and resembles the

SNRps for a supra-threshold periodic input and noise (Figure 1.3, top-right panel).

The SNRps of the double-well model, driven with a sub-threshold periodic input, has the

characteristic shape of a stochastic resonance curve. The maximum output SNR is
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Figure 1.3 The classical shape of a stochastic resonance curve (top-left panel) is different from the

curve produced with a supra-threshold periodic input (top-right panel). The phase shift of the output is

also different for sub-threshold and supra-threshold periodic inputs (middle panels). The peak in the

stochastic resonance curve occurs at a specific level of noise, D0PT (indicated by the arrow). The predicted

optimal noise level, DPRE, (indicated by the »rey lines in the bottom panels) is the noise level, that when

applied alone, produces an average transition rate equal to the frequency of the periodic driving, in this

case 10 Hz. The noise-alone response has been reproduced in both columns to aid in the comparison of

features.
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produced with the addition of some amount of input noise. This is not what would be

intuitively expected, as the maximum output SNR does not coincide with the maximum

input SNR. In fact the optimal output SNR occurs when the input SNR is less than one;

that is, the signal of interest is smaller than the noise signal. The level of noise that

results in the maximum output SNR is defined as the optimal noise, DOFr.

The matching of time-scales (or resonance from which stochastic resonance derives its

name) is illustrated with reference to the noise-alone response of the system (Figure 1.3,

bottom panels). As the noise intensity increases, the average transitions rate, rK,

increases. The intensity of noise that produces the optimal output SNR produces an

average transition rate that is equal to the periodic driving when applied alone (i.e.

Features of Stochastic Resonance

Any system that is designed to detect a small signal will typically have some finite input

threshold. If an input signal is below this threshold it is not possible to detect it.

Stochastic resonance can be used to effectively lower the threshold of a system, but

stochastic resonance will not occur in every system. There are certain requirements for

stochastic resonance to occur, and certain key features of stochastic resonance that

distinguish it from other noise effects.

Non-linear System

A linear system is one in which the output is simply some portion of the input plus a

constant. A simple linear system with an input, X, and an output, Y, is given by

Equation 1.5. The output is simply the input multiplied by two plus a constant, five. If

some noise, £, is added to the input then it will be transferred to the output, with the

same ratio as the signal, X. Therefore, a linear system cannot exhibit stochastic

resonance.

Y = 2 x X + 5 Equation 1.5
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There are many forms of non-linear systems, including the double-well system

described above (p. 2). One of the simplest non-linear systems is a threshold of the type

described by Equation 1.6. If the input is less than a half, the output is zero; while if the

input is greater than or equal to a half, the output is one. Non-linear systems are usually

far more complex than this simple system and do not always have such a sharp

threshold.

0 for x < y
Equation 1.6

Most systems that exhibit stochastic resonance have a threshold, such that inputs less

than a critical level produce no change in the output. This, however, is not a

requirement of stochastic resonance, as stochastic resonance has been shown in systems

with a smooth non-linearity. Provided the non-linearity has 'sufficient steepness' it is

possible that the system will exhibit stochastic resonance (Chapeau-Blondeau &

Godivier, 1997; Balazsi, Kiss & Moss, 1999). The 'steepness' of a non-linearity is a

measure of how rapid the transition between the stable states is. For the simple

threshold given in Equation 1.6 the non-linearity is inifinitely 'steep', as the transition

of the output from zero to one occurs over an infinitely small interval.

Noise

A key feature of stochastic resonance is that the optimal output SNR does not occur

with zero input noise; that is, some level of noise is required to optimise the response of

the system. Unlike other noise effects such as dithering, discussed in more detail later in

this chapter (p. 10), the level of noise that is required to produce the optimal output

SNR is supra-threshold. The optimal noise level can in fact be predicted from the

response of the system to noise alone (Figure 1,3, bottom panels). The predicted optimal

noise level, DPRE, is the level of input noise that, when applied alone, produces an

average transition rate that is equal to the periodic stimulus frequency. The grey lines in

the bottom panels of Figure 1.3 illustrate the method of predicting the optimal noise

level. For a periodic stimulus of 10 Hz, the predicted optimal noise level is 2.2.
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The mean transition rate between states is a monotonically increasing function of noise

given by Kramers' rate (Equation 1.2). Therefore, higher periodic input signal

frequencies require higher levels of input noise to optimise the output SNR; that is, DOPT

is dependent on the periodic input frequency. This is a key feature of stochastic

resonance that does not occur with any other constructive noise effects. As a

consequence of the matching of D0PT and DPRE, there is a limit to the range of

frequencies over which a system will exhibit stochastic resonance. The maximum

frequency is limited to the maximum noise-alone response of the system, which, for the

system illustrated in Figure 1.3 is approximately 100 Hz.

In the majority of stochastic resonance studies the type of noise that is added to the

input signal is an approximation to white noise with a normal distribution (Gaussian

noise). However, the distribution of the noise is not critical to the stochastic resonance

effect, with many different noise distributions facilitating signal transfer (Nozaki, Mar,

Grigg & Collins, 1999). Different noise distributions will produce different values of

peak output SNR and will also alter the shape of the output SNR vs noise curve,

however the different noise distributions will not alter the basic stochastic resonance

effect (Chapeau-Blondeau & Godivier, 1997).

Resonance

Deterministic or normal resonance occurs when the frequency of the input signal

matches a characteristic frequency of the system. The frequency response curve of a

resonant system shows the output SNR increasing up to a maximum value at a certain

frequency oo0, and then decreasing again. Resonance is said to occur at (oo, as the output

SNR is maximal at this frequency. Either the periodic input frequency or the

characteristic system frequency can be altered in deterministic resonance. Similarly, in

stochastic resonance, either the input frequency or the noise-induced rate can be altered.

This means a system can be tuned to a particular frequency by altering the amount of

input noise, or the input frequency can be selected to optimise the performance of a

fixed level of noise.

The phase shift of the output can also be used to highlight resonance. The phase shift

between input and output passes through TC/2 at coo for deterministic resonance. A curve

7
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with similar characteristics is produced when the phase shift is plotted against input

noise for a system that exhibits stochastic resonance (Figure 1.3, middle panels).

True resonance can only occur with a periodic input to a system because a matching of

two frequencies is required; the periodic input frequency and the characteristic system

frequency. The most commonly used periodic input is a sinusoid, as it consists of a

single frequency. Traditionally, stochastic resonance has also been shown with

sinusoidal inputs, highlighting why the theory is called stochastic resonance; as there is

an apparent resonance between the periodic input and the system under the influence of

the noise (Gammaitoni, Marchesoni & Santucci, 1995; Giacomelli, Marin & Rabbiosi,

1999). There has been some discussion as to whether stochastic resonance can occur

with a non-periodic input, 'aperiodic stochastic resonance' (ASR) (Collins, Chow &

Imhoff, 1995a; Collins, Imhoff & Grigg, 1996a; Chialvo, Longtin & Muller-Gerking,

1997; Chow, Imhoff & Collins, 1998; Petracchi, 2000), which is disucssed later in this

chapter (p. 9).

Output Signal Measurements

A difficulty in determining if 'aperiodic stochastic resonance' exists is that the standard

definition of the SNRPS measure is no longer relevant. The SNRPS measure is typically

defined as the ratio of output power in the signal frequency band, to the background

level. If the signal is not of a narrow frequency range, ideally a single frequency, the

measure is not applicable.

There are many possible ways of using the output of a system to calculate a SNR

measure. The possible SNR measures include measurements based on: the residence

time between transitions, SNRRES; inter-spike interval histograms, SNRIS1H; cycle

histograms of the probability of a transition occurring, SNRcyc; and the correlation

between the input and output of the system, SNRC0R. All these measurements attempt to

quantify the amount of signal present in the output compared to the amount of noise in

the output. The different measurements have varied characteristics and therefore

produce different shaped stochastic resonance curves (Shimokawa, Pakdaman & Sato,

1999a).

8



Stochastic Resonance Chapter One

Although the SNRPS measure is the most commonly used SNR measure, it has been

proposed that if the SNRPS measurement is used, it is not possible to observe stochastic

resonance (Fo/, 1989). Another common measurement that is used in many stochastic

resonance investigations is based on residence time distribution, SNRRES. A histogram

of the times between transitions from one state to the other is shown in Figure 1.4 (top

panel). The distribution is clearly multi-modal with peaks at integer multiples of the

driving period. The standard measurement used to calculate SNRRES is the probability of

a transition occurring after a single period, the height of the first peak. The residence

time measure produces results that are qualitatively similar to the SNRPS measurement

for this system, as can be seen by a comparison of the middle panels of Figure 1.4 with

the top-left panel of Figure 1.3.

When both the SNRPS and SNRRES measurements are applied to other systems the results

can be quantitatively quite different (Shimokawa et al., 1999a). The SNRps

measurement produces results that have many of the features of stochastic resonance

but also have some other fluctuations in the SNRps vs noise curve. These are thought not

to arise from classical stochastic resonance effects, but to be the result of other

influences of the additional input noise. This is in contrast to the SNRRES measurement,

which produces results that are consistent with all aspects of stochastic resonance.

The different results obtained from one system using different SNR measurements

highlight some of the difficulties in determining if stochastic resonance occurs. To be

certain that a system exhibits stochastic resonance the output measurement used must be

considered part of the system, as the results can vary depending on the measurement

used.

Aperiodic Stochastic Resonance

Collins et al. (1995a) proposed that 'aperiodic stochastic resonance' occurred in a

simple excitable system, as the SNRC0R measure, the correlation between the input and

the output, passed through a maximum as the level of input noise was increased. There

is no doubt that the addition of noise enhanced the response of the system, but as there

can be no matching of time-scales the effect cannot be stochastic resonance. By

definition, stochastic resonance involves the matching of two time-scales (hence the

9
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Figure 1.4 A probability histogram of the time between transitions from the left half-well to the

right half-well has a multi-modal distribution (top panel). The height of the peak (or the area under the

peak) at the period of stimulation (0.1 s) can be used as a measure of output SNR to produce a series of

stochastic resonance curves (middle panels). These curves are similar in shape to the curve produced with

the SNRPS measurement (Figure 1.3, top-left panel). The noise-alone response is reproduced in the bottom

panel. Note that the optimal noise levels (indicated by the arrows in the middle panels) increase with

increased periodic stimulus frequency, as do the predicted optimal noise levels (indicated by the grey

lines in the bottom panel). Ideally, the optimal noise levels would be equal to the predicted optimal noise

levels (i.e. D0PT = DPRE).
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resonance). One of the time-scales is a result of the sub-threshold periodic stimulus,

while the other is a result of the noise-alone response of the system (hence the

stochastic). Stochastic resonance occurs when there is a matching of a noise-induced

time-scale and the sub-threshold periodic stimulus time-scale. Therefore 'aperiodic

stochastic resonance' cannot occur.

A feature of the 'aperiodic stochastic resonance' described by Collins et al. (1995a), that

is not characteristic of stochastic resonance, is that a single noise amplitude is optimal

for all signals. Stochastic resonance predicts that each stimulus frequency will be

optimised with a different level of noise, which is dependent on the noise-alone

response of the system. As the input signals used to demonstrate 'aperiodic stochastic

resonance' do not have a specific frequency, it is not possible to predict the level of

noise that should optimise the system's response. 'Aperiodic stochastic resonance' has

been considered as system linearisation or dithering, neither of which involve resonance

(Gammaitoni, 1995; Chialvo et al., 1997). 'Aperiodic stohcastic resonance' highlights

the fact that stochastic resonance is not the only phenomenon whereby noise can have a

constructive effect to enhance the response of a system. Some other effects share many

characteristics with stochastic resonance and it can be difficult to discriminate between

them.

Dithering

The effect that is most commonly misinterpreted as stochastic resonance is dithering.

Dithering may occur in any system with a threshold, but is most commonly discussed in

terms of quantisation. The threshold described in Equation 1.6 can be considered as a

quantising system for inputs between zero and one. The system effectively rounds the

input to zero or one. This rounding of the input results in a loss of information, as there

is no difference in the output of the system for inputs of 0.3 or 0.4, as in both cases the

output will be zero. The difference between the input and the output can be considered

an error, with the maximum error of this system being a half. The maximum error of a

half occurs when the input is a half and the output is one.

The dithering effect is produced by adding noise to the input signal and averaging the

output signal; this has the effect of reducing the error introduced by the quantisation.

10
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Figure 1.5 The top panel is an illustration of the dithering effect. For a system with a threshold of

0.5 an input of 0.4 will always produce an output of 0 (top panel, green symbols). However, with the

addition of evenly distributed noise with amplitude 0.5 (top panel, pink symbols) four out often samples

of the output will be one (top panel, solid bars), resulting in an average value of 0.4. The dithering effect

can produce curves (middle panels) that are similar to stochastic resonance curves. The curves show an

increase in SNRPS for a non-zero level of input noise. However, the optimal noise levels (indicated by the

arrows in middle panels) do not increase with increasing periodic stimulus frequency, unlike the predicted

optimal noise levels (indicated by the grey lines in the bottom panel).
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The optimal noise signal to add to the input of a quantising system is evenly distributed

noise, with an amplitude equal to the quantisation level (Wannamaker, Lipshitz &

Vanderkooy, 2000). Evenly distributed noise is a signal that has equal probability of

being any value between two limits. For the system described in Equation 1.6 this

results in a noise signal that is evenly distributed between -0.5 and +0.5; that is, any

value between -0.5 and +0.5 is equally likely to occur.

An example of the dithering effect is illustrated in Figure 1.5 (top panel), with an input

of 0.4 and an ideal noise signal. If no noise is added to the input, then the output is

always zero, and the error produced by the system is 0.4. If the ideal noise distribution,

evenly distributed noise between -0.5 and +0.5, is added to the input, then on average

four out of ten inputs will be greater than 0.5 and the average output of the system will

be 0.4. The addition of the optimal noise distribution effectively removes the error

introduced by the system. The example illustrates that for this particular case dithering

can reduce the error of the system to zero. If noise with a normal distribution is used,

rather than an even distribution, it is impossible to reduce the error to zero, although

significant reductions can still occur (Gammaitoni, 1995).

To compare dithering with stochastic resonance, a sinusoidal input can be used and the

output SNR measured for various noise amplitudes. The resulting plot (Figure 1.5,

lower panels), is qualitatively similar to those produced by stochastic resonance (Figure

1.4). The output SNR rises to a maximum with the addition of some level of input noise

and then falls as larger amounts of noise are added. Unlike stochastic resonance, the

maximum output SNR does not occur at a level of noise that can be predicted using the

stimulus frequency and the system's response to noise alone.

An important difference between stochastic resonance and dithering is that the level of

noise that produces an optima! output SNR for dithering is near the threshold level of

noise, and is not dependent on the input signal frequency. In contrast the noise required

to produce an optimal output SNR for stochastic resonance is supra-threshold and can

be predicted from the sub-threshold stimulus frequency and the system's response to

noise alone. Another difference between stochastic resonance and dithering is that

dithering reduces the error between the average output and the input, while stochastic

11
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Figure 1.6 The Schmitt trigger (top panel) was the first experimental system proposed to exhibit

stochastic resonance. Although there is an optimal SNREXP with the addition of noise (middle panels), the

optimal noise levels (indicated by the arrows) do not increase with increasing stimulus frequency. An

increase in optimal noise with increasing periodic stimulus frequency is a characteristic of stochastic

resonance, therefore the Schmitt trigger does not appear to exhibit stochastic resonance. The optimal

noise levels are close to the threshold level of noise, rather than the levels that are predicted from

stochastic resonance (grey lines).
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resonance produces an output with maximum signal content (Chapeau-Blondeau &

Godivier, 1997).

Stochastic resonance may be considered as a special case of dithering, where the

effective threshold of the system is determined by the frequency of the sub-threshold

periodic input signal. Optimal dithering occurs at the minimum noise level that will

produce a threshold crossing. For stochastic resonance to occur the noise must, on

average, produce a threshold crossing within each period of the input signal, therefore

the level of noise required increases with increasing periodic stimulus frequency. In this

respect dithering is a more general effect that is likely to play a more significant role in

practical systems than stochastic resonance.

Schmitt Trigger

The first experimental system proposed to exhibit stochastic resonance was the Schmitt

trigger, a simple two-state electronic device (Fauve & Heslot, 1983). Since then

stochastic resonance has been proposed to occur in a variety of systems including

superconducting quantum interference devices (Rouse, Siyuan & Lukens, 1995);

bistable ring lasers (McNamara, Wiesenfeld & Roy, 1988); and freestanding

magnetoelastic beams (Spano, Wun-Fogle & Ditto, 1992).

Many of the systems that have been proposed to exhibit stochastic resonance may in

fact be exhibiting dithering, not stochastic resonance. The Schmitt trigger, as illustrated

in the top panel of Figure 1.6, is an example of such a system (Wannamaker et al.,

2000). The system exhibits a maximum output SNR with the addition of noise (Figure

1.6, middle panels); however, the level of noise that produces this maximum output

SNR does not increase with increasing periodic stimulus frequency, a key feature of

stochastic resonance. Also, the level of noise that produces an optimal output SNR is

near the threshold level of noise, rather than the level predicted from the sub-threshold

periodic stimulus frequency and the noise-alone response of the system (grey lines in

the bottom panel of Figure 1.6). Therefore, although many of the features of stochastic

resonance are present in this system, the increase in output SNR is mostly likely due to

dithering rather than stochastic resonance.

12
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Biological Relevance of Stochastic Resonance

The central nervous system receives information about the environment from a wide

variety of receptors. The signals that can be detected by the various receptors and

interpreted by the central nervous system range from individual photons of light striking

the retina, to the weight of an object held in the hands. Not only is there a vast range of

different signals that may be detected, but each signal is subject to various

environmental distortions and disruptions that make it more difficult to detect. As the

receptors must operate in the presence of noise, it is possible that when small periodic

signals are of interest the receptors may exhibit stochastic resonance.

Noise Sources

Each type of sensory receptor will be subjected to different kinds of noise, ranging from

electromagnetic to chemical. The sources of noise are not limited to the external

environment, as there are also many sources of noise within the body. To highlight

some of the possible sources of noise it is convenient to look at a broad class of

receptors, the mechanoreceptors.

Environmental

There are a wide variety of mechanoreceptors throughout the body that are used to

detect various mechanical signals. Perhaps the most sensitive mechanoreceptors are

those of the inner ear. Here, the cilia of the inner hair cells are capable of responding to

vibrations of 0.1 nanometres (Jaramillo & Wiesenfeld, 2000). This sensitivity is even

more amazing considering that the random (Brownian) motion of the cilia caused by

thermal vibrations is three nanometres. In the case of the inner hair cells, the vibrations

of their cilia, which is the final step in the mechanical transfer of sound waves, are the

signals of interest. The Brownian motion of the cilia is not of interest and therefore can

be considered a source of noise. The inner hair cells, therefore, can respond to stimuli

that have a SNR of less than one, a situation that also occurs in systems that exhibit

stochastic resonance.

13
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Not all mechanoreceptors are as sensitive as the inner hair cells, and therefore are not

affected by noise in the form of thermal vibrations. However, there are many sources of

mechanical noise in the environment, ranging from seismic activity to ground-borne

vibrations from passing traffic. Just as it is a rarity to experience true silence, it is also a

rarity to experience an environment without mechanical stimulation. Therefore, many

mechanoreceptors must operate in situations where the amplitude of noise can be equal

to or greater than the amplitude of the signal of interest.

To overcome these situations some mechanoreceptors have a much greater sensitivity to

stimuli delivered at certain frequencies, and are rather unresponsive to stimuli outside

their preferred response range. The rapidly adapting cutaneous mechanoreceptors are

good examples of such receptors. Meissner's corpuscles and hair basket endings are

most sensitive to frequencies in the range of 20 to 150 Hz, while Pacinian corpuscles

are most sensitive to even higher frequencies, greater than 200 Hz (Johansson,

Landstrom & Lundstrom, 1982). The receptors' structures and locations result in

effective high-pass mechanical filtering of the skin deformations that are their sig:n&ls of

interest. The selective sensitivity to such high frequencies reduces the influence of

lower frequency sources of noise, thereby increasing the output SNR. Even so, it may

be possible that stochastic resonance might also have a role to playing in detecting

signals in noisy environments.

Intrinsic

As mentioned, noise sources are not limited to the external environment. The resting

membrane potential is subject to thermal fluctuations, which may become a significant

source of noise. The electrochemical gradients across a cell membrane that are a vital

component of most receptors' transduction processes are influenced by thermal

fluctuations in channel activity and membrane permeability. If the receptive systems are

sufficiently sensitive then such thermal fluctuation can result in the generation of action

potentials that are propagated into the central nervous system. Activity in adjacent nerve

fibres can also act as a source of noise, especially within the central nervous system

itself. The resulting changes in the composition of the extra-cellular fluid can constitute

a source of noise, especially if they are not rapidly reversed. Synaptic transmission is

14
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also an inherently noisy process, as the neurotransmitter process includes a sub-

threshold spontaneous release and a finite diffusion time across the synaptic cleft.

Finally, as a result of the interconnectivity that is a feature of the central nervous

system, there is the potential for other parts of the central nervous system to act as a

controllable source of noise. As a neural network can act as a noise source for stochastic

resonance by producing an output consisting of a random train of action potentials

(Mato, 1999).

Limited Sensitivity

Although there is a large range in sensitivity in the variety of receptors in the body, all

receptors have a limit to their sensitivity. The signal received by the central nervous

system from the receptor is a train of action potentials travelling along the afferent

nerve fibre. There is a limit to the maximum rate at which action potentials can be

generated, governed by the absolute refractory period of the axon. The limited dynamic

range of the receptor imposes a limit on the amount of information that can be signalled.

For example, the inner hair cell would not be suitable for detecting movements of

greater than a few nanometres, because the output train of action potentials would

saturate at the maximum rate.

The range of stimulus amplitudes signalled by each receptor therefore has an upper and

lower limit. The lower limit constitutes a threshold, below which an input signal does

not cause a change in the output. It may be possible to reduce the threshold of a receptor

by making it more sensitive, although as the receptor has a fixed dynamic range this

would not result in any increase in the amount of information that could be signalled by

the receptor. The change in sensitivity would simply alter the range of stimuli that could

be effectively signalled by the receptor. The reduction in threshold may result in an

increase in input noise, as previously sub-threshold noise signals may now be supra-

threshold. The may actually result in a reduction in the amount of information that can

be signalled by the receptor.

It is possible to improve the SNR within the central nervous system by combining the

responses from many receptors. Perhaps the simplest method is to average the responses

from many receptors. If all the receptors receive a common signal of interest, but

15
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different sources of noise, then the averaged signal will have a higher SNR than the

individual receptors. As the number of receptors that are used to generate the average

increases, the final SNR increases. There is evidence that the central nervous system is

capable of using this type of averaging, as for some receptor types the signal from a

single receptor does not produce a conscious sensation, but must be combined with

signals from other receptors of the same type. An example of a receptor for which the

signal from an individual receptor does not reach consciousness is the muscle spindle

(Macefield, Gar.devia & Burke, 1990).

Possibility of Stochastic Resonance

Sensory receptor systems may be capable of exhibiting stochastic resonance, as they

fulfil all the requirements of systems that exhibit stochastic resonance. The receptors are

jj| non-linear systems with thresholds to small periodic signals. Therefore, it is possible

that they may be stimulated with a sub-threshold periodic input, the first requirement of

stochastic resonance. There are many sources of noise that could be combined with the

;jj sub-threshold periodic input. Often environmental sources of noise may result in the

SNR of the signal being less than one, as is the case with the inner hair cells. These are

the precise circumstances under which stochastic resonance is proposed to occur, and

therefore we might be expected to observe stochastic resonance in biological systems.

There is a further similarity between biological receptors and systems that exhibit

stochastic resonance and this is that residence time histograms of a bistable system are

w- s imilar to inter-spike interval histograms (ISIH) that are commonly seen in

neurophysiology. The ISIH is constructed by creating a histogram of the times between

successive action potentials recorded from a nerve fibre. ISIH from auditory nerve

fibres and the visual cortex have a similar shape to residence time histograms

constructed from bistable systems, including exponentially decaying peaks at integer

multiples of the stimulus frequency (Longtin, Bulsara & Moss, 1991). The similarities

in the shapes arise because of the reset mechanism of neurones. After an action potential

is initiated the neurone must undergo a recovery process before another action potential

can be initiated. The neuronal reset can be interpreted as the transition back to the

original half-well in the double-well model.

16
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Biological Systems Proposed to Exhibit

Stochastic Resonance

The similarities between biological receptors and systems that exhibit stochastic

resonance have encouraged investigators to examine biological systems for stochastic

resonance. It has been proposed that stochastic resonance occurs in many biological

systems ranging from cell membranes (Bezrukov & Vodyanoy, 1995) to human tactile

sensation (Collins, Imhoff & Grigg, 1996b). Some of these systems may exhibit

stochastic resonance, and in others the observed increases in sensitivity are not a result

of stochastic resonance, while for many examples it is not clear whether the effect is

stochastic resonance or some other noise effect.

The wide variety of biological systems that have been claimed to exhibit stochastic

resonance highlights some important issues about stochastic resonance. That such a

variety of biological systems have been proposed to exhibit stochastic resonance

illustrates that additional input noise can often increase the sensitivity of a system. Most

of the systems studied have shown an increase in sensitivity with the addition of noise.

Although the claims that the increases in sensitivity are the result of stochastic

resonance are not justified for most of the systems, the increase in sensitivity is not in

doubt.

Whether the increase in sensitivity is a result of stochastic resonance, dithering or some

other constructive effect of the additional noise is of more than just academic interest.

The stochastic resonance effect requires specific levels of additional noise to optimise

particular frequencies of sub-threshold periodic stimulation. The level of noise required

is different for each frequency, and to obtain optimal performance the level of noise

must be adjusted depending on the frequency of the periodic stimulus. The detection of

non-periodic signals cannot be optimised with stochastic resonance, but can be with

dithering. Therefore, which effect is producing the increase in sensitivity is important if

an increase in sensitivity by the addition of noise is to be of practical use.
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Voltage Dependent Ion Channels

The basis of all neuronal signalling in animals is the electrically excitable cell

membrane. The voltage-sensitive ion channels in the cell membrane predominantly

determine its excitability. Many of the requirements for stochastic resonance are present

even in such a simple system as the voltage sensitive ion channel. The ion channel can

either be open or closed, leading to a bistable system. An ion channel may actually be a

multi-stable system as there may be many stable 'closed' states, but the simplest models

use a single closed state (Goychuk & Hanggi, 2000). The transition between states is

voltage dependent and exhibits a threshold, which is a requirement for stochastic

resonance.

Theoretical work has been done on simple two-state potassium channels and it was

found that optimal information transfer required the addition of input noise (Goychuk &

Hanggi, 2000). There were a few other requirements, such as the channel being

predominantly in the closed state, and the effect was dependent on the initial voltage

level. These extra requirements are similar to the standard biological conditions, and

therefore raise the possibility that the effect may be experimentally observed in isolated

voltage channels. The results were generalised to periodic and aperiodic input signals

with no dependence of the optimal noise level on the frequency of periodic input. This

generalisation suggests that the increase in information transmission is not due to

stochastic resonance, but is the result of some other constructive noise effect, as a key

feature of stochastic resonance is the dependence of the optimal noise level on the

frequency of the periodic input.

Individual voltage-sensitive ion channels can be incorporated into lipid bilayers that can

be conveniently used for experimentation. One such channel is the alamethicin channel,

which has been used to experimentally study stochastic resonance (Bezrukov &

Vodyanoy, 1995; Bezrukov & Vodyanoy, 1998). An optimum in SNRPS was obtained

with the addition of input noise, which is a key feature of stochastic resonance.

However, the optimal noise level did not increase with an increase in frequency of the

periodic stimulus (Bezrukov & Vodyanoy, 1997). The optimal noise level may in fact
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decrease with an increase in stimulus frequency, which is the opposite of what is

predicted from stochastic resonance theory.

This example of an experimental investigation of stochastic resonance highlights an

important issue. Although the output SNR is optimised with the addition of some level

of noise, as expected from stochastic resonance theory, the effect may not be stochastic

resonance, but some other constructive noise effect. The other interesting feature is that

the output signal power rises monotonically over all the ranges of noise used. This is

deceptive; as although the signal output power continuously increases, the noise output

power also continuously increases. The rise in the output SNR is the result of the signal

output power initially rising more rapidly than the noise output power. The fall is due to

the noise output power rising more rapidly than the signal output power at higher input

noise levels.

Mechanoreceptors

The physical signal detected by a mechanoreceptor is a mechanical deformation of the

receptor's receptive field. The deformation leads to a depolarisation of the receptor's

membrane, which if sufficiently large, causes the initiation of an action potential. The

action potential is then actively propagated into the central nervous system.

Mechanoreceptors are suitable for stochastic resonance studies for a variety of reasons.

One aspect is that the mechanical deformation can be precisely controlled, allowing for

the combination of small periodic and noise signals. The receptors often have well

defined thresholds, ensuring that the periodic stimuli can be kept sub-threshold while

the noise is supra-threshold, the requirements for stochastic resonance to occur. Finally,

the action potentials can be recorded from afferent nerve fibres and used to produce a

variety of output measures.

Crayfish

One of the earliest studies of stochastic resonance in a biological system was a study of

the mechanoreceptors in the tailfin of the crayfish Procambarus clarkii (Douglass,

Wilkens, Pantazelou & Moss, 1993). The mechanoreceptors detect the motion of water

over the crayfish tailfin. Many of the receptors have a maintained discharge without
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external stimulation. For stochastic resonance experiments, receptors with a low

maintained discharge were used, to allow a wider range of noise levels to be studied.

This is because the maintained discharge can be modelled as the response to an internal

source of noise. Therefore, a low maintained discharge should indicate a receptor with

low internal noise. Stochastic resonance-like curves were produced using both the

SNRps and the SNR1S1H measures.

Both the curves had a maximum output SNR with the addition of some level of input

noise, the first key feature of stochastic resonance. However, the other main feature of

stochastic resonance, a frequency dependence of the optimal noise level, was not

shown, as only a single frequency periodic stimulus was tested. A matching of the

optimal noise level with the predicted optimal noise level, from the noise-alone

response, another interpretation of the 'resonance' aspect of the stochastic resonance

effect, also was not shown. It is therefore impossible to conclude whether the effect was

stochastic resonance or some other constructive noise effect, such as dithering.

In a related study, Pantazelou, Dames, Moss, Douglass & Wilkens (1995) demonstrated

that altering the temperature of the preparation could produce a similar effect. For

receptors with a maintained discharge, an increase in temperature led to an increase in

noise in the receptor output. The increase in noise led in turn to an increase in SNRPS,

which it was proposed, was due to stochastic resonance. However, again only a single

stimulus frequency was tested and the SNRPS monotonically increased with increasing

noise level (i.e. did not have an optimal value), so it is impossible to exclude other

constructive noise, or temperature, effects.

These studies of stochastic resonance are typical of many, in that although an increase

in output SNR with the addition of noise was observed, it is not possible to determine if

the increase in the output SNR was a result of stochastic resonance, or some other

effect. As only a single frequency of sub-threshold periodic signal was used, it is not

possible to observe the matching of time-scales (or resonance), that is characteristic of

stochastic resonance. Either a frequency dependence of the optimal noise value, or a

matching of the predicted optimal noise value and the measured optimal noise value,

must be shown to distinguish stochastic resonance from other noise effects, such as
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dithering. Therefore, it is not possible to conclude whether the increase in output SNR

observed with the addition of input noise for the case of the crayfish tailfin

mechanoreceptor is stochastic resonance, or some other noise effect.

Rat

'Aperiodic stochastic resonance' has been proposed to occur in the slowly adapting

cutaneous mechanoreceptors of the rat using a correlation measure (Collins et al.,

1996a). As discussed above (p. 9), 'aperiodic stochastic resonance' cannot be a true

resonance as there is no matching of time-scales, and the effect seen is most likely to be

dithering or system linearisation by noise (Chialvo et al., 1997).

Rapidly adapting mechanoreceptors of the rat hav~ also been investigated for stochastic

resonance (Nozaki et al., 1999). Stochastic resonance-like curves were produced when

the receptors were stimulated with sub-threshold sinusoidal stimuli and various levels of

noise. Different frequency spectra of noise were used with the same periodic input, with

the expected result that the optimum noise level was dependent on the types of noise

used. The resulting curves were also of different shapes as predicted by theoretical

analysis of a simplified membrane model. The study did not involve different periodic

frequencies, so it is difficult to determine if the effect observed was stochastic

resonance (as claimed by the authors) or dithering.

Ivey, Apkarian & Chialvo (1998) studied both rapidly adapting and slowly adapting

mechanoreceptors and concluded: 'the addition of noise enhances signal transmission.'

The results are based on a correlation measure and the curves produced do not show a

frequency dependence of the optimal noise level. This result may be due to the measure

used, as closer examination of the cycle histograms suggests that if a SNR measure

based on the cycle histogram is used, the optimal noise level may increase with

increasing stimulus frequency. The results are further complicated by the use of supra-

threshold periodic stimuli for some frequencies and sub-threshold periodic stimuli for

others. Stochastic resonance requires that a sub-threshold periodic signal be used, and

therefore the results with the supra-threshold periodic signal cannot be a result of

stochastic resonance.
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Auditory Encoding

Inner Hair Ceils

Specialised mechanosensitive cells, hair cells, are used by the auditory systems in the

transduction of sound. Most of the auditory information is encoded by the inner hair

cells, which have free standing hair bundles that are deflected by movement of fluid

within the cochlea. The deflection of the hair bundles leads to opening of Ca2+ channels,

which in turn leads to the release of neurotransmitter onto a synapsing nerve fibre. The

free ends of the hair bundles undergo Brownian motion with an amplitude of

approximately 3 nmRMS (Wiesenfeld & Jaramillo, 1998). As mentioned previously (p.

13), the Brownian motion is significantly larger than the threshold for signal detection

by these cells, which is around 0.1 nm. The hair cells may be able to use the supra-

threshold noise, via stochastic resonance, to aid in the detection of near-threshold

stimuli (Jaramillo & Wiesenfeld, 2000).

Jaramillo & Wiesenfeld (1998) experimented on isolated inner hair cells and recorded

SNRPS curves that peaked with the addition of approximately 3 nm of noise, mimicking

the level of noise found under normal conditions. Although the experiments were

performed with two different frequencies of sinusoidal stimulation, data for both

frequencies are not shown for a single cell. Therefore, it is difficult to determine if the

effect is due to stochastic resonance (as claimed by the authors) or some other effect, as

it is not possible to observe a frequency dependence of the optimal noise level. It is

interesting to note that the optimal noise level is close to the level that is present under

normal physiological conditions.

Gebeshuber (2000) performed simulations of the responses of inner hair cells to

stimulation at various frequencies, keeping the noise level fixed at approximately the

physiological noise level. Under these conditions the standard SNRISIH would be

expected to pass through a maximum at a given stimulus frequency if stochastic

resonance was occurring. The optimal frequency would be determined by the response

of the system to the fixed noise level. The measure used by Gebeshuber (2000) is based

on the number of spikes phase locked to the signal, defined as spikes that occur during
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the first half of the period. The output SNR does appear to peak around 1 kHz, but this

effect is apparent even at supra-threshold levels of stimulus. Therefore, this effect is

most likely a result of the frequency response of the system and not stochastic

resonance.

Cochlear Nerve

Henry (1999) recorded from the round window of the inner ear while presenting various

supra-threshold sinusoidal and noise acoustic signals. In response to supra-threshold

sinusoidal signals at 8 and 8.8 kHz a 'nerve ensemble response' to the 800 Hz 'acoustic

stimulus envelope' could be detected in the power spectrum of the recorded signal. It

was this 'nerve ensemble response' that was taken as the output signal of interest. With

the addition of moderate levels of noise there was an initial increase in the power

present at 800 Hz, but with the addition of larger noise levels the power at 800 Hz

reduced to below no noise conditions, a situation reminiscent of stochastic resonance.

The observed increase in output signal power at 800 Hz with the addition of noise was

claimed to be a result of stochastic resonance. As, only a single 'acoustic stimulus

envelope' frequency was tested, it was not possible to observe a frequency dependent

change in the optimal noise level. Most importantly however, the stimuli used were

supra-threshold, and stochastic resonance will only occur if the input stimulus is a sub-

threshold periodic signal. Therefore, the observed increase in output signal power at 800

Hz is unlikely to be a result of stochastic resonance.

Cochlear Implants

Cochlear implants attempt to restore hearing by directly stimulating the cochlear nerve,

bypassing damaged sections of the ear, including the hair cells. The stimulation patterns

produced by the implants attempt to reproduce the important features of a normal

response to sounds such as speech. The sciatic nerve from the toad (Xenopus laevis) has

been used to study the trains of action potentials produced when different levels of noise

are added to the stimulus pattern produced by a cochlear implant (Morse & Meyer,

2000). A synchronisation index, SNRSYNC, was calculated based on the Fourier

transform of the peri-stimulus time histogram. The SNRSYNC was optimised with the
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addition of input noise, and it was proposed that the increase in SNRSYNC was a result of

stochastic resonance.

It is difficult to classify the type of signal used for stimulation by the cochlear implant

as either periodic or aperiodic. The signal used was band-limited, covering frequencies

from 200 to 671 Hz, but this is still a large frequency range and it is unlikely that a

single noise level would optimise this broad a frequency rangs via stochastic resonance.

Therefore, it is unlikely that the effect is stochastic resonance and it is probably a result

of a dithering type effect.

