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SYNOPSIS

Considerable research has been conducted over the past three decades to determine the

behaviour of discontinuities under the application of a shear load. Empiricism has

dominated, most of this work due to the complex nature of the shear behaviour and in

particular the scale dependency of the joint roughness. A reliable method to quantify the

joint roughness has been investigated by many researchers with varying success. Most

methods model the 3-dimensional roughness as a single 2-dimensional profile without

experimental or theoretical justification for the simplification.

The Geotechnical Group at Monash University has investigated the performance of piles

socketed into rock since the mid 1970's. This work has aimed to achieve a fundamental

understanding of the mechanisms involved in the shear behaviour of the pile shaft. A

theoretical model was developed and a computer program 'Rocket' produced to predict

shaft performance.

Initial investigation has highlighted the similarity between the modelling of the concrete /

rock interface and a rock joint. This project has provided the opportunity to further

assess the applicability of these models to predict rock joint behaviour. An extensive

experimental testing program based on constant normal stiffness direct shear tests on a

range of 2-dimensional and 3-dimensional surfaces, has led to refinement of the existing

analytical models. By testing a range of materials of varying strength - sandstone,

siltstone, basalt and granite - the effect of strength on the models was assessed and

necessary modifications made. This experimental work has also closely examined the

accuracy of representing a 3-dimensional surface by a statistically similar 2-dimensional

profile.

The modifications to the existing shear behaviour model to incorporate rock joints of

varying strength, together with a method to quantify the 3-dimensional roughness of a

rock joint, were incorporated into the computer program 'Rocket'. It is hoped that the

resulting computer program can be used to provide reliable estimates of clean rock joint

shear behaviour in a variety of materials and with all scales of roughness.
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NOTATION
All notation and symbols are defined where they first appear in the text. For

convenience, they are also listed with their definitions below:
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At

bn bo,

B

c

c

CJ

cp

C
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CNL

CNS

d

de

drf

dum
8

dU

asperity height

fourier coefficient

shear area ratio

selected contact area on the contact plane c (Dong and Pan)

joint contact area

total projected joint area

global cross sectional area of joint

autocorrelation function
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width of loaded area
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constant
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centre line average
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compressive strength of intact rock

effective compliance matrix

normalised degradation rate

increment of elastic compression

local relaxation tensor that accounts for sliding and dilation (Dong and Pan)

global relaxation tensor (Dong and Pan) ,

global relative displacement (Dong and Pan)

increment of internal strain energy
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1.0 INTRODUCTION

1.1 Background

Unexpected shear failure of rock masses can be costly in terms of maintenance and

rectification of infrastructure and in loss of life. On October 9th, 1963, the Vajont Dam

located on the Vajont River in Northern Italy failed through a massive rock slide that

moved more than 270 x 106 m2 of rock. This double arched 276 m high d'im was

constructed during 1957 to 1960. The flood which followed it's catastrophic failure

destroyed 5 villages and killed 1925 people. This example demonstrates this tragic

outcome that may occur if civil works are constructed without a complete understanding

of the rock mechanics involved.

Unlike man-made materials, rock is non-homogeneous and non-uniform. It contains

variations on the micro and macro scales. Variations on the micro scale can be in the

form of pores between the grains in sedimentary rocks, the presence of vesicles or wigs

in volcanic or soluble carbonate rock or the presence of microfissures caused by internal

deformation. These pores and fissures cart reduce the rock strength, create stress

dependency in material properties, produce variability and scatter in test results and

introduce a scale effect into predictions of behaviour (Goodman 1980). On the macro

scale, the rock mass is intersected by discontinuities that can take the form of either joints

or faults. These discontinuities are typically the weakest part of the rock mass and hence

govern its strength. This thesis deals only with rock joints as distinct from the rock mass.

The understanding of the nature of the discontinuities and their behaviour under load is

vital to the development of engineering and mining structures founded on or within rock.

These defects have been known to cause failure in dams, rock slopes and tunnels.

However, to understand the mechanisms of failure within the rock mass it is first

necessary to understand the behaviour of a single discontinuity.

Considerable research has been undertaken during the last three decades to determine the

behaviour of discontinuities under the application of a shear load. This research has been

based principally on empirical models that may lack universal application or on

theoretical models that are typically derived from empirical results. The majority of

these models do not explicitly model the kinematics of the shear development of the

1
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Interface. In most cases man-made rock and artificial joints have been used in laboratory

testing to eliminate micro scale variations. This work has also typically tested small

samples that may not be representative of large-scale discontinuities.

The Geotechnical Group at Monash University has been investigating the complex

behaviour of concrete / rock interfaces as encountered in piles socketed into rock for the

past 25 years, This work has involved the development of a micro-mechanical based

model that can be used to predict shaft resistance. The concrete / rock interface is

modelled by irregular deviations from the horizontal plane called asperities. During the

shear process the rock surface may slide on these asperities, wear the asperities down or

may completely shear them off. These basic processes together with several other

elements comprise the basis of a theoretical model. A direct shear testing apparatus was

designed to test the model by testing larger samples under more representative

conditions.

There are obviously many similarities between concrete / rock interfaces and natural rock

joints. Therefore during the last couple of years, the work on concrete / rock interfaces

has been extended into the modelling of natural rock joints. Some testing of artificial

joints in man-made rock and natural sandstone (Fleuter, 1997) has indicated that although

there are differences, the model shows promise to be extended into natural rock joint

applications.

1.2 Current Research

This dissertation investigates through laboratory experiments, the behaviour of two-

dimensional and more realistic three-dimensional rock joints in several natural materials

and one artificial material. The materials were selected to cover a range of strengths and

compositions. Two of the natural materials form the main type of rock formations

underlying the Melbourne central business district. These are the Melbourne mudstone, a

Silurian Age interbedded siltstone, mudstone and sandstone, and the Newer Volcanics, a

Tertiary Age basalt. The other natural materials tested were Sydney Hawkesbury

sandstone, a Triassic Age sandstone which extensively underlays Sydney and Mt Bundey

Granite, a Precambrian Age granite that is found in the Northern Territory near Darwin.

All rock types are of considerable economic significance in their respective areas. An
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artificial soft rock called Johnstone that has similar properties to weathered Melbourne

mudstone was also tested.

The ultimate aim of the research at Monash University is to develop a theoretical model

that can be used to predict the shear response of the rock mass under varying conditions.

This is obviously a very complex task and one that must be developed step by step.

Therefore the aims of this specific project were to:

1. Investigate whether the existing concrete / rock joint model was Suitable for

natural rock joints. Limited testing on soft rock joints had already been

completed (Fleuter 1997). However, there was a need to extend the testing to

harder rocks and to make changes to the model to incorporate any observed

changes in behaviour.

2. The existing model has only been tested with two-dimensionally rough profiles.

Testing needs to be extended to include more realistic three-dimensional surfaces

that better replicate natural rock joint surfaces.

3. Due to the difficulties in accurately quantifying the roughness of a joint surface,

an investigation into current methods of quantifying joint roughness was

considered necessary. The aim of this investigation was to determine a reliable

method of quantifying three-dimensional roughness and present it in a suitable

form for input into a theoretical shear model. This investigation is based on a

statistical analysis of natural rock joint surfaces and tensile split surfaces that are

shown to approximate natural joints. The artificial rock Johnstone is also used to

reproduce two-dimensionally statistically similar profiles of three-dimensional

joint surfaces. Both two-dimensional and three-dimensional surfaces are tested in

direct shear to ascertain if their behaviour is 'similar. Similar behaviour would

provide significant support that three-dimensional roughness could be adequately

represented in two dimensions.
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1.3 Outline of Thesis

The advancement of the research into the development of a theoretically bamd shea-;-

model is presented in this dissertation in the following manner:

Chapter 2 Characterisation of Rock Joints

This chapter defines and describes rock joints and introduces the major factors thai affect

their behaviour under the application of a shear load. This uissertation will only

concentrate on a few of the^e influential factors and these are listed in this chapter.

Chapter 3 Quantification of Joint Roughness

This chapter gives an outline of various techniques used to measure surface roughness of

a rock joint. Several approaches used to quantify the surface roughness are then

presented. Due to their current popularity, significant emphasis is placed on the

description and analysis of the many fractal approaches that have been proposed. Using

a laser profilometer, surface roughness data is collected and used to test the various

approaches so that a representative method of roughness quantification can be adopted.

Chapter 4 Historical Review of Rock Joint Models

An outline of the historical development of various approaches to the determination of

rock joint shear strength is presented. A detailed description of the theoretical approach

under development at Monash University is given.

Chapters Experimental Shear Testing

The choice of experimental conditions is outlined logether with details on the

experimental apparatus used in the direct shear tests. The materials to be tested are

discussed together with their properties. The profiles tested are described and illustrated.

Chapter 6 Sheav Test Results

A summary of the shear tests performed on the rock samples is provided. Complete

results are presented in Appendix D. A discussion on the main observations made during

the direct shear tests is presented.
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Chapter 1 Introduction

Chapter 7 Representation of a three-dimensional Surface

This chapter looks at the statistical similarity of profiles taken across joint surfaces.

Although this work assumes that the shear direction is known, a brief investigation into

surface anisotropy has been included. The laboratory investigation into representing a.

surface by a single profile or a statistically equivalent profile is presented.

Chapter 8 Modelling of Shear Behaviour

Areas of the existing shear behaviour model highlighted during the laboratory work as

requiring modification are discussed. The method proposed to quantify the surface

roughness is presented.

Chapter 9 Predictions of Rock Joint Behaviour

The existing computer shear model including the modifications made during this current

investigation, is used to predict the shear response of the rock joint shear tests. A

complete set of predictions is presented in Appendix F.

Chapter 10 Summary and Conclusions

The results of the research program are summarized. Limitations of the work are

acknowledged and future areas of study recommfei.ded.
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2.0 CHARACTERISATION OF ROCK

JOINTS

This project concentrates on the shear behaviour of rock joints. However, rock joints

represent only one form of rock mass defect that can be collectively described under the

term discontinuity. Before a detailed analysis of the shear behaviour of rock joints can

be commenced, it is beneficial to define and describe what is meant by the term rock

joint, how they may be formed and what will affect their behaviour under load. These

aspects are discussed in this chapter.

2.1 What is a Discontinuity and How is it

Formed?

ISRM (1978) describes a discontinuity as a mechanical break in the rock mass having

zero or low tensile strength. There are two main types of rock mass defects or

discontinuities - joints and faults. These will be discussed separately.

Joint - A break of geological origin in the continuity of a body of rock along which there

has been no visible displacement (ISRM 1978). Joints result from fracturing due to

stresses within the rock mass. This can be due to shrinkage (ie. slow drying and lateral

shrinkage of sedimentary beds after deposition occurs', or cooling of igneous rocks results

in contraction causing the creation of internal stresses that create tensile joints),

weathering and erosion (stresses develop due to unloading or expansion of near surface

rock causing tension joints) or stresses developed through igneous intrusions or tectonic

movements (caused by residual stresses after tectonic movement has finished) (Read and

Watson 1987).

Fault - A fracture or fracture zone along which there has been recognizable displacement

(ISRM 1978). Faults are caused by tectonic movements. They can be classified

according to their movements: normal faults (commonly called tension faults), reverse

faults (commonly called compression faults), transcurrent faults and pivotal faults (Read

and Watson 1987).

J
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Chapter 2 Characterisation of Rock Joints

Displacement along a surface may cause damage to the surface. This damage would

need to be measured and incorporated into any discontinuity model together with the

displacement of the upper surface relative to the lower surface. As the damaged material

is in a changed form, it would effectively act as rubble and would require modelling with

different properties. This, together with the mismatching of the surface, is not an

impossible task, but one that adds further complications to any model, hi the initial

development of a basic discontinuity shear model, these further complications are not

desirable. So although the principles can be extended to include faults with some surface

damage already present, this study concentrates purely on rock joints. These can either

be bedding joints, cleavage or foliation joints, shear joints or tension joints. Unlike

faults, there will have been no previous displacement along the joint surface. This

implies that the joint surfaces are not damaged with the upper and lower surface still

matching.

2.2 Factors that affect the behaviour of rock

joints under load

As rock joints have low or negligible tensile strength and their compressive strength is

primarily a function of infill properties and rock strength, these strength parameters are

relatively simple to evaluate. However, to accurately predict the shear response of rock

joints under the application of load, there are many factors that influence the joint

behaviour that need to be considered. These factors are often very difficult to quantify

and are often inter-related. A brief outline will be given in this section on some of the

factors that affect shear behaviour. This current work investigates the behaviour of clean,

unaltered rock joints in a variety of rocks.

2.2.1 Stresses acting on the Joint

There are many stresses that act on rock joints. These can be in-situ stresses or induced

stresses from processes such as mining, drilling or pumping. In-situ stresses can be due

to gravitational stresses, tectonic stresses that can be either active or remnant, residual

stresses from such processes as magma cooling, or terrestrial stresses such as seasonal

variation (Amadei and Stephansson 1997).

8



Chapter 2 Characterisation of Rock Joints

As can be appreciated, these stresses are difficult to measure. The following field

measurement techniques have been suggested (Amadei and Stephansson 1997):

• Hydraulic Methods — hydraulic fracturing, sleeve fracturing, hydraulic tests on

pre-existing fractures

• Relief Methods - surface relief methods, undercoring, borehole relief methods

(overcoring, borehole slotting, etc), relief of large rock volumes

• Jacking Methods

• Strain Recovery Methods

• Borehole Breakout Methods

There is general consensus however, that in-situ stress measurements are not guaranteed

to.be accurate and that confidence intervals should be used. This uncertainty is

predominantly related to the fact that it is difficult to corroborate field measurements.

Unless more accurate estimates are available, it is usually assumed that for a:

Horizontal Joint - the normal stress is equal to the weight of the overlying material

Vertical Joint - the normal stress is estimated from the lateral pressure coefficient such

that:

<Jh=K.Cv

where O/,=effective horizontal pressure

<rv=effective vertical pressure

#=constant

Assuming the rock mass is:

1. Linear isotropic, ideal and homogeneous

2. rock is under gravity alone with no loading history

3. has no stresses of tectonic origin

(2.1)

then
1-v

(where v = poisson ratio)

(Amadei and Stephansson 1997).



Chapter 2 Characterisation of Rock Joints

Although common to adopt this expression for K© it must be used with great cation as it

can lead to errors in prediction of rock behaviour. For example if tectonic forces are

present they can cause Ko to be considerably greater than 1 or to become very small.

2.2.2 Boundary Conditions

The boundary conditions for rock joints vary according to the deformability of the

surrounding rock. If the surrounding rock is deformable enough to allow dilation of the

joint without reaction forces, then shearing will take place under zero normal stiffness.

An example of this would be a rock slope where sliding along a joint occurs under the

constant normal load resulting from the sliding block's self weight. This condition is

known as Constant Normal Load (CNL) and can be is illustrated in Figure 2.1.

hi most underground rock situations, rock blocks cannot slide freely due to constraint

provided by the surrounding rock blocks. Dilation of the joint causes a reaction from the

surrounding rock mass, which applies additional stress to the rock joint. This condition

is known as Constant Normal Stiffness (CNS) and is also illustrated in Figure 2.1. This

condition is applicable for a rock slope where the joints are constrained or rock bolts or

cables have been installed or for underground situations. The CNL condition is a special

case of the CNS condition in which stiffness equals zero.

i

s/ss////////////////////

S : shear force N: normal force

CNL Condition

K: rock stiffness

CNS Condition

Figure 2.1: Examples of Boundary Conditions (after Leichnitz, 1985)
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Chapter 2 Characterisation of Rock Joints

It is also possible to have variable normal stiffness conditions, where the increase in

normal stress due to dilation is not linear but may be either increasing or decreasing.

Seismic laboratory tests by Kocharyan et al. (1997) on artificial granite joints indicated

that the normal stiffness was non-linearly related to the applied normal stress. This may

be due to the presence of infill in the joints or where joint movements result in local

plasticity effects.

Boundary stiffness may therefore vary linearly or non-linearly from zero to a maximum

value corresponding to the stiffness of the solid rock. Skinas et al., 1990 suggested the

following approximation of maximum stiffness:

Kmx = -Z~Z 77 (2-2)
2c(l-v )

where Kmax =maximum stiffness

E = Young's Modulus of rock mass

L = length of a rectangular jointed Hock

c = constant (no defined methods to estimate c are given)

v = Poisson's Ratio

Insitu boundary stiffness can be estimated using seismic methods. Kocharyan et al.

(1997) estimated the normal and shear stiffness of granite discontinuities by measuring

the amplitude and time characteristics of seismic waves in front of the discontinuity and

behind it. These insitu tests indicated that the normal stiffness was approximately

inversely proportional to the distance between discontinuities whilst the shear stiffness

was essentially dependent on the structure of the discontinuity (ie. amount of fracture

zone, type of infill etc.).

hi earlier investigations into the shear strength of rock joints, laboratory testing was

predominantly conducted under CNL conditions, due mainly to the availability of

suitable shear apparatus. In recent years however, the more widely applicable CNS

testing has become popular by using specially designed shear boxes (eg. Leichnitz 1985;

Johnston and Lam 1989; Archambault et al. 1990; Benjelloun et al. 1990; Ohnishi and

Dharmaratne 1990; Skinas et al. 1990; Van Sint Jan 1990; Saeb and Amadei 1992; Seidel

and Haberfield 1995; Wibowoetal. 1995; IndraratnaandHaque 1997)

11



Chapter 2 Characterisation of Rock Joints

Comparisons of test results from CNS and CNL testing have concluded that:

• Increasing the normal stiffness increases the maximum shear strength

• Increasing the normal stiffness increases the shear displacement necessary to develop

maximum shear strength

• The rate of strength reduction after peak shear strength reduces more quickly the

higher the normal stiffness

Several authors have developed models to use laboratory results produced under CNL

conditions combined with the stiffness of the surrounding rock normal to the joint, to

more accurately represent in-situ conditions.

Fortin et al. (1988) produced an algorithm using the simple graphical procedure

developed by Goodman (1980). This graphical procedure uses direct shear test data,

obtained under CNL boundary conditions and predicts the shear stress - shear

displacement relationship for a joint. The algorithm uses a polynomial interpolation

procedure to adjust the data available from the experimental curves. A multi-linear

approximation of the rock mass' normal stress-dilation curve is used to take into account

the non-linear stiffness of the rock mass. Archambault et al. (1990) conducted a series of

experiments that showed reasonable agreement with the model.

Saeb (1990) and Saeb and Amadei (1992) also formed a model that could be used to

predict the shear response of a dilatant rock joint under a variety of boundary conditions

using the results of normal compression and shear tests under CNL conditions. This

approach can be represented in both graphical and mathematical forms.

The graphical form uses the normal load-displacement, shear load-displacement and

dilatancy response curves for different levels of constant normal stress to construct the

normal stress versus normal displacement curves at different levels of shear

displacement. The shear strength of the joint can be predicted from these curves at

various applied stiffnesses (Saeb 1990). This method was investigated experimentally by

Wibowo et al. (1995) with satisfactory agreement being found.

Although the results have been compared favourably to laboratory test results, a major

difficulty in using CNL test results to predict the response of the joint under CNS

conditions is that several CNL tests need to be performed on an identical rock joint.

3

12
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There appears to be no research undertaken to date where the results obtained using CNS

conditions have been used to predict the response of a joint under CNL conditions. This

approach would eliminate the difficulties of obtaining identical rock joint samples.

2.2.3 Joint Roughness

Joint surfaces possess many irregular departures from the plane both on the large scale

(waviness) and on the small scale (unevenness) that are of varying angle and length.

These departures have been called asperities and are one of the main geometrical

properties that affect the mechanical behaviour of the joint. The degree and type of joint

roughness depends on the rock's mineralogy and the rock joint's mode of formation and

extent of weathering.

One of the most difficult aspects in attempting to quantify joint roughness is that it is

scale dependent. As mentioned above, joint surfaces possess small scale unevenness and

large scale waviness and a range of roughness in between. Different shear responses may

be obtained depending on what scale of roughness is mobilized.

The presence of scale effects in using laboratory results to predict the' shear strength of

rock joints has been recognized for many years. Barton (1973) recognized that the

asperities would be larger on the natural scale than the asperities in the small-scale

laboratory sample. Later experimental work by Bandis et al. (1981) indicated that an

increase in joint length caused the following;

• a lower peak shear strength

• an increase in the peak shear displacement

• a larger relative shear displacement was required to reach the peak shear strength

• there were insignificant scale effects if the joint was planar and smooth

• a reduction in the peak dilation angle

• a transition from a 'brittle' to 'plastic' mode of shear failure

A joint subjected to small shear displacements will be primarily influenced by small scale

roughness. Small steep asperities control the peak shearing path of short joints, whilst

larger but flatter asperities affect the shearing response of longer joints. Kabeya and

Legge (1996) investigated the micro-roughness of several samples. Their laboratory tilt

13
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tests indicated that when the stress level was very small, the size of the grains affected

the peak friction angle with a finer grain size tending to have a lower peak friction angle.

Similarly when the samples were very small the grain size affected the peak friction

angle. It is therefore essential to know what scale of roughness is important in design

and select the sample sizes to reflect this scale or modify the laboratory test results to

predict behaviour at the correct scale. As this is not always possible, a preferable method

would be to present the shear results at different scales.

Typically in most of the early approaches that describe the shear behaviour of rock joints,

attempts were made to quantify the joint roughness as an effective dilation parameter, i.

Each rock type can be assumed to possess a typical basic friction angle, (()b. This friction

angle can be measured from a shear test on a flat rock surface. Patton (1966)

demonstrated on regular triangular asperities that the effect of an asperity is to increase

the "apparent" friction angle from (j>b to (<|>b+0 where / is the inclination angle of the

asperity. However, joint roughness is much more complex due to the random and

irregular shapes of the asperities, the scale dependency of the roughness and the fact that

it may alter during shear displacement. Typically any 'dilation parameter' will decrease

as the shear displacement increases as the steeper asperities are sheared.

Therefore, due to the complexity of joint roughness, much research has been conducted

on suitable quantification methods. Several approaches are listed:

• Comparison with standard roughness charts (Barton and Choubey 1977). This

approach is quite subjective. As the standard profiles are 100mm length samples,

scale effects are also of concern.

• Measurement with linear profiling, compass and disc-clinometer or

photographgrammetric methods (ISRM 1978). These approaches are also subject to

scale effects.

• Statistical Analysis. Reeves (1985) divided these methods into 2 approaches:

1. Describing the magnitude of the roughness eg. Centre-line roughness, root

mean square roughness

2. Describing the texture of the rough surfaces eg. root mean squares of the

derivatives of the surface profile, autocorrelation function, spectral density

function, mean square value, structure function

14
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However, the assumptions used in these statistical methods may not be correct for all

rock joint situations and often include scaling problems.

• Fractal Analysis. Some of the more recent methods, attempt to characterise the

roughness profile with a fractal dimension. This approach attempts to take into

account the scale effects of roughness. Although it has received significant interest

from many researchers, it is has been shown to be difficult to use in a consistent

mariner.

Due to the importance of accurately quantifying joint roughness, each of these

approaches will be discussed in further detail in Chapter 3.

Most of the available approaches analyse the joint surface as a two-dimensional profile.

This assumes that the selected surface is not anisotropic and that the selected profile

represents the full joint surface. These aspects are also discussed in further detail in

Chapter 3. A laboratory and statistical investigation is presented in Chapter 7 to assess

whether a three-dimensional joint surface can be adequately represented by a two-

dimensional profile.

2.2.4 Rock Strength

During shear displacement, shear of the asperities may occur. This will be dependent on

the strength of the asperities at the joint wall, asperity size and inclination, and the

stresses applied. The asperity strength may be different to that of the intact rock strength

if weathering has occurred. Weathering will typically weaken the joint wall strength,

although the occurrence of iron penetration car. make some joint walls stronger. The

depth of penetration of weathering into joint walls depends largely on the rock type and

in particular on its permeability.

Joint wall strength may be difficult to determine if the depth of weathering is too small to

sample for laboratory testing. For weathered joints, ISRM (1978) have recommended the

use of the Schmidt hammer. This field estimate is based on the ratio between the

Schmidt hammer rebound (r) obtained from the wet joint wall and the rebound (R) on an

unweathered rock surface. An average of several tests is required to decrease the

potential errors due to operator error and variations s'ich as sample movement or

crushing of loose grains. Variation of rock density with depth and the presence of voids

can also potentially alter the rebound number and therefore, unless calibrated extensively,
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the results should only be used as an index. Joint roughness has also been shown to

influence the scatter in Schmidt values (Bobji et al. 1999). .

The work described in this dissertation is restricted to the shear behaviour of fresh

unaltered joint surfaces. Therefore the strength of the asperities is assumed to be the .

same as the intact rock.

2.2.5 Joint Aperture

The joint aperture is the perpendicular distance separating the adjacent rock walls. It can

be filled by either water or air. A completely open joint where none of the asperities

touch will therefore possess zero shear strength. Shearing of a partially open joint may

involve only some of the higher asperities with shallow asperities not becoming involved

in the shearing process. This will obviously affect the magnitude of the peak shear

strength.

Under the application of a normal stress, closing of the aperture may occur. This has

been shown to reduce the amount of measured dilation of the asperities and alter the load

applied to each asperity (Fleuter 1997). The presence of joint aperture will also effect the

stiffness of the rock mass. Work by Hopkins et al. (1990) has indicated that joints with

small contacts are stiffer than those with large and clustered contacts for a given

percentage of contact area. Knowledge of the aperture is therefore required in predicting

the peak shear strength of the joint. This is often difficult to measure as standard drilling

techniques disturb the interface making aperture and contact area measurements

unreliable.

The work described in this dissertation is lestricted to the shear behaviour of tight joints.

\

2.2.6 Joint Infill

Many joint walls are separated by material that will typically reduce the shear strength of

the joint. This infiii can be carbonaceous, clay, silt, breccia or minerals. The effect on

the shear strength will be dependent on the infill's thickness, composition, water content,

degree of over consolidation, previous shear history and on the strength and roughness of

the joint walls.
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De Toledo and de Freitas (1995) conducted a series of laboratory tests on sandstone

regular triangular asperity joints with clay or clayey sand infill in a rotary shear machine.

Over-consolidated clay filled joints, where the strength of the rock was significantly

stronger than the infill material, produced two peak shear strengths - initially the soil

infill failed followed by the rock asperities. The soil infill peak shear strength decreased

with increasing infill thickness until the thickness equalled the asperity height at which

time it became constant. The soil infill peak shear strength was dependent on the degree

of over-consolidation - the greater the over-consolidation the greater the peak shear

strength. However, normally consolidated '.lay filled joints and clayey sand filled joints

showed only early stages of a soil peak shear strength. Laboratory studies by Indraratna

et al. (1999) indicated only one peak shear strength when a soft material such as gypsum

plaster (similar strength properties to the infill material) was tested as the rock material.

Laboratory results by de Toledo and de Freitas (1995) indicated that the rock peak shear

stress reduced with increasing infill thickness; first at a slow rate and then more rapidly

as the infill thickness approached the asperity height. They found that the presence of

even a small amount of clay infill reduced the rock peak shear strength from that of an

unfilled joint. They believed that this was due to the change in frictional properties of the

shear surface. This was confirmed by Indraratna and Haque (1997) with tests on

triangular asperity profiles with bentonite infill. Indraratna et al. (1999) also observed

that the effect of the asperities on shear strength was significant up to a critical infill

thickness to asperity height ratio of 1.4-1.8 (ie. where damage was noted on the asperity

surface) but beyond this critical value the shear behaviour was controlled by the infill

properties. Laboratory tests by Cheng (1997) using regular triangular and irregular

triangular synthetic siltstone (soft rock) / concrete interfaces separated by a bentonite

clay layer (used to model the filter cake often present in pile sockets constructed with

bentonite) or a silt layer (used to model rock smear), also indicated that the peak shear

strength decreases as the thickness of the infill increases.

During his work of wear of rock surfaces, Gu (2001) developed an effective asperity

angle, otem which accounted for the effects of infill on the shear behaviour of rock joints.

This effective angle can be used to model a joint interface when infill is present. This

effective asperity angle increases with shear displacement. The calculation of this angle

is shown in Equation 2.3.
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aejn=tan -i (2.3)

where L = asperity chord length

JC,-= shear displacement

a = asperity angle

tfi - infill thickness at displacement xt

Knowledge of the type, strength and thickness of any infill is therefore necessary to

predict the peak shear strength.

The work described in this dissertation is restricted to the shear behaviour of clean joints..

2.2.7 Shear Displacement Velocity

hi early work by Hoek and Bray (1981) it was suggested that the shear strengths of rock

joints were "generally not sensitive to the loading rate". They suggested a rate of less

than 2mm/min. Typically most researchers appear to be using shear rates in the order of

O.lmm/min - 0.5mm/min.

However, other laboratory testing has indicated that the shear displacement velocity

affects the magnitude of the shear resistance at stress levels applicable to engineering

structures. Crawford and Curran (1981) conducted a series of CNL direct shear tests on

air dried rock samples under a range of normal loads. Their research suggested that the

magnitude of the rate effect depends on the rock type and the level of the normal stress.

Laboratory results indicated a weak relationship between rock strength and shear rate

although this was not quantified. They could find no obvious correlation between the

rate effect and the mechanical or mineralogical properties of the rock. For harder rocks

such as sandstone, the shear resistance was observed to decrease as shear displacement

rates were increased above a critical velocity. The critical velocity was found to be

dependent on the magnitude of the normal stress. The frictional resistance of soft rocks,

such as syenite, was observed to also be dependent on the normal stress. Results

indicated an initial increase in shear resistance as the shear velocity increased for normal

stresses up to 1250kPa followed by a period of constant shear resistance. After a second

critical velocity was reached, the shear resistance decreased as the shear velocity

increased.
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Indraratna and Haque (2000) performed a series of CNS direct shear tests on 18.5°

triangular asperity profiles of soft rock.where the rate of shear displacement was varied.

Their work confirmed that the rate of shear displacement has a significant effect on the

peak shear strength of rock joints. ;

This suggests that for each rock type to be tested, a critical shear velocity should be

measured through laboratory testing under conditions similar to that expected insitu (ie.

saturated or dry rock conditions). The shear velocity to be expected within the rock mass

would also be required. Further work is required in this area on a range of rock types,

roughnesses and conditions.

The work described in this dissertation is confined to o:;e "quasi-static" rate of shearing.

2.2.8 Water

Many rock types are known to be strength dependent on saturation levels. Melbourne

mudstone is known to increase in strength as ft dries. A saturated rough mudstone joint

will therefore have lower shear strength than a dry sample: It is therefore important io

duplicate natural ground water content conditions when storing samples prior to testing.

The presence of water in the joint has also been found to reduce, increase or have no

effect on the shear strength of the rock joint (Barton 1973). It is likely that the water may

reduce the effective stress and reduce the surface energy. The extent o? any alteration on

shear strength though, appears to be dependent on the mineralogy and the smoothness of

the joint and the development of pore pressures. It is therefore important for a rock joint

model to take into account the effects of water.

The tests described in this dissertation have been conducted on moist rock samples with

no free water present at the joint interface. '•

2.3 Summary

To be able to predict the behaviour of the rork mass Ii is first necessary to understand the

behaviour of a single discontinuity. Although this discontinuity can take the form of

either a fault or a joint, this work will be limited to the behaviour of clean, tight,

unweathered rock joints, tested close to full saturation.
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The determination of the tensile or compressive strength "of rock joints is a relatively

simple task compared to the estimation of its shear strength. This is due to the many

factors that can affect the shear strength of an individual joint. These factors have been

discussed in detail in this chapter.

The objective of the overall research project that this project forms part of, is to develop a

theoretical shear behaviour model that is capable of incorporating all of these factors.

However, due to the complexity of such a model, time limitations in this current work

has meant that only the affects of stresses acting on the joint, boundary conditions, rock

strength and joint roughness will be investigated.



3.0 QUANTIFICATION OF JOINT

ROUGHNESS

As discussed in Chapter 2, rock joint surfaces are irregular and random causing

researchers to struggle in their attempts to adequately classify the surface for their shear

models. As joint roughness is a fundamental component of the joint shear behaviour, a

method to adequately measure and quantify it is vital. There are currently various

methods used by researchers to measure, reproduce and quantify joint roughness. The

shortcomings of these methods will be discussed together with the approaches that have

been adopted for this research.

To quantify joint roughness, measurement of the roughness either insitu or in the

laboratory is required so that detailed analysis can be undertaken at various scales of

interest in the office. Section 3.1 outlines various techniques to reproduce roughness

including details on the laser profflometer used in this study.

Once data on the joint surface has been obtained, there are many popular techniques used

for analysis. A critical review of these techniques is included in Section 3.2. The

method chosen to analyse the joint surfaces in this current work will be discussed.

Joint surfaces have been shown to be strongly anisotropic for many rock joints. This

highlights the need to either model the shear behaviour in the direction of potential

shearing, or the need to develop a model that can be used to predict the shear behaviour

in all directions. This is discussed in Section 3.3.

For modelling purposes it is often useful to be able to reproduce a joint surface that is

similar to a natural joint surface. Several techniques have been developed to generate

rock joint surfaces. These are discussed in Section 3.4 together with the method that has

been adopted in this research.

3.1 Roughness Measurement

Whether faced with a rock slope or a series of rock cores, the geologist or field engineer

must quantify joint characteristics for design. Field mapping has been traditionally

achieved by recording dip and dip direction of the discontinuity asperities by linear

profiling techniques, the compass and disc clinometer method or photographgrammetry
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methods (ISRM 1978). More detailed analysis can be achieved by digitising linear

profiles parallel to the predicted direction of potential shearing at specified digitising

intervals (eg. 1,5, 10 mm). This allows large amounts of data to be taken and computer

analysed using various methods. Profiles can be taken using a mechanical profilometer

or laser profilometer.

3.1.1 Linear Profiling

This method measures linear profiles parallel to the predicted direction of potential

shearing. It uses either a 2 m length folding straight edge (graduated in mm) for small

scale roughness or a 10 m length of light wire (graduated in 100 mm intervals) to

measure larger scale roughness. This measuring tool is placed in contact with the highest

asperity and parallel to the mean direction of potential sliding. The perpendicular

distance between the measuring tool and the discontinuity surface is measured at

specified tangential distances together with the dip of the measuring direction. Typically

the minimum, most common and maximum roughness profiles are recorded (ISRM

1978). This method has an accuracy of approximately 1 mm and is also very time

consuming and sensitive to operator error.

-,1a

§3

3.1.2 Compass and Disk Clinometer

If the potential direction of sliding is not known, the compass and disclinometer method

can be used to sample roughness in 3 dimensions. It uses a Clar geological compass and

4 circular plates. Each plate is placed against the surface of the discontinuity in at least

25 positions and the dip direction and dip measured at each position. The sets of data

obtained for the 4 plates are plotted on a separate area net diagram and contours drawn

for each set of poles. Again this method is very time consuming and is sensitive to

operator error.

3.1.3 Photographyrammetric Method

This method involves taking overlapping photographgraphs of the rock face so that a

stereoptiir can be used to orient different planes. It is quite a costly procedure and is

typically only cost effective if mapping of a large number of discontinuities is required.

Although it orientates large planes quite precisely, it decreases in accuracy as the planes
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become smaller. Problems also arise on sites where locating the tripods to obtain the

required overlapping is difficult. The films should be developed on site so that if any

problems have occurred the photographs can be taken again before the tripods are

moved.

3.1.4 ProfiIorneter Methods

These methods are used to digitise the discontinuity so that it can be analysed by the use

of a computer. Traditionally mechanical profilometers were used although laser

profilometers are becoming more popular. Mechanical profilometers use a contact

sensor to trace the rock surface. These types of profilometers are restricted in the detail

they can measure by the width of the contact sensor. They also have problems with the

contact sensor leaving the surface or even damaging the surface. The beam of a laser

profilometer, unlike a mechanical profilometer, does not leave the surface or damage it.

They can be operated at high frequency allowing rapid surface scanning. Three-

dimensional laser scanning equipment is also possible (Lanaro 2000). Laser

profilometers are limited in their accuracy by the width of the laser beam.

Monash University has developed a laser profilometer to measure pile socket roughness

(Collingwood, et al. 1999). The Monash Socket-Pro has a lm traverse and can sample at

a rate of up to lOOOHz. The laser distance sensor emits a laser beam that is reflected

from the rock surface and collected by an optical receiver. This determines the angle of

reflection and using geometry calculates the distance to the surface. A magneto-strictive

linear displacement transducer is used to measure traverse position. The laser distance

sensor has an accuracy of approximately ±0.05mm whilst the traverse position is

recorded at an accuracy of approximately ±0. lmm. The spot diameter of the laser beam

is approximately 3mm. This device can be seen in Figure 3.1.

The Monash Socket-Pro was used to measure the joint profiles for this current work. The

rock joints were placed in an approximately vertical position on a timber frame

approximately 60 mm from the front of the laser. Each joint was scanned at a lOOOHz

frequency such that readings were taken at approximately 0.1 mm intervals. Several

profiles were taken at 5 mm or 10 mm intervals across each block. The distance to the

timber frame was used as a baseline to zero all the profiles in the Z direction. As the

samples were difficult to place perfectly vertical, linear regression was used on the raw
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data to remove any overlying angle on the profile (ie, non-stationarity). The resolution

error (approx ± 0.1mm) in the vertical translation was removed by taking a moving

average over approximately 1.4mm length. As the laser had been shown to move at

relatively constant velocity (Collingwood 2000), this moving average was not considered

to alter the accuracy of the data.

Figure 3.1: Monash Socket-Pro

3.2 Methods to Estimate Roughness

3.2.1 Statistical Methods

Many statistical parameters have been used to characterise joint roughness. These either

describe the magnitude of the roughness or the texture of the rough surface (typically

derivatives of the magnitude of the roughness) on a single scan line or traverse, hi the

following, the parameters that have been suggested by other researchers as being in

popular use for the characterisation of rock joint roughness (Lam 1983; Reeves 1985;

Lamas 1996) are described.

1. If a line is placed parallel to the general direction of the profile such that the area

between the line and the profile is the same both above and below the line, then
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measurement of the average deviation away from this line gives one measurement

of roughness. This average deviation can be measured by the root mean square

(RMS) defined in Equation 3.l(Assoc. 1955); '

RMS = \ (3-i)

where M - number of discrete measurements of the amplitude

y — amplitude of the roughness about the centre line

dx = small constant distance between 2 adjacent amplitude readings

2. A centre line average (CLA) can also be taken to measure the roughness as given

by Equation 3.2 with units of length (Assoc. 1955).

(3.2)

where L = distance over which the average is taken

3. The linear roughness (RL) is a relation between the total length of the profile L

and the length of its projection on a reference line Lpmj as defined by Equation

3.3.

RL=L/LproJ (3.3)

4. Myers (1962) used the basic RMS method to propose three other parameters to

describe particular components of surface roughness. The RMS of the first

derivative of the profile (ie RMS gradient), Z-i\ the RMS of the second derivative,

Zj; and the difference in length between where the slope of the surface is positive

compared to negative divided by the total length, Z4. These parameters are

defined in Equations 3.4 - 3.6 and are all very sensitive to the sampling interval

(Yu and Vayssade 1991). Reeves (1985) attempted to overcome the dependence

of Z2 on the sampling interval by using the average asperity gradient ie. RMS/(xD)

where xZ>=correlation distance. This value was shown to be predominantly

independent of the sampling interval for many rock surfaces.

2 ~ J [ d (3.4)
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Z4 = 2^ \Xl)positive ~ 2ml {Xl / negative

(3.5)

(3.6)

LJ**

where xi = the ith segment of L

•Li 2*[Xl)'positive ' ^r^vnegative

5. Bendat and Piersol (1986) suggested 2 statistical parameters that deal with the

distribution of the asperity heights. These are the mean square value, MSV and

the autocorrelation function, ACFzs defined by Equations 3.7 and 3.8.

'dx (3.7)

(3.8)

where f(x) = amplitude of asperity height at the distance x along the length L

Dx = constant distance lag (method therefore limited to data at equally

spaced intervals)

6. Sayles and Thomas (1977) modified the ACF to produce the structure function,

SF (see Equation 3.9) that could be used over a proportion of the profile without a

decrease in accuracy.

C (3.9)

7. Belem et al. (2000) extended several of these two-dimensional statistical

approaches into parameters that attempted to capture the three-dimensional

characteristics of roughness. They divided the roughness into 2 categories -

primary roughness that attempts to capture the anisotropy of the joint; and

secondary roughness that attempts to capture the distribution of asperity heights.

They extended the existing linear parameters Z2, RL and sinuosity index Ps

(Pikens and Gurland 1976) with their three-dimensional equivalents Z^, i?4 and

surface tortuosity Ts (measure of the degree of deviation cf the fracture surface

with respect to a mean plane) using a linear angularity parameter, Qp, and its
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three-dimensional equivalent, Qs (refer to Figure 3.2). The surface anisotropy

was quantified by a term they defined as the degree of apparent anisotropy ka

(calculated in 2 directions), and the surface relative roughness coefficient, Rs.

The surface roughness was captured by its three-dimensional mean angle, Gs, and

the parameter Z^. Definitions of these terms are given below.

