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ERRATA

p iii line 21: "sufficiently" for "sufficient"
p iv line 13: "wave" for "waves"
p 2 line 16: "a case" for "case"
p 3 line 14: "which" for "for which"
p 8 equation (2.1.1): "H2 " for"H2+C," and " 0 " for"r\"

p 9 line 17: "z = H2 +C,{x,y,t)" for " z = C,{x, v,/)"

p 11 equation (2.1.12): "—=*--m2Fi =0" fo r "— j - + m2Fi = 0 "
dz dz

p 13 line 8: "parameter" for "parameters"
p 18 line 5: "already" for "which already"
p 19 line 2: "implementing" for "implementation"
p 29 line 3: "... of (2.3.29) and (2.3.30)..." for"... of (2.3.30) and (2.3.31)..."
p 50 equation (3.1.1): " H2" for "H2+C," and "0"for" r | "
p 51 line 6: "then be" for "be then"
p 51 equation (3.1.2): " V • V " for " VV "
p 51 equation (3.1.3): " V - V " for" VV"
p 62 equation (3.2.21): " EX{X,T)" for " EX{X.T)"
p 65 line 9: "transformation" for "transforming"
p 68 line 2: "Bo *0.95" for "Bo «1.18"
p68 line 17: "... confined to linear ..."for"... assumed to be linear..."
p 68 line 18:"... o(B0

2)"for "... O(fi0)"
p 72 line 3: "corresponds" for "correspondent"
p 72 line 17: "parameters" for "parameter"
p 73 line 1: " V * 0.3344 for Bo = 0.01 and V * 0.3444 for Bo = 0.1" for " V « 1.0303 for Bo = 0.01
and r = 1.2121 for flo=O.l"

p 73 line4: "B o = 0.00969 and Bo =0.10966"for"Bo =0.00995 and Bo =0.08773"
p 74 line 1: "... (3.2.35), (3.2.36, ..." for"... (3.2.25), (3.2.26, ..."

p 76 equation (3.4.5): " fcq.dx = fRrJRxoLx = f(R7JR)xii;- = 0 " for

.1

Jx = 0"

p 77 line 2: "formulating" for "formulation"
p 83 line 4: "... in equations (3.5.6) ..." for"... into equations (3.5.6)..."
p 83 line 14: "due to" for "due"
p 87 equation (3.5.42): "vr(...,z = ±o)ji + ...}r|>." for"vr(...,r = ±0^ + . . . } ^ / '

ADDENDUM

p 17 line 1: Delete "shallow water" and read "...this approach..."

p 21 line 4: Replace E with e and read "... K, , = o(e), where e ..."

p 44 line 1: Add after "... and ^-direction." "Domain is doubly-periodic with -32<;c<32 and
0 < y < 8. Number of modes in x- and ^-directions were 384 and 64 respectively; the time-step

equalled 0.5 x 10"*. The results have been checked with respect to spatial resolution of 256 x 32."



Addendum cont 'd

p 44 lir.f* 5: Add after "...noise)." "The white noise was a random field superimposed on the solitary
waves with magnitude of 0.01 (maximum and minimum values of 0.01 and -0.01 respectively)."

p 49 line 6: Replace the sentence "The evolution ..." with "The difference in the evolution of the two
modes displayed in Figures 2 - 4 may be explained by the fact that the linear instability becomes
quickly saturated by nonlinear instabilities, such that the r\ -mode becomes nonlinearly stable whereas
the C, -mode is left nonlinearly unstable."

p 63: Add after equation (3.2.29) "Coefficients C2 and D2 vanished due to the extremely weak long-
wave dispersion determined by the resonance (3.1.33), (3.1.34) that eventually results in the absence of
a dispersion term in the final equation (3.2.35)."

p 65 line 3: Add after the word "derivatives" "(see also comments on the equivalent conditions (1.9)
and (1.14))"

p 76 line 15: Delete "for" and read "... the canonical Hamiltonian ..."

p 88 line 12: Add after the word "... orders.": "This jump of the vertical velocity does not have a
physical reason and is caused only by the discontinuity of the z-derivate of the basic flow (3.5.20)
across both interfaces, as Q{ * fi2 and fi, * £l3."
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ABSTRACT

The object of this thesis is the investigation of coupled nonlinear waves propagating

in three-layer inviscid fluid flows. After first discussing the concept of resonance

conditions admitting coupled waves, we consider two different models of such flows. In

the first model (model I) both the basic flow and density are assumed to be constant

within each layer. In model II the basic flow is taken to be of the form of a piecewise

linear function which is continuous across the unperturbed interfaces, while the density

is piecewise constant. For both models the appropriate resonance conditions, under

which the system admits coupled waves, are obtained. In a small vicinity of these

resonances different sets of coupled equations are derived. The properties of these

equations are then explored both analytically and numerically.

Coupled waves in model I are investigated in Chapter 2. Three-dimensional linear

perturbations are initially considered, from which appropriate resonance conditions are

obtained. On this basis a pair of coupled nonlinear Kadomtsev-Petviashvili (KP)

equations are derived to describe the evolution of two-dimensional interfacial waves.

The stability of two KdV solitons is then considered. The coupled KP equations are

used to derive equations governing the evolution of the amplitudes and phases of these

solitons due to both coupling and transversity. The stability of the system of two KdV

solitons with respect to transverse perturbations is explored in section 2.4. In the case of

no radiation a linear stability criterion is obtained, which demonstrates that the system

is always unstable with respect to any transverse perturbations of sufficient wide

spectrum. These analytical results are then confirmed numerically. The important role

of coupling in the generation of two-dimensional solitary-like patterns is demonstrated,

namely that the coupled KP equations can describe the formation of two-dimensional
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solitary-like waves, while KP equations cannot admit two-dimensional solitary-like

solutions under the same conditions.

Model II is investigated in Chapter 3. Initially the resonance conditions for two-

dimensional perturbations of the flow n are considered. A pair of one-dimensional

coupled KdV-like nonlinear equations is then derived in a small vicinity of these

resonance conditions, following which some approximate (numerical and asymptotic)

solutions of the coupled equations are described. It is then shown that these one-

dimensional equations can be rewritten in canonical Hamiltonian form, and it is proven

that it is a Hamiltonian system. Four invariants of the system are found. Three-

dimensional perturbations of model II are then considered. The appropriate resonance

conditions are explored, and then a set of two-dimensional coupled nonlinear waves are

rigorously derived. Some results for the numerical simulation of the evolution of a

solitary waves are finally given.
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CHAPTER 1

INTRODUCTION

The study of complex wave systems is the basis of modern Meteorology and

Oceanography. Physically such systems often consist of solitary, large-scale wave-like

formations travelling in a stratified fluid. The modelling and simulation of such systems

and forecasting their evolution and behaviour is a complex mathematical problem

requiring the implementation of modern methods of nonlinear dynamics and powerful

computer modelling. This thesis is devoted to the investigation of the properties of a

system of two coupled nonlinear interfacial waves arising in two different models of

three-layer fluids and due to a special form of resonance between two wave modes.

It is well known that instability of some fluid flows can arise due to resonance

between two waves when their phase speeds coincide under certain conditions (see, for

example, Chandrasekhar 1961, Drazin and Reid 1981, Craik 1985, Baines and

Mitsudera 1994). Such a resonance condition can be determined by a specific value of

some external parameter of the system. Deviation of the external parameter from its

resonance value may then lead to the coupling of wave modes.

It was Grimshaw (2000) who first determined those resonance conditions under

which two wave modes must be coupled. Without loss of generality we can use the

following long-wave dispersion relation
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c2=A2 + 8 (1.1)

to instantiate his concept. Here c = a/A: is the phase speed, A is an external parameter

(it may be some intrinsic speed in the system) and 8 is an unfolding parameter (8 « 1 ) .

Plainly, such system in the resonance when 8 = 0, while 8>0 ( 8 < 0 ) represents stable

(unstable) conditions. The dispersion relation (1.1) can come from the following linear

algebraic equations

( C - A ) / * - K , 5 = 0,

(1.2)

describing a system of two waves in terms of Fourier harmonics. Here A, B are

amplitudes of modes and K,K2 = 8. At resonance 8 = 0, and at least one of these factors

( K, or K2 ) equals zero. If one of them is nonzero, say K2 ^ 0, then we must put c = A

as neither A nor B can be zero. The first equation in (1.2) then becomes identically

zero, while the second one states the relationship between the amplitudes A, B such that

O A

one of them can be expressed in terms of another, for instance, A = — B . Thus in such

a case there is actually only one independent mode (A or B). The canonical model for

long waves in such case is described by two separate Boussinesq equations without

coupling, as follows

A, ~ \2AB+j\i(A2)B + Um = 8 ^ , (1.3)

(1.4)

Here \L and X are the nonlinear and dispersive coefficients respectively. Equations of

this form have been derived by Hickernell (1983a,b) for the Keivin-Helmholtz
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instability, and by Helfrich and Pedlosky (1993) and Mitsudera (1994) for certain

geophysical flows.

These modes have different behaviour if both K, = 0 and K2 = 0. In this case other

parameters must be equated to zero, e.g. c = A = 0 , as the amplitudes A, B must be

nonzero. Accordingly, there is no relationship between A and B at resonance, as result

they cannot be described by separate equations such as (1.3), (1.4). A suitable canonical

model for such modes consists of two coupled Korteweg-de-Vries (KdV) equations,

(1.5)

(1.6)

Here K12 are coupling parameters. Equations of the form (1.5), (1.6) have been derived

by Mitsudera (1994) and Gottwald and Grimshaw (1999) for certain geophysical flows,

and by Grimshaw (2000) for a certain three-layer stratified shear flow.

In the general case {Grimshaw and Skrynnikov 2002'), when the linearised problem

for a system of two waves, for which solutions are proportional to exp\ik(x-ct)}, can

be reduced to the following algebraic problem for the wave amplitudes A, B

(1.7)
[EA+D2B=O,

with coefficients £>12, E dependent on k, c and a set of parameters A,, A2,... which

for the sake of convenience will be denoted below as a vector parameter

A = (A,, A2,...). The dispersion relation

= DiD2-E
2=Q (1.8)

1 All ideas expounded hereafter in this chapter are due to Prof. R. Grimshaw.
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defines the phase speed as a function of k and A. As in non-dissipative systems

instability arises whenever Im(c)^0. Thus we must add to (1.8) the following

necessary condition of instability

D c = 0 , Dcc*0 (1.9)

so as not to exclude the scenario of unstable behaviour for this system. Here the

subscript1 denotes the derivative with respect to c. Then taking the limit k-*0

suppresses the ^-dependence for further consideration. Now conditions (1.8), (1.9)

define critical values of c and A for the onset of instability (resonance). Without loss

of generality we can suppose that these are c = 0 and A = 0.

First, let us suppose that E =£ 0 at criticality. Then from (1.8) it follows that D, 2 9* 0

also, and the system (1.7) can be reduced to a single equation

D(c,A,k)A = 0 (1.10)

or £>(c,A, k)B = 0, as either of amplitudes A, B can be expressed in terms of other.

Then expansion of D as an operator in c, A and k, followed by incorporation of a

weakly nonlinear term, leads the Boussinesq equations (1.3), (1.4). Next, if E = 0 at

criticality, then so does DXD2 - 0. However, if either of Z), 2 * 0, say D2&0, then the

system (1.7) can be again reduced to (1.10), and the Boussinesq equations (1.3), (1.4)

are again the outcome.

The case of most interest to us here is when

(1.11)

at criticality, from which we see immediately that A and B are independent at

resonance. It is this case which leads to two coupled equations of the form (1.5), (1.6).

1 Throughout this text we will keep the suffixal denotation for derivatives, and the comma will

separate differentiation subscripts from others if the latter takes place.



So, the general consideration based on (1.7) leads to the same conclusion obtained for

the particular case (1.2). Namely, in order to find the resonance conditions, under which

two-wave system may be described by coupled equations, we must resolve the

simultaneous equations (1.11) at the long-wave limit.

Let us now show that equations (1.7) are reducible to the form of (1.2). After

expanding Z>,, D2 and E in powers of c and A we can obtain

K {cD2c + AD2A

(1.12)

We can change variables as follows

(1.13)
B=D2cB + EcA.

Note that the above transformation is not singular as according to the second condition

at(1.9)

(1.14)

Then equations (1.12) adopt the form

(c-A])A-KlB=Of
(1.15)

which is very similar to (1.2). Here



(1.16)

An important consequence of the obtained equations (1.15) is a simple criterion for this

system to be unstable, that is instability occurs whenever

(1.17)

Finally, let us summarise results described in this chapter to outline a general

procedure of how to construct equations governing coupled modes. First, the linear

problem for a system of two waves should be reduced to the form of (1.7). Then all the

coefficients in (1.7) should be taken in the limit k—>0 to compose a set of

simultaneous equations (1-11). The solution of these equations gives critical values of

the model parameters that determine the critical (resonance) state of the system. At the

final stage the basic equation of the system should be unfolded in a small vicinity of the

critical state to obtain coupled equations.