Human Muscle Spindles

The responses of muscle spindles to changes in muscle length are non-linear. This has

led to their use in stochastic resonance studies (Cordo, Inglis, Verschueren, Collins,

Merfeld, Rosenblum, Buckley & Moss, 1996). Afferents from muscle spindles in the

wrist and hand of human subjects were recorded using microelectrodes. The wrist of the

subject was rotated, supplying a sinusoidal stimulus, while various levels of noise were

applied via the tendon of the appropriate muscle. Plots of SNRPS against noise for six

out of eight subjects show an optimum SNRPS with the addition of noise, which was

proposed to be the result of stochastic resonance.

It is difficult to determine if the effect is stochastic resonance or some other noise effect,

as some of the key features of stochastic resonance were not investigated. Only a single

stimulus frequency was used, so it is not possible to determine if the optimal noise level

was dependent on the stimulus frequency. It is also difficult to determine the noise

threshold and whether the optimal noise level was above this threshold, a feature of

stochastic resonance. Finally the effect was not seen in all subjects, and there was no

explanation proposed for this.

Neural Networks

Once external signals have been converted into trains of action potentials by receptors,

they are transmitted to the central nervous system where further processing takes place.
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It is possible that neural networks may exhibit stochastic resonance, as they are non-

linear systems and typically have a threshold.

The simplest networks consist of a one-to-one linkage of receptor afferents to

interneurones that propagate the signal further into the central nervous system. Even

these simple networks introduce noise into the signal, as synaptic transmission is a

noisy event. The transmission across the synapse typically involves the release of

chemical transmitters that then diffuse across the synaptic cleft and initiate a

depolarisation in the post-synaptic cell. All these processes are inherently noisy and

may combine to introduce a significant level of noise into the system.

More complex networks that consist of many receptor afferents terminating on a single

intemeurone or multiple layers of interneurones introduce further sources of noise. An

increase in the number of receptors or interneurones leads to an increase in the noise,

simply because there are more synapses. When multiple receptor afferents terminate on

a single interneurone, timing jitter, the result of differences in propagation velocity, also

becomes important, as temporal information between the receptors may be lost.

Cereal System of the Cricket

Small amplitude, low frequency air disturbances can be detected by the cricket (Acheta

domestica) using a mechanosensory system, the cereal hair system (Levin & Miller,

1996). The system comprises mechanoreceptors that synapse onto interneurones in an

abdominal ganglion. Recordings from the interneurones can be made while stimuli are

applied to the mechanoreceptors in the form of air currents. A peaked SNRPS curve was

produced when various levels of noise were added to near-threshold sinusoidal signals

in the form of air currents, indicative of stochastic resonance. Levin & Miller (1996)

also used broadband stimulus signals and calculated the transinformation rate, SNRTINF0»

based on Shannon's transinformation rate (Shannon, 1949). SNRTINFO was also

optimised with the addition of noise, which was proposed to be the result of stochastic

resonance.

SNRTINF0 is measured with a non-periodic input and therefore the effect cannot be

stochastic resonance, as discussed above (p. 9). If the effect was dithering, the level of
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optimal noise would be expected to be constant or to decrease with increasing stimulus

intensity. The optimal noise level actually increases with increasing stimulus intensity,

so the effect is unlikely to be dithering. The increase in SNRTINFO may be due to a

variety of reasons, including the measurement used or some form of facilitation within

the neural network.

The amount of facilitation and inhibition by feedback and inter-connections within a

neutral network can be significant. These effects can alter the output SNR of the system

and must be accounted for in any studies of stochastic resonance. This study highlights

a difficulty with stochastic resonance studies of neural networks, as it is not possible to

determine the mechanism by which the noise has optimised the SNRTINFO, due to the

complexity of the system.

The level of noise that optimises SNRPS is higher than that which optimises SNRTINF0,

but only a single frequency was studied, so again it is difficult to determine whether the

effect is stochastic resonance. Given the peak in the SNRTINF0 curve, it is likely the

effect observed with the SNRPS measure is not stochastic resonance, although further

investigations are required to clarify the effect.

Multi-modal Caudal Photoreceptor Interneurones of the

Crayfish

The caudal photoreceptor interneurones of the crayfish (Procambarus clarkii) respond

to light from direct illumination, and to hydrodynamic stimulation via

mechanoreceptors in the tailfin (Pei, Wilkens & Moss, 1996b). The interneurones have

a resting discharge with a flat power spectrum between 5 and 35 Hz. The ISIH of the

resting discharge has a logNormal distribution, highlighting the random nature of the

resting discharge. In response to an increase in the intensity of the light stimulus the

mean discharge rate increases, but the ISIH still has a logNormal distribution.

Therefore, the effective noise in the system can be adjusted by changing the intensity of

light directed on the interneurones.

Hydrodynamic stimulation of the mechanoreceptors with a periodic stimulus leads to a

peak in the power spectrum of the interneurones' firing at the stimulus frequency.
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Therefore, it is possible to independently adjust the effective noise intensity and the

periodic stimulus intensity, by adjusting the light intensity and the stimulus to the

mechanoreceptors respectively. The SNRPS of the interneurone can then be used to

study stochastic resonance in the whole system.

The SNRpS curves produced have the characteristic shape of stochastic resonance, if

light intensity levels are taken to be equivalent to noise levels (Pei et al., 1996b). There

is an optimum in SNRre with increasing light intensities, and the optimum appears to be

at lower light intensities for the 3 Hz periodic stimulation than for the 10 Hz

stimulation. The precise location of the peaks in the SNRPS curves is difficult to

determine, due to the sparse measurements, but the indication of lower optimal light

intensities for lower stimulus frequencies is present. Therefore, all the key features of

stochastic resonance are present in this system and the effect almost certainly is

stochastic resonance, as no other noise effect would be expected to produce the

dependence of the optimal noise (light) level on the periodic stimulus frequency.

Baroreflex

Changes in blood pressure in man are monitored by the arterial and cardiopulmonary

baroreceptors. If either of the groups of baroreceptors detect a drop in blood pressure a

reflex response, via the nucleus tractus solitarius in the brain stem, is initiated to

increase the heart rate and vascular resistance in order to raise the blood pressure

(Andresen & Kunze, 1994). The baroreflex provides a convenient system for stochastic

resonance studies, as the two separate groups of baroreceptors can be individually

stimulated and the responses integrated in the brain stem before there is a resulting

change in heart rate.

Hidaka, Nozaki & Yamamoto (2000) used a computer controlled, sinusoidally

oscillating tilt table to provide a sub-threshold sinusoidal signal to the cardiopulmonary

baroreceptors. A pneumatic neck chamber was used to provide a noise signal to the

arterial baroreceptors and the inter-beat interval was taken as the output signal of the

baroreflex system. An increase in the variation of the inter-beat interval at the sinusoidal

test frequency, an indication of an increase in sensitivity to the otherwise sub-threshold

sinusoidal signal, was observed in all subjects.
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Despite all subjects exhibiting an optimal sensitivity to the test sinusoidal stimulus with

the addition of noise, it is not possible to determine if the increase in sensitivity was a

result of stochastic resonance as proposed. As with many of the other studies, only a

single sinusoidal frequency was used, so it is not possible to observe a dependence of

the optimal noise level on the sub-threshold periodic signal frequency. This study is of

interest though, as the increase in sensitivity must have occurred within the central

nervous system, most likely within the brain stem, indicating that the noise-induced

increases in sensitivity are not limited to the peripheral receptors, but may occur within

the central nervous system.

Cardiac Neurones

As part of the neural network controlling the cardiac system there are densely

interconnected populations of neurones. Both excitatory and inhibitory neurones are

connected together in a system that exhibits hysteresis. Kember, Fenton, Collier &

Armour (2000) have studied such a system and propose that it exhibits 'aperiodic

stochastic resonance', as the switching between the two stable states can be optimised

with the addition of input noise.

As discussed above (p. 9), 'aperiodic stochastic resonance' is not stochastic resonance

but is probably the result of dithering or system linearisation. Any output SNR

optimisation by noise, in a system that exhibits hysteresis, is also unlikely to be due to

stochastic resonance, as the Schmitt trigger, a simple system that exhibits hysteresis,

does not exhibit stochastic resonance.

Median Nerve

The response to electrical stimulation of the median nerve in humans during various

levels of voluntary contraction has been proposed to exhibit stochastic resonance

(Chiou-Tan, Magee, Robinson, Nelson, Tuel, Krouskop & Moss, 1996). The study used

subliminal stimulation of the median nerve and electromyography (EMG) to record the

electrical activity from the middle finger and abductor pollicis brevis. The surface

activity recorded from the middle finger is proposed to represent activity in sensory
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fibres in the median nerve, and the EMG from the abductor pollicis brevis is proposed

to indicate the activity in the motor fibres in the median nerve.

The level of 'background noise' in the median nerve was controlled by voluntary

contraction of the abductor pollicis brevis, with an increase in contraction strength

leading to a significant increase in the root mean squared (RMS) value of both the

sensory and motor activity. The output SNR measure used, SNRAMP, was the amplitude

of the stimulus-evoked response divided by the RMS of the record activity. The sensory

SNRAMP monotonically increased for increasing contraction strength, while the motor

SNRAMP appeared to be independent of the contraction strength.

The effect of increasing the strength of the voluntary contraction on SNRAMP is clearly

not stochastic resonance. The stimulus used is not periodic, so by definition the effect

cannot be stochastic resonance. The increase in SNRAMP may be due to some form of

facilitation caused by the voluntary contraction increasing the excitability of the sensory

neurones.

Mammalian Brain

The brain, with many millions of neurones interconnected in an extremely complex

arrangement is a very noisy environment for individual neurones, for several reasons. A

neurone will receive inputs from many other neurones, resulting in an increase in noise

due to synaptic transmission and timing jitter. Another noise source present in the brain

is the vast number of other neurones. The fluctuations of the extracellular fluid

composition surrounding a neurone are affected by other neurones, as are the electrical

fields around a neurone. The fluctuations in extracellular fluid and electric fields may be

related to the signal that a neurone is processing, and therefore may aid in the

processing. Conversely, the fluctuations may be unrelated to the signal of interest, and

are therefore considered a source of noise.

Hippocampal Cells

Hippocampal CA1 cells receive inputs via many thousands of synapses that allow the

integration of a vast amount of information. It is possible to stimulate slices of rat

hippocampus with two separate signals and record the response of the CA1 cells. Stacey
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& Durand (2000) stimulated rat (Rattus norvegicus) hippocampal slices with uniform

current pulses. One electrode delivered a periodic train of pulses while the other

delivered a train of random pulses. Adjusting the number of random pulses delivered

varied the intensity of the noise. The SNRPS measure calculated from the response of a

single CA1 cell was optimised with the addition of a specific level of noise, via the train

of random pulses. Interestingly the level of noise that corresponded to physiological

conditions, as determined by the spontaneous activity, was on the rising edge of the

plot.

It is difficult to determine if the increase in SNRPS is a result of stochastic resonance, as

claimed, for two reasons. Only a single frequency of periodic stimulation was used, so it

is not possible to observe the frequency dependence of the optimal noise level that is a

key feature of stochastic resonance. The other difficulty is the type of stimulus used,

which consisted of a series of current pulses injected into the hippocampal slice.

Stochastic resonance is only possible for a sub-threshold periodic stimulus and

traditionally this is in the form of a sinusoidal input. However, it is still possible to

observe stochastic resonance with a periodic train of pulses as the input, as illustrated in

Chapter Two (p. 61). Therefore, it is quite possible that the effect observed was due to

stochastic resonance, although experiments with several sub-threshold periodic signals

at different frequencies would be required to confirm the increase in SNRPS as being a

result of stochastic resonance.

Hippocampal slices from rat brains can also be stimulated using an electric field, rather

than current pulses through an electrode (Gluckman, Netoff, Neel, Ditto, Spano &

Schiff, 1996). A stimulus can be applied by modulating the electric field, which results

in activity in the CA1 cells. When noise alone is used to modulate the electric field the

CA1 cells respond with random bursts of activity, while periodic modulation of the

electric field results in periodic bursting. The SNRPS of a designated output cell passes

through an optimal value with increasing levels of additional noise, which was proposed

to be the result of stochastic resonance (Gluckman, So, Netoff, Spano & Schiff, 1998).

Again, a key feature of stochastic resonance, the frequency dependence of the optimal

noise level, was not seen as only a single test frequency was used. However, it is
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possible to observe a related feature: the matching of the predicted optimal noise level,

predicted from the noise-alone response, and the measured optimal noise level. The

optimal noise level should, on average, produce one impulse per cycle when it is used to

stimulate the hippocampal slices without any periodic signal. The optimal noise level

measured by Gluckman et al. (1998) produced 0.4 impulses per stimulus period. This is

not what is predicted from stochastic resonance theory, although it is still possible that

the observed increase in SNRPS is a result of stochastic resonance. This is because the

optimal noise level is clearly above the threshold noise level, the level predicted for

dithering, the another possible effect. Further investigation with different frequencies of

periodic signal are required to confirm whether the increase in SNRPS was a result of

stochastic resonance, or some other noise effect.

Visually Evoked Potential

It is possible to observe periodic changes in the electroencephalogram (EEG) recorded

from a subject viewing a periodically changing image. The stimulus-evoked periodic

changes in the EEG are the result of current leakage from the pyramidal cells and are

referred to as the visually evoked potential (VEP) (Mitzdorf, 1987).

Srebro & Malladi (1999) measured VEPs from subjects viewing a two-dimensional

spatial grating which was periodically reversed. A peak in the power spectrum is

apparent at twice the reversal frequency, which passes through an optimum for

increasing levels of input noise. As with many of the stochastic resonance studies, as

only a single grating reversal frequency was used, it is impossible to determine if the

effect was stochastic resonance as claimed.

Auditory Evoked Responses

In a similar experiment to that performed by Srebro & Malladi (1999), Stufflebeam,

Poeppel & Roberts (2000) measured the change in the magnetic field recorded from the

left temporal area of the brain in response to an acoustic stimulus. They found that a

measure based on the correlation of the response to a single presentation to the average

response over a hundred presentations was significantly increased with the addition of

noise to the acoustic stimuli.
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A single test frequency was used, and there is no measure of the noise-alone response,

therefore it is impossible to determine if the effect is stochastic resonance as claimed.

As the correlation measure was optimised when the input SNR was near unity, it is

likely that the effect may be a form of dithering, although further experiments using

different test frequencies would be required to determine the cause of the increase in the

correlation measure.

Perception

All the systems considered so far have relied on extensive computer processing of a

recorded signal to determine the final output signal, in the form of an output SNR

measurement. It is not known what type of processing is possible within the central

nervous system, and therefore it is not known if it is possible for the central nervous

system to utilise stochastic resonance.

The output SNR measurements used in stochastic resonance studies are typically

calculated over a significant time period, with the processing usually involving some

type of averaging across time. Time averaging is used because, if the noise is not

correlated in time, then it will average to zero, while any periodic signal will be re-

enforced if the averaging is done over an appropriate period. It is unlikely that the

central nervous system averages responses over many seconds, as is often done in the

stochastic resonance experiments, but the availability of many neurones in parallel can

reduce the need to average in time. Spatial averaging, averaging the responses from

many neurones or receptors, can replace time averaging provided that the noise signal

for each neurone or receptor is not correlated. In this way it may be possible for the

central nervous system to take advantage of stochastic resonance.

Paddlefish

The paddlefish (Polyodon spathula) can use electro-receptors in its rostrum to detect

plankton (Daphnia) while feeding. The plankton produce a small electric field that can

be considered a point dipole source (Greenwood, Ward, Russell, Neiman & Moss,

2000). The precise manner in which the paddlefish distinguish the plankton from

environmental electric fields is not known, but is likely to involve some form of
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processing within their central nervous system. The signal generated by the plankton

decreases approximately as the inverse cube of the distance. Therefore, the strike rate of

the paddlefish decreases with distance from their rostrum. That is, the plankton become

more difficult to detect when they are further from the electro-receptors in the rostrum.

Russell, Wilkens & Moss (1999) studied the effect of noisy electric fields on the strike

patterns of the paddlefish, and found that at intermediate noise levels there is a

broadening of the spatial range (an increase in the distance from the rostrum that the

paddlefish will strike). With high noise levels the spatial range is reduced to less than

the control level, presumably because of the difficulty of detecting the plankton in the

noisy electric field. They proposed that swarms of plankton might act as a natural

source of noisy electric fields that are utilised by the paddlefish, via stochastic

resonance, to detect specific plankton.

The increase in spatial range is proposed to result from a decrease in the threshold of

detection of the plankton. It is proposed that the reduction in the threshold is the result

of stochastic resonance, although the effect is more likely to be the result of dithering.

The optimal noise level appears to be close to the threshold level of noise, as predicted

for dithering but not stochastic resonance. The theoretical statistical analysis of the

problem is also based on the dithering effect. Therefore, although the paddlefish appear

to be capable of taking advantage of a noisy environment, it is unlikely that the

advantage is gained by utilising stochastic resonance.

Tactile Sensation

Human tactile sensation is derived from the responses of mechanoreceptors located in

the various layers of the dermis and subcutaneous tissue. Moderate levels of additional

input noise have been shown to enhance the detection of small sinusoidal signals in

various mechanoreceptors. Although, as discussed above (p. 19), none of these studies

have conclusively proved that the effect is due to stochastic resonance.

Several research groups have investigated whether the central nervous system can take

advantage of the extra information that is available when noise is added to a test

stimulus. Ivey et al. (1998) measured the detection threshold for sinusoidal
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displacements of the skin on the fingertip with various levels of noise added to the

sinusoidal displacement. The results suggest that the addition of appropriate levels of

noise can decrease the threshold of detection, although the result is not statistically

significant. The reductions in detection threshold are frequency dependent, with a

higher input frequency showing a smaller effect, but possibly at a larger noise variance

(level) as predicted by stochastic resonance.

Although it is not possible to be certain the decrease in threshold is due to stochastic

resonance, it is quite probable that it is. The optimal level of noise appears to be larger

for higher stimulus frequencies, a key feature of stochastic resonance. Also, the level of

noise that was used was above threshold, indicating that the effect was unlikely to be

dithering, which has an optimal noise level around the noise threshold.

The detection of a ramp indentation of the skin on the fingertip has also been shown to

be improved by the addition of an appropriate level of noise to the displacement

(Collins et al., 1996b; Collins, Imhoff & Grigg, 1997). The percentage of correct

responses to a randomised series of presentations was used as the output SNR

measurement for these studies. With the addition of an optimal level of noise the

percentage of correct answers was statistically significant, indicating that an otherwise

sub-threshold ramp was detectable. Interestingly, noise applied by electrical stimulation

of the finger, rather than mechanical noise, can also be used to enhance detection

(Richardson, Imhoff, Grigg & Collins, 1998).

The improvement in detection is not due to stochastic resonance as the signal was not

periodic, and therefore there can be no frequency dependence of the optimal noise level.

The optimal level of noise appears to be near-threshold, rather than above threshold as

is predicted by stochastic resonance, and therefore the effect is most probably a form of

dithering.

Visual Perception

Visual perception typically involves complex processing in the brain, as indicated by

the large amount of the brain devoted to the task. The type of processing involved is

dependent on the particular visual stimuli. It is possible to recognise abstract
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representations of objects, pinpoint small changes in intensity and discern details in

patterns. Each of these tasks is subject to different types of noise from the visual

environment, and therefore the brain may utilise stochastic resonance to enhance

detection of specific features of an image.

Simonotto, Riani, Seife, Roberts, Twitty & Moss (1997) measured the minimum

contrast that was required to discern a particular feature of an image that was

constructed of black and white pixels. The image was constructed by converting a

continuous grey scale image into black and white pixels using an arbitrary threshold. If

the grey scale for a given pixel was above threshold, the pixel was set to black, while if

it was below it was set to white. The minimum contrast that was required to discern a

particular feature was reduced when an appropriate level of noise was added to the

image. The manimum contrast level could be further reduced by introducing time

varying noise.

The reduction in contrast threshold is probably due to dithering rather than stochastic

resonance as proposed. The optimal level of noise appears to be approximately at a

threshold level, as predicted by dithering. The further reduction of the threshold with a

time varying noise can best be explained by considering the averaging effects of the

visual system. As the rate of updating of the noise increased above the rate of averaging

for the visual system, the contrast threshold began to decrease rapidly. Again this

suggests the effect is a type of dithering effect, rather than stochastic resonance.

A similar effect was noted by Piana, Canfora & Riani (2000) using capital letters, rather

than a particular pattern as the stimuli. They extended the study to include letter

identification and found that the addition of noise increased the percentage of correct

identifications for an otherwise unidentifiable letter. Again the results suggest that this

improved identification was a result of dithering rather than stochastic resonance as

claimed, as there was no periodic component to the test image.

A visual perception task using autostereograms, pictures that have a three-dimensional

image encoded in two dimensions, was studied by Ditzinger, Stadler, Struber & Kelso

(2000). The state of 'spatial perception' (a measure of the mode of observation of the

subject) could be controlled by altering the 'period length' of the image. A peak in the
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SNRpS of the 'spatial perception' state with the addition of noise to the image was

observed for two subjects when an otherwise sub-threshold periodic modulation of the

'period length' of the image was presented. The peak in the SNRPS was claimed to be a

result of stochastic resonance.

The changes between 'spatial perception' states had been shown to exhibit hysteresis.

Therefore, as with the Schmitt trigger (p. 12), the improvement in the SNRPS with the

addition of noise is likely to be a result of dithering, rather than stochastic resonance.

However, as the 'period length' of the image was only modulated at a single frequency

it is not possible to determine if the effect was stochastic resonance or not.

Haken's bistable visual perception drawings consist of a series of nineteen images that

form a progression from a man's face to a woman's body. The images form a set that

exhibits a perceptual hysteresis (Chialvo & Apkarian, 1993). If the series of images are

randomly shown to a subject who is asked to rank them from one to nineteen, one being

a face and nineteen being the woman, most of the responses will be either face or

woman with few responses in between.

A periodic signal can be introduced into the perception task by using it to modulate

which image is presented. In their stochastic resonance study, Chialvo & Apkarian

(1993) chose the next image to present based on the subject's response to the current

image, the sub-threshold sinusoidal modulation and a noise signal. Without any

additional noise the image tended to be classified as either the face or woman,

indicating that the sinusoidal modulation was sub-threshold. With the addition of noise

to the signal, transitions between the stable states became phase locked to the sinusoidal

modulation. A histogram of the time between transitions resembles the ISIH of a

neurone or a histogram of the residence time of a particle in the double-well model. An

increase in the SNRRES was found for increasing noise levels, and a peak in the SNRRES

measurement for the second peak of the residence time histogram was also found.

The effect is likely to be stochastic resonance because the level of noise that produced

optimal SNRRES for the peak at twice the period is close to that which produces an

average transition rate of half the sinusoidal frequency. Therefore, there appears to be a

matching with a sub-harmonic of the stimulus frequency, which is predicted by
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stochastic resonance. The SNRRES measure for the stimulus period continued to increase

for increasing noise levels, implying that the optimal noise level was above the noise

levels tested. This is also in agreement with stochastic resonance theory as the

maximum average transition rate was below the stimulus frequency. A higher optimal

noise level for SNRRES at the stimulus frequency than SNRRES at half the stimulus

frequency is also predicted by stochaj.tic resonance, as observed.

Audio Perception

Detection Thresholds

Acoustic detection threshold measurements are typically performed in specially

constructed rooms designed to reduce ambient noise, as it is believed that any additional

noise will result in an increase in the detection threshold. However, Zeng, Fu & Morse

(2000) found the addition of subliminal levels of noise to the test signal actually

reduced the detection thresholds in normal subjects. Similar results were also reported

for subjects with impaired hearing who had been fitted with cochlear implants and also

one who had been fitted with a brainstem implant.

The observed decreases in detection threshold are unlikely to be the result of stochastic

resonance as claimed, for a variety of reasons. With the normal subject two different

test frequencies were used, and although the optimal noise level was dependent on the

test frequency, as occurs in stochastic resonance, the higher test frequency had a lower

optimal noise level, the opposite shift to that expected if the effect was the result of

stochastic resonance. All subjects with the cochlear implants or brainstem implants

were tested with a fixed noise level, but with many test frequencies. Under these

conditions stochastic resonance should be evident by different frequencies being

optimised with different fixed noise levels. As only a single noise level was used, it is

not possible to determine if the observed decrease in detection threshold was the result

of stochastic resonance, or some other effect, such as dithering. It is likely the effect

was a form of dithering, as the cochlear implant subjects also performed a frequency

discrimination test, for which the addition of a near-threshold level of noise resulted in

the most sensitive discrimination.

37



Stochastic Resonance Chapter One

Response Times

The EEG of a person at rest is essentially a random signal, but may have a periodic

modulation, such as an a wave. In response to an audio stimulus such as a brief burst of

sound, an event-related potential is present in the EEG that can be seen by averaging the

EEG over many presentations. Winterer, Ziller, Dorn, Frick, Mulert, Dahhan, Herrmann

& Coppola (1999) studied the reaction time of subjects to an audio stimulus and found

that there was a correlation with the noise level present in the EEG before the stimulus.

A larger noise value was weakly correlated with a decrease in reaction time. The level

of noise in the EEG was defined as 'the mean power of all single sweeps minus the

power of the average signal.' The authors propose that this was evidence that the central

nervous system was able to use stochastic resonance to decrease the reaction time.

The reduction in reaction time is weakly correlated with the noise level, with the

correlation dependent on a few subjects who had high levels of noise. Any reduction in

reaction time is unlikely to be stochastic resonance, as stochastic resonance would be

expected to produce a minimum in the reaction time for a non-zero level of noise, not a

monotonically decreasing reaction time. Although the reaction time may increase for

higher levels of noise, there is no indication of this effect from the available data.

Reaction time is not a periodic measurement, but the audio tones are periodic and

therefore it is possible that their detection may be enhanced by stochastic resonance, as

discussed above (p. 22). However, no difference in the reaction times for the two

frequencies was reported, as would be expected if the effect was a result of stochastic

resonance.

Memory Retrieval

Usher & Feingold (2000) measured the response time of subjects presented with a

simple single-digit arithmetical multiplication. The simple task was designed to be a

memory retrieval task, as the subjects were all well trained in the simple multiplications.

It was found that the response time for a correct answer was significantly lower when

the tests were performed in the presence of 60 dB of acoustic noise than when the tests

were performed without the acoustic noise. More intense levels of acoustic noise

resulted in an increase ivi response time, to near control levels. Usher & Feingold (2000)
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Table 1.1 Stochastic resonance can be distinguished from other noise effects, such as dithering,

either by a system's noise-alone response or by the response at two different test frequencies. An increase

in the output SNR is not enough to determine if a system is exhibiting stochastic resonance.
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modelled the memory retrieval task as a competition between multiple leaky

accumulators, with the first accumulators to exceed an arbitrary threshold being the

memory recalled.

The presence of acoustic noise, clearly reduced the response time of the subjects.

However, it is unlikely that it was a result of stochastic resonance as claimed by Usher

& Feingold (2000). The analysis and modelling were both done without reference to a

periodic input, and the memory retrieval task is not periodic in nature; therefore a

matching of time-scales, a key feature of stochastic resonance, cannot occur. The model

is optimised with the addition of Gaussian noise with a standard deviation of

approximately 0.4. This is the level of noise that would be expected to optimise a

system exhibiting dithering (Gammaitoni, 1995), and therefore the observed decrease in

response time is likely to be a result of dithering.

Summary

Stochastic Resonance

There are a few key features of stochastic resonance that are worth reiterating. These

features separate the stochastic resonance effect from other noise enhancement

mechanisms and are summarised in Table 1.1. Firstly, the system must be non-linear to

exhibit stochastic resonance. Typically the non-linearity is in the form of a threshold,

but it is not necessary that the system have a threshold, just that the non-linearity have

'sufficient steepness' (Chapeau-Blondeau & Godivier, 1997; Balazsa et al., 1999).

Secondly, the input signal of interest must be a sub-threshold periodic signal. Typically

the signal is a sinusoidal one, although it is possible to observe stochastic resonance

with a periodically modulated train of pulses (for details refer to Chapter Two, p. 61).

Therefore, by this definition, 'aperiodic stochastic resonance' cannot occur, as the input

signal is not periodic. Without a periodic signal, there can be no matching of time-scales

or frequency, which is the 'resonance' part of stochastic resonance.

The stochastic resonance effect results in an increase in the output SNR with optimal

levels of additional input noise. This effect is initially counter-intuitive, although on
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closer inspection does not seem so strange. An optimal output SNR with the addition of

input noise is not unique to stochastic resonance. In fact there are many other noise

effects, such as dithering, that may also result in an optimal output SNR with the

addition of noise, as illustrated in Figure 1.5. Therefore, simply because a system

exhibits an increase in output SNR with the addition of input noise, it does not mean

that the system is exhibiting stochastic resonance.

The feature that sets stochastic resonance apart from all other noise effects is the

relation between the optimal noise level, DOPT, and noise-alone response of the system.

It is possible to predict the noise level that should optimise the output SNR, DPRE, from

the noise-alone response. It is the level of noise that, when applied alone, produces an

average output rate from the system that is equal to the frequency of the sub-threshold

periodic signal, illustrated by the grey lines in Figure 1.4 (bottom panel). As the noise-

alone response is a monotonically increasing function of noise, larger noise levels are

required to optimise higher frequency sub-threshold periodic stimuli. The matching of

DPRE and DOFr and the resulting periodic stimulus frequency dependence of D0PT are the

key features of stochastic resonance that are not produced by any other noise effect.

A consequence of the matching of DOPT and DPRE is that DOPT must be greater than the

threshold noise value. With the threshold value of noise, the average noise-alone

induced rate is just above zero. Therefore, this level of noise would only optimise a sub-

threshold periodic stimulus with a near zero frequency. Another constraint imposed by

the noise-alone response is that there is an upper limit to the noise-alone induced rate.

This limits the maximum sub-threshold periodic signal frequency that can be optimised

via stochastic resonance. For the bistable potential well system illustrated in Figure 1.3

and Figure 1.4, the maximum noise-alone induced rate is approximately 100 t/s.

Therefore the maximum periodic signal frequency that can be optimised via stochastic

resonance would be 100 Hz, although, it may be possible to optimise sub-harmonics of

higher frequencies with the appropriate level of additional input noise.

To determine if a system exhibits stochastic resonance, two features must be present.

Firstly, the output SNR must be optimised by some supra-threshold level of noise, D0PT.

Secondly, the optimal noise level must either be dependent on the periodic stimulus
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frequency or match the predicted optimal noise level, DPRE, which can be predicted from

the noise-alone response of the system. Many noise effects can satisfy the first criteria,

but only the stochastic resonance effect can satisfy both.

Stochastic Resonance in Biological Systems

Of all the biological systems that have been investigated for improved signal detection in

the form of an increase in output SNR with additional input noise, very few have been

proved to involve stochastic resonance as proposed (for a summary see Table 1.2). That

the addition of noise had increased the sensitivity of most of the systems is not in doubt,

but the mechanism by which the increase in sensitivity had occurred is. Of the biological

systems studied, only the crayfish multi-modal interneurone (Pei et al., 1996b)

convincingly exhibited stochastic resonance. Interestingly, in this study the noise and

periodic stimuli were of different modalities, indicating that the stochastic resonance

effect was occurring in the intemeurone and not in the mechanoreceptor. This is important

as it indicates that it may be possible for stochastic resonance to occur within the central

nervous system, and that it is not limited to peripheral receptors. It is likely that many of

the other systems studied could exhibit stochastic resonance, but the available results did

not allow distinction between stochastic resonance and other noise effects, as the

frequency dependence of the optimal noise level was not measured. Therefore, the

majority of systems required further investigation to determine the effect of the increased

output SNR. The further investigation must include the measurements of the response to

several frequencies of sub-threshold periodic stimuli to be able to differentiate between

stochastic resonance and other noise effects. The advantages of a system that exhibits

stochastic resonance, over a system that exhibits other forms of noise enhanced

sensitivity, such as dithering, will be discussed later in this thesis (p. 142).

Perhaps the most interesting results come from investigations into perception, where

stochastic resonance has been observed with visual perception tasks (Chialvo & Apkarian,

1993) and perhaps in tactile detection tasks (Ivey et al., 1998). As the studies of tactile

sensation emphasise, a system can exhibit stochastic resonance and also exhibit other

constructive noise effects depending on the type of stimulation used and the analysis

performed. Therefore, it is important that any investigations of stochastic resonance use

carefully chosen stimuli and processing techniques to ensure the observed effects are truly

stochastic resonance.
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Table 1.2 Although many biological systems have been proposed to exhibit stochastic resonance,

very few have been tested sufficiently to determine if the increase in output SNR is the result of stochastic

resonance or some other effect. A 'S1 indicates that the condition has been observed, while a X indicates

that the condition did not occur, and a blank indicates that the condition was not tested.



Chapter Two

Modelling of Stochastic Resonance

Much of the work that has been done on stochastic resonance has been based on

models. Theoretical analysis of the models is often difficult and simplifying

approximations are often required. Therefore, simulations of the models are often used

to gain insight into some of the more interesting features of stochastic resonance.

Bistable Potential Well

The bistable potential well model, described in Chapter One, is one of the simplest

models for stochastic resonance that has been studied. Several variations of the potential

well have been used but the results from different potentials are qualitatively similar

(Benzi et al., 1981; Bulsara, Jacobs, Zhou, Moss & Kiss, 1991). Therefore, the model

described in Chapter One has been taken as representative of all bistable potential well

models.

All of the features of stochastic resonance are apparent in the bistable potential well

model. These features include: an optimal output SNR with the addition of a supra-

threshold level of input noise; an increase in the optimal noise level with an increase in

sub-threshold periodic stimulus frequency; and a matching of the noise-alone induced

transition rate to the sub-threshold periodic stimulus frequency at the optimal noise

level. While many constructive noise effects may produce the first feature, only

stochastic resonance will result in a frequency dependent optimal noise value, typified

by the second two features. All these features were illustrated in Chapter One and were

produced by numerical integration of Equation 1.1 and Equation 1.4 using a fixed step-

size fourth-order Runge-Kutta method. The simulations were performed on a Macintosh

Power PC (Macintosh, Cupertino, California, U.S.A.) using Igor Pro (WaveMetrics,

Lake Oswego, Oregon, U.S.A.) with a custom written additional code module

(Appendix A).

The bistable potential well model reproduces many of the statistical features of the

discharge of neuronal systems subjected to sinusoidal stimulation of the appropriate

modality (Longtin, Bulsara, Pierson & Moss, 1994). However, the bistable potential
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well model cannot model some of the features of biological receptors, including a

maintained discharge and the response to a non-periodic stimulus (e.g. a ramp-and-hold

stimulus). Therefore, other more biologically relevant models have been used to

investigate stochastic resonance in biological systems.

Biological Models

There have been many investigations of stochastic resonance in neurones using a

variety of models. The models have various levels of complexity ranging from simple

models such as the integrate-and-fire model, two-state models and the Fitzhugh-

Nagumo model, to more complex models including the Hodgkin-Huxley model. The

information contained in an action potential is transmitted either by propagating

regeneratively or by causing the release of neurotransmitter, so the precise shape of the

action potentials is not thought to be significant. Although, a reduction in size of the

action potential, as a result of extremely high firing rates, can result in a reduction in the

amount of neurotransmitter released. Therefore, the majority of the physiologically

relevant information carried by a train of action potentials is the relative timing of the

action potentials. The output of many of the simple models is a series of standard spikes

that can be treated as a series of recorded action potentials, while the more complex

models are capable of producing deterministic spikes.

Integrate-and-Fire Model

One of the simplest neurone models, the integrate-and-fire model, has been shown to

exhibit all the features of stochastic resonance. The model is considered a first-order

approximation of the full Hodgkin-Huxley model, which is the benchmark for excitable

membrane models (Plesser & Geisel, 1999). The membrane voltage is modelled as a

simple integrator of the input current with a threshold for spike generation. When the

membrane voltage exceeds the threshold, a standard spike is generated and the

membrane voltage is reset to a voltage below threshold. The depth of the reset voltage

below threshold and the time constant of the membrane determine the refractory period

of the model neurone. Although the model is quite simple it can reproduce many of the

features of neurones.
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The model exhibits resonance-like behaviour for a periodic stimulus at a set frequency

with changing noise intensity, which is the classical stochastic resonance behaviour.

Interestingly, the model can also show resonance-like behaviour for fixed noise

intensity and changing stimulus frequency. This second tuning effect would also be

expected from a system exhibiting stochastic resonance. However, the second tuning

effect is dependent on the measure that is used. If the standard measure based on the

output power spectrum, SNRPS (p. 4), is used on the series of standard spikes then the

effect is not seen (Plesser & Tanaka, 1997). However, if the measure based on the inter-

spike interval histogram, SNRISiH (p. 54), is used then the resonance with changing

frequency and constant noise is seen (Shimokawa et al., 1999a; Barbi, Chillemi & Di

Garbo, 2000). This has led to the proposition that it is not possible for a system to

exhibit stochastic resonance if the standard SNRps measure is used (Fox, 1989).

Ensembles of integrate-and-fire neurones have also been investigated for stochastic

resonance (Shimokawa, Rogel, Pakdaman & Sato, 1999b). The neurones were modelled

as being subject to a common input current signal, but with different noise sources. The

output spike trains of the individual neurones were then summed at a higher order

neurone, modelling synaptic transmission to an intemeurone, to give the final output of

the system. It was shown that the summing improved the signalling of the system, but

the precise effect was dependent on the type of output measure that was used. The

improvement in the output SNR is likely to be the result of a simple averaging across

the population, as discussed in Chapter One (p. 10), and not stochastic resonance.

