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Abstract

!
i

This thesis develops six optimisation approaches for efficiently and effectively

solving fuzzy multi-mode resource-constrained project scheduling (FMMRCPS) of

any realistic sizes with single or multiple objectives, where activities have fuzzy

duration times and have several performance modes under different workable resource

requirements. FMMRCPS is complex because it needs to solve two subproblems

simultaneously: (a) mode assignment, and (b) the sequence of activities in a schedule.

A fuzzy hybrid goal programming approach is developed to deal with multiple

objectives in FMMRCPS. The approach minimises both the project completion time

and the project cost, as these two objectives are major concerns in project scheduling.

This approach integrates both fuzzy set theory for handling fuzzy activity duration

times and a rule knowledge base for mode assignment. Thus, the complexity of

FMMRCPS is simplified to single mode project scheduling.

Five heuristic and metaheuristic approaches are developed to deal with the single

objective of minimising the project completion time, including: (a) a fuzzy heuristic

approach, (b) a fuzzy genetic algorithm (GA), (c) a fuzzy GA with tabu, (d) a fuzzy

simulated annealing (SA) approach, and (e) a fuzzy SA approach with tabu. These

approaches provide a methodological framework for solving complex FMMRCPS of

practical sizes efficiently and effectively, whereas exact approaches are not viable.

The fuzzy heuristic approach applies a set of priority rules and mode assignment

policies to fuzzy forward and backward scheduling simultaneously in order to minimise

the fuzzy project completion time. Its application to a real instance of dredge overhaul

scheduling demonstrates its simplicity and effectiveness in solving FMMRCPS

involving fuzzy activity duration times.

Both fuzzy GA-based approaches use both fuzzy forward and backward

scheduling to permit the survival of good solutions and the elimination of bad ones in

generations, after operations on activity priorities and modes are manipulated. To
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perform fuzzy GA effectively, a chromosome, representing a schedule, is specifically

designed which has the following advantages: (a) reflecting the fuzzy nature of

FMMRCPS, (b) facilitating the application of genetic operations on both activity

priorities and modes, (c) always generating feasible schedules, and (d) avoiding an

additional procedure of decoding a chromosome that is commonly required in GA. In

addition to the functions of fuzzy GA, fuzzy GA with tabu has an extra function for

avoiding newly generated chromosomes from being the same as those previously

generated. The performance evaluation study shows that fuzzy GA with tabu produces

more diverse schedules than the fuzzy GA alone for finding a good approximate

globally optimal schedule effectively.

Two versions of fuzzy SA approaches: (a) fiizzy SA and (b) fuzzy SA with tabu

are developed for obtaining a good approximate globally optimal schedule through

searching various neighbourhoods by perturbing both activity priorities and modes at

different scheduled times from individual current schedules. A solution representation is

carefully designed in order to generate neighbourhoods easily and efficiently through

the perturbation. In addition, a novel technique, using the time pointer, is proposed for

evading a full scheduling in neighbourhood generations, thus reducing the

computational time enormously. The purpose of developing fuzzy SA with tabu is to

avoid cycling the same search space that may occur in applying fuzzy SA alone. The

integrated tabu mechanism keeps track of solution attributes of recently visited

neighborhoods in order to forbid the search of neighborhoods already visited. Thus, the

search explores more areas to identify better solutions. An experiment conducted

suggests that fuzzy SA with tabu outperforms fuzzy SA alone in terms of minimising

the fiizzy project completion time.

The major contributions of this research are in the development of a number of

approaches that have their own distinctive merits in solving complex FMMSCPS of

practical sizes, providing flexibility in effectively tackling project scheduling as

encountered in practical applications. First, the research develops a novel technique to

decompose a complex multi-mode scheduling problem into a simplistic single mode

scheduling problem that can be solved effectively by simple ways such as fuzzy hybrid

goal programming. Second, in the evolutionary based approaches, a problem-specific
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chromosome is effectively designed to gain insights into the nature of complex

scheduling for the approaches to be applied efficiently in order to obtain a globally

optimal solution. Third, the specifically designed solution representation increases the

possibility of digging for the best solution. Fourth, the result of this research provides

useful insights for combining different approaches into a system framework by utilising

the advantages of each approach. It gives an efficient and effective way of procuring an

approximate globally optimal solution for solving practically sized FMMRCPS under

fuzzy activity duration times.
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Chapter 1

Introduction

1.1 Motivation of the Research

Resource-constrained project scheduling (RCPS) is a research field of

scheduling activities under the constraints of both precedence relationships and

limited resources in order to satisfy a specified single objective or multiple objectives.

RCPS has been widely used in such areas as industry, engineering, and defence.

However, current project scheduling problem models have difficulty in meeting many

requirements in the real-world. This motivates me to develop novel approaches to a

new realistic scheduling problem model that is capable of handling most possible

situations occurring in project scheduling.

RCPS was introduced by Kelley (1963), Lambourn (1963) and Wiest (1964) in

the 1960s. In this field, each activity can only have one performance option, referred

to as an executive mode. This classical RCPS of considering one single mode, has

been the focus of much research over the past four decades (Ozdamar and Ulusoy

1995, Brucker et al. 1999, and Herroelen et al. 2001).

To meet practical needs, multi-mode resource-constrained project scheduling

(MMRCPS) was brought to attention by Elmaghraby (1977) in the late 1970s.

MMRCPS was more flexible and realistic, allowing several executive options under

different resource settings for an activity, as compared with classical RCPS. Each

mode of an activity has its unique duration time and its unique resource requirements.

Researchers have attempted to develop many different exact approaches using

enumeration schemes and bounding rules. Even though some of these exact

approaches are claimed to be "a powerful approach to MMRCPS", they can only solve

small sized problems of up to a maximum of 30 activities (Bouleimen and Lecocq

2003). This is because MMRCPS is a complex problem, and requires tackling two
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subproblems simultaneously in a schedule: mode assignment and activity sequence. It

is NP-hard in the strong sense in terms of combinatorial optimisation. Thus, these

approaches are often unable to solve MMRCPS problems of practical sizes.

In MMRCPS, project sizes and the number of modes for an activity can greatly

influence the mathematical complexity of scheduling, especially when many

constraints are imposed. Developing heuristic, particularly metaheuristic approaches

seems to be a more promising means of solving MMRCPS with NP-hardness (Kolisch

and Padman 2001). Doctor (1993) proposed a rule-based heuristic approach

employing priority rules and a resource-feasible mode for solving MMRCPS. Drexl

and Gruenewald (1993) applied regret-based biased random sampling with serial

scheduling. Lopez et al. (1996), Ozdamar (1999), and Hartmann (2001) developed

genetic algorithms (GA) for application to MMRCPS. Jozefowska (2001) proposed a

simulated annealing (SA) approach to MMRCPS. All the above approaches assume to

be deterministic, and these approaches developed to MMRCPS are few in the

literature.

In real situations, MMRCPS is often uncertain, and realistic approaches need to

be developed to meet these situations. In this research, much attention has been paid to

the development of novel and practical approaches for solving MMRCPS of any

realistic sizes with single or multiple objectives under uncertainty.

1.2 Uncertainty in Project Scheduling

Project scheduling is often ridden with uncertainty. The uncertainty may arise

from either a form of randomness or fuzziness. Randomness arises due to the

uncertain future performance of an activity. The future performance can only be

predicted using probability theory even if the information on past performances of the

activity is sufficient. Fuzziness arises due to lack of precise information on the

performance of the activity, and the performance has to be evaluated by vagueness

and often subjectively. Such a phenomenon of the uncertainty can only be modelled

by possibility theory, referred to as fuzzy set theory (Zadeh 1965).
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Activity duration times under uncertainty in project scheduling were discussed

by Britney (1976), who applied a probabilistic approach. That is, the activity duration

time is estimated by beta distribution on the assumption of sufficient prior

information. However, probabilistic approaches are theoretically valid only when the

experimental or observational data about the activity performance are adequate. Such

approaches have been widely applied in project scheduling for the last two decades.

In the real-world, project scheduling often enters the fuzzy environment because

of lack of precise information on activity duration times or because of very limited

availability of past information on similar types of activities. It is very difficult to

forecast precise estimates of activity duration times due to their vagueness and

imprecision. The application of fuzzy set theory in project scheduling provides an

effective way of handling the uncertainty of this kind. Figure 1.1 indicates two major

disciplines dealing with different kinds of uncertainty.

Project scheduling
under uncertainty

Situations

Sufficient historic information
about performance of activities

Situations
(1) activities have never been

performed;
(2) information on similar types

of activities is very limited

Probability theory
(Stochastic approaches)

Possibility theory
(Fuzzy sets)

Figure 1.1 Two types of uncertainty in project scheduling
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To estimate activity duration times intuitively, linguistic terms represent an easy

and effective way of expressing the decision maker (DM)'s assessment, using their

knowledge and experience about limited and vague information. Linguistic terms such

as "approximately", "impossible", "unlikely", "about", and "from ... to..." are often

used to estimate fuzzy duration times of activities in project scheduling. For example,

the duration time of an activity is approximately from 18 to 20 days and, impossible to

finish within 15 days and unlikely to exceed 25 days. The duration time of another

activity may be estimated to be completed in about 10 days, and unlikely to take less

than 8 days or more than 15 days. These terms express vagueness and imprecision in

nature, rather than clearly defined boundaries. Therefore, a fuzzy membership

function is an effective way of expressing such imprecise information involving

subjective judgement.

1.3 Research Problem Description

Project scheduling has permeated through almost every field in order to manage

projects or large tasks. It is essential to define the problem domain that meets most

possible practical requirements in project scheduling. In this research, a number of

approaches are developed based on this scheduling problem model.

A number of project scheduling models have been proposed for tackling specific

problems encountered in the practical world, since RCPS was introduced in the

1960s,. Weglarz (1979) introduced the preemptive RCPS model, in which some

activities can be interrupted during processing. The time-constrained project

scheduling model is concerned with completing a project in the given deadline

(Deckro and Hebert 1989). The resource levelling model attempts to consume various

resources as level as possible so that the steady usage rates may lead to the lower cost

(Woodworth and Willie 1975). The net present value model is concerned with

payment and cash flow from the financial point of view (Grinold 1972). The

stochastic scheduling model involves probabilistic activity duration times according to

estimates from prior available information (Devroye 1979). The multiple mode

scheduling model makes flexible by allowing activities to have several executive
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manners (Elmaghraby 1977). These problem models presented above have aimed to

meet specific needs in project scheduling.

The problem of interest in this research is to develop a number of practical

approaches to solve realistic project scheduling problems. Therefore, the initial step is

to define the research problem that responds to all possible situations occurring in real

life project scheduling. Figure 1.2 shows the problem model representing the

generalised case of project scheduling to be solved in this research.

Fuzzy multi-mode resource-constrained project scheduling
(FMMRCPS)

(1) Fuzzy duration time

(2) Crisp duration time

(1) Single mode to activities

(2) Multiple modes to activities

(1) Limited resources

(2) Precedence relationships

(1) Single objective

(2) Multiple objectives

Figure 1.2 Scheduling problem description

A number of activities in a project may have never been performed previously

or some activities may have been carried out for only a limited number of times.

Precise information on these activities is often unavailable or not sufficient for use in

practical settings. The uncertainty relating to fuzziness should be taken into

consideration in real life projects. Of course, the duration times of some activities in

the project may be quite certain and therefore deterministic. An instance of an activity

is to test the quality of a machine required to be run for a specific time. The project

scheduling problem model therefore should cover both fuzzy and crisp activity

duration times, as shown in Figure 1.2.

In a large number of realistic instances, activities of a project may be possible to

be performed in one of several executive options under different workable resources

settings. Each executive option of an activity, referred to as an executive mode, has its

own duration time with its corresponding resource requirements. However, in some
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cases, a few activities of the project may only be allowed to have one executive mode.

An activity of opening up an engine may permit only one executive mode under the

resource requirement of a specific number of labourers and engineers. Neither extra

human resources will improve the efficiency of this activity, nor will less staff be able

to perform the activity. As pointed out in Figure 1.2, the generalised scheduling

problem should have both single and multiple executive modes.

Constraints in project scheduling are another concern of project as shown in

Figure 1.2. Precedence relationships are a logical connection imposed on related

activities that often appears in practice. That is, one activity cannot start until a

number of preceding activities have been completed. For example, in laying a gas

pipe, digging the ditch must precede setting the supporting frame for the pipe which,

in turn, must precede laying the gas pipe underground. Precedence relationships

among activities can be visually represented in the form of a network diagram. The

resource constraint is usually imposed on projects because the amount of resources

available to a project is often fixed for the life of the project. This constraint can be

technological restrictions or budget limitations. How resources are allocated to

eligible activities is crucially important in managing limited total resources, and the

efficiency of resource allocation greatly affects the quality of project scheduling.

The goal, referred to as the objective of project, often needs to be considered in

order to satisfy specified requirements in scheduling, as shown in Figure 1.2 of single

and multiple objectives. In terms of the single objective, minimising the project

completion time is one of the most common interests for industry and organisations

because the project is often required to complete as soon as possible under existing

resources. However, sometimes project scheduling requires considering several

performance measures. In the research, both the project completion time and the

project cost have been taken into consideration simultaneously as these two objectives

are often the major concerns of industry and organisations in terms of budget and

timing.

As addressed above, the research problem must cover most practical situations

encountered in project scheduling. The problem model defined in the research is
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easily modified and extended when a different single objective (other than project

completion time) is required or different multiple objectives are imposed in project

scheduling.

1.4 Objectives of the Research

The aim of this research is to develop a number of novel approaches that can

efficiently and effectively solve both single and multiple objectives in fuzzy multi-

mode resource-constrained project scheduling (FMMRCPS) of practical sizes under

different requirements where activity duration times are fuzzy. Figure 1.3 shows a

number of realistic approaches developed for solving the real-life sized FMMRCPS

under a fuzzy environment.

Fuzzy Goal Programming Combined
with Mode Assignment Policies

Fuzzy Heuristic
Approach

Fuzzy Genetic
Algorithm

Fuzzy Genetic
Algorithm with Tabu

Fuzzy Simulated
Annealing Approach

Fuzzy Simulated Annealing
Approach Incorporating Tabu

Figure 1.3 Approaches developed to FMMRCPS
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To deal with multiple objectives in FMMRCPS as shown in Figure 1.3, a fuzzy

hybrid goal programming approach, incorporating mode assignment policies, is

developed. Activities of a project are often ridden with uncertainty because of lack of

precise information on performance of activities. Fuzzy set theory is integrated into

goal programming to handle fuzzy activity duration times caused by vagueness and

imprecision. In addition, FMMRCPS is a complex combinatorial optimisation

problem. To reduce the complex nature of FMMRCPS, mode assignment policies are

proposed to facilitate the assignment of modes to activities. This approach effectively

reduces FMMRCPS into single mode RCPS. Thus, the scheduling problem can be

easily solved within this straightforward framework.

For tackling a single objective, five FMMRCPS approaches are developed in

this research, which are shown in Figure 1.3 and briefly described as follows:

(a) Fuzzy heuristic approach

This approach applies both a set of priority rules and a mode assignment

policy to the fuzzy forward and backward scheduling. Priority rules determine

scheduling priorities of candidate activities at a given scheduling stage, and the

mode policy decides the mode of selected candidate activities. The mode

policy is specially designed to complete each path at the earliest possible time,

subject to the condition of making all paths as even as possible.

(b) Fuzzy GA

This approach is based on the principle of the evolutionary process by

surviving fit chromosomes and eliminating weak ones for gaining optimal

solutions at the end of the process. To solve FMMRCPS effectively, a

chromosome is carefully designed in order that it can be easily operated in the

genetic means. In addition, generated chromosomes always guarantee

feasibility.

(c) Fuzzy GA with tabu mechanism

The tabu mechanism is an intelligent mechanism for memorising the status of

chromosomes that have been previously generated. This mechanism is
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specifically integrated into the fuzzy GA in order to stop the production of the

same chromosomes that have already been generated in recent searches. Thus,

it gives more diverse chromosome generations.

(d) Fuzzy SA approach

This approach is an iterative search algorithm, that is a metaphor of annealing.

This approach is based on changing a temperature from a higher level to a

lower level at a demand cooling ratio, in order to gain a minimum energy

level, considered as the optimal solution of an FMMRCPS problem. To

compute effectively, a solution representation is specially designed, in which

only partial scheduling is required each time for neighbourhood generations,

thus, reducing the computational time greatly.

(e) Fuzzy SA with tabu approach

This approach developed incorporates a short-term memory function of tabu

into fuzzy SA. The function stores information about the solution attributes of

previous searches for specific short period of time. This function, in

combination with fuzzy SA, can prevent the revisiting of recently visited

search space in a certain period. Thus, more areas can be searched for

effectively obtaining an approximate globally optimal schedule.

The details of these five heuristic and metaheuristic approaches to FMMRCPS

will be presented in Chapter 7, 8, and 9 respectively.
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1.5 Outline of the Thesis

The thesis is divided into twelve chapters. The first two chapters are the

foundation of fuzzy set theory and review of project scheduling. The remaining ten

chapters are associated with my research work. Figure 1.4 illustrates the overall

structure of the thesis. It is the framework of the research conducted during my PhD

studies in the methodology developments on the basis of the research problem domain

I have defined in this thesis.

Prior to addressing a new project scheduling problem model involving

fuzziness, Chapter 2 presents the basic concepts of fuzzy set theory related to this

research effort, facilitating the understanding of these fundamental concepts and their

general knowledge of the applications in approximating human subjective assessments

and perceptions.

To pave the way for developing a number of novel approaches to fuzzy project

scheduling, Chapter 3 reviews the history of project scheduling, and presents the

existing methodologies developed for different scheduling problem models. It also

addresses the weakness of existing approaches developed, and the underlying

motivation for this research is also discussed.

Chapter 4 addresses the practical significance in the definition of a new

scheduling problem model. The new problem model presented here has the capacity

of covering most possible practical situations and different requirements. Thus, the

new defined problem model gives the foundation for developing a number of novel

and practical approaches.

Chapter 5 presents the fuzzy scheduling mechanism, including fuzzy forward

and backward scheduling. This is one of components of the fuzzy heuristic and

metaheuristic approaches developed. Examples of fuzzy arithmetic are also given to

demonstrate how fuzzy set theory is applied to the fuzzy scheduling mechanism.

Chapter 1 Introduction Page: 10



I

New Scheduling Model
Definition

(Chapter 1)

Fuzzy Sets for Modelling
Uncertainty in Project Scheduling

(Chapter 2)

Review of Resource-constrained
Project Scheduling

(Chapter 3)

Fuzzy Multi-mode Resource-
constrained Project Scheduling

(Chapter 4)

Fuzzy Forward and Backward
Scheduling Mechanism

(Chapters)

A Fuzzy Heuristic
Approach

(Chapter 7)

Fuzzy Project Scheduling
with Multiple Objectives

(Chapter 6)

Fuzzy Genetic Algorithms

(Chapter 8)

Fuzzy Simulated
Annealing Approaches

(Chapter 9)

Computer System Development with
Fuzzy Mctaheuristic Approaches

(Chapter 10)

Experimental Studies with Mcta-
heuristic Approaches Developed

(Chapter 11)

Conclusion

(Chapter 12)

Figure 1.4 The outline of research framework
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Chapter 6 presents a fuzzy hybrid goal programming approach for integrating

both fuzzy set theory and mode assignment policies for solving multiple objectives in

project scheduling under the fuzziness. This approach facilitates a complex multiple

mode scheduling problem into a single mode problem. This approach can be readily

extended to any specified multiple objectives in fuzzy project scheduling.

Chapter 7 proposes a fuzzy heuristic approach, based on both activity priority

rules and mode assignment policies. This is a simple and robust way of handing multi-

mode scheduling problems under fuzziness for minimising the fuzzy project

completion time.

Chapter 8 presents two versions of fuzzy GAs for multi-mode project scheduling

under fuzzy activity duration times. One is fuzzy GA alone and the other is GA

combined with tabu mechanism. These two approaches can solve any practical-sized

project scheduling efficiently and effectively under both multiple executive modes and

fuzziness.

Chapter 9 presents two fuzzy SA: (a) a fuzzy SA approach, and (b) a fuzzy SA

incorporating tabu mechanism. These two approaches provide the other type of

metaheuristics for solving fuzzy multi-mode scheduling problems of realistic sizes,

thus, providing the other way of dealing with fuzzy complex project scheduling.

Chapter 10 illustrates the design of individual modules in the system written in

VB.net, and summaries the function of each module. In the system, four metaheuristic

approaches: (a) a fuzzy GA, (b) a fuzzy GA with tabu, (c) a fuzzy SA approach, and

(d) a fuzzy SA with tabu, are integrated to solve single or multiple mode project

scheduling whatever activity duration times are scrip, or fuzzy or both.

Chapter 11 summaries the experiments conducted with these four metaheuristic

approaches, and provides statistical analysis for evaluating all the approaches

developed in this research. Parameters of individual approaches are also tested to

examine how parameter values affect the efficiency and effectiveness in obtaining an
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approximate optimal schedule. The comparison analysis of the four metaheuristic

approaches is also conducted with a number of the same sample projects.

Finally, Chapter 12 summaries six approaches developed m this research. The

characteristics of each approach are highlighted with the discussion of their individual

advantages. The main contributions of this research are summarised. This chapter

ends with the suggestions made for future research.
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Chapter 2

Fuzzy Set Theory for Uncertainty
Modelling in Project Scheduling

2.1 Introduction

There are two kinds of uncertainty we deal with in many areas such as

engineering and management. One form of uncertainty is concerned with randomness,

first proposed by Jakob Bernoulli (1654-1705). This phenomenon of uncertainty can

be modelled by probability theory, in which the probabilistic distribution can be

obtained using experimentation in statistics from precise observation, or from

available historic information. Since the late 1920s, because of important discoveries

in atomic physics and quantum mechanics, randomness has become a necessary

theoretical base to provide the probability of results for its nature (Galambos 1995). In

this research, we mainly deal with the other form of uncertainty that is related to

imprecision and vagueness. Due to the characteristics of project scheduling, the

duration of each activity in a project must be determined before the scheduling can be

undertaken. However, some activities in a project may not have been performed or

some activities may lack sufficient historic data. Also environmental changes in some

activities can cause the vagueness in the assessment of these activity durations. This

phenomenon of uncertainty has to be assessed by use of human knowledge or

experience. Such uncertainty must be modelled by fuzzy set theory, also called

possibility theory founded by Zadeh in 1965.

The term 'fuzzy sets' has become commonly used as an abbreviated way of

describing vague and imprecise information. But the term has sometimes been

misused and misunderstood (Dubois et al. 2000). To clarify the idea of fuzzy

concepts, the doctrine of fuzzy sets was clearly redefined by Gupta in 1977 as "a body

of concepts and techniques aimed at providing a systematic framework for dealing

with the vagueness and imprecision inherent in human thought process". In his
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definition, three keywords: vagueness, imprecision and thinking are emphasised as the

philosophical base forming the doctrine of fuzzy set theory (Negoita 2000, Dubois et

al. 2000)

Vagueness exists in our natural language when the meaning of language does

not sharply define boundaries. The modifiers in our language such as "very" and

"almost not" are commonly used in our daily lives to describe the true level of

membership in a certain class. For example, the statement of "he is very tall" means

that he has a higher level toward the class of "tall people group". Similarly if this

person is "almost not" tall, the truth level falls into the class of "tall people group" is

extremely lower. Vagueness also often encounters in project scheduling, making it

difficult or impossible to determine precise durations of some activities. In such cases,

the project expert often has to intuitively assess durations in linguistic terms such as

"most possibly" and "impossibly". To determine such activity durations, the project

expert may describe that a particular activity "most possibly" finishes in 7 to 9 days,

and "impossibly" finishes in 4 days or beyond 13 days by the optimistic and

pessimistic views respectively. Such vague descriptions can be characterised by their

degree of membership to depict a grade of fuzziness in the class.

Imprecision deals with the confidence in the accurate measurements, more

particularly concerned with numerical imprecision. In many circumstances, due to

lack of precise information, the measurement of accuracy in confidence has to be

expressed only in the Jevel of degree (Novak et al. 1999). In the situation of project

scheduling, data related to some activities may sometimes have only limited sample

information available so that applying any stochastic approaches to handle the

uncertainty may be inappropriate. In such cases, fuzzy set theory is the only way to

provide approximation measurements in the degree of confidence.

Thinking is the process of mental creation relying on our knowledge and

expertise when problems need to be solved in the environment of vagueness. In

project scheduling, the assessment of some activity durations may have to rely on this

thinking process using the project expert's knowledge and experience. Naturally,

linguistics influence our thought, providing a means of expressing our perception and
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understanding of reality, or describing an event in human experience. Fuzzy set theory

reflects how people think. It can model our sense of words, common sense and

decision making. The linguistic form of knowledge or the expert rules-base is capable

of analysis and logical tests in many fuzzy systems because the process facilitates the

quantification of human nature and intelligence (Negnevitsky 2002).

To better understand how fuzzy set theory can be applied to the vague and

imprecise environment in mathematical form, in the following, fuzzy sets, its

operations, and fuzzy number ranking will be illustrated.

2.2 Fuz?y Notation and Terminology

2.2.1 Fuzzy Set

The class., ' set has a "crisp" definition in which, the elements are either

completely inside or completely outside of the set. So the classical set A can be

defined as a binary membership function juA (x):

1 iff xeA
[0 iff x*A

(2.1)

A fuzzy set is a set whose elements may only partially belong to that set in

cr-nparison with the classical set. In this case, an element in a fuzzy set can be a

member of that set to some degree. Therefore, the membership function of a fuzzy set

is a flexible way to describe vague and imprecise situations in some grades. Let a

fuzzy set A be in the universal set X. The membership function MA(X) °f x m -̂  *s

the degree of membership in the closed unit interval [0,1] on the real line 9?. It can be

described as

(2.2)
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For continuous X, A may be precisely written as

JX v
(2.3)

For discrete X, A is usually represented as

(2.4)

The notations "[", "£" used here refer to set union rather than to arithmetic

summation. Similarly "/" is used to connect an element and its membership value, and

has nothing to do with arithmetic division.

From the description of the above classical and fuzzy sets, it is clear that fuzzy

set can be considered to be a generalization of the classical set. When the degree of

membership is restricted to be only 0 or 1, a fuzzy set becomes a classical set.

2.2.2 Support

Given a fuzzy set A of the universal set X, its support, commonly denoted as

Supp( A), will be the set all of whose elements JC in X have nonzero degree of the

membership function. It is defined as

Supp(A)={xeX\M~A(x)>0} (2.5)

Clearly, in Formula (2.5), the support of a fuzzy set contains elements having all

positive membership grades.
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2.2.3 Core

The core of a fuzzy set A in the universal set ,Y, symbolised as COTQ(A), is the

set of all elements, x in X> whose membership function /^(*) must be 1. It can be

described as

{xeX\ju2(x)=l} (2.6)

Obviously, the core of a fuzzy set is a crisp set because the membership

functions of all the elements in that set are equal to 1. That is, all elements are in that

set.

2.2,4 a-cut or a-Ievel Set

The a-cut, or a-level set of a fuzzy set A in the universal set X, is a crisp set,

denoted as Aa that consists of all elements x in X, whose membership functions must

be greater than or equal to a. It can be mathematically defined as

*« ,« e [0,1]} (2.7)

Similarly, the strong a-cut or strong a-level set of a fuzzy set A, signified as

A +, is the set whose elements are greater than and exclusive of a. It is shown as

A.={x\ft-A(x)>a,ae[0,l]} (2.8)

Using the notations of a-cut and strong a-cut, the support and core of a fiizzy set

A can be expressed as the a-cut form respectively

(2.9)

Core(A)=Al (2.10)
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The a-cut concept in fuzzy set theory is applied to express the view of the

project experts on the minimum degree of acceptance when assessing activity duration

times for a project. The level of a-cut depends on the project experts' confidence in

their assessments of each activity duration, using their knowledge and their

perceptions of the project situation.

2.2.5 Convexity

A fuzzy set A :={(x,iu~(x))\xe'R} of a set of real numbers is convex, if, and only

if its membership function fi^ix) satisfies the following property

(2.11)

Or, alternatively, fuzzy set A is convex if all its a-cuts are convex. Figure 2.1 shows a

convex and a nonconvex fuzzy set.

a
n.
Is
2
B

A Convex Fuzzy Set A Nonconvex Fuzzy Set

eo

.£•

I
I

-*• x

Figure 2.1 Convex and nonconvex fuzzy sets

Fuzzy sets applied to project scheduling in this research, must be convex to

satisfy its membership function as required by the principle of fuzzy set theory.
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2.2.6 Normality

A fuzzy set A is normal if, and only if, its core is nonempty. In other words, we

can always find at least one element whose membership function is equal to 1. The

normality of a fuzzy set can be expressed as

(2.12)

This property is important in our fuzzy application where all the fuzzy sets

applied must satisfy the condition of Formula (2.12).

2.2.7 Fuzzy Numbers

A fuzzy number A is a fuzzy set on real numbers that satisfy the condition of

normality and convexity, with a piecewise continuous membership function (Zadeh

1965, Dubois et ah 1988). It has four points a,<a2<a3<a4 with the following

properties:

(1) /^(x)=0, for every xe(-oo,tf,)u(a4,oo);

(2) MA(X) ls increasing on [a,,tf2] and decreasing on [a^,a4];

(3) //^(a,)=^(£74)= 0 and /^(x)=l, for every xe[a2,a3].

Clearly, through the above definition, fuzzy numbers are the most basic type of

fuzzy sets. The most common fuzzy numbers used in many applications are

trapezoidal, triangular, Gaussian and generalised Bell-shaped ftizzy numbers as shown

in Figure 2.2.
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Trapezoidal Fuzzy Number Gaussian Fuzzy Number

a, a,

B (X) Triangular Fuzzy Number Mp(x) Generalized Bell Fuzzy Number

1

b,
-*• x

Figure 2.2 The common types of fuzzy numbers

The author worked in industry for many years and also consulted with some

project experts during a recent tour of study and, on the basis of this experience,

believes that trapezoidal and triangular fuzzy numbers can well represent the nature of

fuzziness in terms of the assessment of activity durations. Thus two linear

approximations for trapezoidal and triangular fuzzy numbers are applied to project

scheduling in this research. Details and an explanation of the use of trapezoidal and

triangular fuzzy numbers in project scheduling can be seen in Section 4.4.2 of Chapter

4. In the following, these two types of fuzzy numbers are discussed in the

mathematical form.

A ^apezoidal fuzzy number A is a flat fuzzy number that can be represented by

4-tuples (a,,a2,o,,o4) as shown in Figure 2.2, where a, and a4 are the lower and

upper bounds of the support of fuzzy number, A , representing optimistic and

pessimistic values respectively, while a2 and a3 are the lower and upper modal values
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that means the interval from a2 to a3 is a most certain approximate assessment. The

membership function of a trapezoidal fuzzy number A can be expressed as

o,
x—a

1,
a4-x

o,

x<ax,

ax<x<a
2,

a2<x<a3i (2.13)

Or, alternatively given concisely as

{i2 (x)=max(min(-
a2-ax

(2.14)

However, a triangular fuzzy number can be considered a special case of the

trapezoidal fuzzy number when the lower and upper modal values are same (a2 = a3).

As shown in Figure 2.2, a triangular fuzzy number, B, has 3-tuples (6, <b2 <b3). b2 is

the most possible assessment value, and bx and b3 are the lower and upper bounds

expressing the fuzzy assessment of a fuzzy number. The membership function //5(x)

of a triangular fuzzy number, B, can be described as

/*»(*)=•

o, x<bx,

» u\
h <x<h2>

— —

0, b3<x.

(2.15)

Or, alternatively, given concisely as

is (x)=
b2-bx b3-b2

) , 0) (2.16)
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2.3 Operations on Fuzzy Sets

In this section, basic operations on fuzzy sets related to this research are

introduced. The standard operations on fuzzy sets are performed when the

membership grades of fuzzy sets must be restricted to the set {0,1}. To be meaningful

in practice, the process of these operations should always satisfy the cutworthy or the

strong cutworthy properties. The standard fuzzy set operations can be viewed as a

generalisation of the corresponding classical set operations (Klir and Yuang 1995, Lin

and Lee 1995).

Let the fuzzy sets A and B be in the same universal set, X, Their corresponding

membership functions are /^(x) and /^(x) respectively. The standard operations on

the fuzzy sets A and B can be defined as below:

(1) Equality

Fuzzy set A is considered equal to a fuzzy set B, denoted as A = B, iff

(2.17)

(2) Containment (Subset)

Fuzzy set A is contained in fuzzy set B, denoted as A dB, iff

s l (2.18)

(3) Complement (Negation)

The complement of fuzzy set A , denoted as Ac or NOT A , is defined as

M~c(x)=\-ju~(x),\fxeX (2.19)
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(4) Union (Disjunction)

The union of two fuzzy sets A and 5 , denoted as A KJB , is defined as

(5) Intersection (Conjunction)

The intersection of two fuzzy sets A and B, denoted as A nB, is defined as

^(x),//g(jc)) (2.21)

2.4 Fuzzy Arithmetic

To model project scheduling under uncertainty, fuzzy numbers are often used to

define the fuzziness and imprecision of the problem domain. However, fuzzy numbers

are required for appropriate implementation. Therefore, fuzzy arithmetic is an

important tool for operating on fuzzy numbers in problem solving. Here only

.arithmetic operations on triangular and rectangular fuzzy numbers are illustrated,

since these two types of fuzzy numbers are applied to project scheduling.

Let A and B be fuzzy numbers, and * denote any basic fuzzy arithmetic

operations such as fuzzy addition (+), subtraction (-), multiplication (x), division (/)

and others. Any operation A*B can be defined as a fuzzy set on 9? and expressed in

the following form:
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In triangular fuzzy numbers, there are 3-tuples as shown in Figure 2.2. Let

A={ax,a2,a3) and ^=(6,,Z?2,63) be two triangular fuzzy numbers, the basic fuzzy

arithmetic operations can be expressed as

= (al+bl,a2+b2,a3+b3) (2.23)

A-B = (a[-b3,a2-b2,a3-bl) (2.24)

AxB = (aixbx,a2xb2,a3xb3) (2.25)

$&& ( 2 - 2 6>
bi b2 6,

- 1 1 1
1//K-A-) (2.27)

a3 a2 ax

= (v(al,bl),v(a2,b2),v(a3,b3)) (2.28)

min(3, B) = (A(O, , bx), A (a2, b2), A (a3,53)) (2.29)

where v , A symbolise maximum, and minimum operations for fuzzy numbers.

Similarly, trapezoidal fuzzy numbers have 4-tuples as shown in Figure 2.2. Let

A=(ax,a2,ai,a4) and 5=(6,,^2,^3,Z)4) be two trapezoidal fuzzy numbers. The

arithmetic operations on this type of fuzzy numbers are defined as

(2.30)

-B = (al-b4,a2-b3,a3-b2ta4-bl) (2.31)

xB = (alxbl,a2 xb2,a3xb3,a4xbA) (2.32)

^AA (2.33)
b4 b3 b2

3(
a4 a 3 a2

(2.34)
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) = (v(alibl),v(a2,b2\v(a3,b3),v(aA,b4)) (2.35)

mm(A, B) = (A(O,^) , A(a2,&2),A(a3,Z>3),A(a4,64)) (2.36)

Further details in regard to fuzzy arithmetic can be found in Dubois and Prade

(1980), Zimmermann (1996), Klir and Yuan (1995), and Negoita (2000).

2.5 Fuzzy Ranking

In project scheduling, fuzzy numbers are often required to be compared in each

stage of scheduling in which a group of fuzzy numbers must be ordered in the scalar

value. However, fuzzy numbers are often not straightforward in terms of scalar value

compared to crisp numbers. To determine which fuzzy number is bigger or smaller, an

appropriate ranking method is needed for ordering fuzzy numbers. Therefore, ranking

of fuzzy numbers is an important issue in the project scheduling.

A number of ranking methods have been proposed so far, including Yager

(1981), Li and Lee (1987), Campos and Munoz (1989), Liou and Wang (1992).

However, there is no single approach that can produce a satisfactory result in every

situation: some may generate counter-intuitive results and others are not

discriminative enough (Chen and Hwang 1992, Deng and Yeh 1996).

Cheng (1998) developed a new distance approach for fuzzy number

comparisons based on the calculation of the distance means from the original point to

the centroid point to rank fuzzy numbers. He mathematically proves that his approach

overcomes the above-mentioned shortcomings. Cheng's fuzzy ranking method is

applied in my research in project scheduling for fuzzy number comparison.

Let M^(x) a n^ M^(x) be strictly continuous left spread, and right spread of the

membership function of a fuzzy number A , and g~(x) and g~(x) be the inverse
A A

functions of u~(x) and u~.(x) respectively. x0 and y0 are denoted as the centroid
A * W
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values both in the horizontal and vertical axes. The centroid point (3c0,y0)of a fuzzy

number A can be defined as

A * * * (2.37)

The fuzzy ranking index, based on a distance between the centroid point and the

original point of a fuzzy number A , can be expressed as

(2.38)

Because triangular and trapezoidal fuzzy numbers are used in this research,

Formula (8) can be modified as

3^ =
 Q\ X (°2 ~ g33) ~ <*2 X (^l3 ~ q3

3) + ^3 X fa3 " g 2 3 )
3 x [a, x (a2

2 - a3
2) - a 2 x (a,2 - a3

2) + a3 x (a,2 -a2
2)]

Triangular ^ .3 9)
Fuzzy Number

3x( 2xa2

_ _ a4
2 + a3

2 - a2
2 - a,2 + a3 x a4 - ax x

° 3x(#4 +a3 - a 2 - a , )
Trapezoidal (2.40)

Juzzy number gl+2xa2+2xa3+a4
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Let A,, Aj be any fuzzy numbers in set 9?, the comparison of fuzzy numbers

has the following properties when obtaining ranking indices by formula (2.38).

(1) I f /?(4)>i?(^) , then4>4 s

^ 2 / . 3 ( 2 . 4 1 )

2.6 Concluding Remarks

Preliminary knowledge of fuzzy set theory has been introduced in this chapter.

To clarify the concept of fuzzy sets, the phenomenon of imprecision and vagueness

has been addressed. The contents of fuzzy sets and fuzzy numbers relevant to this

research, are explained in detail. Fuzzy operations on fuzzy sets and fuzzy numbers

are also presented in this chapter. Ranking of fuzzy numbers is important in project

scheduling. To overcome the problems of counter-intuitiveness and insufficient

discrimination in fuzzy number comparison, Cheng's new distance approach in regard

to fuzzy numbers is introduced. By dealing only with triangular and rectangular fuzzy

numbers, Cheng's new fuzzy raking approach has been modified so that it is suitable

for the comparison of these two types of fuzzy numbers.
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Chapter 3

A Review of Resource-Constrained
Project Scheduling

3.1 Introduction

The basic idea of project scheduling dates back a few thousand years to the

construction of the huge project of the Great Wall in China. This project started in the

7th century B.C. It required enormous amounts of different kinds of resources such as

varied sorts of labour and materials. To be able to complete this huge project in time

under the emperor's order, it was divided into immense pieces of work (called

activities). Each under the charge of a specified official, for each activity durations

were estimated and resources assigned. The timing of each activity, related to others

was specified in a logical order. Such a sequence of planning is the essence of project

scheduling.

Although the concept of project scheduling was already applied to some projects

in ancient times, the concept became the subject of academic research only in recent

times. Precedence relationships and limited resource constraints have been studied as

an academic research field for only around 40 years, being dealt with, in the 1960's,

by Kelley (1963), Lambourn (1963) and Wiest (1964). This kind of problem is

formally called resource-constrained project scheduling (RCPS).

The type of problem raised by much project planning is a typical combinatorial

problem that requires assigning discrete numerical values to some finite set of

variables x under the satisfaction of a set of constraints, in order to minimise and

maximise some objective function f(x). Therefore, any scheduling problem under

constraints is computationally complex and hard, and the corresponding optimisation
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problem will be more complicated and harder. It becomes an NP-hard problem

(Stockmeyer 1992, Shmoys and Tardos 1992).

This field has attracted much research because of the problem of NP-hardness,

and as such many different approaches have been developed. But many issues in this

field still require vigorous research since RCPS is now widely applied in modern, real

life situations, such as building construction, engineering, and IT projects.

This chapter will review RCPS in both single and multiple modes, developed from

past to present in both deterministic and uncertain situations. In section 3.2, the terms,

definitions, and basic methodologies applied in project scheduling are explained. This

section also describes the standard RCPS mode and briefs its extended modes with

their mathematical formulations. Section 3.3 addresses the details of the multi-mode

RCPS and its mathematical models on which my research is particularly focused.

Section 3.4 reviews the current development in exact algorithms for both single and

multiple modes. In section 3.5, scheduling schemes and common priority rules are

described, followed by concisely introducing a number of priority rule-based

heuristics used in both single and multiple modes. Section 3.6 presents the recent

development of decision support systems applied in project scheduling. Section 3.7

highlights a number of metaheuristics developed for single and multiple modes in

RCPS. Problem domains, methodologies, and approaches addressed in these sections

are limited to the conventional way that has not taken the uncertainty into account

caused by imprecise information related to a project. Uncertainty inherently exists in

many real project scheduling problems. For this reason, from section 3.8, the nature of

the uncertainty that exists in project scheduling will be addressed. In Section 3.9, the

current development in fuzzy project scheduling will be intensively reviewed,

followed by the contributions I made through my PhD studies. Section 3.10 will be a

conclusion.
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3.2 Description of Resource-Constrained
Project Scheduling

To better understand RCPS, four important elements of project scheduling will

be introduced. These elements are: resources, activities, precedence relations, and

performance measures. This section will also provide a definition of project

scheduling.

3.2.1 Resource Categories

The performance of a project requires different types of resources. It is therefore

necessary to determine, before the project is executed, what resource categories are

required. Slowinski (1980, 1981), Welglarz (1980) and Talbot (1982) proposed three

basic types of resources for project scheduling: renewable, non-renewable and doubly-

constrained. These resource categories will be detailed in the following subsection

3.2.1.1. However, some researchers have proposed additional resource categories in

the literature, such as partially renewable, dedicated and cumulative resources.

Although these additional categories are not commonly used in RCPS, they will be

briefly explained.

3.2.1.1 Basic Resource Types

Renewable resources are those types of resources where the amount of

resources consumed by a job from the total availability in a project, can be renewed

when the job is finished. For claiity, an example is given here: the availability of one

renewable resource is 10 units in a project. Job 1 uses 3 units at the time period 0 until

it finishes at the time period 5, and job 2 takes 4 units at the time period 2 until it is

completed at the time period 7. In this case, the availability of the resource will be 7

units left from period 0 to period 2 because job 1 uses 3 units of this resource, and

from the time period 2, the availability of the resource will be changed to 3 units since

job 2 takes 4 units at that time period 2. From the time period 5, the resource will be
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renewed to the availability of 6 since job 1 releases 3 units after it completes at that

time period. From the time period 7, the resource will be further renewed to the

availability of 10 since job 2 finishes at the time period 7. Clearly, the availability of

renewable resources varies from period to period based on how much this type of

resources is consumed or released by jobs at different time periods. The time period

can be hours, days or weeks depending on the requirement of a real project.

Electricians, mechanics and general workers listed in Table 3.1 are typical renewable

resources in the overhaul project. The examples of equipment, machines, trucks and

tools may also be considered members of the renewable resource category. Further

details on renewable resources can be found in Weiss (1988).

Non-renewable resources are limited over the entire project life-span. This

means, the total amount of this type of resources is available in limited quantity

throughout the whole project and cannot be renewed from period to period. However,

there is no limitation on consumption in one period unless resource requirement

exceeds the total available quantity. Raw materials and energy could be regarded as

non-renewable resources. In an overhaul project, resource 4, water listed in Table 3.1

is a typical non-renewable resource because water consumption is limited through the

whole overhaul project.

Doubly-constrained resources are constrained both for each period and for the

entire project. In such a category, the resource availability is limited from time to time

and at the same time, the consumption cannot surpass the resource availability

throughout the entire project. Therefore, doubly-constrained resources have the

characteristics of both renewable and non-renewable resources and can be viewed as

the combination of these two types of resources. Cash flow is a good example of

doubly-constrained resource because cash flow is always controlled in a required level

each day. Of course, the total cash flow for a project is also constrained so that the

project budget is not exceeded.
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Table 3.1 Durations and resource requirements of activities in an overhaul project

Activity
number

j
1

2
3
4

5
6
7
8

9
10
11
12
13
14

Activity
description

dismantle engines
dismantle pumps
clean up hopper
purify cylinders
clean out pumps
wash up pipes

inspect hydraulic system
assemble engines
assemble pumps

check doors of hopper
examine drags

check up general circuit
clean dragheads

test run

Activity

duration (hrs)

dj
20
15
10
30

L 1 6

9
10

25
20
8
12
5
6
10

Electricians
Resource 1

1
1
0
0
0
0
1
0
1
1
1
1
0
2

Mechanics
Resource 2

h
3
2
3
3
2
1
2
3
2
2
2
0
2
5

General workers
Resource 3

2
2
4
5
4
2
2
4
3
2
2
2
2
5

Water (m3)
Resource 4

0
0
15
5
10
20
1
0
1
1
0
0
2
0

All the resource types discussed above are discrete, and the smallest amount of

resources that can be taken by a job or work is represented as one unit and not allowed

to be further divided. That is, any amount of these resources that would be taken by

jobs or works in a project must be an integer number such as 1, 2, and 3.

3.2.1.2 Other Resource Types

Continuously Divisible Resources were proposed by Weglarz (1981). This is

the type of renewable resources that can be continuously divisible unlike those

mentioned above that may be allocated only in a discrete unit. For continuously

divisible resources, even one unit can be further divided into decimal quantities in

contrast to discrete resources. Electric current and some liquid materials can be

considered as members of the continuously divisible resource category.

Recyclable Resources were introduced by Shewchuk and Chang (1995). This

type of resources can be worn out during operations or jobs taken on a project.

