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Abstract

Motion estimation is an important issue in the field of video and image processing. In video

compression, it is often combined with motion compensation to exploit the spatio-temporal

correlation of video sequences along the motion trajectory. In video coding, block-matching

algorithms (BMA) are used for motion estimation, with the full search (FS) method

guaranteeing optimal performance in terms of minimum prediction error and hence, picture

quality, though at the expense of a high computational overhead. Many sub-optimal,

directionally-based fast searching techniques have been proposed to reduce this computation

cost; however, they are generally based on assumptions about the video sequence that are often

either inaccurate or inappropriate. Performance is thus very dependent on the motion content

within the sequence. As yet, there is no unified fast searching approach that provides sufficient

flexibility to be able to automatically adapt system parameters, in relation to a particular

application, or a preset user-defined picture quality or computational complexity.

The research presented in this thesis details the development of an application-independent,

non-directional, block-based motion estimation system, which provides such flexibility for

video coding applications. The fully adaptive motion estimation framework guarantees any

level of quality of service (QoS) in terms of prediction quality and processing speed. The

approach has, as its basis, the innovative concept of a Distance-dependent Thresholding Search

(DTS) which exploits statistical analysis of the distortion characteristics of real world video

sequences. A full qualitative and quantitative evaluation of the system is provided, together with

a computation complexity analysis of the various constituent algorithms. A comparison with

other fast directionally-based search algorithms is also presented.

The flexibility of the DTS algorithm is underscored by exploiting its non-directional

characteristics to provide significant improved estimates of block-based true object motion in

object-based video analysis applications. A special filter called the Mean Accumulated

Thresholded (MAT) filter has been designed specifically to eliminate spurious motion vectors

introduced as a result of the limitations of conventional block-based motion estimation methods.

Integration of this filter with the proposed motion estimation algorithm demonstrates that it is a

very powerful tool for block-based true object motion estimation applications.



• ' ' I
1

' • ! . -

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree

or diploma at any university or other institute of tertiary education. Information derived from the

published and unpublished work of others has been acknowledged in the text and a list of references

is given.

Date:



•mi

Acknowledgements

I would like to express my sincere gratitude and profound indebtedness to my supervisors,

Professor LIUUC.KO S. Doolcy and Dr. Manzur Murshed for their constant guidance, insightful

advice, helpful criticism, valuable suggestions, commendable support, and endless patience towards

the completion of this thesis. I feel very proud to have worked with them and without their inspiring

enthusiasm and encouragement, this work could not have been completed.

I am also grateful to Professor Syed Mahbubur Rahman for his good wishes, encouragement,

support, and valuable suggestions.

I thank all the. staff at Gippsland School of Computing and Information Technology (GSCIT),

Monash University. I would like to thank all the research students of the Multimedia Research

Group (MRG), and all other graduate students and friends at GSCIT, Monash University, for their

moral support and encouragement. I would also like to extend my thanks to both Julie Murray and

Harriet Searcy, Language & Learning Services Unit, Monash University, for their kind assistance in

proofreading this thesis.

I wish to express my gratitude to the Gippsland School of Computing and Information

Technology for providing an excellent environment for research and financial support in the form

of teaching assistance and scholarships. The support I have received from Monash University in the

form of scholarships and various professional development programs is gratefully acknowledged.

My heartfelt thanks go to my wonderful wife Shelly for her love, care, patience, and

understanding during this work, and without whose encouragement and moral support this

dissertation would have been impossible. I would also like to thank my lovely son, Tahseen, my

mother and my mother-in-law, and my beloved friend, Polash, for their sacrifice and inspiration.

Last, but by no means least, I thank God for the talents and abilities I was given that made it

possible to undertake this research.

in



I

Acronyms and Abbreviations

if

ACDSDTS

ACDTS

ACNTSS

ANN

BBGDS

BDM

BLMS

BMA

CCF

CIF

CODEC

CSA

DC

DCT

DFD

DS

DTS

ET

FADTS

fps

FS

FLMS

FSS

GME

H.261

H.263

ILSE

JPEG

LMS

Adaptive-Centre Diamond Search Distance-dependent

Thresholding Search

Adaptive-Centre Distance-dependent Thresholding Search

Adaptive-Centre New Three Step Search

Artificial Neural Network

Block-based Gradient Descent Search

Block Distortion Measure

Block Least Mean Square

Block-Matching Algorithm

Cross Correlation Function

Common Intermediate Format

Encoder and Decoder

Cross Search Algorithm

First Coefficient of Discrete Cosine Transform

Discrete Cosine Transform

Displaced Frame Difference

Diamond Search

Distance-dependent Thresholding Search

Exponential Thresholding

Fully Adaptive Distance-dependent Thresholding Search

Frames per second

Full Search

Fast Least Mean Square

Four Step Search

Global Motion Estimation

Standard for video coding

Standard for video coding

Iterative-Least-Square Estimation

Joint Photographic Experts Group

Least Mean Square

IV



LS

LT

MAD

MAE

MAT

MC

ME

MILSE

MPC

MPEG

MSD

MSE

MV

NBLMS

NLMS

NTSS

OFE

OSA

PDC

PSNR

QCIF

QoS

RLS

SD

SIF

SP

SS

TDL

TSS

UESA

Least Square

Linear Thresholding

Mean Absolute Difference

Mean Absolute Error

Mean Accumulated Thresholded

Motion Compensation

Motion Estimation

Modified Iterative Least-Square Estimation

Matching Pel-Count

Motion Picture Experts Group

Mean Square Difference

Mean Square Error

Motion Vector

Normalized Block Least Mean Square

Normalized Least Mean Square

New Three Step Search

Optical Flow Equation

Orthogonal Search Algorithm

Pixel Difference Classification

Peak Signal-to-Noise Ratio

Quarter Common Intermediate Format

Quality of Service

Recursive Least Square

Search Diamonds

Standard Interchange Format

Search Points

Search Squares

2-D Log search

Three Step Search

Unimodal Error Surface Assumption



Nomenclature

Symbols Denotation
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Threshold^, CE)

Threshold^, CL)

T
1 out(MSE)

T
1 out(SP)

Linear thresholding function with control parameter Q.

Mean absolute error between current and candidate macroblocks

with upper left coordinate (k,I) and displacement (w,v).

Maximum prediction error in terms of MSE for C ^ .

Minimum prediction error in terms of MSE for CL^ .

Mean square error between current and candidate macroblocks

with upper left coordinate (k,l) and displacement (w,v).

Motion vector for the current block predicted from the

neighbouring blocks' motion vectors.

Motion vector with x andy components (w,v).

Macroblock size.

Frame size.

Search centre of a search space.

The number of operations required in predicting the search centre
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Search diamonds with index r.

Search squares with index r.

Maximum search speed with threshold control parameter C ^ .

Minimum search speed with threshold control parameter CL .

False motion vector elimination threshold.

Parametric threshold function.

Parametric exponential threshold function.

Parametric linear threshold function.

Target prediction quality in terms of average MSE.

Target search speed in terms of number of search points (SP).

The initial search window's centre from the origin of the current

block.
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Mean motion vector.

Initial search centre in ACDTS and ACDSDTS algorithms.

Number of macroblocks go in the search prctess per second.

Number of operations required for BDM calculation at each

search point.

Step size without normalization.

Step size with normalization.

Search square or diamond index in the search space.

Total number of operations required in the first iteration for

calculating the camera parameters for each macroblock.

Number of operations required per second for the FS algorithm

with integer-pel accuracy.

Kernel size used in the MAT filter.
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Chapter 1

Introduction

1.1 Background: Motion Estimation

Video sequences are much richer source of visual information than still image because of the

representation of motion. While a single image provides a snapshot of a scene, a sequence of

images (widely termed as frames) will register the dynamics within it. The registered motion is

a very strong cue which allows human vision to recognise objects as soon as they move, even if

they are inconspicuous when still. Motion is, therefore, the most obvious and effective feature

in providing global and local understanding as well as describing the dynamic content within a

video sequence. In Fig. 1.1, a reference frame, (n-1), shows an object on a white background.

The following frame, n (called the current frame), shows the same object but in a different

position. The offset between these two positions is called the motion vector (MV), which

defines how to move the object in the reference frame to its new position in the current frame.

The motion vector can be estimated for either each pixel, or for a block of pixels (block-based),

in a given frame.

Motion vector

Current frame, (n)

Reference frame, (n-1)

Fig. 1.1: Representation of the motion vector.

Motion is primarily governed by movement due to the camera being used (pan and/or

zoom), referred to as global motion and movement of objects referred to as either local or true

object motion, or both. Fig. 1.2 shows the motion vector (block-based) needle diagram for

frame n with respect to frame w-1, where n- 32 in the Table Tennis sequence, one of the

standard video sequences used throughout this research, and whose parameters are detailed in
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Appendix B. It is clear that the only moving objects are the bat, ball, and the player's hand. It is

also obvious that besides the movement of these objects, there is widespread motion across the

frame, which indicates the camera zooming out, with some panning as well. This motion does

not depend on any particular object movement and is global over the entire frame; it is therefore

referred to as global (camera) motion, as shown in Fig. 1.3(a). Fig. 1.3(b) shows true object

motion, after camera motion cancellation of the aforementioned three moving objects, based on

their velocities and directions. The overall motion, if both object and camera motion is present,

is the vector sum of the true object and global motion components.

Fig. 1.2: Block motion vector needle diagram showing both global and true object motion.

(a) Global motion. (b) True object motion.

Fig 1.3: Block motion for (a) camera and (b) objects.

The extraction of motion information from sequences of time-varying images has numerous

applications in a wide range of areas especially computer vision [8] and image processing.

Some of the current applications are: -

• Video compression: Perhaps the most important application of motion is in video data

compression [9-13]. In the evolving digital technology era, video compression has

become an integral part of multimedia applications for both communication and

entertainment purposes. In video compression, motion information is used to reduce
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inter-frame redundancy; instead of coding every new frame in isolation, references

are sought from previously coded frames.

• Multimedia systems: Another important application of motion is where the

information is used to characterise video clips for automated indexing and retrieval

from large databases [14-24].

• Mobile robotics: Motion analysis plays an important role in mobile robotics [25, 26]

by aiding navigation, obstacle detection and avoidance, and tracking of moving

objects.

• Satellite imagery: In this area, motion analysis is used to measure cloud movements

and establish wind maps for weather prediction [27].

• Biomedical applications: In this area for example, motion can be used to monitor

movement patterns of the hsart using Magnetic Resonance (MR) imagery [28-30], or

to enhance and interpret ultrasound scans.

• Surveillance: This includes applications for urban and road traffic monitoring, and

protection of sites from intrusion [31].

• Image restoration and enhancement: In this area, motion analysis can be exploited to

remove telecine flicker or motion blur from old movies [32,33].

As the diversity of these applications indicate, motion estimation (ME) has been the focus

of extensive research over many years [34-37], and this is reflected in the plethora of motion

estimation and analysis techniques that have been proposed. Existing motion estimation

techniques may be broadly classified into three distinct classes: -

1. Gradient-based [34,37-40],

2. Pel (pixel)-recursive [41-43],

3. Block-based [36,44-54].

These are discussed below:

1.1.1 Gradient-based Motion Estimation

Pixel-based motion estimation is a gradient-based method [34, 37-40] which focuses on

estimating the apparent motion of intensity patterns in a video sequence, known as optical flow,

and is based on two assumptions. First, that the b ness of an object stays constant over time.

This assumption is called the data constancy constraint [40]. Second, that pixels in a given

small image neighbourhood are likely to correspond to points on the same 3-dimensional (3-D)

surface, the so-called spatial coherence assumption. Since the projected motion of points on a 3-

D surface usually varies gradually, a correspondence of this assumption is to impose a

smoothness constraint on the optical flow.
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The data constancy constraint assumes that any observable change in image intensity over

time is due only to camera and object movement. This constraint has been formulated as a

single differential equation in terms of the partial derivative of the image intensity function,

known as the optical flow equation (OFE). Since the optical flow at each image point is 2-

dimensional (2-D), it contains two variables. Thus, to fully constrain the equation, the spatial

coherence assumption is used, either locally, by requiring that the optical flow over some

arbitrary small region is constant [38], or globally, by minimising the total pixel-to-pixel

variation of the estimated motion vector [37]. As these techniques generate a velocity vector for

each pixel in the image, they generate a dense motion field, which is useful in computer vision

tasks where a large set of motion vectors are often required. However, these techniques have the

following drawbacks: -

1. They require estimation of spatial and temporal gradients, and this is often noise

sensitive.

2. The intensity derivatives are numerically approximated. This requires local spatio-

temporal linearity of intensity. In image sequences with high motion, local linearity is

violated [55].

3. OFE is ambiguous in relation to the projected motion; that motion can only be

defined in a direction perpendicular to a gradient means that the gradient-based

methods suffer from aperture problems [37,56].

From a video coding perspective, there are also two other fundamental drawbacks :-

4. The smoothness constraint leads to an increased prediction error energy.

5. A dense motion field requires a large information overhead.

For these various reasons, gradient-based techniques for motion estimation will not be

considered any further in this thesis.

1.1.2 Pel-Recursive Motion Estimation

Pel-recursive methods [41-43] can be considered as a subset of gradient-based methods, and

have been developed for image-sequence coding. They obtain a dense optical flow by raster

scanning, that is, they start the estimation at the top-left pixel and end at the bottom-right pixel.

The luminance of pixel x in the current image is predicted from the reference image by means

of the correspondence vector found at the previous pixel in the current image, by recursively

minimising certain prediction error criteria, commonly known as the Block Distortion Measure

(BDM). It is assumed that the previous vector is a good estimator of the new vector and thus,

only small changes are allowed between the two vectors. The advantages of these methods are: -
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1. As the update of the motion vector is only based on previously transmitted data

(causality), the decoder is able to estimate the same motion field as is usually

estimated by the encoder, so requiring no motion information overhead [57].

2. The regular structure and causality of these methods allows for efficient

implementation in hardware.

There are however, a number of disadvantages when applying these methods to video

compression applications: -

1. The first of ils above advantages is obtained at a cost of increased complexity at the

decoder, as the encoder has to also estimate the motion field [57].

2. The causality constrains these algorithms and reduces their prediction capability

compare with non-causal methods.

3. As the error function for minimising generally contains many local minima, the

iterative procedure may converge to local, rather than global minima. In particular,

these algorithms are very sensitive to noise.

4. Large displacements and discontinuities in the motion field cannot be efficiently

processed.

5. The pel-recursive motion estimation technique (with recursion on pel) is not

compatible with transform coding of BDM, as, in this case, the decoder is unable to

reconstruct the motion vector.

Due to these limitations, pel-recursive techniques will not be considered any further in this

thesis. To address the shortcomings of both the gradient-based and pel-recursive methods, the

obvious alternative is to consider a block of pixels, rather than estimating motion on a pixel-by-

pixel basis. The superiority of block-matching algorithms for motion estimation in video coding

applications will now be examined.

1.1.3 Block-based Motion Estimation

Block-based methods represent, in certain respects, an opposite philosophy from the previously

discussed gradient-based estimation techniques because larger analysis windows are used to

avoid some of the problems identified in previous sections. Besides the data constancy

constraint, these methods also assume that objects move in a translation movement for, at least,

a few frames. Based on this assumption, the idea in block-matching algorithms is that the image

sequence should consist of a set of regions each undergoing a single motion between frames.

Each frame is then divided into a set of non-overlapped, equally spaced, fixed size, small

rectangular blocks called macroblocks, and the translation motion within each block is assumed

to be uniform. The motion vector of each block is then found by searching for the

•'"S
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corresponding blocks in the reference frame by minimising certain matching criteria between

the gray levels, such as the mean absolute error (MAE). Such block-based motion estimation

methods are popularly termed block-matching algorithms (BMAs).

BMAs have a number of advantages compared to other techniques: -

1. They are very simple, straightforward, and yet very efficient.

2. Their regular structure and causality allow for efficient implementation.

3. They are less sensitive to aperture problems since, with a suitable block size, each

block is likely to contain several image gradients. In general, block-matching

methods will also be less sensitive to noise since more image data is used in the

motion estimation process.

4. They outperform other methods in capturing true motion in high motion video

sequences [57].

5. Although the simple BMA model considers translation motion only, other types of

motion, such as rotation and zooming of large objects, may be closely approximated

by the piecewise translation of these small blocks, provided the blocks are small. This

important observation, originally made by Jain et al. [36], has been frequently

confirmed [58].

These advantages are counterbalanced by two key limitations: -

1. During motion estimation, a single motion vector is considered for all pixels within

one block and the motion vectors of partitioned blocks are estimated independently of

each other, leading to picture artifacts,

2. The fixed block size also imposes a limit on the accuracy of the estimated motion

field since the regions are unable to adapt to the underlying image data.

To address these shortcomings, one extension to the basic block-matching algorithm is to

consider sub-pel (half-pel or quarter-pel) accuracy in motion estimation which leads to a

significant improvement when compared to integer pel accuracy [59]. The half-pel approach is

detailed in Chapter 2 and is used throughout the thesis for all experimental results in video

coding applications.

From this discussion, it can be concluded that among all different motion estimation

techniques, the BMA is the most effective, especially from a video coding point of view, and

for this reason has been adopted by all the international video coding standards, including

MPEG-1/2 [9, 10] and H.261/263 [11, 12]. Recently, block-matching techniques for motion

estimation have been exploited for their simplicity and ease of implementation in many o&er

video processing applications including video object segmentation for object based video

coding [60-62], video object segmentation, detection and tracking for content based indexing,

( v

f
t
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querying, browsing, and searching of video objects [17-24]. Two of these areas of application

are further explored below.

Block Motion for Video Coding

Video coding techniques take advantage of data redundancies in order to reduce the bit-

rate/bandwidth needed to represent visual information. There are many methods of compressing

video data but most follow a common structure which incorporates two types of compression:

intraframe and interframe coding. The former exploits the spatial characteristics of a single

video frame while the latter exploits the temporal characteristics between two or more

neighbouring video frames.

Among the different intraframe coding techniques, predictive, transform, subband wavelet,

and second generation coding [63] are the most popular. Interframe coding can be considered as

a particular case of predictive coding where the prediction is based on pixel values from the

reference frames. For instance, in the portion of a scene with very low motion, pixels can be

precisely predicted from the pixel at the same location in the reference frame. However, this is

not valid in scenes with high motion. In this case, pixels in the reference frames spatially

displaced by the appropriate vector are more efficient for prediction. This is known as motion

compensatedprediction. The difficulty of this approach lies in estimating accurately the motion

between two frames, which is the sole aim of motion estimation (ME), often referred to as

motion compensation (MC). In any coding strategy based on this principle, the motion

compensated prediction error (residual error) as well as the motion vectors are transmitted,

instead of the frame itself.

There have been numerous contributions in the literature that aim to estimate block motion

vectors for video coding applications. A comprehensive review is provided in Chapter 2.