°p = Zl (3.10)

(3.H)

z2s--
A 2 22L, ZJ

N,.-\NT-]L _z V+fz - 7 V

& 2

(3.12)

i?,=^,Z4n (3.13)

Ts=At/Ancos<p (3.14)

&a = geometric linear parameter along x axis/geometric parameter along y-axis

where z,-= asperity height

Nx= number of intervals in x-direction

Ny= number of intervals in y-direction

Ax = sampling interval along the x-axis

Ay = sampling interval along the y-axis

CLk = angle between the normal to the regression mean plane and the

vertical or z-axis (refer to Figure 3.2)

m = number of normal vectors from the mean plane (refer to Figure 3.2)

Lx = number of points along the x-axis

Ly= number of points along the y-axis

A,, = nominal area of the fracture surface (projection of the fracture surface

on its mean plane)
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At= actual area of the fracture surface

-1 N.-l
Z U

/=i y=i f
0= angle between the normal to a plane (defined as the plane created by

joining the 4 corners of the surface) and the normal to the mean plane of

the joint surface

Analysis of a three-dimensional surface requires the use of sophisticated

digitising equipment to be able to obtain the relevant three-dimensional data. The

processing techniques would then require computer assistance.

Actual area A,

X

|m3

y z (a)-Assembly of elementary surfaces

/ **
(b) - An elementary surface

Figure 3.2: i) Slopes and angles of a topographic profile along the x-axis

ii) Illustration of inclination angle of the elementary surfaces

(afxer Belem et al., 2000)
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Many of the above parameters attempt to describe the same property and doubts exist

about which are more appropriate. An investigation by Lamas (1996) showed that a

significant difference existed between the amplitude indices CIA and RMS.

Comparisons performed to compare these statistics with measurements of JRC (refer to

next section) also indicate poor comparisons (Lamas 1996). Many of the above methods

are also sensitive to changes in sampling interval with varying values of roughness index

calculated with minor changes in sampling interval. However the main problem with

these statistical approaches is their inability to capture the complex scale dependence of

roughness with a single statistic or small set of statistics.

Other analytical techniques such as using Fourier transforms are discussed in Section 4.5.

3.2.2 Joint Roughness Coefficient

Barton (1973) suggested a joint roughness coefficient JRC, should be used to describe

joint roughness. The JRC of a joint can be estimated by comparing it to standard

roughness profiles or more preferably through simple classification tests. He suggested a

sliding scale of roughness that varied from approximately 0 to 20. A standard roughness

chart was developed by Barton and Choubey (1977) by profiling 136 joints and grouping

their roughness profiles in the ranges 0-2, 2-4, etc. up to 18-20 and then selecting the

most typical. These profiles are shown in Figure 3.3. These standard profiles have been

accepted by the International Society for Rock Mechanics as a useful field measurement

tool of joint roughness in their Commission on Standardization of Laboratory and Field

Tests (ISRM 1978).

As visual comparison involves a considerable amount, of subjectivity, several researchers

have developed less subjective means to estimate JRC. Tse and Cruden (1979) proposed

two statistical relationships shown in Equation 3.15 and 3.16 to relate the statistical

parameters Z2 and SF to JRC (details on the determination of Z2 and SF are given in

Section 3.2.1). The relationship with Z2 was later modified to include different sampling

intervals by Yu and Vayssade (1991). However, these relationships bad to negative JRC

values at very small values of Z2 and are developed using the 100mm long standard

profiles and hence may not be representative at larger scales.

JRC=32.2+32.47Z2 (3.15)

JRC=37.28+J6.58logSF (3.16)

29



Chapter 3 Quantification of Joint Roughness

10

TYPICAL ROUGHNESS PROFILES FOR JRC

SCALE

0-2

2 - 4

4 - 6

6 -8

8-10

10-12

12-14

14-16

16-18

18-20

10 cm

Figure 3.3: JRC Roughness Profiles (digitised from Barton and Choubey, 1977)
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Lessard and Hadjigeorgiou (1998) have used artificial neural networks to estimate values

of JRC. Artificial neural networks consist of simple, highly interconnected, parallel

processing elements called nodes. An initial back-propagation neural network that

classified roughness according to 3 categories: smooth, medium and rough, was

enhanced to be able to classify according to the JRC categories. However, the quality of

the neural network is highly dependent on the database. Predictions of joint roughness

are only applicable if the roughness is similar to the profiles used in the database. As the

standard roughness charts are only 100mm in length, concerns also arise mat significant

roughness at larger scales may be ignored.

3.2.3 Fractal Method

To be able to quantify the variation in roughness with changes in scale of the measuring

interval, the use of fractals has been investigated. Fractals have been used to represent

many observations in nature such as Brownian motion, topography, flow and transport

through heterogeneous systems. Many researchers also view the fractal model as the

most appropriate way to adequately represent the scale effects of rock joint profiles.

The fractal model is based on fractal geometry, which is the geometry of "chaos theory".

This theory attempts to capture the random and chaotic characteristics of Nature.

Mandelbrot (1983) introduced the concept of fractal dimension. He recognized that

Euclidean geometrical forms such as straight lines, squares and triangles could not

represent Nature. He used the example of the coastline of Britain to demonstrate his

point. When measuring the length of the coastline, as the measuring scale is decreased;

the length is seen to increase without limit as smaller and smaller details such as small

bays, rock outcrops or even sand grains are considered. The features on the coastline are

therefore much more complex than an Euclidean line but are not so complex as to

completely fill a plane. Its fractal dimension therefore lies between that of a line, 1, and

that of a plane, 2. , ,

In Euclidean geometry if a line of unit length is divided into N segments of length /-, the

number of segments is then N=l/r1. In a similar manner, a unit square can be divided

into N squares of side length r so that N=l/r2. If a cube is considered then, N=J/r3. If

the parameter D is defined as the dimension, then:
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(3.17)

In the case of the coastline, the dimension D is fractional and greater than the topological

dimension 1. Equation 3.17 can therefore be rearranged to obtain an expression for the

fractal dimension:

D = -
log(AQ
log(r)

(3.18)

It can be recognized that although maps of a country drawn at different scales will differ

in their specific details, they have the same generic features. Mandelbrot (1983) called

this similarity in a statistical rather than geometrical sense, "statistical self similarity".

This can be compared to the exact geometrical similarity of several mathematical

constructions such as Koch's triadic island (Mandelbrot 1983).

Mandelbrot (1983) also introduced the concept of "self-affinity". A self-affine surface

must be scaled differently in the perpendicular direction to maintain'statistical self

similarity.

The roughness of rock joints can be compared with the roughness analogy of the

coastline. As the scale decreases, smaller and smaller asperities on the rock joint surface

will become visible with ultimately variations due to grain size and shape having an

effect. Mandelbrot (1985) recognized this similarity. He suggested that rock joint

surfaces were self-affine.

Various techniques have been suggested to relate the fractal dimension value to common

roughness statistics. Some of these relate the fractal dimension to the JRC (Carr and

Warriner 1987; Lee et al. 1990) whilst others relate the fractal dimension to roughness

statistics (Turk et al. 1987; Seidel 1993; Xie and Pariseau 1995).

Turk et al. (1987) estimated the relationship between the roughness angle and the fractal

dimension by assuming that the overall profile traces of asperities could be represented

by an equilateral triangle. Such that cos/ = (XLf~D where L = direct length, i = average

asperity angle, X = constant. However, the value of the constant X is estimated

empirically.

1 "I
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Xie and Pariseau (1995) used the generator of the generalized Koch curve to simulate the

roughness of a rock joint such that Z) = log4/log[2(l + costan"1 2h/L)\ where h and L

are the average height and base length of the higher order asperities.

Seidel and Haberfield (1995a) developed approximate theoretical relationships between

the fractal dimension and the standard deviation of angle of the asperities, sg, and the

standard deviation of heights, Sh , for self similar profiles. They used a similar approach

to Mandelbrot's randomization of the Peano curve. The relationships are only applicable

for self similar profiles or self-affine profiles below the cross-over length. They are as

follows:

(3.19)

(3.20)

where D = fractal dimension

L = profile length

N = number of segments of constant length used to traverse the profile using the

compass walking method (refer to Section 3.2.3.1)

These relationships rely on the distribution of chord angles being normally distributed.

This assumption of normal distribution of chord angles is investigated in Section 3.5.

3.2.3.1 Methods of Estimating Fractal Dimension

Several methods for estimating fractal dimension are available. A brief description of

these follows. Unfortunately each method provides a different estimate and as a result

has sparked considerable discussion as to the correct approach to the quantification of

roughness (eg. Brown 1987; Carr 1989; Huang et al. 1992; Lea Cox and Wang 1993;

Hsiungetal. 1995).

Spectral Method

This approach represents the height of the profile at discrete intervals as a finite fourier

series. The coefficient of each term in the series is known as its power and a plot of

power versus frequency is the power spectrum. The raw power spectrum fluctuates

significantly. Using a rectangular analysis window, the fourier transform data with
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frequency plot, indicates a leakage of power at frequencies well separated from the main

lobe of the spectral window (Bendat and Piersol 1986). To suppress this leakage

problem, the data is tapered using various tapering or smoothing techniques. There are

many types of smoothing techniques available - eg. cosine taper, Tukey, Daniall, Parzen,

Bartlett and Harming windows. Shirono and Kulatilake (1997) have recommended the

use of the Parzen window or Harming window. They rejected the other methods as they

found that they produced negative powers for some frequencies or distorted the

roughness profile when incorrect data windows were selected.

The first step in the spectral analysis method is to remove any non-stationarity. This can

be done by least squares regression. The next step is to use a tapering method. A fast

Fourier transform algorithm is then applied to the profile data to describe it as a sum of

sine and cosine waves. Squaring of the amplitude at each frequency and normalizing it

with respect to the profile length determines the power spectral density. Averaging of the

overlapping profile segments is then conducted to determine an optimal solution. If very

little averaging is conducted then the spectral density functions appear erratic whilst

excessive averaging will distort the function and lead to an erroneous fractal dimension

(Piggott and Elsworth 1995). The final spectral density function is then plotted against

the spatial frequency on a log-log plot. The slope, (5, can be used to calculate the fractal

dimension, D, such that f}=2D-5 (Brown and Scholz 1985). A log.(Amplitude) vs.

log.(Frequency) plot can also be used. However, various formulas have been estimated

to calculate the fractal dimension from the slope (Power and Tullis, 1991; Berry and

Lewis, 1980). The slope, /3, of a surface (as distinct from a line) can be estimated by

P=2D-8 (Shirono and Kulatilake 1997).

This method has been recognized as suitable to analyse self-affine surfaces (Brown 1987)

although it is not a trivial exercise due to the inaccurate estimates that can be obtained

with incorrect inputs. Several problems with this method have been highlighted:

• The smootiung techniques vary among researchers and can be used to produce

different answers depending on the window increment used. The non-stationarity of

the profiles must be removed to obtain accurate estimates. (Shirono and Kulatilake

1997)

• There are numerous fast fourier transformation algorithms that can be used that

produce different answers (Lea Cox and Wang 1993).
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• Curve fitting errors can be large due to the non-linearity of the curves (Lea Cox and

Wang 1993).

• The erratic nature of the results of the analyses requires careful interpretation (Piggott

and Elsworth 1995).

• Variations in the determination of the fractal dimension from the slope of an

amplitude plot.

• The high values often obtained for the fractal dimension using this approach

compared to others.

• Work by Huang et al. (1992) has suggested that the spectral an?' ;M cannot

accurately calculate the fractal dimension when the dimension is close to 1 (line) or 2

(surface).

The large range of fractal dimensions that have been calculated for similar joint profiles

has highlighted these problems. For example, Hsiung et al. (1995) calculated the fractal

dimension using spectral analysis for the JRC standard profiles and found their values to

be less than one (obvioualy not possible), whilst similar profiles were shown to have

fractal dimensions between 0.9 and 1.4 by Carr and Warriner (1987).

Wavelets

In more recent years the use of wavelet analysis has become pofiar in areas of signal

processing and geophysics. This analysis technique has advantages over standard fast

fourier transform techniques typically used, as it easily accepts non-stationary data and

can preserve the time information that fast fourier transforms lose. The frequency bands

of fast fourier transforms are of equal length so that there is the same frequency

resolution over every bin in the spectral plot. A wavelet transform however, breaks the

original signal into a set of logarithmic rather than equal bands. Therefore it is capable of

obtaining detailed high and low frequency information (ie. is able to handle scale effects

better). To produce a wavelet transform, an initial waveform must be selected. This

wavelet is called the mother wavelet and can be contracted or expanded to 'filter' the

data to obtain the scale of interest. The output is therefore highly dependent on the

selection of a suitable mother wavelet. Similar problems to those encountered when

using fast fourier transforms, such as the correct selection of the mother wavelet and the

amount of filtering required, can be envisaged. Although this procedure does address
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several weaknesses of the fast fourier transform approach, considerable detailed

investigation would be required for its application to rock joint roughness analysis,, This

is beyond the scope of this current work.

Compass Walking Method

The compass walking method, also known as ruler or divider method, is the oldest

method and perhaps the simplest method of determining fractal dimension. The method

can be viewed as walking a compass opened a distance r along the profile to estimate its

total length. If the profile is self similar, the log of the curve length versus the log of the

chord length, r, produces a straight line. The fractal dimension D equals one minus the

slope (Mandelbrot 1983).

Mandelbrot (1985) indicated that if the profile was self-affine, the method would only

give the correct answer if the chord length was less than the crossover length. Caution

must therefore be taken in applying this method.

There have been a considerable number of researchers who have used this approach to

estimate the fractal dimension of natural rock joints (eg. Carr 1989; Lee et al. 1990;

Wakabayashi and Fukushige 1995). Their results suggest that the fractal dimensions of

most n?itural joint profiles are close to unity using this method.

Several authors have also used the compass method to correlate the fractal dimension

with the standard joint roughness profiles (Carr and Warriner 1987, Muralha and

Charrua-Graca 1990, Turk et al. 1987, Seidel and Haberfield 1995a). A comparison by

Seidel & Haberfield (1995a) of these results indicated some differences. Possible causes

of these differences and concerns with the method are highlighted below:

• Errors due to the manual digitisation of the standard curves.

• Many different choices of step length are possible.

• Problems with the remainder section if the step length does not evenly divide into the

profile length.

• The approach is not valid for step lengths greater than the crossover length therefore

the crossover length must be. determined.

• The approach is for a line rather than a surface. The measurement of the fractal

dimension of a surface requires the averaging of many profiles and then adding 1 to
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the dimension so tbat iis range is between 2 and 3. This approach requires

verification.

Similar methods such as the Box method, where various sized squares or circles are used

to measure the length of the curve, have the same limitations as the compass method.

The compass method has been extended to include three-dimensional surfaces. This

method, called the triangular prism surface area method, is described by Clarke (1986).

It involves using equal length line segments or triangles in a grid formation. The height

of the asperities on the points of an equally spaced grid, are determined and the elevation

from 4 surrounding points so that a triangle is defined. The total approximate area can be

calculated for this grid size and successively smaller grid sizes. The fractal dimension

can be estimated from the slope of the log-log plot of the areas versus the grid size. The -

relationship between the area and the perimeter of the lines can also be used to estimate

the fractal dimension (known as the area-perimeter relation). These methods were tested

by Muralha and Charrua-Graca (1990) on sedimentary rock joints. They highlighted the

necessity for some manual operations in the area perimeter method whereas the

triangular prism method was quicker as it could be fully computerized. The size of the

grid in both methods greatly affected the answer with a finer grid obviously being

preferential.

A Fortran program has been used by the author to analyse two-dimensional data using

the compass walking melhod. This program removes non-stationarity by using the least

squares line of best fit. It also includes the remainder in the number of chord length

calculations as a fraction. It will be used to analyse various joint profiles to obtain both

fractal dimension numbers and the standard deviation of chord angle statistics.

Modified Divider Method

This method is similar to the compass walking method in that it divides the profile into

equal segment lengths. Unlike the compass walking method however, the segment

lengths are determined along the horizontal direction rather than along the actual profile.

This alleviates the remainder problem as chord lengths that completely divide into the

horizontal length are selected. If the profile is self-similar, the log of the curve length

versus the log of the chord length, r, produces a straight line. The fractal dimension D

equals one minus the slope (Mandelbrot 1983). This method is only applicable for self
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similar profiles or self-affine profiles where the chord length is below the cross-over

length. .

The modified divider method has been used by several researchers (Brown 1987; Scavia

1996) to analyse natural joint profiles and to generate profiles. Their results indicate that

it produces similar results to the compass walking method.

In this current work, a program was written in Visual Basic to analyse two-dimensional

rock joint profiles using the divider method.

Brown Method

To .analyse the profile as a self-affine curve, Brown (1987) suggested magnifying the

vertical axis by a function of the cross over length to produce a new profile that could be

analysed using the modified divider method. If the cross over length was not known, as

would often be the case, he suggested magnifying the profile height by a factor 10" until

a stable fractal dimension was reached. The modified fractal dimension (dm) can be

obtained from the slope of the log.(chord) versus log.(length) plot. The true fractal

dimension is then calculated from Equation 3.21.

(3.21)

(3.22)= 2-H

where H- Hurst exponent

The Brown method has been used by Miller et al. (1990), Brown (1995) and Scavia

(1996) in their comparison of various methods. Their results indicate that the Brown

method produces a higher fractal dimension compared to the modified divider method,

with again considerable variation with results from other methods. Vertical

magnification of profiles has also been carried out in conjunction with the compass

walking method (Miller et al. 1990; Hsiung et al. 1995). Although the fractal dimensions

produced using the compass walking method are in a similar range to those produced

using the modified divider method, they are not identical.

The Box method can also be modified for use on self-affine curves by using rectangles or

ovals to scale differently in the vertical direction.

Although this method addresses the self-affine nature of rock joints, a further source of

error is added due to the estimation of a correct vertical scaling parameter.
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hi this current work, a program was written in Visual Basic to analyse two-dimensional

rock joint profiles using the Brown method. This method is based on the divider method.

Slit-Island Method

This method involves slicing the surface horizontally to create surface contours. If the

slice is viewed at the water level, then the shapes above the water level are viewed as

islands whilst below the water level they are lakes. The perimeter and area of each island

is measured and plotted on a log.-log. plot of perimeter versus area. The fractal

dimension is calculated as 2/slope (Lea Cox and Wang 1993).

This approach has the advantage that it analyses surfaces rather than profiles. However,

it does have a problem when there are "lakes within islands" or "islands within lakes" as

shown in Figure 3.4.

Island

Lake within island Island within lake (within island)

Figure 3.4: Slit-Island method showing "island within lakes"

Variogram Method

This method involves using a variogram or semi-variogram to characterise the variability

of the asperity heights over the surface. The variogram function can be defined as the

average of the sum of the squares of the profile height differences as defined by Equation

3.23.

)-*(*.+*)] (3.23)
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Where Z{x() = the height of the profile .at location xt

Z(xt +h)= the height of the profile at location xt + h

N = the number of observations

h = the distance between two adjacent points

The fractal dimension is determined as 2-(slope/2) of the log.(variogram function) versus

log.(lag interval) plot (Hsiung et al. 1995).

This method is suitable for self-affine profiles but has two main difficulties:

• correct choice of sampling interval

• correct estimation of the slope

hi this current work, a program was written in Visual Basic to analyse several two-

dimensional rock joint profiles using the variogram method.

Roughness-Length (RMS) Method

This method was proposed by Malinverao (1990) to measure the fractal dimension of

self-affine profiles. The profile roughness is measured as the Root Mean Square {RMS)

value of the residuals on a linear trend fitted to the sample points in a window of length

w. Detrending is required to remove the effects of large wavelengths on small samples.

The RMS is therefore calculated using relationship (3.24):

(3.24)

where nw= total number of windows of length w

mt = number of points

Zj = residuals on the trend

z = mean residual in the zth window wy

The Hurst exponent, H, is measured from the slope of the log.-log. plot of rougliness of

the input series measured on a window length w (ie. RMS) versus w. In the example

shown in Figure 3.5, #=0.6. The fractal dimension is calculated from D=2-H. The
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crossover length is given as the length where the window length equalling the RMS

roughness intersects the RMS roughness as shown in Figure 3.5.

w
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i
CO

D)
O

2.3

2.1

1.9

1.7

1-5

1.3

y = 0.6057X + 0.

• \

Crossover length

1.3 1.5 1.7 1.9 2.1 2.3

Log window length w

Figure 3.5: Example of roughness - length method

The main advantage of this method over the spectral method is that it may be applied to a

series that is not uniformly spaced (Malinverno 1990). Results by Hsiung et al. (1995),

Kulatilake and Um (1999) and Malinverno (1990) have indicated a large variation in

results due to some of the problems listed below.

• Errors due to detrending.

• Inaccuracies in measuring the slope.

• Data densities of greater than or equal to 5.1 points per unit length are required.

• Window values between 2.5% and 10% of the profile length are required.

Line Scaling Method

This method introduced by Matsushita and Ouchi (1989) cau be applied to self-affine

profiles. It divides a segment of the joint profile into equal step sizes, a0, (such that the

segment length, L, equals ao times the number of steps N) and using the Cartesian co-

ordinates (Xj,yi) of these points, computes the standard deviations of x and y (denoted by

sx and sy) as shown in Equations 3.25 and 3.26 . The procedure is repeated for different

random segments of the joint profile so that data is generated between the standard

deviation and the segment length, L. These relationships are shown in Equations 3.27
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and 3.28. By eliminating the length term the relationship between standard deviation of x

andy as shown in Equation 3.29 is obtained.

"2

5*=i-
/=o

(

(3.25)

(3.26)

<: — C Tv* H 27^

sv=CxL
Vy (3.28)

^ = Cs"x (3.29)

where JC, V = sample means for x-, and j>,-.

CA-, Cy constants (can be estimated from log.-log. plots)

vx, vy are exponents (can be estimated from log.-log. plots)

H = Hurst exponent = vy/vx

C = constant = Cy/(Cxf

This method can be used to indicate whether a profile is self similar or self-affine.

Kulatilake et al. (1997) tested this method on several artificial and natural joint roughness

profiles. They found that initial preprocessing to remove global trends was required and

that the method was sensitive to the step interval chosen.

3.2.3.2 Fractal Analysis

Several natural basalt rock joints were collected from the Deer Park Quarry, near

Melbourne, Australia and several natural siltstone rock joints were collected from the

Transfield Obayashi City Link Project Burnley site, Melbourne (for properties refer to

chapter 5). The surface roughness profiles of four of these joints were measured using

the Monash Socket-Pro and analysed using two self similar fractal analysis methods - the

compass walking and divider methods; and two self-affine fractal analysis methods - the

variogram and brown methods (using divider method). Figure 3.6 shows the profiles

analysed. Visually the siltstone joint 5e is the smoothest followed by the siitstone
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bedding joint lh followed by the basalt joint 4e with the basalt joint lj appearing visually

the roughest.

Siltstone bedding joint 1h

200

Length (mm)

300 400

Figure 3.6: Diagram of analysed profiles

Table 3.1 shows the results of the analysis using the four methods. The profiles have

been listed from roughest to smoothest as assessed visually. As can be seen, the two self

similar approaches (Compass Walking and Divider methods) although not producing

identical answers, are similar. They also consistently rank the profiles in order of

increasing roughness as visually assessed. The self-afflne fractal analysis methods

produce considerably larger fractal dimensions given that the possible range must be

between 1 and 2. Of most concern however, is that the self-affine methods do not rank

the profiles in a consistent order of roughness. Their ranking also does not agree with the

ranking assessed visually.

Table 3.1: Fractal Dimension calculated using various techniques

Joint Surface

Basalt joint la

Basalt joint 4

Siltstone bedding
joint 1

Siltstone joint 5

Profile

j

e

h

e

Compass
Walking Method

1.0079

1.0078

1.0027

1.0014

Divider
Method

1.017

1.017

1.0059

1.0038

Variogram
Method

1.325

1.312

1.369

1.292

Brown
Method

1.223

1.363

1.391

1.12
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The use of fractal methods to analyse data contains many problems due to variations in

preprocessing and filtering techniques, interpretation of graphical outputs and concerns

over stationary and non-stationary data. The inconsistency in results obtained by other

researchers and the inability of various methods to even consistently rank joint profiles in

increasing roughness, has led to the author's belief that fractal methods contain too many

pitfalls for everyday use.

3.2.4 Statistical Representation

Due to the difficulties in obtaining accurate and consistent representations of joint

roughness using either the JRC, fractal theory or any of the other statistical methods, the

author has chosen to represent the joint surface roughness by a simple statistical

relationship between standard deviation of chord angle and chord length (e.g. Haberfield

and Seidel, 1999). This simple relationship can be easily determined by using the

compass walking method over a range of chord lengths. Any non-stationarity is removed

from the profile by a mathematical process such as least squares regression. This

effectively makes the overall profile horizontal. A compass is used to step across the

profile and the points of intersection are joined with a straight line. The profile is

therefore approximated by a profile of equal chord lengths. The chord length is varied to

accommodate different wavelengths of roughness. Small chord lengths accommodate

small wavelengths of roughness whilst large chord lengths accommodate long

wavelengths of roughness. For each chord length selected, the angle of inclination of

each chord is measured and the standard deviation of the chord angles calculated. As the

profile is horizontal the positive and negative chord angles have a mean of zero. The

relationship between the standard deviation of chord angle and the chord length is then

used to represent the profile roughness.

This method is shown diagrammatically in Figure 3.7. Digitisation of the profile has

been done at several different chord lengths. The smaller the digitising length, the

smaller the asperities that are captured. The graphical output shown indicates that when

smaller asperities are included a higher standard deviation of angle is calculated. This is

to be expected, as larger digitising intervals bridge many small asperities with a single

chord. The many positive and negative angles of the bridged asperities are replaced by a

single asperity angle. This decreases the standard deviation of chord angle at the larger

digitising lengths.
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1. Digitising at different chord lengths

profile

i
o
o
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-H K x

K8 x

16x

2. The asperity chord angfcs are measured for each digitised chord length

Non-stationarity removed

3. The mean chord angle and then the standard deviation of chord angle is

calculated for each digitised chord length

4. The standard deviation of chord angle calculated for each digitised chord

length can be represented graphically
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Figure 3.7: Development of standard deviation of chord angle statistics for a profile
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The relationship between the standard deviation of chord angle and the chord length can

be represented by a power function or exponential function (refer to section 3.4.4).

A downfall of this method, along with most of the described methods, is that it will only

capture the statistics of the joint profile to a portion of the sample available. For

example, a joint profile 500mm long with a global wavelength of roughness of 250mm

will not be captured in this method as the sample size of statistics generated for the

longer chord lengths is insufficient to statistically use to represent the profile. This can

be overcome if longer samples are used.

3.3 Anisotropic Surface Roughness

An anisotropic surface has some physical property that varies with direction. If surface

roughness is anisotropic, then the shear behaviour of the joint in one direction will not

necessarily match the shear behaviour in another direction. This obviously has

significant repercussions on developing a shear joint model capable of predicting shear

response.

Seidel (1993) through laboratory testing of concrete / rock joints containing simple two-

dimensional irregular triangular profiles showed that statistically similar profiles

produced similar shear responses even if not geometrically identical. This would suggest

that at least for simple two-dimensional triangular profiles, the profile could be tested in

either direction providing the statistics were the same in both directions.

Kulatilake et al. (1995) and Kulatilake et al. (1998) conducted statistical and laboratory

tests on 100-153cm diameter replicas of natural slate, sandstone and tuff joints made

from plaster of Paris, sand and water. These tests indicated differences in the peak shear

values between the forward and backward shearing direction. This was due to the non-

stationarity trend (inclination / declination) angle on the samples. They also found in the

three rock samples tested, that they were anisotropic in the six directions tested. Gentier

et al. (2000), also performed tests in four directions on granite sample replicas and found

that the shear results weie dependent on the shear direction.

Xie et al. (1999) investigated fractal anisotropy on sandstone and mudstone 20 x 20 mm2

samples using the divider method (refer to section 3.2.3.1). They found that under a
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chord length of 1.0mm the samples were anisotropic but above this chord length the

scans in four directions were similar.

The very small scale of the samples used for these previous investigations and the chord

lengths investigated, mean that differences in the crystal structure of the sample in

different planes may be being measured rather than the larger scale roughness of the

surface. The scales of interest being tested for this current work are considerably larger.

3.3.1 Anisotropy of joint samples

A visual comparison and statistical test for anisotropy was conducted on several rock

samples used in the current work. The statistical and visual comparisons were conducted

in two perpendicular directions on siltstone and basalt joint samples. Thê  siltstone

natural joint samples were obtained from the Burnley tunnel site of the Melbourne City

Link project, Victoria. The Slightly Weathered to Fresh samples of bedding joints and

joints near perpendicular to bedding, had varying amounts of pyrite and carbonaceous

coating (refer to Section 5.2.3 for siltstone rock properties). The basalt natural joint

samples were obtained from the Boral quarry in Deer Park, Victoria. The Highly to

Moderately Weathered and Moderately Weathered samples had some, limonite or

carbonaceous coating (refer to Section 5.2.4 for basalt rock properties)..

Using the Monash Socket-Pro, two-dimensional profiles were taken of the longest length

on the selected surfaces at 10mm or 20mm intervals across the samples. These

measurements were then repeated in the direction perpendicular to the original scans.

These profiles were compared visually. Using the compass walking method, the standard

deviation of chord angle statistics for different chord lengths were produced. Example

siltstone and bai b surfr^s are shown in Figures 3.8 and 3.9 respectively. The

correlation coefflc^ i if -\ '< clueen the mean statistics for the two directions have been

calculated and are list d *c Table 3.2. Tl t mo-Ĵ VA. rsional profiles together with their

three-dimensional surfaces and statistics FA* •inchsdvzd in .-> ^pendix A.

Visual comparison of the 2 dimensional profiles ;*i the 2 directions on the siltstone

samples did not indicate significant anis^repy at the scaie investigated. The basalt

samples showed some visual signs of differences in roughness particularly in sample la.

The statistical plots indicated small variations between the two directions in the siltstone

samples with typically up to 1° variation in the standard deviation of chord angle between
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chord lengths of 15 and 30mm. The difference was greater with the basalt samples with

one sample showing up to 5° difference in the standard deviation of chord angle plots

above a 2mm chord length and the other sample up to 2° difference. These results

indicate that on the samples to be tested for this current work at the scale of interest, the

effects of anisotropy, although present, are not significant with the siltstone samples

(sedimentary) but may be significant with the basalt samples (igneous).

Table 3.2: Correlation Coefficient for Mean Standard Deviation of Chord Angle

Statistics in Perpendicular Directions.

BLOCK

Siltstone 1 -bedding joint

Siltstone 1 -joint

Siltstone 2 - bedding joint

Basalt la-joint

Basalt 4—joint

Correlation Coefficient of Mean Statistics
in Perpendicular Directions

0.939

0.995

0.996

0.996

0.996

3.4 Generation of Roughness Profiles

It is useful when investigating nnd tailing methods of quantifying joint roughness, to be

able to generate profiles of know« statistics. Several methods have been suggested in the

literature. These methods are based on either using spectral synthesis techniques or

various modifications of the midpoint displacement method.

3.4.1 Spectral Synthesis

This method described by Saupe (1988) uses spectral synthesis to produce roughness

profiles using the inverse Fourier transformation. A series of real random variables Ak

and Bk are generated under the constraint shown in Equation 3.30.
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Figure 3.8: Comparison between siltstone profiles in perpendicular directions
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Figure 3.9: Comparison between basalt profiles in perpendicular directions

50



Chapter 3 Quantification of Joint Roughness

± (3.30)

where k = frequency

P = spectral exponent = 2*Hurst exponents-1

_l
Ak=k 2 (Gauss) cos(2n:(Rand)) = real part

I
Bk=k2 x(Gauss) sin(2K (Rand)) = imaginary part

Gauss = Gaussian random variable with mean zero

Rand = uniform random variable in interval [0,1]

The inverse Fourier transform can then be computed to obtain Xby using Equation 3.31.

AT/2

X(x) = ^T (Ak cos kx + Bk sin kx) (3.31)
k=\

This method can be used to generate two-dimensional profiles or tliree-dimensional

surfaces (Saupe 1988). In this current work, a program was written in HPVee (Helfel

1988) to generate two-dimensional profiles using this method.

Fox (1987) also suggests an algorithm to generate profiles using spectral synthesis. This

method differs from Saupes's method in that the random numbers are normalized to vary

between n and -it compared to 0 and 2K. The frequency, k, is also normalized to the

profile length in the Fox method and not in the Saupe method. This last variation

produces a large scaling difference in the resulting profile. Fox's program, written in

Pascal, was run to generate two-dimensional profiles using this method. As could be

expected there were large scaling differences between the profiles produced using Fox's

program and that written using Saupe's method. :,

The spectral method has one main problem in that Fourier transforms generate periodic

samples. This means that it is necessary to generate very large data files but only use a

portion of the data points (Saupe 1988).
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3.4.2 Random Midpoint Displacement

Mandelbrot (1983) described the technique of midpoint displacement. The method

involves dividing a chord of any length into a number of segments, N, and displacing

them perpendicularly at randomly chosen heights or angles. This process is then

repeated a number of times until the desired fractal profile is achieved.

Seidel (1993) suggested a midpoint displacement according to a Gaussian distribution.

He showed that a Gaussian distribution of roughness heights was dependent on the fractal

dimension and number of segments (as discussed in Section 3.2.3). This could be related

to the standard deviation of chord angles. Therefore a profile of a predetermined fractal

dimension could be generated by input of the standard deviation of chord angle and the

number of segments. This would generate a self similar profile.

To lessen the effect of the initial displacement on the overall profile, Seidel modified this

method by initially deflecting a series of equal length chords by normally distributed

angles generated randomly from a normal distribution with a specified standard deviation

of angle. The generated profile is then rotated so that it starts and finishes at zero to

remove the non-stationarity. As the profile is long in relation to the chosen chord length,

this rotation only has a very small influence on the large scale roughness angles of the

profile. The midpoint displacement method is then used on each of these chords. This

method is shown diagrammatically in Figure 3.10. The initial chord length is viewed as

the crossover length. This method can also be used to generate overlying wavelengths in

the profile.

For this current work, a Visual Basic program was written to generate fractal profiles

using Seidel's modified midpoint displacement method.

Saupe (1988) and Founder et al. (1982) have suggested a midpoint displacement method

that takes into account the self-affine nature of a rock joint profile. They require the

input of the Hurst exponent and the initial standard deviation of asperity height. These

methods calculate the fractal dimension using Equation (3.22). For this current work, a

Visual Basic program was written to generate profiles using the method suggested by

Saupe (1988). Based on work by Seidel and Haberfield (1995a), the fractal dimension is

influenced by the standard deviation of chord angle. The profiles produced by this

method therefore appear dependent on ihe. initial chosen standard deviation of asperity

height.
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STAGE 1
Divide line into chords

STAGE 2
Displace chords

STAGE 3
Rotate back to baseline

STAGE4
Displace midpoints

Figure3.10: Modified Midpr.y.\ \)\-yl

3.4.3 Successive Random Addi,

This method is very similar to the Midpoint Displace:>uit Method. A standard deviation

of asperity height is selected to generate a series of lengths that are used to displace each

midpoint. However, to remove non-stationarity problems, all of the intersecting chords

along the profile are displaced by a height taken from the series and not just the midpoint

(Voss 1985; Saupe 1988).

3.4.4 Modified Midpoint Displacement Method using a Power

or Logarithmic function

Whilst attempting to generate roughness profiles using the various methods described

previously, several problems with the methods were encountered. The spectral method

required the use of complicated fast fourier algorithms, generating large volumes of data

that were not used and did not consistently capture the longer and shorter wavelengths.

The midpoint displacement method as suggested by Saupe (1988) failed to generate the

desired statistics as the dependence on the initial standard deviation of chord angle

selected was not considered. The modified midpoint displacement method as suggested
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by Seidel (1993) did not consistently capture both the longer wavelength roughness and

the shorter wavelength roughness.

As a result a new method of generating profiles was developed. This method uses

statistics from real rock joint surfaces to generate profiles. This allows an existing

surface to be regenerated. Details of the method are as follows:

• To obtain the statistics of the joint surface, several profiles of the surface are taken.

At several chord lengths the standard deviation of chord angle are calculated for each

profile using the Compass Walking Method to divide the profile into different chord

lengths. By averaging the standard deviation of angle at each chord length of all the

profiles, a mean standard deviation of chord angle for each chord length is calculated.

• By profiling several natural siltstone and basalt joints obtained in Melbourne (details

discussed in Chapter 5) using the Monash Socket-Pro, it was found that most of the

natural joint surfaces were well described by a power function. However, several

. were better described by a natural logarithmic function. A complete set of graphs

showing either a power or logarithmic description of the mean statistics, are shown in

Appendix E. The mean statistics of a basalt joint and 2 siltstone joints are shown in

Figure 3.11 together with a power function approximation of each.

• These graphs (and the graphs included in Appendix E) indicate that for the samples

tested at longer wavelengths (typically around 20-30mm) the standard deviation of

chord angle becomes relatively constant. This enables the surface to be regenerated

via the Modified Midpoint Displacement method (refer to section 3.4.2). The chord

length at which trie standard deviation of angle becomes relatively constant is selected

and input as the initial deflected chord length in the Modified Midpoint Displacement

method with the corresponding standard deviation of chord angle used to determine

the chord angles.

• After non-stationarity is removed, the Equation describing the mean standard

deviation of chord angle statistics is used to determine the standard deviation of chord

angle to be used with each new chord length as the Midpoint Displacement Method is

implemented.

This method captures all the roughness wavelengths up to approximately 25% of the

sample length. This length corresponds to the maximum chord length analysed to

determine the standard deviation of chord angle statistics.
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This process is illustrated by regenerating siltstone joint 1 (shown in Figure 3.11). Below

a chord length of 20mm the mean standard deviation of chord angle statistics of this

surface are approximately 1°. To generate a profile 460mm in length, twenty-three

20mm chords are deflected by angles that are selected according to a Gaussian

distribution with a standard deviation of 1° and mean of 0°. After this generated profile

has been adjusted to remove non-stationarity, the power Equation, Standard Dev. Angle

= 4.8323 x {chord length)'045*4, is used to select the standard deviation of chord angle to

be used at each midpoint generation. For example, at the first midpoint generation, the

20mm chords are halved to a new chord length of 10mm. The midpoint will therefore be

rotated anticlockwise by an angle determined using a Gaussian distribution with a

standard deviation of angle = 1.68° and a mean = 0°. This midpoint procedure is repeated

until the desired final chord length is achieved.

Several example reproductions at final chord lengths of approximately 3-4mm are

compared with a centre profile from the original split surface in Figure 3.12. The

surface's standard deviation of chord angle statistical plots are also shown. Several plots

of natural siltstone and basalt joint standard deviation of chord angle statistics and the

statistics of a reproduced surface are included in Appendix E.

This method appears to successfully regenerate a statistically similar profile that falls

generally within the statistics of the surface. However, as discussed in Section 3.2.4 this

may not represent roughness wavelengths greater than that statistically analysed, in this

case 60mm.

This statistical regeneration method will be further verified in Chapter 7 on artificial rock

joints and with some laboratory testing.

3.5 Distribution of Asperity Chord Angles

If a rough joint profile is to be described by a series of chord angles (or the standard

deviation of these chord angles), then it is of interest to know the distribution of these

chord angles. Likewise in all of the generation methods it is necessary to determine an

appropriate distribution to generate asperity angles or heights. As the modified midpoint

displacement method using a power or logarithmic function w : r ~: used to generate

profiles in this current workj an appropriate distribution to select asperity chord angles is

required.
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Figure 3.12: Comparison of Regenerated profiles and the original joint surfaces

Reeves (1985) in his quantification of rock surface roughness, assumed a Gaussian

distribution function for surface asperity heights. He believed that this was a reasonable

assumption for natural rock surfaces, although manufactured surfaces may have a skewed

distribution. Similarly Seidel (1993) based his relationships between standard deviation

of asperity height and fractal dimension on a Gaussian distribution of chord angles.

Lanaro (2000) demonstrated that the standard deviation of the asperity heights for his

samples had a Gaussian distribution.
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Fournier et al. (1982) used a Gaussian distribution to generate profiles using the midpoint

displacement method. Several other researchers have used Founder's method to generate

profiles (Brown 1987; Kulatilake and Urn 1997; Shirono and Kulatilake 1997).

Digitised joint profiles from natural siltstone and basalt joints (refer to properties in

Chapter 5) were analysed to verify whether a Gaussian distribution was appropriate. The

results of this analysis are presented in Appendix E. Initially tests were conducted with

distributions grouped in 5° intervals at several chord lengths. These distributions showed

excellent bell shaped distributions that centre on a zero mean to chord lengths of

approximately 2mm. For longer chord lengths, the distribution was not as well defined

due predominantly to the small sample size. An example distribution taken from a

siltstone bedding joint is shown in Figure 3.13 at 0.14mm, 0.5mm. 2.0mm chords and

8.0mm chord lengths. For greater accuracy, several distributions were grouped in

intervals of 0.1°.. With this interval, Gaussian distribution checks could typically be done

to a chord length of approximately 6-8.0mm. Beyond this chord length, due to the size

of the samples, the number of values in each frequency interval was again too small to

use accurately. The distributions again appeared to be normally distributed especially at

the smaller chord lengths. The distributions were less well defined as the sample size

became smaller. An example distribution taken from a siltstone bedding joint is shown

in Figure 3.14.
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Figure 3.13: Siltstone Bedding Joint - all profiles at 5° bins
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Base:! on these results it appears likely that the assumption of a Gaussian distribution is

valid. Very large samples would be required to further validate this assumption at longer

chord lengths.
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Figure 3.15: Chord angle distribution for successive chord bisections (after Seidel and

Haberfield 1995a)

In the midpoint generation technique, each new bisection superimposes a new Gaussian

distribution on the previous Gaussian distribution. Seidel and Haberfield (1995a)

showed that the superposition of several bisections produced a net Gaussian distribution.