Recyclable resources start with certain units of each of this type of resources, and will

be recyclable as each of this type of resources is fully consumed or worn out while

being used.
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In the beginning, each of these resources has a given quantity. If a certain

quantity is consumed by a job or activity, the total amount of this resource will be

reduced by this quantity. When all available quantity of this resource is fully

consumed or it is said that this resource is worn out, a specific time allocation may be

required for its reprocessing. For example, if a recyclable resource, a mould, is worn

out or fully consumed, a specific time is needed to remove the mould, to send it to

workshop and to receive and install the refurbished mould. Once the mould arrives

back on site, the amount of this type of resources can be set back to the normal

quantity as determined at the beginning of a project. For example, cuttings and drills

may have a predetermined safe operation limit. As their life spans are reached, they

need to be taken to a tool crib for repair and the specific time needs to be allowed for

the period of absence during repair.

Dedicated Resources is a term suggested by Bianco et al. (1998) when dealing

with multiple mode scheduling problems in the special circumstance where this kind

of resources can be available only in one unit per period. Dedicated resources are,

however, are renewable. This type of resources can be assigned to only one task or

one job at one time. Whenever, two tasks or jobs may compete for this type of

resources, they cannot be executed in parallel. In order to share such resources, only

one task or job is allowed to be performed at one time.

Partially Renewable Resources were proposed by Bottcher et al. (1999) and

Drexl et al. (2000) and are considered to have different capacities (or availabilities) on

different subsets of periods. The application might best be explained with an example.

Let P(n) denote the subset of periods and kp(n) be the capacity or availability of partial

renewable resources in those periods. Three workers are working on a project for two

consecutive weeks, and each worker is allowed to work 9 days of weekdays and one

day on weekends. One subset of periods for working on weekdays can be expresses as

P(l) = {1, 2, ..., 5, 8, 9, ..., 12} and the resource capacity in this subset of periods

P(l) will be described as kp^j = 3 x 9 =27. The other subset of periods of weekend is

signified as P(2) = {6, 7, 13, 14} and its resource capacity is denoted as kpp) = 3 x 1 =

3. It can be clearly seen that even the same resource can have different quantities

available in different specific periods.
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This type of resources introduced above has not attracted great interest in the

research of RCPS because they are only used for special circumstances and

conditions, and they cannot be applied to the basic features of RCPS (Klein 2000c).

3.2.2 Activities

Activity is a technical term used in the field of RCPS, representing a basic,

unique task, job or operation in a project. Any projects can normally be broken into a

number of activities, denoted as j e J, where J is the set of the total activities in a

project. As shown in Table 3.1, the overhaul project can be divided into 14 basic

activities.

In a project, each activity y will be processed in a certain time, called the activity

duration, denoted as dj, as listed in Table 3.1. In addition, the performance of an

activity j over its duration requires or consumes a certain amount of resources,

symbolised as kjr> r - 1,2, .../?, where R represents the number of resources available

in a project. In Table 3.1, there are 4 resources available for the overhaul. However, an

upper limit on the amounts of resources taken by a current activity is that, its resource

requirements cannot exceed the total resources available in scheduling.

3.2.3 Precedence Relations

In a project, due to technical requirements, some activities can only be started

when certain other activities have been finished. The order in which activities are

executed is called precedence relations. There are two ways to represent the

precedence relationship for the sequence of activities in a network diagram: activity-

on-arc and activity-on-node networks. Mathematically, the diagram of a project

network is often denoted as

G = (V,E) (3.1)
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where G is expressed as a graph of the project network, and Fand E denote the set of

vertices (nodes) and the set of edges (arcs) respectively. They will be explained

below.

To better describe project networks, the terms, "successor" and "predecessor" of

an activity need to be introduced here. An activity j can only be allowed to start if one

or more certain activities have been completed, and these activities are called a set of

immediate predecessor(s) of activity,/, denoted as Pj. Similarly, if an activity7 must be

completed before certain activities can be started, these activities awaiting the

completion of an activity/ are referred to as a set of immediate successor(s) of activity

j , denoted as Sj.

3.2.3.1 Activity-on-Arc Network

The activity-on-arc network was first suggested by Dimsdale (1963). It is a tool

for constructing the precedence relations among activities in a project from left to

right, indicating the sequence of activities' executions. An arc represents an activity

and a circle called a node signs an event. The activity number of any given task should

be always greater than its predecessor(s) and nodes symbolising the events are

labelled in ascending letter order.

The example of activity-on-arc network shown in Figure 3.1, is the overhaul

project with 14 activities. The format, j(dj) is shown as near an arc, expressing the

activity numbers and their durations. For instance, 1(20) just above the arc between

the events A and B in Figure 3.1 indicates activity 1 with a duration of 20. Two

events, referred to as "head" and "tail" events, define the start and end time points of

an activity (arc), as shown in Figure 3.1. The head event, B and the tail event, E

represent the start and finish times of activity 4 respectively. A dashed arc is a dummy

activity that does not consume any time and resources, as it depicts only precedence

relationships with other activities. For example, in Figure 3.1, two dashed lines

between events K and N and between events M and N are dummy activities,

indicating that activity 14 is a successor of activities 12 and 13.
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Figure 3.1 Activity-on-arc network of overhaul project

3.2.3.2 Activity-on-Node Network

The activity-on-node network, introduced by Crandall (1973) and Davis (1975),

is a better way of representing precedence relations among activities in a project. In

this non-cyclical network, each activity corresponds to a node and precedence

relations are expressed by arcs between nodes. Of course, during the construction of

the network, it is necessary to ensure that the activity number of a successor is bigger

than its predecessor(s).

Figure 3.2 shows an activity-on-node network of the overhaul project, in which

the data and precedence relations are the same as those given in Figure 3.1. The nodes

SP and EP are source and sink of the network, representing the start and end of a

project respectively. The node, depicts activity/ with its duration, dj.

SP

20

15

5 16

6 9

3 10 7 10 J dJ

Figure 3.2 Activity-on-node network of overhaul project

EP
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Although some researchers have applied the technique of activity-on-arc

network to the construction of project scheduling problems (Elmaghraby 1977, Syslo

1984; Willis 1985b), this technique has some disadvantages as compared to the

activity-on-node network. First, the construction of this network is difficult since a

number of dummy activities must be considered for the logical meanings of their

precedence relations. Second, when the number of dummy activities increases, the

representation of this network becomes more complicated and confused (Elmaghraby

and Kamburowsky, 1990). Therefore, the activity-on-node network is more

straightforward since the precedence relations among activities are easily visualised

without adding any dummy activities. Most project management software packages

opt to use the activity-on-node network to represent precedence relations of a project

(Klein, 2000c). In subsequent sections and chapters, all the cases of project scheduling

problems presented in this thesis will use the activity-on-node network.

3.2.4 Critical Path Method

Critical Path Method (CPM) is a project network analysis technique used in the

environment where there are no resource limitations, to identify the critical path(s) in

the project network. The critical path is the longest path in the network and any delays

of activities on the critical path will prolong the whole project completion time. This

technique has been popularly applied to project scheduling since the 1960's (Kelley,

1961, 1963, Carruthers and Battersby 1966, Thomas 1969).

To determine the critical path(s) in a project, firstly, forward and backward

passes will be applied to the project network, to calculate the earliest start and finish

times, and the latest start and finish times for each activity, then the total slack time

(or total float) for each activity can be computed. The total slack time of an activity is

the amount of time by which the activity can be delayed without affecting the critical

path time for a project.

The forward pass determines the earliest start and finish times of each activity

under precedence constraint in the project network. The earliest start time (ESTJ) of an
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activity j is the earliest time at which the activity/ can be commenced, given that ail

its predecessors are completed. For example in Figure 3.3, by the forward pass,

Activities 1, 2, 3 start at 0 time point since there are no predecessors, and their earliest

finish times, EFTj, EFT2 and EFT3 are same as its durations shown in Figure 3.3.

Activity 9 has two predecessors, activities 5 and 6, but its two predecessors have

different earlier finish times, as shown in Figure 3.3, EFT5 and EFT6 are 31 and 24

respectively so that the successor, activity 9, can be started only when its last

predecessor (activity 5) is completed, thus EST9 is 31 and is equal to EFT5. Of course,

the earliest finish time (EFTg) of activity 9 will be its start time (31) plus its duration

(20) so that EFT9 is 51 (31+20). As demonstrated in the example of Figure 3.3, the

earliest start time for each activity is equivalent to the latest of the earliest finish times

among the set of earliest finish times of its all predecessors. The earliest start time of

the activity will be 0 only if it has no predecessors. The earliest finish time for each

activity equals its earliest start time plus its duration. Let the duration of activity j

denote dj and a set of predecessors of an activity/ symbolise Pj. Therefore, ESTj and

EFTj can be described mathematically as

0, if/. 4 y = u J
(3.2)

(3.3)

1
0
20

20
0
20
0

Jj
20
50

30
20
50
0

8
50
75

25
50
75
0

SP
/
/
\
\

2
0
15

15
24
39

24

3
0
10

10
37
47

37

7

ill
20

10
47
57

37

Figure 3.3 Results from critical path method
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Through the backward pass, the latest start (LSTj) and latest finish times (LSTJ)

of each activity y can be calculated by backward recursion from the last activity to the

first one with precedence-feasibility in the project network. In Figure 3.3, the last

activity, activity 14, should have no successor(s) and its latest start (LST14) and finish

times (LFT14) will be 75 and 85, the same as its earliest start and finish times. Activity

14 has 4 predecessors, activities 8, 9, 12, 13 in the backward recursion, and the latest

finish time of these predecessors are all 75, equal to the earliest start time of activity

14 and their latest start time will be the latest finish time minus its duration, as

displayed in Figure 3.3. There are two successors, activities 10 and 11, in activity 7. In

this case, the smaller number 57 will be chosen as the latest finish time of activity 7

between two latest start times (LSTJQ - 62, LSTJI = 57) of its successors, and its latest

start time will be its latest finish time subtracted from its duration. Through the

example in Figure 3.3, the latest start and finish times for each activity can be

expressed by mathematical formula. Let Sj be a set of successors of activity j and the

latest start and finish times for each activity in a project are shown as

fmin{LS7; | / e S,

LSTJ=LFTJ~dJ ;=1,2,...,

(3.4)

(3.5)

The total slack time (or total float) of activity j is a time window within which

the activity can experience delays without affecting the whole project completion

time. However, those activities with zero total slack time are called critical activities

or activities on the critical path. If any of these critical activities is postponed, the

project completion time will be prolonged. The total slack time (TSLj) of activity./ is

its latest start time minus its earliest start time or is equal to its latest finish time

subtracted from its earliest finish time. The total slack time of an activity j is

represented as

TSLj = LSTj- ESTj or TSLj, = LFTj- EFT, 7 = 1,2, . . . , / (3.6)

By formula (3.6), the total slack time (TSLJ) for all activities can be calculated

and is shown in the example of Figure 3.3. As noted in Figure 3.3, activities 1,4,8 and
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14 have zero total slack time, indicating the path <l-4-8-14> is a critical path in the

network. Through the determination of the critical path(s) in the network, more

attention can be focused on these critical activities to make sure that none these

activities will be delayed.

3.2.5 Resource-Constrained Project Scheduling Problem

RCPS problem is a project scheduling problem under the constraints of both

limited resources and precedence relations. In such scheduling, the basic performance

measure is completion of the project as early as possible. Of course, it becomes a

difficult and more complex problem to be tackled when a number of activities

compete for several scarce resources.

In general, the RCPS problem can be described as: a project with J activities,

labelled a s / = 1, 2, ..., J. The duration of activity/ is denoted as dj, and its start and

finish times are symbolised as STj and FTj respectively. There are K resources with Rk

(\<k<K) availabilities in a project, and the requirement of a resource for each

activity is /)*. A pair of activities indicating their precedence relationship, is signified

as (i,j), and //denotes a set of pairs of activities in precedence constraints. At stands

for the set of activities which are still in progress at the time point t. In the RCPS, non-

preemption of any activities is allowed whilst they are being performed, that is, no

activity can be interrupted during its process until completed. Mathematically, the

minimization of project completion time of the RCPS problem can be expressed as

mm f=

subject to

(3.7)

(3.8)

(3.9)
ieS,

The objective function given in (3.7) indicates the minimization of project

completion time by means of minimizing the finish time of the last activity J.

Equation (3.8) represents the precedence constraints indicating that activity/ can only

,
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be started when all its predecessor(s), j , have been completed. Equation (3.9)

incorporates the resource constraints in order to satisfy that resource requirements that

processed activities do not exceed the resource availabilities at time period t.

As noticed above, the RCPS problem can be formulated as a linear program with

many constraints. Such a problem becomes increasingly complex as its size increases.

There is no algorithm known that is able to find an optimal schedule for any instance

of RCPS in polynomial time (Blazewicz 1983). Detailed reviews of RCPS can be

found in Ozdamar and Ulusoy (1995), Herroelen et al (1998), Herroelen et al (1999),

Baptiste and Le Pape (1999), Brucker et al (1999) Neumann and Zimmermann

(1999a), and Herroelen et al (2001).

3.2.6 Extended Models

The standard RCPS model discussed above is a powerful model, covering most

common situations in practice. However, variant models, derived from the standard

RCPS model combined with other objective functions, have also been used by other

researchers, although they may not be as common as the standard RCPS. This section

merely summarises these variant extension models, proposed in the literature because

the detailed overview would be beyond my research scope.

3.2.6.1 Preemptive Resource-Constrained

Project Scheduling Problem

Preemptive resource-constrained project scheduling (PRCPS) was introduced by

Weglarz (1979) and Slowinski (1980). It allows activity j to be interrupted before its

termination. This phenomenon is called "preemption of activities". In PRCPS, it is

assumed that activities can only be preempted (interrupted) at an integer time point

and that these activities are re-continued later on without any additional cost. To

achieve the preemption of activities, the duration a) of an activity./ will be split in each

basic time unit (f= 1, 2, ..., dj). FTjj denotes the time at which an activity j which is
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preempted during its duration of/periods. Obviously, FTjd is the finish time of an

activity j because activity j is stopped when its duration is just over. Therefore the

PRCPS problem can be expressed as

min FTJtdj (3.10)

subject to Fridi<FTJ0 V(/ , /)e# (3.11)

FTU+\<FTU y=l,2,...,./;/= 1,2,...,^, (3.12)

<Rk /=1,2,...,/T,A ;fc=I,2,..., * (3.13)
ieS,

The objective function is to minimize the project completion time that is the

same as the minimization of the finish time of the last activity J. Equation (3.11)

ensures that the start time of activity/ (FTj.o) cannot be smaller than the last unit of

duration of its predecessor / in order to satisfy precedence relations and Equation

(3.12) indicates that the restart time of activity/ must be at least one time unit later

than its interrupted time. Resource constraints in Equation (3.13) are the same as one

in RCPS. Some approaches in PRCPS can be referred to the works of

Demeulemeester and Herroelen (1996a) arid Bianco et al. (1999).

3.2.6.2 Time-Constrained Project Scheduling Problem

In some applications, the project deadline T is given. However, the resources

provided initially may be not enough for the completion of a project by the deadline.

To guarantee that the completion of the project meets the deadline, additional

quantities of these resources may require to be allocated in certain periods. The

objective for the project is to minimize the total additional cost of adding extra

resources.

To define this objective function, the cost of an additional unit of resource type k

(l<Jc<K), symbolised as w* is predetermined, and the additional amount of resource
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type k taken in period t (t = 1, 2, ..., T ) is denoted as or*,. The objective function can

be written as

mm / = (3.14)
i=\

Let x,k be 0-1 variable. When resource type k is taken in period /, x,k will be 1,

otherwise it will be 0. To ensure that excess of initial amounts of resources are not

provided, the constraints (3.9) in RCPS model is now replaced by

(3.15)
t=\

Although this kind of scheduling may be useful in the circumstance defined

above, few papers describing its use appear in the literature (Mohring 1984, Yau and

Ritchie 1990, Demeulemeester 1995, Kolisch 1995) and it may not be as common as

RCPS model in practice. This problem is also an NP-hard problem due to its nature

(Deckro and Hebert 1989, Klein 200b).

3.2.6.3 Resource Levelling Problem

The resource levelling problem and the time-constrained project scheduling

problem differ only in the ways in which objective concerns are met although both

approaches aim to schedule so as to minimize the costs of resources in meeting a

given project deadline. However, the resource levelling problem attempts to make the

usage of various resources as level as possible in the schedule, without violating the

project deadline. Within the limits imposed by the project deadline, it may be wise to

use resource levelling to "flatten" peak demands on resources because adding extra

resources may lead to extra costs in the project.

Levelling usage of resources is equivalent to minimising the variation of

resources usage for the problem. Lova et al. (2000) proposed the mean coefficient of
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variation (E(5)) for setting up the objective function, JC* is the amount of resource k

required by the scheduled activities and K is the number of resources (k= 1, 2, . . . , K).

The mean coefficient of variation can be defined as

E(S)=k=l E ^ (3.16)
K

There are a number of contributions for the resource levelling problem with

various approaches (Woodworth and Willie 1975, Goulter and Ramlogan 1985, Harris

1990, Bandelloni et al. 1994, Brinkmann and Neumann 1996, Neumann and

Zimmerrnann 1999b).

3.2.6.4 The Net Present Value Problem

Another type of scheduling problem is concerned with cash flow during the

performance of a project. Cash outflows are incurred when activities are executed and

cash inflows happen when payments are received on completion of some specific

activities, or of an entire project. From the financial point of view, an appropriate

schedule needs to be created so that the objective function, the net present value of a

project, will be maximized. Russell (1970) first introduced the net present value of

cash flow in a project where resource constraints were not considered. Such

unconstrained problems have been conducted by Grinold (1972), Bey et al. (1981),

Smith-Daniels (1986), Elmaghraby and Herroelen (1990), Yang et al (1993),

Herroelen and Galens (1993), and Kazaz and Sepil (1996).

Doersch and Patterson (1977) proposed the resource-constrained net present

value problem. To define the objective function, let c/j be cash flow incurred at the

end of performing an activity,/ and ir denote the interest rate. xy/is the 0-1 variable. If

an activity/ is completed at period /, xJt will be 1, and otherwise, xJt will beO. EFj, LFj

are the earliest and latest finish times of an activity/ The objective function may be

formulated as
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£ f>/,x(l + /rr x*, (3.17)

The constraints may be different depending on the properties and natures of

various real problems. A number of techniques for exact approaches and heuristics are

developed for different conditions in the net present value problem (Russell 1986,

Smith-Daniels and Aquilana 1987, Smith-Daniels and Smith-Daniels 1987, Patterson

et al 1989, Patterson et al. 1990, Yang et al. 1993, Ulusoy and Ozdamar 1995, Pinder

and Marucheck 1996, Icmeli and Erenguc 1996, Baroum and Patterson 1996, Sepil

and Ortac 1997, Padman et al. 1997, De Reyck and Herroelen 1998). A survey of

recent developments in the net present value problem for these models has been

conducted by Herroelen et al. (1997), Dayanand and Padman (1999), and Baroum and

Patterson (1999).

3.2.6.5 Multi-objective Project Scheduling Problem

Sometimes project scheduling requires the consideration of several objectives

simultaneously rather than the single objective of the models discussed above.

Slowinski (1981) proposes that several conflicting criteria such as project completion

time, costs and maximum lateness could be accommodated using linear programming.

Nabrzyski and Weglarz (1995) present Tabu Search combined with the knowledge

base in solving a multi-objective project scheduling problem. Hapke et al. (1998)

developed the Pareto Simulated Annealing in the search for "a good compromise"

among the several objectives (criteria) in order to obtain Pareto-optimal solutions.

Decision support systems are also introduced in the multi-objective project scheduling

problem by Davis et al (1992), Rys et al (1994).
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3.2.6.6 Multi-Project Scheduling Problem

In practice, it may be possible that several dependent projects have to be

scheduled in parallel, sharing common resources. Such a circumstance, Pritsker et al

(1969) first proposed the multi-project scheduling problem, in which, all projects'

networks are represented in one super-network by adding a super-dummy start and

end notes, and due dates of activities are also imposed on its single project network.

Different heuristic approaches have been presented by Kurtulus and Davis

(1982), Kurtulus and Narula (198:5), Kim and Schniederjans (1989), Tsubakitani and

Deckro (1990) and Ohmae et al. (1992). Speranza and Vercellis (1993) proposed a

hierarchical model-based approach to decompose two stages: planning and scheduling

decision. Deckro et al. (1991) developed an integer decomposition approach to solve

the competition for scarce resources in the schedule of the multi-project. Heuristic

scheduling combined with 'cost-benefit' scheduling policies was addressed by

Lawrence and Morton (1993). Integer programming using the CPM technique and

linear programming involving aggregate analysis were proposed by Moccellin (1989),

and Kim and Leachman (1993) respectively.

3.3 Multi-Mode Resource-Constrained
Project Scheduling Problem

The standard RCPS problem assumes that each of the activities making up a

project can only be performed in one manner or mode of execution because each

activity has only one fixed duration with its corresponding fixed resource

requirements in the schedule. Therefore, the standard RCPS model is a typical single

mode project scheduling problem. However, in many real word situations, it may be

possible for activities to be performed in a number of alternative modes of execution.

Elmaghraby (1977) first introduced more realistic RCPS model considering multiple

modes out of which one mode might be chosen for execution of an activity. Each

mode represents an individual duration with its own corresponding resource

requirements.
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In the standard Multiple Mode Resource-Constrained Project Scheduling

(MMRCPS), once an activity starts in one of its several modes, the activity must finish

in that mode, and any mode change or preemption during its process is not allowed. In

this model, precedence relations and resource constraints must also not be violated.

The scheduling taken in this case is to try to find a start time as well as one execution

mode for each activity such that the project completion time can be minimised. This

model is more flexible and realistic. It allows several execution options from which

one choice is made for an activity. For instance, an activity may be carried out by 3

machines and 4 workers in 2 days or by 2 machines and 3 workers in 3 days or by 1

machines and 2 workers in 5 days. The activity in this case has 3 options (formally

called three execution modes) from which to select, but which mode is actually chosen

from these 3 execution modes depending on the status of availabilities of resources in

that scheduled time.

The MMRCPS model can be described as 0-1 linear programming. Let activity j

(j = 1,2, ..., J) be performed in m execution mode (m = 1, 2, . . . , Mj) with its duration

djm until it finishes at time period / (t=l,2,...,T) where T is an upper bound of the

project completion time that can be expressed as

^Tf mA X Jmi
(3.18)

The upper bound of the project completion time defined in Equation (3.18) sums

up the smallest durations selected among its modes for all activities. Therefore, the

project completion time is impossibly beyond the upper bound T and, in the worse-

case scenario, the project completion time is same as T . However, the binary decision

variables Xjmt can be defined as

[l, if activity j is scheduled in mode m and finished at time period t

lO, otherwise
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Using above-defined parameters and 0-1 variables, the MMRCPS problem is

formulated as

subject to

A/. LFT,

mm / =
m=\ t=EFTj

LFTj

V
m=\t=EFT,

Mj LFT, Mj LFTj

m=l I=EFT,

J M.

=I t=EFT,

itun{t+d,m-\,LFTj)

2] x

q=max{t,EFTj)

LFIj

j=\ t=EFTj

reN

(3.19)

(3.20)

(3.21)

keR;t=l,2,...,T (3.22)

(3-23)

The objective function (3.19) is to minimise the project completion time. The

constraint set (3.20) makes sure that only one mode and one unique finish time are

assigned to each activity. Constraints (3.21) take the precedence relations into

account. For renewable resources R, the level of usage taken by the activities at period

t must not exceed the total resource availabilities that are constrained by (3.22).

Finally, the constraint set (3.23) limits the total resource consumptions of non-

renewable resources, N, through the whole project life-span.

MMRCPS is a powerful model that is capable of mapping realistic situations

occurring in many projects and has the great benefit of representing different

alternatives for performing a certain activity (Li and Willis 1991, Hartmann 1999). At

the same time, incorporating different modes into activities enlarges the solution space

for search. MMRCPS can be decomposed into two sub-problems: the mode-

assignment problem and the standard scheduling problem and, it is NP-hard in the

strong sense (Kolisch 1995, Maniezzo and Mingozzi 1999).
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3.4 Exact Algorithms

In general, exact algorithms developed for combinatorial optimisations in RCPS

and MMRCPS can be divided into two categories: linear programming and branch and

bound methods. Although exact algorithms may seem to be unable to handle the

project scheduling problem while its size increases due to NP-hardness, these

algorithms are still very efficient in obtaining optimal solutions for problems with

small sizes. In the following section, these exact algorithms will be discussed.

3.4.1 Linear Programming

A number of various linear programming formulations have been developed for

RCPS and MMRCPS in trying to obtain mathematical optimisation. Use of the

mathematical standard software package, can yield an accurate optimal solution for

small sized project scheduling problems without requiring any other algorithmic

knowledge.

In terms of single mode RCPS, a very early version of 0-1 programming

formulation was developed by Pritsker et al. (1969). Patterson and Huber (1974)

presented 0-1 programming with a "horizon-varying" approach in which, lower-bound

is employed which is increased by one each time unit until a feasible solution is found.

Patterson and Roth (1976) proposed 0-1 programming combined with implicit

enumeration to improve the computational time. Alvarez-Aalde's and Tamarit (1993)

developed mixed-integer programming. In this formulation, the resource incompatible

set is defined to be a set of activities amongst which a precedence relation exists. The

collection of all minimal resource incompatible sets will be determined in order to

avoid resources conflicts while these activities may be processed in parallel for

competing resources. Mingozzi et al. (1998) present a new formulation of 0-1

programming where subsets of activities amongst which no precedence relations are

specified in order to satisfy resource constraints whilst these activities may be

scheduled in parallel. Carlier and Neron (2000) developed linear programming with

some lower bounds that concerned resource capacity.

Chapter 3 A Review of Resource-Constrained Project Scheduling Page: 50



In the MMRCPS model, Elmaghraby (1977) proposes parametric linear

programming to determine the optimal activity durations in achieving the project

completion time as soon as possible under resource constraints. Patterson et al. (1989)

formularise MMRCPS as 0-1 programming. Moder et al. (1983) develop non-negative

integer programming concerned with cost and duration at the same time. De et al.

(1997) offer a dynamic programming formulation for multiple execution modes.

For very small-sized project scheduling problems, formulations of linear

programming provide a simple and straightforward manner in obtaining optimal

solutions, through running mathematical standard software. Unfortunately, such

approaches are not at all well suited for computing benchmark solutions since the

computational times are much too high. As a consequence, the branch-and-bound type

of exact algorithms is more effective and efficient in computational time than linear

progiamming approaches. Branch-and-bound is probably most widely used to develop

various exact algorithms for solving project scheduling problems. (Herroelen et al.

1998, Demeulemeester and Herroelen 2002). The following will present branch-and-

bound schemes.

3.4.2 Branch-and-Bound Schemes

The technique of branch-and-bound, applied to project scheduling is a well-

known meta-strategy for solving such combinatorial optimization problems as

described in Chapter 6 (Klein 2000). Many approaches developed are based on this

technique, combined with different schemes. The description of branch-and-bound

and commonly existing schemes is explained below.

3.4.2.1 Description of Branch-and-Bound

Branch-and-bound is a technique designed to avoid full enumeration so as to

eliminate the computation of unnecessary solutions. Generally speaking, it involves

two processes, branching and bounding.
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In the branching process, when a project is scheduled, an initial scheduling

problem can be divided into several sub-problems and these sub-problems may be

continuously further subdivided over and over again. Such a process can be visualized

as the creation of a tree with multiple levels. Any sub-problem is represented as a

node that corresponds to a partial schedule (a schedule of a subset of activities). As

viewed in Figure 3.4, the root node, on the first level of the tree, represents the initial

schedule problem containing the set of all solutions, and a branch is a path from the

root node leading to any other node of the tree. However, the branching process will

be stopped when only some sub-problems do not need further branches, as its optimal

solution is already known, or it can be efficiently computed. As shown in Figure 3.4,

no further branches are created from nodes 5, 6, 7, 8, 10, 11, 12 and 13 and they are

called unbranched nodes or final nodes. Each final node represents a single solution.

In the case of Figure 3.4, Node 0 contains 8 solutions. In the end, all possible final

nodes are eventually created so that the optimal solution may be obtained.

Node 4

Node 10

Node 3

Node 8
fi3,2

Node 9

a•3,3

Node 11 Node 12

" 3 . 3 . .

Node 13

'\3.2

Figure 3.4 The tree structure of branch-and-bound
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The bounding process provides a possible measure to recognize an optimal

solution avoiding all unnecessary enumeration, thus saving the enormous

computational time. If a feasible solution obtained at node / during the branching

process, is smaller than or equal to the lower bound of every final node, this solution

will be an optimal one and there is no need for further branching. Through these two

processes, the branch-and-bound approach will often find an optimal solution without

enumerating all solutions explicitly (Agin 1966, Smith 1984, Johnson 1988).

Most branch-and-bound schemes employ two basic search strategies, depth-first

(or backtracking) or best-first (frontier search or skiptracking), or a combination of

these two.

In the depth-first search strategy, one of the nodes that has not been further

branched is selected to create one new node under that node in the new branch. If this

node does not contain an optimal solution or does not contain a solution that is less

than a solution from any preceding branches, the branching process from that node is

stopped and then going up along that node to a branch that has not been fully

explored, and then from that branch further down, in order to investigate whether any

better or optimal solutions exist.

The best-first search strategy is to select the node that has not been further

branched, but that has the lowest or best lower bound. However, this search strategy

requires great memory storage but an optimal solution is always obtained in the end of

search.

3.4.2.2 Precedence Tree

The precedence tree approach is based on early-start schedule at each level of

the branch-and-bound tree and attempts to schedule the eligible activities from a set of

the activities whose predecessors have been finished as soon as possible, without the

violation of resource constraints. For MMRCPS, an eligible activity is selected,

followed by the feasible mode assignment. Then the earliest predecessor is found so as
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to enable determination of the next scheduled time at the next level of branch, until the

last activity is reached during branching. However, the depth-first search strategy is

commonly applied in the precedence tree approach.

The basic idea of this approach was originally from the technique developed

for effectively solving integer programming for RCPS proposed by Talbot and

Patterson (1978), in which the enumeration process is to attempt scheduling the

activities with their earliest precedence and resource-feasibility from the list of

eligible activities at each level of the enumeration tree. Patterson et al. (1989)

employed this idea, developed an algorithm called precedence tree procedure.

Sprecher (1994) and Sprecher and Drexl (1998) restructured the version of Patterson

et al. (1989) and proposed a straightforward approach with some bounding criteria for

solving MMRCPS.

3.4.2.3 Extensive Alternatives vs Mode

and Extension Alternatives

Stinson et al. (1978) introduced extensive alternatives that are sets of eligible

activities whose predecessors have been completed so that resource requirements of a

set of activities do not exceed the current resource availabilities. In their approach,

through the enumeration of all extensive alternatives at each level of the branch-and-

bound tree, the optimal solution can ultimately be found. Mingozzi et al. (1998)

proposed an approach that is slightly different from Stinson et al. (1978). In their

approach, new lower bounds will be obtained by relaxing some constraints, such as

feasible subsets of activities and resource limitation, in the process of creating the

brand-and-bound tree.

The approaches based on extensive alternatives solve only single-mode RCPS

problems. To deal with MMRCPS problems, Hartmann and Drexl (1998) adopted the

concept of mode alternatives from Sprecher et al. (1997) combining it with the idea of

extensive alternatives proposed by Stinson et al. (1978). The approach based on such

a combination is called mode and extension alternative. In this approach, sets of
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eligible activities will be confirmed when a decision point is determined at a level of

the branch-and-bound tree. Then the set of mode alternatives will assign the modes to

the sets of eligible activities so that an extensive alternative is selected before

branching to the next level.

3.4.2.4 Delay Alternatives vs Mode and Delay Alternatives

The concept of delay alternatives was originally proposed by Christofides et al.

(1987) for the examination of lower bounds in linear programming for solving RCPS

problem. Demeulemeester and Herroelen (1992) enhanced this concept and proposed

their approach to the branch-and-bound tree where minimal delay alternatives are

taken into account when renewable resources conflict. In their approach, some

activities in the eligible set may be removed and not be added in the active set at a

decision point of level g in order to minimize the partial schedule delay when

resources are not enough for all of these activities.

For MMRCPS, Sprencher et al (1997) proposed the idea of mode and delay

alternatives, adopting the approach oi Demeulemeester and Herroelen (1992) for the

single-mode RCPS in combination with the notion of a mode alternative. All eligible

activities at the decision point have already been assigned a mode. A mode alternative

is a mapping which is assigned to each activity and a mode for eligible activities is

then fixed before being scheduled.

3.4.2.5 Other Exact Approaches for Single and Multiple Modes

In the above discussion, some exact approaches have not been mentioned, such

as forbidden set and schedule schemes for single mode and dominance rules for

multiple modes, These will be briefly addressed below. However, a few other

approaches such as float splitting, immediate selection are not briefly addressed here

as they exceed the scope of this review.
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lgelmund and Radermacher (1983a, b) introduced the notion of a forbidden set

into their approach in which, a forbidden set is defined as a set of activities that can be

scheduled simultaneously because there do not exist precedence relations among the

activities in that set. However, the approach considers only the minimal forbidden sets

and only these sets will be enumerated in the brand-and-bound tree.

For schedule schemes, there are a few variations. In the version of Brucker et al.

(1998), each node of the enumeration tree represents a set of feasible schedules and

any pair of activities (/,/) in the feasible schedule will hold only one out of the three

relations: either / precedes/, or/ precedes /, or both / and/ are performed concurrently

for at least one time unit. Therefore, the form of the schedule scheme associated with

a node of the branch-and-bound tree will be such above mentioned relations. In the

binary version of the schedule schemes approach (Demeulemeester and Herroelen

2002), two possibilities are considered at each level of the branch-and-bound tree. One

branch has two activities that are scheduled simultaneously for at least one time unit.

However, the other branch combines the possibilities in which, activity / precedes

activity/ or activity/ precedes activity /.

There are a number of dominance rules that are based on bounding criteria in

order to speed up the enumeration procedures in branch-and bound tree. Time

windows as a bounding criterion was proposed by Sprecher (1994) and Sprecher et al.

(1997), in which, the latest finish time of each activity will be computed when an

upper bound of the project completion time and the modes of shortest duration are

given. Then the non-delayability rule will examine its precedence tree. A

preprocessing idea was suggested by Sprecher et al. (1997). In their approach, two

bounding rules, data reduction and nonrenewable resource rules are implemented by

preprocessing so as to improve the schedule of MMRCPS. Sprecher et al. (1997)

defined a multi-mode left-shift rule as a reduction of an activity finish time without

changing the modes and finish times of other activities, resulting in a feasible

schedule. Hartmann (1999) proposed an order swap rule, in which the start or finish

times of two activities / and / are interchanged or swapped without the violation of

precedence and resource constraints. If that scenario can be performed, the current
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partial schedule will be dominated. Sprecher and Drexl (1998) defined a cutset rule

for MMRCPS. A cutset, CS is a subset of activities scheduled in partial schedule, PS.

If CSiPSw) = CS(PSprev), the start time of activity j , ST, > maximum partial schedule

time,/nax(.PiSp,.ev) and at the same time, nonrenewable resources are available, then the

current partial schedule, PScur will be dominated. The immediate selection rule was

originally developed by Demeulemeester and Herroelen (1992) for the single-mcde

case and was late adapted by Sprecher et al. (1997) for MMRCPS, in which there is an

eligible activity j with fixed mode nij that cannot be simultaneously processed with

any unscheduled activity in its any mode, then activity j is the only eligible activity

that needs to be selected for scheduling. Therefore, one branching alternative is

examined instead of testing all. To avoid the enumeration of duplicate schedules,

Sprecher (1994) proposed the enumeration rule, in which if two activities / andy have

been scheduled at the previous and current level of the tree and result in the same start

times for the both activities, then the current partial schedule will be accepted in the

enumeration.

3.5 Heuristics

In practice, the majority of real project sizes range from medium to large. Such

sizes make the scheduling problem more complex mathematically when many

constraints are imposed. These are typical NP-hard problems. From a theoretical point

of view, any exact approaches are unable to handle such computationally complex

problems.

In reality, many project scheduling problems may not require accurate solutions

in terms of optimization because of the unpredictable events that may occur in the

process of the project. Heuristic approaches, based on priority rules, always provide

feasible solutions in a simpler and faster manner although they may not guarantee an

optimal solution. However, a set of priority rules may often be applied to RCPS

problem in heuristics in order to select a better solution among all the results.
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In the following section, serial and parallel schedule schemes will be explained

first. They are the core of heuristic procedures for RCPS. This discussion will be

followed by the introduction of a number of priority rules for the determination of

activity priorities in scheduling, then forward and backward scheduling are briefly

addressed and, finally, common priority rule-based heuristics are described.

3.5.1 Scheduling Schemes

Serial and parallel scheduling schemes are commonly used in priority rule

based on heuristics for RCPS. They are the core of heuristic procedures in project

scheduling. Both schemes generate a feasible solution by processing a partial schedule

in a stage-wise manner by employing priority rules to select one or more activities

from the set of eligible activities for scheduling.

To clarify these two schemes, some definitions and symbols used in the

description of these schemes are explained here. Partial schedule, PSn means that only

a number of activities, and not all activities in a project, have been scheduled at some

stage n. The remaining set, Rn is for those activities that are ineligible as candidates

for scheduling at stage n. The decision set, Dn keeps only the activities that can be

considered for scheduling at stage n. The active set, An is used to place the activities

that have been scheduled but have not been completed at stage n. However, the

complete set, Cn stores the activities that have been or are just completed at stage n. R,

7tRr and Kr denote a set of resource types, the current and total resource availability of

a resource type r respectively. v(j) signs the priority value of activity,/.

3.5.1.1 Serial Scheduling Scheme

The serial scheduling scheme was proposed by Kelly (1963). This scheme

places only one activity into the partial schedule at each stage until all activities in a

project are scheduled to obtain a feasible complete schedule. Therefore, a complete
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schedule in this scheme will be constructed through J stages if a project contains J

activities (1,2, ...,J).

The procedure of the serial scheduling scheme can be described as shown in

Figure 3.5. At the beginning of the scheduling, the partial schedule is null, and the

remaining set, Rn holds a set of all activities in a project, except for those activities

without predecessors. Before scheduling, the decision set, Dn initially contains only

those activities that have no predecessors, and the current resource availabilities, nRr

should be equal to the total resource availabilities for all types.

In this scheme, J stages are processed. In each stage, only one activity is

selected from the decision set, Dn and however, which activity is selected depending

on the priority value of a certain priority rule. When an activity is determined, the

start, STj and finish, FTj times of activity J can be computed. This activity will be

placed in the partial schedule, PSn at stage n. If any activities are completed from the

active set, An at stage n, these activities can be put in the complete set, Cn. Before

moving to the next stage, information such as the active set, An, decision set, Dn and

remaining set, Rm requires to be updated.

Initialisation: PSn := <f>; Cn := </>; An := fc Rn := {J}\{j | Pi e <*};

Begin

For« = l to J

Select/' :=extremum{v(y)};

Compute the start timeST.;

FTj.~STj.4-dj.;

If j G An is completed

Q =<:„_, u y ;

End If

Update4,, Dn,Rn,7!Kr

Next n

End
Figure 3.5 Serial scheduling scheme
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3.5.1.2 Parallel Scheduling Scheme

The parallel scheduling scheme was proposed by Brooks and White (1965). In

this scheme, one or more eligible activities will be scheduled at each decision time

point. The decision time point is that time point which is the earliest finish time of an

activity among these already scheduled activities. This scheme should have at most J

stages if there are J activities (1,2,..., J).

To clarify the scheme, the detail of such a schedule is addressed here through

Figure 3.6. At the beginning of the scheduling scheme, decision time point, /„, is zero,

and the partial schedule, PSn> active set, An and complete set, Cn are all null sets. The

decision set, Dn initially holds activities that have no predecessors. However, the

remaining set, Rn contains all activities except for those without predecessors at the

beginning of scheduling. Of course, the current resource availability, nKr for any

resource, r should be as same as the total resource availability, Kr at beginning. During

scheduling, one decision time point, tn will be determined first at each stage n, and

equals the earliest finish time of the activity or activities in the active set, An.\ at stage

w-1. Then the active set, An is temporally updated with the removal of the activity or

activities that finish at tn at stage w, and these activities will be shifted from the active

set to the complete set, Cn at stage n. At the same time, the resource availabilities, KKT

for every resource, r is also updated. Once the decision time point, tn is determined at

stage n, a number of activities, based on their priority values, will be selected from the

decision set, Dn one by one, if resources are available to them. As shown in Figure

3.6, if the loop condition satisfies that the decision set, Dn contains some eligible

activities as well as the current resource availabilities, nKr (r e R) are available to the

activity / * that will be selected, the start time, ST.. of that activity/* is equal to the

decision time point tn and the finish time FT., is the start time of activity/* plus its

duration. Then resource availabilities are updated and the activity/ is put in the active

set, A,, and partial schedule, PSn respectively. If the loop condition is still satisfied, the

2nd highest priority of activity/* will be chosen following the same procedure of the

calculation of the start and finish times of activity/* and so on until the loop condition
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is unsatisfied. Then the partial schedule goes to the next stage. The complete schedule

will be reached if all activities are in the active or complete sets.

Initialisation :tn := 0;PSn = A,, = Cn := </>;Dn := {J\ j E J,Pj e <*};

Rn:={J}\{j\PjC24>};xKr:=Kr;reR

Begin

Vr eR,Dn, Rn

Do While Dn = (f> and^Cr > R/r VreR

f :=extremum{v(/)}
J e D

/r

FT,=ST..+d.
J J J

Update nKr VreR

Loop

Next n

End

Figure 3.6 Parallel scheduling scheme

The two scheduling schemes do not dominate each other, because one scheme

cannot always yields a better solution than the other (Cooper 1977 and Kolisch

1996b). However, the serial scheduling scheme may seem slightly worse than the

parallel scheduling scheme in terms of the average deviation from optimal solutions

(Alvarez-Valdes and Tamarit 1989, Klein, 2000c).

3.5.2 Priority Rules

Varieties priority rules have been proposed over many years. These rules are

used to rank the activities in the decision set so that the selection of activities is based
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on the priority sequence for any scheduling schemes. More precisely, a priority rule is

a mapping that assigns each activity j in the decision set a priority value, v(j), along

with such information to determine the sequencing selection among these activities in

the decision set for scheduling. These rules have been studied and investigated over

the last three decades (Davis and Patterson 1975, Cooper 1976, 1977, Alvarez-Valdes

and Tamarit 1989, Boctor 1990, Kolisch 1996a, Thomas and Salhi 1997). These rules

can be classified into six main categories based on the information employed to

calculate the priority value v(/) (Alvarez-Valdes and Tamarit 1989, Kolisch 1995).

• Activity itself based priority rules

• Network based priority rules

• Critical path based priority rules

• Resource based priority rules

• Composite priority rules

• Random based priority rules

In the following, some important and frequently used priority rules in each

category will be introduced. Some rules are adopted from job shop scheduling. Some

come from PERT/CPM methods and others are particularly designed for RCPS.

3.5.2.1 Activity Based Rules

In this category, the information considered for priority rules is only related to

the activity itself and does not consider the activity's relations to the project.

a. Shortest Processing Time (SPT)

Mind,, VjeDn

This priority rule originally comes from machine scheduling. The idea is to

prioritise the activities that have the shortest duration so that the activities with the

longer duration are never waiting on short ones.
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b. Longest Processing Time (LPT)

Maxdj, VJeDn

The primary purpose is to start the activities with the longest processing time

first so as to try to avoid the overall scheduling delay.

3.5.2.2 Network Based Rules

These rules rank priorities of activities based on the network structure of a

project. They are based on the precedence relationship between activities. Before

introducing these rules, first let H denote the set of precedence constraints which can

be represented by pairs of activities (ij)

a. Most Immediate Successors (MIS)

Max\Sj\,Vj e Dn, Sj ={i\(i,J)± H}

This rule specifies that the activity that has most successors waiting on

scheduling will be started first so that its successors have a chance to start scheduling.

b. Most Total Successors (MTS)

Max | S* |, Vj e Dn, Sj = {i | / e the activities on a path from j to its all successors}

Where S/ denotes all successors of activity,/. This rule does not only count the

immediate successors, but all the successors of activity j . This rule prioritises the

activity with the most successors so as to prevent subsequence delay to all its

successors.

c. Great Rank Positional Weight (GRPW)

Max(</, + £</,), VjeDn

This rule originally comes from job shop scheduling. It tries to select the activity

that has great total durations of the activity./ plus all its immediate successors because

it will take longer to finish these activities in scheduling.
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d. Great Rank Positional Weight* (GRPW*)

Max (</,+£</,. ),Vye£>,
ieSj

This rule differs from rule c that is GRPW* sums up the duration of activity j as

well as the durations of its total successors.

3.5.2.3 Critical Path Based Rules

This category focuses on the critical path in terms of producing priority rules.

These rules are based on results of the forward and backward passes by calculating the

forward and backward critical path

a. Earliest Start Time (EST)

Mm ESTj, VjeDn

This well-known rule is often applied to scheduling problems. Based on this

rule, the activity that has the earliest start time, among others in decision set, will be

scheduled first due to the concern about the critical path.

b. Earliest Finish Time (EFT)

Min EFTj = Min {ESTj + </,), Vy e Dn

This rule attempts to let the activity that will be finished earlier be scheduled

first so as to get these activities out of way earlier.

c. Latest Start Time (LST)

Min LSTj,\/JeDn

This measure gives the higher priority to the activity that has the earliest late

start time first because scheduling this activity after its LST means a delay with

respect to the completion time in the critical path.
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d. Latest Finish Time (LFT)

MinLFTj = Min{LSTj + </,), Vy e Dn

This rule is adopted from job shop scheduling in response to the earliest due

date. This rule tries to schedule activities before their due date in the schedule.

e. Minimum Slack (MSLK)

This is the most popular rule concerning the minimum slack time in the critical

path. When the activity is delayed, its slack time is reduced by the amount of delay.

To reduce the delay of the whole schedule, the critical activity with smallest slack

time should be scheduled earlier.

3.5.2.4 Resource Based Rules

This category of priority rules is concerned with the resource requirements of

different activities. Scheduling different orders of activities yields significantly

different resource arrangements. Constraint of total resource capacities greatly affects

the project completion time. Because of such concerns, this type of priority rules

focuses on the resource issue.