Among existing techniques, the full search (FS) algorithm [36] is a brute force BMA method

which searches all possible locations inside the search window and produces an optimal

solution in terms of prediction quality. If the performance in terms of BDM is the only criterion,

FS is obviously the best and simplest approach to use. However, its high computational

complexity often makes it unsuitable for real-time implementation. This has led to the

development of fast BMAs such as the 2-D logarithmic search [36], three-step search (TSS)

[44], new three-step search (NTSS) [45], four-step search (FSS) [46], advanced centre biased

search [47], cross-search [48], prediction search algorithm [49], orthogonal search algorithm

[50], simple and efficient search [51], block-based gradient descent search algorithm [52], and

diamond search [53]. All these fast BMAs have been based on a unimodal error surface

assumption (UESA) which implies that the BDM increases monotonically as the search point
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moves away from the global minimum. These algorithms perform well only if this assumption

is upheld. There have also been a number of methods developed using pixel subsampling [54,

64, 65] and spatio-temporal correlation [49, 66-68]. The aim of these particular motion

estimation algorithms is to reduce the computational cost of FS algorithm in terms of either the

number of operations, by considering a subset of pixels instead of all pixels during the BDM

calculation, or reducing the number of search points by predicting the starting centre of the

neighbouring block's motion vectors. Although the error performance of these algorithms is

compaa ble to the FS algorithm, the computational cost is also higher compared with other fast

algorithms. All these existing fast algorithms, however, have some inherent limitations: -

1. i>us to the highly non-stationary characteristics of the video signal, the unimodal

error surface assumption is generally invalid for many video sequences. Moreover,

the search direction of fast algorithms can be ambiguous, leading to the motion

vectors becoming entrapped in a local minimum, with a resulting degradation in

predictive performance.

2. Most fast algorithms are application and/or system dependent. For example,

algorithms such as NTSS and FSS are intended and optimised for low bit-rate video

coding applications (video conferencing or videophone), whereas others such as TSS

are optimised for high quality video in the context of the MPEG-2 standard.

3. None of the fast algorithms have been designed to provide flexibility in controlling

the performance in terms of predicted picture quality and processing time (speed).

They do not allow any performance scalability in motion estimation, have no facility

to trade system parameters depending upon a particular application, or to preset a

user-defmed level of Quality of Service (QoS) in terms of predicted picture quality or

computational complexity.

The above discussion highlights that currently there is no single block-based motion

estimation solution that exhibits good performance at both low bit-rate and high quality video

coding cases, while providing flexibility in performance management in terms of either

predicted image quality or processing speed. Such a generic solution would be very

advantageous in facilitating complexity management in video coding, especially in real-time

software-only video CODECs (Coder and Decoder) or low-power video CODECs for mobile or

hand-held computing platforms which particularly require a more flexible trade-off between

complexity and quality [59]. The development of such a novel system that addresses many of

the above challenging issues is a key motivation for this thesis.

An important yet disparate area where block motion estimation theories are being

increasingly utilised will now be explored.
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Block Motion for True Object Motion Estimation

In coding applications, motion vectors are obtained to minimise the BDM irrespective of

whether the vector points in the direction of the moving objects. A motion vector that represents

the motion of a foreground moving object is tenned true object motion (Fig. 1.3). In estimating

block-based motion vectors, errors may be introduced not only because of representing all the

pixels of a macroblock by a single vector (Fig. 1.2), but also in seeking the minimum BDM.

These errors following global motion compensation will lead to false object motion.

With the rapid growth in multimedia and Internet applications, there is a huge amount of

video data available, which highlights the need for efficient representation of video information

to allow content-based functionality. As motion provides one of the easiest cues to a sequence's

temporal dimension [69], it is one of the most important visual features for content-based video

representation and is increasingly becoming an essential part of several applications, including

content-based video indexing for browsing and retrieval [18-24], video surveillance systems

[31], video object segmentation and tracking [20, 23], and object based coding [13], Amongst

these different applications, one of the most interesting is using object motion in video indexing

for accessing large amounts of multimedia data over the Internet.

Various algorithms [15, 70, 71] have been proposed to index video by dense motion field

using OFE [37, 38] where the apparent velocity and direction of every pixel in the frame has to

be computed. Although it is an effective method, it is computationally intensive and very

complex. The OFE method also does not cope well with high motion video sequences [57].

To overcome this problem, many recent video processing applications have explored block-

based motion estimation techniques to estimate true object motion. In Tancharoen et al. [60]

and Ji and Park [61, 62], BMA techniques were used to estimate the motion for moving object

segmentation from the background for object-based video coding and video analysis. As the

motion vector information of the macroblocks is available in MPEG coded video streams, an

alternative to video representation [18-23] is provided by extracting this information, thus

avoiding time consuming computation of optical flow. However, there are some drawbacks

associated with these approaches: -

1. The motion vectors in a coded bit stream do not always represent true object motion

since motion estimation is performed solely from the coding efficiency point of view,

where minimum error matching is the only criterion.

2. As the block-matching method captures both camera {global) as well as true object

motion, the block motion available in the video stream does not directly provide the

true object motion.
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3. Block-based motion estimation also introduces false motion vectors in the form of

noise, especially in uniform regions [20]. To eliminate false vectors, a non-linear

median filter can be applied [17, 21, 31, 72] for motion field smoothing. Though

median filters work well for image processing applications such as noise reduction,

image enhancement and restoration, they are inefficient for eliminating false motion

vectors, because they tend to remove significant numbers of true object motion

vectors along the edge of the objects, especially when objects are relatively small

compared with the size of the frame.

To highlight the weakness of current BMAs, Fig. 1.4 (reproduced from Fig. 6.16 in Chapter

6) shows the average percentage of true object motion vectors captured by different BMAs for a

range of standard and non-standard video sequences (Appendix B). It reveals that while FS is

the optimal algorithm for predicted image quality, performance is very similar to NTSS, and

overall, no fast search algorithm captures more than 60% of the true object motion vectors. This

is because existing BMAs only capture motion based upon a minimum matching criterion.

' a f e i f t i 'iiin)^»i*»iim«' ' '•"' •Am^imm Mnil IM I f • • mi friint hi&t'jin'i»j.L rf| • * I)M» jwii;' ••

Fig. 1.4: Average percentage of true object motion vectors captured by different BMAs.

This discussion indicates that while block-based moiion can be applied for true object-

based video representation, to effectively capture true objecl motion using the BMA approach is

a challenging task. To place this in context, many of the desirable features identified in the

previous section on block motion estimation for video coding are equally applicable for true

object motion estimation. It is the potential extension of these new block-based motion

principles into the area of true object motion estimation that is one focus of the present research.

1.2 Fundamental Premise

It has been shown in Feng et ah [73] and Lim and Ho [74] that the magnitude of a motion

vector is proportional to the BDM, an observation that will be explored further in Chapter 3.

fe>y
tXl



Chapter 1 Introduction 11

Fig. 1.5 shows a simplified version of Fig. 3.3(a) in Chapter 3, which was obtained after

processing the high motion Football video sequence as follows: -

(i) The motion vectors were calculated using the FS algorithm for all blocks in the first

80 frames,

(ii) The frequencies of each distinct minimum MAE of similar length motion vectors

were calculated,

(iii)These frequencies were then translated into a cumulative probability (Definition 3.3)

of minimum MAEs.

Fig. 1.5 clearly reveals that the minimum MAE for a particular cumulative probability, for

example, 0.86, increases from 25, when the motion vector length is 0, through to 60, when the

motion vector length has increased to the range [7,7V2]. The graph also confirms that there is a

higher probability of terminating the FS algorithm at a higher MAE value as the motion vector

length is increased.

MVO
MV[1,V2]
MV[2,2</2]
MV [7.7V21

25 50 60 75
Minimum MAE

100

Fig. 1.5: The cumulative probability of minimum MAE for the Football video sequence.

This leads to a fundamental premise, which is that the distortion of an object in a video

frame increases with its velocity as well as the zoom and pan factors of the camera. Thus, as the

length of the motion vector grows, so does the distortion error. Based on this tenet, it can be

concluded that locating a block with the minimum prediction error but with a motion vector of

high magnitude, is not only ineffectual in the prevailing distorted search space, but will

inevitably lead to many false motion vectors being erroneously selected. Designing a new BMA

that seeks to exploit this feature has a number of potential advantages.

1. It allows a search to be restricted for any given length of motion vector beyond a

certain threshold of minimum BDM. This leads to the novel concept of a fast non-

directional BMA.
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2. A variable threshold in the search process, which increases as the search expands

outwards, will enable the user to restrict the search boundary so that it can be used as

an effective control parameter for performance scalability and QoS in terms of

predicted image quality as well as processing time in motion estimation.

3. Unlike directional fast algorithms, a non-directional search means it is unlikely that

the search will be trapped in either a global minimum c i minimum along any

specific direction, especially when the search progresses away from the centre. A

global minimum does not always represent the true motion vector, especially if it is

far from the search centre, as it may be introduced by a different object or global

motion. However, such an approach has the potential to improve the ratio of captured

true object motion vectors.

The above indicates that this strategy affords a promising control mechanism which can be

used for performance management in motion estimation for coding applications as well as for

capturing more true object motion vectors than other fast search algorithms.

1.3 Motivation and Contribution

While extensive work has been done in block-based motion estimation for video coding

applications, there are still many issues left unresolved by existing techniques, specifically for

real-time software-only and low power video coding applications. Performance scalability,

application independency, and QoS in terms of prediction error or processing time also remain

challenging issues.

It is in this context, therefore, that this dissertation presents the novel system shown in

Fig. 1.6, which is characterised by being: -

1. A fully adaptive system which can efficiently provide flexibility in controlling the

complexity of motion estimation for software-only or low-power video coding by

trading between picture quality and complexity.

2. An adaptive system for performance scalable motion estimation that provides QoS by

satisfying any level of user demands in terms of image prediction quality or

computational complexity for video coding applications.

3. A generic system that exhibits consistent performance for all types of video sequence,

including high or low motion.

4. A non-directional block-based motion estimation algorithm that addresses the

drawbacks of existing BMAs for both video coding and true motion estimation

applications.
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Blocks 1, 2, and 3 in the block diagram of Fig. 1.6 are the key components of the new

motion estimation system. This flexible system also provides an opportunity to exploit the new

non-directional, variable thresholding search method in capturing increased numbers of true

block-based object motion vectors. Block 4 represents the additional modules that need to be

integrated to achieve this objective. It is important to emphasise that while Block 4 is not the

primary focus of the research, it demonstrates the potential of using this new search method for

block-based true object motion estimation and provides both improved qualitative and

quantitative performance.

Fig 1.6: System block diagram.

The main contributions of this research are: -

• Development of a novel variable distance-dependent thresholding search (DTS)

block based motion estimation algorithm for real-time video coding (Block 1 in

Fig. 1.6). This algorithm is independent of the ubiquitous unimodal error surface

assumption, and a unique feature is that it can be used both as the FS algorithm for

optimum quality, as well as a fast BMA. It can therefore be applied for performance

management motion estimation [1, 2]. In obtaining true object motion, the DTS



Chapter 1 Introduction 14

algorithm has also demonstrated good performance by capturing significantly more

true object motion vectors compared to existing FS and fast BMAs [3,4].

While the DTS algorithm has provided better search efficiency compared to existing

fast BMAs such as TSS or NTSS for low motion video sequences, it was found to be

not so effective for highly complex motion sequences. To improve efficiency, a fast

adaptive-centre DTS (ACDTS) algorithm has been developed by integrating the

concept of spatio-temporal motion correlation of the neighbouring blocks' motion

vectors with the DTS algorithm (Block 2). The ACDTS increased the likelihood of

finding motion vector prediction quality with fewer search points compared to the

DTS algorithm.

As the actual search pattern used has a strong impact on the performance of a BMA,

to enhance the search efficiency of the ACDTS algorithm, a diamond search pattern

instead of the usual rectangular pattern has been implemented (Block 2). This

algorithm, called the adaptive-centre diamond search DTS (ACDSDTS),

outperformed both the DTS and ACDTS algorithms by trading off quality with

complexity. Because of the relatively large step size used in the horizontal and

vertical directions, such a pattern is able to find high motion blocks with fewer search

points, and also reduces its susceptibility to being trapped in local minima.

While DTS, ACDTS and ACDSDTS all provided performance scalability in motion

estimation in terms of prediction quality and processing speed with different

threshold settings, these thresholds had to be manually defined. To fully automate the

system, the ACDSDTS algorithm has been extended to a fully adaptive distance

dependent thresholding search (FADTS) block motion estimation algorithm that can

satisfy any level of user demand in terms of predicted image quality and processing

speed (Block 3) [5]. A unique feature of FADTS is that it adjusts the threshold

automatically using the desired target and the content from the actual video sequence,

to achieve a guaranteed level of QoS in terms of image quality or processing

complexity. This is very effective in facilitating performance management of motion

estimation, especially for low bit rate and software-only vzdso coding. As the motion

estimation always considers the first frame of each shot as the reference frame, a shot

detection technique using an Artificial Neural Network (ANN) has been developed

[6] which can be embedded in the proposed FADTS system to detect a shot change

(Block 3) for non-real-time coding applications. A simple, yet elegant solution is

proposed, which will allow shot changes to be detected in real-time.

Ii3§
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• From a true object motion estimation perspective, while the DTS algorithm (Block 1)

provided better performance compared to existing BMAs [3, 4], it did not consider

global motion cancellation (compensation), i.e. the capture of true object motion

where both object and camera motion are involved. To resolve this issue, a Modified

Iterative Least-Square Estimation (MILSE) global motion estimation method has

been designed and implemented which reduces computational complexity without

degrading the performance in terms of global motion parameter estimation (Block 4).

• Having applied global motion cancellation (Block 4), the resulting motion field of the

DTS algorithm (Block 1) possesses a number of spurious motion vectors because of

block-based estimation limitations. A new non-linear filter; called the Mean

Accumulated Thresholded (MAT) filter has been designed (Block 4) to eliminate

these false motion vectors while retaining only true object motion vectors [7].

• Finally, an analysis of computational complexity for each of the algorithms in the

system framework shown in Fig. 1.6 has been undertaken, and is presented in each

relevant chapter.

1.4 Structure of the Dissertation

In Chapter 2, the importance of block-based motion for video coding is discussed and the

different block-matching criteria used in motion estimation are described. A contemporary

review of existing block-based motion estimation methods is presented. The relative merits and

shortcomings of each method are highlighted to set in context the research detailed in this

thesis.

In Chapter 3, a new variable distance dependent thresholding search (DTS) block-based

motion estimation algorithm is introduced for real-time video coding and true object motion

estimation based on the key premise that the distortion of an object in a video frame increases

with the velocity of the moving object and camera factors. Both linear and non-linear

(exponential) .'ireshold functions for the DTS algorithm are evaluated, and its performance is

compared to existing fast and exhaustive BMAs using both integer-pel and half-pel accuracy.

The performance of the DTS algorithm, in terms of capturing true object motion, is also

qualitatively assessed, with a more comprehensive evaluation being provided in Chapter 6.

Work from this chapter has been published by Sorwar et al. in [1 -4],

In Chapter 4, the DTS algorithm is extended to an adaptive-centre DTS (ACDTS)

algorithm to improve performance. A spatial motion correlation between neighbouring blocks

has been integrated to automatically predict the best search starting point in each window. As

this predicts a starting point closer to the global minimum point, it reduces the computational
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cost with better prediction quality. The performance of the ACDTS algorithm is compared with

TSS and NTSS as well as the adaptive-centre NTSS (ACNTSS) algorithms. The search

efficiency of the ACDTS algorithm is further improved by considering an efficient diamond

search pattern (ACDSDTS) based on the central-biased motion distribution characteristic of a

video sequence. The computational overhead introduced by using the centre prediction and

diamond pattern search is also analysed.

In Chapter 5, the ACDSDTS algorithm has been extended to a fully adaptive distance

dependent thresholding search (FADTS) algorithm. A brief review of existing adaptive

algorithms is presented and a new model for threshold adaptation proposed. The different

parameters related to this model are analysed to achieve optimum performance of the FADTS

algorithm. As shot changes in a video sequence are used as reference frames for the adaptive

process, existing shot detection techniques are also briefly outlined. An integrated shot detection

(camera break) technique based on an artificial neural network (ANN) and BDM thresholding

are described for non-real-time and real-time applications respectively. Work from this chapter

has been published by Sorwar et al. in [5, 6].

Chapter 6 examines the potential of applying the DTS algorithm to capture an improved

number of true object motion vectors by using global motion estimation and compensation, and

false motion vector elimination. A new false motion elimination filter called the mean

accumulated threshold (MAT) filter is proposed to extract true object motion vectors from the

motion vector field. Existing global motion (camera pan, zoom) estimation models and methods

are also reviewed, and a global motion estimation method based upon a modified iterative-least-

square estimation (MILSE) is presented Jo reduce the computational cost. Finally, the

performance of the DTS algorithm for true object motion vector estimation is quantitatively

analysed. Material from this chapter has been published by Sorwar et al. in [7].

Finally, the main conclusions from this research and proposals for future research directions

are given in Chapter 7.



Chapter 2

Motion Estimation: A Review

2.1 Introduction

The extraction of motion information from a sequence of time-varying images has numerous

applications in the field of image processing and video coding applications. Among the different

applications, the most important application is video compression.

Video compression has become an integral part of multimedia applications for both

communication and entertainment purposes. It takes advantage of data redundancies in order to

reduce the bandwidth needed to represent the visual information. In the framework of video

coding, the redundancies arise from both spatial correlation within an image and temporal

correlation between successive images. Due to the different nature of the video signal in the

spatial and temporal dimensions, spatial and temporal correlations are usually processed

separately. Coding techniques that reduce the spatial correlation are referred to as intrqframe

coding, whereas those that reduce the temporal correlation are called interframe coding. A

review of intraframe and interframe coding is given by Netravali and Limb in [75] and Jain in

[76].

Among the various inter/intra-frame, compression techniques [56, 77] the motion

compensated transform coding technique is the most popular, and has been adopted in many

video coding standards such as MPEG-1/2 [9, 10] and H.261/263 [11, 12] owing to its high

compression efficiency. The latter belong to the class of nonlinear interframe predictive coding

where the prediction is based on pixel values from the previous frame. In the first stage, the

displacement of objects between successive frames is estimated (motion estimation). The

resulting motion information is then exploited in efficient interframe predictive coding, known

as motion compensated prediction. The difficulty of this approach lies in estimating accurately

the motion between two frames. In any coding scheme based on the above principle, the motion

compensated prediction error, more commonly called displaced frame difference (DFD), is

transmitted instead of the frame itself. It results in a more efficient representation of the visual

data. The motion information also has to be transmitted as an overhead.

17
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The previous chapter confirmed that block-matching motion estimation algorithms have

already been adopted in different video coding standards because of tlteir simplicity and ease of

implementation. It was also shown in Section 1.1 that block motion has recently been used for

video object analysis, in particular, the block motion available in the MPEG video stream. As

the primary focus of this thesis is on block-based motion estimation, an extensive review will be

provided in this chapter, while applications of block motion as true object motion will be

discussed in Chapter 6.