The above approach is employed in the following chapters for the derivation of one-

and two-dimensional nonlinear equations governing coupled interfacial waves in two

different models of three-layer fluids. The three-layer fluids were chosen for

investigation since these are the simplest models of stratified fluids, which give

opportunity to focus on coupling of two waves only. Although this is admittedly a

special case, the method of analysis described above indicates that the same outcome

may be expected in more general cases.

Two different three-layer models have been considered in this thesis: layers with

constant flow and density (I) and layers with constant density but with flow described

by a continuous linear function with different gradient in each layer (II). For the

model I, which is considered in Chapter 2, a set of nonlinear Kadomtsev-Petviashvili

equations (2.2.21) and (2.2.22) has been obtained. These equations are a natural

extension of the coupled KdV equations (1.5), (1.6) to two dimensions: all of them

contain only linear coupling terms.
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Equations of a different structure describe the interfacial waves of model n, which is

considered in Chapter 3. In this case a set of KdV-like equations (3.2.35), (3.2.36) has

been derived. The main feature of these equations is that they are coupled due to both

linear and nonlinear terms. Thus linear analysis is not sufficient to define the coupling

structure of this two-wave system. Another feature of equations (3.2.35), (3.2.36) is the

absence of a dispersive term in one of the equations. Extension of these equations to

two dimensions yields the set (3.5.64), (3.5.65), the first equation of which contains

neither dispersive nor transverse terms.

In Chapter 4 all the main results of this thesis are summarised and discussed.



CHAPTER 2

COUPLED WAVES IN A THREE-LAYERED FLUID

WITH A PIECEWISE CONSTANT BASIC FLOW

2.1. LINEAR APPROXIMATION

Let us consider the three-layered fluid with configuration shown schematically in

Figure 1. The basic horizontal flow U(x,y,z,t) and density p(x,y,z,t) are piecewise

constant functions given by

U =

U3,

Uv T\<z<H2+^ (2.1.1)

Uv -HX<Z<T\,



p =

p3, H2+t><z<H2+H3»

2,
(2.1.2)

p,, -

where Hi is a height of the unperturbed i-th layer / = 1,2,3 (counting from the bottom),

r\ = i\(x,y,t) and £ = £(x,j>,/) are perturbations of the lower and upper interfaces

respectively (see Figure 1).

The flow is assumed to be inviscid and incompressible so that it may be considered

in each layer to be irrotational with a velocity potential fy,, such that incompressibility

condition takes the form of the Laplace's equation as follows

(2.1.3)

The x, y and z components of perturbation velocities are ui =§ix, v, =§iy, wt =§iz

respectively. Here subscript i = 1,2,3 denotes the index of a layer and f^^dfjdx1.

To describe this model the Laplace's equation should be supplemented by appropriate

boundary conditions. First we will use the rigid plane condition at both upper and lower

fixed boundaries putting vertical velocities <j>3. = 0 at z = H2+H3 and (j>,, = 0 at

z = -H] respectively. Another set of boundary conditions are given at the lower

z = r\(x,y,t) and upper z = C,(x,y,t) interfaces comprises both kinematic boundary

conditions

, + (U, + ((),, X* + <i>, A = *,; > / = 2 , 3 , (2.1.5)

1 Throughout this text we will keep the suffixal denotation for derivatives and the comma will separate

differentiation subscripts from others if the latter takes place.



= H2+H3

= r\

p,

Figure I. Configuration of three-layered fluid model.
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and the pressure boundary conditions

]_

2
1
2

= 0,
z=r\

(2.1.6)

2Ty 2 T r = 0, (2.1.7)

where

,;>, V)L.-n= lim {/•(*, >>,z0 +E,0-/k^.^o ~
E->0

(2.1.8)

is ajump of a function f(x,y,z,t) across a plane z = z0.

After linearising equations (2.1.4) to (2.1.8) we can seek their solutions of the form

T[ = A exp(/fcc + ily - i(Ot) + c.c,

C, = B exp(ikx + ily - iot) + c.c,

<}>, = Ft (z)exp(zfcc + //>> - i(Ht) + c.c.,

(2.1.9)

(2.1.10)

(2.1.11)

where c.c. denotes complex conjugation. Substituting (2.1.11) into (2.1.3) results in

ordinary differential equations of the form

dz
2
L+m2Fl=O, m2=k2+l2, / = 1,2,3, (2.1.12)

with solutions

= AT cosh(m(z+ // , )) , (2.1.13)
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F2 =Lcosh(mz)+Msinh(mz), (2.1.14)

F,=Ncosh(m(z-H2-H3)), (2.1.15)

Functions (2.1.11) with Ft given by expressions (2.1.13) - (2.1.15) automatically

satisfy the rigid plane condition at both rigid boundaries. Substitution of them into the

linearised version of boundary conditions (2.1.4) - (2.1.7) given at the unperturbed

interfaces at z = 0 and z — H2 followed by eliminating constants K, L, M and

Nyields the following equations for.the amplitudes A and B of the interfaces

disturbances

(2.1.16)

where

D -e(o -D ) mPib-K*uJ mp2(c-KxUj

tanh(/n//2) tanh(mH3)

siinh(mH2
( 2 U 9 )

c = co/m is the phase velocity; ic, =k/m = k/Jk2 +l2 .So if limK^ exists and is equal

to a then 0 < a < 1 as 0 < ic, < 1 and a = 0 if k = o(l) and a = 1 if / = o(k).

To obtain conditions for resonance between two modes A and B we must take the

long-wave limit as m—>0. Then the coefficients (2.1.17) - (2.1.19) become the

following expressions

12



(2.1.20)

(2.1.21)

£ = J _ l l _ _ — L L ? (2.1.22)

where

1

and Dl2,E,c = lim(D, 2> £", c), i.e. the tilde indicates the value of a variable after taking

the limit as m H> 0.

Simultaneously putting Dl = D2 = £", = 0 we then obtain the following parameters

restraints yielding resonance

c=aU2=aUi±ci=aU3±c3. (2.1.24)

If a = 0 (i.e. k = o(/)) then the phase speed c should be equal to both c, and c3 so that

cx=-cl. This case is not of interest here as we are seeking the description of

perturbations propagating primarily along the direction defined by that of the basic flow

(i.e. along x-axis). If a = 1 (i.e. / = o{k)) then we have the same conditions as those

obtained by Grimshaw (2000) for the one-dimensional model. Without loss of

generality we may set U2 = 0 and take U3 > 0 to obtain the following resonance

conditions

13



r
c = 0 , £/,=?<:,, t/3=c3 . (2.1.25)

Note that in the case with a^O after the transformation at/,->£/,., / = 1,2,3 the

resonance conditions become the same as for the case with a = 1. So, taking a ^ 0 does

not yields new resonance states. Accordingly we take the case a = l for further

consideration.

Now suppose that the system is not exactly at the resonance state defined by (2.1.25),

but located in a small neighbourhood of it. Its deviation from the resonance is then

characterised by a small parameter £, such that

= Tc, -f- 5,, Ui=c3 + 33 (2.1.26)

with 8I3=o(e2),while

U2=O(e), c = o(e2), k = O(e), / = o(e2). (2J.27)

We now can unfold the coefficients of (2.1.16) as follows

After substituting (2.1.28) - (2.1.30) into (2.1.16) and replacing ik, il, ita by d/dx,

d/dy, -d/dt respectively we obtain the following coupled linear Kadomtsev-

Petviashvili (KP) equations

14



= 0, (2.1.31)

(2.1.32)

with coefficients given by

2 Ux p ,
(2>1.33)

U]Hf, X2 =~U,Hl, (2.1.34)
D O

(2.1.35)

i^M, K 2 = _ 1 ^ P & , (2.L36)
2 6T, p , / / 2 2 C/3 p3/f2

Equations (2.1.31) and (2.1.32) describe the propagation of two coupled interface

perturbations. The interaction between these modes is characterised by second

derivative terms with K, 2 coefficients in each equation. If these coupling parameters

equal zero, the equations separate into two linear KP equations without any interaction

between perturbations. In the next section weak nonlinearity will be taken into account

to obtain coupled nonlinear KP equations.

• !
|
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2.2. DERIVATION OF NONLINEAR COUPLED 2D-EQUATIONS

In the previous section two linear KP-like equations were derived to describe two

coupled interfacial perturbations. That derivation was made on basis of solving

Laplace's equation (2.1.3) in each layer and then substitution of the solutions obtained

into linearised version of the kinematic and dynamic boundary conditions (2.1.4) -

(2.1.7) given on both interfaces. To derive nonlinear equations we must solve Laplace's

equation (2.1.3) as well, but in contradistinction to the linear case the Fourier approach

(2.1.11) now is not fruitful for further satisfying the nonlinear boundary conditions

(2.1.4)-(2.1.7).

An alternative approach applicable to the nonlinear boundary conditions is based on

the assumption that we are interested only in long-wave perturbations, as this follows

from the assumptions (2.1.27) made at the final stage of obtaining the linear KP

equations. Consequently we may consider the velocity potential (j) along with the

interface perturbations r| and C, to be a slowly varying function of x, y and t.

Therefore if £ is a small parameter which characterises such a slow dependence then in

accordance with assumption (2.1.27), we introduce the scaling

= e2y, T = zh. (2.2.1)

In this case Laplace's equation (2.1.3) becomes

(2-2-2)
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A further consequence of this shallow water approach is that we can assume that the

characteristic length of the perturbations is much longer than the height of each layer.

Accordingly, with respect to such large scaled perturbations each layer may be

considered to be "thin", so that it will be sufficient to consider only the leading terms of

a power series to describe the dependence on the vertical variable z. Thus we let

1 = 1,2,3, (2.2.3)
w=0

where ai are some constants. Such an approach has been applied to the derivation of the

KdV equation for various stratified media (see, for example, Dodd et al. 1984). We now

follow this approach to derive coupled KP equations.

Substituting (2.2.3) into Laplace's equation (2.2.2) yields the following recursion

relation

8 ^"n • (2-2.4)

It follows from (2.2.4) that we only require the first two functions <j>f* and <E>f̂  to

obtain all others for the series (2.2.3). Furthermore, it is easy to see another consequence

of the relation (2.2.4); the higher the order n of 4>W the smaller it is in terms of e.

Therefore, we really need only the first few terms in series (2.2.3).

Omitting details the following expressions for the velocity potential in each of the

three layers can be obtained

z(z+Hxycxxxx+0{z), (2.2.5)

D+zE--e2z2Dxx - - V J F 42D
xx2 ^ 6 " l 2 " 6

(2.2.6)
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(2.2.7)

-Le<(z-H2-HjFxux+0{E<'),

where

(2.2.8)

The series (2.2.5) and (2.2.7) which already satisfy the rigid plane conditions at

z--Hx and z = H2+Hz respectively, which is why they contain only one unknown

function (C and F respectively).

In turn the functions (2.2.8) can be expanded in asymptotic series as follows

C = eC1+e3C3+o(e5), D = E2D2+E3D3+e4DA+o(es), (2.2.9)

(2.2.10)

Also we will assume that the resonance conditions (2.1.26), (2.1.27) obtained from the

linear, long-wave analysis apply. Thus

U2=EU2, U3=U3+E%, (2.2.11)

where Ul = +cx and U3 = c3. And finally the interfacial perturbations must be

represented as asymptotic expansions in powers of e as follows

V = E2A2 +E4A4+O{E6), C = £2£2 +Z*BA +0{E6). (2.2.12)

At this stage, now that all the necessary asymptotic expansions are defined, we can

insert the solutions (2.2.5) - (2.2.7) of Laplace's equation into the boundary conditions
18 g
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(2.1.4) - (2.1.7) together with the asymptotic expansions (2.2.9) - (2.2.12). After

implementation this procedure and grouping of terms in powers of e we obtain the

following equations.