Greatest Resource Demand (GRD)

reR

This rule assigns priority to the eligible activities on the basis of the product of

the duration of activity,/ and the sum of total resource requirements of that activity.

This allocates higher priorities to potential resource-bottleneck activities based on

their greater resource demands.

3.5.2.5 Composite Priority Rules

To overcome the disadvantage of only relying on a single type of information, this

category of priority rules combines the information from the above categories. These

Chapter 3 A Review of Resource-Constrained Project Scheduling Page: 65



priority rules are obtained by computing a weighted sum of individual priority values

in the other categories.

a. Weighted Resource Utilisation Ratio and Precedence (WRUP)

This rule concerns itself with the number of successors of activity/ as well as

the average resource usage over all resource types for activity/. Therefore, this rule

takes into account the network information as well as the resource information. The

weights are given by the user, to the 1st and 2nd term in the above formula to

emphasize which one is of greater concern - the number of its successors or resource

usage.

b. Improved Resource Scheduling Method (IRSM)

min (max{0, E(jJ) - LST, | (/, / ) e APn}), \/APn = {(/, / ) \ i, j e Dn, / * /}

Where EQ^ is the earliest time to schedule activity /, if activity/ is started at the

decision time point /„ for any activity pair (/,/) in the decision set, Dn. APn is the set of

all activity pairs in the decision set at stage n. The idea of this rule is to try to avoid

delay in all other activities in the decision set for scheduling when activity / is

scheduled at trie decision time point /„ at stage n.

c. Worst Case Slack (WCS)

miniLSTj -max{£ (,y) | (/,/) eAPJ, VAPn = {(/,/) | / , / e DnJ* /}

By this rule, all activity pairs in the decision set are examined to calculate how

much slack is inherent in each activity, and then the activity with the smallest worst

case slack will be selected for scheduling.

3.5.2.6 Random Based Priority Rules

Applying any of the above priority rules, sometimes several activities may have

the same priority values. In this case, an extra rule has to be used as a tie-breaker, to
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further determine the priority sequence of these activities. This makes the

determination of activity priorities more complex.

Random priority rule, RNDPR avoids the priority conflict where several

activities may have the same priority value as any of the above introduced priority

rules is employed. This rule is the way of giving all different priorities to the activities

randomly, so that there are no same values in some activities. This rule is simpler and

easier than other rules in the determination of the priorities of activities, saving

unnecessary computation time (Pan et al. 2001b, Pan et al. 2001c).

3.5.3 Forward and Backward Scheduling

3.5.3.1 Forward Scheduling

The scheduling schemes presented in sections 3.5.1.1 and 3.5.1.2 are scheduled

in the forward direction. They are examples of forward scheduling. More precisely,

when the activities of a project are presented in the way of the project network, a

schedule which starts with the activities that have no predecessors, will be selected at

the time 0, based on priorities. When the scheduling time gradually increases, other

successors may be eligible to start after their predecessors are completed, and then the

forward scheduling will terminate when the last activity is reached.

3.5.3.2 Backward Scheduling

In contradistinction to the forward scheduling, backward scheduling schedules

activities in the reverse direction along with the project network, that is, a schedule

starts with the last of the activities that have no successors, and gradually scheduling

activities from backwardness to forwardness until the first of the activities that have

no predecessors are reached. However, the result of the start time for each activity

gained through backward scheduling, is a dummy start time. The real start times of

activities need to be adjusted by left shift, that is the start time of each activity should
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be the project completion time obtained by backward scheduling, minus its dummy

start time.

3.5.4 Proposed Priority Rule-Based Heuristics

Priority rule-based heuristics are made up of at least two components, a

scheduling scheme and a priority rule. However, a number of different priority-rule

based heuristics can be yielded by one or more priority rules combined with one or

both scheduling schemes and different direction passes. Such priority-rule based

heuristics have been widely applied for solving RCPS problems because of the

reasonable computation time and easy implementation.

3.5.4.1 Single Pass Methods

Any of single pass methods employs one scheduling scheme, serial or parallel

scheduling with only one particular priority rule to obtain one feasible schedule. This

is the one of oldest priority rule-based heuristics. The single pass methods require very

little time, even for a very large project. However, they do not often get good results

in terms of the minimization of project completion time. There are a number of

examples of such heuristics applied to RCPS in literature (Davies 1973, Elsayed 1982,

Kolisch 1996a, Patterson 1976, Thesen 1976, Whitehouse and Brown 1979, Corner et

al 1997).

3.5.4.2 Multi-Pass Methods

As mentioned in the section 3.5.4.1, any of the single pass methods yields only

one feasible schedule that may be the worst solution. However, different scheduling

schemes combined with different priority rules in various ways may result in various

schedules, from amongst which a better solution may be obtained. Such heuristics are

called multi-pass methods. The most common multi-pass methods, multi-priority rule
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methods, forward-backward scheduling methods and sampling methods will be briefly

described below.

3.5.4.2.1 Multi-priority Rule Methods

Multi-priority rule methods employ any scheduling scheme(s) with different

priority rules to produce a number of different schedules so as to improve the quality

of a solution. There are several approaches in such methods. The basic approach is to

use one scheduling scheme in conjunction with only one priority rule at a time so that

m individual priority rules will yield m different schedules. The second approach

applies a scheduling scheme with a combination of various priority rules at the same

time, producing many more schedules. Yet another approach relies on using both

scheduling scheme with different priority rules at a time. Multi-priority rule methods

are proposed by Patterson (1973), Elsayed (1982), Elsayed and Nasr (1986) Ulusoy,

G. and L. Ozdamar (1989), Doctor (1990), Khattab and Choobineh (1990, 1991).

3.5.4.2.2 Forward-Backward Scheduling Methods

Forward-backward scheduling methods apply a scheduling scheme with a

priority rule by scheduling activities in forward and backward directions. Various

versions of such methods are proposed by Li and Willis (1992) with the serial

scheduling scheme, Ozdamar and Ulusoy (1996a, 1996b) with the parallel scheduling

scheme and Lova et al. (2000) with the parallel scheduling scheme for multiproject

scheduling.

3.5.4.2.3 Sampling Methods

Sampling methods usually use one scheduling scheme and one priority rule at a

time. However, different schedules are obtained by biasing the selection of the priority

rule through a random mechanism. There are two major approaches, biased random

sampling and regret based biased random sampling, usually distinguished by a

concern with the way of determining the selection probability of an activity.
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Biased random sampling usually employs one priority rule, based on which, the

probability of the selection of an activity is calculated. Let v(j) denote the priority

value of activity j and p(f) is the probability of choosing activity j for scheduling. If

the bigger value obtained from a priority rule is considered a higher priority, the

formula of probability of the selection of activity j can be represented as

(3.24)
2>(0
ieD.

Conversely, if the smaller value is regarded the higher priority of activity, the

formula of the probability of the selection of activity y should be written as

/ ? ( ; ) = . , L w , (3.25)
(v(7)x2J

1/v/)
ieD.

Biased random sampling methods have been presented by Wiest (1967),

Alvarez-Valdes and Tamarit (1989), Cooper (1976).

Regret based biased random sampling calculates the probability of the selection

of activities indirectly using regret values. The regret value of activity j is the absolute

difference between its priority and the worse priority in the decision set. If the higher

value obtained from a priority rule is the higher priority of activity j , its regret value is

calculated as

() (3.26)
ieD.

Conversely, if the smaller value gained from a priority rule is considered the

higher priority of an activity, the regret value of activity j is computed as

/ t / ) = maxv(/)-vt/) (3.27)
ieD,

In the calculation of the probability of the selection of activity j , the constant e >

0 is added in the both numerator and denominator to assure that the selection

Chapter 3 A Review of Resource-Constrained Project Scheduling Page: 70



probability for each activity in the decision set is greater than zero. The parameter a is

also used in the formula of the selection probability of activity/ to determine the level

of bias. A higher value of a will cause no bias, while a smaller a will introduce much

bias in random activity selection. The probability of the selection of activity/ can be

represented as

(3.28)

The application of and experiments on regret based biased random sampling

methods for RCPS can be found in Drexl (1991), Kolisch (1995), Kolisch and Drexl

(1996), Kolisch (1996b).

3.6 Decision Support Systems

Decision support systems (DSS) are a specific class of computerised

information system that may include an expert system or artificial intelligence (AI)

intended to help the decision maker (DM) solve realistic project scheduling problems.

Recent developments in DSS for project scheduling can be grouped into two

categories: the primary DSS and DSS built with AI.

Anthonisse et al. (1988) first suggested the use of the concept of DSS in RCPS

problems. In the primary stage, a number of problem models are defined and criteria

are set up so as to enable the DM to fit the real problem into a suitable model for

scheduling. Zhang (1998) proposed the image construction method for the DSS so as

to visualise all important data, enabling the DM easily to manipulate these data to

obtain a better result in project scheduling. Tomasz, et al. (1994) presented a DDS of

MIPS prototype version that is a graphic-oriented interactive system for solving

multiobjective project scheduling where the DM will obtain an approximate schedule,

based on heuristics selected from the list offered by the system. However, the

schedule may be further improved by shifting some activities around according to the

real situation and the DM's knowledge. Nowicki and Smutnicki (1994) developed a
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DSS, in which the DM makes decisions in the three stages: (1) whether the activity

risks violation of feasibility; (2) whether to let the activity be placed in the decision

set, and (3) lastly to select a priority rule in the system. Norbis and Smith (1996)

developed an interactive DSS where the DM is able to change the relative priorities of

activities as well as priority rules in the interactive scheme in order to get a better

schedule.

Ulusoy and Ozdamar (1996) proposed a framework of an interactive scheduling

system. In this system, several objectives (criteria) such as the project completion time

and net present value are available for the DM to choose, depending on the

requirements of a real situation. In the system, the scheduling mechanism primarily

determines the start times of activities and specific operating modes. The final

solution will be obtained by the DM testing the primary schedule using the intelligent

constraint based analysis through a "what-if routine. Arinze and Partovi (1992)

developed an expertise-based DSS built with the CPM technique and it permitted the

determination of a good schedule under different circumstances, in terms of the

minimisation of the project completion time. Nabrzyski and Weglarz (1995, 1999)

presented an expert rule-based approach cooperating with a tabu search algorithm for

the case of multiobjective project scheduling problems. Schirmer (2000) developed an

integrated case-based reasoning DSS in the benefit of selecting better algorithms for a

real RCPS problem by analysing several criteria on the algorithmic performance.

3.7 Metaheuristics

This section gives the overview of metaheuristics proposed for RCPS.

Metaheuristics have been widely used since 1980s, particularly for solving hard

combinatorial optimisation problems. RCPS certainly falls into this category.

Metaheuristics are a class of approximate methods that is not intended to

explore the whole solution space. This class of heuristics may be concisely described

as "walk through neighbourhoods", a search trajectory through the solution domain of

a problem.
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In the following subsections, a number of the main metaheuristics proposed for

RCPS problems, genetic algorithms (GA), simulated annealing (SA), tabu search

(TS), neural networks and ant colony optimization (ACO), will be briefly described

and reviewed.

3.7.1 Genetic Algorithms

Genetic Algorithms (GA) were initially introduced by Holland (1975) for the

process of biological evolution. In project scheduling, a GA starts with a population of

n solutions. A number of initial solutions may be generated by applying one single

pass or multi-pass methods, and then new solutions are produced by using genetic

operators. When the population is reached, the fittest solutions survive to make up the

next generation while the others are discarded. This process is repeated until the

predetermined number of generations is reached.

GAs for single mode RCPS have been proposed by Leon and Balakrishnan

(1995), Lee and Kim (1996), Cheng and Gen (1998), Hartmann (1998) and AJcaraz

and Maroto (2001) with different representations of solutions. GAs for multimode

resource-constrained project scheduling with the objective of the minimisation of the

project completion time are also presented by L6pez et al. (1996), Ozdamar (1999)

and Hartmann (2001). Mori and Tseng (1997) applied GA to multimode stochastic

project scheduling problems.

3.7.2 Simulated Annealing

Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983). It

originated from the process of metal cooling gradually to a low energy state. An initial

solution can be obtained by a scheduling scheme with a priority rule. A neighbour

solution is generated by slightly perturbing the current one. If the new solution is

better than the current one, the new solution is definitely accepted. If the new solution
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is worse than the current one, the new solution is accepted only if it meets a certain

probability criterion.

SA based heuristics for RCPS have been proposed in various presentation

schemes with different scheduling methods by Sampson and Weiss (1993), Boctor

(1996b), Lee and (1996), Cho and Kim (1997), Liu and Wang (2000), in terms of the

minimisation of the project completion time. Yang (1995) presented SA for the

maximisation of the project net present value. Jozefowska et al. (2001) applied SA for

multi-mode resource-constrained project scheduling.

3.7.3 Tabu Search

Tabu search (TS), developed by Glover (1989, 1990), is a neighbourhood search

approach using a steepest descent/mildest ascent method in order to move the current

solution to a neighbouring one. Then the best solution is chosen. To avoid the

possibility of moving back to the same local optima, the short-term and/or long term

memories can be employed to record the move status.

Pinson et al. (1994) proposed three TS heuristics with the serial scheduling

scheme. Lee and Kim (1996) presented a TS based on a random key representation

scheme. Baar et al. (1998) developed two TS heuristics. The first one employs the

serial scheduling scheme with the priority list representation scheme whilst the second

one uses the encoding procedure. All these approaches are concerned with the

minimisation of the project completion time. Icmeli and Erenguc (1994) presented a

TS for RCPS involving cash inflows and outflows for the maximisation of the net

present value.

3.7.4 Neural Networks

The human brain is complex biological network of hundreds of billions of

special cells called neurons. These neurons send information back and forth to each
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other through connections so as to enable learning, analysis, and prediction. From

such a biological base, Hopfield (1982) and Hopfleld and Tank (1985) proposed

neural networks for solving optimisation problems. Neural networks are formed from

hundreds of simulated neurons that are connected in much the same way as the brain's

neurons, to learn and analyse the outcome by gathering various information. In

optimisation problems, the network has a capability of jumping from one "energy

basin" to another in the energy landscape in order to escape from the local optima.

The external neuron provides a form of transient feedback.

Vaithyanathan and Ignizio (1992) proposed a neural network to modelling

RCPS for minimising the project completion time. Zhu and Padman (1999) developed

a neural network to induce the relationship between problem \ arameters and heuristic

performance in selecting heuristic approaches for RCPS. ._> (1998) suggested two

networks for RCPS. The primary network makes the calculation of weijjni- "or each

process and the secondary network makes a proposal for modification of schedu

based on the primary network.

3.7.5 Ant Colony Optimization

Ant colony optimisation (ACO), as a multi-agent approach, was first proposed

by Dorigo et al (1996), and Dorigo and Di Caro (1999a, 1999b) to solve

combinatorial optimisation problems. It was first successfully applied to the travelling

salesman problem (TSP) (Dorigon and Gambardella 1997a, 1997b).

ACO was inspired by the observation of the behaviour of real ant colonies by

pioneers, Dorigo et al. (1996). Because ants are blind, they often follow the

pheromone trail from a food source to the nest, and then vice versa. Pheromone is a

substance deposited on ground as an individual ant passes by. Ants often follow their

mates' pheromone trails to look for food and to go back the nest. As time goes by, a

number of trails may be available from the nest to a food source. However, a short

path will be finally detected by its heavier pheromone trait because ants realise that

they spend less time using the path than other trails. Analogously, for ACO, if
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"artificial ants" found a good solution, they will mark their paths by depositing an

amount of pheromone. The following ants of the next generation are attracted by the

pheromone, and search in the solution space for good solutions, marked by greater

deposits of pheromone.

For RCPS, the idea of ACO is to employ an ant algorithm for deciding which

activity from the decision set should be scheduled using any scheduling schemes.

There are only two published papers about applying ACO to RCPS with a similar

approach (Bautista and Pereira 2002, Merke et ah 2002). Both papers apply the serial

scheduling scheme in ACO. For the selection of an activity, the ant uses the heuristic

information as well as pheromone information. The heuristic information for activity/

is the priority information by applying a specific priority rule whereas the pheromone

information is the information about good solutions found by former ants. Therefore

both the heuristic and the pheromone information indicate how good the schedule will

be in scheduling activity/. Both papers try to find near optimal solutions where the

project completion time is minimised.

3.8 Project Scheduling under Uncertainty

Project scheduling has been widely used in industry and public organisations to

plan and manage projects. However, information related to the projects is often

predetermined to be crisp data. In reality, uncertainty often inherently occurs in many

projects. Precise information is seldom available in some contexts as it is difficult to

predict how much time activities of a project will take to complete. Such uncertainty

around activities can be of probabilistic or possibiiistic nature.

For the nature of randomness, only when si'fficient information is available

about observations of past performance of an activity, the technique of probabilistic

distributions can be applied to the activity to obtain the activity durations in the

presentation of probability (Harrison and Tamaschke 1993).
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Quite often the activities of a project that are similar to the activities for which

past information is available may be often of limited relevance in practice. Because of

lack of sufficient information about these activities, it is impossible for the DM to

specify the duration of the activities. As a consequence, the duration of activities may

be intuitively estimated in linguistic terms by the DM, using their knowledge from the

limited available information, their experience and judgement. Linguistic terms such

as "approximately" and "from... to" are an easy way of estimating activity duration

times relying on human thinking and judgement. For instance, activity 1 may be

performed in "approximately" 5 days, and the duration of activity 2 could be "from 3

to 6 days". Clearly, these terms are imprecise in nature, leading to a range of possible

values rather than a definite estimate of activity duration times. Fuzzy set theory is an

effective way of dealing with such imprecision and vagueness (Zadeh 1978, Yeh et ah

1999a, 1999b).

3.9 Current Research in Fuzzy Project Scheduling

In the real world, many project scheduling problems are often inherently

uncertain because of lack of precise information about activity duration times or

because of very limited availability of past information about similar types of

activities. In such circumstances, it is difficult to precisely estimate activity duration

times. For this reason, more and more academic researchers have become aware of

this kind of uncertainty and take this issue into consideration in the field of project

scheduling to resolve difficulties in real-world project scheduling instances.

Fuzzy set theory, as it applies to project scheduling has three categories: (a)

Fuzzy project planning and scheduling without concern about resource constraints; (b)

RCPS with fuzziness; and (c) MMRCPS in a fuzzy environment. In this section, these

three categories of fuzzy project scheduling will be reviewed. The remainder of this

section highlights the contributions made in my PhD research to fuzzy project

scheduling under resource constraints in both single and multiple executive modes of

an activity.
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Prade (1979) first introduced the concept of fuzzy sets and combined fuzzy sets

into program evaluation and review technique (PERT) in project scheduling. Chanas

and Kamburowski (1981) presented detail of estimating the project completion time

through the so-called FPERT technique using fuzzy sets. McCahon and Lee (1988)

proposed project network analysis methods to determine fuzzy project completion

with the degree of criticality of each network path. Later, McCahon (1993) applied the

PERT technique as an approximation in fuzzy project network analysis.

Rommelfanger (1994) presented a new method for determining the start and slack

times of activities in network analysis and compared his method with other well-

known fuzzy network analysis techniques in the literature. Fargier et al. (2000)

integrated a series-parallel graphs method into fuzzy PERT for project scheduling.

Wang and Fu (1996) introduced inflation concerns into scheduling and developed four

different fuzzy project scheduling models. All these methods proposed by researchers

have not taken resource constraints into consideration.

For fuzzy RCPS, Hapke and Slowinski (1993), Hapke et al. (1994) proposed a

fuzzy single-pass parallel heuristic with twelve priority rules. Later Hapke and

Slowinski (1996) presented a similar approach, but added the serial scheme to fuzzy

RCPS. Lorterapong (1994), proposed a fuzzy CPM method with priority rules for

resource allocations in fuzzy RCPS. In this approach, three criteria: (a) minimising

project completion time; (b) maximising resource utilisation; and (c) minimising

resource interruption, are used to measure performance in scheduling. Wang (1999)

presented a fuzzy scheduling procedure with beam search for resolving practical-sized

RCPS problems. Hapke et al. (2000) developed the fuzzy Pareto SA to meet multiple

objectives in fuzzy RCPS with the application to scheduling of an agriculture project

for minimising three objectives: (a) the project completion time, (b) the deviation of

the average resource utilisation, and (c) the total project cost.

Considering a fuzzy environment in MMRCPS, Hapke et al. (1999) extended

their approach to multiple objectives in fuzzy single-mode RCPS (Hapke et al. 2000)

to handle multi-modes for MMRCPS. Ozdamar and Alanya (2001) proposed a

nonlinear mixed binary mathematical formulation combined with four priority rule-
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based heuristics in an attempt to minimise the project completion time for fuzzy

MMRCPS with the case study of software development project.

In my research, I introduced the a-cut concept of fuzzy sets into project

scheduling to express the DM's degree of confidence in estimating activity duration

times (Willis et al. 1999). This concept is practically useful in refecting the vagueness

of estimating activity duration times in cases where the DM knows the properties of

activities very well, and trains the technical and general workers so as to match the

similar skill levels. This concept allows DMs to express their different confident

levels in assessing activity duration times depending on whether the T)M knows well

about the nature of an activity itself, the reliability of machine and equipment, and the

skills of workers and technicians that will participate in the activity.

To solve multiple objectives in a fuzzy environment of RCPS, I developed a

fuzzy goal programming model incorporating DSS so as to enable the DM to make

modifications through an interactive interface, based on their experience and the

circumstance that they know to have produced a significantly realistic schedule in the

past (Willis etal. 1998, 1999).

To obtain a practical and reasonable solution with a simple and effective

computational effort, I developed a fuzzy rule-based heuristic approach that employs a

set often priority rules incorporating one scheduling scheme (Yeh et al. 1999c, Pan et

al. 2001a). This approach has been applied to a real overhaul project scheduling

problem in the dredging industry, producing a good scheduling solution. The

background knowledge of dredging refers to Pan et al. (1998). This approach is

simple and straightforward for any practically-sized RCPS problems involving

uncertain activity duration times modelled by fuzzy numbers.

Although priority rule-based heurists are simple and straightforward in the

resolution, they do not always provide good solutions in terms of optimisation. To

gain a good solution, I developed two versions of fuzzy GA for fuzzy RCPS: (a) fuzzy

pure GA, and (b) a fuzzy hybrid GA that combines a tabu mechanism. In both

approaches, the scheduling problem is formulated as a special chromosome where the
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number of genes matches the number of activities.. In the formulation, the location in a

chromosome acts as the activity number, and a value in each location represents the

priority value of that activity. There is a special mechanism built into both approaches

to always assign different values to each activity, thus avoiding producing the same

priority values in some activities when a priority rule is applied. In addition, under

such a formulation, all solutions generated in the evolutional process are always

feasible. Moreover, both versions of GA have intelligent search strategies in guiding

the search for obtaining the approximate globally optimal solution. The experiment

shows that the GA with a tabu mechanism is superior to the pure GA as it avoids

generating some chromosomes that have been generated recently so as to save

enormous unnecessarily computational time. (Pan et al. 2001b, 2001c, 2003a).

In this research, I also developed another two versions of SA for fuzzy RCPS:

(a) pure SA, and (b) SA with a tabu mechanism. In both approaches, the solution

coding is well designed to reflect the features of fuzzy RCPS as well as searching

requirements. Such a coding representation can initially indicate the objective function

while being processed. Secondly, the current solution coding can be manipulated

easily for generating a neighbourhood solution without any distortion. Thirdly, under

such a solution coding, the recalculation of the overall schedule for neighbourhood

solutions is avoided, thus dramatically reducing computational time in the

neighbouring searching. As the experiment has demonstrated, the SA with a tabu

mechanism surpasses the pure SA if the tabu size is chosen properly because the SA

with tabu can avoid going back to the previous solution spaces as so to extend more

diverse solution spaces in finding an approximate globally optimal solution (Pan et al.

2002; 2003b)

In comparison with the fuzzy single-mode RCPS, fuzzy MMRCPS has a greatly

practical significance in representing the different ways of performing an activity in a

project. However, such a problem may probably be the most difficult scheduling

problem because of the complexity of complete NP-hardness in a strong sense. In my

PhD studies, I have spent a significant time in developing a number of algorithms for

MMRCPS in a fuzzy environment, including (a) the fuzzy priority rule-based

heuristic, (b) the fuzzy GA, (c) the fuzzy GA with tabu mechanism, (d) the fuzzy SA,
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and (e) the fuzzy SA combined with tabu mechanism. All these algorithms were

extended from the algorithms I developed for fuzzy single-mode RCPS. To deal with

MMRCPS, two subproblems need to be properly resolved together: (a) the mode-

assignment problem, and (b) the resource-constrained scheduling problem. The mode

assignment is an important part of MMRCPS. A number of options for mode selection

are built into each algorithm. These are: (a) the mode assigned to the activities may

not be changed for a number of iterations, (b) the mode assignment for one or more

activities may be changed randomly, (c) the modes may be swapped among several

activities, (d) modes may be changed entirely for all activities of a project. The

options for mode assignment are determined by the current search status depending on

whether the current solutions are improved recently during search, based on the

intelligence rule base built in the system which can be modified and predetermined by

the DM. The intensive studies and experiments have been conducted to investigate the

behaviours of these algorithms for finding an approximate globally optimal solution in

search process (Pan et al 2001a, 2003c, 2003d).

Fuzzy RCPS and fuzzy MMRCPS are important issues raised in project

scheduling as fiizziness often inherently exists in such problems, and it cannot be

ignored. As indicated in the review above, there are only a limited number of papers

published in fuzzy project scheduling, of which most publications are not concerned

with resource constraints (Yeh et al. 1999c). There is a scarcity of published papers

dealing with fuzzy RCPS in both single and multiple modes. Therefore, project

scheduling with fuzziness is still a new and challenging field. Vigorous research is

required to develop new effective and efficient approaches to problem solving within

realistic frameworks.

3.10 Concluding Remarks

This chapter has reviewed project scheduling from its earliest to the most recent

development, particularly in resource-constrained project scheduling for single and

multiple modes. This field has been under the academic research for nearly four
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decades. Various approaches have been developed to resolve project scheduling

problems in a more meaningfully practical sense.

In terms of exact algorithms, most approaches are based on the idea of the

branch-and-bound technique, enumerating exhaustively to find an optimal solution for

scheduling. These approaches are mathematically complex as well as very time

demanding in computation. Although these approaches may be able to find an exact

optimal solution in very small-sized problems, they are unable to handle practically-

sized project scheduling problems encountered in the real word.

I
To find ways of dealing with project scheduling problems of any size, a number

of heuristic approaches based on priority rules have been developed for prioritising the

eligible activities in competing scarce resources during scheduling. These approaches

are basically grouped into two categories: (a) single pass methods, and (b) multi-pass

methods. These approaches are simple, and require far less computational time.

However, they may produce a poor solution for the scheduling problem in terms of

optimisation.

To obtain an approximate globally optimal solution in project scheduling of

practical sizes, some researchers have made a great effort to develop a number of

metaheuristics. These include: (a) genetic algorithms, (b) simulated annealing, (c) tabu

search, (d) neural networks, and (e) ant colony optimisation. As the review has shown,

there are only a handful of papers published in the development of these approaches

for resolving project scheduling problems. More work still needs to be carried out to

provide realistic approaches based on the idea of metaheuristic methodologies for

different practical demands.

The above-mentioned approaches regard the project information as crisp without

uncertainty. However, the reality is that often activities similar to those in any given

project may not have been previously performed or the information about them is

hardly available. Uncertainty based on the possibilistic nature of activities often

inherently exists in many real projects. In recent years, researchers start being

cognizant of the nature of vagueness and imprecision that is innate in many real
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project scheduling problems. However, as the review has shown, more efforts need to

be made in fuzzy project scheduling, since there are not many publications available

on this subject, particularly about resource constraints. More attention is urgently

needed to focus on the circumstances of fiizziness in order to provide effective and

efficient frameworks with greatly practical significance in resolving many project

scheduling problems in realistic settings.
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Chapter 4

Fuzzy Multi-Mode Resource-Constrained
Project Scheduling (FMMRCPS)

4.1 Introduction

Project scheduling with resource constraints is an important issue in project

managerial decision making and appears frequently in a large scope of real-world

situations. Because of the importance of practical applications, Kelley (1963),

Lambourn (1963) and Wiest (1964) superimposed resource constraints upon project

scheduling. Generally speaking, the problem of this kind can be characterised as the

need to allocate scarce resources over time to a set of activities of a project where

precedence relationships exist, in order to satisfy a specific goal or objective such as

minimising project cost, minimising project completion time, or maximising net

present value of a project.

RCPS has been the focus of much research for the last four decades since it was

first introduced in project scheduling. However, a vast number of publications have

assumed that each activity can only be performed in a single manner, whereby the

activity has only one duration time with its resource requirements. In practice,

however, activities of a project may be performed in one of a number of possible

manners, because an activity may be performed in various duration times by different

workable resource settings. This scheduling problem has great practical significance

in representing different ways of performing a certain activity. To meet realistic

situations, Elmaghraby (1977) first introduced a project scheduling model, called

multiple mode resource-constrained project scheduling (MMRCPS) where an activity

may have several executive modes. Each mode is represented by its own duration with

the corresponding resource requirements. Later Slowinski and Weglarz (1978)

suggested the multi-mode preemptive case where activities can be interrupted while
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being processed, and resource-duration tradeoffs can be expressed as a continuous

function. These scheduling problems are presumed to be deterministic in nature.

Because of their nature, uncertainty often subsists in many real projects. To deal

with uncertainty, some stochastic approaches have been suggested in RCPS (Davis

and West 1987, Garavelli and Pontrandolfo 1995, Fernandez et al. 1996, 1998, Tsai

and Gemmill 1998, Golenko-Ginzburg and Gonik 1998, and Gutjahr 2000). However,

this uncertainty can only be captured in sufficiently quantifying the information

observed in the past. In reality, many activities in a project may never have been

preformed or precise information regarding the activities is sparse. The uncertainty of

this kind can only be captured in linguistic terms, representative of subjective

judgements based on human knowledge and experience. Fuzzy set theory is an

effective way of handing such uncertainty (Zadeh 1965, Zimmermann 1986). Fuzzy

multi-mode resource-constrained project scheduling (FMMRCPS) is the main issue

considered in my PhD research.

To address FMMRCPS, relevant literature on current developments in

MMRCPS, including fuzziness, is presented first. Next, this chapter addresses the

practical significance of FMMRCPS, followed by a presentation of the problem

description for FMMRCPS.

4.2 Current Developments in MMRCPS

Since Elmaghraby (1977) extended RCPS to the more realistic, MMRCPS

model, research efforts have been made to propose various approaches for this model

because of its power in mapping many situations in practice. As part of my PhD

research on MMRCPS, current developments of MMRCPS in both deterministic and

non-deterministic will be reviewed in this section.

Exact approaches developed for MMRCPS are mainly based on enumeration

schemes and branch-and-bound procedures. Talbot (1982) presented a two-stage

solution approach using enumerations and eight priority rules. Patterson et al. (1989)
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introduced a precedence tree, allowing systematic enumeration of mode assignment

and start time of activities. Speranza and Vercellis (1993) proposed the depth-first

search in the branch-and-bound procedure. Sprecher et al. (1997) applied mode

alternatives with static and dynamic search tree reduction techniques in enumeration

scheme. Sprecher and Drexl (1998) presented new dominance criteria for the branch-

and-bound procedure. Heilmann (2003) proposed a depth-first search based on the

branch-and-bound technique with a branching strategy where branching rules are

selected dynamically. Brucker and Knust (2003) developed a destructive lower bound

method based on both constraint propagation and linear programming. However,

MMRCPS is NP-hard in the strong sense because two decisions have to be made: (a)

mode assignment, and (b) the sequence of activities in scheduling. The experiments

reported show that exact approaches may only solve problems to optimality where

sizes are small with up to 30 activities (Bouleimen and Lecocq 2003).

Heuristic approaches often provide MMRCPS problems with feasible solutions.

Boctor (1993) proposed a single-pass approach with partial mode assignments.

Slowinski et al. (1994) applied a multi-pass approach with sampling to MMRCPS

problems. Drexl and Griinewald (1993) proposed a biased random sampling approach

with a serial scheduling scheme. Boctor (1996a) presented a parallel scheduling

scheme, choosing a set of nondominated eligible activities when a lower bound of

prolonging the project completion time is calculated. Bianco et al. (1998) proposed a

heuristic solution approach based on the mode graph technique and the interactive

solution scheme for determining mode and activity sequence. Sprecher and Drexl

(1998) employed the branch-and-bound procure as a heuristic process. Although these

heuristic approaches always produce feasible solutions, optimal or near optimal

solutions may not be guaranteed.

To achieve better results for MMRCPS, some local search methods and

metaheuristic approaches have also been proposed. Kolisch and Drexl (19?7)

proposed a new local search, in which a feasible solution is initially found, a single-

neighbourhood search is then performed on the set of feasible mode assignments.

Finally improved solutions will be found in the intensification phrase. Mori and Tseng

(1997) proposed a GA, which assignes activity order sequence and mode randomly to
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produce a number of solutions in the first place, then applies genetic operators to these

solutions. However, some generated solutions may be net feasible in the process of

their GA approach. Hapke et al (1998) proposed a Pareto SA combined with the light

beam search for multiple objectives. De Reyck et al. (1998) presented a tabu search

procedure based on decomposition of the problem into a mode assignment and fixed

mode RCPS phrases. Ozdamar (1999) presented a GA approach, applying 15 priority

rules, to determine the priority for each activity. Pan and Yeh (2003 a) developed a GA

approach combined with a tabu mechanism, to obtain better solutions than are

available using a GA alone. Jozefowska et al. (2001) presented two versions of SA:

(a) no penalty function, and (b) with penalty function. Both versions applied three

neighbourhood generation mechanisms: (a) neighbourhood shift, (b) mode change,

and (c) combined move with the former two mechanisms. Hartmann (2001) developed

a GA incorporating two local search methods: (a) one local search designed to deal

with feasibility of MMRCPS, and (b) the other local search used to improve

scheduling solutions found in GA. Jozefowska et al. (2002) proposed an SA and tabu

search for cash flow in MMRCPS. Bouleimen and Lecocq (2003) developed an SA

approach using two embedded search loops for exploring neighbourhood solutions by

alternating activities and modes.

In cases where a fuzzy environment is taken into account for MMRCPS, the

term, FMMRCPS is used here as specified in Section 4.1. Hapke et al. (1999)

proposed the fuzzy Pareto SA for solving multiple objectives with a two-stage

solution procedure: (a) the Pareto SA procedure is used to generate a sample of the

set of approximately non-dominated schedules in weak comparison rule (WCR), and

(b) the interactive procedure is used to search for a schedule that is the best

compromise among conflicting fuzzy objectives over the sample. Ozdamar and

Alanya (2001) proposed a simple GA where four priority rules are employed for

determining priorities of eligible activities, competing for scarce resources. In my PhD

research, I presented a fuzzy rule-based heuristic approach where a set of ten priority

rules are employed incorporating the parallel scheduling scheme (Yeh et al. 1999c,

and Pan et al. 2001a). I developed two versions of GA approaches: (a) the pure GA,

and (b) GA combined with tabu mechanism (Pan et al 2001b, 2001c, 2003a). We

found experimentally that GA with tabu mechanism generally outperforms the pure
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GA. I also developed two versions of SA approaches: (a) the pure SA, and (b) SA

with tabu mechanism for minimising project completion time (Pan et aL 2002, 2003b)

The experiment demonstrates that SA with tabu mechanism works better than the pure

SA if the size of tabu is predetermined properly in terms of effective and efficient

computational efforts.

Although various approaches have been developed to MMRCPS including exact,

heuristic, and metaheuristic approaches, publications focusing on a fuzzy environment

are seldom available. This motivates me to research a more realistic model of

MMRCPS with fuzziness in this challenging field.

4.3 Practical Significance of FMMRCPS

RCPS has been widely used in industries, engineering, sciences and

management. RCPS commonly exists in many projects and scientific undertakings,

requiring scheduling in an efficient way under limited resources so as to reach the

specific goal of completing the project or work such as time or budget. Therefore,

RCPS has been an important part of project management. Nowadays, RCPS

permeates almost every corner of practical life and has become the topic of

interdisciplinary research.

The basic RCPS assumes that each activity can only be performed in one single

manner. This basic model is unable to cover the possibility that an activity may be

optionally performed under different resource requirements. The generalised RCPS,

called MMRCPS, enables covering both single executive mode and multiple

alternative modes for any activities. Thus MMRCPS accommodates a wide range of

project scheduling in practice.

MMRCPS is already a powerful model for mapping many realistic

circumstances occurring in a project (Hartmann 1999). However, uncertainty, an

important issue in project scheduling, is not incorporated in MMRCPS, because

activities contained in a project may never have been carried out, or because

information on those activities is inadequate. Imprecise information in a project often
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exists in practical applications. The issue of vagueness of activity duration times in a

project is addressed here, and this ambiguous phenomenon must be properly handled.

Hapke et ah (1999) first proposed FMMRCPS, which model enables the capture of all

possibly practical situations occurring in a project. FMMRCPS has the great practical

advantage of representing all possible aspects of circumstances for project scheduling.

It is the most powerful and generalised model of RCPS.

4.4 Problem Description of FMMRCPS

« The FMMRCPS dealt with in my PhD research is given below. A project
5

consists of/activities (1, 2,..., J) where activity duration times are uncertain because

of lack of imprecise information on activities. The precedence relationships of

activities in a project can be represented by an acyclic activity-on-node (AON)

network (Crandall 1973), as shown in the detailed example of AON network of the

overhaul project presented in Figure 3.2. To keep generality of the topological order in

activities of a project, the activity number is always larger than that of all its

predecessors. Each activity j may be performed or executed in one of a number of

alternative modes. The type of resources consumed by activities is considered

renewable, and a detailed explanation about this type of resources has been given in

Section 3.2.1.1. The reason for only taking renewable resources into account is that,

this type of resources is the most commonly used in project scheduling. Modes of an

activity are to be sorted in non-decreasing durations. It is assumed that, once an

activity is started in one of its several execution modes, the activity must be finished

in that mode and any mode change or interruption during its process is not allowed.

In the following subsections of this chapter, the objective of FMMRCPS in my

research will be discussed. To clearly describe the model of FMMRCPS, the

assessment of fuzzy duration times for activities and mathematical presentation of the

problem will be presented.
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4.4.1 Objective of FMMRCPS

Project scheduling has attracted growing attention from both academics and

practitioners, and it is popularly applied in a broad number of realms. Appropriate

single and multiple objectives are put forward by researchers and the DM alike to

meet specific demands in a wide diversity of project scheduling environments. To deal

with different objectives for performing project scheduling, a number of objectives

have been proposed for real-word applications to match individual criterion or criteria

requirements.

Time-based objectives are the most common measurements, including (a)

minimising project completion time (Bell and Park 1990, Bottcher et al. 1999, Bianco

et al. 1999, Brucker and Knust 2000), (b) minimising weighted delays if due dates are

given (Sprecher and Drexl 1998), and (c) minimising the maximum tardiness (Baker

1974). In resource-based objectives, resource-cost is of most concern because the

schedule of activities influences the cost indirectly via the status of resource usage

over time. These objectives can be: (a) minimising resource levelling (Neumann and

Zimmermann 2000), (b) minimising the cost by both levelling resources and delaying

project completion time within deadline (Mason and Moodie 1971), and (c)

minimising the resource investment, where current resources are limited, in order to

avoid delay in project completion time (Demeulemeester 1995, Mohring 1984).

Financially-based objectives can be concerned with: (a) maximising the net present

value (Elmaghraby and Herroelen 1990, Baroum and Patterson 1996), (b) minimising

the total project cost (Karshenas and Haber 1990). In some cases, multiple objectives

are compromised so as to meet a specific circumstance in project scheduling (Hapke

etal. 1999).

In my PhD research, both single and multiple objectives are considered for

FMMRCPS. For multiple objectives, both (a) project completion time, and (b) project

cost are taken into consideration because these two objectives are looked upon as two

important issues from the point of view of practical value. The approach developed by

fuzzy goal programming with soft constraints is applied to FMMRCPS to get the best

compromise between these conflicting objectives in fuzzy project scheduling. Later, I
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develop a number of both heuristic and metaheuristic approaches, mainly focusing on

the single objective of the minimisation of project completion time in FMMRCPS.

Although a number of objectives can be applied to project scheduling, the

minimisation of project completion time is the most common concern in practical

situations (Sprecher et al. 1995, Kolisch and Padman 2001). Quite often projects are

scheduled so as to utilise the current capacity of resources of organisations without

hiring any extra resources, and the goal is to attempt to complete a project as soon as

possible.

4.4.2 Fuzzy Activity Duration and a-cut

In many realistic circumstances, precise information on activities of a project is

often seldom available. DMs often determine an impossibly sharp duration time for an

activity, instead of intuitively describing in linguistic terms such as 'most likely',

'unlikely', and 'approximately'. In fact, the evaluation of activity duration times by

DMs reflects a subjective assessment through their knowledge and experience that can

be expressed as a fuzzy number. A membership function of the fuzzy number can

effectively describe this assessment. My experience in undertaking a number of

projects whilst having worked in industry, has led me to believe that triangular and

trapezoidal fuzzy numbers are a convenient and practical way of representing activity

duration times in any situation, and are easily and intuitively described by DMs using

their linguistic terms.

The fuzzy duration time, dj of activity j is represented by a triangular fuzzy

number A, denoted as (aj, ci2, a3), shown as in Figure 4.1. a\ and 03 represent the

unlikely duration times of activity/ as the lower and upper bounds of the support of

the fuzzy number for reflecting the fuzziness of the DM's assessment. 02 is the

assessment value for the most likely duration time with a degree of the membership

being 1. The membership function of fuzzy duration time, dj of activity j can be

represented in formula (4.1). For example, the duration of activity 5, is estimated by

the DM in linguistic terms so that this activity is most likely to be completed in
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approximately 10 days and is most unlikely finished within 7 days or beyond 14 days.

Therefore the fuzzy duration time d5 of activity 5 can be written as ds = (7, 10, 14).

(0 =

0

t-a.

/

ax or

ax < t < a2,

a2 <t <

(4.1)

+• i

Figure 4.1 Triangular Fuzzy Number and its a-cut

If the fuzzy duration time, d} of activity j is represented by a trapezoidal fuzzy

number B, the approximate distribution of linguistic values can be expressed as 4-

tuples (bi, b:, bi, bj) shown as in Figure 4.2. bj and £./ represent the unlikely duration

times of activity j as the lower and upper bounds of the support of the fuzzy number

for reflecting the vagueness of the DM's judgement. The interval [62, 65] is the

evaluation value for the most likely duration time, whose degree of the membership is

1. Let fJfi(t) be the strictly continuous left spread for interval [bj, 62] and ju~(t) be

the strictly continuous right spread for interval [bj, b4}. The membership function of

fuzzy duration time, d} of activity/ in Figure 4.1, can be expressed in formula (4.2).

To describe the fuzzy duration time of an activity, applied to trapezoidal fuzzy

numbers, one example is given here. The duration of activity 3, assessed by the DM is

that activity 3 is most likely accomplished approximately from 5 to 8 days, and is
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unlikely to be completed within 3 days or in more than 11 days. The duration d3 of

the activity can be expressed as dl = (3, 5, 8,11).

1,

o,

a2 < t <

otherwise

(4.2)

Figure 4.2 Trapezoidal Fuzzy Number and its a-cut

The a-cut concept is useful to express the DMs view on the minimum degree of

acceptance when assessing activity duration times for a specific project. The level of

or-cut depends on the DMs' confidence in their assessments of activity duration times

according to their knowledge and perceptions of the project situation. A larger a value

indicates a higher degree of confidence for the DMs with their assessments in

narrower intervals symmetrically distributed around the most possible value of the

evaluation. An a-cut of the fuzzy duration time interval dj of an activity j can be

mathematically expressed as:

>a,ae [0,1]} (4.3)
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4.4.3 Mode representation

In determining mode options for scheduling FMMRCPS, a given set of various

allowable performing modes may be assigned to a specific activity. These performing

modes for an activity are called executive modes of an activity. Each mode of an

activity is characterised by a duration time and amounts of different resources required

for the activity. For example, an activity may have three executive modes. In mode 1,

the activity can be finished in the fuzzy period of (3, 6, 8), requiring 6 workers and 4

machines. For mode 2, the activity can be completed in the fuzzy period of (4, 8, 10),

demanding 4 workers and 3 machines. In mode 3, the activity can be accomplished in

the fuzzy period of (6, 11, 14), needing 4 workers and 2 machines. That is, there are

three options of executive mode, of which the activity is allowed to choose one.

Different mode selections for activities result in significant differences in scheduling

solutions.

Activity/ may consist of a set of executive modes, {1, 2,..., Mj). activity/ can

be processed in mode m of ^ possible modes with fuzzy duration time djm, requiring

amounts of a set of resources {r =1,2,..., R\ kjmr} where R is the number of renewable

resources. Therefore a mode of an activity presents a specific performance for the

activity characterised by its individual fuzzy duration and the corresponding resource

requirements.

4.4.4 Mathematical Description

In this subsection of the mathematical description, I mainly analyse FMMRCPS

for the single objective of minimising the project completion time, addressing

important issues for this particular type of problem while formulating the FMMRCPS

model. All the heuristic and metaheuristic approaches I developed are based on this

model. Research involving multiple objectives for FMMRCPS will be presented in

Chapter 6.

Chapter 4 Fuzzy Multi-Mode Resource-Constrained Page: 94
Project Scheduling (FMMRCPS)



In terms of minimising the project completion time, the goal is to make an

attempt to find a schedule that enables a project to be completed as soon as possible

This is achieved, by assigning which of a number of executive modes of activities to

best achieve the primary objective under the conditions of precedence relationships

and resource constraints. To better understand the nature of FMMRCPS, this problem

is presented in mathematical form in this subsection. A given project comprises of J

activities (j =1, 2,..., J), which are subject to the constraints of precedence

relationships and resource limitation. Activity j can be executed in mode m of Mj

modes (m = 1, 2,..., MJ) with its corresponding resource requirements {kjmr, Vr G R } .

