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Addendum

The comparative study of the proposed framework with the existing meth-
ods and approachés have i)een discussed in chapters 5 and 6 of thesis. In
particular, section 2.5.1 specifies several existing {rameworks for modeling
mobile systems and describes their underlying perspective of mobility. The
primary objective of the thesis was to design a framework for conceptual
specification in mobile computation systems. The emphasis is on proof of
correctness of theorems developed on top of the abstraction of maobility. For
this purpose, we resorted to a simpler and absiract concept to represent
mobility.

On the other hand, separation of concerns is a concept derived from the
software engineering area. It is a development concept that can help software
developers to achieve better software construction by carefully organising and
composing software elements associated to different concerns. The proposed
approach nses this concept to model mobile systems in a software develop-
ment setting. Instead of defining a computation system, the approach focuses
on the architectural aspect of its modeling framework (see Chapter 2). The
framework 1<; based on a conceptual concepts (such as contextual relation-
ship beiween a mobile entity and its environment), and more importantly, its
archifecture all;)ws modeling to conform to software engineering principles.

However a comparison between the proposed and the existing approaches
using the concept of separation of concerns as a drawing line is not appro-
priate since they follow different directions in modeling mobile systems.

To do a performance evalunation of the Mocha’s specification framework,



the following observation is appropriate.

With its modeling paradigm? Mocha offers a new approach for modeling
mobile applications. Mocha’s main feature is its genericity. It is capable of
supporting different types of mobile entities, different contexts in which a
mobile application operates, and different compuiing environments in which
r-nobile applications are developed and used. The ability to highlight different
aspects of genericity in application modeliug becomes the main advantage of
Mocha.

To demonstrate the usefulness of Mocha, it is necessary to show that
claims about its genericity are trne. This is done by developing different
software tools (a Java programming framework and a cron-like task sched-
uler), as described in detail in Chapters 5 and 6. These tools demonstrate
the ability of Mocha to support different computing environments for mo-
bile applications (i.e., Java environment and Linux environment). They also
show that Mocha fits for different types of mobile entities (e.g., mobile agents
and mobile users). In addition, the Java programming framework offers a
generic mechanism to allow any contex{ representation to be used.

Morphologic (i.e., architectural and functional) examination of the tools
can provide .limited evaluation of Mocha’s advantages. The tools serves as ex-
amples that empirically demonstrate the usefulness of Mocha. This supports
the objectives of the thesis, however it does not address the performance-
orieuted problems of mobile application modeling. The latter issue can be
addressed through a detailed evaluation which is outside the scope of the

current thesis work.
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Abstract

Mobile computing is becoming popular because it allows computation
elements to be moved or carried around. The breakthrough is partly achieved
using mobile applications that allow computation execution to break spatial

and temporal constraints.

Mobile application development has to address two key factors. The
first is the penetration of physical elements from its execution environment
into a program’s computation. Handling and manipulation of abstractions
of the physical elements in the program is crucial because the penetration
is influential to the application’s computation. The other factor is the type
of mobile entities represented in a program. This is significant as different

types of mobile entities require different kind of support.

Many development proposals only offer partial solutions in addressing
the two important development factors. They cannot deliver a generic and
uniform approach, producing software that cannot handle problems with
complex mobility requirements. In addition, the resulting software tends to
have complex and non-modular structure, making it difficult to maintain.
This problem has to be approached from the conceptual level. This allows
an in-depth analysis of the characteristics of the needed support, which in
turn provides the basis for a suitable approach for mobility specification and

implementation.

A mew mobility modeling framework based on the notion of physical
environment has been developed. The physical environment is abstracted

using the concept of contert. The framework explicitly separates the mobil-

vi



ity and functionality aspects by placing them in different abstraction levels.
Mobile systems are modeled using a vehicle metaphor. The metaphor ex-
presses mobility in terms of contezt state changes within the environment,

and uses it as a basis for activating a functionality.

The modeling framework is equipped with a language for specifying
the mobility properties and behaviour of an application. The language facil-
itates mobility control to be specified in an abstract, high-level fashion using
constructs with context-oriented semantics. The syntax of the language is de-
signed to allow gradual abstraction refinement leading to the implementation

stage, where the functionality of the application is realised.

Two implementation prototypes have been built to demonstrate the
feasibility of the modeling framework to support the development of mobile
applications. The prototypes demonstrate the genericity of models generated
from the framework in catering for mobile applications with different mobil-
ity support requirements, as well as those operating at different levels. The
first prototype is a programming framework for Java-based mobile applica-
tions. The framework is developed directly from the specification language
by implementing its constructs using Java classes. The second prototype
implements support for mobile users on a Linux shell environment. It allows

a user to manage task execution based on the location context.

In summary, this research presents a new approach for mobile ap-
plication development. The approach promotes mobility as an independent
abstraction, and highlights the role of modeling and specification of mobility
control based on that abstraction. It allows the application of a generic and
uniform method to support different types of mobile entities. The method
can even be applied using different implementation tools, and in different

computing environments,

vil
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Chapter 1

Introduction

1.1 Mobile Computing and Its Trends

Advances in transportation offer mobility to people. Ease of traveling al-
lows people to perform tasks at different locations and even during a jour-
ney. This mobility phenomenon in the physical world has inspired a similar
model for computation. Mobile computing is a computing paradigm similar
to distributed computing in which computation is not restricted to a par-
ticular computing location. However, mobile computing goes further than
distributed computing. It pushes location-transparent access even further by

allowing mobility as part of a computing process.

In distributed computing, the concept of location-independence pro-
motes ubiquitous access. In mobile computing, the goal is to explore the
dynamics within the ubiquity itself. Portable computers, personal digital as-
sistants (PIDAs), and Internet-capable mobile phones are computing devices
which allow users to do uninterruptible computing activities while traveling.
This puts users in an always-on situation where mapping between activities
and places is starting to disappear, and human-human and human-computer

relationships become continually present [Agr01].



In a different perspective, mobile computing is not only associated
with mobile users. Mobility of program code is also exploited. Applets,
which are based on the client-server concept, have shown that it is possible
and worthy to send program code from one machine to another to do a
specific job. In its evolution, some restrictions on applet systems can be
removed to allow more flexibility. For example, code can be sent to a remote
computer without having to follow a particular communication pattern. Code
mobility, in fact, has become an alternative to the client-server model in
distributed computing with some performance increases observed in certain

areas of applications [Knu95].

Mobile computing is made possible by advances of technology in sev-
eral areas. In the hardware area, current chip technology makes it possible to
manufacture processors that achieve better power-to-performance ratios and
are more compact (e.g., the Crusoe family processors [Kla00]). They allow
the construction of smaller yet more powerful portable computers and embed-
ded computing devices that can be planted on everyday things such as cars,
rooms, air conditioners, microwave ovens, and alarms. Additionally, network-
ing infrastructure is getting ready for reliable wireless communication, facili-
tating communication from virtually anywhere. Faster network performance
and more ﬂexibility_ are partly due to redesigned network packet transporta-

tion mechanisms to suit wireless communication [Per98, CI96, PB96].

Software standardisation has also produced a positive impact on mo-
bile computing. Java [AGQ?], Common Object Request Broker Architecture
(CORBA) [Sie96], Extended Markup Language (XML) [BPSM98] and its
descendant Wireless Markup Langoage (WML) [HTK98] are examples of
software technologies that are becoming de-facto standards in their respec-
tive fields. These standards offer higher degrees of interoperability to mobile
computing applications that work in a heterogenous computing environment,

such as the Internet.



Using these technological advances, mobility is no longer regarded as
a handicap in doing computing ‘activities. On the other hand, it is now
becoming part of them. Mobile computing is one of the ways to go to per-
vasive computing where computation occurs in many aspects of a human’s
physical environment. Automation of daily tasks can be controlled remotely.
Personal assistant software can be synchronised with business travel. Tra-
ditional human interactions can be replaced by software elements (e.g., in
electronic commerce where negotiations and transactions can be done using
mobile agents [Whi94, GTM197]). Information need not be carried along
since it can be accessed from any mobile position. In short, humans can

expect a radical change in interacting with their environment [Mar99).

1.2 Implications of Mobility to Applications

Mobility not only creates a big impact on the way humans do computing,
but changes the characteristic of applications that run on a mobile com-
puting environment as well. The most noticeable characteristic is that a
movement can be expressed in terms of change of locations. Applications
working with mobility are accordingly exposed to such changes. In contrast
toa distﬁbuted system that hides the location aspect from programmers and
Sers (i.e., location transparency), a mobile computing system must expose
the location dynamics as it is often used for reasoning purposes in an appli-
cation’s computation. For example, in a Web-based information system for
mobile users, current user location is used to compute the information pre-
sented in a browser [VB94]. In such an application, user migration expressed

as changes of location becomes part of the application’s computation.

In a more general sense, mobile computing applications are required
to be aware of other aspects of their environment, not just the location as-

pect. They are required to possess the ability to detect changes in those



environmental aspects. As mentioned in the previous paragraph, this fea-
ture could be used to trigger thé execution of some functions to achieve a
specific goal. It is most useful in a situation where more physical aspects
are becoming the objects of computing. In such a situation, computation
can be programmed to penetrate deep into human’s environment, retriev-
ing information that can be processed for certain purposes. For example,
in an environment populated with intelligent sensors, it is possible to detect
the presence of a person, current temperature, network speed connection,
and other physical measurements, and then to feed such data to an appli-
cation which processes it to simulate the physical environment of the user.
The information can then be used to decide the application’s reaction for a

particular environmental situation.

A slight variation to the use of environment awareness is to achieve
adaptivity, a survival mechanism for an application to keep on functioning in
a highly dynamic environment. It is basically a feedback control mechanisin.
When a change in the environment occurs, it is detected and sent to the
application as a feedback which is used to determine the correct operation
mode of the application. This mechanism is often employed by applications
whose performance greatly depends on the environment. Consider a mobile
video conference program. In this application, adaptation techniques can be
used to guard the application from network speed fluctuation, low battery
power, or transmission noise. For example, if battery power is low, the
program can go to a power saving mode, for instance by applying an image

compression algorithm to the transmitted image stream.

A mobile computing environment is not only dynamic, but also open.
The mobile computing paradigm forces machines in a networked environ-
ment to accept mobile users or program code. The host machines must allow
foreign entities to come and carry out some computation in the location

represented by the host within its safety and security constraints. Unlike



a distributed system where the remote communication mode between two
sites is cormpletely defined, mobﬂe computing environments can expect in-
teractions with unknown and untrusted entities. In this situation security
becomes a vital issue. It is important that such interactions do not harm the

mobile entities, the environment, and the underlying system and resources.

Mobile computing is also subject to limited resource availability. Al-
though laptop batteries now have substantially longer life and wireless net-
works are getting faster and more reliable, they are still far from their desktop
equivalent. The main challenge is to allow applications to run in environ-
ments with limited resources. Efficiency becomes a key issue, and from the
software point of view, this problem is mainly tackled by providing more

efficient system support or mechanisms [Mic00, PRWS98].

More compact and smaller portable devices are not always advanta-
geous. From the human-computer interaction peint of view, devices with
smaller size bring non-ergonomic user interaction problems. Input and out-
put devices must be squeezed to fit into a limited space, preventing users
from getting full and flexible control of these devices. Applications running
on such devices should consider a proper user interface to allow users to use

a new way of interacting with them [SG97, K198].

1.3 Mobile Applications and Mobility Con-
trol

As far as mobility is concerned, there are many types of applications that are
related to mobility. These range from traditional, distributed applications
that can be used in a mobile computing environment through the help of the
underlying network layer (e.g., using Mobile IP [Per98], for instance), to those
which exploit mobility through an intermediate layer (e.g., user interface

[Ric95]), to those which actually make use of mobility in their computation.



It is on the last of those types of applications that this thesis focuses.
These are applications whose méin computation has a direct relevance to
mobility. In subsequent discussions, they are called mobile applications. In
general, mobile applications can be categorised into two groups: those which
support mobile users through their ability to operate in a mobile environment,
and those which manage code migration in their computation. The first
category is represented by applications that can react and adapt to changes
in their environment, and the second category is exemplified by mobile agent

applications.

The concept of mobility introduces a new responsibility to a mobile
application. In addition to performing its functional task, the application has
to handle mobility-related issues in its computation. This activity is referred
to as mobility control. Mobility control is needed to specify a migration, or
when a mobile application is expected to be aware of and adaptive to its
environment. In an awareness scheme, mobility control is needed to tell the
application when to execute a functional task (e.g., when the user arrives at
a particular location). In an adaptation scheme, it is needed to guard task

execution from the dynamics within the environment caused by mobility.

The presence of mobility control in a mobile application reflects a per-
spective in which the functionality of the application is distinguished from its
mobility. Functionality refers to a program’s ability to perform a functional
task. It is associated with functions, which are part of the software that pro-
vides a core solution fér a given problem. In a computing environment where
external factors are negligible (e.g., a stand-alone system), the performance
of a function is solely determined by its quality, which depends on its internal
design (e.g., algorithm efficiency). In a mobile computing environment, how-
ever, this statement is not valid. A well-designed function does not always
run as expected since it is exposed to a highly dynamic environment that

may affect its execution.



The relationship between functionality and mobility in a mobile ap-
plication is shown in Figure 1.1.' A mobile application can acquire inputs
related to its functionality or mobility. The former is shown, for example,
by normal user interaction, while the latter is captured, for example, using
sensor mechanisms. The latter is caught and processed by the control part.
Based on the processing result, the control part may tell the functional part
to do some action. This could simply mean telling the functional part to do
its job, or to make some adjustments before doing the job (illustrated by the
vertical upward arrow). However, in some cases the initiative comes from
the functional part. It may talk to the controller if during its execution it
finds out that some mobility-related issues have to be communicated (shown
by the downward arrow). For example, in the information retrieval area, a
mobile agent for searching information has the ability to determine the next
location to visit if it cannot find the searched information at its current place.
This location data is passed to its mobility control component, which is then
used to movee the agent to the specified destination. When the agent arrives

at the location, the controller notifies the search engine to restart its job.

functional input ( functional output
functionality -

1

i

* mobility control

mobility-related
input/stimuli —

Figure 1.1: Functional and control components of a mobile application

In general, the introduction of mobility control in a computation
changes both the structure and the working mechanism of a mobile applica-
tion. It brings in new issues that have to be addressed in the development
of mobile applications. They include representﬁtion and manipulation of

contexts, facilitating the heterogenity of mobile entities, and realisation of



separation of mobility from functionality. They are discussed in the following

section.

1.4 Issues in the Development of Mobile Ap-
plications

Many mobile applications capture the notion of location in their programs.
The location notion gives a mobile application the sense of being somewhere,
and when combined with the application’s functionality, it describes the spa-
tial dimension of the problem-solving activity performed by the program.
In fact, location is just one example of environmental elements whose ab-
stractions penetrate into an application’s computation to form conceptual
domains that orthogonally surround the computation. Such an abstraction
is called contezi', and has an important role to describe the relevance of an
environmental element to the mobility of entities represented in the applica-

tion.

The relevance of a context to a mobile application is shown by its
ability to indicate the mobility of an application. Using the concept of con-
text, mobility is not only expressable in terms of location (i.e., spatially), but
in terms of other environment elements as well. To give examples, mobility
could be expressed in terms of network connection speed (i.e., a migration
from a wired network node to a wireless network node would cause speed
change), resource availability (i.e., different computers have different CPU
power, memory, disk, and other computing resources), or surrounding peo-
ple (i.e., movement changes the neighbourhood, represented by the people
logging on the same machine). Of course such changes can be triggered with-

out migrations actually taking place, but it does not really matter since a

IThe term context here refers to real-world, physical elements such as locations or
network speed, rather than internal program execution environment (e.g., memory heap,
execution stack, or program coumnter).



mobile application is only interested in the changes, whether or not they
actually involve migrations as wéll. Figure 1.2 shows the mental image in-
troduced by the presence of a context to computation. It defines possible
"topics” mentioned in a mobile program, expressed using terminologies de-

scribing physical elements referred by the context.

context: context: context;
location network speed social

mobile mobile mobile
application application application
at hostA... speed is high... user A is there...
after visiting B... speed is low... my boss is logged on...
before arriving network is stalled...  all my friends are
at C... gone...

Figure 1.2: Contexts surrounding a mobile application

The association between a context and a functional task has to be
reflected in the development of the application. Programmers have to put
functional computation in the context’s perspective. Therefore the focus of
programming of a mobile application is on organising contexts used in the
application and associating them with appropriate functional computation.
This is basically different from programming of other types of applications,

which focuses only on the specification of functional computation.

The second issue in mobile application development is raised by the
presence of multiple types of mobile entities represented in mobile applica-
tions. With mobility is fully exploited, entities representing people and code
can become mobile, and both types of entities can appear in the same ap-
plication. Traditionally, development tools are designed to support only one

dominant type of mobile entities. For example, tools designed for mobile



agent applications concentrate on support for code maobility. The tools focus
on how to make code representiﬂg an agent movable from one place to an-
other. The support is usually realised using specific commands implemented
as function or method calls [Obj99, LO98] and special execution environment
installed on machines in a network. On the contrary, these things are mostly
irrelevant to a network-aware application that supports mobile nsers. What
is more important is probably a clean implementation of an asynchronous
mechanism for monitoring and reporting network speed fluctuations. When
both mobile agents and mobile users are present in the same application, a
particular tool may not be able to handle all programming needs that arise

from this situation.

The above illustration shows the narrow scope of mobility support
provided by development tools for mobile applications. Such a narrow scope
stems from the failure to view mobility as a unifying concept for performing
tasks in a problem-solving framework. Mobility is associated with a principal
or actor (who/what experiénces a migration) representing a mobile entity,
and support is provided on the basis of the mobility support requirements
of the actor. In situations where mobile entities with different requirements
are present, a partial solution is no longer suitable, and the need for a more

general approach 'bgcomes apparent.

The third issue comes from a software engineering perspective, and
is related to the architectural support provided by a programming language
to develop a mobile éppﬁcation. A program is a construction of software
components written in a particular programming language. The structure of
a program is dictated by the architectural framework imposed by the lan-
guage. An architectural framework defines how components can be composed
to build a complete program. Like building a physical construction, given a
set of linguistic constructs, it specifies what can and what cannot be done

with the constructs during an implementation process.
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The architectural framework set by a generic programming language
may not be able to represent neﬁr abstractions introduced by environmen-
tal elements. When context abstractions need to be expressed using existing
linguistic constructs, programmers have to manually work out the representa-
tion. This often forces programmers to disregard the clean architecture that
comes with the language, creating a program that has non-natural compo-
nent composition. The resulting program is usually hard to understand and
maintain. A classic example of this phenomenon is the inheritance anomaly
problem posed by concurrent object-oriented languages [MY93]. The prob-
lem states that inheriting a concurrent class often requires modifications of
the parent class, which violates the principle of inheritance itself. The abil-
ity to recognise and accommodate contexts handling and manipulation is

therefore crucial in mobile application development.

Finally, programming of an application’s functions is often done in-
dependently of specification of mobility control. In many cases, functional
components could exist even before the program that makes use of them is
written. For example, in the mobile trader example given in Section 1.3,
program components representing the trading functionality may have been
developed long before the trader agent program is written. Perhaps the
trader agent program is an improved version of another program with the
same functionality that uses a client-server approach. In such a situation,
the designer of the original functional components may not be aware of any
possibility to make the components mobile. This shows the need to decouple
the development of functionality from that of mobility. It should be easy to
turn a function, data, class, or any other linguistic constructs to their mobile

version without messing up with their original semantics.

Orthogonality between functionality and mobility is also applicable in
the other direction. Mobility control should be independent of the function-

alities it operates on. For example, specification of a travel itinerary should
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be independent of that of the action executed in locations visited during the

travel.

1.5 Motivating Factors and Area of Research

As mobile computing is becoming a common style in using computers, mo-
bile application development is likely to get its momentum as well. From the
software engineering point of view, mobile application development can be
considered as a development activity that specifically works on mobile appli-
cations. A properly supported development process is required to tackle the
issues mentioned in Section 1.4. Identification of support requirements, as

well as the provision of the support, are the main motivations of this research.

Mobile application development is a research area that has not yet
received much attention. Compared with other areas, such as hardware de-
sign for mobile computing or provision of necessary network infrastructure,
research on this area is one step behind. Mobile applications have not been
able to exploit the full potential of mobility, since specific requirements which

allow such an extensive exploitation have not been well understood yet.

With the era of pervasive computing coming fast, the need for high-
quality mobile applications also rises accordingly. More mobile applications
are required to be allround, in the sense that they have to handle different
kinds of mobile entities with different mobility support requirements. More-
over, mobile computing is moving away from using network-based locations
as the only way of expressing mobility. Mobile applications are starting to
make use of other aspects as well, such as network speed, office room, and

social environment.

Addressing the above requirements using the traditional development
model would not yield efficient and effective solutions, due to the partial

nature of the approach. The approach does not consider maobility as an in-
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dependent abstraction. Instead, it views mobility as a dependent attribute
of a mobile entity, and support is given on the basis of the programming
requirements pertaining to the entity. Moreover, the traditional approach
departs from a development model for non-mobile applications which does
not recognise the situation where programmers have to deal with abstractions
of physical environment elements. In all cases where no direct implementa-
tion support is available from the programming tool (e.g., the tool is not
suitable to implement the mobility requirements of the mobile application),
non-natural programming workaround is needed. This situation usually leads

to inefficient, complex, and hard-to-maintain program code.

In a broader perspective, difference in acceleration of research progress
between the software and hardware areas introduces a situation similar to the
early history of software engineering (or programming in a narrower scope),
where an overall progress acceleration in mobile computing area cannot be
maximised due to the slower progress of the software side. The research de-
scribed in this thesis is an effort to bridge the gap. It endeavours a number
of areas in search for a better understanding of mobile systems, particularly
their characteristic and the support required to handle mobility. This knowl-
edge can then be used to design a suitable approach for developing mobile

applications.

The problem of partially supported mobile applications has to be ap-
proached from the conceptual level. This is because core and essential aspects
of systems manipulated by mobile applications have to be identified so that
proper support can be provided. Modeling of mobile systems is a prospective
starting pomt for this study, because a model can provide a view of such a

system from the required level.

Modeling aims to describe the characterising properties of a mobile
system. It lists mobile entities that form the system, defines functionalities

and when/how they are activated, and states the relationship between mobile
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entities and their environment. In short, they form components required to
control mobility in the system. Since these aspects are exactly what mobile
applications deal with, it is therefore suitable to promote modeling as the
initial stage of an application development effort. Modeling is essential in
establishing requirements specifically related to mobility, which have to be
realised in the implementation stage. It becomes the focus of the research
since a good quality mobile application software can only be created if it
is developed based on a strong ground that sufficiently addresses mobility-

related issues.

A model of a mobile system can be represented in many ways. A
model representation can then be used as a basis for application design and
implementation in further development stages. It is possible to directly im-
plement a model representation using a programming language. However,
such a straightforward approach has a drawback. A model description writ-
ten at the model level is very abstract, while programming at the imple-
mentation level deals with detailed abstraction. Such a gap can obscure the
novel aspects of the model during abstraction refinement process. A direct
implementation effort would easily miss these aspects and prevent an imple-

mentation program to take advantages from them.

To bridge the gap so that implementation effort can be carried out
smoothly from a given model, a specification tool with sufficient expressive
power needs to be deyeloped. A tool in the form of a language fits this
requirement. Such a specification language has an important intermediary
role in the development of a mobile application. On one side, it is used to
represent a model. In performing this role, the language has to be generic
and abstract. Its abstraction level should allow developers to specify the
essential aspects of a mobile system without having to be restricted to specific
implementation issues (e.g., programming paradigm, language, and style).

On the other side, the language should provide helpful guidelines for an
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implementation effort. In particular, it should narrow down the abstraction
gap to facilitate a gradual abstraction refinement process in the development

stages beyond modeling.

Using the specification language, modeling is actually an activity of
defining mobile entities and writing specification of mobility control for the
entities. The novel aspect here is that mobility control is specified at an
abstract level. Moving mobility control specification to a stage as early as
modeling promotes genericity that allows the model to be used in a wide

range of application areas.

As a demonstration of usability, the research also explores the imple-
mentation side. The purpose of the work is to assess the applicability of the
model-based approach to support mobile application development in different
computing environments. From the modeling level, two different directions
are pursued. The first is to follow the programming path where mobile ap-
plications can be developed from a specification using Java programming
language. The other direction of implementation operates at the operating
system level. The model-based approach is used to assist the development

of a mobile application running on the Linux shell environment.

1.6 Contributions of the Thesis

The thesis contributes several novel concepts in mobile application develop-
ment. Two implementation prototypes have also been developed as research

outcome. The contributions of the thesis are shown as follows.

1. The thesis proposes a modeling framework for describing system prop-
erties on which mobile application development can be based. The
framework is based on a simple transportation metaphor and recognises

physical environment as an influential factor in a mobile application’s

15



computation. To the best of my knowledge, it is the first modeling
framework that incorporates the notion of physical environment for

the purpose of mobile application development.

Genericity is another highlighted aspect of the framework. The frame-
work offers a uniform view which can be applied on the development
of mobile applications with different mobility support requirements.
Genericity also leads to a flexible implementation of mobile applica-
tlons. Such an implementation can be tailored to suit specific cir-
cumstances, such as the implementation environment, the development

paradigm, and the availability of programming tools.

2. The research also results in a specification language. The language is
used as a specification tool to describe a mobile system. Using the
language, specification of mobility control can be conducted as early as
the modeling phase. At the same time, the language provides guidance
for the implementation of the system, allowing a model’s abstractions

to be refined gradually in the development stages beyond modeling.

3. The spin-offs of the implementation work contribute new ideas in sup-

porting mobile computing in specific environments. The Java-based
implementation breaks the tradition of the mainstream style of Java-

based mobile épplication development which concentrates on code mo-

bility by introducing the capability to cater for user-oriented mobility.
The lessons learned from the implementation also suggest required lin-
' guistic features to naturally support implementation of mobility con-
| trol. Implementation in the Linux environment extends the operating

system’s features with user-oriented mobile computing capability.

In summary, the research proposes a new approach for mobile appli-
cation development based on modeling and specification of mobility control.

The novel feature of the proposed approach is that a development is based on
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a well-defined model with generic properties that can be applied to any type
of mobile applications. The modekling framework can be used to complement
the conventional software development paradigm. The framework enriches
current development practices with specific features that address the unique

characteristic of mobile applications.

1.7 The Structure of the Thesis

There are seven chapters in this thesis. The contents and the organisation

of the chapters are shown as follows.

Chapter 1 provides background and introduction material about mo-
bile computing. It describes general issues in mobile computing and their
impacts on mobile applications. It also explains the motivations behind the

research and justifies their relevance.

Chapter 2 contains a literature survey on issues that are relevant to
mobile application development. The survey starts with a discussion on
moabile computing as a computing paradigm. The main part of the survey
provides some analysis on current approaches for mobile application devel-

opment, particularly on how user and code mobility are supported. At the

end of this chapter, the research goals are revisited to justify the position of

the research among other relevant work that has been done or is currently

active.

Chapter 3 contains the first part of the thesis’ main contribution. The
chapter starts with a discussion on some key issues found in mobile appli-
cations. Then it describes the proposed mobility model, followed by the
presentation of the formalism for the model. A discussion on the highlights

of the model concludes this chapter.
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Chapter 4 explains the specification language. It begins with a de-
scription about the rationale behind the design of the specification language.
Following this, the syntax and semantics of the language are presented, and

specification examples are provided.

Chapter 5 describes an implementation that maps specification lan-
guage constructs into Java constructs. This chapter also discusses some

lessons learned from the implementation.

Chapter 6 describes a different implementation course. The case is
the implementation of the Mocha model on a Linux environment. A tool
prototype is developed to provide location-awareness that allows mobile users

to manage command execution based on their locations.

Chapter 7 presents the conclusions of the research, and suggests some
possible research work that can be done in the future to improve or extend

the outcome of the current research.

18



Chapter 2

Mobile Applications and Their
Development

2.1 Introduction

The topic of this thesis covers two broad areas: modeling and development
of mobile applications. The modeling part focuses on devising a modeling
framework for mobile applications development. To design a representative
model, it is important to have a good conceptual understanding of different
aspects of mobile computing so that its essential properties can be identified

and represented.

The modeling framework should also allow a model to be placed into
the perspective of software development. A model is viewed as a specification
of mobility-related requirements, upon which a software development process
is based. Software engineering considerations should be applicable so that

development stages beyond modeling can benefit from it.

This chapter presents a survey to provide a background for the areas of
the research reported in this thesis. Due to the broad coverage of the topic of
the research, the survey takes a top-down approach. It starts with Section 2.2
that presents a discussion on mobile computing as a computing paradigm and

a comparison with other related computing paradigms. This is followed by
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Section 2.3 that explains general support for mobile computing. A general
perspective of mobile computing' from the distributed computing point of
view is provided. The main issue here is how mobility can be exploited
and manipulated so that computing activities can be conducted on top of
a distributed computing infrastructure. The survey presented in these two
sections portrays mobile computing from a broad angle. Tts objective is to

identify essential properties that characterise mobile computing systems.

Section 2.4 looks at applications running on mobile computing envi-
ronments. The focus of the survey remains the same as that of the previous
section, that is, how to turn mobility into a supportive computing factor.
This time, however, an application’s point of view is used. Different ap-
proaches for handling mobility-related issues are presented. The survey gives
an idea on implementing different types of mobility support within an appli-

cation.

Finally the survey looks at the development aspect of mobile appli-
cations from a software engineering perspective. Development issues raised
by the presence of mobility-related concerns in mobile applica.tions are dis-
cussed. The objective of the survey is to raise awareness of these issues so

that they can be addressed properly.

A set of statements on the research problems conclude this Chapter.

These statements justify the relevance of the research presented in this thesis.

2.2 Mobile Computing and Related Concepts

The term mobile computing refers to a computing activity that is in some
ways related to mobility. In many situations mobility is associated with
a user, and mobile computing therefore reflects the ability of a user to do
computing activities during his or her travel. Some researchers use the term

mobile computation to denote computation elements that can migrate to
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different machines [Car99]. Iowever, from this thesis’ point of view, the
distinction between the two terms is not significant, since the emphasis is on
the mobility aspect rather than on the principal of migration. In subsequent

discussions, the term mobile computing can be used to denote either situation.

The definition of mobile computing implicitly states that it has a close
similarity to distributed computing. Both of them are based on the concept
of location distribution as a determinant computing factor. Computing ele-
ments are bound to a spatial environment formed by a number of networked

machines located in geographically different areas.

The aim of distributed computing is to mask location heterogenity
and distribution. A distributed computing system tries to hide the location
of program components from the user to achieve the notion of access from
anywhere, that is, from any network node in the distribution scope. How-
ever, the concept can only be applied with coarse granularity, because the
computers that form the access points are normally distributed sparsely in
geographically different locations. Mobile computing refines the granular-
ity of distributed computing by increasing the density of access points in a
distributed computing scope. Using a distributed application during a jour-
ney between two locations can be viewed as distributed computing over an

infinite set of locations between the two places.