At leading order the kinematic boundary conditions (2.1.4), (2.1.5) yield

U A + HC •== 0 E —U A (2 2 13")

X = 0; (2.2.14)

the pressure boundary condition (2.1.6) yields

(2.2.15)

while the pressure boundary condition (2.1.7) yields

(2.2.16)

Equations (2.2.13) - (2.2.16) simply describe linear effects without dispersion,

transverse dependence and nonlinearity. All these effects will be taken in account at the

next order of asymptotic expansion with respect to £. At this order the kinematic

boundary conditions yield

)X ~ ^\ T^> (2.2.17)

XX ~ ~B2,T ~ xx-lPSxA 6
(2.2.18)

the pressure boundary condition (2.1.6) yields

19
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-P2K -P2U2D2X

(2.2.19)

and the pressure boundary condition (2.1.7) yields

(2.2.20)

2

After eliminating all variables except J42 , 5 2 and rescaling all variables and parameters

to their original forms wu can obtain two coupled nonlinear KP equations of the form

K lSxv — U> (2.2.21)

(2.2.22)

where

3 17, 3C/3
L l , = -

2/f
(2.2.23)

and other coefficients are given by (2.1.33) - (2.1.36).

We note that taking into account weak nonlinearity does not result in the appearance

of new coupling terms. So, within the framework of this model coupling of two

distinctive two-dimensional nonlinear modes is described by linear terms, as for the

one-dimensional case (Gottwald and Grimshaw 1998, Grimshaw 2000). This differs

from another considered later in Chapter 3, where the two modes are coupled not only

due linear but also tc nonlinear terms.
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With no coupling (i.e. K, = K2 = 0) we have two separate KP equations describing

two waves, which do not interact with each other. This property can be used for the

investigation of the interaction between two exact solutions of KP equations in the case

of weak coupling (i.e. assuming K, 2=O(e) , where e is some small parameter

characterising small coupling). For example, we can use equations (2.2.21) and (2.2.22)

with small coupling parameters for asymptotically describing the behaviour of a wave

system consisting of two KdV solitons or two lump solitons, both of which are exact

solutions of a separate KP equation.

In the next sections we will obtain equations describing the dependence of the

amplitudes and phases of two KdV solitons weakly coupled to each other, and then

explore the stability of such a system with respect to transverse perturbations. Earlier

the same problem, but in one-dimensional context, was investigated by Gottwald and

Grimshaw (1998).

Putting y, = y2 = 0 we can exclude all terms containing derivatives with respect to

the transverse variable y from the coupled KP equations, thereby transforming them

into the coupled KdV equations investigated by Gottwald and Grimshaw (1998),

Grimshaw (2000). Thus, any solution of the coupled KdV equations will also be a

solution of the coupled KP equations. We note that the functions

= a]sech2(w(x-ct))> £> = a2 sech2 (w(x-ct)) (2.2.24)

solve equations (2.2.21) and (2.2.22) exactly (Gottwald and Grimshaw 1998) provided

~ 12A,,w2

ax = a2 = (2.2.25)

c-A.+-11.0,1 3 ' '
(2-2.26)

The following sections of this chapter are devoted to an investigation of the evolution

of this two soliton solution in the two dimensions.
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2.3. ASYMPTOTIC DESCRIPTION OF TWO COUPLED KdV

SOLITONS

As stated at the end of the previous section we now investigate the evolution of the

coupled KdV solitons (2.2.24) - (2.2.26), disturbed by a small perturbation. The

principal idea of modelling a perturbed KdV soliton by using a multiple scale

perturbation analysis to derive evolution equations for the amplitude and phase was

introduced by Johnson (1973). This method was further developed by Karpman and

Maslov (1978) and Kaup and Newell (1978) whose procedure was based on the inverse

scattering technique. An extension of this work was undertaken by Grimshaw and

Mitsudera (1993), taking into account higher-order terms when applying a multiple

scale asymptotic expansion. Gottvmld and Grimshaw (1998) then applied this method to

describe the evolution of a pair of one-dimensional, coupled KdV solitons. We will

follow this analysis to describe the evolution of two coupled KdV solitons in two

dimensions.

We assume that the coupling between solitons propagating along two interfaces is

weak and their shape slowly depends on the transverse variable, so that K, = £K,,

K2 = £K2, where £ is some small parameter. Further, it is assumed that both T] and C,

slowly depend on the transverse variable y, so that they actually depend on Y = ey.

Under such assumptions equations (2.2.21), (2.2.22) become

= 0, (2.3.1)

ft, +A2t>x+\i2&x + X£xxxl + £2y£Yr +eic2'nJB = 0. (2.3.2)
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Note that both these equations transform to separate KdV equations as e—»0.

Therefore we can seek a solution of equations (2.3.1), (2.3.2) in the form of asymptotic

expansion

(2.3.3)

(2.3.4)

with T|^ and C}0^ approaching appropriate solutions of separate KdV equations as

e —> 0. We then take these functions in the form of KdV solitons with parameters

depending on Y and on a slow timescale T = et as follows

T ^ = a, (7\ y)sech2 (9,), C® = a2 (T, 7)sech2 (92), (2.3.5)

where

^ y r i=l,2, (2.3.6)
e

c, =cJ0)+ec(
0) + 62c,(2) + o(83)5 j = l ,2 . (2.3.7)

As can be seen the amplitudes ax 2 of these solitons and their phases <E>, 2 depend on the

two slow variables T and Y. Our task is now to derive equations governing this

dependence.

After substitution of the expansions (2.3.3), (2.3.4) into equations (2.3.1), (2.3.2) we

have at leading order the following equations

(2.3.8)

(2.3.9)

It is easy to check that the functions (2.3.5) solve the above equations provided
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(2.3.10)

At second order we have the following linear inhomogeneous equations for T|^ and

£(0

(2-3.11)

(2.3.12)

To obtain solvability conditions we introduce two linear operators

(2.3.13)

x
(2.3.14)

As these operators contain neither complex valued functions or constants, nor

derivatives of an odd order they are selfad'oint. Note that the leading order equations

may be expressed as

/f lTii0)=0, //2^0) = 0. (2.3.15)

Then the adjoint homogeneous equation corresponding to (2.3.11) has the form

HJx=0. (2.3.16)

From (2.3.15) this equation has a solution fx =v^\ while another linearly independent

solution has a form
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= e,sech2(e,)tanh(ei)+—cosh2(0,)+--sech2(ei). (2.3.17)

Due to the unboundedness of the solution (2,3.17) the first solution ( / = T | ^ ) should be

used to construct the following solvability condition for the equation (2.3.11),

. - 0 . (2.3.18)

The same manipulations lead to a similar solvability condition for the equation (2.3.12),

(2.3.19)

After substitution of the expressions (2.3.5) into equations (2.3.18), (2.3.19), and after

some simplification, we obtain the following equations governing the solitons'

amplitude variation

- = 2K1W2«2 ?sech2(G)sech2 ^-0-w2AO Itanhf^-0-w,Ad> W (2.3.20)

^ 2 - = 2K2vv,a1 fsech2(9)sech2 -^-0+w,A<I> tanh -^-0+w,AO W0, (2.3.21)

where A4> = O2-<!>,.

To obtain equations describing the variation of the solitons' phases, 3>, 2 , we must

use solvability conditions for the equations arising at the next, third, order of asymptotic

expansion of the basic equations (2.3.1), (2.3.2). However, to complete that we need a

solution of the equations (2.3.11) and (2.3.12). Following the procedure developed by

Grimshaw and Mitsudera (1993) we first integrate (2.3.11) once with respect to x to

obtain a second order differential equation
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(2.3.22)

Hereafter TJ* = lim T|^ which, in general, is non-zero as slowly varying solitary waves

generate a tail (see, for instance, Johnson 1973, Karpman and Maslov 1978, Grimshaw

1979). Such a radiative tail is essentially a linear wave and propagates behind or ahead

of the solitary wave depending on whether A,, > 0 or A,, < 0 respectively. So, we must

set i\+ = 0 in the case A,, > 0 and rf = 0 if A., < 0. Then tak.ng the limit of (2.3.22) as

x —» -oo, and assuming lim TJ^ = 0 we will have

(2-3.23)

It is relatively easy to check that the function

(2.3.24)

solves the following equation

(2.3.25)

and v(1) "->+— (n+-T| ) as x->±«>. As stated above the left hand side of the equation

(2.3.25) is equated to zero since v,(1)=rij)) and v<° is defined by (2.3.17). The

Wronskian of these linearly independent solutions is then
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Then the general solution of the inhomogeneous equation (2.3.25) can be expressed as

2

(2.3.27)

"IO

where ^, and A2 are arbitrary constants and

(2.3.28)

Finally after reverting to the variable r̂ 1*, defined by (2.3.24), we have the solution

of equation (2.3.11) in the form

M U 1 *
(2.3.29)

+ 4v?> —Tiff v«G^ L . vO)"f

The solution of equation (2.3.12) can be similarly obtained in the form

2 2fitf2^ 22 f 2 2 ^ J
(2.3.30)

where
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lim C;(I), R = ~\^0)dx + K2i]
{0\ (2.3.31)

jr->±~ 37" J

2,.t — T7

with wf̂  = ( ^ and u^ defined by the same expression (2.3.17) but after substitution of

92 for G,.

The third order terms of the asymptotic expansion of equations (2.3.1), (2.3.2) result

in the following inhomogeneous equations

- T, (*,,K N°] (2.3.33)

(2.3.34)

Note, that both equations obtained contain the same operators on their left hand sides as

for the equations (2.3.11) and (2.3.12) respectively. So, the procedure of obtaining the

solvability conditions for equations (2.3.33) and (2.3.34) is similar to that used for the

equations of the second order. Namely, we must multiply the right hand side of equation

(2.3.33) by T|(o) and the right hand side of equation (2.3.34) by £(0), and then integrate

the products with respect to x over the whole spatial domain. For example, after some

simplification the solvability condition for the equation (2.3.33) has the form
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(2.3.35)

Y , * , yr

After substitution of (2.3.30) and (2.3.31) into equation (2.3.35) and working through

the necessary simplifications (for details see Grimshaw and Mitsudera 1993), followed

by rescaling of all variables and parameters to restore them to their original values, we

obtain an equation describing the evolution of the phase 3>,,

dt
(2.3.36)

=0-

Similarly the equation for <l>2 can be derived in the form

?>6w7X, d [d<Z>2 . 1

xsech2

w, J f 3w2 3 /
= 0.

Here M> = O2-<!>,. Thus, we now have equations (2.3.20), (2.3.21), (2.3.36) and

(2.3.3 P which describe the evolution of the amplitudes and phases of two coupled KriV

solitons. Extension of the problem to two-dimensions effects only the equations for the

29



phases. These differ from those obtained by Gottwald and Grimshaw (1998) in the term

containing second order derivative with respect to the transverse spatial variable y. It is

not difficult to check that this term can be identically transferred to similar terms

obtained for a single KdV soiiton using the KP equation (see, for example, Ablowitz and

Segur 1981). The amplitude equations (2.3.20), (2.3.21) do not change from those

obtained by Gottwald and Grimshaw (1998).

The next section is devoted to examining the linear stability of the exact solutions

(2.2.24) - (2.2.26) of the coupled KP equations (2.2.21), (2.2.22) with respect to

transverse perturbations. The basis of this is the solution of the linearised version of the

evolution equations obtained in the current section. Although consideration of

transverse effects results in the appearance of only one additional term in the phase

equations, they essentially change the stability properties of the two coupled KdV

solitons system considered, as will be seen.
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2.4. ANALYSIS OF STABILITY OF TWO COUPLED KdV

SOLITONS WITH RESPECT TO TRANSVERSE

PERTURBATIONS

As stated at the end of the previous section the aim of the current section is to

examine stability properties of the exact solution (2.2.24) - (2.2.26) of the coupled KP

equations (2.2.21), (2.2.22) with respect to transverse perturbations. To complete this

task we must linearise equations (2.3.20), (2.3.21), (2.3.36) and (2.3.37) describing the

evolution of the amplitudes al2 and phases O,2 of each KdV soliton considered.

Suppose that all parameters of the system of two KdV solitons (2.2.24) are slightly

perturbed from their exact values defined by the expressions (2.2.25) and (2.2.26) i.e.

they can be expressed as

= a , 2 + 8 a 1 2 , w12 = wl-Sw12 , O 1 2 =c? + 84>12 (2.4.1)

so that

(2.4.2)

Then after substitution of (2.4.1) into equations (2.3.20), (2.3.21), (2.3.36) and (2.3.37)

and subsequent simplification we can obtain the linearised version of those equations,

(2.4.3)
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(2.4.4)

d(Sa2 (2.4.5)

2 (2.4.6)

Here

45X2 '
(2.4.7)

3 I 3 45 U' +
3 3 45

(2.4.8)

45 Ja, 3 45 \a2
(2.4.9)

( 2-4 '1 0 )

(2-4.11)

With g, = g2 = 0 the equations above coincide with those obtained by Gottwald and

Grimshaw (1998).