Mato (1999) used 1600 integrate-and-fire neurones in a network to produce a noise

input, in the form of a random train of spikes, for another integrate-and-fire neurone.

The result was a network of neurones that was able to produce many of the features of

stochastic resonance without an external noise source. The network of neurones

producing the noise input could be tuned to alter the noise distribution, with the result

that the response of the system could equal a system with an ideal source of external

noise (i.e. a noise source that produced a maximum increase in the output SNR). That a

network of neurones can produce an adjustable random spike train that can be used, via

stochastic resonance, to optimise the response of neurone has important ramifications
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for signal detection throughout the central nervous system, as discussed in Chapter One

(p. 14).

Simplified Spike Integrator

Godivier & Chapeau-Blondeau (1996) studied a simplified neurone model that

numerically integrates changes in conductance initiated by input spikes. The model is

based on the changes in conductance that occur in the membrane of a postsynaptic

neurone in the region of the synaptic cleft. Each input spike initiates an increase in

conductance, followed by a return to a resting level of conductance. The membrane

voltage fluctuates as a result of the changing conductance. If the membrane voltage

crosses a threshold level, it is reset to a resting level after a refractory period. The output

of the neurone is a series of standard spikes at the times of the threshold crossings.

A periodic spike train and a series of random spike trains were used as inputs, with the

power spectrum of the resulting series of standard spikes being used to calculate an

output messure, SNRPS (p. 4). The number of random spike trains was altered to change

the effective level of noise in the system. An optimal SNRPS was produced when more

than one random spike train was used, as would be expected if the system was

exhibiting stochastic resonance. As only a single periodic input frequency was used it is

not possible to observe a dependence of the level of noise required to optimise the

output SNR on the frequency of the periodic stimulus, a key feature of stochastic

resonance.

Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo (FHN) model is a two-state excitable membrane model

described by Equation 2.1 (Fitzhugh, 1961). The two state variables have different

dynamics and model different aspects of an excitable membrane. The 'fast' variable, v,

models the membrane voltage, while the 'slow' variable, w, is a recover)' variable. The

input signal and noise are represented by S(t) and £(t) respectively, while the remaining

constants affect the dynamics of the model. The model is capable of producing many

features of neuronal discharges including deterministic spikes that are reminiscent of
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Figure 2.1 Fluctuations about an arbitrary threshold (grey dashed line) are present in the
Fitzhugh-Nagumo model when large noise amplitudes are used, as illustrated by the magnified pulse.
Although smaller noise amplitudes result in fewer fluctuations, the larger noise amplitudes are
required to show the complete stochastic resonance effect. The simulation shown has arbitrary units
for both the ordinate and abscissa that have not been shown.
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action potentials, a maintained discharge and responses to non-periodic signals, such as

ramp-and-hold stimuli.

ev = v (v -a ) ( l -v ) -w+A+S( t ) + l;(t) _ .. . ,
Equation 2.1

w = v—w—b

The determination of the precise timing of the output spikes becomes difficult with

increasing noise levels. If the noise is of sufficient amplitude the spikes may actually

consist of several threshold crossings, as illustrated in Figure 2.1. The fluctuations about

the threshold level are the result of the high frequency components of the noise.

Although it would be possible to reduce the high frequency fluctuations of the output by

reducing the amplitude of the input noise, the larger noise amplitudes are often required

to show the full stochastic resonance effect. Some investigators therefore introduce an

absolute refractory period into the model, which reduces the effect of these fluctuations.

The absolute refractory period is implemented by ensuring the minimum time between

threshold crossing is longer than the spike width, when converting the output V into a

series of standard spikes (Chialvo et al., 1997).

Stochastic resonance has been shown in the FHN model using both an output measure

based on the cycle histogram, SNRCYC (p. 8), with an absolute refractory period

(Chialvo et al., 1997) and an output measure based on the inter-spike interval histogram,

SNR1SIH (p. 54), without an absolute refractory period (Longtin, 1993). Both

investigations showed an increase in the optimal noise level for an increase in the

periodic stimulus frequency, the key feature of stochastic resonance.

It has also been proposed that the FHN models exhibits 'aperiodic stochastic resonance'

(Collins et al., 1995a). However, as discussed in Chapter One (p. 9), 'aperiodic

stochastic resonance' is probably the result of dithering or system linearisation rather

than a form of stochastic resonance (Chialvo et al., 1997). 'Stochastic resonance without

tuning' has also been proposed to occur with the FHN model (Collins, Chow & Imhoff,

1995b). 'Stochastic resonance without tuning' is proposed to occur when the output

from many FHN model neurones, that are subject to the same non-periodic input signal

but different noise inputs, are combined. As the number of model neurones is increased

the dependence of the output on the noise level changes. With only a few neurones the
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output SNR varies with the level of input noise in a similar manner as it does for

stochastic resonance. That is, the output SNR is optimised with the addition of a single

level of noise. For large numbers of model neurones, approximately 1,000, there is not a

single optimal noise level, simply a minimum noise level that is required for an optimal

output SNR. Stochastic resonance without tuning is based on 'aperiodic stochastic

resonance' and therefore is also proposed to be due to dithering or system linearisation

(Chialvo et al., 1997).

Massanes & Vicente (1999) demonstrated a more traditional form of resonance in the

FHN model. The model has a preferential firing rate at large noise intensities, with the

rate being largely independent of the noise level used. That is, if stimulated with noise-

above a certain minimum level, the model fired at a near constant rate. Under these

conditions, the model behaves as a deterministic resonant system, with a natural

frequency, co0, set by the preferred firing rate. As the preferred rate is largely

independent of the noise level used it is not possible to tune the model to different

frequencies; therefore, this type of resonance is not stochastic resonance. The preferred

firing rate is higher than the periodic frequencies used in many of the other studies.

Therefore, it is unlikely that the effect observed in the other stochastic resonance studies

is related to this resonance. However, this other type of resonance does highlight the

difficult nature of stochastic resonance investigations.

An effect known as 'spatiotemporal stochastic resonance' has been observed in a two-

dimensional network of FHN models (Balazsi et al., 1999). With the addition of

appropriate levels of noise, waves of excitation can spread throughout the network.

These waves of excitation cannot be propagated in the absence of additional input noise,

as they are below threshold. The addition of too much noise leads to the break up of the

waves, so the effective spread of the waves has a characteristic optimum with the

addition of noise. The effect is similar to the dithering effect but spread throughout a

two-dimensional network, therefore it is unlikely to be stochastic resonance.

Hodgkin-Huxley Model

One of the best known excitable membrane models is the four-dimensional Hodgkin-

Huxley model (Hodgkin & Huxley, 1952). This model, first proposed in 1952, is based
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on voltage clamp data from the squid (Loligo) giant axon. Although the equations were

developed for the unmyelinated membrane in the giant axon, the model has been used to

model a variety of excitable membranes.

Kanamaru, Horita & Okabe (1998) studied stochastic resonance using the Hodgkin-

Huxley model. A sub-threshold periodic current and superimposed noise current was

used as the input and the power spectrum of the resulting output voltage was used to

calculate SNRPS (p. 4). An optimal SNRPS with the addition of noise was found.

However, the simulations were performed with a single periodic stimulus frequency so

it is not possible to determine if the effect was stochastic resonance, as claimed by the

authors. The frequency dependence of SNRps with a constant noise level was shown to

have an optimum at approximately 70 Hz, which could indicate stochastic resonance.

However, the frequency dependence of SNRPS with a fixed noise level is most likely to

be a form of deterministic resonance that is related to the frequency dependence of the

optimal noise level, D0PT, shown by Lee & Kim (1999), also centred on 70 Hz.

The Hodgkin-Huxley model has a characteristic frequency of approximately 70 i/s,

which is also approximately the lowest frequency at which the model will generate a

maintained discharge. Therefore, the resonance effects are most likely to be a form of

deterministic resonance, rather than stochastic resonance. The Hodgkin-Huxley model

also exhibits dithering (Pei, Wilkens & Moss, 1996a), which further complicates

interpretation of the effects of noise.

Non-membrane Models

Other biological models have been used in stochastic resonance studies, but none of

them have convincingly shown stochastic resonance. Zhong & Xin (2000) modelled the

dynamics of an oil-water interface that is proposed as a model of excitable bio-

membranes, specifically the membranes of olfactory and gustatory cells. The oil-water

interface exhibits periodic fluctuations in the amount of material transferred to a bulk

organic phase under the influence of random variations in the concentrations of the

constituents of the material to be transferred. A measure based on the power spectrum

of the transfer rate, SNRPS (p. 4), has an optimum for a non-zero level of noise,

reminiscent of stochastic resonance. However, it is unclear how a noise-induced
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periodic fluctuation can be considered a useful signal. Also, the induced periodic

fluctuations are at a single frequency, determined by the system dynamics, so it is not

possible to observe a change in the optimal noise level with frequency, a requirement of

stochastic resonance.

Srebro & Malladi (1999) modelled part of the visual cortex with a neural network based

on simple cells. The simple cells were modelled as having a fixed spatiotemporal

response to the input. That is, the responses of the simple cells were modelled by

convolving each test stimulus with a fixed spatiotemporal field that was characteristic of

the simple cell. While the response of a cell was above a set threshold the cell was

designated as firing at 200 i/s, otherwise it was silent. The responses from 100 such

cells were summed and the power spectrum of the resulting signal used to calculate

SNRpS (p. 4). The results generated from the model matched measured visually evoked

potential increases with additional noise. Unfortunately, both the model and

experimental results used a single stimulus frequency so it is not possible to determine

if the effect was stochastic resonance.

A model of simple cells in the visual cortex requiring a noise input to exhibit contrast

invariant orientation tuning, a property observed under experimental conditions, was

investigated by Anderson, Lampl, Gillespie & Ferster (2000). Contrast invariant

orientation tuning refers to the observation that some neurones in the visual cortex

respond only to stimuli of a particular orientation, and that this effect is independent of

the contrast of the stimulus, used. The effect was a system linearisation, not stochastic

resonance as claimed, as the noise effectively removed the threshold.

Stemmler, Usher & Niebur (1995) also used a simplified model of the visual cortex to

study the effect of noise. Their model was based on densely interconnected cells

contributing excitatory or inhibitory influences with lateral connections. The effect of

the noise on the model was to alter the ratio of excitatory and inhibitory inputs, which

resulted in a linearisation of the response of the network and was not stochastic

resonance as claimed.

Kashimori, Hoshino & Kambara (2000) used a simplified model of the torus

semicircularis of the weakly electric fish (Eigenmannia) to investigate the effect of
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noise on the fish's ability to adjust its electric organ discharge in response to the

detection of another Eigenmannia. The small cells of the torus semicircularis were

modelled as being part of a linear array of cells receiving time delayed inputs from two

different receptive fields. The ability of the model network to discriminate small

differences in the phase of the periodic signals presented to the two receptive fields was

enhanced with the addition of noise. The optimal noise level was equal to the threshold

level of detection, in the absence of noise. The threshold optimal noise level suggests

that the enhanced detection was due to dithering rather than stochastic resonance as

claimed.

Hodgkin-HuxGey Model

Many different excitable membrane models have been proposed to exhibit stochastic

resonance. However, the majority of the models, while exhibiting an optimal output

SNR with the addition of noise, have not been examined thoroughly enough to prove

that the increase in the output SNR is a result of stochastic resonance. A point of interest

is that the same models appear to exhibit different behaviour based on the output SNR

measure used. Therefore an evaluation of a variety of different output SNR measures

using a common model, the Hodgkin-Huxley excitable membrane model, is of interest.

The Hodgkin-Huxley model, as previously mentioned, is one of the standard models for

excitable membranes. The model is based on voltage sensitive ion channels that are

present in the membrane. Only the sodium and potassium currents are specifically

modelled, with the remaining ionic currents being modelled by a leakage current.

The model is capable of producing action potentials in response to injected current,

which resemble those recorded from the giant axon of the squid (Loligo) under similar

conditions. The previous studies into stochastic resonance using the Hodgkin-Huxley

model have reported an optimum in a SNR measurement based on the output power

spectrum, SNRPS (p. 47), for a non-zero level of noise. However, the studies have failed

to demonstrate all of the key features of stochastic resonance, particularly the frequency

dependence of the optimal noise level.
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Realisation of the Model

The set of equations used to implement the Hodgkin-Huxley model is given in

Appendix B. The equations were solved using a fixed step-size fourth-order Runge-

Kutta numerical integration technique. The simulations for the Hodgkin-Huxley model,

and the remaining models discussed in this chapter, were performed on u Macintosh

Power PC (Macintosh, Cupertino, California, U.S.A.) using Igor Pro (WaveMetrics,

Lake Oswego, Oregon, U.S.A.) with custom written additional code modules (Appendix

A). The simulations required an input current waveform and returned a voltage

waveform consisting of a series of action potentials.

Response Curves

Figure 2.2 (top panel) is the threshold frequency response curve of the model when

stimulated with a sinusoidal input current waveform. The stimulus was considered to be

supra-threshold if it generated a one-to-one driving of the model, so that an action

potential was produced once a cycle. There is a minimum at approximately 60 Hz,

which corresponds to the characteristic frequency of the model as discussed previously

(p. 47).

The response of the model to a noise-alone stimulus is shown in Figure 2.2 (bottom

panel). The noise-alone stimulus consisted of a computer generated random input

current waveform, which was normally distributed with a mean of zero and an

adjustable standard deviation. The standard deviation of the noise-alone input current

waveform was defined as the noise amplitude. The response is characterised by a

threshold of approximately 5 mA, that is an input current waveform with a mean of zero

and a standard deviation of 5 mA. The average rate then rises rapidly with increasing

levels of noise up to a noise level of approximately 15 mA. The slope of the response

then decreases and the average rate approaches an asymptotic value between 60 and 70

i/s. The noise-alone response can be fitted with a curve based on Kramers' rate for a

bistable potential given by Equation 2.2. 'D' is the noise amplitude and a and (3 are

arbitrary constants (Kramers, 1940).
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Figure 2.2 The frequency response of the Hodgkin-Huxley model (top panel) has a minimum

around 60 Hz, near the characteristic frequency of the model. The threshold was defined as an input

amplitude that produced one-to-one driving of the output spike train. The noise-alone response

(bottom panel) exhibits a threshold of approximately 5 mA, after which the average rate increases

monotonically with increasing noise amplitude. The noise-alone response has been fitted with a curve

based on Kramers' rate (Equation 2.2, solid line). This and all subsequent simulations using the

standard Hodgkin-Huxley model, described in Appendix B, were simulated using a fourth-order

Runge-Kutta numerical integration technique with a fixed step size of 50 /is for a period of 100 s,

unless otherwise specified.
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__P_
Rate = ae °2 Equation 2.2

Different Output Measures

Whether a system exhibits stochastic resonance is dependent not only on the system

being studied, but also the output measurement being used. The output of the Hodgkin-

Huxley model is a voltage waveform containing a train of action potentials. Unlike the

FHN model the action potentials do not exhibit high-frequency fluctuations about a

threshold, even with large input noise amplitudes, so the conversion from a series of

action potentials to a series of inter-spike intervals is simple.

Power Spectrum (SNRPS)

The most commonly used output SNR measure is the SNRPS measure (p. 4), which is

based on the power spectrum of the output signal from a system. To calculate SNRps for

the Hodgkin-Huxley model the series of action potential timings were converted into a

train of unit spikes. A Fast-Fourier transform was then used to calculate the power

spectrum of the spike train. The Fast-Fourier transform used resulted in a spectrum that

was proportional to, but not equal to, the actual power spectrum. As a ratio of powers,

rather than actual values, were used to calculate SNRPS, the resulting SNRPS was

equivalent to one calculated from the actual output power spectrum.

If the input current waveform to a standard Hodgkin-Huxley model is a sub-threshold

periodic input and supra-threshold noise input, the power spectrum of the resulting

spike train appears to be flat with peaks at odd harmonics of the stimulus frequency

(Figure 2.3, top panel). The height of the peak at the sub-threshold periodic stimulus

frequency divided by the background level near the periodic stimulus frequency is used

to determine SNRPS. For the power spectrum illustrated in the top panel of Figure 2.3

the periodic stimulus frequency was 30 Hz and the output 'power' at this frequency was

approximately 64. The background level was approximately 6, resulting in an SNRPS of

approximately 10.

The SNRPS measure for an otherwise sub-threshold periodic input passes through an

optimum with the addition of noise, as reported by Kanamaru et al. (1998) and Lee &
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F i g u r e 2 .3 The Hodgkin-Huxley model does not appear to exhibit stochastic resonance when

the SNRpS measurement is used. The top panel is the power spectrum of a series of unit spikes

calculated from a 100 s simulation of the model. The middle panels are the responses of the model to

different frequencies of sub-threshold sinusoidal stimulation (the blue symbol represents the data

shown in the top panel). Each point is calculated from 10 s of simulation with a sub-threshold

sinusoid (1.4 mA). The fitted curves in the middle panels are logNormal curves used to estimate the

optimal noise level, D0PT, indicated by the arrows. The bottom panel is i reproduction of the noise-

alone response from Figure 2.2, which has been fitted with a curve, based on Kramers' rate. The grey

lines in the bottom panel indicate the predicted optimal noise value, DPRE, for each test frequency.
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Kim (1999). The SNRPS vs noise curves for several frequencies of sub-threshold

periodic input are illustrated in the middle panels of Figure 2.3. The measurements were

well fitted by a logNormal curve, the formula for which is given by Equation 2.3, where

'a' is an arbitrary constant, 'D' is the noise level, 'D0PT' is the optimal noise level, and

'Width' is a measure of the width of the curve. 'Z' is the SNR measure when the input

is a sub-threshold periodic signal alone; for the SNRPS this is defined as one (p. 4). This

equation has the advantage that the optimal noise level, D0PT, is a parameter and

therefore it is possible to estimate the error in determining DOPT (SEM) as well as DOPT

itself.

Equation 2.3

The dependence of the optimal noise level on the sub-threshold periodic stimulus

frequency can be most clearly demonstrated if the test frequencies are chosen with the

aid of the noise-alone response (Figure 2.3, bottom panel). The test frequencies can be

chosen to lie within the approximately linear region of the noise-alone response curve,

which should result in the optimal noise levels for each frequency being well separated.

For the three test frequencies of 10, 30 and 50 Hz the predicted optimal noise levels,

DPRE, from the noise-alone response, are 9.2, 15 and 28 mA respectively. These

predictions were made using the grey lines in the bottom panel of Figure 2.3.

The estimated optimal noise levels, as determined by the fitted logNormal curves, were

14 ± 1 mA, 10.0 ± 0.3 mA and 7.5 ± 0.3 mA for the 10, 30 and 50 Hz test frequencies

respectively. These estimates of the optimal noise levels were independent of the

amplitude of the sinusoid used, provided that it was sub-threshold. The estimated

optimal noise levels do not agree with the predicted optimal noise levels. In fact the

optimal noise levels exhibit the opposite trend to that expected from stochastic

resonance; the optimal noise levels decrease with increasing periodic stimulus

frequency. Therefore, the Hodgkin-Huxley model does not appear to exhibit stochastic

resonance using the SNRPS measure.
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Residence Time (SNRRES) and Inter-Spike Interval (SNRISIH)

The SNRRES measure is based on the residence time histogram of the transitions between

stable states (p. 8). For the bistable potential well model, that corresponds to the time

between transitions from one half-well to the other. The SNRRES measure is equivalent

to the SNRISIH measure, which is based on the inter-spike interval histogram (ISIH)

which is often used in neurophysiology. The inter-spike interval histogram is

constructed by calculating the interval between successive action potentials. An

example of the resulting histogram is shown in Figure 2.4 (top panel). The distribution

is clearly multi-modal with peaks at integer multiples of the stimulus period, which is

0.033 s for the simulation illustrated. The SNRISIH measure is defined as the probability

of an action potential occurring every period, which is given by the area of the peak at

the period of stimulation. Alternatively, the height of the peak at the period of

stimulation can be used if the inter-spike interval histogram is always constructed using

the same bin width, as is done throughout this chapter.

The SNRISIH measure for an otherwise sub-threshold periodic input passes through an

optimum with the addition of noise, as illustrated in Figure 2.4 (middle panels). Values

of the optimal noise level, D0PT, were estimated by fitting the logNormal curve given by

Equation 2.3 with Z = 0, as the SNRISIH for a sub-threshold signal is zero. The estimated

optimal noise levels follow a different trend using the SNR1SIH measure compared with

the results using the SNRpg measure. For the three test frequencies of 10, 30 and 50 Hz,

the estimated optimal noise levels were 8.53 ± 0.01, 9.8 ± 0.2 and 10.3 ± 0.5 mA

respectively. Although these values are not precisely those predicted from the noise-

alone response (9.2, 15 and 28 mA) they appear to follow the same trend of an increase

in the optimal noise level with an increase in stimulus frequency, a key feature of

stochastic resonance.

The estimated optimal noise level, D0PT, is dependent on the amplitude of the sub-

threshold sinusoid, as illustrated in Figure 2.5. As the amplitude of the sinusoid is

reduced from near-threshold to zero, D0PT approaches the predicted optimal noise level,

DPRE, For a zero amplitude periodic input (a noise-alone signal) the SNRISIH measure

was calculated as if an infinitely small amplitude periodic input had been used. So for
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F i g u r e 2 .4 The inter-spike interval histogram (top panel) is multi-modal with peaks at integer

multiples of the stimulus period (0.033 s). The Hodgkin-Huxley model appears to exhibit stochastic

resonance when the SNR|SIH measurement is used (lower panels). The blue symbol represents the data

shown in the top panel. Each point is calculated from 100 s of simulation with a sinusoidal amplitude

of 1.4 mA. The fitted curves in the middle panels are logNormal curves used to estimate the optimal

noise level, D0PT, indicated by the arrows. The bottom panel is a reproduction of the noise-alone

response from Figure 2.2, which has been fitted with a curve based on Kramers' rate. The grey lines

in the bottom panel indicate the predicted optimal noise value, DPRE, for each test frequency.
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Figure 2.5 Simulations of the Hodgkin-Huxley model using a range of sinusoidal amplitudes

and noise amplitudes result in a SNR,SIH surface. The surface shown is for a 50 Hz sinusoid simulated

for 100 s at each combination of sinusoid and noise amplitudes. The red line underneath indicates

D0PT, which corresponds to the ridgeline of the surface, while the grey line indicates the predicted

optimal noise level, DPRE. D0PT decreases from the predicted noise level at small sinusoidal

amplitudes to a value approaching the threshold for noise (approximately 5 mA) at larger sinusoidal

amplitudes.
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the example illustrated in Figure 2.5 the SNRISIH measure was calculated assuming that

the input frequency for the zero amplitude periodic input was 50 Hz.

The sinusoidal amplitude dependence of estimated optimal noise, DOFr, highlights a

problem with the SNR,SIH measure. In the case of no sinusoidal input, the SNRjSIH

measure can still exhibit a peak at the predicted optimal noise level, DPRE, as illustrated

in Figure 2.6. This problem was noted by Giacomelli et al. (1999) and led them to use

only the area of the peak above the noise-alone distribution at the period of stimulation

as their output SNR measure. Although this measure removes the problem with the

noise-alone stimulus, it requires a large number of action potentials to accurately

determine ths, noise-alone distribution (Marchesoni, Gammaitoni, Apostolico &

Santucci, 2000). The number of action potentials required is in the order of several

hundred thousand, and this measure is therefore not suitable for biological systems

where the period of recording, and therefore the number of action potentials recorded, is

limited.

Cycle Histogram

The probability of an action potential occurring during different phases of the periodic

stimulus can be determined by constructing a cycle histogram (Figure 2.7). If the

periodic stimulus is supra-threshold then the output train of action potentials is phase

locked to the stimulus and the majority of action potentials occur in a narrow phase

range (Figure 2.7, top panel). A noise-alone stimulus produces randomly distributed

action potentials, so the cycle histogram is approximately flat (Figure 2.7, middle

panel). A combination of sub-threshold periodic stimulus and supra-threshold noise

result in a cycle histogram that has a peak (Figure 2.7, bottom panel).

Cycle Histogram Peak (SNRCYCLE)

The height of the peak, above the noise-alone response, is a measure of how much of

the periodic signal is present in the output. Therefore, the SNRCYCLE measure is defined

as the height of the peak above the noise-alone response divided by the noise-alone

response. This can be simplified to just the height of the peak, as the noise-alone

response is a constant (Figure 2.7, middle panel). When the SNRCYCLE measure is used
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Figure 2.6 When using the SNRlsm measure the Hodgkin-Huxley model exhibits an optimum

with the addition of noise in the absence of a sinusoidal input (bottom panel). As the input noise level

increases the inter-spike interval histogram becomes narrower and centred around shorter intervals

(top panels). The inter-spike interval histograms for the different noise levels are positioned relative

to the bottom noise axis and the values derived from them are shown in blue. Each point is calculated

from 100 s of simulation with no sinusoidal input.
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Figure 2.7 The cycle histogram of a supra-threshold periodic signal (5.7 mA, 10 Hz sinusoid)

is a narrow peak at a single phase (top panel), while a noise-alone signal (30 mA) results in a flat

cycle histogram (middle panel). The cycle histogram of a sub-threshold periodic signal (1.4 mA, 10

Hz sinusoid) and supra-threshold noise signal (8 mA) is a broad peak (bottom panel). The height of

the peak above the noise-alone response can be used as an output measure, SNRCYCLE. The cycle

histograms were constructed from 100 s of simulations using 10° bins assuming a periodic stimulus

frequency of 10 Hz.
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the Hodgkin-Huxley model does not exhibit stochastic resonance (Figure 2.8). The

smallest noise amplitude to result in a discharge has the largest SNRcYCLE value. Values

of noise below this level do not result in the initiation of any action potentials, and

therefore it is impossible to construct a cycle histogram. The SNRCYCLE measure is

dependent on the sub-threshold periodic signal amplitude, as smaller sub-threshold

periodic amplitudes require larger noise amplitudes before any action potentials can be

produced. The estimated optimal noise level, D0PT, is not relevant for the SNRCYCLE

measure, as the SNRCYCLE measure is monotonically decreasing.

Cycle Histogram Modulation (SNREXP)

It is possible to fit a sinusoid to the cycle histogram as illustrated in Figure 2.9. The

amplitude of the fitted sinusoid has simKjr characteristics to the SNRCYCLE measure, so

would not be useful as an output SNR measure to investigate stochastic resonance. It is

possible to estimate the error in the amplitude of the fitted sinusoid, as illustrated by the

shaded area in Figure 2.9, which can then be used to calculate an output SNR

measurement. The amplitude of the fitted sinusoid divided by the estimated error in the

fit is used as the experimental output SNR measure SNR^p, as given by Equation 2.4.

For the example illustrated in Figure 2.9, the fitted sinusoid has an amplitude of 0.027 ±

0.001, and therefore the calculated value of SNREXP is 27.

_ Amplitude of Fitted Sinusoid
EXP ~ Estimated Error of Fitted Sinusoid Equation 2.4

For some cycle histograms the optimal fitted sinusoid would pass below the horizontal

axis, which would correspond to negative probabilities. Therefore, constraints were

imposed on the fitting procedures to ensure the fitted sinusoid did not pass below a

probability of zero. It is not possible to calculate the SNREXP measure if no action

potentials are produced, as is the case for sub-threshold stimulation. The SNREXP

measure approaches one as the input approaches the threshold level, as the estimated

error in the amplitude of the fitted sinusoid approaches the amplitude of the fitted

sinusoid. Therefore, the SNREXP measure was defined as one if it was not possible to

construct a cycle histogram.
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Figure 2.8 When using the SNRCYCLE measure the Hodgkin-Huxley model does not exhibit

stochastic resonance, as SNRC Y CLE monotonically decreases with increasing noise levels. Each point

is calculated from 100 s of simulation with a sinusoidal input of 1.4 mA for the top three panels. The

responses in the top three panels were fitted with exponentials, while the bottom panel was fitted with

a curve based on Kramers' rate. The blue symbol represents the data shown in the bottom panel of

Figure 2.7.
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Figure 2.9 The cycle histogram of a sub-threshold periodic signal (1.4 mA, 10 Hz sinusoid)

and supra-threshold noise signal (8 mA) is reproduced from the data shown in the bottom panel of

Figure 2.7. The method of calculation SNREXP is shown. The fitted sinusoid (solid black line) has an

amplitude of 0.027 with an error of 0.001 (grey shading). The resulting value of SNR^p is 27.
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The SNREXP measure for an otherwise sub-threshold periodic input passes through an

optimum with the addition of noise, as illustrated in Figure 2.10 (upper panels). The

optimal noise levels were estimated by fitting the logNormal curve given by Equation

2.3, with Z = 1. The estimated optimal noise levels, DOPT, follow a similar trend as for

the SNRISIH measure. For the three test frequencies of 10, 30 and 50 Hz, the estimated

optimal noise levels were 9.8 ± 0.1, 12.8 ± 0.1 and 20.3 ± 0.3 mA respectively.

Although these values are not precisely those predicted from the noise-alone response

(9.2, 15 and 28 mA) they do show the same trend of an increase in the optimal noise

level with an increase in stimulus frequency, a key feature of stochastic resonance.

The estimated optimal noise level, DOPT, is dependent on the amplitude of the sub-

threshold sinusoid, as illustrated in Figure 2.11. As the amplitude of the sinusoid is

increased from near zero to threshold, the estimated optimal noise level approaches the

predicted optimal noise level. The sinusoidal amplitude dependence of DOFr highlights a

problem with the SNR^p measure. For input sinusoidal amplitudes that are significantly

below threshold the estimated optimal noise level, DOPT, is less than the predicted level,

The low estimated optimal noise levels, DOPT, are the result of the interactions of sub-

harmonics of the sinusoidal stimulation frequency. The cycle histograms for 5 mA of

noise plus 1 mA sinusoids of 15 and 30 Hz are similar, as illustrated in Figure 2.12 (top

and bottom panels). The middle panel of Figure 2.12 is the result of constructing a cycle

histogram with a frequency of 30 Hz, from the results of the 15 Hz stimulus (i.e. a sub-

harmonic stimulus). It is clear that there is a modulation of the cycle histogram that can

be used to calculate an SNREXP value. Stochastic resonance should occur over a wide

range of stimulus frequencies, including the sub-harmonic frequencies of the test

frequencies. The low estimated optimal noise levels are a result of a sub-harmonic

stochastic resonance, resulting in SNR^p at lower noise levels being elevated. The

effect is most pronounced with low amplitude, high frequency sinusoidal inputs.

Despite the tendency for the SNREXP measure to underestimate the optimal noise level,

D0PT, compared to the predicted optimal noise level, DPRE, the stochastic resonance

effect can be seen over a large range of sinusoidal stimulus frequencies, as illustrated in
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Figure 2.10 The Hodgkin-Huxley model exhibits stochastic resonance when the SNREXP

measurement is used. Each point is calculated from 100 s of simulation with a sinusoidal amplitude

of 1.4 mA. The fitted curves in the upper panels are logNormal curves used to estimate the optimal

noise level, D0PT, indicated by the arrows. The bottom panel is a reproduction of the noise-aione

response from Figure 2.2, which has been fitted with a curve based on Kramers' rate. The grey lines

in the bottom panel indicate the predicted optimal noise value, DPRE, for each test frequency. The blue

symbol represents the data shown in the bottom panel of Figure 2.7.
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Figure 2.11 Simulations of the Hodgkin-Huxley model using a range of sinusoidal amplitudes

and noise amplitudes result in a SNREXP surface. The surface shown is for a 50 Hz sinusoid simulated

for 100 s at each combination of sinusoid and noise amplitudes. The red line underneath indicates

D0PT, which corresponds to the ridgeline of the surface, while the grey line indicates the predicted

optimal noise level, DPRE. D0PT decreases from near the predicted noise level, DPRE, at near-threshold

sinusoidal amplitudes to a value approaching the threshold for noise (approximately 5 mA) for

smaller sinusoidal amplitudes.
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Figure 2 .12 The top panel is a cycle histogram constructed from 100 s of simulation of the

Hodgkin-Huxley model, stimulated with a 1mA, 15 Hz sinusoid with 5 mA of additional noise. The

bottom panel is the cycle histogram constructed from a similar period of simulation, except the 15 Hz

sinusoid was replaced with a 30 Hz sinusoid. The middle panel is a cycle histogram constructed from

the same data as the top panel, but using the analysis for a SO Hz sinusoid (i.e. the same analysis as

the bottom panel). The sub-harmonic stimulation results in a modulated cycle histogram that is

similar to that for the test frequency (i.e. the middle and bottom panels look similar). The cycle

histograms were constructed using 10° bins and a period of 0.066 s for the top panel and 0.033 s for

the middle and bottom panels.
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Figure 2.13. At higher stimulus frequencies there is a trend for DOPT to be less than DPRE,

which is a result of the sub-harmonic resonance that is more prominent at higher

stimulus frequencies and also the flattening of the noise-alone response curve. The

upper frequency limit is determined by the noise-alone response of the system, and

therefore is dependent on the system being studied. The discrepancy at lower

frequencies is due to the difficulty of estimating DOPT when it is approximately equal to

the noise threshold. Below the noise threshold few action potentials are produced,

resulting in an ill-defined SNRgxp measurement. The lower stimulus frequencies also

result in far fewer action potentials during a set period of simulation. With fewer action

potentials there is more error associated with the estimation of the optimal noise level.

Threshold (SNRTHRES)

In some experimental situations, such as psychophysical experiments, it is not possible

to construct cycle histograms from a series of action potentials as it is not possible to

record directly from the afferents of interest. Often in such situations it is only possible

to measure a threshold of detection to a stimulus, as determined by the response of a

subject. It is possible to generate a measure based on the SNRexp measure that mimics

such a situation by introducing an arbitrary threshold, SNRTHRES. An arbitrary level of

SNR^p can be set as the threshold, provided that this level is above one, the minimum

value of SNREXP, and below the maximum possible value for SNREXP.

Stochastic resonance using such a measure is evident in a minimum in the detection

threshold with the addition of noise, an example of which is illustrated in Figure 2.14.

The optimal noise levels were estimated by fitting a logNormal curve (Equation 2.3

with Z = no-noise threshold). For the test frequencies of 10, 30 and 50 Hz the estimated

optimal noise levels, DOPT, were 7 ± 1 mA, 11.9 ± 0.2 mA and 15.3 ± 0.4 mA

respectively. Although these values are not precisely those predicted from the noise-

alone response (9.2, 15 and 28 mA) they do show the same trend of an increase in the

optimal noise level with an increase in stimulus frequency. The periodic frequency

dependence of the estimated optimal noise levels indicates that the SNRTHRES measure,

and related measures based on detection thresholds, can be used as a stochastic

resonance measures.
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Figure 2.13 The predicted optimal noise levels (solid curve, DPRE) and estimated optimal noise

levels (points, D0PT) are similar over a range of frequencies when a near threshold sinusoidal signal of

1.4 mA is used. This is as expected if the increase in the output SNR was a result of stochastic

resonance. The points in blue are those corresponding to the data shown in Figure 2.10.
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In many experimental circumstances it is not possible to measure a noise-alone response

curve, as it is not possible to record directly from the afferent fibres. In these situations

the frequency dependence of the optimal noise level can be determined by calculating

the statistical significance of any increase in optimal noise level with increasing

stimulus frequency. For the simulations illustrated in Figure 2.14 the estimated optimal

noise is correlated with stimulus frequency (0.992 Pearson's Product), as would be

expected of a system exhibiting stochastic resonance.

Effect of Different Output Signal-to-noise Ratio Measures

The output SNR measurement used affects the determination of the stochastic resonance

effect. The basic Hodgkin-Huxley model can exhibit stochastic resonance if the

SNRISIH, SNREXP or SNRTHRES measurements are used. However, the same model does

not appear to exhibit stochastic resonance if the SNRPS or SNRCYCLE measurements are

used. The dependence of stochastic resonance on the output measurement used

highlights the complex nature of the effect. The processing done on the train of action

potentials dramatically affects the information extracted from them. Therefore, any

sensory system that is proposed to exhibit stochastic resonance must be capable of

extracting the extra information that is available using measures such as

Noise Distribution

The stochastic resonance effect is not dependent on the noise distribution that is used

(Nozaki et al., 1999). All the simulations presented have used zero-mean normally

distributed noise. The disadvantage of normally distributed noise is that there is a small

but finite probability of large noise values. This can be a problem in experimental

situations. For example, if the input signal to a system is a length signal it may not be

possible to produce large instantaneous changes in length, because of the response

characteristics of the system. Also, large instantaneous changes in length may be

damaging to the system being studied.