However the standard deviation of chord angle increases with each successive bisection.

This is shown in Figure 3.15 and can be described by the Equation 3.32.

sBj!=y[ksgA (3.32)

where: k = bisection number

e(t = standard deviation of chord angle for the kth bisection
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3.6 Summary

To analyse the shear response of a rock joint, it is first necessary to quantify the joint

roughness.

There are several roughness measurement techniques that can be used to reproduce

information about the surface. Recently the use of laser profilometry has become the

most popular due to the high level of detail that can be obtained in only a few minutes of

work. The current project uses a laser profilometer that was designed to measure pile

socket roughness. Considering that the spot diameter is 3mm, the precision of this device

can be considered to be approximately 3mm. However, calibration tests conducted using

the laser profilometer on a machined stepped profile indicated a greater accuracy of

approximately ±0.75mm. Laser readings were taken at approximately O.lnim intervals

for this current research to increase the confidence in the profile.

Once a digitised profile is obtained there are many techniques available to describe the

roughness in quantifiable terms. These techniques have been shown in this research and

by others to produce varying and inconsistent results. Therefore, for this project, joint

roughness is quantified using the standard deviation of chord angles for a range of chord

lengths. The standard deviation of chord angles is calculated using the compass walking

method. The "relationship between the standard deviation of chord angles and chord

length can be presented graphically or via a power or logarithmic function. This

approach is able to fully quantify the roughness over a range of scales, is independent on

the fractal nature of the profile (self similar or self-affine) and can be used to

mathematically regenerate the profile using the Modified Midpoint Displacement

Method.

As a tool for analysis it is often useful to be able to generate profiles of known statistics.

Several approaches have been proposed by various authors all of which have been shown

to have significant problems. A new approach combining the Modified Midpoint

Displacement method with a mathematical Equation of the standard deviation of chord

angles for various chord lengths has been adopted in this research. This approach has

been shown to adequately represent all wavelengths of joint roughness, hi the statistical

replication of an existing joint profile, the method is only limited by the length of the

digitised profile.

I

|
[
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< r

In this current work, several generated profiles were cut into rock samples. Both the

random midpoint displacement method (refer to section 3.4.3) and the modified midpoint

displacement method using a power or logarithmic function (refer to section 3.4.4) were

used. The joints formed were then tested in direct shear to provide data on the validity of

representing three-dimensional roughness with two-dimensional profiles. The results of

this testing are presented in Chapter 7.

62



4.0 HISTORICAL REVIEW OF ROCK

JOINT MODELS

It is widely accepted that to determine the strength of a rock mass an understanding of

the complex behaviour of the individual rock joints is required. During the past 3

decades, extensive research has been conducted on the behaviour of rock joints under the

application of a shear load. Much of this work has centred on empirical approaches. A

summary of the more significant aspects of this research are given in the following

sections.

A detailed outline of the theoretical approach being developed at Monash University is

discussed in Section 4.5. This approach was initially developed for concrete / rock joints

on pile rock sockets. Most of this work therefore concentrated on the joint response

under constant normal stiffness conditions. Initial investigations (Fleuter 1997;

Haberfield and Seidel 1999) have highlighted the similarity between this approach and

the behaviour of natural rock joints. The aim of this current work is to develop a

theoretically based model to predict the performance of three-dimensional rock joints in

direct shear. Through adopting a theoretical basis, the model should be applicable for a

range of joint roughness, rock types and boundary conditions.

4.1 Pattern's Bilinear Model

According to the classical law of Amonton, the shear resistance, x, is related to the

normal stress, c?n9 and the coefficient of friction, \i, by the following relationship:

(4.1)

and H =

T=flGn

where 0=friction angle of the material

Patton (1966) investigated the mechanism of shear failure of rock joints by inspecting

over 300 slopes in the Rocky Mountains, performing laboratory sliding friction tests and

conducting direct shear tests on synthetic rock profiles. This work.is significant in that it

highlights the importance of asperities in the shearing resistance of the rock joint and

adds to the classical law by Amonton.
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His laboratory shear tests were performed on synthetic rock made from Plaster of Paris

and either quartz sand or kaolinite. Various moulds with inclined saw toeth (asperities) at

25°, 35°, 45° and 55° were used, with the final sample produced being 2.95 inches

(74.93mm) long, 1.75 inches (44.45mm) wide and 2.0 inches (50.8mm) high. The

samples were then tested under constant normal load conditions.

In the laboratory shear tests, two modes of failure were observed -

• failure by sliding

• failure by shearing through the asperities.

The relative amounts of each type of failure were shown to be dependent on the asperity

angle and the normal stress. For a normal stress ((?„) less than the transition stress (<7r),

the shear stress (T) is determined by sliding at the basic friction angle (fa) and the

asperity inclination (/)• Above this transition stress, shearing through the asperities

occurs. This is represented graphically in Figure 4.1.

!• "I

\

C/3

T
i

x =

77777/7/77/7/

Specimens with irregular
surfaces

. . - • - • • •

X , L

Specimens with flat surfaces

Normal stress,- cn

Figure 4.1: Patton's Bilinear failure Model (after Patton, 1966)
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Pattern demonstrated with his laboratory work that the joint cohesion value, c,- is

dependent on asperity geometry and strength. It would therefore be difficult to predict

for real joints.

Although this model highlights two basic mechanisms of rock joint behaviour, it is

simplistic in that real rock joint surfaces are irregular, comprising many different asperity

angles. Patton recognized that with various angles, sliding and shearing could occur

simultaneously producing curved failure envelopes rather than linear responses.

However, his approach treats sliding and shearing as two distinct meci;, :nisms.

4.2 JRC-JCS Mode!

Given the non-linear failure envelopes of natural rock joints, Barton (1973) believed

empiricism was required to predict the shear strength of rock joints. He proposed the

empirical relationship shown in Equation 4.2 based on direct shear tests on over 200

artificial tension fractures.

= cr,, tan Ji?Clog10,
JCS

(4.2)

where, T= peak shear strength

crn= effective normal stress

JRC = joint roughness coefficient

JCS = joint wall compressive strength

(pb = basic friction angle

The Equation is similar to the Patton sliding model with the dilation angle,

/=JRClog,0(JCS/<7,,) (4.3)

The JRC, as discussed in Section 3.2.2, represents a sliding scale of roughness that varies

from approximately 0 to 20. The standard roughness chart developed by Barton and

Choubey (1977) is shown in Figure 3.3. These standard profiles were later adopted by

the International Society for Rock Mechanics and together with the empirical

relationship, suggested as a useful method to estimate the peak shear strength in their

Commission on Standardization of Laboratory and Field Tests (ISRM 1978).
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The JRC can be estimated by comparison with the standard profiles. This is obviously

quite subjective. A number of other methods have been suggested in an attempt to

decrease the subjectivity:

• Perform a Tilt Test, Pull Test or Push Test (Barton and Choubey 1977). A tilt test is

conducted by tilting a matched joint until sliding just occurs. It corresponds to a

shear test under very low normal stress. It can only be conducted on joints that are

not excessively rough (JRC<8). A Push test is conducted by using a calibrated spring

or hydraulic jack to push the top joint surface parallel to the joint face to measure the

shear stress. As with the tilt test, the normal load is generated by the weight of the

block and JCS and (j>b are estimated for the rock surface. It can be conducted on joints

with an estimated roughness JRC<12. A Pull Test is required for rougher joints and

is conducted by using a calibrated spring or hydraulic jack to pull the top joint surface

parallel to the joint face. To obtain an accurate result, the average of a large number

of tests is required. Large samples are also required for rough surfaces (Barton and

Choubey 1977).

• Estimation of a statistical correlation between JRC and two roughness parameters -

root mean square and the mean square of the first derivative of the profile - were

estimated from digitised profiles by Tse and Cruden (1979). Further roughness

parameters have been correlated with JRC by several authors since this time (Dight

and Chiu 1981; Reeves 1985; Maerz et al. 1990; Yu and Vayssade 1991). Although

several parameters describe the same property, the differences in the calculated values

of JRC reflect the uncertainty in correctly choosing the correct parameter together

with variations due to correct choice of a sampling interval.

» Determination of a fractal dimension and correlation of this with the JRC. There

have been several correlations by various authors (eg. Carr and Warriner 1987; Lee et

al. 1990). However, a uniform method of measurement has yet to be adopted with

variations in the fractal dimension recorded for each fractal approach. Seidel and

Haberfield (1995a) have indicated that when using the mid-point displacement

procedure a direct correlation exists between the standard deviation of angle and the

JRC.

During laboratory testing, joint surfaces can become mismatched.. Mismatching will

affect the normal closure of a joint, the measured stiffness of the rock mass, the shear
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strength of the joint and its hydraulic conductivity. Further work by Zhao (1997) has

included a joint matching coefficient (JMC) to be used with the JRC to take into account

mismatching of the surface. The JMC is based on the percentage of joint surfaces in

contact through primarily visual inspection.

The JCS is equal to the unconfined compressive strength (UCS) of the intact rock if the

joint is unweathered. Weathering of the joint may reduce the UCS by up to 75%, (Barton

1973). The JCS value can be calculated in the laboratory or estimated in the field using a

Schmidt hammer. This approach is detailed in Section 2.2.4 together with concerns

regarding its accuracy. Empirical reduction factors for JCS are suggested by Barton and

Choubey (1977) to take into account scale effects and difficulties associated with its

measurement.

Laboratory testing by Pratt et al. (1972) on the scale dependency of rock joints, indicated

approximately 40% drop in the peak shear strength with an increase of surface area from

60cm2 to 5000cm2. This occurred with an apparent four-fold reduction in JCS. With

these results and a series of their own laboratory tests, Bandis, Lumsden and Barton

(1981) recognized that an increase in sample size reduced the effective roughness and

increased the contact area of the asperities. This was most noticeable with rough joints.

To take this into account, scale correction formulas were empirically estimated for JRC

and JCS to be used with the JRC-JCS model (Barton and Bandis 1982).

The peak shear stiffness and dilation angles can be empirically predicted (Barton and

Choubey 1977). However, shear test results have indicated that during shear

displacement, asperity failure can occur altering the asperity angles. For this reason, a

further empirical damage coefficient has been estimated to model the "mobilized

dilation" (Barton and Bandis 1990).

The JRC-JCS model, designed initially for CNL conditions, has been adapted and used

by Skinas, Bandis and Demiris (1990) to model CNS conditions by utilizing the

"mobilized dilation" component of the model.

The widespread use of JRC-JCS model by the geotechnical community and the

acceptance of the approach by the ISRM, is an endorsement of the ease of use of the

method. Its empirical nature however does generate several problems:

• Determination of JRC is either subjective if visual comparisons are used, or due to its

scale dependency, potentially inaccurate.
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K '

The failure mechanisms are not identified or accurately modelled.

The heavy reliance on correction factors introduces uncertainty in the model that may

lead to the imposition of higher factors of safety than necessary.

Concerns on the applicability of the method to all rock joints.

4.3 Ladanyi & Archambraut's Model

Ladanyi and Archambault (1970) attempted to extend Patton's bilinear model to account

for simultaneous sliding and shearing of rock joint asperities. They used energy

principles similar to work conducted by Rowe (1962) for sand, to derive their Equations.

They considered that the total shearing force comprised four components:

51 = component due to external force done in dilating against the external normal

force, N

= Nv, where v is the rate of dilation at failure, defined as the ratio between the

increments of the normal displacement (dy) and the shear displacement (dx) at

failure.

52 = component due to additional internal work done in friction due to dilatancy

= Sv tan (f)u, where (j)u is the sliding friction angle, S is the shear force

53 = component due to work done in internal friction if the sample does not change

volume during shearing.

= Ntan(f)u

54 = component due to shearing through the base of the asperities

= Aso+NtanQo, where s0 and <p0 denote the Coulomb shear parameters related to

the strength of the rock substance and A is the total projected area of shearing.

To include simultaneous sliding and shearing, Ladanyi and Archambraut defined the area

over which asperities sheared as area As with sliding occurring over the remaining

portion (A- As). The total shear force could then be written as:

S = (Si + S2 + S3)(l-as) +S4as (4.4)

Where as = shear area ratio = As /A
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Due to the difficulty in determining the Coulomb shear parameters s0 and (j>0, the intact

rock shear strength was estimated using a parabolic failure criterion proposed initially by

Fairhurst(1964):

n Co
(4.5)

Where: • n = ratio of uniaxial and tensile strength of solid rock = Co/(-To)

m =

The proposed shear strength envelope can then be written as:

(7(1 - a.v)(v + tan <jk,) + asCo
m - 1

n
+ ncr/Co)

(4.6)

The rate of dilation, v , was initially determined empirically using the results of Ripley

and Lee (1961), but was later modified to include further empirical data from Barton

(1971), Rengers (1970) and Archambault (1972) (referenced in. Ladanyi and

Archambault (1980)) and reported in Ladanyi and Archambault (1980) as the following

power laws:

v =

0.75

'.<Tl-75

1-
|

(4.7)

(4.8)

where, GT = transition pressure

rj = degree of interlocking

Saeb (1990) attempted to modify the Ladanyi and Archambault model by comparing it to

the stress dilatancy theory of sand. He proposed replacing the total force, S, in the force

component due to the additional work in friction due to dilatancy, with a shear force

required for sliding S>. Although this simplifies the Equation, it does not improve the

overall effectiveness of the model.
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Although introducing combined concepts of shear failure of asperities and dilation, the

Ladanyi and Archambault model contains several shortcomings:

• Several authors have estimated the transition pressure of the rock material, GT, (e.g.

Byerlee 1968; Mogi 1964; Goodman 1980). The results of this work have indicated a

range of possible oT values. Celestino and Goodman (1979) have also suggested that

this pressure may not be'a fundamental property of the rock but may depend on the

asperity geometry.

• The parameters v and as are empirically determined. Their accuracy therefore

depends on the quality of the data used for their prediction.

• The interlocking factor 77 is difficult to predict and adequately represent the statistical

nature of roughness.

• Celestino and Goodman (1979) demonstrated that the model is kinematically

incorrect using a simple irregular triangular profile with two asperity angles. The

Ladanyi and Archambault model assumes a dilation rate equal to the -average angle of

the asperities. Celestino and Goodman showed that the rate of dilation of the joint

should be equal to the tangent of angle of the shallower angle whilst the steeper angle

undergoes shear. In this case the stresses on all the asperities will not be constant.

• Trie model is based on an assumption of rigid asperities. Seidel and Haberfield

(1995) have indicated that the assumption of rigidity underestimates the available

sliding friction strength. Like Celestino and Goodman (1979), Seidel and Haberfield

believed that the assumption of the equality of the joint dilation rate and the effective

joint asperity angle was incorrect. They demonstrated that the shear strength of

elastic rocks were dependent on individual asperity angles and the distribution of

normal stresses on these asperities.

• The model does not accurately predict the shear strength of degrading materials.

These materials have an elastic and an inelastic component that cannot be represented

by the Ladanyi and Archambault joint dilation rate (Seidel and Haberfield 1995).

• The model is also limited to constant normal stress boundary conditions.

it
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4.4 Seidel - Haberfield's Model

The Geotechnical Group at Monash University have been researching the performance of

rock socketed piles for over 25 years. This work has concentrated on developing a

theoretical approach to the behaviour of the concrete / rock interface during shear. This

model uses the energy principles adopted by Ladanyi and Archambault (1970) but is

based on a more fundamental approach without the use of empiricism. Initial testing was

conducted under CNS conditions on regular triangular asperities (Johnston and Lam

1989). This was later extended into irregular triangular profiles (Haberfield 1987;

Kodikara 1989) and then fractal profiles (Seidel 1993).

It was '"^nsidered that the model developed for concrete / rock interfaces could be

extended -jrAo rack joints. Initial testing on triangular and fractal profiles on a synthetic

siltstone, Johnstone, and Hawkesbury Sandstone has suggested that the main mechanisms

of shear behaviour are consistent across the two joint types (Fleuter 1997). Details of the

model are given in the following sections.

4.4.1 Sliding Mechanism

If rock joint asperities are rigid, shear displacement would cause dilation on the steepest

asperity and the other shallower asperities would be lifted out of contact. However, if the

asperities are elastic, the sample can deform allowing some shallower asperities to

remain in contact.

As discussed in Section 4.3, the Ladanyi and Archambault model for regular triangular

asperities contains 3 components that relate to the sliding process ie. Sl,SZiS3. If the

asperities are not rigid, but are elastic and hence undergo an elastic deformation, then the

amount of dilation against the normal force is reduced from dy to (dy-de) as shown in

Figure 4.2 (Seidel and Haberlield 1995).

As the relative movements between opposing surfaces remain unchanged, S2 and S3 are

the same as for the rigid asperity case. The component Sr however, is reduced by the

amount of reduced dilation ie. from dy to (dy-de). This decrease in work in dilating

against the normal force (N) is balanced by the additional work required to increase the

internal strain energy (dU) (i.e. dU=Hde) .mch that:
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(4.9)

Laboratory shear tests by Seidel (1993), Fleuter (1997) and Gu (2001) on regular

triangular asperities have confirmed this elastic model.

_ N(dy-de) Nde Ar i .
1 dx dx

S2 =tanztan0H

(4AQ)

S3 =

= Sl+S2+S3 (4A3)

Figure 4.2: Deformations due to elasticity (after Seidel, 1993)

m

For elastic surfaces with multiple asperities of varying angle, sliding can occur on not

only the critical asperity but also on sub-critical asperities. Seidel (1993) and Seidel and

Haberfield (1995) illustrated that 5,, the component due to external force done in

dilating against the normal force N, remains unchanged. The component 5*3,

representing the work done in internal friction if the sample does not change volume in

shear, also remains unaffected. However the component S2, which is the additional

work done in friction cine to dilatancy, is reduced due to the decrease in the relative

amount of dilation. This is illustrated in Figure 4.3. For an elastic rock joint profile with

n asperities with a critical asperity slope of ic and a dilation rate of v < tarn' then :

./=«
(4.14)

where A is the total joint contact area and the n individual asperities of slope ij have

contact areas aj and local contact stresses onj.

With degradable rock types such as sandstone and calcarenite (the latter's structure may

also collapse), sliding can also cause degradation of the joint surface. This degradation is

inelastic with energy being lost. Seidel (1993) showed that this reduces the amount of

relative dilation movement. If the current dilation rate is written as v then S2 can be

rewritten as:

S2 =,Sv (4.15)
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dx dx
S2 = (4.17)

(4.19)

Figure 4.3: Sliding on subcritical asperity slopes (after Seidel, 1993)

Therefore the total shear stress due to sliding can be represented by the following

Equation:

(4.20)
(l-vtan^J

In practice deformations will comprise both elastic and inelastic components. Therefore

in order to predict the response of degradable materials the elastic and inelastic

components must be computed individually. Details on suitable methods to calculate

these deformations are given in the following sections.

4.4.1.1 Elastic Deformations

It was recognized by Haberfield (1987), Kodikara (1989) and Seidel (1993) that to

accurately model the deformation of each asperity, it would be necessary to not only

acknowledge the distribution of stresses foi the asperity being modelled but also the

distribution of stresses on the surrounding asperities. To model a finite loaded area on an

elastic medium of finite depth, would require complex numerical techniques such as

finite element models. Therefore, an analogy of a footing at the surface of a finite elastic

medium underlain by a rigid base was adopted (Haberfield 1987).

hi analysing concrete / soft rock interfaces Seidel (1993) suggested modelling the elastic

deformation of each asperity using the Steinbrenner (1934) solution for approximating

the settlement of footings under the application of a load. This approach has been widely

used to estimate settlements under the corner of a uniformly loaded rectangular area.

Settlement of points within the uniformly loaded area and outside the area can be

determined by algebraic summation. The Steinbrenner solution enables the deflection of

73



Chapter 4 Historical Review of Rock Joint Models

any asperity due to the load on any other asperity to be estimated by the construction of a

compliance matrix. As the individual loads on each asperity are not known, the loads are

calculated by the inversion of the compliance matrix io give a stiffness matrix which

relates the load on any asperity to the displacement of the other asperities. Rather than

performing an inversion, the process of LU-Decomposition (converts the compliance

matrix into equivalent Lower and Upper tri ingular matrices (Press et al. 1990)) is used to

more simply determine the stresses. The use of the Steinbrenner method is explained in

detail in Seidel (1993).

In the analysis of rock joints, the material on each side of the interface is elastic and has

the same elastic properties. This means that the net elastic sample dppth, D, cannot be

simply determined by the summation of the upper and lower halves using the

Steinbrenner approach, due to the non-linearity of the influence factors with depth.

Instead it is necessary to consider separately the material on each side of the interface.

This is complicated by the interaction between the upper and lower face superimposing

additional compatibility and equilibrium requirements.

Fleuter (1997) suggested a combined interface approach where the deformations of the

interface halves are combined as a composite material. Figure 4.4 illustrates the

displacement profiles due to the stress on the ith chord for two compressible interface

halves.

I

Figure 4.4: Displacement profiles due to stress on the /th chord for two compressible

interface halves (after Fleuter, 1997)
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An effective modulus, Eejf, effective influence factors, 1^, and a total depth of

compressible material, Dr can be determined using the following Equations:

DT=D]+D2 (4.21)

DXE2+D2EX

XJiDT \XJi Ex

£L+I EL
2ji E

(4.22)

(4.23)

The effective compliance matrix, \Cejj\, is obtained from the multiplication of the

effective influence factors by (Dj-1 Eejj). This represents the relative influence of stress

on any asperity face on the displacement of any other asperity face as shown in Equation

4.24. The effective stiffness matrix, [Kejj\, is obtained by the inversion of the effective

compliance matrix in order to obtain the stresses as a function of the chord displacements

(ie. Equation 4.25).

[p] = [Q^[a] . (4.24)

[a] = [Keff] [p] (4.25)

The settlement on the /th chord can be calculated by the summation of the individual

settlements of chords i-k to i+lc for both sides of the interface. This is shown in Equation

4.26 and 4.27. Individual chord displacements can be determined using Equation 4.28.

(4.26)

(4.27)

(4.28)

j=i-k

where

Pr,=

PI

x — shear displacement

a; = angle of the ith chord

\\f = dilation

/+*

j=i-k

= jrtana,

GtDT

-v
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In a rock joint shear, test conducted in this project, the depth of each interface half is

approximately the same. The modulus of the material on each side of the interface will

also be equal and as the material properties are the same the influence factors will also be

identical. This means that Dj = D2,E] = E2. and //,-,• = /#,-. Equation 4.27 can therefore

be simplified to produce Equation 4.29.

/+*
(4.29)

]=t-k

4.4.1.2 inelastic Deformations

Laboratory work by Seidel (1993) on Gambier Limestone (a calcarenite composed of

angular bioclastic cemented grains) and concrete interfaces, demonstrated the inelastic

component of shear strength during sliding. Under constant normal stiffness conditions,

the normal stress on the interface is dependent on the cumulative degradation of the

interface as this reduces the net dilation. To estimate the extent of the energy loss it is

necessary to determine the instantaneous degradation rate and integrate this with respect:

to shear displacement to determine the cumulative degradation. The degradation rate was

also found to be dependent on the asperity angle during laboratory testing on

Hawkesbury sandstone artificial joints by Fleuter (1997). The following normalized

degradation rate has been proposed:

2., (4.30)

where dy = incremental degradation

dx = incremental shear

i •- asperity angle

GH = normal stress

Further work by Gu (2001) has investigated the wear rate of sandstone / concrete

interfaces. Gu (2001) through laboratory testing determined a wear angle, w, which is

dependent on asperity angle (a), constant normal stiffness (K) and initial normal stress

(ano) as shown in Equation 4.31.

w = a[(lx\0-nK2- lxl0-7K +0.0004)*: + (0.0002 - 6xlO"8CTno)ano-0.02 (4.31)

t i l
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Although this is an empirical relationship, it is based on a more rigorous and physical

treatment of the wear process than previous approaches. Gu (2001) tested this model on

sandstone / concrete interfaces and limestone / concrete interfaces and obtained

reasonable agreement with laboratory results.

The additional deformation due to wear, dw, can then be incorporated into the shear

behaviour model as shown schematically in Figure 4.5. Shear component Sj is reduced

by a non-recoverable amount as shown in Equation 4.32. Shear component S2 is also

reduced as the relative dilation is reduced as shown in Equation 4.33.

s
W '

N j /

1
dw
de

t
t
dv
ay

dx

Figure 4.5: Deformations due to wear (after Gu, 2001)

N(dy-de~dw) Nde N{dy-dw) .. ,
— ^ '-+ = —±-£ = N tan(a - w)

dx dx dx
S2 = S tan(a-w) tan<()u

(4.32)

(4.33)

4.4.2 Asperity Failure Mechanism

Observation of time-lapse videos of the shearing process of regular triangular soft rock /

concrete interfaces, suggested that failure of the soft rock asperities occurred on a curved

surface. This was also confirmed by Seidel (1993) with finite difference modelling using

the program FLAC (Fast Lagrangian Analysis of Continua, Itasca (1993)). For this

reason a slope stability analogy was used to model a loaded asperity. This is shown

diagrammatically in Figure 4.6.
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• •' • : I • • • •

j = an + x

2a

Potential failure

Figure 4.6: Slope stabilty anology of loaded asperity (after Fleuter, 1997)

For computational simplicity the Sokolovsky (1960) solution that produces an exact

solution was used. This solution is derived for an inclined load on a slope of angle 'f in a

weightless c - 0 soil. The weightless assumption was considered acceptable due to the

negligible influence of self-weight on the strength of the asperity. Figure 4.7 illustrates

the main features of this model.

The solution is obtained through the simultaneous solution of the following three

Equations:

(4.34)

(4.35)

(?cos<5 =cr(l + sin0cos2p)-//

- q sin8 = a sin0sin2p

H fl + sin0cos2p u ~ ~ \ i 1
q= J " Hexp[{K-2r + 2p)tan0]-U= stress (4.36)

COSO [ 1-SU10 J

where <J =

8 = Inclination of load from normal
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p = Direction of major principle axis

(p = Friction angle of soil

c = Cohesion of soil

7 = Angle of slope

r = r0exp[tan<l)(9-9o)]

• w -

major

principal stress

Failure Surface

Figure 4.7: Solution for weightless c-§ soil (after Sokolovsky)

Seidel (1993) obtained the solution numerically by the application of the Newton-

Raphson method (Kreyszig 1972) for which there is rapid convergence. He compared

the solutions from the Sokolovsky's method and a slope stability program (EMU-92,

Chen and Donald, 1992) and found the results to be within 3% of predicted values.

As the Sokolovsky method is only applicable to infinite slope lengths, an empirical

constrained failure correction factor was estimated. This correction factor should be

applied when the actual slope length (s), to loaded width (w), ratio exceeds the ratio of

the length of the crest of the slope to the point of intersection of the failure plane (s0),

with the loaded width ie. when s / w > s0 / w. These lengths are shown on Figure 4.7 and
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the relationship for s0 / w given in Equation 4.37. The correction factor is given in

Equation 4.38.

w - ji - \p\)- tan(7T / 2 -
(4.37)

K =0.85 exp 0.16^-L H
(4.38)

where • p. = Angle subtended by failure plane and crest

The above approach was adopted for a concrete / soft rock joints where the relative

strength and rigidity of the concrete caused simultaneous failure along the entire length

of the contacting soft rock asperity. However, Fleuter's (1997) video evidence of the

failure of rock joints indicated that initial failure occurs with fretting of the contacting

asperities outer edges. As the upper surface (analogously the "footing" applying the

load) is the same material and hence has a similar stiffness as the founding material, the

rigidity assumption is not correct. Nor is it correct to assume a flexible footing analogy.

The correct assumption is most likely aj a semi-rigid footing analogy.

Finite difference modelling by Fleuter (1997) using the program FLAC (Itasca, 1993),

indicated reasonable correlation between the Sokolovsky failure stress and the average

stress over 20% of the interface length closest to the asperity edge. Fleuter (1997)

suggested an asperity multiplication factor of approximately 2 to the concrete / rock

model to take into account the reduced failure area.

4.4.3 Joint Closure Effects

One of the factors that can affect the rock joint shear behaviour is the joint aperture

(discussed in section 2.2.5). In natural rock joints the aperture is related to the stress

history of the rock mass. In the laboratory situation, the cutting techniques such as band-

saw cutting or water jet cutting that are used to produce the joint profiles, leave a slightly

rippled surface. These ripples can prevent exact interface matching when the interface

halves are re-mated. Upon the application of a load, the interface may close. A similar

mismatching problem can arise with tensile split surfaces (used to represent three-

dimensional joint surfaces). Joint closure under the application of a normal load or shear

force would reduce the net amount of measured dilation. Under CNS conditions a
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reduction in the amount of dilation will affect the level of the normal stress. This

reduction in dilation can therefore affect the accuracy of the prediction of shear stress and

normal stress and may also alter the distribution of stresses between asperities.

Fleuter (1997) conducted several load deflection tests on samples of water-jet cut

samples of Johnstone and sandstone to determine trie amount of joint closure present.

Non-linear joint responses were found for both the Johnstone and sandstone samples.

Adopting a simple bi-linear model, a maximum joint closure of 0.55 mm at a normal

stress of approximately 2250 kPa was indicated for the Johnstone samples and a

maximum joint closure of 0.5S mm at 4000 kPa normal stress for the sandstone samples.

Fleuter's work concluded that the amount of joint closure was a function of the water-jet

cutting procedure and independent of rock type whilst the normal stress at maximum

joint closure was a function of the rock strength.

Test results by Fleuter (1997) on sandstone, where there is an appreciable wear rate, have

indicated that the effects of joint closure are insignificant on materials that have wear

damage to the contacting surfaces. In terms of the total dilation, joint closure is also less

significant for high angle asperities or asperities with long segment lengths.

4.4.4 Post Peak Behaviour

Video records of concrete / rock interface testing have indicated that shear displacement

after failure occurs through a chord linking the intersection points of the initial failure

surface with the leading and trailing asperity faces. This is illustrated on Figure 4.8.

To? inclination of this slope is defined in the Sokolovsky's method by the angle of the

slope and the relative lengths of the slope distance and load width and given in Equation

4.37. The estimation of the post peak shear stress, (TpP), can be made using the

relationship shown in Equation 4.39 developed by Seidel (1993).

<7,,{tan(0 +a).[tan0 + tan j3]+ tan(0 + p\tnn<j> + tana]}
pp [l + tan 0 tan (3 }[tan(0 + a)+ tan($ + /?)]

(4.39)

where : a = concrete asperity angle

(3 = post peak failure plane inclination (determined by so/w ratio Equation 4.37)

<|) = residual friction angle
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displaced wedge of

compressed rubble

rubble expelled

curved failure surface
unfailed material

1

Figure 4.8: Schematic representation of post-peak shear displacement (after Seidel,

1993)

This model has not been modified for rock joint behaviour.

4.4.5 Overview of the Seidel - Haberfield Model

In this model, the joint roughness is represented by a series of asperities with varying

chord angle but constant chord length. The chord lengths are varied to represent the

profile at different scales. For example, a small chord length would be used to represent

small scale roughness and the roughness that would be mobilised at small displacements.

A shear displacement loop is used to calculate the stresses at each increment of shear

displacement. Due to the iterative nature of the procedures a computer programme,

Rocket, was written to perform the calculations.

For each shear increment the contact length between the two sides of the interface is

calculated (initially entire length of joint). For non-degrading materials this length is

calculated for each asperity using the initial asperity length less the shear displacement

and taking into consideration the additional length caused by load spreading due to

elastic compression. For degrading materials an allowance is made for an additional

contact length due to the degradation. Using Steinbrenner's method, the individual

settlement effects of all the asperity faces are calculated for each loaded asperity and

assembled into a compliance matrix. LU-Decomposition (a mathematical technique to

manipulate linear Equations) is used to manipulate the compliance matrix to determine
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the global stiffness matrix. Due to the diffl ulty in predicting the sample dilation with

the varying local normal stresses, an iterative process is used to estimate the sample

dilation. A matrix is used to record whether each asperity is in or out of contact with the

opposite interface. A compression term is calculated for asperities in contact, taking into

consideration joint closure and local elastic compression of the asperity. Dilation is

calculated for each asperity based on sliding along the asperity face less the compliance

components. These values are assembled into a matrix. Local stresses on each asperity

are calculated from the global stiffness and dilation matrices and averaged over the

contact length to estimate a global normal stress. Iteration is used until the dilation

expected with the applied constant normal stiffness and global normal stress matches the

calculated dilation and global normal stress terms. By multiplying the local normal stress

by the tangent of the effective friction angle (ie. i + ijv) the local shear stress on the

contacting asperities can be calculated. In the case of degrading materials, a revision is

made to the effective friction angle. The global shear stress is calculated by dividing the

summation of the local shear stresses by the total length of the profile. If asperities have

come out of contact due to the dilation, the local and global stresses are recalculated with

an adjusted contact area.

For each asperity a failure stress is calculated using the Sokolovsky failure model and the

Newton-Raphson method to iterate to the solution. If the local normal stress exceeds the

Sokolovsky failure stress for each asperity, failure of the asperity occurs. Failed

asperities are assigned a new asperity angle.

This process is repeated for each increment of shear displacement.

The main advantage with the Seidel - Haberfield model is that it relies only on rock

properties that are obtained through normal site investigation and laboratory testing (ie.

Young's Modulus, Poison's ratio, peak cohesion and friction angle and residual friction

angle) and on the joint roughness (represented by the standard deviation of chord angle at

different chord lengths).

4.4.6 Problems with the Seide! - Haberfield Model

Most of the laboratory testing conducted to verify this model, has been performed on

concrete-soft rock interfaces. Some limited testing has been conducted on Johnstone and

sandstone interfaces but both of these rock types are of low strength. Therefore the
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model has not been verified for strong rock joint interfaces or on a variety of material

compositions.

Also the rock joints tested have all been manufactured two-dimensional joints with, quite

unrealistic surface roughness (minimum asperity chord lengths of 16mm have been tested

on rock samples). A method to analyse the three-dimensional rough rock joint surfaces

that would be encountered insitu has not been determined.

4.5 Other Recent Models

In recent years the development of a useable shear model has continued to attract interest.

However much of this interest has concentrated on extending the empirical JRC-JCS

approach. Two new models developed will be briefly discussed.

4.5.1 Dong and Pan Approach

A micro-mechanical approach has also been suggested by Dong and Pan (1996). Their

model uses a homogenisation process to represent real asperities (seen as two contact

rock surfaces) as a smooth basic contact plane on which Amonton's friction law applies.

They assume that the basic contact plane is elastic before yielding and that after yielding

the sliding and separation components can be considered through a relaxation stress.

They select different contact planes to model the rock joint based on the level of shear

and normal stress and on the joint scale. The following expressions were derived to

estimate the incremental global stress, daf, on each asperity:

, ., 1 ,.-1

C=I o c-l
K9du] -dR, (4.40)

where: Ao = global cross sectional area of joint

Tjf = coordinate transformation tensor (from local to global co-ordinate System)

on the contact plane c

ky = contact stiffness tensor on the contact plane c

du*t = global relative displacement

Hc
ln = heterogeneous tensor to account for the variation of the local relative

displacement.
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ac - selected contact area of the basic contact plane

drj — local relaxation stress tensor that accounts for the sliding and dilation on

the contact plane.

Kjj = global stiffness tensor.

dR( = global relaxation stress tensor.

The scale dependent properties of joint roughness are accounted for in a multi level

asperity model.

The shearing aspect of joint failure is modelled by the low level asperities disappearing

when the average shear stress in that level exceeds a shear stress, xs.

Ts =Gn tan0s (4.41)

where on = normal stress

0j. = shearing off angle

A hypothetical degradation model was also suggested to illustrate how the model could

incorporate degradation by decreasing the contact inclined angle.

The limited comparison of the simulated data with direct shear tests, indicate that the

approach tends to underpredict the peak shear stress by approximately 15%. This model

relies on parameters that are not nonnally measured during site investigations and others

that can be difficult to estimate (eg. Contact stiffness tensor, global stiffness tensor).

4.5.2 University of WoMongong Approach

A CNS direct shear rig has also been developed at the University of Wollongong to

investigate the shear behaviour of rock joints. The modelling approach adopted by

Indraratna et al. (1995) uses Fourier transform techniques to characterise the joint

roughness. The dilation is fitted to a fourier series using Equation 4.42. The fourier

coefficients {an and bn) are estimated from experimental data. The normal stress can then

be calculated at any shear displacement using Equation 4.45. The shear stress response

with shear displacement can be calculated using Equation 4.46. This allows a variation

in the asperity angle with shear displacement. By differentiating the shear stress
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response with respect to shear displacement the peak shear stress can be estimated

(Equation 4.47).

S(h) = ^2-+JT [an cos{27tn n sm(2;m/j/T)]
n=l

aR =-J/(x)cos

tan^+tan i

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

where: 8 = dilation

h = shear displacement

a0, cti, a,,, bn - Fourier coefficients

n = number of harmonics

T= period = b-a

on(h) = normal stress at defined shear displacement

ano
 = initial noraial stress

K = normal stiffness

A = joint surface area

x(h) - shear stress at defined shear displacement

(j>b = basic friction angle

i(h) - gradient of the dilatancy curve at defined shear displacement

hy, = horizontal displacement corresponding to peak shear stress
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i-q, = dilation angle corresponding to peak shear stress

This model has been developed and verified on regular saw toothed, triangular and

tensile split joints made from gypsum plaster that simulate a soft rock. Natural

Hawkesbury sandstone joints have also been tested (Indraratna and Haque 2000).

Further modelling would be necessary to verify the model with a range of rock strengths.

The model has been developed to incorporate the effects of infill on the joint shear

response. This is calculated as the shear response of an unfilled joint less the normalised

strength drop due to the infill. This is defined in Equation 4.48.

( \ ~( \ I tFla I
^P'Milled ~ ^ P'unfilled ~<7»o\ Qjf f / a)+ B

(4.48)
)+P )

where tF/a-- infill thickness to asperity height ratio

a, § = hyperbolic constants

The empirical estimation of the fourier coefficients and the hyperbolic constants relies on

the analysis of field and laboratory test results. This makes this method site dependent

and may limit its applicability when extrapolated to other sites.

4.6 Conclusions

This chapter has reviewed previous work conducted on rock joints by various researchers

in their attempt to produce a realistic and widely applicable model of rock joints under

the application of a shear load. Most of the earlier approaches were relatively simple

models that only addressed some of the relevant failure mechanisms. Perhaps the most

widely wed approach today is the empirical JRC-JCS model. However, this model,

although simple to use, does not model the mechanisms involved in the shear response of

a rock joint and hence must be viewed conservatively.

It was these limitation of previous methods that led to the development of a micro-

mechanical approach at Monash University that incorporates the various components of

shear failure such as sliding, shearing and post peak behaviour. This model was

originally developed for pile rock socket performance under axial loading. The model

has only been tested for a limited number of rock types and profile configurations.

Although initial tests indicate the model will be adaptable to the analysis of rock joints,
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further work is required in this area. This chapter therefore presents the background for

the continuation of the research into a micro-mechanical approach to rock joint

behaviour.

w



5.0 EXPERIMENTAL SHEAR

TESTING

To develop a widely applicable model capable of predicting the shear behaviour of rock

joints, it is necessary to obtain data from direct shear tests on natural rock under

conditions that closely simulate insitu conditions. Some of the relevant factors that affect

the shoar strength of rock joints have been highlighted in Chapter 2. The experimental

work described u.- this chapter had the following aims:

• investigate the shear behaviour of rock joints in several rocks across a range of

strengths

• investigate the suitability of the existing slightly modified rock / concrete shear

model

• investigate the effects of changing the boundary conditions, joint roughness and scale

» investigate the shear behaviour of three-dimensional surfaces

• determine whether a three-dimensional surface can be modelled by a two-

dimensional profile

This chapter describes the shear testing rig, the rock types that were tested and the rock

joint roughness profiles used in the tests.

The shear testing rig used is a specially designed direct shear device developed at

Monash University to test soft rock / concrete interfaces. This rig is capable of testing

samples up to 600 mm long under different boundary conditions thus minimizing scale

effects whilst providing representative boundary conditions. Details of this shear device

are given in Section 5.1.

Initially a synthetic soft rock called Johnstone was tested. Details of this synthetic rock

and its properties are given in Section 5.2.1. This rock is easily reproducible and

relatively homogeneous and the data from these samples were used to establish whether a

three-dimensional surface could be modelled by a two-dimensional profile and to

confirm basic mechanisms of shear behaviour. Once the basic mechanisms had been

established, the testing program was extended to include natural rocks of varying strength
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and origin. Siltstone, sandstone, basalt and granite were selected. A description of the

rocks used in the testing program and their basic properties are outlined in Section 5.2.