After substituting 8al2 (T, Y)=8al2 exp(yr+vY), 84>, 2 (T, Y) = 80,2 exp(yT+v

into equations (2.4.3) - (2.4.6), they reduce to the following system of linear equations
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-Y

0

dn

/2Y

0

-Y

f<1 -

d2y

~b{

-h2y

b2

2 hxy

h2y-y2+g2v
2

Sa2

= 0 (2.4.12)

The solvability condition for the system of equations (2.4.12) has the form

{-v2dxbxg2 -f + b2d2v
2gx +g1g2v*)f=0.

(2.4.13)

Let us examine roots of the above equation in the case of no radiation, where

hx =h2 = 0 . Then, omitting the trivial double root 7 = 0 , equation (2.4.13) reduces to

the following biquadratic equation

4 + (§i - 82 - (g, + g2 y )f - 2v2g, 2v4 = 0, (2.4.14)

where 6, —dxbx +b2fx, 52 = f2bx +b2d2. It follows from (2.4.14) that if y0 is a root of

this equation then so must be -- y0. Consequently this system is stable if and only if

Rey=0 or y2 < 0 . Then using simple relationship between roots and coefficients of a

quadratic equation the stability criterion can be formulated in the form of three

simultaneous inequalities,

- 62 - (g, + g2 y J + 4(8,v2g2 - 82v
2g, - g,g2v

4 )> 0,

8,-S2-(g,+g2)v2>0, (2.4.15)

hi the absence of ^-dependence (v = 0) the set (2.4.15) reduces to the following single

inequality
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5, - 52 > 0, (2.4.16)

which coincides with the stability criterion obtained by Gottwald and Grimshaw (1998).

To have only bounded perturbations in the ^-direction, thus we require v2 < 0, and so,

everywhere in this section we consider v to be a pure imaginary number.

It is easy to show that the first inequality of the set (2.4.15) can be expressed as one

of two equivalent inequalities,

( S I - 8 2 - ( g 1 - g 2 y ) 2 - 4 S 2 ( g 1 - g 2 ) v 2 > 0 , (2.4.17)

or

(2.4.18)

These versions of the inequality will be used in further detailed analysis of the

consistency of the set (2.4.15).

It is obvious that the transverse terms can affect the stability properties of the system.

For example, for g, > 0 and g2 > 0 there always exist v0 > 0 such that every inequality

from (2.4.15) is valid for all pure imaginary v with |v |>v0 . Besides, it follows from

(2.4.17), (2.4.18) that the first inequality from (2.4.15) is satisfied by all pure imaginary

v provided

(2.4.19)

Thus, it is possible for the transverse terms to stabilise this system in the case where the

one-dimensional system is unstable (i.e. 8, - 52 < 0 ). So, the influence of the transverse

terms on the stability of the system is nontrivial and is worthy of detailed consideration.

Before we commence analysing the consistency of the set (2.4.15) it should be noted

that in various terms of the three-layered model under consideration the sign of g, 2 are

strongly definite, since
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g l = 9 3//,
= L<0,

3 „
(2.4.20)

Thus, hereafter we confine our analysis to the case g, > 0, g2 < 0 only. For further

simplification let us also put s = -v 2 , so then s > 0 for all pure imaginary v . Hence, the

initial set of inequalities is modified to either of the equivalent sets,

, - 5 2

0 < s < s2,

0,

(2.4.21)

or

0 < s < s2,

(2.4.22)

where

g i ~
5 2 = —

8i\gi\
(2.4.23)

To determine the relative location of 5, and s2 on the real axis the sign of their

difference

s2-sx= — (2.4.24)

should be examined.
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I. First let 52 > 0 . Under this condition the set (2.4.21) is preferred for analysis, as in

this case the first inequality of (2.4.21) is identically satisfied by all positive s, and so,

need no longer be considered. Let us then consider all possible subcases:

(i) Let g, >\g2\ and - T ^ T O ^ <5 , . Then the third inequality of (2.4.21) is inconsistent
\S21

because

(2.4.25)

The set of inequalities (2.4.21) is thus inconsistent (and, consequently, the system of

solitons is unstable).

(ii) Let g, > IgJ, but 5, < -—,§2 < 0. Then

5+181 M
2 ' ' > 0 , s2 = -^Uo, (2.4.26)

and the set (2.4.21) reduces to the following one

(2.4.27)
\0<s<s,.

which is inconsistent because

2

<0. (2.4.28)

(iii) Let 0 < gl < \g2\ and o, < 82. The second inequality becomes 0 < s < sl with
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(2.4.29)

So, the set (2.4.21) is inconsistent again. Ifg, - | g 2 | the second inequality is also invalid

because (see the second inequality at (2.4.15))8, - S2 = 8, +|82| > 0.

(iv) Let 0 < g, < \g2 and 0 < 8, < 5,. In this case

_^ft±«Jftl<0 (2A30)
g\S\

and the third inequality of (2.4.21) is invalid.

Thus the system turns out to be unstable in the case S2 > 0 regardless of any other

relationships between parameters.

II. Now let 82 < 0 but 8, > 0. Under these new conditions the first inequality of (2.4.21)

is no longer satisfied for all s>0. In this case the second version (2.4.18) of this

inequality is preferred, as in this form it is still satisfied for all positive s. Therefore, the

application of the set (2.4.22) in this case reduces the analysis to solving just the two

last inequalities.

i . i 8.+I6J
(i) Ifg, > g2j theng, -\g2\ > 0 and s, = —• y < 0. So the second inequality is also

satisfied by any positive s and the set (2.4.22) thus reduces to a single inequality

0 < s < s2. This inequality defines a nonempty number set as long as the parameter

illlpA is positive (for |82j>8,-^-). Otherwise (for |82|< 8,-^1) thes2=--

solution of this inequality and consequently that of set (2.4.22) are empty.

(ii) If g, < g2 then g, - g2 < 0 and 5, =r-=\ L > 0. So, the second inequality reduces
\82\-g\

r. 2 5> 2

to 0 < s < sx. But because of s1-si = ~-A—' 2 \ < 0 our problem again reduces to

the same single inequality as in the previous case.
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(iii) If g, = \g21 the second inequality is satisfied identically as 5, - 82 = 5, + |S21 > 0 and

as above we have only the third inequality left to determine the stability/instability

criterion.

So, in the case 5, > 0 and 8, < 0 regardless of any additional relationship between

g, > 0 and g2 < 0 the system is stable for 0 < s < s2 provided 52 > 8, ̂ - and unstable
g\

otherwise.

III. Now let us consider the most complicated case when both 8, and 82 are negative.

Now either the first inequality of (2.4.21) or (2.4.22) is not necessarily satisfied for all

positive s. It is not difficult to show that this inequality is satisfied

byse (0,s3)u(.y4,oo) with

S3=- , ^4 o, (2.4.31)

so that the basic set of inequalities then can be rewritten as follows

0<s<s2.

(2.4.32)

Consider then the relative location of all four parameters sit i = 1... 4 on the real axis.

First it is easy to show that

S4~S2 = — (2.4.33)

so the s2, s3 and s4 are always ordered as

0 < J , < sA < s-,. (2.4.34)
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The location of s, with respect to the other s, depends on the relationship between

other parameters of the model. To determine this order the following expressions are

introduced

(2.4.35)

— 2 (2.4.36)

(i) First let g, > g2\ and |8,| < 5, . In this case g, - g2 > 0 and

(2.4.37)

so the second inequality of (2.4.32) is valid for all positive s. Then due to (2.4.34) the

set of inequalities (2.4.32) is valid for

se(0,s3)v(s4,s2). (2.4.38)

(ii) Now let g, > |g,| and |62| < |5,| < ~-|82J. In this case 0<s3<sl<s4<s2, since
62

tSi j i ~ ~ ~~Z (2.4.39)

>2|-J8

- f t 2
>0 (2.4.40)

and the set (2.4.32) reduces to s4<s<s2.
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(iii) If g, > |g2 and |8,| > •—f |S7| then g, - g2 is still positive but
o 2

i )si
(2.4.41)

so in this case 0<si<s4<s2<sl and the second inequality at (2.4.32) is inconsistent to

others.

(iv) Under the conditions g, < g2 j , |5,| > 82 the second inequality of the set (2.4.32) is

not valid for any positive s as in this case g, - igJ < 0 and

sl~- (2.4.42)

Therefore the set of inequalities (2.4.32) cannot be satisfied by any positive s

(v)Ifwe let g, <|g2 | and |5,|< 52 <-^-|S,| then 0<s3 <s] <sA <s2 since
61

2 2
(2.4.43)

to2-ft2;
(2.4.44)

Thus the set (2.4.32) is equivalent to 0 < s < s3.

(vi) For the conditions g, < |g2| and |82 > -^T|5, we have
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s2 =y, — <0 (2.4.45)

resulting in 0<si<s4<s2<sx. Therefore, in this case the set of inequalities (2.4.32)

reduces to s2<s<s].

(vii) Finally let us consider the case g, = g2 | . We cannot use the second inequality in

terms of s} as it is singular. Putting g, = |g2| m t n e second inequality of (2.4.15) gives

5, - 8 , > 0. So, if 8, < 82 the set (2.4.15) is inconsistent, otherwise (i.e. for 8, > 82) it

reduces to the inequality SG (0,si)u(s4,°°).

Summarising the results obtained above we can make the following conclusion about

the stability/instability of the system of two KdV solitons. So, the system is stable:

for 0 < s < s2 provided 8, < — 8, < 0 and 8, > 0;
g\

for 0 < s < 53 or s4 < s < s2 provided 0 < —g2 < gx and 8, < 8, < 0;

for s4 <s<s2 provided 0 < - g 2 <g, and —j-8, <8, < 8 , < 0 ;
£2

for 0<s<s3 provided 0<g , < -g 2 and -^-8, <82 <8, < 0 ;
g\

for s2 < s <.?, provided 0 < g, < - g 2 and 8, < ̂ L 8, < 0;
8\

and the system is unstable:

for all s > 0 provided 8, > 0;

or 0 < 87 — < 8, and 82 < 0;
' g2

or 0 < - g 2 < g , and 8,<-^-82<0;

or 0 < g, < -g2 and 8, < S, < 0;
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• for s > s2 provided 52 < — 5 , < 0, 5, > 0;

• for si < s < s4 or s2 < s < °° provided 0 < —g2 < g, and 52 < 8, < 0;

• for 0< s <s4 or s-, < s < 00 provided 0 < - g 2 < g, and -^-S, < 8, < 82 < 0;
Si

2

• for s3 < s < co provided 0 < g, < -g 2 and *-j 8, < 8, < 8, < 0;

• for 0 < s < s2 or 5, < s < 00 provided 0 < g, < - g 2 and 8, <-^f-8, < 0.
£1

It follows that there is no conditions under which the system may be stable for all

positive s. Consequently, for a perturbation with a sufficiently wide spectrum the

system is unstable. In particular the system perturbed by the white noise is always

unstable (given that the conditions g, > 0 and g2 < 0 apply).
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2.5. NUMERICAL SIMULATION OF TWO COUPLED KDV

SOLITONS EVOLUTION

In the previous section we investigated the linear stability of a solution of the

coupled two-dimensional equations (2.2.21), (2.2.22) in the form of a pair of the KdV

solitons (2.2.24) - (2.2.26). As stated this solution is unstable to any perturbations,

which have a sufficiently wide spatial spectrum relative to the transverse direction. In

particular, this system is also unstable when perturbed with two-dimensional white

noise.

The aim of this section is to confirm numerically the previously obtained results and

determine the possible evolution of this system where the initial profile is given by

(2.2.24) at / = 0, perturbed by white noise. Based on the properties of a single KP

equation, such perturbations would be expected to evolve to either a single two-

dimensional solitary wave or a system of such waves. As known (see, for example,

Kadomtsev and Petviashvili 1970, Akylas 1994) the KdV soliton is stable (unstable) to

two-dimensional perturbations if it is described by a KP equation (say (2.2.21) with

K,=0) with positive (negative) dispersive coefficient A,. In the case of stability

(instability) of the KdV soliton there does not (does) exist a two-dimensional solitary

solution of the KP equation. Thus, there is a link between stability of the KdV solitons

and existence of a two-dimensional solitary solution for the uncoupled KP equation.

The coupled KP equations (2.2.21), (2.2.22) were integrated numerically1 by means

of a pseudospectral technique {Canuto et al 1988, Fornberg 1998). Periodic boundary

1 The code written and maintained by my supervisor Dr. S. Clarke has been used for these

integrations.
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conditions were imposed both in the x-direction and v-direction. The initial values were

taken of the form,

r\{x,y,t = 0)= a, sech2 x, , y,t = 0)=a2 sech2 x. (2.5.1)

These initial wave profiles were perturbed with a random function of x and y with

uniform spatial spectrum (white noise).