Once an executive mode is assigned to an activity and it is scheduled, any mode

changes or interruption of the activity is not permitted, that is, the activity becomes

non-preemptive. Let 7 be the fiizzy time period, and xjm be a binary variable, whose

value is defined as:

1 if activity/ is performed in mode m at time 7
x ~ =

Jml 10 otherwise
(4.4)

The fuzzy project completion time, defined as H, is heuristically determined by

adding fuzzy duration times of all activities of a project in mode 1 (the mode with

shortest finish time of activities) only and it can be calculated by:

J

(4.5)

Let EFTj and LFTj be the fuzzy earliest and latest finish times of activity j

respectively. Section 3.2.4 has shown how to calculate the earliest and latest finish

times of an activity. FMMRCPS for minimising fuzzy project completion time can be

formulated as follows:

(4.6)
T=EFTj
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subject to
LFTj

m=\ T=EFTj

M, LFT, LF?h

m=\ T=EFTh

i+rf/.-i

(4.7)

(4.8)

(4.9)

As given above, an FMMRCPS problem can be expressed as the fuzzy 0-1

programming model with fuzzy constraints. Objective function (4.6) is to ensure that

the project will be completed as soon as possible. Constraints (4.7) allow an activity to

be scheduled only once over the whole project. Constraints (4.8) describe the

precedence relationships among activities of a project; Constraints (4.9) state that the

resource usage cannot exceed the resource availability. As indicated by the

FMMRCPS model, there are a great number of fuzzy constraints when |J| >3, as two

decisions are required to be made: (a) selecting activity modes, and (b) determining

the sequence of activities in FMMRCPS, and, at the same time, satisfying precedence

relationships and resource constraints. Because of the complexity of solving two

difficult decision problems at the same time, FMMRCPS becomes a combinatorial

optimisation problem in complete NP-hardness (Hall 1997, Motwani 1997).

It is important to seek some practical ways of resolving FMMRCPS problems of

realistic sizes with the objective of minimising the project completion time. Based on

this viewpoint, I have spent significant time developing a number of approaches to

solving any practically-sized FMMRCPS problems where an approximately optimal

schedule can be obtained efficiently and effectively.
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4.5 Concluding Remarks

This chapter has mainly addressed FMMRCPS with the objective of minimising

the project completion time. FMMRCPS raised here has the significance of practical

value, being applicable to most possible circumstances that exist in realistic projects.

Time uncertainty is often intrinsic in many real projects. Furthermore, many activities

of a project may be performed in several executive modes, rather than only single

mode. All these issues have made for resolving scheduling with great complexity as

shown in the mathematical formulation.

Although an FMMRCPS problem can be formulated as a 0-1 fuzzy

programming model, this method may have great limitation in its ability to tackle

FMMRCPS problems of any realistic sizes. Due to such limitations, a number of

approaches have been developed in resolving practically sized FMMRCPS problems

where a schedule approximating an optimal solution can be found in an efficient and

effective way.
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Chapter 5

Fuzzy Forward and Backward
Scheduling in Project Scheduling

5.1 Introduction

This chapter focuses on the fuzzy scheduling mechanism that is incorporated in

both a heuristically rule-based and four metaheuristic approaches I develop, for

dealing with the single objective of minimising project completion time in

FMMRCPS. Also another approach I developed for resolving multiple objectives in

FMMRCPS is one in which the fuzzy scheduling mechanism is not employed. This

will be presented in Chapter 6. A heuristically rule-based approach comprises both a

set of heuristic rules and the fuzzy scheduling mechanism whereas the four

metaheuristic approaches are commonly made up of both the perturbation algorithm

and the fuzzy scheduling mechanism. Therefore, the fuzzy scheduling mechanism is the

one basic component embedded in those approaches. Either a set of heuristic rules or

the perturbation algorithm functions to decide on what activities become schedulable

and what mode is assigned to these activities. The fuzzy scheduling mechanism is used

to schedule the activities when they and their corresponding modes are determined by

means of either a set of heuristic rules or the perturbation algorithm.

The basic idea of the fuzzy scheduling mechanism is similar to the parallel

scheduling scheme used for deterministic data. The detail of the parallel scheduling

scheme has been presented in Sections 3.5.1.2 and 3.5.7.2. Fuzzy scheduling

mechanism has two scheduling mechanisms, fuzzy forward and backward scheduling.

Fuzzy forward or backward scheduling operates in stage-wise fashion to schedule a

number of the activities under the resources constraints in the forward or backward

direction, thus extending a partial fuzzy schedule in each stage in the chosen direction

until all the activities in a project have been scheduled. In fuzzy scheduling
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mechanism, both fuzzy forward and backward scheduling generates two different

complete fuzzy schedules at a time, keeping a better solution and discarding a worse

one.

This chapter first introduces the notation that will be used to describe fuzzy

scheduling mechanism, and secondly, presents both fuzzy forward and backward

scheduling for FMMRCPS in Sections 5.3 and 5.4. The chapter ends with concluding

remarks.

5.2 Notation

Fuzzy scheduling mechanism acts to create a feasible schedule by step-wise

extension of a partial fuzzy schedule when a set of eligible activities and their

corresponding modes are determined by applying a perturbation algorithm. Such a

mechanism is incorporated in each of these approaches. To clearly present both fuzzy

forward and backward scheduling, the definitions of four disjointed sets and the

notation used in fuzzy scheduling schemes, are explained as follows.

Definition 1: Decision Set— D(Tn)

The decision set D(Jn) is the set where the activities of a project are considered

schedulable at fuzzy time point 7n in stage n of the fuzzy scheduling mechanism. In

fuzzy forward scheduling, the activities are eligible to be put in D(Jn) at fuzzy time

point 7n of stage n only when their predecessors have been completed whilst resources

are also available to them at that scheduled time 7n, or when these activities have no

predecessors at the beginning of the scheduling (time point 0 of stage 1). The

condition for placing activities into D(7n) in fuzzy backward scheduling, is that these

activities have no successors at the initially scheduled time point 0 of stage 1, or their

successors have been completed and current resources are available to them at time

point 7n of stage n.

Chapter 5 Fuzzy Forward and Backward Scheduling
in Project Scheduling

Page: 99



Definition 2: Active Set— A(7n)

The active set A(Jn) in either fuzzy forward or backward scheduling is the set in

which are placed those activities that start to be scheduled or have been scheduled but

not yet been completed, at fuzzy scheduled time point 7n of stage n.

Definition 3: Complete Set— C(7n)

The complete set C(7n) is a specific set for storing the activities that have been

completed at fuzzy scheduled time point 7n of stage n regardless of whether the fuzzy

forward or backward scheduling is used. If some activities are just completed at fuzzy

time point 7n of stage n, they are then moved from A(7n) to C(7n).

Definition 4: Remaining Set— R(7n)

The remaining set R(7n) is to store those activities that are not scheduled at

fuzzy scheduled time point 7n of stage n in either fuzzy forward or backward

scheduling. There are two possibilities for their remaining in R(tn) of stage n. One is

that these activities have not been selected for D(7n) in stage n. The other is that even

though some activities have been placed in D(7n) in the beginning of stage «, they are

not scheduled at scheduled time 7n because the rest of the resources are not adequate,

and they now are returned to R(7n) before moving to the next stage n + 1 in the fuzzy

scheduling mechanism.

Definition 5: A Partial & Complete Schedule

A partial fuzzy schedule is a schedule where only a subset of J activities of a

project have been scheduled at fuzzy scheduled time point 7n either in fuzzy forward

or backward scheduling. In the next stage n + 1 of a partial schedule, fuzzy scheduled

time point ^+1 is equal to the earliest finish time of an activity among these in A(tn)

in the previous stage n. A number of stages of partial schedules are carried on for, at

most, J stages until all activities are moved to C(Jn). When all the activities of a

project have been scheduled, such a schedule is called a complete schedule, and the
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r
fuzzy project completion time should be the same as the fuzzy finish time of the

activity that is finished last.

Definition 6: Scheme A

In the fuzzy scheduling mechanism, if resources are not available to one selected

eligible activity in D(7n), the other eligible activity in D(Tn) is not to be scheduled

even though there are enough resources for that activity. The rest of the non-scheduled

activities in D(7n) must be moved back to R(7n), then fuzzy forward or backward

scheduling goes to the next stage n + 1.

Definition 7: Scheme B

If one selected activity from D(7n) cannot be scheduled due to insufficient

resources, the next highest priority activity, for which there are sufficient resources

currently available, is chosen as a candidate for scheduling. If there are no such

activities, the rest of the activities in D(7n) should be returned to R(7n) before moving

to the next stage of the fuzzy scheduling.

Remark 1: Fuzzy Arithmetic in the Fuzzy Scheduling Mechanism

Triangular and trapezoidal fuzzy numbers, as well as crisp numbers, are

involved in FMMRCPS. If these three types of numbers are used at the same time, all

numbers must be converted to trapezoidal fuzzy numbers. However, if triangular

fuzzy numbers and crisp numbers exist in FMMRCPS, all these numbers should be

consistently changed to the triangular fuzzy numbers. Fuzzy arithmetic addition and

subtraction operate on fuzzy numbers during stage-wise scheduling in the fuzzy

scheduling mechanism, by formulae (2.23), (2.24), (2.30) and (2.31). An example for

fuzzy number conversions is given in Example 5.1, and the operation of the fuzzy

arithmetic applied to fuzzy forward and backward scheduling is demonstrated in

Examples 5.2 and 5.3 respectively.
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Example 5.1 Fuzzy Number Conversions for Consistency

(1) Different kinds of numbers are all converted into trapezoidal fuzzy numbers

for consistency in fuzzy arithmetic because triangular and trapezoidal fuzzy

numbers, as well as crisp numbers, are involved in scheduling. Let dx, d2 and

d3 be duration times of activities 1, 2 and 3 of a project given as.

dx = (4, 6, 8), d2 = (5, 8,10,13) and d3 = 6

They should be converted as

3; = (4, 6, 6, 8), d2 = (5, 8,10,13) and d3 = (6, 6,6, 6)

(2) All numbers are changed to triangular fuzzy numbers because triangular fuzzy

numbers as well as crisp numbers are used in scheduling. Let dx and d2 be

duration times of activities 1 and 2 given as

3j = (3, 5, 7) and d2 = 6

They are all converted as

dx = (3, 5,7), d2 = (6,6, 6)

Example 5.2 The Calculation of Fuzzy Start and Finish Times in Forward Schedule

To compute the fuzzy start STj and finish FTj times of activity j in fuzzy forward

scheduling at fuzzy scheduled time point 73, fuzzy duration times d4 and d6 of eligible

activities 4 and 6 from D(73), are given as

73 = (4, 6,9,13), d4 = (2, 4,6, 8), 3 ^ ( 1 , 3, 6,9)

Their fuzzy start and finish times can be calculated as

Sf4 = (4,6, 9,13), FT4 = Sf4 + d4 = (4, 6, 9,13) + (2,4, 6, 8) = (6, 10, 15, 21)

Sf6 = (4,6, 9,13), F% = Sf6 +d6= (4,6, 9, 13) + (1, 3,6, 9) = (5,9, 15, 22)
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Example 5.3 The Calculation of Fuzzy Start and Finish Times in Bachvard Schedule

To calculate the fuzzy start STj and finish FT} times of activity j in frizzy

backward scheduling, both fuzzy addition and subtraction are involved in fuzzy

arithmetic. Fuzzy duration times d3 and dA of activities 3 and 4 are given. After the

scheduling, fuzzy project completion, PCT and the dummy finish time1 of activity

j , DFj, are obtained as

d, = (0, 2, 5,7) and d, = (2,3,4, 6)

PCT = (19, 24, 26, 29), DF3 = (7,9, 13, 14), DF4 = (6,9, 15, 17)

The start and finish times are computed as

ST3 = PCT - DF. = (19,24,26,29) - (7, 9, 13, 14) = (5, 11,17,22)

FT3 = ST3 + d,= (5, 11,17, 22) + (0,2, 5, 7) = (5, 13, 22, 29)

STA = PCT - DFA = (19,24,26,29) - (8,9, 17, 19) = (0, 7,17,21)

FT, = ST4 + d<= (0, 7,17,21) + (2, 3, 4,6) = (2, 10, 21,27)

Note 1: The dummy finish time is the finish time of an activity obtained through

fuzzy backward scheduling and the real finish time should be calculated as

above.

Remark 2: Fuzzy Ranking in the Fuzzy Scheduling Mechanism

In the fuzzy scheduling mechanism, fuzzy numbers in A(tn_x) of the previous

stage n-\, are required to be compared to find the smallest fuzzy number in A(tn_x) as

the fuzzy scheduled time point 7n in this new scheduling stage n. Furthermore, after

having terminated the fuzzy scheduling, fuzzy ranking is also required to find the

biggest fuzzy number in A(Jn) as the fuzzy project completion time by using

Formulae (2.37), (2.38) and (2.41). I have reformulated Formula (2.37) into Formulae

(2.39) and (2.40) for particularly ranking triangular and trapezoidal fuzzy numbers.

The reason for applying these formulae to fuzzy ranking has been addressed in
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Section 2.5. The triangular and trapezoidal fuzzy number comparisons are given in

Examples 5.4 and 5.5 respectively.

Example 5.4 Triangular Fuzzy Number Comparison

(1) To determine the new scheduled time point 7n in stage w, it is necessary to find the

earliest fuzzy finish time of the activities in A(tn_x). Let FT3, FTA and FT6 be

fuzzy finish times of activities 3,4 and 6 in A(JnA) given as

Ff3 = (4, 8,10), FT4 = (5, 7, 10), FT6 = (5, 8, 11)

Having applied Formulae (2.39) and (2.38), the fuzzy ranking indices, R(FTj) for

the fuzzy finish times of these three activities, are obtained as

R(FT3) =7.35, R(FT4) =7.34, R(FT6) =8.02

By fuzzy ranking rules (2.41), FT4 is chosen as the new scheduled time point 7n.

(2) To acquire the fuzzy project complete time, it is necessary to find the fuzzy finish

time at which the last activity or activities in the schedule are finished. It is

assumed that activities 8, 10 and 11 are placed in A(7n) of the final scheduling

stage n and their finish times, FTS, FTl0 and FTn are given as

Ffl = (41, 52, 61), F7;o = (39, 51, 60), FTU = (38, 52,61)

Having applied formulae (2.39) and (2.38), the ranking indices R(FTj) of fuzzy

finish times of these activities are shown as

R(FTS) =51.34, R(FTl0) =50.00, R(FTU) =51.02

Based on the ranking rules (2.41), the biggest fuzzy number is FT8. Therefore,

activity 8 is finished last in the whole project, and the fuzzy project completion

time, PCT should be as

PCT = FT, =(41,52,61)
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Example 5.5 Trapezoidal Fuzzy Number Comparison

(1) To determine the fuzzy scheduled time point Tn, fuzzy ranking is required to

find the earliest fuzzy finish times among these activities in A(Jn_x). The fuzzy

finish times FT2, FT3 and FTS of activities 2,3 and 5 in Afa^) are given as

FT2 = (6, 9,13,15), Ff3 = (7, 9,12,14), FT5 = (7, 10, 13, 15)

Using formulae (2.40) and (2.38) for trapezoidal fuzzy numbers, the ranking

indices for these three fuzzy numbers R(FT2), RiFT^) and R(FT5) , are

computed as

R(FT2) =10.73, R(FT3) =10.51, R(FT5) =11.81

Having employed the ranking rules (2.41), the smallest fuzzy number is

determined to be

Ff3 = (7, 9,12,14) .-. the scheduled time point 7n = FTi

(2) To obtain fuzzy project completion time, fuzzy finish times of the activities in

A(7n) of the final stage will be compared to find the last finish time of the last

activity or activities in a project. The finish time of the last activity or

activities will be designated as the fuzzy completion time of this project. The

finish times of activities 7, 9, 12 in A(7n) of the last stage of scheduling are

give as

FT1 = (35,41, 47, 54), FT9 = (32, 42, 47, 55), FTX2 = (31, 36,47, 55)

Through fuzzy ranking formulae (2.40) and (2.38) for trapezoidal fuzzy

numbers, the ranking indices R(FT7), R(FTg) and R(FTi2) for fuzzy finish

times of activities 7, 9 and 12 are obtained as

R(FT7) =44.30, R(FT9) =44.15, R(FTn) =42.35

Having applied the fuzzy ranking rules (2.41), apparently /J(iT7) =44.30 is

the biggest fiizzy number among these three fuzzy number.

.-. PCT = Ff7 = (35, 41, 47, 54)
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The following notation is used for describing the fuzzy scheduling mechanism

as one component in each of my approaches I have developed.

r = one of renewable resources;

R = a set of renewable resources consumed in a project;

Kr = the total availability of renewable resource r;

TzKr = the left-over capacity of renewable resource r\

kjmr = the consumptive requirement of resource r by performing activity j in
mode m;

djm = the fuzzy duration time by performing activity./ in mode m;

j = the fuzzy start time of activity j ;

j = the fuzzy finish time of activity j ;

= a set of immediate predecessors of activity j \

= a set of immediate successors of activity j ;

j = the dummy fuzzy start time of activity / obtained through fuzzy

backward scheduling, that is not the real start time of activity j ;

j = the dummy fuzzy finish time of activity j made by fuzzy backward

scheduling, that is not the real fuzzy finish time;

PCT = fuzzy project completion time.

The above four disjointed sets and the notation defined will be used in

presenting both fuzzy forward and backward scheduling in the following two sections.
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5.3 Fuzzy Forward Scheduling

In fuzzy forward scheduling, eligible activities from D(7n) are scheduled in the

forward direction by stage-wise movement. There are, at most, J stages in scheduling

if there are J activities in a project. The process of fuzzy forward scheduling is given

in Figure 5.1. As shown in Figure 5.1, an inner loop is embedded in the outer loop.

The outer loop controls the whole process of the fuzzy scheduling to ensure all the

activities of a project will be scheduled in order to gain a complete schedule, and the

inner loop specifically deals with only one stage of the scheduling, in which, some

eligible activities are selected from D(7n) for scheduling. To clearly address the

specific purpose of each block of fuzzy forward scheduling, four main blocks are

marked with four steps underlined in bold in Figure 5.1.

Step (a) — Determine the Scheduled Time Point 7n and D(Jn) in The New Stage

The main purpose of the block of step (a) is to compute the new fuzzy scheduled

time point 7n, and to set up D(Jn) for this new scheduling stage n. The new fuzzy

scheduled time point 7n chosen in stage n should be same as the earliest fuzzy finish

time of activity j among A(7n_]) in the previous stage w-1. To find out this earliest

fuzzy finish time, the fuzzy finish times of all the activities in A(JnA) will be ranked

through the fuzzy raking method given in Remark 2. Any activities finished at this

earliest finish time (which becomes the fuzzy scheduled time point 7n in stage n\ are

all removed from A(tn_x) to C(7n), so that A(7n) is temporarily updated in stage n,

and, at the same time, some resources taken by these activities are released. To set up

new D(7n) in this stage of the scheduling, activities eligible for placement in D(7n)

are those whose predecessors have been finished and whose resource requirements do

not exceed the currently available resources. R(7n) is also temporarily updated by

removing those activities that have been placed in D(7n).
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INITIALISATION:
n :=1, 7H :=0,nKr := Kr Vr e R ;= {7 | P, = <*,/ e / } ,

zJ} gotoStep(b)
DO WHILE n<JnR(7,,)*</>

Step (a)

FT,=

C(7n) := C(tn_x) v {71 Ffj = 7n \/j E A{7n_x)};

Step (b)
Priority ordering and mode assignments in D(7n)

DO WHILE D(7n)*0
Select jeD(7n)
FOR Scheme A

goto Step (c)
ELSE

goto Step (d)
ENDIF

FOR Scheme B
IF *,„,, > KKr Mr e R

goto Step (c)
ELSEIF the next highest priority/ n k.mr > nKr Mr e R

goto Step (c)
ELSE

goto Step (d)
ENDIF

Step (c)
ST, :=/;,; ^; D(7n):= D^jiAiZ)-A(7n)v j ;

ENDLOOP
Step (d)

D(7n) :=</>, and update R(7n);

ENDLOOP

Figure 5.1 Fuzzy forward scheduling
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Step (b) — Select A Number of Eligible Activities from D(Jn)

The block function of step (b) is to select a number of activities from D(Tn) in

the manner of scheme A or B. Schemes A and B have been introduced in Definitions

6 and 7 of Section 5.2. For scheme A, one activity is selected at a time if this activity

satisfies two conditions simultaneously: (a) having the highest priority in D(Tn) at a

time, and (b) resources available to this activity. Such a process is repeated until no

more eligible activities in D(7n) satisfy these two conditions. For scheme B, if the

resource requirements of a selected activity with the highest priority in D(7n) exceed

the currently available resource, the next highest priority activity with resource

consumption not surpassing currently available resources is selected until D(7n) is

empty or no more activities with resource requirements are less than currently

available resources.

Step (c) — Schedule A Selected Activity at A Time

In step (c), one activity selected at a time is scheduled and its start and finish

times are calculated as shown in Remark 1, then this activity is placed in A(7n) and

resources used by this activity are reduced from currently total available resources.

This process is repeated until there are no more selected activities from D(Jn) in this

stage.

Step (d) — Update D(7n) and R(7n), and Get Ready for the Next Stage

The function of step (d) is to move the remaining activities from D(7n) to R(7tl)

when no more remaining activities in D(7n) are eligible for selection. At this point,

the stage counter n is incremented by one (n := n + 1) to terminate the inner loop for

this stage and to get ready for the next stage of the fuzzy scheduling.

In what presented above, the functions of the four main blocks for fuzzy forward

scheduling have been explained individually. To better understand how fuzzy forward

scheduling operates as a whole, the whole process of the scheduling is presented

below.
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Before starting fuzzy forward scheduling, initialisation is made for variables and

parameters. In the beginning of the scheduling, 1 and 0 are first assigned to stage n

and the scheduled time point 7n respectively. Of course, currently available resources

are intact and equal to the total available resources initially provided for a project, and

the activities initially in D(T{) are only those that have no predecessors. A(JX) and

C(7X) are empty sets in the beginning of stage 1, and R(tx) contains all activities

except for those in D(t[). After having been initialised, those activities stored in

D(7X) will be selected and processed in step (b) until no eligible activity remains in

D(7r) or no more activities are left in £)(/,). Then the next stage, n starts with step (a)

at the beginning of the outer loop if, and only if, the number of stage n is less than the

number of activities J (n < J) and if R(7n) is not empty (R(7n) * ^ ) . The new fuzzy

scheduled time point 7n will be finalised through ranking of fuzzy finish times of all

the activities in A(Jn_x) for the previous stage n-\. Then D(7n) is determined so as to

be able to move to step (b) to schedule eligible activities from D(7n) through either

schemes A or B or both. /)(/„), R(7tl) and the stage counter n are updated If there are

no more eligible activities in D(7n) or no more activities in D(7n). If R(7n) is empty,

the whole process of the fuzzy scheduling is terminated.

At the completion of fuzzy forward scheduling, the fuzzy project completion

time can be obtained by determining the time at which the last activity or activities are

finished in a project. That is. the largest fuzzy number among these fuzzy finish times

of the activities in A(7n) of the last stage n can be determined by applying the fuzzy

ranking method. The detail of fuzzy ranking has been given in Remark 2. Therefore,

the fuzzy project completion time can be mathematically expressed as

PCT = max{Ff, | je A(tn) A R(7n) = <f>) (5.1)
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5.4 Fuzzy Backward Scheduling

Fuzzy backward scheduling is the other way of scheduling in the fuzzy

scheduling mechanism. The backward scheduling operates in exactly the opposite

direction of fuzzy forward scheduling. Fuzzy backward scheduling starts from the end

of activities in the project network until the beginning of activities is reached. That is,

the activities without their successors are scheduled first in the backward direction

moving toward the beginning of activities by stage-wise scheduling. Figure 5.2

presents the process of fuzzy backward scheduling. As shown in Figure 5.2, there are

two loops in fuzzy backward scheduling. The outer loop governs the whole process of

the scheduling to ensure that all the activities in a project are included from the

beginning to the final stage of scheduling, whereas the inner loop manages a specific

stage of scheduling while D(tn) has been determined in that stage. The function of

each step in fuzzy backward scheduling is presented below.

Step (a) — Initialisation

Step (a) is the initialisation of the beginning of scheduling: assigning the initial

values 1 and 0 to the stage counter n and the beginning of scheduled time point 7n

respectively; locating the activities that have no successors into D(t[); ensuring A(t\)

and C0\) are initially null; placing all the activities of a project into Rfi) except for

those already in £>(/^). Then eligible activities in D(T̂ ) are selected and processed in

step (c).

Step (b) — Determine 7n & D(Jn)

Step (b) deals with the new stage of scheduling when the previous stage is

completed. Step (b) starts with the outer loop if, and only if, two following loop

conditions are satisfied: (1) the stage counter n must be less than the number of

activities contained in a project J, and (2) D(Tn) is not empty. The new fuzzy

scheduled time point 7n is set the same time as the earliest dummy fuzzy finish time of

the activities in A(tn_x) of the previous stage n-\. Both dummy start DS} and finish

j times of activity j are not actual start STj and finish FTi times of activity j .
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They are only obtained by the backward scheduling calculations. However, they are

used to determine the new scheduled time point 7n in fuzzy backward scheduling.

When the fuzzy scheduled time point 7n is determined, the activities finished at that

time point 7n in the backward scheduling are removed to C(7n), and A{tn) is updated.

The resources used by these activities are released. The new decision set D(7n) is set

up for the step (c) and the remaining set R(7n) is updated.

Step (c) — Get Eligible Activities from D(Jn)

Step (c) begins with the inner loop. It commences if, and only if, the loop

condition of the decision set D(tn) is not empty. There are two schemes, A and B,

available for selection by the user in fuzzy backward scheduling. The details about

Schemes A and B have been addressed in Definitions 6 and 7 of Section 5.2 as well as

presented in step (b) of fuzzy forward scheduling in Section 5.3. If an eligible activity

exists in D(7n), this selected activity goes to step (d) for scheduling. If there are no

more eligible activities in D(7n), the process skips from the inner loop to step (e).

Step (d) — Schedule the Eligible Activity Selected in Step (c)

Step (d) schedules one specific activity at a time that has been selected from

D(7n) in step (c). The dummy fuzzy start time DSj of the eligible activity j is

assigned as the fuzzy scheduled time point 7n in this stage n, and the dummy fuzzy

finish time DFi of this activity is its dummy start time DSy plus its fuzzy duration

time djm performed in mode m. Then this activity is moved from D(7n) to A(tn). The

currently available resources are also updated by reducing the amount of the resources

consumed by this activity. This loop then cycles to step (c) if an eligible activity in

D(7n) exists.
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Step (a) {Initialisation)

A(rn)=C(rn):=(P, j
Step (b) (Determining Tn & D(Tn))

DO WHILE n<JnR(7n)*f

goto Step (c)

Tn):= A(7n_x) \ {j | j e A^nDFj = 7K);

C(l):= Cfi.,) v 0* I DFj = IV/ G fa

jmr VreR;

Step (c) (Part of the inner loop for selecting eligible activities from D(7n))

Priority ordering and mode assignments in D(7n)

DO WHILE D(jn)*j

Select jGD(7n)
FOR Scheme A

goto Step (d)
ELSE

goto Step (e)
ENDIF

FOR Scheme B
IF kjmr>7rKrVreR

goto Step (d)
ELSEIF the next highest priority/ n k w > nKr Vr e R

goto Step (d)
ELSE

goto Step (e)
ENDIF

Step (d) (Scheduled the activity selected in step (c))
j := I; DFj := DSJ + 3Jm; D(tn) := D{7n)\ j ; A(7n):=A(7n)v j ;

ENDLOOP
Step (e) (Update information if there are no more eligible activities in this stage)

D(7n):=0, and update R(Jn)\
n := n 4-1

ENDLOOP

Figure 5.2 Fuzzy backward scheduling
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Step (e) — Update D(Jn), R(Jn) and Stage Counter n

Step (e) updates relevant information after it skips out from the inner loop when

there are no more eligible activities in D(Jn). The rest of activities in D(Jn) are

removed to R(Jn) so as to vacate D(tn) and the stage counter is increased by 1. Now

the process is ready to move to the next stage if some activities still remain in R(fn).

Otherwise, fuzzy backward scheduling is terminated.

Once the whole process of fiizzy backward scheduling is completed, the fuzzy

project completion time can be obtained as the fuzzy time at which the last activity or

activities are finished in the backward scheduling. That is, the fuzzy project

completion time equals the biggest fuzzy number among these dummy fuzzy finish

times of the activities in C(Tn) of the final scheduling stage. The detail of fuzzy

number comparison has been addressed in Remark 2 of Section 5.2 and also presented

in Examples 5.4 and 5.5 of Section 5.2 respectively. The fuzzy project completion

time can be mathematically defined as

PCf = max{Df, | j e A{7n) A R(7n) = <j>) (5.2)

Because only dummy fuzzy start and finish times of the activities in a project

are acquired through the backward scheduling, rather than their real start and finish

times, some extra conversion work is required to change the dummy times of the

activities to their actual fiizzy start and finish times. The fiizzy start time of an activity

should be the fuzzy project completion time minus its dummy fuzzy finish time, and

the fuzzy finish time of an activity should be equated with its fuzzy start time plus its

fuzzy duration time performed in mode m. Both the fuzzy start and finish times of

activity/ can be respectively expressed as

fj = PCT - DFj Vj e J (5.3)

+dj,, VjeJ,meM (5.4)
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5.5 Concluding Remarks

The fuzzy scheduling mechanism is a common component incorporated in both a

fuzzy heuristically rule-based approach and four fuzzy metaheuristic approaches I

developed for resolving FMMRCPS with the single objective of minimising the

project completion time, in an environment where activity times are fuzzy. The

mechanism schedules eligible activities with their associated modes both of which are

decided by a set of heuristic rules or a perturbation algorithm in a fuzzy heuristically

rule-based or a fuzzy metaheuristic approach.

The fuzzy scheduling mechanism contains both fuzzy forward and backward

scheduling, dealing with both crisp and fuzzy duration times of activities involved in

scheduling. Fuzzy forward scheduling is a stage-wise way of scheduling eligible

activities with their associated modes in the forward direction whereas fuzzy

backward scheduling starts with the end of activities and their associated modes,

gradually scheduling eligible activities toward the beginning of activities in the project

network.

The advantage of employing both fuzzy forward and backward scheduling is

that it generates two different schedules in which the same conditions are applied at a

time. It gives a great opportunity for generating a diversity of fuzzy scheduling results

by running ihz fuzzy scheduling mechanism a number of times.

.
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Chapter 6

Fuzzy Project Scheduling
with Multiple Objectives

6.1 Introduction

Project scheduling sometimes requires considering several performance

measures such as time, budget and resources simultaneously to meet specific

objectives. Due to such concerns, Slowinski (1981) proposed multiple objectives for

RCPS. Norbis and Smith (1988) adopted a hierarchical ranking method for RCPS to

rank the importance of each individual objective among three objectives: (a) project

completion time, (b) due-date, and (c) resource utilisation. Deckro and Hebert (1990),

and Rajagopal et al. (1997) used a goal programming model to compromise the

conflicting objectives of: (a) project completion time, and (b) project cost, in a RCPS

problem. Li and Willis (1992), and Ulusoy and Ozdamar (1994) developed iterative

algorithms with dispatching rules for minimising the project completion time and

maximising NPV simultaneously. Davis et al. (1992) proposed an iterative decision

support approach for the DM to examine explicitly the minimisation of two objectives

(that is, the project completion time and the average resource usage), during the whole

scheduling process. Viana and de Sousa (2000) developed SA and Tabu search for

minimising three objectives: (a) the project completion time, (b) the mean weighted

lateness of activities, and (c) the sum of the violation of resource availability, to be

compromised in MMRCPS. All these approaches were developed on the basis of

deterministic information.

In the real world, many realistic projects are often confronted with uncertainty

because of lack of sufficient information on activity duration times in a project. Hapke

et al. (1999) proposed the Pareto SA to FMMRCPS for minimising three objectives

simultaneously, including (a) the project completion time, (b) the total project cost,
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and (c) the average deviation from the average resource usage. I developed a fuzzy

goal programming model for solving two commonly used objectives, including (a)

project completion time, and (b) project cost, using the a-cut concept in the

environment of fuzzy activity times (Willis et al. 1999).

This chapter focuses on FMMRCPS with multiple objectives as one part of my

research I have undertaken. Section 6.2 addresses the generalised characteristics of

FMMRCPS for dealing with multiple objectives. Section 6.3 presents a real case of

dredge repair that is a typical FMMRCPS problem faced with two objectives of (a) the

project completion time, and (b) the project cost. Section 6.4 presents an interactive

fuzzy goal programming for multiple objectives in FMMRCPS. Section 6.5 is the

result analysis for dredge repair schedule. The chapter ends with conclusion remarks.

6.2 Multiple Objectives in FMMRCPS

As reviewed in Section 6.1, project scheduling has traditionally focused on the

consideration of a single objective only. There is not much research work reported on

multiple objectives both in RCPS and MMRCPS (Ozdamar and Ulusoy 1995, Kolisch

and Padman 2001). Surprisingly, research work on solving multiple objectives in

fuzzy project scheduling is very scant with only two publications found so far in the

recent literature. This is the reason, that motivates me to undertake research on

multiple objectives in FMMRCPS although my main research focus is on the

development of efficient and effective approaches to FMMRCPS with a single

objective of minimising project completion time.

FMMRCPS with multiobjective optimisation inherently exists in real-word

applications. It represents generalised circumstances of project scheduling with the

consideration of multiple objectives where activities can be performed in one of

several executive modes under the fuzzy environment. In some situations, a project

schedule may need to take several requirements into consideration simultaneously,

such as finance, time, and some organisation or industry-specific objectives. A major
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concern in FMMRCPS with multiple objectives is that all these objectives often

conflict with each other. The optimal solution for multiple objectives is not so obvious

because there is no single solution that is the best for all the criteria or objectives, but

there exists a set of nondominated solutions when considering all the objectives.

However, the final solution should be chosen based on the specification of specific

requirements in a particular circumstance.

In FMMRCPS with multiple objectives, a project consists of J activities Qr =1,

2,..., J) under precedence relationships and resource constraints. Activity/ may be

performed in one mode m of Mj modes (m = 1,2,..., MJ) with its fuzzy duration time

djm and its corresponding resource requirements ( kJmr,VreR ). The project

scheduling may be concerned with a number of objectives (o = 1, 2,..., O)

simultaneously, requiring that a best compromised solution can be found. Let T be

heuristic fuzzy completion time of a project, determined by adding fuzzy duration

times of all activities of a project in mode 1 beforehand, and be expressed as:

Let 7 be the fuzzy time, and x, r be a binary variable, defined as:
jml

11 if activity j is performed in mode m at time 7

10 otherwise
xim7 ~\ (6.2)

FMMRCPS with multiple objectives can be formulated as

J

min/max f0 (xJmT), o = l,2,...,O (6.3)
meM j
7ef
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Let exkr be a number of extra units required for resource r (reR). The

constraints of FMMRCPS can be expressed as:

Mj LFfj

Subject to X ^ r = I J = U,...,./ (6.4)
m=l I =EFTj

r r ^ 0 , 7 = U,. . . ,J 6.5)
m=l T=EFTj

j M^ T+dJm-\ ^

j=\ m=\ s=T

Constraints (6.4) ensure that each activity is processed only once in scheduling.

Constraints (6.5) guarantee that precedence relationships are met, and constraints (6.6)

indicate the required amount of resource r consumed by activities minus the extra

amount of resource r does not exceed the available resources provided for a project.

The above mathematical description represents generalised characteristics for solving

multiobjective FMMRCPS problems. However, the problem formulation or

mathematical representation of FMMRCPS with multiple objectives may be different

from the above generalised mathematical description because of its specific

characteristics and particular requirements.

6.3 Dredge Repair Scheduling Problem

6.3.1 Dredge Breakdown Repair

The schedule for repair of a dredge after breakdown is often required to consider

timing and the budget of repair simultaneously. However, the priority given to the

repair time and cost often vary depending on the current circumstances of the

dredging company faced with the dredging workload of the waterway and the number

of reserve dredges at the time. It needs to produce a better schedule of a dredge repair

that satisfies both objectives for the requirements of a particular environment.
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Large quantities of silt from the upper reaches of Yangtze River pour

downstream and settle in the waterways between the river and the sea, seriously

affecting normal waterborne transportation all year around. As a consequence, a

number of dredges are required to work in different sites day and night for waterway

maintenance (Pan 1997). Because of their heavy-duty work, dredges sometimes

suddenly break down and require repair. The schedule of repair should satisfy both

objectives of time and cost, set by the management in the company.

Commonly a dredge requiring repair will be examined by experts to determine

the number of activities (or jobs) and their duration times. Some components of the

dredge may be functional, but may be in poor condition, and will also be repaired or

replaced. However, the time required for each job or activity is very difficult to

determine precisely because the extent of damage to each components has to be

assessed subjectively by experts through their examination. Therefore, the time for

each activity is often decided subjectively by the management of the company. For

these reasons, it is evident that uncertainty inherently exists in duration times of

activities in dredge repair.

The project of dredge repair is a typical FMMRCPS problem with

multiobjective concerns where two conflicting objectives (that is, the project

completion time and the repair cost) are taken into consideration simultaneously

during its scheduling. A method needs to be found to obtain a better schedule in terms

of multiobjective optimisation.

6.3.2 Problem Formulation

When a dredge breaks down, three departments, dredging, engine and deck of

the dredge need to be serviced. The service schedule of the dredge is often required to

meet two criteria or objectives: time and cost. These two objectives are main concerns

for a dredging company. They conflict with each other and are incommensurable. To

arrive at an acceptable compromised solution, fuzzy goal programming is proposed in

this research.

Chapter 6 Fuzzy Project Scheduling with Multiple Objectives Page: 120



The objective function of minimising the project completion time is equal to the

last activity finished at time FTn. Therefore, the objective function can be simply

expressed as:

; = FTn (6.7)

In minimising the repair cost (project cost), the amount of resources used by

each activity and the penalty for delaying activity j by /,- days are considered as the

two main factors. Therefore, the cost of the project is the sum of all the activity costs

incurred by using resources plus the penalties caused through delays in activities. Let

kJmr and k*jmr be the amounts of resource consumed by activity j performed in mode m

from both the available and the extra resource r respectively. Cr and C* are the unit

costs of the available and the extra resource r respectively, dpj is the daily penalty rate

after due days X in activity j . xJmT is a 0-1 binary variable and defined in formula

(6.2). Therefore, the objective function for the project cost can be represented as:

R J MJ

Min/2 = X E S ( ^ ^ , + t x C ; ) Z^s+dpjxTj (6.8)
r=l j=\ m=\ s=?

Constraints are set up for the dredge repair to guarantee a feasible schedule that

satisfies the two objectives. In addition to the constraints that will be addressed below,

there are constraints (6.4) and (6.5) stated in Section 6.2.

The a-cut concept is used here to express the DM's view on the minimum

degree of acceptance when assessing duration time djln of activity j for executive

mode m. The level of a-cut reflects the DM's confidence in the assessment. The

details of the concept of a-cut have been given in Sections 2.2.4 and 4.4.2. The fuzzy

duration dj to be used will be the fuzzy duration time da
jnx in the level a-cut

considered by the DM's view on the minimum degree of acceptance, and given as:

d,=d% ; = 1,2,...,./ (6.9)
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The start time STj and finish time FTj of an activity j should satisfy the

following expression:

(6.10)

Let activities / and j be a pair (/, j) of immediate precedence. The precedence

between activities should have the following relationships:

(6.11)

Let rkJr and rk'Jr be respectively the percentages of the required amount from

both the available and extra resource r consumed by activity j . rkJr and rk*r should

always be equal to 1 while activity./ is performed, and given as:

rkjr+rk]r=\ (6.12)

Let ujmr represent the amount of resource r consumed by activity j in

performing mode m. Therefore, the amount of resource r required (ujmr) by activity j

will be the amounts consumed both from the available (kJmr) and the extra resource

(k]mr), and given as

(6.13)

Let 5"r denote the set of activities scheduled at the time T. To ensure that the

amount of resource r, allocated to activities if available does not exceed the total

available resource originally provided for the project, the following constraint should

be satisfied at each time 7.

7 E f (6.14)
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The amount of resource r, consumed from the availability of the resource by

activity 7 can be expressed as

The amount of resource r, consumed from the extra resource by activity j is

given as

(6.16)

6.4 Interactive Fuzzy Goal Programming

The project completion time and the cost are universally regarded as the two

main concerns in project scheduling, and will influence the ultimate success or failure

of a project. In this case study, they are considered as the project scheduling objectives

in the model. But these two objectives conflict with each other and are

incommensurable. To deal with FMMRCPS with multiple objectives, fuzzy goal

programming (FGP) is developed to generate the schedule of dredge repair having

these two objectives. This is because FGP has the capacity of dealing with

multiobjective optimization problems to obtain an acceptable compromised solution

under fuzzy environment.

Goal programming has been widely used in solving decision making problems

with conflicting goals or objectives, but it requires a precise aspiration level for each

goal or objective to be assigned. This is often difficult for the DM to do in most

practical situations (Pan et al. 1998). To overcome this problem, in FGP, the

aspiration level is a value range given by the DM to match the company's

requirements in practical settings. This iterative FGP model allows the DM to modify

and examine the result of the schedule under different objective settings.
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As FMMRCPS is a very complex scheduling, there are too many constraints in

the FGP model, thus making the solution procedure computationally inefficient in

solving the problem in terms of computation. To reduce constraints in the model for

improving its computational efficiency, the rules for mode assignment are constructed

for supporting decisions on selecting activity modes. The mode will be decided by the

rules before processing the interactive FGP model. Which mode will be given is based

on current conditions of resource availabilities, the number of activities that are

eligible to be processed at this time, and the critical path at this time. To better

understand five rules for mode assignment, these rules can be expressed in plain

English in Figure 6.1.

Rules for Mode Selection

1. If only one activity is scheduled at a given time, then the mode with

the shortest duration time is assigned to the activity;

2. If more than one activities are selected at a scheduled time, then

modes with the shortest duration times are assigned to the activities

on the critical path(s) first, and the non-critical activities are

assigned to the modes with the higher level number;

3. If activities selected are not on critical path(s), modes are assigned

to these activities to ensure that these activities finish at a similar

time;

4. If there a number of activities on critical paths completing for

resources, modes assigned to these activities ensure the paths are as

closed as possible to minimise the completion time;

5. If there are sufficient resources, all selected activities are assigned

to modes with the shortest duration times.

Figure 6.1 Rules for mode assignment expressed in plain English

The interactive FGP model I developed can be easily implemented through the

DM's input of required information. This model is flexible, efficient and effective in

obtaining the best compromised solution in realistic settings as the range of aspiration
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level and required information are easily given in the practical sense by the DM, to

meet specific requirements for solving multiple objectives in FMMRCPS problems.

6.5 Result Analysis of Repair Schedule

The case study presented here is a typical dredge repair project when a dredge

broke down on working sites of the waterway in Shanghai. In this project, several jobs

or activities are carried on in three departments, mainly dredging, engine, and deck.

Let SP and EP represent the start and end of a project of a dredge repair. The

precedence network of the dredge repair project can be depicted in Figure 6.2.

Activity 1: clean dumps and dredging parts
Activity 2: clean the rust in decks and bottom
Activity 3: disassemble double engines
Activity 4: service dumps and dredging parts

Activity 5: paint body and decks and dry up
Activity 6: service engines and relative parts
Activity 7: assemble engines and test

Figure 6.2 Dredge repair network

As shown in Figure 6.2, the dredge repair project contains 7 activities. Due to

their uncertainty, activity duration times under different modes are assessed by the

DM, using triangular fuzzy numbers given in Table 6.1

Table 6.1 Fuzzy duration times of activities in different modes

A
ct

iv
it

y
N

u
m

b
er

1
2
3
4
5
6
7

Fuzzy duration times of activities in their modes with different a-cut

Model
(5,7,9)

(1,3,6)
(2,5,7)
(2,3,4)
(1,3,5)
(5,7,10)
(5,8,11)

Mode 2
(8,11,13)
(3,5,7)
(4,7,10)
(5,7,9)
(2,5,7)

(7,10,13)
(7,10,12)

Mode 3
(10,13,16)

(6,9,11)
(6,9,11)
(7,10,13)
(5,7,10)
(9,11,14)

(10,13,16)

ujm

Model
[6,8]

[2,4.5]
[3.5,6]

[2.5,3.5]
[2,4]

[6,8.5]
[6.5,9.5]

Mode 2
[8.5,12]

[4,6]
[5.5,8.5]

[6,8]
[3.5,6]

[8.5,11.5]
[8.5,11]

Mode 3
[11.5,14.5]
[7.5,9.5]
[7.5,9.5]

[8.5,11.5]
[6,8.5]

[10,12.5]
[11.5,14.5]

Model
[6.6,7.4]

[2.6,3.6]
[4.4,5.4]
[2.8,3.2]
[2.6,3.4]
[6.6,7.6]
[7.4,8.6]

Mode 2
[10.4,11.4]

[4.6,5.4]
[6.4,7.6]
[6.6,7.4]
[4.4,5.4]

[9.4,10.6]
[9.4,10.4]

Mode 3
[12.4,13.6]

[8.4,8.6]
[8.4,8.6]

[9.4,10.6]
[6.6,7.6]

[10.6,11.6]
[12.4,13.6]
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The resource requirements at each activity and the penalty payment for the delay

of activity j are given in Table 6.2. 5 units of resource 1 is available daily and its unit

cost per day is $10. 9 units of resource 2 are available with a daily cost of $15 per unit.

One extra unit of resources 1 and 2 to be supplied will cost $20 and $25 daily

respectively.

Table 6.2 The resource requirements and penalty payments

Activity No.

1
2
3
4
5
6
7

Mode 1 (kjlr)
kn\
3
3
4
3
4
3
3

4
5
6
3
5
4
4

Mode 2 (fc,2r)

kj2]

2
2
4
2
2
2
2

kj22

3
5
4
2
3
4
4

Mode 3 (&,3r)

1
2
3
1
2
2
2

^•32

2
3
3
2
2
3
3

Daily penalty

dpj

30
20
15
25
40
35
20

The range of two fuzzy goals for the objectives is given by the DM, based on the

company's situations of the current workload and reserve dredges as well as the cost

that will be provided by the state government. In this example, it is required that the

project completion time will range from 10 to 22 days, and the corresponding rough

project cost will range from $1,900 to $4,200.