Mobile computing is, however, different from distributed computing
in other aspects. Distributed computing has static characteristic. Once an
application’s elements are set in their location, they are fixed there. On the

other hand, mobile computing elements can freely roam a network.

Another difference between the two computing paradigms is related
to their environment. The performance of a distributed program is affected
by certain environmental elements {e.g., network connection), but the signif-

icance of the influence is not as much as in a mobile application. Migrations
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change the location of an entity, and this can introduce some dynamics to the
traveling entity. Different enviroﬁrnent settings, different security measures,
and meeting with other mobile entities are examples of such dynamics caused
by migrations. In a mobile computing environment, it is often necessary to
make an application aware of recurring changes. This is, in fact, the biggest
difference between mobile computing and distributed computing. In mobile
computing, information related to the dynamics of the environment is often

required by an application to reason its computation.

The idea of seamless computing regardless of the user’s physical posi-
tion is not very new. The term ubiquitous computing was first coined by Mark
Weiser to describe a situation where a user is constantly interacting with a
large number of computing devices [Wei93]. Weiser stresses that even though
the interaction is intensive, it should not make the computers the focus of
attention. In other words, they should disappear from a user’s awareness
when he or she works with them so that an activity can be conducted with-
out the need for high technological skills. He argues that this situation can
be achieved only by applying radical changes in the relationship between
humans and computers in which computers take the form of artifacts which
mimics common things in human’s daily life (e.g., papers and pens) and work
closely like them. By disguising computers in the forms human are familiar

with, they become mentally transparent to people who use them.

After Weiser’s seminal paper [Wei93], the effort to realise seamless
computing started to grow. For example, Abowd [Abo96] also locks at the
same, issue, but his focus is on applications running on an ubiquitous com-
puting environment. Such an application has to be able to take over human’s
function in capturing events that surround him or her, memorising the im-
portant ones, and recalling them in the future. Furthermore, the application
should also have the ability to integrate information brought along with the

events that often come from different sources.
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A different view of ubiquitous computing is given by Dearle [Dea98].
He proposes the concept of an ubiquitous environment that allows mobile
users to perform computation on top of it. An ubiquitous environment con-
sists of three layers: a view which defines what a mobile user sees during
his or her journeys, a platform which consists of hardware and software ele-
ments that implement a view, and some servers that are designed for general-
purpose repository. In this architecture, user migration can be expressed in
terms of view migration (i.e., the same view can be reproduced by a different
platform in a different location) or platform migration (i.e., the platform also

migrates, possibly involving a network connection change).

The difference between mobile computing and ubiquitous computing
lies in the way they perceive seamlessness of computing activities. Ubiquitous
computing tends to focus on the result or effect of the interaction between a
user and an underlying computing system. Ubiquitous systems can be built
by developing appropriate hardware, network, and software infrastructuru.
Mobile computing, on the other hand, focuses the effects of mobility to ap-
plications. Development of mobile computing systems normally concentrates

on the provision of appropriate support to handle such effects.

Weiser’s vision of ubiquitous computing [Wei93] converges with cur-
rent situation where more portable and small-scale computing devices are
embedded in things commonly found in human life such as cars, clothing,
and household devices. With these devices populating our physical envi-
ronment, computing isl naturally everywhere. It is common to find compu-
tation penetrating many aspects of human life; in other words, it becomes
pervasive. When emhedded processors turn out to be the majority of all
computing devices produced [Ten00], pervasive computing changes the na-
ture of human-computer interaction. For example, such interaction becomes

implicit, exhibited by various kinds of automation performed by embedded

devices [Mar99].

23



A pervasive computing environment not only facilitates user-oriented
mobility, but allows exploitation 6f code mobility as well. The latter form of
mobile computing has a potential application in controling computing devices
remotely. Remote controling via mobile code offers more flexibility because
of the programmable nature of the code. For example, the user can adjust
the lighting of his or her house to adapt to outdoor light intensity, or even

to follow a certain pattern to trick thieves.

Code mobility is not a new idea. It has been used for different areas
of applications, such as to submit batch jobs remotely [Bog73] and to control
printers using the PostScript language [Sys85]. This topic enjoys a more
structured approach in the distributed operating system area. In this area,
researchers have been trying to support the migration of active processes and
objects at the operating system level [Nut94]. Process migration is mainly
used as a load balancing technique in distributed systems [Fre91, BLL92,
BGW93]. It allows load balancing to be performed dynamically by migrating
process code and other objeéts that represent its execution state to different

hosts.

Code mobility gains its momentum through the applet concept in-
troduced by the Java programming language [AG97]. In an Internet-based
computing environment, an applet is a piece of code that resides in a Web
server. When a Web browser downloads a document that contains the ap-
plet code from that server, the code moves along with the document. If the
browser supports the eﬁecution environment required by the applet, it will be
executed in the browser. The effect is like having a prograin running in the
browser. Through applets, the concept of mobile code has become popular
because migration is performed at the user level. User-level migration allows
a user to have control on code migration. Coupled with the cross-platform
characteristic of Java, this feature offers a simple way to leverage traditional

applications to work in a distributed computing environment.
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The mobility of an applet’s code is, however, limited. Code migration
is performed one-way (i.e., from a Web server to a Web browser), because
the applet system follows the client-server paradigm. To fully tap the power
of code mobility, code migration should not be constrained to any communi-
cation pattern between a source and a destination. Instead, code should be
freely migratable to any computer with appropriate support. This mobility
model is exploited by mobile agent applications. There is still no authorita-
tive definition and uniform understanding among researchers of the concept
of agent itself [FG96]. However, as far as this thesis is concerned, an agent is
simply a piece of code that is programmed to do a specific task with a degree
of autonomy. A mobile agent is therefore an agent that has the ability to

move and has some autonomy in making decisions!.

The concept of mobile agent improves the flexibility of the client-server
paradigm exhibited by the applet concept. A mobile agent can be transported
to a target machine without being constrained to the functionality of the
machine (i.e., irrespective of whether it acts as a client or server) . This is
because a mobile agent is self-sufficient, it has the required know-how for
its execution. All it needs from a destination host is the resources [FPV98].
This makes mobile agents an attractive alternative for pervasive computing,
since a user can send his or her agents to run on embedded computing devices

without having to set up certain services in the devices prior to the execution.

'The autonomy of mobile agents can also be exploited. A mobile agent
can be programmed with knowledge to respond to certain situations that
occur during its journey. This feature is useful to create agents that act
on behalf of their users or owners. Potential areas of applications of this
concept include electronic commerce. In this area, mobile agents can be used

to simulate traditional trading systems. Interactions between traders and

1The term autonomy should be interpreted from an agent's internal view. In this
perspective, it refers to a reasoning mechanism built into an agent’s computation.
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buyers open up various scenarios that normally require autonomous actions
from both sides. The difference is that communications, negotiations, and

transactions are now performed by mobile agents [DNMMS99, GTM*97].

To reiterate the material presented in this section, the concept of
mobile computing has been presented along with the related computing con-
cepts. The key characteristic of mobile computing is the presence of mobility
abstractions in an application’s computation, close enough to introduce some
effects on the computation. Tt is not important whether the movement of
a mobile entity happens externally to the computation (as in the case of a
mobile user with his or her application), or internally as the computation

itself moves (as in systems with code mobility).

The effects brought by mobility to applications vary. Mobility can
bring negative impact as it can reduce the performance of an application.
On the other hand it can also bring positive impact, since the behaviour of
an application can be adapted to the current situation of the environment.
Therefore it is necessary to properly address the mobility of an application.
The next section looks at this issue from the distributed computing point of

view,

2.3 Working with Mobility

This section discusses the implications of mobility on a computing system
and how they can be éupported, using the distributed computing point of
view. Although the main focus of the discussion is the effects of mobility at
the application level, some of those which affect the underlying network level
will also be explained to give the idea of the overall implication of working

with mobility.
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2.3.1 Mobile Networking

In mobile networking, the physical location of a mobile computer no longer
determines its network address. From the network point of view, there are

three challenges that have to be addressed [IK96], and they are:

e How to make a network know the current location of a mobile host,
¢ How network messages can be routed to a mobile host, and

e How to improve the network transport performance over a mix of wired

and wireless networks.

The Internet community addresses the first two problems by aiming
a new standard called Mobile IP [Per98, Per97] which extends the Internet
Protocol (IP) mechanism to work with mobile hosts. In systems based on
the Transmission Control Protocol/Internet Protocol (TCP/IP), transport-
layer connections are determined by a quadruplet number that specifies the
IP address and port number of both connection end points. The IP numbers
have to be maintained, otherwise the connection will be lost. When a mo-
bile host migrates and reconnects at a new network, its IP address changes.
To maintain connectivity, Mobile IP allows a mobile host to use two IP ad-
dresses. The home address is a static IP address and is used to identify
TCP connections. The care-of address changes at each point of attachment
and is regarded as the; effective address. This address must be registered
with a special node called home agent every time the mobile host moves. In
principle, a connection can be maintained by redirecting network packets to
the care-of address by the help of the home agent. The mechanism is called
IP tunnelling, and is implemented by constructing a new IP header which

contains the care-of address, encapsulating the original home address.

Equipped with the ability to do wireless communication, mobile users

can set up a temporary wireless network among their mobile computers that
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does not require existing network infrastructure. Such a network is called
an ad-hoc network. An important characteristic of an ad-hoc network is
that its topology changes over time and there is no notion of administra-
tive nodes. This poses a routing problem because existing routing protocols
[Hen88, SS80] depend on that function. A possible technique to solve the
problem is to operate individual mobile hosts as routers [PB96]. The main
idea is to add a self-starting behaviour to the routing mechanism. When a
mobile host moves, it announces its new network topology, and triggers an

update of routing table in other hosts reflected in the new path.

One main performance problem in TCP/IP-based systems in mobile
networking is the incompatibility between the TCP mechanism [ISI81] that is
responsible for transporting network packets and the wireless networks where
they operate on. The TCP mechanism automatically slows down when it
encounters increases in delays, and interprets them as triggered by network
congestions. By reducing the transfer rate, it expects that the congestion
will be discharged. In wireiess networks, delays are not always associated
with network congestion. They may be caused by normal actions of mobile
users, for example, when a mobile host switches from one network cell to
another. Such a false interpretation can cause the TCP mechanism to cause
unnecessary slow downs that reduce the performance [CI96]. To have a
mechanism that works both for wired and wireless networks, one may have
to create a new protocol, which could be impractical. One solution is to use
an indirect model similar to that used in Mobile IP, by splitting the TCP
protocol into two parts that address the fixed and mobile connections of a
mobile host [BB96]. In this approach, the protocol that serves the fixed part
does not have to be modified and a new protocol can be specially designed

to serve the mobile link.
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2.3.2 Applications and Mobility

Given a proper network-level support, it is conceptually possible to run a
normal distributed application in a mobile environment. For example, using
a Mobile IP implementation (e.g., Solaris Mobile IP for Solaris machines
[Gup98]), one can run programs such as telnet, ftp, and many others as if
they run on static network counection. However, mobility does not only
affect computing systems at the network level. At the higher level, it also
introduces some consequences to some aspects of applications running on a

mobile environment, as shown in Figure 2.1.

Execution availability

Resource availability Mobility Open, contextual
environment

Figure 2.1: Aspects of applications affected by mobility

Execution Availability

Any computer program needs a proper execution support system, and ap-
plications running on a distributed environment are no exception. In its
simplest form, an execution support system for these applications consists
of two parts: ezecution engine and distribution layer. An execution engine
is a software layer that abstracts an execution environment. It encapsulates
low-level execution mechanism such as task scheduling, CPU allocation, and
resource management. In Java-based systems, for example, it is implemented
by a virtual machine that sits on top of the operating system [AG97]. A dis-
tribution layer controls connectivity between application components. It is
normally implemented as a suite of network protocols and communication
techniques. Availability of both parts of an execution support system to an

application guarantees its ezxecution availability.
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In mobile computing, the absence of an execution support system can
bring blackout periods to a,pplicafions. A blackout period is a time period
when an application cannot be executed due to the unavailability of an exe-
cution support system. Such a situation is typically encountered by a mobile
user who runs an application on a traditional distributed computing infras-
tructure (e.g., using static networks). Although the user may be able to keep
working while being mobife through wireless connection, he or she is forced
to terminate the execution when he or she is out of the area of coverage. In
this situation, the user has to find a new node and reestablish the network
connection before resuming the execution. This temporary blackout period
is due to the unavailability of the distribution layer when the mobile user
moves away from the current node. Techniques discussed in Section 2.3.1
can help to maintain the distribution layer, allowing the user to have contin-

uous execution availability during his or her migration.

Another way to preserve a distribution layer is through a technique
called teleporting [Ric95, WRB'97]. In teleporting, a user can tell the display
associated with a program to move and follow him or her, and rebuild itself
in the new location. Teleporting is designed to work with applications run-
ning under an X Window system. It inserts an additional X proxy between a
client application and an X server. The proxy performs a display indirection
whenever the user moves. When this happens, any communication between
the client application and the original X server is caught by the proxy and
redirected to another X server in the new location. Using teleporting, patch-
ing the distribution layer availability problem is done at a higher level (i.e.,

the user-interface level).

In general, provision of seamless execution availability for applications
with user-oriented mobility mainly concentrates on the distributed layer as-
pect. It is mostly unnecessary to work on the execution engine, because it

is always available at any time (i.e., it migrates along with the applications
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in the user’s portable computers). On the contrary, applications with code
mobility need to deal with execution engine availability. When code moves
to another location, it leaves its current execution engine. A similar execu-
tion engine has to be available in the remote location to accept the incoming

code.

For applications with code mobility, the idea is to extend the dis-
tributed computing infrastructure to allow cede, instead of human, to log on
a machine and do some work. This is not a trivial problem because tradi-
tionally execution engines running on the machines are tightly coupled to the
machine’s underlying platform (e.g., hardware and operating system). In this
environment, execution management assumes that code, data, and resources
are all localised in the same machine. Tn the implementation of a mobile
code system, programs’ address spaces can span over machines connected in

a network, so a proper referencing mechanism is needed.

When program code is migrated, local bindings among objects are
lost. In this situation, migration breaks local references to objects, making
them inaccessible by other objects. The problem can be managed using dif-
ferent ways. Network references have the same function as local references,
only they work across network connections. Network references can be im-
plemented on top of a proxy-based mechanism, such as forwarding pointers
[IDJ91]. A simpler approach is to use object replication (i.e., to create a
copy of the object in the new location). However, replication is subject to

integrity constraints, which can be very expensive in highly mobile systems.

* Because code migration is performed in the context of an application
execution, it must be possible to resume the execution in the destination
node. In this situation, how execution state is handled becomes an impor-
tant issue. There are two approaches concerning this issue [FPV98]. In the
first strategy, execution state is migrated along with the code. This ap-

proach is called strong migration. Tt allows execution to be continued in

31



the new location from the point where it is suspended before the migration.
This situation is similar to proceés migration at the operating system level,
only strong migration is performed at the application level. The other ap-
proach, called weak migration, is simpler to implement. Only code is sent,
but not execution state. At the destination, a migrating thread of execution

is reactivated by restarting it.

Open and Contextual Environment

In the traditional sense, the term enwvironment is normally associated with
the execution of an application, and refers to the internal execution mecha-
nism. In mobile computing, a new notion of environment is introduced. It
refers to the physical surrounding of an application. It represents the actual
environment of a user, or the external environment of a migrating piece of
code. Making physical environment known to an application is significantly
important, because it provides the application with a direct interaction with

the real-world where the application is running.

Section 1.4 introduced the concept of contezt to represent the ab-
straction of a physical environment element in a computation. The context
abstraction can represent quantitative elements (e.g., IP address, network
connection speed, or people in the neighbourhood), or qualitative elements
(e.g., are these people colleagues or bosses). A context can be built from
an individual abstraction, but in a complex set up, one can have a context
made up of several indi{fidua.l abstractions of physical elements. For example,
a workspace context can be defined by the combination of room number, peo-
ple sitting in the room, and the purpose of the room (e.g., working room or
class room). Information about these elements is relatively easy to capture,
for example, from system configuration and log files. The challenge, on the
other hand, is to provide a seamless integration of people, computation, and

physical reality, for instance, by using the concept of smart space [Mar99).
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A migration changes an application’s context dynamically. Contezi-
aware compuiing tries to exploit'context dynamics in‘ a computation. Re-
search in this area has been concentrated on the effort to capture the notion of
physical location and represent it as a computation abstraction, which can
be used as the basis for programming of specific actions. Location-aware
computing has found a wide range of application areas, including Web-
based information systems [VB94], virtual guide systems [AAI196], office
environment [WJH97], and computer-supported collaborative work (CSCW)
[BSHB98]. Special devices with sensory mechanisms to detect current user
location have also been designed to support the operation of location-aware

applications [SAGT93, WHFG92].

Mobile computing also requires its environment to be open. Migra-
tions implicitly require that locations can accept entities that do not origi-
nally belong to them. An acceptance has to be based on a prudential principle
so that it does not bring hazards to the incoming entity, the underlying sys-
tem in the destination location, and all objects that may be affected by the
visit.

Vitek, et.al. [VST97] identifies five different areas in a mobile comput-
ing system where security measure should be imposed: 1) network transfer,
2) authentication and authorisation, 3) location host and operating system,
4) execution engine, and 5) mobile entities. Data transfer in the network
layer must be secured to avoid eavesdropping. Secure data transmission is
normally approached by cryptographic techniques, for example, by using Se-
cure Socket Layer (SSL) [FKK96]. Authentication and authorisation are
required to ensure that the incoming party is the actual one, and if so, it
is granted certain access rights. Kerberos [SNS88, NT94] is a widely-used
authentication system that can be used for this purpose. Security issues on
data transmission and access are typically found in distributed computing,

and user-oriented mobile computing also shares the same problems.
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The other security issues are found in applications with code mobil-
ity. An operating system and thé resources it controls has to be protected
from unauthorised access by foreign code running on an execution engine.
This is normally approached using an access control mechanism employed
by the execution engine (e.g., the domain-based protection mechanism in
Java [Gon98]). The security issue regarding an execution engine is two-fold
[VST97]. The most important thing is that access by foreign code must ad-
here to a well-defined interface to protect the execution engine. On the other
hand, the execution engine has to be trusted so that it does not do something
harmful to the code running on top of it. Finally, interaction between code
elements must also be secured. It it necessary to prevent malicious access at

the application level.

The openness of a mobile computing environment poses an interoper-
ability problem as heterogenous parties can interact with each other. Hetero-
genity issues regarding platforms and programming languages have already
been taken care of by introducing new standards for a new distribution layer
architecture that masks the heterogenity [Sie96, Red97]. However, these
standards do not handle diversity in high-level communication. In real-world
situations, communications between mobile entities require more than just
a common language_. Both parties have to share common knowledge about
the topics being communicated. Research on the semantics aspect of inter-
operability has approached this problem using knowledge sharing between
communicating parties, which includes the construction of a lingua franca
for applications that speak in different languages [FLM97, GF92]. Such a
very-high-level language has the purpose of achieving high-level interoper-

ability, much the same as a distribution layer in the lower level.
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Resource Availahility

One of the basic challenges in mobile computing is dealing with the availabil-
ity of computing resources [FZ94]. In portable devices and wireless networks,
CPU power, battery energy, and network connection are luxury resources in
mobile computing, compared to their desktop equivalent. Scarcity of re-
sources‘ occurs at the hardware level, and this problemn is addressed by de-
signing more efficient hardware such as longer battery life or energy-saving

processors (e.g., Crusoe family processors [K1a00]).

At the application level, the same spirit in improving the efficiency is
exhibited by various attempts to create software systems that consume fewer
resources. For example, a lean execution engine for Java has been designed
for consumer and embedded electronics [Mic00]. It is an implementation of
Java virtual machine that can run on devices with less than one megabyte
of memory. In the network communication area, software agents are used to
improve transfer efficiency in wireless networking systems. A user agent is
placed in the network, and the purpose of the agent is to shift some processing
load from a mobile device to the network itself [PRWS98]. The result is

streamlined network streams that yield better bandwidth utilisation.

Lack of computing resources may cause a performance penalty or even
failure in applicatioh execution. This situation is indeed unacceptable, but
because it is not always under the user’s control, it is sometimes unavoidable.
Applications need to be adaptive so that appropriate actions can be taken
when unexpected situations occur. An adaptation mechanism can be put on
the a:pplication’s side, the system’s side, or as a collaboration between the
two [Sat96]. Imposing adaptation mechanism on the application side means
the application takes full control in determining its adaptive behaviour. This
feature is exhibited, for example, by network-aware applications that can

monitor and adapt to changes of network speed [ARS97]. This is done by
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querying a supplied distributed network monitor and using the result to adapt
its behaviour. At the other extrerﬁe, the adaptation mechanism can be made
transparent to applications by shifting it to the system’s side. This means
existing applications can be executed without any modification., Examples of
such a system are Coda [KS92] and Ficus [HPRP92] filesystems, which use
caching techniques to allow mobile users to keep working despite disconnected

operations (i.e., no network connection).

An effort to support mobile computing has also been pursued at the
operating system level. The work by Bender, et. al. targets the resource
availability problems [BDD*93]. The approach taken is to modify the kernel
of UNIX operating system to include a power management device driver,
which allows better power utilisation due to the highly dynamic power usage
patterns. This is done through a mechanism that allows a user to save the

system state at any point, to have smoother usage patterns.

In a different perspective, compact size requirement of mobile devices
can also be seen as a restriction that aflects user interaction. Normal user
interaction techniques cannot be used due to ergonomic reasons. Some new
interaction techniques approach the problem by exploiting human nature in
working with small things. For example, artificial pointing devices such as

mice are replaced by fingers [KI98, SG97].

The popularity of Internet as a giant information repository has also
attracted efforts to allow mobile users to access Internet information us-
ing devices with limited display space and bandwidth connection. The main
problem is that such information often comes in formats that are designed for
desktop environment with broadband connection, therefore special process-
ing may be required before it can be displayed or output to a mobile device.
The Wireless Application Protocol (WAP) is an attempt to solve the problem
[WAP98]. It has a model similar to the WWW model in which Internet in-

formation can be downloaded into mobile devices. It has its own markup lan-
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guage, called Wireless Markup Language (WML) [WAPQ0, HTK98|, which
is equivalent to HTML in WWW. The WAP architecture even provides a
proxy-based mechanism to ensure interoperability with WWW. For exam-
ple, HTML documents can be translated to WML format using a special
filter, then be sent to a micro browser in a device in an encoded binary for-
mat to conserve bandwidth. WML itself uses a more structured approach in
displaying documents (e.g., using the card and deck metaphors) which allows

document organisation into smaller chunks.

To conclude this section, from the discussion in Section 2.3.2, it is
clear that the wish to include mobility as part of application computation
has a broad range of consequences that have to be taken care of by the
application and its supporting system. In the development of such an ap-
plication, appropriate software-oriented strategies have to be developed to
bandle mobility-related issues. The problem in implementing this idea is
that it is difficult to create a universal problem-solving model due to the
diversity of the issues to be supported. The discussion on how to deal with

this problem is presented in the next section.

2.4 Handling of Mobility in Applications

There are so many e;pproaches and strategies to handle mobility. This easily
ends up with many types of applications. To provide a better support, it
is necessary to focus on only a specific type of application. The criterion
whic}} is used to categorise the applications looks into whether computation
that handles the mobility-related issues becomes an integral part of an ap-
plication’s main computation or not. This criteria is graphically shown in
Figure 2.2. Only applications that handle mobility in their main compu-
tation will be considered in this thesis. From this point, the term mobile

application refers to this type of application.
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Figure 2.2: Handling of mobility at different level of computation

There are two fypes of mobile applications: those that intrinsically
support user mobility and those that exhibit mobile behaviour through code
migration. The first type is called user-oriented mobile applications, while
the latter is called code-orienied mobile applications. This section looks at
how mobility is specified and controlled in mobile applications. Descriptions

are organised by migration principal (i.e., a user or a piece of code).

2.4.1 User-Oriented Mobility

Provision of mobility support in user-oriented mobile applications has two
goals. Firstly, it enables an application to acquire information required to
make an itself aware of the environment. Secondly, the awareness scheme can
be pushed further to accommodate an adaptation strategy, which is required

to minimise the negative effects due to the user’s mobility.

To provide environment awareness and adaptability to a mobile appli-
cation, a system that monitors the physical environment is needed. Contex-
tual information is captured and passed to the application to be processed
for either awareness or adaptation purpose. Environment monitoring can
be approached by using a framework that defines the overall structure of a
monitoring system and the way applications use it [BG98], or by employing

a more loose system architecture using the event model. The latter approach
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is gaining more acceptance (e.g., the OMG’s Event Service [Obj00]) for the
following reasons. First, it does ﬁot impose a tight coupling between appli-
cations and the underlying monitoring system. Additionally, it models the
non-deterministic nature of the occurrence of environmental changes, and

the asynchronous nature of the sender and receiver of an event.

An event-based monitoring system is mainly an architectural issue
rather than a programming issue, so provision of its support is usually ap-
proached at the system level. For a system to be able to flexibly serve mobile
applications, it must have the ability to process events from different types of
event sources [WB98]. Additionally, it also has to build a new architectural
layer for exporting the events to the higher level, due to the heterogenous

nature of the event sources.

At the higher level, applications access a monitoring system using ap-
plication programming interfaces (APIs). For example, the Odyssey system
provides APIs to allow applications to monitor changes in some environment
parameters [NPS95]. The APIs provide an organisational mechanism to al-
low an application to choose which events it wants to listen to. For example,
Odyssey uses a naming scheme to identify event sources. A more structured
approach is to classify event sources based on their characteristic using the
object-oriented model [WB98]. Due to efficiency reasons, event notification
is usually performed asynchronously using callback mechanism. At the appli-
cation side, lazy checking techniques such as futures [Cha89] can be used to

capture a callback without having to allocate too many computing resources.

* From a programming perspective, implementation of awareness and
adaptation of a mobile application is much the same as implementation of
any other functional aspects of the application. It means existing program-
ming languages and tools can be used as normal. If extensions have to be
made (e.g., to embed a reasoning mechanism), they can still be done in the

development frameworlk offered by a programming language. This is the rea-
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son why there are very few work on programming-specific aspects in this

arca.

2.4.2 Code-Oriented Mobility

Supporting code migration starts with building execution engine compo-
nents that have to be distributed in network nodes. An execution engine
for applications with mobile code is implemented by a run-time system pro-
vided by the development environment. Once a distribution of execution
engines are available, it is possible to build a migration mechanism on top
of them. In development tools based on a particular programming language
(e.g., [ARS97, LO98, Obj99, GKCR97|}, such a mechanism is built at the lan-
guage level by incorporating it as part of the linguistic features offered by the
language. Consequently, migration is geared to the underlying programming

paradigm adopted by the language.

The reason for sending code to a remofte location is to make a function-
ality available in that location. Migration of fuﬁctionality allows functional
code to be sent to a remote location and be executed there. At the language
level, this has to be implemented using the language’s constructs that cap-
ture the abstraction of a functionality. A functionality can be represented
using a linguistic construct that exhibits the semantics of actions, including
procedures or functions in procedural languages and objects in object-based
‘or object-oriented languages. Object-oriented approach is more popular be-
cause it offers a more natural and structured way of approaching a problem

[Mey87].

In the context of distributed computing, migration of procedural code
can be thought as an extension of the remote procedure call (RPC) mech-
anism [BN84]. In RPC, a client makes a request of procedure execution to

a remote server that owns that procedure. This idea is extended by remote
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evaluation (REV), a client-server technology that allows a client to actively
supply a remote server with exeéutable code [Sta86]. The relationship be-
tween a client and a server is defined by a set of services, i.e., a collection of
operations that a server can perform for a client. A programmer can then
define client procedures that conform to the services, which can be relocated
to a particular server that offers the services to be executed. This is done
transparently through linguistic objects that refer to the server location. Re-
mote evaluation is a generic technology; although it has been demonstrated
in CLU [SG90], it can be implemented in other programming languages as

well.

In more recent research work, code mobility is used to implement
transportable agent systems based on the Tcl language [Ous94]. Tcl is an
interpreted scripting language and has been ported to Windows and many
flavours of Unix and Linux. A straightforward programming model for mobile
agents is adopted by Agent Tcl [GKCR97]|. An agent can be thought of as
a manager for the creation and transportation of T¢cl scripts that need to be
executed in remote machines. It takes the form of a Tel script that runs on
top of a modified Tecl run-time system. An agent can create a child a,gént
which can communicate directly with its parent. It can also be dispatched
to a remote machine, and this feature can be used to migrate ordinary Tel

procedures.

A hierarchical approach to sending code is pursued by TACOMA
[JvRS95]. Also based on Tcl, TACOMA uses the metaphor of folders, brief-
cases, and cabinets to represent mobile code and data, mobile containers,
and static (non-movable) repositories, respectively. Similar to Agent Tcl,
the term agent in TACOMA refers to a functionality of a code migration
mechanism. An agent has control over folders, briefcases, and cabinets. Mi-
gration is characterised by a meeting of two agents from different locations.

To migrate a Tcl procedure, the source agent packs the procedure and its
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data into folders, then moves them to the destination using a briefcase. In
the destination, the source agent meets the receiver agent which will unpack

the briefcase and execute the procedure.

In the early part of the last decade, object-oriented languages started
to gain popularity, mainly through C++ [Str97] and Java [AG97]. In an
object-oriented environment, objects have the capability to represent real-
world entities. They have states and behaviour, and become good can-
didates for representing mobile functionality. Another positive factor is a
strong support for distributed computing by object-oriented languages, Java
in particular. The inclusion of RMI {Mic98] and network-oriented libraries
into Java’s development kit [Sun99] makes it ready for programming of dis-
tributed applications. The combination of the programming paradigm and
the language’s rich features is the main reason why recent development tools
for mdbile code applications use Java as the underlying language. All these
tools use object as the unit of encapsulation in which migration mechanism

is applied on.

To make an object mobile, it is necessary to assign a migratable se-
mantics to the object. There are two approaches to achieve this. In the
first approach, the semantics is embedded in a particular type (i.e., class),
and user-defined objects obtain this semantics through object-oriented mech-
anism such as inheritance, i.e., a mobile object is created by subclassing a
particular class. Examples of development systems that adopt this approach
include Aglet [LO98], Mole [SBH97, PH98], and Ajanta [TKV*98]. A varia-
tion of this approach uses Java’s interface mechanism to apply mobility. In
Voyager [Obj99] for example; a mobile object can only be created from a class
that implements special interfaces. In the other approach, a new construct
with mobility semantics is specially introduced. The construct typically de-
notes a container with mobile capability. An object is made mobile by loading

it into a container. This approach is taken by Sumatra [ARS97].
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Objeqt migration in Java-based systems is mainly implemented using
the Remote Method Invocation (RMI) mechanism [Mic98]. With respect to
the communication pattern, RMI can be thought of as the object-oriented
equivalent of the remote procedure call (RPC) mechanism. The ability of call-
ing remote methods is exploited and used to implement the migration mecha-
nism. Development tools use this feature to build a new layer on top of RMI,
which encapsulates the details and provides a high-level, migration-oriented
abstraction, such as the notion of location (e.g., cells in Hive [MGR99] or

agent servers in Ajanta [TKV198]).