The testing performed in this research was conducted initially on samples with simple 1

triangular asperity profiles, then samples with fractal two-dimensional profiles and

finally samples with three-dimensional irregular profiles. The tests covered a range of

interface roughnesses and boundary conditions. Details of the profiles tested are |

provided in Section 5.3. The testing of simple two-dimensional joint roughness profiles

allowed the basic sliding and shearing mechanisms to be observed and modelled. The

tests on the more complex fractal two-dimensional profiles provided data that allowed

the interaction between shearing, sliding and deformation and post peak behaviour to be

observed. The full three-dimensional joint profiles provided data on more realistic joint

surfaces.

5.1 Cyclic Constant Normal Stiffness Shear Rig

The cyclic constant normal shear rig (CCNS) used in this research was developed at [ (»

Monash University over a number of years. Figure 5.1 shows the shear rig and shear

box. Design details are given in Seidel (1993) and are summarized here: j ^

• SHEAR BOX. Standard shear boxes are typically 60mm by 60mm in dimension. To t, i

decrease scale effects, a much larger split shear box capable of testing samples up to t $

600 mm long, 200 m m wide and 135 mm in depth was developed. To prevent

rotation the upper shear box was restrained from horizontal movement and the lower

box from vertical movement. Vertical movement on the upper box and horizontal

movement on the lower box are permitted by needle rollers. Frictional losses under

maximum load of less than 10 kPa were measured by Seidel (1993) for a typical

sample size of 500 mm x 80 mm.

• LOADS. The shear and normal loads are applied by servo-controlled Instron

hydraulic actuators that have load capacities of ± 2 5 0 kN static and ± 5 0 0 kN

dynamic. Displacement or load control can be used for the application of shear

loading with automatic area correction for shear displacement. The rig is capable of

monotonic or cyclic loading with the facility to vary waveforms and periods for

realistic loading patterns. Only monotonic single ramp waveforms were used during

the present work. As discussed in Section 2.2.2 the boundary conditions vary
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according to the deformability of the surrounding rock. The constant normal stiffness

condition is perhaps the most representative of in-situ rock conditions and was

achieved in the Monash direct shear rig by placing the vertical actuator under load

control and through a feed-back system simulating a spring of stiffness K. All tests

for the present work were conducted under constant normal stiffness.

• DISPLACEMENTS. Two Schaevitz linear variable displacement transducers

(LVDT's) (range ±125 mm, accuracy ±0.06 mm) are mounted internally to the

vertical and horizontal actuators to measure the actuators displacement. Three

LVDT's of reduced range but increased accuracy are mounted externally to measure

the displacement of the shear box. One is mounted i_ 4 i horizontal or shear

direction (range ± 25 mm, accuracy ± 0.01 mm) and the remaining two are mounted

on each side of the upper split shear box (range ± 5 mm, accuracy ± 0.002 nun).

These measure displacements relative to a reference plate attached to the lower split

shear box. Tests can be conducted under varying shear displacement velocities. The

tests conducted for this dissertation were performed at a constant shear displacement

velocity of 0.5mm/min. As discussed in Section 2.2.7, the shear displacement

velocity can affect the peak shear resistance as undrained and drained parameters

typically vary. The rate of 0.5mm/min was shown to be sufficiently slow to allow

full drainage of Johnstone samples (Seidel 1993) and was used for the siltstone, basalt

and granite samples.

• MEASUREMENTS. Automatic computer logging of the displacement and load in

both shear and normal directions is achieved using a 16-bit acquisition card. Real

time display is provided with PC-based digital control using the program HP-Vee

(Helfel 1988). The shearing process can also be monitored with video cameras.

5.2 Rock Types Tested

A range of rock types of different strength, origin, grainsize and mineral composition

were selected for direct shear testing. The initial tests were conducted on a synthetic

rock, Johnstone. Some two-dimensional profiles had previously been tested on this rock

(Fleuter 1997) and this work was to be extended into more realistic three-dimensional

profiles. Testing was also conducted on several natural rocks - sandstone (two-
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dimensional roughness profiles had been previously tested by Fleuter (1997)), siltstone,

basalt and granite.

i

Figure 5.1: Constant normal stress shear rig and shear box
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5.2.1 Johnstone

To obtain a realistic modelling material for laboratory testing without the inherent

variability of natural rock, Johnston and Choi (1986) developed a synthetic soft rock with

properties similar to the naturally occurring Melbourne Mudstone / Siltstone. Unlike

natural siltstone, this material is relatively homogeneous and isotropic and easily

reproducible in large volume.',.

Natural mudstone / siltstone is formed over many millions of years from the

consolidation and cementation of fine-grained marine sediments. Johnston and Choi's

approach to the formation of the synthetic siltstone, later called "Johnstone" (Johnston

and Choi 1986), models at a greatly accelerated rate the naturally occurring geological

processes resulting in the formation of mudstone / siltstone.

A finely ground siltstone powder is used as the basic material and Ordinary Portland

Cement is added to model the natural cementation process. These powders are mixed dry

and combined with water and a 10% calcium chloride solution. Calcium chloride is used

as an accelerating agent to reduce the curing time. After mixing of the powder and liquid

for approximately 90 seconds, the mixture is manually compacted into a mould and then

compressed under a pressure of approximately 5.8 MPa for 4 to 6 hours to reconsolidate

the powder and induce particle bonding. The sample is then cured for 28 days in a fog

room (100% humidity and 23°C ± 2°C).

Table 5.1: Mix proportions of Johnstone

Ingredient

Mudstone Powder

Cement

Water

10% Calcium Chloride

Proportion

97.5% of dry mix by weight

2.5% of dry mix by weight

12% of weight of mudstone powder

288 ml

Quantity

28.8 kg

0.720 kg

3.456 kg

0.370 kg

The mudstone powder used in this research project for the manufacture of the Johnstone,

was obtained from the Nubrick brick quarry in Scoresby, Victoria. Compaction testing

conducted by Cheng (1997) on this powder, indicated an optimum moisture content of

approximately 12%. The mix proportions indicated in Table 5.1 were therefore used to

produce samples approximately 560mm x 160mm x 160mm in size.
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Chiu (1981) demonstrated that the saturated water content of the Melbourne Mudstone

could be used as an indicator of rock properties. Laboratory test results by Lam (1983);

Choi (1984); Haberfield (1987); Kodikara (1989) and Cheng (1997), have indicated that

the Johnstone rock properties can also be estimated from the saturated moisture content.

atches were made for the present study, the first in August 1998 and the second in

mid February 1999. The results of the classification tests conducted on these Johnstone

samples are summarised in Appendix B. The fust batch of samples had a moisture

content of approximately 14.2% and an average unconfined compressive strength of 8.3

MPa. The second batch of samples had an average saturated moisture content of

approximately 14% and an average unconfined compressive strength of 4.3MPa. These

results are combined with results by Choi (1984) and shown graphically in Figure 5.2.

This graph indicates that the unconfined compressive strength of batch 1 is

approximately 60% higher than that of Johnstone of th? same water content produced by

Choi. It is believed that this higher strength is due to higher strength cement used in this

first batch, resulting in a higher peak cohesion.

M
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Figure 5.2: Comparison of Johnstone Unconfined Compressive Strength with

moisture content

Using this data combined with previous test results (Johnston and Choi 1986) and

correlations with moisture content, the parameters indicated in Table 5.2 were adopted.
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Table 5.2: Adopted Johnstone parameters

Parameter

Saturated Moisture Content

Uniaxial Compressive
Strength

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Adopted value (batch 1)

14.2%

8.3 MPa

900 MPa

0.25

35°

24.5°

1500 kPa

Adopted value (batch 2)

14.0%

4.3 MPa

900 MPa

0.25

34°

24.5°

1050 kPa

Table 5.3: Adopted Sandstone parameters

Parameter

Saturated Moisture Content

Uniaxial Compressive Strength

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Adopted Value

5.0%

21.7MPa

3.2 GPa

0.1

50.0°

32°

2200kPa

5.2.2 Sandstone

The sandstone used in this current research was obtained from the Gosford Quarries in

New South Wales and is a sedimentary rock of Triassic Age. This material, known as

Sydney Hawkesbury Sandstone, underlies much of the Sydney area and is relatively

uniform and blocky. The Slightly Weathered sandstone samples are orange brown and

interbedded yellow brown in colour and comprised predominantly subangular fine to

medium quartz grains within an argillaceous matrix and.some siderite cement.

At the same time as the current project was being undertaken, Gu (2001) was completing

related work on concrete-sandstone interfaces for rock socketed pile research. He had
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completed a series of uniaxial compressive tests, triaxial tests and intact direct shear tests

on the Hawkesbury Sandstone. These results have been used to establish strength and

deformation parameters of this material under saturated conditions. The adopted

parameters are given in Table 5.3.

5.2.3 Siltstone

The siltstone was collected from the Burnley Tunnel Section of the Melbourne City Link

Project, Victoria. Samples were recovered from approximately 40 m below ground

surface (Approx. RL -30m). The rock is commonly and incorrectly referred to as

Melbourne Mudstone and is a sedimentary rock of Silurian Age consisting of interbedded

mudstones, siltstones and sandstones with siltstone predominating. The colour of the

rock is dependent on the degree and type of weathering. The samples obtained were

Slightly Weathered to Fresh, very thinly bedded and dark grey with pale grey. Jointing

was predominantly parallel and perpendicular to the bedding.

Chiu (1981) demonstrated that the saturated water content of the Melbourne Mudstone

could be used to estimate the rock properties. He conducted a large range of tests on

mudstone weathered in both oxidising and reducing environments with saturated water

contents in the range of 4% to 20%.

The rock used in this project had a saturated moisture content of approximately 1.5%. As

this was considerably lower than rock previously tested, a series of tests were conducted

to verify the established relationships with moisture content. As the Melbourne

Mudstone possessed joints parallel and near perpendicular to bedding, it was decided to

test the samples in these directions. This meant that several intact direct shear tests were

conducted on samples in the bedding direction to obtain bedding strength parameters and

perpendicular to the bedding to obtain intact strength values. The results from these tests

indicated that there was no appreciable difference between the bedding strength and

intact strength values. However, it must be recognised that the strength of the bedding

may be quite variable. A peak friction angle of 66° and cohesion of 1700kPa was

obtained from these direct shear tests. As these are relatively high values and given the

potential variability of the bedding strength, more conservative values as calculated by

the Hoek - Brown failure criteria (Hoek and Brown 1988) were selected for test analysis.

Further details are given in Chapter 9.

1

I
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The following tests were conducted to determine the strength and deformation

parameters:

• 3 uniaxial compressive strength tests (in accordance with the suggested ISRM Test

method (ISRM 1981))

• 5 uniaxial tensile strength tests (in accordance with the suggested ISRM Test method

(ISRM 1981))

• 5 intact direct shear tests

• 3 shear tests on flat planar interfaces

The results of these tests have been combined with Chiu's (1981) results and are

presented in Figure 5.3. They are also tabulated in Appendix B. Table 5.4 indicates the

adopted parameters of the tested siltstone.

Table 5.4: Adopted Siltstone parameters

Parameter

Saturated Moisture Content

Uniaxial Compressive Strength

Uniaxial Tensile strength

Young's Modulus

Residual Friction Angle

Adopted Value

1.5%

55MPa

7.7MPa

25.4 GPa

28.5°

5.2.4 Basalt

The basalt quarried in Melbourne, known as the Newer Volcanics, is typically of Tertiary

Age and can be in the form of lava (basalt) or pyroclastics (scoria, tuff and ash). The

basalts are usually dark bluish grey to black or brown and can be vesicular with their

mineralogy typically consisting of olivine, plagioclase, feldspar, clinopyroxene and

opaque oxides (Dahlhaus and O'Rourke 1992). Basalt flows are typically highly

vesicular near the surface where they have cooled quickly, becoming less vesicular with

depth. Jointing is typically caused by shrinking due to cooling and hence joint

characteristics may vary from flow to flow.
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The basalt used in this current research was obtained from two sources:

• Source 1. Samples from the Boral Quarry in Deer Park, Victoria were used to form

the triangular and irregular two-dimensional profiles;

• Source 2. The split samples were formed from basalt blocks purchased from a garden

centre in Clayton (original origin unknown).

The samples were visually similar. All samples obtained were typically Moderately

Weathered, slightly vesicular and black grey and blue grey in colour. Natural joints were

often coated with thin layers of carbonaceous material.

To assess strength and deformation parameters the following tests were conducted:

• 4 uniaxial compressive strength tests on source 1 samples and 5 uniaxial compressive

strength tests on source 2 samples (in accordance with the suggested ISRM Test

method (ISRM 1981))

• 2 uniaxial tensile tests on source 1 samples (in accordance with the suggested ISRM

Test method (ISRM 1981))

• 3 direct shear tests on flat planar interfaces on source 1 samples

The results of these tests are summarised in Appendix B. The uniaxial tests conducted

on the two different sources produced nearly identical strength parameters (ie.

E,=62GPa, UCSi=120MPa; E2=63GPa, UCS2=123MPa). Due to this similarity one set

of parameters will be used. The adopted properties are summarized in Table 5.5.

Table 5.5: Adopted Basalt Parameters

Parameter

Saturated Moisture Content

Uniaxial Compressive Strength

Uniaxial Tensile Strength

Young's Modulus

Residual Friction Angle

Adopted Value

2.5%

120MPa

UMPa

62GPa

34°
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5.2.5 Granite

The granite used in this current research came from Mt Bundey in the Northern Territory.

The rock is known as Mt. Bundey Granite and is an intrusive igneous rock of

Precambrian Age and is a hornblende biotite granite. The samples obtained were

Slightly Weathered, medium to coarse grained and pinkish brown in colour.

To estimate strength and deformation parameters the following tests were conducted:

• 3 uniaxial compressive strength tests (in accordance with the suggested ISRM Test

method (ISRM 1981))

• 4 uniaxial tensile tests (in accordance with the suggested ISRM Test method (ISRM

1981))

• 4 direct shear tests on flat planar interfaces

The results of these tests are given in Appendix B. The adopted parameters are

summarized in Table 5.6.

Table 5.6: Adopted Granite Parameters

Parameter

Saturated Moisture Content

Uniaxial Compressive Strength

Uniaxial Tensile Strength

Young's Modulus

Residual Friction Angle

Adopted Value

0.4%

180MPa

lOMPa

61GPa

36.5°
\m

5.3 Sample And Profile Preparation

Direct shear testing was conducted on joint samples containing two-dimensional regular

triangular surfaces, two-dimensional .fractal triangular surfaces and irregular three-

dimensional surfaces. Details of the profiles selected and preparation methods adopted

for each rock type are summarised in this section.

Due to the strength of the rock and the small chord length profiles required in the two-

dimensional surfaces, bandsaw cutting or circular saw cutting techniques were not
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appropriate. Cutting techniques that generated considerable heat were also considered to

be inappropriate because of the possible effect on the properties of the rock. Therefore

water-jet cutting techniques were selected to cut two-dimensional profiles into the rock

surface. This procedure involves spraying water mixed with fine sand through a nozzle

under high pressure. The resulting water-jet is approximately 1.2mm in diameter

although some minor flaring can occur. An accurate surface can be cut although a slight

"ripple" effect is left on the surface. This ripple is typically less than approximately

lmm in height although on harder rocks it can become more accentuated at the deepest

edge of the cut. Figure 5.4 shows the typical ripple present along the surface of a

siltstone sample.

Figure 5.4: Siltstone water-jet cut triangular asperity profile showing fine ripples along

the asperities

Unfortunately during the course of the research project, inconsistent quality was obtained

from the water-jet cutters. The first 2 water-jet cut samples made in 1997 as initial test

samples of Johnstone, produced excellent replication of the desired surface as shown in

Figure 5.5. However, later cuts using the same equipment and operator, were typically

overcut producing a rougher surface than desired as shown in Figure 5.6. Discussions
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with the water-jet cutters could not identify any possible reasons for the loss in accuracy.

However, the spot diameter of the water jet was in the order of 1.2mm so the

inaccuracies of up to ±2mm are in the realm of expected accuracy. This level of

inaccuracy was not of concern for the triangular or irregular triangular profiles (providing

the cut surface was measured) but it was of concern if reproduction of joint interface

surfaces was being attempted. These problems are discussed in further detail in Section

7.1.

JC4ai6

1
200 300

Length (mm)

400 500

Figure 5.5: Excellent water-jet matching of Johnstone cut with desired profile

JC6apow3

200 300

Length (mm)

400 500

Figure 5.6: Johnstone profile overcut
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Initially roughness profiles were cut at 6mm chord lengths as there was uncertainty about

the accuracy that could be achieved using the water-jet cutting process. Due to the

almost perfect water jet cuts that were obtained for the two samples, the next profiles

were cut at 3mm chord lengths. Although this was still in the range of cutting size that

should have been achievable by the equipment, some overcutting was measured in these

samples. The next few profiles were cut at 12mm chord lengths and 4mm chord lengths

in the hope that they would be more accurate. As the 12mm profile was still slightly

overcut, it was considered to be a problem independent of the chord length and specific

to the material and equipment. The two samples that were cut accurately at 6mm chord

length were from batch 1 of Johnstone and had a UCS of 8.3MPa compared to 4.3MPa of

batch 2. Therefore the decrease in accuracy may have been related to the decrease in

strength of the material although this was not considered a plausible reason by the water-

jet cutters.

5.3.1 Johnstone

Since 1980, considerable work has been conducted on Johnstone / concrete joints to

investigate rock socketed pile performance under axial loading. Fleuter (1997)

conducted a series of direct shear tests on planar profiles, regular two-dimensional

triangular profiles and two-dimensional fractal profiles using Johnstone / Johnstone

interfaces to extend this research into rock joints. He found that the Johnstone / concrete

joint shear behaviour model had potential to model Johnstone / Johnstone interfaces. He

modified this model by including the elastic deformations of both interfaces, including a

joint closure component and applying an empirical correction factor to the asperity

failure model (discussed in Section 4.4). In this current research several irregular

triangular profiles were to be tested to verify Fleuter's results. This work was to then be

extended into three-dimensional profiles. Johnstone, due to its relative uniformity and

reproduction capabilities, was also to be used to evaluate hypothesis relating to the

representation of joint roughness (refer to Chapter 7).

Nine Johnstone samples were produced in two batches from a mould 560mm x 160mm x

160mm. These samples were cut using a bandsaw and diamond tipped circular saw to

block sizes of 560mm long x 130 mm high x 80 mm wide.
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As the Johnstone is compacted in layers and then consolidated, the rock is slightly cross-

anisotropic. To produce a three-dimensional surface, a 5 mm deep groove was cut

around the centre-line of several blocks parallel to this layering. These blocks were split

by placing a reinforced cutting blade in the grooves along the 560 mm long lengths and

gradually applying pressure to both sides via a hydraulic press whilst supporting the

outer edges of the block. Seven split surfaces were created in this manner. A typical

split-surface can be seen in Figure 5.7.

t\

M

Figure 5.7: Photograph of typical Johnstone split surface

Profiles of the split surfaces parallel to the shearing direction were measured at 5mm

spacings (across the width of the sample) using the Monash laser profilometer Socket-

Pro (refer to Section 3.1.4). Roughness heights were taken at 0.07mm intervals in each

profile. The two-dimensional profiles together with the three-dimensional surfaces are

included in Appendix C. One such set of data is illustrated at an exaggerated vertical

scale in Figure 5.8.

As discussed, several fractal profiles were tested to verify Fleuis*'.c 5VAvi;;-. Several

fractal profiles were produced using two-dimensional profiles taken of -he johnstone split

surfaces. These split surfaces adequately replicate natural bedding joints (refer to Section

7.1.2.1). Therefore, these picfi'ies are better replications of natural profiles than

previously tested. They are also produced at smaller chord lengths than previously

tested, increasing the range of roughness wavelengths investigated. The two-dimensional

profiles were water-jet cut into the Johnstone samples. The following profiles were

produced:

104



Chapter 5 Experimental Shear Testing

Johnstone 2-D profiles

0 100 200 300 400 500

X(mm)

Figure 5.8: Johnstone Split surface 4a

A compass, open a distance of 3mm, was walked along a centre profile of split

surface JS3a. The locations where the compass intersected the profile were joined by

chords (3mm long) to produce fractal profile JF12_3 (Figure 5.9). Chord lengths of

3mm were considered to be the smallest chord length accurately cut by the water-jet

process. This two-dimensional profile was water-jet cut into a Johnstone sample

from batch 2. It had a standard deviation of chord angle of 12° at 3mm chord length

when water-jet cut. The profile and its roughness statistics are shown in Figure 5.9.

A compass, open a distance of 12mm, was walked along a centre profile of split

surface JS4a. The locations where the compass intersected the profile were joined by

chords (12mm long) to produce fractal profile JF8_12 (Figure 5.10). This two-

dimensional profile was water-jet cut into a Johnstone sample from batch 2. It had a

standard deviation of chord angle of 8° at 12mm chord length when water-jet cut.

The profile together with its roughness statistics are shown in Figure 5.10.
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Figure 5.9: Profile JF12_3 and roughness statistics
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Figure 5.10: Profile JF8_12 and roughness statistics
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A compass, open a distance of 3mm, was walked along a centre profile of split

surface JS4a. The locations where the compass intersected the profile were joined by

chords (3mm long) to produce fractal profile JF15a_3 (Figure 5.11). This two-

dimensional profile was water-jet cut into a Johnstone sample from batch 2. It had a

standard deviation of chord angle of 15° at 3mm chord length when water-jet cut.

The profile together with its roughness statistics are shown in Figure 5.11.
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Figure 5.11: Profile JF15a_3 and roughness statistics

Profile JF15_3 was generated at 3mm chord lengths using the modified midpoint

displacement method and a power function of the split surface JS3a statistics (method

discussed in Section 3.4.4). This two-dimensional profile was water-jet cut into a

Johnstone sample from batch 2. It had a standard deviation of chord angle of 15° at

3mm chord length when water-jet cut. The profile together with its roughness

statistics are shown in Figure 5.12.
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Figure 5.12: Profile JF15_3 and roughness statistics

• Fractal profile JF21_3 was generated at 3mm chord lengths using the modified

midpoint displacement method and a logaritlimic function of the split surface JS3b

statistics (method discussed in Section 3.4.4). This two-dimensional profile was

water-jet cut into a Johnstone sample from batch 2. It had a standard deviation of

chord angle of 21° at 3mm chord length when water-jet cut. The profile together with

its roughness statistics are shown in Figure 5.13.

The samples were placed into the centre of the direct shear box. To minimise

compression of the material used to set the sample into the box, steel blocks were placed

between the sample and the shear box at the ends where the shear force was being

applied. Plaster of Paris was used to hold the sample into the box. Once the shear box

was assembled, there was a 20mm gap between the top and bottom shear boxes (shown

in Figure 5.1). This was to allow for potential compression of the sample, shearing of the

sample along the joint without interference from the shear box, and also to allow easy

viewing of the joint during the shearing process.
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JF21 3
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Figure 5.13: Profile JF21_3 and roughness statistics

In addition several Johnstone samples were prepared to test the hypothesis that three-

dimensional surfaces could adequately be represented by a single two-dimensional

profile. Details of the profiles selected and the direct shear tests performed are presented

in Chapter 7.

5.3.2 Sandstone

hi addition to tests on Johnstone, Fleuter (1997) conducted a series of shear tests on

sandstone / sandstone interfaces containing planar, regular two-dimensional triangular

and two-dimensional fractal roughness profiles. The current research extends this work

to three-dimensional surfaces.

The three-dimensional surfaces were produced by splitting blocks in a similar manner to

the Johnstone splits. Two split surfaces were created in this manner. Profiles of the split

surfaces were measured at 5mm spacings using the Monash laser profilometer.
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Roughness heights were taken at 0.07mm intervals in each profile. The two-dimensional

profiles together with the three-dimensional surfaces are detailed in Appendix C. One

surface is shown in Figure 5.14.

Sandstone 2-D profiles

0 50 100 150 200 250 300

X(mm)

350

,«!

Figure 5.14: Sandstone Split Surface 1

The samples were placed and set into the direct shear box in the same manner as the

Johnstone samples.

5.3.3 Siltstone

The blocks of siltstone obtained were irregular in shape and needed to be trimmed to fit

into the shear box. Due to the large overall dimensions and weight of the blocks, 5

blocks were initially sent to a stonemasons where they were cut in half to become a more
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manageable size. All blocks were then cut "in-house" into rectangular samples using a

diamond tipped circular saw. Samples were cut to maximize their length with a width of

approximately 80mm usually adopted £nd a height of 100 - 130 mm.

Despite completing many tests on Johnstone samples, it was considered necessary to

repeat these tests on the siltstone samples due to the significantly higher strength and

stiffness of this material. The profiles tested therefore included:

• regular triangular asperities at angles of 5°, 10° and 15° at a chord length of 16mm

and 10° angles at chord lengths of 8mm and 48mm. All profiles were water-jet cut at

mid height of the siltstone samples.

• two-dimensional fractal profiles. These profiles were generated using the modified

midpoint displacement method (refer to Section 3.4.2) with target1 standard deviation-

, • . hord angles of 5°, 10° and 15° at 5mm chord length. Four profiles were generated

••'.-•' tese are shown in Figures 5.15 - 5.18 (as water-jet cut).

5 three-dimensional surfaces. The siltstone samples were split along prominent

bedding planes using the same technique as that used for the Johnstone. One split

surface is shown in Figure 5.19. The split surfaces were digitised using the Monash

laser profilometer. The produced profiles are shown in Appendix C together with the

three-dimensional surface. One surface is shown in Figure 5.20.

The samples were placed into the centre of the direct shear box. Samples that were

smaller than 130mm high (height of the shear box with a 20mm spacer at the interface)

were placed on steel plates so that the joint was approximately at the mid point of the 2

boxes once assembled. As with the Johnstone and sandstone samples, steel blocks were

placed between the sample and the shear box at the ends where the shear force was being

applied. A high strength grout mixture (approximately 35MPa) was used to hold the top

and bottom halves of the sample into the split shear box.

1 Target- this was the desired value and not necessarily the actual value achieved when following water-jet

cutting
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Figure 5.15: Fractal Profile MF5_5
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Figure 5.18: Fractal Profile MF15_5
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Figure 5.19: Photograph of split siltstone surface

SiHstone 2-D profiles
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Figuk 0: Siltstone Split surface 1
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5.3.4 Basalt

The blocks of basalt obtained from the quarry were irregular in shape and required

trimming to fit the shear box. The blocks were cut into rectangular samples at Monash

University using a diamond tipped circular saw. Samples were cut to maximize their

length with a width of approximately 80mm usually adopted and a height of 90 - 130

mm.

This igneous rock is considerably stronger than the rock types previously tested in the

CCNS rig. There were concerns that the mechanisms of failure may have been

significantly different than for the lower strength rocks. It was therefore necessary to

perform a range of tests to develop the failure model. The profiles tested therefore

included:

• regular triangular asperities at angles of 5°, 10° and 15° at 16mm chord lengths.

These two-dimensional profiles were produced using water-jet cutting techniques.

Due to the strength of the rock it was necessary to slow down the rate of advance of

the cutting head. This meant that some distortion occurred on the outer edge of the

sample. The samples were trimmed along this outer edge to remove this distortion.

This produced narrower samples than typically tested (ie. 60mm instead of 80mm

wide).

• two-dimensional fractal profiles. The profiles were generated using the modified

midpoint displacement method with target standard deviation of chord angles of 10°

and 15° at 5mm chord length. These were the same profiles as used for the siltstone.

These profiles are shown in Figures 5.15-5.18. The two-dimensional profiles were

cut by water-jet.

• three-dimensional split profiles. The basalt blocks were split by impacting each

block with a 7 lb sledge hammer. One surface is shown in Figure 5.21. The surfaces

were digitised using the laser profilometer. The produced profiles are shown in

Appendix C together with the three-dimensional surface. One surface is shown in

Figure 5.22.
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Figure 5.21: Photograph of basalt split surface

Basalt 2-D profiles
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Figure 5.22: Basalt Split surface 1

The samples were placed and set into the direct shear box in a similar manner as the

siltstone samples.
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5.3.5 Granite

The high quartz content and strength of the rock meant that cutting the blocks on the

Monash University circular saw was too difficult and hence all the blocks were cut to

size by a stonemason.

The range of profiles tested were:

• regular triangular asperities at angles of 10° and 20° at 8mm chord lengths. These

two-dimensional profiles were produced using water-jet cutting techniques.

• three-dimensional split profiles. The granite samples were hydraulically fractured at

the laboratories of CSIRO Petroleum Resources Division, Syndal. Steel tubing was

first grouted into predrilled 10mm diameter holes along the longest length of the

sample and then water mixed with a small amount of oil pumped into the block via

these tubes whilst the block was placed under axial loading. One split surface is

shown in Figure 5.23. The split surfaces were digitised using the laser profilometer.

The joint profiles are shown in Appendix C together with the three-dimensional

surface plot. One of these surfaces is shown in Figure 5.24.

The samples were placed and set into the direct shear box in a similar manner as the

siltstone and basalt samples.

Figure 5.23: Photograph of granite split surface
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Granite 2-D profiles
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Figure 5.24: Granite Split surface 1

5.4 Summary

In this chapter the CCNS shear rig was briefly described.. Details on the various rock

types tested and the joint profiles analysed have &e*» given.

The results of the direct shear tests will provide data to investigate the suitability of the

soft rock / concrete interface shear model to represent rock joint behaviour. They will be

used to develop the model and investigate methods to quantify three-dimensional joint

roughness.

Chapter 6 will present the results of the direct shear tests.
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6.0 SHEAR TEST RESULTS

A series of laboratory direct shear tests have been conducted to investigate the affects of

boundary conditions, scale, roughness, rock strength and rock type and to provide data to

verify and develop a rock joint shear behaviour model. This chapter summarizes the

results of the direct shear tests performed on the joint samples.

The test program is initially outlined, giving details on the profiles and boundary

conditions tested. The effects of varying the boundary conditions, roughness, scale, rock

type and strength are discussed. The components of the shearing process (sliding,

shearing, wear and post peak behaviour) that were highlighted during the shear tests are

also discussed.

6.1 Test Program

A test program was developed that would:

• Confirm the factors influencing shear behaviour and the effects that each of these

have on performance eg. varying joint roughness, applien stresses, boundary

conditions and scale.

• Identify and analyse differences between concrete-rock behaviour and ro"' joint

behaviour

• Determine the effects of varying rock types and strengths and include these into the

model

• Investigate the validity of modelling three-dimensjonal roughness with two-

dimensional profiles.

All shear tests were conducted in only one diU^tbn at a shear velocity of 0.5mm/min.

All triangular, fractal and split profiles were tested under constant normal stiffness

conditions as this was considered to be more represeuitative of the majority of rock joint

situations.

As the split and fractal tests were being conducted for the purpose of model validation

and development, testing a range of initial normal stress and normal stiffness values was

considered appropriate.
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Lower limits of the load transducers meant that normal and shear loads had to be greater

than 5kN. This restricted the minimum initial normal stress values to 400 kPa for many

of the smaller samples. Initial normal stress values of between 300 kPa and 1000 kPa

were selected. This represents a vertical stress on a horizontal joint located at between

approximately 14 m and 70 m below ground level.

At high stiffness, stick-slip behaviour was observed on the granite samples and to a lesser

extent with the basalt samples. Stick-slip behaviour can occur when rough and high

strength joint surfaces interlock and develop a high frictional resistance. Work by

Dieterich (1978) has indicated that the transition from stable sliding to stick-slip is a

function of normal stress, stiffness and roughness and a consequence of time-dependent

friction. However, in these tests it was also partly due to compliance of the direct shear

rig frame. As it was not possible to reduce the compliance of the direct shear rig, it

meant that restrictions had to be placed on the magnitude of the constant normal stiffness

adopted for testing.

The exact stiffness conditions applicable to rock joints depend on the orientation and

deformability of the surrounding rock or man-made structures. This was discussed in

Section 2.2. As stronger rock with high values of Young's Modulus will deform less,

some higher values of stiffness were selected (within the limitations of the direct shear

rig). Constant normal stiffness values between 400 kPa/mm and 1200 kPa/mm were

selected for testing.

The initial normal stress and stiffness values for the regular triangular profiles were

selected to maximize chances of shear failure of asperities occurring whilst remaining

within the limitations of the direct shear rig.

Details of the direct shear tests are summarized in Table 6.1. The test nomenclature is as

follows:

First letter: material type - Basalt, Granite, Johnstone, Mudstone, Sandstone

Second letter: profile type - Intact, Planar, Cut, Regular, Fractal, Split

Number before underscore: applied normal stress for intact and planar samples,

asperity angle foi regular profiles, standard deviation of chord angle for fractal profiles,

3-D copied sample number for cut 2-D Johnstone samples
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First number and letter after underscore: sample number for split Johnstone

blocks, chord length for regular triangular and fractal profiles, sample number for split

blocks, details of replication for 2-D cut Johnstone blocks

Table 6.1: Summary of direct shear tests

Sample

JF12_3

JF8_12

JF15a_3

JF15_3

JF21_3

JS_la

JS_lb

JS_2a

JS_2b

JS_3a

JS_3b

JS_4a

JS_6a

JS_7a

JC3a_stat6

JC4a_6

Profile Description

Johnstone fractal se=12°, 3mm chord
length

Johnstone fractal se=8°, 12mm chord
length

Johnstone fractal se=15°, 3mm chord
length

Johnstone fractal Se=15°, 3mm chord
length

Johnstone fractal Se=21°, 3mm chord
length

Johnstone split block la, 264mm long

Johnstone split block lb, 270mm long

Johnstone split block 2a, 474mm long

Johnstone split block 2b, 410mm long

Johnstone split block 3a, 445mm long

Johnstone split block 3b, 560mm long

Johnstone split block 4a, 560mm long

Johnstone split block 6a, 560mm long

Johnstone split block 7a, 500mm long

2-D cut sample of block 3a generated
using standard deviation of angle statistics

at 6mm chords

2-D cut sample at 6mm chords of centre
profile from block 4a

CTno (kPa)

400

400

400

400

560

600

600

600

700

400

560

400

400

400

400

400

K
(kPa/mm)

400

400

400

400

600

400

400

400

800

400

600

400

400

400

400

400
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Sample

JC6a_3

JC6a_pow3

JC7a_4

JC7a_log4

SS_1

SS_2

MI400

MI600

MI800

MI1200

Mil 600

MP400

MP800

MP1600

MR5a_16

MR5_16

MR10_8

MR10_16

MRI0a_16

MR10_48

MR10a_48

Profile Description

2-D cut sample at 3mm chords of centre
profile from block 6a

2-D cut sample of block 6a generated
using power function at 3mm chords

2-D cut sample at 4mm chords of centre
profile from block 7a

2-D cut sample of block 7a generated
using a logarithmic function at 4mm

chords

Sandstone split sample 315mm long

Sandstone split sample 330mm long

Siltstone intact sample 320mm long

Siltstone intact sample 200mm long

Siltstone intact sample 272mm long

Siltstone intact sample 244mm long

Siltstone intact sample 233mm long

Siltstone planar sample 285mm long

Siltstone planar sample 206mm long

Siltstone planar sample 233mm long

Siltstone 5° regular x 16mm long

Siltstone 5° regular x 16mm long

Siltstone 10° regular x 8mm long

Siltstone 10° regular x 16mm long

Siltstone 10° regular x 16mm long

Siltstone 10° regular x 48mm long

Siltstone 10° regular x 48mm long

cjno (kPa)

" 400

400

400

400

400

400

400

600

800

1200

1600

400

800

1600

800

2000

2000

2000

2000

1200

2000

K
(kPa/mm)

400

400

400

400

400

800

0

0

0

0

0

0

0

0

800

800

3200

1600

1600

600

533
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Sample

MR15_16

MF5_5

MF10_5

MF10a_5

MF15_5

MS_1

MS_2

MS_3

MS_4

MS_5

MS_6

MS_7

BP400

BP800

BP1600

BR5_16

BR10_16

BR15_16

BF10_5

BF15_5

BS_1

BS_2

Profile Description

Siltstone 15° regular x 16mm long

Siltstone fractal Se=5°, 5mm chord length

Siltstone fractal se=10°, 5mm chord length

Siltstone fractal Se=10°, 5mm chord length

Siltstone fractal Se=15°, 5mm chord length

Siltstone split 395mm long

Siltstone split 335mm long

Siltstone split 175mm long

Siltstone split 188mm long

Siltstone split 214mm long

Siltstone split 156mm long

Siltstone split 162mm long

Basalt planar 208mm long

Basalt planar 180mm long

Basalt planar 170mm long

Basalt 5° regular x 16mm long

Basalt 10° regular x 16mm long

Basalt 15° regular x 16mm long

Basalt fractal se=10°, 5mm chord length

Basalt fractal se=15°, 5mm chord length

Basalt split 195mm long

Basalt split 212mm long

CTno ( k P a )

1400

800

1200

600

600

600

400

800

800

600

1000

800

400

800

1600

1600

1600

1600

600

600

400

400

K
(kPa/mm)

1600

800

600

600

600

400

400

800

400

600

600

600

0

0

0

1600

1600

1600

600

600

1000

800
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Sample

BS_3

BS_4

GP300

GP60Q

GPI200

GP2000

GR10_8

GR10a_8

GR20_8

GS1

GS2

GS3

GS4

Profile Description

Basalt split 192mm long

Basalt split 215mm long

Granite planar 450mm long

Granite planar 450mm long

Granite planar 450mm long

Granite planar 450mm long

Granite 10° regular x 8mm long

Granite 10° regular x 8mm long

Granite 20° regular x 8mm long

Granite split 451 mm long

Granite split 449mm long

Granite split 210mm long

Granite split 210mm long

CTno (kPa)

. 400

400

300

600

1200

2000

2000

2000

2000

400

300

600

600

K
(kPa/mm)

800

1000

0

0

0

0

2000

4000

4000

1000

600

1200

600

Complete test results are presented in Appendix D. These results are illustrated using

five graphs - shear stress vs. shear displacement

- shear stress vs. normal stress

- dilation vs. shear displacement

- normal stress vs. shear displacement

- normal stress vs. dilation

Results of the shear testing which impact on the modelling of the shear behaviour will be

discussed in this chapter. The ramifications of three-dimensional roughness modelling

are dealt with in Chapter 7.
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6.2 Rock Joint Behaviour

The observed behaviour of the rock samples under the application of a shear load can be

divided into several phases:

• Initial closure of the joint under the application of the normal load and

commencement of shearing. During this phase the contact area on the joint surface

increases. Shear stress rises quickly with the application of shear load. The samples

typically experienced initial negative dilation or compression of up to -0.1mm. As

shear displacement occurred, the two interfaces were able to reseat themselves

typically into a more mated position. This has also been noted in work by others eg.

Gentier et al. (2000). This reseating was most noticeable on the softer rock and on

the water-jet cut surfaces. Overall the split surfaces experienced less initial closure.

This indicates that it is a laboratory set-up condition rather than something that may

be observed insitu.

• As the shearing process continues dilation comments as sliding along the steepest

asperities occurs. This dilation is accompanied by a steep increase in shear stress up

to the peak shear stress. If the test is conducted under constant normal stiffness

conditions, dilation causes a corresponding increase in the normal stress that also

increases the shear stress. The sample deforms due to the increase in normal load.

• At the point of peak shear stress, failure of asperities commences. This will occur at

different times for different asperities.

• During the post peak phase samples will continue to degrade through shearing, wear

and crushing. This increases the area in contact at the interface. Dilation usually

continues to increase and if the test is conducted under constant normal stiffness

conditions the normal stress also continues to rise. This continues until the sample

reaches residual strength with no further dilation occurring.

Edge effects were often observed during testing. On most of the samples, the ends of the

sample that were not constrained experienced tensile splitting through the matrix as

shown in Figure 6.1. Although this breakage was only approximately 10mm long on the

interface, it would reduce the contact area of the sample. Several samples also had minor

edge effects along the side of the samples (in particular the softer Johnstone samples).

This is also shown in Figure 6.1. Occasionally in the stronger rock a tensile break
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occurred through the rock matrix rather than through an asperity. This was due to local

stress concentrations from opposing asperities. This is also shown in Figure 6,1.

All these aspects could alter the shear behaviour of the sample. The first 2 situations

reduce the contact area therefore causing higher stresses to be applied to the sample.

With a constant normal stiffness test, this would be difficult to model as the change in

area would need to be accounted for during the test. A tensile split through the sample

matrix may not alter the shear behaviour providing there is no rotation or translation

across the fracture. However translation or rotation did occur for several siltstone, basalt

and granite samples. These test results were disregarded.

Several of the key areas of rock joint behaviour: sliding, shearing, wear and post peak

behaviour are discussed in the next sections.

End
breaks

PLAN VIEW

Side
breaks

Tensile
matrix
break

Figure 6.1: Locations on Samples where Tensile Break Occurred

5

I

4

i

w
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6.2.1 Sliding

Pure sliding can be observed in the direct shear test results on the regular triangular

interfaces. These two-dimensional profiles were water-jet cut into samples of siltstone,

basalt and granite at constant asperity angles of 5°, 10°, 15° or 20°. The profiles were

laser profiled to verify the angle cut by the water-jet cutting procedure. The average

angles varied slightly due to slight inaccuracies in the water-jet cutting procedure as

discussed in Section 5.3. The as cut average asperity angle was used to analyse the

sliding behaviour. The normal stress versus shear stress plots for several tests are shown

in Figure 6.2.