Rather than using zero-mean normally distributed noise, it is possible to use zero-mean

evenly distributed noise, the distribution of which is illustrated in the top panel of

Figure 2.15. If evenly distributed noise is used, every possible noise level between a
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Figure 2.14 The Hodgkin-Huxley model exhibits stochastic resonance when the SNRTHRESH

measurement is used. Each point is calculated from 10 s of simulation. The threshold used in this case

was SNREXP > 2. The fitted curves in the upper panels are logNormal curves used to estimate the

optimal noise level, D0PT. indicated by the arrows. The bottom panel is a reproduction of the noise-

alone response from Figure 2.2, which has been fitted with a curve based on Kramers' rate. The grey

lines in the bottom panel indicate the predicted optimal noise value, DPRE, for each test frequency.
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Figure 2.15 Evenly distributed noise (green) is strictly limited to values between a specified

maximum and minimum, while normally distributed noise (purple) has a small but finite probability

of producing noise values significantly outside a desired range (top panel). The effect of evenly

distributed noise is to alter the values of DPRE and DOPT, but the stochastic resonance effect is still

present (lower panels). Each point is calculated from 100 s of simulation with a sinusoidal amplitude

of 1.4 mA. The fitted curves in the middle panels are logNormal curves used to estimate the optimal

noise level, D0PT, indicated by the arrows. The bottom panel is the noise-alone response, which has

been fitted with a curve based on Kramers' rate. The grey lines in the bottom panel indicate the

predicted optimal noise value, DPRE, for each test frequency.
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maximum and a minimum has an equal probability of occurring, but values above or

below the extremes are not possible. Evenly distributed noise eliminates many of the

problems of implementing the noise experimentally, as the absolute limits of the noise

are known. Although evenly distributed noise affects the response of the system,

stochastic resonance can still occur, as illustrated in Figure 2.15 (lower panels).

The predicted optimal noise values from the noise-alone response using evenly

distributed noise are 16,25 and 49 mA for the three test frequencies of 10,30 and 50 Hz

respectively. With evenly distributed noise the estimated optimal noise levels using the

SNREXP measure are 17.6 ± 0.2 mA, 22.0 ± 0.2 mA and 36.0 ± 0.3 mA. The agreement

between the estimated optimal noise level, D0PT, and the predicted optimal noise level,

DPRE, for evenly distributed noise is similar to that for normally distributed noise.

Supra-threshold Stimuli

By definition, stochastic resonance will not occur for supra-threshold stimuli, because

any increase in input noise will degrade the output SNR. However, the combination of

the Hodgkin-Huxley model and the SNREXP measure cannot be used to illustrate this.

The cycle histogram for a supra-threshold periodic signal, illustrated in the top panel of

Figure 2.7, is identical to the cycle histogram for a single action potential; there is a

probability of one of an action potential occurring for a single-phase value. An ideal

output SNR measure would give a low value for the single action potential, and be

maximal for the supra-threshold stimulus. The SNREXP measure does not achieve this;

instead, the SNREXP measure is low for the single action potential and the supra-

threshold stimulus. However, the SNREXP measurement is suitable for sub-threshold

periodic and supra-threshold noise signals, the conditions under which stochastic

resonance may occur. Under theses conditions, the output periodic signal is evident as a

modulation in the otherwise random series of action potentials.

Multiple Input Averaging

All of the simulations shown so far have been done for at least 10 s, as many cycles of

the periodic stimulus are required to clearly demonstrate stochastic resonance. The long

simulation times allow for effective time averaging of the noise input. This reduces the
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effect of any particular noise-induced action potential reducing the scatter in the

measurements.

Under physiologically relevant conditions it is unlikely that 100 to 500 cycles of a

periodic input will occur. Often only a few cycles of a periodic signal may occur before

a response is required. Under these circumstances it is possible to effectively sample

many more cycles of the periodic input by sampling across many receptors, all

stimulated by the same periodic input, but with different noise inputs. The cycle

histograms in Figure 2.16 illustrate that summing the output from many realisations of

the Hodgkin-Huxley model, with different noise inputs, is equivalent to a much longer

response from a single realisation of the model. This indicates that it would be possible

to observe stochastic resonance in a system that integrated the response of many

receptors with different sources of noise.

Periodic Pulsed Input

Only at the level of sensory receptors is the input signal to an excitable membrane a

continuous function, typically in the form of a generator potential. From the first inter-

neurone to deep within the central nervous system the signal from one neurone to the

next is typically a chemical neuro-transmitter. The chemical neuro-transmitter causes a

change in the membrane permeability of the post-synaptic neurone, which may result in

excitatory post-synaptic currents (EPSCs). The ability of the Hodgkin-Huxley model to

exhibit stochastic resonance with an input that consists of a periodic series of EPSCs

has not previously been investigated.

The form of EPSCs recorded in the spinal motoneurones of anaesthetised cats is given

by Equation 2.5 (Finkel & Redman, 1983). This basic form was used to model the

EPSCs from a series of primary neurones terminating on a summing neurone, as

illustrated in the top panel of Figure 2.17. Most of the primary neurones were driven

with a supra-threshold noise-alone signal, while one was driven with a supra-threshold

periodic signal. The EPSCs were scaled such that a single EPSC would not cause the

summing neurone to fire, but a summation of two or more EPSCs would.

EPSC = Texp-cxT Equation 2.5
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Figure 2.16 The cycle histogram of a 0.1 s simulation does not show significant modulation as

only 3 spikes are produced resulting in a SNREXP of 1.13 (top panel). The middle panel is the summed

cycle histogram of 100 such simulations and has a significant modulation (SNREXP = 6.7), and is

similar to the cycle histogram for 10 s of simulation (SNREXP = 7.6) shown in the bottom panel. All

simulations were done with a 1.4 mA, 30 Hz sinusoid and 10 mA of input noise. Note different

vertical scale in the top panel. The cycle histograms were constructed using 10° bins and a period of

0.033 s.
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Figure 2.17 The network of Hodgkin-Huxley neurones consists of a single neurone driven by a

supra-threshold periodic signal and nine neurones driven by supra-threshold noise-alone signals that

are summed by a single second level neurone (top panel). This network exhibits the key features of

stochastic resonance (lower panels). Each point is calculated from 10 s of simulation. The fitted

curves in the middle panels are logNormal curves used to estimate the optimal noise level, DOPT.

indicated by the arrows. The bottom panel is the noise-alone response that has been fitted with a

curve based on Kramers' rate. The grey lines in the bottom panel indicate the predicted optimal noise

value, DPRE, for each test frequency.
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The network of Hodgkin-Huxley neurones exhibited many of the features of stochastic

resonance, as illustrated in Figure 2.17 (lower panels). The agreement between the

predicted optimal noise levels, DPRE, (16, 25 and 34 mA) and the estimated optimal

noise levels, DOFr, (11.8 ± 0.5, 14.8 ± 0.5 and 17.2 ± 0.4 mA) for the three test

frequencies (15, 30 and 40 Hz) is not as close as for the single neurone model.

However, the essential feature of stochastic resonance, an increase in the optimal noise

level with an increase in periodic stimulus frequency, is still present.

Maintained Discharge

A feature of some sensory receptors that is not modelled by the standard Hodgkin-

Huxley model is a maintained discharge. 'Most axon membranes could not be used for

graded rhythmic encoding because, in the face of steady stimulus current, they either

fire only once and then remain refractory, or fire repetitively at a very high frequency

that varies little with the stimulus intensity (Hille, 1992).' This is true of the Hodgkin-

Huxley model as illustrated in the top panel of Figure 2.18. It is clear that above the

threshold current of approximately 7 mA, the maintained discharge is already a

significant fraction of the maximal rate.

The bottom panel of Figure 2.18 illustrates the effect of noise and a constant 9 mA of

current. The average rate initially decreases from the maintained rate of 66 i/s to 59 i/s

and then increases to 82 i/s. The response can be fitted with a modified form of

Kramers' rate equation, given by Equation 2.6. 'D' is the noise amplitude, a and (3 are

arbitrary constants and MD is the maintained discharge in the absence of noise. The

modified Kramers' rate approximation does not include the initial decrease in average

discharge, although it does fit the remaining data well. The response to noise in the

presence of a maintained discharge is more complex than without a maintained

discharge and there is also a smaller increase in average firing rate for a given noise

amplitude: compare the two traces in the bottom panel of Figure 2.18.

Rate = ae °2 + MD Equation 2.6

62



120-,

100-
(i

/s

B

lin
ed

 R
a

c
"3

s

80

60

40

2 0 -

0
I

10
I I

20 30
Constant Current (mA)

I
40

I
50

0 20 30
Noise Amplitude (mA)

40 50

Figure 2.18 In response to a constant current the Hodgkin-Huxley model exhibits a slow

increase in maintained firing rate with a threshold of approximately 7 mA (top panel). The addition of

noise to a constant current stimulus of 9 mA, results in an initial decrease followed by an increase in

the average firing rate (red points in the bottom panel). The response can be fitted with a modified

Kramers' rate (solid line), although the fit does not follow the initial decrease in average rate. This is

in contrast to the noise-alone response (i.e. no constant current, blue points), which is the same data

as the bottom panel of Figure 2.2. All simulations were performed for 10 s using the standard

Hodgkin-Huxley equations.
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The smaller increase in average rate and the initial decrease in average rate with

additional noise input is a result of the model being driven to near saturation by the

constant current input. The maximum noise-alone induced rate is approximately 70 i/s

(Figure 2.2, bottom panel), which is approximately the same as the minimum

maintained rate that can be induced by a constant current. The small increase in average

rate after the initial decrease in average rate would mean stochastic resonance could

only occur over a very limited, frequency range, if at all.

Stein Mode!

It is possible to lower the constant current threshold and also the minimum maintained

discharge rate by reducing the inactivation of the sodium current and reducing the

leakage conductance of the basic Hodgkin-Huxley model (Stein, 1967). The reduction

in sodium inactivation is achieved by shifting the 'h' variable by -20 mV. Using a value

of 0.007 mS / cm2 rather than 0.3 mS / cm2 reduces the leakage conductance. The model

was implemented using the standard Hodgkin-Huxley equation (Appendix B) with the

above modifications.

The constant current response of the resulting model is shown in the top panel of Figure

2.19. The minimum maintained discharge has been reduced to 15 i/s and occurs for a

constant current of approximately 0.1 mA. The reduction in sodium inactivation and

leakage conductance has removed the ability of this model to exhibit stochastic

resonance, as indicated by the lower panels of Figure 2.19. For the three test frequencies

of 2, 4 and 10 Hz, the predicted optimal noise levels, DPRE, are 2.8, 3.5 and 6.5 mA

respectively. The estimated optimal noise levels, DOPT, of 4.2 ± 0.1 mA, 4.1 ± 0.1 mA

and 4.2 ±0.1 mA respectively, no longer exhibit a frequency dependence.

Connor-Stevens Model

Connor & Stevens (1971) proposed an excitable membrane model capable of a

maintained discharge of as low as a single impulse per second. The model is based on a

four-current model of the membrane. The currents are a leakage current, an inwards

current and two outward currents. The model is able to produce a maintained discharge

that is proportional to input current over a small range.
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Figure 2.19 A reduction in sodium inactivation and a reduced leakage conductance reduces the

threshold for maintained discharge of the basic Hodgkin-Huxiey model (top panel). However, the

modified model no longer exhibits stochastic resonance, as D0PT is independent of frequency. The

fitted curves in the middle panels are logNormal curves used to estimate the optimal noise level,

D0PT, indicated by the arrows. The bottom panel is the noise-alone response that has been fitted with

a curve based on Kramers' rate. The grey lines in the bottom panel indicate the predicted optimal

noise value, DPRE, for each test frequency. Each point was calculauJ from 10 s of stimulation.
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The model is based on a series of Hodgkin-Huxley-like equations, but with several

variables specified by graphical means, rather than explicitly. The model was

implemented using a fixed step-size fourth-order Runge-Kutta numerical integration

technique with a step size of 1 millisecond.

The constant current response of the Connor-Stevens model is shown in the top panel of

Figure 2.20. The maintained rate is an approximately linearly function of the constant

current. The maximum rate induced by the noise-alone stimulus (Figure 2.20, bottom

panel) is less than 1 i/s, which is approximately the minimum maintained rate.

However, the noise-alone response is not a monotonically increasing function of noise

amplitude. Therefore, it is not possible that the Connor-Stevens model could exhibit

stochastic resonance.

Otten Model

Otten, Hulliger & Scheepstra (1995) proposed a series of changes to the myelinated

nerve fibre model of Fankenhaeuser & Huxley (1964) to more closely model the

response of a muscle spindle primary ending. The model consists of a sodium current,

fast and slow potassium currents, a non-specific current and a leakage current. The

model is capable of producing many of features of the response of a typical muscle

spindle primary ending. These features include a sustained discharge down to near zero

rates; a near linear relation between firing rate and receptor potential; a dynamic

response to a step stimulus; a slow adaptation in response to a step stimulus; and 'band-

pass filter properties' in response to sinusoidal stimuli. The model is described by the

equations given in Appendix C, and was implemented using a fixed step-size fourth-

order Runge-Kutta numerical integration technique.

The constant current response of the Otten model is shown in the top panel of Figure

2.21 and is approximately linear over the range of 20 i/s to 150 i/s. The model does not

exhibit stochastic resonance, as illustrated by the lower panels of Figure 2.21. For the

three test frequencies of 10, 50 and 100 Hz, the predicted optimal noise levels are 103,

202 and 344 nA respectively. The estimated optimal noise levels are not frequency

dependent, and are all 120 ± 10 nA.
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It is interesting that none of the models capable of producing a maintained discharge at

low rates exhibit stochastic resonance. Many of the models exhibit an optimum in

output SNR with the addition of input noise and hence it is possible to calculate a D0Fr

value. However, the estimated optimal noise levels are not dependent on the sinusoidal

stimulus frequency for any of the models examined, and thus do not display a key

feature of stochastic resonance. If the ability to generate low rates of maintained

discharge does exclude a system from exhibiting stochastic resonance then many

biological receptors are unlikely to exhibit stochastic resonance. Alternatively, if

biological receptors exhibit stochastic resonance then none of the models examined that

are capable of low rates of maintained discharge are accurate representations of the

biological receptors.

Aperiodic Stochastic Resonance

Although 'aperiodic stochastic resonance' is not possible by definition (p. 9), it is

possible to observe an 'aperiodic stochastic resonance' effect with the standard

Hodgkin-Huxley model. Collins et al. (1996b) proposed that 'aperiodic stochastic

resonance' occurred for the detection of small ramp-and-hold indentations of the skin

on the tip of the middle index finger. The simplest method of detecting a ramp-and-hold

indentation is based on comparing the average discharge rate during the hold phase with

the average rate before the ramp phase.

The relevant output measure for the Hodgkin-Huxley model is the average rate

produced with a constant current and noise, equivalent to the hold phase, relative to the

noise-alone response, equivalent to the discharge before the ramp phase. If an arbitrary

threshold of a doubling of the average discharge rate during the 'hold phase' is set, it is

then possible to determine the minimum detectable stimulus, illustrated in the top panel

of Figure 2.22. The minimum detection threshold occurs with the addition of

approximately 6 mA of noise, which Collins et al. (1996b) would classify as 'aperiodic

stochastic resonance'. However, the noise level that optimises the detection is

approximately the threshold noise level, which is consistent with the effect probably

being a form of system linearisation or dithering (Gammaitoni, 1995).
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Figure 2 .22 It is possible to observe 'aperiodic stochastic resonance' with the Hodgkin-Huxley

model. The top panel indicates the constant current required to at least double the average firing rate

over the noise-alone response. It is clear that the minimum detection threshold occurs with the

addition of a near-threshold level of noise, indicated by the arrow. The optimal noise level is

dependent on the time over which the simulation is performed; these simulations were performed for

2 s, using the standard Hodgkin-Huxley equations. The bottom pane! is the noise-alone response, a

reproduction of the bottom panel of Figure 2.2, to illustrate the noise level that produces the

minimum threshold is near-threshold.
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Discussion

The summary of models in Table 2.1 highlights several interesting features of the

modelling done during stochastic resonance investigations. As previously mentioned (p.

59) the presence of stochastic resonance is dependent on the output SNR measure used.

Although the majority of models exhibited an optimal output SNR with the addition of

noise, this is not the only requirement of stochastic resonance. The optimal noise level

must be dependent on the frequency of the periodic stimulation for the effect to be

considered as stochastic resonance. The optimal noise level should also be able to be

predicted from the noise-alone response.

The Hodgkin-Huxley excitable membrane model and the bistable potential well model

both exhibit stochastic resonance when the SNRISIH (or the equivalent SNRRES) measure

is used, but not when the SNRPS measure is used. As the majority of models tested were

analysed using the SNRPS measure it is not surprising that the majority of models, while

exhibiting an optimum in SNRPS with the addition of input noise, did not exhibit

stochastic resonance. Also, some of the models were only tested with a single periodic

stimulus frequency, so like many of the biological systems tested for stochastic

resonance (discussed in Chapter One) it was not possible to determine if stochastic

resonance had occurred.

Although stochastic resonance can be observed using the SNR,S!H measure, the

estimated optimal noise values are dependent on the amplitude of the sub-threshold

periodic amplitude. In the extreme case of a zero amplitude periodic signal (a noise-

alone signal) it is possible that the SNRIS1H measure will still indicate the presence of

stochastic resonance, but this would be a false positive detection of stochastic

resonance. Therefore, the SNR.EXP measure was developed to study stochastic resonance.

Although the estimated optimal noise levels using the SNREXP measure are also

dependent on the sub-threshold periodic stimulus amplitude, the SNR^p measure will

not give a false positive detection of stochastic resonance, but may in fact indicate the

presence of dithering rather than stochastic resonance.
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Table 2.1 Summary table of the models considered in this chapter, indicating their input and output signals, if they are capable of exhibiting an optimum in output signal

to noise ratio with the addition of noise, if they exhibit stochastic resonance and if they are capable of producing a 'low' level of maintained discharge.
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It is of interest that none of the models capable of generating relatively low rates of

maintained discharge exhibit stochastic resonance. The implication is that systems that

are capable of generating low rates of maintained discharge are not capable of

exhibiting stochastic resonance. As many biological receptors are capable of producing

maintained discharges, down to rates as low as a single action potential a second, the

modelling to date indicates that these systems should not exhibit stochastic resonance.

Alternatively, as suggested by stochastic resonance investigations of many biological

receptors, if the receptors are capable of exhibiting stochastic resonance then the models

are not correct and must be adjusted.

Summary of Stochastic Resonance

The presence and nature of the stochastic resonance effect is dependent on the output

measure used. Therefore a summary of the features of stochastic resonance using the

SNREXP measurement (the measurement to be used throughout the experimental

chapters of this thesis) is useful. If stochastic resonance occurs in a system then there

should be an optimal SNREXP with the addition of a supra-threshold level of input noise

when the system is stimulated with an otherwise sub-threshold periodic signal. In other

words, the addition of input noise makes an otherwise sub-threshold periodic signal

detectable. However, the increase in the output SNR with the addition of noise is not

unique to stochastic resonance.

The second feature of stochastic resonance, and one that sets it apart from other noise-

induced effects, is the dependence of the optimal noise level, DOPT, on the frequency of

the sub-threshold periodic signal. The stochastic resonance involves the matching of

two time-scales; the time-scale of the sub-threshold periodic signal and the noise-

induced response of the system. The noise-induced response of the system is

characterised by the noise-alone response of the system, which can be predicted using

Kramers' rate (Kramers, 1940). The predicted optimal noise level, DPRE, can then be

predicted from the noise-alone response, as the optimal noise level should be the level

of noise that, when applied alone, produces an average rate equal to the frequency of the

sub-threshold periodic stimulus.

67



Modelling Chapter Two

For the SNRuxp measure, the correlation of estimated optimal noise level, D0PT, and

predicted optimal noise level, DPRE, is dependent on the amplitude of the sub-threshold

periodic signal. Figure 2.13 illustrates that when a near-threshold periodic signal is used

the estimated optimal noise levels are well correlated with the predicted optimal noise

levels over a wide range of frequencies. For sub-threshold periodic signal amplitudes

that are far from threshold the estimated optimal noise level, D0PT, approaches the

threshold level for noise, as illustrated in Figure 2.11. Therefore, if a system exhibits a

correlation between the estimated optimal noise level, DOPT, and the predicted optimal

noise level, DPRE, with the SNREXP measure, it is probably exhibiting stochastic

resonance.

Finally it is worth reiterating that the stochastic resonance effect is not dependent on the

noise distribution used, as illustrated in Figure 2.15. Different noise distributions will

result in modifications to both the noise-alone response of the system and the shape of

the SNR vs noise curves. However, different noise distributions should not alter the

presence or absence of the stochastic resonance effect.
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Chapter Three

Multi-Channel Recorder

As part of this project a new multi-channel recording system, capable of recording from

multiple afferent fibres simultaneously was designed and constructed. There are many

advantages of a system that is capable of recording from multiple afferents

simultaneously over a system that can only record from a single afferent at a time.

There is useful information present in the response of a population of afferents that is

not present in the repeated responses of a single afferent (Johansson, Bergenheim,

Djupsjobacka & Sjolander, 1995; Owens, Denison, Versnel, Rebbert, Peckerar &

Shamma, 1995). It is only possible to record this type of information if the response of

multiple afferents can be simultaneously recorded. Simultaneous recording of the

responses of multiple afferents can also elucidate whether variations in afferent

responses are due to variations between individual afferents, differences between

animals, or variations in recording conditions or experimental preparations.

Standard recording systems can be separated into two distinct sub-systems: hardware

and software. Traditionally, much of the processing and analysis of recorded data was

performed with purpose-built hardware. The role of computers and software was often

confined to statistical analysis and storage of the data. Advances in desktop computers,

including processing power and storage capacity, have allowed more processing and

analysis of data to be performed in software rather than purpose built hardware. This

allows for a more flexible recording system in which it is possible to rapidly implement

different types of analysis. One of the design goals for the new multi-channel recorder

was to move the software-hardware interface further towards the raw signals, allowing

more of the analysis of the data to be performed with software, rather than custom built

hardware.

The multi-channel recorder was specifically designed for recording afferent activity in

dorsal root filaments of the anaesthetised cat. Therefore, certain constraints were placed

on the recorder, including a restriction of the space available for electrodes, the need to

interact with other equipment and the ability to operate in a relatively 'noisy'

environment. Although some of the rationale involved in the design of the recorder may

be specific to this particular experimental preparation, the general design rules will
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apply to most experimental preparations involving extra-cellular recording of afferent

activity.

As with traditional recording systems, the multi-channel recording system can be

divided into two major sub-systems, hardware and software (Figure 3.1). The hardware

consists of electrodes, amplifiers, filters and a computer with data acquisition

capabilities that are designed to generate a digital representation of the afferent activity

within the dorsal root filaments. The software was then developed to allow analysis and

manipulation of the digital representation of the afferent activity.

Electrodes

Extra-cellular recording of afferent activity has traditionally been made with double

platinum wire electrodes resulting in a bipolar recording (Bronzino, 1995).

Alternatively, the afferent activity in a nerve filament can be recorded in a monopolar

way as changes in the potential between the nerve filament and a reference potential.

The reference potential is taken from either a 'dead' nerve filament, one without any

activity, or another reference location on the experimental preparation, such as a needle

placed into a passive muscle. With double wire electrode recording, the number of

electrodes required is twice the number of active filaments being recorded. As the

number of filaments being recorded increases, the number of electrodes required

becomes a problem due to the limited space available for placing of the electrodes. A

simple modification that can reduce the number of electrodes required is to have a

single common reference electrode, so the number of electrodes required is equal to the

number of active filaments being recorded, plus one.

Positioning of electrodes is infiuenced by several constraints, the most pressing of

which is the limited space available for electrode placement. However, it is important

that the electrode configuration used is mechanically stable as well as being compact.

Another important consideration is separation of the active filaments. The active

filaments must be kept separated from one another to reduce capacitive signal shunting

that occurs if the filaments are allowed to come into close contact with each other.
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Figure 3.1 The multi-channel recorder hardware consists of a curved electrode array (bottom-left,
also illustrated in Figure 3.2), the header stage amplifier (bottom-right), the second stage amplifier
(middle), and the data acquisition card with the computer (top).
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A hook electrode (Figure 3.2, top panel), has been used to record from twelve afferents

simultaneously by Djupsjobacka, Johansson, Bergenheim & Sandstrom (1994).

Although the hook electrode is mechanically strong and very compact, it is not very

flexible. The fixed configuration of electrodes results in the same space being required

whether one or twelve afferents are being recorded. The close spacing of the active

filaments can also become a problem, leading to capacitive shunting of the afferent

signals. Therefore, a curved electrode array consisting of ten single-wire platinum

electrodes was constructed for this project in the mechanical workshop of the

Department of Electrical and Computer Systems Engineering, Monash University

(Figure 3.2, bottom panel). The curved array allows for placement of the electrode tips

in a large three-dimensional volume. The placement of the electrode tips can be

adjusted to give the greatest possible filament separation, reducing signal shunting.

Unused electrodes can be removed to allow greater flexibility of electrode placement

when recording from fewer afferent filaments.

Amplifiers and Filters

The extra-cellular potential changes caused by the activity in the dorsal root filaments

are of the order of a few hundreds of microvolts. It is therefore necessary to amplify the

potential changes, typically by a factor of around 1,000 before subsequent processing of

the signal. In order to reduce the amount of noise introduced into the signals it is

important to amplify the signals as close to their source as possible. Therefore, in

traditional recording systems the amplification is often split into two stages, a header

stage located near the experimental preparation and a second stage located further from

the preparation. The header stage should provide as much amplification as possible,

while retaining a small physical size, to reduce the effect of noise as the signal is

transferred to the second stage.

Low frequency disturbances of the electrode potential, caused by the movement of the

polarised fluids surrounding the electrodes, needs to be removed before the

amplification is performed. Therefore the header stage also often contains high-pass

filters to reduce the low frequency noise that can corrupt the signal. The second stage,

located further from the experimental preparation, typically contains additional
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amplification and filtering. A 50 Hz notch filter is often required to reduce the

interference from the mains power supply.

The multi-channel recorder header stage, constructed using surface mount technology,

consists of eight, 1,000 times, amplifiers with low-pass filtering with a corner frequency

of 8 kHz and high-pass filtering with a corner frequency of 300 Hz. The circuit diagram

for the header stage is shown in Appendix D. The low-pass filtering was required to

reduce the high-frequency component of the signal before sampling by the data

acquisition system. The header stage was constructed within a 108 x 148 x 75 mm metal

box and is connected to the electrode array with miniature coaxial connectors and

coaxial cable to provide shielding.

The header stage is connected to the second stage via ribbon cable, which carries both

afferent signals and power for the header stage. As the afferent signals are of the order

of hundreds of millivolts after amplification in the header stage, there is no need to

provide shielding between the header stage and the second stage. The second stage, the

circuit diagram of which is shown in Appendix E, provides a further amplification of 25

times. The frequency response of the complete amplification system is illustrated in

Figure 3.3. The second stage also provides a single output signal of a selectable afferent

channel that has a 50 Hz notch filter with an additional 1.5 times gain. The output signal

can be used as the input for an audio speaker to allow experimenters to listen to the

afferent discharge. The audio signal is used because it is often possible to discern

changes in afferent output aurally before it is possible to observe the changes visually.

Impulse Discrimination

Most experiments require the isolation of a functionally single afferent unit. The initial

isolation is performed by physically splitting a dorsal root filament containing many

afferent fibres into smaller filaments. The splitting procedure is repeated until it is

possible to identify a functionally single unit, which may involve around four divisions

of the nerve filament. Each time a filament is divided, there is a risk that the unit of

interest will be damaged or killed. Therefore, it is advantageous to reduce the amount of

splitting required to identify functionally single units.
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The shape of the recorded impulse is dependent on many factors, including the location

of the afferent fibre within the filament and the condition of the unit. Each unit will

therefore produce an impulse with a slightly different shape from the others when

recorded from the nerve filament, and this often allows it to be discriminated (Figure

3.4). Because single unite can be isolated in this way in multi-unit filaments, the amount

of splitting required is reduced.

The physiologically relevant information carried by a series of action potentials is the

timing of the action potentials, as the shape of the action potential is essentially fixed. It

is therefore necessary to discriminate between action potentials from the unit of interest

and other signal fluctuations, including action potentials in other afferent fibres. Other

fluctuations may also be the result of external noise, such as interference from power

supplies, other sources of electromagnetic interference, and movement artefacts.

Discrimination Techniques

Simple Threshold

The simplest technique for distinguishing an action potential from background noise is a

threshold. A threshold voltage level can be set and any excursions above the threshold

are ascribed to an action potential. This system can be easily implemented in hardware

and can perform in 'real time' (i.e., a timing pulse can be delivered as soon as the

voltage exceeds the threshold). Simple threshold discrimination can also be easily

implemented in software, although the sampling process means that the analysis can

never truly be performed in 'real time'.

The disadvantage of impulse discrimination based on a simple threshold is that only the

largest impulses can be examined. In the case of the afferent signal shown in Figure 3.4,

a simple threshold could distinguish between the large impulses (red and blue) and the

small impulses (green) and the noise. However, a simple threshold would not be able to

distinguish between the two large impulses as the largest of the red impulses are of an

equivalent size to the smallest of the blue impulses. If the smaller (green) impulse is the

one of interest, or one but not both of the large impulses, then it is necessary to

physically divide the filament again, risking damaging the fibre of interest.
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F i g u r e 3.4 It is possible to isolate the impulses produced by one unit from another based on their

shape. There are three different impulse shapes present in the signal shown in the top panel, recorded

from afferent fibres from the cane toad. In the bottom panel the three different shaped impulses are shown

in different colours (blue, green and red). All the impulses have been overlayed starting from the

threshold crossing, indicated by the grey dashed line (bottom panel). The threshold has been set above the

level of recorded background noise.
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Voltage Window

Another commonly performed type of impulse discrimination uses a voltage 'window'.

A threshold voltage level can be set and any excursions above the threshold, that also

pass through a specified voltage 'window', are ascribed to an action potential (Figure

3.5, top panel). This type of impulse discrimination can be performed with purpose built

hardware and will operate in 'real time'. The voltage 'window' can usually be adjusted

by altering the maximum and minimum values of the ^window' and the delay after the

threshold crossing at which the 'window' is applied. Voltage 'window' discrimination

can also be performed with software techniques, although, as with the simple threshold

technique, the sampling process means that the analysis can never truly be performed in

'real time'.

Multiple Voltage 'Windows'

A simple extension of the voltage 'window' technique is to increase the number of

voltage 'windows' used. The extra voltage 'windows' can either be used to identify

extra action potentials, or to identify impulses based on more features of the impulse

shape. The extra impulse shape features that can be recognised are illustrated in Figure

3.5 (bottom panel). The red impulses could not be separated from the blue or green

impulses using a single voltage 'window'. However, with the combination of two

voltage 'windows', the pink and the brown voltage 'windows', it is possible to

distinguish between them. Multiple voltage 'windows' can be implemented with

hardware, although the number of individual voltage 'window' discriminators required

would rapidly make it impractical. Software implementation of multiple voltage

'window' impulse discrimination does not suffer from such a problem, as the only

penalty for increasing the number of voltage 'windows' is an increase in processing

time.

Primary Component Analysis

Johansson et al. (1995) used primary component analysis (PCA) to discriminate

between multiple afferent fibres recorded simultaneously. PCA determines the

separation between different groups in a multi-dimensional space. The number of
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F i g u r e 3.5 Threshold, window, delay and noise values define each voltage 'window' (top panel). It

is only possible to extract the smaller impulses (»reen) with a voltage 'window' (draw in light green in

the bottom panel). Using the two voltage 'windows' drawn in pink and brown it is possible to separate the

red impulses from the blue and green impulses. Multiple voltage 'windows' are required to extract all

three impulses simultaneously. The data shown in the bottom panel is the same data as the bottom panel

of Figure 3.4.
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dimensions used can be adjusted to account for different amounts of variation between

the groups. PCA is effectively a method of mapping a high number of dimensions into

fewer dimensions. The calculations involved in PCA are complex and could not be

simply implemented using hardware techniques. Therefore, it is only possible to

implement PCA using software based impulse discrimination.

Multi-channel Recorder

The simple voltage threshold and voltage 'window' impulse discrimination techniques

can both be easily implemented in hardware because neither technique requires much

information about the impulse shape to be stored. Hardware impulse discrimination has

the advantage that it can be done in 'real time', and therefore if simple voltage threshold

or single voltage 'window1 impulse discrimination were sufficient, hardware impulse

discrimination would be best. Other impulse discrimination techniques require more

information about the impulse shape to be stored. Therefore, these techniques are

typically implemented in software because they are too difficult to implement in

hardware. The other advantage of using software to perform the impulse discrimination

is that different forms of discrimination can be used in different circumstances. The

multi-channel recorder system uses software impulse discrimination, as the advantages

in reducing the number of nerve filament divisions and the flexibility of the software

implementation was considered to outweigh the disadvantage of not being able to

perform the discrimination in 'real time'.

Although PCA is a very powerful technique for discrimination between different

impulse shapes, it is computationally very expensive and therefore is often found to be

unwarranted. Consequently, the multi-channel recorder uses multiple voltage 'windows'

to perform impulse discrimination. Even though in some circumstances, such as the one

illustrated in Figure 3.6 (top panel), a simple threshold would be enough to discriminate

the impulses from the background noise a minimum of a single voltage 'window' must

be used for each afferent channel.

Threshold, window, delay and noise values define each voltage 'window' (Figure 3.5,

top panel). To adjust the parameters of the voltage 'window' it is possible to 'draw the

window on' by simply clicking in the 'Windowed' panel (Figure 3.6, top panel), and
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Figure 3.6 The basic recorder has two main interfaces. The channel set-up interface (top panel) is

used to set the voltage 'windows' for each channel. In all examples of impulse discrimination shown, the

blue impulses have been included while the green impulses did not pass through the voltage 'window1.

Displays of a sample of the recorded data and the instantaneous rate display using the current voltage

'window' are provided to help in the positioning of the voltage 'window' (shown in purple). Once all the

voltage 'windows' have been set the multi-channel inspection interface (bottom panel) can be used to

monitor all the afferent records simultaneously, while controlling a limited number of stimulus

conditions.
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'dragging' over the range of the required voltage 'window'. The 'Window Control'

panel can also be used to manually adjust the voltage 'window' parameters if required.

For the voltage 'window* illustrated in Figure 3.7 the threshold was 1.4 V, the window

was 1.65 V, the delay was 175 /is and the noise was 0.6 V.

An impulse will only be examined if it passes through the threshold level in the

specified direction, either positive or negative going but not both. If the impulse then

passes, after the specified delay, within the voltage 'window', defined as the window

value ± the noise value, then it is included as a valid impulse, and is displayed in blue. If

however, the impulse does not pass within the defined voltage 'window' it is excluded,

and displayed in green. It is possible to use multiple voltage 'windows' on a single

record of afferent data to aid in impulse discrimination, as illustrated in Figure 3.5

(bottom panel). If multiple voltage 'windows' are to be used to extract a single impulse

(e.g. the red impulse in the bottom panel of Figure 3.5) then each voltage 'window'

must have the same threshold value, so the specified delays are all relative to each other.

If the multiple voltage 'windows' are to be used to extract different impulses (e.g. a

voltage 'window' for the green impulse and another for the blue and red impulses in the

bottom panel of Figure 3.5), then each voltage 'window' may have a different threshold

value.

Sampling Rate

The type of impulse discrimination used affects the rate at which the voltage data must

be sampled (Figure 3.8). Simple threshold discrimination requires the lowest sample

rate, as a single sample per impulse is all that is required. Using a single voltage

'window' requires a higher sampling rate, as more information about the impulse shape

is required. More complex impulse discrimination techniques require higher sampling

rates, with PCA requiring the highest sampling rate possible.

A typical action potential recorded from dorsal root filaments of the cat has a duration

of approximately 500 /is. The minimum required sampling rate is therefore

approximately 2,000 samples per second for simple threshold impulse discrimination, to

ensure at least one sample during the action potential. The multi-channel recorder uses a

PCI-MIO-16E-4 data acquisition board (National Instruments Corporation, Austin,
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Figure 3.7 A voltage 'window' used for impulse discrimination is specified by a threshold value
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Figure 3.8 The sampling rate required is dependent on the impulse discrimination technique to be

used. The simple threshold technique requires only a single sample per impulse (•) while multiple

voltage 'windows' require a higher sampling rate ( • ) to provide more information about the impulse

shape. The data shown is the blue impulse from the data in Figure 3.4 (bottom panel). The dashed grey

line indicates a possible threshold level that could be used.
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Texas, U.S.A.) in a G3 desktop computer (Macintosh, Cupertino, California, U.S.A.)

with a maximum sampling rate of 250,000 samples per second. The sample rate is

shared across 16 channels, which results in a maximum sampling rate across all

channels of 15,000 samples per second. The standard sample rate used is 10,000

samples per second, which is sufficient to allow multiple voltage 'window'

discrimination techniques to be used.

Rate Conversion

The train of action potentials in an afferent fibre is converted into a series of event

timings by impulse discrimination techniques, using either hardware or software

techniques. The timing information can then be transformed into an instantaneous

frequency before being displayed or further analysed. The instantaneous frequency is

defined as the reciprocal of the time between the current impulse and the previous

impulse (Equation 3.1).

Rate[p~\ = Equation 3.1

Hardware rate meters produce a voltage that is proportional to the instantaneous

frequency, which can then be subsequently display or recorded for further analysis.

Hardware determination of the instantaneous rate utilising hardware impulse

discrimination is essentially error free, with the accuracy only limited by the precision

of the hardware.

Determination of the instantaneous rate from sampled signals introduces two sources of

error. Quantisation of the sampled rate signal from hardware rate meters introduces one

error, as the analogue rate signal is quantised into discrete levels. However, the error

introduced by sampling an otherwise hardware based rate determination is low. Larger

errors are introduced when the rate conversion is performed in software rather than

hardware.