All development systems so far discussed in this section have some
similarities in their approach to providing code mobility. They preserve
the original syntax and semantics of the underlying language, and migra-
tion mechanism is implemented as extensions to the linguistic framework.
There are other development systems that take a different approach. In
these systems, the distribution semantics is directly integrated into the lin-
guistic framework. This makes the languages naturally possess the ability to

cleanly express migration-related issues.

Obliq is an object-based language whose lexical scoping also deter-
mines the distribution of a program’s computation elements [Car95]. The
distribution semantics of Obliq is based on the concepts of sites (i.e., ad-
dress spaces), locations, and values. These concepts are assigned to Oblig’s
linguistic constructs, for instance, variable identifiers denote locations, con-
stant identifiers denotek values, while sites can be implicit in the creation of
a location or explicitly stated by erecufion engine. Data and procedures can
migrate from one site to another, and the meaning of distributed computation
is determined by the bindings of locations to sites, instead of by execution
sites themselves. Data and procedure migrations are also transparent; no ex-
plicit command is required. The language has been used to demonstrate the

ability to migrate a whole application, including its user-interface [BC97].
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An approach similar to Oblig’s is taken by Distributed Oz [RHB*97].
The language is object-oriented and has a set of linguistic constructs whose
semantics is divided into language semantics and distributed semantics. The
language semantics defines the linguistic meaning of the constructs, while
the distributed semantics defines their behaviour upon the application of
distributed operations. To program a mobile application in Distributed Oz,
one has to determine the degree of mobility of objects in order to use the

appropriate constructs.

2.5 Mobile Application Development From A
Software Engineering Perspective

The previous section in this chapter presented a survey on system and ar-
chitectural support for mobile computing and how it is programmed into
mobile applications. This section carries on to the development aspect of
mobile applications. Modeling is specifically discussed because it works on
system-level specifications which become the embryo of mobile applications.
This section also discusses some issues on the implementation of mobility

support.

2.5.1 Modeling and Specification of Mobile Systems

Researchers have been trying to understand mobility as a computing phe-
nomenon for quite some time. There are calculi that have been proposed to
model and describe mobile systems. However, early work on these proposals
do not depart from the mobility point of view, since the notion of mobile
computing has not been widely known during that time. For example, the
m-calculus is a process calculus that allows a channel between processes to
move along other channels [MPW92]. The calculus is designed for concur-

rent processes, but it can be used to capture the notion of process migration
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through channel movement. However, as movement is applied on channels
instead of processes, process movement as a phenomenon cannot be distinc-

tively indicated.

The w-calculus is extended to have better locality using the chemical
abstract machine (CHAM) concept [BB92]. CHAM is a framework for spec-
ifying reductions which uses the notions of chemical reaction in a solution
and membranes separating subsolutions. The framework has been used to
introduce the notion of location to processes [FGL*96]. A location resides
on a physical site and contains a group of processes. Mobility is regarded as

a primitive that can atomically move a location to a different site.

Mobile Ambient [CG98] is a calculus based on the concept of bounded
space (i.e., ambient). Ambients can be used to represent process localities.
They can also be structured to form a hierarchy. This is achieved through op-
erations on ambients, called capabilities. The use of ambients to represent lo-
cations is intuitive, because they model physical properties of a computation
locality (e.g., the bounded nature of the locality, as well as the capabilities
to enter, exit, and open a locality). Accordingly, mobility can intuitively be
represented by the dynamics occuring within ambients. In Mobile Ambient,

both processes and ambients can be migrated by applying capabilities.

A different approach to modeling mobility is taken by Mobile UNITY
[RMP97]. It is based on UNITY [CMB88], a state-based, reactive model for
concurrent and asynchronous systems which uses a specialisation of tem-
poral logic. In UNITY, a system’s behaviour can be reasoned through its
safety properties (i.e., those which define allowable states in a program) and
progress properties (i.e., those which define the operational semantics of a
state transition). Mobile UNITY extends this feature to facilitate specifica-
tion of mobile systems by introducing new concepts to deal with movements

and interactions between mobile entities.
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UNITY also comes with a set of programming notation for specifica-
tion purposes. System speciﬁcatibn can be written in a program structure
similar to that of Pascal. System properties are specified using program state-
ments. A UNITY program does not have an explicit execution model. To
describe the reactivity of a system, an aertificial execution model is devised.
In this scheme, each statement is executed infinitely often in an infinite time
period. Mobile UNITY uses UNITY's framewbrk for expressing a system. It
introduces new constructs to the framework to facilitate its mobility-specific

concepts.

The modeling frameworks that have just been mentioned focus on the
formal aspect of model representation. The purpose of such a framework is
to set a foundation for a computation system in mobile computing. Founda-
tional modeling systems aim to define a complete computation system using
their proposed abstractions. Therefore mathematical formalism is normally
used to represent a model. Proof of correctness of a concept or theorem has
more emphasis than the selection of model abstractions that can aid the de-
velopment of a mobile application. The latter aspect is essential if a model is
to be used to specify a set of software requirements during the analysis stage

of an application development process.

Requirement analysis is a software engineering task that enables de-
velopers to specify software functions and performance, indicate software’s
interface with other system elements, and define constraints that must be
met by the program b.eing developed [Pre97]. It is a process of discovery,
modeling, and specification that works on the software scope. Models of the
data, functional, and behavioural domains of the program are defined. In
this respect, the relevance of modeling of mobile systems becomes apparent,
since it yields a model that specifically describes essential mobility-related
aspects. The model is a valuable complement to other sources of information

that is used to develop a requirement specification for the software.
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When a model is used in the scope of mobile application development,
its abstractions have to undergo a series of reﬁﬁement process. This is not a
simple process if foundational models are involved, since their abstractions
are not designed for this purpose. They tend to leave out pragmatic seman-
tics which leads to clear and unambiguous representation of abstractions in a
refinement process. For instance, consider the abstraction of a process found
in many theoretical modelling systems. Its implementation scenario may not
be straightforwardly obvious, because it does not provide sufficient informa-
tion for creating a software model of it {e.g., what functionality it has, and
how it relates to other processes). In general, lack of pragmatism creates a
wide abstraction gap between theoretical modeling and its implementation.
A considerable refinement effort has to be put to bridge this gap. This makes

such a process non-trivial.

In the software engineering area, researchers have contributed a num-
ber of modeling tools. Since they are designed from the software engineering
point of view, they use abstractions that are easily implemented in a devel-
opment project. For example, the Data Flow Diagram (DFD) is a modeling
tool that emphasises on the flow of processes [Pre97]. However, the notion of
processes in DFD is quite different to that adopted by foundational modeling
tools. DFD processes are software processes, indicating processing activities
that can be mapped‘directly into a software architecture. Another example is
the Unified Modeling Language (UML) whose design is strongly related to the
object-oriented paradigm [RJB99]. Object is a generic construct that could
represent any real-world entity, but UML provides a development-oriented
framework to work with objects so that it becomes easy to map a model into

a software design.

The problem with these modeling tools is that they are not specifi-
cally designed to deal with mobile systems. A DFD can represent mobility

as a process but it cannot clearly distinguish it from a functional process.
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The case of UML is similar. UML consists of a set of views that can be used
to model different aspects of a system. For instance, the physical aspect of
a mobile system can be modeled using the physical view, and the relation-
ship between a mobile entity and its environment can be described using
the state-machine view. However, these views are designed with no specific
consideration on the mobility aspect, therefore it is difficult to grasp a strong
mobility abstraction from them. Description about mobility aspects are split
into different views, preventing developers from having a unified perspective

of them.

2.5.2 Implementation of Mobility Support

Development tools for mobile applications generally follow a framework that
is usually based on a simple programming model. For example, most of
Java-based development tools use the concept of mobile objects to model
code mobility (e.g., [Obj99, ARS97, LO98]). A mobile object is an ordinary
Java object that has the ability to move to another location. In user-oriented
mobile applications, the same model can be used to implement awareness and
adaptation mechanisms. As mentioned in Section 2.4.1, implementation of
such a mechanism is much the same as implementation of any other functional
aspect of an application. In general, the object-based programming model

has gained wide acceptance for its simplicity.

With the increasing demand for more comprehensive mobility support,
the problem is not on the concept of object as an abstraction representation.
Instead, it lies in the object-orientation mechanism that is used to compose
objects. In a programming activity, programmers should strive for well-
modularised software components, and generally object-orientation is well-
suited for this purpose. It supports the ideas of separating programming
concerns [Par72] and localising them into software modules with well-defined

interfaces. The concept of ”objects as modules” fits into this principle, and
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this becomes the reason why object-oriented languages are widely used in
solving complex problems. Recent research findings, however, show that it

cannot always cope with programs with non-functional components.

It has been shown that object-orientation exhibits some incompati-
bility with synchronisation [MY93, NS99, CG97] and mobility [NS00] mech-
anisms embedded in object-oriented programs. The original idea of sep-
aration of concerns that forms the basis for the concept of modularity is
not capable of handling multiple concerns in different domains (i.e., as op-
posed to the single, functional domain). Researchers have come up with
proposals that extend the idea of separation of concerns to cover multiple
domains [KLM*97, TOHJ99, Ber94]. With a suitable programming toolkit
(e.g., AspectJ [LK98] or HyperJ [TO00]), it is possible to separate functional
components from other components that represent other concerns (i.e., cross-
domain composition). The idea is to allow composition of software modules
implementing different concerns without having to sacrifice the interest of

any conceru.

The improved concept of separation of concerns, however, has not
been well tested and applied in mobile application development. One inher-
ent obstacle is the tight coupling between component composition and the
technology to implement the mobility support. In Java, for example, code
migration mechanism can be built on top of RMI technology, but seamless
integration of RMI and object-orientation which satisfies the principle of sep-
aration of concerns is difﬁcult to achieve. This is because RMI programming
requires explicit low-level initialisation steps before remote communication
can be performed {Mic98]. Programming tools such as Voyager [Obj99] use
high-level abstractions (e.g., interfaces to mobility-related features) to wrap
the low-level details, but this approach does not completely solve the prob-
lem because mobility abstraction is still mixed with functional abstraction.

The compositional burden may even be worse when environment awareness
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and adaptation is involved, because the mechanism may have to be migrated

along with the migrating code as Well.

Concentration on the programming aspect in providing mobility sup-
port describes a bottom-up strategy in supporting mobile applications. In
this approach, such support is not backed up by strong conceptual modeling.
Instead, it grows naturally from the programming level. This phenomenon is
understandable since mobile computing is a logical extension of distributed

computing, an area where programming support has started to mature.

The bottom-up strategy has a drawback. It cannot provide a compre-
hensive solution due to the lack of a strong conceptual basis. Since mobility
modeling is not specifically facilitated during the requirement analysis stage,
developers are forced to use a simple mobility programming model created
as an extension of certain programming concepts. However, the extension is
ad-hoc, since it is made to suit a particular type of problem, indicated by the
presence of a dominant type of principal of migration. When the problem
expands and it cannot be handled by the default model, developers have two
options. They can either modify the software requirements to fit into the new
problem description, or perform workarounds by introducing additional ab-
stractions to fill the gap. The first option incurs additional time, effort, and
cost, and often leads to an expensive software development project. The sec-
ond option tends to introduce complexity to the composition of the resulting

software.

To summarise the discussion on the software engineering aspect of
mobile application development, it can be asserted that there is a discon-
tinuality in mobile application development process. At one end, theoretical
work has produced some modeling frameworks to create models that de- -
scribe the generic aspect of mobile computing. However, the abstract nature
of the models necessitates the insertion of an intermediate layer that allows

easy transformation to a realistic implementation. At the other end, current
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programming technology still cannot provide a comprehensive support for

implementation of mobility support in mobile applications.

2.6 Research Issues Revisited

The previous sections of this chapter presented a survey of research on the
mobile computing area, especially those which have relevance fo the devel-
opment aspect of mobile applications. This section concludes this chapter by
revisiting the research areas given in Section 1.5 and provides justifications

for their relevance.

2.6.1 Modeling of Mobile Systems

The first issue to be addressed in the research is the abstraction level in which
provision of support for mobility should be initialised. The lesson learned
from current programming tools suggests that it is no longer sufficient to
think of mobility as a dependent attribute of a principal of migration (e.g.,
an object, a user, or a piece of code). Thinking of mobility as an attribute
makes it an inseparable part of a mobile entity, and therefore cannot be
exploited independently of the entity’s requirements. As a result, support
for mobility can only be narrowly provided in the framework of the mobile

entity’s main agenda.

A narrow perspective on mobility would not give satisfactory solutions
if applied in situations where multiple mobile entities with different mobility
requirements are present in the same program. Supporting the requirements
is indeed possible, but this has to be done using a bottom-up approach
(i.e., support is constructed from the primitives offered by the programming
language). This approach is not only inefficient, but also prevents developers
from systematically viewing the overall situation. The latter case is extremely

important if a generic and uniform approach is sought.
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It can be hypothesised that the other way of approach (i.e., the top-
down manner) can give better resﬁlt. The approach starts with a generic
abstraction of mobility in which all its essential features can be captured
into a model. To fulfil its role, a model for mobile systems has to meet

several criteria, described as follows.
Genericity

Genericity is a common feature of any modeling system. In this research,
genericity is translated as the ability to provide uniform support for different

situations commonly found in mobile applications, mentioned as follows.

o Mobile applications with different mobility support requirements. Differ-
ent types of principals of migration require different mobility support.
User mobility requires applications to be context-aware and context-
adaptive. Code mobility requires programmers to define the parts of
the application that need to be migrated to different locations, as well

as to specify the migration destinations.

e Mobile applications with multiple contexts. First of all, a model has
to be able to capture the concept of context. Furthermore, multiple
contexts may be present at the same time in a mobile application if the
performance of the application is sensitive to different environmental

elements represented by the contexts.

o Implementation of a model specification on different computing envi-
r:onments. Mobile applications can be developed in different imple-
mentation environments. A development environment can be selected
based on the type of support provided by an application (e.g., the target

principals of migration), or the availability of the development tools.
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To achieve genericity, a model should be able to capture the notion
of mobility as an independent phenomenon, rather than a dependent at-
tribute of an entity. Capturing mobility as an independent concept allows
programmers to handle its aspects as a subject of manipulation. It means
their existence and behaviour can be defined independently, irrespective of

the type of the entity and the development environment.

Separation of Concerns

The main motivation to promote separation of mobility from functionality
is that mobility has its own programming domain which is separated from
that of functionality. Under this perspective, it should be possible to con-
duct development of one aspect independently of the other. In particular, it
should be able to implement mobility support using abstractions from its own
domain. Also, early awareness of the importance of separation of concerns
leads to careful composition of program components. This help programmers

achieve better program composition at the implementation level.

In fact, the principle of separation of concerns is used as the driving
force to achieve genericity. Genericity can be achieved if a universal ab-
straction of mobile entities can be provided. Separation of mobility from
functionality helps achieve this goal by drawing a clear boundary between
the two aspects, allowing their specification and implementation to be carried

out independently as well.

Pragmatic Representation

A modeling framework should be complete, in the sense that it should be able
to describe any mobile system. But to be usable in a development process,
its pragmatic aspect should be highlighted as well. A model generated from

the framework should minimise the abstraction gap between itself and the
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tool used in the subsequent development stage. In other words, it should be
able to capture essential features of mobile systems, but at the same time

contain necessary information to guide its implementation.

2.6.2 Specification of Mobile Systems

As mentioned in Section 2.5.1, the main difficulty of using a theoretical model
as a basis for mobile application development is the incapability of the model
representation to pass meaningful information regarding its abstractions to
the development stages beyond modeling for further refinement. This sit-
uation prevents a smooth abstraction refinement process, since a developer
has to supply the required information during the process. Another reason
not to recommend this approach is that it allows arbitrary abstraction in-
terpretation by a developer. This may lead to imprecise or even incorrect

results.

The research addresses this problem by focusing on the representaion
of the model. A model representation should provide sufficient information
to guide its implementation. It should expose a development-oriented repre-
sentation of a system, on which further development stages can be based. It
should stress the ability to deliver its expressive power, rather than act as a
proof system. A specification language is used for this purpose. The reasons

why a language is selected as a representation tool are listed in the following,.

o It is relatively easy to design a language with sufficient erpressive power

required to represent a model.

e A language can be designed to operate in an abstract level without

losing its expressive power.

¢ Jrom a programmer’s point of view, a linguistic representation is psy-

chologically more acceptable than a mathematical one.

04



The specification language is used to carry out mobility specification,
that is, specification of mobility éontrol (i.e., the properties and behaviour
related to mobility) of a mobile application. This denotes another novel fea-
ture of the proposed development approach. Unlike the traditional approach
which does such a specification at the programming level (hence the term mo-
bility programming), mobility specification is conducted at a more abstract
level. Mobility control is specified using linguistic constructs with abstract

semantics which need to be implemented in a later development stage.

Moving mobility specification to an abstract level has some interesting
consequences. First, the specification language transforms a modeling activ-
ity into a specification activity. The term pragmatic modeling (as opposed to
foundational modeling) would probably fit to illustrate the situation. Model-
ing is carried out in terms of pragmatic expressions, while the abstract nature

of the system is still preserved.

Secondly, mobility specification conforms to the principle of separation
of concerns. It promotes mobility to a higher abstraction level that form an
isolated development domain, separated from the one that is used to develop

the functionality of a mobile application.

Lastly, specifying mobility control with some degree of abstractness is
preferred as it preserves the genericity offered by the model. As previously
mentioned, this allows flexible implementation of the model. Possible cases
include the use different programming languages, the flexibility to select cer-
tain implementation options {e.g., whether to implement all features of the

model or not), and implementation on a non-programming environment.

2.6.3 Implementation of Mobility Support

The implementation part of the research evaluates the usability of the mod-

eling framework and the specification language in an abstraction refinement
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process. (Given a model, how easy it is to develop a program that imple-
ments the requirements speciﬁed'by the model. The research focus is not
only on the outcome, but also on the lessons learued from the activity. The
research also analyses the fitness of the implementation environment for a

model implementation.

Two prototypes are developed. The first prototype follows the pro-
gramming course where linguistic constructs of the specification language
are translated into equivalent Java programming constructs. A program-
ming framework that help programmers conduct a model implementation is
developed. The selection of Java as the target language is made on practi-
cal reasons. Its object-orientation is a well-known paradigm for developing
complex applications. Moreover, it is well-supported by various tools that

greatly help programming of network-oriented applications.

The second prototype is a cron-like application running on a Linux
shell environment that is designed to allow mobile users to organise command
execution based on their locations. The idea of this work is to show that it is
possible to extract essential concepts from a model and implement them in
a non-programming environment (i.e., Linux environment in this case) using
available tools provided by the environment (i.e., tools included in a Linux

distribution).

Having presented the research background and stated the research
problems in this chapter, the subsequent chapters describe the findings and
contributions of the research. The description starts with the proposed mod-

eling framework for mobile application development.
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Chapter 3

Mocha: A Modeling
Framework for Mobile
Application Development

3.1 Introduction

This chapter marks the beginning of a series of chapters explaining the find-
ings of the research reported in this thesis. As stated in Section 2.6.1, the
effort to support mobile application development through a conceptual ap-
proach necessitates the exploration of modeling of mobility. In particular,
the exploration should focus on how generic properties and the behaviour of

a mobile system can be represented in a model.

Traditionally, the notion of mobility modeling in a mobile application
development process cannot be clearly identified. Developers specify mo-
bility control at the programming level using the default, general-purpose
programining model supplied by the language. Section 2.5.2 explained that
this traditional approach as shown by current development tools are not suf-
ficient to satisfy the need for a comprehensive solution, so a more conceptual

approach should be pursued.
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The main motivation behind the proposed approach is the need to
represent the unique aspects of mobile systems. Preservation of execution
support, fluctuation in resource availability, and penetration of environment
elements into computation are the primary issues that are present in every
mobile application. They cannot be addressed comprehensively at the pro-
gramming level, therefore it is necessary to shift the focus of the approach

to a more conceptual level.

In mobile application development, modeling becomes the first devel-
opment stage since it describes mobility-related requirements that have to
be satisfied by the application being developed. Therefore the design of the
Ihodeling framework should reflect the close association between a model and
its implementation. In addition to the completeness requirement (i.e., it al-
lows modeling of any mobile system with any kind of mobility requirements),
it has to consider the implementation factor (i.e., it has to use concepts that
can be brought along to the implementation phase and implemented without

much difficulty and loss of semantics).

It is not sufficient for a generated model to use abstract concepts such
as processes and channels [MPW92] or ambients [Car99] because they do
not bear sufficiently specific information to be refined in the development
stages. Using such concepts in the model will place the burden of refining
the abstraction of the concepts in the design and implementation stages.
This is not desirable since it may potentially create unnecessary complexity

at these stages of develbpment.

+ Using a single concept to identify the unique aspect of mobility, such
as location and bounded space [CG98, TA98], as the basis for modeling is
not sufficient either. As discussed in Section 1.4, location is not the only
source of dynamics that has to be handled in a mobile application. In fact,
mobility can be expressed without using the notion of location at all. This

assertion is based on an assumption of indirect location representation, where
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the dynamics within an environmental element can represent change of lo-
cations. For example, a change of neighbourhood (i.e., people logged in the

same machine) may suggest a change of the user’s location.

The proposed modeling framework is designed with the previous con-
siderations in mind. The framework, which is called Mocha! is described in
this chapter. A preliminary work on Mocha is described in [NLS*00]. Mocha
is designed to intuitively specify a mobile system. It is based on an extension
of the UNITY specification system [CMB88] which is designed to work with
reasoning of mobile systems [WR96], and Mobile Ambients calculus [CG98].
A brief introduction to these modeling systems are provided in Section 3.2
as a background. The description of Mocha starts from Section 3.3 that
identifies important issues that have to be addressed by Mocha. Section 3.4
describes the formalism of Mocha, and this is followed by Section 3.5 that
explains how different types of mobile applications can be modeled using
Mocha. Finally a discussion on the features of Mocha is presented in Sec-

tion 3.6 to conclude this cha,pter.

3.2 A Brief Description of the UNITY Model
and the Mobile Ambients Calculus

3.2.1 The UNITY Model

UNITY is a computational model and a proof system for program specifi-
cation [CM88]. The main feature of UNITY is that it separates program
specification, which centers around the proof of correctness of a program,
and its mapping to a particular target architectnre. In other words, UNITY

separates the what aspect of a program (i-e., the specification) from the how

! The word Mocha means flavoured with coffee and chocolate. This name was originally
selected for its close association with Java to name a byproduct of the research, a set of
extensions to Java. As the research expanded, the name is now used to refer to both the
modeling framework and the specification language.
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(i.e., the algorithm), where (i.e., what computer architecture it is going to be
executed), and when (i.e., when a program statement should be executed, in

terms of processor execution sequence on a particular architecture).

The UNITY modeling system uses a formalism which is a specialisa-
tion of linear temporal logic. The formalism is based on assertions of the
form {p}s{q}. A statement of this format means that an execution of an
action s in any state that fulfils predicate p will result in a state that sat-
isfies predicate g. This format is used to specify properties of a program,
which are categorised as safety or progress properties. Safety properties de-
fine allowable states that a program can have. Progress properties define the
operational semantics of a transition for a given state. The formal specifi-
cation of a UNITY program c¢an be specified using the safety and progress

properties of the program, written as a collection of logic statements.

UNITY introduces some predicate relations as part of its logic system.
They are unless, ensures, and leads-to (denoted by the ”—” symbol), and
they can be used to derive further relations in UNITY’s logic statements.

These relations are described in Table 3.1.

| Relation | Remarks |

punless g | If p holds when ¢ does not, it remains so as long
as ¢ does not

stable p Defined as p unless false

inv p Defined as { INIT — p) A ( stable p)

p—q If p holds, then eventually ¢ will hold. It does not
matter whether p still holds when ¢ becomes true
p until ¢ Defined as {p — ¢} A (p unless ¢)

p ensures ¢ | This relation holds if p unless g holds; and there
is an action that, if executed while (p A —g) is
true, makes ¢ true; and there is a guarantee that
the action will eventually take place.

Table 3.1: UNITY'’s logic relations
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UNITY also introduces a three-part constructor statement which can

be written using the following synté.x.

( op wvariables : range_constraints :: statement_expr ) (3.1)

The op can be a binary, associative, or commutative operator, such as
¥ {cumulative addition), T {cumulative multiplication), V (universal quan-
tifier), and 3 (existential quantifier). Logically the constructor creates a
multi-set of values (vq,v,... ,v,) by evaluating the statement expression for
every possible instantiation of the variables that fulfil the range constraints.
The constructor gets its final value by appropriately evaluating the overall

expression according to the given operator.

Wilcox [WR96] extends UNITY to work in a mobile system environ-
ment. Specifically, he introduces the concept of place, time, and action into
UNITY. The notion of place is introduced by attaching location as an addi-
tional attribute in state representation. This is done using the at A spatial

notation where A refers to a location.

The notion of time is introduced because temporal properties are
closely associated with mobility. For example, when the system designer
is interested in the time-bound behaviour of mobile elements, mobility is in-
trinsically bound to the passage of time. The timing system is event-based;
a timestamp is a sequence of time values representing the successive, indi-
vidual occurrence of an event denoting a transition from false to true for a
given predicate. Tempofal properties of a system can be specified as timing

constraints, which are expressed in terms of timestamps.

The UNITY extension also provides an abstraction of actions which
can be associated with individual mobile elements. In the UNITY framework,
an action can exist without having to be enabled (i.e., when the state does not
allow it to be executed). An action is tied to a location, and is encapsulated

in the takes-to relation. The expression
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A at Atakes P to () when R (3.2)

means that action A, if executed at A, will transform P to ¢ upon the

satisfaction of predicate R.

3.2.2 Mobile Ambients Calculus

Mobile Ambient is a calculus for mobile computation that is based on the
concept of an ambient or bounded place [CG98]. An ambient is usually used
to refer to a physical entity as commonly found in real-life mobile computing
{e.g., a network node, which is bounded by its physical structure), but the
same notion can be extended to cover unconventional instances like a web
page (bounded by the file) or an Internet address space (bounded by a range
of IP address). An ambient has structural characteristic, in the sense that
it can contain one or more ambients, forming a hierarchy. An ambient can
also move as a whole by carrying its contents. Using this concept, mobile
computation can be considered as moving a computation (possibly with its
surrounding ambient) from an ambient to another ambient, crossing their

respective boundaries.

The syntax of the calculus is described as follows. It has processes
(indicated by P and @) and capabilities (indicated by M) as the main com-

ponents.

PQ == 0 inactivity (3.3)
| {(vn)P  restriction
| P|Q  composition
| P replication

| n[P]  ambient

62



| M.P action

| n  names

= mnn can enter n
| outn  canexit n

| open n can opken n

In an ambient n[P], n is the name of the ambient where a process P is running
inside it. The execution of P is independent of any other operations, i.e.,
P can be actively running in parallel with other processes and operations,

including those which operate on the host ambient.

Capabilities define actions or operations that can be performed on
ambients. The notation M.P represents an action defined by a capability
M, and then proceeds with a process . The behaviour is synchronous,
which means P will not start until the action pertained to the capability is

executed.

There are three types of capabilities: one for entering an ambient,
one for exiting an ambient, and one for opening an ambient. In an action
in m.P, the entry capability :n m tells the ambient surrounding the action
in m.P to enter a sibling ambient m. If m does not exist when the operation
is executed, it will block until such a sibling exists. The behaviour of this

capability is shown by a reduction (i.e., atomic computation step) as follows.
nlinm.P | Q)| m[R] — m[n[P | Q] | K]

The ambient n, which contains processes P and ), is a sibling of another
ambient m, which has a process R. The action in m. P, if executed success-
fully, transforms n as the child of m, followed by P. Both P and Q also move

in accordingly.

An exit capability out m in an action out m.P would cause the am-

bient surrounding the action to exit the parent ambient named m. If there
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is no such parent, then it blocks until such a parent exists. The following

reduction describes the operational'semantics of the exit capability.
m[njout m.P | Q] | B] = n[P | Q] | m[R]

The exit capability is the opposite of the entry capability. In the abave
reduction, if the operation is successful, it moves out an ambient n from its
parent m, followed by P. Both P and ¢} are transformed to the higher level

hierarchy of ambients.

The final capability is opening an ambient, open n. If used in an
action open n.P, it will dissolve the boundary of n located at the same level
of the action. If n has children, the children become unbounded from n. This
is shown by the following reduction. If no n is found, the operation blocks

until it finds one.

openn.P | nfQ] — P| @

3.3 Key Issues in Mobile Applications

This section discusses several important issues in mobile applications. An
informal scenario is first presented to illustrate situations commonly experi-
enced by mobile applications. This is followed by detailed discussions about
the concepts presented in the scenario. This section provides a rationale for
the proposed modeling framework, as the concepts presented in this section

will be used as major ingredients for the design of the framework.

3.3.1 A Scenario of a Mobile System

The scenario uses an imaginary background of futuristic life where humans

have already been able to conquer the outer space?. In this set up, scientific

2The theme is inspired by sci-fi movies like Star Wars and the Alien series.
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research stations have been built on several planets. ‘These stations host
machines and computers which can be activated and controlled remotely. The
stations also function as docking terminals where space ships can land, and
as communication stations in which communication signals between space

ships can be relayed and propagated.

In an interplanetary mission, the goal is to perform a set of chemical
analysis of some specific samples collected from different planets. The mis-
sion is conducted by an astronaut in a space ship that is also used as the
vehicle. The mission may have to make use of computers in remote stations
for analysing the data. These computers are fully controlled by the astro-
naut, and can be activated by sending control programs via communication

links.

In collecting the samples from a particular planet, the astronaut lands
the space ship in a planet, then sends a robot to explore the planet’s terrain.
The robot is programmed to find the samples and return to the space ship
after collecting them. The astronaut does some lab tests, and probably needs
tosend the data to remote computers for further analysis, and get the results
back for further processing. After finishing with one planet, the astronaut

moves to the next destination planet.

Meanwhile, the space ship is equipped with some form of intelligence
to avoid obstacles in the outer space that can fail the mission. The intel-
ligence is implemented as an autopilot feature that can detect atmospheric
disturbances during its journey (e.g., meteor showers). The ship is equipped
with control mechanisms to make adjustments should such problems occur.

For example, it can use a different route or change its cruising speed.

It should be noted, although the scenario uses a fictional theme, it
can precisely describe real-world cases which may be found in a near future.

For example, the astronaut could be an ordinary mobile user who owns an
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intelligent car (the space ship). "The car is equipped with a portable computer
constantly connected to the Internet, S0 the user is able to send mobile code
(the robot) to, for instance, some other computers to retrieve some documents
(the samples). The car’s computer is also capable of selecting the best route
and adjusting the car’s speed (the autopilot) based on a given destination,

its current location, timing constraints, and traffic density.

3.3.2 Functionality vs Mobility

Inherent in any mobile system is the capability of performing an action, which
is called functionality. Functionality is shown in the scenario by the astro-
naut that perform certain tasks, the remote computers that does computing
analysis, the space ship controller that perform adjustments required during

the trip, and the robot program that performs data sampling.