As expected, the shear tests indicate purely frictional sliding at an angle of (i+ty), where

(|)=28.5O for siltstone joints, 34° for basalt joints and 36.5° for granite joints. There was

no cohesion present in the sliding response and the shear stress was seen to be adequately

predicted using the theoretical expression for sliding proposed by Patton (1966) and given

by Equation 6.1.

x = (6.1)

where x = shear stress

Gn = normal stress

/ = angle of asperity

<})b = basic friction

Several tests were continued to large deformations so that the frictional sliding down the

rear face of the asperity could be measured. The frictional sliding at an angle of (<)>'- /)

has been marked on some of the graphs shown in Figure 6.2. There is no cohesion

present and all of the tested materials gradually indicate purely frictional sliding at the

corresponding predicted angle of ((j> - /). The delay in reaching this angle may be due to

the slight shearing of the very tips of the asperities as they are overtopped.

127



Chapter 6 Shear Test Results
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Figure 6.2: Sliding angles of tested materials
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Figure 6.2 (cont'd): Sliding angles of tested materials

6.2.2 Shearing

Shear tests performed on Mltstone regular triangular asperities parallel to the bedding

plane indicated a small amount of asperity shearing along the bedding plane. This

shearing occurred at the tips of both interfaces as the local stresses increased. This is

shown diagrammatically in Figure 6.3. The tests conducted on the two-dimensional

fractal siltstone profiles also indicated some shearing of the steeper and larger asperities.

Sliding and dilation on the siceper asperities caused part of the interface to move out of

contact causing the stresses to become highly localized in the area of the steep asperities.

When this was greater than the strength of the intact rock, shearing of these asperities

occurred.
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Figure 6.3: Shearing of the tips of asperities

Very little shearing occurred on the basalt or granite triangular asperities. Only minor tip

shearing occurred -as the asperities were overtopped. A basalt 10° 16mm triangular

interface was retested as shown in Figure 6.4. This test was conducted at an initial

normal stress of 1600kPa and constant normal stiffness of 1600kPa/mm. The test results

indicate that only a small amount of damage was done to the surface during the initial

25mm of displacement.

The Se = 15° (chord length = 5mm) fractal basalt profile experienced some shearing

during shear displacement. This shear occurred through the base of a long wavelength,

high angle asperity and therefore included several smaller asperities as shown in Figure

6.5.
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Figure 6.4: Basalt 10° shear tested twice to measure amount of damage to surface
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Shear zone

Figure 6.5: Shear through longer asperity

All of the split samples experienced shearing of some asperities.

Unfortunately shear failure mechanisms could not be clearly observed during the shear

tests or in later analysis of video footage.

6.2.3 Wear

Wear on the contacting surfaces reduces the amount of dilation and hence under constant

normal stiffness conditions will decrease the amount of applied normal stress. Very

minor wear marks were visible on the surface of the siltstone, basalt and granite

triangular samples after shear testing. The net friction angle (cjH-/) obtained from the

shear test results performed on these regular triangular asperities remained relatively

constant over the length of the asperity also indicating that very little wear occurred.

Previous work on sandstone regular triangular and fractal interfaces indicated that

considerable wear had occurred (Fleuter 1997). hi the sandstone split surface tests it was

difficult to distinguish between wear of the surface and asperity shearing due to the very

fine asperities present. Crushing of the granite asperities was also seen in the granite

split interfaces. The crushed material formed whitish powder debris between the

interfaces. It is believed that this crushed material would behave in a similar manner to

worn material forming debris on the surface.

6.2.4 Post Peak Behaviour

After the peak shear stress is obtained, the samples were observed to be experiencing

various forms of degradation. Shearing of the steeper asperities occurred with a

corresponding (inferred) redistribution of load between asperities. This typically
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increased the contact area between the two interfaces. The edge effects discussed

previously typically became apparent during the post peak stage.

With several of the samples there was an overlying positive trend to the interface that

caused a gradual increase in dilation and hence, as the tests were conducted under

constant normal stiffness conditions, the normal stress also rose. This caused a gradual

increase in the shear stress that masked some decline in shear stress once degradation

commenced.

With the smoother surfaces and softer rock samples, further shear displacement

ultimately reached the residual strength of the rock with dilation stopping and the shear

stress and normal stress becoming relatively constant.

6.3 Factors Affecting Shear Behaviour

6.3.1 Applied Stresses

Previous laboratory direct shear tests conducted on Johnstone / concrete interfaces have

indicated that an increase in initial normal stress causes an increase in the peak shear

strength (Seidel 1993). A direct shear test was performed on a triangular rock joint

profile to verify this behaviour in strong rock joints. Two regular 5° triangular siltstone

interfaces were tested with a constant normal stiffness of SOOkPcAnm with one sample

subjected to an initial normal stress of 800 kPa and the other an initial normal stress of

2000 kPa. The results shown graphically in the shear stress - shear displacement plot and

shear stress - normal stress plot in Figure 6.6, indicate that the increase in initial normal

stress caused a significant increase in the shear stress. This is to be expected as shear

stress is proportional to normal stress as shown by the Equation r =

The shear stress versus normal stress plot indicates a fnctional sliding angle (ty-H) of

approximately 33.5° for both samples (Figure 6.6). This corresponds to a basic friction

angle of 28.5° and asperity angle of 5°. However, the actual dilation angle indicated on

the dilation versus shear displacement plot is approximately 4.0° for sample MR5_16

(CTno=800kPa) and 3.5° for sample MR5_16a (ano=2000kPa). Both are lower than the

actual asperity angle with the change in dilation angle being greater the higher the initial

normal stress. This decrease in dilation angle is due to compression of the samp'?,
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compression of the casting material, closure of the interface and normal compliance in

the shear rig. These components are all stress dependent.

The dilation versus shear displacement plot also indicates a considerable amount of

initial compression of the samples as shear displacement commences. This is typical of

mo i of the shear tests conducted and is due predominantly to closure of the interface

upon commencement of shear displacement and shear compliance of the direct shear rig.

This initial compression was higher with the higher initial stress indicating it is

dependent on normal load.

(a)
2000

1500 H

MR5J6 - initial stress = 800kPa
MR5 16a - initial stress = 2000kPa

"1 I i~

10 15 20

Shear Displacement, (mm)

i

25 30

Figure 6.6°. Initiai ncvmal stress comparison - 5° regular siltstone asperities
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Figure 6.6 (cont'd): Initial normal stress comparison - 5° regular siltstone asperities
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6.3.2 Boundary Conditions

Boundary conditions can be altered in the direct shear tests by applying different constant

normal stiffness conditions. Previous tests on Johnstone and sandstone regular triangular

asperities by Fleuter (1997) indicated that increasing stiffness causes an increase in the

peak normal stress.

A test to verify the effects of varying the normal stiffness conditions was conducted on

two granite regular triangular asperity samples. The two 10° regular triangular granite

interfaces were subjected to an initial normal stress of 2000 kPa with a constant normal

stiffness of 2000kPa/mm applied to one sample and a constant normal stiffness of

4000kPa/mm applied to the other. The results shown graphically in Figure 6.7 in the

shear stress - shear displacement plot and shear stress - normal stress plot, indicate a

higher peak shear stress for the sample with the higher constant normal stiffness. This

would be expected as the higher constant normal stiffness causes a greater increase in

normal stress as dilation occurs. As previously discussed a higher normal stress will

increase the shear stress.

The shear stress versus normal stress plot indicates a frictional sliding angle (<JH-i) of

approximately 48° for sample GR_10a. This corresponds to a basic friction angle of 38°

and asperity angle of 10°. Sample GR_10 has a similar friction angle although there is an

initial drop in shear stress that when observed during the shear test was thought to be

stick-slip behaviour. Stick-slip can be seen through both test samples at intervals by

sharp drops in the shear stress. The actual dilation angle indicated on the dilation versus

shear displacement plot is approximately 8.4° for sample GR10 (X=2000kPa/mm) and

6.1° for sample GRIOa (#=4000kPa/mm). Both are lower than the actual asperity angle

with the reduction in dilation angle being greater the higher the constant normal stiffness.

This decrease in dilation angle is due to compression of the sample, compression of the

casting material, closure of the interface and normal compliance in the shear rig. These

components are all stress dependent. When stick-slip behaviour occurred lower shear

stresses were obtained. This is thought to be due to a dissipation of the stored energy in

the direct shear rig frame. The higher the constant normal stiffness, the greater the stick-

slip experienced by the sample.
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Figure 6.7: Constant normal stiffness comparison - 10° regular granite asperities
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Figure 6.7 (cont'd): Constant normal stiffness comparison- 10° regular granite

asperities

There is an initial compression of the sample as shear displacement commences. This

compression is partly due to machine compliance and joint closure on the application of

shear displacement. This reduces the measured peak dilation. The higher the constant

normal stiffness the smaller the measured peak dilation as the compliance and elastic

compression components are stress dependent.

These accumulative effects on the dilation of the sample mean that the peak shear stress

is not proportionally higher as predicted using the Equation T =otan((|H-£) and calculating

directly the increase in the normal stress due to the higher constant normal stiffness.

6.3.3 Roughness

As the surface roughness increases, so does the peak shear strength as the greater

roughness produces a larger total friction angle (ie. (ty+i)) and hence shear strength (ie.

T=c+(jntan(§+i)). Under constant normal stiffness conditions, the rougher the surface

the greater the dilation rate thus resulting in an increased rate of additional normal stress.

An increase in normal stress will increase the shear stress.
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A comparison of the effect of changing roughness in different rock types was conducted

on siltstone and basalt rock samples. Fractal profiles with standard deviation of chord

angle (se) of 10° and 15° at 5mm chord lengths (these profiles can be seen in Section

5.3.3) were water jet cut into two siltstone aud two basalt samples. The direct shear test

results are shown in Figure 6.8 and Figure 6.9.

The rougher surfaces (ie. se=15°) indicate a greater initial peak shear stress for both the

siltstone and basalt profiles. The se=15° shear results indicated a stiffer initial response

than the se=10° shear results due to the higher initial dilation caused by the steeper

asperities. The later part of the siltstone Se=15° shear results continues increasing in

shear stress due to an overlying trend of approximately 5° causing further dilation. The

basalt Se=15° shear results indicate a decrease in shear stress after approximately 9mm

due to shearing of several asperities.

6.3.4 Scale

As discussed in Section 2.2.3, roughness is scale dependent. To be able to compare

laboratory' test samples and natural scale joints it is important to be able to predict results

at any scale. Fleuter (1997) conducted a series of scale tests on Johnstone and sandstone

profiles containing regular triangular asperities. He showed that for scale equivalence

between joints, the respective joint stiffnesses, K, are related by the inverse of the scaling

factor. This means that if asperity segment lengths, X, of 16mm and 48mm were

selected, the normal stiffness adopted for the larger asperity sample should be scaled by

1/3. For exact scale equivalence, this relationship also requires the sample depths to be

related by the inverse of the scaling factor. Due to limitations of the depth of the direct

shear box and difficulties of obtaining samples of significantly larger depth, this was not

possible in the direct shear tests conducted for Fleuter's work or this current project and

as a result similar sample depths were used. This would lead to disproportional elastic

deformations that could lead to higher normal and peak shear stresses for the longer

chord length samples.
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Figure 6.8: Roughness comparison - siltbtone fractal profiles Gno-600kPa,
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Tests conciucted on Johnstone by Fleuter (1997) showed excellent agreement of both

peak shear stress and peak dilation between the 16mm and 48mm chord length samples.

However, tests conducted on sandstone samples consistently had larger dilation and

higher peak shear stress for the 48mm chord length asperities. This variation was

attributed to violation of sample depth scaling and an inability to take into consideration

any wear components and joint closure effects.

A scale test was conducted by the author on a 10° regular asperity siltstone profile to

investigate this overestimation of dilation. One siltstone sample was water-jet cut with

asperity chord lengths of 16mm and another with asperity chord lengths of 48mm. Both

samples were tested at an initial normal stress of 2000kPa. The constant normal stiffness

applied to the 16rrm chord length sample was 2000kPa/mm. The constant normal

stiffness applied to the 48mm chord length sample was 533kPa/mm (ie. 1/3 of the normal

stiffness applied to the 16mm chord length sample). The direct shear test results can be

seen in Figure 6.10. The 48mm chord length asperity profile again overestimated the

dilation compared to the 16mm chord length asperity profile. This has been attributed to

the violation of sample depth scaling together with a greater initial compression of the

smaller chord length sample. The 16mm chord length asperity result indicates a

significantly less stiff initial response compared with the 48mm chord length asperity

results. With no elasticity, joint closure or machine compliance effects the 16mm chord

length asperity profile would be expected to dilate approximately 2.8mm. However, the

test results indicate only 1.25mm dilation (45% of the expected dilation). This sample

had approximately 0.25mm of negative dilation at the commencement of shear

displacement. This is due to sample closure and shear compliance of the direct shear rig

and sample. With no elasticity, joint closure or machine compliance effects the 48mm

chord asperity profile would be expected to dilate approximately 8.3mm. However, the

test results indicate 5.8mm dilation (70% of the expected dilation). This indicates that

there has been disproportionate compression of the sample and the sample setting for the

smaller chord length sample.

Two other scale tests were conducted on a 8mm chord length sample and another 16mm

chord length sample in the siltstone rock. The results of these tests can be seen in

Appendix B. These tests experienced a small amount of dilation followed by a negative

dilation of the sample. This may indicate that initial mismatching of the samples allowed

further seating to occur once the surface was sufficiently displaced. It also may indicate

2 joint compression or closure of interface
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the presence of compliance of the shear rig in the shear direction. Due to these problems

the results were difficult to compare to the 48mm chord length profile.
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Figure 6.10: Scale comparison - siltstone 10° regular triangular asperities
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Although the scale equivalence tests conducted for this work produced varied results due

predominantly to sample variation, sample depth variation and set-up problems, these

results combined with test results by Fleuter (1997) and Seidel (1993) suggest that scale

equivalence between joints can be obtained if the respective joint stiffnesses, K, are

related by the inverse of the scaling factor. Further work is required to confirm this.

6.3.5 Rock Strength and Type

Johnstone, a low strength artificial sedimentary rock; sandstone, a low to medium

strength sedimentary rock; siltstone, a medium to high strength sedimentary rock; basalt,

a high strength igneous rock with some vesicles; and granite, a high to very high strength

igneous rock were tested as part of this work. The strength and type of rock were

observed to influence the components of the shearing behaviour. All rock types were

observed to undergo sliding (discussed in section 6.3.1). As the normal loads tested were

kept within realistic near surface rock conditions, the stronger rock types did not

experience significant shearing. The various rock types were also shown to produce

different roughness profiles when split. A comparison of the typical standard deviation

of chord angle with chord length statistics produced for each material can be seen in

Figure 6.11. This chart has been produced using the average statistics of one typical

surface. Each rock type is briefly discussed in turn below.

Johnstone

- Sandstone

- Basalt

- Granite

• Siltstone

10 20 30 40 50 60

Chord Length (mm)

Figure 6.11: Comparison of Standard Deviation of Chord Angle Statistics for Different

Rock Types
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Chapter 6 Shear Test Results

The Johnstone, being a softer rock, experienced significant shearing when the local

stresses were greater than the strength of the intact material. The samples appeared to

shear rather than undergo any wear. The Johnstone split profiles were typically relatively

similar in the fine scale roughness with some variation in the longer wavelength

roughness. Typically the longer roughness wavelengths (chord lengths greater than

30mm) possessed a standard deviation of chord angle of approximately 4° although

several profiles had up to 10° standard deviation of chord angle (eg. JS3b and JS7a). The

shear test results of the split surfaces typically showed an initial peak shear stress due to

interlocking of asperities, followed by relatively constant shear stress associated with

little change in dilation. An example shear test result is shown in Figure 6.12. Damage

was sustained to a large proportion of the joint surface as the surfaces were relatively flat

and considerable shearing of asperities took place.

1.0 -r

5 10 15 20 25

Shear Displacement (mm)

30
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5 10 15 20 25

Shear Displacement (mm)

Figure 6.12: Johnstone Split Surface Direct Shear Test Results

The sandstone splits were typically smoother than the other rock types at chord lengths

less than 10mm. They had minimal longer wavelength roughness with the standard

deviation of chord angle above chord lengths of 40mm 2.5° or less. As the samples were

unintentionally sheared with the profile on a slight angle, some dilation continued

throughout the tests (as shown in Figure 6.13). Taking this overall angle into account

however, the shear test results of the split surfaces typically showed a gradual increase in

the shear stress to the peak value and then almost constant shear stress. Due to the fine

roughness of the split samples, it was not possible to differentiate between wear on the
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Chapter 6 Shear Test Results

sample surface and shear failure of the asperities. Some debris remained on the joint

surfaces where contact of the two interfaces was made during shear displacement.

In general the siltstone samples gave variable results. This was due to potential variation

in the sample properties and the orientation and strength of the bedding. The Melbourne

Mudstone used as the source rock, possessed joints parallel and near perpendicular to

bedding. It was therefore decided to test the samples in similar orientations. Most of the

triangular samples were sheared parallel to the bedding plane with only a couple of

samples tested perpendicular to bedding. This meant that any shearing that occurred was

along the bedding with the samples tested perpendicular to bedding overtopping. To

estimate the bedding strength parameters, several intact shear tests were conducted

parallel to the bedding direction. However, these parameters can only be considered as

estimates as the strength of the bedding was found to vary significantly. The siltstone

splits were created along bedding planes so that again any shearing was along the

bedding plane. The fractal samples were cut across the bedding so that any shearing that

occurred was through the rock matrix. The tests on the siltstone samples indicated very

minor wear.

The manufactured siltstone split samples were typically relatively similar in roughness.

They were also similar to the Johnstone splits although smoother at all scales (refer to

Figure 6.11). The siltstone splits overlying longer roughness wavelengths typically

possessed a standard deviation of chord angle of less than 5°. As with the Johnstone split

shear tests, there was an initial peak shear stress due to an interlocking of the asperities

followed by relatively constant shear stress (refer to Figure 6.14).
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Figure 6.13: Sandstone Split Surface Direct Shear Test Result

145



Chapter 6 Shear Test Results

1000

2.
in
U)

s
CO

CO

600

400

i

5 10 15 20 25

Shear Displacement (mm)

30
-0.5

5 10 15 20 25

Shear Displacement (mm)

Figure 6.14: Siltstone Split Surface Direct Shear Test Result

The basalt samples typically underwent sliding with very little shearing of asperities.

Wear was not observed. The basalt split samples were typically rougher than the

siltstone and sandstone split samples at all wavelengths but less rough than the Johnstone

splits at wavelengths less than 16mm. The basalt split samples longer roughness

wavelengths typically possessed a standard deviation of chord angle of approximately 5°

(refer to Figure 6.11). Due to the irregularity of the split surfaces, several of the basalt

split samples were tested with an overlying sample angle causing the dilation to gradually

increase. Several of the splits appeared to have an interlocking effect causing a higher

initial peak shear stress (refer to Figure 6.15). This was followed by a gradual increase in

shear stress due to the longer overlying wavelengths causing further dilation.
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. Figure 6.15: Basalt Split Surface Direct Shear Test Result
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Figure 6.16: Basalt Split Surface Direct Shear Test Result

The strength of the granite samples and the corresponding high loads and stiffness

applied caused significant stick-slip on these samples as previously discussed. The

granite split samples were typically very rough due to the uystalline nature of the

samples and are considerably rougher than the other samples tested. They experienced

significant interlocking at the commencement of shear displacement that caused an initial

peak in the shear stress. This was followed by sharp increases and decreases in the shear

stress due to the stick-slip and often corresponding shear failure of an asperity (refer to

Figure 6.16). Inspection of the split sample surfaces after shearing indicated several

small zones of damage. These zones appeared to have undergone shearing and also

crushing of some asperities.

To provide a visual comparison of the effects of rock strength and type, a comparison has

been made between two similar se=15° (at 5mm asperity chord length) fractal profiles for

basalt and siltstone samples. The basalt had been shown to have higher compressive

strength, tensile strength and residual friction angle than the siltstone. The samples were

both tested at an initial normal stress of 600kPa and constant normal stiffness of

600kPa/mm. The direct shear test results are shown in Figure 6.17.

The peak shear stress results are similar for the two materials although the post peak

behaviours are different. Until the peak shear stress is reached there is very little

shearing of asperities. The dominant shear response is sliding along the steepest

asperities at an angle of (§+i). As there is very little difference in the basic friction angle

(basalt <t>b=34°, siltstone <j)b=28.5°) the change in the total friction angle is quite small and
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not obvious. In the post peak stage, significant shearing of the basalt asperities occurred

whilst little shearing occurred in the siltstone sample. Although the basalt has higher

compressive and tensile strengths than the siltstone, there was more asperity failure in the

basalt sample than in the siltstone sample. This may be due to the inherent variability of

natural rock and a weaker zone in the basalt sample.
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Figure 6.17: Strength comparison - siltstone and basalt fractal profile
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Figure 6.17: (cont'd): Strength comparison - siltstone and basalt fractal profile

6.4 Summary

The series of direct shear tests that were performed have highlighted a typical sequence

of events-

1. Closure of the joint interface

2. Dilation of the interface with increase in shear stress

3. Peak shear stress

4. Post peak phase

During the initial dilation pnase before the peak shear stress is reached, sliding along

asperities is the prime component of shear behaviour. Once the peak shear stress is

reached some of the steeper asperities commence shearing. If shear displacement

continues the dilation will ultimately stop and constant shear and normal stresses will be

reached.

The peak shear stress obtained is dependent on normal stress levels. A higher normal

stress level will cause a higher corresponding shear stress. Although this is predicted by
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the relationship T =c+otan($H; it is not a proportional increase due to compressibility of

the sample and compliance of the shear rig (further details given in Chapter 8).

The peak shear stress obtained is also dependent on the constant normal stiffness. As the

sample dilates the constant normal stiffness causes an increase in the normal stress. This

is not a proportional increase due to compressibility effects.

The peak shear stress is dependent on the sample roughness. A rougher sample causes

higher dilation and under constant normal stiffness conditions this will increase the

normal stress and shear strength.

Minimal shearing of asperities occurs prior to reaching peak shear stress. Therefore the

stronger the rock sample the higher the peak shear stress that can be obtained as higher

strength material requires more load to shear. As different materials have different basic

friction angles, the initial shear response, which is predominantly sliding along the

steepest asperity, will depend on the type of material.

The significance of the sample closure, compression of the rock and casting material and

machine compliance has been highlighted in the laboratory direct shear tests. Chapter 8

discusses the changes required to the shear model developed by previous researchers at

Monash University based on these further test results.

m
M

Fit
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7.0 REPRESENTATION OF A 3-

DIMENSIONAL SURFACE

Most conventional approaches of quantifying roughness, including the popular JRC

method, seek to represent the joint surface roughness in two dimensions. Even the more

recent fractal methods use the fractal dimension of a profile and add 1 to estimate the

fractal dimension of the surface. This simplification of using a two-dimensioml profile

to represent a surface needs to be justified through laboratory testing and statistical

analysis.

Section 7.1 investigates whether 3 two-dimensional profile taken parallel to the shearing

direction of a three-dimensional surface can adequately, for modelling purposes,

represent the surface. A series of statistical comparisons on two-dimensional profiles in

natural rock joints and laboratory split, surfaces are performed. Several laboratory tests

on two-dimensional profile reproductions of the split surfaces are also conducted to test

the proposition.

Every two-dimensional profile taken from a three-dimensional surface will be

geometrically different. However, if they are statistically similar, it may be possible to

use the statistics of the surface to represent the surface at all scales. This may allow a

two-dimensional profile that possesses similar statistics to the surface to be used to

represent the surface for modelling purposes. This hypothesis is tested in Section 7.2.

To reproduce a statistically representative two-dimensional profile, a method is required

to mathematically regenerate the surface across all scales. Section 3.4.4 investigated a

method to statistically regenerate a joint surface in two dimensions. Section 7.2 uses the

results of shear tests on split surfaces to further investigate this statistical reproduction.

7.1 Representation of a 3-D Surface by a Single 2-

D Profile Taken from the Surface

The statistical similarity of profiles taken across natural and laboratory manufactured

joint surfaces is investigated. Laboratory direct shear tests are also used to investigate
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Chapter 7 Representation of 3-D Rougliness

the potential statistical similarity of the profiles. If the profiles are statistically similar

then a single profile could be used to represent the surface.

7.1.1 Natural Rock Surfaces

The Monash laser profilometer, Socket-Pro, was used to measure linear profiles of

several natural rock joints in the laboratory. The following rock samples were profiled:

• Siltstone samples (refer to Section 5.2.3 for siltstone rock properties) - joints

typically had varying amounts of pyrite and carbonaceous coating.

• Basalt samples (refer to Section 5.2.4 for basalt properties) - joints typically had

limonite or carbonaceous coating.

Plots of two-dimensional profiles taken from several joint surfaces are shown in Figure

7.1. Visual comparison indicates that the 2 dimensional profiles taken from the three-

dimensional joint surfaces are all reasonably similar. All the two-dimensional profiles

together with their three-dimensional surfaces are included in Appendix A.
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Basalt Joint 5

25O 3OO 35O
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5O 1OO 15O 2OO 2SO
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3OO 35O

Figure 7.1: two-dimensional Profiles of Several Natural Joints
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The two-dimensional profiles were analysed using the compass walking method (refer to

section 3.2.3.1). As considerable debate still rages over the application of this method,

amongst others, in the determination of a fractal dimension, analysis has been restricted

to the determination of the variation of the standard deviation of chord angle with chord

length (Seidel and Haberfield, 1995a). To ascertain whether* the profiles were

statistically similar for each joint, the standard deviation of angle, se, at various chord

lengths, r, were visually compared for each profile (eg. Figure 7.2). The envelope

produced for each surface was relatively narrow suggesting that the surface could

potentially be adequately represented by any of the profiles. Plots of standard deviation

of chord angle versus chord length (statistical plots) for several surfaces are shown in

Figure 7.2. A complete set of statistical plots on natural joint surfaces are shown in

Appendix A.
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Figure 7.2: Statistical plots for Several Natural Joint Surfaces
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Correlation coefficients can be used to measure the relationship between data sets. The

correlation coefficient is defined in Equation 7.1. The correlation coefficient of the

standard deviation of chord angle at various chord lengths was calculated for each pair of

profiles. These correlation coefficients were then averaged for each surface. The

average value has been presented in Table 7.1. The high correlation coefficients obtained

imply that the profiles are statistically similar. The correlation coefficient between the

standard deviation of chord angles at various chord lengths for each profile and the mean

standard deviation of chord angles was also calculated and has been presented in Table

7.1. The high correlation coefficients obtained suggest that if a surface can be generated

using mean statistics a better representation of the surface may be achieved.

(7.1)

where pSgmr— correlation between standard deviation of chord angle data (se) and chord

length (r)

N = number of values

it, = mean of standard deviation of chord angle data

[ir= mean of chord length data

CTV = standard deviation of standard deviation of chord angle data

crr= standard deviation of chord length data

7.1.2 Split Surfaces

To extend the number of two-dimensional profile statistical comparisons in various

materials and strengths and to allow laboratory verification, several tensile split surfaces

were also analysed. The samples tested in this manner were Johnstone, sandstone,

siltstone, basalt and granite (refer to section 5.2 for properties). The split surfaces were

created as outlined in Chapter 5 and then profiled using the Monash Socket-Pro.

I
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Table 7.1: Average Correlation Coefficient of Standard Deviation of Chord Angle

Statistics

Block

Siltstone 1 - bedding
joint

Siltstone 1 -joint

Siltstone 2 - bedding
joint

Siltstone 3 - bedding
joint

Siltstone 3 -joint

Siltstone 4 -joint

Siltstone 5 - bedding
joint

Siltstone 5 -joint

Basalt 1

Basalt la

Basalt 2

Basalt 3

Basalt 4

Basalt 5

Average Correlation
Coefficient

0.996

0.994

0.994

0.989

0.972

0.933

0.990

0.997

0.989

0.992

0.988

0.978

0.991

0.994

Average Correlation
Coefficient to the Mean

0.998

0.997

0.997

0.994

0.987

0.968

0.995

0.999

0.995

0.996

0.994

0.990

0.996

0.997

7.1.2.1 Comparison of Split Surfaces with Natural Joint Surfaces

Initially a comparison was undertaken between natural joints and tensile split surfaces in

the same material to compare whether the split surfaces approximated natural fractures.

Samples of siltstone bedding joints and basalt joints were used for this comparison.

These surfaces are shown in Appendix A. A siltstone bedding joint and split and basalt

joint and split are compared in Figure 7.3. A visual comparison of the split and natural

surfaces and the two-dimensional profiles from the split and natural surfaces, suggested

that the splitting procedure did produce reasonable approximations of natural joint

surfaces. Standard deviation of chord angle statistics generated from the natural joints
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and the split samples were also within a similar range for each material. The average

statistics of several split and bedding joint surfaces are shown in Figure 7.4.

An analysis using spectral and statistical techniques to compare the statistical properties

of man-made tensile and shear granite joints to natural granite joints by Power and

Durham (1997) has also suggested that man-made fractures may be an acceptable

substitute for natural granite fractures.

Therefore, tensile split samples will be used to represent natural joint surfaces. This

eliminates the difficulty in obtaining large samples containing rock joints.

Siltstone Split 1 Siltstone Bedding Joint 1

i

i
Figure 7.3: Comparison of Natural Joints with Split Surfaces
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Siltstone
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Figure 7.4: Comparison of Standard deviation of Chord Angle Statistics for Natural and

Split Surfaces

7.1.2.2 Visual and Statistical Comparison of Split Profiles

A visual comparison was undertaken of the two-dimensional profiles obtained from each

split surface. These profiles appeared to be visually similar. Several example profiles

are shown in Figure 7.5. The complete set of two-dimensional profiles at a larger scale

used for this comparison are included in Appendix C.

The variation of standard deviation of chord angles with chord length derived using the

compass walking method were also compared from one profile to another. The graphical

output indicates a reasonably narrow envelope of curves. Several example graphs are

given in Figure 7.6. The complete set of graphical outputs produced to investigate the

statistical consistency of the two-dimensional profiles are included in Appendix C.
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Figure 7.5: two-dimensional Profiles of Several Splits
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Figure 7.6: Statistical Analysis of Several Split Surfaces
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Table 7.2: Correlation Coefficients between Standard Deviation of Chord Angles on the

Split Surfaces

Block

Johnstone la

Johnstone lb

Johnstone 2a

Johnstone 2b

Johnstone 3 a

Johnstone 3b

Johnstone 4a

Johnstone 6a

Johnstone 7a

Siltstone 1

Siltstone 2

Siltstone 3

Siltstone 4

Siltstone 5

Siltstone 6

Siltstone 7

Sandstone 1

Sandstone 2

Basalt 1

Basalt 2

Basalt 3

Basalt 4

Granite 1

Granite 2

Granite 3

Granite 4

Average Correlation
Coefficient

0.984

0.987

0.993

0.985

0.996

0.993

0.996

0.991

0.991

0.994

0.995

0.982

0.983

0.983

0.981

0.976

0.984

0.991

0.991

0.947

0.985

0.986

0.992

0.991

0.989

0.992

Average Correlation
Coefficient to the Mean

0.992

0.994

0.997

0.993

0.998

0.997

0.998

0.996

0.996

0.997

0.997

0.992

0.992

0.992

0.991

0.989

0.993

0.996

0.996

0.975

0.993

0.994

0.996

0.996

0.995

0.996

?i
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Table 7.2 lists the average correlation coefficients, p, for the standard deviation of chord

angle statistics of the joint profiles for each split surface. A very good correlation

between the standard deviation of chord angle statistics of each profile exists. Also in

Table 7.2 is a list of the average correlation coefficients to the mean standard deviation of

angle statistics for each surface. These indicate that if a mean surface can be generated a

slightly better correlation can be achieved.

7.1.2.3 Laboratory Comparison of profiles

Direct shear testing was carried out to determine whether a three-dimensional joint

surface could be represented by a single profile taken in the potential shear direction.

Each joint surface selected was laser scanned to produce several profiles of the surface.

One of these profiles was selected and then water-jet cut into an identical rock sample to

produce a two-dimensional joint interface. The joint, surface and the two-dimensional

profile were then tested in direct shear under identical conditions and the behaviour

compared.

Due to the difficulty in cutting a profile at the same fine detail as the original surface, the

two-dimensional profile was reproduced at a selected chord length (typically 3-4 mm).

This unfortunately eliminated the effects of the roughness below this selected chord

length. An example surface and a two-dimensional profile are shown in Figure 7.7. As

the water-jet cutting process produced a fine ripple there were roughness wavelengths at

very fine chord lengths (<2mm). This is shown in the statistical plot of standard

deviation of chord angle versus chord length in Figure 7.8b by a sharp increase in the

standard deviation of chord angle below approximately 2mm chord lengths.

Ideally these tests should be performed on natural rock samples. However, due to the

natural variability of rock it would be extremely difficult to obtain a natural rock joint

and identical sample to replicate a profile. Therefore a series of direct shear tests were

performed on the man-made Johnstone samples that were relatively homogeneous (refer

to Section 5.2.1).

However some difficulties were encountered during this testing program due to:

1. Batch 1 and Batch 2 of Johnstone, although their moisture contents were similar,

the two batches had different UCS values of 8.3MPa and 4.3MPa respectively

(this is discussed in Section 5.2.1).
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2. The inconsistent quality obtained from the water-jet cutters (as discussed in

Section 5.3) made it difficult to compare the performance of the two-dimensional

joint interface with the three-dimensional surface.

Figure 7.7: three-dimensional surface and cut two-dimensional profile

TEST 1 - split surface JS_< a

One of the laser digitised protiles from the mi<idk oi Joiu^u.*,.̂  split surface JS_j4a was

reproduced at 6mm chord lengths by mathemiOksHy watting a compass with a 6mm

opening along the profile and drawing chords be'.wec- :ach intersection point. The two-

dimensional profile, JC4a_6, was water-jet cut into a Johnstone block from the same

batch. The moisture content of the original and water-jet sample were 14.1% and 13.8%

respectively. The water-jet cut surface was almost a perfect match with the selected

profile. The water-jet profile JC4a_6 is shown in Figure 7.8a together with the original
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central profile, JS4a. As can be seen, the small scale roughness has been omitted but the

roughness of the original profile greater than a 6 mm chord length has been maintained.

Figure 7.8b shows the comparison of the standard deviation of chord angle statistics

(produced using the compass walking method) of the cut profile and the scanned profiles

from surface JS_4a. This omission of the small scale roughness of the profile is clearly

illustrated in Figure 7.8b: the standard deviation of chord angle of the water-jet cut

sample for chord lengths less than about 6mm is significantly less than the original

profile.

The cut profile is statistically similar at chord lengths greater than 6mm. Below 6mm

chord lengths the water-jet profile is much smoother as it has had the small scale

roughness omitted. As previously discussed, the water-jet cutting process has left aiine

ripple on the cut surface. This can be seen by a sharp increase in the standard deviation

of chord angle statistics below a chord length of approximately 2mm.

a.

b.

2S0

Length (mm)

- profiles

-JC4a 6

10 20 30 40

Chord Length (mm)

60

Figure 7.8: a. Centre profile from Johnstone split surface JS_4a, JS4a, and its

regeneration at 6mm chords, JC4a_6

b. Statistics of cut profile and original surface
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Figure 7.9: Shear test results of 3-D surface, JS_4a, and 2-D profile, JC4a_6

The sample was tested in direct shear at the same initial normal stress and constant

normal stiffness as sample JS_4a (ie. A=400kPa/mm, Oncr̂ OOkPa). Figure 7.9 compares

the shear test results of the three-dimensional surface and the two-dimensional surface.

The three-dimensional surface initially has a stiffer response at small displacements due

to the smaller scale roughness (that is present in this surface, but not in the reproduced

surface) but at larger displacements the shear stress versus shear displacement curves are

very similar. This suggests that the shear response of the larger wavelengths has been

captured.

Test 2 - Split surface 6a

A central laser digitised profile, JS6a, of Johnstone split surface JS_6a was reproduced at

3mm chord lengths by mathematically walking a compass with a 3mm opening along the

profile and drawing chords between each intersection point. The two-dimensional

profile, JC6a_3, was water jet cut into a Johnstone block from the same batch. The

moisture content of the original and water-jet sample was 14.3% and 14.9% respectively.

The water-jet cut surface was overcut by approximately 2mm as shown in Figure 7.10a.

This has steepened the sharpest peaks and deepened the troughs. Figure 7.10b shov/s the

comparison of the standard deviation of chord angle statistics (produced using the

compass walking method) of the cut profile and the profiles taken from the surface. As

would be expected, the cut profile is statistically rougher due to the overcutting.
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The sample was then tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_6a (ie. A=400kPa/rnm, ono=400kPa). Figure 7.11 compares the

shear test results of the three-dimensional surface and the two-dimensional surface. It is

usual in the shear response to experience some minor seating of the interface at the

commencement of the shearing process (up to 0.05mm) as indicated by the cut surface

JC6a_3 in the dilation shear displacement graph in Figure 7.11. However, the split

surface experienced some initial compression of approximately 0.3mm as indicated by

the extension of the dilation shear displacement graph in Figure 7.11. This may have

been due to an initial mismatching of the surface. Under a constant normal stiffness of

400kPa/mm this compression has caused a reduction in normal stress of 120kPa and a

subsequent decrease in the shear stress.

a.

-16
250

Length (mm)
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Figure 7.10: a. Centre profile from Johnstone split surface JS_6a, JS6a, and its

regeneration at 3mm chords, JC6a_3

b. Statistics of cut profile and original surface
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Figure 7.11: Shear test results of 3-D surface, JS_6a, and 2-D profile, JC6a_3
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Figure 7.12: Adjusted shear test results of 3-D surface, JS_6a, and 2-D profile, JC6a_3
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Figure 7.12 (cont'd): Adjusted shear test results of 3-D surface, JS_6a, and 2-D profile,

JC6a 3

The shear response has been adjusted to remove the initial compression in the split

sample and cut surface in Figure 7.12. A much closer prediction is then achieved.

However, due to the overcutting of JC6a_3 producing larger asperities, there was greater

dilation experienced by the cut sample at longer wavelengths. This allowed the shear

stress to be maintained whilst the three-dimensional surface displayed post peak

softening.

Test 3 - Johnstone Split surface JS_7a

A central laser digitised profile of Johnstone split surface JS_7a was reproduced at 4mm

chord lengths by mathematically walking a compass with a 4mm opening along the

profile and drawing chords between each intersection point. The two-dimensional profile

so obtained, JC7a_4, was water-jet cut into a Johnstone block from the same batch. The

water-jet cut surface was overcut as shown in Figure 7.13a. The saturated moisture

content of the original and water-jet sample was 14.0% and 14.3% respectively. Figure

7.13b shows the comparison of the standard deviation of chord angle statistics produced

using the compass walking method on the cut profile and the envelope of original

scanned profile statistics. The cut profile statistics lie at the upper boundary of the

original profile's statistical envelope due to the overcutting.

167



Chapter 7 Representation of 3-D Roughness

The sample was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_7a (ie. #=400kPa/mm, O"no=400kPa). Figure 7.14 compares the

shear test results of the three-dimensional surface and the two-dimensional surface. As

the cut sample was cut at 4mm chord lengths and did not possess the small scale

roughness of the three-dimensional surface, it produced a less stiff initial shear stress

versus shear displacement response. At longer wavelengths the two-dimensional sample

captured the shear behaviour of the three-dimensional surface even though it was at the

top of the roughness statistical envelope. This may indicate that it was the steeper

asperity sections (captured by the uppermost profiles on the statistical plot) that

dominated the overall response of the three-dimensional split surface.
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Figure 7.13: a. Centre profile from Johnstone split surface JS_7a, JS7a, and its

regeneration at 4mm chords, JC7a_4

b. Statistics of cut profile and original surface

168



Chapter 7 Representation of 3-D Roughness

The previous three tests support the hypothesis that a three-dimensional surface can be

approximated by a single two-dimensional profile taken from the surface.

^yp

1000

800

1
f 600
CA

s
So 400

200

1—1 1

J C 7 a -^L fe*« s *

JS_7a

—i—|—i 1—,—

1000

800

0 200 400 600 800 1000

Normal Stress (kPa)

5 10 15 20 25

Shear Displacement (mm)

Figure 7.14: Shear test results of 3-D surface JS_7a, and 2-D profile JC7a_4

7.2 Statistical Reproduction of a Surface

The previous section indicated that the mean statistics of a surface provided a better

representation of the surface than any individual profile. Therefore a series of direct

shear tests were conducted to investigate whether a three-dimensional surface could

adequately be represented by a two-dimensional surface created using the statistics of the

surface. This involved the development of a method to create a two-dimensional profile

using the three-dimensional surface statistics.

The two-dimensional profiles were again water-jet cut into Johnstone samples. This

meant that similar problems of minimum chord lengths and water-jet cutting accuracy as

discussed in Section 7.1.2.3 were encountered.