Figure 3 shows the results of the project cost at different a levels. As in the

beginning of the preparation for the dredge repair project, the goals for both time and

cost are much vague during the DM's assessment. After the DM gathers more

information on overall conditions of the company by investigations and

communications with relevant departments, more confidence is achieved in evaluating

the project completion time at certain a levels. Figure 6.3 shows the range of the

budget of dredge repair at a levels of 0.5 and 0.8. In the case of a level being 0.8, the

project will be completed between 16 and 19 days with the cost ranging from $2,925

to $3570. The a-cut levels of 0.5 and 0.8 of a-cut have often been used by the DM to

assess the project completion time in practical applications.
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Project cost

$4,500

10 12 14 16 18 20

Figure 6.3 The range of the project cost in different a levels

6.6 Concluding Remarks

This chapter has discussed FMMRCPS with multiple objectives. In certain

circumstances, fuzzy project scheduling is required to satisfy several criteria or

objectives to meet the specific needs. These objectives are usually conflicting with

each other and incommensurable.

Fuzzy goal programming models allows a loose aspiration level rather than an

exact aspiration level to suit practical requirements under a fuzzy environment. In

FMMRCPS, multiple modes make scheduling very complex and difficult to solve. To

reduce complex constraints in the FGP model, and to speed up computation, a rule-

based knowledge has been constructed to decide which mode will be performed for an

activity based on the current partial schedule status, the current resource availabilities,

and the current critical paths, preset by the experienced DM. This approach is called

iterative fuzzy goal programming. This facilitates the implement of FGP in an

efficient and effective way, and this model yields the best compromised solution

among conflicting objectives.

KNCMMNMOMOMM
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The FGP model also provides the activities' performance and the states of

resource usage in detail over the planing horizon of the project. The schedules indicate

the maximum amount of extra resources required in a specified time period so as to

preventing the project from being failed. This model gives the DM a significant

prescheduling control over the planing horizon of the project under conditions of

uncertainty. The model has general applications in multiobjective FMMRCPS.
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Chapter 7

A Fuzzy Heuristic Approach to FMMRCPS

7.1 Introduction

In real-world applications, project scheduling is often inherently uncertain due

to the lack of precise information on activity duration times. In addition, activities

may have a number of performance options in practice. A realistic model of project

scheduling covering all possible situations has been formulated in Chapter 4, referred

to as FMMRCPS.

In FMMRCPS, two main issues need to be tackled: (a) uncertainty caused by

vagueness, and (b) combinatorial complexity in project scheduling. To deal with such

uncertainty, fuzzy set theory is used in FMMRCPS because it has proven to be an

effective way of handling such vague information. To handle the computational

complexity of multiple mode resource-constrained project scheduling, a heuristic

approach is proposed. FMMRCPS is NP-hard in the strong sense, due to the

complexity of its combinatorial nature. Any exact approaches may not be able to

solve such a problem. However, heuristic approaches provide a simple and

straightforward way of solving this problem (Kolisch 1996a, Demeulemeester and

Herroelen 2002).

Drexl and Gruenewald (1993) developed a so-called weighted random selection

technique for selecting activities and subsequently assigning modes to these selected

activities for scheduling in a rule-based heuristic approach. Ozdamar and Ulusoy

(1994) selected activities and their respective modes using a local constrained based

analysis at each decision point. Boctor (1996a) proposed the heuristic activity-mode

combination for both choosing the activities and determining their mode from a set of

activities. All theses heuristic approaches are based on deterministic data. However,

no research on FMMRCPS using heuristic approaches has been reported in the
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literature. In what follows, I will present one of the several approaches developed in

my PhD studies for FMMRCPS, using a fuzzy rule-based heuristic approach.

7.2 Fuzzy Heuristic Approach

A fuzzy heuristic approach proposed here is made up of three components: (a)

fuzzy scheduling mechanism, (b) priority rules for priorities of activities, and (c)

mode assignment policy. The function of the fuzzy scheduling mechanism is to

schedule activities of a project either forwards or backwards in a stage-wise fashion

under the resources constraints, when both priorities and modes of activities have

been determined. The detail of the fuzzy scheduling mechanism has been presented in

Chapter 5. Priority rules are employed to resolve the conflict of how to select from a

set of eligible activities. The mode assignment policy serves as a means of assigning

modes to activities selected from the set of eligible activities.

Priority rules have been discussed and tested by Davis and Patterson (1975),

Cooper (1976), Alveres-Valdes and Tamari (1989), and Kolisch (1996a). There is no

single priority rule that dominates others. It seems to be a good idea to apply a set of

priority rules so as to give different priorities to eligible activities in each instance of

fuzzy scheduling, thus generating a variety of schedules. In my fuzzy heuristic

approach, any number of priority rules can be used. In the example of the case study

presented in the next section, ten popular priority rules are employed, and these rules

are concerned with different aspects of the critical path, resources, successors and the

network structure. Figure 7.1 lists these 10 priority rules applied in the example.

In Figure 7.1, rules 1 to 5 are based on the critical path involving the fuzzy

earliest start time (EST) and earliest finish time (EFT), the fuzzy latest start time

{LST) and latest finish time (LFT), and the fuzzy slack time. The fuzzy earliest start

time (ESTj) of activity j should be the same as the fuzzy finish time of its last

immediate predecessor * completed among its immediate predecessors P} by the

forward pass, and is defined as
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(7.1)

1. Fuzzy early start time (EST): min ESTj

2. Fuzzy early finish time (EFT): min EFTj

3. Fuzzy |ate start time (LST): min

4. Fuzzy late finish time (LFT): min LFT}

5. Minimum fuzzy slack (MFSLK ): min LSTj - ESTj

6. Greatest fuzzy resource demand ( GFRD): max djm^kjmr

7. Shortest fuzzy processing time (SPT): min dh
Jm

: max d!8. Longest fuzzy processing time

9. Most immediate successors (MIS) max | S

10. Least immediate successors (LIS) min IS,

Figure 7.1 A set of priority rules

The fuzzy latest finish time LFT} is obtained through the backward pass and

equals the fuzzy latest start time LST{ of the immediate successor i started earliest

among a set of immediate successors Sj of activity j , and is expressed as

LFT} =min{LS7;} (7.2)

The fuzzy earlier finish time EFTj of activity y should be the smallest value of

the fuzzy latest finish time LFTt of one immediate successor / minus the duration in

mode m of that immediate successor among a set of its immediate successors S}, and

represented as
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(7.3)

The fuzzy slack time FSLKj of activity j is the time allowing the maximum

delay of activity,/ on a path, which is the difference between the fuzzy latest start time

LSTj and earliest start time ESTj, obtained from both the forward and backward

passes, and is computed as

FSLKj=LSTj-ESTj (7.4)

In Figure 7.1, rule 6 is based on the total amount of resources consumed by

activity j in the fuzzy duration performed in mode m, and this rule is similar to the

rule presented in Section 3.5.2.4 for deterministic data. Rules 7 and 8 are concerned

only with the fuzzy duration of activity7 itself performed in mode m, whereas rules 9

and 10 are based on the status of the project network, considering the number of

immediate successors of activity/

In Figure 7.1, 8 out of 10 priority rules are involved with fuzzy numbers. Both

fuzzy arithmetic and fuzzy ranking are required in dealing with these 8 priority rules.

The details of fuzzy arithmetic have been presented in Sections 2.4. It is important to

note that some lower bounds of LSTj and LFT} may be negative when fuzzy

subtractions are taken through the backward pass. For practical purposes, the negative

numbers have no physical meaning, and these negative numbers should be changed to

zero. After fuzzy priority values of activities are obtained by applying fuzzy

arithmetic to these rules, the fuzzy priority values need to be compared to determine

the sequence of small or large in value so as to decide preferences of these activities

for scheduling. Although a number of fuzzy ranking methods have been proposed, the

reason for only choosing Cheng (1998)'s method of distance means has been

addressed in Section 2.5.

Mode assignment is an important decision for selected activities, because

different modes assigned to the selected activities can greatly affect the results of the
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schedule, even for the same sequence of activities. To develop an effective policy for

mode assignment, the policy I propose is concerned with the expected entire length of

each path at scheduled time 7n. That is, the policy for mode assignment ensures that

modes assigned to activities on each path can be completed as soon as possible, and at

the same time the fuzzy completion times of all paths are as close to each other as

possible, making activities on each path be finished at almost the same time. Let

path, be the i{h path in the project network, and Lpathi be the expected entire length of

the /th path in the time horizon. Cpfl/A (7n) denotes a set of the activities on the ith path,

completed at fuzzy scheduled time 7n of stage n in the forward or backward

scheduling. Jpatht signifies all the activities on path i. Lst jPathi(tn) be the selected

activity on path i at scheduled time 7n. The expected entire length of path / is the last

activity j finished on the path at fuzzy scheduled time 7n plus the sum of the fuzzy

duration of selected activity fpath(tn) assigned to its mode m at time 7n and the

average duration of all possible modes of the other activities that have not been

scheduled on path i at that time. Therefore, the expected entire length of path i can be

expressed as

Lpathj = ; ) H ^
A/, d1 ujm

M:
(7.1)

Let Nipath) be the number of paths in a project, and (pathnpathh) be a pair of

any two paths among N(path). The purpose of this policy is to assign a mode to

selected activities at fuzzy scheduled time 7n, so that the activities on each path can be

finished with the minimum time in a similar length of each path. The policy for mode

assignment can be defined as

(pathi,pathh)^N(path)
(7.2)
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7.3 Dredge Overhaul Scheduling

A dredging company in Shanghai faces the busy and demanding tasks of

continuously maintaining the required depth of the waterway in Shanghai. The

company needs to dispatch dredges regularly to different sites on the waterway.

Because of the nature of dredging, the machines and the components of a dredger are

often subject to wear and tear. To reduce the chances of sudden breakdown, the

dredger needs to be regularly maintained. However, the overhaul time varies

depending on the mechanical condition of a dredge. The time possibly spent on an

activity or a job has to be assessed by an expert or DM through the examination of the

condition of a component or machine. In addition, the same activity or job may be

processed with different durations while different work circumstances are exerted. A

typical overhaul schedule presented here composes of 14 activities. The precedence

relations among these activities are defined by the project network, as shown in

Figure 1, where SP and EP are dummy activities representing the beginning and end

of the overhaul project.

Activity 1:
Activity 3:
Activity 5:
Activity 7:
Activity 9:
Activity 11:
Activity 13:

dismantle engines
clean hopper
clean pumps
inspect hydraulic system
assemble pumps
examine drags
clean dragheads

Activity 2: dismantle pumps
Activity 4: clean cylinders
Activity 6: clean pipes
Activity 8: assemble engines
Activity 10: inspect doors of hopper
Activity 12: check up general circuit
Activity 14: test run

Figure 7.2 The project network of overhaul of a dredge
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In the overhaul project, the duration times of activities are often subjectively

assessed by an expert or DM using triangular and trapezoidal fuzzy numbers, based

on the worn or damaged extent of a component or machine or on current specific local

conditions. In addition, activities often have a number of performance modes under

different resource conditions in realistic overhaul projects. The expert or DM must

estimate a number of durations of an activity performed under different possible

resource conditions. Table 7.1 lists real duration times when performed with different

resource availabilities. As shown in Table 7.1, a few activities have only one or two

executive modes because of their particular characteristics in resource requirements.

The duration times of activities 12 and 14 are crisp data because checking up general

circuits and testing have very definite processing times and they can t 2 completed in

the required times. Due to the nature of the overhaul project, ation times of

activities in the project involve both crisp and fuzzy numbers. Crisp numbers ha *r>

be converted to fuzzy number during fuzzy number operation. The details of the

conversions have been presented in Remark 1 of Section 5.2. The evaluation of fuzzy

duration times of activities has also been addressed in Sections 2.2.7 and 4.4.2.

Table 7.1 Fuzzy duration times of activities in different executive modes

Activity
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Mode 1
Duration (dj{)

(15,18,20,25)
(7,9,11,14)

(8, 10, 15)
(14,16,18,21)
(10, 13,16,20)

(6, 9,15)
(2, 4, 7, 9)

(18,22,25,30)
(6, 10, 13, 17)

(1,3,5)
(8, 10, 12, 15)

5
(2,4, 6)

10

Mode 2
Duration (dJ2)

(19,21,25,29)
(10,12,15,20)

(10,13,16)
(17,19,21,25)
(13,15,18,22)

(9, 12, 18)
(5,8,10,15)

(24,27,31,35)
(10,15,20,25)

(5, 8, 12)
(10,13,16,19)

8
(4, 6, 9)

Not available

Mode 3
Duration (dJ3)

(24, 27, 29, 34)
(13,16,18,21)

(15,18,21)
(20, 25, 30, 2c)
(16,18,21,25)

(18,22,29)
(10, 13, 16, 20)
(28, 32, 35, 38)
(16, 20, 24, 30)

(11,14,18)
(12, 14, 17, 21)
Not available
Not available
Not available
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Three different kinds of renewable resources are required throughout the

overhaul project. However, the amount of these resources is limited. In the overhaul

project, 2 electricians (Resource 1), 8 mechanics (Resource 2), and 9 general workers

(Resource 3) are available in each period. The resource requirements for different

executive modes of activities are listed in Table 7.2. The sign of "x" in Tablr 7.2

indicates that no resources are involved in certain executive modes of activities as

these modes are unavailable in the activities.

Table 7.:

Activity
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14

2 Resource requirements of activities performed in different modes

Three kinds of resource requirements
Mode 1

*7ll

1
2
0
0
0
0
2
0
2
2
1
1
0
2

kj 12

3
3
3
6
2
1
3
3
4
3
2
0
4
5

2
3
4
8
4
2
4
4
5
3
2
2
5
5

Mode 2

*/21

1
1
0
0
0
0
1
0
1
1
1
1
0
X

kj22

2
2
2
4
2
1
2
2
2
2
1
0
2
X

*/23

1
L_ 2

3
7
2
1
2
2
3
2
2
1
2
X

Mode 3

**,
0
0
0
0
0
0
1
0
1
1
1
X

X

X

*732

1
1
1
3
1
0
1
1
1
1
1
X

X

X

*733

1
2
2
5
1
1
1
1
2
1
1
X

X

X

7.4 Result Analysis

The fuzzy heuristic approach I developed is implemented in an object-oriented

programming language, VB6 with MS Access, in which Dai.: Access Objects (DAO)

are used to operate queries, update values and store relations among data tables. After

required data are input to the program, priority values of activities are calculated from

the priority rules, set in the program. Tables 7.3 lists fuzzy priority values obtained

from some fuzzy priority rules out of these 10 rules.

Chapter 7 A Fuzzy Heuristic Approach to FMMRCPS Page: 136



Table 7.3 Data obtained for fuzzy priority rules

Activity
No.

1
2
3
4

u
7
8
9
10
11
12
13
14

ESTj

(0,0,0,0)
(0,0,0,0)
(0,0,0,0)

(15,18,20,25)
(10,12,15,20)
(10,12,15,20)
(8,10,10,15)

(35,43,50,61)
(20,25,31,40)
(13,18,20,30)
(13,18,20,30)
(18,26,28,42)
(21,28,32,45)
(53,65,75,91)

EFTj

(15,18,20,25)
(10,12,15,20)
(8,10,10,15)
(35,43,50,61)
(20,25,31,40)
(16,21,24,35)
(13,18,20,30)
(53,65,75,91)
(30,40,51,65)
(18,26,28,42)
(21,28,32,45)
(23,31,33,47)
(25,34,38,54)

(63,75,85,101)

LSTj

(0,0,0,0)
(0,9,28,53)
(0,27,41,66)

(15,18,20,25)
(3,24,40,63)
(8,31,44,67)
(14,37,51,74)
(35,43,50,61)
(28,45,64,81)
(36,52,62,81)
(29,47,59,79)
(48,60,70,86)
(44,59,69,87)
(53,65,75,91)

LFTj

(15,18,20,25)
(3,24,40,63)
(14,37,51,74)
(35,43,50,61)
(23,40,53,73)
(23,40,53,73)
(29,47,59,79)
(53,65,75,91)
(53,65,75,91)
(48,60,70,86)
(44,59,69,87)
(53,65,75,91)
(53,65,75,91)
(63,75,85,101)

LSTJ-LFTJ

(0,0,0,0)
(0,9,28,53)
(0,27,41,66)

(0,0,0,0,)
(0,9,28,53)
(0,16,32,57)
(0,27,41,66)

(0,0,0,0)
(0,14,39,61)
(6,32,44,68)
(0,27,41,66)
(6,32,44,68)
(0,27,41,66)

(0,0,0,0)

(120,144,160,200)
(60,72,90,120)
(32,40,40,60)

(160,200,240,288)
(60,78,96,120)
(18,27,27,45)
(25,40,50,75)

(144,176,200,240)
(60,90,120,150)

(25,40,40,60)
(40.50,60,75)
(15,15,15,15)
(16,24,24,36)

(120,120,120,120)

Table 7.4 Best fuzzy project completion times under each of 10 different rules

Heuristic rule Scheduling sequence Fuzzy project completion time

1. EST

2. EFT

3. LSI

4. LFT

5. MFSLK

6. GFRD

7. SPf

8. LPT

9. MIS

10. LIS

1(2), 2(1), 3(3), 7(2), 5(2), 6(1), 4(3),
10(2), 11(2), 12(1), 9(1), 13(2), 8(1), 14(1)

3(1), 2(3), 1(2), 7(2), 6(1), 10(2), 5(3),
11(2), 12(2), 13(1), 9(1), 4(2), 8(1), 14(1)

1(1), 4(2), 2(3), 5(1), 3(1), 6(2), 7(1),
8(2), 11(2), 9(1), 10(1), 13(1), 12(1), 14(1)

1(1), 2(1), 3(2), 4(2), 6(2), 5(1), 7(1),
11(1), 10(2), 8(1), 9(2), 13(1), 12(1), 14(1)

1(1), 4(2), 8(1), 2(2), 5(3), 6(1), 9(2),
3(1), 7(2), 11(1), 13(1), 10(2), 12(2), 14(1)

1(2), 4(1), 8(3), 2(1), 5(1), 6(1), 9(2),
3(2), 7(3), 11(1), 10(1), 13(1), 12(1), 14(1)

3(1), 2(2), 1(1), 7(2), 6(1), 5(1), 4(3),
10(2), 11(1), 9(2), 8(1), 12(1), 13(2), 14(1)

1(2), 4(1), 8(2), 2(2), 5(1), 6(3), 3(1),
9(1), 7(1), 11(1), 10(2), 13(1), 12(1), 14(1)

1(1), 3(2), 4(1), 8(2), 2(1), 5(2), 6(1),
9(1), 7(1), 11(2), 10(2), 13(1), 12(1), 14(1)

2(1), 3(1), 1(1), 7(2), 4(1), 5(2), 6(1),
10(1), 11(1), 9(1), 8(1), 12(1), 13(2), 14(1)

(68,82,96,106)

(76, 94,107,145)

(76,94,105,133)

(61,81,93,122)

(100, 125,139, 178)

(94,118,132,170)

(64,78,89,111)

(90,112,129,165)

(87,107,121,151)

(69,84,94,116)

As shown in Table 7.3, some activities in the decision set D(Jn) have the same

priority values when a specific priority rule is applied. In such cases, the program will

automatically assign random values to these activities at the break-even priority

values. In fuzzy scheduling, once an activity is selected according to the priority
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values from the decision set D{tn) at scheduled time /„ of stage w, a specific mode is

determined for the activity subsequently, based on the mode assignment policy

expressed in Formula (7.2). In the overhaul project, 24 different feasible schedules are

generated by these 10 priority rules. Table 7.4 lists 10 shortest project completion

times of each individual rule from these 24 feasible schedules. How to compare these

fuzzy project completion times has been presented in Remark 2 of Section 5.2.

Activity 14

Activity 13

Activity 12

Activity 11

Activity 10

Activity 9

Activity 8

Activity 7

Activity 6

Activity 5

Activity 4

Activity 3

Activity 2

Activity 1

r.

sft

STu

FTt

FTu

10 20 30 40 50 60 70 80 90 100 110

Figure 7.3 The best schedule of the overhaul project in SPT

time
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The scheduling sequence of all activities in the overhaul project are listed in the

2nd column of Table 7.4, where the number in front of parentheses presents the

activity number and the following number in parentheses indicates the mode number

performed for this activity. In this particular overhaul scheduling, the EST, LFT,

SPT and LIS rules produce better results than the others, and the fuzzy values of the

project completion time, using these four rules, are quite close. But when applying the

fuzzy number ranking method, the shortest project completion time is gained by the

SPT rule. Figure 7.3 shows each activity start and finish time obtained under the

SPT rule. It provides the DM with a reasonable schedule result given the vague

information of activity duration times, and with detailed information about every

moment of the overhaul performance.

7.5 Concluding Remarks

FMMRCPS is complex scheduling due to its NP-hardness and uncertainty. This

combinatorial nature makes such scheduling probiems difficult to handle if any exact

algorithms are to be proposed. Heuristic approaches appear to be attractive since they

give reasonably practical solutions in a simple and fast way. However, traditional

heuristic approaches suffer from the major shortcoming of being unable to handle

fuzziness.

This chapter has presented a heuristic approach that incorporates fuzzy set

theory to model the uncertain activity duration times for resolving FMMRCPS

problems. To handle multiple mode project scheduling, a set of priority rules are

employed for deciding priorities for eligible activities, and at the same time the mode

assignment policy is also proposed to provide better modes for selected activities in

fuzzy scheduling. This approach is simple and straightforward in practical

applications, thus providing a framework for solving FMMRCPS problems involving

uncertain activity duration times modelled by fuzzy numbers.
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Chapter 8

Fuzzy Genetic Algorithms for FMMRCPS

8.1 Introduction

Real-world project scheduling problems often have the constraints of both

resource limitation and precedence relations. In recent years, exact approaches to the

classical single mode RCPS have been developed (Dorndorf et al 2000, Brucker et al

1998, Mingozzi et al. 1998). However, these approaches cannot find an optimal

schedule when the scheduling problem is over 50 or 60 activities (Hartmann 1998,

Demeulemeester and Herroelen 2002). Genetic algorithms (GA) have been widely

applied in many areas since they are robust and effective in solving complex

combinatorial optimisation problems such as project scheduling problems. A number

of researchers have made efforts in developing GAs for solving realistically-sized

RCPS problems (Lee and Kim 1996, Cheng and Gen 1998, Hartmann 1998, Toklu

2002, Hindi et al. 2002).

The multiple mode resource-constrained project scheduling (MMRCPS) is a

generalisation of the single-mode RCPS. It is much more difficult to solve because

MMRCPS is a strong NP-hard problem. Although several researchers have developed

effective exact approaches to MMRCPS (Hartmann and Drexl 1998, Sprecher and

Drexl 1998, Heilmann 2003), these approaches are unable to solve optimal solutions

with more than 20 activities and 2 modes in project scheduling under resource

constraints. Some efforts have been made in developing GAs for resolving MMRCPS

problems (Mori and Tseng 1997, Ozdamar 1999, Hartmann 2001, Alcaraz et al.

2003).

A more realistic model of project scheduling should consider not only multiple

performance modes, but also the uncertainty caused by lack of precise information on

activity duration times, referred to as FMMRCPS, which has been presented in
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Section 4.4. FMMRCPS often exists in realistic settings. However, this problem may

be not easy to solve because it not only has to tackle complex combinatorial problems

in project scheduling, but also has to resolve the fuzziness of activity duration times.

Ozdamar and Alanya (2001) proposed GA for solving FMMRCPS with a case study

of software development. In my research, I develop two fuzzy genetic algorithms,

incorporation with fuzzy set theory to find an approximately optimal solution globally

for FMMRCPS problems of any realistic sizes efficiently and effectively.

8.2 Fuzzy Genetic Algorithms

Genetic algorithm (GA) was first introduced by Holland (1975). It is the

intelligent exploitation of a random search that is characterised by a parallel search of

the entire space against a conventionally point-by-point search in finding optimal

solutions. The parallel search is the way of obtaining a set of possible solutions,

termed as population. An individual in the population is a string of symbols covering

all necessary information about the individual's status, named as chromosome, in

which each symbol is referred to as a gene. The individual chromosomes in the

population are evaluated based on the mechanics of natural selection in biological

systems, attempting to implement the idea of survival of fit chromosomes and the

elimination of weak ones. Today this idea is popularly applied in many areas,

particularly in complex combinatorial optimisation problems for searching

approximately global optimal solutions within reasonable computational time where

exact mathematical approaches are inadequate to handle.

FMMRCPS is a typically complex combinatorial optimisation problem with

fuzziness. No exact algorithms are able to cope with such complex characteristics

when the problem size increases. Furthermore, fuzzy operations have to take place in

scheduling because of fuzzy duration times of activities involved. In my research, GA

combined with fuzzy operations is applied to FMMRCPS, referred to as fuzzy genetic

algorithm. When fuzzy GA is applied to FMMRCPS, each chromosome represents a

possible schedule. Because of the characteristics of FMMRCPS, the chromosome I

designed is made up of three sub-chromosomes that I will present in Section 8.3.
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Initially, a certain size of population of chromosomes (schedules) should be generated.

Each chromosome evolves through successive generations by employing some genetic

operations. During each generation, chromosomes will be evaluated by a specified

fuzzy fitness function. A fit chromosome should have a small fuzzy project

completion time, in terms of minimising fuzzy project completion time. The fuzzy

fitness function is specially designed to meet this criterion to ensure that fitter

chromosomes (schedules with smaller project completion times) always have higher

survival probabilities. Through a number of generations, the surviving fittest

chromosome (the best schedule) should be found eventually, representing the globally

optimal or near globally optimal solution to an FMMRCPS problem.

8.3 Explicit Representation of FMMRCPS

In developing a fuzzy GA, a chromosome should represent a solution to the

problem. To reflect the problem-specific nature of FMMRCPS, a chromosome has to

be carefully designed, to operate on chromosomes easily, using the principle of GA

without any distortion. To avoid the procedure of decoding a chromosome that is often

required in GA, the chromosomes I designed in fuzzy GA can directly reflect all

necessary scheduling information without any interpretation for a solution. As

characteristics of FMMRCPS, the chromosomes I designed contain three elements: (a)

mode assignment, (b) activity priority, and (c) details of fuzzy start and finish times of

each activity as well as the fuzzy project completion time. Let Or
x be a chromosome

y, representing a possible schedule in the Xth generation. The 1st and 2nd rows

respectively describe a mode ttij and a priority value COj assigned to each activity/" in

chromosome y. The 3rd row indicates the fuzzy start STj and finish FT} times of

each activity j , together with the last column as the trailing information on fuzzy

project completion time PCT for chromosome y. Therefore, a chromosome

comprising three sub-chromosomes can be expressed mathematically as

W,

COj

PCT

(8.1)
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To visually describe a chromosome for representing a possible schedule to

FMMRCPS, Figure 8.1 depicts an example of a chromosome containing three sub-

chromosomes. All the information about an activity is indicated by the corresponding

location boxes of three sub-chromosomes vertically under the activity number. The 1st

and 2nd sub-chromosomes represent mode assignment and the priority value for each

activity in a project respectively. The 3rd sub-chromosome stores the fuzzy start and

finish times of each activity with the trailing information on fuzzy project completion

time. As shown in Figure 8.1, the location of a gene in each sub-chrornosome, except

for the last box of the 3rd sub-chromosome, corresponds to the activity number. The

numbers in the location box of the 1st and 2nd sub-chromosomes represent the mode

selected and priority value assigned respectively. In the 3rd sub-chromosome, each

location box places both the start and finish times of its corresponding activity and the

last extra box in the 3rd sub-chromosome is referred to as the trailing information and

contains fuzzy project completion time, treated as fitness value in fuzzy GA for

FMMRCPS. The example shown in Figure 8.1 is a possible scheduled solution of a

project having 14 activities. Location 9 corresponds to activity 9, to which mode 2 is

assigned in the 1st sub-chromosome of mode assignment, and the priority value is

given as 12 in the second sub-chromosome of activity priorities. The fuzzy start ST9

and finish FT9 times of activity 9 appears in column 9 of the 3rd sub-chromosome.

Activity number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Mode assignment

Activity priorities

Scheduled information

2

10

ST,

FT,

4 2

1 5fiT|7
ST:

FT,

ST.

• - .

1 3 3 2 2 1

8 3 14 9 12 6

FT*

sr,
FT,

ST. ST,0

"I,

2 13

sr,:
FT,,

3

4

«;.

— 1" sub-chromosome

— 2nd sub-chromosome

Fuzzy project
completion time

mmm 3rd sub-
chromosome

Figure 8.1 Solution presentation by a chromosome with 3 sub-chromosomes

Chapter 8 Fuzzy Genetic Algorithms for FMMRCPS Page: 143



8.4 Mode Assignment Operations

As fuzzy GA deals with FMMRCPS, the designed chromosome should have a

capacity of manipulating mode changes in chromosomes during offspring generations.

For mode operation, the system allows the user to choose one out of two categories of

either assigning modes independently or mode assignment based on search strategies.

The option of assigning modes independently is that the mode changes only rely on

the user preset and is not concerned with the trends of solution changes during

offspring generation, whereas mode assignment concerned with search strategies is

based on the current conditions in generated solutions from the recent past to the

present.

For assigning modes independently, a different range of selections for mode

assignment can be chosen simultaneously for the 1st sub-chromosome of mode

assignment. These options include the following:

• Assigning mode unchanged for certain or random times;

• Assigning mode changed for certain or random times;

• Swapping mode between any two locations for certain or random times;

• Changing mode in random locations for certain or random times;

• Choosing the shortest feasible mode in random locations for certain or

random times.

The shortest feasible mode in the last option is that the mode selected has as

shorter a duration time as possible according to the currently available resources.

For the other category of mode assignment based on search strategies, three or

less options can be chosen out of six options for mode operation in the 1st sub-

chromosome. These options show the following:

• Mode changes for a specific activity in certain or random times;

• Followed by mode changes for two specific activities in certain or random

times if solutions are not improved in the number of times preset by the user;
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• Followed by mode changes in random locations up to the entire locations of

the sub-chromosome for certain or random times.

One or two specific activities in the first and second bullet-headed outline above

indicates the activity/activities for mode change were either selected randomly by the

system or preselected before the running the fuzzy GAs.

As presented above for mode assignment, there are a number of mode

operational options. Mode assigned to an activity may not be changed for a number of

times, or may be changed randomly, or locations are swapped, or the shortest feasible

modes are selected in a number of locations. These mode operations can be flexibly

combined prior to the running of the fuzzy GAs or can be determined by the search

strategies. Once mode operations are specified, the system will automatically assign

different modes to one or more activities during the running oft! 3 fuzzy GAs.

8.5 Activity Priority Operations

To generate the next generation, genetic operations are not only applied to mode

assignment, but also required to have some distinctive ways of operating on the 2nd

sub-chromosome for activity priorities at the same time. Three genetic operations are

used to operate on the 2nd sub-chromosome in the fuzzy GAs, including (a) mutation,

(b) crossover, and (c) neighbourhood swaps.

8.5.1 Mutation

The mutation operation is used to alter only two genes from the 2nd sub-

chromosome of a parent while generating that for a child. That is, two locations along

the 2nd sub-chromosome will be selected randomly, and their priority values on the

two locations are swapped to generate the 2nd sub-chromosome for a child. Figure 8.2

shows an example of how the mutation is operated. In the example, two locations of
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activities 4 and 9 are chosen randomly and their values in the two locations (i.e. 11
ndand 9) are interchanged so as to create the 2 sub-chromosome for an offspring.

Activity number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I
2nd sub-chromosome

ofa parent

2nd sub-chromosome
of a child

Figure 8.2 Mutation operation

10

10

1

1

s |u

5J9

7

I;
7

8

~-'-

8

3

3

14

14

9

11

12

12

6

6

2 | l 3

2 113

4

4

As shown in Figure 8.2, it is noticed that the generated 2nd sub-chromosome of

the offspring has the similar genetic structure to that of the parent which differs in two

genes only. The purpose of applying this operation is to introduce some chromosomes

with small variations into the population. This operation is used to find a t;ood

schedule in a local search area, when the trend of generated schedules has been

improved in the recent searching. When this operation is applied, a mofz in each

location of the ]s{ sub-chromosome is seldom changed because dramatic changes in

the genetic structure of the 1st sub-chromosome will lose the meaning of searching a

good solution locally.

8.5.2 Crossover

The crosso,: •' operation combines the features of the 2nd sub-chromosomes of

two parents to generate that of an offspring. The nature of the crossover can be viewed

as a permutation to form the 2nd sub-chromosome of a chid. In this case, the 2nd sub-

chromosome of the chid is not simikr to that of either parent. The 2n sub-

chromosome of a child generated, takzs some genes from that of pareiiv \ at random,

and fills the empty locations with genes from that of parent 2, by a left to right shift.
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Activity number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2nd sub-chromosome
of parent 1

2nd sub-chromosome
of a child

2nd sub-chromosome
of parent 2

Figure 8.3 Crossover operation
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An example of crossover operation is shown in Figure 8.3, where 8 genes

representing the priority values of 10, 5, 11,3, 14, 9, 6 and 13 randomly selected from

the 2nd sub-chromosome of parent 1 are placed at the same locations as that of a child,

and 7 empty locations of the child are filled in the priority values of 4, 2, 1, 12, 7 and

8 from that of parent 2 from left to right in sequence. These values that have not been

taken from that of parent 1 during the operation, are taken from that of parent 2. As

shown in Figure 8.3, the 2nd sub-chromosome generated for the child is different from

either parent. In terms of project scheduling, the priority values to each activity are

changed greatly. This operation is often applied to situations where different search

spaces would like to be explored in order to avoid trapping in local optima. In this

case, the mode assignment for the 1st sub-chromosome is often changed diversely at

the same time during operation.

The crossover is one of the most important genetic operations. This operation

combines the characteristics of 2nd sub-chromosomes of both parents into one 2nd sub-

chromosome of an offspring. The design of the crossover operation for FMMRCPS

should always have this specifically genetic feature in generating offspring because

poorly designed crossover may become a sort of mutation. The crossover operation I

designed in Figure 8.3 reflects the genetic structure of the new sub-chromosome by

combining both genes from two parents, thus making the new sub-chromosome of a

child is significantly different from its parents.

MMMMMMMOOHMMW
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8.5.3 Neighbourhood Swaps

Neighbourhood swaps can be viewed as a serial of mutations by pair-wise

interchanges to generate a set of the 2nd sub-chromosomes of offspring based on the

original one of a parent. Each pair-wise mutation generates one sub-chromosome of

an offspring. This process is repeated to generate a number of 2nd sub-chromosomes of

children, until it reaches the original location of the key gene. The key gene is

randomly selected by the system.

As an example, Figure 8.4 describes the operations of neighbourhood swaps. A

key gene with the value of 10 in the location corresponding to activity 10 is chosen by

the system. Then the key gene swaps its location with the 2nd location. From the 2nd

location, the key gene moves to the 3rd, 4th locations, and so on successively, and

simultaneously the gene on the location taken by the key gene is moved to the initial

location of the key gene. The operations are continued until the key gene is positioned

immediately adjacent to its initial starting position.

Activity number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Key genei

10 1 5 11 7 8 3 14 9 U 6 2 131 4

2 n d s u b - c h r o m o s o m e o f c h i l d 1 1 0 1 2 5 1 1 7 8 3 1 4 9 1 6 2 1 3 4

2"d sub-chromosome of child 2 | 1 0 1 j 12 111 7 | 8 | 3 114 9 | 5 ^ | 6 [ 2\ 13

2nd sub-chromosome of child 3 1 1 0 | 1 | 5 121 7 | 8 | 3 114 9 | l l [ 6 2 | 13

2 n d s u b - c h r o m o s o m e o f c h i l d 4 [ l O J l | 5 | 1 1 | 1 2 | 8 | 3 ] 1 4 | 9 6 2 13 4

10 l l | 7 12 3 14 9 | S | 6 | 2 |13 4

2"d sub-chromosome of child 6 10 1 5 11 7 8 12 14 9 | 3 | 6 2 13 4

10 1 5 11 7 8 3 12 9 | M\ 6 | 2 13 4

2nd sub-chromosome of child 8 10 1 5 11 7 8 3 14|12|»|6 | 2 113

Figure 8.4 Neighbourhood swaps
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Neighbourhood swaps are used to improve schedules to FMMRCPS by

searching the neighbourhood from an initial solution. The idea is that this process may

generate a good schedule by making both small changes in the 2nd sub-chromosome

whilst making no or small changes in the 1st sub-chromosome of mode assignment.

8.6 Search Strategies

In fuzzy GAs, intensive and extensive search strategies are used in turn to guide

search in the evolution process depending on the current condition. Hill-climbing is an

example of the intensive strategy that explores the best solution of possible

improvement by ignoring the exploration of the other search spaces. Random search is

an example of the extensive strategy that explores diverse search spaces by ignoring

the space that may be a promising area.

The intensive search strategy is used to search intensively in the specific local

space when the improved solution is found after generating a number of offspring.

The mutation and neighbourhood swaps are usually employed to the 2nd sub-

chromosome to support this strategy with no and small changes in the genetic

structure of the 1st sub-chromosome. However, if an improved solution cannot be

found through a number of operations, the extensive strategy will be followed to

explore other search spaces. There are two steps in employing the extensive strategy.

First, the extensive search in one dimension change in either the 1st sub-chromosome

of mode assignment or the 2nd sub-chromosome of activity priorities. Second, the

extensive search in two dimension changes in both the 1st and 2nd sub-chromosomes.

In the extensive search, sometimes the space explored needs to be not far away

from the original search space in order to widen the exploring space from the original

area. This strategy is used in situations where improved solutions cannot be found

after a number of searches in a specific area by mutation and particularly

neighbourhood swap operations. Crossover operations for the 2nd sub-chromosome or

dramatic changes in mode at random or by presetting in the system, for the 1st sub-

chromosome, are conducted until the criterion set by the user in the system is met.
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The other way of the extensive search is to jump out from the current search

space while no improved solutions can be found in that space or after a widening

search has been carried out. In this case, sometimes it may be a good idea to explore

the space far away from the current one in the hope for finding promising areas for

good solutions.

8.7 Fitness Evaluation

In generating each generation, all chromosomes are evaluated against a certain

measure of fitness. The fitter chromosomes are selected in the artificial version of the

naturally surviving phenomenon referred to as the survival of the fittest and the

elimination of weakness. In this phenomenon, all chromosomes from the entire

population in a generation are calculated against a fitness function so that some fitter

chromosomes can be chosen as parents for generating the next generation.

The principle of GA is that the fitter chromosome should have a higher value of

the fitness function in proportional selection. Under the current context, the objective

is to minimise the fuzzy project completion time, while GA seeks a higher value for

fitness. As a result, the objective of the project completion time cannot be applied

directly as a means of evaluating fitness for chromosomes. A specific fitness function

needs to be developed to determine the chances of survival based on the status of the

fuzzy project completion time of individual chromosomes. That is, the shorter project

completion time should have a higher value presented in the specifically designed

fitness function.

The fitness function should accommodate the situation where fuzzy duration

times are involved in FMMRCPS. To simplify fuzzy arithmetic, all fuzzy project

completion times in the trailing information of the 3rd sub-chromosome of individual

chromosomes in a whole generation, are converted into ranking indices. The

calculation of fuzzy ranking indices has been presented in Sections 2.5 and 5.2. Let

Z an(^ fx(min) be t n e maximum and minimum fuzzy project completion times
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respectively in the Xth generation, and / / represent the objective function of the fuzzy

project completion time for chromosome y in the generation. The ranking indices of

£<™*)> fxw and ll *& denoted as /?(£(nBX)), i?(Z(min)) and R(fj) respectively.

vr
x represents the value of fitness for chromosome y in the Xth generation. The fitness

function for chromosome y in the Xth generation measured by the fuzzy project

completion times can be expressed as:

vl = (8.2)

where a is a parameter, and a is chosen as a positive real number within the

open interval (0, 1). There are two purposes for setting up a. First, it prevents the

denominator of formula (8.2) from being zero. Second, it makes an adjustment in

some way to naturalise the random selection.

Formula (8.2) implicitly reflects the status of fuzzy project completion times of

individual chromosomes. Individual chromosomes are ordered depending on their

fitness, obtained by Formula (8.2), so that shorter fuzzy project completion times of

chromosomes have a higher probability of being selected.

8.8 Fuzzy GA and Fuzzy GA with Tabu Mechanism

In my research, two different approaches: (a) pure fuzzy GA and (b) fuzzy GA

with tabu mechanism, referred to as hybrid fuzzy GA, are developed. The experiment

has been conducted to examine the performance between them.

8.8.1 Parameter Setting and Combination of Genetic Operations

Before running fuzzy GAs, both parameters and genetic operations must be

determined for either pure fuzzy GA or hybrid fuzzy GA. Proper parameter settings
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and appropriate combinations of genetic operations are crucial to the success of both

pure and hybrid fuzzy GAs. The parameter setting and choice of good genetic

operations are usually based on computational experiments, and there are no general

rules for the setting and choice. These parameters and the combination of genetic

operations are described as follows:

• Population size:

How many individual chromosomes (possible solutions) required are

usually determined on the basis of activity numbers, mode numbers and

resources types, that are involved in a particular FMMRCPS. For instance,

by experiment, the appropriate population size containing 60-80

chromosomes may be adequate for a project having 20 activities, 2 modes, 3

resource types. A larger population may give a larger number of diverse

solutions in one generation, but it requires much more computational time.

• The number of fit chromosomes chosen as parents:

This parameter determines how many fit chromosomes may act as

parents for generating offspring in the next ge-" ?ration. The experiment

shows that the proper number of fit chromosomes chosen may be in the

range of 10% - 25% of the population.

• The number of generations:

The number of generations chosen for the pure or hybrid fuzzy GA is

based on the size of an FMMRCPS problem and the number of modes for

activities. By experiment, the adequate number of generations may be

around 50 when the size of the project scheduling is the same as the example

presented in the population size above.

Chapter 8 Fuzzy Genetic Algorithms for FMMRCPS Page: 152



Tabu size:

The tabu size is decided when only hybrid fuzzy GA is applied. The

size of tabu can be fixed or selected at random. Through experiment, the

adequate size of tabu may be within the range of one to three times of the

square root of the number of activities of a project. The function of the tabu

mechanism will be explained in Section 8.8.5.

Assigning modes independently or based on search strategies:

Either of these two options is required to be chosen before running

either pure or hybrid fuzzy GA. In each option, a variety of combinations in

mode assignment can be made depending on different requirements for

running fuzzy GAs for a specific project. The details of the combination of

mode assignment have been presented in Section 8.4.

Operations for activity priorities'.

The operations on the 2nd sub-chromosome of activity priorities have

four different options: (a) specification of the number of mutation, followed

by the number of neighbourhood swap and finally the number of crossover

operations, (b) random times in the sequence of mutation, neighbourhood

swap, and crossover operations respectively, (c) any operations chosen

randomly, and (d) only one operation selected in mutation, or crossover or

neighbourhood swap operations for the whole approach.

8.8.2 Initial Population

In the beginning of either pure or hybrid fuzzy GAs, initial chromosomes

(possible schedules) are generated repeatedly until the population size set in the

parameter setting is reached. To manipulate individual chromosomes effectively in

terms of offspring generation, each individual chromosome is made up of three sub-

chromosomes. The number of genes designed in each sub-chromosome equals the
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number of activities in a project, and the location of each gene corresponds to an

activity number in the project. A complete chromosome, representing a possible

schedule is created by the following three phases.

Phase 1\ For the 1st sub-chromosome of mode assignment, the mode of activity y is

randomly assigned to a location corresponding to that activity from its

available modes (nij e M.) until each location in the sub-chromosome is

allocated by a mode from the available modes of each activity.

Phase 2: For the 2nd sub-chromosome of activity priorities, an integer for the

priority value of activity j is randomly selected, and subsequently

allocated to a location that represents the activity until all locations of the

sub-chromosome are allocated a by priority value. To simplify the

procedure of assigning a priority value to each activity in my fuzzy GAs,

an integer is selected randomly from the range of 1 to the number of

activities (coj e {1,2,...,/}) rather than the values obtained by applying

priority rules that many researchers have previously applied. This avoids

the same values occurring in activity priorities whilst employing priority

rules. Here it is assumed that a smaller value of priority for activities

always has a higher priority in fuzzy GAs.

Phase 3: Once the 1st and 2nd sub-chromosomes are created, the 3rd sub-

chromosome will be generated by retaining the shortest project

completion time among two schedules obtained through fuzzy forward

and backward scheduling.

In these three sub-chromosomes, all genes on the 1st and 2nd sub-chromosomes

are used to calculate the start and finish times of each activity and the objective value

for fuzzy scheduling whilst the fuzzy forward or backward scheduling is conducted. In

addition, the 1st and 2nd sub-chromosomes of the fitter chromosomes can be

manipulated for generating offspring if these chromosomes are selected as parents.
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The 3rd sub-chromosome only carries relevant information about a schedule and is

never involved in any operations.

8.8.3 Next Generation Construction

As stated in Section 8.8.2, all initial solutions in the first population are

generated randomly. To avoid generating the same chromosomes initially, a

mechanism is built into the system to ensure that all chromosomes generated in the

generation are different from each other.

In the construction of the next generation, a specified number of fit

chromosomes are selected in the generation, based on the fitness function given in

Formula (8.2). To improve the performance of fuzzy GAs whilst generating the next

generation, it is important to create a number of chromosomes with a small variance,

in an attempt to find a good solution in a specific area. After this procedure, crossover

operations may be applied in order to prevent from premature convergence or being

trapped in local optima when generating offspring.

8.8.4 Pure Fuzzy GA

Figure 8.5 presents the structure of fuzzy GAs. In this subsection, a pure fuzzy

GA developed for FMMRCPS is carried out by the following procedure.