Functionality encapsulates the capability of executing an action into
a single abstraction. A functional entity is one that bears a function that
can be executed somewhere sometime, and these spatial and time points can
be reached using its ability to move. The definition does not distinguish
between the types of actual entities. Code, data, and human share the same
property and therefore they are treated uniformly as functional entities by the
definition. Of course -there are semantic differences between different types
of entities (e.g., "functional code” and "functional human” have different

meaning), but they are transparent at the model level.

The notion of being able to move, or the mobility, of an entity is shown
in the scenario by the spaceship and the robots. It is denoted by a vehicle,
borrowed from the transportation metaphor, to denote a construct that has
an intrinsic capability of moving. To have a vehicle is like to be able to move
from one place to another. Assigning a vehicle to a functional entity means

embedding its mobile property to the entity.
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It is arguable whether mobility is a different form of functionality.
This view is based on the fact that .mobility itself implies the ability of doing
something. In fact this view is shared by current mobile application devel-
opment tools, where migration features are implemented using constructs
normally used to implement functionality, for example as class methods in
Voyager [Obj99] and Aglet [LO98]. However, Mocha looks at them as dis-
tinct features. In Mocha, mobility and functionality are orthogonal to each
other. Being able to do some action is considered to be different from being
able to move. Functionality is an intrinsic feature of a Mocha entity, while

mobility property can be dynamically assigned to or removed from it.

The relationship between functionality and mobility is characterised
by a structure created from a hierarchy of functional and mobile entities.
A structure is constructed when a functional entity is loaded into a vehicle,
creating a mobile functional entity (or mobile entity in short). When being
contained in a vehicle, a functional entity is movable along with the vehicle.
This is shown, for example, by the astronaut that rides the space ship. Con-
tainment construction is the mechanism used by Mocha to assign mobility
to a functional entity. In other words, a mobile entity is always composed by

a vehicle and one or more functional entities.

A relationship between a functional entity and a vehicle is dynamic.
A vehicle can drop off its contents as well as load them in. When an entity

is unloaded from a vehicle, it loses its mobility.

A vehicle can also load other vehicles. A hierarchy of multiple vehicles
can go to any level of depth, and each vehicle can have their own functional
entities. This situation is commeonly found in systems with multiple mobility

agenda.

A vehicle containment also defines the scope of mobility properties

of a vehicle. A mobility property is a property that in some ways define
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the behaviour of a mobile entity when it is in effect. Examples of mobility
properties include patterns of movement (e.g., the itinerary of the space
ship in the scenario), migration constraints (e.g., the space ship can land
on terrestrial stations but not at space statioﬂs), and adaptation features
{e.g., the autopilot feature of the space ship). All entities inside a vehicle
are subject to the vehicle’s mobility properties, as long as they stay in the

containment of the vehicle.

One of the mostly used mobility properties is patterns of movement.
Such a pattern is expressed in terms of abstractions referring to a particular
type of physical environment elements. In many cases, it can be pre-planned
or computed before the migration starts. Mobility with this type of move-
ment is called deterministic mobility. In some other cases, however, such
a pattern cannot be computed. This situation occurs in mobile computing
where a pattern of movement is not important, but the ability to execute a
task in any location is. In this situation, mobility becomes non-determinzstic.
For example, in a cellullar phone application (e.g., WAP browser), the des-
tinations of a user are non-deterministic and the pattern that shows where

the user goes is not important for the application.

3.3.3 Separation of Mobility from Functionality

In designing a mobile application, it is crucial to identify the tasks required to
solve a problem with mobility. Interestingly, such tasks can be decomposed
into functional and mobility elements. Using the structuring mechanism of
vehicle, it is possible to describe a task structure in terms of the mobility of
the functional components. For example, Figure 3.1 shows the structure of

the tasks in the space ship scenario.

Figure 3.1 shows that a mobile application can be decomposed into

a hierarchy of problem-solving components. There are different tasks which
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Figure 3.1: The task structuring of the space ship example

have to be done by migrating some functions. In each task component the
mobility component sits at a higher level than the corresponding function.
This shows that mobility has an abstraction level higher than that of funec-

tionality, and it becomes the observable characteristic of the task.

Task structuring is useful to identify functional components and their
mobility property during a software analysis process. Such structuring can be
achieved by first identifying the functions required to accomplish the overall
task. This is followed by organising them based on their migration require-
ments. Functions with the same migration requirements are grouped into
the same vehicle. Multi-level vehicle structures (as shown in Figure 3.1) can
be used if there is a need for mobility with different agenda (e.g., different
itineraries).

An important requirement for task structuring is the explicit separa-
tion of mobility from functionality. Doing such a separation at the early stage
of software development pays a big advantage. To recall Section 2.5.2, it is
casier to satisfy software modularisation criteria if the concerns are clearly
separated out. Program composition can be made without having to sacrifice

the interest of any concern. Separation of functional and mobility issues in
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the first place allows categorisation of software components, which can be of

assistance for further design process in aiming a modular design.

In Mocha, distinguishing mobility from functionality also assists the
selection of the appropriate technique for a particular problem. It has been
understood that computing with mobility may not be the only viable ap-
proach to problem-solving [CHK97]. For example, many problems solvable
by mobile agents can also be approached using traditional distributed com-
puting techniques (e.g., client-server). It is desirable to decouple the problem-
solving activity from the technique used. To achieve this, one needs a design
mechanism that allows flexible selection of the technique that will be used in

the problem-solving.

Separation of mobility from functionality could help in this situation.
Functionality is the core element of any problem-solving activity, irrespective
of the problem-solving technique used. Mobility, on the other hand, is only
one possible way, which can be substituted by other methods. This suggests
that the presence of a function is invariant in the system’s design, and its
development can be decoupled and done independently of the decision of
making it mobile. More specifically, there is no need to make an early decision
of whether a functional component should be a mobile component or not. By
promoting separation at the early development stage, application designers
and programmers would have more flexibility in choosing a problem-solving

technique without being restricted to the development of a function.

3.3.4 Context as Physical Environment Representa-
tion

Recall the discussion about the relationship between a mobile application
and its physical environment in Section 2.3.2 that introduced the concept of
contexrt. In mobile applications, a context is used to represent the abstraction

of an environment element perceived by a mobile entity, and can be used for
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devising interaction between an entity and its physical environment. Facili-
tating such an interaction is imporfant, as the performance of an application

can be greatly influenced by the environment.

A context can provide information about a particular element of the
physical environment. A contezt value is a piece of information that denotes
a situation presently being experienced by a mobile entity that is aware of
the context being represented. To illustrate the concept of context value,
consider the space ship in the scenario which is aware of the location (i.c.,
planet} and weather contexts. At any time, the current location and weather
condition experienced by the space ship can be shown by context values such

as "Mars” or "meteor storm?”.

During a migration, a mobile entity may be experiencing a situation
referred by a particular context value (e.g., being in Mars, or being in the
middle of a storm). The state of experiencing such a situation is called the
contert state. A context state has a boolean value, and is always associated
with a context value. It is evaluated to true if a mobile entity is experiencing
the situation referred by the context state, and false otherwise. As context
values change during a migration, the context state for a particular value
also toggles. Therefore it can be said that a migration causes context state
changes. An analogy to an ordinary program execution can be drawn here.
A context value can be regarded as the content of a program counter register
(e.g., the position of the register), while the associated context state refers
to the corresponding state of execution indicated by the register (e.g., the
state of execution when the register is at X). A migration is similar to a
step of program execution; when it advances, it changes the state of program

execution, much the same as a migration changes a context state.

A context can represent a single or a compound abstraction. How-
ever, as far as a mobile application concerns, a context operates as a single

unit. The information provided by a context cannot be divided into smaller,
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independent parts. In this case the purpose of a context is similar to that
of a data structure. Both c0ntexfs and data structures act as an abstrac-
tion mechanism for entities from the problem domain so that they can be
represented and manipulated in an application. The difference is that a con-
text still maintains its physical semantics. The application that uses the
context still preserves its conceptual connection to the physical environment

represented by the context.

The physical semantics of a context creates a new dimension of scop-
ing for a mobile entity that is aware of the context. A context defines a
conceptual space that binds a mobile entity and its migration. The location
context, for example, defines a mental image of a bounded space in which a
vehicle is moving around. This kind of scoping is called contert domain. A
context domain is defined by the set of all possible values that can be gen-
erated by a context. In the space ship scenario, the domain of the location
context, for instance, is all planets in the solar system (i.e., the space ship

cannot go further to locations outside this domain).

A concept parallel to context domain is contert state space. It defines
context states generated from all possible context values within a particular
domain. Within a context state space, it is possible to think of a context
state as a locality for a computation. The term contertually local to a state
is attributed to a computation that is running in that context state. Two
computations are said to be contextually local to each other if they are both
experiencing the same ‘context state. This concept extends the semantics
of spatial localisation to cover contexts in general. The actual meaning of
localisation is defined by the context used in the expression. For example,
it is now possible to have a localisation using the social context (e.g., multi-
ple users share a common ”neighbourhood” context). Contextual locality is
mostly useful in controling the interaction of two mobile entities, as explained

in Section 3.3.6.
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Context values (and hence context states) are very useful to mobile
applications because they providé the basis for a mechanism for providing
environment awareness and adaptation. The idea is to make any changes
in the environment become known to the application so that appropriate
actions or adjustments can be performed. The mechanism is discussed in the

following section.

3.3.5 Context-Based Execution Model

Recall that functionality and mobility are properties that denote the poten-
tials to perform an action and to move, respectively. The possession of these
properties are distingnished from their activation. A functional property is
active when its pertaining action is being executed. Similarly, mobility is in
an active state when a vehicle is moving. Activations of functionality and

mobility constitute the execution of a mobile application.

As functionality is independent of mobility, it can be deduced that a
function execution is also conceptually independent of a migration, and vice
versa. This implies that an action can be performed while being mobile, or

conversely, a migration can start in the middle of a function execution.

_ In Mocha, actions and migrations are triggered by factors external to
a functional entity or a vehicle. This means functional entities and vehicles
do not have full internal autonomy in controling their behaviour. They do
not have their own initiatives in starting their actions and performing their

migrations.

| The activation model for functionality and mobility is not centralised
either. Fach mobile entity has the ability to execute its function or to move,
but there is no central controling authority for activating it. Instead, an
activation is controled by changes of conditions occuring within the entity’s

physical environment. This is where the concept of context comes in place.
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Since a context is an abstraction of a physical environment element, it
can be used as a "hook” for an activation. A reactive model is used for this
purpose. An activation is viewed as a reaction upon an event generated when
a mobile entity is experiencing a particular situation. A context state can be
used to capture such a situation and to bind an activation to it. With this
model, activation is passively expressed (e.g., "start action A when arriving
at location L, or " move the agent to host H if the network connection speed

is higher than 10 kbps”).

With the environment plays an important role in initialising an acti-
vation, the execution of a mobile application is mainly controled by context
handling and manipulation. This execution model provides a core aware-
ness mechanism, and can be used to facilitate different computing require-
ments. For example, deterministic mobility can be achieved by predefining
the context states used to trigger the execution of certain actions. A mobile
agent’s migration can be modeled by a location awareness scheme with a set
of predefined context states representing the destination locations. Network
awareness can be modeled similarly, but with a non-deterministic pattern. Fi-
nally, any adaptation mechanism is considered as a variation of an awareness
scheme. The difference between the two is determined by the functionality
aspect (i.e., how the application reacts to the changes of context states it is

sensitive to).

3.3.6 Concurrent Mobility and Rendezvous

To solve a problem that requires mobility, one may need more than one
mobile entity, each with its own migration agenda. Naturally, such a system
has to exhibit some degree of concurrency for an eflicient problem-solving
strategy. In the perspective of a mobile application, concurrency means the
ability of having multiple migrations at a particular time (i.e., launching a

vehicle while others are still active). In this situation, concurrent mobility is
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similar to having concurrent processes or threads in a parallel program. The
difference is that concurrent mobil‘ity has the spatial semantics. Concurrency
is laid on the spatial domain, and parallelism is attributed to the activities of
mobile entities that cause spatial dynamics. In Mocha, only movement can

cause spatial dynamics.

Concurrent mobility implies concurrent processes. When multiple ve-
hicles are active, they bring concurrent activation of the functionalities car-
ried by the vehicles. This concept can even be expanded to multiple levels
of concurrency, for example, if an execution at a particular place involves
multiple threads. However, only the top-level (i.e., mobility) concurrency is

considered by Mocha.

A system with multiple vehicles in a program requires an interaction
mechanism for those vehicles. The mechanism is not for the sake of the ve-
hicles themselves, but rather for the functional entities inside them. It is
quite common for a functional entity to communicate to another entity in
a different vehicle (e.g., method calls between objects representing different
functions). Sometimes a communication session depends on what is hap-
pening at the mobility level, and some form of synchronisation between the
vehicles is required so that the communication can be performed as expected.
Mocha introduces the concept of rendezvous for this purpose. A rendezvous
is a meeting between two vehicles. It is like a handshake between two mo-
bile entities, which has to be established first before communication between

. their functional entities can start.

* Mocha requires that a rendezvous can take place only if both mobile
entities are contextually local to each other. As explained in the previous
section, they do not have to be spatially located in the same place. Instead,
an interaction can take place if they are both experiencing the same context

state.
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A rendezvous is also subject to Mocha’s reactive computation model.
It cannot start by itself, instead it has to be attached to one or more con-
textual preconditions. The establishment of a rendezvous is triggered by
a situation occuring in the environment to which both mobile entities are

sensitive. This implies that they have to listen to the same context.

Not surprisingly, the most common application of rendezvous is for
spatially-local communication. This kind of communication reduces the dis-
tance gap between the communicating parties, and offers cheaper costs com-
pared to those done between remote parties. To perform it, spatial locality
has to be established prior to an communication session. In other words,
the communicating entities have to synchronise their migration to a common

location so that their functional entities can interact locally.

The genericity of the locality constraint allows it to be applied in
non-spatial contexts as well. For example, a confidential conversation session
between top managers using mobile video conference application will need
to set a context, for instance top_manager, that contains values representing
each manager’s login account. Conversation can only proceed if the program
detects that no non-managers are joining the channel. It should be realised
though that non-spatial rendezvous may involve mobile entities located at

different places. Their interaction can incur expensive network operations.

If communication between functional entities is independent of what
happens at the mobility level, rendezvous is not necessary. Traditional remote
communication between distributed objects can be categorised into this type
of communication. As it is completely decoupled from any migration activity,
it is transparent at the mobility level. From a vehicle’s point of view, it is

seen as an ordinary functionality.

A rendezvous is initiated by a vehicle sending a request to the other

party. The request/reply protocol as used in the RPC mechanism [BN84] is
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used to facilitate the initialisation of a rendezvous. A vehicle requesting for
a rendezvous has to wait for a reply from the other vehicle or fail the request

upon a no-reply situation.

The following description analyses the protocol using the concept of
logical time. From the point of view of logical timing, a rendezvous is a time
synchronisation between two vehicles Vj and V5 so that {y, = ty, = T}, where
Ty is the synchronised time (i.e., the time when the rendezvous starts), while
ty, and ty;, are the current times of V) and V4, respectively. T is predefined
to reflect the future occurrence of the context state used to establish the
rendezvous. Additionally, £, is the time when V] sends a rendezvous request
to Vo, and 1 is the time V] receives a reply from V,. Figure 3.2 illustrates

the time synchronisation of a rendezvous.
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Figure 3.2: Time synchronisation in a rendezvous

A requirement for a rendezvous to be successfully initialised is that £, must
not exceed T;. Failure to meet this requirement might be caused by errors
in either the request or reply message transmission. If the request message
cannot reach V5, or the reply cannot reach V; (or it arrives late), the timing

requirement for ¢, cannot be fulfiled, thus failing a rendezvous plan.

" To conclude this section, several concepts that are used in the Mocha
framework have been introduced. Collectively these concepts show Mocha’s
unique paradigm for controling migrations and providing environment aware-
ness and adaptation. It incorporates these features into a uniform context-
based framework. What is required is to weave these concepts into a single

model, and this will be explained in the next section.
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3.4 A Context-Based Modeling Framework
for Mobile Systems

This section formalises the concepts defined in the Section 3.3. The formal-
ism of Mocha needs to have two properties to express context-awareness of a
mobile entity. Firstly it has to support the state-based nature of Mocha, in
which the activation of an action or a migration is based on the satisfaction
of certain precondition states. Logic-based formalisms such as used in the
UNITY model [CM88] and its derivatives [RMP97, WR96] fits this require-
ment. A system can be described by specifying its properties using a set of
logic statements. The behaviour of the system can be observed by evaluating

the logic statements against the system’s states.

The logic-based formalism, however, cannot accommodate the struc-
tural characteristic of mobile entities in an expressive manner. A logic pred-
icate can represent the structure of a vehicle, but it cannot capture atomic
operations that can be performed upon the structure. This weakness is
complemented by the spatial-based approach, which is adopted by calcu-
lus systems such as Mobile Ambients [CG98] and Agent-Places [TA98]. This
approach models computation as surrounded by a hierarchical conceptual
space, which has primitive operations to allow computation to move from

one space to another.

Mocha’s formalism combines certain aspects of the logic-based and
spatial-based models. The structure of the formalism follows the logic-based
framework, in the sense that a set of logic statements are used to describe
a system. However, a predicate in a statement can now be composed as a
structural construct representing a vehicle or a functional entity. Borrowing
the idea of the spatial-based model, such a construct has primitive actions
for movement purposes, which can be integrated into the evaluation of a

structural logic predicate. Such an operation is executed automatically and
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atomically during an evaluation. Using this hybrid approach, it is possible
to capture both what is going on (i.e., shown by the expression) and what

one will have (i.e., shown by the result of the operation).

Using the logic-based approach, system properties can be specified
through UNITY’s relations (see Section 3.2.1). Safety properties can be spec-
ified using the unless, until, stable, and invariant relations, while progress
properties are defined using the leads-to, ensures, and takes-to relations.
A slight meodification is made to the takes-to relation (Statement 3.2). In
Mocha a takes-to relation is no longer bound to a location nor to any other

context, but it can transform a vehicle from one mobility state to another.

The basic assertion that describes the UNITY’s computation model,
i.e., {p}s{q} (see Section 3.2.1), is also valid for Mocha. An execution of
an action s in any state that satisfies the predicate p will result in a state
that satisfites ¢. In Mocha, p and ¢ refer to context states. However, given
that Mocha states are closely related to the physical environment, a state
that satisfies ¢ may also be generated from outside the realm of a program’s
execution. This actually becomes a distinguishing characteristic of Mocha.
The notion of action s that triggers a context change is expanded to cover
a non-conventional form of "actions”. In other words, s does not necessarily
. téke the form of normal program statements, but it can materialise as exter-
nal forces from the physical environment (e.g., when a context state change

is caused by a non-controllable context such as network speed).

Mocha also provides a way to manipulate a set of assertions {p}s{q}
to define the pattern of movement of a vehicle. In the UNITY model, the
default is to have no such mechanism. UNITY does not need such mecha-
nism because it works with non-deterministic system behaviour. In such a
system, the set of statements form an open description of the system; there is
no assertion that leads to the completion of a program execution. To accom-

modate systemns with deterministic behaviour, Mocha allows assertions to be
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bound to a finite set of context states and to ensure that these states will
eventually evaluate to true. This can be achieved by introducing the notion of
sequences to complement the existing UNITY’s constructor (Statement 3.1).

Section 3.5.2 has more details on this issue.

3.4.1 Context Domains, Context Values, and Context
States

Mocha recognises the infinite set of all context domains, C, which is defined

as follows.
C={C,Cy...,Cj...} (3.4)

where €}, 1 < j < oo are individual context domains.

A context domain is defined as a (possibly infinite) set of context
values. The definition of both finite and infinite context domains are given

below.

C; = {zj1,zj2, - 1 Zjsy-..}, 1<ig o0 (3.5)

Cj = {.’L‘jl,iﬂjg, 7 P ,.’Bjm}, 1 S 1 S m (36)

where 1 < j < co in both cases and zj; are individual context values. C}
is distinguished from C; for its infinite membership. A context value z;;
can represent a discrete or continuous value. The difference is indicated by
their mapping to real values. A discrete context value maps into exactly one
real value, so it is safe to use a real value to represent a context value. For
example, in a context domain representing a subnetwork, a context value
referring to a machine is discrete, because it maps to a single real value of
IP address. A continuous value, on the other hand, maps to a range of real
values. A "low” context value referring to a network speed measurement
falls into this category, since it maps to a certain interval of measurement

results (e.g., a "low” speed means 0 to 10 kbps, for instance). Note that
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Definitions 3.5 and 3.6 require that each context value must be explicitly
identified. In the case of a continuous context value, a proper identifier
representing the value must be assigned to denote the associated interval of

real values.

A context state can be created from a context value. For each context
value z;;, there is a corresponding context state s;;. A context state has a
boolean value and its operational semantics is defined by attributing it to
a vehicle V. It gets its boolean value by evaluating whether a vehicle is

experiencing the situation referred by the corresponding z;;.

true ifVeuxy

V(i) =V (s(zz)) = { (3.7)

false otherwise
Definition 3.7 shows a vehicle V' is listening to a context state s;;, whose
value is determined by its corresponding context value z;. The e symbol
denotes a boolean contextual operator that evaluates whether the vehicle is
experiencing the specified context value. As an example, given a context
value ”Mars”, the semantics of the corresponding context state is whether a

vehicle is being in Mars or not.

3.4.2 Mobility States

The state-based mechanism of Mocha is built on top of the context state
concept. Mocha introduces the concept of mobility state, which is derived by
applying temporal attributes to a context state. Mobility state is based on
logical time [Lam78]. Logical time is a one-dimensional, discrete temporal
coordinate system which does not necessarily depend on actual time. The
value of logical time increases at an unpredictable rate, and it never decreases.
Logical time is generated by logical clocks. A logical clock is attached to
a context, and activated whenever the context is operational. A Mocha
system has a collection of local, uncoordinated clocks generating independent

instances of logical time.
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Mocha uses the notion of events to describe the semantics of a mobility
state. During a time period where 1% (8ji) is true, an event is generated. The
event has a continuous spectrum, and is bordered by two time points, ¢; and
to, that denote the state transitions for V' (s;;) . The ¢; time point indicates
a context state change that makes V' (s;) become true, while the ¢, time
point indicates the opposite. Both {; and ¢» have positive values; negative
values show that they do not exist. The values of ¢; and ¢ do not necessarily
depend on the current time ¢. A graphical tllustration of time points for a

particular event is shown in Figure 3.3.

the duration of an event
V{s. ) ismarkedby these points
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tme .......
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Figure 3.3: State transition for a context state and its corresponding events

Let E be an event generated by a particular situation where V' (s;;) is
true. With respect to the time points of F, there are three possible temporal
situations that a vehicle can experience: before E takes place, when® E is
happening, and after E has finished. These states are called the mobility
states of the vehicle, with respect to an event E generated by a context state
55 Their semantics is defined as follows.

true if {t < 1y),
false otherwise

V (before(E)) = {
t if{t; <t <t
v (a(m) =4 tve Tlstsh),
false otherwise
true if (¢t > ty),
false otherwise

V (after(E)) = {

3The keyword at is used to denote this state.
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The notation ¢ denotes the current time of a vehicle, its value increases
through the passage of actual time. The event E and its corresponding time
points ¢; and ¢, are unique. For any E, the corresponding mobility states are
mutually exclusive. A vehicle can only be at one state at a particular time.

From Definitions 3.7 and 3.8, it can be deduced that

V (s5) =V (at(E) (3.9)

To summarise, context states have a close relationship with mobility
states. Context states are used to represent the actual dynamics of the
physical environment, which is expressed in terms of context state changes.
Mobility states apply temporal attributes to this representation to build the

state-based mechanism of Mocha.

The causal connection between mobility states depends on the time
Ty, which shows the time the logical clock for a context starts ticking (i.e.,
the time the context is defined and becomes operational). There are three
possible situations when 7 is compared to ¢, and #2 of an event £. These

are shown in Figure 3.4.

tme ------- —l—* tmc ........ tme —l‘
false : false ; L" false ; [ -
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Figure 3.4: Causal connection between mobility states

In Figure 3.4-a, both ¢, and ¢, are larger than 7. In this case, an occurrence
of the after state implies a previous at state, which in turn implies a before
state (this causality is written as before < at < after). In the second case
(Figure 3.4-b), the event F is happening while the logical clock is started.
The only valid causality is at < after, because the before state for that
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particular event is not defined. Finally, the situation depicted in Figure 3.4-c
will never happen, as the whole event does not exist when the context is

operational (indicated by the negative values of ¢; and ;).

To work with mobility states at the operational level, one has to be
able to properly identify the event of interest. Therefore it is necessary to
assign sufficient identification to an event to make it unique. Using the
context value associated with the context state that triggers an event is not
sufficient, because the same value can generate more than one event. For
instance, the context value "Mars” can trigger multiple events; this happens

when a vehicle performs multiple visits to Mars.

One possible way to achieve uniqueness is to use a sequencing mecha-
nism to generate a unique identifier for an event occurrence. This approach
can be implemented by a simple counter. Events associated with a context
value has their own counter, which is incremented every time an event occurs.
A unique identifier for each event can be constructed by pairing the context
value and the counter, i.e., (z;;,n;). Using a system variable that holds the
value of a counter, the semantics of mobility states at the operational level

can be written as follows. The symbeol £ stands for ”is abbreviated to”.

V (before(z;i, n;))

V (o(esm) = {true i (£ <) An = ny),

false othe:wise

1>

V (at(z;i, ;)

Vi(zinng)) =

(3.10)

true  if (h <t <) A(n=ny),
false otherwise

[l

V {after(zji, n;))

V {(zjisny)o) =

true if (£ > ta) A (n = n;y),
false otherwise

The diamond symbol (¢) is a shorthand for the before state (if placed in
front of the value pair) and after state (if placed after the pair). A graphical
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illustration of mobility states at the operational level is given in Figure 3.5.
The horizontal bars show time poihts where mobility states for different event

occurrences vield a true value.
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current temporal position of V

Figure 3.5: Representing mobility states

Figure 3.5 shows a vehicle V has visited Mars for the first time and is heading
to Neptune before returning to Mars for the second time. In this temporal
situation, the mobility states after(” Mars”,1) and before(” Mars”,2) eval-

uate to true, while the other mobility states yield false value.

3.4.3 Structural Representation of Vehicles

A vehicle is used to represent the mobility of an entity. It is denoted by a
boolean constructor that returns true if the indicated vehicle exists or can be
successfully created. The syntax of a vehicle definition, written in Extended

BNF, is shown as follows.

Ve u= 0 null vehicle (3.11)
| M vehicle constant (name)
| MWV, ...\ Vo, F1,... , Fyl containment

[ 8.V structuring mechanism
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f == inVw|inP  entering capability

| out Vir | out P exiting capability

The structuring mechanism allows a vehicle to enter or exit another vehicle.
The mechanism is implemented by two internal features called capabilities,
borrowed from the Mobile Ambient calculus [CG98]. A capability is different
from a functionality, although both imply the notion of action. A capability
is instantaneously activated when its expression is evaluated (i.e., no explicit
activation is required). Its execution is performed atomically. Evaluation
of a capability expression yields a true result if the operation is successful,
otherwise a false result is produced. The latter is due either to the non-
existence of the parent, or the refusal of the parent for the child to enter to

or cxit from it.

Mocha’s containment is different from that of Mobile Ambient as it
does not contain running processes. Instead it handles dormant functions
and other containment structures (i.e., other vehicles). However, the in and
out capabilities have the entering and exiting semantics similar to those of

Mobile Ambient. The semantics of a successful operation is given as follows.

ViVl AT A in Ve Ve — Wi [W, We[V2]] (3.12)
Vic[ out Vk" [V;)]Vk, Vi] — ‘/k[Vi] A T/kr [Vé] (313)

Statement 3.12 states that in a system with vehicles Vi and Vi with their
respective children V; .and Vi, the in Vi..V; capability places Vi and its
content as a child of Vi. The opposite action is described by Statement 3.13
where the out Vi [V2]. Vi capability moves Viy[Va] out of Vi so they become
siblings. For functions, the entering and exiting mechanisms are described

by the following reductions.

Vil]APA inPV; — V[P (3.14)
Vilout P.V;] — Vi[]AP (3.15)
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3.4.4 Context-Awareness

Mocha captures the relationship between a vehicle and a set of contexts
into an association between the vehicle and a set of mobility states derived
from the contexts. Given M a set of mobility state expressions m; (refer to

Definition 3.10), the relationship can be shown as follows.
Vi (M) =V, (ma,... ,my) (3.16)

where m; is either o(z;;, n;), (z5,75), or (x5, nj)o.

An association of a vehicle and a set of mobility states represents a
mobile entity that listens to one or more contexts and is interested in one or
more events from the contexts’ domain. A context-aware vehicle expression
returns true if the structural property of the vehicle can be created and its

association with all its mobility states is also satisfied. That is,

Vi{imi) = VA {my) (3.17)
Moreover,
=V {m;) = -V Vv-{m) (3.18)

and this should be distinguished from
1% ("Tﬂi) Vv (—|mi) (319)

The expression —{m;) in Statement 3.18 indicates that a vehicle V is not asso-
ciated with the context state referred by m; (i.e., the expression returns a false
association). It is used to refer a vehicle’s loss of association with the context
referred by m;. In this case, whether m; refers to a before, at, or after
does not really matter. To illustrate, the expression Ship {(" Mars”, «}o)
yields true if the space ship does exist and it has left Mars (the '*’ symbol
indicate a don’t care value, which matches to any value). The expression

—Ship ((* Mars”, +)o) means that either the space ship does not exist, or it
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has nothing to do with destination planets. Finally, Ship (—(” Mars”, x)o) is
true if the space ship has not left Mars (i.e., either has not arrived at Mars,

or is currently visiting it).

A context-awareness association only applies to top-level vehicles.
Children vehicles are not affected by the scheme (i.e., they are "frozen” inside

a parent vehicle). So in an expression
Vi[Va (ma) [ (1) , (3.20)

the awareness mechanism only applies to V) (i.e., only the association with
my is in effect). In this case, it is safe to omit the non-significant part of an

expression, so Statement 3.20 could be written as follows.

Va[Va] {(m1) (3.21)

3.4.5 Functionality Representation

Functionality represents the ability of performing an action. Like a vehicle, a
functional entity is represented as a constructor that yields a boolean value.
It returns a true value if the indicated functionality is present. The syntax

of a functionality definition is shown as follows.

F; uv= 0 ° null functionality (3.22)
| P action constant {function name)
| oy  request communication
| oy reply communication

The o functionality indicates the ability of performing communication.
It is a property of a vehicle. Therefore, only vehicles can communicate with
each other. Vehicle communication is only used for rendezvous purposes.
The request mode transmits request messages, while the reply mode has the

semantics of acknowledging and approving the request.
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Some form of communications may also be performed during the exe-
cution of an action, for example, in method invocation between objects. This
kind of communication is, however, outside the scope of Mocha, because such

a communication is performed intrinsically ag part of an action.

3.4.6 Functionality and Mobility Activation

The execution of a function is represented by a sequence of activation and
deactivation. An activation denotes the state of being active (executed),
while a deactivation refers to the state of being inactive after an activation

has completed.