The amplitude of (2.5.1) and parameters of equations (2.2.21), (2.2.22) are chosen to

satisfy relationships (2.2.25), (2.2.26), so that in the case of no dependence on the

transverse coordinate (i.e. when Yi = Y2 = 0) s u c n perturbations would propagate along

the x-direction with no change. We have used the following 4 sets of parameters for

mor* 'ling the evolution of the initial profiles (2.5.1):

I. A, =8 , A 2 =-8 , n ,=

ax = 2, a2 = 8 .

=6, X, =1, A.2=4, y ,=2, Y 2 =-l , K , = 0 . 5 , K 2 = 2 4 ,

II. A, =7, A 2 =-7 , n ,=

a, = 2, a2 - 8.

=6, A,, =1, X2=4, y ,=2 , y 2 = - l , K , = 0 . 5 , K2=16,

III. A, =6, A, = -6 , fi1=(i2=6, \ - \ , X2=4, y ,=2, Y 2=-l , K , = 0 . 5 , K , = 8 ,

ax = 2, a2 = 8.

IV. A, =-22, A2=22.05, j i ,=ji2=6, A, =5 , A 2 =- l , y ,=l , y 2 =2 , K , = - 0 . 5 ,

K2 =4 , a, =10, a2 = -2 .

Results of the modelling for sets I - III are represented in Figures 2 - 4 respectively

in the form of a series of contour plots taken at five consecutive moments of time

t = 0, 0.5, 1,0, 1.5, 2.0 as indicated on top of each plot. The left column describes

the evolution of T\ perturbation, the right one of the £ perturbation evolution. For each

plot horizontal and vertical axes are for x- and ^-dependence respectively. Figure 5

represents evolution of the system, which parameters defined by set III as well as Figure

4, but in the form of series of three-dimensional surface plots taken at three consecutive
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t = 0.0 t = 0.0

-30 -20 -10 0 10 20 30

t = 0.5

-30 -20 -10 0 10 20 30 -30 -20 10 20 30

Figure 2. Evolution of two coupled KdV solitons with parameters of set I.
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t = 0.0 t = 0.0

20 -10 0 to 20 30

20 -10 0 10 20 30

20 -10 0 10 20 30

20 -10 0 10 20 30

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Figure 3. Evolution of two coupled KdV soli tons with parameters of set II.
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I = 0.0 t = 0.0

-30 -20 0 10 20 30

t = 1.0

-30 -20 0 10 20 30 -30 -20 -10 0 10 20 30

Figure 4. Evolution of two coupled KdV solitons with parameters of set III.
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Figure 5. The same as Figure 4 but in a three-dimensional format.
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moments of time / = 0, 1.0, 2.0. The results of the evolution for the set IV system are

not represented graphically here since this system happened to be stable.

As seen from the various figures, sets I - III describe unstable evolution of the system.

Instability results in the initial t, profile breaking into two (set I, II) and three (set III)

compacted peaks (light points in the contour plots), which may be associated with two-

dimensional solitary waves. The evolution of another profile (perturbation of the r\

interface) is also unstable, but its instability is much slower, so that its leave into

compact peaks takes much more time and was not tracked, as it requires much more

computer resources. Note, that separate KP equations (with K, = K2 = 0) in these cases

describe stable KdV solitons as Xl2 > 0 and cannot generate two-dimensional solitary

waves. Therefore, unstable behaviour of these systems is a consequence of the coupling.

One of these (set I) corresponds to the stable one-dimensional system as 5, — 52 > 0

in this case. This illustrates the destabilisation property of the transverse perturbations.

The set IV satisfies the linear instability criteria formulated in the previous section as

well as the stability criteria for one-dimensional system (8, - 8 2 < 0). Hence, the system

would have been expected to evolve unstably. We can assume that linear instability

generated at the initial period of evolution was then suppressed by nonlinear stability

effects. Thus, this fact shows that nonlinear stability analysis must be employed to state

the final stability of this system.

Thus the numerical modelling of two coupled KdV solitons shows that both coupling

and transversity affect the evolution of this system.
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CHAPTER 3

COUPLED WAVES IN A THREE-LAYERED FLUID

WITH A PIECEWISE LINEAR SHEAR FLOW

3.1. LINEAR APPROXIMATION

We now consider some modifications to the three-layered fluid model explored in

Chapter 2. With the same geometrical configuration as shown in the Figure 1 we still let

the density of the fluid be piecewise constant and described by expression (2.1.2), but

the horizontal basic flow is now assumed to become piecewise linear as follows

U =

, H2+C)<z<H 2 T i '3>

Ux+Q.2z, (3.1.1)

Ui+Qlz, -H]<Z<T\.

Here U} =U] + Q.2H2 and T|, C a r e still the displacements of the lower and the upper

interfaces respectively. The basic flow defined by expression (3.1.1) has constant shear
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in each layer and is continuous across each undisturbed interfaces (i.e. when r\ = £ = 0).

The continuity of the undisturbed basic flow is enforced to prevent Kelvin-Hehnholtz

instability (see, for instance, Craik 1985). Thus taking the basic flow in the form of

(3.1.1) can be regarded as an improvement over the model discussed in Chapter 21.

In contrast with Chapter 2 we commence here by considering two-dimensional flow

that will be then extended to three dimensions. To describe evolution of the flow in such

a model we use the Euler equation

(3.1.2)
r at

along with the equation of mass conservation

^ + VVp 0 (3.1.3)
ot

and the incompressibility equation

divV = 0. (3.1.4)

Here pis the mass density of fluid and P is the pressure therein, k is the unit vector

along z -axis; V = V + V where V = (U, 0) is an undisturbed basic flow with functional

dependence on the vertical variable U=U(z) obtained from (3.1.1) by letting

U =

U3+Cl3(z-H2), H2<z<H2+H3,

, 0<z<H2, (3.1.5)

1 Although the previous model cannot be obtained from the one just formulated here as £2y —»

1,2,3.
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and V = («, w) is the velocity perturbation, such that equation (3.1.4) can be rewritten

in a form

f ^ 0. (3.1.6)
dx az

We should note that the equation (3.1.3) does not contradict the fact that the density

p of this fluid is a constant within a layer, as this follows from (2.1.2). Here, in

equation (3.1.3), the density is implied to be a function defined at fixed (not moving)

point (with coordinates x, z ) in contrast to the function (2.1.2) defined at points

moving along with the flow. So, in terms of definition (2.1.2) the density is indeed

constant at any points "stuck" to streamlines within a layer. However the layer

boundaries are variable as the interfaces may be disturbed, in such a case some fixed

points located in a small vicinity of the undisturbed layers boundaries (z = 0 or z = H2)

may alternately belong either to the lower or to the upper layer. It means that density

becomes a function of all spatial variables and time, since the displacement of both

interfaces r) and C, also is dependent on these. This fact becomes obvious after

rewriting the expression (2.1.2) in terms of the unit step function Q(z-a) (equal to 1

for z > a and 0 otherwise) as follows

(3.1.7)

Both descriptions mentioned above are equivalent. The first one is based on a

consideration of a layer as a set of streamlines with the density constant within such a

layer. This approach is useful when a condition of continuity across a disturbed

interface such as (2.1.6) or (2.1.7) is known, and it has been used in the Chapter 2 to

derive the evolution equations for the coupled waves. The second description implies

that geometrical configuration of a layer is fixed and formally not disturbed, as a result

the density becomes a function of the spatial variables and time. This approach does not

require knowledge of any invariants such as (2.1.6) or (2.1.7). This description will be

used below for deriving two-dimensional evolution equations for coupled waves

52



propagating in the three-layered model with piecewise continuous shear flow. In this

section this description is also applied to linear waves.

Putting P = p + p and p = p~+p we can linearise the equations (3.1.2), (3.1.3)

respectively with respect to small perturbations u, w, p and p as follows

p (M, + Uux)+ pQ.w +px=0, (3.1.8)

= 0, (3.1.10)

where p is basic density given by

p3, H2<z<H2+H,,

p2, 0<z<H2, (3.1.11)

p,, -//,<z<0,

and p is unperturbed pressure such that p, =— gp ; U =U{z) is a shear flow defined

by (3.1.5) and Q. = f/r is piecewise shear gradient.

Now let £, = £,(x,z,t) be a vertical displacement of a fluid particle given by

(3.1.12)

so that the equation (3.1.10) becomes

Then after substitution of (3.1.12), (3.1.13) into equations (3.1.8), (3.1.9), (3.1.6) and

subsequently assuming u, £,, p to be proportional to exp(ikx—icot) we can rewrite

these equations in a form
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((ti-kU }.i + pQ.{(i>-kU\-kp = Q, (3.1.14)

(3.1.15)

(3.1.16)

Eliminating u and p from the above equations yields

(3.1.17)

The vertical displacement of a fluid particle (3.1.12) must be continuous across an

interface, therefore

fe]-=o =fe]-ay = ° - (3.1.18)

Then it follows from (3.1.17) the following function must also be continuous at the

interface:

I r . i

= / / 2=0. (3.1.19)

Since p is piecewise constant equation (3.1.17) can be rewritten as a function

\|/ = ((O-kU }; within each layer, of the form

(3.1.20)

so that an explicit expression for the vertical displacement can be readily obtained:

coM/, s i n h ^ H ^ , ) ) fQr_H

*' t o A r ^ + Q ) sinh(/c//,) '
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1

£ _ V)-kUl s\nh(k(H2-z)) U)-kU3 _ sinh(/cz)
2~(0-k(Ux+Cl2z) sinh{kH2)

 +"co~ I(TT ' ^ ^

f o r O < z < / / 2 ; (3.1.22)

P ( 0 k U i p
3 ~ co Jfc(C/ + Q ( z H ) )co- Jfc(C/3 + Q3(z-H2)) sinh(A//

for H2<z<H2+H3. (3.1.23)

Functions (3.1.21) - (3.1.23) are constructed to be continuous across the interfaces at

z = 0 and z = H2. Consequently the conditions (3.1.18) are satisfied and

-B , where A and B are the amplitudes of the interfaces defined as

(n,0= {A,B)exp(ikx-iwt). (3.1.24)

After substituting fiinctions (3.1.21) - (3.1.23) into the continuity conditions (3.1.19)

we obtain the following algebraic equations

+ D2B = 0, (3.1.25)

where

A = g(Pi ~ P2

(3.1.26)

- A-(c - (/, )2 [p, coth(yt//,)+ p2 coth(Ai/2)],

(3.1.27)

- k(c -Uj\p2 coth{kH2)+ p3 coth{kH3)],
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and c = (o/k is the phase speed. In the long-wave limit as k —> 0 expressions (3.1.26) -

(3.1.28) become

(3.1.29)

2~ p3 (3.1.30)

3

Then following general theory (see Chapter 1) we can determine the resonance

conditions by equating expressions (3.1.29) - (3.1.31) to zero simultaneously

E = Z), = D2 = 0. (3.1.32)

The first equation (E = 0 ) yields either c = Ux or c = U3. Without loss of generality we

may set c ~ 0. Then we have two sets of resonance conditions

c = f / ,=0, p , = p 2 , (3.1.33)

(3.1.34)

and

(3.1.35)

(3.1.36)
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The second set of resonance conditions can be obtained from the first one after the

substitution of subscript 1 for 3. Hence, we can confine our consideration to conditions

(3.1.33), (3.1.34) only.

In the presence of weak dispersion characterised by a small parameter £ « 1 the

above resonance conditions should be rewritten as follows

(3.1.37)

p2=p,+e28p2, p3=pc. + e2Sp3, t / ,sO, (3.1.38)

where pt. is a critical value of the third layer density such that condition (3.1.34) is

satisfied, i.e.

p =p, r 4 ^ 2 • (3.1.39)

Then coefficients (3.1.26) - (3.1.28) can be unfolded in the form

(3-1-40)

H^ N

C//3 \ 9c
(3.1.41)

(3.1.42)

Now substituting the above expressions (3.1.40) - (3.1.41) into (3.1.25) and

replacing ik and /co for d/dx and -d/dt respectively (as in section 2.1) we can obtain

two coupled linear equations

(3.1.43)
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, + a2B, + A2BX + Xflxw = 0 , (3.1.44)

where

a2=-p c .Q3-PA,-2p t .^-a2 , (3.1.45)

(3.1.46)

(3-1.47)

The above coupled linear equations have important differences from those obtained

for the model with constant basic flew (Grimshaw 2000). First, they have a different

structure as the dispersive term is contained only in one equation. Another distinction is

in the form of coupling terms. Now the equations are coupled through time derivative

terms, not to spatial derivative terms as previously, and the linear coupling coefficient

G is the same for each equation. Through a linear transformation of the variables A

and B we can exclude one of the above mentioned distinctions, however we cannot

fully transform these equations to those describing linear coupled waves in a model with

piecewise constant basic flow.
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3.2. DERIVATION OF NONLINEAR COUPLED ID-EQUATIONS

In this section we extend the coupled equations derived in the previous section to the

nonlinear case. Confining our attention to two-dimensional flow we can assume that the

perturbed flow in each layer is irrotational (i.e. curlV = 0), so that we can introduce a

velocity potential <j> to satisfy identically the incompressibility equation (3.1.6)

(3.2.1)

provided the velocity potential satisfies Laplace's equation <j>a+<j>_=0. It is also

useful to introduce a stream .function \|/

(3.2.2)

which identically satisfies equation (3.1.6) as well. There is a simple relationship

between functions (|) and x\r emanating from (3.2.1) and (3.2.2), namely tyx = -\\f,,

(]> = \|/v. Thus \|/ also satisfies Laplace's equation, as \|/w + V|/.r = §.x -§x. - 0.