Before running the pure fuzzy GA, information related to both the project and

the fuzzy GA are required to be input. Project-related information includes the number

of activities for a project and the precedence relations amongst activities, as well as

the number of resources used in a project and resource availabilities. The number of

modes, the duration time and resource requirements for each mode of activity./ can be

either assigned by the system randomly or specified by the user. For the fuzzy GA-

related information, the population size, the number of generations, the number of

fitter chromosomes, and the operational options for both mode assignment and activity
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priorities need to be determined. The determination of these parameters has been

presented in Sections 8.4, 8.5, 8.6 and 8.8.1. Schemes A and B are also required

beforehand. The details of schemes A and B have been specified in Definitions 6 and

7 of Section 5.2. Schemes A and B can be used either separately or together for a

schedule, once operations on both the 1st and 2nd sub-chromosomes have been

conducted.

Once all required information has been input, initial solutions are generated in

the 1st generation. In generating initial solutions, the system first assigns both the

mode and priority value randomly to each location of gene in the 1st and 2nd sub-

chromosomes, then a schedule is produced through fuzzy forward and backward

scheduling, using schemes A or B or both, and the information on fuzzy start and

finish times of activities as well as the project completion time of the schedule, is

stored in the 3rd sub-chromosomes.

When all initial chromosomes (solutions) have been created, all the

chromosomes are evaluated using the fitness function in Formula (8.2). A number of

fitter chromosomes act as parents to generate offspring for the next generation using

genetic operations on the 1st and 2nd chromosomes of parents. How genetic operations

are performed, is preset by an operational option.

If the generations generated reach the preset number of generations N, or the

stopping criterion is met, no more generation is required. The stopping criterion set in

my fuzzy GA is the useful mechanism that terminates the fuzzy GA when an

improved solution cannot be found within a specified number of times of search, thus

avoiding unnecessarily continuing the process of the fuzzy GA. Finally, the fittest

chromosomes will be selected among the fitter chromosomes in the last generation, as

the output of the solution for FMMRCPS in terms of minimising the project

completion time.
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Input Project-related Information
• number of activities
• precedence relation
• number of resource tyi^s
• details of each activity

-number of mot'es
— duration and resource

requirements in each mode
• available resources

Input Fuzzy GA-rclated Information
population size
number of generations
number of fitness chromosomes
operational option for mode assignment
operational option for activity priorities
option of tabu size (hybrid fuzzy GA)
schemes A or B

I

I Generate initial ch romosomes
(1) Allocate modes to the 1" sub-chromosome randomly;
(2) Ass'gn priority values to the 2nd sub-chromosome randomly;
(3) Go to the fuzzy scheduling mechanism for scheduling ^ ^
(4) Go back after scheduling to create the 3rd sub-chromosomeT*"
(5) Generate one complete chromosomes containing these *

three sub-chromosomes
(6) Go back to step (1) until chromosomes generated reaches the

determined population size.

-i (I) forward scheduling
[ (2) backward scheduling

Evaluate fitness of chromosomes

Hybrid fuzzy GA

: Generate I'1 and 2nd sub- j
i chromosomes by parents

• • " r ;

Same as tabu list

| No

Go to fuzzy scheduling me-
chanism for create 3 ld su'o-

I chromosome

: Create a complete (

chromosome

"*• (1) forward scheduling
>^ (2) backward scheduling

No

No

The number of chiomosomes >
population si/e '

Yes

The A. fenaaumi > N'' No

I Yes

E v a l u a t i n g a l l f i t t e r '
ch romosomes in terms o f i
m i n i m i s i n g p r o j e c t j
completion time

pure fu/vy GA or
hybrid fu/yv GA

Pure fuzzy GA

Pure fuzzy GA h
! Generate I"1 and 2nd sub-!
: chromosomes by parents ! '

- i , ,

Go to fuzzy scheduling me- j j(
chanism for create 3 r d sub-1
chromosome i

Create a complete
chromosome j

Output \
Best chromosomes p

(best schedules)

Figure 8.5 Structure of the Fuzzy GAs for FMMRCPS
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8.8.5 Hybrid Fuzzy GA

The procedure of hybrid fuzzy GA is similar to that of pure fuzzy GA except

that hybrid fuzzy GA incorporates tabu mechanism. The tabu search was proposed by

Glover (1989, 1990), and originally extended the steepest descent search approach for

solving optimisation problems. One of the main functions of tabu is the use of

adaptive memory to guide the search behaviour that is the hallmark of tabu search.

The adaptive memory feature of tabu records information on search history that

can be exploited in the search process. In my research, a short-term memory of tabu,

referred to as tabu list, is adopted in the hybrid fuzzy GA. Using tabu can directly

exclude the search alternatives classified as forbidden that have been visited recently,

thus avoiding visiting the same solutions (or generating the same chromosomes) more

than once. The size of tabu list can be set randomly by the system or specified by the

user. However, the size of tabu has to be carefully decided, since a large tabu list may

take too much time in evaluating the current search against every previous search

stored. Experiments have demonstrated that a good size of tabu list may be around the

population size divided by 10.

8.9 Experimental Analysis in Fuzzy GAs

To examine the performance of pure and hybrid fuzzy GAs, four projects with

different sizes are conducted. To avoid human bias during data selection, the system

randomly assigns fuzzy duration times and resource requirements to each mode of

activities, and the number of modes for each activity can be varied, ranging from 1 to

5. Four types of renewable resources are involved in these projects.

Table 8.1 shows that the four projects have 50, 100, 150 and 200 activities

respectively. In the experiment, the population sizes for these four projects are each

set to be 200, and the number of generations is chosen as 250.
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For hybrid fuzzy GA, the tabu size varies, based on the status of recent searches.

If, during the generation of chromosomes, the same chromosomes have not appeared

for a specified number of times in the tabu list (10 times in this experiment), the size

of tabu will be reduced by 1. Otherwise, the size will return gradually to the original

size set by the system.

Table

Project 1

Project 2

Project 3

Project 4

8.1 Results of pure and hybrid fuzzy GAs

50 activities
Best solution

Worst solution
Av. deviations

Max. deviations

100 activities
Best solution

Worst solution
Av. deviations

Max. deviations

150 activities
Best solution

Worst solution
Av. deviations

Max. deviations

200 activities
Best solution

Worst solution
Av. deviations

Max. deviations

Pure fuzzy GA
(59,77,84,101)
(78,92,107, 131)

19.4
25.25

(89, 102,123, 142)
(101, 137, 160, 183)

21.5
45.98

(122, 148, 171, 193)
(151, 174, 199,235)

22.6
56.12

(162,193,214,250)
(194,239,265,304)

23.9
89.84

for four projects

Hybrid fuzzy GA
(56,72,81,99)

(66,91,105,114)
17.9

19.81

(79,93, 113,132)
(98,121,149,177)

18.2
41.63

(118,142,167,183)
(142, 171,182,229)

20.81
55.89

(142,187,198,239)
(186,227,258,292)

22.65
75.32

To analyse the relative performances of pure and hybrid fuzzy GAs, each project

set has been run 100 times. After running the fuzzy GAs in the system, the worse and

best schedules in terms of fuzzy project completion times are given in Table 8.1.

Furthermore, the average and maximum deviations were calculated for the two

approaches. These deviations were consistently smaller in hybrid fuzzy GA than in

pure fuzzy GA. As a result, the schedules produced from hybrid fuzzy GA are better

and more encouraging than those of pure fuzzy GA
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This experimental result can be explained by the fact that the tabu mechanism

prevents chromosomes generated in the current generation from being the same as

those previously generated. As such, hybrid fuzzy GA produces more diverse

chromosomes in the vast search space to obtain effectively a good approximate

globally optimal solution for MMRCPS.

8.10 Concluding Remarks

FMMRCPS is the most generalised project scheduling that usually appears in

practical applications, because projects often lack precise information in regard to the

activity duration time. Similar activities may have never been performed or performed

infrequently. There may be insufficient information on activity duration times. Fuzzy

set theory is an effective way of handling the fuzziness of the activity duration time. In

addition, FMMRCPS is most difficult and complex scheduling. No exact algorithm is

viable in solving such complex optimisation problems, fuzzy GAs seem to provide an

effective means of handling such problems.

In this chapter, both pure and hybrid fuzzy GAs have been presented. Both

[ approaches can deal with any practical FMMRCPS problems of large sizes with

uncertain information. They are simple, straightforward and can be easily

implemented for practical applications. They are effective in computational effort and

robust in solving complex MMRCPS problems.

To examine the performance of these two approaches, an experiment on four

projects of different sizes has been conducted. Through the calculation of the average

and maximum deviations of these two approaches, there is a strong indication that

fuzzy GA-tabu outperforms fuzzy GA alone in terms of obtaining a good approximate

optimal solution for FMMRCPS.
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Chapter 9

Fuzzy Simulated Annealing for FMMRCPS

9.1 Introduction

FMMRCPS is a generalised case of the classical resource-constrained project

scheduling under situations where activities may be performed in one of several

executive modes and where activity duration times are considered fuzzy. This

generalised model has a great practical significance in representing the different ways

of performing activities in a project under fuzzy activity duration times. The problem

description of FMMRCPS has been presented in Chapter 4. However, such a problem

is probably one of the most difficult scheduling problems to solve, because it not only

resolves two issues of mode assignment and the scheduling sequence, but also handles

fuzzy activity duration times caused by imprecise information. The literature survey

shows that research publications dealing with FMMRCPS are very scant.

Researchers have recently made great efforts in developing a variety of

j approaches such as exact, heuristic and metaheuristic approaches in an attempt to

resolve multiple mode resource-constrained project scheduling problems without

taking fuzziness into consideration. A number of exact approaches to multiple mode

project scheduling have been developed mainly based on enumeration schemes and

« branch-and-bound procedures (Sprecher and Drexl 1998, Heilmann 2003, Brucker and

Knust 2003). The computational experiment on these approaches has demonstrated

that such exact approaches may only solve problems to optimality where there are up

to 30 activities (Bouleimen and Lecocq 2003). Heuristic approaches applying single or

multiple-pass or sampling with priority rules have also been proposed for solving

project scheduling with multiple executive modes (Boctor 1994, Slowinski et al.

1994). Heuristic approaches may always produce feasible solutions, but may not

guarantee optimal or near optimal solutions. Metaheuristic approaches may provide an

efficient and effective way for solving multi-mode project scheduling of practical
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sizes in obtaining a global or nearly global optimal solution. The concept of GA has

been applied to project scheduling with multiple modes, and different approaches have

been developed (Ozdamar 1999, Hartmann 2001).

A number of approaches based on simulated annealing (SA) have also been

developed for resolving multi-mode project scheduling (Jozefowska et al. 2001, 2002,

Hapke et al. 1998, Pan and Yeh 2003d, Bouleimen and Lecocq 2003). These SA

approaches, developed for multi-mode project scheduling, do not deal with fuzzy

activity duration times. In practical settings, FMMRCPS is one of the most

generalised models for solving project scheduling. Developing a variety of effective

and efficient approaches to such a model has implications for favourably resolving

complex project scheduling in realistic settings. Although several researchers have

recently taken fuzziness into consideration in solving multi-mode project scheduling

(Hapke et al. 1999, Ozdamar and Alanya 2001, Pan and Yeh 2003c), research

publications on this issue are few and more research developments are needed. This

chapter will present two versions of simulated annealing approaches to FMMRCPS, in

search of global or approximately global optimality under fuzzy activity duration

times, with a view to minimising the fuzzy project completion time.

9.2 Fuzzy Simulated Annealing

Simulated annealing (SA) is a heuristic optimisation technique for tackling

complex combinatorial problems where a large number of variables are involved. The

metaphor of SA comes from metallurgy and is based on the thermal process for

obtaining a low energy level while a metal is cooling gradually from molten to solid

state. The mathematical approach for annealing was developed by Metropolis et al.

(1953). This cooling process, referred to as annealing by Metropolis' algorithm,

asserts that, if the melted metal cools down too quickly from a very high temperature,

the desired properties, such as metal strength and magnetism will be lost or degraded.

To enhance or retain these properties, the high energy level in the melted state of the

metal must be gradually cooled down to its minimum energy level whilst reaching a

solid state. However, if the annealing is very slow, the properties still remain the
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same, and the time spent on annealing will be wasted. To reach the state of the

minimum energy level, temperature control is important in the annealing process.

I

Since Kirkpatrick et al. (1983) adopted the idea of SA in physical chemistry to

solve large combinatorial problems for obtaining an approximate global optimisation,

SA algorithms have been applied to a broad field of combinatorial optimisation such

as scheduling, assignment, and network flows (Rutenbar 1989). The resource-

constrained project scheduling problem is a typical optimisation problem of this kind.

For such a combinatorial problem, SA has proven to be a powerful stochastic search

algorithm for applications where there is little prior knowledge available about the

problem (Pannetier, 1990; Yao, 1995 and Lee et al 1996).

SA proposed for solving complex combinational problems assumes the

availability of deterministic data. However, the problem to be tackled here is multi-

mode project scheduling under situations where the activity duration time is fuzzy.

This has been discussed in Section 4.4, and defined as FMMRCPS. In solving

FMMRCPS, two versions of SA approaches incorporating the use of fuzzy arithmetic

are developed, referred to as fuzzy SA.

I
Before presenting the two versions of fuzzy SA approaches to FMMRCPS, the

solution representation, Metropolis' criterion, neighbourhood generation, and key

parameters will be introduced in the following individual sections since these are

important components for processing fuzzy SA approaches.

9.3 Solution Representation

The solution representation is an important component in fuzzy SA, and differs

with different natures of problems. The designed solution representation should not

only represent the nature of a specific problem, but also suit neighbourhood operation

in fuzzy SA. Because of the complex characteristics of FMMRCPS as well as the

requirement to minimise the fuzzy project completion time, the solution presentation

should be designed to reflect these features. In addition, the solution presentation
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should be easily manipulated for neighbour generation without any distortion during

the process of fuzzy SA.

The solution presentation designed here contains four elements: (a) a list of

mode assignments of activities for each stage of partial schedules, (b) a list of sets of

priority values to the activities in each partial schedule, (c) a list of all stages of partial

schedules, and (d) the objective function of the project completion time. The partial

schedule, as defined in Definition 5 of Section 5,2, is a schedule where only part of

activities are scheduled at a particular scheduled time.

The first element in the solution presentation is the mode assignment list of

partial schedules in all stages of scheduling. It is the list of sets of specific modes

assigned for activities on partial schedules. In addition, the mode selected for an

activity should be within the available modes of the activity. Let modeiist be a list of

sets of modes assigned to activities on partial schedules, and let PSn denote a partial

schedule in stage n (n = 1, 2,..., N). The mode assignment list for partial schedules in

each stage can be mathematically defined as

N

(9.1)
71=1

The second element is a list of sets of priority values assigned to activities in

each partial schedule. To simply assigning priority values to activities rather than

employing priority rules, a priority value randomly assigns a different integer to each

activity for generating the initial solution at the beginning of fuzzy SA. That is, if a

project contains 100 activities, a different integer from 1 to 100 will be assigned to

each activity. This element is used to manipulate priority values to certain or all

activities when the operation on activity priorities is required. Let priorityiist be a list

of activity priorities in each partial schedule and vj be a priority value assigned to

activity,/. The list of sets of activity priorities in every partial schedule of the whole

schedule can be represented as

priontyli5t = PSn j = 1,2,...,/ (9.2)
n=\
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Let PSTus, be a collection of all partial schedule times in a complete schedule.

The complete schedule is a schedule where all activities in a project are scheduled, as

defined in Definition 5 of Section 5.2. Let PSTn denote the partial schedule time in

stage n of scheduling. The set of all partial schedule times can be expressed as

PSTBa=fl{PSTl,,} (9.3)

The third element of the solution presentation records all details of partial

schedules in each stage of scheduling. Let PSiiSt be a list of sets of partial schedules for

every stage from 1 to N, and let A(7n) and C(7n) denote the active set and complete

set at fuzzy partial schedule time 7n of stage n in scheduling respectively. The active

set, A(7n) is the set for placing those activities that are being scheduled and have not

been finished at the fuzzy partial schedule time 7n of stage n whereas the complete set

is the set where the activities have been completed at the fuzzy partial schedule time

7n of stage n. The details of the active set and complete set have been defined in

Definitions 2 and 3 of Section 5.2. The list of all partial schedules in every stage of

scheduling can be represented as

PSlisl=f,{(A(7n),C(7n))\jeA(7n)uC(7n)} n=\,2,.,N;7n=PSTn (9.4)

The last element of the solution presentation represents the objective function of

fuzzy project scheduling, expressed as / ( / ) • The objective function of project

scheduling here is the fuzzy project completion time that can be represented as the

partial schedule time PSTN at the last stage TV, plus the longest fuzzy finish time of

activity j among those activities in the complete set C(7N) for the last stage N of

scheduling. The objective function / ( / ) of fuzzy project completion time can be

described as

/) = PSfN + max{/Ty | j e (9.5)
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The above defined solution presentation has a number of merits. The solution

representation can initially indicate the fuzzy project completion time as the objective

function of scheduling. It also reflects all necessary information required by

FMMRCPS, including both the mode assignment and activity priorities, as well as the

sequence of activities of partial schedules for every fuzzy scheduled time.

Furthermore, the solution representation can be manipulated efficiently and effectively

in fuzzy SA to generate a neighbouring solution. Therefore, the solution

representation designed here meets all requirements of both fuzzy SA and

FMMRCPS.

9.4 Metropolis' Criterion

Metropolis' criterion (1953) is a core part of simulated annealing. This criterion

claims that the new neighboring solution, generated from the current one, is definitely

accepted if the new neighboring solution is better than the current one. However,

some bad neighboring solutions may be occasionally accepted under the acceptance

probability of Metropolis' criterion, in order to avoid being trapped into local optima.

Let j{i) be the objective function for the current solution, fli+l) be the objective

function of neighboring solution, and T be the current temperature. The acceptance

probability Pmc of Metropolis' criterion for the worse neighboring solution, generated

from the current one, is expressed as

pmc = (9.5)

As shown in Formula (9.5), the influence of the acceptance probability is the

variance of two values of the objective function between the new neighboring and

current solutions, and the measure of the current temperature. The acceptance

probability of Metropolis' criterion indicates that a smaller degradation of a new

neighboring solution may have a higher acceptance probability. In addition, a higher

value of temperature T gives a greater acceptance probability. However, the

acceptance probability of Metropolis' criterion can only be applied to crisp numbers.
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FMMRCPS is a multi-mode project scheduling mode involving fuzzy activity

duration times. To apply the acceptance probability of Metropolis' criterion, fuzzy

values (the fuzzy project completion time) have to be defuzzified. Let / ( / + 1) be a

new fuzzy neighboring solution generated from the current fuzzy solution f(i). The

values of the fuzzy objective function in the current / ( / ) and neighborhood / ( / + 1)

solutions are converted into ranking indices R{f{i)) and R(f(i + l)) respectively.

The calculation of ranking indices has been presented in both Remark 2 and Example

5.5 of Section 5.2. To evaluate the new fuzzy neighboring and current fuzzy solutions,

the rules of fuzzy ranking are applied. The mles of fuzzy ranking are presented in

Section 2.5 and Examples 5.4 and 5.5. Let MC{T) denote Metropolis' criterion at the

current temperature T for the acceptance probability of a new solution in fuzzy SA for

solving FMMRCPS problems. MC{T) can be expressed as

MC{T) =
1 if

(9.6)

Metropolis' criterion in Formula (9.6) visually indicates that a new fuzzy

solution / ( / +1) is always accepted, if it is better than the current fuzzy one / ( / ) ,

whilst some "uphill moved" solutions may also be accepted based on the acceptance

probability of Metropolis' criterion, e-(*(/<'+1»-*</<'»i/r. The acceptance of a bad

solution will be decreased if this solution is very poor, or if the temperature T is very

low. This is because fuzzy SA will converge to a near globally optimal solution when

the acceptance probability of Metropolis' criterion reaches 1, under the condition of a

very small value of temperature T.

9.5 Neighbourhood Generation

To generate neighbouring solutions, first of all the system requires picking up a

partial schedule time 7n as a selected fuzzy time point, from the set of partial schedule

times of the current solution, as expressed in Formula (9.2). Once the system selects
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the partial schedule time /„, a series of neighbouring solutions are generated through

perturbations. This is accomplished by mode assignment, or activity priority

operations, or a combination of both operations. These operations can be summarised

as follows:

(1) Operation on mode assignment:

« Change modes for the activities from the selected fuzzy time point 7n;

• Change modes randomly for a number of activities in the selected fuzzy time

point 7n;

• Randomly change modes in two positions;

• Change a mode in one activity only;

• Change modes for all activities from the selected fuzzy time point 7n.

(2) Operation on activity priorities in the decision sets subsequent to the selected

fuzzy time point tn:

• Randomly change priority order for all activities in a decision set;

• Randomly change priorities for some activities in a decision set;

• Randomly change priority for only one activity in a decision set;

• Priorities are unchanged in a decision set.

As stated in the previous section, the solution representation in fuzzy SA has

been specifically designed for easily generating a series of feasible neighbouring

solutions from the current solution in fuzzy SA. More importantly, the reschedule of

all activities in all stages of partial schedules is avoided by the two versions of fuzzy

SA approaches to be presented in Section 9.7, thus saving unnecessary computational

time.
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9.6 Key Parameters of Fuzzy SA

In constructing an annealing process, parameter setting may have a significant

influence on the performance of fuzzy SA approaches. That is, the values of key

parameters should be appropriately determined so that there is sufficient time to

perform fuzzy SA approaches for achieving the globally approximate optimisation.

These key parameters include the following:

• The initial value of temperature setting - To

As suggested by Kirkpatrick et al. (1983), the initial value of temperature should

be set appropriately large so as to make the initial probability of accepting

transitions to be close to 1. Wong and Liu (1986) proposed a simple formula to

determine the initial value of temperature through experiment, suggesting that the

initial value should be the mean of the difference of two values of the objective

function between a new neighbouring solution and the current solution in

transitions for only "downhill" moves divided by natural logarithm of an initial

probability. Let Md and Mu be the number of downhill and uphill moves

respectively in an experiment. Let Afitnessj be the difference of the two values of

objective functions in any pair containing a new neighbouring solution and the

current solution while the new neighbouring solution moves downward. To

facilitate applying the fuzzy objective function, ranking indices (/?(•)) are used for

calculating the average Afitness

Afitness = -& (9.7)
d

To ensure the initial temperature is sufficiently large, let the probability Po of

accepting uphill moves be set very high (say Po ~ 0.999) in the initial stage of

fuzzy S A. The initial temperature for annealing process can be set as

_ Afitness .
°" (P) ( }
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There is also another way of setting the initial value of temperature that is

concerned with the proportion between the solutions accepted and all solutions

generated in 7b as well as the number of the solutions towards both uphill and

downhill respectively, proposed by Aarts and Korst (1990). Let AunfitnesSi be the

difference of two values of the objective function between the new neighbouring

and current solutions while the new neighbouring solution moves uphill. Let

Aunfitness be the average Aunjitnessi for all uphill moves in all transitions. To

allow the fuzzy objective function to involve the determination of the initial

temperature, let Aunfitness be expressed as

Aunfitness = -*=*-
M..

(9-9)

Let Xo be the ratio between the solutions accepted and all solutions generated in the

initial temperature To. The initial temperature To can be determined as

T = Aunfitness

M..
(9.10)

According to my experiment with fuzzy SA for FMMRCPS, the initial

temperature may be set to be the number of activities of a project multiplied by

factorial of the maximum number of modes used in an activity. The initial

temperature can be mathematically expressed as

(9.11)
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Cooling ratio - a

a is a cooling ratio used to decline the temperature gradually from the initial value

while the cooling procedure is processed. Usually the value of a is chosen as

0.8 < a <1. Alternatively, it can be determined by Formula (9.2), suggested by

Potts and Van Wassenhove (1991).

( 9 1 2 )

where epochs is the number of times of neighbourhood generation in a

temperature level for annealing, and Ti is the last temperature expected. As the

experiment is conducted for FMMRCPS, a value of a between 0.8 and 0.9 is

appropriate. In the system developed for two versions of fuzzy SA, the value of a

can be specified by the user or selected randomly by the system.

Epoch length (the number of solutions generated in a temperature level) - Lmarkov

In every temperature level, there is an epoch where the neighborhood search

iterates an appropriate number of times, in order to allow exploring the search

space as much as possible, referred to as epoch length or the Markov chain length,

Lmarkov- At the beginning of the cooling process, the proper length ofLmarkov may be

set as the number of activities in a project because it seems, in my experiment, to

provide an overall better performance of fuzzy S A. To be the flexible purpose, one

of several options can be selected in choosing the length ofLmttrkov at the beginning

of fuzzy SA. A number of values of Lmark0V in options are given by the system,

using different proportions to the number of activities and modes involved in a

project.

Annealing ratio - /?

P is an annealing ratio that is used to change the previous length of Lmarkov at the

current temperature level. Applying p controls the length of annealing at every
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temperature level. Most implementations choose a fixed length ofLmarkov at every

temperature level in solving combinatorial optimisation problems. To be robust in

appropriate search for good solutions at different temperature levels, the length of

Lmarkov is set to be different, depending on the search status in the previous

temperature level. The annealing ratio usually is selected as 0 < f5 < 1 or

1 < J3 < 2, specified by the user or determined by the system on the basis of the

situation of search.

• The threshold to the number of unimproved solutions during search in the Lmarkov

at a temperature level - 8

8 is a threshold to the number of unimproved solutions obtained through search in

the length of Lmark0V at a temperature level, predetermined by the user or the

system. 8 is used to trace whether the current number of unimproved solutions at

the temperature level exceeds this preset threshold. It is used to examine the search

status at the current temperature level so as to adjust the length of Lmarkov through

changing the annealing ratio fl in the next cooling temperature level. The value of

8 may be set to the number of activities divided by an integer number, and the

integer chosen depends on the complexity of an FMMRCPS problem.

• The threshold to the number of iterations of continuous search without the best

solution being found - e

6 is a threshold to the number of search iterations without the best solution being

found, e may be a useful parameter to decide whether fuzzy SA should teraiinate if

the best solution cannot be found through exploring different areas of search space

in a specified time, and it can be treated as one of the stopping criteria for

terminating fuzzy SA. This additional parameter is optional in the system, and

whether the parameter is applied, depending on the requirements of the

performance of fuzzy SA. The value of e may be set as being equal to or greater

than the length of Lmarkov at the initial temperature.
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• The threshold for the maximum iterations allowed in fuzzy SA - MaxTime

Maxtime is the threshold that allows for the maximum iterations of search in the

whole fuzzy SA, and it is automatically preset by the system. It is considered one

of the stopping criteria in fuzzy SA. Once the initial value of temperature 7b,

cooling ratio a, and the length of Lnwrkov at the initial temperature level are

determined, the Maxtime can be generated automatically by the system.

The determination of the appropriate values for key parameters has been

suggested above. Experiment has shown that different values chosen in the parameters

may greatly impact on the quality of optimal solutions for FMMRCPS problems.

Therefore, parameter setting is an important initial step in achieving good

performance of fuzzy SA.

9.7 Two Versions of Fuzzy SA Approaches to FMMRCPS

To resolve FMMRCPS in the fuzzy environment, I develop two versions of

fuzzy SA approaches in my PhD studies, One is fuzzy SA alone, called pure fuzzy SA

approach, and the other is fuzzy SA combined with tabu mechanism, referred to as

hybrid fuzzy SA approach. Both versions of fuzzy SA to FMMRCPS are an iterative

search through priority value and mode changes to activities in order to obtain a global

or an approximately global optimal solution, through the annealing process.

Before explaining the process of flizzy SA approaches, new notations are

introduced as follows:

= the current solution obtained by fuzzy forward scheduling;
= the current solution obtained by fuzzy backward scheduling;
= a new solution generated from the current solution that is

obtained by fuzzy forward scheduling;
= a new solution generated from the current solution that is

obtained by fuzzy backward scheduling;
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BestS = The best solution found so far in any iteration;

\R{NewSbtmai ) - R(CurSromard ) if fuzzy forward scheduling is applied
A =<

- R(CurShKUvard) if fuzzy backward scheduling is applied

As solutions (project completion times) generated are fuzzy numbers, to

compare a fuzzy new neighboring solution and a fuzzy current solution, the ranking

method that has been presented in Section 2.5 and Remark 2 of Section 5.2, is applied.

A represents the difference of ranking indices of a new neighboring solution and the

current solution by either in fuzzy forward or backward scheduling, indicating how a

new generated solution is worse or better than the current solutions.

Figure 9.1 presents the logic flow of the two versions of fuzzy SA. Both fuzzy

SA approaches consist of two main parts. One is the perturbation algorithm in which

the main purpose is to alter priority values and modes of activities through

perturbation operations, which has been mentioned in Section 5.1. The other is the

fuzzy scheduling mechanism, used to schedule activities after the perturbation

algorithm has been applied. The details of the fuzzy scheduling mechanism have been

presented in Sections 5.3 and 5.4. This section explains how these two parts work

together in either fuzzy SA approach to FMMRCPS.

9.7.1 Pure Fuzzy SA

Before processing pure fuzzy SA, the information on both the project and the

fuzzy SA approach are required to be input. The determination of appropriate values

for the parameters has been discussed in Section 9.6. Once information on both the

project and the parameters has been input, two initial solutions (schedules) are

generated through the fuzzy forward and backward scheduling, when the system

randomly assigns both a mode and a priority value to each activity of a project, as

shown in Figure 9.1.
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Input ProJMt-rtLitd Information
number of activities
precedence relation
number of resource types
available resources
details ofcach activity
-number of modes
— duration in each available mode
- resource requirements in each mode

Input Funy SA-relattd Information
Initial temperature T,
Cooling ratio a
Markov chain length l-mM*
Annealing ratio fl
Threshold <« for examining the
number unimproved solutions in i . ^ , .
Threshold cfor being unable to find the
best solution in number of iteration
Threshold Max lime for maximum
iteration in the whole FSA
Tnbu si/c (for hvbrid FSA only)

I Point out a partial schedule lime AST

I Tht system A»igni modes and priorities

j (1) Randomly assign a priority value to each activity•;
j (2) Randomly allocate a mode to each activity;
! (3) Go to futrv scheduling mechanism

(Generate the initial solution! Mcjirrtnt ones

Fuziy scheduling mechaniim

(contains)
j (1) List of sets of mode assignment in each
I partial schedule;
! (2) List of sets or priority values in each
| partial schedule.
> (3) A set of partial schedule limes.
I (4) List of sets of active set. complete set. and
I remaining set in each partial schedule.
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Figure 9.1 Logic flow of two versions of fuzzy S A
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The solution presentation in Section 9.3 has been specially designed for easily

manipulating neighborhood generation using fuzzy SA, and the current solution

obtained by fuzzy forward scheduling can only apply fuzzy forward scheduling to

generate neighborhoods whereas the current solution gained through fuzzy backward

scheduling can only be allowed to use fuzzy backward scheduling to produce

neighborhoods. Therefore, the two initial solutions obtained through both fuzzy

forward and backward scheduling become two current solutions, Ci4rSf0TwaTd and

Cw/tfbackward at the beginning of fuzzy SA. The better solution (in terms of minimising

the fuzzy project completion time) is taken from these two initial solutions, and is

temporarily placed in the variable, BestS of the system.

In the section of Figure 9.1 labelled "generate the initial solutions as current

ones", the initial solutions should contain the following information:

(1) a list of sets of modes allocated to the activities in each partial schedule;

(2) a list of sets of priority values assigned to the activities in each partial

schedule;

(3) a set of partial schedule times in each stage of a whole schedule;

(4) a list of sets of an active set, a complete set and a remaining set of each

partial schedule;

(5) fuzzy project completion time.

All the information must be stored in the system as it is required for a series of

neighboring generation.

As shown in Figure 9.1, the initial value To of temperature should be set

appropriately high in the beginning of fuzzy SA in order to allow enough time for the

annealing process. The neighbouring solution can be obtained through adequate

perturbation from the initial solution. In my fuzzy SA, the system randomly picks up a

partial schedule time from each of two initial solutions as a perturbing fuzzy time

point in the two current solutions respectively. To perturb the current solutions,

several operations may be made on these two current solutions as shown in Figure 9.1:

(1) mode operation in various ways on activities, or (2) only priority value changes in
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different activities, or (3) operation on both mode and priority values simultaneously.

Once the operation has been made on the current solutions, two new solutions are

generated in parallel by only scheduling some activities from the fuzzy time point

using fuzzy forward and backward scheduling.

Metropolis algorithm in Figure 9.1 indicates the way by which the algorithm

accepts the new solution as the current solution. When the difference A between the

ranking indices of a new neighbouring solution and the current solution is negative,

the new solution moves downhill in terms of minimising the fuzzy project completion

time. This improved solution, of course, is accepted as the current solution. The new

solution will also supersede the position of the best solution BestS if the ranking index

of the new solution is smaller than that of the current best solution stored in memory.

However, sometimes a new neighbourhood moves uphill for a worse solution (where

A >0), and the worse solution may also be accepted by Metropolis' criterion e . If the

criterion is greater than the random number between 0 and 1 selected by the system,

the criterion is satisfied and the new solution becomes the current solution. This is

permitted in order to explore more different search areas, and to avoid being trapped

in local optima. When the cooling temperature is high, more low-quality solutions will

be accepted in early stages. This allows uphill moves to explore or dig more search

space. As the temperature is decreased, the probability of accepting lower quality

solutions will be reduced and the search becomes more focused on better ones.

Once the two new neighboring solutions have been processed in the annealing

procedure after they have been obtained by fuzzy forward and backward scheduling

respectively, Markov chain length, LmarkOv is reduced by one. Such a procedure will be

repeated for the number of iterations specified by Lmarkov until its length becomes zero.

Thus, the Metropolis algorithm is attempting to generate and inspect a number of

neighboring solutions in LnwrkOv at the same temperature T in order to dig for a better

solution. If Lmarkov = 0, some annealing parameters are required to be updated, as

shown in the last procedure box of Figure 9.1 in order to get ready for the next new

temperature level. The fuzzy SA will be terminated if one of the stopping criteria has

been satisfied or the temperature level has reached the lowest temperature 7finai. When
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fuzzy SA is terminated, the solution stored in BestS of the system becomes the

optimal or approximately optimal solution to FMMRCPS.

9.7.2 Hybrid Fuzzy SA

To prevent the reproduction of the same solutions generated from recent

searches, tabu mechanism is incorporated into fuzzy SA. Tabu for short-term memory,

referred to as tabu list, is employed in the hybrid fuzzy SA. The tabu list keeps track

of solution attributes for representing previous searches in order to avoid cycling in

the same search space. The attributes of recently visited solutions are labelled as tabu

active and solutions containing these attributes become tabu. The memory available

for holding the set of previous solutions is called the tabu size. The size of tabu chosen

may affect the performance of the hybrid fuzzy SA. A small size of tabu may not be

sufficient to contain information on the attributes of recent searches, whereas a large

size of tabu requires a large amount of computational time to examine whether each

new solution has any attributes rendering it forbidden.

Apart from the tabu mechanism, hybrid fuzzy SA is similar to pure fuzzy SA.

Fuzzy SA incorporating a short-term memory function can forbid transitions in

solutions if the attributes are already contained in the solutions generated. Therefore,

the merit of hybrid fuzzy SA is to ensure that the search procedure does not revisit

solutions previously generated. In addition, the tabu mechanism expands the search

for better neighboring solutions although sometimes worse solutions may be

generated. Each time a new neighboring solution is generated that is not forbidden, it

moves to the top of tabu list and the bottom solution in the tabu list is dropped off.

The size of tabu can be selected either fixed or changeable in the system. In the case

of changeable tabu size, the size is variable, depending on the status of the current

search. If new neighboring solutions are generated that have not recently appeared in

the tabu list, the size of tabu will be reduced as the current search is in a definitely

different search area. If newly generated neighboring solutions have appeared

frequently in the tabu list, the size of tabu needs to be increased as the search may be

moving towards a previous search area.
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9.8 Computation Comparison

To evaluate the two versions of fuzzy SA experimentally, five different sizes of

projects with 50, 100, 150, 200, and 250 activities are randomly generated by the

system, and activities in each project have at most three modes. Three renewable

resource types are consumed in the five projects. The cooling ratio ot for temperature

changes, and the annealing ratio j3 for Lmarkov are both set to 0.8. The initial value of

temperature is set to 1,200. The initial value of Markov chain length is chosen to be

200. For this experiment, MaxTime and 5 are set to 3,500 and 150 respectively for all

the project sizes.

Each project has been run 100 times to determine how far the average solution

differs from the best solution, thus verifying the deviation from the best solution. In

order to apply the average deviation from the best solution, all results are converted

into ranking indices because of fuzzy project completion times. Table 9.1 lists the best

and worst solutions, and the average deviation for each project size.

Table 9.1 Experiment in two versions of fuzzy SA

Project
size

50
100
150
200
250

Pure fuzzy SA

Best solution

(68,85,96,105)
(90,110,130,160)
(112, 132,145,145)
(122, 152,222,243)
(146, 189,225,254)

Hybrid fuzzy SA

Best solution

(77,90,105,112)
(100,120, 139, 170)
(102,129,134, 139)
(134,169,230,263)
(139,179,210,249)

Average deviations from the best one

Pure fuzzy SA

18.90
19.24
20.35
22.50
24.55

Hybrid
fuzzy SA

17.75
18.25
19.28
21.40
23.42

As noticed in Table 9.1, the best solutions obtained from hybrid fuzzy SA are

better than those obtained from pure fuzzy SA. This is because hybrid fuzzy SA

forbids the search to visit the areas that have been visited recently in order to explore

other areas for searching better solutions.

Table 9.1 also lists tht deviations from the best solution both for pure and hybrid

fuzzy SA. The deviations range from 19 to 25 in pure fuzzy SA and from 18 to 23 in

hybrid fuzzy SA for the projects with 50, 100 and 150 activities. However, the
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deviation gaps becomes large when sizes of the projects have 200 and 250 activities in

both pure and hybrid fuzzy SA. The reason is that the values of key parameters have

been set the same for all sizes of the five projects in the experiment. The experiment

indicates that the existing values for the key parameters seems suitable for the project

with 150 activities whereas the solutions are not much improved for the projects with

50 and 100 activities by the current parameter setting. The values set for the

parameters, particularly for the temperature and Markov chain length, are required to

be appropriately large to have adequate time to conduct the annealing process for the

search of good solutions. The experiment indicates that the key parameter setting is

essential to the overall performance of either pure or hybrid fuzzy SA.

9.9 Concluding Remarks

FMMRCPS with fuzzy activity duration times is a difficult combinatorial

optimisation problem, and it becomes more complex as the project size increases. As

such, no exact algorithms can provide efficient solutions. Metaheuristic approaches

incorporating fuzzy set theory are an effective way of obtaining an approximate

globally optimal solution for FMMRCPS under the fuzzy environment.

To develop an efficient and effective metaheuristic approach, two versions of

fuzzy SA approaches to FMMRCPS have been developed. The solution presentation

is an important element for the efficient and effective performance of fuzzy SA. The

solution presentation I have designed always guarantees the generation of feasible

neighbouring solutions. In addition, this solution presentation is perturbed easily for

generating neighbourhoods, and it saves computational time in producing a new

neighbouring solution from the current one as only partially scheduling is required.

The underlying concept of both pure and hybrid fuzzy SA presented in this

chapter for solving FMMRCPS problems under fuzziness is simple and

straightforward. Both approaches are suitable for solving practical FMMRCPS

applications. As indicated in the experiment conducted, the key parameter setting has

a great influence on the result of the fuzzy project completion time. As such, in
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practical applications the key parameters in fuzzy SA should be carefully set to obtain

a good solution for minimising the fuzzy project completion time.
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Chapter 10

System Development for FMMRCPS

10.1 Introduction

Developing a system for handling FMMRCPS is an important work as part of

my PhD research where four metaheuristic approaches are built in the system: (a)

fuzzy GA alone, (b) fuzzy GA with tabu, (c) fuzzy SA alone, and (d) fuzzy SA with

tabu. For the development of individual approaches to FMMRCPS, the system is an

indispensable means of analysing and testing these approaches to help improve these

approaches. In addition, different values of parameters for individual approaches

greatly impact on their quality of performance. The system enables the conduct of

extensive experiments on parameter settings under different conditions, making

general recommendations about choosing appropriate values of parameters prior to

implementing individual approaches. Furthermore, the system allows much insight to

be gained into the characteristics of individual approaches by the way of experiments.

This helped me get an idea about developing two hybrid approaches, fuzzy GA with

tabu and fuzzy SA with tabu as they could perform better than an approach alone.

Without developing the system, it may be difficult to achieve good approaches for

solving FMMRCPS efficiently and effectively.

Project scheduling is widely used in organisations and industry. The system for

FMMRCPS should not be limited to use on a standalone computer, but importantly

should be shared by different departments across an organisation on the network base.

For this reason, I chose a new generation of object-oriented programming language,

VB.NET, because applications written in this language are able to be run on any

computers and operation systems. Applications written in VB.NET can be distributed

by servers and shared by multiple users across the network. In addition, the system

written in VB.NET is much more secure than previous versions (Cornell and Morrison
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2002). These reasons motivated me to use VB.NET for developing the system. I will

now briefly explain the structures and functions of the system.

10.2 System Design

In my PhD studies, the system for FMMRCPS is not only used to implement the

metaheuristic approaches for solving FMMRCPS, but more importantly, assists in

improving individual approaches during their development through experiments and

examination from sample projects in the system. For the purpose of facilitating the

development of these individual approaches, some parts of the system for carrying out

the tasks of data input, experiment, and result summaries have to be completed in

design before developing individual metaheuristic approaches. In addition, the parts

related to the approaches are often required to be modified in order to achieve

improvements during their development. Moreover, the common parts of the system,

such as fuzzy forward and backward scheduling, fuzzy arithmetic, and fuzzy ranking,

are frequently shared by a number of developed approaches. To meet these concerns,

the methodology of modular design is a suitable way of treating these parts as

independent tasks in system development. Each module has its own unique task or

function. The advantage of applying this methodology in system development is that

any modification on a particular module will not affect other modules in the system.

The other benefit of using modular design is that some modules are reusable because

common tasks that are treated as modules, are used a number of times in individual

developed approaches.

The system development for implementing FMMRCPS is a very complex

programming process involving a number of complicated procedures for processing

activities with precedence relationships and resource constraints through different

stages. To facilitate logical understanding and maintenance of the system, the entire

structure of the system uses traditional structure programming techniques along with

the modular concepts for each individual task (Budgen 2003).

During the system development, each module has been verified for correctness

by application to the sample data before the modules were assembled together. Thus,
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the system will reliably implement any of the four metaheuristic approaches in

handling FMMRCPS. The system for FMMRCPS is implemented using four stages as

follows:

(a) the input of data for a project manually or for data to be generated by the

system; in the following stage;

(b) the input of values of parameters for the selected approach;

(c) implementing the selected approach;

(d) result output as either a single result or the results of statistical analyses.

10.3 Structure of the System

Figure 10.1 shows the overall structure of the system. The system is

decomposed into five main parts: (a) interfaces for the user input, (b) individual main

structures for each approach built into the system, (c) perturbation algorithms for

manipulating activity priorities and modes, (d) fuzzy scheduling mechanism, and (e)

output interfaces.

During the system development, most situations that might occur in project

scheduling are taken into consideration. In terms of activity duration times, the system

provides several flexible options to handle either fuzzy or crisp times, or times

containing both. The system also provides choices for dealing with either single mode

RCPS or multiple mode RCPS. To set up project instances, one, or a set of projects,

can be generated manually by the user or generated automatically by the system. In

addition, the system has the facilities for statistical analysis for evaluating the

approaches that are developed.

Chapter 10 System Development for FMMRCPS Page: 184



System for FMMRCPS

Determine precedence
relationships by eilha
the user or the system

Input information
on piramelen for a
specified approach

Statistical analyst*
on an approach

Input information
on a project

One approach decided by
the user at the beginning

Fuzzy SA with tibu mechanismFuzzy GA with tab* mechanism

(1) Go through the specified generations;
(2) Generate the specified chnrnnsomer,
(3) Find an approximate optimal schedule.

(1) Go through the specified generations;
(2) Generate chromosome* through tabu;
(3) Find an approximate optimal schedule.

(1) Change temperature by specified cc.
(2) Change Markov length by fl snd S,
(3) Generate neighborhood;
(4) Obtain nearly global optimintion of a schedule

(1) Change temperature by specified a;
(2) Change Markov length by ptnA if,
(3) Neighborhoods generated through tabu;
(4) Obtain nearly global optimisation of a schedule

rcrtnrtntloa algorithms
Call a rpecific perturbation algorithm
relating the specified metaheuristic

approach?* to perturb activities
is a decision set

Activity priorities and mode assignment
perturbed by changing values of graetk

position through fuzzy GA operations

Activity priorities and mode
assignment perturbed by changing

values through fuzzy SA operations

Schedule activities in
a decision set aifcr perturbation

Analyse the experiment
required by the user

Figure 10.1 The system integrating four metaheuristic approaches to FMMRCPS
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10.3 J User Interfaces for Data Input

In the system, there are three interfaces for data input: (a) data on activities of a

project, (b) parameters on individual approaches, and (c) experimental requirements.

Before running any approaches built into the system, information about a project

is required to be input. The size of the project, and whether a single mode RCPS or

multiple mode RCPS need to be determined as shown in Figure 10.2. For single mode

project scheduling, mode assignment is not required in any individual approaches.

However, where multiple modes are chosen, the number of modes needs to be decided

for individual activities by either the user or by the system. To avoid tedious data

input, the system can assign the number of modes to activities, as shown in Figure

10.3. Once the number of modes is assigned to an activity, the activity will be both

highlighted and ticked automatically by the system until all activities are assigned to

the number of modes.

Enter Project Details

Please Enter Project Details

Project Name:

Number of Activities:

Number of Resources:

Mode to be used:

jproject2-100

J1OO

M

<"* Single Mode <*" Multiple Modes

OK I Cancel

Figure 10.2 Interface for determining the size of the project and mode options

Scheduling activities in a project is the most difficult part in the programming.

Whether activities are eligible to be scheduled relies on their precedence relationship

as well as on resource availabilities. To set up their precedence relationships

straightforwardly and effectively during scheduling, a tree structure, along with the
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data sets of Boolean type, is applied. The precedence relationships can be input

manually by the user in the manner shown in Figure 10.4. To protect the logical

correctness of their relationships, the system has a protection mechanism to ensure

that the activity number must always be greater than that of its predecessors.