Activation and deactivation of an action are represented by the F; and
F; predicates, respectively. The expressions evaluate to true if the activation
and deactivation can be successfully carried out. They have a leads-to rela-
tion (i.e., F; — F;). The relationship implies that an activation will always
lead to a deactivation, either gracefully (normal deactivation) or abruptly
(abnormal termination). Moreover, a deactivation expression can be implic-
itly hidden behind an activation expression (i.e., given an expression P — P,
it is not necessary to state P — P). However, certain situations may require
explicit deactivation expression, for instance, when the execution of Q cannot

start until P completes. In this case, ~Q unless P.

Contrary to the functionality aspect, activation of mobility can be
expressed implicitly or explicitly. An implicit migration is expressed through
its effects on the vehicle’s contexts. Given two expressions, V ((z;1,n1)}
and V ({z;2,n52)) with z;; # £ and 21,z € Cy, if during the passage of
time, both V ({z;1,n;1)) and V ((z;2,n;2)) have ever evaluated to true, then
one or more context state changes have occured. Using the assumption of
indirect location representation {see Section 3.1), the context state changes

can be used to express a migration.
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An explicit migration expression is represented by an action predicate
that takes two arguments indicating the initial and final states. It is used
when it is necessary to put the emphasis on context state changes caused
by the migration. The following example illustrates a migration from one

location to another.
Go(i, j) takes V (m;) toV (m;) (3.23)

The predicates V' {m;) and V {(m;) show the mobility states prior and after the
action execution, respectively. Once an action predicate has been defined, it

can be activated by making it evaluate to true.

3.4.7 Context-Based Mobile Systems

A Mocha system can be modeled by a collection of logic statements. The
reactivity of a system’s computation is naturally accommodated by the un-
derlying execution model that performs evaluation of the statements fairly
often over an infinite time period. Functionality and mobility activation are

bound to the context-awareness scheme, as shown below.

VIP] (mi) - VIP] (my) (3.24)
VIP] (mi) — Goli, )

The expressions state that, upon a true value of the left part, the corre-
sponding action and migration is executed in the contextual scope set by m;.
For example, the basic feature of a mobile agent that searches information

servers for some data can be specified by the following statements.

AgentlFindInfo] (dest, *) — Agent[FindInfo| (dest, *)
Go(source, dest) takes Agent[FindInfo] (source, *) to
Agent[FindInfo| {dest, *)
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Agent[FindInfo] (dest, *) — (source = dest) A (dest = ) A

Go(source, dest)

Recall that the context-aware mechanism only works on top-level ve-
hicle constructs (see Section 3.4.4). Action and migration activation conse-
quently follow this rule. The consequence is shown by the following state-

ment, expanded from Statement 3.20.

Vi[Va[P] (ms) , Q] (ma) — VA[Va[P] () , Q] (ms) (3.25)

3.4.8 Rendezvous

A rendezvous is initialised by a pair of handshaking messages between the
meeting vehicles. The activation of message transmissions also follows the
context-based mechanism. The vehicles have to listen to the same context,

but they do not have to use the same set of mobility states.

VAP, a5] (m;)
Va[Q, @] (my)

The activation of handshaking is terminated either by a match or a
mismatch between them. A match occurs if the communication link can be
established (i.e., a request matches a reply). A mismatch can be caused by
transmission errors, a refusal to meet (from a sender’s perspective) or an
unacknowledged reply (from a receiver’s perspective). A deactivation due
to a mismatch is denoted by the symbol @, or @, , respectively. Stated

formally,

VilP,a] (mi) = ([P, @] (x) AV2[Q, 5] () ) VI[P, o ] (*) (3.26)

V2[Q &) (m;) = (Vi[P, &) (x) AV2[Q,a7] () )V V2[Q, er, ] (%)
(3.27)
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The '*" symbol denotes that the mobility state indicating a handshake ter-

mination is not important.

Once a match occurs, a rendezvous can be established. The sync

predicate is used to indicate a rendezvous.

VI[P, Gis] (ms) AVR[Q, Bomr] () — syme (VI[P], V2[Q)) {my)  (3.28)

~ syne (Vi[P], 12[Q]) (my) unless VI[P, @] (%) A V3[Q, @] ()
(3.29)

Statement 3.28 states that a matching communication, indicated by the same
communication functionality identifier of V; and V; (i.e., ay,), will lead to
a rendezvous. The sync predicate shows that the vehicles are experiencing
the same mobility state (i.e., my). Here my could be the same as or different
from either m; or m;. Statement 3.29 is a complement for Statement 3.28. It
states that a matching communication as well as the same mobility state are
prerequisites for a rendezvous between two vehicles. There is a subtle differ-
ence between the two rules which leads to different applications of the rules.
The former looks at a rendezvous as a consequence of a state evaluation. It
is used to deduce the occurrence of a rendezvous upon the establishment of
a communication link (indicate by the o messages) and a true value resulted
from the associated mobility state evaluation. The latter states that a ren-
dezvous will not take place unless its preconditions are not satisfied. This

rule is normally used to verify whether a rendezvous can occur or not.

Once a rendezvous is established, communication between vehicles can
be started. As this communication is completely under the scope of an action
execution, it is represented by activating the corresponding functionalities

from both vehicles.

sync (Vi[P], Va[Q]) (mx) — VA[P] (my) A V2[Q] (m) (3.30)

A communication between two functions from different vehicles can

be completely made transparent at the mobility level if it is independent
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of the mobility of the vehicles (e.g., conventional remote communications).
QOtherwise, if the communication 'is associated with an activity at the mo-
bility level, it has to be encapsulated using the rendezvous mechanism. For
example, in the space ship scenario, the wandering robot cannot enter the
vehicle to bring back more sample result until a transmission of current anal-
ysis result to a remote computer is completed. This situation is described by
the following statement. It states that a rendezvous is maintained until the

transmission completes.

sync (Ship[T1], 0[T2]) {(i,*)} A - in Robot[...].Ship {(i,*)) (3.31)
until Ship[T1] ((Z, +)) A 0[T2] ((i,*))

The data transmission functionality is denoted by T1 and T2. The remote
computer is represented by 0, indicating its immobility. The expression
= in Robot][...].Ship {(i,*)) denotes a failure in the entering operation due

to the block of the space ship.

As explained in Section 3.3.6, a rendezvous is constrained by the con-
text of the participating vehicles because the undérlying communication de-
pends on the context state when the communication is taking place. Conse-
quently, contextual locality between the vehicles must be maintained during
the rendezvous. Therefore a strict policy has to be enforced. The policy
states that once a rendezvous is started in a particular mobility state, it will
remain in that state until the underlying functions finish the communica-
tion. A context state fhat changes the mobility state is not allowed. The
strict. policy can only be applied if the vehicles have complete control over

the dynamics of their contexts.

A strict rendezvous can be specified by maintaining the synchronised

state until functions complete the communication.

sync (Vi[P], V2[Q]) (ms) until Vi[E] (ms) A V2[Q] () (3.32)
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The rule states that a rendezvous should be preserved until the functions

finish with their interaction (denoted by deactivating the actions).

If the above rule is not present, then the rendezvous is a loose one. A
loose rendezvous does not put any constraint on context state change during
a rendezvous. A context state change is allowed to take place when two ve-
hicles are meeting. This happens if the dynamics of the context cannot be
controlled by the mobile application. For example, in a network performance
test application, two mobile agents can be sent to different nodes to mea-
sure the quality of the connection between the two nodes. The agents are
programimed to perform the test based on different categories of connection
quality. In this situation, rendezvous is made on the network connection

quality context, which is completely outside the control of the agents.

3.5 Modeling Mobile Applications

This section illustrates how Mocha can be used to model mobile applications.
Three examples are provided. The first example illustrates how the basic
properties of space ship scenario can be modeled. The other two examples

show how Mocha deals with deterministic and non-deterministic mobility.

3.5.1 Modeling the Space Ship Scenario

The following illustration shows how Mocha can be used to specify the space
ship scenario described in Section 3.3.1. It shows how to model a pattern
of-movement, context-based function execution, and context awareness and

adaptation behaviour of the system described in the scenario.

The laboratory tests, autopilot, and sample collection functionalities
are abbreviated to LT, AP, and SC, respectively. INIT is a special predicate

that indicates the initial system configuration. All variables are free, their
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values can change between statement evalnations. The initial configuration

of the system can be expressed as follows.

INIT — Ship[ | {("Earth”,1)) A in LT.Ship A in AP.Ship A
in (Robot[ | (" Earth”,1)) A in SC.Robot).Ship (3.33)

The next rule states that once the ship is being in a planet, it will
eventually move to another. This eventuality is expressed using the ensures
relation. Variables ¢ and j denote destination locations and they range over
all planets that can be visited by the space ship. The 3 symbol denotes that

the ship only considers traveling only to some planets.

(3,5 = (3.34)
Ship[LT, AP, Robot[SC]] ((4, *)} ensures
Ship[LT, AP, Robot[SC]] ((,*)) A (i # j)

The above expression shows a progress property of the space ship. It defines
an allowable state transition from a given state. However, it does not specify
any instance of migration that produces the state transition. The action that
actually moves the space ship is specified using the Go predicate, similar to

that shown by Statement 3.23.

Goli, j) takes Ship[LT, AP, Robot{SC]] {(3,%)) A (i # j) to (3.35)
Ship[L'T, AP, Robot[SC]] ((4, *))
The Go(i,j) action predicate returns true when the space ship is traveling
between two planets indicated by 7 and j.

When the space ship arrives at a planet, it unloads the robot, and the
astronaut can start working on the lab tests. These are denoted by the out

capability and the activation of the functionality, respectively.
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Ship[LT, AP, Robot[SC]] (i, %)) — (3.36)
Ship[LT, AP, out Robot[SC].Ship] (i, *)) A Ship[LT, AP] {(i, +))

When the out capability in Statement 3.36 is in effect, the robot leaves
the space ship and starts its own mobility, creating concurrent mobility. The
robot’s journey can be specified in a similar manner to that of the space
ship. For example, the specification can be derived from Statements. 3.34,
3.35, and 3.36 with appropriate modifications (e.g., on the specifications of

the robot vehicle and its destinations).

The space ship is not allowed to leave a planet until the lab tests in
that session are completed and the robot has entered the ship again. This

restriction is specified as a safety property using the unless relation.

=Go(i, ) unless Ship[LT, AP| {(i,*)) A in Robot|SC].Ship ((i, *))
| (3.37)

Finally, a travel between two planets is specified by a rule that triggers an
action denoted by the Go predicate.

Ship[LT, AP, Robot[SC|] ({1, *)) — Go(3, 7) (3.38)

Note that the space ship’s journey does not use an explicit itinerary as no
specific route is defined. A stronger sequential sense can be modeled using

the sequential property of a constructor. This is discussed in the next section.

3.5.2 Deterministic Mobility

Deterministic mobility is characterised by the sequential property of a pat-
tern of movement. Iu a mobile agent application, for example, deterministic
pattern is shown by the agent’s itinerary, expressed in terms of a series of

migration procedures to the specified destinations.
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The state-based nature of Mocha is not naturally suitable for rep-
resenting deterministic systems, Because it does not have a mechanism to
control the evaluation of its statements to follow a deterministic pattern.
This situation is inherited from UNITY; each statement in a UNITY pro-
gram is selected arbitrarily but with weak fairness (i.e., each statement is

selected infinitely often in an infinite computation) [RMP97].

Modelling deterministic mobility in Mocha therefore requires a mech-
anism that allows sequencing of context state changes. This is achieved by
extending the semantics of the UNITY’s constructor (Definition 3.1) with a
sequential property. A Mocha constructor can accept a sequence of values,
indicated by a pair of square brackets, in its range constraint. The order of
these values is significant. The operational semantics is defined by two new
operators, called successor and predecessor, which are denoted by the > and

~< gymbols, respectively. Given a constructor
(Vi,j 11 €[zy,...,2.];5 = 1 2t expr), (3.39)

j-will always be assigned the successor value of ¢, in the order given by the
bracketed expression. Their values are then used to construct the expression

exTpT.

The following example uses a mobile agent to illustrate modeling of
a deterministic system. For example, the agent has a function which has to
be executed at the destination locations A, B, and C. The mobile agent’s

movement and the actiiration of its function can be represented as follows.
(Vi,j :i€[A,B,Cl;j>i = (3.40)
Go(i, j) takes Agent[Func] {(Z,1)} to Agent[Func]{(7,1))
Agent[Func] ((i,1)) — Agent[Func| {(i,1))
Agent[Func] {((4,1)) A(i# C) — Gols,j) )
)
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The constructor contains three statement templates which will be nsed to
create actual statement expressioﬁs according to the specified quantification
of variables ¢ and j. The order of the sequence of A, B, and C is significant.
The expression j > § yields the next sequence value of the one denoted by ¢,
if exists, which is then assigned to j during statement construction. If such
a value does not exist (i.e., ¢ holds the last element in the sequence), j will
be empty and this will fail any logical expression that uses it. When the
constructor is evaluated, actual statement expressions are created from the

templates and they will reflect the agent’s sequential behaviour.

A variation of the above situation is when the destination of the agent
is not predefined but can be computed instead (e.g., as a result of the Func
function). In this case the system is still deterministic, but its sequential
behaviour cannot be predetermined anymore. This is the case of the exam-
ple described in Section 3.5.1. In this situation, there is no need to use a

constructor to describe such a system, as shown in the following statement.
Agent[Func] {(5,1)) — Agent[Func] ((4,1)) (3.41)

The variable j is a free variable. It gets its value from the result of Func.
Context state change (i.e., migration to another location) may happen be-
tween evaluations of the statement, but it does not matter because the agent

is not interested in it.

3.5.3 Non-Deterministic Mobility

Non-deterministic mobility occurs when the pattern of movement of a mobile
entity cannot be predefined or computed at all. Movements are performed
randomly, and it is not possible to determine the next move using currently
available information. Consider, for example, modeling the mobility of a
salesman. His travel pattern cannot be defined or planned as it depends on

the job order on a particular day.
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In Mocha, non-deterministic mobility is translated to the inability to
determine the pattern of context state changes, either at compile-time (pre-
defined pattern or at run-time. However, Mocha allows a non-deterministic
system to be specified without dealing with the uncertainty. The state-based
model can capture the definable behaviour of the system and leave the un-
certain part out of the specification. In the case of the salesman, it is only
necessary to specify the context states in which the application is interested
in. For example, the salesman sells his goods and always makes his way to
a cafe for lunch. This can be expressed by the following rules. Note that he
only comes for lunch on the first visit to the cafe (indicated by the value of

the counter in the mobility state expression).

SManleat, sell] ("Cafe’,1})) — SManleat,sell] ("Cafe”,1)) (3.42)
SManleat, sell] ((z,*)) A (z #”Cafe’} — (3.43)
SMan[eat, sell] ((z, %))

The travel pattern of the salesman is not important in this situation, and

the state-based model leaves it out of the the specification.

Non-determinism can also be raised by applications that use non-
controllable contexts. The dynamics of the contexts is completely outside the
conirol of the application, and context state changes can occur at any time
with no specific pattern. To illustrate how Mocha models this situaion, an
application that is sensitive to network speed is used. It listens to the network
transfer rate context and is aware of changes between the "high” and ”low”
states. It has a functionality P1 which is executed if the connection quality
is good, otherwise it automatically switches to execute P2, and vice-versa.
Both P1 and P2 represent the same action (e.g., video conferencing) but with

different modes of operation (e.g., colour vs black-and-white). Initially,

INIT — App[] {(*,%)) A in PLApp A in P2.App (3.44)
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Soon after becoming operational, the context-awareness mechanism is acti-
vated. If the current context value is "low”, then P2 is executed, otherwise

P1 is activated. This is expressed as follows.

App[P1, P2] {(low, *)) — App[P1,P2] {(low, *)) (3.45)
App[P1,P2] {(high, *)) — App[P1, P2] {(high, %)) (3.46)

The automatic switching behaviour is specified in the following rules. Note
how a transition of execution from P1 to P2 and vice versa is modeled. When
P1 or P2 is active, it remains so until there is a change of network speed.
If it happens, the current functionality is deactivated and replaced by the

activation of the other one.

ApplP1,P2] {(high, *)) until App[P1,P2] ((low, *)) (3.47)
App{P1, P2] ((low, *)) — App[P1,P2] {(low,*))

App[P1,P2] {(low, *)) until App[P1, P2} {(high, *)) (3.48)
App|P1, B3] ((high, +)) — App[PT, P2] {(high, +))

The system does not even have any progress property, because its behaviour is
completely reactive. A context state can be non-deterministically changed by
anything that affects the network performance. Also note that the mobility
of the application is not expressed using the notion of locations, but instead

is completely hidden behind the dynamics within the network speed context.

3.6 Discussion

Section 2.6 discussed the requirements that need to be satisfied by a model
so that it can provide comprehensive and uniform suppeort for specifying and
controling the mobility aspect of a mobile application. The requirements are

reiterated and shown as follows.
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o the model should exhibit a generic perspective that views mobility as

an independent abstraction,

e the model should capture the abstraction of physical environment as-

pects in a computation, and

e the model should separate the mobility and functionality aspects of a

mobile application.

The rest of this section analyses how Mocha accomplishes the specified re-

quirements and discusses their effects on mobile application development.

3.6.1 Genericity

One of the goal of this research is to avoid distinction of supporting mo-
bility on the basis of the principal of migration. Genericity is required to
provide uniform support for different requirements posed by user-oriented
and code-oriented mobile applications. A generic perspective of mobility is
implemented by capturing the most essential feature of any mobile entity.
Functionality is selected as this representative aspect, since a,ny entity with
mobility potential has the ability to perform an action. Mobility abstraction

is then built on top of the functionality representation.

The approach taken by Mocha reverses the relationship between mo-
bility and functionality commonly found in traditional development tools.
Mobility is no longer an intrinsic attribute of an entity, but instead becomes
a subject that controls the activation of functionalities. In this perspective,
the mobility abstraction occupies the higher level, while the details of an
action is hidden behind the functionality abstraction, lying on a lower level

and outside the scope of Mocha.

The top-down approach of controling mobility hides principal-specific

differences of requirements that have to be handled by mobile applications.
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It allows mobile application development to follow a natural way (i.e., to
start with an abstract mobility Iﬁodel), rather than to awkwardly start it
with programming-specific requirements. Furthermore, the approach allows
implementation-specific decisions to be delayed. Given a set of functions
that need to be run remotely, the how aspect of the remote execution can
be specified in a later stage. For instance, design considerations made in
the design stage could be used to decide whether remote task execution has
to be implemented by human migration, code migration, or even traditional

techniques such as remote evaluation [SG90).

3.6.2 Context-Based Model

The close relationship between a mobile entity and its physical environment
is also captured by Mocha. Environment awareness is a basic property of any
mobile entity. This also applies even to mobile code; its mobility is based on
the concept of location, and location is one of numerous environment elements
that can be abstracted by the concept of context. Context is a powerful
abstraction, since it allows a movement to be expressed in terms of its effects
on the environment. Tt is now possible to use environment elements other
than locations as the basis of reasoning in a computation. Again, genericity
brings in a positive effect in this situation. It enhances current development
techniques (especially for code mobility) to cover environment awareness in
a simple way. For example, a mobile agent can be easily equipped with some

form of intelligence to sense its environment.

" Mocha treats adaptation to environment as a logical consequence of
an awareness scheme. From the model level, there is no difference between
them, since they are distinguished by their reaction towards an environmental
change. Awareness leads to an acknowledgement, while adaptation triggers a
self-regulating action. From Mocha’s point of view, this is a functional issue,

and it is handled at the functional level. Awareness and adaptation is handled
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using the same model. This approach is simpler than other approaches that

requires additional layers to mode! the scheme [BG98, WB98, NPS95).

Context is the concept that unifies a mobile entity, its environment,
and the activation of its functionalities. A context-based mechanism is cre-
ated to establish an association between action execution and the dynamics
within the environment. The mechanism uses a reactive model where action
execution is triggered by the satisfaction of a set of precondition states. The
reactive model is selected to facilitate movements that have non-deterministic
patterns. The same execution framework is also used for the environment

awareness and adaptation schemes.

The reactive model may seem to be inappropriate for certain types
of mobile applications which exhibits a strong algorithmic sense, such as
mobile agent applications. The behaviour of an agent is often expressed as a
series of algorithmic steps that move the agent to a location and execute its
tasks in that location. Mocha handles the situation by using a sequencing
mechanism that operates on patterns of movement. With this arrangement,
the dynamics within the environment is forced to behave deterministically

by following a sequential pattern, producing the required effect.

3.6.3 Separation of Mobility from Functionality

The importance of separating mobility from the functionality aspect has been
discussed in Chapter 2.. Mocha is aware of this issue, and support is given
through the distinction of mobility and functionality abstractions. They
are treated separately by creating different abstraction levels for them and

drawing a clear boundary between the levels.

Separating mobility and functionality issues into different levels of ab-
straction has a significant advantage. It offers more flexibility in further de-

velopment stages by allowing implementation of mobility specification to be
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conducted completely independent of implementation of functionality. This
would not be possible if sepa.ratioﬂ is performed in thé same abstraction level,
as the implementation must be bound to a common platform, which is usu-
ally defined by the programming language. For example, implementation of
aspects in AspectJ [LK98] is heavily influenced by the Java language, which
is used to develop the functional aspect. The idea of separating mobility from
functionality has been tested to propose a visual programming framework for
mobile applications [SNS00]. The framework is based on a metaphor similar
to the space ship scenario described in this chapter. It aims to reduce un-
necessary coupling between mobility and functionality programming, as well

as to ease programming through visual manipulation.

To conclude this chapter, this section has revisited the requirements
for a modeling framework and discussed how Mocha satisfies them. Mocha
successfully fulfils its goals as a modeling framework, but it is not sufficiently
useful as a specification tool yet. The latter goal is significantly important in
a development process, becaﬁse it describes a model as a set of requirement
specifications that are going to be implemented in the later stage. A good
specification tool creates good models that can minimise the abstraction gap
between the modeling stage and the stages beyond it. The next chapter
discusses the effort to develop a specification tool based on the framework

presented in this chapter.
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Chapter 4

Mocha: A Specification
Language for Mobility Control

4.1 Introduction

In a software development project, there are certain requirements on func-
tions, performance, interface, and constraints that have to be met by the
program. They are specified using models that depict information, processes,
systern behaviour, and other software characteristic in graphical or textual
syfnbols. Given a set of requirements, the focus of a development effort is
to implement a solution to meet the requirements. In the implementation
stage, high-level, user-oriented abstractions defined in a model have to be

refined and transformed into program code for machine consumption.

In the traditional approach, modeling of mobility as part of applica-
tion development has not received much attention. Mobility is not regarded
as an abstraction with significant importance to the application being de-
velope;l. This leads developers to represent mobility-related requirements
using existing modeling framework, such as the flow model (Data Flow Dia-
gram [Pre97] and Control Flow Diagram [HP87]), the Class-Responsibility-
Collaborator (CRC) model [WBWW9()], or the Unified Modeling Language
(UML) [RJB99].
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The problem with the existing modeling tools is that they are not
specifically designed to model mobility. They cannot naturally capture the
unique properties of mobile systems. Their modeling abstractions cannot be
used to comprehensively model a mobile system, preventing developers from
working with mobility using a holistic perspective. They only offer’ partial
modeling where a model describes only a particular aspect of the system.
When this situation is brought to the implementation stage, programming is
unnecessarily confined to a narrower scope. It is normally centered around
supporting a dominant type of principal of migration, and programming sup-
port is provided following this direction as well. Problems arise when more
complex mobility-related requirements are defined. The programming frame-

work cannot handle this situation well due to its partial approach.

Mocha can help solve this problem through its ability to capture the
essential properties of mobile systems. A description about the functions,
constraints, and behaviour of a mobile system can be specified in a holistic
manner. No sacrifice to fa,vouf certain mobility aspects has to be made, and
programmers can have a more comprehensive description about the appli-
cation being developed. From here, a more well-informed implementation

strategy can be developed.

A Mocha model has the role to stand as a bridging layer between
the modeling and implementation stages. It has to be represented in such
way that the model's abstractions can fit into an abstraction refinement
process. They have to be easily understood and translated into more detailed
representations. On the other side, a model representation has to keep all

the semantics of Mocha, i.e., no loss of semantics is allowed.

In its intermediary position, a Mocha model defines an implementa-
tion framework in which the development of mobility-related components are
separated from that of functional components. The idea of decoupling the

development domains is due to the orthogonality between these components.

106



The orthogonal relationship can be explained through a software reuse
perspective. In software reuse, there is an assumption that a component
is created to be reusable. The assumption exists {e.g., in the form of an
interface specification) even before the actual piece of code is designed and
programmed. In the Mocha modeling paradigm, however, prior assumption
as practiced in the reuse framework does not have to exist. A mobility control
can be specified without having to know about the functionality that uses it
(e.g., an itinerary does not have to be related to a particular task executed at
the visited places). Conversely, a function can be developed without having
to consider about its potential of being mobile. It does not matter whether

the presence of one aspect will affect the development of the other or not.

What is required by Mocha to perform its role is a representation
tool. Mocha uses a specification language to represent a model. The linguis-
tic approach is selected for several reasons. Firstly, it is relatively easy to
design a language with sufficient expresiveness to model Mocha's paradigm
(i.e., to express Mocha’s abstractions and their relationships). Secondly, the
linguistic approach is also capable of modeling the orthogonality of mobility
and functionality, while at the same time provides a uniform composition
mechanism for abstractions from both aspects. Finally, a linguistic model
can naturally minimise the abstraction gap between itself and the program-
ming language used to implement the model. This is necessary to facilitate

a smooth refinement process in the development stages beyond modeling.

The research deécribed in this chapter focuses on the design of the
specification language, which is also called Mocha. It starts with the speci-
fication framework and some design considerations. The syntax and seman-
tics of the language is then presented, followed by the semantic description
of Mocha’s linguistic constructs. Following this is the section that explains
the usage of the language through some illustrations. Finally some issues

towards the implementation are presented to conclude this chapter.
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4.2 Mocha Specification Framework

As described in Chapter 3, Mocha views mobility and functionality as two
distinct abstractions. The presence of these abstractions requires the speci-
fication language to facilitate two distinct representation models: the state-
based model for specifying mobility control and the algorithmic model for
function specification. It has been known that they are not compatible to
each other. The state-based model favours a declarative approach where
system behaviour is expressed in terms of declarative statements. In this
approach, there is no significant ordering that reflects execution flow, which

on the other hand becomes the emphasis of the algorithmic model.

Mocha handles the multi-paradigmatic situation by assigning different
abstraction levels for mobility and functionality representation. It concen-
trates on the specification of mobility control; which occupies the higher
level. The lower level is outside the scope of Mocha. It is the place where

the programming details of all function abstractions are specified.

Mocha distingnishes two different specification components: passive
components that represent mobile entities carrying some functional abstrac-
tions, and control components that manipulate passive components. There-
fore mobility control specification involves two different activities: definition
of linguistic constructs representing passive components, and manipulation

of these constructs by control statements.

The relationship between these activities are comparable to procedu-
ral programming paradigm, in which data becomes the subject of process
manipulation. However, the relationship between passive components and
their controls is not intrusive. When implemented in an executable program,
mobility control does not modify the internal value of any passive compo-
nent. Instead, it is limited to controling function executions and relocation

of passive components.
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Functional abstractions are specified using the algorihmic approach.
These abstractions may be specified at the mobility level, however, they are
not first-class. Their algorithmic representation is restricted so that it does
not interfere with the control specification. There is a limit on how deep
an algorithmic abstraction can be defined, and this limit is set by Mocha's
linguistic constructs to prevent one from writing too detailed specification.
Alternatively, actions can be specified outside Mocha’s scope and a function
reference can be made using the function’s signature (i.e., its name and list

of arguments).

Passive components are manipulated using a state-based model. The
execution model follows a reactive model. Each action or movement is bound
to one or more precondition states, which abstract the concept of mobility
state. An activation is started when the preconditions hold (i.e., when the

mobility states become true).

State evaluation is controled by control statements. A Mocha specifi-
cation can have more than one control statement, each of them has its own
control abstraction. Mocha does not have a specific evaluation order. State-
ments are evaluated in an arbitrary order, and multiple statements trigger

concurrent evaluation.

Whenever possible, algorithmic processes in mobility control should
be disguised in a more abstract form. This can be done using a sequencing
abstraction. For instance, a series of visits can use a sequence of values that
denote the locations to be visited, instead of using a series of go actions.
This way the algorithmic steps are implicitly hidden behind the property of
the sequence. Using this approach, a travel itinerary (or a pattern of move-
ment in general) can be written in a more concise way. More importantly,
potential conflicts between algorithmic and declarative specifications at the

mobility level can be minimised.

109



To conclude this section, the process of specifying mobility control in

Mocha can be summarised as follows.

1. Definition of functional and mobility components.
Any action must be specified (using limited high-level abstraction) or
referred (its definition is specified elsewhere). The vehicles that carry

these functions must also be defined.

2. Definition of contexts.
Context domains, as well as their context values, that will be used in

a context-based execution mechanism must be defined.

3. Definition of context statements.
This is the place where vehicle and function objects are composed with
context objects. A context statement provides state-based hooks for
action execution. This is achieved by setting up execution rules repre-

sented by mobility state expressions.

4.3 Language Design Decision

Mocha is designed for mobility control specification. The orthogonality be-
tween mobility and functionality implies that Mocha’s design has to clearly
support the separation of mobility from functionality. Some decisions on cer-
tain design aspects have to be made to satisfy the above requirement. They

are presented as follows.

1. Specification paradigm.
Mocha can be thought as an abstract object-based language. The object-
based paradigm is adopted to minimise the abstraction gap between
Mocha and existing development tools. Considering that many model-
ing frameworks and programming languages use the object-based (in-

cluding object-oriented) paradigm, developers should not encounter
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much difficulty in using Mocha in a development environment based

on this paradigm.

Mocha does not work with actual instances of objects, but instead
operates on abstract objects that exist only at the specification level.
However, Mocha objects need not be interpreted using the traditional
concept of object in object-oriented programming languages. They
have the semantics of a generic data abstraction, so they can be re-
alised by different data models used by programming languages. This
approach allows Mocha to be designed like an actual programming lan-

guage while maintaining its abstract nature.

. Simple language architecture.

When mobility is isolated from functionality, it is possible to specify
mobility control using simple and concise expressions. This requires a
simple language architecture with limited number of constructs with
high-level semantics. Mocha satisfies this requirement by using only
two basic constructs that represent passive system elements (e.g., vehi-
cles and functions) and controling elements. It is sufficient to express

any mobility control requirement using objects and statements.

Although Mocha looks like a programming language, it is not. There-
fore it is necessary to avoid using implementation-related concepts in
the language (e.g., the use of variables to hold values). This is to main-
tain the abstractness of the language. In a similar spirit, operations

that lead to functional data manipulation must not be provided.