If the impulse discrimination is done in hardware and the resulting timing pulses then

sampled, large errors in the determination of the precise time of occurrence of the action

potential can be introduced (Figure 3.9). The maximum error is equal to the reciprocal
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Figure 3.9 The timing of an impulse can b> more accurately determined using software impulse

discrimination (blue trace, top panel) than using hardware impulse discrimination and then digital

sampling (black trace, bottom panel). The software impulse discrimination has a smaller error, indicated

by the gap between the two arrows, because it is possible to interpolate between sampled data values to

estimate the precise timing of the threshold crossing (green line). It is not possible to interpolate if the

impulse has already been converted to a standard timing pulse with hardware impulse discriminators.
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of the sampling rate. The errors introduced into the precise timing of the impulses will

then result in errors in the instantaneous; rate calculation. The errors will be most

pronounced at high rates of firing, where the sampling interval will result in discrete

high frequency quantisation levels.

Both impulse discrimination and calculation of the instantaneous rate in software will

produce a more accurate result, for a given sampling rate, than will hardware impulse

discrimination with software calculation of the instantaneous rate (Figure 3.9). By

performing the impulse discrimination in software, it is possible to interpolate between

sampled data values, to estimate the true impulse timing, thereby reducing the error in

the timing. It is not possible to perform this interpolation if the impulse discrimination is

done with hardware and then sampled. The interpolation can be simple linear

interpolation, whereby the precise time the recorded action potential crosses the

threshold voltage can be estimated by simply linearly interpolating between the two

surrounding data values. The green line shows this in the top panel of Figure 3.9.

User Interface

The multi-channel recorder software can be divided into two functional sections, the

basic recorder and a series of additional components. The basic recorder was developed

within IGOR Pro (WaveMetrics, Lake Oswego, Oregon, U.S.A.) and is capable of

recording muscle length, tension and eight channels of afferent data. The code for the

recorder program consists of a series of procedure files that are used within IGOR Pro

and compiled ' C code in the form of XOPs that are used by IGOR Pro. All the code

that constitutes the software of the multi-channel recorder is included as part of

Appendix A. The basic recorder saves the afferent data to disk either as raw data, which

allows impulse discrimination to be done off line, or as a series of impulse timings, after

the impulse discrimination has been performed. The basic recorder is also capable of

controlling muscle length, using simple length changes, and stimulation of the muscle,

with simple stimulation patterns.

The two main recorder interfaces are illustrated in Figure 3.6. The top panel of Figure

3.6 illustrates the channel set-up interface, while the bottom panel illustrates the multi-
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channel inspection interface. The set-up interface is used to set the properties of the

voltage 'windows' that are to be used for the impulse discrimination, via the

'Windowed' and 'Window Control' panels. The 'Window Control' panel can also be

used to alter the number of voltage 'windows' to be used on each channel of afferent

data. A sample afferent record ('Sample Recording') and instantaneous rate plot

('Instantaneous Rate') are available and can be used to ensure that the impulse

discrimination has been correctly set. Any false discriminations are often visible in the

instantaneous rate plot as an extremely high rate, which results from an unusually short

inter-impulse interval. Basic recording properties can also be altered using this interface

via the 'Control' panel, including the duration of the recording period, the sampling rate

and the number of channels of afferent data to record. Other properties of the recorder

such as digital filtering and length or stimulation control can also be initiated from this

interface.

The multi-channel inspection interface, 'Multiple Window Display', provides an

overview of all the afferent data for the current record (Figure 3.6, bottom panel). The

instantaneous firing rate of the afferents is presented on the left-hand side, while the

impulse discrimination for each afferent is shown on the right. A limited number of

control parameters (e.g. amplitude of the sinusoidal length change) are also included

with this interface. The 'Multiple Window Display' was designed for use when

recording from multiple afferents over a number of repetitions of similar conditions.

Other Signals

Recorded Signals

The response of afferent fibres is typically not the only signal of interest during

experiments. Often the muscle's length and tension are simultaneously recorded to

allow comparisons with the afferent response.

Length

The muscle's length can be controlled by an electro-magnetic position controller with

feedback (Department of Physiology Electronics and Mechanical Workshops, Monash
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University). The electro-magnetic controller also provides an output length signal. The

response time of the position controller is of the order of a few milliseconds and it is

capable of producing movements down to a few micrometers. The length signal is

scaled to 200 mV/mm with a working range of 20 mm. The resulting length signal is of

a similar magnitude to the amplified afferent signals and therefore can be directly

recorded using the data acquisition card.

Tension

The force produced by the muscle can be monitored using a load-cell force transducer

(Entran Devices, Fairfield, New Jersey, U.S.A.) which provides a signal of 1.95 mV/N.

The response time of the force transducer is of the order of a few milliseconds and it is

capable of measuring a maximum force of 100 N. For the typical forces produced by a

fused contraction of the soleus muscle (approximately 20 N), the force signal is of a

similar amplitude to the amplified afferent signals and therefore can be directly

recorded using the data acquisition card.

Controlled Signals

It is often necessary to synchronise the actions of other equipment with specific phases

of an afferent record. The PCI-MJO-16E-4 has a number of digital output lines and two

analogue output channels that can be used for timing signals.

Length Control

The length of the muscle can be controlled by the electro-magnetic position controller,

which in turn can be controlled be the multi-channel recorder. One of the analogue

output channels can be used to produce an arbitrary waveform to be used as the length

control signal. This allows for the generation of any length signal required with relative

ease. While the multi-channel recorder is capable of producing any arbitrary voltage

waveform that can be used as an input signal for the electro-magnetic length controller,

only a few of the more common length stimuli have been included in the basic recorder

software. The recorder is capable of producing any combination of a ramp-and-hold

movement, a sinusoidal movement and a random movement (Figure 3.10, top panel). A
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Figure 3.10 The basic recorder is capable of controlling muscle length, via the electro-magnetic

position controller and the 'Length Control' panel, although only a few simple length changes, such as

ramp-and-holds and sinusoids are available (top panel). Simple stimulation patterns are also available via

the 'Stimulation Control' panel (bottom panel). Both the 'Length Control' and 'Stimulation Control'

panels are activated from the main 'Control' panel illustrated in Figure 3.6.
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record of the various attributes of the length-controlling signal is automatically stored to

allow rapid reconstruction of an experiment.

Stimulation

The other analogue output channel can be used to deliver trigger pulses to a muscle

stimulator. The stimulator is used to produce brief pulses (0.1 ms) that are too

computationally heavy to be produced by the PCI-MIO-16E-4. To be able to produce

short pulses the update rate of the analogue outpfci. must be less than the pulse width.

For a 0.1 ms pulse the update rate must be greater than 10,000 samples each second.

Both analogue output channels must be updated at the same rate, which results in an

effective update rate of greater than 20,000 samples each second. Although it is possible

to output signals at this rate using the PCI-MIO-16E-4, it is not a practical option

because of the demands it places on the computer processor.

The multi-channel recorder is capable of providing stimulus pulses to trigger a

commercially available stimulus pulse shaper, amplifier and isolator. It is possible to

produce any arbitrary stimulus pattern that is required by constructing the appropriate

output trigger wave. However, only a few of the more common stimulus patterns have

been included in the basic recorder software. The recorder is capable of producing a

single stimulus pulse, a short fixed frequency stimulus burst, ramping stimulus

frequency bursts and a period of random (Poisson distributed) stimulation (Figure 3.10,

bottom panel). Records of the various attributes of the stimulator-controlling signal are

automatically stored to allow rapid reconstruction of an experiment.

Data Manipulation

Filtering

Although some filtering of the afferent signal is performed in the hardware of the multi-

channel recorder, additional digital filtering may be required. The basic recorder has a

digital filter that can be controlled with the 'Filter Control' panel (Figure 3.11, top

panel). The high-pass and low-pass filters are infinite impulse response filter

approximations to Butterworth filters made by using the bilinear transform. The
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Figure 3.11 The 'Filter Control' panel ,(top panel) can be used to control the digital filter. The digital

filter comprises low-pass, high-pass and notch filters that can all be independently adjusted. The bottom

panel shows the filter response for the setting shown in the top panel.
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calculations of the niter coefficients and the actual filtering are done as part of the XOP

written for the multi-channel recorder (Appendix A). An example of the transfer ratio of

the filter is shown in the bottom panel of Figure 3.11. The filter has a 'maximally flat'

pass-band, as does the Butterworth filter, and therefore causes minimal distortion to the

signal in the pass-band.

The notch filter is implemented by convolving the data with the function illustrated in

Figure 3.12 (top panel). The filter works by subtracting the average of the data at the

equivalent points in the cycle before and after each data value. The number of points

and the number of cycles averaged are controlled by the width of the notch filter. Figure

3.12 (top panel) illustrates a 50 Hz notch filter with a width of 2. For this configuration

each filtered value is calculated using Equation 3.2, where T is 1/ 'Notch filter

Frequency' and At is 1/ 'Sample Rate'.

Data

Filtered[p] = Data[p] - •

p± At
Data

8

P±
1T±\

At

Equation 3.2

Although the filter is very effective at removing the specified frequency (Figure 3.12,

middle panel), the method of averaging across cycles does introduce errors. The output

of the filter is poorly defined at the ends of the data record, as multiple cycles of data

are required. Therefore, the filter does not operate as well over the first few, and last

few cycles. The notch filter also removes harmonics of the notch frequency, which can

affect the shape of recorded impulses (Figure 3.12, bottom panel).

Data storage

The PCI-MIO-16E-4 must sample all channels at the same sampling rate. High

sampling rates, in the order of 10,000 samples a second, are required to record the

action potentials in afferent fibres, resulting in large quantities of data being recorded.

To reduce the amount of data that is to be stored the length and tension data can be

compressed before being saved. The simplest form of compression is to reduce the

amount of data by effectively reducing the sampling rate. This is achieved by

performing a box average of the data with the width of the box determined by the
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Figure 3 .12 The digital notch filter was implemented by convolving the function shown in the top

panel with the data. The function can be scaled to filter out different frequencies and widened to increase

the width of the notch. An example of the filter is illustrated in the middle panel where it has been used to

remove much of the 50 Hz mains interference from the raw signal (top trace), revealing the afferent

impulses (bottom trace). The bottom panel is the filter's response using the function illustrated in the top

panel, a 50 Hz notch filter with a width of 2.
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appropriate sample period. Once reduced, the length and tension for each record is

saved to disk with the corresponding record number.

Saving only the relevant information, which in most cases is the timing of the action

potentials, can significantly reduce the amount of afferent data to be stored. The afferent

timing data is retained within the main experimental file stored in a hierarchical

structure within the file. If information about the shape of the action potentials is

required, then the full afferent data can be saved to disk with a similar structure to that

used for the length and tension records.

It is possible to save a comment with each record. The comments are saved with the

individual records and also to a text file, where they are saved with time information.

Data Recall

It is often desirable during an experiment to compare the response of an afferent under

several different experimental conditions. The simple hierarchical structure that has

been used to store the afferent data allows for fast recall of previous records. The

afferent responses from different records can be overlaid to allow visual comparisons of

responses (Figure 3.13). For more detailed comparisons of the responses it may be

necessary to perform some basic analysis, which is discussed in more detail in the

Analysis Modules section (p. 86).

Specialised Additional Modules

A variety of specialised tasks are often performed in many experiments, and therefore a

number of specialised additional software modules have been written for the multi-

channel recorder to facilitate these tasks. All of the modules were written as procedure

files that could be dynamically included into the main experimental file and are

included in Appendix A.

Length-Tension Curves

A standard measurement performed in almost all studies involving muscles is to

measure a length-tension curve. The method with which the length-tension curve is
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recorded can alter the shape of the curve because of the thixotropic nature of muscle.

Therefore, it is desirable to use a consistent, repeatable method to measure the length-

tension curve.

An additional 'Length Tension' software module was written for the multi-channel

recorder (Figure 3.14, top panel). The software module was designed to measure a

length-ten si on curve over a specified muscle range. The length-tension curve is

constructed dynamically starting from the shortest muscle length to be measured. After

each point is recorded it is possible to move to the next length, repeat the measurement,

or end the procedure. This extra user control is required to ensure that measurements are

not taken at long muscle lengths that may cause damage. It is also possible to take a

single additional measurement, which is taken after a brief conditioning contraction at

the shortest muscle length previously tested.

Afferent Identification

When recording from afferent fibres in dorsal root filaments it may be desirable to

identify the type of receptor afferent being recorded. Lloyd (1943) classified afferent

fibres into four groups based on their condition velocities. Non-myelinated fibres with

conduction velocities in the range of 0.5 - 2 m/s were classified as Group IV, also

known as 'C fibres*. The smaller diameter myelinated fibres constitute Group II and

Group III, and have conduction velocities in the ranges of 30 - 72 m/s and 6 - 3 0 m/s

respectively. The afferent fibres from muscle spindle secondary endings are Group II

fibres and respond to a whole muscle twitch with an 'in parallel' response (Fulton & Pi-

Suner, 1928). Large diameter myelinated fibres with conduction velocities in the range

of 72 - 120 m/s constitute Group I. The Group I fibres associated with muscle afferents

can be further subdivided into two groups based on their response to a whole muscle

twitch. Afferent fibres from muscle spindle primary endings typically have a maintained

discharge at all muscle lengths and respond to a twitch with an 'in parallel' response,

which is a reduction in discharge, or silencing, during the rising phase of the twitch

tension (Figure 3.14, middle-right panel). The 'in parallel' response of Group la

afferents is contrasted by the 'in series' response of Group Ib afferents. Group Ib
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Figure 3.14 The interface for the 'Length Tension' module is shown in the top panel. The module

allows rapid recording of a length-tension curve in a highly reproducible manner, with options to repeat

measurements or to record 'once off measurements at a specified length. The 'Afferent Identification'

module (lower panels) can be used to differentiate between different types of afferent fibres, based on

their conduction delay (left panels) and response to whole muscle twitch (right panels). The bottom row

of panels is characteristic of an afferent innervating a Golgi tendon organ, Ib, while the middle row of

panels is characteristic of an afferent innervating a muscle spindle primary ending, la.
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afferents innervate Golgi tendon organs, which respond to the rising phase of the twitch

tension with an increase in discharge (Figure 3.14, bottom-right panel).

An additional 'Afferent Identification' software module was written for the multi-

channel recorder to aid in the identification of muscle afferents. The software module

was designed to record the conduction delay and whole muscle twitch response of an

afferent fibre, with one click of the mouse. The software module outputs a trigger pulse,

used to trigger the muscle stimulator, and then records the afferent activity on the

channel currently selected in the 'Window Control' panel (Figure 3.6, top panel). Two

additional displays are created by the software module (Figure 3.14, lower panels) that

display the electrically evoked response and the response to a whole muscle twitch. The

electrically evoked response can be used to calculate the conduction delay, which is

displayed at the top of the 'Conduction Delay' panel. For experiments using either the

soleus or medial gastrocnemius muscle of the cat, Group I fibres have a delay of less

than 2.5 ms, indicated by the dashed blue line. The electrically evoked response can also

be used to determine if the nerve filament contains a functionally single afferent fibre.

The twitch tension and afferent response are shown in the 'Twitch Response' panel and

can be used to determine the 'in series' or 'in parallel' nature of the response. An

estimate of the difference in the average discharge rate during the twitch and after the

twitch is also displayed in the 'Conduction Delay' panel. A red bar indicates that the

rate during the twitch is higher, while a blue bar indicates the rate after the twitch is

higher. The length of the bar from the centre of the display area indicates the magnitude

of the difference. Therefore, it is possible to identify quickly and easily the type of

afferent, or afferents, present.

Y Identification

The response of a muscle spindle primary ending to the stimulation of a y fibre can be

used to classify the y fibre as either a static y fibre, Ys> o r a dynamic y fibre, YD

(Matthews, 1962; Emonet-Denand, Laporte, Matthews & Petit, 1977). The response of

a muscle spindle primary afferent to stimulation of a yD fibre is an enhancement of the

dynamic response to an imposed length change (Figure 3.15, top panel). The dynamic

response can be quantified by calculating the dynamic index of the muscle spindle
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Figure 3.15 The interface for the 'y Identification' software module consists of a single panel in

which the responses of a muscle spindle primary ending to passive stretch (•) and a stretch during

efferent stimulation (•) are superimposed to aid comparison. Stimulation of a YD efferent results in an

enhanced dynamic response (top panel), while stimulation of a Ys efferent increases the discharge during

stimulation, without enhancing the dynamic response.
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primary ending in response to a ramp-and-hold stretch (Crowe & Matthews, 1964). The

dynamic index is calculated as the change in discharge rate during the first half-second

of the hold phase (Equation 3.3). The response to stimulation of a ys fibre is an increase

in afferent discharge rate during stimulation, without enhancement of the dynamic

response (Figure 3.15, bottom panel).

Dynamic Index = Rate at end of ramp - Rate \ sec ond later Equation 3.3

An additional 'Gamma Identification' software module was written for the multi-

channel recorder to aid in the identification of y fibres. The software module was

designed to record the response of a previously identified muscle spindle primary

afferent to a ramp-and-hold stretch in a passive muscle. The stretch is then repeated

during the stimulation of an efferent fibre and the resulting afferent response compared.

The 'Gamma Identification' panel displays a passive control response, which can be

used for visual comparisons with the test y response. The dynamic index of the control

and test y responses are also displayed at the top of the panel to aid in y identification.

Analysis Modules

The variety of different types of analysis that can be performed makes it impractical to

write specified code modules capable of performing all types of analysis. The standard

formatting of the saved data from the basic recorder allows for automation of many

types of analysis, to be performed after experiments are complete. However, sometimes

it is necessary to perform at least some amount of analysis during an experiment, and it

is therefore possible to write software modules to perform the analysis on-line.

An example of an experiment that requires some level of on-line analysis is a stochastic

resonance experiment. It is necessary to construct a noise-alone response curve to

determine the appropriate sinusoidal frequencies to test. It is then necessary to measure

stimulus-response curves for each of the test frequencies, before stochastic resonance

measurements can be taken. The range of noise amplitudes used for stochastic

resonance measurements can also be selected to cover the most appropriate range by

performing preliminary analysis on-line.
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Summary
The multi-channel recorder is capable of recording eight channels of afferent activity,

along with several other channels (up to eight) of relevant information (e.g. muscle

length and tension). Multiple voltage 'windows' can be used on each channel of afferent

data to extract multiple functionally single afferents. Theoretically, the resolution of the

sampling, and the number of 'windows' available are the only limits to the number of

afferents that can be isolated from a single channel of afferent data. In practice, it has

been found that with the current sampling rate (10,000 samples per second) and voltage

resolution (2.5 mV) it is practical to isolate up to three afferents from each channel of

afferent data. Thus, the total number of functionally single afferents that can be

recorded with the current equipment is about twenty.

The basic recorder is capable of recording the afferent data, along with other associated

information and storing the data on disk. The basic recorder can also output signals that

can be used to control stimulators and the muscle length. A comment can be included

with each record, and a complete list of comments is available, which in addition to the

stored information from the length and stimulation control waves, can be used to

quickly reconstruct an experiment.

The additional code modules that have been written for the recorder allow various

common experimental tasks, such as recording length-tension curves and identifying

afferents and y efferents, to be performed simply and reliably. The ability to integrate

new code modules for experimental recording or analysis also allows the multi-channel

recorder to be extended to meet a large variety of experimental conditions.

The multi-channel recorder has moved the software-hardware interface further towards

the raw data signals, allowing for more complex forms of analysis to be performed with

ease. As the technology used in the data acquisition systems develops further it is

envisaged that the software-hardware boundary will move ever closer towards the raw

signals, allowing for even more flexible recording systems. For example, an increase in

processing power would allow computer derived stimulus pulses to be used. This in turn

would allow for the more integrated control of stimulus parameters. This type of control

is necessary for experiments designed to use afferent information to control the efferent

stimulation in order to mimic some of the natural control of muscle contractions (e.g.,

closing the muscle control loop).
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Chapter Four

Golgi Tendon Organs

Golgi tendon organs are stretch-sensitive mechanoreceptors that are predominantly

situated at musculo-tendinous junctions 'in series' with skeletal muscle fibres

(Matthews, 1933). The following description is of mammalian Golgi tendon organs as

the Golgi tendon organs of the cat were utilised in the stochastic resonance experiments.

The afferents from Golgi tendon organs are large myelinated afferents with conduction

velocities in the range of 72-120 m/s (Lloyd, 1943) and are classed as Ib afferents

(Hunt, 1954). The 'in series' location of Golgi tendon organs lead to the view &at they

are monitors of muscle tension, as first suggested by Fulton & Pi-Suner (1928).

Structure

Golgi tendon organs are encapsulated receptors. The capsule is divided into several

compartments by transverse septa (Bridgeman, 1968). Small bundles of collagen fibres

leave the main tendon or aponeurosis and enter the tendon organ capsule. As the

collagen strands penetrate deeper into the capsule they split into fine strands that are

separated by transverse septa. The collagen fibres then continue out of the capsule to

form tendinous attachments with muscle fibres. Each Golgi tendon organ has

attachments to between about 10 and 20 muscle fibres, each typically from a different

motor unit (Figure 4.1).

The afferent axon, after entering the capsule, divides into numerous small unmyelinated

branches that finally terminate on the fine collagen strands. It is supposed that under

tension the collagen strands, on which the nerve branches terminate, cause mechanical

deformation of the nerve terminal membrane (Bridgeman, 1968). The mechanical

deformation leads to the generation of the receptor potential, which in turn generates

action potentials. Therefore, the effective stimulus for Golgi tendon organs is strain,

resulting in deformation of the sensory ending, rather than force (Fukami & Wilkinson,

1977).

The Golgi tendon organ is commonly considered to be mechanically 'in series' with its

parent muscle (Matthews, 1933). Although the receptor is 'in series' with the muscle
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Figure 4.1 Schematic representations of a Golgi tendon organ, top panel, illustrating the 'in series'

location of the receptor as well as the muscle fibres that are 'in parallel' (adapted from Figure 1 of Jami

(1992)). The 'in series' nature of the Golgi tendon organ response is illustrated by the response to a whole

muscle twitch, bottom panel.
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fibres that attach to it, there are numerous other muscle fibres that attach directly to the

tendon or to the outside of the receptor's capsule. These other fibres are 'in parallel'

with the Golgi tendon organ. Therefore, the arrangement is more complex than that of a

simple 'in series' receptor.

Response

Passive Muscle

Golgi tendon organs have an approximately linear response to constant passive tension

above a certain threshold, with an increase in static passive tension resulting in a

proportional increase in the static discharge rate (Jansen & Rudjord, 1964). To reach

threshold the muscle must typically be stretched to near its maximum physiological

length (LMAX). Although there is some variation in the precise threshold, as a rule most

Golgi tendon organs will respond to passive Vision at LMAX.

Some Golgi tendon organs will respond at m^.1 -•; lengths significantly below LMAX- The

visco-elastic properties of muscle can result in a large transient tension in response to a

rapid length changing. The transient tension may be large enough to elicit a response

even at lengths significantly below LMAX- The response to stretches below LMAX is a ' s o a

result of the dynamic sensitivity of the Golgi tendon organ. The receptor responds to

changes in tension as well as the absolute tension (Jansen & Rudjord, 1964). The

combination of the visco-elastic properties of muscle and the dynamic sensitivity of the

Golgi tendon organ result in a precise, frequency dependent threshold for small

sinusoidal changes in muscle length (Anderson, 1974). The threshold falls as the

frequency of the sinusoidal length change is increased, since the maximum velocity of

the movement is dependent on the frequency. The absolute muscle length also affects

the threshold, with longer muscle lengths resulting in lower thresholds to small

sinusoidal length changes.

Active Muscle

Golgi tendon organs are selectively sensitive to the tension in the few muscle fibres that

directly insert into the receptor's capsule. Each muscle fibre may belong to a different

89



Golgi Tendon Organs Chapter Four

motor unit; therefore, the response to active tension is more complex than the respond

to passive tension. If the 'in series' muscle fibres, those that directly insert into the

Golgi tendon organ, contract the receptor will be subjected to an increase in tension,

since each contracting muscle fibre stretches the tendon strand to which it is attached

and on which sensory endings lie. If however, 'in parallel' muscle fibres, those that

surround the Golgi tendon organ, contract it is possible that, at short muscle lengths, the

receptor will be unloaded. If both the 'in series' muscle fibres and the 'in parallel'

muscle fibres contract then the resulting tension on the receptor will depend on the

relative strength and velocity of contraction of the 'in series' and 'in parallel' muscle

fibres (Gregory, Morgan & Proske, 1985).

The general impression that Golgi tendon organs are more sensitive to active tension

than passive tension has been wildly accepted (see review by Jami, 1992). The

sensitivity of the Golgi tendon organ, calculated as i/s/N, is a power function with a

smooth transition from passive to active tension, produced by whole muscle

contractions (Alnes, 1967). Under these circumstance the passive sensitivity will in fact

be greater than active sensitivity. Alnes (1967) also found that the threshold for passive

tension and tension produced by whole muscle twitch was similar for Golgi tendon

organs located in the distal part of the muscle. Anderson (1974) used isometric

contractions, passive stretches and a combination of contraction and length changes to

alter whole muscle tension and also did not observe a difference in the dynamic

characteristics.

The perceived increased sensitivity for active tension may be the result of the Golgi

tendon organ responding to the changes in tension during an isometric twitch. The

parameter measured by Jansen & Rudjord (1964) was the tension threshold of firing for

both a twitch and a passive stretch. A twitch will typically result in a more rapidly

changing tension than a passive stretch. The dynamic sensitivity of the Golgi tendon

organ will therefore result in a lower threshold for the twitch contraction than the static

passive tension. It is known that a Golgi tendon organ can respond to the activation of a

single motor unit that inserts directly into the receptor (Houk & Henneman, 1967).

Therefore, in the extreme case the threshold tension produced by an isometric muscle

twitch may be the tension produced by a single motor unit.
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Altering the rate of stimulation of the relevant muscle fibres modulates the response of a

Golgi tendon organ by altering the level of active tension produced. Changing the

length of relevant muscle fibres will also modulate the Golgi tendon organ's response

via the active length-tension properties of the muscle fibres and the change in passive

tendon. It is therefore possible to stimulate a Golgi tendon organ with two different

signals, stimulation rate and muscle length, which act via different mechanisms on the

muscle tension.

The response of a Golgi tendon organ to a fused contraction is quite regular. The

response to an unfused contraction is less regular, or more 'noisy', as the response

follows the changes in tension. Therefore, it is possible to effectively modulate the

amount of 'noise', or irregularity, present in the discharge by altering the stimulus

frequency. Distributed stimulation can be used to reduce the overall stimulation

frequency required to achieve a smooth contraction (Brown, Huang, Morgan, Proske &

Wise, 1999). Distributed stimulation increases the range of tension over which the

contraction remains fused. The different motor units that insert directly into the Golgi

tendon organ can be sequentially stimulated to produce a constant discharge, which is

below that possible with whole muscle stimulation or synchronous stimulation of the

same motor units. The distributed stimulation also allows more control over the 'noise'

in the Golgi tendon organ response, because it is possible to alter the precise timings of

the distributed stimulation pulses.

Suitability for Stochastic Resonance

The Golgi tendon organ has many of the features that are required for stochastic

resonance, and therefore it is a good candidate to test for behaviour consistent with

stochastic resonance. The Golgi tendon organ response is non-linear in at least two

respects. Most importantly for stochastic resonance investigations, the response has a

clearly defined threshold for passive muscle stretches, a requirement of stochastic

resonance. The Golgi tendon organ response is also non-linear above threshold, as an

increase in muscle length results in an approximately exponential increase in response,

due to the passive length-tension properties of muscle.
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In passive muscle the Golgi tendon organ has a threshold for small sinusoidal length

changes. The threshold is adjustable, via a change in absolute length, so it is possible to

apply a near-threshold periodic signal, which is another requirement of stochastic

resonance. Finally, it is possible to add noise to the system via an imposed length

change or a change in the electrical stimulation of the muscle. The change in electrical

stimulation can be via a change in rate or a change in the timing of the stimuli during

distributed stimulation.

Cat Golgi Tendon Organs

A total of eight cats (Felis domesticus) of both sexes were used for the experiments to

seek evidence for stochastic resonance in Golgi tendon organs in mammalian muscle.

All experiments were performed with approval from the Monash University Physiology

Animal Ethics Committee.

Materials and Methods

Anaesthesia

A single intraperitoneol injection of barbiturate anaesthetic (40 mg/kg pentobarbitone

sodium, Nembutal®, Rhone Merieux Australia, Australia) was used to induce

anaesthesia. An occlusive cannula was inserted into the right cephalic vein and

advanced to the level of the shoulder for delivery of supplemental anaesthetic as

required (6 mg pentobarbitone). Anaesthetic depth was regularly evaluated via the skin

pinch withdrawal, pinna flick and eye blink reflexes and end tidal carbon dioxide levels

(Normocap® CD-102, Datex, Finland). Animals were considered to emerge from deep

anaesthesia when CO2 levels began to fall significantly below 5%. Core temperature

was monitored with a rectal probe and maintained with a heat blanket.

Dissection

Bi-lateral pins in the iliac crests and a head clamp were used to fix the animal in

position over a metal base plate. The left hind limb was fixed via pins in the head of the

fibula and the medial condyle of the tibia, and small cups over the lateral and medial
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malleoli. Removal of the popliteal fat and overlying muscles (plantaris, lateral

gastrocnemius and medial gastrocnemius) exposed the soleus muscle. The maximum

physiological length of the soleus muscle, LMAX, was marked for reference. To

determine LMAX the ankle was maximally dorsiflexed and the distance noted between a

small marker on the tendon and a similar marker on the adjacent fibula.

The soleus muscle and its tendon were dissected free from surrounding tissue. A small

hole was drilled in the calcaneum for connection to an electro-magnetic position

controller (Department of Physiology Electronics and Mechanical Workshops, Monash

University). The calcaneum was then cut and the position of the controller referenced to

LMAX. The calcaneum and tendon were wrapped lightly in Ringer-soaked gauze to

prevent drying out of the tendon.

The nerve to soleus was separated from the nerve to lateral gastrocnemius, which was

then cut. The nerve to medial gastrocnemius and the common peroneal, sural and tibial

nerves were also cut. The left hind limb was denervated at the level of the hip, which

included cutting the nerves to gluteus maximus, pyriformis, caudofemoralis and the

pudendal nerve as well as branches supplying biceps femoris and tenuissimus.

Removal of the muscles dorsi communis, longissimus dorsi medialis and multifidus

spina? exposed the dorsal aspect of the vertebral column. The dura was exposed by

removal of the dorsal portions of the L4 to L7 vertebrae and the rostro-dorsal portion of

the sacrum. The L6 to S1 spinal roots were freed along their length, after sectioning of

the dura, and cut at their point of entry into the cord. A clamp on the third lumbar

vertebra was then used to fix the lumbar spine.

Pools were fashioned from both the lower limb and lumbar skin flaps. The pools were

filled with mineral paraffin oil to prevent dehydration and also provided a high

impedance medium for nerve stimulation. The paraffin oil was kept warm with radiant

heat and bubbled with carbogen (5% CO2 in O2).
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Equipment

The multi-channel recorder as illustrated in Figure 3.1 and Figure 3.6 and described in

Chapter Three was used.

Experimental Protocol

Afferent Identification

Functionally single afferents recorded in filaments of dorsal root were identified based

on their conduction velocity and their response during a muscle twitch. A unit was

identified as a Golgi tendon organ (Ib afferent) if the conduction velocity was 72-120

m/s (Lloyd, 1943) and the unit discharged impulses during the rising phase of a whole

muscle twitch, indicating an 'in series' response (Figure 4.1).

Passive Muscle

Discharges from several Golgi tendon organs were recorded simultaneously to increase

the sample size from each experiment. Muscle length was adjusted so that the majority

of Golgi tendon organs did not maintain a background discharge, and therefore a clear

threshold to small sinusoidal movements could be established.

A response curve to noise-alone length changes was measured covering a wide range of

noise amplitudes. The noise signal used was computer generated as part of the multi-

channel recorder and consisted of zero-mean evenly distributed noise (p. 59), for details

of the applied noise see Appendix F. The average rate in response to a noise-alone

stimulus exhibited a plateau as can be seen in Figure 4.5. The maximum noise

amplitude regularly used was chosen to fall below the amplitude required to reach the

plateau response. The noise-alone response curve was then fitted with a curve based on

Kramers' rate (Equation 2.2).

A stimulus-response curve to small sinusoidal length changes was measured at each of

the three test frequencies to ensure that a sub-threshold periodic stimulus could be

employed in the study. The test frequencies were chosen to lie within the approximately

linear region of the noise-alone response of the Golgi tendon organ, as this would allow

for optimal separation of the predicted optimal noise levels, DPRE. A stimulus-response

curve was constructed, rather than using an arbitrarily small stimulus, because, as
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discussed in the Chapter Two (p. 56), it is desirable to have a near-threshold periodic

stimulus for the SNREXP measure. The responses of the Golgi tendon organs were quite

variable; therefore it was not always possible to achieve a near-threshold condition for

all units. For some units a supra-threshold periodic stimulus was used, which provided a

convenient control measurement.

Stochastic resonance curves at the three test frequencies were measured using various

noise amplitudes. The precise noise amplitudes used were dependent on preliminary

analysis that was performed during the experiment. Measurements were clustered

around the peaks, if they existed, of the SNREXP vs Noise curves. The SNR^p vs Noise

curves were fitted with a logNormal curve (Equation 2.3, with Z = 1). From the fitted

curve it was possible to estimate the level of noise that resulted in an optimal SNREXP,

DOPT. The fitting procedure also produced an estimate of the error in DOPT. The measured

values of D0PT were then compared with the predicted optimal noise values, DPRE.

Active Muscle

Similar measurements were to be made on the Golgi tendon organs during muscle

contractions. However, there was no discernible threshold to sinusoidal length changes

for movements down to a few micrometres, the minimum reliable movement available

with the current equipment, that were imposed on a fused contraction, as discussed

below (p. 98). The procedure for recording the stimulus-response curves for the actively

contracting muscle is illustrated in Figure 4.2 (top panel). The muscle was stimulated, at

a rate sufficient to achieve a smooth isometric contraction (50 pps for synchronous and

11 pps for distributed stimulation), for 4 seconds. During the contraction, small

sinusoidal length changes were imposed that resulted in a modulation of the response

from the Golgi tendon organs.

During the smooth isometric contractions used, the Golgi tendon organs produced an

average discharge rate of approximately 100 i/s. With this level of maintained activity

the SNREXP measure becomes insensitive and a different measure was required. The

measure used was based on the instantaneous rate response of the Golgi tendon organ.

The instantaneous rate is the reciprocal of the inter-spike interval: an example of an

instantaneous rate plot for a Golgi tendon organ is given in Figure 4.2 (bottom panel).
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Figure 4 .2 The procedure for recording a stimulus-response curve of a Golgi tendon organ in an

actively contracting muscle is illustrated in the top panel. The top trace is the instantaneous frequency

response of the Golgi tendon organ. The solid line under the Golgi tendon organ response indicates the 50

pps stimulus and also indicates the zero for the instantaneous rate. The imposed movement and resulting

tension change are in the remaining traces in the top panel. The bottom panel illustrate the calculation of

SNRRATE and is taken from the last second of the imposed sinusoidal length change illustrated in the top

panel: note the different time scale. On this scale the sinusoidal modulation of the Golgi tendon organ

response is visible and has been fitted with a sinusoid to calculate SNRRATE. The resulting value of

SNRRATE was 8.9.
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The rate was modulated by the applied sinusoidal length change, and it was this

modulation that was used to calculate SNRRA^. A sinusoid was fitted to the last second

of imposed movement and SNRRATE was defined as the amplitude of the fitted sinusoid,

divided by an estimate of the error in the amplitude of the fitted sinusoid. This is similar

to the definition of SNREXP except it is based on the instantaneous rate and not the cycle

histogram.

Results

Twenty-three Golgi tendon organs were examined for stochastic resonance behaviour.

All Golgi tendons organs that were stimulated by movement under the appropriate

conditions, sub-threshold periodic input and supra-threshold noise input, exhibited

stochastic resonance.

Stimulus-Response Curve

A stimulus-response curve for small sinusoidal length changes is shown in Figure 4.3.

For this Golgi tendon organ there was a threshold of approximately 500 /xm for

sinusoidal length changes (Figure 4,3, bottom panel). Below this amplitude the receptor

did not respond at all. Figure 4,3 (top panel) illustrates the response of the same receptor

at a longer test length, LMAX - 2.5 mm compared to LMAX - 5.5 mm. At this length the

Golgi tendon organ had a maintained discharge of approximately 20 i/s. With a

maintained discharge, this Golgi tendon organ responded to sinusoidal movements of 5

[im and therefore did not have a threshold within the range of length changes that were

available with the current equipment.