ProJecftActivftiei

Activity No

1
2
3
4

5
6
7

9

Resource No

1

Description

ActrvitvNo: 1
Activity No: 2
ActivitvNo:3
ActhTt\-No:4

Acu\-it\-No:5
Acti\-it\-No:6
ActhitvNo:?

Acnvrtv'No. S

Acthit}-No:9

Resource Name

Resource No: 1
Resource No: 2
Resource No: 3

Number of Modes
•>

1

3

1

Description

Resource No: 1

Resource No: 2

Resource No: 3

Data Completed

F
F
F
F
F
F
F

: a
r

Availability

12
11
15

, ̂  ** 1

Figure 10.3 The system assigns the numbers mode to activities

Activity 8 Details

Activity No 8

No. of Modes R "

its immediate predecessors

LOU

Available predecessors

Save Cancel

Figure 10.4 Activity details in each mode and its precedence relationships

W»NM«0«<4««N
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The system provides four metaheuristic approaches. Once an approach is

chosen, for example, fuzzy GA with tabu, the values of parameters and search

strategies on activity priorities are required to be determined as shown in Figure 10.5.

Different values given in the approach will impact on the performance of the

approach. These will be exhaustively explained through intensive experiments in

Chapter 11.

I

I

Input parameters and search strategies related to Genetic Algorithm

1. Parameters : — —

- Number of generation: J200

- Number of fit chromosomes: [20

- Population size:

- Tabu size: or V Random size

-*2. Search Strategies r

(• |5 times of mutation, followed by M6 times of neighbourhood swaps,

ended with Jjj times of crossover,

<~ the random times in sequence of mutation, neighbourhood swaps, and cross over:

f* choose any operations randomly

f choose only one operation for the whole algorithm

C Mutation f. Crossover f* Neighbourhood swap

Figure 10.5 Interface for input values of parameters of GA with tabu approach

To deal with multiple modes in fuzzy GA with tabu, genetic operations on mode

assignment are required. To broaden operations on mode assignment, there are two

main options for manipulating mode assignment. Option A, referred to as "mode

assignment independent" in Figure 10.6, has nothing to do with the current search

status of the approach, and the user can choose one or several selections arbitrarily.

Option B, referred to as "mode assignment concerned with search strategies", is a

manner where several specifically designed operations are made on mode assignment

for specific sequences based on the search status, and the user is only required to

specify the number of times applied to each operation, as shown in Figure 10.6.
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For conducting experiments for evaluating an approach, the approach may need

to run a number of times, and the best solution can be obtained for each run. The

different types of deviations such as average, maximum and standard deviations can

be calculated by the system. The optimum solution is selected from a set of best

solutions that are obtained from each run. The average CPU time is the average time

spent in implementing an approach. The system provides several options for

experimental analysis, shown as in Figure 10.7.

Choose a method of mode assignment during the precees

(* A) Mod* assignment independently :

C B) Mode asslgrvTwnt concerning with re»e«rchstra»B0es

A) Mode Assignment Independently

f i ~ Mode assignment unchanged Tor | j ~ tones

P | Mode assignment unchangsd for random times

W p~ Mode assignment changed lor | e ~ times

P ] Mode assignment chartQBd tor random (me*

17 [5 Two loci swaps in mode chromosome (or [4 Vm«s

l~ I T*o loci swaps In mode chromosome for random timos

r I [ tocusfloci changed) mode randomly for | tmes

R [ 7 ~ | T ~ Soeustocl changes) mode randomly for random times

P j I locus/loci using shortest feasible mods for | times

P [5-" [ T ~ kKuMociehario^sJusingsrwtostfeasiblemoderandomly

C h o o s e s method o(modeasst^nmfl^dut ira) the pncats

r A ) Mode assignment Independently

<? B) Mode assignment concerning with research strategies

B) Mode Assignment concecninowmi search strategies

- Changs mode for specific activity for [5"" 6roe{s) or r random limes

-follow«d by two specific activities modes change in [g times or

f~ random tlmaa if solution is not improved;

-foDowed by cbanga modes up luenttre chromosome for | g ~ times
M f~ random bmes

Figure 10.6 Operations on mode assignment in fuzzy GA with tabu

Number of run times for this algorithm:

W Calculate Deviation

Average deviation from the optimum (%)

Maximum deviation from the optimum (%)

Standard Deviation

Optimum solution

Average CPU time (sec)

Figure 10.7 Options of experimental analysis
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10.3.2 Main Structure of Individual Metaheuristic Approaches

As mentioned in Section 10.1, four metaheuristic approaches are built into the

system. Any of these approaches can be chosen at a time. Figure 10.8 is an example

where the choice is GA with tabu. Any selected approach is incorporated into either

scheduling scheme A or B or a combination of both. Scheme A is defined as strict

scheduling. That is, other eligible activities are not allowed to be scheduled if

resources are insufficient for one selected eligible activity. The details of Scheme A

are presented in Definition 6 of Chapter 5. Scheme B is nonstrict scheduling where the

eligible activity of the next highest priority can be scheduled if resources are

insufficient for the first highest priority of the selected activity. The explanation of

Scheme B is in Definition 7 of Chapter 5. Figure 10.8 shows the GA with tabu

incorporating Scheme A.

Choose one of these opprooches:

f Genetic Algorithm

<• Genetic Algorithm with Tabu Mechanism

*~ Simulated Annealing

("" Simulated Annealing with Tabu Mechanism

("" Tabu Search

Select one scheme while chasing one above approach:
<• Scheduling Scheme A

f Scheduling Scheme B

*"" Combine A and B

Figure 10.8 Approach selection

In the system, the four approach modules contain the main structure of the

corresponding approach. In the modules of both fuzzy GA and fuzzy GA with tabu,

the outer loop controls the required number of generations and the inner loop manages

the specified population size in each generation. In the inner loop, to generate

chromosomes, the module of the perturbation algorithm is called first. This module

functions to change both activity priorities and modes in their genetic positions on
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their two sub-chromosomes. The details of chromosome design for FMMRCPS are

presented in Section 8.3. Once these two sub-chromosomes are generated, the module

of the scheduling mechanism will be called to get relevant scheduling information for

the third sub-chromosome. This process is repeated until the outer loop reaches the

final generation. In addition to fuzzy GA requirements, fuzzy GA with tabu has the

extra facility of preventing the generation of chromosomes that have been recently

generated. This mechanism is in the main structure of fuzzy GA with tabu.

In the other two approach modules of fuzzy SA and fuzzy SA with tabu, the

outer loop controls the temperature changes under the cooling ratio a. The inner loop

undertakes neighbourhood generations in the specified Markov length for the

annealing process at the same temperature. Whilst generating neighbourhoods from

the current solution, the perturbation algorithm module is called to change values of

activity priorities and modes, followed by calling the fuzzy scheduling mechanisms

module. This module is to generate neighbouring solutions. In the simulated annealing

process, the Markov length is often changeable depending on the status of

neighbourhood generations in the previous temperature level. The whole process is

terminated when the preset stopping criteria are satisfied or the outer loop attains a

sufficiently lower temperature. Fuzzy SA with tabu differs from fuzzy SA in only one

aspect. That is, fuzzy SA with tabu has a mechanism to forbid generating

neighbouring solutions from recently generated solutions.

10.3.3 Perturbation Algorithms

In perturbation algorithms, there are two perturbation modules: (a) dealing with

fuzzy GA and fuzzy GA with tabu, and (b) dealing with fuzzy SA and fuzzy SA with

tabu, as shown in Figure 10.1. In the module for perturbation on activities of fuzzy

GA based approaches, operations of mutation, crossover and neighbourhood swaps

are applied to chromosomes in order to generate new chromosomes. In the other

module of perturbation on activities for fuzzy SA based approaches, activity priorities

and modes can be changed randomly or specified by the user.
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10.3.4 Fuzzy Scheduling Mechanism

The fuzzy scheduling mechanism contains two sub-modules: (a) fuzzy forward

scheduling module and (b) fuzzy backward scheduling module. When fuzzy forward

or backward scheduling is conducted, four sets are used, mainly: (a) decision set, (b)

active set, (c) complete set, and (d) remaining set. The details of these sets are referred

to Section 5.2. Activities in these sets are often changed from each scheduled time. To

identify activities in different sets at different scheduled times, data bound control is

applied to each set at each scheduled time. Once perturbations are applied to both

activity priorities and modes, activities will be scheduled by either fuzzy forward or

backward scheduling.

10.3.5Output Interfaces

The system has two output interfaces: (a) single result, and (b) result with

statistical analysis. For the single result, the output shows only the best schedule and

CPU time for implementing an approach. The second output module is often used in

the system. As the number of options in statistical analysis is selected in Figure 10.7,

all required information is displayed after running this approach 100 times, as shown

in Figure 10.9.

Average deviation from the optimum (%)

Maximum deviation from the optimum [%)

Standard Deviation(%)

Optimum solution

Total CPU time (ms)

Average CPU time (ms)

3.30331459578897

8.89969610480056

4.09347888756549

(69.86^1.106)

3355

67.09648

Figure 10.9 Output interface for statistic analysis
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10.4 Salient Features of the System

The salient features of the system developed for implementing FMMRCPS can

be summarised below:

• The system provides a user friendly interface;

• The system can handle both crisp and fuzzy activity duration times;

• The system can deal with both classical project scheduling with single mode

and multi-mode project scheduling;

• The system can generate project information either manually or

automatically;

• The system provides several metaheuristic approaches for solving

FMMRCPS;

• The system allows intensive experiments to be conducted for evaluating

individual approaches or for determining the values of parameters of

individual approaches;

• The system can provide a crisp report about the details of experimental

results and the relevant information such as CPU time for individual runs;

• The system not only can be run on standalone computers, but also can be

distributed through networks and used by multiple users;

• The system is compact and allows common modules to be shared, because of

the application of the modular concept during system development;

• The system structure is well organised and is easy to maintain with

understandable coding;

• The system provides a number of open options for adding other approaches.
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10.5 Concluding Remarks

The system development for handling FMMRCPS has helped me develop solid

metaheuristic approaches through evaluation analyses provided by the system. The

development of the system has facilitated the development of good approaches in my

PhD research.

The system developed is a complete system with user friendly interfaces from

data input to result output, and with the detailed statistical analysis for individual

FMMRCPS approaches. The system is reliable because each module has been tested

logically and technically from the sample project data, and the whole system has also

been tested by several project instances with either crisp or fuzzy data or the

combination of both. This system can solve any practically-sized FMMRCPS problem

under most possible situations.
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Chapter 11

Experimental Studks
for Metaheuristic Approaches

11.1 Introduction

In this chapter, experimental studies are carried or* 'o evaluate the four

metaheuristic approaches I have developed: (a) fuzzy GA, (b; i.azzy GA witii tabu, (c)

fuzzy SA, and (d) fuzzy SA with tabu. These experiments have two major purposes:

(a) to determine appropriate values for key parameters for providing bette.

performance in individual approaches, and (b) to use appropriate values of key

parameters obtained in experiments for evaluating these four approaches with a

comparative analysis. All experiments are performed on a Pentium IV personal

computer with 1.59 GHz clock-pulse and 256 MB of RAM, using the FMMRCPS

system I have developed in VB.NET. Five multi-mode projects are generated by the

system with sizes of 25. 50, 100, 150 and 200 activities respectively, which are used

for experimental analysis of the approaches. The network diagrams representing

precedence relationships of activities are listed in Appendix A.

To evaluate the performance of individual approaches in view of their

randomised nature, several types of deviations from the optimum solution are applied

to the experiments whilst a comparative analysis is carried out. The optimum solution

considered here is the shortest fuzzy project completion time selected from the

number of best solutions obtained after repeatedly running an approach for a number

of times. The deviations include the following:
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(a) Average deviation from the optimum solution (AD):

The average deviation is the average difference between the optimum

solution (PCoptimum) and the best solution, (PCt) obtained for an individual

run after running N times for an approach. As the solutions are represented

as fuzzy project completion times, they are difficult to compare directly.

Fuzzy ranking indices are applied in calculating the deviation. Details of

fuzzy ranking indices have been presented in Remarks 2 of Section 5.2. Let

R(PCoptimum) and R{PC() be denoted as the fuzzy ranking indices of the

optimum solution and an individual solution of a single run / (1 < / < AO of

the approach respectively. The average deviation can be calculated as

N

N
(11.1)

The average deviation is an intuitive measure, reflecting how far the

average of individual solutions is from the optimum solution in terms of

minimising fuzzy project completion times.

(b) Maximum deviation from the optimum solution (MD):

The maximum deviation is the worse solution obtained after completing N

runs of an approach, and can be defined as

(11.2)

The maximum deviation is used to measure how the worse performance can

occur at random while implementing the approach.

Chapter 11 Experimental Studies for Metaheuristic Approaches Page: 196



(c) Standard deviation from the optimum solution (SD):

The standard deviation is the measure of a probability distribution of

variance between the optimum solution and the actually best solution

obtained by running an approach N times, and can be calculated as

SD =I
N-\

(11.3)

The standard deviation is important in statistics, providing a useful basis for

interpreting the variability of individuals from solution sets in probability.

11.2 Key Parameters in Fuzzy GA Based Approaches

In this section, two key parameters, the number of generations and the tabu size,

are examined to determine their appropriate values for the five sample projects

generated by the system. If the values of two parameters are too large, enormous

computational time is required in implementing fuzzy GA based approaches. In

addition, solutions may not necessarily be improved. This section addresses these two

parameters in the subsequent two subsections. The experiment is first conducted to

evaluate the appropriate number of generations. It then examines how different sizes

of tabu affect the implementation of fuzzy GA with tabu, while using appropriate

values obtained from the experiment.

11.2.1 Appropriate Values for the Generation Parameter

Appropriate values for different project instances are difficult to set directly

because of the complexity of the projects itself, including such issues as the project

size, the number of modes and resources involved. The value of the generation

parameter is effectively a stopping criterion to determine when a fuzzy GA based

approach is terminated. A small set value leads poor results in project scheduling
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while implementing the approach. Improperly large values may not improve the

quality of performance and may unnecessarily increase the processing time.

In the experiments conducted, sizes of project instances are set at 25, 50, 100,

150 and 200 activities respectively where all three modes and four kinds of resources

are involved. The experimental results of these project instances will be explained

individually. To get the best result in project scheduling, it is important to conduct

experiments to determine the best value of the generation parameter for different sizes

of project instances, prior to implementing a fuzzy GA based approach in the system.

This is because it may be difficult to give a direct clue to an appropriate value setting

for individual instances in general.

For the project with 25 activities, the population size is set to 70 and the fit

chromosomes parameter for each generation is set at 20. Details of the population size

setting and the proper number of fit chromosomes to be selected, have been presented

in Section 8.8.1. If the population size is set at a slightly different level, even under the

same instance, it will not influence the performance of the approach greatly because

the value of the generation parameter can be re-estimated experimentally once the

population size has been determined. However, based on the large number of

experiments carried out in my PhD studies, the population size of this instance can be

properly chosen as 70, and the appropriate number of fit chromosomes is set at 20.

The experimental result of this instance is given in Figure 11.1 (a). When the

number of generations is set to less than 65, the approach has a poor performance for

this instance. A better performance result is achieved, when the number of generations

is set within the range of 70 to 80. The processing time for the system to implement

the approach in this instance requires only between 2.1 and 2.3 seconds as given in

Figure 11. l(b).

For the project instance with 50 activities, the population size is set to 70 with

20 fit chromosomes being selected in each generation. As clearly shown in Figure

11.2(a), the performance is very poor with the fuzzy GA approach if the number of

generations is smaller than 90. The appropriate value of the generation parameter for
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the approach to achieve a better performance should range from 100 to 120, for which

the processing time required ranges from 5.2 to 5.8 seconds as shown in Figure

11.2(b). In the later experiments for determining both the appropriate size of tabu and

the comparative analysis for the four metaheuristic approaches,, the value of the

generation parameter will be set as 110 for the project size of 50 activities.

80

2800 •

2600

1000

20 30 40 SO 60

Generations
70 80 90 100

(a) The number of generations and its corresponding solutions

10

Generations

(b) The number of generations with their corresponding CPU time required

Figure 11.1 Experiment with the generation parameter for a project of 25 activities
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(b) The number of generations with their corresponding CPU time required

Figure 11.2 Experiment with the generation parameter for a project of 50 activities

For the project size of 100 activities, the population size is set to 80 and the fit

chromosomes being selected from an entire population are set to 20. Figure 11.3

shows the experimental results of the solution quality when changing values of the

generation parameter using the fuzzy GA approach. As shown in Figure 11.3(a), the
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solutions obtained are poor in terms of minimising the fuzzy project completion time

when the number of generations is set to less than 190. When the number of

generations reaches to the range of 190 and 200, two lowest points in solution are

gained whereas the solutions get worse or are not much improved when the number of

generations is further increased, as clearly shown in Figure 11.3(a). Therefore, the

appropriate value of the generation parameter is between 190 and 200, and the time

required for implementing the approach is about 20 seconds as shown in Figure

Figure 11.4 shows the experimental results for both the solutions and the CPU

time using the fuzzy GA approach under different numbers of generations, where the

population size is 150 with 25 fit chromosomes being selected from each generation.

Clearly, the quality of the best solutions, obtained by implementing the fuzzy GA

approach, is very poor when the number of generations is smaller than 160. As shown

in Figure 11.4(a), the appropriate value for the generation parameter ranges from 320

to 350 for solving the project sizes of 150 activities with the three executive modes

and four different kinds of resources. The processing time for implementing the

approach for such project instances is approximately 45 to 48 seconds as shown in

Figure 11.4(b).

Figure 11.5 shows the performance of the fuzzy GA approach under different

value settings of the generation parameter, with the project size of 200 activities, in

terms of the quality solutions and the corresponding processing times of implementing

the fuzzy GA, where the population size is set to 150, with 30 fit chromosomes being

selected from each generation. As shown in Figure 11.5(a), the quality of solutions

obtained is very poor if the fiizzy GA approach is implemented with the number of

generations being less than 170. The appropriate values of the generation parameter

for the optimal performance range from 390 to 420, where the computational time

required for implementing the approach is between 84 and 98 seconds as shown in

Figure 11.5(b). The value of the generation parameter will be chosen as 420 for

evaluating both the tabu size and fuzzy GA based approaches with project sizes of 200

activities.
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Figure 11.3 Experiment with the generation parameter for a project of 100 activities
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Figure 11.4 Experiment with the generation parameter for a project of 150 activities
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Figure 11.5 Experiment with the generation parameter for a project of 200 activities
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As shown in Figures 11.1-11.5, the solution curves of these five individual

projects are not all similar. This is because these project instances have different

network structures. It is noticed that some solutions (points on the curves) within

certain generation value range, drop dramatically while evaluating the generation

parameter in Figures 11.1-11.3. However, the trends of the solutions in these five

instances are all the same. As such solutions are gradually improved at a changeable

gradient when the values of the generation parameter increase from the beginning to a

certain value. Despite individual differences in the curves, each curve has a common

feature that a special turning point or range can be detected at which the best global

solutions are to be found.

These experiments also demonstrate that the computational time required is no

more than one and a half minutes, for up to 200 activities of any project instance with

three executive modes and four types of resources when the fuzzy GA approach is

applied. This indicates that the fuzzy GA approach is computationally efficient for

solving project scheduling problems.

The appropriate values of the generation parameter obtained by experiments for

different sizes of projects will be used to evaluate the proper tabu sizes and to conduct

a comparative analysis for the four metaheuristic approaches developed in Subsection

11.2.2 and Section 11.4.

11.2.2 Appropriate Tabu Sizes

The tabu mechanism is an important component in the fuzzy GA with tabu

approach developed. This approach can avoid producing chromosomes that have been

generated recently. This phenomenon may occur in fuzzy GA. Therefore, the

incorporation of the tabu mechanism in fuzzy GA is an effective way of bringing out

more various chromosomes than by the use of fuzzy GA alone, improving the search

process for effectively finding an approximate globally optimal solution in terms of

minimising the fuzzy project completion time. However, the size selected for the tabu

mechanism affects the computational time required for implementing the approach. In
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addition, an improperly large size of tabu may not get better solutions. The aim of the

experiments conducted is to examine which sizes of tabu are appropriate to the five

individual project sizes when the fuzzy GA with tabu approach is applied.

Figure 11.6 shows both the solutions in terms of minimising the fuzzy project

completion time and the corresponding CPU time for experiments conducted with

different sizes of the tabu mechanism when the fuzzy GA with tabu approach is

applied to a project instance with 25 activities, where the generation parameter is set

to 70, a value obtained from the experiment reported in Subsection 11.2.1 for the best

solution quality. The other parameter settings are the same as used in the experiment

reported of Subsection 11.2.1. As shown in Figure 11.6(a), the appropriate size of the

tabu mechanism for obtaining the best solution is 50 in terms of minimising the fuzzy

project completion time. The solutions are not much improved when the tab" size is

set to a value greater than 50. Figure 11.6(b) indicates that the tabu size of 50 is a

critical point. That is, the computational time is significantly increased when the tabu

size is over 50. Therefore, the appropriate size of tabu for projects with 25 activities is

around 50. At this tabu size, the computational time required is about 30 seconds.

For a project size with 50 activities, the generation parameter is set to 110. This

value was obtained for the best performance of the fuzzy GA approach with this size

of project in the experiment of Subsection 11.2.1. The values of the other parameters

are set to the values reported in Subsection 11.2.1. Figure 11.7 shows the relationship

between the solution quality and the CPU time when the tabu size changes. Clearly,

the tabu size of 50 is the lowest point in the curve of solution changes as shown in

Figure 11.7(a). However, when the tabu *;ic is further increased, solutions are not

further improved, and the CPU time required is significantly increased, as shown in

Figure 11.7(b). The computational time is about 97 seconds when the fuzzy GA with

tabu approach is applied to a project size of 50 activities.
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Figure 11.6 The evaluation of tabu sizes in a 25-activity project
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Figure 11.7 The experiment to evaluate tabu sizes in a project with 50 activities
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Figure 11.8 shows the solutions and their corresponding CPU time required

when the tabu size changes in the experiment with determination of the appropriate

tabu size for a project of 100 activities. As shown in Figure 11.8, the range between

35 and 40 for the tabu size are the critical area where the good solutions are likely to

be obtained. The computational time required for the size in this range is about 1059

seconds. However, the computational time requires significantly when the tabu size is

over 60 as shown in Figure 11.8(b), and the solution is not improved dramatically.

Clearly, the appropriate tabu size is between 35 and 40 where the solution quality is in

the better performance.

Figure 11.9 shows the experimental results in evaluating the quality of

performance of the fuzzy GA with tabu approach with different sizes of tabu, where

the project comprises 150 activities. Other parameter settings in this experiment, are

the same as those used in evaluating fuzzy GA in Subsection 11.2.1. Ths number of

generations is set at 350, which produced the best solution for the fuzzy GA approach

as reported in Subsection 11.2.1. The tabu size of 25 is the appropriate size for

obtaining the best solution in terms of minimising the fuzzy project completion time

as shown in Figure 11.9(a), whereas the solution is not dramatically improved with a

larger tabu size. In addition, the corresponding CPU time required for that size

involved is about 34 minutes. Obviously, the processing time required in fuzzy GA

with tabu is much more than by using fuzzy GA alone that only requires 48 seconds

for the best solution reported in the experiments of Subsection 11.2.1. Figure 11.9(a)

clearly shows that the solutions obtained for any tabu size are significantly better than

the best solution obtained by the fuzzy GA alone (Figure 11.4(a)).
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Figure 11.8 The evaluation of tabu sizes in a 100-activity project
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For a project consisting of 200 activities, the generation parameter is set to

420. This value was providing the best solution in a previous experiment for this

project size in Subsection 11.2.1. The other parameter values chosen are the same as

those used in the previous experiment in Subsection 11.2.1. Figure 11.10 shows the

solutions and their corresponding CPU times required for different tabu sizes when the

fuzzy GA with tabu approach is applied. As shown in Figure 11.10(a), the solution

point at a tabu size of 20 is the lowest one. The computational time for that tabu size

requires about 45 minutes for solving projects of 200 activities, three executive

modes, and four types of resources. When the tabu size is further increased, the

quality of solutions is not improved dramatically whilst the processing time required is

significantly increased, as shown in Figure 11.10(b). If fuzzy GA is applied to this

project size, the computational time required for the best solution is only about 98

seconds. However, the solutions obtained by fuzzy GA are worse than the solutions

obtained by the fuzzy GA with tabu approach, as can be seen by comparing between

Figures 11.5 and 11.10.

The experiments conducted above show that, although che solutions fluctuate in

most of five project instances as the tabu size changes, the best solution(s) can be

found when a particular value or the value range of the tabu sizes, shown in Figures

11.6-11.10, are applied. In addition, when the tabu size is beyond this particular value

or the value range, solutions may not be further improved, and the computational time

increases significantly.

The experiments also indicate that the solutions obtained from the fuzzy GA

with tabu approach are much better than the solutions obtained by the fuzzy GA alone.

However, the computational time required ranges from 4 to 42 times more than fuzzy

GA alone. The amount of computational time required depends on the size of a project

and the number of modes and resources involved. A further analysis on performance

behaviours of the approaches in terms of the randomised nature, will be reported in

Section 11.4.
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Figure 11.10 The evaluation of tabu sizes in a 200-activity project
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11.3 Key Parameters in Fuzzy SA Based Approaches

In this section, the experiments for determining key parameters for fuzzy SA

based approaches will be conducted using the same five different sizes of projects, as

used in the experiments for fuzzy GA based approaches. The experiments will be

conducted to: (a) evaluate appropriate Markov Chain lengths for the different project

sizes, using the cooling ratio of 0.8 that is suggested as the appropriate cooling ratio to

many applications (Pham and Karaboga 2000); (b) examine how different values of

the cooling ratio will affect the solution quality in the annealing process when the

length of Markov Chain is a constant set to the value obtained as the appropriate

length for an individual project in the experiment; and (c) determine the appropriate

sizes of the tabu mechanism for the individual projects using the fuzzy SA with tabu

approach.

11.3.1 Appropriate Markov Chain Length

Markov Chain is one important parameter in SA to give the proper transition

probability for the random v/alk in searching neighbourhood solutions at a certain

temperature level before going down to the next lowest temperature level. To search

robustly in each temperature level, the length of the Markov Chain in fuzzy SA based

approaches I have developed, is set to be changed, depending on the search status at

the previous temperature level. Details about the Markov Chain length have been

presented in Section 9.6. The experiments presented in this subsection are used to

determine the initial appropriate lengths of the Markov Chain for these five projects

where the cooling ratio is set to 0.8 and the initial temperature is set to be the number

of activities of a project multiplied by factorial of the maximum of modes. This has

been found to be an appropriate initial temperature through experiments. Details of the

initial temperature setting are presented in Section 9.6.

Figure 11.11 shows solution quality and the corresponding CPU time when

Markov Chain length changes for a project with 25 activities. The experiment shows

that the appropriate length of Markov Chain is between 30 and 40 where solution in

fuzzy ranking index is about 87. This length produces better solution quality where the
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computational time ranges from 2300 to 2900 milliseconds as shown in Figure

11.11 (b).

110

t/5 105

•3
JB
">10O

3
a

95

g 90

.2
"o
«» 85

80

v>

8000

7000

6000

5000

4000

D
CU 3000

u
2000

1000

10 20 40 50 60

Markov Chain length
70 80 90 100

(a) Solutions with different Markov Chain length

10 20

Markov Chain length

(b) CPU time required for different Markov Chain length

Figure 11.11 The evaluation of Markov Chain lengths in a 25-activity project
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Figure 11.12 shows the solution status and the CPU time required with its

corresponding Markov Chain length in the experiment for a project with 50 activities.

The Figure 11.12(a) clearly shows that the appropriate Markov Chain length is about

50 where the solution in the fuzzy ranking index is at the lowest point of 95. With this

length, CPU time requirement is 8343 milliseconds. When Markov Chain length

further increases, the solution quality is not really improved and the corresponding

computational time is increased significantly.

Figure 11.13 shows the experiment for evaluating an appropriate Markov Chain

length in a project with 100 activities. For such a size of project, the appropriate

Markov Chain length ranges from 100 to 110 where the fuzzy ranking index of the

solution is attained at the lowest point. The corresponding CPU time required is about

40 to 46 seconds. If Markov Chain length continues increasing, the solution is not

significantly improved. The computational time increases greatly as shown in Figure

11.13 (b).

For a project with 150 activities, the solution quality is very poor when the fuzzy

SA approach is implemented with a Markov Chain length less than 30 as shown in

Figure 11.14(a). The solution quality is stable when Markov Chain length is greater

then 30. However, Markov Chain length is in the range of 150 and 160 with the best

performance in terms of obtaining better solutions. Their corresponding CPU time

required is between 116 and 127 seconds as indicated in Figure 11.14(b).

Figure 11.15 shows the solution quality and the computational time when

Markov Chain length changes in the experiment conducted for a project of 200

activities. Figure 11.15(a) shows that the solutions are stable in general when Markov

Chain length is greater then 10. However, the better solutions obtained are in Markov

Chain length between 200 and 210. The CPU time requires between 400 and 410

seconds as shown in Figure 11.15(b).
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Figure 11.12 The evaluation of Markov Chain lengths in a 50-activity project

Chapter 11 Experimental Studies for Metaheuristic Approaches Page: 217



1000

750
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Markov Chain Length

(a) Solutions with different Markov Chain length

100

80

40

20 i

0 •
0 10 20 30 40 50 60 70 80 90 1O0 110 120 130 140 150 160 170 180 190 200

Markov Chain length

(b) CPU time required for different Markov Chain length

Figure 11.13 The evaluation of Markov Chain lengths in a 100-activity project

Chapter 11 Experimental Studies for Metaheuristic Approaches Page: 218



500

•a
a
M
a 400

3
a
2

350

a
a
a 300

o
"o

250

200
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Markov Chain length

(a) Solutions with different Markov Chain length

200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Markov Chain length

(b) CPU time required for different Markov Chain length

Figure 11.14 The evaluation of Markov Chain lengths in a 150-activity project

Chapter 11 Experimental Studies for Metaheuristic Approaches Page: 219



550

500

•aa
— 450

a

12
a
« 400

350

en

e
« 300

o
C0 250

200

600

500

400

E

D

U

300

200

100

«•"-•—•—•—••
••—e-

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Markov Chain

(a) Solutions with different Markov Chain length

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Markov Chain length

(b) CPU time required for different Markov Chain length

Figure 11.15 The evaluation of Markov Chain lengths in a 200-activity project

Chapter 11 Experimental Studies for Metaheuristie Approaches Page: 220



The experiments summarised above evaluate appropriate Markov Chain lengths

for the five projects with different sizes. The appropriate Markov Chain length is

approximately equivalent to the number of activities in a project. The experiments

indicate that the solution quality is poor and unstable if Markov Chain length is small.

The experiments also demonstrate that the solutions fluctuate greatly when the

Markov Chain length is changed for projects with less than 150 activities. However,

Figures 11.11-11.13 indicate that there is a range of the Markov Chain lengths where

solution points suddenly decrease significantly. That is, the best global solutions fall

within this range. Such a range of the values can be set as the appropriate Markov

chain length for fuzzy SA. When the number of activities of a project is over 150, the

solution changes are stable as shown in Figures 11.14-11.15. There is also a specific

range of the Markov Chain length, within which the best solutions can be obtained.

11.3.2 Evaluation of Cooling Ratio

The cooling ratio is an important factor in controling the annealing schedule,

which dictates how the temperature is reduced throughout the whole process in order

to effectively search for an approximate optimal solution in project scheduling.

Although it is claimed that the appropriate cooling ratio may be set to about 0.8 for

general applications, the following experiments are carried out to appropriate ratios

for the individual projects when a fuzzy SA is applied in a situation where Markov

Chain length is set to the number of activities of a project and the initial temperature is

set as the number of activities in a project multiplied by the factorial of the maximum

modes involved in scheduling.

Figure 11.16 shows the solution quality and its corresponding CPU time when

cooling ratio changes for a project of 25 activities. As clearly shown in Figure

11.16(a), the fuzzy ranking index of the solution is at the lowest point when the

cooling ratio is around 0.8 and the corresponding computational time required is about

6 seconds as shown in Figure 11.16(b).
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Figure 11.16 Experiment with different cooling ratios for a project of 25 activities
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Figure 11.17 shows the solution status and its corresponding CPU time when the

cooling ratio changes in a project of 50 activities. As shown in Figure 11.17(a), the

solutions are improved when the cooling ratio is increased. The best solution is at the

cooling ratio of 0.95. At this point, the computational time is significantly increased,

requiring 74 seconds. The second best solution is at the cooling ratio of 0.8 where the

computational time required is only 18 seconds. These two solutions are not greatly

different.

The solution quality with different cooling ratios for a project of 100 activities is

shown in Figure 11.18. As the cooling ratio increases, solutions are improved and the

best solution is found with a cooling ratio of about 0.8, requiring the computational

time of 107 seconds as shown in Figure 11.18(b). However the computational time

significantly increases and solutions are not really improved when the cooling ratio

further increases.

Figure 11.19 shows the solution status and the computational time required for a

project with 150 activities. When the cooling ratio is greater than 0.2, the solution

quality is quite stable. But the better solutions are at the cooling ratio of 0.8 and 0.95.

But the computational time required for the cooling ratio of 0.95 is 1028 seconds

whereas the computational time is only 233 seconds at the cooling ratio of 0.8 as

shown in Figure 11.19(b).

Figure 11.20 is the experimental result for solution quality when the cooling

ratio is changed for a project with 200 activities. The solution quality is stable when

the cooling ratio is over 0.2. Good solutions are found at the cooling ratios of 0.8 and

0.95 with corresponding computational times of 460 seconds and 1975 seconds

respectively. However, a better solution obtained at the cooling ratio of 0.8 requires

only a quarter of the computational time required at the cooling ratio of 0.95.
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Figure 11.17 Experiment with different cooling ratios for a project of 50 activities
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Figure 11.20 Experiment with different cooling ratios for a project of 200 activities
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The above experiments demonstrate that the trend of solutions is improved as

the cooling ratio increases. However, when the cooling ratio is over 0.8, solutions are

not much improved, and the computational time increases exponentially as shown in

Figures 11.16-11.20. Therefore, the appropriate cooling ratio can be chosen to be

approximate 0.8 in general, although occasionally equivalent or slight better solutions

can be obtained at the cooling ratio of 0.95.

11.3.3 Determination of Tabu Size

The tabu mechanism with fuzzy SA is designed to monitor the past search

behaviour in order to avoid trapping in the regions that have been searched recently.

Combining the tabu mechanism with fuzzy SA provides a more effective search by

I exploring more various solutions in the entire search space. However, an
I
1 inappropriately large size of tabu may significantly increase the amount of the
i

computational time required to implement the approach. Moreover, the quality of

solutions is not improved significantly. The experiments conducted here are to

evaluate the appropriate size of tabu for each individual project.

Figure 11.21 shows the solution performance with various tabu sizes for a

project with 25 activities. Figure 11.21(a) clearly shows that the appropriate tabu size

for this size of the project is between 50 and 60. In this range, the better solutions are

obtained with the corresponding CPU time ranging from 36 to 37 seconds. However,

when the tabu size increases beyond this range, the solutions are not improved

| significantly, and consequently, the computational time required becomes

significantly higher as indicated in Figure 11.21 (b).

The experimental result for the solution quality with the different tabu sizes is

shown in Figure 11.22, where a project contains 50 activities. Clearly, the better

solutions are obtained when the tabu size ranges from 50 to 60, in which range the

CPU time required is about 105 seconds. When the tabu size is further increased, the

CPU time is increased exponentially and the solution quality is not improved
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significantly. Therefore the appropriate tabu size for a project with 50 activities and 3

performance modes is in the range of 50 and 60.
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Figure 11.21 The evaluation of tabu size for a project with 25 activities
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Figure 11.22 The evaluation of tabu size for a project with 50 activities

When a project with 100 activities is implemented using the fuzzy SA with tabu

approach, the CPU times required are significant. Figure 11.23 shows the variation of

solution quality with various tabu sizes. The better solutions are found when the tabu
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size falls in the range of 40 and 50. The corresponding CPU times required are in the

range of 1062 and 1072 seconds. When the tabu size increases further, the

computational time escalates rapidly. However, the solutions are not improved

significantly. Therefore, the appropriate tabu size is from 40 to 50 when the project

size contains 100 activities and 3 performance modes.
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Figure 11.23 The evaluation of tabu size for a project with 100 activities
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For the project size of 150 activities, the experimental result for evaluating the

appropriate tabu size is shown in Figure 11.24. The solution quality is very poor when

the tabu size is less than 30. The solution turning point is at the tabu size of 40.

However, when the tabu size further increases, the solution quality shows marginal

improvement as shown in Figure 11.24(a). Therefore, the appropriate tabu size is

about 40 for the project size of 150 activities. It is noted in Figure 11.24(b), that the

computational time is significantly increased when tabu size further increases.

Figure 11.25 shows the solution quality when the tabu size changes for a project

of 200 activities. When the tabu size is less than 40, the solution quality is poor. When

the tabu size is over 50, the solution quality begins to improve, and then to move

down a bit in terms of minimising the fuzzy project completion time, but the solution

is not improved significantly. Therefore, the appropriate tabu size for the projects of

200 activities ranges from 40 to 50 and the corresponding CPU time is about 193

minutes. As shown in Figure 11.25(b), the computational time is increased

dramatically when a project size is over 150.

The experiments reported in this section evaluate the appropriate tabu size of

fuzzy SA with tabu mechanism. The solutions fluctuate when the tabu size changes in

these five project instances. However, the globally best solutions, rather than locally

best ones are detected within a certain range of the tabu size for each project instance,

as shown in Figures 11.21-11.25. These ranges of the tabu size are chosen to be

appropriate for these individual instances. The above experiments also demonstrate

that solutions obtained using this approach all five project instances are better than

solutions using any of the other three approaches. However, the time spent on finding

a good optimal solution is much longer than any of the other three metaheuristic

approaches. If the computational time is not a major concern for implementing a

schedule, the fuzzy SA with tabu approach is the best one among these four

approaches in general. To measure the performance of these four metaheuristic

approaches, in terms of finding a good global solution, a comparative analysis is

conducted in the following section.
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11.4 Comparative Studies

The experiments with parameter settings reported above provide appropriate

values of key parameters for individual metaheuristic approach that is applied to the

five project sizes. These appropriate values are used in a comparative analysis of the

four metaheuristic approaches. The value settings for key parameters represent the

best solution of individual approaches for different project sizes. Therefore, these

values may reasonably be used to examine the performance behaviours of these

approaches, thus determining the solution differences of these approaches when each

approach is applied to the project sizes generated by the FMMRCPS system.

To compare these four metaheuristic approaches, each approach is run 100 times

for each of the five project sizes so as to examine their deviations from the optimum

solution and whether the solutions obtained are stable in terms of distributions around

the optimum solution in randomised nature.

Table 11.1 lists three types of deviations calculated by the FMMRCPS system

for the five different-sized projects. The av ge deviations (AD) are the average

distances from the optimum solution expressed in percentage. These values of AD are

quite reasonable and stable ranging from 17 % to 24 % for all the projects across the

four approaches. The maximum deviation (MD) is an absolute deviation between a

worse solution and the optimum solution over a number of runs. Such a type of

deviation only gives the difference between the optimum and the worse solution

intuitively. However, it should be noted that a large value of MD does not necessarily

mean that the AD and the standard deviation (SD) will also be large. This is because

the large value of the project completion time likely has the large maximum deviation

when a metalieuristic approach is implemented for a project over number of runs. As a

result, the maximum deviations obtained for these projects are different as shown in

Table 11.1.
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Table 11.1 Comparative analysis for the four metaheuristic approaches

measured by deviations

Project size

Fuzzy
GA

Fuzzy
GA

with tabu

Fuzzy
SA

Fuzzy
SA

with tabu

AD (%)
MD

SD (%)
AD (%)

MD
SD (%)
AD (%)

MD
SD (%)
AD (%)

MD
SD (%)

25
21.68
13.13
19.27
18.54
10.54
17.65
21.01
12.54
19.02
17.63
12.09
15.84

50
22.31
25.12
19.99
20.05
23.45
18.25
21.65
24.89
19.56
19.69
24.68
16.54

100
21.11
32.25
18.59
18.95
29.65
18.02
20.01
23.25
18.60
18.02
26.21
17.88

150
23.21
25.54
20.23
21.78
23.91
18.39
22.98
24.35
19.65
21.07
22.31
17.59

200
23.98
44.89
20.95
22.01
43.77
19.07
22.56
45.25
19.54
21.65
43.01
18.37

The standard deviation has the significant meaning of reflecting the normal

frequency distribution about solution quality in random nature. All values of the SD

obtained for the five projects range from 15% to 20%. Therefore, the results of the SD

show that these four metaheuristic approaches perform weil in terms of the solution

quality when appropriate parameter settings are applied to the approaches.

With respect to individual approaches, the fuzzy SA with tabu outperforms the

other approaches because this approach has smaller deviations in both the AD and SD.

The second approach for performing the good solution quality is the fuzzy GA with

tabu. These two approaches have narrow difference in solution performance because

the differences between these two types of deviations are small, as listed in Table

11.1.

In addition to the comparative study of these four metaheuristic approaches

using deviation analyses, these approaches can be further examined by evaluating the

appropriate values of parameters for obtaining the best solutions in these four

metaheuristic approaches. These best solutions are summarised in Table 11.2,

collected from Sections 11.2-11.3. The best solutions listed in Table 11.2 clearly

demonstrate that fuzzy SA with tabu is the best approach when the computational time

is not considered. The second and third best approaches are fuzzy GA with tabu and
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fuzzy SA respectively. The performance of fuzzy GA alone is inferior to the other

three metaheuristic approaches. However, fuzzy GA alone requires less computational

time than the other three approaches. As shown in Table 11.2, both fuzzy GA with

tabu and fuzzy SA with tabu need a great amount of computational time.

Table 11.2 The best solutions and their corresponding CPU times obtained by

evaluating parameters four metaheuristic approaches

Project
size

25
50
100
150
200

Fuzzy GA
Solutions

(*FRI)
88.22

103.6969
785.9069
210.9546
219.5052

CPU
time (sec)

2.187
5.516
19.859
48.578
89.594

Fuzzy GA with tabu
Solutions

(*FRI)
65.335227
88.6856227
764.930030
186.86113
193.67784

CPU
time (sec)

30.678
96.828

1050.951
2054.4
2674.4

Fuzzy SA
Solutions

(*FRI)
85.33479
105.8239
769.9233
204.3694
214.0006

CPU
time (sec)

6.25
17.859
107.89

233.359
459.562

Fuzzy SA with tabu
Solutions

(*FRI)
62.335227
87.315894

749.056145
181.039228
193.429206

CPU
time (sec)
37.4171
104.9312
1061.7578

2329.2
3228.6

*FRI: fuzzy ranking index

Overall, the comparative studies in view of several types of deviation analyses

indicate that these four metaheuristic approaches perform well for obtaining good and

stable solutions. These approaches are particularly suited to solving FMMRCPS

problems of practical sizes efficiently and effectively, whereas exact approaches are

not available in realistic settings. In addition, experiments both in the deviation

analyses and the data from parameter evaluation analysis suggest that there are some

differences among these four metaheuristic approaches in terms of the solution quality

and the CPU time required. The suitability of each approach in a particular situation

will be addressed in Section 12.4. This section will also state the suitability of the

other two approaches, the fuzzy hybrid goal programming approach and the fuzzy

heuristic approach that were described in Chapters 6 and 7. These two approaches are

not directly comparable with the four metaheuristic approaches, because the project

environment and condition settings under which they are used are totally different

from the four metaheuristic approaches.

Chapter 11 Experimental Studies for Metaheuristic Approaches Page: 237



11.5 Concluding Remarks

In this chapter, intensive experiments have been conducted: (a) to determine

appropriate values of key parameters for individual approaches, and (b) to conduct a

comparative analysis of the four metaheuristic approaches using appropriate

parameter settings obtained in the experiments.

The experiments have suggested that the settings of key parameter influence the

solution quality significantly when a fuzzy metaheuristic approach is applied. To get

the best solution, appropriate values of parameters must be determined prior to solving

any project scheduling problem using metaheuristic approaches.

The comparative analysis indicates that both hybrid approaches, fuzzy GA with

tabu and fuzzy SA with tabu approaches, perform better than pure approaches such as

fuzzy GA alone and fuzzy SA alone. However, hybrid approaches consume much

more computational time than pure approaches. Experimental results, using the five

project sizes randomly generated by the FMMRCPS system, have indicated that the

fuzzy SA with tabu approach is slightly superior to the fuzzy GA with tabu approach.
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Chapter 12

Conclusion

12.1 Introduction

This study has focused on developing six optimisation approaches for efficiently

and effectively solving FMMRCPS of practical sizes with single or multiple objectives.

FMMRCPS problems are complex as two subproblems need to be solved simultaneously

in a fuzzy environment: (a) mode assignment, and (b) the sequence of activities in a

schedule

A fuzzy hybrid goal programming approach has been developed, in conjunction

with a rule knowledge base for mode assignment, for solving multiple objectives in

FMMRCPS. Five heuristic and metaheuristic approaches have been developed to deal

with the single objective of minimising the fuzzy project completion time. These five

approaches are (a) a fuzzy heuristic approach, (b) a fuzzy GA, (c) a fuzzy GA with tabu,

(d) a fuzzy SA approach, and (e) a fuzzy SA with tabu approach. These approaches

provide a robust framework for solving complex FMMRCPS problems of practical sizes

under situations where exact approaches are not viable.

This chapter summarises six optimisation approaches developed for solving

practical FMMRCPS problems with single or multiple objectives. The features of the

FMMRCPS system are outlined. The implications of six optimisation approaches are then

highlighted from case studies and intensive experiments conducted by the FMMRCPS

system. Finally, the contributions of this study are summarised, and suggestions for future

research are presented.
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12.2 Summary of Approaches Developed for FMMRCPS

FMMRCPS is a realistic project scheduling model, allowing activities to have

flexible performance modes under resource constraints where activity duration times are

fuzzy and each mode of an activity has its unique fuzzy duration time. This scheduling

model covers most practical situations, and it is a generalised case in project resource-

constrained scheduling. However, it is more complex than classical single mode project

scheduling. To tackle FMMRCPS under realistic settings, six optimisation approaches

have been developed for solving single or multiple objectives in my PhD studies. The six

optimisation approaches are listed in Table 12.1 and briefly summarised below.