This chapter is organised as follows. In Section 2.2, the reasons why block-matching is

considered as a generic and efficient technique for motion compensation video coding are

presented, with some issues relating to block-matching motion estimation given in Section 2.3.

In Section 2.4, existing block-matching motion estimation techniques, with their advantages and

disadvantages, are analysed from a computational point of view. Half-pel accuracy in motion

estimation is also discussed in this section. This chapter concludes with a summary of the key

problems associated with existing BMAs in Section 2.5.

2.2 Importance of Block-Matching in Video Coding

Video coding exploits temporal redundancy in order to reduce the bandwidth while preserving

the quality of the receiver-reconstructed images. This has resulted in many motion based video

compression strategies. Simple frame-differencing strategies assume that the average motion is

small, and simply compress the pixel-by-pixel difference between two frames.

Vector quantization [78] is an alternative strategy where a codebook of commonly occurring

pixel patterns is constructed. The compression process replaces a pixel pattern with its

corresponding codeword. While this technique results in superior compression, construction of

the codebook is a difficult problem. Techniques that attempt to recognise individual objects as

they move from frame to frame have been used to construct effective codebooks. Practically, to

reduce computation and storage complexity, motion parameters of objects in a picture are

estimated based on two or three adjacent frames. Most of the motion estimation algorithms are

based on the following assumptions:- N

• Objects are rigid bodies; hence object deformation can be neglected for adjacent

frames.

. • Illumination is uvi^l-^n along the motion trajectory (Section 1.1.1).

• Objects move in a translational movement for at least a few frames.

• Occlusion of one object by another, and uncovered background, are neglected.

The problem with morion estimation, in fact, consists of two related sub-problems: -

• identification of the moving object boundaries, or so-called motion segmentation.
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• estimation of the motion parameters of each moving object.

Here, a moving object is a group of contiguous pixels that share the same set of motion

parameters. This definition does not necessarily match the ordinary meaning of object. For

example, in a videophone scene, the still background might include a wall, bookshelf, or

decorations. As long as these items are stationary (sharing the same motion vector), they can be

considered as a single object in the context of motion estimation and compensation. The

smallest object may contain a single pel. One difficulty in using small objects (or evaluation

windows) is the ambiguity problem. Similar objects (image patterns) may appear at multiple

locations inside a picture and may lead to incorrect displacements vectors. Also, statistically,

estimates based on a small set of data are more vulnerable to random noise than those based on

a larger data set.

Alternatively, if a large number of pels are treated as a single unit for the estimation of their

motion parameters, it is important to know precisely the boundaries of the moving objects,

otherwise these may cause accuracy problems. Pixels inside an object, or evaluation window, do

not share the same motion parameters and, therefore, the estimated motion parameters are not

accurate for some, or all, pels in the object or window. On the other hand, the criterion of

grouping pels into moving objects, no matter which scheme is in use, must be consistent with

the motion information of every pel.
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?tg. 2.1: Block motion estimation and compensation.

There exist practical solutions to circumvent the aforementioned motion segmentation and

estimation dilemma. One solution is partitioning images into regular, non-overlapped

macroblocks, assuming that the moving objects can be approximated reasonably well by regular

shaped blocks. A single motion vector (MV) is then estimated for each macroblock, under the

assumption that all the pels in the block share the same MV, as illustrated in Fig. 2.1, where the

macroblock size is NxN, (&,/) represents the x and y coordinates of the upper left pixel position
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of the current macroblock in the current frame, and (w,v) represents the x and y components of

MV where the directions of x axidy in Figs 2.1 and 2.2 represent the positive directions of (M,V).

This assumption of a single motion vector may not always be true because an image block

may contain more than one moving object. In image sequence coding, however, prediction

errors due to imperfect motion compensation are coded and transmitted. Hence, because of its

simplicity and small overhead, the block-based motion estimation-compensation method is

widely adopted in real video coding systems.

2.3 Block-based Motion Estimation Techniques

This section reviews the main approaches to block-based motion estimation that currently exist,

identifying key problem areas. In a broad sense, motion estimation techniques can be classified

into 3-dimensional (3-D) methods [79-81] and 2-dimensional (2-D) methods. 3-D methods

attempt to determine the motion by solving the projection equations directly by making use of

feature correspondences between frames, whereas 2-D methods estimate optical flow. As this

thesis predominantly focuses on the 2-D methods, 3-D methods \Wx\l not be discussed further,

although a comprehensive review of techniques is provided in [79,80].

2.3.1 Block-Matching Methods

Jain and Jain [36] first used a block-matching motion estimation for an interframe coding

structure and proposed a fast search algorithm to reduce computation. Extensive work has since

been undertaken to extend their method. Before reviewing the various existing techniques, some

of the important issues related to block-matching will be discussed.

2.3.1.1 Basic Concepts

Block matching is a correlation technique that searches for the best match between the current

image block and candidates in a confined area of the reference frame. Fig. 2.1 illustrates the

basic operations of this method. In a typical use of this method, images are partitioned into non-

overlapped rectangular blocks. Each block is viewed as an independent object and it is "assumed

that the motion of pixels within the block is uniform. The MV is the by-product when the new

location of the object (block) is identified. The size of the block affects the perfonnance of

motion estimation. Small block sizes afford good approximation of the natural objects'

boundaries, and of real motion, which is now approximated by a piecewise translation

movement. However, small block sizes produce a large amount of raw motion information,

which increases the number of transmission bits or the required data compression complexity, in



Chapter 2 Motion Estimation: A Review 21

condensing this motion information. The international video transmission standards, H.261,

H.263, MPEG-1, MPEG-2, aad MPEG-4 all adopt the block size of 16x16 pixels.

The basic operation of block-matching involves selecting a candidate block and calculating

the matching function (usually a non-negative function of the intensity difference) between the

candidate and the current block. This operation is repeated until all candidates have been

processed and the best match identified. The relative distance between the best candidate and

the current block is the estimated MV.

Several parameters are involved in ihe searching process and all have an impact on both

accuracy and complexity: -

• the number of search points (candidate blocks).

• the matching function.

• the search order of candidates,

-(2d+\+N)-

Search window
of reference frame

f
CN

Block of current frame

Fig. 2.2: Search space of block-matching algorithms.

Assume that the maximum displacement of a motion vector is ±d in both the horizontal and

vertical directions as shown in Fig. 2.2 (throughoiit this thesis, pixels of a frame are numbered

using the Cartesian coordinate system with the origin starting in the upper-left corner. Thus far,

integer-pei MV is considered, although-in Section 2.4.10, half-psl motion accuracy will be

discussed). Except for the blocks at the image boundaries, the size of the search space is

^ V
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(N+2d+l)x(N+2d +1), and therefore a MV(w,v) is obtained by finding a matched block within

the above mentioned search space in the reference frame by using a predetermined matching

criterion, where the number of possible search points is (2d+l)x(2d+l) for the best match of

the current block, as shown by Fig. 2.2. The algorithm, which examines all these locations, is

called the Exhaustive Search, or Full Search (FS). If more than one block generates a minimum

BDM, the FS algorithm selects the block whose MV has the smallest magnitude, to exploit the

centre-biased motion vector distribution characteristics of real video sequences [45, 46]. To

achieve this, checking points trace a spiral trajectory starting at the centre of the search space.

This trajectory is used by the FS algorithm, with the example of a maximum displacement d =

±7 shown in Fig. 2.3. The centre of the search window is equal to the location of the searching

block (current block) of the current frame.
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Fig. 2.3: The spiral trajectory of the checking points in the FS algorithm.

2.3.1.2 Block-Matching Criteria

Choosing an appropriate matching function is an important part of the process of searching for

the best matching block. The selection of the matching function has a direct impact on

computational complexity and coding efficiency. Several popular matching functions that

appear in the literature are Mean Absolute Error (MAE), Mean Square Error (MSE), Cross

Correlation Function (CCF), and Matching Pel-Count (MPC).

If Fn(iJ) defies the intensity of the pixel with coordinates (ij) for the current frame, then

the MAE, MSE, CCF, and MPC matching criteria are defined as follows:

Mean Absolute Error (MAE): In this criterion, the pixeis from each block in the current frame

n, are compared with the corresponding candidate block in the search area in the reference

\
\

]\ k s

i
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frame, w-1, and their absolute differences are summed and averaged. The MAE criterion is

given as follows:

| N-\N-\

mE^v^—YZfn^+U+j^F^ik+uHl+v+j)] for -dlu,vld (2.1)
M /=oy=o

where F^Uyv) is a candidate block in the search space in the reference frame, and (u, v) is a

motion vector representing the search location. The search space is specified by u - (-d, +d) and

v = (-d, +d). The candidate block with the minimum MAE is considered to give the best match.

The MAE is also known as Mean Absolute Difference (MAD).

Mean Square Error (MSE): This is similar to the MAE function, except that the difference

between pixels is squared before addition. The MSE function is defined as:

1 AM AM

MSE (jfc/)(«,v) = - V
lv ,=o y=o

(2.2)

The candidate block with the minimum MSE is considered to give the best match. The Mean

Square Error (MSE) function is also known as the Mean Square Difference (MSD).

Cross Correlation Function (CCF): The Cross Correlation Function (CCF) for the block-

matching criterion is derived from the following equation:

AM AM

CCF(kJ)(u,v) = i=0

AM AM AM AM
(2.3)

/=o y=o i=o y=o

The candidate block with the maximum value of CCF is considered to give the best match.

This is also referred to as a Normalized Cross-correlation Function (NCF) [82].

Matching Pel-Count (MPC): The Matching Pel-Count (MPC) function compares each pixel of

the target block of the current frame, n, with the corresponding pixeJ block within the search

space of the reference frame, n-l. If the pixels are similar to each other, the pixel pair is

classified as a matching pixel; if not, then it is a mismatching pixel. The matching and the

mismatching classifications are done with respect to a pre-defined threshold value. The MPC

criterion is as follows:

N ff

w,v,/,./) for -dZ u, v<dMPC(u,v) =

P(u,v,iJ) is the binary representation of the pixel difference defined as :

(2.4)

. ' . / ; : • , • •» : • • • ' • ; - . 7 , : • ' ' . . ' ; ! • •
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P(u,v9ij)
= 1

[=0 otherwise
(2.5)

where Tp is a pre-defined threshold value. For a matching pixel, P = 1, while for a

mismatching pixel, P = 0. The greater the number of matching pixels, the better the match.

Among the above matching criteria, MSE and CCF require multiplication and accumulation,

while MAE and MPC require comparison and accumulation, and a multiplication is always

more computationally expensive than either a comparison or accumulation. Although MPC is

computationally less expensive compared with the MAE, its performance is highly sensitive to

the choice of the threshold value Tp [74]. The optimum threshold selection is a difficult task

which entirely depends on the video sequence, and therefore, its performance is not guaranteed.

Among the various matching criteria therefore, MAE is the most popular and widely used in

block motion estimation due to its low complexity, while its performance is comparable to that

of MSE. For this reason the MAE ftinction will be used throughout the thesis for BDM

calculations, while the MSE function, as is the convention, will be used for prediction error

performance analysis of BMAs [45-47,51-54].

2.3.1.3 Motion Estimation Algorithm Complexity

Motion estimation algorithm optimisation has been widely studied because of its fundamental

impact on compression efficiency and its high requirements in both processing power and data

bandwidth.

In this section, a complexity analysis of motion estimation is reviewed. At the same time, the

advantages and disadvantages of the different approaches, both in terms of compression quality

and processing speed efficiency, are characterised. Fig. 2.2 showed the motion estimation

process for a current macroblock of size NxN within a search range of ± d (horizontally and

vertically) in the reference frame. To find a motion vector with minimum BDM for this current

macroblock, the computational complexity of performing the motion estimation is given by: _

Complxm = SPx[(NxN)xComp!x] (2.6)

This shows that the complexity, Complxm, is proportional to the number of search points,

SP, the number of pixels used to perform the matching (NxN), and the complexity involved in

evaluating one pixel match, Complxf. To illustrate the complexity, consider a typical application

of a ±d pixels maximum displacement used for a video sequence with frame size [Nh, Nv ] and

a frame rate of/fps (frames per second). The total number of integer arithmetic operations per

second required for an MAE-based FS algorithm is
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N2 \)2x3N2xf (2.7)

For example, for a typical MPEG-1 application of a 15x15 pixels search space used for a

video sequence with SIF format (352x240 pixels) and 30 fps, based on (2.7), the FS algorithm

would require about 1.71 billion integer arithmetic operations per second, which can consume

up to 90% of the computational power of the whole encoding system [82]. When considering

applications which require encoding at higher resolutions and at higher quality, it is evident that

the FS algorithm has severe limitation in a real-time implementation.

Several fast algorithms, which will be discussed in next section, have thus been devised to

save computational complexity in the FS algorithm but at the price of impaired quality

performance. The most common approach is to lower the search computation by reducing the

number of SP in (2.6) inside the defined search space. Normally, a fast search algorithm starts

with a rough search, computing a set of scattered points. The distance between two nearby

search points is called the search step size. After the first step is completed, the search moves to

the most promising search point and continues v/ith the next step. This process is continued

until satisfaction with some predefined conditions for motion estimation is established.

2.4 Fast Search Motion Estimation Algorithms

Some of the well-known types of BMAs are now reviewed, where only integer-pel accuracy is

considered. All fast search algorithms assume that either the error surface is unimodal over the

entire search area (i.e. there is only one global minimum) or the MV is centre-biased. These

assumptions essentially require that either the BDM increases monotonically as the search point

moves away from the global minimum position, or the MV is centrally distributed.

2.4.1 2D-iog Search

The first fast search block-matching algorithm was the 2-D log search (TDL) proposed by Jain

and Jain in [36], and is an extension of the 1-D binary logarithm search. It uses the St. Andrew's

cross (+) search pattern in each step.The initial step size is equal to max(2, 2m"1), where m -

\jog2d\ and [_• J is a lower integer truncation function, and d is the maximum displacement. The

step size is reduced by half only when the minimum BDM point of the previous step is found at

the centre of that step, or the current minimum BDM point reaches the search window

boundary, otherwise, the step size remains constant. When the step size is reduced to one, all the

eight checking points adjacent to the centre checking point of that step are searched. For

example, two different search directions are shown in Fig. 2.4 for the case d = ±7. The top
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search path requires (5+3+3+8)=19 checking points, while the lower-right path requires

(5+3+2+3+2+8)=23 points. The number of search steps is dependent on the size of the search

area, and is not given by the definition of the algorithm. According to [48], for the general case,

the TDL algorithm requires (l + 7|log2(<^ + l)]) checking points. This technique has the

following advantages and disadvantages: -

Advantages:

• Low complexity in terms of candidates to evaluate.

• Reasonable performance for high motion sequences.

Disadvantages:

• Poorer performance for low motion sequences as the initial step size is large and

increases the chance of its being trapped in local minima.

• Complexity increase with increased search area.

• Fixed performance for a particular video sequence.

• Lack of a control mechanism for performance scalability.
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Fig. 2.4:2D-log search.

2.4.2 Three Step Search

The three step search (TSS) algorithm proposed by Koga et al. in [44] is probably the most

well-known and popular technique and is even recommended in several standards because of its

simplicity and effectiveness. This method is based on a coarse-to-fine approach with

logarithmically decreasing step sizes as shown in the example of Fig. 2.5 for a maximum

displacement of d- 7. The initial step size is half of the maximum motion displacement d (i.e.
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[d/2~\ where [-1 is the upper integer truncation function). At each step, nine checking points are

matched and the point with the minimum BDM is chosen as the starting centre of the next step.

The process repeats until the distance between these checking points is equal to one. For d =7,

the number of checking points required is (9+8+8)=25. For a larger search window (i.e. larger

d), TSS can be easily extended to n-steps using the same searching strategy with the number of

checking points required defined as SP = [1 + 8 flogi (<fH)l ]. This technique has the following

advantages and disadvantages: -

Advantages:

• Low complexity in terms of candidates to evaluate.

• Good regularity in terms of motion vector generation.

• Reasonable performance with high motion sequences as it considers the uniform

motion distribution.

Disadvantages:

• Poorer performance with low motion sequences as the initial step size increases

linearly with maximum displacement that increases the chance of its being trapped

in local minima.

• Complexity factor increase with increased search area.

• Lack of a control mechanism to provide performance scalability.

• Complexity is fixed for a particular video sequence with maximum displacement.
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2.4.3 Orthogonal Search

The orthogonal search algorithm (OSA) proposed by Puri et al. in [50] consists of pairs of

horizontal and vertical steps with a logarithmic decrease in step size where the initial step size is

Ld/2J with LJ being the lower integer truncation function. The search paths of an OSA

algorithm are shown in Fig. 2.6. Starting from the horizontal searching step, three checking

points in the horizontal direction are searched. The minimum BDM point then becomes the

centre of the vertical searching step which also consists of three checking points. The step size

is halved after each pair of horizontal and vertical steps. The algorithm ends with step size equal

to one. For d = ±7, the OSA algorithm requires a total of (3+2+2+2+2+2)= 13 checking points.

For the general case, the OSA algorithm requires (1 + 4riog2(fiH-l)T) checking points.
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Fig. 2.6: Orthogonal search.

This technique has the following advantages and disadvantages: -

Advantages:

• Lower complexity in terms of search points compared to thev TSS or TDL

algorithms.

• Reasonable performance with high motion sequences as it considers the uniform

motion distribution.

Disadvantages:

• Poorer performance with low motion sequences as the initial step size increases

linearly with maximum displacement that increases the chance of its being trapped

in local minima.

• Poorer error performance compared to the TSS or TDL algorithms.
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• Complexity factor increase with increased search area.

• Lack of a control mechanism to provide performance scalability.

• Complexity is fixed for a particular video sequence with maximum displacement.

2.4.4 Cross Search

The cross search algorithm (CSA) proposed by Ghanbari [48] also uses a logarithmic step

search algorithm; however, the main difference between this and the logarithmic search method

presented in previous sections is that the search location is picked at the end points of a Greek

cross (X) rather than a St. Andrew's cross (+) in each step. Fig. 2.7 shows two search paths

where there are five checking points placed in a cross pattern at each step. The initial step size is

1/2 oft/, and as the step size decreases to one, a (+) cross search pattern (as shown on the lower-

left side of Fig. 2.7) is used if the minimum BDM point of the previous step is either the centre

of that step, or the upper-left or lower-right checking point. Otherwise, a (X) cross search

pattern (as shown on the upper-right side of Fig. 2.7) is used. For d- 7, the number of checking

points required is (5+4+4+4) =17. For the general case, the number of checking points required

is (5+4 riog2</l).
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Fig. 2.7: Cross search.

This technique has the following advantages and disadvantages: -

Advantages:

• Low complexity compared to the TDL or TSS algorithms.

• Reasonable performance for high motion sequences.
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Disadvantages:

• Not suitable for low motion sequences as the initial step size is high and increases

the chance of its being trapped in local minima.

• Complexity increase with increased search area.