7.2.1 Statistical Reproduction Using Compass Walking

Method

The compass walking method was used to generate a profile with a specified standard

deviation of chord angle at a set chord length. Thirteen profiles had been taken of

Johnstone split JS_3a. The compass walking method was used to digitise these profiles
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into 6mm chord lengths (method described in section 3.2.3.1). At this chord length, the

average standard deviation of chord angles was 8°. The random midpoint displacement

method was then used to generate a profile with an 8° target standard deviation of chord

angle at a final chord length of 6mm (method described in section 3.4.2). This profile

was water-jet cut into a Johastone sample from the same batch as JS_3a to form the two-

dimensional profile, JC3a_stat6. The water-jet cut surface was almost an exact match of

the desired profile requested with no evidence of overcutting. The saturated moisture

contents of the original and water-jet cut samples were 14.0% and 16.1% respectively.

The generated profile, JC3a_stat6, is shown in Figure 7.15a together with a median

profile from the original surface, JS3a. Figure 7.15b shows the comparison of the

standard deviation of chord angle statistics produced using the compass walking method

on the cut profile and the envelope of original scanned profile statistics. Below the chord

length of 6mm, the statistics fall below the three-dimensional surface's statistical

envelope as these smaller chord lengths were not cut into the profile. At 6mm chord

length the cut profiles statistics are similar to the average of the surface as would be

expected. However, this method does not attempt to replicate the longer statistics and

hence at chord lengths greater than 6mm the cut profile tends to be on the lower side of

the three-dimensional surface's statistical envelope.

The sample was then tested in direct shear at the same initial normal stre^ and constant

normal stiffness as JS_3a (ie. A=400kPa/mm, ano=400kPa). Figure 7.16 compares the

shear test results of the three-dimensional surface and the two-dimensional surface.

The shear test results for this statistical reproduction indicate that the cut profile has not

successfully modelled the split surface. The profile was cut at 6mm chord lengths and

therefore does not include the effects of smaller scale roughness (ignoring the minimal

effects due to the surface ripple produced by the water-jet cutting process). This

produced a lower shear stress at smaller displacements. This is indicated by the less stiff

initial response of the cut surface. The method also only used the 6 mm chord length

statistics for regeneration and did not attempt to include the specific effects of larger

roughness wavelengths. The larger roughness wavelengths that are present have been

randomly achieved by the midpoint generation method. In this case they were less steep

than the three-dimensional surface and therefore produced a lower shear stress response

at larger displacements. These effects may also be exacerbated as the water-jet cut

sample had a higher moisture content which usually indicates a lower strength.
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This test shows the importance of capturing all wavelengths of roughness.
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Figure 7.15: a. A central profile from Johnstone split JS_3a, JS3a, and a statistically

regenerated profile at 6mm chords, JC3a_stat6

b. Statistics of cut profile and original surface
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7.2.2 Statistical reproduction using Power or Logarithmic

function combined with the Modified Midpoint

Displacement Method

Chapter 3.4.4 described how the standard deviation of chord angle versus chord length

plots of natural joint surfaces can be accurately represented by logarithmic or power

functions. As the split surfaces provide similar surface roughness profiles to natural

joints, it is no surprise that the standard deviation of chord angle statistics for the split

surfaces can also typically be well described by a natural logarithmic function or a power

function. Several examples are shown in Figure 7.17. Further split surface mathematical

representations are included in Appendix E.
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Figure 7.17: Mathematical representation of the mean curve of standard deviation of

chord angles of the split surfaces
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Figure 7.17 (cont'd): Mathematical representation of the mean curve of standard

deviation of chord angles of the split surfaces
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As with the natural joint profiles, these profiles could be reproduced using the Modified

Midpoint Displacement method combined with either a power or logarithmic function as

discussed in Section 3.4.4. Several example reproductions at approximately 3-4mm

chord lengths and a centre profile from the original split surface are shown in Figure 7.18

together with their standard deviation of chord angle statistical plots. The reproduced

statistics fall within the statistical envelope of the original split surface indicating a

statistically similar two-dimensional profile has been generated. This must be qualified

by the points noted in Section 3.4.4 that this statistical reproduction may not be capturing

roughness wavelengths greater than 60mm.
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Figure 7.18: Comparison of regenerated profiles and the original split surfaces
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Figure 7.18 (cont'd): Comparison of regenerated profiles and the original split surfaces

Two split surfaces were regenerated using the modified midpoint generation method and

either a power or logarithmic function to describe the statistics of the surface so that the

regeneration method could be tested using laboratory testing.

Using the compass walking method, the average standard deviation of chord angle

statistics for the thirteen two-dimensional profiles of Johnstone split sample JS_6a was

determined. These statistics were approximated by a power function according to

se=16.065Z,c"
0'3227, where se= standard deviation of chord angle (deg), Lc= chord length.

A profile, JS6aj^ow4, was then generated using the modified midpoint displacement,

method and this pi'ver function for chord lengths of less than 30mm. The generated

profiles statistics fell w'thin the standard deviation of chord angle envelope of the split

surface. This can be seen in Figure 7.19.

The profile was water-jet cut into a Johnstone sample from the same batch as JS_6a to

form the two-dimensional profile, JC6a_pow4. Unfortunately an overcut replication of

the desired surface was obtained thus producing a rougher surface. The saturated

moisture content of the original and water-jet cut samples were 14.3% and 13.4%

respectively.
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Figure 7.19: Standard deviation of chord mirh statistics for generated profile and

original surface

The as-cut generated profile is shown in Figure ZT'Os together with a cenje profile of the

original surface, JS6a. Figure 7.20b shows the comparison of the standard deviation of

chord angle statistics produced using the compass walking method of the cut profile and

the envelope of original scanned profile statistics. The cut profile lies on the upper side

of the envelope due to the overcutting by lius ^skr-jet process in particular below

approximately 9mm chord length. This is unusual as the roughness below 4mm chord has

actually been omitted from the cut surface (ignoring the ripple effect caused by the

water-jet cutting process). This suggests that the overcutting of the profile has produced

steep angled peaks that are comprised of 4mm chords but accumulate to a steep angle.

This can be seen in Figure 7.20a with profile JC6a_pow4 having many very sharp

asperities.

The sample was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_6a (ie. AT=400kPa/mm, uno=400kPa). Figure 7.21 compares the

shear test results of the three-dimensional surface and the two-dimensional surface. The

results indicate that the cut profile has not successfully modelled the split surface. Some

initial seating of the split sample occurred causing approximately 0.15mm of initial

contraction. However significant dilation oamrred in the generated sample due to the

larger longer wavelength roughness that was not present in the split sample. This may

have been accentuated by the overcutting of the sample by the water-jet cutting process.

The steeper angle asperities below approximately 9mm chord lengths would have caused

the initial peak shear stress to be higher. Some shearing of these steeper asperities can be

seen in the sudden decreases in shear stress in the shear stress versus normal stress plot at

about 700kPa normal stress.
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Figure 7.20: a. Centre profile from Johnstone split JS _6a, JS6a, and regenerated profile

at 4mm chord lengths, JC6a_pow4

b. Statistics of cut profile and original surface
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Figure 7,21: Shear test results of 3-D surface, JS_6a, and 2-D profile, JC6a_pow4
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Figure 7.21 (cont'd): Shear test results of 3-D surface, JS_6a, and 2-D profile,
JC6a_pow4

Using the compass walking method, the average standard deviation of chord angle

statistics for the thirteen two-dimensional profiles of Johnstone split JS_7a were

determined. These statistics were approximated by a natural logarithmic function

according to se=-2.5198Ln(Z,c)+16.35, where se=standard deviation of chord angle (deg),

Z-C=chord length. The modified midpoint displacement method with a standard deviation

of chord angle of 7.5° was used to generate a profile with chord lengths of 32mm. Below

a chord length of 32mm, the logarithmic function was used to estimate the standard

deviation of chord angle to be used with the midpoint displacement method. The final

generated profile had chord lengths of 4mm. The statistics of this generated profile fall

within the standard deviation of angle envelope of the split surface as shown in Figure

7.22.
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Figure 7.22: Standard deviation of chord angle statistics for generated profile and

original surface
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The profile was water-jet cut into a Johnstone sample from the same batch as JS_7a to

form the two-dimensional profile, JC7a_log4. An overcut replication of the desired

surface, was obtained through water-jet cutting. The saturated moisture contents of the

original and water-jet cut samples were 14.3% and 14.5% respectively. The as-cut

generated profile is shown in Figure 7.23a together with a centre profile of the original

surface. Figure 7.23b compares the standard deviation of chord angle statistics produced

using the compass walking method of the cut profile and the envelope of original

scanned profile statistics. The cut profile tends to be on the upper side of the envelope in

particular below approximately 7mm chord length due to the overcutting by the water-jet

process. This is unusual as the roughness below 4mm chord has actually been omitted

from the cut surface (ignoring the ripple effect caused by the water-jet cutting process).

This suggests that the overcutting of the profile has produced steep angled peaks that

comprise of 4mm chords but accumulate to a steep angle.
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Figure 7.23: a. Centre profile from Johnstone split JS_7a, JS7a, and regenerated profile
at 4mm chord lengths, JC7a_log4

b. Statistics of cut profile and original surface
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The sample was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_7a (ie. K=400kPaImm, o-no=40.0kPa). Figure 7.24 compares the

shear test results of the three-dimensional surface, JS_7a, and the two-dimensional

surface, JC7a_log4. These results indicate that the cut profile has overpredicted the shear

response of the split surface. Due to the lack of fine roughness cut into sample

JC7a_log4, the initial response is considerably less stiff than the split surface. However,

the cut profile is rougher than the split surface below a chord length of approximately

7mm and its peak shear stress is approximately 20% higher than the split surface's peak

shear stress. The shear stress continues to be higher until approximately 19mm shear

displacement when an asperity is sheared and the shear stress drops to the same as the

split surface. Until approximately 6mm shear displacement, the dilation of the two tests

was similar. After this point the dilation measured during the cut surface shear test is

slightly higher than that measured during the split surface shear test.
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Figure 7.24: Shear test results of 3-D surface, JS_7a, and 2-D profile, JC7a_log4
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7.2.3 Statistical Reproductions

To accurately represent a split surface, the standard deviation of chord angle statistics at

various chord lengths (as generated using the compass walking method) of the two-

dimensional cut samples need to be within, or close to, the envelope of standard

deviation of chord angle statistics of the split surface. Due to the difficulties encountered

in machining surfaces to a desired roughness profile, only a limited number" of

replications accurate enough to be used were obtained from the water-jet cutters. To

provide further data, the statistics of several overcut samples were compared to split

sample statistics from the same Johnstone batch. Three of these two-dimensional surface

statistics fell within the standard deviation of chord angle envelope from split surface

JS_6a. One two-dimensional surface statistic fell within the standard deviation of chord

angle envelope for split surface JS_7a.

In each case, as the cut profile does not include roughness below a defined chord length

(either 3mm, 4mm or 12mm), the initial shear response is less stiff than the split surface.

However, below lmm length chords, the ripple effect produced in the water-jet cutting

process produces a sharp increase in roughness. At longer chord lengths, each of the cut

profile's statistics being compared with split surface JS_6a, lay at the top of the split

surface's statistical envelope. This indicates that the cut profiles had large overlying

roughness that would cause larger dilation at larger displacements. As very few of the

split surface profiles had this longer roughness, it is inferred that shearing occurred

unevenly across the sample in these areas in preference to dilation.

Details of these surfaces and test results are given below.

Test 1 - Split Surface JS6a

The first two-dimensional cut surface that fell within the statistical envelope of split

surface JS_6a, was taken from a centre profile of split surface JS4a. This profile

designated JF8_12, was generated by using the compass walking method at a 12mm

chord length along a centre profile. The profile following water-jet cutting of a

Johnstone sample, had a standard deviation of chord angle of 8° at 12mm chord length.

As the smallest chord length included in the profile was 12mm, the profile would not be

expected to replicate the shear behaviour at small displacements but should be reasonable

for larger shear displacements. The as-cut profile is shown in Figure 7.25a together with
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a centre profile of the split surface JS_6a. Figure 7.25b shows the standard deviation of

chord angle statistics of the cut profile and the envelope of scanned profile statistics from

surface JS__6a. The saturated moisture contents of the split and cut surfaces were 14.3%

and 13.9% respectively.
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Figure 7.25: a. Centre profile from Johnstone split JS_6a, JS6a, and fractal profile,
JF8J2

b. Statistics of cut profile and original surface

Sample JF8_12 was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_6a (ie. A=400kPa/mm, ano=400kPa). Figure 7.26 compares the

shear test results of the three-dimensional surface, JS_6a, and the two-dimensional

surface, JF8_12.

The shear test results for this statistical reproduction indicate that the cut profile

reasonably successfully modelled the split surface. The peak shear stress of the cut

surface is approximately the same as the split surface although it occurs at a much higher

shear displacement. After the peak shear stress, the cut surface continues to dilate as

shown in Figure 7.25 and by the gradual increase in shear stress with shear displacement.
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This may be due to the longer roughness wavelengths or an overlying slope in the sample

set-up. The dilation of the split sample however, becomes relatively constant after

approximately 5mm of displacement. This leads to the decline in shear stress observed

after the peak.
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Figure 7.26: Shear test results of 3-D surface, JS_6a, and 2-D profile, JF8_12

The second two-dimensional cut surface that fell within the statistical envelope of split

surface JS_6a, was taken from a centre profile of split surface JS3a. This profile

designated JF12_3, was generated by using the compass walking method at a 3mm chord

length along a centre profile. When water-jet cut into a Johnstone sample, the resulting

profile had a standard deviation of chord angle of 12°. The as-cut generated profile is

shown in Figure 7.27a together with a median profile of the split surface JS_6a. Figure

7.27b shows the standard deviation of chord angle statistics of the cut profile and the

envelope of scanned profile statistics from surface JS_6a. The saturated moisture

contents of the split and cut surfaces were 14.3% and 14.1% respectively.
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Sample JF12_3 was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_6a (ie. K=40OkPaJvam, ano=400kPa). Figure 7.28 compares the

shear test results of the three-dimensional and two-dimensional surfaces. The shear test

results for this statistical reproduction indicate that the cut profile reasonably successfully

modelled the split surface up until a shear displacement of about 3 to 5mm. However

sample JF12_3 continued to dilate rapidly until approximately 15mm displacement after

which time the dilation became minimal. Longer roughness wavelengths can be

observed on the plot in Figure 7.27a and in the statistical plot of Figure 7.27b. The peak

shear stress was approximately 20% higher in the cut sample. Peak shear stress was

reached at approximately 2mm shear displacement in the split sample and 15mm shear

displacement in the cut sample.
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Figure 7.27: a. Centre profile from Johnstone split JS_6a, JS6a, and fractal profile,
JF12_3

b. Statistics of cut profile and original surface
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Figure 7.28: Shear test results of 3-D surface, JS__6a, and 2-D profile, JF12_3

The third two-dimensional cut surface that fell within the statistical envelope of split

surface JS_6a, was taken from a centre profile of split surface JS_4a. This profile

designated JF15a_3, was generated by using the compass walking method at a 3mm

chord length along a centre profile. Ths resulting water-jet cut sample had a roughness

profile with a standard deviation of chord angle of 15° (at 3mm chord length). The as-cut

profile is shown in Figure 7.29a together with a centre profile of the split surface JS_6a.

Figure 7.29b shows the comparison of the standard deviation of chord angle statistics of

the cut profile and the envelope of scanned profile statistics from surface JS_6a. The

saturated moisture content of the split and cut surfaces were 14.3% and 13.8%

respectively.
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Sample JF15a_3 was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS_6a (ie. #=400kPa/mm, ano=400kPa). Figure 7.30 compares the

shear test results of the three-dimensional surface and the two-dimensional surface.

The shear test results for this statistical reproduction indicate that the cut profile

reasonably successfully modelled the split surface. The initial peak shear stress of the cut

surface is less than 10% higher than the split surface. However, after the peak shear

stress, the shear stress of the cut surface remains relatively constant whilst the split

sample displayed a decrease in shear stress following the peak and overall experiences

less dilation than the cut sample.

a.

250

Length (mm)

•profiles

•JF15a 3

Chord Length (mm)

Figure 7.29: a. Centre profile from Johnstone split JS_6a, JS6a, and fractal profile,
JF15a_3

b. Statistics of cut profile and original surface
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Figure 7.30: Shear test results of 3-D surface, JS_6a, and 2-D profile, JF15a_3

All of the cut samples continued to dilate, whilst the split sample's dilation became

minimal after approximately 5mm shear displacement. Peak shear stress was only

reached on the cut samples at considerably larger shear displacements thrn the split

samples.

Test2 - Split Surface JS7a

The two-dimensional cut surface that fell within the statistical envelope of vplit surface

JS_7a, was generated at 3mm chord lengths using the modified midpoint displacement

method and a power function of the split surface JS_3a statistics. This profile,

designated JF15_3, had a standard deviation of chord angle of 15° at 3mm c!»ord length

when water-jet cut into a Johnstone sample. The as-cut generated profile is shown in
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Figure 7.31a together with a centre profile of the split surface JS_7a. Figure 7.31b

compares the standard deviation of chord angle statistics of the cut profile and the

env --•>• ."profile statistics from surface JS_7a. This graph indicates that the roughness

oft. *ut surface JF15_3 is higher than the split surface between 2 and 10mm chord

lengths. The saturated moisture content of the split and cut surfaces were 14.3?^ and

13.6% respectively.
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Figure 7.31: a. Centre profile from Johnstone split JS_7a, J$7a, and fractal profile,
JF15_3

b. Statistics of cut profile and original surface

The sample was tested in direct shear at the same initial normal stress and constant

normal stiffness as JS__7a (ie. AT=400kPa/mm, Ono^OOkPa). Figure 7.32 compares the

shear test results of the three-dimensional surface and the two-dimensional -urface. The

initial peak shear stress of the cut surface is approximately 10% higher than the initial

peak shear strength of the- split surface. The dilation of the cut sample is also
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Chapter 7 Representation of 3-D Roughness

approximately 10% higher than the dilation response of the split surface. As the cut

sample experienced more negative dilation at the commencement of shearing than the

split sample, these differences would be slightly higher if the initial negative dilation was

removed. The higher shear stresses and dilation obtained by the cut sample may be

explained by the larger roughness of the cut sample between 2 and 10mm chords.

Taking this into consideration, the shear test results for this statistical reproduction

indicate that the cut profile successfully modelled the split surface.
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Figure 7.32: Shear test results of 3-D surface, JS_7a, and 2-D profile, JF15_3
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Chapter 7 Representation of 3-D Roughness

7.3 Discussion

7.3.1 Representation of a 3-D Surface by a 2-D Profile taken

from the Surface

Visual comparison of two-dimensional profiles in one direction along natural and

artificial joint surfaces, has suggested that the profiles, although net geometrically

identical, may be statistically similar. Statistical analysis of these profiles using the

standard deviation of chord angle versus chord length statistics produced using the

compass walking method, indicate a relatively narrow envelope of statistics and

correspondingly good correlation coefficients. This correlation is improved if the

correlation is calculated to the mean standard deviation of angle statistics for each

surface. This suggests that if a mean surface is generated a slightly better correlation can

be achieved.

This statistical analysis indicated that the surface statistics were relatively similar across

the entire surface (in the same direction). Therefore statistically, the surface could be

represented by any of its individual profiles.

To justify the statistical analysis, three laboratory direct shear tests were performed on

split Johnstone samples (considered representative of natural siltstone bedding joints) and

two-dimensional profiles that were water-jet cut into similar samples. The two-

dimensional profiles were randomly selected from the profiles taken of each surface.

The profiles were taken in the proposed shear direction of the split sample. Several

points to note in these tests were as follows:

• These profiles were cut at chord lengths of 3mm, 4mm or 6mm. This meant that the

fine roughness below these chord lengths was omitted. This was visible by a

flattening of the statistical plots below this chord length and in the less stiff initial

shear displacement response.

• The water-jet cutting process left fine ripples on the surface of the samples. These

ripples were visible in the standard deviation of chord angle statistics with a sharp rise

in the statistics below a chord length of approximately lmm.

• The water-jet cutting process did not always produce the desired surface with some

overcutting often present.
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• Initial matching of the split surface was difficult to achieve with very minor

mismatching changing the dilation and hence shear response of the surfaces.

Taking the above factors into account, the shear response of the two-dimensional profiles

were typically within experimental variation of the respective surface responses. This

again suggested that a single profile taken from the surface could adequately represent

the three-dimensional surface. Most of the longer wavelength roughness present in the

split surfaces tended to have a standard deviation of chord angle of about 5°. This meant

that following the initial peak shear value, the dilation was minimal and hence the, shear

stress became relatively constant. This was also observed for the cut samples. However,

if longer chord length roughness were present, as in sample JS_7a, these longer

wavelengths could be captured by representing the surface with a profile containing the

longer wavelengths.

7.3.2 Statistical Reproduction of a Surface

The use of a power or logarithmic function to describe the standard deviation of chord

angle statistics combined with the modified midpoint displacement method has been

visually and statistically demonstrated to produce a two-dimensional profile with

statistics that typically fall within the statistical envelope of natural and artificial joint

surfaces.

As highlighted in the statistical comparison of various natural and artificial joint surfaces,

if a mean surface is generated a slightly better correlation may be achieved between a

two-dimensional profile and the three-dimensional surface. One laboratory direct shear

test was conducted on a two-dimensional profile that had been generated using the

modified midpoint displacement method and the 6mm chord length average standard

deviation of chord angle statistics of a three-dimensional surface. The shear response of

this profile did not capture the shear response of the three-dimensional surface as both

the finer and coarser than 6mm roughness were not being modelled. This highlighted the

need to model all wavelengths of roughness present in the three-dimensional surface.

Two laboratory direct shear tests were conducted on two-dimensional profiles generated

using a power or logarithmic function describing the standard deviation of chord angle

statistics of three-dimensional surfaces combined with the modified midpoint,

displacement method. Unfortunately both two-dimensional profiles produced we/e
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considerably rougher than the three-dimensional surfaces at the smaller chord lengths.

This was predominantly caused by overcutting of the test sample by the water-jet cutters.

It meant however, that the shear response of the two-dimensional profiles were 20-40%

higher than the three-dimensional surfaces.

As it appeal "-J difficult to have exact water-jet replication of desired surfaces, several

two-dimensional profiles were created that were then matched with the statistics of the

three-dimensional surfaces. Four two-dimensional profiles with statistics that fell within

the statistical envelope of three-dimensional surfaces were selected. Taking into

consideration the factors outlined in section 7.3.1, the shear response of these two-

dimensional profiles were typically within experimental variation of the statistically

equivalent three-dimensional surface. This suggested that providing the statistics of the

three-dimensional surface were captured, the two-dimensional profiles were capable of

adequately representing the surface.

I

f ,&

7.4 Conclusions

These results support the contentions that:

• A three-dimensional surface can be adequately represented by a single two-

dimensional profile of the surface provided the same shear direction is used.

• The modified midpoint displacement method combined with a power or logarithmic

function of the surface's standard deviation of chord angle statistics can be used

successfully to regenerate a surface.

• A three-dimensional surface can be successfully represented by a single two-

dimciisional profile, providing all wavelengths are captured and the potential shear

di*eci*on is known. However, care must be taken with this process as longer

wavelengths of roughness are not always captured in simple analysis. This large

wavelength roughness can significantly increase the dilation and hence affect the

normal stress and shear response under com tint normal s*"; ness conditions.
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8.0 MODELLING OF SHEAR

BEHAVIOUR

Chapters 6 and 7 have outlined the basic mechanisms of the shear behaviour of rock

joints and the quantification of joint roughness. As discussed in Chapter 4, some

preliminary modifications were made <o the existing concrete / rock shear behaviour

model described by Fleuter (1997). These modifications involved inclusion of elasticity

components of displacement of both sides of the joint; changes to the failure stress of

asperities and the inclusion of a simple joint closure model. The current work has

explored in further detail the shear response of rock joints including the behaviour of

stronger rock and three-dimensional surfaces. This chapter discusses what changes were

required to the model as a result of this more extensive testing.

The model developed for the shear behaviour of concrete-rock interfaces had previously

been incorporated into a computer model by Seidel (1993). This computer program,

Rocket, is discussed in this chapter together with the modifications made by Fleuter to

include the behaviour of rock joints. Details of the further modifications required based

on testing carried out for this project are presented.

8.1 Joint Closure and Machine Compliance

Bandis et al. (1983) investigated rock joint closure of several rock types under the

application of applied stresses up to 55MPa. They concluded that the closure varied

nonlinearly with normal stress until a state of maximum closure. This value depended

upon the previous stress history of the joint. They also concluded that the joints when

unloaded, experienced hysteresis and large permanent sets.

Some preliminary work was conducted by Fleuter (1997) into the effects of joint closure

on the shear behaviour of rock joints in the Monash direct shear device. This work was

conducted on soft rock samples with water-jet cut surfaces that appeared to have a

maximum correction to dilation of approximately 0.55mm. Fleuter concluded that the

effects of machine compliance were minimal and that a bilinear model could be used as

an approximation of the joint closure. This bilinear model took into account elastic

compression of the intact material and closure of the rock joint.
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The current research has highlighted the importance of including the machine compliance

components in measurements of joint closure and elastic compression of the intact rock.

Joint closure has also been shown to depend predominantly on joint roughness and

asperity strength.

8.1.1 Machine Compliance

All machinery has some compliance, hi the case of the Monash University direct shear

rig, compliance can be encountered between the sample interfaces and the shear box, in

the metal interfaces of the shear box, between interfaces of the shear box and the direct

shear rig, between the base of the vertical load cell and the top of the shear box and in the

direct shear rig frame (refer to Figure 5.1 for diagram of shear rig and box).

To estimate the direct shear rig compliance, a block of steel 400mm x 80mm x 130mm

was tested in the device under axial loading. The block was placed directly into the

direct shear box without the use of plaster or grout. The block was strain gauged on the

two longer edges. The strain gauge results indicate that almost negligible compression

occurred within the steel block to the applied stresses of 6.5 MPa. This meant that the

movements measured by the vertical LVDT's could be considered to be all compliance

of the system. This enabled a polynomial relationship between applied normal stress (<7n

MPa) and compression (8 mm) to be estimated as shown graphically in Figure 8.1 and

represented by Equation 8.1.

Machine Compliance

_ 6

0.2 0.3

Compression (mm)

0.4 0.5

Figure 8.1: Machine Compliance relationship between normal stress and compression
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an=18.23(S)2+7.11(8) (8.1)

This estimation of machine compliance is based on axial loading and does not include

potential compliance affects created during shear displacements. Due to the difficulty in

measuring these compliance effects and the negligible rotation found in the bearing

systems of the rig (Seidel 1993) the machine axial compression relationship will be used

to estimate the machine compliance.

8.1.2 Elasticity of Intact rock

To estimate the elastic compression of the intact halves of the rock samples, a series of

axial compression tests were conducted on intact test samples of sandstone, siltstone,

basalt and granite in the direct shear rig. These samples were approximately 100-130mm

high and were placed directly in the shear box without the use of plaster or grout.

Previous tests had been conducted by Fleuter (1997) on intect Johnstone samples so these

were not retested. After the machine compliance was subtracted from the compression

results, an estimate of the sample stiffness was obtained. These stiffness values would

naturally be dependent on the sample height. The values are listed in Table 8.1.

Unconfined compressive strength tests in a 500kN Baldwin compression test machine

were also conducted on each rock type on 52rnm diameter core samples approximately

130-140mm high. The ends of the samples were machined flat and parallel to the

loading platen. An estimate of the Young's Modulus was made using a middle third rig.

By dividing these results by the test sample length, an estimate of the stiffness for these

samples was obtained. The values are also shown in Table 8.1.

As the heights between the two methods were comparable, a comparison of the stiffness

calculated by the 2 methods can be made. The comparison consistently indicates higher

sample stiffness measured in the Baldwin test machine (ie. there is considerably larger

deformations measured in the direct shear rig). This large variation was considered to be

due to sample compliance. The direct shear rig samples had been typically cut using a

circular saw and it was likely that the surfaces of the direct shear test samples were not

perfectly flat or parallel (as is the case with the UCS samples). Uneven surfaces may

cause high local stresses on the sample. These high local stresses on the samples may

have caused larger deformations. As the calculations of sample stiffness were carried out

using the global normal stress and not local stresses, underestimation of the stiffness may
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have occurred in the direct shear rig samples. The core samples in the uniaxial testing

machine had been machined fiat so that uniform loading was produced on these samples.

Due to difficulties of machining the direct shear rig samples (eg. High strength and large

size) it was deemed unfeasible for the limited number of samples to be tested. However,

it should also be noted that the maximum difference obtained between the two test

methods is only in the order of 0,06mm compression per IMPa of applied stress for the

worse case granite sample. These very small movements would be difficult to eliminate.

Table 8.1: Intact stiffness values of each rock type

Rock Type

Johnstone

Sandstone

Siltstone

Basalt

Granite

Estimate of intact stiffness
with compression test

2.5 MPa/mm

1.8MPa/mm

8.2 MPa/mm

24.2 MPa/mm

16.6 MPa/mm

Estimate of stiffness with
UCS results

6.9 MPa/mm

24.6 MPa/mm

195 MPa/mm

442 MPa/mm

451 MPa/mm

In the determination of sample compression to be used in modelling, the Young's

Modulus as estimated by testing samples in the Baldwin test machine will be used

together with the sample thickness.

8.1.3 Joint Stiffness

hi the current research the regular triangular and fractal profiles were cut using water-jet

cutting techniques. This process leaves a slightly rippled profile on the surface. Under

the application of a load this surface becomes more closely mated. Similarly, any gaps

between the two interfaces of a split surface due to unmatching, diminishes under the

application of a load. Previous work by Bandis et al. (1983) has suggested the need for a

hyperbolic model to predict this joint closure behaviour. However, Bandis' model is

designed to include high loads as potentially encountered in deep underground rock

situations. This current research is restricted to relatively small loads. Over this range, a

linear approximation of the joint closure is reasonable.
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To obtain joint stiffness values, compression tests were conducted in the direct shear rig

on water-jet and split samples of each rock type. As the samples were to be used for

subsequent shear testing, the applied stresses were kept to within the range expected

during the shear testing to eliminate permanent closure or damage to the joint surface.

The sandstone and Johnstone samples were placed directly on the base of the shear box

and then set in Plaster of Paris. This meant that there was approximately 10mm of

plaster between the top of the sample and the top of the shear box. Gu (2001) had'

performed compression tests on a plaster block to estimate the compression of the plaster

under loading. After adjustment to remove the machine compliance component, the

results indicated that the plaster compressed by the bilinear relationship shown in

Equations 8.2 and 8.2a (per mm thickness). The siltstone, basalt and granite samples

were set in high strength concrete grout. Gu (2001) performed compression tests on a

similar high strength concrete grout to estimate the compression of the concrete. These

results were used and after adjustment to remove the machine compliance component,

the results indicated that the concrete grout per mm thickness compressed by the linear

relationship given in Equation 8.3 up to a normal stress of 2000kPa. Further application

of load did not see further compression of the material.

5c=4E-7*an

6>3E-7*ovK).0006

o>3.85E-7*Gn

Gn<2000kPa

. (Jn>2000kPa

CJn<2000kPa

(8.2)

(8.2a)

(8.3)

where 8C = casting material compression (mm)

(jn = normal stress (kPa)

To calculate the average joint stiffness values of the water-jet cut and split surfaces,

machine compliance, elastic compression of the intact material and compression of

plaster or concrete at the top of sample was removed. This leaves a value of compression

tliat includes closure of the joint under various applied stresses. An approximate linear

relationship was developed between applied stress and amount of compression. This

relationship is only applicable to normal stresses up to 6MPa. If higher applied stresses

are to be expected a parabolic relationship may be required.

The joint stiffhess values given in Table 8.2 are the average joint stiffness values that

were used to model the direct shear tests performed in this current work. These values
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include sample compliance due to potentially uneven surface as discussed in Section

8.1.2. When modelling natural insitu joints the joint stiffness value may be higher as it

would not include these sample compliance components.

Table 8.2: Joint Stiffness values

Rock Type

Johnstone

Sandstone

Siltstone

Basalt

Granite

Surface

Waterjet

Split

Split

Waterjet

Split

Waterjet

Split

Waterjet

Split

Modelling Stiffness

6.0 MPa/mm

5.4 MPa/mm

2.1 MPa/mm

6.2 MPa/mm

3.9 MPa/mm

7.6 MPa/mm

7.5 MPa/mm

7.8 MPa/mm

7.5 MPa/mm

Table 8.2 indicates that stiffness appears to be dependent on the surface roughness and

rock type. It is therefore necessary to obtain accurate joint stiffness data for each rock

joint to be modelled. The amount of joint closure, 5j, can then be calculated via a linear

relationship between joint stiffness, Kj, and the local normal stress, an, as shown in

Equation 8.4. This relationship is only valid for low normal stresses up to approximately

6MPa. If normal stresses are considerably higher a hyperbolic model as suggested by

Bandis may be required.

5 j = ^ n (8.4)

8.2 Shear Modelling

In concrete / soft rock interface modelling by Seidel (1993), the Sokolovsky solution for

an infinite slope was used to assess the shear failure of the soft rock asperities (as

discussed in Section 4.4). Fleuter (1997) performed a finite difference analysis on a rock

joint model. This analysis indicated reasonable correlation between the Sokolovsky

198



Chapter 8 Modelling of Shear Behaviour

failure stress and the average stress over 20% of the interface closest to the asperity edge.

Fleuter suggested an asperity multiplication factor of approximately 2 to the concrete /

rock model to take into account the reduced failure area.

Estimations of asperity failure using Fleutjr's recommendations are shown in Figure 8.2

for 10° regular triangular asperity profiles of different rock types. These simulations take

into account the full compliance effects as discussed in Section 8.1. The results indicate

that reasonable agreement is found for the Johnstone material (8% difference between

predicted peak shear stress and laboratory peak shear stress). The peak shear stress for

the sandstone material is well predicted although the shear displacement to failure is

overpredicted and the amount of dilation at peak is underpredicted by 14%. The failure

stress does not appear to be correctly modelled for the stronger materials.

An analysis was therefore conducted to determine the actual failure stress for each of the

test materials. Direct shear test results on regular triangular asperities where shear failure

had occurred were used for this analysis. The local normal stress at failure could be

calculated using the peak shear stress and contact area sheared as shown in Equation 8.5.

Of = (xpLr) / (M,stan(<|)+0) (8.5)

where Of = local failure stress

N = number of asperities

Ls= sheared length

$ = friction angle

i = asperity angle

xp = peak shear stress

LT= total sample length

Regular triangular asperity direct shear tests on Johnstone and Sydney Hawkesbury

sandstone samples were conducted by Fleuter (1997) and were not repeated during this

current testing. Fleuter's test results were therefore used for these materials. Due to

minimum and maximum load limitations of the direct shear rig, asperity failure was not

observed in the granite samples tested in this current work and hence analysis of this

material could not be conducted.
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Using the direct shear test results of the regular triangular asperities where shearing of

the asperities had occurred, a plot of failure stress versus asperity angle could be

constructed for each material. The failure stresses assessed using the Sokolovsky

solution has also been added to this plot together with the Unconfined Compressive

Strength of the rock sample. These plots are shown in Figure 8.3. They indicate the

following:

• Soft rock. The failure stress of the Johnstone (UCS = 4.0MPa) and Hawkesbury

sandstone samples (UCS = 14MPa) appear to be consistently lower thin that

predicted by the Sokolovsky model. In the case of the Johnstone, the failure stress on

average was 38% lower than the Sokolovsky failure stress. In the case of the

sandstone the failure stress on average was 26% lower than the Sokolovsky failure

stress.

• Medium to hard rock. The failure stress of the stronger rock appears to coincide with

the unconfined compressive strength of the rock. The siltstone regular triangular

samples were tested parallel to their bedding direction and hence the unconfined

compressive strength of the sample along the bedding direction was used (30MPa).

The basalt samples were shown to have an unconfined compressive strength of

approximately 120MPa.
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Figure 8.3: Failure Stress Plots
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This analysis indicates that for softer rock samples the slope stability analysis can be

used and modified to take into account the reduced failure (contact) area of rock joints

compared to rock / concrete interfaces. However harder rock samples will fail when the

local normal stress reaches the unconfmed compressive strength of the rock.

8.3 Joint Roughness Representation

The analysis of three-dimensional natural joints and man-made surfaces described in

Chapter 7, indicated that for modelling purposes, profiles taken in one direction could be

treated as statistically similar. This suggested that if the roughness statistics of the

surface were captured, the surface could be analysed more simply as a two-dimensional

rough profile. Joint rougiaiess can be quantified by calculating the standard deviation of

chord angles for various chord lengths. By using different chord lengths the scale affects

of the joint shear behaviour can be captured.

The analysis described in Chapter 7 indicated that an individual profile taken from the

joint surface typically captured the shear behaviour of the surface at chord lengths greater

than the minimum chord length reproduced. It would therefore be ideal if this profile

could be used to represent the joint surface in the shear analysis. Unfortunately, due to

the accumulation of either positive or negative chord angles in these profiles, computer

modelling of these profiles are difficult to program. This instability is due to the use of

slope stability analogies in modelling asperity failure mechanisms. This is shown

diagrammatically in Figure 8.4. A similar situation was encountered when the statistics

of the surface were used to regenerate a statistically similar profile. Although this

regenerated profile included various scales to minimize scale effects, it was not suitable

for computer analysis.

To overcome these modelling difficulties, irregular triangular asperities are used to

simulate roughness. A series of chord angles with varying standard deviations are

selected according to a Gaussian distribution (refer to Section 3.5) such that the angles

are forced to alternate between positive and negative angles to produce triangular

asperities. By selecting a chord length, a roughness profile with a known standard

deviation of chord angle can be produced. This profile can be used to represent the joint

surface at one defined chord length. If several chord lengths are analysed, superposition
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can be used on the envelope of shear responses to predict the behaviour of the surface at

different scales.

V /'

cs=an+i

Potential
failure
surface

C=0n+T

Figure 8.4: Diagrammatic representation of potential failure surfaces

8.4 Modifications to the program Rocket

The program ROCKET was written originally in 1993 in C language to model pile socket

response under axial loading (Seidel 1993). This program was later interfaced with

Windows and the code adjusted where required so that it could be understood by C++

processors. Later modifications were made by a computer programmer under contract to

include rock joint behaviour so that predictions could be made for the Masters

candidature of Fleuter (1997). Based on the more extensive testing, of rock joint

behaviour in this present work and the need to include the behaviour of strong rock and

three-dimensional profiles, this program has been further modified by the author. The

modifications are discussed in this section.
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8,4.1 The Existing Algorithm

The computer program can be divided into two main parts with these being:

• the algorithm

•. the windows interfacing

The algorithm is written in a series of modules that are called from the main module

Rocket30. These modules are typically stand-alone and perform a specific part of the

calculations of joint shear behaviour. Figure 8.5 shows a flow diagram that illustrates the

basic sequence of modules. A summary of each module follows:

GEOM This is the geometric input module. To simulate plane strain conditions,

the asperity width (ie. dimension perpendicular to the shear direction) is

set to 10 times the asperity length (ie. dimension parallel to the shear

direction). The profiles modelled by the program are regular triangular

profiles (5°, 10° and 20°), 3 standard profiles used in Seidel's (1993)

research work and 2 constant chord length two-dimensional fractal

profiles (se=10° and Se=15°). These profiles are stored as data files of

chord angles (in degrees). They are scaled within the model by user input

chord lengths and number of chords. These profiles could be up to 50

chords long with a minimum chord length of approximately 6mm.

POSN This module computes the current mid-point location of each asperity by

calculating the original position plus half the shear displacement.

INCLUDE This module determines the included angles for an asperity and the

previous and net asperity faces. These angles are used to calculate the

slope failure stress and to calculate the additional interface contact length

under high local stresses.

SOKOLOV This module determines the failure stress of an asperity based on the

closed form solution after Sokolovsky (1960). The Newton-Raphson

method is used to iterate to the solution. To take into account premature

failure of the rock in localized regions of high stress, the effective

Sokolovsky failure stress is reduced inversely in proportion to the

computed increase in local stresses over the higher stress regions.
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Figure 8.5: Sequence of Modules in Rocket
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CONLEN This module computes the contact length between the two sides of the

interface. For non-degrading materials, the contact length is determined

by the asperity length less the global shear displacement. For degrading

materials allowance is made for an increased contact length due to the

effects of degradation and higher normal stresses. For asperities that have

failed, the contact length is determined by the geometry and the relative

movements along the failure plane and the original surface.

PSTRAIN This module computes the displacement at 16 asperity faces either side of

the loaded asperity face being analysed. It also assembles the local

compliance vector for each asperity.

STEINADD This module computes the individual influence factors relating to any

loaded asperity using Steinbrenner's method.

PSASMB This module assembles the global compliance matrix from the local

compliance vectors for each asperity excluding any non-contacting

asperities.

LUDCMP2 This module performs the LU-Decomposition (L-lower U-upper triangular

is a mathematical manipulation of linear Equations) of the global

compliance matrix to determine the global stiffness matrix. This module

is used in combination with module LUBKSUB to solve a set of

simultaneous Equations.