Table 12.1 The features of individual approaches developed in my PhD studies

Objective

Multiple

Minimising the project comple-
tion time and the project cost

Single
u

minimising the project
completion time

Approach

Fuzzy hybrid goal
programming

Fuzzy heuristic
approach

Fuzzy GA

Fuzzy GA with
tabu

Fuzzy SA

Fuzzy SA with tabu

Features

Decomposing complex FMMRCPS into
simple single mode project scheduling

A fast and simple way in solving
FMMRCPS problems of realistic sizes

Chromosomes designed provide
insights into the nature of FMMRCPS
for obtaining an approximate optimal

solution efficiently and effectively
Generating a wide variety of solutions,

thus reducing the probability of missing a
good nearly global optimal solution
Using a time pointer to avoid a full

schedule in neighbourhood generations,
thus saving enormous computational time

Forbidding the search of neighbour-
hoods already visited to explore more

search areas in digging the best solution

To solve multiple objectives in FMMRCPS, a fuzzy hybrid goal programming

approach has been developed by combining a rule knowledge base for mode assignment

with fuzzy goal programming. The mechanism of the rule knowledge base constructed

here is to allocate modes to activities accurately and efficiently, based on both resource
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availabilities and criticalities on paths in the project network at the scheduled time. In

addition, the rule knowledge base incorporated into fuzzy goal programming can

decompose a complex FMMRCPS problem into a simpler single mode project scheduling

problem during the solution procedure. The approach has been applied to the practical

case study of a dredge repair project, and the result shows that this novel approach

provides a realistic framework to solve FMMRCPS by yielding the best compromised

solution where the objectives conflict with each other.

To solve the single objective of minimising the fuzzy project completion time, five

heuristic and metaheuristic approaches have been developed. These approaches provide a

methodological framework for solving complex FMMRCPS problem of realistic sizes,

which exact approaches are not viable. These five approaches are briefly presented

individually below.

A fuzzy heuristic approach developed for FMMRCPS is composed of three

components: (a) priority rules for determining activity priorities in scheduling, (b) a mode

assignment policy for allocating modes to individual activities, and (c) a fuzzy scheduling

mechanism to schedule activities in a fuzzy environment, once both activity modes and

priorities have been determined by (a) and (b). To get a good scheduling result in terms of

minimising the fuzzy project completion time, a set of priorities rules and mode policy

are applied to the fuzzy scheduling mechanism simultaneously. To demonstrate the

practicability of this approach, a real case of a dredge overhaul project has been studied.

The case study has shown that this approach gives reasonable practical solutions in a

simple and fast way for solving realistic FMMRCPS problems where traditional heuristic

approaches suffer from the major shortcoming of being unable to deal with fuzziness.

A fuzzy GA approach applies both fuzzy forward and backward scheduling

simultaneously to new generated chromosomes, thus allowing the survival of fitter

chromosomes and the elimination of weaker chromosomes for minimising the fuzzy

project completion time. To perform fuzzy GA effectively, a chromosome, representing a

schedule, has been carefully designed to always produce feasible schedules during the
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process of fuzzy GA. In addition, chromosomes designed for FMMRCPS avoid the

decoding procedure that is often required in GA. Furthermore, the chromosome designed

can provide insight into the nature of complex FMMRCPS, thus enabling the approach to

be applied more efficiently in order to procure a good globally optimal solution.

A fuzzy GA with tabu approach is developed, based on GA, into which the tabu

mechanism is incorporated. In addition to the functions of fuzzy GA, fuzzy GA with tabu

has the extra function of preventing newly generated chromosomes from being the same

as those generated recently in order to have more opportunities to generate more various

chromosomes. Thus, the best-fit chromosomes may hardly escape from chromosome

generations globally in the search space. This approach is one of the effective ways of

searching for an approximate globally optimal solution in terms of minimising the fuzzy

project completion time.

A fuzzy SA approach is developed for obtaining a good approximate globally

optimal solution through searching neighbourhoods by perturbing both activity modes

and priorities from the current individual schedules, and subsequently by using fuzzy

forward and backward schedule mechanisms. The solution representation is an important

component in fuzzy SA. In the approach, the solution representation designed not only

directly reflects the nature of FMMRCPS, but can also be easily manipulated for

neighbourhood generations in the process of fuzzy GA. More importantly, a novel

technique (called a time pointer) has been proposed to avoid a full scheduling process

each time when a new neighbourhood is generated, thus saving the enormous

computational time.

A fuzzy SA with tabu approach is built up on the basis of SA to enhance its search

ability effectively for a globally optimal solution. This integrated tabu mechanism avoids

returning to previous search areas in the search process that may occur when applying the

fuzzy SA approach. The tabu mechanism built into fuzzy SA keeps track of the search

attributes of recently visited neighbourhoods and the purpose of this mechanism is to

explore more search areas in order to dig for a better global solution.
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12.3 FMMRCPS System

The FMMRCPS system has been developed in VB.NET. As project scheduling is

popularly applied under various work environments of our society, the system is operated

easily and friendly on standalone computers, or across a network, or any operating

systems.

Table 12.2 lists the features of the system. The system allows a choice to deal with

either single or multiple modes of project scheduling. In terms of activity duration times,

the system provides options for dealing with all fuzzy or all crisp times or times

containing both forms. To solve FMMRCPS problems of practical sizes effectively, the

system is equipped with four metaheuristic approaches: (a) fuzzy GA, (b) fuzzy GA with

tabu, (c) fuzzy SA, and (d) fuzzy SA with tabu.

Table 12.2 The feature of the FMMRCPS system

Executive
mode(s)

Single

Multiple

Activity duration
times involved

All crisp duration

All fuzzy duration

Crisp & fuzzy
duration

Approaches

Fuzzy GA

Fuzzy GA with tabu

Fuzzy SA

Fuzzy SA with tabu

Functions

(a) generating projects manually or
automatically

(b) implementing four meta-heuristic
approaches

(c) testing parameter settings for
individual approaches

(d) producing a scheduling result with
details of all activities

(e) experimenting with statistical
analysis

(f) generating a report

The FMMRCPS system has user-friendly interfaces from data input to result output.

The functions of the system are listed in Table 12.2, and are briefly described below:

(a) For inputting project data, the system has a facility for generating a single, or a

set of projects either manually or randomly by the system at the user's request.
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(b) The system provides several flexible options for applying any of the four

metaheuristic approaches in the user's preference interface.

(c) The system has a facility for conducting experiments on parameter settings

under different conditions in order to make general recommendations on

appropriate parameter settings prior to implementing an approach.

(d) The system provides detailed information on the best schedule result,

including mode assignment to activities at each fuzzy scheduled time, the start

and finish times, and the resource requirements of each activity.

(e) The system can examine the performance behaviour of an individual approach

and carry out a comparative analysis of the approaches implemented, and

provide statistical information on experimental performance.

(f) The system can produce a report for either a single schedule result with

detailed information on activities or analysis details of the experimental result

with statistical information.

The FMMRCPS system is a useful tool for efficiently and effectively solving any

practically sized project scheduling problems where the activity duration times are fuzzy

and activities can be performed in one of several executive modes under precedence

relationships and resource constraints.

12.4 Implication of Empirical Studies

Empirical studies of six optimisation approaches developed have been conducted by

a practical application and experimental analysis to demonstrate the characteristics and

applicability of the approaches in solving realistic FMMRCPS problems. These studies

reveal their differences in solution results and their suitability in different applications. In

the following, the characteristics and implication of each approach is summarised.
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The fuzzy hybrid goal programming approach in incorporation with a rule

knowledge base has been applied to a real project of dredge breakdown repair,

and a satisfactory result has been obtained with detailed schedule information.

The knowledge base allows the addition, removal or change of mode

conditions for an activity, in respect to the resource requirements, at any time

when the project environments are changed. This approach is robust, and has a

quick response to changing circumstances during executing the project. This

approach is particularly suitable for projects with frequent changes in

conditions such as mode, resource requirements and activity duration times.

The practical case study of dredge overhaul scheduling shows that this

approach is a fast and simple way of providing a reasonable schedule result.

This approach suits the situations where the DM needs an immediate schedule

result so that the company can smoothly arrange a project beforehand without

interrupting other ongoing projects of the company in an environment where

resources are limited.

Fuzzy GA is indicated as an efficient and fast way of solving FMMRCPS in

terms of computational time among the four metaheuristic approaches as

experiment conducted. This fuzzy GA approach can be applied in a situation

where a company or an organisation needs immediately to know a good

globally schedule result in terms of minimising the fuzzy project completion

time. However, this approach is somewhat complex in operation, requiring the

DM to know the proper parameter settings which are not required in the fuzzy

heuristic approach. Familiarity with parameter settings can be gained through

training and experience in the application of the approach in practice.

The fuzzy GA with tabu approach performs better than fuzzy GA alone in

terms of obtaining an approximate globally optimal solution, as reported in the

experiment. However, the fuzzy GA with tabu approach requires significantly
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more time for computation than fuzzy GA alone. The fuzzy GA with tabu

approach can be applied in a situation where a good globally optimal solution

is required and the time required to generate a schedule result is less

important.

The fuzzy SA approach performs better than the fuzzy GA approach, but it is

worse than the fuzzy GA with tabu approach in solution results, as indicated in

the comparative analysis. The experiments reported have also indicated that

the fuzzy SA approach takes somewhat more computational time than fuzzy

GA and much less time than fuzzy GA with tabu. To effectively use the fuzzy

SA approach, it is important to set the cooling ratio and Markov Chain length

appropriately. If the user is familiar with the parameter settings, the fuzzy SA

approach is the best approach for gaining a good globally optimal solution

where the computational time is critical and a company or organisation needs

to know the result as soon as possible.

The fuzzy SA with tabu approach is the best approach of the four

metaheuristic approaches in solution results, as shown clearly in experiments.

The experiments also reports that this approach takes much more

computational time than any of the other three metaheuristic approaches. If a

company requires a very good globally optimal solution without an urgent

need for the schedule result, the fuzzy SA with tabu approach is the best

option to choose.
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12.5 Contributions of the Research

This research has developed six optimisation approaches for efficiently and effectively

solving complex FMMRCPS problems with single or multiple objectives. The outcome of

the research has significant meanings in methodological development and in practical

applications for handling FMMRCPS with fuzzy activity duration times. The

contributions of this research are shown in Figure 12.1 and summarised as follows:

(a) Decomposition of FMMRCPS into single mode scheduling

(b) Development of a new effective policy for mode assignment

(c) New chromosomes for capturing the nature of FMMRCPS
at every moment

(d) Fuzzy GA approaches for avoiding the decoding and
always generating feasible solutions

(c) A new solution presentation for increasing the chance of
digging for better solutions

(f) A novel time pointer for avoiding a full scheduling process
in fuzzy SA

(g) A combination of two single approaches into one by
utilising the advantages of each single approach

j (h) The development of the FMMRCPS system for assisting
effectively in solving the general FMMRCPS problems

Figure 12.1 Contributions of the research
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(a) Development of a novel technique to decompose a complex FMMRCPS

problem into a simple single mode scheduling problem

An FMMRCPS problem is a complex scheduling problem that requires

solving two problems simultaneously: mode assignment and the sequence of

activities. To simplify the complexity of FMMRCPS and to reduce the burden

of constraints, a knowledge base is incorporated in a fuzzy goal programming

approach so that the FMMRCPS problem is decomposed into a single mode

project scheduling problem, thus improving the computational efficiency

tremendously. This idea is enlightened on how to reduce some complex

problems into simple problems that can be solved simply, rather than using

more complicated methods.

(b) Development of an effective policy for mode assignment

Mode assignment is an important decision in FMMRCPS, because different

modes assigned to activities can significantly affect the results of the schedule.

A newly developed policy for mode assignment concerns both the current

resource availabilities and the activities on critical path(s) at each scheduled

time. The principle of the policy is to ensure that modes assigned to activities

can be completed as soon as possible and at the same time, the completion

times on each path are as close to each other as possible under available

resources. This policy helps assigning an appropriate mode to an activity

effectively at each scheduling stage.

(c) Design of problem-specific chromosomes for FMMRCPS to capture the

nature of complex scheduling at every moment.

A chromosome is a key element in GA. The chromosome structure

significantly influences the performance of fuzzy GA. To reflect the nature of

FMMRCPS, the chromosome is composed of three sub-chromosomes: (a) the

1st sub-chromosome responds to mode assignment, (b) the 2nd sub-
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chromosome represents activity priorities, and (c) the 3rd sub-chromosome

contains detailed scheduling information. The problem-specific chromosome

is effectively designed to gain insights into the nature of every scheduling

operation in order to gain a good globally optimal solution efficiently and

effectively.

(d) Development of fuzzy GA based approaches to avoid the decoding

procedure for chromosomes and to always generate feasible solutions

The fuzzy GA based approaches avoid the requirement for decoding

chromosomes that is commonly required in GA. In addition, the approaches

always generate feasible schedules. Thus, the novel fuzzy GA based

approaches are computationally efficient for solving complex FMMRCPS

problems.

(e) Development of specifically designed solution representation in fuzzy SA

to increase the possibility of digging for better solutions.

To reflect the nature of FMMRCPS without distortion, the specially designed

solution representation contains four elements: (a) mode assignments in each

stage, (b) activity priority values in each stage, (c) all stages of partial

schedules, and (d) the objective function. The design of this solution

representation allows effective perturbation by both modes and priorities. The

designed solution presentation is able to examine the status of partial

scheduling at a scheduled time so as to guide the search for better solutions

during neighbourhood generations.

(f) Development of a novel technique, using a time pointer in solving fuzzy

SA to avoid a full scheduling run each time.

The time pointer is designed to point to a specific scheduled time in order to

produce neighbourhoods by perturbing modes and priorities only in the
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indicated time zone without rescheduling each search. This novel technique

reduces the computational time significantly.

(g) Combination of different approaches into one by utilising the advantages

of each single approach.

In my PhD studies, two fuzzy hybrid approaches, (a) fuzzy GA with tabu, and

(b) fuzzy SA with tabu, are developed by combining two different single

approaches into one. These hybrid approaches take the advantages of each

single approach to improve solution results that either single approach is

unable to achieve. The experiments conducted have shown that the two fuzzy

hybrid approaches perform better than the fuzzy GA alone or the fuzzy SA

alone.

(h) Development of the FMMRCPS system to assist efficiently in solving

practically sized FMMRCPS problems

In this research, a system for solving FMMRCPS has been developed by

incorporating four metaheuristic approaches. The system can efficiently

handle single or multiple project scheduling.

12.6 Future Research in FMMRCPS

The FMMRCPS model defined in my PhD research has the significance of practical

value, being applicable to most practical situations. However, research publications

dealing with fuzziness are scarce. More vigorous research on this model needs to be

undertaken to tackle project scheduling that has practical significance. The majority of

research on project scheduling still deals with either deterministic or probabilistic

situations, which rarely exist in the real world. The study conducted here represents a

significant and practical achievement for solving realistically sized FMMRCPS problems
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in a fuzzy environment. Research areas worth exploring further are briefly described

below:

(a) In my PhD research, I have developed five heuristic and metaheuristic

approaches for solving the single objective of minimising the fuzzy project

completion time because this objective is of most common concern to

industry and organisations. However, in some situations, FMMRCPS may

need to take several objectives into consideration simultaneously to meet

specific requirements. Further research is needed to solve multiple objectives

based on the four metaheuristic approaches developed in my PhD study.

(b) More realistic approaches need to be developed for solving FMMRCPS

problems of practical sizes. Approximation algorithms seem to be a good way

of solving such NP-hard problems where exact algorithms are not viable. The

multi-agent system technique is claimed as one of the more promising ways

for effectively solving NP-hard problems with intelligent agents to effectively

guide the search in a dynamic environment. This approach may be suitable for

FMMRCPS where the scheduling environment is changed frequently at each

scheduling stage as a result of changing organisational requirements or

resource availabilities.

(c) To efficiently and effectively solve realistic FMMRCPS problems, advanced

approaches also need to be developed that combine several algorithms into

one approach, utilising the advantages of individual algorithms for strong

performance in problem solving.

(d) In the current fuzzy project scheduling research, resource availabilities and

resource requirements available to activities are assumed to be certain.

However, in some situations, resource availabilities and resources

requirements can be uncertain because some resources may be taken by other

projects that involve fuzzy times or because resource requirements for a
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certain activity have to be described as linguistic terms due to conditions of

resources. For example, considering for the resource of electricians: some

electricians have much experience in a certain job and others may have little

knowledge of the job. Therefore, the resource requirements for the same job

can be different. Such situations should be taken into consideration when

developing approaches for solving fuzzy resource-constrained project

scheduling.
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Appendix A

Five Project Network Diagrams

(A) Network Diagram of a Project with 25 activities
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(B) Network Diagram of a Project with 50 activities
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(C) Network Diagram of a Project with 100 activities
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(D) Network Diagram of a Project with 150 activities

(E) Network Diagram of a Project with 200 activities
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Appendix B

Information on Experimental Results

(A) The evaluation of generation parameter for fuzzy GA in five projects

(a) A project with 25 activities

^ ^ ^h *A Jh M«h & ! ^k * ^ «K

uenerations
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Project completion time
(Fuzzy ranking index)

111.67
108

104.22
104

103.67
102.33
102.33
101.67

100
99.33

99
97.67

97
88.22

90
89.22
88.67
92.66
90.33
89.23

CPU time
(msec)

1101
1164
1226
1320
1421
1484
1570
1632
1726
1843
1906
1976
2086
2187
2297
2320
2398
2539
2562
2656
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(b) A project with 50 activities

Generations

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Project completion time
(Fuzzy ranking index)

127.3665754
127.0009842
125.3759997
123.5010121
122.699437
121.3131983
121.3131983
120.1274745
119.501046

105.35
103.6968654

104.95
105.8238744

107.23
106.65

100.8170888
107.21

106.8170888
108.6411471
108.7418973
109.7190949
109.1916332
109.5857613
108.5421405
107.6920716

Fuzzy project
completion time
(102,123,125,142)
(82,105,116,136)
(77,103,110,137)
(84,104,107,128)
(97,116,123,142)
(85,109,113,133)
(83,108,113,139)
(89,109,118,136)
(94,117,125,149)
(94,117,125,149)
(100,125,129,154)
(80,107,112,136)
(84,107,113,132)
(100,121,126,147)
(95,116,123,146)
(97,122,130,153)
(86,112,117,141)
(98,116,120,136)
(86,106,110,132)
(86,108,115,134)
(81,104,106,125)
(84,111,112,132)
(99,125,131,155)
(86,111,120,140)
(84,104,112,131)

C P U time
(msec)
2328
2625
3000
3344
3672
3953
4297
4562
4859
5219
5516
5875
6109
6562
6828
7109
7438
7906
8141
8391
8609
8984
9328
9719
9938
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(c) A project with 100 activities

Generations

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Project completion time
(Fuzzy ranking index)

1035.063093
997.9498865
997.6869695
996.1251256
995.376113
988.7320854
982.1220574
981.4899554
980.8194049
979.5465362
975.4985635
972.0505067
971.7532819
969.4409894
967.9848314
964.5215408
955.9965077
955.3125786
785.9069178
790.5430125
951.3038739
946.7553406
942.1028359
859.865676

843.5873213

Fuzzy project CPU time
completion time (sec)

(861,1011,1061,1208) 6.25
(808,982,1029,1179) 6.922
(816,973,1023,1179) 7.812
(820,973,1023,1170) 8.484
(811,969,1023,1179) 9.203
(815.970.1015.1158) 9.906
(813,963,1010,1146) 10.875
(792,959,1009,1168) 11.344
(797.959.1012.1159) 12.172
(795.959.1007.1160) 12.75
(786,954,1007,1159) 13.781
(795,952,999,1145) 14.391
(810,949,997,1132) 15.109
(791,948,999,1143) 15.875
(783,947,994,1150) 16.609
(784,950,996,1135) 17.234
(793,936,981,1116) 18.266
(781,930,980,1130) 19.016
(690,765,826,927) 19.859
(634,788,832,975) 20.234

(781,931,976,1119) 21.344
(777,926,975,1112) 22.031
(775,927,971,1101) 22.266
(703,842,884,1013) 22.875
(680,825,874,1000) 24.062
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(d) A project with 150 activities

Generations

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

Project completion time
(Fuzzy ranking index)

503.0818018
499.4150525
497.0780391
497.0519764
490.7301507
489.4112939
489.0649957
486.0836751
485.0533964
480.1001731
480.0815563
479.7109165
472.1240804
468.4150577
467.4520269
232.7646864
229.0599528
228.1338805
226.5998762
226.3202786
225.323135
224.000558

223.6425334
222.6454881
222.1331376
220.8207904
220.3270274
219.6851572
217.6928837
216.3535198
214.6598407
212.9755842
212.8221357
211.4772252
210.9546141
216.2297465
214.7783634
217.3590665
214.2191038
217.5005747

Fuzzy project
completion time

(167,201,207,1141)
(163,197,203,1138)
(163,195,201,1133)
(161,195,199,1135)
(157,189,194,1126)
(155,187,193,1126)
(154,187,192,1126)
(149,184,190,1125)
(149,184,188,1122)
(134,178,184,1128)
(143,177,183,1120)
(149,177,181,1113)
(132,170,178,1114)
(132,166,172,1107)
(128,164,172,1110)
(186,226,237,281)
(184,224,236,273)
(179,222,233,278)
(182,221,229,273)
(179,224,226,275)
(182,222,228,269)
(178,219,229,270)
(174,219,227,274)
(180,219,225,266)
(183,217,226,262)
(180,217,224,262)
(174,218,222,267)
(178,215,225,261)
(157,217,221,267)
(168,214,220,264)
(171,213,215,259)
(175,210,212,253)
(167,209,216,259)
(161,208,213,263)
(172,206,214,251)
(172,213,222,259)
(175,208,215,252)
(168,214,222,266)
(172,212,219,255)
(171,212,223,264)

CPU time
(sec)
11.359
12.609
13.516
14.469
15.703
16.953
17.969
19.234
20.266
21.312
22.453
23.594
24.828
25.875
26.938
28.156
29.031
30.031
31.172
32.484
33.312
34.578
35.516

36.5
37.734
39.078
39.812
40.859
41.797
43.125
44.438
45.578
46.219
47.625
48.578
50.031
50.906
52.344
52.766
55.203
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(e) A project with 200 activities

osnGrBiions

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

Project completion time
(Fuzzy ranking index)

540.2776156
-538.1724627
538.1634965
536.5356768
535.5139428
532.1877261
530.7847692
529.5208749
528.8169818
523.9747252
518.0829201
514.9184746
513.642679
512.9200614
511.965459
509.2121688
505.0344576
253.3154538
252.1086803
250.5753003
250.3620819
249.2305877
248.816502
247.5396364
245.9663191
245.6831758
243.3182704
243.1573761
242.0005165
241.0005187
237.4526992
237.356588
237.0005274
235.9513472
233.6301639
232.6082051
231.50054
231.3709114
229.7591632
229.0005459
228.6407576
219.5052437
228.1241104
226.0005531
247.4346127

Fuzzy project
completion time
(187,234,248,1199)
(192,234,244,1188)
(195,234,244,1185)
(191,230,242,1188)
(185,230,240,1191)
(182,229,239,1185)
(182,226,233,1184)
(179,226,236,1183)
(185,226,235,1175)
(174,217,233,1180)
(169,214,219,1171)
(165,211,224,1168)
(157,206,221,1177)
(170,206,221,1162)
(164,205,221,1166)
(166,207,219,1154)
(152,202,204,1161)
(197,246,260,310)
(199,247,252,308)
(195,242,256,308)
(196,246,256,304)
(199,242,252,302)
(193,242,255,305)
(194,244,253,300)
(192,241,249,301)
(189,240,252,302)
(195,238,248,292)
(194,241,244,293)
(202,238,246,282)
(191,238,244,291)
(186,231,242,290)
(196,235,241,278)
(177,230,244,297)
(179,231,237,295)
(202,229,237,266)
(181,227,235,286)
(183,227,236,280)
(175,225,239,287)
(179,222,235,282)
(172,223,235,286)
(171,223,233,287)
(166,220,221,272)
(178,220,235,279)
(172,221,231,280)
(192,238,255,304)

CPU time
(sec)
23.234
25.094
26.438
27.891
29.703
31.406
33.219
34.625
35.766
38

39.547
41.188
43.391
44.641
46.219
47.5

49.984
50.562
52.031
53.578
55

56.75
58.094
59.5
61.75
63.656
64.938
66.719
68.156
69.234
71.375
72.75
73.734
76.141
77.828
79.859
81.797
83.438
84.562
86.734
88.234
89.594
91.25
92.75
94.312
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Project completion time
(Fuzzy ranking index)

231.6210517
246.9909813
231.0005411
240.8606387
242.4671811
236.7578364
255.5004892
233.1338687
234.6831997
235.0005319

Fuzzy project
completion time
(176,222,240,288)
(196,245,247,299)
(184,226,236,278)
(189,237,246,292)
(194,238,245,292)
(187,229,242,288)
(204,248,263,307)
(184,227,238,283)
(178,229,241,291)
(183,231,239,287)

CPU time
(sec)

95.969
96.906
99.641
101.109
101.688
104.812
105.984
107.531
108.578
110.203

Generations

460
470
480
490
500
510
520
530
540
550

(B) The evaluation of the tabu size for fuzzy GA with tabu in five projects

(a) A project with 25 activities

Tabu
size

2
4
8
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58

Project completion time
(Fuzzy ranking index)

81.3348765
80.66821944

78.668259
79.66823897
78.66826907
78.66826907
79.66823897
77.66826918
78.33492566
77.66827954
78.33492566
77.33495666
77.33494621
76.33496729
76.33495654
76.00165552
76.00164472
76.00164472
76.00164472
75.66832227
75.33499994
75.00167774
75.00166665
75.00166665
65.335227

66.66853225
71.66841489
74.66832202
67.66851848

Fuzzy project
completion time

(61,82,101)
(63,81,98)
(60,79,97)
(63,80,96)
(64,80,92)
(57,80,99)
(59,80,100)
(53,77,103)
(58,78,99)
(59,78,96)
(58,78,99)
(60,78,94)
(52,77,103)
(61,76,92)
(52,75,102)
(51,77,100)
(61,76,91)
(57,76,95)
(61,76,91)
(52,76,99)
(55,76,95)
(57,76,92)
(50,75,100)
(55,75,95)
(51,64,81)
(46,66,88)
(51,72,92)
(57,73,94)
(42,68,93)

CPU time
(sec)

28.057
28.193
28.281
28.37
28.38
28.53
28.595
28.645
28.663
28.81

28.826
28.854
28.856
28.857
28.957
28.998
29.004
29.015
29.197
30.63
30.64
30.646
30.651
30.667
30.678
31.086
31.682
32.213
33.265
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Tabu
size
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

Project completion time
(Fuzzy ranking index)

74.00170056
73.6683788
71.66841489
74.00170056
72.66839077
71.66839049
72.66837893
69.33513186
73.3350456
71.66841489
74.66833327
71.33508155
74.66833327
72.66839077
74.6S833327
68.66847818
73.33505717
67.00187954
69.33513186
68.66851783
66.66853225

Fuzzy project
completion time

(58,75,89)
(53,75,93)
(50,72,93)
(55,75,92)
(49,73,96)
(47,70,98)
(55,72,91)
(47,69,92)
(51,74,95)
(55,72,88)
(55,74,95)
(55,71,88)
(52,74,98)
(54,73,91)
(53,74,97)
(53,68,85)
(55,75,90)
(46,68,87)
(49,69,90)
(48,71,87)
(42,66,92)

CPU time
(sec)

33.765
34.276
34.848
35.364
36.185
36.911
37.511
37.916
38.532
39.258
39.958
40.52
41.026
41.803
42.46
43.078
43.75
44.119
44.713
45.145
46.25

(b) A project with 50 activities

Tabu
size

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Project completion time
(Fuzzy ranking index)

97.69219081
95.17675425
95.00131578
94.254422

94.17820038
92.61426747
92.09225414
91.86446088
91.19184944
88.68562266
89.00140448
91.06260471
90.65216748
89.81957092
89.68922699
90.68765541
89.43998627
89.50139664
90.51251246
89.31512243

Fuzzy project
completion time
(74,94,102,121)
(68,94,97,122)
(70,94,96,120)
(70,92,99,117)
(71,93,96,117)
(64,91,98,119)
(68,88,93,118)
(66,90,95,117)
(64,87,96,118)
(63,86,92,114)
(66,86,92,112)
(69,89,95,112)
(71,89,91,111)
(65,87,92,115)
(62,86,94,117)
(68,88,94,113)
(65,85,92,115)
(68,85,94,111)
(63,89,97,115)
(67,86,92,112)

CPU time
(sec)

93.086
93.898
94.648
95.586
96.172
96.266
96.484
96.5
96.82
96.828
98.125
98.272
98.914
98.966
99.296
99.406
99.541
99.82

100.625
101.75
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(c) A project with 100 activities

Tabu Project completion time
size (Fuzzy ranking index)

5 947.1031789
10 915.5445257
15 906.5223316
20 901.4915035
25 893.0423344
30 883.9845978
35 770.41364
40 764.9300296
45 878.4916679
50 877.1269719
55 871.1268441
60 871.2122652
65 847.8991648
70 855.9260721
75 847.8088646
80 840.6866259
85 839.2467247
90 787.402458
95 792.0250085
100 772.9791264

(d) A project with 150 activities

Fuzzy project
completion time

(780,930,973,1109)
(733,902,943,1090)
(733,891,934,1073)
(729,683,930,1068)
(716,874,919,1066)
(711,866,912,1051)
(602,750,792,934)
(577,742,791,951)

(721,860,902,1033)
(697,853,905,1055)
(699,847,894,1044)
(692,855,900,1043)
(679,832,872,1012)
(683,836,879,1027)
(664,827,878,1026)
(670,818,864,1011)
(672,826,862,1001)
(617,771,812,953)
(616,776,820,961)
(588,753,798,955)

CPU time
(sec)

1027.445
1029.235
1030.864
1032.325
1040.357
1042.897
1046.025
1050.951
1065.264
1070.875
1078.092
1186.235
1192.368
1209.483
1234.273
1258.357
1266.873
1290.964
1304.981
1318.954

Tabu
size

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Project completion time
(Fuzzy ranking index)

206.2719219
205.643464

203.6810266
203.3298324
186.8611269
190.3506578
191.865236

195.8150708
201.1378753
199.1031893
194.3207747
200.4821034
192.1813364
196.1045774
191.354821

200.1346815
190.6860144
191.285204
192.6411706
188.2848703

Fuzzy project
completion time
(149,180,186,229)
(159,195,204,242)
(148,190,198,241)
(168,201,209,246)
(164,202,204,243)
(154,191,198,240)
(162,198,201,240)
(152,189,193,228)
(146,188,196,240)
(148,188,197,235)
(143,188,197,241)
(144,184,188,235)
(146,189,195,236)
(158,194,201,242)
(159,200,208,248)
(155,196,205,248)
(167,202,208,245)
(143,185,197,238)
(153,190,201,239)
(154,187,193,230)

CPU time
(min)

33
33.05
33.29
33.79
34.24
36.11
37.16
38.26
39.44
40.63
40.99
41.43
42.08
43.11
44.18
45.65
46.73
47.77
48.91
50.57
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(e) A project with 200 activities

Tabu
size

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Project completion time
(Fuzzy ranking index)

219.5675809
219.2792568
217.2826248
193.6778389
195.5006394
208.6037714
213.6287893
214.6831224
213.0005869
210.9484172
214.6827532
210.0005952
210.5005938
214.3282181
213.0532197
201.1786154
199.0006281
202.0006188
201.3660064
194.3696918

Fuzzy project
completion time
(177,214,227,261)
(164,213,223,276)
(158,211,221,278)
(149,191,197,238)
(142,19i.,i99,249)
(161,203,211,258)
(168,207,219,260)
(167,210,220,262)
(160,211,215,266)
(160,204,216,263)
(156,209,221,273)
(157,204,216,263)
(156,206,215,265)
(158,212,216,271)
(153,207,221,272)
(153,198,205,249)
(156,196,202,242)
(146,199,205,258)
(154,197,207,248)
(144,189,201,244)

CPU time
(min)
41.61
42.41
43.53
44.59
46.55
48.39
50.62
53.44
55.77
57.93
60.21
63.11
66.16
69.7
72.83
76.93
80.28
85.62
90.4

106.31

(C) The evaluation of the Markov Chain length for fuzzy SA in five projects

(a) A project with 25 activities

Markov chain
length

10
20
30
40
50
60
70
80
90
100

Project completion time
(Fuzzy ranking index)

105.0012018
103.6678744
87.00142022
87.33472996
95.33458331
94.00134389
97.66795524
96.33463539
94.3345895
93.00134408

Fuzzy project
completion time

(79,107,129)
(88,104,119)
(68,89,108)
(72,87,107)
(77,97,123)
(72,96,114)
(75,99,119)
(81,97,111)
(75,96,124)
(73,93,113)

CPU time
(msec)

773.4375
1507.8125
2304.6875
2929.6875
3664.0625
4484.375
5406.25

6148.4375
6820.3125
7351.5625
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(b) A project with 50 activities

Markov chain
length

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Project completion time
(Fuzzy ranking index)

117.0607739
117.0418889
114.6307296
114.5010917
95.00131578
100.4522186
110.7154266
109.0011468
108.6908123
108.1261667
107.6995805
107.1950652
103.0207187
101.8794361
101.8182191

Fuzzy project
completion time
(87,114,122,146)
(94,116,120,139)
(90,113,120,137)
(89,113,116,140)
(72,93,97,118)
(78,97,102,124)
(86,112,114,133)
(85,106,112,133)
(80,109,111,136)
(86,107,113,128)
(87,108,110,127)
(85,105,113,132)
(101,125,130,154)
(79,99,106,124)
(79,99,104,125)

CPU time
(msec)

1773.4375
3375

5109.375
7117.1875

8343.75
10421.875
12320.3125
14320.3125

16000
17273.4375

19000
21179.6875
22554.6875

24375
26039.0625

(c) A project with 100 activities

Markov chain
length

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

Project completion time
(Fuzzy ranking index)

958.1365687
949.6909049
944.3679487
941.7475012
911.0001372
905.7991206
888.185632

876.2497198
862.3139227
770.7416953
772.9529855
861.7738681
859.865676
854.4776942
860.9069178
844.8188013
812.8057785
837.2223721
806.5430125
789.056145

Fuzzy project
completion time

(778,936,989,1133)
(773,927,978,1123)
(764,923,972,1121)
(774,920,966,1108)
(746,888,934,1076)
(730,887,934,1076)
(727,868,909,1049)
(703,853,902,1048)
(697,840,884,1028)
(604,751,793,936)
(608,756,798,939)
(676,844,889,1042)
(703,842,884,1013)
(681,837,882,1022)
(690,844,886,1027)
(669,830,871,1014)
(634,791,839,989)
(648,819,868,1019)
(634,788,832,975)
(617,769,816,957)

CPU time
(sec)

5.546875
9.109375

11.0859375
14.21101563

17.6679
22.179
27.554
31.46
35.695
39.203
46.12
52.125

60.671875
65.242
70.429
75.507
86.421
89.664
95.648
99.71
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(d) A project with 150 activities

Markov Chain
length

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Project completion time
(Fuzzy ranking index)

470.3966908
253.0004941
233.3605364
228.1352989
227.3237818
223.3595348
223.2297283
220.6369293
220.119612
219.9423146
219.6066263
218.3189242
217.677994
217.4568842
208.6802111
209.3198949
213.0426879
213.5649431
212.8210997
212.1452424
211.6332428
212.1241516
211.9882426
210.6464258
209.9575832

Fuzzy project
completion time

(136,168,173,1107)
(207,250,256,299)
(187,230,238,279)
(186,223,232,271)
(181,224,230,274)
(175,220,228,271)
(179,220,229,266)
(171,215,225,271)
(181,216,219,262)
(175,213,225,266)
(179,215,219,263)
(178,214,222,259)
(174,215,221,261)
(171,212,221,265)
(161,205,213,256)
(166,205,213,253)
(171,210,220,258)
(169,208,221,257)
(171,209,216,255)
(163,208,215,262)
(168,206,216,256)
(162,204,219,263)
(173,210,212,252)
(166,207,213,256)
(168,205,213,253)

CPU time
(sec)
7.742
15.609
23.726
31.671
40.046
48,14
55.671
63.078
72.406
77.898
84.203
94.57

101.937
108.07
116.64
127.32
131.984
139.804
151.671
159.125
163.46
177.593
183.984
192.929
198.89

(e) A project with 200 activities

Markov chain
length

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Project completion time
(Fuzzy ranking index)

517.1670005
243.0005144
239.7782976
239.6797199
239.6429451
238.7373672
238.0321052
237.1285026
236.1433857
235.0005319
234.9304672
234.500533
234.4684219
234.1793959
234.0464068

Fuzzy project
completion time

(174,214,224,1163)
(189,237,249,297)
(191,234,243,290)
(178,235,245,301)
(189,235,243,291)
(187,234,246,289)
(193,236,242,282)
(188,230,243,287)
(178,231,240,295)
(188,231,239,282)
(168,223,245,303)
(183,233,236,286)
(184,230,237,286)
(177,230,239,291)
(184,230,240,283)

CPU time
(sec)

20.549
41.96
62.825
84.671
103.068
123.983
144.312
164.967
182.562
206.982
229.635
246.239
265.491
287.929
301538
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Markov Chain
length

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

Project completion time
(Fuzzy ranking index)

233.8179255
233.0005365
232.0005388
231.3661324
210.5005938
214.0005841
230.6697184
229.8810477
229.5971811
226.8712414
227.5005494
223.2998753
226.8135588
219.1831794
217.6213673

Fuzzy project
completion time
(182,228,239,286)
(172,231,235,294)
(184,229,235,280)
(175,226,238,287)
(157,205,216,264)
(160,208,220,268)
(170,226,241,288)
(184,223,238,275)
(176,223,233,285)
(175,221,234,278)
(177,223,232,278)
(177,219,221,273)
(173,219,234,281)
(167,214,225,271)
(167,213,219,270)

CPU time
(sec)
330.4

359.476
362.476
393.475
411.426
429.487
457.813
469.65
485.928
501.481
523.202
560.12
561.897
569.744
609.626

(D) The investigation of the cooling ratio for fuzzy SA with five projects

(a) A project with 25 activities

Cooling
ratio
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.95

(b) A

Cooling
ratio
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.95

Project completion time
(Fuzzy ranking index)

104.6678685
101.0012437
100.6679043
100.0012562
97.6679487
95.33465595
94.00133684
85.3347867
88.33474575
88.0014285

project with 50 activities

Solutions
(Fuzzy ranking index)

129.576716
121.3194369
117.8854216
117.7510676
112.5611204
112.0011161
110.0011364
105.8238744
107.0881347
102.4086379

Fuzzy project
completion time

(85,106,123)
(78,102,123)
(82,100,120)
(83,101,116)
(77,98,118)
(71,97,118)
(71,95,116)
(68,84,104)
(71,88,106)
(70,89,105)

Fuzzy project
completion time
(106,125,131,155)
(91,118,124,152)
(94,118,121,140)
(96,116,122,138)
(88,113,116,135)
(89,111,113,135)
(87,106,114,133)
(84,107,113,132)
(85,107,111,127)
(81,102,106,122)

CPU time
(msec)

1484.375
1667
1700

1885.9375
2820.3125

3245
5484.375

6250
7625

9734.375

CPU time
(sec)
2.062
2.718
3.109
4.843
5.89
7.89

10.937
17.859
36.937
73.953

Appendix B - Information on Experimental Results Page: 299



(c) A project with 100 activities

Cooling
ratio
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.95

Project completion time
(Fuzzy ranking index)

981.7987564
968.626538
957.791696

949.8633797
903.3475073
879.5463166
860.9240079
769.9233037
843.5873213
842.9304001

Fuzzy project
completion time

(808,962,1006,1153)
(787,943,993,1151)
(773,938,982,1140)
(776,930,976,1120)
(732,887,931,1068)
(710,861,905,1045)
(700,843,882,1020)
(591,750,793,947)
(680,825,874,1000)
(660,822,872,1021)

CPU time
(sec)
11.14
15.453
22.062
26.281
37.015
49.781
65.109
107.89

222.109
448.031

(d) A project with 150 activities

Cooling
ratio
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.95

Project completion time
(Fuzzy ranking index)

476.01281
228.4791784
225.0005556
225.0005556
220.3204322
219.9638697
217.9689932
204.369407

217.5970635
204.5442788

Fuzzy project
completion time

(139,175,176,1114)
(173,225,230,285)
(176,219,231,274)
(181,223,227,269)
(175,216,224,266)
(170,215,223,271)
(174,214,220,263)
(162,200,210,246)
(175,212,220,262)
(165,199,218,259)

CPU time
(sec)

23.109
37.625
44.25
60.609
76.875
106.046
155.578
233.359
482.25
1028

(e) A project with 200 activities

Cooling
ration

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.95

Project completion time
(Fuzzy ranking index)

508.4369841
260.6402639
258.4956283
255.1349922
248.7782779
241.2597759
239.8838522
214.0005841
234.1893247
217.6213671;

Fuzzy project
completion time

(160,206,212,1159)
(204,255,265,318)
(208,257,258,310)
(204,249,260,307)
(200,244,249,300)
(194,234,246,290)
(188,231,245,294)
(160,208,220,268)
(185,227,242,283)
(167,213,219,270)

CPU time
(sec)

57.312
72.062
87.125
119.343
160.765
196.218
298.703
459.562
997.671
1974.593
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(E) The evaluation of the tabu size for fuzzy SA with tabu with five projects

(a) A project with 25 activities

Tabu
size
10
20
30
40
50
60
70
80
90
100

Project completion time
(Fuzzy ranking index)

81.00155271
79.66822912
78.66824889
76.66827931
62.66853225

62.335227
75.66832227
74.66833327
74.66832202
71.66841489

Fuzzy project
completion time

(62,82,99)
(63,79,97)
(60,78,98)
(60,75,95)
(46,62,88)
(51,62,81)
(57,76,94)
(52,74,98)
(57,73,94)
(51,72,92)

CPU time
(sec)

32.4062
33.282
34.25

35.4218
36.4375
37.4171
40.39
43.75

50
58.4375

(b) A project with 50 activities

Tabu
size
10
20
30
40
50
60
70
80
90
100
110
120

Project completion time
(Fuzzy ranking index)

94.75950528
93.91043377
92.56499407
91.74211316
87.61870517
87.31589427
91.69142424
90.86249187
89.69371168
90.61231922
89.68693093
88.13602829

Fuzzy project
completion time

(70,95,99,117)
(68,93,98,118)
(68,90,97,116)
(67,90,96,115)
(65,83,91,111)
(64,84,90,111)
(67,88,96,116)
(63,89,94,118)
(64,90,92,114)
(62,85,95,119)
(66,87,93,113)
(65,85,90,112)

CPU time
(sec)

101.25
102.7359
103.1925

103.98
104.5453
104.9312
108.656
113.015
118.68
125.089
131.785

141.8265

(c) A project with 100 activities

Tabu
size
10
20
30
40
50
60
70
80
90
100

Project completion time
(Fuzzy ranking index)

998.1172426
977.2467266
977.1705924
759.056145
760.056145

850.9260721
878.4916679
896.5980779
868.185632
862.3139227

Fuzzy project
completion time

(833,980,1025,1158)
(604,955,1002,1149)
(800,959,1006,1148)
(577,729,776,917)
(585,738,784,925)
(683,831,874,1027)
(721,860,902,1033)
(722,879,923,1066)
(727,868,909,1049)
(697,840,884,1028)

CPU time
(sec)

1041.25
1049.21875
1059.625
1061.7578
1075.25

1193.125
1213.109625

1263.921
1293.08156

1321.01
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Tabu
size
110
120
130
140
150

Project completion time
(Fuzzy ranking index)

861.7738681
842.9304001
837.2223721
812.8057785
792.0250085

Fuzzy project
completion time

(676,844,889,1042)
(660,822,872,1021)
(648,819,868,1019)
(634,791.839,989)
(616,776,820,961)

CPU time
(sec)

1324.109
1327.109

1328.6046
1334.75

1378.11593

(d) A project with 150 activities

Tabu Project completion time
size (Fuzzy ranking index)
10 208.000601
20 205.8239
30 186.077802
40 181.0392276
50 194.3207747
60 200.1346815
70 192.1813364
80 196.1045774
90 195.068337
100 198.1031893
110 200.11031
120 191.354821
130 191.285204
140 190.6860144
150 188.2848703
160 187.4206378

Fuzzy project
completion time
(170,207,209,246)
(167,203,208,245)
(151,183,189,274)
(146,181,184,287)
(143,188,197,241)
(155,196,205,248)
(146,189,195,236)
(158,194,201,242)
(159,194,199,280)
(148,187,197,234)
(142,182,183,233)
(159,200,208,248)
(143,185,197,238)
(167,202,208,245)
(154,187,193,230)
(148,185,191,269)

CPU time
(min)

33.6703
34.24538

36.34
38.82
40.95

41.9512
43.56
46.02
48.21
51.25

54.7891
57.141
60.734
64.297
68.12
75.275

(e) A project with 200 activities

Tabu
size
10
20
30
40
50
60
70
80
90
100
120
130

Project completion time
(Fuzzy ranking index)

218.1280205
216.8150688
206.9898497
193.4292062
193.819959

203.1829519
206.1818365
204.9003175
201.0006219
199.6412501

199.14646
198.03733

Fuzzy project
completion Time
(170,214,217,269)
(166,210,223,268)
(162,205,207,253)
(146,187,196,242)
(145,189,198,243)
(150,198,209,256)
(159,202,211,253)
(152,202,211,256)
(144,196,206,258)
(141,194,204,259)
(147,195,202,252)
(147,195,203,248)

CPU Time
(min)

42.4484
45.03422
49.0359

53.81
58.2625
63.315
69.84
77.15
86.01
106.45
126.49

149.6578
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