• Lack of a control mechanism for performance scalability.

• Prediction error performance is worse compared with the TDL or TSS algorithms.

2.4.5 New Three Step Search

One of the most significant contributions to motion estimation came from Li et al. [45], who

observed that most real world video sequences usually move slowly and vary gently. There are,

for example, low motion video conferencing sequences, where a such motion type is very

common. This essentially leads to a centre-biased giobal minimum motion vector distribution

rather than a uniform distribution, which was the assumption used in the TSS algorithm. By

employing a centre-biased checking pattern combined with the initial algorithm of TSS, an

improvement resulted called the new three step search (NTSS) [45]. Compared with the TSS,

an additional eight neighbour checking points are searched in the first step of NTSS as shown in

Fig. 2.8.. The figure shows two search paths with d = 7. The centre path shows the case where

low motion is searched. In this case, the minimum BDM point of the first step is one of the

eight neighbour checking points. The search is stopped halfway, with the matching of three

more neighbouring check-points at the minimum BDM point of the first step. The number of

checking points required for this centre path is (17+3) = 20. In the worst case, the total number

of checking points with a maximum displacement, d, is (8 + 8 flog2 (d+l)l). This algorithm has

the following advantages and disadvantages: -

Advantages:

• Low complexity in terms of search points to be evaluated.

• Obtains high quality at low processing power for a centre-biased motion scene.

Disadvantages:

• Candidate vector generation is more complex. Loses the regularity and simplicity of

the TSS algorithm.

• Complexity increases with the increased search area.

• High probability of falling into local minima if the sequence is not centre-biased.

• Lack of a control parameter for performance scalability.

• Fixed complexity for a particular video sequence.

•'S
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Fig. 2.8: New three step search path.

2.4.6 Block-based Gradient Descent Search

The block-based gradient descent search algorithm (BBGDS) proposed by Liu [52] uses a

centre-biased search pattern of nine checking points in each step, with a step size of one. It does

not restrict the number of searching steps but it stops when the minimum BDM point of the

current step is the centre of that step, or it reaches the search window boundary. There are also

overlapped checking points between adjacent steps. Two low motion search paths examples are
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shown in Fig. 2.9. The average number of checking points is where fit e {3,5},

and / = 2,3,...,« where n represents the number of search steps. This algorithm has the

following advantages and disadvantages: -

Advantages:

• Low complexity in terms of search points to be evaluated.

• Good regularity in terms of motion vector generation.

Disadvantages:

• Optimised for only low motion video sequences (i.e. video conferences), as it is

highly centre-biased.

• Unable to capture high motion vectors unless very large number of steps are used.

• High probability of falling into local minima if the sequence is not centre-biased.

• Lack of a control parameter to provide flexibility for performance scalability.
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Fig. 2.9: Block-based gradient descent search path.

2.4.7 Four Step Search

The four step search algorithm (FSS) proposed by Po and Ma [46] also exploits the centre-

biased characteristics of real world video sequences by using a smaller initial step size

compared with TSS. The initial step size is a quarter of the maximum motion displacement d

(i.e. \dlA\). Due to the smaller initial step size, the FSS algorithm needs four searching steps to

reach the boundary of a search window with d=±7. Fig. 2.10 shows two search paths in an FSS

algorithm for searching high motion. The lower-left path requires (9+5+3+8) = 25 checking

points while the upper-right path requires (9+5+5+8) = 27 checking points, which is the worse

case for this algorithm for d = ±7. This algorithm follows the halfway-stop technique used by

the NTSS algorithm in its second and third search steps for low motion video sequences.

Moreover, if the minimum BDM point is found at the centre of that search step, the step size is

reduced by half and the process jumps to the fourth step. For the general case, the algorithm can

be extended as follows. If the step size ox the fourth step is greater than one, then another four

step search is performed with the first step equal to the last step of the previous search. The

number of checking points required for the worse case is 18 log2- + 9 . This algorithm has

the following advantages and disadvantages: -

Advantages:

• Low complexity in terms of search points to be evaluated.

• Faster convergence than BBGDS if the motion vector is far from the centre.
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• Suitable for centre-biased motion scenes.

Disadvantages:

• Complexity increases with the increased search area.

• High probability of falling into local minima if the sequence is not central-biased.

• Lack of a control parameter for different applications

• Fixed complexity for a particular video sequence.
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Fig. 2.10: Two different search paths in a four step search.

2.4.8 Diamond Search

The diamond search (DS) algorithm proposed by [53, 83] is another efficient search algorithm

for central-biased motion distributed video sequences. The search always starts from the centre

of the search window, by examining nine checking points as shown in Fig. 2.1 l(a). If the

minimum is found at the centre, then the four additional checking points, shown in Fig. 2.1 l(b),

are matched and the search stops. Otherwise, depending on the position of the minimum, for

example Fig. 2.11 (c) for a corner point, additional points are examined and the centre of the

search is now considered to be the new minimum. This procedure continues until the minimum

is found to be in the centre. The number of search points depends on the video sequence and the

search window; This approach has the following advantages and disadvantages: -

Advantages:

• Low complexity in terms of search points to be evaluated.

• High performance with centre-biased low motion video sequences.
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Disadvantages: -

• High probability of falling into local minima if the sequence is not centre-biased.

• Complexity is high with high motion video sequences.

• Fixed complexity for a particular video sequence.

• Lack of a control parameter for performance scalability.

(a) (b) • (c)

Fig. 2.11: Diamond search.

2.4.9 Concluding Comments

In reviewing the general attributes of the fast search algorithms discussed in the section above,

the following conclusions can be drawn: -

Advantages:

• All existing fast BMAs reduce computational complexity in terms of the number of

search points the FS algorithm needs to estimate motion vectors.

• Most have good regularity in terms of motion vector generation..

There are, however, a number of limitations associated with these fast BMAs: -

• Lower complexity is achieved only by sacrificing quality.

• All are directional search techniques whose performance depends on the unimodal

error surface assumption (USEA). There is a probability of falling into local minima

if this assumption does not always hold true.

• The complexity factor increases with the search area. The number of steps increases

linearly with d, so increasing the probability of falling into local minima.

• All are application-dependent. For example, TSS performs reasonably well on

uniformly distributed motion video sequences but has very poor performance with

centre-biased low motion video sequences. On the other hand, the NTSS performs

better with centre-biased motion distributed sequences (low motion) only.

• There is no single mechanism or parameter to provide any flexibility in controlling

the quality as well as the complexity for motion estimation in different applications.
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I

None of the fast BMAs can satisfy any prescribed level of QoS in terms of prediction

image quality or processing speed.

• They are not suitable for real-time software-only or low power video coding, which

requires a more flexible approach in the trade-off between quality and complexity.

The above discussion leads to the conclusion that although there are a number of fast

algorithms available for motion estimation, there still remain many challenges. Amongst the key

issues are directionality, application dependency, performance scalability for QoS, and

flexibility for real-time software or low power video coding applications. This thesis seeks to

address all of these in the development of a new motion estimation system.

The various examples that have been included in this section used integer-pel accuracy

motion estimation. While fast algorithms reduce computational complexity in terms of the

number of search points by sacrificing image quality, the prediction quality of these search

algorithms can be improved by considering sub-pel accuracy motion estimation, as discussed

below.

2.4.10 Half-pel Accurate Motion Estimation

Subpixel motion estimation has become a main ingredient in many modern video compression

standards [84]. This is because sub-pel accuracy (half-pel/quarter-pel) motion estimation

improves the performance of BMA by finding a better matching block in the search window.

Although digital video is represented by pixels, the moving object is not necessarily limited

to moving by an integer number of pixels between successive video frames. So, the true frame-

to-frame displacements are unrelated to the integer-pel sampling grids. Representing fractional

motion vectors gives sub-pel accuracy to motion compensation. Here, only half-pel accuracy is

considered.

Searching using half-pel accuracy obviously requires more computational complexity than

integer-pel. In order to limit the increase in complexity, it is common practice to first find the

motion vector with integer-pel accuracy using any BMA, and then to carry out a search using

the eight neighbouring half-pel positions blocks. These half-pel position blocks are calculated

using bilinear interpolation as shown in Fig. 2.12, where A, B, C, and D represent the integer

pixel values and a, b, c, and d represent the pixel values at the half-pel level. The example in

Fig. 2.13 highlights that the minimum BDM will be at the centre of the search window, with a

motion vector of («,v) = (0,0) when using integer-pel accuracy, but after checking half-pel

positions, a smaller BDM is found at the (0,0.5) position. Despite the increased complexity,

half-pel motion estimation and compensation can significantly improve motion prediction

accuracy since it reduces noise by averaging and interpolating the pixels. For this reason, many
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video coding standards such as MPEG-1/2 [9, 10] and H.261/263 [11, 12] permit motion

vectors to be specified to a half-pel accuracy.

A B
• a O b •

O c Od

• •
C D

Integer pixel positions

Half-pixel positions

a = A

= (A+B+C+D+2)/4

Fig. 2.12: Half-pel prediction by bilinear interpolation.

Integer-pel motion
vector (u - 0, v = 0)

Half-pel motion vector
(0,0.5)

Fig. 2.13: Half-pel accurate motion vector estimation.

2.4.11 Variants of Block-Matching Algorithms

The fast search algorithms, based on UESA., described in previous sections, are designed to

reduce computation in the process of finding the best matching block in the search window.

There are also some other approaches which can, in general, be integrated into the BMAs

mentioned in the previous sections so as to further improve the search efficiency. These

algorithms are based on using the concept of inter-block motion correlation [49, 66-68, 85-90],

the consideration of a subset of pels (pixel subsampling) inside the image blocks when

computing the matching function [54, 64, 65], and a multiresolution approach [91-93]. There

also exist some different fast-matching motion estimation techniques [94-97] which can be

integrated into the FS algorithm to improve its search efficiency by reducing the computational

cost in the number of operations.
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In the following section these different types of BMAs are described based on the above

options to improve the search efficiency for computational cost minimisation with, or without,

low quality degradation.

2.4.11.1 Inter-block (Spatio-Temporal) Correlation

The motion estimation search strategies previously described imply a fixed initial starting point

that can be centered on the origin of the search window. However, the spatio/temporal

correlation of the motion vector fields are often high and can be used to predict a better starting

point, other than the centre of the search window, which reflects the trend of the current block's

motion, and therefore, may lead to obtaining motion vectors with less BDM using fewer search

points [66].

Indeed, usually the objects span over several macroblocks and move mostly uniformly from

frame to frame. A motion tracking algorithm proposed in [86] used the previous frames' motion

vectors in the neighborhood of the current block to form an initial estimate of the current block

motion vector. Spatial as well as temporal motion vector correlation as an offset vector to track

the motion vector of the current block is used in [49, 67, 68, 87-90]. In [68], Luo et al.

proposed an algorithm utilising the linear weighting of the motion vectors of the three adjacent

I blocks to obtain a prediction motion vector, namely the initial search point. Xu et al. in [49] and

Cheung et al. in [85] used the spatial relation to predict the initial search centre and then used

the centre-biased block matching algorithm [67,68] to refine the final motion vectors. All these

approaches have the following advantages and disadvantages: -

| Advantages: -

• Incorporating these schemes in any fast search algorithms reduces the computational

cost and motion vector overhead.

• It also increases the possibility of finding the global minima.

Disadvantages: -

• In case of acceleration or moving object boundaries, this technique may become

trapped in a local minimum due to inaccurate initial estimates.

• Temporal correlation requires a large memory buffer to keep the previous frame

motion vectors in the decoder.

As the above limitations only apply to temporal, and not to spatial correlation, this technique

will be exploited further as discussed in Chapter 4.

I
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2.4.11.2 Pixel Subsampling

Since block-matching is based on the assumption that all pixels move in the same way, a good

estimate can be obtained by using only a fraction of the pixels in the block to be matched. As

this approach only considers a subset of the pixels in the matching macroblock, it reduces

overall computational complexity in terms of the number of operations required for motion

vector estimation.

A straightforward approach to pixel suabsampling is to adopt a fixed chess-board like pattern

with subsampling factors ranging from two to eight with an equivalent saving in complexity. An

example of this class of fast algorithm is the simple 4:1 pixels subsampling technique [54, 64,

65] shown in Fig. 2.14. However, since only .* uniform fraction of the pixels are used in the

matching computation, the use of these standard subsampling techniques can seriously affect

the accuracy of motion vector detection, and the computational cost is only reduced by four

compared to the FS algorithm.
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Fig. 2.14:4:1 pixel subsampling.

Liu and Zaccarin in [54] proposed a popular subsampling algorithm referred to as alternating

pixel subsampling. This corresponding 4:1 pixel subsampling pattern consists of alternating

over the locations searched so that all pixels of a block contribute to the computation of the

motion vector. Fig. 2.15 shows a block of 8x8 pixels with each pixel labeled as a, b, c, or d in a

regular pattern. This method considers all four subsampling patterns, but only one at each

location of the search area, and in a specific alternating manner. The one that has a minimum

BDM among the four is selected as the motion vector for the block. Alternating between these

patterns allows the use of all the pixels of the current block and all the pixels of the search area.

Nevertheless, though the performance is better than the standard 4:1 subsampling method, the
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computational complexity of the FS algorithm is also reduced only by a factor of four. To

rectify this problem, in [98], Chan et al. proposed an adaptive pixel subsampling technique

instead of the regular pixel pattern in [54], where a lesser number of pixels are considered with

uniform intensity blocks, and more pixels are considered with high active blocks for the BDM

calculation. The above mentioned subsampling algorithms have the following advantages and

disadvantages: -

Advantages:

• All the macroblock positions in the search area are covered.

• Regular data flow and easy generation of candidate motion vectors is provided, while

pixel extraction complexity is dependent on the algorithm used.

Disadvantages:

• Only a small complexity reduction factor is achieved (typically four to eight) which is

often inadequate for real-time applications.

• High probability of falling into a local minimum if a scene contains significant spatial

detail.

• The special structure of alternating pixel subsampling makes it difficult to embed

within algorithms such as TSS and NTSS.

As a result of these disadvantages, this technique for motion estimation will not be

considered any further in this research.
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Fig. 2.15: Alternating patterns of pixels used for computing the matching criterion with 4:1
subsampling.

2.4.11.3 Hierarchical Block-Matching Algorithm

A different approach, the hierarchical block-matching proposed in [91-93], can improve the

prediction performance of the DMA. The basic principles are similar and can be summarised as

follows. A large block size is chosen at the beginning to obtain a rough estimate of the motion

vector. By considering a large block, the ambiguity problem - blocks of similar content - can
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often be eliminated, although motion vectors estimated from large blocks are not accurate. It is

then possible to refine the estimated motion vectors by decreasing the block size and the search

region. A new search with a smaller block size starts from an initial motion vector that is the

best matched motion vector in the previous stage. As the pels in a small block are more likely to

share the same motion vector, the reduction of block size typically increases motion vector

accuracy. In hierarchical block matching (multiresolution), the basic idea is to perform motion

estimation at each level successively, starting with the lowest resolution level as shown in

Fig. 2.16. The estimate of the motion vector at a lower resolution level is then passed onto the

next higher resolution level as an initial estimate. The motion estimation at the higher levels

refines the motion vector at the lower one. This technique has the following advantages and

disadvantages: -

Advantages: -

• All the blocks in the searching area are likely to be covered.

Disadvantages: -

• Memory requirement is increased because of subsampling and pre-stage filtering, and

the need to store images at several resolutions.

• Lower accuracy results because of the high probability of local minima when a scene

contains significant spatial detail. (This depends on subsampling factors).

As a result of these disadvantages, this technique for motion estimation will not be

considered any further in this research.

Layer 3

Initial Image

Fig. 2.16: Hierarchical matching pyramid.

2.5 Summary

In this chapter, a comprehensive review of different block-matching motion estimation

techniques has been provided. It is clear that a number of key issues in block motion estimation

remain to be resolved. In particular, none of the techniques can be seen as a complete solution

for all types of motion video sequences. All the fast algorithms are directional and based on the
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imimodal error surface assumption, which does not always hold true in real world video

sequences. Moreover, these fast algorithms are not designed to provide any flexibility for

performance management in motion estimation for QoS in terms of prediction image quality or

computational complexity (processing speed).

This, therefore, has motivated the development of a general system, which can be used

under all conditions; is non-directional; is scalable for any level of quality of services; and

provides flexibility in performance management for real-time video coding applications,

especially software-only and low power video coding, where available resources are restricted.

The next chapter details one of the key constituent algorithms, which forms the basis for

such a solution.



Chapter 3

Distance-dependent Thresholding Search Algorithm

3.1 Introduction

In this chapter, a non-directional Distance-dependent Thresholding Search (DTS) block motion

estimation algorithm (Block 1 in Fig. 1.6) is proposed that employs the novel concept of

distance dependent thresholds. As revealed in Chapter 1, this algorithm is based on one key

finding from real world video sequences—this is that the distortion of an object in any video

frame increases with its velocity, as well as camera zoom and pan factors. Tc accommodate this

key finding, the DTS algorithm uses a parametric thresholding function to terminate the search

even at relatively high BDM values, especially when the length of the motion vector tends to

increase. The DTS algorithm encompasses both the FS and very fast searching modes. Different

threshold settings can provide different QoS levels and therefore, the DTS algorithm provides a

general solution for all types of video sequences and coding demands. This unique feature

provides good flexibility in controlling performance, especially the computational complexity

required for motion estimation in real-time video coding applications. Moreover, the non-

directional nature of the DTS algorithm means it does not suffer from potential difficulties due

to the unimodal error surface assumption.

Although the DTS algorithm is developed specifically for video coding applications, it also

exhibits significantly improved performance in capturing true object motion, a feature which

can be used in object motion-based video analysis applications such as video indexing, retrieval,

and segmentation, and object detection and tracking for surveillance applications.

This chapter is organized as follows. Error surface analysis of some typical video sequences

is presented in Section 3.2. Section 3.3 presents a detailed statistical analysis of video

sequences, which provides the key premise for the DTS algorithm. Section3.4 explains the

proposed DTS algorithm with a comparative discussion of the influence of linear and

exponential thresholding functions. Experimental results and evaluation of the performance of

the DTS algorithm compared with other fast search algorithms are presented in Section 3.5 for

video coding applications, together with an analysis of the computational complexity of the

42
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DTS algorithm. Preliminary results for true object motion estimation using the DTS algorithm

are presented in Section 3.6, while Section 3.7 summarises the chapter.

3.2 The Error Surface and its Characteristics

In Chapter 2, it was shown that many contributions in the domain of block-matching algorithms

are based on the principle of reducing the checking points in a search window. All of these

search algorithms are based on one assumption, that the error surface is unimodal. If a matching

function, such as MAE in (2.1), is monotonic along any direction away from the optimal point,

a well-designed fast algorithm can then be guaranteed to converge to the global optimal point.