Stochastic Resonance

The response of a Golgi tendon organ to three different types of stimuli is illustrated in

Figure 4.4. The instantaneous rate and resulting cycle histograms that were used to

calculate SNREXP are shown for each response. A supra-threshold sinusoidal stimulus

(Figure 4.4, left panel) resulted in a cycle histogram where the majority of action

potentials occurred at about the same phase of the stimulus cycle and yielded a

moderate SNREXP (2.5). A supra-threshold noise-alone stimulus (Figure 4.4, right panel)
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Figure 4.3 The response of a Golgi tendon organ to sinusoidal length changes in a passive muscle

is dependent on the presence or absence of a maintained discharge at the test length. At a test length of

LMAX - 2.5 mm (top panel) the Golgi tendon organ had a maintained discharge of approximately 20 i/s,

which resulted in the threshold to sinusoidal length changes being below the minimum amplitude that

could be generated by the electro-magnetic length controller (5 jim). At a test length of LMAX - 5.5 mm

(bottom panel) the same Golgi tendon organ did not have a maintained discharge. Under these conditions

the Golgi tendon organ did not respond to sinusoidal length changes of up to 500 /jm. Each point was

calculated from 20 s of recording, and all measurements were taken in a pseudo-random order.
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Hz with 150 /im of noise, middle panel), and to a noise-alone stimulus (150 /im of noise, right panel). In

each panel the top trace is the instantaneous discharge rate of the receptor and the trace underneath is the

imposed change in muscle length about a test length of LMAX - 1.5 mm. The graph at the bottom of each

panel is a cycle histogram that has been fitted with a sinusoid to determine SNI^p. The values of SNI^p

for the three stimuli are 2.50 (supra-threshold sinusoidal stimulus), 4.68 (sub-threshold sinusoidal

stimulus and supra-threshold noise stimulus) and 0.86 (noise-alone stimulus).
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resulted in a cycle histogram where the action potentials are evenly distributed across all

phases of the stimulus and yielded a low SNRgxp (0.86). A sub-threshold sinusoidal

stimulus and supra-threshold noise stimulus (Figure 4.4, middle panel) resulted in a

cycle histogram with a significant modulation of the distribution of the action potentials

across the different phases of the stimulus and yielded a high SNRgxp (4.68).

An example of the response of a Golgi tendon organ that exhibited an optimal SNREXP

with the addition of input noise is shown in Figure 4.5. The noise-alone response is

shown in the bottom panel and is the average discharge rate during the 20 s of imposed

noise-alone movement. The noise-alone threshold was approximately 100 /zm, above

which the average rate increased with increasing noise amplitude to reach a plateau of

about 65 i/s. The noise-alone response was well fitted by the curve based on Kramers'

rate (Equation 2.2), allowing for accurate predictions of DPRE. For the three test

frequencies used in the stochastic resonance protocol of 5, 11 and 23 Hz the predicted

optimal noise amplitudes were 121, 165 and 250 fim respectively, indicated by the grey

lines in the bottom panel of Figure 4.5.

There is a clear peak in SNRgxp for each of the test frequencies used. Each point was

calculated from 20 s of response. The responses are well fitted by logNormal curves and

the optimal noise values were 46.9±0.3 (im, 103±l fim and 184±1 /tm respectively

(DOPT ± SEM), indicated by the arrows in the upper panels of Figure 4.5. The increase of

D0PT with increasing sub-threshold periodic stimulus frequency is a key feature of

stochastic resonance. The values of D0PT are not precisely those predicted from the

noise-alone response. However, there is a strong correlation between DOPT and DPRE

(Pearson Product = 0.997).

The pooled results from fifteen Golgi tendon organs are presented in Figure 4.6. The

data is shown on log-log axes as it extends over several orders of magnitude. Also, the

errors associated with each measure are approximately proportional to the measurement,

and therefore are best displayed on a log-log plot. Each point is the measured optimal

noise level (± SEM) plotted against the corresponding predicted optimal noise level.

Fourteen Golgi tendon organs were tested at three different frequencies, while one was

tested at two, resulting in a total of 44 measurements. The data for each Golgi tendon
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Figure 4.5 The response of a single Golgi tendon organ to passive stretches shows many of the

characteristics of stochastic resonance. Each point is calculated from 20 s of response and the

measurements were taken in a pseudo-random order (the blue symbol represents the data shown in Figure

4.4). The fitted curves in the upper panels are logNormal curves used to estimate D0P7, indicated by the

arrows, while the fitted curve in the bottom panel is based on Kramers' rate av.4 is used to determine

DPRE. The grey lines in the bottom panel indicate the predicted optimal noise value, DPRE, for each test

frequency.
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Figure 4 .6 The pooled data from the 15 Golgi tendon organs that showed an optimal SNREXP with

the addition of noise, in passively stretched muscle, are scattered about the line of proportionality (dashed

line) as predicted by stochastic resonance theory. However, there is a trend for DOPT to be lower than

DPRE. Values show D0PT and an estimate of the error in D0PT plotted against DPRE. (For details refer to

Chapter Two.) The results for each Golgi tendon organ are displayed in a different colour and are joined

to highlight the correlation between D0PT and DPRB for individual Golgi tendon organs. The blue symbols

represent the data from the Golgi tendon organ shown in Figure 4.5.
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organ are joined to illustrate the correlation between DOPT and DPRE for each unit. The

correlation between D0Fr and DPRE for the pooled data was 0.889 (Pearson Product). The

correlation between DOPT and DPRE, and therefore the sub-threshold periodic frequency

dependence of the optimal noise level, is consistent with the hypothesis that the increase

in SNREXJ, with additional noise is a result of stochastic resonance.

Maintained Discharge

Figure 4.7 illustrates the results of a stochastic resonance experiment on a Golgi tendon

organ that had a maintained discharge of approximately 20 i/s at the test length. The

noise-alone response has a similar shape to a Golgi tendon organ without a maintained

discharge, but with the addition of a constant representing the maintained discharge.

The response was fitted with a curve based on Kramers' rate, but with an additional

constant to account for the maintained discharge (Equation 2.6).

The periodic stimulus used was supra-threshold for this Golgi tendon organ,, as

illustrated by the SNRgxp values for zero noise (Figure 4.7, upper panels). SNREXP was a

monotonically decreasing function of noise amplitude that was fitted by a single

exponential. The monotonic decrease in SNRgxp is expected, as stochastic resonance is

not expected to operate for a supra-threshold periodic stimulus (as discussed in Chapter

Two, p. 60).

Active Muscle

Golgi tendon organs in actively contracting muscle did not have a threshold for small

periodic length changes within the range of movements that could be produced with the

available equipment. As illustrated in Figure 4.8, for both whole muscle stimulation and

distributed stimulation, the stimulus-response curve appears to pass through the origin.

The smallest reliable movement of the electro-magnetic position controller was 5 fim. A

5 /un, 10 Hz sinusoidal movement produced a detectable modulation of the Golgi

tendon organ response, as measured with SNRRATE. Stochastic resonance requires a sub-

threshold periodic input; therefore, with the available equipment it is not possible to

observe stochastic resonance in a Golgi tendon organ of an actively contracting muscle.
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Figure 4.8 The threshold for small sinusoidal length change is below 5 (im (the limit of the

equipment) for Golgi tendon organs in actively contracting muscles. Both synchronous (top panel) and

distributed (bottom panel) stimulation result in a threshold to sinusoidal length changes of 10 Hz below

the minimum amplitude which could be generated by the electro-magnetic length controller. Each point

was calculated from the last second of imposed movement with a 30 s rest period between each

measurement. All measurements were taken in a pseudo-random order and regression lines have been

fitted to the data (solid lines).
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Discussion

All of the key features of stochastic resonance are present in the responses of Golgi

tendon organs in passive muscle. An optimal output SNR with the addition of noise was

observed in all Golgi tendon organs examined under the appropriate conditions, a sub-

threshold periodic signal and supra-threshold noise signal. Similar results have been

observed in other biological systems but many of these systems are unlikely to exhibit

stochastic resonance (see the discussion of systems that exhibit stochastic resonance in

Chapter One, p. 17). Most systems either exhibited dithering, or they had not been

tested sufficiently to distinguish between stochastic resonance and other kinds of

behaviour.

The key feature of stochastic resonance that has been observed is the shifting of optimal

noise level, D0PT, with stimulus frequency. Each Golgi tendon organ was tested with

several stimulus frequencies and D0PT always increased with increasing stimulus

frequency. This feature is unique to stochastic resonance as discussed in Chapter One

(p. 7). The most remarkable result was the general agreement between predicted optimal

noise amplitudes, predicted from the noise-alone response of the Golgi tendon organ,

and the measured optimal noise amplitudes. Although this is predicted from stochastic

resonance theory, it is only valid for the SNR^p measure with near-threshold periodic

stimuli (p. 57). The periodic stimuli used in the Golgi tendon organ experiments were

typically significantly sub-threshold to ensure that they remained sub-threshold for the

duration of the experiment. Therefore, the agreement is quite surprising.

The trend for the measured optimal noise level to be less than the predicted value

(Figure 4.6) is probably a result of the SNREXP measure. If the periodic stimulus

amplitude is far from threshold then DOPT is less than DPRE, as discussed in Chapter Two

(p. 57). There is also a trend for the optimal noise level for higher stimulus frequencies

to be further from the predicted optimal noise level than at lower stimulus frequencies.

This is because SNREXP can be distorted by the influence of sub-harmonics of the

stimulus frequency.
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The monotonically decreasing SNRgxp with the addition of noise for a Golgi tendon

organ with a supra-threshold periodic stimulus is as expected from stochastic resonance

theory- It indicates that the increase in SNREXP for the other Golgi tendon organs was

unlikely to be the result of some other noise influence, which may be expected to effect

all Golgi tendon organs in a similar manner.

The threshold of a Golgi tendon organ to a sinusoidal length change imposed on an

actively contracting muscle is less than 5 /*m, which was the limit of the reliable

movements that could be produced with the available equipment. Therefore, it is not

possible to demonstrate stochastic resonance in Golgi tendon organ of actively

contracting muscles using the current equipment. The addition of noise to the supra-

threshold periodic input signal would result in a decrease in the output SNR, similar to

that seen for the passive Golgi tendon organ with a supra-threshold periodic stimulus.

Although it was not possible to observe stochastic resonance behaviour in Golgi tendon

organs in actively contracting muscle, it does not exclude the possibility that stochastic

resonance may occur in situations where a sub-threshold sinusoidal length change is

present.

Whether the central nervous system has developed the capabilities to use to stochastic

resonance remains uncertain. However, it is highly probably that the Golgi tendon

organs in passive muscle can, and do, exhibit stochastic resonance given the evidence

presented above. This is only the second conclusive observation of stochastic resonance

in a biological system.
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Chapter Five

Muscle Spindles

Muscle spindles are 2-4 mm long, encapsulated, stretch-sensitive mechanoreceptors that

are situated within skeletal muscles in mammals, birds, reptiles and amphibians (Barker,

1974). The following description is of mammalian muscle spindles as the muscle

spindles of the cat were utilised in the stochastic resonance experiments. Within each

muscle spindle there are two morphologically distinct afferent endings that Ruffini

(1898) named the primary and secondary endings. Primary endmgs respond to stretch

with a prominent dynamic response, while secondary endings appear to signal only

muscle length (Cooper, 1961). The afferents from muscle spindles can be divided into

two groups based on their conduction velocities that are in the range of 72-120 m/s and

36-72 m/s and are classed as la and II afferents respectively (Lloyd, 1943; Hunt, 1954).

The 'in parallel' location of muscle spindles has lead to the suggestion that they are

monitors of muscle length (Fulton & Pi-Suner, 1928).

Structure

Between two and twelve intrafusal muscle fibres are encapsulated within each muscle

spindle (Sherrington, 1894), as illustrated in Figure 5.1. The intrafusal muscle fibres can

be divided into two groups based on their size and the arrangement of nuclei within the

equatorial region (Barker, 1948; Boyd, 1962). Nuclear chain fibres are thinner than the

nuclear bag fibres and have a single chain-like arrangement of nuclei, while the nuclear

bag fibres typically have more than three nuclei packed side-by-side in a bag-like

swelling at their equator. The nuclear bag fibres can be further divided, based on the pH

sensitivity of ATPase staining and other criteria, into nuclear bag, and nuclear bag2

fibres (Ovalle & Smith, 1972).

There are typically between one and ten chain fibres in each muscle spindle, but only a

single one of each type of nuclear bag fibre; although many variations of arrangements

do exist, including muscle spindles without a nuclear bag, fibre (Richmond &

Abrahams, 1975). The nuclear chain fibres typically do not extend beyond the limits of

the capsule, while the nuclear bag fibres may extend for up to 8 mm. The polar

segments of the intrafusal muscle fibres contain sarcomeres and are capable of
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Figure 5.1 A muscle spindle encapsulates between two and twelve intrafusal muscle fibres that can

be divided into nuclear chain and nuclear bag fibres. The muscle spindle illustrated has five intrafusal

fibres. The la afferent innervates the muscle spindle primary endings, consisting of spiral endings around

the equatorial regions on nuclear bag!, nuclear bag2 and nuclear chain fibres. The II afferent innervates

the muscle spindle secondary endings that are found on the polar regions of the nuclear bag2 and nuclear

chain fibres. The YD efferent (shown in blue) innervates only the nuclear bag, fibre, while the Ys efferent

(shown in red) innervates both the nuclear bag2 and nuclear chain fibres. Figure adapted frorri Figure 1.1

of Carr (1999).
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contracting when activated; with the contraction of the polar segments leading to

extension of the equatorial region (Bessou & Pages, 1975). The nuclear chain fibres

contract more rapidly than the nuclear bags fibres and also have a higher resistance to

passive shortening than the nuclear bag fibres, which may result in 'kinking' of the

intrafusal fibres as a result of passive shortening (Boyd & Ward, 1975).

The polar regions of the intrafusal muscle fibres are innervated by small myelinated

fusimotor or gamma (y) motoneurones. A single y motoneurone typically innervates

about six muscle spindles, while each muscle spindle is usually innervated by more than

one Y motoneurone (Hunt & Kuffler, 1951). The fusimotor system can be divided into

two groups, ys and YD> based on their functional characteristics (Matthews, 1962;

Emonet-Denand et al., 1977). The YD axons innervate the nuclear bag] muscle fibres

(Banks, 1981), and enhance the velocity sensitivity of the la afferent response but rarely

affect the response of the II afferents. The Ys axons innervate the nuclear bag2 and

nuclear chain fibres and may enhance the static position sensitivity of both the la and II

afferent responses (Jansen & Matthews, 1962a).

Muscle spindle primary endings spiral about the equatorial regions of individual

intrafusal fibres (Banks, Barker & Stacey, 1982). It is proposed that lengthening of the

equatorial region results in lengthening of the terminal helices, which leads to stretch

deformation of the terminal membrane. The mechanical deformation results in the

generation of the receptor potential, which in turn results in the generation of action

potentials. The muscle spindle primary ending is innervated by the la afferent, with a

near unity ratio of la afferent to muscle spindle innervation (Barker, 1962). The la

afferent branches to innervate endings on all three types of intrafusal fibres. The first

order branch separates the endings on nuclear bag! fibres from those on the nuclear bag2

and nuclear chain fibres (Banks, Barker & Stacey, 1977). It has been proposed that there

are two separate sites of action potential initiation, one associated with the endings on

the nuclear bagj fibre and another associated with the endings on the nuclear bag2 and

nuclear chain fibres (Proske, 1997).

Muscle spindle secondary endings are predominantly found on nuclear chain and

nuclear bag2 fibres lying to one side, but within 400 fim, of the primary ending, often on
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striated portions of intrafusal fibres (Banks et al., 1982). The secondary endings form

short helixes and flower spray endings on the nuclear chain and nuclear bag2 fibres

respectively (Barker, 1948; Boyd, 1962). There are also secondary endings on the

nuclear bagj fibres of the flower spray type, but these are less common. The muscle

spindle secondary ending is innervated by a Group II afferent, with as many as five

Group II afferents innervating a single muscle spindle, although some muscle spindles

are completely without Group II afferents (Boyd, 1962).

Response

The response of muscle spindles to imposed length changes in passive muscle can be

largely explained by the mechanical properties of the intrafusal muscle fibres, as

illustrated in the model by Schaafsma, Otten & van Willigen (1991). The response

during combined fusimotor stimulation and imposed length changes is complex because

of the interactions of the applied stretch, with the rate and duration of fusimotor

stimulation (Kuffler, Hunt & Quilliam, 1951). As the stochastic resonance experiments

were all performed with passive muscles the response during fusimotor activity will not

be discussed in any detail.

Maintained Discharge

The majority of both primary and secondary endings exhibit a maintained or resting

discharge in the passive muscle, with the discharge from the secondary ending being

more regular (Stein & Matthews, 1965). The average rate of the maintained discharge is

dependent on muscle length (Adrian, 1926; Bessou & Laporte, 1962; Gregory, Harvey

& Proske, 1977), fusimotor activity (Hunt, 1951) and contraction history of the muscle;

and may persist in the absence of whole muscle tension (Gregory, Morgan & Proske,

1991).

Ramp-and-Hold Stretches

The response of a muscle spindle primary ending to a ramp-and-hold stretch is

composed of a dynamic phase and a static phase (Figure 5.2, bottom panels). The

dynamic response shows an 'initial burst' that is attributed to stable cross-bridges within
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Figure 5.2 The svtencing of the discharge from a muscle spindle primary ending during a muscle

twitch typifies the 'in parallel' response of muscle spindles. The top panels show recorded action

potentials and twitch tension. The response of a primary ending to a ramp-and-hold stretch is illustrated in

the bottom panels as an instantaneous rate, together with muscle length. The response has a dynamic and

static phase. The reding discharge is interrupted after the release, but returns approximately 5 s later. All

measurements were taken at LMAX - 10 mm.
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the intrafusal muscle fibres (Hunt & Ottoson, 1976). The stable cross-bridges result in

an increased stiffness of the polar regions of the muscle spindle. Most of the early part

of the stretch is therefore transferred to the equatorial region of the muscle spindle

where the primary ending is located. Once the elastic limit of the stable cross-bridges is

passed they are forced to detach, reducing the stiffness of the polar regions of the

muscle spindle. The decrease in stiffness results in the polar regions taking up relatively

more of the imposed stretch than when there were stable cross-bridges present.

Further increases in length result in an increase in discharge that is influenced by both

the change in length and the rate of change in length (Matthews, 1972). During the hold

phase the discharge rate falls to a rate that is proportional to the maintained length. The

dynamic index (Equation 3.3) is proportional to the velocity of lengthening but

independent of the absolute length change (Matthews, 1963). During shortening the

primary ending is typically silenced but recovers its maintained discharge within a few

seconds, as illustrated in the bottom panels of Figure 5.2. Therefore, the muscle spindle

primary afferent is proposed to signal changes in muscle length, due to its dynamic

sensitivity, along with muscle length, as the maintained discharge is approximately

proportional to muscle length.

The response of muscle spindle secondary endings is similar to that of the primary

endings, except there is no 'initial burst' and the dynamic response is less distinct

(Cooper, 1961). The secondary endings are less likely than primary endings to fall silent

during shortening, in line with their proposed role of signalling absolute muscle length

(Harvey & Matthews, 1961). Overall the static length sensitivities of both the primary

and secondary endings are similar (Jansen & Matthews, 1962b). Therefore it may be

possible to extract a velocity signal from the response of primary endings by subtracting

the response of the secondary ending.

Sinusoidal Stretches

The response of muscle spindle primary endings to sinusoidal length changes is linear

for movements of less than 100 /mi peak-to-peak at 1 Hz (Matthews & Stein, 1969b);

that is, the instantaneous rate of discharge exhibits a sinusoidal modulation, the

amplitude of which is proportional to the sinusoidal stimulus amplitude. At high
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frequencies the response of the muscle spindle primary ending leads the length by

approximately 90°, as would be expected from a velocity sensitive receptor, which is

due to the viscous properties of the intrafusal fibres. The muscle spindle secondary

ending has a similar response but is linear over a wider range of amplitudes. Sinusoidal

movements of as little as 5 /im peak-to-peak at 100-500 Hz (vibration) can 'drive'

muscle spindle primary afferents to discharge one impulse for each cycle of the stimulus

(Brown, Engberg & Matthews, 1967). The muscle spindle secondary endings are an

order of magnitude less sensitive to stimuli in this frequency range.

Muscle History Effects

The response of muscle spindles is dependent on the previous history of the muscle as

first reported by Kuffler et al. (1951). The thixotropic nature of muscle is related to the

'short range elastic component' of tension described by Hill (1968) and both are the

result of the formation of stable cross-bridges within the relaxed muscle fibres. The

stretch and contraction history of a muscle can affect the response of a muscle spindle to

stretch by introducing slack into the intrafusal muscle fibres (Brown, Goodwin &

Matthews, 1969; Proske, Morgan & Gregory, 1992).

'Hold Long' and 'Hold Short' Conditioning

It is possible to introduce slack, via stable cross-bridges, into the intrafusal muscle

fibres by 'hold long' conditioning (Morgan, Prochazka & Proske, 1984). A series of

rapid stretches or a brief period of fusimotor stimulation will detach any previously

formed stable cross-bridges. After detachment of the stable cross-bridges, maintaining

the muscle at a length greater than the test length, 'hold long' conditioning, allows the

formation of stable cross-bridges at the longer length. On returning to the test length,

the stable cross-bridges may cause the intrafusal fibres to fall slack, as the stable cross-

bridges do not permit sarcomere shortening. Holding the muscle at the test length after

the conditioning stretches, or fusimotor stimulation, results in the formation of stable

cross-bridges at the test length, 'hold test' conditioning, with no slack in the intrafusal

muscle fibre. The majority of stable cross-bridges form within three to six seconds but

do not spontaneously detach for over half an hour. Therefore, conditioning the muscle
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before test stretches is required to ensure the muscle spindle is in a known state (Proske,

Morgan & Gregory, 1993).

Noise Conditioning

The effect on a 'hold long' conditioned muscle spindle of a movement consisting of

small random length changes about a zero-mean length change (i.e. a noise-alone

movement required for stochastic resonance studies) would be expected to be dependent

on the amplitude of the noise. Noise-alone movements greater than 100/zm would be

expected to detach some stable cross-bridges that would then reform at the test length at

the end of the noise-alone movements. Any detachment and subsequent reattachment at

a slightly longer length will reduce the filament resting tension (Hill, 1968). This is

because stable cross-bridges under the greatest strain, those formed at the shortest

lengths, would be expected to yield first, and therefore a small 'hold long' conditioning

will be produced as the stable cross-bridges reform at a longer length. The resulting

'hold long' condition, due to the noise-alone movement, would be expected to result in

a lower maintained discharge, with larger noise amplitudes increasing the apparent

'hold long' effect of the noise-alone movement.

Maintained Discharge

It is possible to temporarily silence the maintained discharge from muscle spindle

afferents by rapid shortening of the muscle (Gregory et al., 1991). At long muscle

lengths the maintained discharge spontaneously resumes in all muscle spindles. At short

muscle lengths the maintained discharge resumes in some but not others. It is proposed

that the rapid shortening of the muscle introduces slack into the intrafusal muscle fibres

that is taken up at long, but not short, muscle lengths (Gregory et al., 1991). Stimulation

of the fusimotor fibres of muscle spindles that fall silent after a rapid shortening results

in a return of the maintained discharge, which is proposed to be as a result of the

removal of the slack from within the intrafusal muscle fibres, a 'hold test' conditioning.

The spontaneous resumption of the maintained discharge in some muscle spindles after

a rapid shortening is thought to be due to residual strain on the spiral endings by

connective tissue attached to the muscle spindle capsule, and not the result of a 'leaky

membrane' (Gregory et al., 1991).
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Proprioception

It is generally accepted that although cutaneous and joint receptors are involved in

kinaesthesia, the sense of position and movement of the extremities, the main afferent

signal is from muscle spindles (McCloskey, 1978). The effects of muscle history on the

detection threshold of movements of the elbow joint are consistent with the proposal

that muscle spindles are a significant source of proprioceptive information (Wise,

Gregory & Proske, 1996). Macefield et al. (1990a) stimulated various afferent fibres of

the median and ulnar nerves at the wrist and found that while stimulation of cutaneous

and joint afferents gave rise to distinct sensations, the stimulation of individual muscle

spindle afferents was not perceived. Therefore, although muscle spindles appear to be

an important source of proprioceptive information, it appears to require the response of

a population of muscle spindles for their signals to reach consciousness.

In studies using microneurographic techniques it has been reported that approximately

two thirds of muscle spindle primary afferents have a maintained discharge (Macefield

et al., 1990). The actual proportion may be higher as muscle history effects may have

left some intrafusal fibres slack. This is supported by the work of Wilson, Gandevia &

Burke (1995) who found that weak voluntary contractions led to a sustained increase in

maintained discharge, consistent with the removal of intrafusal muscle fibre slack. Also,

Kakuda (2000) reported that all muscle spindle secondary endings had a maintained

discharge. Proprioceptive thresholds for the detection of movements are lowest after

voluntary contraction of the appropriate muscles (Wise, Gregory & Proske, 1998),

which is consistent with the hypothesis that there is slack present in the intrafusal fibres

of an unconditioned muscle.

Suitability for Stochastic Resonance

Muscle spindle primary and secondary endings have all the features required for

stochastic resonance. The receptors are non-linear systems, with a threshold to small

sinusoidal inputs. The stimulation of the receptor, via changes in muscle length, can be

precisely controlled allowing for the application of near-threshold periodic and supra-

threshold noise signals.
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Cat Muscle Spindles

A total of eight cats (Felis domesticus) of both sexes were used for the experiments to

seek evidence for stochastic resonance in muscle spindles in mammalian muscle. All

experiments were performed with approval from the Monash University Physiology

Animal Ethics Committee.

Materials and Methods

The anaesthesia, dissection methods and equipment used for experiments involving

muscle spindles were the same as those involving Golgi tendon organs. For details refer

to the Materials and Methods section of Chapter Four (p. 92).

Experimental Protocol

Afferent Identification

Functionally single afferents recorded in filaments of dorsal root were identified based

on their conduction velocity and their response during a muscle twitch. A unit was

identified as a muscle spindle if its discharge paused during the rising phase of muscle

tension during a twitch (Figure 5.2, top panels). The division of muscle spindies into

primary and secondary endings was based on the conduction velocity of the afferent

fibres. Units were classified as primary endings of la afferents, if the conduction

velocity was 75-120 m/s or as secondary endings of Group II afferents, if the

conduction velocity was 36-70 m/s (Lloyd, 1943). Afferents with conduction velocities

in the range of 70-75 m/s were excluded ^om the study to avoid ambiguity.

Effect of Conditioning

As the previous muscle history may affect the response of a muscle spindle (Proske et

al., 1993), the effect of a noise-alone stimulus on the response of a muscle spindle was

investigated. The effect of conditioning contractions at different muscle lengths on the

maintained discharge of muscle spindle primary afferents was determined using the

protocol illustrated in the top-left panel of Figure 5.3. Conditioning contractions were

evoked by whole muscle nerve stimulation with a stimulus designed to recruit fusimotor
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Figure 5.3 The protocol for conditioning the muscle at different lengths is illustrated in the top-left

panel. The top trace is the muscle length and the bottom trace illustrates the timing of the 1 s of 50 pps

stimulation (solid bar) and the 10 s recording period (open bar). The effect of conditioning at various

lengths is illustrated in the bottom-left panel and it is clear that 'hold long' conditioning results in a

reduction of the maintained discharge. The protocol for measuring the conditioning effects of a noise-

alone movement is illustrated in the top-right panel. The top trace is the muscle length and the bottom

trace illustrates the timing of the 1 s of 50 pps stimulation (solid bar) and the 10 s recording period (open

bar). The maintained discharge is reduced after 'noise conditioning' (bottom-right panel) with larger

noise amplitudes resulting in a greater reduction. All measurements were taken at a test length of LMAX -

10 mm.
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fibres. The stimulus strength was 150% of the stimulus strength required to achieve

maximum isometric force, and the stimulus consisted of 1 s of 50 pps. The muscle was

held at the conditioning length for a period of 5 s after the end of the contraction, before

being returned to the test length. After a delay of 10 s the maintained discharge was

recorded for a period of 10 s.

The effect of a noise-alone stimulus on the maintained discharge of a muscle spindle

primary ending after 'hold test' conditioning was measured using the protocol

illustrated in the top-right panel of Figure 5.3. After a 'hold test' conditioning, 10 s of a

noise-alone mechanical stimulus was applied. After a further delay of 10 s the

maintained discharge was recorded for a period of 10 s. The maintained discharge after

the 'noise conditioning' was then compared to that after a 'hold test' conditioning.

Stochastic Resonance

The protocol used for the stochastic resonance experiments with muscle spindles was

similar to that used for Golgi tendon organs in passive muscle, for details refer to the

Experimental Protocol section of Chapter Four (p. 94). The only change to the protocol

was that a 'hold test' conditioning contraction was used before each measurement to

eliminate any conditioning effects of the previous noise stimulus. The 'hold test'

conditioning consisted of 0.5 s of whole muscle nerve stimulation at 50 pps with a

fusimotor strength stimulus, a stimulus strength that was 150% of that required to

produced maximal isometric force.

Aperiodic Stimuli

Stochastic resonance is not the only mechanism whereby noise can enhance signal

detection. To illustrate another constructive effect of noise on signal detection in muscle

spindle primary endings a series of ramp-and-hold stretches was performed with various

amplitudes of additional input noise. The stretches consisted of a 1 mm stretch at 10

mm/s from LMAX - 6 mm. All stretches were done after 'hold test' conditioning and the

amount of noise added to the test movement was varied in a pseudo-random order. The

noise was added to the entire length signal, so it was present before and after the 1 mm

stretch. The response of the muscle spindle to the stretch was quantified by calculating
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the increase in the average discharge rate as a result of the stretch (Figure 5.11, top

panel). For the primary ending shown the rate increased from 122 i/s to 153 i/s as a

result of the stretch.

Results

Effect of Conditioning

Noise Conditioning

The effect of a noise-alone movement, 'noise conditioning', on the maintained

discharge of a muscle spindle primary ending is illustrated in Figure 5.3 (bottom-right

panel). The average rate of the maintained discharge decreased with increasing

amplitudes of 'noise conditioning". The largest noise-alone movement of 0.5 mm

resulted in an average maintained discharge of 29 i/s, a reduction of 3.5 i/s compared to

the average maintained discharge after 'hold test' conditioning of 32.5 i/s. The

reduction in maintained discharge as a result of 'noise conditioning' was less than the

14 i/s reduction resulting from a 1 mm 'hold long' conditioning (Figure 5.3, bottom-left

panel). This indicates that the condition of the muscle spindle after 'large' noise

movements, the maximum noise amplitude used in the stochastic resonance

investigations being 0.5 mm, is similar to that after a 'hold test' conditioning, but with a

small amount of slack introduced. This is an important result as it means the sinusoidal

stimulus-response curves that were measured after 'hold test' conditioning will not be

dramatically altered as a result of the additional input noise used during the stochastic

resonance experiments.

Maintained Discharge

After 'hold test' conditioning the majority of muscle spindles primary endings had a

maintained discharge. An average of twenty muscle spindle primary endings were

isolated from each animal; of these, typically fewer than five muscle spindle primary

endings in each animal did not have a maintained discharge after the standard 'hold test'

conditioning. This was true even when the 'hold test' conditioning was performed at the

shortest muscle length at which the muscle was just taut, typically between LMAX - 16

mm and LMAX - 20 mm.
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To test the hypothesis that the few silent spindles, the ones without a maintained

discharge after 'hold test' conditioning, were silent as a result of being poorly perfused,

whole muscle stimulation of 15 pps for 1 min, designed to increase blow flow to the

muscle, was used (Folkow & Halicka, 1968). After the bout of Folkow stimulation the

number of muscle spindle primary endings that did not have a maintained discharge

after 'hold test' conditioning was reduced from approximately five in twenty to one in

twenty.

Sinusoidal Threshold

Muscle spindle primary endings that had a maintained discharge did not have a

threshold to small sinusoidal length changes within the reliable range of amplitudes

available with the current equipment, that is, at amplitudes greater than 5 /zm (Figure

5.4). A significant modulation of the afferent discharge, evident in the cycle histogram,

to whole muscle sinusoidal length changes of less than 5 /xm was observed for these

primary endings. There was an approximately linear increase in SNREXP with increasing

sinusoidal amplitude up to 50 fim after which the response increased less rapidly. It was

therefore not possible to use these muscle spindles for stochastic resonance

experiments, as a sub-threshold periodic stimulus is required.

Stochastic Resonance

Two muscle spindle primary endings and six muscle spindle secondary endings, chosen

to have no maintained discharge after 'hold test' conditioning, were studied for

stochastic resonance. All muscle spindles that were stimulated under the appropriate

conditions, a sub-threshold periodic input and supra-threshold noise input, exhibited

stochastic resonance.

The response of a muscle spindle primary ending to three different types of stimuli is

illustrated in Figure 5.5. The instantaneous rate and resulting cycle histograms that were

used to calculate SNREXP are shown for each response. A supra-threshold sinusoidal

stimulus (Figure 5.5, left panel) resulted in a cycle histogram where the majority of

action potentials occurred at about the same phase of the stimulus cycle and yielded a

high SNREXP (3.36). A supra-threshold noise-alone stimulus (Figure 5.5, right panel)
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resulted in a cycle histogram where the action potentials were evenly distributed across

all phases of the stimulus and a low SNRgxp (0.80). A sub-threshold sinusoidal stimulus

and supra-threshold noise stimulus (Figure 5.5, middle panel) resulted in a cycle

histogram with a significant modulation of the distribution of the action potentials

across the different phases of the stimulus and a high SNREXP (5.23).

An example of the response of a muscle spindle primary ending that exhibited an

optimal SNREXP with the addition of input noise is shown in Figure 5.6. The noise-alone

response is shown in the bottom panel and is the average discharge rate during the 20 s

of imposed noise-alone movement. The noise-alone threshold was approximately 100

fim, above which the average rate increased with increasing noise amplitude to reach a

plateau of about 80 i/s (not shown). The noise-alone response was well fitted by the

curve based on Kramers' rate, allowing for accurate predictions of DPRE. For the three

test frequencies used in the stochastic resonance protocol of 5.2, 9.6 and 26.1 Hz the

predicted optimal noise amplitudes were 137, 172 and 297 /xm respectively, indicated

by the grey lines in the bottom panel of Figure 5.6.

There is a clear peak in SNREXP for each of the test frequencies used. Each point was

calculated from 20 s of response. The responses are well fitted by logNormal curves and

the optimal noise values were 55 ± 5 /mi, 184 ± 6 fim and 456 ± 3 fim respectively

(D0PT ± SEM), indicated by the arrows in the upper panels of Figure 5.6. The increase of

D0PT with increasing sub-threshold periodic stimulus frequency is a key feature of

stochastic resonance.

The response of a muscle spindle secondary ending to three different types of stimuli is

illustrated in Figure 5.7. The instantaneous rate and resulting cycle histograms that were

used to calculate SNREXP are shown for each response. A supra-threshold sinusoidal

stimulus (Figure 5.7, left panel) resulted in a cycle histogram where the majority of

action potentials occurred at about the same phase of the stimulus cycle and yielded a

moderate SNREXP (1.45). A supra-threshold noise-alone stimulus (Figure 5.7, right

panel) resulted in a cycle histogram where the action potentials were evenly distributed

across all phases of the stimulus and a low SNREXP (1.23). A sub-threshold sinusoidal

stimulus and supra-threshold noise stimulus (Figure 5.7, middle panel) resulted in a
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Figure 5.5 The response of a muscle spindle primary ending to a supra-threshold sinusoidal

stimulus (260 /xm at 26.1 Hz, left panel), a sub-threshold sinusoidal stimulus and supra-threshold noise

stimulus (200 /xm at 26.1 Hz with 200 /im of noise, middle panel), and to a noise-alone stimulus (200 fim

of noise, right panel). In each panel the top trace is the instantaneous discharge rate of the receptor and

the trace underneath is the imposed change in muscle length about a test length of LMAX - 4.5 mm. The

graph at the bottom of each panel is a cycle histogram that has been fitted with a sinusoid to determine

SNREXP. The values of SNREXt» for the three stimuli are 3.36 (supra-threshold sinusoidal stimulus), 5.23

(sub-threshold sinusoidal stimulus and supra-threshold noise stimulus) and 0.8 (noise-alone stimulus).
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Figure 5.6 The response of a muscle spindle primary ending shows many of the characteristics of

stochastic resonance. Each point is calculated from 20 s of response and the measurements were taken in

a pseudo-random order. The blue symbol represents the data shown in Figure 5.5. The solid curves in the

top three panels arc logNormal curves that have been fitted to determine DOPT, indicated by the arrows.

The bottom panel is the noise-alone response, which has been fitted with a curve based on Kramers' Rate.

They grey lines in the bottom panel indicate the predicted optimal noise value, DPRE, for each test

frequency.
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Figure 5.7 The response of a muscle spindle secondary ending to a supra-threshold sinusoidal

stimulus (330 /im at 5.2 Hz, left panel), a sub-threshold sinusoidal stimulus and supra-threshold noise

stimulus (165 /xm at 5.2 Hz with 174 /xm of noise, middle panel), and to a noise-alone stimulus (174 /zm

of noise, right panel). In each panel the top trace is the instantaneous discharge rate of the receptor and

the trace underneath is the imposed change in muscle length about a test length of LMAX - 1.5 mm. The

graph at the bottom of each panel is a cycle histogram that has been fitted with sinusoids to determine

SNREXP. The values of SNREXP for the three stimuli are 1.45 (supra-threshold sinusoidal stimulus), 6.50

(sub-threshold sinusoidal stimulus and supra-threshold noise stimulus) and 1.24 (noise-alone stimulus).
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cycle histogram with a significant modulation of the distribution of the action potentials

across the different phases of the stimulus and a high SNREXP (6.50).

Figure 5.8 is an example of the response of a muscle spindle secondary ending that

exhibited an optimal SNREXP with the addition of input noise. The curves are similar to

those for the muscle spindle primary ending, except the maximum noise-induced rate is

approximately half that for the muscle spindle primary ending, as is the noise-alone

threshold. For the two test frequencies of 1.04 and 5.2 Hz the predicted optimal noise

levels were 53 and 87 ptm respectively, indicated by the grey lines in the bottom panel

of Figure 5.8. The corresponding values of DOPT were 86 ± 2 fim and 126 ± 1 fim

respectively (DOPT ± SEM), indicated by the arrows in the upper panels of Figure 5.8.