Mocha recognises separate abstraction levels for mobility and function-
ality specification. However, Mocha components operate only at the
mobility level. Mocha does not facilitate algorithmic specification un-
less it is directly related with mobility. Detailed function specification

is made at the functionality level, which is outside the scope of Mocha.
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3. High-level and abstract semantics.
To compensate the limited number of constructs, it is necessary to as-
sign high-level and abstract semantics to them. At the same time, this
may implicitly confine the application of the constructs to mobility-
related matters. While it seems to be restrictive, one should be re-
minded that the constructs are not designed for general specification

purposes.

4.4 Mocha Language Specification

This section describes Mocha specification language in details. First the
structure of Mocha programs and the object model are presented. This is
followed by the description of the syntax and semantics of Mocha’s linguistic
constructs. A syntax is given using the Extended BNF format. The following

conventions of symbols are used.

¢ A non-terminal syntactic element is shown by enclosing it in a pair of

angle brackets ({ ).

A terminal node is indicated in boldface (if it represents a keyword) or

enclosed in single quotes (if it represents a syntactic symbol).

A range of values is shown by the doble dots (..) symbol.

The | | pair symbols indicate optional syntactic elements.

The | symbol represents alternatives.

e The ( )* symbols indicate zero or more occurrence of the enclosed

elements.

e The ( )+ pair indicate one or more occurrence of the enclosed elements.
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It should be noted that the presentation of the syntax is for illustrative
purpose. Priority is given to the élarity of the presentation so that it can
clearly describe the structure of a Mocha program and how it is composed
from its components. Consequently, some details may be omitted, and the
grammar may not be in its most eflicient form to be used in creating a parser
for the language. The actual grammar used in the construction of a syntax

analyser for Mocha is given in Appendix A of the thesis.

4.4.1 Program Structure

A Mocha program consists of two parts: definition of objects representing
context-based system elements and context statements that control the be-
haviour of the system elements. Each part is realised by a set of linguistic
constructs that can be composed to form a complete specification program.

The following syntax shows the structure of a Mocha program.
program == ( {object.def) | (context.stmt) ) * (4.1)

The (object.def) and {contextstmt) are fop-level constructs that rep-
resent object definitions and context statements, respectively. A top-level
construct is the unit of abstraction in a Mocha specification program. Ob-
ject and context statement definitions can appear in any order. There is no
special construct that marks the ezecution entry point as commonly found

in programming languages.

Objects represent entities that can be manipulated by context state-
ments. The entities represent elements related to both mobility and funec-
tionality aspects. For example, a data item, a function that processes it, and
their mobility property are all represented by objects. Different semantics

are distinguished by assigning different types to objects.
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4.4.2 Object Model

With respect to its object-based paradigm, Mocha uses a model similar to
that of the Python language [vR00]. The concept of object is used to encap-
sulate the abstraction of all entities possibly represented in Mocha. Objects
have types, ideniities, and velues. Types and identities are invariant. The
abstract nature of Mocha objects does not prevent them from having these
attributes. In fact, the concepts of types, identities, and values form part of
the specification. They require an implementation language to have a type

gystem that can support them.

Object Definition

All object definitions, except functions, are defined using a uniform format,

shown as follows.

objdef = (objectid) ’:’ {type_def) (4.2)
[7:=" (valueexpr) ]’;’
typedef = [ ({typedid) ’ =] (typedef)

An object identifier indicated by the (object.id) is unique within a pro-
gram’s name space. The (typedef) represents the notation of a particular
type definition. A value, denoted by (value_expr) , can optionally be as-
signed as the object’s initial value. If such a value expression is not given,
the object is uninitialised. The (type_id) tag denotes a type identifier of a
type indicated by the (typedef) tag. A type could be predefined or user-
defined. The type identifier can be used to refer a user-defined type in an

object definition.
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Object and Its Value

An object can obtain its value through a mechanism called object assignment.
Object assignment is an operation that transfer the value of a source object
to a recipient object. Object assignment is achieved through an assignment

statement.

An indirect operation occurs in an assignment statement that involves
a non-trivial expression (e.g., an arithmetic operation). This is shown by the

following expression.
(objectid) := (expression)

In the above operation, the expression is evaluated, then its value is trans-
parently assigned to an intermediate, anonymous object. Finally a transfer

of value is performed on between the intermediate object and the recipient.

For objects of certain types, an assignment can be specified in terms
of ranges. A range is an enumeration of objects. Only cardinal (countable)
types (integer, character, boolean, and IP address) can have ranges. A range
is denoted by a tilde symbol (~) between the lower and upper bound values

of the range.

Unlike actnal programming languages, Mocha does not have the con-
cept of variables. Programming languages normally use a variable to contain
the reference to an object representation in memory. Because there is no
concept of execution environment in Mocha, there is no need for such a con-

tainer,
Types

Mocha categorises objects into two broad types: passive objects and function
objects. Passive objects represent data and other components that become

the object of manipulation, while functions represent executable actions.
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Types for data objects are further divided into compound and primi-
tive types. Primitive types represeht a single type only. They include num-
bers, strings, boolean, a type to represent IP address, and a type to indicate
voidness. There is only one compound type, which defines an aggregate
that contains heterogenous types. Function objects are instantiated from

the function type.

Types also define allowable operations on objects. Mocha insists type
checking to be performed in any operations. The type of an object in an
expression must meet the type requirement of the operation it is involved in.
Whether type checking is performed statically or dynamically is an imple-

mentation issue and the decision is left to an implementation language.

One could observe that type declaration is dependent on (i.e., as part
of) object definition. It only exists if there is a need to create an object of
that type. An implication of this situation is that a user-defined type only
exists if there is an explicit need for an object of that type within the scope

of a program.

The reason to make type definition hide behind object definition is
that a Mocha specification mainly concerns with state-based manipulation
of objects with a high level abstraction. It is important to highlight ob-
ject representation and manipulation as the main theme in the specification.
Representation of any object attribute should not obscure the overall pro-
gram structure, so that it becomes difficult to grasp the high-level abstraction
of objects. In this situation, providing a rigorous typing mechanism in the
mobility level is less important than program expresiveness and conciseness.
Typing, on the other hand, is important in the implementation of the spec-
ification. 1t is required to ensure type safety which is imposed by many
programming languages. The approach taken by Mocha tries to pursue both
goals. By having a single object-type definition, Mocha will only work with

two essential constructs: objects and state-based control mechanism. At
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the same time, the "hidden” type information that accompanies an object

definition can be used to impose type checking in the implementation level.

4.4.3 Type Specification

This section describes each type known in Mocha. The syntax and semantics

of a type is explained in each subsection. Syntax presentation is grouped by

types.
Integer

The integer type is designated by the keyword int. An integer object rep-
resents a signed integer number. The range of possible values for integers
is not defined by Mocha, but instead by an implementation language. The

syntax of an integer object definition is as follows.

integer_def = {object.id) ’:’ (inttypedef) (4.3)
| [":=" (int_expr)]’;’
int.typedef = ([ (typedd) "="] int) | (type.id)
int_expr = (int_arg) ( (iop) (int.arg) }=*
int_arg = (integer literal) | (object.id) |

(function_call_expr)

integer_literal = [+ ] =] (digit) { (digit) ) *
digit == 1.9
i_Op — ] + ] I H -7 l ? * ? l 3/! | ,%7

The (function call.expr) tag represents a function call expression and its
syntax is given in Definition 4.14. The following examples show some instan-

tiation of integer objects.
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anlnt : intType = int := 1;

anotherInt : int := 10;

clonelnt : int := anlnt;

num : int := anotherInt * aFunction () — 100;
Float

The float type is used to represent floating point numbers. It has double
precision, and the range is defined by the implementation language. It is
denoted by the keyword float. The syntax of a float definition is given in
the following.

float_def := (objectid) ’:’ (float_typedef) (4.4)
[":=" (float_expr)]’;’
ﬂolat_typedef = ([{typedd) '="’] float) | (type.d)
float.expr = {(float_arg) (fop) ( (float.arg) | (int_arg) )«
float_arg = (foatliteral) | (integerliteral) |

{objectid) | (function_call expr)
f_Op e :+7|1_:|7*7l|1/7
float diteral = [ '+ | > =7 ] {(digit) ) * *. { (digit) ) +

[ {exponent) ]

| [+ 17 =717 ((digit) )+ [ (exponent) |
| U7+ [ =7 [ {(digit) ) + [ (exponent) ]

exponent = Ele ['+’ |’ =] ((digit) )+

The (function_call expr) tag represents a function call expression and its
syntax is given in Definition 4.14. The definition of (digit) is given in
Definition 4.3. Type coercion occurs if an operation involves both integer
and float arguments. In this situation, the integer arguments are converted

to floats. Some examples of floating-point number definition follow.
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aFloat : float := 10.0;

anotherFloat : float := aFloat / 4;
f : float := anlnt + 10.35;

f1 : float := a_float_function ();
String

A string type represents a series of alphanumeric characters. Characters
represent at least 8-bit bytes, and normally bytes 0-127 represent the ASCII
encoding. However the interpretation of the character bytes is left to an
implementation language. The type is denoted by the keyword string. The

syntax of a string type definition is shown below.

string.def = (objectid) ':’ (string-typedel) (4.5)
[':=" (string_expr) ] ’;’
string_typedef == ([ (typedd) '=’] string) | (type.d)
string.expr = (string.arg) (’'+ (string.arg) ) *
string_arg == (stringliteral) | (object.id) |

{function_call_expr)

string literal = ” {string) ”
string = ( {(alpha_chars) )+
alpha_chars = G0.9|A.Z|a.z

The syntax shows that a string can be constructed by a concatenation oper-
ation, indicated by the ’+’ symbol. The (function.call expr) tag represents

a function call expression and its syntax is given in Definition 4.14.

There is no separate type to denote a single character. A character
is represented by a string with one element. The following code shows some

string definition examples.

”

aString : string := "a”;
anotherString : string := aString;
strl : string := ”"a” + " string”;
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Boolean

The boolean type is used to create boolean objects, which have the values of
true and false. The type is designated by the keyword boolean. The syntax

for boolean object definition is as follows.

boolean.def == (object.id) ’:’ (bool typedef) (4.6)
[’:=" (boolexpr)]’;’
bool typedef = ([ ({type.id) *="’] boolean) | (type.id)
boolexpr = (logical.expr) | (comp_expr)

The (logical_expr) and (comp._expr) node represent logical and comparison

expressions which yield boolean values, and they are described below.

logical expr = (bool.arg) ( {log-op) (bool._arg) ) *
bool.arg == [P ]( (booleanliteral) | {object.id) |
(function_call expr) )
boolean literal = true | false

logop u= && | |

The !, &&, and || symbols represent the NOT, AND, and OR operators,
respectively. The syntax for (function.call expr) is given in Definition 4.14.
Comparison operations work with integers, floats, or strings, and re-

turn a boolean value. A comparison is performed on the values of the com-

pared objects.

comp_ecxpr = {comp.arg) {compop) {comp._arg) (4.7)
comparg == (int.arg) | (float_arg) |

(string.arg)
compop u= > | >= | == | <= | < | I=
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The (int-arg) , {float_arg) , and ({string.arg) tags are defined in Def-
initions 4.3, 4.4, and 4.5, respectix;ely. The semantics of each comparison
operator depends on the type of the arguments. Numeric arguments are
compared by their numeric value, while string arguments are compared by

their internal representation (e.g., ASCII value).

The following examples shows how boolean objects can be created

using different kinds of boolean expressions.

aBool : bhoolean := true;
anotherBool : boolean := false;
bl : boolean := min < max;

lost : boolean := !found;

IP Address

An object of IP address type represents an Internet address. Tt has a value
which can be expressed either in the 4-tuple number format or the string
format. The range of the values is defined by the Internet addressing systermn.

The IP address type is denoted by the ipaddr keyword.

ipaddr.def == (objectid) ’:’ {ipaddr_typedef) (4.8)
| [':=" (ipaddr.expr) | ’;’
ipaddr_typedef == ([(typedd) '="'] ipaddr) | (type.id)
ipaddrexpr == (ipaddr.literal) | {(object.id) |

(function_call_expr)

ipaddrliteral := (ipmum) | (ipstring)
ipnum == (ipn) ' (ipn) ’. (ipn) ’. (ipn)
ipn == 0.2b5b
ipstring = (string) (’. ({string) ) %

The (function_call expr) tag is a function call expression whose syntax is

given in Definition 4.14. The (string) tag is defined in Definition 4.5.
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An 1P address object represents an abstraction that belongs to the
environment of a mobile entity. The reason to represent the IP-based location
context as a language primitive is that it is so commonly used in mobile
computing. Including it as part of Mocha language specification allows easy

and straightforward representation of locations in many mobile applications.

One can mix the use of the 4-tuple number or the string format of
an IP address, but two equivalent addresses (i.e., they refer to the same
location according to the Domain Name System) refer an equal value of an
IP address object. In other words, the actuel value of an IP address object
can be expressed using different representations. Detection of the validity
of a value representation (i.e., whether it refers to the same machine) is
left to the implementation program. As shown in the following example, if
192.168.10.5 and myhost point to the same machine, then both objects are

said to have the same value.

anIlP : ipaddr := 192.168.10.5;
anotherIP : ipaddr := myhost;

The unique aspect of the IP address type is that it can be used to
define the scope of a computation. The type represents a unit of physical
abstraction that denotes a location, and Mocha uses this type to define its
spatial execution semantics (i.e., to bind a computation to a location). It
means that given an IP address object that is used as a context element,

computation is locally bound to that location.

The ability to express the binding of a computation to a physical loca-
tion changes the perspective adopted by many mobile applications with code
mobility. Currently most development tools for this type of applications as-
sume that control for code migration is done by a program that launches the
code from the machine where the program is executed. Since the program
becomes the controller for any remote execution, it is not possible to to-

tally transfer the execution to the migrating computation. For example, any
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exception in a remote location will mostly be regarded as the program’s ex-
ception, and exception handling Wﬂl be performed centrally by the program.
The program’s central role prevents programmers to have a computation
running independentlAy on different locations, completely detached from the
program and constructing its own (spatial) execution environment. The IP
address type overcomes this problem by offering a mechanism for locality
required for spatial binding through lexical constructs. In other words, it
helps break the connection between the controling program and the migrat-

ing computation.
Void

The type void is used to represent voidness or an instance of non-existence.
There is only one single instance of this object, which can only have one
value indicating the voidness. The object can be accessed through its name,
void. The object is predefired, and no other object definition of this type is

possible.
Dummy Objects

A dummy object is one that has no name, therefore it cannot be referred. It
is denoted by the undescore (_} symbol, and can have any type. A dummy
object is used in situations where only one aspect of an object is required,
i.e., either its presence, type, or value. For example, in a function definition,
parameter specification often requires a handy way to refer to a type (es-
pecially for complex types). Similarly, a user-defined type may be required
to accept the return value. Dummy objects allows consistent application of

Mocha’s object model throughout its linguistic constructs.

The type and value of a dummy object solely depends on the context

of the linguistic expression where the object is used. If it is used in an object
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definition, its type and value follow what is specified in the definition. If it
is used in an expression, its type and value follow the required type and the
result of the operation accordingly. If the context does not provide sufficient

information, a dummy object acquires no particular type and value.

Set

A set represents an unordered collection of unique objects with the same
type. The type of a set is determined by the type of its element objects. A
set object is defined using the keyword set.

set_def = (objectid) ':’ {(set_typedef) (4.9)
[:=" (setexpr)]’;’
set_typedef == ([ (typedd) '=’]set
(int | float | string | boolean | ipaddr |
(seq_typedef) | (set_typedef) | (bag_typedef) ))
| (typeid)
set.expr = (set_arg) ( (set_op} (set._arg) )*
set_arg = (setliteral) | {(objectid) | {function_call expr)
set literal == '’ '} |
7 (setelm) (7, (setelm) ) '}
setelm == (int_expr) | (float_expr} | (string_expr) |

{boolean_expr) | (ipaddr_expr) | (bag expr) |

(seq-expr) | (set_expr) | (range_expr)

The (range expr) represents a range expression whose definition is given
in Definition 4.11. A set constructed from a range expression is expanded
to include all elements within the range. The syntax of (seq_typedef) and
{bag_typedef) are given in Definitions 4.10 and 4.12, respectively, which also
define the syntax of (seq_expr) and ({bag_expr) .
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| Symbol | Operations

+ Set union

| Set intersection

- Set difference

? Set membership test
== Set equivalence test
1= Set inequivalence test

Table 4.1: Set operations

Table 4.1 describes the set operators. The first three operations return

a set, while the remaining operations return a boolean value.

The value of a set is defined by all its members. They can be implicitly
specified by stating their type, or explicitly given by enumerating them. A
null set has no member. Set members must be unique, and their order of

specification does not matter. The following code show some set definitions.

setA : set int := {1,2,3,4,5};

setB : set float := {{float }; # infinite set of float
setAB : setint := setA + setB; # set wunion

subnet := {192.168.10.10750}; # constructed from a range
mynet := {[10,20,30,40,50]}; # constructed from a sequence
Sequence

A sequence object represents a finite ordered set of objects with the same
type. The order is shown by the position of the object in the sequence. A

sequence is denoted by the keyword seq. The syntax is shown as follows.
sequence.def == (object.id)’:’ (seq_typedef) (4.10)
| [’ :=" (seqexpr)] ’;’
seq-typedef == ([{typedid)’="’]seq
(int | float | string | boolean | ipaddr |
(seq-typedef) | (set_typedef) | (bag typedef)))

| (typedd)
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seqexpr == (seq.literal} | (object_id) | (function_call_expr)
seqliteral == [ ) |
" (seq-elm) (’,” (seqelm) ) x '’
seqelm = (int.expr) | (foat_expr) | (string_expr) |
{boolean_expr) | {ipaddr_expr) | (bag_expr) |
(seq-expr) | (set_expr) | (range_expr)
The syntax of (set-typedef) and (bag_typedef) are given in Definitions 4.9
and 4.12, respectively. The definitions also define the syntax of {(set.expr)

and (bag_expr). Value assignment can be done by explicitly enumerating the

values, separated by commas and enclosed by a pair of square brackets ([ ]).

A sequence can also be constructed from a range. The syntax of range

expression is as follows.

range_expr = (int_range) | (boolrange) | (4.11)
{ipaddr_range)
int_range = (int.arg)’~’ (int_arg)
boolrange := (booleanarg)’~’ (boolean arg)
ipaddrrange := {ipn)’~ {ipn)’. {ipn) .’ {ipn) .’ {ipn)

32

N {ipn) *.? {ipn) * ~’ {ipn) *. {ipn) ’.’ (ipn}

J{ipn) *.” (ipn) ’ ~’ (ipn) ’.’ (ipn)

)

J {ipn} *.’ (ipn)

| {ipn

1

)
)
)
| (ipn) . (ipn) >~ (ipn)
The order of a range becomes the order of the sequence. This mode of se-
quence construction, however, can only be applied to objects with a cardinal
type. -

The following examples show different ways to construct a sequence.
Note that when a sequence is constructed from a set, its order is arbitrarily

defined.

126



seqF : seq float := [1.0,1.5,2.0,2.5];
machines := [192.168.10.11750];

matrix : seq seq int :=
[[1,2],[3,4].[5,6]]; # multi—-dimensional sequence
seqSet : seq string := [{” Mars”,” Earth”,” Venus” }];

Mocha does not impose a specification on the size of a sequence. The

size can be static (i.e., fixed} or dynamic (i.e., can be shrinked or enlarged).
Bag

A bag is designed to wrap multiple objects into a single unit of abstraction.
Containment can recurse to any level of depth, and there is no restriction on
the number and type of objects that can be loaded into a bag. The bag type
is designated by the bag keyword. ‘

bag def 1= (objectid)’:’ (bag.typedef) (4.12)
[ =" (bag-expr)] ;’
bag_typedef = ([(typedid)’ ="]bag (bag-body) )
| (typedid)
bagbody u= ’{ (
[ dynamic | {object_id) ’: 7 (typedef) ’;’
T
typedef = (int_typedef) | (float_typedef) |
{string_typedef) | (boolean_typedef) |
{(ipaddr_typedef) | (set_typedef) |
(seq_typedef) | (bag_typedef) | (function_def)
bagexpr = (") | '( (bagelm) (’," (bag.elm) ) ’)’
bagelm := (int_expr) | (float_expr) | (boolean expr) |

(string_expr) | (ipaddr_expr) | (set_expr) |

(seq-expr) | (bag_expr)
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The following code defines a bag object representing a bank account. When
a bag is created, its objects are first instantiated and initialised using the
specified values.
accl : Account = bag {

name : string;

number : string ;

balance : float ;
} = (" John Doe”,” X123-456",1000.00);

Different objects from the same type but with different values can be

created using the type identifier. The following code shows how to create a

new object of the same Account bag.
acc2 : Account := (" Mary Down”,” Z000 —789",1500.00);

A bag defines a locality for its objects. They are not accessed outside
the bag without qualifying them with the bag’s identifier. This is done using
the dot (°.’) operator. For instance, the expression accl.name evaluates to

"John Doe".

The containment relationship between a bag and its element can be
optionally made dynamic. This is denoted by the dynamic keywofd. A dy-
namic containment is like reserving a slot for an element. The element can be
attached or detached from the bag dynamically. A dynamic containment does
not automatically load the specified object. Loading and unloading should
use the attach and detach functions, respectively. Loading is successful if
the object is defined and it has not been previously loaded yet. Unloading
is successful if the object is in the bag when the operation is performed.

Section 4.5.2 illustrates the usage of this feature.

With the dynamic loading and unleoading, it is not possible to trace the
containment status of an element object at run-time, because such an object
can be loaded or unloaded at any time. The dynamic feature is mainly de-

signed to implement the vehicle metaphor of the Mocha modeling paradigm.
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Function

The function type is designed to represent a functionality. A function ob-
ject can be regarded as opaque container for a series of algorithmic steps
representing an action. This means the algorithmic notion of a function is
not visible at the mobility level. A function object can be activated, which
means its action is executed. The definition of a function is governed by the

following syntax.

function.def := (object.id) ’:’ {func_typedef) ’;’ (4.13)
func.typedef = ([{typedid)’="]function ’(’ [({_params}]’)’
—> (type) )
| (typedid)
f params = (f_param) (’,’ (f_param)) *
fparam := (object.id)’:’ (type)
type = int|float |string | boolean |ipaddr |
(type_id)

A function type is determined by its parameters and its body that defines
the action. A function object is different from other types of object as it
does not have any value. When executed, a function always return an object
whose type is speciﬁed in the definition. This object can be assigned to a
recipient object using an assignment statement. A non-returning function
can be represented by one that returns a void object. The following eode
shows an example that defines a function object £sq that takes one integer

object argument and returns an object with an integer value.
fsq : squareF = function (mn : int) —> int

If the returned object is of a user-defined type, the type can be de-
fined with the help of a dummy object. Parameter definition can also take

advantage of this feature, as shown in the following example.
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. : intSeq = seq int;

- : aBag = bag {
X : string;
y : int;

b

fl1 : function (s : intSeg) —> aBag

In the above example, dummy objects are used to facilitate the defi-

nition of intSeq and aBag types that are required in the function definition.

One may observe that a function’s body contairning its algorithmic
specification is not specified in a definition. The purpose of the omission
is to completely isolate the functional abstraction of a function object from
mobility specification. In this situation, a function object acts as a black-box
representation for the functionality. A function definition therefore denotes
the existence a functionality that can be manipulated and activated at the

mobility level, but its specification is given elsewhere.

Once a function object is defined, it can be called to execute the
action. A function call is made by specifying the object identifier and the

required parameters, if any. The syntax is given as follows.

func_call expr = (objectdd) ’(’ [(params)]’)’ (4.14)
params ~u= ({param){ ’,’ (param) )«
param = (object.id) | (literals)
literals = (integerliteral) | {loat.literal) | (string literal)

[ {boolean literal) | (ipaddr literal}

Two distinct function objects can share the same definition. This
can be achieved by creating a new function object using an existing function
definition. Two function objects are distinct, although they refer to the same

functionality. The following example illustrates this.
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squarei : squareF = function (n : int) —> int

intl : int := squarel (10);
square?2 : squarel; # same as squarel
int2 : int := square2 (10); # has the same value as intl

In addition to user-defined functions, Mocha has several predefined
functions. As with other functions, they are abstract functions in which
the details are left to the implementation language. Mocha only defines the

generic semantics of these functions.

o The attach(bag,object) function.
The function attaches an object to a bag in its dynamic containment.
It 1s used to denote the in capability described in Section 3.4.5. The
object object must have been dynamically allocated. It must have
not been previously attached for the operation to be successful. The

function returns the attached object upon a success, void otherwise.

e The detach(bag,object) function.
The function does the opposite of attach. It denotes the out capability
(see Section 3.4.5). It removes an object that was dynamically attached.
It produces no effect on non-dynamic objects. It returns the object

upon a successful removal, void otherwise.

e The now(mob_oﬁj ,context) function.
This is a contextual function. It returns an object with a value repre-
senting the current context value of the mob_obj vehicle that belongs
to a specific context denoted by context. The semantics only allows

it to be used in a context (on) statement.

The function construct is designed mainly to represent task-oriented
actions (i.e., those that perform the tasks to solve a problem). Context-
oriented functionality (i.e., the one that has direct relevance to mobility) are

not strongly supported. Mocha does not encourage developers to work with
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excessive algorithmic abstractions at the mobility level. They can still specify
actions, though, but there is no specific linguistic construct is designed to
represent their abstraction (i.e., it is not possible to define a function at the

mobility level).

4.4.4 Non-Context Statements

Non-contexzt statements cover traditional statements commonly found in pro-
gramming languages. They are designed to accommodate the need for algo-
rithmic representations at the mobility level (e.g., to specify context-oriented
functionality). They are only visible in places where a context-oriented ac-
tion is required. An exception of this rule is assignment statements, which
can be used in object definitions to assign an initial value for a newly de-
fined object. The rule implies that it is not allowed to have a non-context

statement as a top-level construct.

A non-context statement represents a unit of execution of an imple-
mentation program. Collectively, a series of non-context statements exhibit
a sequential execution behaviour. The order of execution of the statements is
defined by the order of their specification. This behaviour, however, is con-

fined to a limited scope under the control of a state-based execution model.-

There are three types of non-context statements, namely assignment,
function call, and control statements. They can be grouped into a block of

statements as well.

ncstmt = ( (assignment stmt) (4.15)
| (function_call_stmt)
| {controlstmt) } ’;’
| (block_nc_stmt)

block ncstmt == '{’ ((ncstmt) )% '}
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Assignment statements are used to assign a value to an object. A
value returned as the result of an expression is assigned to the object specified
on the left side of the .=’ symboi. Mocha imposes type equivalence in an
assignment statement, therefore an expression has to yield a value with a type
matching to the that of the object. The syntax of an assignment statement

is as follows.

assignment.stmt .= (objectid) ':=" (expression) (4.16)
expression = (int_expr) | (Hoat_expr) | (string_expr) |
{(boolean_expr) | {ipaddr_expr) |

(seq.expr) | {set_expr) | (bag_expr) |

{func_call_expr)

A function call statement executes the function’s action and returns
an object with a value, if any. A function call statement is mostly used for
functions that do not return an object (i.e., like a procedure call in Pascal).
However, there is no restriction on using it for functions with a return object
(even if a function returns an object, there is no obligation to explicitly assign

it to a recipient object).

function call.stmt == ({function_call expr) (4.17)

Mocha has control structures similar to those in other programming
languages. There are conditional and loop statements implemented by the if,

for, and while commands. Their syntax is given in the following definition.

control.stmt = (if stmt} | (while_stmt) | (for_stmt) (4.18)

if_stmt

il

if ’(" (boolean_expr) ’)’ (nc._stmt)
[else (nc.stmt) |

whilestmt = while '(’ (boolean_expr)’)’ (nc_stmt)
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forstmt = for '’ [(fornit)] ;" [{comp_expr)] ’;’
[(for_update)] )’ {nc_stint)
forinit == {objectid)’:=" (int_expr)

for update = ({(objectid)’:=" (int_expr)

4.4.5 Context Statements

A context statement is a top-level construct and independent from other
Mocha constructs. It is used to control mobility through object manipulation
based on the concept of contexts. Syntactically, it is similar to a case or
switch statement, only the selector is a context expression. Its definition is

denoted by the keyword on!.

context_stmt 5= on {object_id) (’,” (objectid)) * (4.19)
of {objectid) (’,” (objectid)) *

[ use {seq_expr)] {on_body)

onbody == '{’ ({onclause))* '}’
onclause = (select.expr)’:’ *{’ ({ncstmt)) * '}’
select_expr = (bool_term) ({log.op) (bool term}) *
boolterm = (mob.st_expr) | (bool expr)
mobstexpr u= [P ] (objectid) ( sync {objectid) )=

. [ P ] ( before | at | after ) {context_val)

context_val == [{contextid)’/’ | (’*’ | (integer.literal) |

| (float literal){string literal) | (boolean literal) |
(ipaddriteral) | (bag-expr) | (range_expr) )
(w0 | (intexpr) ) |

| contextid = {objectid) ( ' (objectid) ) x

1The statement is also called the on statemert.
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Linguistic Semantics

A context statement implements Mocha’s computation model as described
by Definition 3.24 in Section 3.4.7. Its explanation starts from the on clause.
An (object_id) tag in this clause defines the object of context manipulation.
The of clause defines one or more context domains. The combination of the
two clauses defines the awareness of the object of the contexts represented by
the context domains. The use clause optionally assign a sequential property

to enable a deterministic program execution.

The {on_body) is the place where context-awareness clauses are spec-
ified using a format similar to a case or switch statement. The left-hand
part of a clause is a selector expression. In addition to ordinary boolean ex-
pressions, a selector allows the use of mobility state ezpressions (denoted by
the (mob_st_expr) tag). A mobility state expression is a boolean expression
that works with context operators before, at, and after (see Section 3.4.2).
Evaluation of a mobility state expression is performed by contextually com-
paring the specified object, which has to be defined in the on clause, with a
confext state. If an evaluation produces a true result, the statements in the

right-hand part of the selector expression will be executed.

The right-hand part of the selector expression is the only place where
algorithmic Speciﬁcatibn is allowed in a Mocha program. Non-context state-
ments specified in this part are executed in an order specified by their spec-
ification order. Mocha does not provide any means to encapsulate this part

into a single abstraction (e.g., to encapsulate the statements into a function).

The sync modifier in a mobility state expression indicates a synchro-
nisation using the specified context state. It is used to define a rendezvous

between the participating objects (see Section 4.5.7).

The context state used in a mobility state expression is denoted by

the (context_val) tag. It must come from a context domain specified in the
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of clause. The optional (context_id) tag serves as a context identifier in the
case of the presence of multiple contexts. If there is only one context defined
in the of clause, it may be left empty. If present, a context identifier is
followed by the specification of a context value. A ’*’ symbol in this part
indicates a match with any value from the corresponding set. The last part
is an occurrence counter. A '* symbol indicates a match to any number of

oCCcurrernce.

The expression {object_id)(op)(context.val} needs some explanation.
As mentioned by Statement 3.18 in Section 3.4.4, it means either the object
or the contextual association between the object and the context referred by
the context value does not exist. In most cases, the falsification is caused
by the latter factor. This happens when the object temporarily experiences
a situation that is not expressable by the context (i.e., the context value

associated with this situation is not defined in the context domain).