According to Chow and Liou [99], however, this assumption does not hold true for real world

video sequences. We have also tested this on a number of standard video sequences (Appendix

B) and observed that this assumption does not always hold true. The MAE error surface has, in

fact, a significant impact on the performance of these fast algorithms for block-matching motion

estimation. Fig. 3.1 shows some typical examples of MAE surfaces for a search window of ±16

pixels for the Football and Table Tennis sequences. For the surface shown in Fig. 3.1 (a), the

MAE error decreases monotonically as the search location moves towards the global minimum

value. It implies that most existing fast algorithms, such as TSS and NTSS will perform well for

this type of error distributed block.

The MAE surfaces in Figs. 3.1 (b) and (c) by contrast, have many local minima due to the

non-stationary characteristics of the video signal. As a consequence, it is unlikely that

conventional fast search algorithms, which use few directional candidates, would ever converge

to the global minima. In other words, the search could easily be trapped in a local minimum

instead of the global minima and generate a higher prediction error. A non-directional search,

such as FS algorithm, on the other hand, can guarantee reaching the global minima on any kind

of error surface at the expense of a large number of search points.

Non-directional search techniques naturally guarantee improved prediction image quality.

The key question however, is whether it is possible to develop a non-directional search

algorithm fast enough to be comparable to other fast directional search algorithms while

retaining its supremacy in achieving improved image quality. This chapter proposes a solution

that answers this question affirmatively for low motion video sequences by the development of

a Distance-dependent Thresholding Search (DTS) algorithm. The next section introduces the

basic principles behind the DTS algorithm.
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(a) Football sequence, current frame # 35, reference frame # 34, block coordinate (5,8), block
size 16x16 pixels, maximum search displacement d = 16.
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(b) Football sequence, current frame # 35, reference frame # 34, block coordinate (10,9), block
size 16x16 pixels, maximum search displacement d — 16.

100-,

(c) Table Tennis sequence, current frame # 70, reference frame # 69, block coordinate (6,12),
block size 16x16 pixels, maximum search displacement </= 16.

Fig. 3.1: Three example MAE error surfaces for blocks from the Football and Table Tennis
sequences.
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3.3 Rationale in Distance-dependent Thresholding

Before introducing the full DTS algorithm, a series of key definitions need to be provided.

Definition 3.1: Consider two points with Cartesian coordinates (xij'O and (x2j>2)- The

Euclidean distance, City-block distance, and City-block-max distance between these two points

are calculated as -/fa -x2f +(y{ -y2f, \xx ~x2\ + \yl-y2\, and max(|x, -*2 | , |y, -y2\)

respectively.

It is interesting to note that the trajectory of a point maintaining constant Euclidean

distance, City-block-max distance, or City-block distance from a fixed point traces a circle, a

square, and a diamond (45° rotated square) shape, respectively.

Definition 3.2 (Search Squares SSJ> The search space with maximum displacement ±d,

centred at pixel patCyi can be divided into d+\ mutually exclusive concentric search squares

SSn such that a checking point at pixel pxyi representing motion vector (JC-cx,y -cy) , is in

SSt if, and only if, the city-block-max distance (Definition 3.1) of the motion vector is

max|jc-cx|, y-cy|)=T, for all -d + cx<x£d+ cx, -d + cy<,y£d+ cy, and search square

index T = 0,l,...,</.

It can be readily verified that the number of checking points in search square SST,

fl, T=0
I8T, T = lA....rf

(3.1)

and SSn represents the motion vectors of city-block-max distance T that translates to a

conventional Euclidean distance (Definition 3.1) in the range of [r,W2] for all O^r £d. The

checking points used in the first three search squares, SSo, SSi, and SS2 are shown in Fig. 3.2.

Throughout this thesis, the length of a motion vector is expressed as Euclidean distance,

unless stated otherwise.

Definition 3.3 (Cumulative Probability): Consider a continuous probability function / ( / ) in a

range of fully ordered events 0<t<,Tsuch that J f(t)dt = \. The cumulative probability

function F(t) of this probability function / ( / ) is defined as:

(3.2)

forallO</<7\



Chapter 3 Distance-dependent Thresholding Search Algorithm 46

-7

-5

-3

-1
0
1

_/!M
i
d
\!
d
VI

\ r

i^S'*.

M"

I
/
r
"if
^-1!

EH
u v

Pa

® Checking points in SSo

© Checking points in SS\

® Checking points in

- 7 - 5 - 3 - 1 0 1 3 5 7

Fig. 3.2: DTS search squares SS0, SSU and SS2.

The cumulative probability of an event represents the probability of all possible events up to

and including that event, and it can be verified that F(tx) ^ F(t2) if and only if tx <: t2 and

F(T) = L

Now consider the average MAE per pixel of a macroblock used as the BDM in the FS

algorithm. For each macroblock, the FS algorithm looks for the minimum MAE per pixel value

in the range of [0,2*-l] for a 6-bit gray scale image. Throughout the thesis, it is assumed that b

= 8.

In Feng et al. [73] and Lim and Ho [74], it was stated that the magnitude of a motion vector

is proportional to the magnitude of the BDM. This observation has been explored further on a

number of standard and non-standard video sequences covering a wide range of object and

camera motions. In Fig. 3.3, the cumulative probabilities of minimum MAE are plotted for

different search squares on four different sequences. For each sequence, the minimum MAE is

calculated for each search square of macroblocks in the first 80 frames. In each search square,

the probability for each distinct minimum MAE is calculated based on frequency, and

cumulative probability using (3.2).

To interpret these graphs, consider the cumulative probability of finding a minimum MAE

of 20 or less in individual search square of the FootballVideo sequence in Fig. 3.3(a). It follows

from this that the cumulative probability gradually decreases from 0.64 to 0.13 and then to 0.01

as the city-block-max distance of a motion vector increases from 0 to 1 and then to 7. This

means that as the motion vector length increases, so does the probability of terminating the FS
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algorithm at a higher MAE value. This observation is further enhanced by the horizontal

extension shown in Fig 3.3(a) at a cumulative probability of 0.64, which reveals that the

minimum MAE increases from 20 to 43 and 54 as the city-block-max distance of a motion

vector increases from 0 to 1 and then to 7. A similar trend is witnessed in the orJier three video

sequences shown in Figs. 3.3(b), (c), and (d).

0 20 30 40 50 60
Minimum MAE

70 80 90 100

(a) Football sequence.

0 10 20 30 40 50 60
Minimum MAE

70 80 90 100

(b) Flower Garden sequence.
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0 10 20 30 4 0 50 60
Minimum M A E

70

(c) Salesman sequence.

80 90 100

0 10 20 30 40 50 60
Minimum MAE

70 80 90 100

(d) Miss America sequence.

Fig. 3.3: The cumulative probability of minimum MAE for different search squares on the
first 80 frames of four standard video sequences.

A comparison of the general trends of the cumulative probability curves for the same search

square, across all four video sequences in Fig. 3.3, indicates that the distortion level is higher in

the Flower Garden and Football sequences, which exhibit relatively high motion compared
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with the Salesman and Miss America sequences, where instead, low motion is involved. As

Miss America has almost no motion, the cumulative probability of a minimum MAE = 0 is very

high, whereas the cumulative probability of a minimum MAE = 0 in Football sequence is

almost zero.

Fig. 3.3 therefore, reveals the following: -

• The cumulative probability of having a particular minimum MAE decrease as the

motion vector length increases.

• The minimum MAE, in which the cumulative probability first reaches the value 1,

increases as the motion vector length increases.

Both these findings reveal that the probability of terminating the FS algorithm at a higher MAE

value increases with the length of the motion vector.

Based on these observations, the key finding is that the distortion of an object in a video

frame increases with its velocity, as well as with the zoom and pan factors of the camera. As the

length of the motion vector grows, so does the distortion error. It can be therefore concluded

that locating a block with a minimum prediction error but with a motion vector of high length, is

not only ineffectual in the prevailing distorted search space, but may lead to false motion

vectors being erroneously selected.

This leads, elegantly, to a potential solution for the challenge raised in Section 3.2 of

developing a non-directional search algorithm which is comparable in terms of speed to the

other fast directional search algorithms, but also provides improved image quality. A non-

directional search can be effectively made faster if the search is not directed by the sole desire

of reaching the global minima unconditionally. As well, terminating a relatively high BDM

once the current minimum BDM exceeds a threshold value should also be considered, where

this threshold also increase as the search moves away from the centre.

By making the thresholding function distance-dependent, the search "an be controlled by a

user-defined parameter, so that the new search algorithm can be transformed from the

qualitatively best, but slow, FS algorithm to extremely fast searches which trade-off quality for

search speed. This search technique thus provides an effective control mechanism for

performance scalability and QoS by trading between predicted image quality and processing

time in motion estimation.

Being non-directional and incorporating a relationship between distortion, object velocity

and camera factors, this new Distance-dependent Thresholding Search (DTS) algorithm has the

potential of capturing more true object motion vectors compared with other directional fast

search algorithms and non-directional FS algorithm. This issue will be explored further in

Section 3.6.
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The DTS algorithm is now presented in detail, and includes an analysis of the influence of

using linear and non-linear thresholding functions.

3.4 The Distance-dependent Thresholding Search (DTS) Algorithm

Definition 3.4: MAE(a>o,)(u,v) denotes the Mean Absolute Error per pixel of the macroblock

centred at pixel p^^ in the current frame with respect to the block centred at pixel pcc+U)O,+v in

the reference frame.

3.4.1 The Formal DTS Algorithm

Like all block-base motion estimation search techniques, the DTS algorithm starts at the centre

of the search space. The search then progresses outwards by using search squares, SSn in order

while monitoring the current minimun MAE. A parametric thresholding function,

Threshold(%C), is used to determine the various thresholds to be used in the search involving

each SSn where the parameter, C, is set at the start of each search and acts as a control

parameter, as alluded to at the end of Section 3.3. After searching each SSn the current

minimum MAE is compared against the threshold value of that specific search square and the

search is terminated if this MAE value is not higher than the threshold value. The DTS

algorithm is formally presented in Fig. 3.4.

• Parameter C

• Precondition: Pixel p^^ is the centre of the search space with

maximum displacement d.

• Initialisation:
MAEmin = MAE{cXiCy) (0,0) (Definition 3.4)

Main Algorithm:
If MAEmin > 0 Then

For r = \,2,-,d

For each checking point pxy in SST

e = MAE{cXtCy)(x-cx,y-cy)

If e < M4£min Then

MV-(x-cx,y-cy)

If MAEmin <. Threshold(%C) Then STOP

• Postcondition: MV contains the motion vector and MAEmin

contains the distortion error of the respective block.

Fig. 3.4: The DTS algorithm.
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3.4.2 Characteristics of the Thresholding Function

To make sure that the DTS algorithm can be transformed to an exhaustive FS algorithm, the

threshold value for SS0 is always assumed to be 0. As the maximum MAE value using a 6-bit

gray level intensity is 26-l, threshold values for all other search squares can, at most, be 2b-\.

However, to ensure the algorithm includes the entire search space, all but the outermost

threshold value must be less than 2b-\. Moreover, to make the thresholding function distance-

dependent, the function must monotonically increase.

The DTS algorithm, therefore, assumes the following general properties of the thresholding

function:

Threshold(0,C) = 0

Threshold^, C) <, Threshold^, C) <,...<, Threshold^, C)

Threshold^,C) < 2b - 1 , for all r = 1,2,...,d -1

Threshold(dyC)<>2b - 1

(33)

(3.4)

(3.5)

(3-6)

Parameter C plays a significant role in the DTS algorithm by allowing users to define

different sets of monotonically increasing threshold values based on specific values of C.

Obviously, a set of larger threshold values terminates a search earlier than a set of smaller

values. C, therefore, provides a control mechanism to allow trading-off between the

computational complexity in terms of search points and prediction image quality.

The monotonic increasing function requirement means the DTS algorithm could use a

linear, exponential, or any other complex analytic function to control C. In the next two

sections, linear and exponential thresholding functions within the DTS algorithm will be

explored.

3.4.2.1 Linear Thresholding (LT) Function

A linear thresholding function can be defined as follows:

Threshold^,CL) = CLXT, for all r = 0,\,...,d (3.7)

The above notation uses subscript L for the parameter, C, to specify linear thresholding, while in

the next section, subscript E is used to indicate exponential thresholding.

It can be verified that the above definition satisfies conditions (3.3) and (3.4) if CL £ 0. In

order to satisfy the remaining two properties in (3.5) and (3.6), CLxd<,2b - 1 ,

2b - 1
i.e., CL& . So, the range of values for parameter CL is:

d
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d

Sets of threshold values corresponding to CL = 0, 10, 20, and 36 are presented in Fig. 3.5, to

illustrate the different values of threshold for each search square, where 8-bit gray level

intensity with a maximum search displacement d - ±7 pixels is assumed.

Cr=10
D Q=20
D CV=36

Fig. 3.5: Sets of threshold ve,-es for different values of parameter Q.

3.4.2.2 Exponential Thresholding (ET) Function

An exponential thresholding function can be defined as follows:

Threshold(r,CE) =
fO - ifT =

(3.9)
[2/L£ otherwise

The above definition satisfies conditions (3.3) and (3.4) if CE > 0. In order to satisfy the

2*- l
remaining two properties in (3.5) and (3.6), 2'

of values for parameter CE is:

-1, i.e.
Iog2(26-1)

. So, the range

Iog2(26-1)
(3.10)

Sets of threshold values corresponding to CE - 0.88, 1,3, and 7 are presented in Fig. 3.6, to

illustrate the different values of the threshold function for each search square, where 8-bit gray

level intensity with a maximum search displacement ±7 pixels is assumed.
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Fig. 3.6: Sets of threshold values for different values of parameter Q.

3.4.2.3 Selecting the Thresholding Control Parameter

The values of Ci and CE have a significant influence on the level of computation, the quality of

the motion vector, and the prediction error. In the previous section, the upper and lower limits

on the values of Q, and CE were defined. To clarify the nomenclature, the DTS algorithm using

the linear thresholding parameter CL and exponential thresholding parameter CE are denoted as

LT(Ci) and ET(C£) respectively.

The choice of CL involves a trade-off between the quality of the motion estimation and the

computational complexity. When LT(0) in (3.7), the search terminating threshold value of any

search square (SS) is zero as shown in Fig. 3.5. In this case, the DTS algorithm translates into

the exhaustive FS algorithm as there is no threshold to terminate the search until all possible

locations in the search space have been visited. Conversely, when CL is very high in (3.7), say

for example LT(36), which is close to the maximum limit of Q (3.8) for an 8-bit gray level

image and d = 7, the threshold value of each search square is shown in Fig. 3.5. In this case, the

DTS algorithm will be as fast as the probability of getting the minimum BDM within the search

terminating threshold limit is high, especially around the search centre. In case of low motion

video sequences, such as Salesman and Miss America, where MV distribution is centre-biased,

as shown in Fig. 3.7(a) and (b) respectively, a high Q performs well with low computation.

Conversely, for high motion video sequences, such as Football and Flower Garden, where the

motion vector distribution is not centre-biased, as shown in Fig. 3.7(c) and (d), a high CL may

stop the search with an inaccurate motion vector and high prediction error.

The effect of the exponential control parameter will now be considered. When ET(0.88)

with a maximum displacement, d- 7, the search terminating threshold value for different search
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squares gradually increases (3.9), as shown in Fig. 3.6. In this case, the DTS algorithm will be

faster than the FS algorithm. If the value of CE is higher, for example ET(7), the threshold value

for all search squares, except the centre, becomes a maximum of 2 as shown in Fig. 3.6. In this

case, the likelihood of a BDM being within this small range is low for most types of video

sequence, especially if it is non-stationary. Therefore, a high value of CE means the DTS

algorithm moves towards the FS algorithm.
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(c) Football. (d) F/ower Garden.

Fig. 3.7: Motion vector distributions of some high and low motion video sequences where MVs
have been calculated by the FS algorithm with a maximum displacement, d = 7.

From the above discussion, it can be seen that the flexibility in controlling the search speed

is very limited, although different values of C& for example, in the range 0.88 to 7, enable the

search speed and predicted image quality to be controlled. The experimental results in Table 3.1
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make clear that while the search speed of the DTS algorithm using the ET function is

comparable to the NTSS or TSS algorithm for the low motion Miss America video sequence

where ET(1), the search speed is not comparable for other values of CE. Conversely, for the

high motion Flower Garden sequence, the maximum search speed of the DTS algorithm with

the ET function, where ET(1), is on average, 70.16 search points per motion vector, whereas the

corresponding numbers for NTSS and TSS are 21.63 and 23.22 respectively. This clearly

indicates that the search speed of the DTS algorithm with the ET function does not provide

comparable performance to other fast algorithms, which leads to the conclusion that the ET

function does not afford sufficient flexibility in controlling the computational complexity in

real-time video coding applications.

Ifl

6 8 10 12 14

Control parameter CL

16 18 20

Fig. 3.8: Flexible search speed in the DTS algorithm with an LT function using different
values of CL for the Flower Garden sequence.

Table 3.1 also includes the search speed of the DTS algorithm using the LT function, and

shows that it is comparable to the FS, NTSS, and TSS algorithms for both the Miss America and

Flower Garden video sequences, using various threshold settings. The search speeds in terms of

average number of search points (SP) per motion vector obtained for different values of Q in

Table 3.1 have been plotted in Fig. 3.8, demonstrating that the DTS algorithm with LT function

provides the flexibility to control the search speed from the FS algorithm across the range of

different speeds, and is in principle, even faster than existing fast algorithms. This leads to the

conclusion that the LT function provides full flexibility in controlling the computational

complexity for real-time video coding application';, and since complexity management is crucial

for such applications, only linear thresholding will be considered in the subsequent chapters.

Finally, while linear thresholding means that different levels of QoS can be achieved by

trading off between predicted image quality and computational complexity, in terms of search
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points, selecting the best value of CL still remains-a challenging problem. CL has to be manually

set and the DTS algorithm is unable to automatically adjust Ci as the motion content in the

video sequence changes over time.

In Chapter 5, the DTS algorithm will be modified to provide a mechanism for fully adapting

appropriate CL parameters automatically as the motion content changes so that a QoS target,

either in terms of search points, or predicted image quality, can be maintained.

3.5 Performance Analysis in Video Coding Applications

All experiments were performed on a Pentium III 600 MHz computer running the Windows

2000 operating system and using MATLAB 6. The FS, TSS, NTSS, and DTS algorithms were

implemented to compute the block-based inter-frame motion vectors from the luminance (Y-

component) signal of a number of standard and non-standard test video sequences (Appendix

B).

All sequences were uniformly quantised to an 8-bit gray level intensity. The block size

dimensions [N,N] and maximum displacement, d, were considered as [16,16] and ±7

respectively throughout the experiments. A maximum of (2d+l)2 = 225 checking points were

used, and the MAE distortion measure was used as the matching criterion. In all cases, the

centre of the search window was examined first, and if the MAE = 0, then the search was

immediately terminated without checking any further points.