Again, the increase of DOPT with increasing sub-threshold periodic stimulus frequency is

a key feature of stochastic resonance.

The pooled results from all muscle spindles are presented in Figure 5.9. Each point is

the measured optimal noise level (± SEM) plotted against the corresponding predicted

optimal noise level. All the muscle spindle secondary endings and one of the muscle

spindle primary endings were tested at two frequencies, while the remaining muscle

spindle primary ending was tested at three frequencies, resulting in a total of 11

measurements. The data for each muscle spindle is joined to illustrate the correlation

between DOPT and DPRE for each muscle spindle. The correlation between DOPT and DPRE

for the pooled data was 0.699 (Pearson Product), indicating that there was a relationship

between the predicted optimal noise and the measured optimal noise. The correlation

between D0PT and DPRE, and therefore the dependence of DOPT on the sub-threshold

periodic stimulus frequency, is consistent with the hypothesis that the increase in

SNREXP with additional noise is a result of stochastic resonance.

The low number of muscle spindles that exhibited stochastic resonance was a result of

the low number of muscle spindles that, after 'hold test' conditioning, had a threshold

for small sinusoidal length changes within the range of the equipment used. As with

Golgi tendon organs (p. 98), muscle spindle primary and secondary endings with a

maintained discharge, and therefore no clear threshold, did not exhibit stochastic

resonance as illustrated by the example in Figure 5.10.
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Figure 5.8 The response of a muscle spindle secondary ending shows many of the characteristics

of stochastic resonance. Each point is calculated from 20 s of response and the measurements were taken

in a pseudo-random order. The blue symbol represents the data shown in Figure 5.7. The solid curves in

the top two panels are IogNormal curves that have been fitted to determine D0PT, indicated by the arrows.

The bottom panel is the noise-alone response, which has been fitted with a curve based on Kramers' Rate.

They grey lines in the bottom panel indicate the predicted optimal noise value, DPRE, for each test

frequency.
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spindle primary ending illustrated in Figure 5.6 is shown in red and the muscle spindle secondary ending

illustrated in Figure 5.8 is shown in blue.
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threshold periodic input and noise shows none of the characteristics of stochastic resonance. The SNREXP
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exponential curves that have been fitted to the data. The bottom panel is the noise-alone response, which

has been fitted with a curve based on Kramers' Rate.
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Aperiodic Stimuli

The average discharge rate of a muscle spindle primary ending increases as a result of a

1 mm ramp-and-hold stretch (Figure 5.11, top panel). The increase in average rate, as a

result of the ramp-and-hold stretch, passes through a maximum with the addition of

noise to the movement signal (Figure 5.11, second panel). The increase in rate with

various levels of input noise has a similar shape to the stochastic resonance plots shown

in Figure 5.6 and Figure 5.8, and is well fitted by a logNormal curve. The effect,

however, cannot be stochastic resonance, as the input signal, a ramp-and-hold stretch, is

not periodic.

The effect is a result of the increase in dynamic sensitivity of the muscle spindle

primary ending at longer muscle lengths. The noise-alone response of the primary

ending is similar at both muscle lengths, LMAX - 6 mm and LMAX - 5 mm (Figure 5.11,

bottom panel), with the average rate increasing with increasing noise amplitudes to a

plateau at approximately 180 i/s. However, the response plateaus with a smaller amount

of additional noise at the longer muscle length, as a result of the muscle spindle's

increased dynamic sensitivity.

The third panel of Figure 5.11 illustrates the difference between the two noise-alone

responses that are shown in the bottom panel of Figure 5.11. The shape of the difference

between the noise-alone responses at LMAX — 6 mm and LMAX - 5 mm is similar to the

response to a ramp-and-hold stretch. This is to be expected, as the difference between

the noise-alone responses approximates the response to an infinitely slowly ramp-and-

hold stretch. The differences between the curves in the second and third panels of

Figure 5.11 are likely to be the result of transient changes in sensitivity that result in a

further increase in dynamic sensitivity immediately after a ramp-and-hold stretch.

Psychcphysica! Experiments

A total of three adult human subjects of both genders were used for psychophysical

experiments to seek evidence for stochastic resonance in elbow movement detection.

All experiments were performed with approval from the Monash University Standing

Committee on Ethics in Research on Humans.
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Figure 5.11 The response of a muscle spindle primary ending to ramp-and-hold stretches with

various levels of additional input noise was examined using the protocol illustrated in the top panel. The

response was measured as the increase in the average discharge rate during the last 2 s of the hold phase,

over the average rate in the 2 s prior to the stretch. The increase in average rate as a result of the stretch

was maximised by the addition o! 30 /xm of noise (second panel). Each point is the mean ± SEM for

seven ramp and hold stretches with various levels of additional noise that were performed in a pseudo-

random order. The noise-alone response (bottom panel) plateaus at approximately 180 i/s for the two test

lengths of and LMAX - 6 mm (•) and LMAX - 5 mm (•), corresponding to the length before and after the

stretch. The third panel from the top is a plot of the difference between the noise-alone responses at the

two lengths. The solid curves in the middle two panels are logNormal curves that have been fitted to

determine D0PT, indicated by the arrows.



Muscle Spindles Chapter Five

Materials and Methods

Subjects were blindfolded and seated comfortably with their right arm held in the

horizontal plane in front of them. The forearm was held in a pronated position by an

adjustable cuff, positioned just above the wrist, while the upper arm rested on a

cushioned support. A horizontal lever attached to the cuff near the wrist was connected

to an electro-magnetic position controller. This configuration limited movements to

controlled rotation of the forearm about a vertical axis through the elbow joint.

Equipment

The electro-magnetic position controller was controlled by a data acquisition card (PCI-

MIO-16E-4, National Instruments Corporation, Austin, Texas, U.S.A.) in a G3 desktop

computer (Macintosh, Cupertino, California, U.S.A.) running Igor Pro (WaveMetrics,

Lake Oswego, Oregon, U.S.A.). This combination of equipment is the same as that used

for the multi-channel recorder used for the previous stochastic resonance experiments.

Experimental Protocol

All measurements were performed about the 90° mid-position and followed a co-

contraction of both biceps and triceps, 'hold test' conditioning (Wise et al., 1998). The

threshold of detection for small sinusoidal changes in elbow joint angle was measured

using a modified staircase technique (Cornsweet, 1962). The staircase technique is

illustrated in Figure 5.12 (bottom panel) and begins with the application of a sinusoidal

test movement known to be readily detectable by the subject.

The sinusoidal test movement (Figure 5.12, top panel) consisted of 14 s of sinusoidal

movements, which had been constructed to eliminate any sudden changes of velocity at

the beginning or cud of the movement. The smooth transition into the sinusoidal

movement was required to eliminate the possibility that the subject was using the initial

component of acceleration as a detection cue. An aural indication of the frequency of

the sinusoidal movements was given to the subject during each test stimulus. The aural

cue was a constant pitch tone the volume of which was modulated at the same

frequency as the test movement. The aural cue was not phase-locked to the movement,
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Figure 5.12 The test movement used during the psychophysical experiments on elbow movement
detection consisted of 14 s of sinusoidal movement that had been shaped to remove any abrupt start and
stop that may have served as a cue for the subject (top panel). The detection threshold was determined
using the staircase technique (bottom panel). The amplitude of the sinusoidal stimulus was decreased
following a correct detection ( • ) , or increased if not detected ( • ) . The series of amplitudes
corresponding to a minimum correct detection (blue outlined circles) can then be used to determine the
threshold, in this case 0.41 °. Trials 7,9, 20 and 30 were presentations of a zero amplitude sinusoid.
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although the relative phase of the cue to the movement was constant throughout an

experimental session. The aural cue allowed the subject to distinguish between random

movements (noise) and the sinusoidal movements that were synchronised to the aural

cue.

The subjects were instructed to verbally report if they had felt a sinusoidal movement

that was of the same frequency as the aural cue. If unsure of the presence of a sinusoidal

movement the subjects were instructed to indicate that no sinusoidal movement had

occurred. A supra-threshold noise-alone movement was present to familiarise the

subjects with a noise-alone movement, that in future they should report as not

containing any sinusoidal movement. The subjects were required to respond within 30 s

of the end of the test movement, but often responded before the cessation of the test

movement.

Null presentations, consisting of a zero amplitude sinusoid but with all other conditions

the same, were used as a control measure. Any trial with more than 5 % of reports of the

presence of a sinusoidal movement in response to a Null presentation, a false positive,

were excluded from the analysis.

Starting with a test movement known to be readily detectable, in successive trials the

amplitude of the sinusoidal movement was reduced until it was no longer detectable by

the subject. The amplitude of the sinusoidal movement was then increased in successive

trials until it was again detectable. The procedure was repeated several times to

determine a series of minimum amplitude detection points, indicated by the blue outline

circles in the bottom panel of Figure 5.12.

Threshold measurements were taken with various amplitudes of additional input noise.

Noise trials were interleaved with no-noise trials. The threshold amplitude for

sinusoidal movement was calculated by averaging the smallest sinusoidal amplitudes

that resulted in a correct detection, indicated in Figure 5.12 (bottom panel) by the blue

outline circles. Only the minimum correct detection points were used rather than turning

points as used by Cornsweet (1962) because it was possible for lapses in concentration

to result in the subject not detecting the movements. In such a case the turning points

would become biased towards larger amplitude sinusoids, which were not a true

116



Muscle Spindles Chapter Five

indication of the subjects detection threshold. In the experiments where the subjects did

not show such behaviour (Figure 5.12, bottom panel), using the minimum correct

detection points resulted in a similar threshold value to the value determined using the

turning points. For the trial illustrated in Figure 5.12 (bottom panel) the resulting

threshold measurement is 0.42 ± 0.01° compared to 0.41 ± 0.01 using the turning points.

Results

Three healthy young subjects participated, two males and one female, aged 20-28 years,

all free from any known neurological disorders. The addition of broad-spectrum noise

increased the detection threshold for small sinusoidal changes in elbow joint angle for

the subject illustrated in Figure 5.13 and for all of the subjects tested.

Discussion

Animal Experiments

Muscle spindle primary and secondary endings exhibit an optimal output SNR with the

addition of input noise when stimulated under the appropriate conditions of a sub-

threshold periodic signal and a supra-threshold noise signal. This effect is likely to be

stochastic resonance as the optimal noise amplitude increases with increasing sub-

threshold periodic stimulus frequency, which is a feature unique to stochastic resonance.

As with the Golgi tendon organs, the measured optimal noise amplitudes were not

precisely those predicted from the noise-alone response, but there was a correlation

between the predicted and measured optimal noise amplitudes.

When stimulated under the appropriate conditions both muscle spindle primary and

secondary endings may exhibit stochastic resonance, although the majority of muscle

spindle primary endings did not exhibit stochastic resonance. The majority of muscle

spindle primary endings in the soleus muscle have a maintained discharge after a

fusimotor strength contraction at the test length, a 'hold test' conditioning. Under these

conditions muscle spindle primary endings respond to sinusoidal length changes of less

than 5 /xm (the smallest reliable movement available using our equipment). Therefore,

these muscle spindle primary endings were not capable of exhibiting stochastic
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Figure 5.13 The minimum detection threshold for small sinusoidal changes in elbow joint angle

occurs in the absence of additional input noise. For the subject shown the minimum detection threshold

for the 0.5 Hz sinusoidal stimulus used was 0.07 °. Each point is the mean (± SEM) from a threshold

measurement like the one illustrated in Figure 5.12.
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resonance under the current experimental conditions. It is possible that with equipment

capable of producing smaller sinusoidal length changes it may be possible to use a sub-

threshold sinusoidal stimulus, and therefore most likely observe stochastic resonance.

'Hold long' conditioning would be expected to introduce a threshold for small

sinusoidal length changes, and therefore it may be tempting to use 'hold long'

conditioning for the stochastic resonance studies. The threshold produced by the 'hold

long' conditioning would also be expected to produce an increased threshold for the

noise-alone stimulus. As stochastic resonance requires the addition of supra-threshold

noise to optimise the system's response, the noise levels required to observe stochastic

resonance would result in a change of the conditioning of the intrafusal muscle fibres.

The supra-threshold noise stimuli would 'undo' the 'hold long' conditioning, leaving

the muscle spindle in an ill-defined condition. Therefore, it is not possible to use 'hold

long' conditioning to introduce an artificial threshold in order to observe stochastic

resonance.

The linear response of the muscle spindle primary endings to sinusoidal movements

below 50 /xm (Figure 5.4) is likely to have the same origins as the linear region reported

by Matthews & Stein (1969). Although Matthews & Stein (1969) used a decerebrate

preparation that had some level of 'spontaneous' fusimotor activity, it is likely that the

main effect of the fusimotor activity would have been to maintain a 'hold test'

conditioning. Therefore, the short linear region is likely to correspond to the region of

elastic deformation of the stable cross-bridges.

Movements large enough to break the stable cross-bridges would be expected to result

in a dramatic decrease in the stiffness of the polar regions of the intrafusal fibres, so that

a smaller portion of the imposed length change would take place in the equatorial

region. Therefore, noise-alone movements larger than the limit of elastic deformation of

the stable cross-bridges would be expected to result in a decrease in SNREXP as a result

of decreasing the stiffness of the polar regions of the intrafusal fibres. That the optimal

noise levels were up to 400 /mi indicates that stochastic resonance effects can overcome

the reduction in sensitivity due to mechanical changes and even increase the sensitivity

of the muscle spindle under these conditions.
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Muscle spindle primary endings that did not have a maintained discharge after 'hold

test' conditioning, and therefore exhibited a threshold, may have had depressed

responses from an inadequate blood supply. After whole muscle stimulation designed to

increase blood flow, 15 pps for 1 min (Folkow & Halicka, 1968), the majority of

previously silent muscle spindles had a maintained discharge. This type of stimulation

reduced the number of muscle spindle primary endings without a maintained discharge

after 'hold test' conditioning from approximately five in twenty to less than one in

twenty. Therefore, under the current experimental conditions the number of muscle

spindles that would exhibit a threshold for sinusoidal movements, and hence possibly

stochastic resonance, is very small, as few as one in twenty, or perhaps less.

The role of stochastic resonance in determining the response of muscle spindles is

dependent on the condition of the muscle spindle. If the muscle spindle has a threshold

for small periodic length changes, then it is possible that stochastic resonance could be

used to detect an otherwise sub-threshold periodic signal. If, however, the muscle

spindle has a maintained discharge, which was found to be the case for the majority of

muscle spindles investigated, then it does not appear possible for stochastic resonance to

occur and any additional input noise will result in a reduction in sensitivity. It appears

therefore, that the muscle spindle receptors perform optimally under conditions of low

external noise as a result of their maintained discharge.

Psychophysical Experiments

The detection threshold of small changes in angle of the elbow joint was increased with

the addition of any amount of extra input noise. It is interesting that stochastic

resonance does not appear to play a role in kinaesthesia at the elbow joint given that

stochastic resonance can occur in individual muscle spindles of the cat. Cat muscle

spindles are believed to be similar to human muscle spindles that are generally accepted

as contributing to this sense (McCloskey, 1978).

There are several possibilities as to why stochastic resonance was not observed. It is

possible that the noise levels used in these experiments were too large, which would be

expected to result in an increase in threshold even if stochastic resonance did occur.

However, the amplitudes of noise used were similar to the detection threshold, which
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would be expected to be near optimal noise levels, as this was found to be the case for

individual muscle spindles of the cat. It is therefore unlikely that stochastic resonance

does occur in the detection of small changes in angle of the elbow joint but was simply

not observed.

Individual muscle spindles with a maintained discharge did not exhibit stochastic

resonance, as they responded to sinusoidal length changes of less that 5 /xm, the limits

of our equipment. After a voluntary conditioning co-contraction the majority of human

muscle spindles would have a maintained discharge (Wilson et al., 1995). Under these

conditions it may be that the majority of muscle spindles did not have a threshold to the

movements available with our equipment (minimum amplitude movement of 0.003°). If

this were the case then it would be expected that these muscle spindles would not

exhibit stochastic resonance.

Interestingly, although individual muscle spindles may not have been stimulated with a

sub-threshold periodic stimulus, it was still possible for the stimulus to be below the

detection threshold for the subject. The detection threshold of the movement is likely to

involve the response of a population of muscle spindles, as the stimulation of a single

muscle spindle afferent is not consciously perceived (Macefield et al., 1990). Therefore,

there must be some level of processing within the central nervous system to generate the

population response, which includes the introduction of the threshold. Any individual

muscle spindles that did exhibit stochastic resonance would be expected to be in the

minority. Therefore, the increase in information available via the stochastic resonance

effect in individual muscle spindles would be counteracted by the decrease in

information from the other muscle spindles in the population that did not exhibit

stochastic resonance.

It is also possible that the muscle spindles were capable of exhibiting stochastic

resonance, but that the central nervous system did not process the afferent information

in such a way that the extra information, available via the stochastic resonance effect,

could be used in the detection task. The processing involved requires averaging the

response from several cycles of the periodic stimulus. The averaging can either be done

over several periods with a few muscle spindles or over a much shorter time with many
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muscle spindles. It is possible that the central nervous system does not perform the type

of analysis required to effectively average the afferent information and extract the

periodic information. Although this is unlikely, as the central nervous system appears to

create a population response, which would be sufficient to perform the averaging

provided the population response was constructed from enough individual muscle

spindles.

The threshold introduced by the processing required to create the population response

may be a possible site where stochastic resonance could occur. As the modelling of a

simple network of Hodgkin-Huxley neurones demonstrated, the combination of a

periodic train of pulses with trains of random pulses can exhibit stochastic resonance (p.

58). It is possible that such a situation may have occurred with the elbow detection task,

with some muscle spindles preferentially responding to the sinusoidal movement, while

others preferentially responded to the noise movement. However, no such effect was

observed. Again it is possible that the central nervous system simply does not perform

the appropriate processing to extract the extra information available via stochastic

resonance. Alternatively it may be that the intrinsic noise within the sensory system,

including membrane and synaptic noise, may already have been optimal for the

detection of the small sinusoidal changes in angle. If this were the case then any

additional mechanical noise would result in an increase in detection threshold, as

observed.

Although muscle spindles are capable of exhibiting stochastic resonance under limited

conditions, it does not appear that stochastic resonance occurs during elbow movement

detection tasks. Whether this is a result of the central nervous system not being capable

of performing the necessary processing required to utilise the extra afferent information

available via stochastic resonance is not clear. It may be that the muscle spindles were

simply not stimulated under the appropriate conditions, and therefore could not exhibit

stochastic resonance, or the task was too difficult for the subjects to perform.
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Cutaneous Mechanoreceptors

The afferent innervation of the skin varies from region to region, with rich innervation

of some regions, such as the fingertips and the face, and poor innervation of other

regions, such as the posterior aspect of the trunk (Catton, 1976). A variety of cutaneous

mechanoreceptors are situated in the epidermis, dermis and through to the subcutaneous

tissues. Each kind of mechanoreceptor selectively responds to a particular form of

mechanical stimulation. The responses from these mechanoreceptors give the senses of

touch, pressure and vibration.

The experiments in this chapter focus on the slowly adapting Type I (SAI) cutaneous

mechanoreceptors of the cane toad and psychophysical experiments that were designed

to preferentially stimulate the slowly adapting mechanoreceptors in hairy skin of the

back of the hand. The slowly adapting receptors were chosen as the focus of the

experiments to complement the earlier experimental results with the slowly adapting

receptor in muscle, the muscle spindles and Golgi tendon organs.

Structure

Mammalian

Slowly adapting Type I cutaneous mechanoreceptors in the hair skin of mammals,

including primates, are composed of an epidermal dome overlying several Merkel cells

lying along the basement membrane. Each cell receives a branched terminal from the

innervating myelinated axon (Figure 6.1). Merkel cells were first described in 1875 in

the epidermis of the avian bill (Merkel, 1875). Since then similar receptors have been

described in both glabrous and hairy skin of mammals (Iggo & Muir, 1969).

The slowly adapting Type I cutaneous mechanoreceptors in the hairy skin have a highly

localised sensitivity that is restricted to the raised dome, although an individual afferents

may innervate several receptors. The dermal core of the dome is composed of a dense

mesh of fine collagen bundles, while the surrounding dermis is composed of a looser

mesh of larger collagen bundles. The increased stiffness of the receptive dome, as a
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Figure 6.1 The slowly adapting Type I mechanoreceptors of the cat skin are composed of Merkel

cells (speckled cell in bottom panel) that are in contact with terminal branches of the myelinated afferent

(white, bottom panel). Each receptor is composed of several Merkel cells that are all innervated by a

single myelinated afferent (top panel). The dermal core of the raised dome is composed of a dense mesh

of fine collagen bundles that provide effective mechanical isolation of the receptor from surrounding

tissue (adapted from Figure 1 of Iggo & Muir, 1969).
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result of the denser mesh of collagen, results in effective mechanical isolation of the

receptor from the surrounding dermis. The effective stimulus for the receptor is

mechanical indentation of the raised dome, as stretching of the surrounding skin, even

to the extent of causing displacement of the dome, fails to stimulate the receptor.

The Merkel cells are anchored within the dermis by rod-lie cylindrical cytoplasmic

processes. A myelinated fibre enters the base of each dome and branches to supply

individual Merkel cells, losing its myelination approximately 10 /xm from the Merkel

cells. The nerve endings enlarge to form expanded end plates that contact individual

Merkel cells. Lamellae from individual Merkel cells extend around the edge of each end

plate and overlap with lamellae from the Schwann cells surrounding the nerve fibre.

The contact sites between the Merkel cell and nerve end plate are similar to those

observed at synapses within the central nervous system. Action potential initiation is

proposed to occur at individual Merkel cell - end plate complexes resulting in multiple

impulse generators (Iggo, 1974).

Amphibian

All amphibian mechanoreceptors were originally thought to be free branching endings

in the epidermis of axons that originated from either the superficial or deep plexus of

myelinated fibres in the sub-epidermis (Catton, 1958). The different rates of adaptation

were proposed to result from absorption of stimulus energy by the layers of tissue

overlying the terminals, with the result being mechanical filtering of the stimulus.

However, Nafstad & Baker (1973) observed Merkel cells in the skin of both the back

and belly of the frog (Rana pipiens) which appeared to be 'morphologically identical to

Merkel cells in mammals and birds.' This is in contrast to the initial observation of

Merkel (1880) who observed the cells in the skin of the back only, but the wide

distribution of Merkel cells has been confirmed by Fox & Whitear (1978). The

existence of morphologically distinct mechanoreceptors in amphibian skin was

confirmed by von During & Seiler (1974) who observed lamellated receptors in the skin

from all areas of the frog (Rana esculenta). Based on the similarity of amphibian and

mammalian Merkel cells, and the similar responses of amphibian and mammalian SAI

mechanoreceptors - specifically the irregular nature of the maintained discharge - it has
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been proposed that Merkel cells in amphibians are the receptors innervated by SAI

mechanoreceptor afferents (Yamashita, Ogawa & Taniguchi, 1986).

Response

Mammalian

A division of mammalian cutaneous mechanoreceptors into two main categories can be

based on their response to ramp-and-hold indentations of their receptive fields. The 'on

and off response to a ramp-and-hold stimulus typifies rapidly adapting

mechanoreceptors (Iggo, 1977). The receptor responds to the ramp phase of the

stimulus with a brief burst of impulses, the 'on' response. The receptor is silent during

the hold phase, and then responds with another brief burst of impulses to the release

phase, the 'off response.

The response of the slowly adapting mechanoreceptors to a ramp-and-hold stimulus

(Figure 6.2, top panel) has a characteristic dynamic response during the ramp phase,

which decays to a maintained response during the hold phase (Iggo & Muir, 1969).

During a constant stimulus the maintained response of slowly adapting

mechanoreceptors often completely adapts. Under these conditions the sensitivity of the

slowly adapting mechanoreceptor to further skin indentations is near control levels

(Horch & Burgess, 1975). However, the sensitivity to low frequency stimuli is slightly

increased, while the sensitivity to high frequency stimuli remains unchanged.

Mammalian slowly adapting mechanoreceptors can be further sub-divided into two

categories based on their receptive fields and responses to stimulation (Chambers &

Iggo, 1967). The receptive fields of slowly adapting Type I (SAI) mechanoreceptors

have several points of high sensitivity, while the receptive fields of slowly adapting

Type II (SAII) mechanoreceptors have a single point of maximum sensitivity

(Johansson, 1978).

Slow adapting Type I mechanoreceptors in mammalian hairy skin are silent in the

absence of skin deformation and respond to steady indentations of the skin with a

maintained discharge (Iggo & Muir, 1969). The intervals between impulses during the
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Figure 6.2 The ramp-and-hold response of a slowly adapting Type I cutaneous mechanoreceptor is

characterised by a maintained discharge during the hold phase (top panel). The sinusoidal stimulus-

response curve of a slowly adapting Type I cutaneous mechanoreceptor exhibits a threshold (bottom

panel). The threshold for this particular receptor was approximately 10 nm for a 5 Hz sinusoid. Points in

the stimulus response curve are mean ± SEM of three measurements, except for the measurement at 38

/im, which is a single measurement.
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maintained discharge are randomly distributed, with a near Poisson distribution about

the mean interval. The average rate of the maintained discharge is approximately

proportional to the amplitude of the indentation. It has been proposed that the

irregularity in the maintained discharge is a result of the interaction between multiple

spike generators (Iggo, 1974). However, this is unlikely to be the case as re-setting of

the spike generators by both antidromic and orthodromic impulses has been observed

(Horch, Whitehorn & Burgess, 1974), which results in the dominatic-n of the response

by the spike generator with the highest rate. The irregularity of the discharge is

currently proposed to be the result of quantal fluctuations at the synapse that cause large

fluctuations in the generator current (Horch et al., 1974).

The slowly adapting Type II mechanoreceptors also have a maintained discharge that

increases proportionally with maintained indentations (Chambers, Andres, von Duering

& Iggo, 1972). Unlike the random distribution of inter-spike intervals present in the

maintained discharge from SAI mechanoreceptors, the maintained discharge from SAII

mechanoreceptors is regular.

Human

The responses of cutaneous mechanoreceptors in glabrous skin of the hand in humans

can be divided into four different types: rapidly adapting Type I (RAI)

mechanoreceptors; rapidly adapting Type II (RAII) mechanoreceptors; and the two

types of slowly adapting mechanoreceptors, SAI and SAII (Knibestol & Vallbo, 1970).

There are also four types of mechanoreceptors located in hairy skin. It has been

proposed that the rapidly adapting mechanoreceptors are responsible for the sensation of

'flutter vibration' (Talbot, Darian-Smith, Kornhuber & Mountcastle, 1968). The slowly

adapting Type I mechanoreceptors are thought to be responsible for the sensation of

maintained pressure (Knibestol & Vallbo, 1980), while electrical stimulation of the

slowly adapting Type II mechanoreceptors does not lead to any conscious sensation

(Torebjork & Ochoa, 1980). In contrast to the afferents of muscle spindles and Golgi

tendon organs, repeated electrical stimulation of single cutaneous afferents often gives

rise to distinct sensations (Macefield et al., 1990).
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The threshold for detection of triangular indentations of the glabrous skin of the human

hand in psychophysical experiments is similar to the threshold for individual rapidly

adapting mechanoreceptors recorded directly (Johansson & Vallbo, 1979). Harrington

& Merzenich (1970) found that the response of SAII mechanoreceptors in hairy skin of

the rhesus monkey (Macaca mulatta) to ramp-and-hold stimuli was similar to the

subjective response from human subjects to similar stimuli and that therefore the SAII

mechanoreceptors were responsible for the sensation of pressure. However, Knibestol

(1975) proposed that SAII mechanoreceptors may be used in proprioception, as SAII

mechanoreceptors located near the base of the nail bed of fingernails of human subjects

were able to signal joint angle, as a result of the stretch of the surrounding skin, with

high fidelity. Knibestol (1975) also proposed that SAI mechanoreceptors rather than

S AH mechanoreceptors were responsible for the sensation of pressure.

The rapidly adapting mechanoreceptors, including Meissner's corpuscles in the

glabrous skin and hair basket endings in the hairy skin, are most sensitive to sinusoidal

frequencies in the range of 20 to 150 Hz and may respond to movements of 1 fim in this

frequency range (Johansson et al., 1982). The Pacinian corpuscle is most sensitive to

higher frequencies, greater than 200 Hz. The rapidly adapting mechanoreceptors are

often also called vibration receptors or velocity detectors, due to their preferential

sensitivity to rapidly changing stimuli. The slowly adapting mechanoreceptors are more

sensitive to lower frequencies, in the range of 1 to 16 Hz, and respond to sinusoidal

movements of less than 1 /jm. The slowly adapting mechanoreceptors will respond to

sinusoidal stimuli that are below the threshold of perception in both glabrous (Talbot et

al., 1968) and hairy skin (Merzenich & Harrington, 1969). The amplitude of small low

frequency skin indentations may be signalled by slowly adapting mechanoreceptors, as

the rapidly adapting mechanoreceptor do not appear to have the ability to effectively

encode stimulus amplitude (Konietzny & Hensel, 1977). The rapidly adapting

mechanoreceptors typically exhibit one-to-one driving over a large range of stimulus

amplitudes, which renders them incapable of signalling the stimulus amplitude.
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Amphibian

It is possible to classify amphibian cutaneous mechanoreceptors into rapidly and slowly

adapting types in a similar way to the classification of mammalian cutaneous

mechanoreceptors (Adrian & Zotterman, 1926; Dun & Finley, 1938; Maruhashi,

Mizuguchi & Tasaki, 1952). The initial classification was not clear as Lindblom (1962)

classified the cutaneous mechanoreceptors of the toad (Bufo bufo) as either 'very

rapidly adapting' or 'less rapidly adapting'. The two types appear to correspond to the

rapidly and slowly adapting mechanoreceptors described in mammals, although the

'off responses did not follow the same pattern (Hoglund & Lindblom, 1961). Some of

the trouble in the classification may have been a result of the changes in adaptation rate

with temperature as later Ogawa, Morimoto & Yamashita (1981) were able to clearly

demonstrate both rapidly and slowly adapting mechanoreceptors based on the absence

of an 'off response for the slowly adapting mechanoreceptors.

A separation of the slowly adapting mechanoreceptors into two types based on their

receptive fields, corresponding to the SAI and SAII types in mammals, can also be

made (Ogawa, Yamashita, Nomura & Taniguchi, 1984). The maintained discharge can

be similarly distinguished on the basis of its irregularity, with SAII mechanoreceptors

having a more regular maintained discharge (Yamashita et al., 1986). However, unlike

the mammalian SAII mechanoreceptors, neither the SAI and SAII mechanoreceptors of

the American bullfrog (Rana catesbeiana) have a maintained discharge (Ogawa &

Yamashita, 1982).

The response of an amphibian SAI mechanoreceptor to a ramp-and-hold skin

indentation (Figure 6.2, top panel) has both a dynamic and static phase (Loewenstein,

1956), . The dynamic component of the response is proportional to the logarithm of the

rate of indentation (Lindblom, 1962), and decays with two time constants to a static

level that is proportional to the amplitude of indentation (Ogawa et al., 1981). The

response to a superimposed ramp-and-hold stimulus can be enhanced by a maintained

indentation of the skin, as is the case for mammalian SAI mechanoreceptors. This form

of conditioning does not have a similar affect on the sensitivity of the RA

mechanoreceptors (Hoglund & Lindblom, 1961).
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Suitability for Stochastic Resonance

Slowly adapting cutaneous mechanoreceptors have all of the features required for

stochastic resonance. The receptor is a non-linear system with a clear threshold to small

indentations of the skin. Stimulation of the receptor, via indentations of the skin, can be

precisely controlled allowing for the application of near-threshold periodic signals and

superimposed noise signals.

Slowly Adapting Cutaneous Mechanoreceptors

A total of seven cane toads (Bufo marinus) of both sexes were used for experiments to

seek evidence for stochastic resonance in slowly adapting Type I cutaneous

mechanoreceptors of amphibian skin. All experiments were performed with approval

from the Monash University Physiology Animal Ethics Committee.

Materials and Methods

Dissection

Animals were stunned and pithed, destroying the central nervous system. A skin flap

extending from the ventral midline to the ilium and from the sternum to the pelvic girdle

was removed. Spinal nerves 4, 5 and 6 were freed along their length and cut at their

point of entry into the vertebrae.

Equipment

The skin flap was secured in an experimental chamber on a solid plate by four pins that

held the skin flap taut. The preparation was perfused with amphibian Ringer solution

(111 mM NaCl, 2.5 mM KC1, 0.1 mM K2HPO4, 11 mM Glucose, 2.4 mMNaHCO3 and

2.38 mM CaCl2) that was bubbled with carbogen (5% CO2 in O2) and was maintained at

room temperature (20 - 25 °C). The spinal nerves were lifted into a paraffin oil-filled

chamber used for recording. A small electro-magnetic actuator was used to

mechanically stimulate the skin surface. The actuator had a rounded tip with a probe

diameter of 1.2 mm. The multi-channel recorder as illustrated in Figure 3.1 and Figure
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3.6 and described in Chapter Three was used to control the actuator and to record the

afferent responses.

Experimental Protocol

Afferent Identification

Functionally single afferents were obtained by removing the sheath of connective tissue

from a spinal nerve and then subdividing the nerve into smaller filaments. Afferents

were identified based on their response to mechanical stimulation of the skin surface

(Figure 6.2, top panel). An afferent was defined as a slowly adapting cutaneous

mechanoreceptor if it maintained a discharge during the hold phase of a ramp-and-hold

skin indentation (Maruhashi et al., 1952) and did not display an 'off response, a burst

of impulses during the release phase (Ogawa et al., 1981). The singularity of an afferent

was determined by the consistent nature of the recorded action potential and the absence

of extremely short inter-spike intervals that are characteristic of multi-unit recordings.

Stochastic Resonance

The protocol and analysis used for the stochastic resonance experiments with slowly

adapting cutaneous mechanoreceptors was similar to that used for Golgi tendon organs

in passive mammalian muscle (p. 94). Briefly, for each unit a noise-alone response

curve was measured covering a wide range of noise amplitudes), for details of the

applied noise see Appendix F. The average rate in response to the noise-alone stimulus

exhibited a plateau, the start of which may be seen in the bottom panel of Figure 6.4.

The maximum noise amplitude for the remainder of the experiment was chosen to fall

below the amplitude required to reach the plateau rate. The noise-alone response curve

was then fitted with a curve based on Kramers' rate (Equation 2.2).

A stimulus-response curve to small sinusoidal skin indentations was measured at each

of two test frequencies to ensure that a clear tnreshold could be identified and a sub-

threshold periodic stimulus could be employed for the remainder of the study. The test

frequencies were chosen to lie within the approximately linear region of the noise-alone

response, as this should allow for maximum separation of the predicted optimal noise

levels, DPRE. Stochastic resonance curves were then measured at each test frequency. A
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logNormal curve (Equation 2.3) was then fitted to the results and was used to determine

the optimal noise level, DOFr.

The most significant difference between the protocol used for the Golgi tendon organs

and the slowly adapting Type I cutaneous mechanoreceptors was that all test

movements for the mechanoreceptors were superimposed on the plateau of a near-

threshold ramp-and-hold movement (Figure 6.3). The near-threshold ramp-and-hold

was used to reduce the contact time of the electro-magnetic actuator probe and the skin

surface. Several hours were required to record a complete set of data; if the probe was

left in contact with the surface for this length of time it led to permanent skin

deformations. The skin deformation in turn resulted in a reduction in the sensitivity of

the receptor. The effective noise amplitude was therefore reduced; resulting in a shifting

optimal noise level as the sensitivity of the receptor changed over time. Using near-

threshold ramp-and-hold movements the sensitivity of the receptors, as measured by the

response to a noise-alone stimulus, did not decrease over the several hours required to

record a complete set of data.

Results

Twelve slowly adapting Type I cutaneous mechanoreceptors were examined for

stochastic resonance behaviour. All mechanoreceptors that were mechanically

stimulated under the appropriate conditions, a sub-threshold periodic input and supra-

threshold noise input, exhibited stochastic resonance.

Stimulus-Response Curve

A stimulus-response curve for small sinusoidal skin indentations is shown in Figure 6.2.

For this mechanoreceptor there was a threshold of approximately 10 fim for sinusoidal

skin indentations. Below this amplitude the receptor did not respond at all.

Stochastic Resonance

The response of a slowly adapting Type I cutaneous mechanoreceptor to three different

types of stimuli is illustrated in Figure 6.3. The instantaneous rate and resulting cycle

i histograms that were used to calculate SNREXP are shown for each response. A supra-
i
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Figure 6.3 The response of a slowly adapting cutaneous mechanoreceptor to a supra-threshold

periodic signal (25 fim at 5 Hz, left panel), a sub-threshold periodic signal and supra-threshold noise

signal (12 /zm at 5 Hz with 30 /im of noise, middle panel), and to a noise-alone signal (30 f.im of noise,

right panel). In each panel the top trace is the instantaneous discharge rate of the receptor and the trace

underneath is the imposed movement. Note all movements have been superimposed on a sub-threshold

ramp-and-hold movement of 75 nm. The graph at the bottom of each panel is cycle histogram that has

been fitted with a sinusoid to determine SNREXP. The values of SNREXP for the three stimuli are 2.19

(supra-threshold periodic stimulus), 2.14 (sub-threshold periodic and supra-threshold noise stimulus) and

1.15 (noise-alone stimulus).
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threshold sinusoidal stimulus (Figure 6.3, left panel) resulted in a cycle histogram where

the majority of action potentials occurred at about the same phase of the stimulus cycle

and yielded a high SNRgxp (2.19). A supra-threshold noise-alone stimulus (Figure 6.3,

right panel) resulted in a cycle histogram where the action potentials were evenly

distributed across all phases of the stimulus and yielded a low SNREXP (1.15). A sub-

threshold sinusoidal stimulus and supra-threshold noise stimulus (Figure 6.3, middle

panel) resulted in a cycle histogram with a significant modulation of the distribution of

the action potentials across the different phases of the stimulus and yielded a high

P (2.14).