INTRFACE This module takes into account the reduction in dilation due to joint

closure of the sample.

COMPRESS This module computes the net elastic compression, p, of each asperity

from the asperity geometry, current dilation, \y, computed degradation and

joint closure, Sj. The current dilation is an estimate used to produce a

more accurate estimate of the true dilation after several iterations.

LUBKSUB The stiffness matrix determined in module LUDCMP2 is multiplied by

the net elastic compressions and via solving a set of simultaneous linear

Equations the local stresses acting on each asperity are estimated.
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EXPAND As the stiffness matrix is computed only for the asperities in contact, this

module is required to take the values from LUBKSUB and assign the

values to the original asperities.

NORMCOMP This module computes the global normal stress from the sum of the

product of local stresses and asperity contact lengths and averaging over

the Ml sample length.

TAUCOMP This module multiplies the normal stresses acting on each asperity by the

effective friction angle (§+i) to obtain the shear stresses acting on each

asperity. The sum of the shear stresses is then computed to obtain the

global shear stress.

TAUDEG This module computes the shear resistance of asperities experiencing

degradation.

CONTCHEK This module checks each asperity for contact. The total number of

contacts is checked against the initial number of contacts and if the

number of contacting asperities is not equal then the contact equilibrium

loop is re-entered.

CONVERT This module converts the local normal and shear stresses in global

coordinates to local coordinates.

FAIL This module determines whether the current local stress on a given

asperity exceeds the Sokolovsky failure stress. If they do then failure

flags are set.

CUMSHEAR This module accumulates the shear displacement that has occurred on

each asperity face.

DEGRADE This module computes an incremental degradation rate. Four wear rate

models are supplied for user selection.

The windows interfacing framework is located in the main module Rocket. This in turn

calls the Rocket2 module that handles user requests together with the resource file (*.rc)

and dialog resource script files (*.dlg). Separate modules are written for such processes

as printing, graphs, dongle access etc.
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The current program requires selection that a rock joint is being analysed. Once this

selection is made, the user is required to input the following properties or parameters:

• Young's Modulus for top and bottom joint surface (limited to soft rock values)

• Sliding and shearing friction angles

• Cohesion value

• Poisson's ratio for top and bottom joint surface

• Depth of top joint surface and bottom joint surface

• Stress Concentration Factor (refer to Fleuter (1997))

• Select a data file to load the geometry, choose the chord length and number of chords

(currently limited to several profiles with choi"1 lengths greater than approximately

6mm)

• Initial normal stress and constant normal stiffness

• Select whether to include interface compliance. If selected, input interface modulus,

maximum joint closure and sample modulus. The joint closure can be calculated

using either global normal stress or local stresses (although problems occur using the

local stress for some profiles)

• Select whether the material degrades. If selected, choose a degradation model from 4

options.

For each execution of the program one chord length can be analysed. This means that the

model analyses the joint at only one particular scale per execution. The scale is defined

by the chord length selected with the corresponding geometry. By analysing several

chord lengths, an envelope of shear response at a rang'; of scales can be developed

(Haberfield and Seidel, 1999). This enables the scale dependency of joint shear

modelling to be captured.

This process is illustrated graphically in Figure 8.6.
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Figure 8.6: Procedure of capturing the shear behaviour of a rock joint at several scales
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8.4.2 Modifications to stress - dilation balancing loop

The existing Rocket code was unstable at small chord lengths, for high Young's Modulus

values and high combinations of normal stress and constant normal stiffness in particular

at the commencement of shearing.

The existing stress - dilation balancing loop can be summarised as follows:

• estimate a global initial dilation

• calculate individual asperity's dilation taking into account the dilation on the asperity

due to shear displacement less any effects due to compliance or wear, and subtracting

the estimated dilation

• use these individual asperity dilations to calculate the local normal stress on each

asperity

• if the local normal stress was negative, take the asperity out of contact and set the

local normal stress to zero

• summate the local normal stresses and normalise tc obtain a global normal stress

• compare this global normal stress to the global normal stress calculated by using the

initial normal stress plus the stiffness times the global dilation.

• If the error is greater than 0.05% and the loop has not been repeated 25 times, the

loop is repeated setting the new estimate of global dilation to be the existing estimate

plus the difference in normal stress multiplied by the sample depth divided by sample

modulus.

• Once this loop is finished the number of asperity contacts are checked against the

original number of asperity contacts. If the number of contacts are different the entire

process is repeated up to 4 times.

This process was improved by taking only one asperity out of contact during each loop.

As shear displacement commenced the rear side of each asperity would typically move

out of contact (taking into account any potential elastic effects). This sudden removal of

contact areas caused typically half of the asperity sides to initially be taken out of contact

and then irecontacted through a programming error. This caused an initial instability

(oscillation between extreme normal stress values were encountered) in the program that

\ meant that the error was not reduced to less than 0.05% before 25 loops were performed.
i
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By removing only one asperity at a time and reprogramming the incorrect coding, this

problem was avoided and the error consistently reduced to below 0.05% within several

loops. The number of iterations was repeated up to the number of asperities being

modelled.

These adjustments, together with a few minor programming errors in the existing code,

enabled very small chord lengths to be modelled together with any combination of

Young's Modulus, initial normal stress and constant normal stiffness without instability.

8.4.3 Modifications for Joint Closure and Compliance

As a joint undergoes shear displacement, sliding commences on the steepest asperities

causing dilation of the sample. In the absence of elastic compression and compliance this

dilation can be calculated by the shear displacement multiplied by the tan of the steepest

asperity angle (ie. \|/ = JrtanS). However in rough joints, elastic effects with load sharing,

closure of the interface and compression of the intact rock are present. In a laboratory

situation there is also machine compliance and sample set-up compliance, hi the Rocket

code the module COMPRESS computes the amount of dilation, y, of each asperity. The

joint closure, b], elastic compression of the intact rock, machine compliance, Cm (in the

case of laboratory testing) and compression of the casting material 8C (in the case of

laboratory testing), reduce the amount of expected dilation. These reductions are

calculated in the module INTRFACE and are summarized by Equation 8.6.

\jf = x.tani - degradation - elastic compression of intact rock -Cm- b) - 8C (8.6)

For degrading materials the component of dilation attributed to degradation is removed

via a selection of one of 4 options. For laboratory samples, the machine compliance is

calculated via a polynomial relationship with the global normal stress as specified in

Equation 8.1.

The amount of joint closure is calculated via a linear relationship between the joint

stiffness and the local normal stress as expressed in Equation 8.4. The joint closure is

calculated only for contacting asperities.

The amount of elastic compression of the asperity due to the local stress is calculated by

dividing the local normal stress by the asperity height.
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8.4.4 Modifications for shear failure

As discussed in section 8.2 the existing shear failure model using Sokolovsky's slope

stability analogy only partially modelled the soft rock joints and did not capture the shear

failure of hard rock joints. The rock joints consistently underwent premature failure in

localized regions of high stress.

To take into account this premature, brittle failure, the soft rock joints were modelled

using a modified Sokolovsky failure stress. Allowance was made in the user interface of

the program Rocket to input a modification factor. The Sokolovsky failure stress was

divided by this modification faci^r. In the case of Johnstone the modification factor is

1.38 and in the case of sandstone 1.26.

The harder rock samples fail at their unconfined compressive strength values. Therefore

the UCS was used as the failure stress rather than using a Sokolovsky solution. This

modification was made in the FAIL module of Rocket.

8.4.5 Modifications for data entry

The existing Rocket program was designed to read text files of chord angles. The

existing text files represented triangular profiles of 5°, 10° and 20° chord angles, fractal

profiles with a standard deviation of chord angle of 10° and 15° and 3 standard profiles

used in Seidel's (1993) research work. As the program needed to be extended to analyse

more realistic surfaces a more extensive database of profiles was required.

A set of chord angles were generated using a program written in Visual Basic so that

each set had a predefined standard deviation of chord angle with angles that alternated

between positive and negative values. A range of standard deviation of chord angles

between 1° and 20° in 1° intervals was generated and saved as text files to be accessed

from the computer shear model.

To quantify the roughness of the joint surface either the statistics of the surface must be

known in terms of the variation of the standard deviation of chord angle with chord

length, or several profiles from the surface taken and analysed to produce standard

deviation of chord angle statistics. The average of these statistics can be used to

determine an average standard deviation of chord angle at a specified chord interval. By

selecting the standard deviation of chord angle at several chord lengths, an envelope of
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shear response can be generated using, the standard deviation of chord angle text files

within the computer model. This process is shown diagrammatically in Figure 8.7.

Regenerated Profiles at specified chord lengths

3mm chords with standard deviation of angle = 7°

3 5
Chord Length (mm) 5it<m chords with standard deviation of angle = 4°

5mm chords

55

Shear Displacement

Figure 8.7: Roughness Input and analysis

The modified program has removed references to pile socket analysis. The user is

required to input the following properties or parameters:

• Young's Modulus for top and bottom joint surface (no limiting value)

• Sliding and shearing friction angles

• Cohesion value

• Poisson's ratio for top and bottom joint surface

• Depth of top joint surface and bottom joint surface
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• Sokolovsky Modification Factor

• Rock Unconfined Compressive Strength

• Select a data file to load the geometry, choose the chord length (no limiting chord

length value) and number of chords.

• Initial normal stress and constant normal stiffness

• Joint compliance is always included in the model. A selection can be made to

include "machine compliance. If machine compliance is included, the user can select

whether the sample is set in plaster or concrete and it's thickness so that the

compression in this medium can be calculated. The user must input a joint stiffness

value and a sample modulus.

• The user can select whether the material degrades. If selected the degradation model

suggested by Fleuter (1997) or Gu (2001) can be used.

8.5 Conclusion

The series of laboratory direct shear tests conducted for this work has indicated that the

basic shear model developed for concrete / rock interfaces can be used for the analysis of

jock joints. Work by Fleuter (1997) had already included the elastic components of both

interfaces. This further work has highlighted the need to more accurately model

compliance effects, develop methods to analyse three-dimensional surfaces and that

modifications to the shear failure model were required.

The following changes to the model have been made to address these issues:

• Joint closure is present both in the laboratory and insitu conditions. This is

dependent on applied stress levels, rock strength and roughness and can be

represented by a joint stiffness. The model has been changed to include a joint

stiffness value that can be used to determine the joint closure under an application of

a normal load. This value must be input by the user. Although a hyperbolic model

may more closely replicate joint closure effects, as this work is limited to near surface

rock situations and hence low stresses a linear model has been used. This model

adequately represents the closure in these conditions and is naturally far simpler to

implement for a range of rock types.
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Machine compliance is present in laboratory iest situations. The machine compliance

of the Monash direct shear rig used for the test program varies according to a

polynomial relationship with axial loading. The compliance effects due to shear

loading have not been included. This is not considered of significant concern for near

surface rock situations with low stress levels as being modelled in this current work."

However, for higher loads and stronger rock (such as the granite tested) it may need

to be included.

hi laboratory testing, compression in the casting materials used to fix the joint into

the shear box also plays a minor component in the overall measured dilation. Bilinear

relationships were developed for the compression in the casting plaster and concrete

grout used during this work.

Due to the complexity of analysing a three-dimensional surface, it is desirable to

convert the surface into a two-dimensional equivalent. Three-dimensional surfaces

were shown in Chapter 7 to be adequately captured by statistically representative two-

dimensional profiles. To capture the scale effects of an irregular two-dimensional

profile, the statistics over a range of chord lengths can be used. By using several

chord lengths, an envelope of shear behaviour at a range of chord leagths can be

developed. This approach of representing firstly the three-dimensional surface

statistically by the average of several profiles, and then analysing the resulting profile

at various chord lengths, will be used to approximate the shear behaviour of a surface.

Using the existing multiplication factor on the Sokolovsky predicted failure stress of

2 to predict the local normal stress level where shear failure will occur, underpredicts

the peak shear strength for soft rock and overpredicts the peak shear strength for

harder rock. Analysis of actual failure stresses indicate that lower modification

factors (than 2) to the Sokolovsky failure stress are required for soft rock situations.

In hard rock situations the failure stress can be approximated by the rocks unconfined

compressive strength. For modelling purposes, it has been suggested that for rock

with an unconfined compressive strength of greater than 20MPa the failure stress be

set equal to the unconfined compressive strength. Further testing is required to

confirm this.
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9.0 PREDICTIONS OF ROCK JOINT

BEHAVIOUR

This chapter compares prediction from the theoretical joint model with results from the

direct shear tests. The predictions are made using the modified computer program

Rocket.

Due to the high strength of some of the materials tested, it was necessary to empirically

estimate several of the shear strength parameters. The parameters selected and the

methodology used in their estimation is discussed in Section 9.1.

This chapter discusses each rock type and category of roughness profile separately,

providing example predictions of each. A complete compilation of predictions is

provided in Appendix E. The predictions shown in Appendix E are represented by 4

graphs:

shear stress vs. shear displacement

shear stress vs. normal stress

dilation vs. shear displacement

normal stress vs. shear displacement

The shear and normal stresses are average values based on the total plan area of the

interface less an allowance for shear displacement. Each graph shows the laboratory test

results together with one prediction if the profile has a single chord length, or three

predictions at different chord lengths for irregular profiles. As shown in Figure 9.1,

when three predictions at different chord lengths are used, an envelope of shear response

can be drawn onto the graph.

9.1 Estimation of Shear strength parameters

Due to the high strength of several of the rock types tested in this current work, it was not

possible to obtain shear strength parameters through intact sample direct shear testing or

triaxial testing using the available equipment. For this reason the shear strength

parameters were estimated for the siltstone, basalt and granite using the Hoek - Brown
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failure criterion (Hoek and Brown 1980; Hoek and Brown 1988) expressed in Equation

9.1.

a\f = (9.1)

where o\ and G\ = principal stresses

Gc = critical stress at failure

•Rm, mi and s = empirical constants that relate to rock type and degree of fracturing

For intact rock:crc == Unconfined Compressive Strength

Rm = s=\

m-, siltstone = 10

nii basalt = 17

nii medium grained granite = 22

These values were combined with the Unconfined Compressive Strength values and

cohesion and peak friction angle values estimated by constructing Mohr circles. A range

of stresses up to 300 kPa was used to construct the Mohr circles. The estimated values

are given in Table 9.1.

Table 9.1: Estimated Cohesion and Peak Friction Values

Material

Siltstone

Basalt

Granite

Cohesion (MPa)

12

20

35

Peak Friction Angle (°)

40

48

50

The values for the Johnstone and sandstone were taken from intact direct shear tests and

triaxial testing and are discussed in Section 5.2.

9.2 Johnstone Predictions

As discussed previously, the direct shear tests conducted on this artificial material were

limited to fractal profiles and split surfaces as previous tests had been conducted on

regular triangular profiles by Fleuter (1997). A range of fractal profile roughnesses were
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tested to verify the model at varying roughness. Similarly, a range of split surface

roughnesses were tested under a range of boundary conditions.

Predictions were based on the parameters listed in Table 9.2. Compliance due to

compression of the setting plaster, machine compliance and joint closure was included in

the calculations. A modification factor of 1.38 to the Sokolovsky failure stress was used

to predict the point of shear failure of the asperities (discussed in Chapter 8).

Table 9.2: Johnstone Parameters

Parameter

Young's Modulus

Poisson's Ratio

Intact Friction Angle Batch 1

Intact Friction Angle Batch 2

Residual Friction Angle

Cohesion Batch. 1

Cohesion Batch 2

Joint Normal Stiffness - water-jet surface

Joint Normal Stiffness - split surface

Failure Stress

Adopted value

900MPa

0.25

35°

34°

24.5°

1500kPa

1050kPa

6.0MPa/mm

5.4MPa/mm

1.38 * Sokolovsky failure stress

9.2.1 Fractal profiles

The modified Rocket program was used to assess the shear response of five fractal joints.

These are compared to the laboratory test results in Appendix E. Diagrams of these

profiles together with their roughness statistics are shown in Section 5.3.1.

The results of the comparison between laboratory and Rocket estimates are summarised

in Table 9.3. This table indicates the average percentage difference of the shear stress

prediction compared to the laboratory shear stress test result at smaller displacements

(<5mm) and larger displacements (5-15mm). It also indicates where initial negative

dilation was encountered and the amount measured. A calculation of the change in

normal stress that this negative dilation would induce (ignoring compliance effects) is

also included.

221



Chapter 9 Predictions of Joint Behaviour

Table 9.3: Summary of Johnstone Fractal Predictions

Sample

JF8_12

JF12_3

JF15a_3

JF15_3

JF21_3

Difference between
Laboratory Result

& Prediction

<5mm

-40%

-35%

-35%

0%

-50%

Difference between
Laboratory Result

& Prediction

5mm-15mm

-50%

-20%

-30%

0%

-20%

Initial
Negative
Dilation

0.35mm

0.3mm

0.25mm

0.05mm

0.4mm

Induced
Change in

Normal Stress

140kPa

120kPa

lOOkPa

20kPa

240kPa

Four of the five laboratory tests experienced considerable initial negative dilation at the

commencement of shear displacement. As discussed in Section 6.2, this initial closure of

the joint under the application of a shear force in a constant normal stiffness test,

decreases the normal stress leading to a decrease in the shear stress. For these samples,

the dilation. ?hear stress and normal stress has been overpredicted by various amounts of

up to 50%. However, the overall shape of the predicted responses are consistent with the

laboratory test results.

Example shear stress - shear displacement and dilation - shear displacement plots are

shown in Figure 9.1 for the fractal profile JF8_12. The profile and roughness statistics

are also shown. This profile was cut at 12mm chord lengths and 2 chord lengths of

12mm and 16mm were used to obtain the shear response at 2 different scales. The

smaller chord length prediction captures the effects of finer roughness and hence

produces a stiffer initial response than the longer chord length prediction. The envelope

of these predictions can be used to predict the shear response over a range of scales. This

envelope has been drawn onto the plot If the dilation - shear displacement plot is

extended back towards zero shear displacement, approximately 0.35mm of initial

compression was experienced for this test. If this compression is added back to the test

results such that the entire curve is shifted upwards, then almost exact matching is

obtained for the dilation prediction. Based on a normal stiffness of 400kPa/rnm, the

addition of 0.35mra dilation increases the normal stiffness by 140kPa. Therefore the

lower shear stress and normal stress of the test, can be explained by this initial negative

dilation. A higher normal stress would lead to the development of more compliance
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effects in the form of joint closure, elastic compression, machine compliance and casting

material compression. However for an increase of 140kPa these effects are small.

100 200 300

Le ngth (m m )

400 500

1 0 20 3 0 4 0

C h o r d L e n g t h ( m m )

1000

Prediction

1.5

1.0

E
0.5 • -

0.0

-0.5

»c< w 25 30

.\\nm)

Test Result

Extension of curve
1 1 ' ' ' ' i ' ' ' w ' ' ' ' i ' ' ' ' i ' ' '
5 10 15 20 25 30

Shear Displacement (mm)

•Predicted Envelope

Figure 9.1: Prediction of shear response for profile JF8_12
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The adjusted shear stress - shear displacement and dilation - shear displacement plots for

sample JF8_12 are shown in Figure 9.2. These graphs indicate that if there had not been

initial compression of the sample, the shear stress and normal stress prediction would be

very similar to the laboratory results. This would also be the case with the other

laboratory test predictions included in Appendix E.

1000

- H

5 10 15 20 25

Shear Displacement (mm)

30
-0.5

5 10 15 20 25

Shear Displacement (mm)

30

Prediction Test Result • Predicted Envelope

Figure 9.2: Adjusted prediction of shear response for profile JF8_12

The initial compression component is inconsistent be iween samples and is believed to be

not only dependent on sample strength and roughness conditions but also a compliance

component of the general sci-up of the sample in the laboratory. Due to the variability of

the magnitude of this initial compression and that it is due to laboratory conditions and

would not be present in insitu conditions, it has not been included in the computer model.

However, by estimating the change in overall dilation experienced by the sample due to

the initial compression, modified shear stresses and normal stresses can be estimated.

This allows comparison of the test results with the predictions to allow verification of the

model.

The test sample that experienced almost negligible initial compression at the

commencement of shear displacement, JF15_3, produced an excellent prediction of the

laboratory test result. Shear stress - shear displacement and dilation - shear displacement

plots for this sample are shown in Figure 9.3 together with a diagram of the profile and

its roughness statistics. Chord lengths of 3mm, 8mm and 24mm were used to obtain the

shear response at 3 different scales. The envelope of these curves has been included.

I
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Figure 9.3: Prediction of Shear response for profile JF15_3

Based on these test results and taking into account the presence of initial compression on

some samples, it is considered that the shear model adequately predicts tW. shear

response of the Jolinstone fractal tests at different scales.
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9.2.2 Split profiles

Nine Johnstone split samples were tested. Movement in the sample plaster was noted

during the testing of sample JS_2b. This result has therefore been ignored. Shear

response predictions have been conducted for each of the other tests and are included in

Appendix E. Diagrams of these surfaces together with their profiles and roughness

statistics are showr- in Appendix C.

The results of the predictions have been summarised in Table 9.4.

Table 9.4: Summary of Johnstone Split Predictions

Sample

JS_la

JS_lb

JS._2a

JS_3a

JS_3b

JS_4a

JS_6a

JS_7a

Difference between
Laboratory Result

& Prediction

<5mm

0%

+15%

0%

0%

+10%

0%

-15%

-5%

Difference between
Laboratory Result

& Prediction

5mm-15mm

0%

+20%

0%

-5%

-15%

-5%

-50%

-5%

Initial
Negative
Dilation

0mm

0.2mm

0.2mm

0.15mm

0.20mm

0.1mm

0.3mm

0mm

Induced
Change in

Normal Stress

-

80kPa

80kPa

60kPa

120kPa

40kPa

120kPa

-

This table indicates that for most of the samples the initial negative dilation is quite

small. Once the compliance effects are included due to the increase in normal stress, the

overall increase would be minimal and would not have a significant effect on the test

results. Sample JS_6a is the exception. This sample experienced the most initial

negative dilation of approximately 0.3mm. hi this case the effect on the shear results is

noticeable. By removing this initial compression a closer prediction is achieved. This is

demonstrated in Figure 9.4. Although the prediction of the peak shear stress is quite

accurate, dilation at the longer chord lengths is still overpredicted. This may suggest that

longer profiles are required to obtain quality statistics at the longer chord lengths.
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Figure 9.4: a. Prediction of split surface JS_6a

b. Adjusted prediction of split surface JS_6a

Sample JS_7a did not experience initial negative dilation. The shear test result is shown

in Figure 9.5 together with a diagram of the surface and a statistical analysis of its

roughness. This test was conducted at an initial normal stress of 400kPa and constant

normal stiffness of 400kPa/mm. The average standard deviation of chord angle for

various chord lengths from several profiles was used to represent the surface. Three

chord lengths of 1.5mm, 9mm and 23mm were used to capture the shear response at

different scales.

These results indicate that if the initial negative dilation is small or can be removed an

excellent match of the prediction to the laboratory test results is achieved.
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Figure 9.5: Prediction of Shear response for profile JS_7a

Sample JS_lb produced the worst prediction of shear response. As can be seen by its

graphical representation and statistical analysis shown in Figure 9.6, this surface had long

roughness wavelengths towards the centre of the sample. These longer wavelengths have

dominated the shear response and have not been captured by the prediction (see

Appendix F9).

Using the average statistical profile to represent the surface may not include roughness

wavelengths that dominate the shear response. Therefore, in general, the samples that are

consistent across their surface produce more accurate estimates of the shear response.
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Figure 9.6: Surface JS_lb and its statistical analysis

9.3 Sandstone Predictions

As discussed previously, the direct shear tests conducted on this material were limited to

split surfaces as previous tests conducted by Fleuter (1997) included regular triangular

and fractal profiles.

Predictions were obtained usin£, the parameters listed in Table 9.5. Compliance due to

compression of the setting plaster, machine compliance and joint closure was included in

the calculations. A modification factor of 1.26 to the Sokolovsky failure stress was used

to predict the point of shear failure of the asperities (discussed in Chapter 8).

•M
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Table 9.5:

Parameter

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Joint Normal Stiffness - split surface

Failure Stress

Sandstone Parameters

Adopted value

3200MPa

0.1

50°

32°

2200kPa

2.1MPa/mm

1.26 * Sokolovsky failure stress

9.3.1 Split profiles

Two sandstone split samples were tested and shear response predictions on each

conducted. These predictions are shown in Appendix E.

An analysis of the split surface shear results with the wear models developed by Seidel

(1993), Fleuter (1997) and Gu (2001) consistently underpredict the peak shear stress and

dilation. The models developed by Seidel (1993) and Gu (2001) were developed for

concrete / soft rock interfaces where it could be inferred that wear of the softer material

by the much harder material would occur. The profiles tested for this work are three-

dimensional surfaces and more closely replicate a natural joint surface than profiles

tested by Fleuter (1997). These current tests indicate that wear is not a significant

component of the shear behaviour. An example of the shear stress produced on sample

SS_2 if the normalized degradation rate with respect to asperity angle as recommended

by Fleuter (1997) is incorporated into the model, is shown in Figure 9.7. Two chord

lengths of 6.5mm and 21mm were used to produce the estimate. As can be seen the

predicted shear stress is considerably lower than the test results. For this reason wear has

not been incorporated into the predictions conducted for this work.

The shear behaviour prediction of split surface SS_1 is shown in Figure 9.8 together with

a diagram cf the surface and a statistical analysis of its roughness. This sample

experienced quite significant initial negative dilation (approximately 0.5mm) leading to a

considerable decrease in the normal stress. Ignoring compliance effects the normal stress

would increase by 200kPa based on a constant normal stiffness of 400kPa/mm if this
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initial negative dilation had not occurred. This would correspondingly increase the shear

stress. By removing the initial negative dilation an excellent prediction of the split

surface shear response is produced as shown in Figure 9.8.
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Figure 9.7: Prediction of Shear response for profile SS_2 incorporating wear

Split surface SS_2 experienced much less initial negative dilation (approximately

0.2mm). The shear behaviour prediction ot this sample is shown in Figure 9.9 together

with a diagram of the surface and a statistical analysis of its roughness. This test was

conducted at an initial normal stress of 400kPa and constant normal stiffness of

800kPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths of 1.5mm,

6.5mm and 21mm were used to capture the shear response at different scales. These

plots indicate an excellent prediction of the dilation has been made. The initial shear

stress prediction below approximately 3mm chord lengths is also very good. Above this

chord length the prediction is approximately 20% larger than the laboratory test results.

As it is a natural material with natural variability, this may be explained by a variation in

the material properties.

Based on these two results it is considered that the model, not incorporating a wear

component, captures the shear behaviour of the sandstone joint.
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Figure 9.8: Prediction of Shear response for profile SS_1
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Figure 9.9: Prediction of Shear response for profile SS_2
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9.4 Siltstone Predictions

Direct shear tests were conducted on regular triangular profiles, fractal profiles and split

surfaces.

Predictions were based on the parameters listed in Table 9.6. Compliance due to

compression of the concrete, machine compliance and joint closure was included in the

calculations. A shear failure stress equal to the unconfined compressive strength in the

bedding direction was used for tests where shearing occurred along the bedding (regular

triangular and split surfaces) and a failure stress equal to the unconfined compressive

strength through the matrix where shearing occurred through the rock matrix (fractal

surfaces) (discussed in Chapter 8).

Table 9.6: Siltstone Parameters

Parameter

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Joint Normal Stiffness - water-jet surface

Joint Normal Stiffness - split surface

Failure Stress - shear along bedding

Failure Stress - shear through matrix

Adopted value

25.4GPa

0.15

40°

28.5°

12MPa

6.2MPa/mm

3.9MPa/mm

30MPa

55MPa

9.4.1 Regular triangular profiles

Direct shear tests were conducted on regular triangular asperities of 5°, 10° and 15°

inclination at chord lengths of predominantly 16mm with one test on a 10° asperity

profile with 48mm chords. Movement of the sample within the shear box was suspected

during the testing of sample MR15_16 due to the unrealistically small dilations

produced. This result has therefore been ignored. Shear response predictions have been
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conducted for each of the other tests and are included in Appendix E. Diagrams of these

surfaces together with their profiles and roughness statistics are shown in Appendix C.
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Figure 9.10: Prediction of Shear response for profile MR5_16

An example regular triangular asperity prediction of sample MR5_16 is shown in Figure

9.10. This test was conducted at an initial normal stress of 800kPa and constant normal

stiffness of 800kPa/mm. A 5° regular triangular profile of 32 asperities was used to

model the surface.

The results of the predictions have been summarised in Table 9.7. This table indicates

the average percentage difference of the shear stress prediction compared to the

laboratory shear stress test result. It also indicates where initial negative dilation was

encountered and the amount measured. An estimate of the change in normal stress that

this negative dilation could induce (ignoring compliance effects) is also included.

Table 9.7: Summary of Siltstone Regular Triangular Asperity Predictions

Sample

MR5_16

MR5a_16

MR10a_16

MR10a_48

Difference between Laboratory
Result & Prediction

0%

-5%

-30%

+5%

Initial Negative
Dilation

0.1mm

0.25mm

0.25mm

0.25mm

Induced Change
in Normal Stress

80kPa

200kPa

400kPa

130kPa
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Overall the predictions compare well with the laboratory test results for shear stress and

dilation. However, shear failure was typically predicted at an earlier shear displacement

than measured in the laboratory tests. This may be partly explained by the fact that most

sample responses were overpredicted due predominantly to the initial negative dilation

experienced by the samples. However, this is not the case for the 48mni chord length 10°

sample where a lower peak shear stress was predicted at a smaller shear displacement.

This may indicate weaker areas in the natural rock.

9.4.2 Fractal profiles

Four tests were performed on samples containing 5mm chord length fractal profiles that

had been water-jet cut into blocks of siltstone. Shear response predictions were

conducted on each. The predictions are shown in detail in Appendix E. Diagrams of the

profiles together with their roughness statistics are shown in Section 5.3.3.

An example fractal surface prediction of sample MF15_5 is shown in Figure 9.11

together with a diagram of the surface and a statistical analysis of its roughness. The test

was conducted at an initial normal stress of 600kPa and constant normal stiffness of

600kPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths oi 5.3mm,

10mm and 25mm were used to capture the shear response at different scales.

The results of the predictions have been summarised in Table 9.8.

Table 9.8: Summary of Siltstone Fractal Predictions

1

\

! Sample

MF5_5

MF10_5

MF10a_5

MF15J

Difference between
Laboratory Result

& Prediction

<5mm

-15%

+20%

0%

+10%

Difference between
Laboratory Result

& Prediction

5mm-15mm

-10%

+5%

+25%

+10%

Initial
Negative
DiSation

0.1mm

0.2mm

0.1mm

0mm

Induced
Change in

Normal Stress

80kPa

120kPa

60kPa

-
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Figure 9.11: Prediction of Shear response for profile MF15_5
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These fractal profiles were water-jet cut at approximately 5mm chord lengths. Their

peak shear strength occurred at approximately 5mm chord length. The lowest chord

length used for the predictions was also 5mm. However the predictions have produced a

significantly stiffer response for this small chord length than the laboratory test results.

This indicates that the shear failure of the prediction, although occurring at a comparable

stress level to the test results, is occurring prematurely. This was also encountered with

the triangular asperity profiles.

The prediction for Sample MF10a_5 compares well with the laboratory initial peak shear

stress but has not captured the effects of the underlying longer roughness wavelengths.

Alternatively the prediction for sample MF10_5 feus captured the shear behaviour of the

longer chord lengths but has underestimated tfce shear response at the shorter chord

lengths. This profile, as seen in Figure 5.16,, has considerable concavity that has

immediately dominated the shear response at the commencement of shearing. This has

not been modelled.

Overall the shear model captures the general behaviour of the fractal profiles and

acceptable shear stress predictions are achieved (<20% difference). However, peak shear

stress is consistently predict d at a lower shear displacement.

9.4.3 Split profiles

Predictions have been carried out for the direct shear tests of seven split surfaces. Many

of the split samples (MS_3 to MS_7) were shorter in length (typically 180mm long) due

to difficulties in obtaining longer profiles. This has constrained the statistical analysis to

chord lengths below 32mm in length. This iias meant that some of the longer roughness

wavelengths may not be captured in the analysis and hence in the prediction.

The vxwliz of the predictions using the failure stress equal to the bedding unconfined

co'rttpr&Ksive strength have been summarised in Table 9.9.

Figure 9.1.2 shows the standard deviation of chord angle at various chord lengths for the

seven siltstone split surfaces. This graph indicates that the roughness of the samples are

similar for all samples except sample MS_3 which is considerably rougher and sample

MS5 which is considerably smoother. However, sample MS_3 experienced less

dilation and produced lower shear stress values than the other samples even though it was
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statistically rougher. This suggests that the shear test result for sample MS_3 may be

unreliable.

Table 9.9: Summary of Siltstone Split Predictions

Sample

MS_1

MS_2

MS_3

MS_4

MS_5

MS_6

MS_7

Difference between
Peak Shear Stress
Laboratory Result
& Prediction using

failure stress =
UCSbcddlng

+5%

+20%

-45%

+30%

-20%

+30%

+20%

Difference between
Residual Shear

Stress Laboratory
Result & Prediction
using failure stress

= UCSbedding

+10%

+15%

-25%

+30%

0%

0%

+10%

Initial
Negative
Dilation

0.1mm

0.1mm

0.1mm

0.1mm

0.25mm

0.1mm

0.1mm

Induced
Change in

Normal Stress

40kPa

40kPa

80kPa

40kPa

150kPa

60kPa

60kPa

Siltstone Split Roughness Statistics

20 40

Chord Length (mm)

60

Figure 9.12: Comparison of siltstone split surface roughness
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Taking into account the initial closure present in sample MS_5, the variation between

peak shear stress prediction and test result is minimal (refer to Figure 9.13).
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Figure 9.13: a. Prediction of Shear response for surface MS_5

b. Adjusted shear test result for sample MS_5

The predictions for the other samples underpredict the initial peak shear stress. In fact

the difference between the predicted shear stress values and that obtained by the direct

shear tests, are notably larger for the siltstone split tests than for the previous tested
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profiles. One possible* explanation is the potential variability of the bedding unconfined

compressive strength.

The majority of tests displayed a high initial peak shear stress followed by a rapid decline

in the shear stress. The exception to this were tests MS_3 and MS_5. This may indicate

that some interlocking is occurring. This interlocking may cause failure to occur initially

through the rock matrix (ie. on an angle to the shear direction) followed by failure along

the bedding. If this is the case, the failure stress adopted (the unconfined compressive

strength of the siltstone in the bedding direction) may be an underestimate of the true

failure stress of the material at the commencement of shearing. A reanalysis of surfaces

MS_1, MS__2, MS_4, MS_6 and MS_7 using the failure stress equal to the matrix

unconfined compressive strength at chord lengths less than 2mm produced a closer

prediction at the smaller shear displacements. The results are summarized in Table 9.10.

Table 9.10: Summary of Siltstone Split Predictions

Sample

MS_1

MS_2

MS_4

MS_6

MS_7

Difference between Peak Shear Stress
Laboratory Result & Prediction using failure

Stress = UCSmatrix

-5%

+13%

+25%

+20%

+10%

These predictions are shown in detail in Appendix E using the failure stress = UCSmatnx

for chord lengths less than 2mm and failure stress = UCSbedding at chord lengths greater

than 2mm. Diagrams of these surfaces together with their profiles and roughness

statistics are shown in Appendix C.

An example split surface prediction of sample MS_1 is shown in Figure 9.14 together

with a diagram of the surface and a statistical analysis of its roughness. This test was

conducted at an initial normal stress of 600kPa and constant normal stiffness of

400kPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths of 2mm,

8mm and 20mm were used to capture the shear response at different scales.
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Figure 9.14: Prediction of Shear response for surface MS_1

Taking into consideration the adjustment due to the initial compression of sample MS_5

and using both the unconfined compressive strength of the bedding and the matrix to
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estimate the shear failure stress, reasonable predictions of the shear behaviour are

achieved. The predictions are typically within 20% variation of the laboratory results.

9.5 Basalt Predictions

Direct shear tests were conducted on regular triangular profiles, fractal profiles and split

surfaces.

Predictions were based on the parameters listed in Table 9.11. Compliance due to

compression of the concrete, machine compliance and joint closure was included in the

calculations. A shear failure stress equal to the unconfined compressive strength of the

material was used (discussed in Chapter 8).

Table 9.11: Basalt Parameters

Parameter

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Joint Normal Stiffness - water-jet surface

Joint Normal Stiffness - split surface

Failure Stress

Adopted value

62GPa

0.15

48°

34°

20MPa

7.6MPa/mm

7.5MPa/mm

120MPa

9.5.1 Regular triangular profiles

Predictions were conducted on regular triangular asperity samples with 5°, 10° and 15°

inclination and chord lengths of 16mm. These are shown in detail in Appendix E.

The results of the predictions have been summarised in Table 9.12.

The 5° asperity profile BR5_16 prediction produced a good match with the laboratory

result. This prediction is shown in Figure 9.15. This test was conducted at an initial

normal stress of 1600kPa and constant normal stiffness of 1600kPa/mm. A 5° regular

triangular profile of 32 asperities was used to model the surface.
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Table 9.12: Summary of Basalt Regular Triangular Asperity Predictions

Sample

BR5J6

BR10J6

BR15J6

Difference between Laboratory
Result & Prediction

+7%

-40%

-35%

Initial Negative
Dilation

0

0.2

0.2

Induced Change
in Normal Stress

-

320kPa

320kPa

I

I

3000

to

5 10 15 20 25

Shear Displacement (mm)

Prediction

-0.5 i ' • ' • i ' ' ' ' i ' ' ' ' i

5 10 15 20 25
Shear Displacement (mm)

Test Result

Figure 9.15: Prediction of Shear response for profile BR5_16

However, the steeper asperity profile predictions were not as accurate. The shear test

result for sample BR10_5 is shown in Figure 9.16a. The accuracy of the prediction is

improved if the initial negative dilation is removed from the shear test results. Figure

9.16b shows the adjusted shear test results for sample BR10_5. This graph shows a

reasonable prediction of dilation and shear stress up to approximately 5mm of shear

displacement. Beyond this however, a higher shear stress and dilation is predicted than

observed in the laboratory results.
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Figure 9.16: a. Prediction of Shear response for profile BR10_5

b. Adjusted shear test result for sample BR10_5

The laboratory shear stress - shear displacement plots indicate partial failures of the

basalt samples from approximately 8mm displacement. This is shown in Figure 9.17a

for sample BR15_5. Figure 9.17b shows the same plot with the shear stress adjusted to

remove the initial negative dilation and an estimate of the shear stress without failures

together with a prediction of shear response. As retesting of sample BR10_16 indicated

approximately 0.1mm less dilation at peak shear stress, only minor shear failure of the

asperity tips was occurring on the basalt samples (refer to section 6.2.2). This suggests

that the fretting experienced at the sides of the samples and at the ends of the sample (as

shown diagrammatically in Section 6.2) may be causing the slight drops in shear stress
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shown in Figure 9.17a. These partial failures would act to decrease the contact area

causing a slight increase in local normal stress on the remaining contact area. Higher

local normal stresses would cause an increase in local compliance effects and premature

failure. This fretting of the edges of the sample is a laboratory boundary condition that

would not be present insitu. It can be minimised by using large samples.

I
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Figure 9.17: a. Shear response forprofile BR15_16 showing minor failure areas

b. Prediction and adjusted shear response for profile BR15_16
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Overall the shear model appears to capture the general behaviour of the triangular

profiles. Once the initial negative dilation and edge effects are removed, acceptable

stress and dilation predictions have been achieved.

9.5.2 Fractal profiles

The shear response of two fractal profiles have been conducted. These are shown in

detail in Appendix E. Diagrams of these profiles together with their roughness statistics,

are shown in Section 5.3.3.

The results of the predictions have been summarised in Table 9.13.

Table 9.13: Summary of Basalt Fractal Pi ̂ dictions

Sample

BF10_5

BF15_5

Difference between
Laboratory Result

& Prediction

<5mm

-85%

-40%

Difference between
Laboratory Result

& Prediction

5mm-15mm

-60%

-10%

Initial
Negative
Dilation

0.25

0.15

Induced
Change in

Normal Stress

150kPa

90kPa

Both samples experienced initial negative dilation. This would have decreased the

amount of dilation, reducing the amount of normal stress applied and hence shear stress

developed.

An example fractal surface prediction of sample BF15_5 is shown in Figure 9.18

together with a diagram of the surface and a statistical analysis of its roughness. The

profile was water-jet cut into a basalt sample at 5mm chord lengths. The test was

conducted at an initial normal stress of 600kPa and constant normal stiffness of

600kPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths of 6mm,

12mm and 28mm wore used to capture the shear response at different scales.
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Figure 9.18: Prediction of Shear response for profile BF15_5

248



Chapter 9 Predictions of Joint Behaviour

Both of the basalt fractal predictions overpredict the dilation of the sample. This means

that the elasticity of the sample is not completely captured. Although this is not

excessive it does cause the surface shear response to also be overpredicted. The profiles

were water-jet cut into basalt blocks at chord lengths of approximately 5mm length. Due

to the lack of roughness below this chord length, the peak shear strength is achieved at

approximately 5mm shear displacement. The shear responses of the predictions are

stiffer below 5mm chord length than the test results due to the overprediction of dilation.