The test results for the low motion video conferencing sequence, Miss America, in QCIF

format (176x144 pixels) and the high motion Flower Garden sequence in SIF format (352x240

pixels) are included, and the results for the high motion sequences, Football and Table Tennis

and low motion video conferencing sequence, Salesman, are included in the supplementary

results section in Appendix C. All test results are shown for integer-pel accuracy whereas in

Section 3.5.4, the performance of the DTS algorithm using half-pel accuracy motion estimation

is included for comparative purposes.

3.5.1 Quantitative Evaluation

To quantitatively evaluate the performance of the DTS algorithm in video coding applications,

the following three measures were used: -

i. The average MSE (2.2) between the predicted and corresponding original frames,

ii. The average peak signal-to-noise ratio (PSNR) between the predicted and

corresponding original frames.

iii. The average number of search points (SP) per motion vector as the measure of

computational complexity.

-•""S
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Average MSE Performance

The performance of the DTS algorithm using both the LT and ET functions is compared with

the FS, TSS, and NTSS, in terms of the average MSE between the predicted and original frames

in Table 3.1 for the Miss America and Flower Garden sequences. A wide range of different

values for Q and Q? based on (3.8) and (3.10), were tested to analyse the performance of the

DTS algorithm, while only a subset of the results are presented in Table 3.1.

Block-matching
algorithms

FS/LT(0)

TSS

; , NTSS , .

LT<2)

LT(4) .

LT(6)

LT(8)

LT(10)

LT(12)

LT(14)

LT(16)

LT(18)

LT(20)

ET(1)

ET(2)

ET(4)

ET(8)

Miss America sequence
(1-80 frames)

MSE

5.386

. 5.511

5.398

5.395

5.399

5.408

5.408

5.408

5.408

5.408

5.408

5.408

5.408

5.400 ;

5.398

5.397

5.397

PSNR
[dB]

,40.818

. 40.719

40.808,

,40.811

40.805

40.800

40.800

40.800

40.800

40.800

40.800

40.800

40.800

40.807

40.808

40.809

40.809

SP

168.21

19.67

15.14

, 14.60

9.01

7.90

7.50

7.30

7.25

7.23

7.22

7.21

7.21

12.81

26.61

48.20

64.31

Flower Garden sequence
(1-80 frames)

MSE

266.86

322.88

279.37

270.97

275.80

283.98

293.61

305.63

318.74

334.18

353.03

373.68

395.23

275.96

270.49

270.47

270.46

PSNR
[dB]

. 23.90 -

23.12

23.76

23.89

23.82

23.69

23.55

23.37

23.19

22.97

22.72

22.48

22.23

23.82

23.90

23.90

23.90

SP

201.24

23.22

21.63

127.43

73.48

45.93

33.59

27.00

23.06

20.47

18.61

17.21

16.11

70.16

155.02

175.65

179.18

Table 3.1: Average MSE and PSNR per pixel, and SP per motion vector comparison for the
Miss America and Flower Garden sequences (1-80 frames).

It can be observed that for the Miss America sequence, with LT(4), the speed improvement

factor was almost 20 times faster whereas the average MSE was very similar (within 0.24%) to

the optimal average MSE of the FS algorithm. The prediction error performance of the DTS

algorithm was aslo better than TSS, and comparable with NTSS when the search speed was

either similar, or higher. For example, for the DTS algorithm with LT(2), the average MSE was
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slightly better than that of NTSS, and 2% better than the TSS algorithm, while the search speed

was 26% and 3% faster than the TSS and NTSS algorithms respectively.

For the Flower Garden sequence, the speed-up factor of the DTS algorithm with LT(6) was

almost 5 times that of the FS algorithm, whereas the error performance was within 5% of the

optimal average MSE of the FS algorithm. Table 3.1 also illustrates that the performance of the

DTS algorithm was slightly better than that, of the TSS algorithm when considering LT(12), but

was not so satisfactory when compared with NTSS algorithm. The reasons for these results will

be discussed in Section 3.5.2.

In Figs. 3.9 and 3.10, the MSE performance of the DTS algorithm against the FS, TSS, and

NTSS algorithms for each frame of both video sequences is plotted. For the sake of clarity, only

those threshold control values for the DTS algorithm that used search points comparable to the

TSS and NTSS algorithms are shown. Fig. 3.9 shows that the error performance for each

algorithm except TSS was very similar for the whole (Miss America) video sequence. Fig. 3.10

illustrates that the error performance of the DTS algorithm for most of the frames was not so

satisfactory for the high motion video sequence, Flower Garden. This limitation will be more

fully discussed in Section 3.5.2.

0 10 20 30 .0 50
Frame number

60 70

Fig. 3.9: Average MSE comparison for different BMAs with the Miss America video
sequence.
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10 20 30 40 50
Frame number

60 70

Fig. 3.10: Average MSE comparison for different BMAs with the Flower Garden sequence.

Peak Signal-to-Noise Ratio (PSNR) Performance

All PSNR values were evaluated from: -

- A T O ( 3 - U )

The performance comparison of the FS, TSS, NTSS, and the DTS algorithms using the LT

and ET functions in terms of the average PSNR between the predicted and the original image, is

given in Table 3.1. The improvement in the PSNR value for the DTS algorithm with LT(2) was

0.08 8dB compared to the TSS algorithm for the Miss America sequence, while the

corresponding search speed was 26%. For the Flower Garden sequence, the DTS algorithm

with LT(12) gained 0.07dB PSNR improvement compared to the TSS algorithm, with the

search speed being similar. The DTS algorithm with LT(2) gained a negligible 0.007 dB PSNR

for the Miss America sequence while the search speed was 3% faster than that of the NTSS

algorithm. Table 3.1 also shows that the PSNR performance of the DTS algorithm compared to

the NTSS was not as satisfactory for the Flower Garden sequence using a similar search speed.

Finally, the plot in Figs. 3.11 and 3.12 illustrate the overall PSNR performance of the DTS

algorithm against the FS, TSS, and NTSS algorithms. Again, only that LT function for the DTS

algorithm that has similar search speeds compared to the TSS and NTSS algorithms, have been

included.
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0 10 20 30 40 50 60
Frame number

70

Fig. 3.11: Average PSNR comparison for different BMAs with the Miss America video
sequence.

Fig. 3.12: Average PSNR comparison for different BMAs with the Flower Garden video
sequence.

Search Speed Performance

For all values beyond LT(6) in Table 3.1, for the Miss America sequence, while the search

speed increased, the quality performance in terms-of average MSE or PSNR remained constant,

indicating that although the speed-up factor was high compared to TSS, it still provided better

prediction quality. This also indicates that the search speed of the DTS algorithm with LT(4)

was on average 40% faster than that of the NTSS algorithm, with both providing similar error or

PSNR performance. This clearly demonstrates that for low motion video sequences, the DTS

algorithm, with LT function, outperforms both the TSS and NTSS algorithms. The results also

ill]
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confirm that by choosing a suitable value for the control parameter for the selected threshold

function, the average number of search points required by the DTS algorithm will be

considerably less, while concomitantly, having a significantly higher average PSNR or MSE.

For the Flower Garden sequence however, the search speed of the DTS algorithm, for example

in the case of LT(12), was similar to TSS but worse than NTSS for a similar error performance.

In Figs. 3.13 and 3.14, the search point performance of the DTS algorithm compared with the

FS, TSS, and NTSS algorithms is shown. Again, only the LT function that generated MSE

values similar to those of the TSS and NTSS algorithms, has been plotted. Fig. 3.13 shows that

the number of average search points per motion vector is always less compared to TSS and

NTSS for any frame of the Miss America sequence, while Fig. 3.14 illustrates that the search

speed of the DTS algorithm was not as good for the Flower Garden sequence. This recurring

limitation, which has been identified in the DTS algorithm, will now be analysed more fully.

CO

10 20 30 40 50
Frame number

60 70

Fig. 3.13: Average search points (SP) comparison for different BMAs with the Miss America
video sequence,

10 20 30 40 50
Frame number

60 70

Fig. 3.14: Average search points (SP) comparison for different BMAs with the Flower
Garden video sequence.

: / , - • ; • •• -•• . • ; . ' . '••-U~.
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3.5.2 Key DTS Performance Issues

The overall conclusion from the results in Table 3.1 is that for low motion video sequences such

as Miss America (and the Salesman sequence presented in the supplementary results in

Appendix C), the DTS algorithm consistently performs better than either the TSS or NTSS

algorithm. This is because, as was noted in Section 2.4.2, the TSS algorithm always searches 25

points irrespective of the video content. For the low motion case, the NTSS algorithm searches

at least 17 points (Section 2.4.5). Li et al. [45], Zhu and Ma [53], Luo et al. [68], and Cheung et

al. [85] show that in central-biased low motion sequences, more than 80% of blocks are

stationary or quasi-stationary, and most of the motion vectors are within a 3x3 or 5x5 area

around the search centre, as shown in Figs. 3.7(a) and (b). As the probability of getting a small

prediction error is higher nearer the centre (Figs. 3.3(c) and (d)), the DTS algorithm can stop

searching after completing the 8 neighboring search points, even when a small threshold value

is involved. For this reason, the DTS algorithm always outperforms the TSS algorithm and

provides similar or better. performance than the NTSS algorithm for low motion video

sequences.

The reverse is true however, for high motion video sequences where the number of search

points for TSS is again 25, and for NTSS, between 17 to 33 based on the level of motion

involved in the current block. In this case, the DTS algorithm may search up to 225 points if the

distortion error is higher compared to the threshold in any search square. Figs. 3.7(c) and (d)

illustrate the motion vector distributions of high motion video .sequences, indicating that to

capture real motion vectors, any search algorithm has to search at least a few pixels' distance

from the search centre. If for example, a block moves 3 pixels from the centre, and if a

threshold value in the DTS algorithm is such that it stops the search before reaching 1SS3 (3.1), it

may produce a higher prediction error with a faster search. Conversely to obtain the real vector,

a threshold value should be selected that allows the DTS algorithm to search up to SSj, where

the total number of checking points required is 49. This produces better prediction quality in

terms of MSE or PSNR with higher search points. For this reason, the DTS algorithm does not

perform satisfactorily with the high motion video sequence, Flower Garden, compared to the

NTSf> algorithm. In this case, if the initial search centre of the search space could be predicted,

near to the minimum BDM position for the current block, by exploiting relevant information

from neighbouring blocks, the search efficiency of the DTS algorithm for high motion

sequences would be improved. This issue will be addressed more fully in Chapter 4.

The most noticeable feature of Table 3.1 is that the different values of Q and CE, especially

Q,, provide different levels of image prediction quality in terms of average MSE or PSNR with

different levels of computational complexity. This indicates that the DTS algorithm provides
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flexibility in controlling the predicted image quality, as well as computational complexity by

varying the control parameter. Conversely, Table 3.1 illustrates that the existing FS, as well as

the fast TSS and NTSS algorithms, have a fixed performance for both video sequences. This

proves that these algorithms do not provide any flexibility in controlling quality or

computational complexity based MI a user's demands. These results validate one of the

objectives defined in Chapter 1 tha, k, of developing a system which can provide QoS in terms

of prediction image quality and computational complexity. This flexibility has considerable

potential for exploitation in a range of applications ranging from low-bit rate video

conferencing through to adaptive liigh-quality video coding. It is especially important for low

power video coding (mobile or handheld computing platforms) and software-only video coding,

which demands a more flexible approach to trade-off between predicted image quality and

computational complexity. In this chapter, different values of control parameters have been set

up manually. To gain the full potential of this algorithm, this control parameter in any system

has to je automatically adaptable based on user requirements in terms of predicted image

quality or computational complexity. Such a system will be presented in Chapter 5.

While the error perfora^ce in using the ET function is similar to that of the FS algorithm,

the complexity is higher. This means the ET function for any value of CE is not comparable with
fhe TSS or NTSS algorithm, especially for the high motion video sequences. For this reason

therefore, in the next section, only the LT function DTS algorithm will be considered for

qualitative performance comparison.

3.5.3 Qualitative Evaluation

The perceptual performance of the LT function DTS algorithm has been evaluated based on the

predicted image quality for motion estimation. Figs. 3.15 and 3.16 show the estimated 76th and

S6' frames respectively of the Miss America and Flower Garden sequences, for the FS, DTS,

TSS, and NTSS algorithms. Fig. 3.15 shows that although the predicted image quality of the

DTS algorithm is very similar to that of FS, TSS, and NTSS for the Miss America video

sequence, the computational cost is approximately 55% and 40% less than TSS and NTSS

respectively. This indicates that the DTS algorithm can predict the same image quality with a

faster search speed than existing fast algorithms for low motion video sequences. Fig. 3.16

shows that the predicted image quality of the DTS algorithm is very similar to that of TSS and

NTSS algorithms for the Flower Garden sequence with comparable computational complexity

(Table 3.1).

• • . * , ' . , - . " : ; ' - • ' - ' . . ; . : .
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(c) (d)

Fig. 3.15: Estimated image of 76th frame of the Miss America sequence: (a) FS, (b) DTS:
LT(4), (c) TSS, and (d) NTSS algorithms.

1

1

(a) (b)

(c) (d)
Fig. 3.16: Estimated image of 5th frame of the Flower Garden sequence: (a) FS, (b) DTS:

LT(12), (c) TSS, and (d) NTSS algorithms.
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The prediction error distribution corresponding to Figs. 3.15 and 3.16 in terms of MAE per

block between each original and its predicted frame, is shown in Figs. 3.17 and 3.18

respectively. As the FS is optimum in terms of error performance, Figs. 3.19 and 3.20 show the

prediction error distribution of DTS, TSS, and NTSS with respect to the FS algorithm for the

Miss America and Flower Garden video sequences. These figures indicate that the error

performance of the DTS algorithm with LT(4) is very similar to that achieved with the FS

algorithm for the Miss America video sequence, whereas error performance of the DTS

algorithm with LT(12) is comparable to NTSS, and better than the TSS algorithm.

(a) (b)
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(c)

10

(d)

Fig. 3.17: Prediction error distribution of the 76th frame of the Miss America sequence: (a) FS,
(b) DTS: LT (4), (c) TSS, and (d) NTSS algorithms.
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(a)

25

(b)

2 5 - -

(d)

Fig. 3.18: Prediction error distribution of the 5th frame of the Flower Garden sequence: (a) FS,
(b) DTS: LT(12), (c) TSS, and (d) NTSS algorithms.
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Fig. 3.19: Prediction error distribution of the 76th frame of the Miss America sequence with
respect to that of the FS algorithm.
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Fig. 3.20: Prediction error distribution of the 5th frame of the Flower Garden sequence with
respect to that of the FS algorithm.

3.5.4 Performance Comparison using Half-pel Accuracy

The performance of the DTS, FS, TSS, and NTSS algorithms was also tested in terms of half-

pel accuracy, and the results compared to integer-pel accuracy motion estimation. The process

of half-pel accuracy was detailed in Section 2.4.10. Table 3.2 shows the average MSE and

PSNR performance of the four algorithms for the Miss America and Flower Garden video

sequences using half-pel accuracy. Comparing Table 3.1 with Table 3.2 shows that half-pel

accuracy improved PSNR on average by 2.36 dB for Miss America, and 1.18 dB for the Flower

Garden sequences. Half-pixel accuracy improves, in fact, the motion prediction accuracy since

it also reduces noise by averaging and interpolation of pixels. This is balanced by, on average,

the need to check an extra 8 search points for each motion vector. Although the overhead cost

for half-pel accuracy motion estimation is higher, it has been recommended by many video

coding standards such as the MPEG-1/2 and H.261/263 for significant improvement in image

quality.
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Block-matching
algorithms

FS/ LT(0)

TSS

NTSS

LT(2)

LT(4)

LT(6)

LT(8)

LT(10)

LT(12)

LT(14)

LT(16)

LT(18)

LT(20)

ET(1)

ET(2)

ET(4)

ET(8)

Miss America sequence
(1-80 frames)

MSE

3.148

3.171

3.158

3.157

3.158

3.158

3.159

3.159

3.159

3.159

3.159

3.159

3.159

3.158

3.158

3.158

3.157

PSNR
TdB]

43.150

43.118

43.137

43.138

43.137

43.137

43.135

43.135

43.135

43.135

43.135

43.135

43.135

43.137

43.137

43.137

43.138

Flower Garden sequence
(1-80 frames)

MSE

207.98

244.75

214.39

208.12

210.10

214.58

219.52

226.06

231.78

237.25

243.63

251.26

259.83

210.21

207.99 .

207.98

207.98

PSNR
TdBl

24.951

24.244

24.8)0

24:>'Sa

24.907

24.815

24.716

24.589

24.480

24.379

24.263

24.130

23.984

24.904

24.950

24.951

24.951

Table 3.2: Average MSE and PSNR per pixel, and search points (SP) per motion vector for the
Miss America and Flower Garden sequences (1-80 frames) with half-pel accuracy
motion estimation.

3.5.5 Computational Complexity of the DTS Algorithm

The computational complexity of a motion estimation algorithm is usually expressed in terms of

either the number of search points or operations that the algorithm requires to calculate the

motion vectors. The complexity of the DTS algorithm is analysed in terms of the average

number of search points considered in calculating the best matching block for each candidate

block. However, since the DTS process calculates the motion vectors by considering all pixels

of the current and candidate blocks, the number of operations is directly proportional to the

number of search points. In Sections 3.4.2.3 and 3.5.2, it was stated that only the LT function

would be considered for the DTS algorithm. Therefore, the complexity of the LT-based DTS

algorithm is discussed as follows.

Consider a motion estimation system with the following parameters: frame size = [Nh, Nv];

macroblock size = NxN; maximum motion vector displacement = ±d; and temporal frequency =
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/frames per second. If there are Q number of operations required for the BDM calculation of

one search point, then the FS algorithm requires a maximum yr = Q(2d+l)2g operations per

second using integer-pel accuracy, where g is the total number of macroblocks per second,

The DTS algorithm requires an extra d operations to compare the current minimum BDM

with the predefined threshold of each search square, for each macrboblock, while searching the

entire search space. The total number of extra operations required per second is therefore dg.

Hence, for the LT function DTS algorithm with control parameter d = 0 (the FS case), the

number of operations required per second is:

y/+dg (3.12)

which is the upper computational bound, and thus the worst case scenario for computational

complexity.

Conversely, by using a very high threshold value, when only the corresponding centre of

the search space is checked, only one operation is required to compare the BDM found at the

search centre with a predefined threshold for each macroblock. So, the number of extra

operations required per second is g, and the total number of operations required per second is:

£ (0 + 1) (3.13)

which forms the lower bound. From (3.12) and (3.13), the computational complexity based on

user-defined levels is always bounded between g{Q +1) and y/ + dg operations per second for

the DTS algorithm using an LT function.

When half-pel accuracy is used for motion estimation, eight neighbouring half-pel positions

(Section 2.4.10) around the current minimum point, obtained with integer-pel accuracy, are

checked. In this case, the upper and lower bounds of computational complexity of the DTS

algorithm increases by a further Sg Q operations per second.