An example of the response of a mechanoreceptor that exhibited an optimal

with the addition of input noise is shown in Figure 6.4. The noise-alone response is

shown in the bottom panel and is the average discharge rate during the 6 s of imposed

noise-alone movement on the hold phase of the sub-threshold ramp-and-hold stimulus.

The noise-alone threshold was ^rroximately 50 (im, above which the average rate

increased with increasing noise u^rpiaade to reach a plateau of about 30 i/s. The noise-

alone response was well fitted by the curve based on Kramers' rate, allowing for

accurate predictions of DPRE. For the two test frequencies used in the stochastic

resonance protocol of 5 and 13 Hz the predicted optimal noise amplitudes were 87 and

135 pLrn respectively, indicated by the grey lines in the bottom panel of Figure 6.4.

There is a clear peak in SNR^p for both of the test frequencies used. Each point was

calculated from 6 s of response during the hold phase of the sub-threshold ramp-and

hold stimulus. The responses were well fitted by logNormal curves and the optimal

noise values were 95 ± 1 /zm and 143 ± 1 fim respectively (DOPT ± SEM), indicated by

the arrows in the upper panels of Figure 6.4. The increase in DOPT with increasing sub-

threshold periodic stimulus frequency is a key feature of stochastic resonance.

The pooled results from twelve slowly adapting Type I cutaneous mechanoreceptors are

presented in Figure 6.5. The data is shown on log-log axes as it extends over several

orders of magnitude. Also, the errors associated with each measure are approximately

proportional to the measurement, and therefore are best displayed on a log-log plot.

Each point is the measured optimal noise level (± SEM) plotted against the
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Figure 6.4 The response of a slowly adapting cutaneous mechanoreceptor shows many of the

characteristics of stochastic resonance. Each point is calculated from 6 s of response and the

measurements were taken in a pseudo-random order (the blue symbol represents the data shown in Figure

6.3). The fitted curves in the upper panels are logNormal curves used to estimate D0 P r , indicated by the

arrows. The bottom panel is the noise-alone response, which has been fitted with a curve based on

Kramers' rate. The grey lines in the bottom panel indicate the predicted optima! noise values, DPRE, for

each test frequency.
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Figure 6.5 The pooled data from the twelve slowly adapting cutaneous mechanoreceptors that

showed an optimal S N R E X P with the addition of noise are scattered about the line of proportionality

(dashed line), as predicted by stochastic resonance theory. Values shown are D0PT and an estimate of the

error in D0PT, typically less than the size of the symbol, plotted against DPRE. The results for each slowly

adapting cutaneous mechanoreceptor are displayed in a different colour and joined to illustrate the

correlation between D0PT and DPRE for each unit. The blue symbols represent the data from the slowly

adapting cutaneous mechanoreceptor shown in Figure 6.4.
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corresponding predicted optimal noise level. All mechanoreceptors were tested at two

frequencies, resulting in a total of 24 measurements. The data for each mechanoreceptor

are joined to illustrate the correlation between DOPT and DPRE for each unit. The

correlation between DOFr and DPRE for the pooled data was 0.918 (Pearson Product). The

correlation between DOPT and DPRE and therefore the sub-threshold periodic frequency

dependence of the optimal noise level is consistent with the hypothesis that the increase

in SNRgxp with additional noise is a result of stochastic resonance.

Psychophysical Experiments

A total of six adult human subjects of both genders were used for the psychophysical

experiments to seek evidence for stochastic resonance in cutaneous mechanoreceptors.

All experiments were performed with approval from the Monash University Standing

Committee on Ethics in Research on Humans.

Materials and Methods

Subjects were blindfolded and seated comfortably with their right-forearm resting on a

horizontal cushioned support. Local indentations were applied to the hairy skin on the

dorsal surface of hand, taking care to avoid superficial tendons and blood vessels.

Equipment

A small electro-magnetic actuator, the same one used for the experiments on cane toad

skin, was used to mechanically stimulate the skin surface. The actuator was controlled

by a data acquisition card (PCI-MIO-16E-4, National Instruments Corporation, Austin,

Texas, U.S.A.) in a G3 desktop computer (Macintosh, Cupertino, California, U.S.A.)

running Igor Pro (WaveMetrics, Lake Oswego, Oregon, U.S.A.). This combination of

equipment is the same as that used for the multi-channel recorder and psychophysical

experiments involving elbow movement used for the previous stochastic resonance

experiments.
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Experimental Protocol

The threshold for detection of small sinusoidal stimuli was measured using a modified

staircase technique similar to that used for the psychophysical experiments on the elbow

joint (p. 115). Each stimulus lasted for approximately 10 seconds and there was an

inter-trial interval of at least 30 seconds to allow for full creep recovery of the skin

(Pubols, 1982). Approximately four hours were required to acquire a complete set of

data, in two sessions of approximately two hours each. If inter-trial intervals of less that

30 seconds were used then the detection threshold increased during the period of

experimentation. With an inter-trial interval of 30 seconds the detection threshold for

the no-noise condition did not significantly change during a session.

An example staircase measurement for the skin detection protocol is illustrated in

Figure 6.6. For the trial illustrated the resulting threshold measurement is 230 ± 40 /im.

Threshold measurements were taken with two different sinusoidal frequencies with

various amplitudes of additional input noise. The sinusoidal test frequencies of 0.5 and

1 Hz were chosen to preferentially stimulate the slowly adapting mechanoreceptors,

which are most responsive to sinusoidal stimuli of 1 to 16 Hz (Talbot et al., 1968;

Merzenich & Harrington, 1969).

Threshold measurements for the different noise amplitudes were interleaved with no-

noise threshold measurements and the thresholds were normalised to the no-noise

threshold. The threshold curves were fitted with a logNormal curve (Equation 2.3, with

Z= 1) that was used to determine the noise level that resulted in the smallest detection

threshold, DOPT. The fitting procedure also produced an estimate of the error in DOFr.

The measured values of D0Fr for the different test frequencies were then compared,

using an analysis of variance (ANOVA).

Results

Six healthy young subjects participated, four male and two female, aged 20-31, all free

from any known neurological disorder. Subjects reported a low frequency modulation in

pressure as a result of the periodic stimuli. All subjects had a reduction in sinusoidal

detection thresholds with the addition of optimal amplitudes of broad-spectrum noise as
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illustrated in Figure 6.7 (top panel). With a sinusoidal stimulus frequency of 1 Hz, the

detection threshold was reduced from 390 ± 80 /tm to 230 ± 40 fim with the addition of

1.2 mm of input noise for this subject. For the two test frequencies of 0.5 and 1 Hz, the

normalised optimal noise levels, DOFr, for this subject were 2.0 ±0.1 and 0.8 ± 0.5

(Figure 6.7, bottom panel).

Each threshold measurement took approximately 30 minutes to collect; therefore it was

generally only possible to collect four threshold values for each subject. The lack of

data below the estimated optimal noise level for the 0.5 Hz sinusoid threshold

measurement (Figure 6.7, bottom panel) results in a large error in the estimated optimal

noise, DOFr. It is clear however, that the optimal noise value for a 0.5 Hz sinusoidal

stimuli is lower than that for a 1 Hz sinusoidal stimuli, which is a key feature of

stochastic resonance.

The pooled results from all subjects are shown in Figure 6.8, in which values of D0PT for

the 1 Hz sinusoidal stimulus have been plotted against values of DOPT for the 0.5 Hz

sinusoidal stimulus. The points all lie above the line of proportionality, indicating that

larger noise amplitudes are required to minimise the threshold for the 1 Hz sinusoidal

stimulus than for the 0.5 Hz sinusoidal stimulus. The values of DOPT for the 1 Hz

sinusoidal stimulus are significantly larger than the values of DOPT for the 0.5 Hz

sinusoidal stimulus (p < 0.05, ANOVA), indicating that D0PT is frequency dependent.

The frequency dependence of D0PT is consistent with the hypothesis that the reduction in

detection threshold for sinusoidal stimuli is the result of stochastic resonance.

Discussion

Animal Experiments

All the key features of stochastic resonance are present in the response of slowly

adapting cutaneous mechanoreceptors in the cane toad. All the mechanoreceptors

exhibited an increase in D0PT with an increase in stimulus frequency. This unique

feature of stochastic resonance was present under all conditions when a sub-threshold

periodic input and supra-threshold noise input were used. However, the measured

optimal noise amplitudes were not precisely those predicted from the noise-alone
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response curve. As previously mentioned in Chapter Two (p. 57), the predicted optimal

noise levels are only valid for near-threshold periodic stimulation, and therefore the

small discrepancy is not surprising.

There is some variation in SNRpxp between trials (Figure 6.4) due to the random nature

of the noise stimulus. Increasing the period of recording would have reduced the

variation, but the recording period was kept to a minimum to reduce the effects of

adaptation. As the receptor adapts to the stimuli, the sensitivity of the receptor to the

noise decreases, effectively decreasing the noise input. A reduction in the effective

noise input would be expected to shift both the measured optimal noise, D0PT, and the

predicted optimal noise, DPRE, to larger noise amplitudes. A change in the effective

noise input during the experiment may obscure any stochastic resonance effect.

Multiple measurements for each noise amplitude were therefore taken and the curve

fitting procedure effectively averaged the results.

Psychophysical Experiments

Reductions in detection thresholds during psychophysical experiments with the addition

of noise have previously been reported (Collins et al., 1996b; Collins et al., 1997; Ivey

et al., 1998; Richardson et al., 1998), but the frequency dependence of the optimal noise

level has not been clearly observed before. For the first time, a statistically significant

frequency dependence of the optimal level of additional noise required to reduce

detection thresholds for sinusoidal indentations of the skin has been shown. Therefore,

the reduction in detection thresholds can be attributed to a stochastic resonance effect

rather than dithering or some other noise-induced effect, which would not be expected

to exhibit a frequency dependence of the optimal noise amplitude.

The receptor or receptors utilised by the subjects in the psychophysical experiments are

not known. However, they are likely to be the slowly adapting Type I mechanoreceptors

because of the low sinusoidal test frequencies used. It is impossible to determine if the

observed reductions in detection thresholds were a result of stochastic resonance

occurring in a specific receptor, for example the SAI mechanoreceptor as occurred with

the cane toad slowly adapting mechanoreceptor, or resulted from processes deeper

within the central nervous system.
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It is possible that the stochastic resonance effect occurred within the central nervous

system and was the result of combining afferent information from many receptors, as

supported by the modelling of a neural network that was capable of exhibiting

stochastic resonance (p. 61). It is likely that more than one type of mechanoreceptor was

activated by the stimulus that was used in the psychophysical experiments, due to the

overlap of the thresholds of the various mechanoreceptors in human skin (Johansson et

al., 1982). It is possible that the periodically modulated signal from the SAI

mechanoreceptors (known to have a threshold below the threshold of perception (Talbot

et al., 1968; Merzenich & Harrington, 1969)), was combined with the response from the

RAI mechanoreceptors (likely to be random spike trains evoked by the noise stimulus)

at some level within the central nervous system. Therefore, the stochastic resonance

effect may have occurred within the central nervous system. The ability of the central

nervous system to utilise the stochastic resonance effect, evident as a reduction in the

detection threshold, is the key result of the psychophysical experiments.

Although the sinusoidal frequencies used were lower than the optimal range of

frequencies for SAI mechanoreceptors in the glabrous skin of humans (Talbot et al.,

1968; Johansson et al., 1982; Vallbo & Johansson, 1984), the stochastic resonance

effect is still predicted to occur at higher frequencies. The low test frequencies were

chosen to limit the amplitude of noise required. Higher sinusoidal test frequencies

would be expected to require larger noise amplitudes to produce an optimal reduction in

detection threshold. The maximum range of movement available with the electro-

magnetic actuator was limited to 5 mm. A 5 mm noise-alone movement caused

discomfort for the subject, and because of this the maximum amplitude noise used in the

psychcphysical experiments was 3 mm. Larger noise amplitudes may also result in

more rapid desensitisation of the test area, resulting in longer inter-trial intervals being

required.
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General Discussion

Although stochastic resonance was first proposed in 1981 by Benzi et al., it was not

until 1993 that Douglass et al. reported the first experimental evidence for stochastic

resonance in a biological system. It was several more years before experimental

evidence from other biological systems was reported. There have been claims that many

biological systems exhibit stochastic resonance. Using the definition of stochastic

resonance given in Chapter One, very few of the biological systems have been proved

to do so. Some of the systems discussed in Chapter One clearly do not exhibit stochastic

resonance, but many others were simply not tested sufficiently to be able to distinguish

the stochastic resonance effect from other noise effects such as dithering (see Table

1.2). Therefore it is worth reiterating the features that are unique to stochastic

resonance, which are summarised in Table 1.1.

Unique Features of Stochastic Resonance

For a system to exhibit stochastic resonance it must be non-linear, and typically the

non-linearity takes the form of a threshold. Therefore, all biological receptors may be

capable of exhibiting stochastic resonance, as all biological receptors have a threshold

below which a change in the input does not result in a change in the output.

The input to the non-linear system must consist of a sub-threshold periodic signal

together with a supra-threshold noise signal. Although the periodic input signal is

typically a sinusoid, it is possible to use a periodic input consisting of a periodic train of

impulses, as shown in Figure 2.17. An aperiodic signal, such as a ramp-and-hold

stimulus, cannot, by definition, be used to observe stochastic resonance. It is not

possible to observe a matching of time-scales (or resonance) that is unique to stochastic

resonance if an aperiodic signal is used. Therefore, 'aperiodic stochastic resonance' as

described by Collins et al. (1995a) is not stochastic resonance. The effect observed with

such inputs is likely to be dithering or system linearisation (Gammaitoni, 1995; Chialvo

et al., 1997).
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A system exhibits stochastic resonance if the output meets two criteria. Firstly, the

output SNR must be optimised with the addition of a supra-threshold level of noise,

D0Pr. That is, the optimal output SNR occurs with an input SNR of less than one.

Secondly, and most importantly in distinguishing stochastic resonance from other noise

effects, the optimal noise level must be dependent on the frequency of the sub-threshold

periodic stimulus. Either D0PT must increase with increasing periodic stimulus

frequency or D0PT must match DPRE, the predicted optimal noise level. Testing of the

system with several different periodic input frequencies should show a frequency

dependence of DOFr, while measurement of the noise-alone response curve should show

a matching of DOPT and DPRE. Many noise effects may result in an optimal output SNR

with the addition of input noise, however, only a system exhibiting stochastic resonance

will result in a frequency dependent D0PT.

As illustrated in Chapter Two, it is possible for a system to exhibit stochastic resonance

(Figure 2.10) and also exhibit other noise effects (Figure 2.22). Therefore, it is vital to

observe the frequency dependence of the optimal noise level to distinguish the

stochastic resonance effect from other constructive noise effects. This is the important

feature that has not been thoroughly shown for many of the biological systems that have

been proposed to exhibit stochastic resonance. Whether the increase in output SNR is a

result of stochastic resonance, or other noise effects, is of more than academic interest,

If the increase in output SNR is a result of stochastic resonance, then the effect will only

occur under limited conditions (sub-threshold periodic signal and supra-threshold noise

signal) while a different set of conditions is required if the effect is dithering (sub-

threshold periodic signal and near-threshold noise signal). Therefore, the method by

which the output SNR is optimised affects the functional significance of any such

improvement.

Biological Systems Exhibiting Stochastic

Resonance

Bearing the above criteria in mind, of all the published examples of systems that have

been proposed to exhibit stochastic resonance, only three examples fulfil both criteria.
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These are the crayfish multi-modal interneurones (Pei et al., 1996b); psychophysical

experiments involving tactile detection tasks, although here the evidence is weak (Ivey

et ah, 1998); and psychophysical experiments involving visual perception tasks

(Chialvo & Apkarian, 1993). To this meagre list can now be added: Golgi tendon

organs and muscle spindle primary and secondary endings (under limited conditions) in

the cat; and slowly adapting Type I cutaneous mechanoreceptors in the toad. Further

evidence has also been gathered to strengthen the case for psychophysical experiments

involving tactile detection tasks. A significant reduction in detection threshold with the

addition of noise has now been measured, with the optimal noise level being frequency

dependent.

A new output SNR measure based on the cycle histogram, SNRgxp (p. 56), was used to

quantify the stochastic resonance effect experimentally, while recording from a variety

of biological receptors. Unlike the SNRRES and SNRISIH measurements (p. 54) based on

the inter-spike interval histogram, which have been extensively used in the past, the

SNREXP measurement is unlikely to result in a false positive indication of stochastic

resonance. However, the tendency for the optimal noise level, D0PT, to be less than the

predicted optimal noise level, DPRE, can mask some of the frequency dependence of

DOPT if extremely small periodic stimuli are used. The evidence for stochastic resonance

occurring in Golgi tendon organs, muscle spindles, and slowly adapting Type I

mechanoreceptors using the SNREXP measure is therefore stronger than previous

evidence of stochastic resonance in biological systems.

The evidence that the increase in output SNR is the result of stochastic resonance is also

strengthened by the measurement of several periodic stimulus frequencies and the

noise-alone response curve. The frequency dependence of DOPT can be observed from

the multiple periodic stimulus frequency measurements. As expected from stochastic

resonance theory, the level of noise required to optimise the output SNR for all the

receptors studied increased with an increase in frequency of the sub-threshold periodic

stimulus. This alone would be enough evidence to support the hypothesis that the

increase in output SNR is a result of stochastic resonance. The matching of the

predicted optimal noise values, DPRE, and measured optimal noise values, D0PT, provides

further evidence that the increase in the output SNR is a result of stochastic resonance.
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Dithering

Many of the systems that have been proposed to exhibit stochastic resonance may in

fact be exhibiting dithering. A key component of the dithering effect is that the output

must be averaged over time. The rapid variations resulting from the addition of the

noise can be averaged to zero, while the slower input can be recovered, with higher

fidelity, from the averaged output. Another way to consider dithering is to imagine a

sub-threshold input to a system with a threshold. Alone, the sub-threshold signal will

never cause a change in the output, but with the addition of noise, the combined input

will occasionally be above threshold, and result in a change in the output. The key to

dithering is that the combined input will, on average, cross the threshold a number of

times that is proportional to the otherwise sub-threshold input. The additive noise acts

as a pedestal for the signal, allowing an otherwise sub-threshold signal to be detected.

An interesting feature of dithering is that the effect can be achieved with the addition of

different signals, not just noise signals, to the sub-threshold input. The optimal signal to

add is evenly distributed noise, which can completely reduce the error introduced by a

simple quantising system (Wannamaker et ah, 2000). However, any signal that has a

zero-mean and evolves rapidly, compared to the input signal of interest, can be used as

the pedestal signal. An example of such an effect occurring with muscle spindle primary

endings has been described by Matthews & Watson (1981a) who used a high-frequency

sinusoidal signal as the pedestal.

Dithering is optimised by addition of near-threshold levels of the pedestal signal. This is

in contrast to stochastic resonance, for which the output SNR is optimised with the

addition of supra-threshold levels of noise that are dependent on the noise-alone

response of the system. It is therefore possible to distinguish effects such as those

described by Matthews & Watson (1981a) and stochastic resonance, as a single

amplitude of pedestal sinusoid was optimal for all frequencies of periodic signal. If the

effect was related to stochastic resonance, then it would be expected that different

amplitudes of pedestal sinusoid would be required to optimise the response for different

frequencies of the periodic signal.
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A key difference between dithering and stochastic resonance is that stochastic resonance

will not occur if a non-random signal is added to the sub-threshold periodic signal. If for

example a sinusoid were used rather than a random noise signal, the sinusoid would

need to be adjusted to produce an average transition rate of the output that was equal to

the sub-threshold periodic signal. The only sinusoid that could produce such a transition

rate would be a supra-threshold sinusoid at the same frequency as the sub-threshold

periodic signal. The addition of such a signal would simply result in the detection of the

additional sinusoid, and not the sub-threshold signal. Therefore, although the dithering

effect can occur with the addition of non-random signals, stochastic resonance requires

a random 'noise' signal.

Other Effects of Noise

| An increase in output SNR can be a result of effects not related to stochastic resonance

or dithering, as illustrated by the effect of noise on the ramp-and-hold response of

muscle spindle primary endings (Figure 5.11). The addition of an appropriate level of

noise led to an increase in the response of the muscle spindle primary endings to a

ramp-and-hold stretch. The increase in the average rate of discharge during the plateau

compared to the average rate before the stretch was optimised with the addition of near-

threshold levels of noise. The increase was a consequence of the greater dynamic

sensitivity of the muscle spindle primary endings at longer muscle lengths and not the

result of effects like stochastic resonance or dithering. This is similar to the effect

observed by Querfurth & Gruser (1986) using frog muscle spindles and supra-threshold

sinusoidal stimuli.

The addition of noise during the ramp-and-hold stimulus, while resulting in an increase

in the average rate as a result of the stretch, is likely to have resulted in a decreased

sensitivity lo the initial stretch. Muscle spindle primary endings will typically respond

to a ramp stretch with an initial burst at the beginning of the ramp that is thought to be

due to stable cross-bridges (Hunt & Ottoson, 1976). The addition of supra-threshold

levels of noise will result in the breaking of some of the stable cross-bridges, reducing

the initial burst. The effective size of the initial burst, when compared to the discharge

before the ramp stimulus, will also be reduced, Without the addition of noise, the
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variability of the maintained discharge from a muscle spindle primary ending in a

passive muscle is low (Stein & Matthews, 1965), so any increase in rate as a result of

the initial burst would be quite prominent. The addition of noise would increase the

variability of the discharge, reducing the effective size of the initial burst. Therefore, the

increased sensitivity to the size of the ramp-and-hold stretch, via the addition of noise,

comes at the cost of a reduced sensitivity to the initiation of the movement, via a

decrease in the size of the initial burst. This is a factor in considering the functional role

of stochastic resonance or any other effect requiring the addition of supra-threshold

levels of noise.

Functional Role of Stochastic Resonance

The usefulness of stochastic resonance, by increasing the output SNR or allowing the

detection of an otherwise sub-threshold signal, is obvious. There is a growing body of

experimental evidence that stochastic resonance can occur in a variety of receptors and

theoretical evidence that it may occur within neutral networks. Given that all biological

receptors have a threshold, and therefore are potential candidates for stochastic

resonance, it is interesting to ponder the role of stochastic resonance as a method of

signal analysis that might be employed by the central nervous system.

Controlling the Noise

The external environment is full of signals that are of interest to the central nervous

system and can be detected by a variety of receptors. There is also a large amount of

information detected by the various receptors that is not of interest, and therefore may

be considered as noise. However, the sources of noise are not confined to the external

environment, as there are many possible sources of intrinsic noise within the receptive

systems. It may be possible to reduce the noise from intrinsic sources, but it is not

possible to control or eliminate external sources of noise. However, it may be possible

to utilise the noise, via stochastic resonance or other effects such as dithering, to

actually aid in the detection of weak signals.

The response of the receptive system can be optimised by the addition of the

appropriate level of noise, D0Fr. As it is not possible to control tb.' external noise
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sources if the central nervous system is to utilise the external noise, via stochastic

resonance or dithering, it must control it own intrinsic level of noise. There are several

areas within each sensory system where it may be possible to add a controlled amount

of noise, and these include the generator potential, the impulse generator (pacemaker),

and some locations within the neutral network responsible for processing the afferent

information.

Increased Sensitivity

Stochastic resonance can result in the detection of an otherwise sub-threshold periodic

signal, as emphasised by the reduction in the detection threshold for small sinusoidal

skin indentations in Chapter Six. The threshold of detection was often halved with the

addition of the appropriate amount of input noise (Figure 6.7) although smaller

reductions were also observed. It is worth noting however, that the stochastic resonance

effect will only occur with a sub-threshold periodic stimulus. That is, the increase in

sensitivity with the addition of noise will only occur if the periodic stimulus is

otherwise undetectable. This point was illustrated by the experiments with receptors that

were stimulated with a supra-threshold periodic stimulus (Figure 4.7 and Figure 5.10),

The addition of noise to a supra-threshold periodic stimulus resulted in a reduction of

SNREXP, as expected. The addition of noise will not always increase the sensitivity of

the system, and only with a sub-threshold periodic signal is it possible for stochastic

resonance to occur.

The effective reduction in threshold also has the advantage that a less sensitive receptor

can be used to detect an equivalent-sized signal. A less sensitive receptor should reduce

the effective level of external noise to which the receptor is subjected, resulting in

greater control of the total noise level by the central nervous system. As already

mentioned, there is a trade-off between the addition of noise to a signal, to improve

detection via stochastic resonance, and the loss of sensitivity to other aspects of the

signal, such as the initial burst in the response of muscle spindle primary endings to

ramp stretches. Therefore, a lowering of the effective external noise may result in an

increased sensitivity to other aspects of the signal.
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Range of Frequencies

Although only two or three different frequencies of sub-threshold periodic signals were

tested for each receptor that exhibited stochastic resonance, the stochastic resonance

effect would be expected to occur over a wide range of frequencies. As a matching of

the noise-alone induced rate and the periodic stimulus frequency is the essence of

stochastic resonance, the range of frequencies over which it would be expected to occur

is limited by the maximum noise-alone induced frequency. Therefore, it would be

expected that different receptors could exhibit stochastic resonance over a different

range of frequencies. This is illustrated by the fact that periodic signal frequencies up to

approximately 100 Hz could be optimised for Golgi tendon organs and muscle spindle

primary endings in the cat. This is contrasted by the muscle spindle secondary endings

in the cat and slowly adapting Type I cutaneous mechanoreceptors in the toad, for

which the frequency range would be limited to below 40 Hz.

Filtering

As the optimal noise level is dependent on the noise-alone response of the system, it is

possible to use stochastic resonance as a type of filtering system. If the input noise to

the system is hsld constant, then only a narrow range of periodic input frequencies will

be optimised, and therefore only these frequencies will be passed by the 'stochastic

resonance filter'. The input noise level could be adjusted to control the particular

frequency the 'stochastic resonance filter' is most sensitive to, by adjusting the noise

level such that a noise-alone signal resulted in an average discharge rate at the specified

frequency.

Stochastic Resonance vs Dithering

Stochastic resonance is not the only mechanism whereby the addition of noise can

improve signal detection. In fact, the dithering effect may be a better method of

increasing the sensitivity of a system by the addition of noise. Dithering has the

advantage that a signal noise level (near-threshold) is optimal for all signals, including

aperiodic signals. Therefore, if a system were to utilise dithering rather than stochastic
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resonance, there would be no need to adjust the noise signal to detect different

frequencies of sub-threshold periodic stimuli.

Another advantage of dithering over stochastic resonance is that the optimal noise level

required is lower for dithering than for stochastic resonance. In a situation where the

input signal is supra-threshold, rather than sub-threshold, the addition of the optimal

noise level would degrade the output SNR less for dithering than for stochastic

resonance.

Dithering is likely to have a greater functional significance than stochastic resonance in

biological systems. The ability to optimise a system's response with a single noise level,

and for the response to be optimised for all sub-threshold stimuli, means that dithering

is likely to be of more practical benefit than stochastic resonance. The one advantage of

stochastic resonance is that the system can be preferentially tuned to respond to a

narrow range of frequencies.

Stochastic Resonance Example

The best way to illustrate how stochastic resonance may be utilised by the central

nervous system is with the aid of an example. Muscle spindle primary endings will

respond to changes in muscle length, as a result of the lengthening of the equatorial

regions of the intrafusal fibres, with the passive stretch response being predominantly

from nuclear bag2 intrafusal fibres (Proske et al., 1992). Contractions of the polar

segments of the intrafusal fibres, via the y motoneurones, can also result in lengthening

of the equatorial regions (Bessou & Pages, 1975). A single pacemaker is proposed to

sum the generator current from the endings on the nuclear bag2 fibre and nuclear chain

fibres (Carr & Proske, 1996). This generator is then subject to pacemaker switching,

with a small amount of summation, with the pacemaker associated with the endings on

the nuclear bag, fibre (Fallon, Can, Gregory & Proske, 2001). Given that the length

changes are signalled by the afferent endings on the nuclear bag2 fibre, and that there

are ending of the same afferent on other intrafusal fibres, it may be possible for the

central nervous system to optimise the response of the muscle spindle primary ending to

a particular frequency range via stochastic resonance.
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Activation of the nuclear chain fibres, via the Ys motoneurones, may produce a noise

input for the muscle spindle primary endings. The nuclear chain fibres have a higher

contraction velocity than the nuclear bag fibres, and therefore would be most suited to

providing a rapidly changing, pseudo-random signal to be used as a source of noise. In

decerebrate cats the spontaneous activity in fusimotor fibres innervating the medial

gastrocnemius muscle is essentially a white noise source (Matthews & Stein, 1969a;

Blesic, Milosevic, Stratimirovic & Ljubisavljevic, 1999). Provided the random activity

in the fusimotor fibres is converted into a random signal which can be summed at the

site of action potential generation within the muscle spindle, the spontaneous fusimotor

activity would provide a noise source for stochastic resonance within the muscle spindle

system (Stratimirovic, Milosevic, Blesic & Ljubisavljevic, 2001).

A situation in which a periodic movement with a narrow frequency spectrum is of

interest is in the detection of muscle tremor, during which the movements are typically

around 10 Hz (Joyce & Rack, 1974). The level of contraction of the nuclear chain fibres

could be adjusted to produce an averaged maintained discharge of approximately 10 i/s,

which would optimise the response of the muscle spindle primary endings to

preferentially detect the tremor. This would enable the central nervous system to react

to the generation of smaller amplitudes of tremor, resulting in smaller corrections to the

motor stimulation pattern being required.

However, the muscle spindle primary endings are proposed to have a role in the

development of the tremor (Matthews & Watson, 1981b), with an increase in their

discharge, in response to vibration, resulting in an increase in tremor (Joyce, Rack &

Ross, 1974). Therefore, using contraction of the nuclear chain fibres to control the

maintained level of discharge may not be feasible, as this may in itself result in an

increase in the tremor.

Signals from individual muscle spindles do not result in a conscious sensation

(Macefield et al., 1990), but are thought to be pooled with signals from other muscle

spindles to produce a conscious sensation. Therefore, a signal that is supra-threshold for

a particular muscle spindle may be sub-threshold for the population of muscle spindles

involved in the production of a conscious sensation. Stochastic resonance may therefore
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occur within the network involved in the production of the conscious sensation. That

stochastic resonance can occur in such a network was suggested by the results presented

in Figure 2.17 and by the work of Mato (1999), who also showed that a suitable noise

source could be generated by a simple neural network. Therefore it is possible that

stochastic resonance might play a role at some level within the central nervous system

itself.

Interestingly, the experimental results from Chapter Five indicate that stochastic

resonance can occur in individual muscle spindles, bui failed to show stochastic

resonance during a proprioceptive task that was designed to utilise the response from

muscle spindles. Individual muscle spindle primary and secondary endings were able to

exhibit stochastic resonance when stimulated under the appropriate conditions: sub-

threshold periodic stimulus plus a supra-threshold noise stimulus. A corresponding

reduction in the detection threshold for small sinusoidal movements of the elbow during

psychophysical experiments was not observed. It may be that there were already

optimal conditions for detecting the small sinusoidal movements of the elbow. The

addition of extra external noise would then be expected to result in increases of

detection threshold, as observed.

Summary

It is worth reiterating that the stochastic resonance effect can result in an increase in the

output SNR of a system, or a corresponding reduction in detection threshold, with the

appropriate level of additional input noise. Although stochastic resonance can improve

the performance of a fixed system, if it is possible to adjust the system by altering the

criteria on which the output of a system is based, then the stochastic resonance effect

will, at best, give the same performance as an optimal choice of the decision criteria

(Tougaard, 2000). That is, stochastic resonance cannot improve the performance of an

optimally designed system. However, for fixed systems, such as many biological

systems, the addition of appropriate levels of input noise, via stochastic resonance, can

result in the detection of otherwise sub-threshold periodic signals.
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The appropriate level of additional noise needed to optimise a system's response can be

determined from the noise-alone response of the system, and is unique for each

frequency of periodic stimulus. This is the key feature of stochastic resonance that

separates it from other noise effects, such as dithering. However, stochastic resonance

will only occur with a periodic stimulus that is sub-threshold in the absence of any

additional input. Therefore, there are a limited number of circumstances where the

stochastic resonance effect will be of biological significance.

An interesting feature of the stochastic resonance modelling was that none of the

models that were able to produce a physiological level of maintained discharge, were

also able to exhibit stochastic resonance. The ability of a model to exhibit stochastic

resonance can now be added to the range of criteria that must be met if it is to be a good

model of a biological system that can exhibit stochastic resonance. The role of

apparently random discharges within a neutral network may also need to be

reinterpreted as a possible indication of stochastic resonance, rather than a limiting

influence on the sensitivity of the system.

As the ability of biological systems to exhibit stochastic resonance has been confirmed,

any discussions of the fidelity of sensory systems will now have to take stochastic
m resonance into account. Given the ubiquity of background noise in the environment and

within the central nervous system itself, there are many opportunities for stochastic

resonance to occur. Therefore, the finding that a system can perform better than

expected in the presence of inescapable sources of noise may need to be reinterpreted,

taking stochastic resonance into account.
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Appendix A

Appendix A is an index for the CD that has been included inside the back cover of this

thesis. The CD includes the IGOR Pro (WaveMetrics, Lake Oswego, Oregon, U.S.A.)

procedure files and the ' C code for the XOPs required for implementation of the multi-

channel recorder program. The ' C code for the XOPs that were written to perform the

simulations discussed in Chapter Two are also included. A QuickTime® movie that

illustrates the double-well model and the resulting output SNR with different levels of

input noise is included. An electronic copy of this thesis has also been included and can

be viewed using Adobe Acrobat Reader.

Igor Procedures
Analysis
JBF Utility Procs
Multi Channel Recorder

Board Procs

Decimate Raw Data

Length and Trigger Control

Multiple Window Data Recall

Single Run Display

Specialised Analysis

K values

Specialised Recording

Length Tension

Conduction Velocity

Gamma Search

Spike Detection

Stimulator Procs

Record & Stim
Repeated Recording
Stochastic Resonance

Fitting

SR Displays

Stochastic Resonance

Stochastic Resonance Analysis

Stochastic Resonance Recording

Weibull Noise

Igor XOPs
JBF Headers and Code

Filter

JBF Utility

Simulator
Connor-Stevens
Frankenhaeuser-Huxley
Fitzhugh-Nagumo
Hodgkin-Huxley
Otten

Spike Detection

Double-well Movie

Thesis
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Appendix B

Hodgkin-Huxley Membrane Model Equations

dV
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Appendix C

Otten Model Equations
dV_

dt
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Appendix D

T

Schematic of the amplifiers used in the header stage of the multi-channel recording system.
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Schematic of the second stage of the multi-channel recording system.
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Appendix F

Noise Signal Characteristics

The clock-interval for up-dating all computer controlled analogue signals was 1 ms,
although all length control signals were digitally filtered by a single low-pass
Butterworth filter with a corner frequency of 500 Hz. The normalized power spectrum
of a noise-alone movement produced with the electro-magnetic position controller is
illustrated in Figure F.I. The spectrum was computing from output length signal from
the electro-magnetic position controller. The spectrum is flat below 200 Hz, after which
it rapidly rolls off due to the combined effects of the digital filter, the signal up-date rate
and the response properties of the electro-magnetic position controller. As the
maximum sinusoidal test frequencies investigated were below 50 Hz, the noise signal
was considered to represent an effective broad-band noise signal.

The background noise level of the electro-magnetic position controller with feedback,
used for the experiments with soleus muscle of the cat and the psychophysical
experiments with the elbow, was approximately 3 /mi. Compressed air was used to
provide an effective 'air bearing' system for the controller. The 'air bearing' was used
to reduce any possible stiction of the controller, which was confirmed via observations
of the recorded length signals.

The response properties of the electro-magnetic actuator, used for the experiments with
slowly adapting cutaneous mechanoreceptors of the toad and the psychophysical
experiments with skin, were similar to those of the electro-magnetic position controller
with feedback. However, as can be seen in the normalized power spectrum of a noise-
alone movement (Figure F.2), the response begins to decrease above 20 Hz. As the
electro-magnetic actuator did not have feedback control and had no output length signal,
to record the actuator's response to the command signal the actuator tip was connected
to a high compliance strain gauge (Grass FT03C, Quincy, Massachusetts, U.S.A.) and
the resulting force signal interpreted as length. The maximum sinusoidal test frequency
investigated with the electro-magnetic actuator was 15 Hz, so again the noise was
considered to represent an effective broad-band noise signal. Any reduction in noise
content at the higher frequencies, due to the response properties of the actuator, would
be consistent for both the noise-alone and noise plus sub-threshold sinusoidal signal
conditions. Therefore, the coloured noise would not be expected to result in a qualitative
change in the results.
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