The ! operator in the expression {object_id)!{op){context_val) refers
to the mobility state. It falsifies the specified mobility state and toggles the

boolean values of the other corresponding mobility states.

The linguistic semantics of a context statement can be summarised as
follows. The objects defined in the on clause are assigned vehicle semantics.
Its mobility is represented by its context-awareness specified in the body of
the statement. The same mechanism is also used to trigger the execution of
the actions associated with the vehicle. The following example models the

mobility of a salesman who tries to sell his goods in every place he visits.

salesman : bag {
sell : function {) —> void;

}i
location_set : set string := {” London”,” Sydney”,” Tokyo”};

on salesman of location_set {
salesman at */* : [ salesman.sell (); }

}
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Execution Semantics

A context statement models an execution entry point of an executable pro-
gram. There can be more than one context statement in a program, and
each statement is executed independently of the other. This has an effect of

creating concurrent program execution.

When executed, a context statement behaves like a loop statement.
It loops over the mobility states, looking for a matched clause. In every
iteration, each clause is evaluated, possibly triggering an action execution.
There can be more than one match in an evaluation round, and actions can

be executed concurrently. Clauses are evaluated in an arbitrary order.

The difference between an on loop and a traditional loop is that its
iteration is not driven by the statement itself. Instead it is driven by the
context associated with the statement. The loop moves to the next round if
it is triggered by a context state change that can be captured by the loop.
A state change can be captured if its corresponding context value is listed
in the set representing the context domain. Only representable context state

changes can be used to trigger an action.

In a program with multiple context statements, mutually exclusive
statements will run independently. If a particular vehicle is present in more
than one statement, then a state change in a particular context experienced

by the vehicle is reflected in all statements in which the vehicle is involved.

on ML of Contextl {
Ml at #/+ : { MLrunl(); }

on Ml of Context2 {
Ml at */+ : { MlL.run2(); }

}

Context state changes in both Contextl and Context2 affect M1 in both

statements. A similar effect is produced by the following specification.
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on Ml of Contextl, Context2 {
M1 at Contextl /+/% : { ML runl(); }
Ml at Context2 f+/x : { ML run2{(); }

}
The difference is that a program implementing the above specification only

requires one execution thread.

Another unique characteristics of a context statement is its binding
semantics to a contextual sitnation. Conteztual binding is provided by a set
element which represents a context value. When a mobility state evaluates
to true, the corresponding statements will be executed, and the computation

is contextually bound to the state.

Contextual binding is most useful for contexts with spatial semantics.
It is an expressive way to say that a computation is physically bound to a
spatial entity. Given the ability of Mocha to express various kinds of spatial
context, this allows modeling of computation that is bound to, for example,
a machine, a cluster of machines, or a geographical location pointed by a

GPS coordinate. The following example illustrates the concept.

agentl : function () —> void;
localnet : set ipaddr := {192.168.10.10720};

on agentl of localnet {
agentl at 192.168.10.15/% : { agentl (); }

}

Any time the agent1 function object is being at the machine with
IP address 192.168.10.15, its funcfionality is activated. The execution will
be bound to the specified machine. This means the thread of execution is
migrated to that location, and the link to the original location is no longer

maintained. The new place becomes the new locality for the computation.

The previous example also shows another feature of Mocha. It allows

mobility feature to be embedded to any type of object. In the example, a
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mobile property is assigned to a function, and the agentl object represents
both the mobility and functionality aspects. The same technique could be
used to make a passive data (e.g., a database) mobile. In this case, no action

ig activated.

4.5 Working with Mocha

This section explains how mobility control is specified using Mocha. It ex-
plains the semantics of Mocha constructs in more detail through examples.
Examples are given using the space ship scenario presented in Section 3.3.1.
To recall, it describes a space ship carrying an astronaut who performs some
analysis task on samples collected by a robot from the planets visited by
the space ship. The space ship is equipped with an autopilot that can make

necessary adjustments if there are weather problems during the journey.

4.5.1 Functionality Representation

A functionality is implemented by a function object. In many cases, a func-
tionality has a unidirectional characteristic. This situation occurs when a
task needs to be performed in other places by migrating it, and there is
no requirement to retrieve the result. It could be implemented by defin-
ing and calling a function and disregarding its return object. For example,
the following definition creates a reference to a function that represents the
sample analysis task performed by the astronaut. The function accepts one
argument and returns no object.

sample : Sample = bag {

paraml : string;
param2 : int;

b

analysis : function {(p : Sample) —> void;
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When the analysis object is invoked in an on statement, its func-

tionality is activated at the locations specified in the statement.

A bidirectional characteristic is exhibited when a function has some
relevance to mobility. This is shown by a return object that will be used
at the mobility level. This situation is exemplified by the sample collection
task. The robot does this task, returning with some sample collection. The

sample can then be used by the analysis function described previously.
sampColl : function () —> Sample;

The sanpColl is an example of a task-oriented function. The function
is directly associated with the problem to be solved. The autopilot function,
on the other hand, is an example of a context-oriented function. It repre-
sents a functionality that is closely related to the mobility of the space ship.
The following example shows the capability of the autopilot to slow down,
accelerate, and change the destination of the space ship.
accel : function (delta : float) —> void;

slowing : function (delta : float) —> void;
changedest : function (dest : string) —> void;

The previous examples show the way Mocha handles the functionality
aspect. It provides a uniform way to represent a functionality possessed
by any type of mobile entity. All are treated the same, regardless of their
purpose and who owns them. This feature offers a big advantage for mobility
control, as it is directly applicable in both code-oriented and user-oriented

mobility), or even in a mixed situation where both mobility types are present.

4.5.2 Mobile Entity Representation

Mobility is not associated with a Mocha construct. Any construct can be
made mobile by using it in a context statement. However, a mobile entity is

conveniently modeled by a bag. The structural characteristic of a bag is useful
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to abstract the physical notion of a mobile entity, as shown by the following

example that models the robot with the sample collection functionality.

aRobot : Robot = bag {

sampColl : function () —> Sample;

¥
The elements of the aRobot bag moves together as the bag moves.

This feature allows encapsulation of functionality and its supplementary

data. At the implementaton level, it defines the scope of the migrating

objects. All objects in the scope are local to each other and move together

as a whole.

It should be noted, however, that a mobile entity does not have to be
represented by a bag. If the mobility of the functionality is more important
than its physical notion, then a bag is not necessary. For example, the

sampColl object can be made mobile by itself.

A bag, however, is required to represent multiple hierarchical vehicles.
Multiple hierarchical mobility (i.e., migration of multiple mobile entities that
form a hierarchy), as shown by the space ship and robot in the scenario
in Section 3.3.1, can be represented by a hierarchical bag structure. The
dynamic membership that allows dynamic loading and unloading makes it
easy to mimic the mobile characteristic of a vehicle.
aRobot : Robot = bag {

sampColl : function () —> Sample;

e
ship : Ship = bag {

sample : Sample = bag {
paraml : string;

¥
analysis : function (p : Sample) —> void;
# the robot can leave and enter the space ship dynamically

dynamic robot : Robot;
} = (-, .,attach(self,aRobot})};
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Some parts of the code are worth mentioning. The definition of the
sample object and the analysis function are made inside the ship object
to get the effect of local scoping. The field objects become statically part of
the parent object, and their existence is dependent on the parent’s. They
do not need to be initialised, so dummy objects are used in the initialisation
part. Static containment as shown in the example can be used to model an

object that becomes a fixed part of a bigger object.

The robot object, on the other hand, will leave the space ship and
enter it again at some point. The dynamic modifier satisfies this relationship.
The definition of the robot is made outside of the definition of the space ship,
because it is necessary to make the robot visible outside the ship {e.g., when
the robot leaves the space ship and is subject to an independent mobility
control mechanism). In this scheme, the initialisation of the ship explicitly

attaches the robot into the space ship.

4.5.3 Context Specification

A vital element in mobility control is the context on which context-based
manipulation is based. Contexts are represented using sets, with set members
representing context values. Context values can be enumerated individually,
specified using ranges; or defined implicitly. The following example illustrates

possible ways of defining a context,.

socialCtx : set string := {"jim”,” emily”,” ruth”,” bob” };
labSubnet : set ipaddr := {[190.168.100.17254}};
netSpeed : set float := {float };

The first example defines a context of persons that are in the vicinity
(e.g., those who are logging on the same machine as the user associated with
the vehicle using this context). The second definition uses a range set to
define a set of IP address. The last line in the example defines an infinite set

(e.g., to represent a network speed context).
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Mocha also facilitates the definition of contexts formed by several
primitive abstractions. Such contexts can be represented using bags. For
example, a room context is constructed from the abstractions of the room

number and the machine located in a room. This can be specified as follows.

rooml : Room = bag {
number : int;
host : ipaddr;
}:=(1,190.168.10.10);

room2 : Room := (2,190.168.10.11);
room5 : Room := (5,190.168.10.15);

roomCix : set Room := {rooml,room2,room3,room4,room5 };

It should be noted that the previous set definitions do not bear the
semantics of a context yet. They become context representations when they

are used in a context statement.

4.5.4 Context-Awareness and Action Activation

When an object is used in a context statement, it is bound to the context
specified in the statement. The object can listen to any change of a context
state, and effectively become a vehicle. So from the previous space ship

example, the behaviour of the space ship can be specified as follows.

DestSet : set string := {” Mars”,” Pluto”,” Saturn”,

n n

"Venus”,” Jupiter ”,” Uranus” };
on ship of DestSet { .
ship at */x : { ship.analysis (sample); }
}

In the example code, the space ship is made aware of any change in
the context DestSet by binding it to the context statement. Every time
the ship changes its location, the change is captured in the statement and
reflected by the true value of the ship at */* expression. The term */*

denotes a match to any context value at any occurrence.
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The previous example shows how a context statement binds two con-
cepts into a single operational model: assignment of mobility semantics to
an object through a context-awareness mechanism, and activation of func-
tionalities using the same mechanism. Combined with the genericity of the
concepts of object and function (i.e., they can represent any mobile entity
and functionality that belong to it), this model is powerful enough to describe

any mobile system.

Mocha is also capable to model deterministic systems. Many mobile
applications use a predetermined pattern of movement, so it is desirable to
have control over such a pattern. Mocha uses a mechanism that abstracts

the sequential property of a sequence to facilitate this.

DestSet : set string := {” Mars”,” Pluto”,” Saturn”,
"Venus”,” Jupiter 7,” Uranus” };
vSeq : seq string := [” Mars”,” Jupiter”,” Saturn”];

on ship of DestSet use vSeq {

# anywhere, at any occurrence

ship at %/* : { ship.analysis (sample); }
}

The vSeq object acts as an ordering guide for the migration of the
space ship. Equipped with a sequence, the context statement behaves like
a for loop. Starting from the first element, each element is fetched in each
iteration where the mobility state clauses are evaluated. Note that the space

ship only visits three planets instead of six, even though a */* is specified.

A vehicle may listen to more than one context. For example, the
space ship may listen to the location and weather contexts. The following

code shows the specification.

DestSet : set string := {” Mars”,” Pluto”,” Saturn”,
"Venus”,” Jupiter ”,” Uranus” };

WeatherIndex : set int := {0730};
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on ship of DestSet, WeatherIntensity {
ship at DestSet /*/%* : '
{ ship.analysis (}); }
ship at WeatherIndex /[0710])/%* :
{ ship.changedest (alt_dest }; }
ship at WeatherIndex /[11720]/# :
{ ship.slowing (minspeed)}; }
ship at WeatherIndex /[21730]/%* :
{ ship.accel (maxspeed); }

Since evaluation of the clauses are done independently, it is possible
to have more than one clause with a true evaluation result at the same time.
In general, if muitiple contexts are present, evaluation of mobility states
is instantaneously triggered upon an occurrence of a context state change
caunsed by any one of the contexts. In the above specification, there is nothing
to prevent the antopilot from working when the analysis is being performed.

If a more strict situation is required, the code has to be modified as follows.

on ship of DestSet, WeatherIntensity {
ship at DestSet /+/* : { ship.analysis (}; }

ship at WeatherIndex /[0710]/#+ && (! ship at DestSet /#/%) :
{ ship.autopilot (” detour "}; }

}

The expression !ship at DestSet/*/* denotes a situation where the space
ship is losing its association with the context specified by the DestSet. This
happens when the space ship is in the middle of a journey between planets.
As this situation is not expressable by the planet context, the ship is said to
be out of that context during this time. The whole context value expression
describes the space ship being in the nﬁddle of a journey and experiencing a

bad weather.

In general, falsification of an association with a context is used if it is

required to express a disconnected context-awareness.
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4.5.5 Dynamic Structuring Mechanism

The interaction between the robot and the space ship is shown in the following
example. It makes use of the detach and attach functions.

DestSet : set string := {” MarsStation”,” PlutoStation”,
¥VenusStation”,” JupiterStation ”};

RobotDest : set string := {”"spotl”,” spot2”,” spot3”} + DestSet;

on robot, ship of DestSet, RobotDest {
ship at DestSet /#/* : {
ship. analysis (sample );
detach ( ship , robot );

}

(robot at RobotDest /*/1) &&
{(now(robot , RobotDest) == now(ship, DestSet )} : {
attach (ship,robot); # enter the space ship

}

robot at RobotDest /%/1 : { sample := robot.sampColl (}; }

The activity pattern of the space ship shows that every time the as-
tronaut completes the analysis task, the robot is sent out to collect samples.
The robot’s mobility is specified in a separate context statement. In every
location, it does its job, and when its location is the same as the space ship,
it is ordered to enter the space ship. Note how to represent common location
of the robot and space ship (i.e., where the robot enters the space ship) using
set addition operat{on. Mocha does not interpret the granularity of the con-
text values of the sets representing the two different location abstractions.
In this example, they are assumed to have a comparable granularity to allow
the notion of "being at the same place” to be represented. The now function
returns the current context value for a vehicle, and is used to check whether

the robot and the space ship are at the same location.

The previous example illustrates how to detach and attach a vehicle

from another vehicle to model multiple mobility with some dependent char-
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acteristics. When the robot is being contained by the space ship, it is subject
to the space ship’s mobility rule déscribed by the first context statement (i.e.,
it would move along with the ship to the destination planets). The example,
however, does not show a required condition that the space ship waits for
the robot before moving to the next planet. The specification allows, for
example, the ship to continue to another planet while the robot is exploring
the current planet, and return back later to pick up the robot. To solve
the problem, a strict rendezvous is required, and this will be explained in

Section 4.5.7.

The example also shows how to communicate different tasks using
data objects. The sample object is used to represent a logical task sequence
performed by the sampColl and analysis functions. Note that Mocha does
not go into the detail of how the task sequence is carried out. The sample

object only indicates that there is an interface between the two functions.

4.5.6 Task Composition

For mobile applications with non-trivial mobility, program composition is
crucial. The problem is how a problem involving mobility can be decom-
posed into smaller subproblems, to which problem-solving components can

be designed and implemented, and then composed to form a single program.

Task composition is done through context statements. A context
statement is designed ‘to provide a single abstraction for a task involving
mobility. The functional aspect of the task is defined by the function el-
ements encapsulated in vehicles. A vehicle wraps functionalities that are
logically inseparable. Contexts, on the other side, define the mobility aspect.

A context statement binds the two aspects into a single abstraction.

Mocha offers two different ways of composing tasks. The first approach

is task-based composition. In a program with multiple mobile functionalities
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with different agendas, tasks can be composed along the functions. The
goal is to achieve cohesive abstractions of functional modules. The following
example illustrates the concept. For instance, a program needs to perform
two independent tasks, T1 and T2, which are wrapped into two vehicles, V1
and V2, respectively. T1 needs to be executed at A, B, C,and D, while T2
is performed at B, C, and D. The program can be composed as follows.

Destl : set string := {"A”,”B*",”C","D"};
Dest2 : set string := Destl — {"A”}; # means B,C, and D

on V1 of Destl {
V1 at /1 : { V1.T1(); }

on V2 of Dest2 {
V2 at /1 : { V2.T2(); }

}
In general, multiple context statements with a single vehicle gives the

best description of what is going to be performed by the mobile entity.

The above example also shows how parallel and independent mobility
is specified. The two context statements are mutually exclusive because
they work with unique vehicles which have not been used anywhere else.
In the above example, there will be two separate roaming threads running

independently, and there is no execution dependency between them.

In a real-world situation, functional cohesion may not be the only
important factor in mobile application development. For example, efficiency
is often crucial in a distributed computing environment. In some cases it may
be desirable to favour some implementation aspects rather than to program
readability. In the previous example, realising that both tasks are performed
in some common destinations, it may be preferred to have a single roaming
thread, probably sacrificing functional modularity of the specification. To
accommodate this, Mocha provides an alternative to the first composition
approach. This approach tends to favour contertual composition, as shown

in the following code.
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Dest . Set LDC = {”A’,,”B”,”C”,”D”};

on V1,V2 of Dest {
V1 at /% : { VI.T1(); }
((V2 at B/=*) |] (V2 at C/%) || (V2 at D/=)) : { V2.T2(); }

The prograin is shorter, but it is more difficult to understand. It is also
more efficient, because it only has one thread. Although vehicle movement
is independent from each other (i.e., they go to different locations), their
processing (i.e., evaluation of mobility states) are performed by the same

thread. Such a centralised control opens the possibility for efficiency tuning.

4.5.7 Rendezvous

Mobile systems with multiple mobility but no interaction between the mobile
entities are very rare. In most cases some form of communication takes place
among these entities. As explained in Section 3.3.6, such an interaction
is facilitated by the rendezvous mechanism. To recall, a rendezvous is a
meeting between two vehicles so that their underlying functions can perform

some interaction.

Similar to an action, a rendezvous is bound to the context mechanism.
A rendezvous between two vehicles can happen only if they are contertually
local to each other. It means they have to listen to the same context and
responds to the same mobility states. A rendezvous is triggered if the shared

mobility states hold.

, Mocha uses the on construct, combined with the sync modifier, to
specify a rendezvous. A context statement defines the vehicle objects that
propose the meeting and the mobility state on which the meeting is based.
The sync modifier tells the given vehicles to perform some synchronisation to

do some interaction. The following example shows a rendezvous specification.

Dest : set string := {"A”,”B”,”C","D"};
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on V1,V2 of Dest { '
V19 at /% : { VI.T1(); } # clause for V1

(V2 at "B"/+ || V2 at "C"/* || V3 at "D”/+) : ¢ clause for V2
[ v2.T2(); }
V1 sync V2 at "C"/x : { .... } # meet at C

}

The semantics of a rendezvous is as follows. The sync modifier affects
the evaluation of the mobility state clauses. If a vehicle is synced to a
mobility state, it will be "locked” to that mobility state, and will not be
affected by a context state change until its corresponding statements have
been completely executed. In the above code, if either V1 or V2 is experiencing
the state denoted by the context value "C", it remains in this state until the
other vehicle comes to the same state. Once this happen, the corresponding
statements are executed. Upon the completion of the execution, the locks

are released and the vehicles become aware of context state changes again.

The correct interaction behaviour of the space ship and the robot can

be modeled using the rendezvous mechanism. The task sequence can now

be correctly specified. When the ship arrives at a planet, the analysis task
is executed, followed by the despatching of the robot. Next, the ship has to

wait for the robot to enter it before proceeding to the next planet.

DestSet : set string := {” MarsStation”,” PlutoStation”,
*VenusStation”,” JupiterStation ”};

RobotDest : set string := {"spotl”,” spot2”,” spot3”} + DestSet;

ou robot, ship of DestSet, RobotDest {
ship at DestSet /+/x : {
ship. analysis ();
detach (ship,robot); -

}

# the robot is at the same location as the space ship
ship sync robot at DestSet /*/% : {
attach (ship,robot ); # enter the space ship

b
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robot at RobotDest /x/1 : { robot.sampColl(); }

}

Note how the timing constraint is handled in the previous specification. The
robot has to be given some time to collect samples before returning to the
space ship. Therefore there has to be a time lapse between a call to detach
and the following call to attach. Recall that detach implements the out
capability. Calling it makes the robot atomically leave its current position
where the ship is located. This prevents immediate activation of the second
clause, allowing the robot to collect samples. The second clause would only
be activated when the robot returns to the space ship’s location. It implies

that the robot has performed sample collection.

Recall that there are two types of rendezvous (see Section 3.4.8). Strict
rendezvous does not allow context state change to happen before both parties
finish their interaction, while loose rendezvous allows it, Most interactions
require strict rendezvous, and this is supported by default by Mocha and
reflected in the semantics of a confext statement. It is shown by the locking
mechanism of the sync operation that prevents a vehicle from changing its

state until the actions are completely executed.

Loose rendezvous, on the other hand, allows context state changes
to happen during a rendezvous. It does not require specific support. The
prerequisite for a rendezvous, i.e., the contextual locality, can be modeled
using the now function. Once a rendezvous takes place, there is no need to

guard it from a context state change.

4.6 Discussion

The specification and features of Mocha language has been discussed in this
chapter. The language is designed as a specification tool for the Mocha mod-

eling paradigm. It can be used to describe a mobile system by defining the
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system’s components and their relationship. Mobile entities are created by
defining and structuring mobility and functional components, and function

execution is controled by a context-based mechanism.

The way the behaviour of a mobile system is controled in Mocha is
different from that of the traditional approach. Control specification is writ-
ten in linguistic constructs with high-level, user-oriented semantics, but still
following a syntax similar to a programming language. This representation

style reflects the intermediary role of the Mocha language.

As a specification tool, Mocha focuses on some aspects that become
the highlights of its modeling paradigm. The model’s genericity is supported
by keeping the language’s constructs away from implementation-specific se-
mantics. The syntax and semantics of Mocha also support the principle of
separation of concerns. They set a framework which concentrates on the mo-
bility concern and prevents functionality from being specified in a detailed
fashion. Finally the relationship between a mobile entity and its physical
relation is captured by a context statement. The statement also represents
Mocha’s uniform mechanism to control any action in the realm of the mobil-

ity model.

As a specification language, Mocha has a responsibility to pass the ab-
stractions from the modeling stage to the design and implementation stages.
This is required so that the design and implementation of a mobile applica-

tion can be based on a well-defined system specification.

Language design becomes important in this situation. The design
should facilitate gradual abstraction refinement in the design and imple-
mentation stages. This goai is achieved by borrowing some design concepts
from programming languages and modify them to operate on the Mocha’s
modeling paradigm. Concepts like objects, types, and statements are com-

monly used in programming languages, and by adopting them in a model
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specification, it should not be difficult to transform the specification into
an implementation program. Thié explains why Mocha excels in modeling
mobile applications, compared with other specification languages such as 7
[Spi92] and LOTOS [vEVD&9]. They are designed without explicit intention
to provide assistance in implementing a program based on it. Even though
extensions for such specification languages exist {e.g., abstract data typing
for LOTOS [QPM*93]), they still cannot easily bridge the abstraction gap

between modeling and implementation levels.

Mocha is also compatible with other modeling tools. The dualism
between functionality and mobility aspects can be used to achieve an inte-
grated view of mobile application modeling. Modeling is done in a two-tiered
fashion, reflecting the relationship between the two aspects. Mocha handles
modeling at the mobility level, while tools such as DFD specifies the process-
and data-oriented abstractions at the lower level. For example, given the fol-
lowing Mocha specification,

DestSet : set string := {” Mars”,” Pluto”,” Saturn”,
"Venus”,” Jupiter ”,” Uranus” };

on ship of DestSet {
ship at %/ : { ship.analysis (sample); }
}

the analysis function can be described further by descending to the func-

tional level. A possible description of this function is shown in Figure 4.1.
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Figure 4.1: A DFD for the analysis function
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The above modeling strategy suggests the multiple facets of applica-
tion modeling. Different aspects of an application are modeled using different
approaches that suit the nature of the aspect. This strategy is employed by
UML that provides different modeling views (hence its ”Universal” name
comes from). It has an advantage of being able to precisely specify the ob-
ject of modeling, since the view is designed to capture the essential features
of the modeled aspect. In this perspective, Mocha’s role is to facilitate mod-
eling of the mobility aspect of a mobile application. It does not attempt to
be universal, but it can act as a complement to other tools designed to model

other aspects of an application.

The next step towards a real software product is the design and im-
plementation stages. The computing environment where an implementation
will be carried out has to support some implementation requirements listed

as follows.

e The ability to represent mobile entities.
e The ability to represent functionalities.
e The ability to capture and represent environmental elements.

e The ability to represent mobility states and perform evaluation on

them, which is combined with the ability to execute functionalities.

The most common way in implementing a Mocha specification is to
follow the traditional programming course in which a model is implemented
in a programming environment supported by a programming language and
other tools such as libraries and debuggers. A programming language usu-
ally has a good abstraction handling, so Mocha’s constructs could be im-
plemented easily. Mocha’s context-based execution mechanism can also be

implemented, or at least emulated, using the language’s execution model. In
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this development course, specification code is transformed into its equivalent
form using the programming language’s constructs. Mobility components re-
sulting from the transformation process are composed with components that

build the functional aspects to create an executable program.

A mobile application does not have to be implemented in a program-
ming environment. Operating system shell is another possible alternative for
a development environment. To some extent, Linux {and Unix in general)
tools and their programming philosophy provide the required implementation

support for certain types of applications.

The next two chapters deal with the implementation aspect of Mocha
specification. Chapter 5 discusses implementation following a traditional
programming course. The Java programming environment is used as the de-
velopment environment. Chapter 6 discusses an implementation on the Linux
shell environment. The purpose of the research described in these chapters
is to evaluate the usability of Mocha’s modeling paradigm and specification
language to assist mobile application development in different computing

environments.
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Chapter 5

A Programming Framework for
Mocha

5.1 Introduction

The Mocha language for mobility control specification has been presented
in Chapter 4. In Mocha’s framework, mobility control is specified at the
system modeling level. The output is a specification program that models
the behaviour of a mobile systeﬁ. System description is represented using
high-level linguistic constructs that abstract the notion of mobile entities, the
physical environment elements that surround them, and the functionality of

the entities.

A specification program has to be implemented to produce an exe-
cutable program. Mocha constructs has to be translated into program com-
ponents at a lower level. The components then have to be composed with
those representing the functional aspects. This implementation process com-
pletes the development of a mobile application (i.e., it produces a tangible
software product), and becomes the essence of the research work described
in this chapter. The research work also evaluates the development approach
proposed in this thesis. It is expected that invaluable lessons can be learned

from the experiences gained during the implementation course.
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The impleinentation of Mocha specification is carried out using a
framework-based approach. This approach is used because a programming
framework is relatively easy to develop, and from a programmer’s point of
view, it provides a guided assistance so that the programmer needs only to

concentrate on a specific scope of his or her implementation task.

The framework described in this chapter uses Java as the target lan-
guage. The selection is mainly based on practical reasons. Java is a popular
programming language which has support for distributed system program-
ming. This feature is most useful to implement location-based computation,
which becomes the core part of many existing mobile applications. Java is
also backed-up by extensive libraries and tools for working on various ap-
plication areas. They help programmers save time and effort in coding a

prograin.

It should be noted that the programming framework is developed as a
prototype. The prototype does not elaborate all aspects of the specification
language, as this can lead to technical difficulties which require substantial
amount, of programming time and effort. For example, the prototype does
not support multiple mobile entities and hence the rendezvous mechanism.
Otherwise, it has to deal with management of multiple threads and thread
synchronisation that spans over a distributed computing environment, a pro-

gramming topic that is beyond the scope of this research.

The main issue in developing the programming framework is the pro-
cess of transformation of a specification program into an executable Java
program. It is not a trivial task due to the abstract nature of the semantics
of Mocha constructs. This issue is discussed in Section 5.3. Before that, the
proposed approach for developing the framework is explained in Section 5.2.
The design and implementation of the framework is presented in Section 5.4.
Finally this chapter is concluded by Section 5.5 that presents the lessons

learned from the development experience.
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5.2 From Specification to Implementation:
The Framework Approach

The essential problem of translating a Mocha specification to a Java program
is how to transform Mocha’s object model to that of Java, and to implement
the context mechanism embedded in a context statement. Object model
transformation is required because the semantics of Mocha’s object model
and Java’s are different due to the difference of their operational level. Im-
plementation of Mocha context statements is necessary because Java does

not provide intrinsic support for Mocha's context-based execution model.

Implementation of a Mocha specification requires more than just a
transformation of its object model and implementation of its context-based
mechanism. As mentioned in Chapter 4, Mocha retains some degree of ab-
stractness, so some details required in its implementation are still missing.
The details are missing because it leaves the semantics of some constructs
open to different methods of implementation. For example, consider the

following Mocha set definition representing a context.
mycontext : set string = {” stall”,”low”,” medium”,” high”};

The definition states that the object mycontext is a context which has four
distinct context values expressed as strings. The information is not sufficient
to build a complete Java program. It does not specify, for example, the
meaning of each string representing a context value {e.g., what is the meaning
of a "low” 7). Furthermore, it does not tell how to get a context value (e.g.,
to monitor actual physical measurement and to convert it to an appropriate
category). This gap must be filled during an implementation work to produce

a complete executable program.

The above situation can be approached using the software frame-

work technique. A framework is a set of cooperating modules that make
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up a reusable design for a specific software domain [GHIV95]. A framework
provides architectural guidance by partitioning a software design into some
structural parts implemented by its modules. It defines the responsibilities
of the modules and their collaboration. Therefore a framework supplies an
infrastructure which dictates the archifecture of an application, and pro-

grammers use it by filling some application-specific functionality.

A programming framework for Mocha can be useful to help program-
mers build a Java program that implements a Mocha specification. The
framework creates the overall structure of the application built from core mo-
bility components, and programmers provide the details of the components
by defining their operational properties. The advantage of this approach is
that it frees programmers from writing implementation code from scratch.
This boftom-up practice is discouraged, because it makes it difficult for pro-
grammers to have a complete picture of the application. The framework,
on the other hand, preserves Mocha's conceptual view of the application. It
carries over the high-level abstractions of a model specification and passes

them to the implementation level in a smooth transition.

The scope of the framework covers two main areas: the representa-
tion of mobile entities and the implementation of the context-based execution
mechanism. Mobile entities are represented by creating a set of object struc-
tures. The object structures implements the structural property of vehicles
and emulates a context-awareness mechanism required by the context-based

execution mechanism.

' The implementation of the context-based execution model is more
challenging, because it has to mimic the non-procedural nature of the state-
based execution model. The framework makes use of the event-based noti-
fication system to emulate the asynchronous and non-deterministic interac-
tions between a vehicle and the context-awareness mechanism. Programming

mobility state evaluation is also another challenge, since it is not trivial to
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represent the high-level semantics of contexts and perform contextual com-
parison on them. The framework helps by providing some basic semantics

for some operations required in this activity.

Using the programming framework, the implementation a Mocha spec-
ification can be simplified into the following steps. They are exactly the same
as those described in Section 4.2, indicating a consistent development pro-

Cess.

1. Define the functions.
2. Define the vehicle for the functions.

3. Specify the mobility control.

These steps are carried out as normal object-oriented programming, free-
ing developers from working with concepts that are incompatible with their

programming customs.

5.3 Object Model Transformation

Before discussing the design and implementation of the framework, it is nec-
essary to mention some guidelines that explain in general how transformation
from a Mocha code to a Java program is conducted. These guidelines are

useful to avoid conflicts between user-defined code and the framework’s code.