Then the Euler equation (3.1.2) can be rewritten in a form

dt K Jdx dx\2x }) dx{p

—- + U{z)~- +—\-{u +w )\+-r-\— \+g = 0, (3.2.4)
dt dx dz I 2 I dz I p
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where U is supposed to be a linear function of z , Q. = dU/dz = const and the density

p is also assumed to be constant. After rewriting the velocity components in terms of

either (j> or \]/ both above equations can be expressed as a single vector equation of the

form

(3.2.5)

from which immediately follows an equation for pressure:

{tibl)gX (3.2.6)

where p0 is pressure on some level, say at an interface between any two layers. Then

due to continuity of pressure the following dynamic boundary condition applies at an

interface between two layers with a constant shear

_)+ gz = 0. (3.2.7)

Thus the former pressure condition (2.1.6), (2.1.7), used for the model with a piecewise

constant basic flow, must be replaced in this section by the above boundary condition

applied at both interfaces. Further the kinematic boundary conditions (2.1.4), (2.1.5)

must be modified as follows

(3.2.8)

(3.2.9)

after taking into account the basic flow structure of the form (3.i.l) with (/, =0 in

accordance with one of the resonance conditions (3.1.33). Here the subscript i indicates
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a layer index counting from the bottom, another subscript following the comma is used

for designation of a partial derivative.

To satisfy the other resonance conditions (3.1.33), (3.1.34) we must introduce the

following scaling

= ex, (3.2.10)

and represent the density in the form

p.-=P<o)
+ey2), (3.2.11)

where

[p., -
(3.2.12)

8p3, H2 + C,<z<H2+H3,

5p2, C,<z<H

0, -//,<Z<T|.

(3.2.13)

Here 5p,3 and pc are defined by expressions (3.1.38) and (3.1.39) respectively. Under

the scaling (3.1.10), Laplace's equation, say, for the stream function \|/, inside the /-th

layer, becomes

(3.2.14)

Then following the procedure of section 2.2, we can seek a solution of equation (3.2.14)

in the form of power series in z

n=0

/ =1,2,3,
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where ai is some constant depending on the index of a layer /. Substituting (3.2.15)

into (3.2.14) yields the following recursive relationship

that in its turn allows us to state

(3.2.17)

y2=D(X,T)+E(Xj)z-U2Dn,(X,T)z2
 -U2EXV{X,T)+O(E4), (3.2.18)

z o

(3.2.19)

Since <J). = e\j/-V and \|/. = -£(j) v the velocity potential in each layer can be represented

as follows

8 v ( , X 1 ) 0 ( e ) , (3.2.20)
2

f i g T K + D ( X r ) ^ £ ( x r ) 2 C>(3) (3.2.21)
eJ 2

(3.2.22)

Finally, we should unfold all unknown previously introduced functions

C(X,T)=E2C2(X,T)+£4C4{X,T)+O{e6), (3.2.23)
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(3.2.24)

E(XJ)=E2E2(X,T)+E4E,{X,T)+O(E6), (3.2.25)

F(X,T)=--E2F2(X,T)+E4F4{X,T)+O{E6), (3.2.26)

J]{X,T)=£2A2{X,T)+£4A4{X,T)+O{E6), (3.2.27)

C,{X,T)=E2B2{X,T)+E4B4(X,T)+O(E6). (3.2.28)

After substitution of (3.2.17) - (3.2.28) into the boundary conditions (3.2.7) - (3.2.9) at

both interfaces, taking into account (3.2.10) - (3.2.13) and grouping terms with the

same power of £ we can obtain sets of equations governing the above functions.

At the leading order these equations result in

C2 = D2 = 0, E2 = Q2B2, F2 =
 2-^-B2. (3.2.29)

At the next order the kinematic condition (3.2.8) gives two equations

HXCAX = A2J + Q.XA2A2X, DAX = A2T + Q.2A2A2X -Q,(A2B2)X, (3.2.30)

the next two equations result from another pair of the kinematic conditions (3.2.9)

H2E,X -Q2H2B,X =-A2J+B2T -£12A2A2X -Q2B2B2X +Q2{A2B2)X, (3.2.31)

H3Ft v +Q,H,BA v = - * , r ~ ? % ^ 2 - * , * , v -&,B2B2 v . (3.2.32)
H

The pressure condition (3.2.7) at the interface z = r\ gives the following equation
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p, j £ 2 7 . ^ - ^ p , ; ^ -§p2gA2 -p,fi2D4 +p,t2,//,C4 = 0 , (3.2.33)

and the pressure condition (3.2.7) at the other interface yields the equation

-;PAA,xxHl+p&2D.i +pcQ2H2FA -pcg2?4 + 5p2g52 +\p,Q.2H\E2xv
o J

(3.2.34)

-Sp 3 g5 2 =0.

Making allowance for the resonance condition (3.1.34) we can eliminate all unknown

functions from the set of equations (3.2.29) - (3.2.34) except A2 and B2. Then after

rescaling obtain the following set of coupled nonlinear equations

a,4 +oB, + A, 4 + M 4 +v(dB\ -VBBX = 0, (3.2.35)

GA, + GL2B, + A,BX H A£XXX + [i2BBx -V{AB)X + vAAx = 0 , (3.2.36)

where

A-z2A2 =rj + 0(e 4 ) , B = z2B2 =C3 + O(e4) (3.2.37)

are the leading order magnitude of the displacements of the interfaces and

v = p1O2
!, (3.2.38)

u, =p,Q2
i -pcO3

2 - 3 p c a 2 Q 3 ^ - 3 p c Q ^ . (3.2.39)
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Other coefficients are defined by (3.1.45) - (3.1.47). Hereafter it is also assumed that

a,oc2 - cr ^ 0 , otherwise these equations could not be resolved with respect to temporal

derivatives.

The obtained equations (3.2.35), (3.2.36) differ from the previous set of coupled

equation (2.2.21), (2.2.22) derived for the model with piecewise constant basic flow.

The main difference is again in the form of coupling. The above equations have both

nonlinear and linear coupling terms whereas the equations (2.2.21), (2.2.22) have only

linear terms. As for the linear analysis of the previous section, equation (3.2.35) also

lacks a linear dispersive term. It is now clear that a linear transforming of the variables

A, B can introduce dispersive terms in both equations, but this will cause the nonlinear

terms to become significantly more complex. Although both equations do not have

typical KdV form, their solutions in the form of solitary waves, as it will be shown

below, are very similar to KdV solitons in a small amplitude approximation.

65



3.3. SOME APPROXIMATE SOLUTIONS OF THE COUPLED

ID-EQUATIONS

Here we seek a solution of equations (3.2.35), (3.2.36) in the form of a stationary

wave, i.e. that depends on a single variable £, = x-Vt, V = const. Such solutions and

their derivatives are also assumed to vanish as £ —> °°. After taking into account the

dependence of A, B only on £, equation (3.2.35) can be immediately integrated and

thereby reduced to the following polynomial equation

-2AlA-\ilA
2 -2vAB+vB2 =0 . (3.3.1)

Equation (3.2.26) can be readily integrated once. Then the resultant equation

obtained is multiplied by B^ and, following some standard manipulations involving

equation (3.3.1), can be integrated once more to give

(3.3.2)

where

F(A,B)=GVAB+-VAB2 +-\i]A
i+a2VB2 -A2B

2 -~\12B
3. (3.3.3)

2 6 3

We can now use equation (3.3.1) to represent A as an explicit function of B :
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Kx, - Bv - A, - sgn(Ka, - A, ) ^ - Bv - A, )2 + B\ix (Bv + 2Ka) 3

It is important that the expression above is defined such that A vanishes as B —» 0.

Accordingly this relationship between A and B can be employed for describing

coupled solitary waves with decaying tails. After substituting (3.3.4) into the

polynomial F(A,B) for A we will have the following equation

(3.3.5)

where F{B)^F{A{B\B)/X. It is not hard to extract the leading term of the right hand

side of the above equation as B —» 0

h - °* y2 - («, y « A y+A, A2_B2+o(g3) (336)y.
Therefore the following condition must be imposed on parameters of the model

otherwise equation (3.3.5) will be undefined for small B. The fact that the main term in

expansion (3.3.6) is proportional to B2 ensures the presence of exponential tails at a

solitary solution of equation (3.3.5). In the case V = 0.4, a = 2 and all other parameters

equal to unity the graph of the polynomial F(B) is displayed in Figure 6. It is clear that

polynomial shape is similar to the cubic that appears in the case of the KdV soliton. So

we can now set up the initial value problem as follows

B{0)=B0 (3.3.8)
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to describe a solitary wave solution. Here Bo is the root of the polynomial F(B), which

is the closest to the origin. For the set of parameters mentioned above Bo ~ 1.18 and the

solution of the problem (3.3.8) is displayed in Figure 7.

It is important to note that in some cases condition (3.3.7) may impose a restriction

on the wave amplitude Bo. For instance, when a , < 0 , a2 < 0, A ,>0 , A 2 <0 , A, > 0

and a,a2 - a 2 > 0 (these may really follow from (3.1.45) - (3.1.47)), the numerator in

the left hand side of (3.3.7) has two real roots of different signs:

„(•) _ - " A -«2Ai -V(a,A2 -a.Af +4A,A2a
2

2(a2-a,a2J

(2) _ - a , A , - a 2 A, + y(ct,A2 - a .A, ) 2 +4A,A2a2 ,„.„,
1 " 2 ( a 2 - a 1 a 2 ) ' (3-3-1U)

and for V > Vp > 0 , where Vp is either V^ or V^2\ whichever of these two is positive,

condition (3.3.7) becomes invalid. Since the amplitude Bo depends on V this may define

an upper limit for the amplitude of a wave traveling with a positive velocity.

The graphs in the Figures 6 and 7 appear similar to those obtained for the KdV

equation, which gives a reason to attempt to seek an approximate small-amplitude

solution in a form similar to the KdV solitary wave. For this purpose we have to assume

that the velocity of such a solitary wave V should depend on its amplitude BQ. For

small amplitudes this dependence is assumed to be linear, i.e.

(3.3.11)

Amplitudes of both waves AQ and Bo are roots of simultaneous equations

\F(A,,B0)=0,
(3.3.12)
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Figure 6. The typical graph of the polynomial F{B).
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Figure 7. A solution of initial value problem (3.3.8).
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The second equation of the set (3.3.12) may be employed to express Ao in terms of Bo

as

.J. 1 j)

After substituting (3.3.11) into (3.3.13) and then expanding for small Bo we have

2(A 1 -a 1 F 0 ;

Putting (3.3.14) into the first equation of the set (3.3.12) gives the following equation

2 + 2 ( A , - K a , ) 2 ^

+ 1 <• • | » | ° ' |
2 4(A,-a,K0) 2(A,-a,F0)

4(A,-a,K0)3

(3.3.15)

At the leading order we have
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which determines the principle value of the wave velocity Vo. The above quadratic

equation has two values given by (3.3.9) and (3.3.10). These in general correspondent to

two different pairs of coupled waves. At the next order we have the equation

||

. - a ^ o ) 2(A1-a,F0)

3

which gives

^ . = | , (3-3.18)

where

= A3,|i2 - 3F0A
2, (va+a, | i2)+ 3F0

2A, (va2 + 2vaa,

(3.3.19)

- Vo
3 (3va,o2 + 3va2a - n,a ' + a3^i2

= Fo
3 (3a2a2 -3a fa 2 )-3K0

2A, (3a,a2 - 3 a 2 a 2

(3.3.20)

-3a,a2)+3a2A3 .