Shear failure is predicted at a sn^lier shear displacement than the test results indicate due

to these higher initial shear stresses. This is similar behaviour to what was observed is

siltstone fractal shear tests.

9.5.3 SpUt profiles

Direct shear tests were conducted on 4 split samples. Movement of the sample setup was

suspected during the testing of sample BS_4 due to the unrealistically small dilations

produced. As the statistical analysis of sample BS_4 indicated similar roughness to the

other samples, especially at the longer chord lengtus, its dilation would be expected to be

similar to the other samples. This result has therefore been ignored. Predictions of the

shear response predictions for the other split surfaces have been conducted. These are

shown in detail in Appendix E. Diagrams of these surfaces together with their profiles

and roughness statistics are shown in Appendix C.

The results of the predictions have been summarised in T^ble 9.14.

Table 9.14: Summary of Basalt Split Predictions

Sample

BS_1

BS_2

BS_3

Difference between
Peak Shear Stress
Laboratory Result

& Prediction

-10%

-15%

-30%

Difference between
Residual Shear

Stress Laboratory
Result & Prediction

-15%

-10%

-10%

Initial
Negative
Dilation

0.15mm

0.25mm

0mm

Induced
Change in

Normal Stress

150kPa

200kPa

-
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The split surface predictions provide a reasonable estimate of the laboratory results.

However, they all tend to overpredict the shear stress and dilation. This in part may be

explained by the slow commencement of dilation at the start of shear displacement. This

slow response would be due to the compliance of the shear rig in the shear direction.

This compliance was shown to be present at higher stiffnesses and in particular with the

granite test samples where significant stick-slip occurred.

An example split surface prediction of sample BS_1 is shown in Figure 9.19 together

with a diagram of the surface and a statistical analysis of its roughness. This test was

conducted at an initial normal stress of 400kPa and constant normal stiffness of

lOOOkPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths of 2mm,

6.5mm and 20mm were used to capture the shear response at different scales.

9.6 Granite Predictions

Direct shear testa were conducted on regular triangular profiles and split surfaces. Stick-

slip was encountered in all of the tests. This stick-slip caused a considerable reduction in

the expected amount of dilation that in turn reduced the expected peak shear stress.

Predictions were based on the parameters listed in Table 9.15. Compliance due to

compression of the setting concrete, machine compliance and joint closure was included

in the calculations. A shear failure stress equal to the unconfined compressive strength of

the material was used (discussed in Chapter 8).

Table 9.15: Granite Parameters

Parameter

Young's Modulus

Poisson's Ratio

Intact Friction Angle

Residual Friction Angle

Cohesion

Joint Normal Stiffness - water-jet surface

Joint Normal Stiffness - split surface

Failure Stress

Adopted value

61GPa

0.15

50°

36.5°

35MPa

7.8MPa/mm

7.5MPa/mm

180MPa
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Figure 9.19: Prediction of Shear response for profile BS_1
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9.6.1 Regular triangular profiles

Predictions were conducted on regular triangular asperities of 10° and 20° inclination at

chord lengths of 8mm. These are shown in detail in Appendix E.

An example regular triangular asperity prediction of sample GR10_8 is shown in Figure

9.20. This test was conducted at an initial normal stress of 2000kPa and constant normal

stiffness of 2000kPa/mm. A 10° regular triangular profile of 32 asperities was used to

model the surface.

The shear stress - shear displacement plot shows the presence of stick-slip as sudden

decreases in shear stress. As shear displacement occurs due to the application of the

shear force, movement of the shear rig in the horizontal direction occurs. The rig

continues to deform storing energy until the shear resistance reaches a value that causes

the sample to slide. This violent release of stored energy in the shear device frame,

results in energy loss and a reduced peak shear stress. Significant stick-slip can be seen

at the commencement of the shear test with negligible dilation occurring unti? almost

3mm shear displacement. It can be seen from these plots, that if the stick-slip had not

occurred the shear model may have produced a reasonable prediction of the shear

response.

§

6000

5 10

Shear Displacement (mm)

-0.5
5 10

Shear Displacement (mm)

Prediction Test Result

Figure 9.20: Prediction of Shear response for profile GR10_8
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-0.5
0 5 10 15

Shear Displacement (mm)

Prediction Test Result

Figure 9.21: Dilation response and prediction for profile GR20_8

The tests conducted on the other 2 regular triangular asperity samples (10° and 20°)

experienced less than 5mm of dilation followed by negative dilation as the asperity is

overtopped (for >1 Omm shear displacement hi Figure 9.21). This suggests that there may

be movement of the sample within the concrete and rotation has occurred. These results

must be disregarded due to this movement.

Therefore the laboratory results do not reflect the true peak shear stress due to the

inadequate stiffness of the shear rig when testing these very hard rocks. Without

considerable modifications to the shear rig (that were not possible in the time frame

available) the produced laboratory results should be disregarded. Significant movement

of the sampk within the shear box has also occurred as highlighted by the unrealistically

small dilations followed by negative dilations. These test results therefore have not

reflected the true shear behaviour of the samples. However the general behaviour of the

granite samples appears to be captured by the model indicating that if these problems can

be overcome an acceptable prediction of granite joints may be achieved.

253



Chapter 9 Predictions of Joint Behaviour

9.6.2 Split profiles

Predictions have been conducted for four shear tests on split samples. These are shown

in detail in Appendix E. Diagrams of these surfaces together with their profiles and

roughness statistics are shown in Appendix C.

An example split surface prediction of sample GS_2 is shown in Figure 9.22 together

with a diagram of the surface and a statistical analysis of its roughness. This test was

conducted at an initial normal stress of 300kPa and constant normal stiffness of

600kPa/mm. The average standard deviation of chord angle for various chord lengths

from several profiles was used to represent the surface. Three chord lengths of 2.2mm,

6mm and 23mm were used to capture the shear response at different scales.

Again the experimental results indicate significant stick-slip at the commencement of

shear displacement (2mm of shear displacement before dilation commenced) and during

the test (sudden decreases in shear stress). This has meant that the shear prediction

overpredicts the dilation and shear stress.

The results of the predictions are summarised in Table 9.16. This table includes the

amount of shear displacement before the sample commenced sliding. A calculation of

the change in normal stress that the initial stick-slip behaviour may induce (ignoring

compliance effects) is also included.

1

Table 9.16: Summary of Granite Split Predictions

Sample

GS_1

GS_2

GS_3

GS_4

Difference
between

Laboratory Shear
Stress Result &

Prediction, <5mm

-100%

-50%

-150%

-60%

Difference between
Laboratory Shear

Stress Result &
Prediction, 5-

15mm

-60%

-50%

0%

-80%

Initial Shear
Displacement

before
sample starts

sliding

2.7mm

2.4mm

0mm

1.2mm

Induced
Change in

Normal Stress

1200kPa

600kPa

-

300kPa

Again due to the significant stick-slip experienced, the laboratory shear test results do not

represent the conditions being modelled in the predictions. The results are therefore
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difficult to compare. It is considered however that as the overall shape of the predictions

is similar to the direct shear test results, that the model has potential in predicting the

shear response of insitu rock conditions where compliance effects are not of concern.

10 20 30 40

Chord Length (mm)

• profiles
• mean

50

4000

tn

0 5 10 15 20 25

Shear Displacement (mm)

4.0

3.5

3.0

E
•§• 2.0

•2 1 5

5 1.0

0.5
0.C

-0.5
5 10 15 20 25

Shear Displacement (mm)

30

Prediction Test Result • Predicted Envelope

Figure 9.22: Prediction of Shear response for profile GS_2
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1

9.7 Field Applications

The model can be used to predict shear behaviour of insitu rock joints if the insitu rock

parameters are known or can be estimated. The strength parameters such as Young's

Modulus, Poisson's Ratio, intact friction angle, residual friction angle, cohesion and

unconfined compressive strength can be obtained through laboratory testing. The applied

load and normal stiffness can be estimated or measured insitu. The joint stiffness value

(dependent on joint roughness, rock strength and infill) can be estimated through insitu

testing or can be estimated from previous experience of the rock type and roughness.

At this stage in its development the model can only be used to analyse an individual joint

and not the rock mass. The interaction of several rock joints will require further

investigation.

Due to time restrictions in this current research, field data was not obtained to verify the

model. A literature search failed to obtain suitable data to use with the model. Insitu

direct shear tests are rarely conducted and typically do not obtain roughness information

prior to shearing. A similar problem was found with data given in the literature on sites

where rock failure had occurred. Typically several joints were involved and the

roughness of the joint surfaces were not measured.

9.8 Summary

This chapter has presented the predictions of the laboratory direct shear tests conducted

during this research. The predictions were made using the modified Rocket program.

Several problems with the laboratory results have been highlighted. One of the main

problems encountered was an initial negative dilation of the laboratory shear samples at

the commencement of shear displacement. This initial negative dilation was due to

compliance of the sample and shear rig under shear loading. This problem is only likely

to be observed during laboratory testing and is not something that would be encountered

under insitu conditions. Due to its variability it has not been included in the shear model.

An even greater problem was highlighted during the testing of hard rock samples. This

was the inability of the Monash direct shear rig to accurately test the stronger rock, in

particular the granite samples, due to the development of significant stick-slip. This
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stick-slip caused dissipation of energy in the shear rig frame leading to a dissimilarity

between laboratory conditions and the conditions being modelled in the predictions.

Allowing for experimental variability and a dissimilarity in laboratory conditions and

those used in the model, the model has produced predictions that are in reasonable

agreement with the laboratory direct shear tests. This suggests that the shear model is

capable of capturing the general behaviour of a rock joint.

The predictions also indicate the potential of using a single statistically similar profile to

represent the three-dimensional surface. However, as could be expected, accuracy is

improved if the sample roughness is consistent across the surface.

hi general the predictions of the hard rock behaviour were poorer than those of the soft

rock behaviour, in particular with the fractal and triangular asperity samples. This

indicates that the failure model for this harder rock requires further investigation. These

tests often displayed premature failure of the asperities compared to the laboratory test

results. Unfortunately the shear failure mechanisms could not be clearly identified

during the shear tests or in later analysis of the video footage. This has prevented a

specific failure model and post peak failure model to be developed, hi order to fail these

stronger samples and view failure mechanisms, loads not realistic of near surface

conditions would be required but more importantly, modifications to the Monash direct

shear rig would be necessary.

Better predictions were also obtained for shallower asperities indicating that steeper

asperities may also have a different failure mechanism. This has meant that the more

realistic split surfaces often perform better than the more simplistic fractal and triangular

profiles in the predictions. Further investigation is also required in this area.
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10.0 SUMMARY AND CONCLUSIONS

As discussed in the introduction to this dissertation, the ultimate aim of the Geotechnical

Group at Monash University is to produce a theoretical shear model capable of producing

accurate predictions of rock mass behaviour under shear loading. This is obviously a

very complex area and one that requires considerable investigation. The precursor of this

investigation was the development of a theoretical model to analyse the response of a

rock socketed pile under axial loading. The aims of this thesis were to extend this model

into rock joint analysis. Specifically the aims were to investigate the models

peiformance with significantly stronger rock than had been previously modelled and to

determine a method to model more representative three-dimensional surfaces than

previously investigated.

To investigate the applicability of the model to three-dimensional rock surfaces in a

variety of rock types, an experimental program of direct shear tests performed under

constant normal stiffness conditions was conducted. Rock materials tested were

Johnstone, an artificial soft rock with similar properties to Melbourne Mudstone;

Hawkesbury sandstone, low strength; Melbourne Mudstone, a medium to high strength

interbedded siltstone, sandstone and mudstone; Newer Volcanics, a high strength basaltic

rock; and Mt Bundey Granite, high to very high strength. A variety of roughness profiles

were tested from regular triangular asperities in materials that had not been previously

tested at Monash, to more realistic three-dimensional split surfaces that were shown to

approximate natural joint surfaces. The samples were tested under a variety of boundary

conditions.

A statistical and experimental program was conducted to evaluate suitable methods to

quantify the joint surface roughness.

10.1 Modelling Joint Roughness

The following observations and conclusions can be drawn from the laboratory and

statistical investigation into rock joint surface roughness:
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• Joint surfaces may be anisotropic. When modelling the shear performance either the

potential shear direction is required or an analysis is required in more than one

direction.

• A statistical analysis including the determination of the standard deviation of asperity

chord angle for various chord lengths, is a simple and repeatable method that is able

to capture roughness at various scales.

• The joint surfaces that were measured appeared to be statistically similar across the

surface in one direction. This enabled the surfaces to be represented mathematically

by the average standard deviation of asperity chord angle at different chord lengths.

This relationship has been shown to be adequately represented by a logarithmic or

power function.

• A joint surface, can be statistically reproduced in two dimensions using the

logarithmic or power function statistical representation of the joint surface combined

with a Modified Midpoint Displacement method.

• Predictions of the shear behaviour of a joint can be conducted using the standard

deviation of chord angle statistics at several chord lengths. An envelope of these

different chord length shear responses can be constructed to capture the shear

response at various scales.

10.2 Shear Behaviour Modelling

The following observations and conclusions can be drawn from the laboratory

investigation into rock joint shear behaviour:

• The basic shear model developed for concrete / rock interfaces and modified for rock

/ rock interfaces, captures the general behaviour of the stronger rock types and more

realistic three-dimensional surfaces.

• As a sample commences shear displacement, some initial negative dilation is

encountered. This shear compliance is dependent on sample strength, roughness and

initial mating of interfaces. It is therefore considered a laboratory condition and one

that would not be significant insitu. However, in particular under constant normal
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stiffness conditions, it can have a significant effect on the peak shear stress as

measured in the laboratory.

• To test strong rock samples, direct shear testing apparatus must be very stiff to avoid

the creation of stick-slip. When stick-slip occurs energy is lost and lower peak shear

stresses may be produced.

• Detailed joint closure modelling is required to accurately model joint shear

behaviour. Joint closure exists in insitu conditions as well as in laboratory conditions.

Joint closure can be modelled by a joint stiffness parameter that is specific to different

rock strengths and roughnesses. For near surface conditions encountering low stress

situations, a linear relationship is adequate to represent the joint stiffness. Joint

stiffness estimates were evaluated for laboratory test samples. A different joint

stiffness was calculated for water-jet cut surfaces and natural split surfaces. In the

case of laboratory testing, compliance of the sample and equipment is also important.

A polynomial relationship was developed so that the effect of machine compliance

could be extracted from the laboratory results. Further linear relationships were

estimated to remove compression in the material used to cast the sample into .the

shear box.

• The failure mechanisms for rock joints are different to concrete / rock interfaces. A

modification factor can be used with a Sokolovsky failure mechanism to model soft

rock situations (UCS<20MPa). Harder rock samples fail at considerably lower

failure stresses than that predicted by the Sokolovsky failure mechanism. These

harder samples were shown to fail when the local stress at the contacting asperity

reached the materials unconfined compressive strength.

• Although previous work had indicated a significant wear component in concrete /

sandstone interfaces and also in sandstone joints containing large "macro" asperities,

wear did not appear to be a significant component of the shear behaviour of three-

dimensional sanr" stone joints.
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10.3 Limitations and Further research

As previously mentioned, this work is only another step in the direction of creating a

theoretical model to analyse rock mass behaviour. There are still many areas that require

considerable research. This work has also highlighted specific areas of rock joint

behaviour that require further investigation.

10.3.1 Failure Mechanism

For concrete / soft rock asperities the failure stress is adequately predicted by the

Sokolovsky closed form solution. Soft rock joints have been shown to fail at a modified

Sokolovsky shear failure stress. Hard rock joint samples have been shown to fail at their

unconfined compressive strength.

Model predictions using a modified Sokolovsky shear failure stress produce reasonable

shear behaviour predictions on soft rock samples.

Model predictions on stronger rock using the unconfined compressive strength values

produced reasonable predictions for split surfaces, taking into consideration sample and I
I

experimental variability. However, the peak shear strength of the steeper angled J

triangular and fractal profiles tend to be overpredicted. Shear displacement to the

commencement of shear failure tends to be underpredicted.

Unfortunately shear failure mechanisms could not be clearly observed during the shear

tests or in later analysis of video footage. This was due to the difficulty in applying a

high enough load to cause overall shear failure of the asperities. This prevented specific

failure models and post peak failure models to be developed. In order to fail these

stronger samples, stick-slip behaviour must be eliminated. This requires modifications to

the Monash direct shear rig. These modifications require significant stiffening of the

shear device frame, which may require complete refabrication of the device.

10.3.2 Wear

Modelling of the shear test results on three-dimensional split surfaces has indicated that

wear may not be a significant component of the shear behaviour. When the existing wear

models were incorporated (based predominantly on concrete / sandstone interfaces that

would easily cause wear on the softer surface of the interface), significant
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underprediction of the dilation and peak shear stress was produced. Further tests would

be required to verify the applicability of wear models in rock joint analysis.

10.3.3 Factors Affecting Rock Joint Shear Behaviour

As discussed in Chapter 2 there are many factors that influence the shear behaviour of a

rock joint. This current work has been limited to the investigation of clean, tight joints.

Further work would be required to incorporate the effects of infill, aperture, presence of

water and change in shear displacement rate.

10.3.4 Field Predictions

To date the model has only been confirmed on laboratory test data. Comparison with

field direct shear test results would be desirable.

10.3.5 Rock Mass Behaviour

This work has investigated the shear response of a single joint under the application of

shear loading. This work will need to be extended to include multiple joint patterns as

encountered in rock masses. To analyse an insitu rock joint the response of the

surrounding joints must also be included.
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JOHNSTONE - UNIAXIAL TEST RESULTS

Sample

1b-batch1
3a-batch1
3a-batch1
4b-batch1
7a-batch2
7a-batch2
8a-batch2

Saturated
Moisture Content

(%)

13.2
13.8
14.3
14.0
14.6
14.0
13.0

Uniaxial
Compressive Strength

(MPa)

8.3
8.0
8.5
7.6
4.2
4.6
5.1

Failure Mode

Tensile
Tensile
Shear

Shear/tensile
Shear/tensile

Tensile
Shear/tensiie

Average Young's
Modulus

(GPa)

0.80
_

0.85
0.90

-
-

SILTSTONE - UNIAXIAL TEST RESULTS

Block
Saturated

Moisture Content
Uniaxial

Compressive Strength
(MPa)

Failure Mode
Average Young's

Modulus
(GPa)

1
2
3

1.5
2.1
1.4

60.1
34.5
56.6

Shear
Tensile

Shear/tensile

23.4
6.1

46.8

BASALT - UNIAXIAL TEST RESULTS

Block

1
1
5
5

Saturated
Moisture Content

(%)

2.9
2.9
2.1
2.2

Uniaxial
Compressive Strength

(MPa)

128.3
111.7
126.0
115.9

Failure Mode

Shear
Shear/tensile

Tensile
Shear

Average Young's
Modulus

(GPa)

61.8
70.6
54.7
61.0

GRANITE - UNIAXIAL TEST RESULTS

Block

1
1
1

Saturated
Moisture Content

(%)

0.4
0.4
0.4

Uniaxial
Compressive Strength

(MPa)

168.5
184.4
180.8

Failure Mode

Tensile
Tensile
Shear

Average Young's
Modulus

(GPa)

53.8
63.3

i
i
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SILTSTONE - TENSILE TEST RESULTS

Block

3
3
5
5
5

Saturated
Moisture Content

(%)

1.7
1.7
1.7
1.7
1.7

Tensile
strength

(MPa)

9.24
4.86
7.49
8.20
8.63

BASALT - TENSILE TEST RESULTS

Saturated Tensile
Block Moisture Content strength

(%) (MPa)

10
10

2.9
2.9

10.38
11.85

GRANITE - TENSILE TEST RESULTS

Saturated Tensile
Block Moisture Content strength

(%) (MPa)

1 0.4 10.50
1 0.4 9.70
1 0.4 9.38
1 0.4 10.75
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DIRECT SHEAR TEST RESULTS TO DETERMINE
SILTSTONE BASIC FRICTION ANGLE

Siltstone Planar Shear Tests
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DIRECT SHEAR TEST RESULTS TO DETERMINE
BASALT BASIC FRICTION ANGLE

Basalt Planar Shear Tests
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DIRECT SHEAR TEST RESULTS TO DETERMINE
GRANITE BASIC FRICTION ANGLE

Granite Plana? Shear Tests
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Test No: JS_3b

Test Date 2/12/98

JOHNSTONE

Profile: Split

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: JS_4a

Test Date 1/12/93

JOHNSTONE

Profile: Split

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: JS_6a

Test Date: 21/3/00

JOHNSTONE

Profile: Split

Shear Rate = 0.S mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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400
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Test No: JS_7a

Test Date: 3/10/00

JOHNSTONE

Profile: Split

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa):

Normal stiffness (kPa/mm):

400

400

D15



1000

co

5 It) 15 20 25

Shear Displacement (mm)

30

1000

800

* 600

co
is 4 0 0

o
CO

200 -

200 400 600 800

Normal Stress (kPa)

1000

1000

-0.5

5 10 15 20 25

Shear Displacement (mm)

5 10 15 20 25

Shear Displacement (mm)

30

1000

800

I
600

£
(0
1 400
o
z

200

-0.5 0.0 0.5 1.0

Dilation (mm)

1.5

Test No: JC3a_stat6

Test Date: 9/12798

JOKNSTONE

Profile: 2-D cut version of split JS_3a
statistically represanted @ 6mm chords

Shear Rate = 0.5 mm/min
Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: JC4a_6

Tost Date: 8/12/98

JOHNSTONE

Profile: 2-D cut profile of centre
profile of JS_4a cut @ 4mm chords

Shear Rate = 0.5 mm/min
Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: JC6a_3

Test Date: 6/9/00

JOHNSTONE

Profile: 2-D cut profile -_,', centre
profile of JSjs- cut @ 3mm chords

Shear Rate = 0.5 mm/min
Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: JC6a_pow4

Test Date: 5/9/00

JOHNSTONE

Profile: 2-D cut profile using split
JS_6a statistically represented with
a power function @ 4mm chords
Shear Rate = 0.5 mm/min
Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: JC7a_4

Test Date: 31/10/00

JOHNSTONE

Profile: 2-D cut version of centre
profile of JS_7a cut @ 4mm chords
Shear Rate - 0.5 mm/min

Initial Normal Stress (KPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: JC7a_log4

Test Date: 1/11/00

JOHNSTONE

Profile : 2-D version of split JS_7a
statistically represented with
log function @ 4mm chords

Shear Rate = 0.5 mm/min
Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400
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Test No: SS_1

Test Date: 8/7/39

SANDSTONE

Profile: Split

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: SS_2

Test Date: 9/7/99

SANDSTONE

Profile: Split

Shear Rate = 0.5 mrn/min

Initial Normal stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: MR5a_16

Test Date: 2/7/99

SILTSTONE

Profile: regular Sdeg.X 16mm

Shear Rate = C.S mm/min

Initial Normal Stress (kPa): 2000

Normal Stiffness (kPa/mm): 800
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Test No: MR5_16

Test Date: 10/12/98

SILTSTONE

Profile: Regular 5deg.X16mm

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 800

Normal Stiffness (kPa/mm): 800
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Test No: MR10_8

Test Date: 3/10/00

SILTSTONE

Profile: regular 10deg. X 8mm

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 2000

Normal Stiffness (kPaVmm): 3200
sample setup moved during shear test

1
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Test No: MR10_16

Test Date 19/01/99

SILTSTONE

Profile : Regular 10deg. X 16mm

Shear Rate = 0.5 mm/mln

Initial Nonnal Stress (kPa): 2000

Normal Stiffness (kPa/mm): 1600
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Test No: MR10a_16

Test Date: 30/10/00

SILTSTONE

Profile: regular 1Odeg. X 16mm

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa): 2000

Normal Stiffness (kPa/mm): 1600
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Test No: MR10_48

Test Date 21/01/99

SILTSTONE

Profile: Regular 10deg.X48mm

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa): 1200

Normal Stiffness (kPa/mm): 600
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Tost No: MR10a_4&

Teat Date: 4/9/00

8ILT8TONE

Profile: regulcr 10dog. X 48mm

Shear Rato » 3.6 tnm/mln

Initial Normal Stress (kPa)r 2000

t;:ial 8i:*ffleas (kPa/mm): 533
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Test No: MR15_16

Test Date: 14/1/99

SILTSTONE

Profile: Regular ISdeg.X16mm

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa): 1600

Normal Stiffness (KPa/mm): 1600
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Test No: MF5_5

Test Date: 9/6/99

SILTSTONE

Protlje: Fractal s-Sdeg, 5mm chord

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa): 800

Normal Stiffness (kPa/mm): 800
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Test No: MF10_5

Test Date: 7/6/99

SILTSTONE

Profile : Fractal s=10deg, 5mm chord

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 1200

Normal Stiffness (kPa/mm): 600
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Test No: MF10a_5

Test Date: 11/8/99

SILTSTONE

Profile: Fractal s=10deg, 5mm chord

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600
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Test No: MF15_5

Test Date: 15/6/99

SILTSTONE

Profile: Fractal s~15deg, Smm chord

Shear Rate = 0.5 min/mln

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600
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Test No: MS_2

Test Date: 18/6/99

SILTSTONE

Profile: Split

Shear Rate = 0.S mm/min

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

400

400
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Test No: MS_3

Test Date: 2VS/99

SiLTSTONE

Profile: Split

Shear Kate = 0.5 mm/min

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: MS_4

Test Date: 26/6/99

SILTSTONE

Profile: Split

Shear Rate = 0.S mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa'mm):
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Test No: MS_5

Test Date: 15W99

SILTSTONE

Profile: Split

Shear Rate = 0.5 mm/min

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: MS_6

Test Date: 30/6/99

SILTSTONE

Profile: Split

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: MS_7

Test Date: 28/6/99

SILTSTONE

Profile: Split

Shear Rate = O.S mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Test No: BR5_16

Test Date: 7/2/00

BASALT

Profile: Regular Sdeg. X 16mm

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 1600

Normal Stiffness (kPa/mm): 1600
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Test No: BR10_16

Test Date: 9/2/00

BASALT

Profile: Regular 10deg. X 16mm

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa): 1600

Normal Stiffness (kPa/mm): 1600
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Test No: BR10_16

Test Date: 9/2/00

BASALT

Profile: Retestlng Regular 10°

Shear Rate = 0.5 mm/mln

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):
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Johnstone Direct Shear Test Predictions

In this section the predictions produced using the program Rocket are compared with direct
shea!1 tests conducted on Johnstone samples. The prediction have been presented in 4 graphs:

- shear stress vs. shear displacement

- shear stress vs. normal stress

- dilation vs. shear displacement

- normal stress vs. shear displacement

The shear and normal stress values are average stress values calculated for the contacting area
of the surface. Each graph shows the laboratory test results together with one prediction if the
profile has a single chord length, or three predictions at different chord lengths for irregular
profiles. As shown in Figure 9.1, when three predictions at different chord lengths are used,
an envelope of shear response can be drawn onto the graph. For visual simplicity this
envelope has not been drawn on the graphs in the appendix.

The following parameters were used in the predictions:

Parameter
Young's Modulus
Poisson's Ratio

Intact Friction Angle Batch 1
Intact Friction Angle Batch 2

Residual Friction Angle
Cohesion Batch 1
Cohesion Batch 2

Joint Normal Stiffness - water-jet surface
Joint Normal Stiffness - split surface

Failure Stress

Adopted value
900MPa

0.25
35°
34°

24.5°
1500kPa
1050kPa

6.0MPa/mrr
5.4MPa/mm

1.38 * Sokolovsky failure stress

F2



Johnstone Fractal Profile JF8_12 Prediction of Shear Response
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Prediction Test Result

Sample: JF8_12

Sotolovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 12mm, 16mm
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Johnstone Fractal Profile JF12_3 Prediction of Shear Response
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Prediction Test Result

Sample: JF12_3

Sokolovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa): 400

Norma> Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 3mm, 9mm, 20mm
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Johnstone Fractal Profile JF15a_3 Prediction of Shear Response
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Prediction Test Result

Sample: JF15a_3

Sokolovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 3.1mm, 8mm, 18mm
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Johnstone Fractel Profile JF15_3 Prediction of Shear Response
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Prediction Test Result

Sample :JF1 SJ3

Sokolovsky Facicr = 1.33

Johnstone Batch 11

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

400

400

Chord Lengths Used For Predictions : 3mm, 8mm, 24mm
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Johnstone Fractal Profile JF21_3 Prediction of Shear Response
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Prediction Test Result

Sample: JF21_3

Sokolovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa): 560

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 4.3mm, 13mm, 27mm
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Johnstone Split Surface JS_1a Prediction of Shear Response
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Prediction Test Result

Sample: JS_1a

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

600

400

Chord Lengths Used For Predictions : 3mm, 8.5mm, 17mm
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Johnstone Split Surface JS_1b Prediction of Shear Response
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Prediction Test Result

Sample: JS_1b

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 400

Chord Lengths Usei For Predictions: 1.9mm, 8mm, 24mm
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Johnstone Split Surface JS_2a Prediction of Shear Response
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Prediction Test Result

Sample: JS_2a

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions: 2.2mm, 10mm, 24mm
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Johnstone Split Surface JS_3a Prediction of Shear Response
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Prediction Tsst Result

Sample: JS_3a

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

400

400

Chord Lengths Used For Predictions : 2.2mm, 12mm, 20mm
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Johnstons Split Surface JS_3b Prediction of Shear Response
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Prediction Test Result

Sample: JS_3b

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa): 560

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For iPredictions : 3mm, 11mm, 24mm
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Johnstone Split Surface JS_4a Prediction of Shear Response

1000

-0.5

5 10 15 20 25 30

Shear Displacement (mm)

0 5 10 15 20 25

Shear Displacement (mm)

30

0 200 400 600 800 1000

Normal Stress (kPa)

1000

800

600

to
400

200

i i i ' ' ' ' i

0 5 10 15 20 25 30

Shear Displacement (mm)

Prediction Test Result

Sample: JS_4a

Sokolovsky Factor = 1.38

Johnstone Batch 1

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions: 1.6mm, 9mm, 24mm
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Johnstone Split Surface JS_6a Prediction of Shear Response
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Prediction Test Result

Sample: JS_6a

Sokolovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 1.7mm, 8mm, 18mm

F14



'

Johnstone Split Surface JS_7a Prediction of Shear Response

1000

co

0 5 10 15 20 25 30

Shear Displacement (mm)

1000

800

o.
* 600

w

n

400

200

0-1 1 1 • 1 1 1 • 1 -

0 200 400 600 800 1000

Normal Stress (kPa)

I

1000

0.0

-0.5
5 10 15 20 25

Shear Displacement (mm)
0 5 10 15 20 25 30

Shear Displacement (mm)

Prediction Test Result

Sample: JS_7a

Sokof ovsky Factor = 1.38

Johnstone Batch 2

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 1.5mm, 9mm, 23mm
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Sandstone Direct Shear Test Predictions

hi this section the predictions produced using the program Rocket are compared with direct
shear tests conducted on sandstone samples.

The following parameters were used in the predictions:

Parameter
Young's Modulus
Poisson's Ratio

Intact Friction Angle
Residual Friction Angle

Cohesion
Joint Normal Stiffness - split surface

Failure Stress

Adopted value
3200MPa

0.1
50°
32°

2200kPa
2.1MPa/mm

1.26 * Sokolovsky failure stress

I
F16



Sandstone Split Surface SS_1 Prediction of Shear Response
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Prediction Test Result

Sample: SS_1

Sokolovsky Factor = 1.26

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 2.5mm, 5mm, 20mm
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Sandstone Split Surface Shear Response Prediction
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Prediction Test Result

Sample: SS_2

Sokolovsky Factor = 1.26

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 800

Chord Lengths Used For Predictions : 1.5mm, 6.5mm, 21mm
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Siltstone Direct Shear Test Predictions

In this section the predictions produced using the program Rocket are compared with direct
shear tests conducted on siltstone samples.

The following parameters were used in the predictions:

Parameter
Young's Modulus
Poisson's Ratio

Intact Friction Angle
Residual Friction Angle

Cohesion

Joint Normal Stiffiiess - water-jet surface
Joint Normal Stiffness - split surface
Failure Stress - shear along bedding
Failure Stress - shear through matrix

Adopted value
25.4GPa

0.15
40°

28.5°
12MPa

6.2MPa/mm
3.9MPa/mm

30MPa
55MPa
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Siltstone Regular Triangular Profile MR5_16 Prediction of Shear Response

5000

4000

3000

5 2000

co

1000

5 10 15 20 25 30

Shear Displacement (mm)

5000

4000

a.
r 3000

io 2000
Of

1000 r
0 1000 2000 3000 4000 5000

Normal Stress (kPa)

5 10 15 20 25 30

Shear Displacement (mm)

5000

4000

i
3000

to
2000

1000

0 5 10 15 20 25 30

Shear Displacement (mm)

Prediction Test Result

Sample: MR5_16

Failure Stress = UCS bedding

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

800

800
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Siltstone Regular Triangular Profile MR5a_16 Prediction of Shear Response
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Prediction Tesi Result

Sample: MR5a_1S

Failure Stress = UCS bedding

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

2000

800
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Siltstone Regular Triangular Profile MR1oa_16 Prediction of Shear Response
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Prediction

Sample: MR10a_16

Failure Stress = UCS bedding

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

Test Result

2000

1600
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Siitstone Regular Triangular Profile MR10a_48 Prediction of Shear Response
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Prediction Test Result

Sample: MR10a_48

Failure Stress = UCS bedding

Initiai Normal Stress (kPa):

Normal Stiffness (kPa/mm):

2000

533
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Siltstone Regular Triangular Profile MR15_16 Prediction of Shear Response
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Prediction Test Result

Sample: MR15_16

Failure Stress = UCS bedding

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

1600

1600
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Siltstone Fractal Profile MFS_5 Prediction of Shear Response
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Prediction Test Result

Sample: MF5_5

Failure Stress = UCS

Initial Norms! Stress (kPa): 800

Normal Stiffness (kPa/mm): 800

Chord Lengths Used For Predictions : 5mm, 10mm, 24mm
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I
Siltstone Fractal Profile MF10.5 Prediction of Shear Response
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Prediction Test Result

Sample: MF10_5

Failure Stress = UCS

Initial Normal Stress (kPa): 1200

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 4.5mm, 8mm, 20mm
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Siltstone Fractal Profile MF10a_5 Prediction of Shear Response
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Prediction Test Result

Sample: MF10a_5

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 6mm, 13mm, 20mm
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Siitstone Fractal Profile MF15_5 Prediction of Shear Response
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Prediction Test Result

Sample: MF15_5

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 5.3mm, 10mm, 25mm
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Siltstone Split Surface MS_1 Prediction of Shear Response
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Prediction Test Result

Sample: MS_1

Failure Stress < 2mm chord length = UCS matrix

Failure Stress > 2mm chord length = UCS bedding

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions: 2mm, 11mm, 20mm
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Siltstone split Surface MS_2 Prediction of Shear Response
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Prediction Test Result

Sample: MS_2

Failure Stress < 2mm chord length = UCS matrix

Failure Stress > 2mm chord length <=• UCS bedding

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 2mm, 6.5mm, 16mm
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Siltstone Split Surface MS_3 Prediction of Shear Response
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Prediction Test Result

Sample: MS_3

Failure Stress = UCS bedding

Initial Normal Stress (kPa): 800

Normal Stiffness (kPa/mm): 800

Chord Lengths Used For Predictions : 2mm, 5.8mm, 18mm
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Siitstone Split Surface MS_4 Prediction of Shear Response
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Prediction Test Result

Sample: MS_4

Failure Stress < 2mm chord length = UCS matrix

Failure Stress > 2mm chord length = UCS bedding

Initial Normal Stress (kPa): 800

Normal Stiffness (kPa/mm): 400

Chord Lengths Used For Predictions : 1.7mm, 6.5mm, 15mm

\
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Siltstone Split Surface MS_5 Prediction of Shear Response
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Prediction Test Result

Sample: MS_5

Failure Stress = UCS bedding

Initial Normal Stress (kPa): 600

NormaH Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 2mm, 9mm, 20mm
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Silt3tone Split Surface MS_6 Prediction of Shear Response
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Prediction Test Result

Sample: MS_6

Failure Stress < 2mm chord length = UCS matrix

Failure Stress > 2mm chord length = UCS bedding

Initial Normal Stress (kPa): 1000

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 1.8mm, 7.2mm, 14mm
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Siltstone Split Surface MS_7 Prediction of Shear Response
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Prediction Test Result

Sample: MS_7

Failure Stress < 2mm chord length = UCS matrix

Failure Stress > 2mm chord length = UCS bedding

Initial Normal Stress (kPa): 800

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 2mm, 8mm, 11mm
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Basalt Direct Shear Test Predictions

In this section the predictions produced using the program Rocket are compared with direct
shear tests conducted on basalt samples.

The following parameters were used in the predictions:

Parameter
Young" s Modulus
Poisson's Ratio

Intact Friction Angle
Residual Friction Angle

Cohesion
Joint Normal Stiffness - water-jet surface

Joint Normal Stiffness - split surface
Failure Stress

Adopted value
62GPa
0.15
48°
34°

20MPa
7.6MPa/mm
7.5MPa/mm

120MPa

i ,i
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Basalt Regular Triangular Profile BR5_16 Prediction of Shear Response
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Prediction Test Result

Sample: BR5_16

failure stress =UCS

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

1600

1600
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Basalt Regular Triangular Profile BR10_16 Prediction of Shear Response
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Prediction Test Result

Sample: BR10_16

Failure Stress = UCS

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

1600

1600
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Basalt Regular Triangular Profile BR15_16 Prediction of Shear Response
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Failure Stress = UCS

Initial Normal Stress (kPa):
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Basalt Fractal Profile BFR_10 Prediction of Shear Response
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Prediction Test Result

Sample: BFR_10

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600

Chord Lengths Used Fo" Predictions : 6mm, 10mm, 25mm
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Basalt Fractal Profile BFR_15 Prediction of Shear Response
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Prediction 1 ' Test Result

Sample: BFR_15

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 6mm, 12mm, 28mm
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T
Basalt Split Surface BS_1 Prediction of Shear Response
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Prediction Test Result

Sample: BS_1

Failure Stress = UCS

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 1000

Chord Lengths Used For Predictions : 2mm, 6.5mm, 20mm
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Basalt Split Surface BS_2 Prediction of Shear Response
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Prediction Test Result

Sample: BS_2

Failure Stress = UCS

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 800

Chord Lengths Used For Predictions : 2.2mm, 8mm, 22mm
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Basalt Split Surface BS_3 Prediction of Shear Response
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Prediction Test Result

Sample: BS_3

Failure Stress = UCS

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mrn): 800

Chord Lengths Used For Predictions : 2mm, 6mm, 16mm
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Granite Direct Shear Test Predictions

hi this section the predictions produced using the program Rocket are compared with direct
shear tests conducted on granite samples.

The following parameters were used in the predictions:

Parameter
Young's Modulus

Poisson's Ratio
Intact Friction Angle

Residual Friction Angle
Cohesion

Joint Normal Stiffness - water-jet surface
Joint Normal Stiffness - split surface

Failure Stress

Adopted value
61GPa
0.15
50°

36.5°
35MPa

7.8MPa/mm
7.5MPa/mm

180MPa
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Granite Regular Triangular Profile GR10_8 Prediction of Shear Response
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Test Result

Sample: GR10_8

Failure Stress = UCS

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

2000

2000
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' ' • ' l > Granite Regular Triangular Profile GR10a_8 Prediction of Shea Response
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Prediction Test Result

Sample: GR1Ca_8

Failure Stress = UCS

Initial Normai Stress (kPa):

Normal Stiffness (kP&to
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Granite Regular Triangular Profile GR20_8 Prediction of Shear Response
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Prediction Test Result

Sample: GR20_8

Failure Stress = UCS

Initial Normal Stress (kPa):

Normal Stiffness (kPa/mm):

2000

4000
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Granite Split Surface GS_1 Prediction of Shear Response
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Prediction Test Result

Sample: GS_1

Failure Stress = UCS

Initial Normal Stress (kPa): 400

Normal Stiffness (kPa/mm): 1000

Chord Lengths Used For Predictions: 3mm, 6mm, 20mm
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Granite Split Surface GS_2 Prediction of Shear Response
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Prediction Test Result

Sample: GS_2

Failure Stress = UCS

Initial Normal Stress (kPa): 300

Normal Stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 2.2mm, 6mm, 23mm

' i.
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Granite Split Surface GS_3 Prediction of Shear Response

5 10 15 20 25

Shear Displacement (mm)

5 10 15 20 25

Shear Displacement (mm)

0 1000 2000 3000 4000 5000 6000

Normai 3 trass (kPa)

6000

5 10 15 20 25 30

Shear Displacement (mm)

Prediction Test Result

Sample: GS_3

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal Stiffness (kPa/mm): 1200

Chord Lengths Used For Predictions : 6mm, 16mm
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Granite Split Surface GS_4 Prediction of Shear Response
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Prediction Test Result

Sample: GS_4

Failure Stress = UCS

Initial Normal Stress (kPa): 600

Normal stiffness (kPa/mm): 600

Chord Lengths Used For Predictions : 2mm, 10mm, 21mm
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