Recall that Mocha is an object-based language with an abstract notion
of objects. All entities are represented by abstract objects. It means that an
abstract object is free from implementation-specific semantics such as object
creation, object references, and thorough type systems. Mocha includes a
limited type system for its objects, but it is mainly designed as a guidance
for an implementation process, and does not become part of the core modeling

abstraction.
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Java, on the other hand, is an object-oriented language with its own

object model and works with real objects. Apart from the core object model,
it has to deal with implementation aspects and has to incorporate design
decisions on these aspects into its language design. For example, Java’s type
system is much more complicated than Mocha’s, because it has to cover
implementation-specific aspects like object references. These kinds of things

make a transformation of Mocha's object model to that of Java non-trivial.

Mocha, however, provides basic information for such a transformation
to take place. With the help of the framework, what is required by program-
mers is a set of guidelines to help them perform the transformation. The

rules are given in the following.

1. Mocha’s simple types are mapped to their equivalent type, or to the cor-
responding Java classes thatl represent the type.
There are some exceptions for this rule. The ipaddr type has no equiv-
alence in Java, which uses a string representation to denote an IP ad-
dress. String is not a simple Java type, so an initialisation means
creation of an object of class String. The void object maps to a null
object or void type. Finally, dummy objects are not needed in a Java

program, because it is used to represent a situation where a type infor-

mation is expected instead of an object, which never occurs in Java.

Some examples of object transformation are shown as follows. The left
part shows Mocha definitions, and the right part shows their equivalent

“form in Java.

. .

i : int; int 1i;
' f : float := 0.1; float f = 0.1;
b : boolean := true; boolean b = true;
s : string := ¥ Mocha"; String s =
new String (" Mocha”);
! p : ipaddr := 192.168.10.10; String p = new

String ("192.168.10.10");
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Simple types can also be mapped to objects of the corresponding type.
The following Java statements can also be used for the first three cor-
responding Mocha statements mentioned previously.

Integer i;

Float f = new Float (0.1);

Boolean b = new Boolean(true);

The decision to use a simple type or a class representation is left to the
programmers. The latter is generally required if the objects are used

in operations that do not permit simple type representation.

. The set and sequence types are mapped to predefined Java classes.

They can be implemented using framework classes that have similar
semantics. The Set class provides necessary functionality for the set
type, most notably the set operations. The important features of the

Set class are shown below.

public class Set {

public Set (Object [] elm) // comnstructor accepting
// an array of object
public void add(Object elm) // adds a set element
public void add(Object{] elm) // adds an array of elmnts
public Object get{Object elm) // gets a set element
public Object [} get () // gets set elements
public Object remove(Object elm) // removes a set element
public void clear () // removes all elements
public int size () // gets set size
public Epumeration elements () // an enumeration of
// all set elements
public boolean isEmpty () // true if set is empty
public boolean equals(Set 3) // equality operation
public boolean subsetOf(Set s) // subset operation
public Set intersection(Set s) // intersection operation
public Set union(Set 3) // union operation
public Set difference (Set s) // difference operation

}

Consequently, a set object definition with initial value assignment may
have to be implemented in more than one Java statements. This is

shown by the following example.
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setl : set int := {1,2,3}; Object [] m = {new Integer (1)
' new Integer (2)
new Integer (3)

Set setl = new Set(m);

b

The implementation of the sequence type follows the same approach.
It is implemented by the Seq class which wraps a single linked-list

container.

public class Seq {
public Seq(Object [] elm) // constructor accepting
// an array of object
public void add(Object elm) /[ adds an element
public void add(Object[] elm) // adds an array of elmnts
public Object get(Object elm) [/ gets an element

public Object get(int i) // gets an element
public Object [] get () // gets all elements
public Object remove{(Object elm) // removes an element
public Object remove(int i) // removes an element
public veid clear () // removes all elements
public int size () // gets sequence size

public Enumeration elements () // an enumeration of
/[ all sequence elements
public boolean isEmpty () // true if empty

}

A sequence object definition may also have to be implemented in more

than one Java statement, as shown in the following example.

seql : seq int := [1,2,3]; Object [] m = {new Integer (1)
new Integer (2)
new Integer (3)

Seq seql = new Seq(m);

7
?
};

The implementation of both the set and sequence abstractions are com-

monly found in third-party libraries. They can be fine-tuned to create

"the required specification.

. Functions are transformed into methods.

A Mocha function object is like a template for its implementation. Pro-
grammers have to define the details of the functionality in the function’s

body.
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A function object is transformed into a method. While a function is
an autonomous object, a method is not. Therefore it is necessary to
wrap a method definition with a suitable class. The name of a function

object may safely be elected as the method name.

f : function (num : int) class fclass {
~> float ; float f{int num) {
temp : float := 9/5%num;
return temp;
}
}

Java does not support the notion of dynamic class membership, so if
the attach and detach functions are to be implemented, they have to
be supported by an additional layer implementing the dynamic mech-
anism. However, it is not necessary to immplement them, because they
are designed to model the dynamic movement of mobile entities shar-
ing some common tnigration patterns. In reality, this situation can
be represented using different ways. For example, in applications with
code mobility, it can simply realised by a mechanism that is capable of

sending multiple pieces of code to different locations concurrently.

. Bags are implemented as user-defined Java classes. A bag representing
a data object is implemnented as an instance of an ordinary Java class.
If the definition includes an initialisation assignment, an additional
statement is required, as well as a constructor to enable object creation

using the given values.

"bl : bag { class P {
name : string ; String name;
age : int; int age;
} := (" John Doe”,30}; P(String n, int a) {
name = 1t; age = a;
}
}
P bl=

new P(” John Doe”,30);
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The implementaion of a bag which represents a vehicle will be discussed

in Section 5.4.5.

5. Suitable container classes must be provided and organised as necessary.
As mentioned in the beginning of this section, all mapping definitions
must be placed in an appropriate position to conform to Java's syntax.
Methods and object instantiations must be wrapped into classes. Ad-
ditional class definitions can either go into the same wrapper class or

be promoted as top-level classes.

These rules provide guidance for writing and organising implementa-
tion classes. Class organisation is crucial as it affects how framework classes

are incorporated in a program.

Composition of mapping constructs becomes the responsibility of pro-
grammers. They need to weave the mobility components and their function-
ality counterparts to form a.complete program. At this stage the high-level
abstraction carried by the mobility components melts and disappears, mix-
ing with that of the functionality components. There is no more distinction
between mobility and functionality components, and programming is subject

to object-oriented practices.

5.4 The Design and Implementation of the
Framework

The crucial aspect in designing the framework is to preserve as much as
possible the conceptual abstractions of Mocha constructs. They are needed
in order to provide the overall view of the architecture of an application. The
solution is to keep the design of the framework classes as close to the original
abstractions as possible. In particular, special attention must be given to the

the context-based mechanism, because Java’s procedural programming is not
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compatible to the state-based model employed by the mechanism. The design

of the framework’s architecture is important to deal with this situation.

5.4.1 The Architecture of the Framework

The architecture of the framework supports the idea of making a vehicle
as a central component in Java-based mobile applications. Its components
highlight the mobility of functional components through context-awareness,

as shown in Figure 5.1.

Physical environment

Context Monitor Context Monitor L
(CMon) (CMon)
Context Manager
(CMan}

Vehicle

func. comp. func. comp. func. comp.

L

Figure 5.1: The architecture of the framework

A vehicle’s structure is divided into two parts. The main part exhibits
the vehicle’s role as a container for functional components. The other part
contains components for context management which represents the vehicle’s

mobile capability.

The container part can be implemented using normal class definition.
The reference of any functional component that needs to be relocated is
placed here, making the functional classes part of the vehicle class. If the
vehicie object moves, any functional object that is defined within its class

will also move.

The context management part distinguished a vehicle class from other
classes. 1t basically consists of two elements: context monitors (CMon)

and ‘the context manager (CMan). A context monitor acts as a sensor
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for the vehicle. It is created for each context listened by the vehicle. It
detects any context state changé and reports it to the context manager.
The context manager is the core of the context processing. It does context
information preprocessing if necessary, and based on the result, performs

context evaluation and triggers action execution.

5.4.2 The Event Handling Mechanism

Recall that the operation of Mocha’s mobility mechanism makes use of the
concept of event (see Section 3.4.2). An event for a particular context state
is generated when the context state evaluates to true, and the event persists

as long as the state holds.

Figure 3.3 shows that Mocha events are continuous. However, it is not
possible to represent the continuous state of an event in a discrete program-
ming environment. Instead, the framework captures the state transitions
that mark the beginning and the end of an event. To achieve this, it uses
a different notion of events. An event in the programming framework (as
dpposed to a Mocha event) is used to signal a state change that toggles a
Mocha event. Such an event is represented by an object that carries a value

representing the context value associated with a Mocha event.

publiec class Event {
Object value;
public Event(Object v) { value = v; }

} .

An event object is used in an event-handling mechanism, like the one
adopted by Java’s graphics programming environment [AG97]. The mech-
anism involves two entities to whom an event is associated. The first is an
event source, and the other is an event listener. An event source is an object

where an event object comes from. An event listener is the place where an

event object goes to.
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In the framework, the event source role is played by a context monitor.
Executing on behalf of the environmental element it listens to, it triggers
an event by creating an event object every time it detects a context state
change during a measurement or when notified by an external source. The

event object is then dispatched to all subscribed listeners.

The event listener role is played by a context manager. It listens to
events generated by each context monitor. To do this it must subscribe itself

to the context monitors. The scheme is shown in Figure 5.2.

LCUntext Monitor H- -~ ->\ Context Monitor
i

|
= . =
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& % —1 o |.e
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Context Manager

Figure 5.2: The relationship between context monitors and a context manager

5.4.3 The Design of a Context Monitor

A context monitor is actually not a part of a vehicle. It is designed to
represent a context which is completely distinct from a vehicle. However, at
the implementation level, it could become impractical to separate the two
entities, since managing the interaction of a vehicle and a context object
in a distributed computing environment is not a trivial task. For example,
a context object should be available at any location a vehicle is visiting.
This can be realised either by object replication or central management, but

neither of these methods are easy to program.

Instead of placing a context monitor at the environment side, the
framework chooses to incorporate a context monitor to a vehicle. However,
a context monitor still acts on behalf of the context it represents. It les

in the boundary between a vehicle and the physical environment, and can
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be considered as a peripheral part of the vehicle. Monitoring is performed
by observing a change of an object’s value representing the current context

value.

A context monitor can work in the active or passive mode. In the
active mode, it actively performs a monitoring activity, for instance by doing
measurement on some physical quantities (e.g., network speed or hard disk
space availability) at certain times. The returned value becomes the current
context value, and if it is different from the previous value, a context state

change has occured.

In the passive mode, a context monitor passively waits for other sys-
tem components to notify a change. This mode is suitable in situations
where the context monitor relies on an external source in obtaining infor-
mation about a context state change. It happens, for example, in mobile
agent applications, where the run-time system that implements a location

can notify a context monitor of a mobile agent if it arrives at a new location.
The design of the template class that represents a context monitor is
shown as follows.

import javax.swing.event .*;
import java.util .=;

public abstract class CMon {
Set cvals; // context values
EventListenerList listeners; // event listeners

public abstract boolean checkValue (Object v);
public void addEventListener{EventListener 1);
public void removeEventListener { EventListener 1);
void dispatchEvent { Object value);

public abstract Object monitor{Object arg);
public Object accept(Visitor v, Object arg);

Recall in Section 3.4.1 that a context is represented by a set of context

values. The CMon class contains a reference to a set object representing a
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domain of the context it represents. The set object is useful if the context
domain contains a finite number of context values. The class provides an
abstract method, checkValue, for checking whether a value belongs to a set
or not. The method is also useful for context with infinite number of context
values. Instead of storing the context values in the set object, a class monitor

can directly use a value if it belongs to the context.

The listeners object in a context monitor holds a list of event lis-
tener objects. Addition and removal of event listeners are done using the
addEventListener and removeEventListener methods, respectively. The
methods accept an event listener object, which is a context manager in this

case.

Event dispatching is performed by the dispatchEvent method. It
creates an event object containing a specific value by calling the createEvent

method and sends it to all members of the listener list.

The event dispatching method is called when a context state change
occurs. The notification can come from the context monitor itself, in this
cése if the context monitor actively detects for such a change, as indicated by
an invocation of the monitor method. Instead, if a context state change is
informed by an external source, the accept method is called. In return, this
method will call the visit method of the caller, before resuming with the
event dispatching. The reciprocal behaviour implements the wvisitor pattern

[GHIV95], which allows non-intrusive modification of the object behaviour.

5.4.4 The Design of a Context Manager

A context manager has the responsibility of maintaining subsecriptions to one
or more contexts, listening to a context state change event, and performing

mobility state evaluation. Its class design that reflects these tasks is shown

as follows.

170



import java.util .x;

class Subscription {

CMon cmon; // context monitor subscribed

QObject current ; // register for current context value
Vector previous; // register for previous context values
void update(Object newvalue); /[ update the registers

}

public abstract class CMan implements
EventListener, Visitor {
// acts as an event listener and a visitor

Vector subscr; // contains list of subscriptions

ﬂ public void subscribe (CMon evsrc);

; public synchronized void acceptEvent (Event event);
public boolean updateRegisters (Event event);

public abstract Object assignSemantics{Object cval);

boolean before (Object cval, int count);
boolean at(Object cval, int count);
boolean after {(Object cval, int count);
public abstract void eval{Event event);

The subscr object holds the list of context subscriptions. For each
subscribed context, a context manager instantiates an object of the class
Subscription to hold context monitor, the current context value, and a list
of past context values. These values provide the information required to
determine the mobility state of the vehicle. Manipulation of context values
is performed by calling the updateRegisters method. Figure 5.3 shows the

structure of a context manager with its subscription objects.

As an event listéner, a context manager object has to implement the
Eventlistener interface. An event object is passed to a context manager
by calling its acceptEvent method. This method is a gateway to a series of

processing that initiate a mobility state evaluation, which makes use of the

before, at, and after methods (this is explained in Section 5.4.6). If a raw
| context value is passed along with an event object, it can be assigned a more

intuitive meaning using the assignSemantics method.
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Figure 5.3;: The structure of a context manager
5.4.5 Implementing a Vehicle

A vehicle is distinguished by its context-awareness. Since this functionality is
provided by a context manager, it perfectly makes sense to subclass the CMan
class to represent a vehicle. A subclass basically covers two things: realisa-
tion of the parent’s abstiract methods, and inclusion of classes and methods
that implement the functional components. The inheritance is shown by the
following code portion. -

public class aVehicle extends CMan {

- public Object assignSemantics(Object cval) { ... }
public void eval(Event event) { ... }

In a Mocha épeciﬁcation, a vehicle is a passive part of a bigger but
transparent control system. A vehicle is subject a control mechanism external
to itself when it is involved in a context statement. In the scope of a context
statement, the execution control applied to all vehicles lies in the top-level
program. This configuration allows mobility control of the overall system to
be applied centrally.

The centralised approach requires a top-level application object to
hold all vehicle objects and implementation of context statements which con-

trol the mobility of the vehicles. However, programing this approach can get
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very complicated when routines from a mobility programming toolkit (e.g.,
pCode [Pic98] or Voyager [Obj99]) are embedded in vehicle objects as a re-
location engine to enable code migration. The central role of the top-level
application object requires it to be accessible by all vehicles, and an intuitive
solution would be making it fixed to a particular location. Program complex-
ity increases as vehicles located in different locations have to be controlled
by a centralised object. Non-trivial processings are split between objects lo-
cated in different places, and they have to be centrally coordinated for the

application to run properly.

Alternatively, a vehicle can be designed as a self-contained entity. In
the self-controlled approach, the controller role is taken by an individual
vehicle. A vehicle proactively control its own mobility without the presence
of any central controling mechanism. Instead it uses a generic context-based
mechanism which may utilise a relocation engine as a primitive to enable
code migration. This approach is a simplified implementation of the Mocha
model, but it removes much of the programming complexity in implementing

the centralised control mechanism.

A self-controlled approach requires a vehicle to be self-sufficient, in the
sense that it should be able to acquire all information required to control its
mobility, and perform mobility state evaluations to achieve this purpose. The
first requirernent is satisfied by the collection of context monitors. The second
requirement is met by the context manager through the eval method. The
method is designed to implement a context statement. It basically contains

a series of if statements for mobility state evaluation.

5.4.6 Mobility State Evaluation

The main part of the eval method implemented in a vehicle object is a

collection of if statements for mobility state evaluation. Implementing an
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evaluation expression is straightforward since such an expression is simply a
boolean term. The before, at, and after methods have to be realised as

well for this purpose.

A mobility state evaluation can be performed using simple algorithms
working on information provided by context value registers. The algorithms
assume a given pair of arguments, value and count which represents a context
value and its n** occurrence, respectively. They also need num{value) that
denotes the number of occurrences of a given context value so far. The

algorithms are given in the following.

e The before state:

calculate num({value };
if (num(value) < count)
return true;
else
return falsge;

o The at state:

if {current_value == value)
return true;

else
return false;

s The after state:

calculate num{value);
if (num(value) > count)
return true;
else
return false;

The crucial part of mobility state evaluation is the execution timing,
i.e., when an evaluation should take place. The Mocha model specifies that
evaluation should happen if there is a context state change. In the pro-

gramming framework, it means an evaluation is started only when a context
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monitor sends an event to the context manager. In this scheme, the invoca-
tion of the eval method actually depends on the monitoring policy adopted
by all involved context monitors. A context monitor can do monitoring either
actively or passively, regularly or on-demand. In all cases, monitoring thread
is usually asynchronous to the thread running the vehicle. To achieve this, a
context monitor should run on a different thread from the main thread. Its
operation can be started when the thread is initialised (i.e., when the method
run is called). This is shown in the following code.

public class NetworkMonitor extends CMon
implements Runnable {

public Object monitor (Object arg) {
// perform network monitoring

public void run{) {
monitor (nuil );
} .

}

A typical vehicle class definition that shows how to subscribe to a
context and start a monitoring thread is shown in the following code. The
code shows that the context monitor runs on a different thread from the main
program’s thread.

public class MyVehicle extends CMan {
// definition of all abstract methods goes here

public void eval(Event event} {

// specify mobility state expressions here

public static void main(String argv[]} {
NetworkMonitor mon = new NetworkMonitor (" mon_1");
MyVehicle vhe = new MyVehicle (};

vhe. subscribe (mon); // subscribe to ’'mon’
new Thread (mon}. start (}; // activate the monitor
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'The execution flow of a mobility state evaluation is illustrated in Fig-
ure 5.4. It shows four separate mon‘itoring threads operating on the same con-
text manager. Whenever a context monitor detects a context state change,
it creates and dispatches an event which will be captured by the context

manager through the acceptEvent method.
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Figure 5.4: The flow of context value processing

The first process is an optional semantics assignment of a context
value. The context iralue passed on to the acceptEvent may come directly
from a physical measurement and may need to be given a meaningful at-
tribute before it can be used further. This can be done by implementing the
abstract method assignSemantics. An example of using this method is to
translate a network speed reading to a human-oriented categorisation such
as "low” or "high”.

The next processing step is to update the status of the context value
registers. The current context value register is replaced by the value carried

by the event object and pushed into the list of previous values.
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Finally, mobility state evaluation is performed by the eval method.
(Given arguments of the context {/alue being processed and a counter that
indicates the n** occurrence of the corresponding context state, the before,
at, and after state can be determined using the algorithms presented in the

beginning of this section.

As shown in Figure 5.4, the series of processes are executed in a sep-
arate thread from those of context monitors, and must be synchronised to
protect the integrity of the results. In this processing mechanism, execution
of the methods depends on a monitoring thread, passively waits for an event
notification. At the same time, multiple threads are allowed to participate
in the mechanism. The net effect is an execution semantics similar to that

of the execution model of context statements.

5.4.7 Adding a Relocation Engine

The purpose of a relocation engine is to enable a program component to
perform some form of real movement. An example of a relocation engine
is the mechanism that allows a mobile agent to move from one machine to
another. A relocation engine is commonly provided by programming toolkits
that have a feature to send code to remote locations, which is normally based
on remote communication techniques such as Remote Method Invocation

(RMI) [Mic98] or network socket programming.

The framework uses the code migration features of the uCode toolkit
[Pic98]. Unlike other toolkits, zCode is lightweight in the sense that it em-
phasiées on fine-grained code mobility. Code relocation is performed at the
smallest unit of mobility (i;e., classes and objects). Additional semantics
(e.g., autonomy in mobile agents) is not part of the mechanism but can be
added on top of it. This provides a flexible mobility mechanism that allows

various mobility abstractions to be built on top of simpler constructs.
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pCode’s modular design makes the embedding of a relocation engine
in the framework not difficult. What is required is to define the unit of
mobility, then embed the engine to that unit. Since the unit of mobility is a
vehicle, and a vehicle is implemented as a subclass of a control manager, it

makes sense to implant the engine definition to the CMan class.

The engine should work transparently in providing mobility feature to
the framework. Its operation should be hidden from programmers. In pCode,
any code relocation can be viewed as a change of execution environments.
This fits perfectly with the context-based model. pCode’s migration opera-
tion can therefore be viewed as a transparent functionality that allows code
to change locations. In the framework, the functionality can be integrated

using the same event-handling mechanism.

An intuitive way to do the integration is to build a location abstraction
on top of pCode’s location server, called MuServer, and makes such an object
capable of emitting an event every time a vehicle is coming to that location.
A vehicle can subscribe to this event source, and be notified when it enters
the scope of the location. The problem with this approach is that a vehicle
has to subscribe to every available location server. This becomes impractical

if there are many of them.

The framework takes a less elegant but simpler solution. It relies on
the autonomy of a vehicle. Instead of expecting a location server’s notifica-
tion, a vehicle notifies itself when it arrives at a new location. This is done
by generating an event, which is sent to the vehicle’s own context monitor.
The context monitor will capture the event and process it as if it came from
an external source. The mechanism is shown in Figure 5.5. It eliminates
the need for an explicit location server. It is important to keep the self-
nottfication mechanism transparent. Programmers only need to know the

destination locations, while the details are taken care of by the framework.
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Figure 5.5: Context value processing with the presence of a relocation engine

This approach can be implemented using ¢Code’s MuAgent mobility
abstraction. The main characteristic of this abstraction is its autonomy. A
MuAgent object can be programmed to visit certain locations and do some
actions without requiring external intervention. The following code shows

how a relocation engine is embedded in a context manager class definition.

import mucode. abstractions .#;

public abstract class CMan extends MuAgent
implements EventListener, Visitor {

}

public class MyVehicle extends CMan
implements EventSource {

’ MuAgent object’s autonomy is implemented by a thread object. Java
has a limitation is performing thread migration: it cannot save the execution
state during a migration, so a thread has to be restarted when it arrives
at the destination. This limitation creates a restrictive effect on Java-based

programming toolkits, as it becomes impossible to have strong mobility that
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demands execution state to be migrated along with a thread. The frame-
work, on the other hand, is not dﬂ'ected by the limitation. The separation
of mobility and functionality with the reactive execution model insists that
execution state (i.e., context state in this case) to be evaluated every time a
state change occur. This eliminates the need for saving such a state during

code migrations.

The framework can make use of the reactivation of a thread to initialise
context monitoring at the new location. This is done by specifying it in the
run! method of a vehicle, which is the execution entry when the thread is
restarted. The itinerary of the vehicle can be implemented using a sequence
of destinations. The next destination is determined by the first element of
the sequence, which is removed from the sequence before the migration takes

place.

public class MyVehicle extends CMan
implements EventSource {

String [] dest = {"hostl”,” host2”,” host3”};
Seq dests = new Seq(dest):

public void run{() {
// start the context monitor threads
network_monitor.t. start ();
location_monitor . t.start ();
// wait for the monitoring threads to finish
// before performing a migration
network_monitor.t. join ();
location_monitor.t. join ();
// remove the head of the sequence
String next = ( String) dests.remove(0);
// migrate to the next destination
if (dests.size () > 0) go(next);

It should be noted that a vehicle whose mobility is driven by an engine

requires a terminating context monitoring threads (i.e., the threads do not

1A thread object has to define a run method. The method becomes the entry of
execution when the thread is started.
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run forever). They have to be stopped, serialised, and sent to a remote

machine during a migration, then woken up again in the new location,

5.5 Discussion

The previous section discusses how reactive mobile systems can be imple-
mented in Java. This section describes the lessons learned from the frame-
work implementation. It analyses the applicability of Mocha’s modeling
paradigm in the implementation stage of a software development project.
The analysis focuses on the fitness of an existing programming language (i.e.,
Java) in implementing the modeling paradigm. The purpose of this section is
to identify programming-specific requirements for a natural implementation

of the paradigm.

5.5.1 General Issues

There are substantial differences between application implementation fol-
lowing Mocha approach and that following the conventional approach. The
conventional approach treats a mobile application the same as other types of
applications. Its implementation is based on a model that cannot capture its
unique aspects. Such a model fails to provide a strong basis for supporting
mobility. Consequently, its implementation inherits this weakness, and is

often able to provide partial mobility support.

On the other hand, Mocha offers a more conceptual approach. Its
modeling framework provides a uniform model for mobility to handle different
types of requirements, and at the same time allows its modeling abstrations
to be gradually refined and implemented. Since programmers have a unified
view of mobility, any mobile application could be implemented using the

same development framework.
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The differences between thg two approaches are illustrated by a mobile
agent application. In the traditional approach, a mobile agent is modeled as
a collection of functionalities that can be sent to a remote machine. As
shown by many agent-based programming toolkits {e.g., Voyager [Obj99],
Aglet [LO98], Sumatra [ARS97], and Agent Tcl [GKCR97]), the concept
of migration is as a functionality. Consequently, this mobility feature is
implemented using the programming framework designed for implementing

functional abstractions (e.g., the moveto method to perform a migration).

Problems arise when the software requirements expand, for example,
to include support for context-awareness as well. The conventional approach
treats code mobility differently from the new requirements (e.g., code migra-
tion vs asynchronous programming), therefore their implementation attracts

different programming approaches, increasing the complexity of the program.

With Mocha, a mobile application development starts from an ab-
stract model that views mobility as a common feature of any entity with a
potential to move. More importantly, mobility is treated separately from the
fUnétional aspects, and handled by a universal mechanism. In the agent ex-
ample, agent migration is handled separately from its task execution. When
the requirements expand, the same mechanism is used to deal with user mi-
gration (e.g., to perform context awareness). The implementation does not

have to use different approaches, therefore reducing program complexity.

The genericity of Mocha allows redefinition or extension of the require-
ments of a mobile application to be implemented in an elegant manner. This
not only covers those related to implementation, but those related to software
allocation as well. For example, a user requires that task execution of the
mobile agent is now carried out by physically moving the computer to the
destinaton (i.e., by the user). The policy change requires radical modification
of the software requirements. Using Mocha’s approach, such a modification

is simplified by isolating the mobility aspects from the functional aspects
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(i.e., the design and implementation of functional modules does not have to

be modified).

5.5.2 On Programming Paradigm

Object-orientation is a programming paradigm that is designed with the con-
cept of modularity in mind. The class construct plays a vital role in encap-
sulating units of abstraction. Clean boundaries between design abstractions
enable modular implementation of program components. With this feature,
it is eagy to implement Mocha constructs into Java objects. It is straightfor-
ward to transform most Mocha object definitions into equivalent Java classes
and object instantiations. Mapping of Mocha functions requires a bit of twid-

dling, as writing them as methods needs user-defined classes that wrap the

methods.

Object-orientation also performs very well as an integration tool for
mobility and functionality components. Once mobility components have been
transformed into Java objects, they can be seamlessly composed with func-
tional components that may have been developed before. It should be noted,
however, that from an implementation point of view, similar well-composed
programs may be produced from other programming paradigms (e.g., proce-
dural). This is because at the programming level, all concepts have been uni-
formly translated using the same programming framework. There is no more
difference in abstraction levels of components from different domains, like
those found in Mocha. In this situation, the selection of object-orientation
may not have preference over other programming paradigms. For example,
an implementation in C language would probably give a similar quality in

terms of program composition.

In summary, from Mocha’s point of view, the selection of a program-

ming paradigm for implementation is not a crucial issue., However, it becomes
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important during an actual implementation (i.e., programming) activity, as
such work involves external aspécts that are outside the realm of Mocha
model (e.g., addition a mobility engine, need of additional toolkits, and pos-
sible program extension or modification). When new components must be
integrated, program composition becomes an important issue, and the selec-

tion of a capable programming paradigm becomes relevant at this point.

5.5.3 Semantics Implementation

It is expected that the programming environment used in an implementation
should be able to preserve the semantics of the specification language while
realising it in an actual execution environment. In developing the framework
for Mocha, a big implementation issue is the incompatibility between the
sequential nature of Java program execution and Mocha's reactivity. This
incompatibility becomes an obstacle in the realisation of context statements.
A context statement construct requires a non-terminating loop with external,

possibly asynchronous inputs that drive loop iterations.

The framework circumvents the problem by moving the loop mech-
anism away from a vehicle as the main controller part of a program. The
responsibility of performing the loop is taken over by context monitors which
run on separate threads. The vehicle, running on the main thread, passively
waits for an event indicating a context state change. This solution, however,
has disadvantages. First, there is a semantic change to context statements
as the notion of loop disappears. Furthermore, it requires non-transparent
thread programming. This adds some burden that can distract programimers

from their main tasks.

The disadvantages show that Java is not a natural language for imple-
menting Mocha’s execution model. A better solution could be implemented

using a linguistic mechanism that naturally captures the reactive semantics
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of a context statement. Moreover, the mechanism must not impurify the
semantics of the underlying programming paradigm, because it can reduce
the effectiveness of the paradigm, particularly when the language is also used

for programming the functional aspects.

One possible way to implement the requirements is to build the lin-
guistic mechanism on top of the original language. In Java environment,
this approach has been implemented, for example, by Junior [HSB99] and its
predecessor Sugar Cubes [BS98]. Both systems add reactivity to the original
Java execution mechanism. Reactivity is achieved through new constructs
called reactive instructions, which are executed using logical execution en-
gines called reactive machines. The set of reactive instructions provide nec-
essary operations in a reactive system. Execution engines encapsulate the
execution behaviour of any operation performed on it, transforming the se-
quential execution model of Java to the one that exhibit reactivity and par-
allelism. The idea of using reactive machines to facilitate the new execution
behaviour is interesting, as it isolates the new behaviour from the original
one. This minimises any incompatibility that may occur due to the addition

of the new mechanism.

5.5.4 Multiple Mobility and Rendevous

The framework for Mocha does not implement multiple mobility with ren-
dezvous arrangements. If multiple mobility is to be implemented, a separate
thread has to be created for each context statement defined in a model specifi-
cation. This thread has to cooperate with other threads representing vehicles
and context monitors. Moreover, this thread cooperation has to work in a
distributed environment, as vehicle and context monitor threads may migrate

to other locations.
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The difficulty in implementing the scheme is due to lack of high-level
support for multithreaded programming and synchronisation over distributed
objects. Java’s thread management is based on the concept of monitors
[Hoa74]. The low-level nature of