Thus for given amplitude Bo of a solitary wave we can estimate its velocity in a form

(3.3.11) using (3.3.9) or (3.3.10) along with (3.3.18) - (3.3.20). For example, using the

same set of parameter (except the value for V) as used above for obtaining the

numerical result0, displayed in the Figures 6 and 7, the above procedure yields
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F « 1.0303 for Z?0=0.01 and K = 1.2121 for £ 0 = 0 . 1 . Reversing this procedure and

keeping the value for V as obtained in the last step, with the other parameters still the

same we can estimate the roots of the simultaneous equations (3.3.12) to be

BQ = 0.00995 and BQ = 0.08773. These are in good agreement with the values 0.01 and

0.1 given initially for the amplitude of the B wave.

As the above example has shown a KdV-like relationship between the amplitude of a

wave and its velocity in a form of (3.3.11) has been derived if the wave amplitude is

small. We now must show that the shape of a small amplitude solitary wave is KdV-like

as well. For this purpose we first need to expand equation (3.3.4) with V given by

(3.3.11) provided B\< BO « 1 and then substitute the result obtained for A in the

expression for F(A,B). This procedure results in the following approximation of F(B)

F{B)=aB2{B0-B)+o{B4
0), (3.3.21)

where

'v Ir n~ r/ rs~r~
(3.3.22)

a = i a 2 , 2co<r

X ^(A,-coa,)

Then the solution to equation (3.3.8) with F{B) in the form (3.3.21) can be expressed

as

(3.3.23)

which is similar to a KdV soliton in the small amplitude approximation. As it follows

from (3.3.23) \B ^\BO\ then the expression (3.3.23) can be obtained as a solution of

(3.3.21) under the following conditions: either a>0 and 0<B<Bo or a < 0 and

B0<B<0. So, the sign of the solitary wave (3.3.23) coincides with a sign of

expression (3.3.22). This is consequence of the constraint (3.3.7) with the substitution

(3.3.11). Thus, there is a constraint on the parameters involved to have a solitary like
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solution of equations (3.2.25), (3.2.26), and it may be that a solution of type (3.3.23)

does not exist for all set of parameters of the model.

An attempt1 at seeking an exact solution by substitution of functions

(3.3.24)

into equations (3.2.35) and (3.2.36) yields the following values for the amplitudes a, b

and other parameters of this solution

a= |.i2-2vp+vp2 b- . . . . . .
(3.3.25)

(3.3.26)

(3.3.27)

The above solution (3.3.24) has a sec/r-like form, which is typical for solitons,

however equations (3.3.25) - (3.3.27) do not define a family of solutions, as a set of the

model parameters gives only two different sets of values for functions (3.3.24). Another

feature of this solution is that the amplitudes of the waves (3.3.24) do not depend on the

velocity V. Thus the approximate solution (3.3.23) cannot converge to the exact

solution (3.3.24) - (3.3.27), and so, belongs to a separate branch.

1 This solution has been obtained by my supervisor Dr S. Clarke.
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3.4. HAMILTONIAN STRUCTURE OF THE COUPLED ID-

EQUATIONS

The symmetry of the nonlinear coefficients in equations (3.2.35), (3.2.36) ensures

that this system is Hamiltonian. To reduce these equations to canonical Hamiltonian

form let us first rewrite them in vector form as follows

" ax *
(3.4.1)

where vectors q and R are given by

q =
B

R =

i 1
-A,A--\i,A2 -vAB+-1 2 2

-A2B-XBXX--\L:E'1 --vA2+vAB
(3.4.2)

and J is the following symmetric matiix (J,k = Jki, i, k = 1,2)

a2 - a

-a a, j

(3.4.3)

provided a,a2 - o 2 ^ 0. Le': us now prove that the following functional
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H= 1\--A.A2 --&2B
2 +-XBl~-ii.Ai --\L2B

3 --vA2B+~vAB2\dx (3.4.4)
{{ 2 ' 2 2 x P1 6^2 2 2 J_{{ 2 ' XB

2 x

is the Hamiltonian of the system described by the coupled equations (3.2.35), (3.2.36).

First of all the Hamiltonian (3.4.4) is indeed an invariant of the system as

—
dt 2 '

-A2B-XBXX --\12B
2 --vA2 +VAB

oo to 00

= J Rq^x: = J RJR xdx = J (RJR)X dx =0

B,\dx

(3.4.5)

under the assumption that A, B and all their derivatives vanish as x - ^ i « ) which is

assumed throughout this section. The symmetry of the matrix J has been taken into

account as weil.

It is also not difficult to show that the variational derivatives (see, for instance

Gelfand and Fomin 1963, Swaters 2000) of the Hamiltonian H with respect to A and

B have the following form

1} (3.4.6)

„ = -A2B-\Bxx--\L2B
2--*

SB 2 " 2 2 2
(3.4.7)

S.TT

or = R , so that the equation (3.4.1) can be rewritten in the canonical for
5q

Hamiltonian formulation form

3q=~5/7
5/ 8q

(3.4.8)
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d
where J = J — is a matrix of differential operators. This operator J involved in

dx

formulation our equations in the Hamiltonian form (3.4.8) must define the Poisson

bracket for arbitrary smooth functionals F and G as follows

(3.4.9)

From hereon repeated subscripts denote summation. To accomplish the proof that the

coupled equations (3.2.35), (3.2.36) have Hamiltonian structure we must prove (Swaters

2000) that the Poisson bracket (3.4.9) satisfies the following properties: self-

commutation, skew symmetry, distributive and associative properties as well as Jacobi

identity.

The bracket (3.4.9) meets the self-commutation property due to symmetry of the

matrix J as

k

. ~. 8F
, . j _____ dx=0. (3.4.10)

\ * /

The skew symmetry property is also a consequence of the symmetry of the matrix J

as

7SF _ 3 8G , 7 d (dF dG Y 7 d 5F 8G .

(3.4.11)

rSG 9 8F
J d

The distributive and associative properties result from the linearity of the bracket as

(3.4.12)
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[ F G , Q h j

i oq d* 5q
(3.4.13)

For manipulating the latter bracket we use the fact that F and G, as functionals, are

functions of time only and can therefore be taken outside of the spatial integrals.

The last property of the bracket (3.4.9) we must prove is that the Jacobi identity

^ (3.4.14)

is valid for all allowable functionals F, G and Q. Because of the symmetry of J

dx
(3.4.15)

fy, 'k dx

the variational derivative of a bracket can be expressed as follows

52G T 3 30 820 r d oGd dQ 8g 3 5G
' *a5 56^ "* 5x 5q

and then a compound bracket is given by

78



52G
\dx[bq

(3.4.17)

r *>Q j j d (hG

x 5* .

Similar expressions can be obtained for the other brackets in (3.4.14)

dx
dF

& 8,.r

(3.4.18)

-J.J,.

dx

dx.

(3.4.19)

Expressions (3.4.18), (3.4.19) have been obtained from (3.4.17) after appropriate

swapping of the symbols F, G, Q over each other and renaming some repeated

subscripts. Substitution of (3.4.17) - (3.4.19) into the left hand side of (3.4.14)

identically yields zero, which proves the Jacobi identity.

Thus we have proved the fact that the system described by the coupled equations

(3.2.35), (3.2.26) is Hamiltonian and can be formulated in the canonical form (3.4.8)

with an operator J generating the Poisson bracket (3.4.9), which satisfies all five

properties required. O"° of the most important consequences of this fact is an

opportunity to construct an infinite set of invariants of the coupled equations, as a

Poisson bracket of any two invariants is an invariant too. This would result in the proof

of the integrability of the coupled equations (3.2.35), (3.2.36).

Integrating buth equations (3.2.35), (3.2.36) over the infinite spatial domain provided

a,a2-a2 yields
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^ = 0, <£-0, (3.4.20)

where

= \Bdx (3.4.21)

are two Casimirs as — - = — - = 1 and — - = — - = 0, so both C. and C, result in
8A SB SB §A ' 2

Poisson bracket (3.4.9) to be zero with any functional. Another invariant

-a]A
2+aAB+-OL2B

2 \hc (3.4.22)

can be obtained by integrating the sum of equations (3.2.35) and (3.2.36) multiplied by

A and B respectively. The invariant (3.4.22) can be interpreted as a momentum

invariant, while the Hamiltonian (3.4.4) can be considered as the energy of the system.

To construct an infinite set of invariant proving integrability of the system we need

to have one more invariant of order higher than 3. Unfortunately, we could not find any

more invariants of a higher order. Thus the integrability of the coupled equations

(3.2.35), (3.2.36) is an open research question.
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3.5. DERIVATION OF NONLINEAR COUPLED 2DEQUATIONS

Here we generalise the three-layered fluid model described above to the case of

three-dimensions to obtain a two-dimensional modification of the coupled nonlinear

equations (3.2.35), (3.2.36). The geometrical configuration of the model is the same as

for two-dimensional case with basic flow and basic density given by (3.1.1) and (2.1.2)

respectively. The three-dimensional fluid is no longer irrotational so that a simple scalar

invariant such as (2.1.6) or (3.2.7) is not applicable as a boundary condition on an

interface. In this case we use the approach of section 3.1 for deriving the linear coupled

ID-equations, according to which the basic configuration is assumed to be fixed and

described by (2.1.2) and (3.1.5).

Our starting equations are therefore the Euler equation (3.1.2), the equation of mass

conservation (3.1.3) and the incompressibility equation (3.1.4) written for a three-

dimensional fluid V = V + V, where V = \U, 0, Oj is the undisturbed flow with U

given by (3.1.5) and V = (z/,v,w) is a velocity perturbation. Repeating the procedure

described in the section 3.1, but now for three-dimensional fluid we can obtain the

analogous linear equations (3.1.25) for the amplitudes A and B of the interface

disturbances

(3.5.1)

with
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(3.5.2)

- (c - Ux f {p,»» coth (/«//,)+ p2 m coth(w//2

(3.5.3)

- (c - U3 )2 \p2m coth(mH2)+ p3 m coth(m//3)],

P _

sinh \mH2)

Here m1 =k2 +l2. A similar analysis of the relationship between k and / , as has been

done for the linear approximation of the previous three-dimensional model (see section

2.i), shows again that the only appropriate assumption is l = o(k). Then in long-wave

limit (k -> 0) we obtain the same expressions for D,, and E as (3.1.29) - (3.1.30). As

a result the same resonance conditions (3.1.33) — (3.1.36) are obtained for three-

dimensional case as well.

It is now clear that to derive nonlinear two-dimensional equations describing

resonant interaction of two coupled waves we must introduce the following scaling

(3.5.5)

where e is a sir, ill parameter, and represents the density configuration in the form

(3.2.11) - (3.2.13). Without loss of generality we can use (3.1.5) with (/, = 0 . The basic

equations (3.1.2) - (3.1.4) can be represented in the form

(3.5.6)

(p + p)(v, + (u + U}'x + w + vt'v.)+ p = 0, (3.5.7)
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(p + pX*v, + (// + U )wv + vw,. + ww.)+ gp + px=O, (3.5.8)

(3.5.9)

(3.5.10)

All functions involved into equations (3.5.6) -(3.5.10) must be expanded in powers of

e as follows

u=e2u{0){T,XJ^)+eAu(x)(T,X,Y,z)+o{£6), (3.5.11)

(3.5.12)

= £3w(0){T,X,Y,z)+£5w{l}(T,X,Y,z)+o{e'), (3.5.13)

(3.5.14)

= e2p{0){T,X,Y,z)+eAp{x\T,X,Y,z)+o(z6), (3.5.15)

= z2A(0){T,X,Y)+£AA{l){T,X,Y)+o{e6), (3.5.16)

(3.5.17)

The equation of mass conservation (3.5.9) is among the basic equations which

determine the variation of density due perturbations of the interfaces. It is also useful to

estimate the variation of the basic flow. The basic flow given in the form (3.1.1) can be

rewritten in term of the Heaviside step function 0(z) (equal 1 for positive z and 0

otherwise) as follows

83



U = jQ,z0(ri - z)&(z + // ,)+ n2z0(z - r\)Q(H2 + £ - z)

(3.5.18)

As T| and C, are small with respect to the height of each layer we can formally expand

(3.5.18) in powers of the interfaces displacement

(3-5.19)

where U = U(z) is a basic flow given by

U =

z-H2\ H2<z<H2+H2+H3,

- 1 * J

(3.5.20)

Then substitution of (3.5.16), (3.5.17) into (3.5.19) yields

(3.5.21)

Here

(3.5.22)

(3.5.23)

It follows from the expansion (3.5.21) the perturbation of U „ caused by interface

displacements, is O(e4). Consequently this perturbation does not contribute at the

leading two orders of the expansions of the basic equations (3.5.6) - (3.5.10) used for

the derivation procedure below. Hence we can place U in each equation of the set
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(3.5.6) - (3.5.10) instead of U. Of course, the perturbation of the basic flow must be

taken into account for higher orders.