3.6 Performance of the DTS Algorithm in True Object Motion
Estimation

In order to represent a video object using the object motion vector, it is important to extract the

true object motion. As alluded to in Chapter 1 and in Section 3.3, the DTS algorithm has, by

virtue of its non-directional nature, the potential to capture more true object motion vectors than

the FS or any other directional fast search algorithms. To observe this potential, the

performance of the LT function in the DTS algorithm was evaluated in terms of how effectively

it was able to capture true object motion. As the Miss America sequence contained very low
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object motion and the Flower Garden sequence had no object motion, they were not suited to

analysing the performance of the DTS algorithm for true object motion estimation. The Table

Tennis sequence has, therefore, been considered instead because this sequence contains

different object motions as well as camera motion, as previously indicated in Figs. 1.2 and 1.3.

Fig. 3.22 shows the motion vector needle diagrams for the captured motion vectors using

FS, TSS, NTSS, and DTS with LT functions for the pair of frames #32 and #33 from the Table

Tennis sequence shown in Fig. 3.21. To clearly show the exact direction of true object motion,

the next frame, instead of the previous frame, has been considered as the reference frame. Apart

from camera motion due to zooming, the only moving objects in the frame pair are a ball, bat,

and a portion of a hand holding the bat. From Fig. 3.22, it can be subjectively observed that

though the FS algorithm is optimum for video coding when minimum prediction error is the

optimum criterion, using this algorithm also captures a large number of false motion vectors as

shown in Fig. 3.22(a), particularly in the area of the table where there are no moving objects. In

Fig. 3.22(c), it can be observed that TSS algorithm capturedyk/.ye motion vectors across most of

the frame even where only camera motion was involved. Figs. 3.22(b) and (d) contrast the

performance of the NTSS algorithm in capturing the true object motion vectors with that of the

DTS algorithm for this sequence. It shows similar results, though there are even more false

motion vectors visible around the side of the table. From this elementary analysis, an initial

conclusion can be drawn that the DTS algorithm is capable of outperforming existing fast, as

well as the FS algorithm, in capturing more true object motion vectors. This discussion

indicates that motion estimation searching algorithms, driven principally by the need to locate

the minimum BDM to optimise video coding, do not necessarily lead to accurate true object

motion in many instances. The DTS algorithm in contrast, does provide prima facie evidence of

an improved true object motion performance.

(a) (b)

Fig. 3.21: (a) Current frame #32 and (b) reference frame #33 of the Table Tennis video sequence.
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(a)FS (b) DTS: LT(8)

(c) TSS (d) NTSS

Fig. 3.22: The motion vectors obtained from all four search algorithms applied to the frame pair
#32 and #33 of the Table Tennis sequence.

Clearly, comparing the motion vector needle diagrams above provides only a visual

qualitative judgment as to the potential superiority of the DTS algorithm in capturing an

improved number of true object motion vectors. However, to prove this observation

quantitavely, motion vectors must first be compensated for their global motion components (if

any), and then all false object motion vectors must be removed. The number of true object

motio vectors retained after this process can then be compared to make an evaluation. This

process is elaborated in detail in Chapter 6 through the introduction of both modified global

motion esti: jtion and a compensation strategy, and a false motion vector elimination system

using a novel filtering technique.

3.7 Summary

In this chapter, a new Distance-dependent Thresholding Search (DTS) algorithm has been

presented for block-based motion estimation in video coding and true object motion estimation

for object motion based video analysis. The important feature of the DTS algorithm is that the

FS as well as fast searching modes are encompassed, with different threshold settings, providing
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various quality-of-service levels. A unique characteristic of the DTS algorithm is that it has the

flexibility of being able to trade predicted picture quality (MSE or PSNR) for search speed,

across the full range of LT for different video sequences. This flexibility has considerable

potential for exploitation in a wide range of applications ranging from low-bit rate video

conferencing, through to adaptive high-quality video coding. Though the values of the control

parameter were manually defined in this chapter, the DTS algorithm will be extended to a fully

adaptive distance-dependent thresholding search (FADTS) algorithm in Chapter 5, to achieve

guaranteed levels of QoS based on user demands in performance management motion

estimation for video coding applications.

The performance of the DTS algorithm has also been compared to other popular fast

algorithms such as TSS and NTSS, and it has been proven that the LT function DTS provided

superior speed performance. While it retained a distortion error similar to the minimum value

produced by the optimal FS algorithm, for stationary or quasi-stationery video sequences such

as Miss America, its searching efficiency was not as high for high motion sequences such as

Flower Garden and Football. This drawback will be addressed in the next chapter where the

DTS algorithm will be modified into a fast DTS algorithm by considering additional motion

related information.

Finally, the DTS algorithm was shown to afford superior performance in terms of capturing

true object motion vectors compared to FS, NTSS, and TSS algorithms from a qualitative

perspective. A comprehensive evaluation of this aspect of the DTS algorithm will be presented

in Chapter 6.



Chapter 4

e-Centre Diamond Search DTS Algorithm

4.1 Introduction

In the previous chapter, it has been shown that the DTS algorithm (Block 1 in Fig. 1.6) is

capable of responding to any QoS requirements in terms of predicted image quality and

computational complexity using differeu. threshold settings provided by a control parameter. It

was also demonstrated that with low motion video sequences such as Miss America, the error

performance of the DTS algorithm was very similar to optimum FS performance while the

computational cost was almost 55% and 40% less than existing fast algorithms, TSS and NTSS,

respectively. However, it was also shown that the error performance of the DTS algorithm was

not as satisfactory for complex motion video sequences such as Football and Flower Garden,

when the processing speed was comparable to fast algorithms such as the above. As explained

in Chapter 3, the DTS algorithm fails to improve search points for video sequences with

complex motion, as it transforms to nearly exhaustive FS mode for a large number of

macroblocks with high motion vectors. To improve the performance of the DTS algorithm on

high motion video sequences, two well-established enhancement measures have been

implemented, which are explored in this chapter.

The review in Chapter 2 revealed that a number of enhancement algorithms exist which

improve tbt search efficiency of any BMA by exploiting some interframe and/or intraframe

correlrwa properties of a video sequence. Among these properties, spatio-temporal correlation

among r,3igtbouring blocks [49, 68, 86-90] is the most researched one, and this will be

discussed in itetail in the next section. Because of temporal and spatial correlations, the motion

vector of a block in the current frame is highly correlated to the moLon vector of the blocJ: of

the same coordinat;;;* in the previous frame, aud the adjacent blocks in the same frame

respectively, if sufficient useful information can be obtained from the motion vectors of the

previous blocks, the total number of search points needed to find the motion vector of the

current block can be significantly reduced.

So far, the centre of the search window has been considered as the search starting point in

th« DTS algorithm. In this chapter, the DTS algorithm with a Linear Thresholding (LT)

73
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function is refined by integrating motion correlation, referred to as the Adaptive-Centre DTS

(ACDTS) algorithm (Block 2 in Fig. 1.6), to automatically predict the best search starting point

in each search window.

Again from Chapter 2, it can be seen that the search pattern's shape and size influence both

search speed and error performance. The distribution of MV in image sequences with a gentie

and smooth motion is highly biased towards the central region. It is shown by certain authors

[45, 46, 53, 68, 85] that nearly 80%-98% of the MVs of different video sequences such as

Football, Tennis, Miss America, and Salesman are enclosed in the central 5x5 pixel region, and

around 80% are enclosed in the 3x3 pixel area around the initial search centre prediction point

of each block. With this centre-biased characteristic, it is reasonable to place more search points

in the central region of the search window to get more samples, as implemented in [85, 100,

101]. In Zhu and Ma [53], it has also been shown that about 52.76% to 98.70% of the motion

vectors of different video sequences are enclosed in a circular area with a radius of 2 pixels,

centred on the position of zero motion. This indicates that the search points within the circle of a

2 pixels' radius are the most appropriate ones to be chosen in composing the search pattern. It is

also mentioned by Zhu and Ma in [53] that the block displacement of real-world video

sequences are mainly in the horizontal and vertical directions. Based on these two observations,

recent research, [53,102-104] has proved that the diamond search pattern is more efficient than

the square or any other rectangular shaped search pattern in terms of using fewer search points

for comparable prediction quality. This is because such as pattern (i) tries to behave in an ideal

circle shaped manner in order to cover all possible directions of an investigating motion vector;

(ii) can find large motion blocks with fewer search points; and (iii) has reduced susceptibility to

falling into a local optimum due to its relatively large step size in horizontal and vertical

directions. The diamonu search pattern is not only efficient but also quite regular and very

simple to implement.

The performance of the ACDTS algorithm can be further enhanced by considering the

diamond search pattern instead of the usual square shape for trading off quality and processing

speed. Changing the pattern of searching from a square shape'to a diamond shape leads to the

Adaptive-Centre Diamond Search ACDTS (ACDSDTS) algorithm (Block 2 in Fig. 1.6).

This chapter is organized as follows. Section 4.2 discusses the inter-block motion

correlation among the neighbouring blocks in spatial and temporal domains. The proposed

ACDTS and ACDSDTS algorithms are presented in Section 4.3. The overhead complexity

incurred in ACDSDTS is also analysed in this section. Section 4.4 includes experimental results

and performance analysis of the ACDTS and ACDSDTS algorithms with comparison against
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fast algorithms such as TSS, NTSS, and adaptive-Centre NTSS (ACNTSS). Section 4.5

summarises the chapter.

4.2 Inter-block Motion Correlation

In general moving scenes, moving objects often cover many macroblocks such that the motion

vector of spatial neighbouring blocks may be very similar. In addition, due to the continuity of

motion in the temporal direction, the motion fields of the temporal neighbour blocks may be

highly correlated. In other words, the motion vector of the current block can be predicted from

the neighbouring blocks' motion vectors in the temporal (from the previous frame) or spatial

(neighbouring blocks' motion vectors in the same frame) direction. These spatial and temporal

correlations are clearly evident in Fig. 4.1 where the motion vectors for the Table Tennis

sequence at frames #3 and #4 are obtained using the FS algorithm with maximum displacement

d = ±7. From Figs. 4.1 (a) or (b), it can observed that the motion vectors of a few of the

neighbouring macroblocks of any moving object, such as a moving ball, show a similarity in

magnitude and direction. This represents the spatial correlation among the neighbouring block's

motion vectors in the same frame. From Figs. 4.1 (a) and (b), it can be observed that the motion

vectors of the corresponding macroblocks in both the frames are also very similar in magnitude

and direction. This represents the temporal correlation between the motion vector of the current

block and the motion vector of the corresponding block in the temporal direction. Using this

information, a better search starting point can be predicted which can eventually reduce the

computational burden associated with motion estimation of the current block.

(a) (b)
Fig. 4.1: The motion vector diagram for the Table Tennis sequence at frames hi and #4 with

respect to the previous frame.

As stated in the review in Chapter 2, a number of researchers have used this inter-block

correlation to predict the starting point for a search window in order to reduce the computational
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cost involved in motion estimation. Although in most cases, there is a liigh temporal correlation

for a high temporal sampling rate, when the motion of objects changes direction abruptly or the

speed of motion is not steady, tracking the motion from the previous frame's motion fields in

the neighbourhood of the current block proves ineffective. Moreover, to keep the previous

frame motion vectors in the decoder requires a large memory buffer [49], which will also

complicate the system. For these reasons, only the spatial correlation has been integrated v/ith

the DTS algorithm to predict the search starting point and reduce the computational complexity

in motion estimation.

The four spatial neighbouring blocks of the current block, MVO, in the current frame are

shown in Fig. 4.2, where MVl represents the previous block in the horizontal direction, and

MVl, MV3 and MV4 are those in the vertical directions. Though other four neighbouring blocks

could be available around the current block, the assumption only considering the four blocks is

that motion vectors are calculated in row major order starting from the topmost row.

Fig. 4.2: FOIL neighbouring blocks around the current block, MVO.

For neighbouring blocks, some authors [68, 88] used the motion vectors of three adjacent

blocks in the current frame, MVl, MVS and MV4. Their argument in ignoring the motion vector

of block MVl is that the motion vector of this block is highly correlated with the horizontal or

vertical neighbour block, and subsequently can be appropriately replaced by one, or both, the

blocks. On the other hand, Xu et al. [49] and Cheung et al. [85j considered all the four

neighbouring blocks for predicting the motion vector of the current block, without making the

above assumption. Despite: this, all the four neighbouring blocks as shown in Fig. 4.2, are used

in this research.

The inter-block motion correlation is define 1 by the displacement between the current

block's motion vector and the mean motion vector of the four neighbouring blocks' motion

vectors, which is formulated as [49]:
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jj =VMr0-V (4.1)

1 A -
where Vm = — /VMPi represents the mean motion vector, VMV( is the motion vector of block

4 w
MVi, z = 0,1,...,4, and Dmv is the displacement. When the magnitude of Dmv is small, the

current block's motion vector can be considered highly correlated to those of its neighbours and

this information can be used to predict the starting search centre of the current block.

43 The ACDTS and ACDSDTS Algorithms

4.3.1 Adaptive-Centre DTS (ACDTS) Algorithm

The purpose of centre prediction is to refine the DTS by integrating motion correlation within

the DTS process to automatically predict the best search starting point in each window. The

major advantage is that it can increase the chance of finding the real motion vector and reduce

the computational requirement of the DTS algorithm, especially with high motion video

sequences. This is because it reduces the distance between fte starting search point and the

global optimum point. The adaptive search centre for a block is predicted using four causal

neighbouring motion vectors as shown in Fig. 4.2. This predictive centre is considered as the

initial search centre and continues the DTS process for estimating the final motion vector. The

search centre is predicted as follows:

Let VMt be the initial search window's centre from the origin of the current block. To

predict the starting search point of any current block, it must first be determined whether the

current block and its neighbours, as shown in Fig. 4.2, contain the same object. If the difference

between the mean vector, Vm > and each of all the four neighbouring blocks' motion vectors is

less than a predefined threshold, it can be fairly assumed that these all blocks are covering the

same moving object, or are in the background region. In such a case, the four neighbouring

motion vectors can be used to predict an initial search centre, Vp. Otherwise, no correlation can

be established and no prediction will be made. The above process is formulated in [49]:

V. . .fc
otherwise

where Tisa predefined threshold and ||.| represents the norm of the corresponding vector.

In [49], Xu et al. proposed three Vp motion prediction methods as follows:

centre-biased prediction: Vn = arg ir?inl7 F*/JU = 1,...,4 (4,3)p J|
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mean prediction: Vp = round(Vm) (4.4)

mean-biased prediction: Vp=^gmir^lvm-vAi=\,...,4 (4.5)

where the arg function indicates that the argument, here the motion vectors, Vmi, of all four

neighbouring blocks, for which the function value is minimum will be assigned to Vp instead

of the minimum function value itself, and round (.) is the rounding of all elements of the

vectors.

Among these three search centre prediction methods, the first one is suitable for those types

of video sequences where the motion vectors of different blocks are usually gentle, smooth and

only slowly vary with time. However, this method is not suitable for fast motion video

sequences [49]. The mean prediction gives an accurate estimation if the assumption that the

blocks cover the same moving object is true [49]. Xu et al. also mentions that sometimes, the

four neighbouring blocks cover too large an area preventing tracking of any small motion,

which may lead to produce larger prediction error when the mean prediction technique fails to

track the real motion. Conversely, in mean-biased prediction, the motion vector' which is the

closest to the mean vector, Vm, is selected to represent the object's movement. If all four blocks

are within the same object, the predicted initial search point will be close to the real motion

vector. Otherwise, these blocks probably belong to different motion objects. In" this way, the

selection of a minimum displacement can preserve the centre-biased distribution property of the

motion vector [49] and maintain a better balance in both cases. Xu et al [49] proves that the

mean-biased prediction provides the best results compared to the other two methods (4.3 and

4.4). Based on this, the mean-biased prediction technique will be considered in this research to

predict the initial search starting point.

4.3.2 The Formal ACDTS Algorithm

The ACDTS algorithm can be outlined as follows. If the current block is in the first row, or the

first column, or the last column of a frame, the search starts using the origin of the search space

as the initial search centre without any centre prediction. For other blocks, the ACDTS

algorithm first predicts the initial starting search centre as in Section 4.3.1, and then the search

progresses outwards by using search squares 55V (Definition 3.2) in order, while keeping track

of the current minimum MAE. A parametric thresholding function, defined in Section 3.4.2.1, is

used to determine the various thresholds to be used with the search involving each search

square, with the parameter is initialised at the onset of the search. After the searching of each

search square is completed, the current minimum MAE is compared against the threshold value
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of that specific search square and the search is terminated as soon as the current minimum MAE

is found to be no higher than the threshold value. Fig. 4.3 summarises the proposed ACDTS

algorithm.

• Parameter Q

• Precondition: Pixel / ) H is the centre of search window with maximum displacement d.

• Prediction:
If the current block is in the first row or the first column or the last column of a frame Then

MV,predicted = (0,0)

Else

Pcx,cy = Pcx,cy + ^predicted

Initialisation:

— -I"'predicted

• Main algorithm:
If MAEBin > i

For T = \,2,...,d

For each checking point px in SS- such that

e = MAE{cxcy) (x -cx,y- cy)

If EKMAE^ Then

is in the current block

MV={x-cx,y-cy)+MVpredicted

If MAE^ <, Threshold(T,CL) Then STOP

• Postcondition: MV contains the motion vector and MAE^ the distortion error of the
respective block.

Fig. 4.3: The ACDTS algorithm.

4.3.3 Adaptive-Centre Diamond Search DTS (ACDSDTS) Algorithm

Before defining the ACDSDTS algorithm, it is important to define the search diamond (KDf)

pattern in the search space.

Definition 4.1 (Search Diamond iSDf): The search space with maximum displacement, ±d,

centred at pixel, /?«>o,, can be divided into d+1 mutually exclusive concentric search diamond,

SDn such that a checking point at pixel, pxy, representing motion vector (x-cx,y-cy), is in

SDT if, and only if, the city-block distance (Definition 3.1) of the motion vector,

, and r = 0,l d.



Chapter 4 Adaptive-Centre Diamond Search DTS Algorithm 80

It can be readily verified that the number of checking points in search diamond SDTi

N= [1, T=0 (4.6)

and SDn represents the motion vectors of city-block distance, T, that translates to a conventional

Euclidean distance in the range of for all 0 <; r ^ d. Tlie checking points used in the

first four search diamonds, SD0, SDh SD2, and SD5, are shown in Fig. 4.4. It is interesting to

note that \SDT\ =-\SST\ for z = l,2,...,rf.
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Fig. 4.4: Search diamond SD0, SDU SD2, and SD3.

After predicting the initial search starting point as is done in Section 4.3.1, the final motion

vector should be very close to the initial search window's centre. Now, if the above-mentioned

diamond search pattern is used in the DTS algorithm, it will obtain the final iwotion vector by

searching a lower number of search points, with a trade-off between quality and processing

speed.