After substitution of the expansions (3.5.11) - (3.5.17) into equations (3.5.6) -

(3.5.10) they become at the leading order

P ( 0 ) ( M W + uPU)+ pM = 0, (3.5.24)

gp(0) + />J0) = 0, (3.5.25)

(3.5.26)

Mg> + w<0> = 0 . (3.5.27)

The y-component of the Euler equation (3.5.7) does not contribute at this order.

Eliminating all variables except vv̂ 0) this set can be reduced to a single equation

& ^ = 0. (3.5.28)

Within each layer equation (3.5.28) becomes

w£} = 0, (3.5.29)

as p^°\u' = const there. Thus the vertical velocity in each layer is just a linear function

with respect to z.

The vertical velocity of the interface z = r\(t,x,y) is given by

w(...,z=Ti±o)=n /+(c/(ri±o)+w(...,2=Ti±o))n,+v(...,z=7i±o)n,, (3.5.30)

where ellipsis denotes other independent variables. To leading order the right hand side

is o(e3), then it follows that
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wv (3.5.31)

since £/(0)=0. The same algebra carried out for the other interface z~H2+tl{t,x,y)

yields a nonzero value of the vertical velocity on the interface

wv (3.5.32)

as U{H1)=Q.2H2 . Thus w^ is continuous across each interfaces

= 0. (3.5.33)

As then follows from (3.5.28) th' re is another condition of continuity

(3.5.34)

The solution of equation (3.5.29) satisfying all conditions of continuity (3.5.33) and

(3.5.34) is"given by

\i.-)ZD y ,

o,

0<z<H2 ' (3.5.35)

-H{<z<0.

Employing equations (3.5.24) -- (3.5.27) we can find expressions for the other variables

involved, namely
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0,

0<z<//2,

- / / . <z<0,

(3.5.36)

(3.5.37)

(3.5.38)

Before considering the next order basic equations let us determine if the vertical

velocity is continuous across an interface at higher order or not. The exact equation for

the vertical velocity value on both sides of the interface z = T\{t,x,y) is given by

(3.5.30). After expansion of all components of velocity in a small vicinity of the

undisturbed interface z = 0

(3.5.39)

(3.5.40)

(3.5.41)

we can obtain the values of the vertical velocity on both sides of this interface as

follows

M(... ,z=±o)+«2(..,,z=±o)n+...}n.

+{v(...,z=±o)+v,(...,z=±o)n+...k
(3.5.42)



Unfolding this equation after substitution of (3.5.11) - (3.5.17) gives us (3.5.31) at the

leading order (?(e3) and the following equations

vv(1)(..., z =+0)= A^ + Q2A
{0)AP + (u{0){..., z = +0)A{0)\, (3.5.43)

(3.5.44)

at the next order O(e5). The same procedure employed at the other interface z = //2

yields (3.5.32) and

., z = H 2 ) ^ 2 2 ^ 2 : !

(3.5.45)

(3.5.46)

at the leading and the higher order respectively. It follows from (3.5.43) - (3.5.46) the

vertical velocity may not be continuous across both interfaces at higher orders.

Therefore we must take into account the jump of w^ across both interfaces at the next

stage of the perturbation procedure.

At the next order of asymptotic expansion the basic equations (3.5.6) - (3.5.10) are

given by

V)
(3.5.47)

(3.5.48)



1

= 0, (3.5.49)

p(o) + OpO) + M(o)p J ) + w(o)(p(o) + p_(

(3<5<51)

As at the previous order we can derive the following single equation governing

after eliminating all other variables of second order

) (3.5.52)

= 0 .

We can integrate the left hand side of equation (3.5.52) with respect to z over the

segment (H2 -X, H2 + T ) and after integrating take the limit as x —> 0 . As a result the

following condition of continuity across the interface z = H2 applies

L ] =0, (3.5.53)
2 .„ ,'Ill

where

f) (3.5.54)
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Since t/(0)= w(o)(o)=O and p(o) = const, p (o ) = p(o) = O throughout the two lower

layers including at the interface z-Q. Employing the condition of continuity (3.5.53),

(3.5.54) at the interface z = 0 yields [wf]^ = 0, which contradicts (3.5.43), (3.5.44).

This discrepancy is caused by degeneration of equation (3.5.52) at the lower interface.

To circumvent such a difficulty one should set fr0' = p, = const, p^' =•- p^ = 0 in

equations (3.5.47) - (3.5.51) before elimination procedure. Then the equation for w^

within the IAVO lower layers and the condition of continuity through the plane z = 0 are

respectively

(3.5.55)

^

(3.5.56)

where

^ = Pt {r7 V J - UJp+40) + t/°M0) + w%
(3.5.57)

Within each layer both (3.5,52) and (3.5.55) can be reduced to the simple equation

wj^-wg, (3.5.58)

and the function w^ can be easily found in each layer, as follows:

i.If - H, < z < 0 then w{0) = 0 and

(3.5.59)
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ii.If 0<z<H2 then w{0)-zSl2Bf] and

(3.5.60)

iii.If H2<z<H2 + H, then w(o; = (H2 + / / , -zp.2H2BP/H, and

fi^^j (3.5.61)
6 J

where

(3.5.62)

(3.5.63)

are defined by (3.5.43), (3.5.46).

Now after substitution of (3.5.59) - (3.5.61) into the conditions of continuity

(3.5.53), (3.5.56) followed by appropriate manipulation including rescaling, we obtain

the following coupled equations

alA,+aBt+AlAx+\iiAAx+v(AB\-vBBx =0, (3.5.64)

+\i2BBx-v(AB\. +vAAx\+yBw =0, (3.5.65)

where

(3 5.66)

1 and the other coefficients are given by (3.1.45) - (3.1.47), (3.2.38) and (3.2.39).

As with the one-dimensional coupled equations (3.2.35), (3.2.36), the two-

s' dimensional equations obtained he<e result in two equations of different structure. The
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first equation (3.5.64) remains the same as in the one-dimensional case. It does not

contain either dispersive or any transverse term (Ayv or Byv). The second equation

(3.5.65) has a KP-like form, similar to those obtained for the three-dimensional model

of Chapter 2 with piecewise constant basic flow, however with different coupling terms.

It appear that the resonance conditions (3.1.33), (3.1.34) suppress the dispersive and

transverse effects for the long-wave perturbation of the lower interface, and these

effects can be only transferred from the higher interface perturbation due to coupling

terms.

We have numerically1 simulated the evolution of a system' of two solitary waves of

the form (3.3.24) with the following set of parameters: <x ,=a 2 =l , n, = j i 2 = l ,

A, = 0.5, A, = 1, (5 = 2, v = 1, X = - 1 . Since any set of parameters gives two different

values for P, depending on a sign which the square root in (3.3.27) is taken with, we

have two pairs of waves to consider:

A- 7.5533 sech2 (l.7433A-), 5 = -3.1287sech2(l.7433x) (3.5.67)

when the negative sign was taken, and

^=-3.0533sech2(0.4591x), B = -7.3713 sech2 (0.459 be) (3.5.68)

otherwise.

Functions (3.5.67), (3.5.68) define the form of solitary waves which are exact

solutions to one-dimensional equations (3.2.35), (3.2.36). First, the stability of both

solutions has been checked by numerical integration of these equations with initial

value taken in the form of (3.5.67) and (3.5.68) perturbed by white noise. Evolution of

the waves (3.5.67) and (3.5.68) in one dimension is displayed in Figures 8 and 9

respectively. As seen from this figures, the wave pair (3.5.67) is stable, while the waves

(3.5.68) are not in this one-dimensional case. The stable modes (3.5.67) were chosen for

further examination.

1 The code written and maintained by my supervisee Dr. S. Clarke has again been used.
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Figure 8. Evolution of A and 8 modes of wave (3.5.67) (the upper and

the lower graphs respectively) perturbed by one-dimensional white noise.
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Figure 9. Evolution of v4 and B modes of wave (3.5.68) (the upper and

the lower graphs respectively) perturbed by one-dimensional white noise.
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Figure 10. Evolution of A and B modes of wave (3.5.67) (the left and the

right column of graphs respectively) perturbed by two-dimensional white

noise; y = 0.5
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Figure 11. Evolution of A and B modes of wave (3.5.67) (the left and the

right column of graphs respectively) perturbed by two-dimensional white

noise; y = -0.5
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Equations (3.5.64), (3.5.65) have been then integrated with initial values of the form

(3.5.67) perturbed by two-dimensional white noise. The evolution of waves (3.5.67) is

displayed in Figures 10 and 11 for the two different values of y (0.5 and -0.5). In the

cas;e of positive y the instability causes the wave front to breakdown into separate

coherent structures (see Figure 10) in a similar manner to waves governed by equations

(2.2.21), (2.2.22). However, if yis negative (see Figure 11) the waves appear to be only

weakly unstable, with the instability only causing the white noise to be amplified. Such

behaviour of the solitons may be explained by the fact that the KP equation defines

unstable evolution of the KdV soliton when yk < 0, and stable evolution otherwise.
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CHAPTER 4

CONCLUSION

In the Chapters 2,3 various problems describing coupled nonlinear interfacial

waves in three-layer inviscid fluid flows have been considered. We have used the

following two simple models of such flows. In the first model (model I) both the

basic flow (2.1.1) and density (2.1.2) were assumed to be constant inside each layer.

In model II the basic flow was taken to be of the form of a piecewise linear function

(3.1.1) that ensures continuity of the basic flow in the case of unperturbed interfaces,

while the density is piecewise constant as in model I (2.1.2). Chapter 2 was devoted

to the investigation of coupled waves in model I, while the investigation of model II

was carried out in Chapter 3.

Throughout this text all the evolution equations governing coupled waves have

been derived in a small vicinity of the resonance found by means of the general

procedure proposed by Grimshaw (2000) and described in Chapter 1. Here the

properties of some exact solutions of the obtained two-dimensional evolution

equation have been explored analytically and numerically.

In conclusion the new results, which have been obtained in the framework of the

present research project, can be summarised as follows
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I. The following results relate to investigation of the model I

u

• There has been derived a set of two coupled nonlinear Kadomtsev-

Petviashvili (KP) equations (2.2.21), (2.2.22) for three-dimensional

interfacial perturbations;

* A set of equations (2.3.20), (2.3.21), (2.3.36) and (2.3.37) have been derived

by means of multiscale perturbation expansion to describe influence of both

coupling and transverse effects on the amplitude and phase evolution for a

system of two KdV solitons;

The obtained equations (2.3.20), (2.3.21), (2.3.36) and (2.3.37) have been

used to investigate the linear stability of the coupled KdV solitons (2.2.24) -

(2.2.26) with respect to transverse perturbations;

It has been shown that, unlike the results of the one-dimensional stability

analysis of the same system carried out by Gotiwald and Grimshaw (1998),

there does not exist any conditions that can be imposed on the parameters of

the model to ensure its stability with respect to transverse perturbations of

any spatial spectrum. This means that this system is always unstable with

respect to any transverse perturbation of sufficient wide spectrum (for

example, white noise);

The results obtained from the stability analysis of the system of two coupled

KdV solitons have been confirmed by numerical simulation. In some cases

the system evolved into a system consisting of two or three two-dimensional

solitary waves. Some examples turned out to be stable as the linear

instability was suppressed at a nonlinear stage of their evolution. The

important role of coupling in the generation of two-dimensional solitary-like

patterns has been demonstrated, as the coupled KP equations can describe

the formation of two-dimensional solitary-like waves, while separate KP
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equations cannot admit two-dimensional solitary-like solutions under the

same conditions (i.e. when both dispersion coefficients are positive).
• • >

II. The following results relate to investigation of the model II

• The resonance conditions (3.1.33) - (3.1.34) which ensure the existence of

coupled interfacial waves have been derived;

• A set of two coupled KdV-Iike equations (3.2.35), (3.2.36) have been

obtained;

• An approximate analytical solitary-like solution of equations (3.2.35),

(3.2.36) has been constructed;

• The equations (3.2.35), (3.2.36) have been rewritten in canonical Hamiltonian

form and it has been proven that it is a Hamiltonian system. Four invariants

of the system have been found;

• A set of two nonlinear coupled two-dimensional equations (3.5.64), (3.5.65)

have been derived to describe the influence of the transverse effects on the

evolution of the interfacial perturbations;

• The evolution of the exact solitary-like solution (3.3.24) - (3.3.27) of the

coupled one-dimensional equations (3.2.35), (3.2.36), perturbed with two-

dimensional white noise, has been carried out numerically.
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