By integrating the search centre prediction method discussed in section 4.3.1 and the above-

mentioned search diamond pattern, instead of the search square in DTS algorithm, an Adaptive-

Centre Diamond Search DTS (ACDSDTS) algorithm is developed. This is presented in the next

section.
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4.3.4 The Formal ACDSDTS Algorithm

The ACDSDTS algorithm can be outlined as follows. As with the ACDTS algorithm, the search

starts using the origin of the search space as the initial search centre without any centre

prediction for a block in the first row, or the first column, or the last column of a frame. For

other blocks, the ACDSTDS algorithm first predicts the initial starting search centre as is done

in the ACDTS algorithm and then the search progresses outwards by using the search diamonds,

SDn (Definition 4.1) in order, while keeping track of the current minimum MAE. A parametric

thresholding function, defined in Section 3.4.2.1, is used to determine the various thresholds to

be used with the search involving each search diamond, with the parameter being set at the

onset of the search. After completion of searching each search diamond, the current minimum

MAE is compared against the threshold value of that specific search diamond, and the search is

terminated as soon as the current minimum MAE is found to be no higher than the threshold

value. Fig 4.5 summarizes the ACDSDTS algorithm.

• Parameter Q

• Precondition: Pixel PcxyCy is the centre of search window with maximum displacement d.

• Prediction:
If the current block is in the first row or the first column or the last column of a frame Then

MV,predicted = (0,0)

Else
MVpredicted=Vpm{A.5)

Pcx,cy =Pcx,cy +MVpredicted

Initialisation:

Main algorithm:
If MAE^ > 0 Then

For T = \,2,...,d

For each checking point pxy in SDT such that

e = MAE(cxcy) (x -cx,y- cy)

If e<M4£ m i n Then

If

is in the current block

= (x- ex, y - cy)+MVpredicted

< Threshold(T,CL) Then STOP

• Postcondition: MV contains the motion vector and

respective block.

^ the distortion error of the

Fig. 4.5: The ACDSDTS algorithm.
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4.3.5 Computational Complexity Analysis

In Chapter 3, it was defined that the computational complexity associated with the DTS

algorithm is bounded between f(Q+l) and yz+dg operations per second (3.12 and 3.13) for

integer-pel motion accuracy. For half-pel accuracy, these limits will be increased by

%gQ operations per second (Section 3.5.5). As the mean-biased prediction (4.5) adaptive-

centre algorithm is integrated with the DTS algorithm to predict the starting search point, it will

increase the computational cost of the whole process. If the number of operations involved in

predicting the search centre for each block is R, it requires a total of Rg operations per second;

that is the only extra overhead cost incurred in the whole motion estimation process in the

ACDSDTS algorithm. According to Xu et al. [49], the value of R is only 23 arithmetic

operations, which is much less than that required in the matching function evaluation for motion

estimation in the DTS algorithm mentioned above. Experimental results also show that this

overhead cost can be justified by reducing the number of checking points with better prediction

error.

4.4 Experimental Results

The purpose of this section is to present the results of experiments performed to compare the

performance of the FS, ACDTS, ACDSDTS, DTS, TSS, NTSS, and adaptive-centre NTSS

(ACNTSS) algorithms for motion estimation in video coding applications. The MAE function

was used as the criterion for locating the best motion vector for each block, and all the results

shown in this section are formulated with half-pel accuracy motion estimation.

^ ^ T e s t Video

T ^ \ ^

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Table

MSE

90.80
90.82
90.84
90.89
90.91
90.93
90.98
91.38
91.50

Tennis

SP

186.98
186.19
185.66
184.97
184.40
183.82
183.34
182.83
182.51

Football

MSE

366.27
366.63
366.67
366.73
367.35
367.98
368.81
369.73
370.33

SP

196.66
195.31
194.17
192.61
190.93
189.14
187.65
186.14
185.13

Flower Garden

MSE

275.26
275.28
275.29
275.29
275.28
275.29
275.29
275.29
275.29

SP

190.14
188.71
188.02
187.55
187.17
186.83
186.54
186.31
186.26

Table 4.1: Performance comparison of differ/* values of the predefined threshold, T, for the
Table Tennis, Football, and Flower oarden sequences (1-50 frames).

The predefined displacement threshold, T, in (4.2) has also been tested for a range r>v<

different values. Table 4.1 shows the performance of T with a range of values from 3 to 7 for
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the Football, Table Tennis, and Flower Garden video sequences. To ensure the optimum results

for T, the FS algorithm is considered for calculating the motion vector. Experimental results

show that the value of threshold, T, is not very sensitive to performance, especially for

prediction error. For the T range from ,'f to 7, the average MSE and the average number of

search points (SP), of the first 50 frames of the Table Tennis^ Football, and Flower Garden

sequences, varies tass than 1% and 5% respectively. For average performance, the predefined

threshold value of T is considered as 5 in this research.

Performance Analysis

To compare the performance of the ACDSDTS, ACDTS, DTS, TSS, NTSS, and ACNTSS

algorithms, a number of tests were performed using standard video sequences—Table Tennis,

Football, Flower Garden, Salesman, and Miss America (Appendix B). The block size and

maximum displacement were [16,16] and ±7 respectively. As indicated in Chapter 3, although

the performance of the DTS algorithm was better than that of the TSS or NTSS algorithm on

low motion video sequences such as the Miss America, it was not so on high motion video

sequences such as the Flower Garden and Football. The motivation of this chapter has been

primarily to improve the performance of the DTS algorithm on high motion video sequences.

For this reason, the test results for only the Football and Flower Garden sequences are included

in this chapter, and the results for the Table Tennis, Salesman, and Miss America sequences are

included in Appendix D. The Flower Garden sequence comprises mainly camera panning,

while the Football sequence consists of complex motions ranging from slow motion to very fast

motion.

To quantitatively evaluate the performance cf the ACDSDTS, ACDTS, DTS, FS, TSS,

NTSS, and ACNTSS algorithms, the following three measures were considered: -

• The average MSE (error performance) per pixel between the estimated and the

corresponding original frames.

• The averagr PSNR (predicted image quality) per pixel between the estimated and the

corresponding original frames.

• The average number of search points (SP) per morion vector as computational

complexity.

The experimental results are presented in the following two-sub sections.

4.4.1 Performance Analysis of the ACDTS Algorithm

This section analysises the performance of the ACDTS algorithm against that of the DTS

algorithm and some other fast BMAs for motion estimation.
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Average MSE Performance

The statistical performance comparison of the FS, ACDTS, DTS, TSS NTSS, and ACNTSS

algorithms in terms of the average MSE per pixel are shown in Tables 4.2 and 4.3 for the

Flower Garden and Football video sequences respectively. The ACDTS algorithm achieved

better performance than that of the DTS algorithm for both test video sequences, using different

values of the threshold control parameter, CL. It can be observed from these tables that the gain

in terms of MSE gradually increased as the values of CL were increased. This is because the

higher the value of the threshold considered, the higher the probability of search deviation from

the global minimum. This indicates that predicting the search centre through motion tracking

increases the chance of finding better motion vectors.

Bl
mal

algo

DTS

ock-
tching
rithms

CL=2

CL = 4

Q=6
CL=8
CL= 10
CL=U
CL-\2
CL=\4
Q=18
CL=20
CL- 24

FS
TSS

NTSS

Flower Garden sequence

MSE

208.12

210.10

214.58
219.52
226.06
229.01
231.78
237.25
251.26
259.83
277.23
207.98
244.75

214,39

PSNR

[dB]

24.95

24.91

24.82
24.72
24.59
24.53
24.48
24.38
24.13
23.98
23.70
24.95
24.24

24,82

SP

135.43

81.48
53.93
41.59
35.00
37.89
31.06
28.47
25.21
24.11
22.63

209.77
31.22

29.63

Block-matching
algorithms

ACDTS

Q = 2

Q = 4

Q=6
Q = 8
Q=10
Q = l l
Q=12
Q=14
Q=18
Q = 20
Q = 24

ACNTSS

MSE

208.01

208.56

209.82
211.72
214.22
215.50
216.82
220.26
228.94
233.45
242.51
213.41

PSNR
[dB]

24.95

24.94

24.91
24.87
24.82
24.80
24.77
24.70
24.53
24.45
24.28

324.60 s

SP

133.40

78.59

50.92
38.51
31.74
29.38
27.58
24.96
21.72
20.59
19.07

.^27.37-

Table 4.2: Average MSE and PSNR per pixel, and search points (SP) per motion vector for the
Flower Garden sequence (1-80 frames) with different BMAs.

It is also shown in Table 4.2 that for the Flower Garden sequence, the performance cf the

ACDTS was better than TSS, and very similar to NTSS algorithms. For example, ACDTS with

CL - 10 i. Ci =11 , achieved almost 15% better error performance compared to TSS, and was

similar to the NTSS and ACNTSS algorithms, with the search speed being very similar in all

cases. On the other hand, for the Football sequence, Table 4.3 shows that though the

performance of the ACDTS was not as satisfactory compared to TSS or NTSS algorithm, search

efficiency was better than that for the DTS algorithm. For example, the DTS algorithm with CL

= 8 had an average 308.27 MSE, with a search point average of 49.75, whereas the ACDTS



Chapter 4 Adaptive-Centre Diamond Search DTS Algorithm 85

algorithm with Q, = 9 had an average of 303.90 MSE, with a search point average of 42.75. In

this case, the ACDTS algorithm achieved 2% better error performance when the search speed

was 17% faster than the DTS algorithm.

Bl
mai

algo

DTS

ock-
ching
rithms

O = 2
O = 4
O=6

CL=9
0=10
O=12
O=14
O.= 16
O=18
0=20

FS
TSS

NTSS
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O=2
O=4
O=6
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0=20

ACNTSS

MSE

275.84
277.71
284.58
296.76
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310.50
324.08
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346.63
357.47
367.77
299.51
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[dB]

2;K72
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23.59
23.41
23.30
23.21
23.02
22.86
22.73
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22.48

. 23.37

SP

131.48
88.92
62.99
47.77
42.75 .
38.80
33.39
29.77
27.19
25.33
23.92
28:32 -

Table 4.3: Average MSE and PSNR per pixel, and search points (SP) per motion vector
comparison for the Football sequence (1-80 frames) with different BMAs.

Peak Signal-to-Noise Ratio (PSNR) Performance

The performance comparison of the FS, ACDTS, DTS, TSS NTSS, and ACNTSS algorithms in

terms of the average PSNR per pixel are shown in Tables 4.2 and 4.3 for the Flower Garden

and Football video sequences respectively. The PSNR value was calculated by using (3.11).

Table 4.2 shows that the PSNR performance of ACDTS was better than that of TSS, and very

similar to the NTSS algorithm for the Flower Garden sequence. For example, ACDTS with CL

= 10 and CL = 11, achieved almost average 0.6 dB gain in PSNR compared to TSS, and an

almost similar PSNR compared to NTSS algorithm when the search speed was very similar to

TSS, and NTSS, respectively. Conversely, for the Football sequence, Table 4.3 shows that

though the performance of the ACDTS was not as satisfactory compared to TSS or NTSS

algorithm, the search efficiency was better than the DTS algorithm. For example, the DTS

algorithm with Q = 8 had an average 23.24 dB PSNR with a search point average of 49.75,

whereas the ACDTS algorithm with CL = 9 had an average 23.30 dB PSNR with a search point

average of 42.75. In this case, the ACDTS algorithm gained 0.06 dB PSNR when the search

speed was 17% faster than the DTS algorithm.
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Search Speed Comparison

The performance of the FS, TSS, NTSS, ACNTSS, DTS, and ACDTS algorithms in terms of

the average search points per block when estimating motion vectors is also presented in Tables

4.2 and 4.3 for the Flower Garden and Football sequences respectively. It is clear from these

tables that the average number of search points (SP) needed by ACDTS algorithm was always

less than that of the DTS aigorithm for both sequences with any value of CL. Table 4.2 also

demonstrates that the search speed of ACDTS was better than that of TSS algorithm, and very

similar to NTSS algorithm for the Flower Garden sequence, while achieving the same MSE or

PSNR values. For example, ACDTS with CL = 24 and CL = 10, achieved the similar MSE or

PSNR performance, while the search speed was almost 40% faster than that of TSS, and very

similar to that of the NTSS algorithm. On the other hand, Table 4.3 shows that though the

searching efficiency of the ACDTS algorithm with the same average MSE or PSNR was not as

good compared to that of the NTSS or TSS or ACNTSS algorithm for the Football video

sequence, it was better than that of the DTS algorithm.

It is interesting to note in Tables 4.2 and 4.3 that the performance of the ACNTSS algorithm

did not improve significantly compared to the original NTSS algorithm. The reason can be

explained as follows. If the motion vector distribution is within only a 3x3 pixels region after

predicting the search centre, the probability of reaching the global minimum point is very high

for the ACNTSS algorithm. However, the motion vector distribution around the predicted

search centre will not always be within a 3x3 pixels region. For high motion video sequences,

the motion vector distribution around the predicted search centre will be within a 5x5 region for

many macroblocks. In such cases, the ACNTSS algorithm will fail to improve, or may degrade,

compared to the NTSS algorithm due to its large directional step size. It can be concluded that

the performance of directional algorithms may not always improve even after initial search

centre prediction.

4.4.2 Performance Analysis of the ACDSDTS Algorithm

This section presents comparative results while considering both adaptive centre-prediction and

the diamond search pattern technique in the DTS algorithm described in Section 4.3, in terms of

fast motion estimation trade-offs between quality and complexity.

Average MSE Performance

The performance of the ACDSDTS algorithm, in terms of the average MSE per pixel between

the estimated and original frames, is shown in Tables 4.4 and 4.5 for both the Flower Garden

and Football sequences. From Tables 4.2, 4.3, 4.4, and 4..>, it can be observed that the
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ACDSDTS algorithm showed better performance than that of the ACDTS algorithm for both

test video sequences with trade-offs in quality and processing speed when using different values

ofQ.

Block-matching
algorithm

ACDSDTS

C, = 2

C, = 4

CL=6
d=7
CL=9
Cj,= 10
Ci=12
Ci=i4
Q=16
a=i8
C*=24

Flower Garden sequence

MSE

212.55

212.70
v 213.39

213.60

214.66

215.42

216.74

218.15

219.43

221.70

228.18

PSNR [dB]

24.86

24.85
1 24:84

- 24.83

24.81

24.80

24.77

24.74

24.72

24.67

24.55

SP
72.10

44.96

30.80 s

, 26.97

22.26

20.71

18.57

17.20

16.27

15.59

14.30

Table 4.4: Average MSE and PSNR per pixel, and search points (SP) per motion vector of the
ACDSDTS algorithm for the Flower Garden sequence (1-80 frames).

Block-matching
algorithm

ACDSDTS

C, = 2

q = 4
Q=6
Q=8
C, = 9
Q=12
Q=14
C,.= 16
C,= 18
C,= 20

Football sequence

MSE

290.23

296.74

301.19

305.59

307.72

317.64

328.88

339.70

349.59

359.98

PSNR [dB]

23.50

23.41

23.34

23.28 '

23.25

23.11

22.96

22.82

22.70

22.57

SP

65.85

46.69

35.09

28.02

25.71

21.36

19.66

18.40

17.50

16.83

Table 4.5: Average MSE, PSNR per pixel, and search points (SP) per motion vector of the
ACDSDTS algorithm for the Football sequence (1-80 frames).

From Tables 4.2 and 4.4, it can also be observed that the ACDSDTS algorithm performed

not only better than TSS but also better than NTSS, or ACNTSS, for the Flower Garden video

sequence. For example, ACDSDTS with CL - 6 and CL = 7, achieved almost 15% and 1% better

error performance compared to the TSS and NTSS algorithms, while its search speed was 13%

and 8% faster than both. For this sequence, its performance was very similar to the ACNTSS
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algorithm. Tables 4.3 and 4.5 prove that ACDSDTS outperformed TSS, and was very similar to

NTSS or ACNTSS even, for the Football video sequence. For example, ACDSDTS with CL = 9,

achieved almost 3% better error performance compared to the TSS algorithm despite its search

speed being almost 20% faster than the TSS algorithm.

Figs 4.6 and 4.7 plotted the average MSE performance of the ACDSDTS, ACDTS, FS,

TSS, NTSS, and ACNTSS algorithms for the first 80 frames of the Flower Garden and Football

sequences. For the sake of clarity in plotting, we have only considered the values of Q, for the

ACDTS and ACDSDTS algorithms that used a search speed similar to the TSS, NTSS, and

ACNTSS algorithms. These figures clearly show the improvement of the ACDSDTS algorithm

over the ACDTS algorithm in terms of prediction quality when considering the similar

computational complexity.
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Fig. 4.6: Average MSE performance comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Flower Garden video sequence.
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Fig. 4.7: Average MSE per pixel comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Football video sequence.
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Peak Signal-to-Ncise Ratio (PSNR) Performance

The performance of the ACDSDTS algorithm, in terms of the average PSNR per pixel between

the estimated and original frames, is shown in Tables 4.4 and 4.5 for the Flower Garden and

Football sequences. From Tables 4.2, 4.3, 4.4, and 4.5, it can be observed that the ACDSDTS

algorithm showed better performance than that of the ACDTS algorithm for both test video

sequences with trade-offs between quality and processing speed when using different values of

C/,. From Tables 4.2 and 4.4, it can also be observed that the ACDSDTS algorithm performed

not only better than the TSS but also better than NTSS, or ACNTSS algorithm for the Flower

Garden video sequence. For example, ACDSDTS algorithm with CL-6 and Q = 7, achieved

almost 0.6, 0.02, and 0.3 dB gain in PSNR compared to TSS, NTSS, and ACNTSS algorithm

respectively, while search speeds were similar in all cases. On the other hand, Tables 4.3 and

4.5 prove that ACDSDTS outperformed TSS, and was similar to NTSS or ACNTSS algorithm

even with the Football video sequence. For example, ACDSDTS with Q = 9, achieved almost

0.03 dB gain in PSNR compared to TSS, when its search speed was almost 20% faster than that

of the TSS algorithm.

Search Speed Comparison

The performance of the ACDSDTS algorithm in terms of the actual average number of search

points per block in estimating motion vectors is also presented in Tables 4.4 and 4.5 for the

Flower Garden and Football sequences. It is clear from Tables 4.2, 4.3, 4.4, and 4.5 that the

average number of search points (SP) needed with the ACDSDTS algorithm was always less

than that of the ACDTS algorithm for both video sequences, while providing same prediction

quality. Tables 4.2 and 4.4 also prove that the search speed of the ACDSDTS algorithm, for

example, in the case where Q, = 24, was more than 55% faster than the TSS algorithm, with

more than 0.4 dB gain in PSNR for the Flower Garden sequence. Again, with Q = 7 and CL =

18, the ACDSDTS algorithm achieved almost 10% and 45% faster search speeds compared to

the NTSS and ACNTSS algorithms respectively with similar MSE or PSNR performance. On

the other hand, Tables 4.3 and 4.5 show that for the Football sequence, the search speed of

ACDSDTS, in the case of Q = 9 and CL = 8, was almost 20% higher than that of TSS and

similar to NTSS or ACNTSS, with the same PSNR or MSE performance. These results clearly

indicate that the ACDSDTS algorithm not only outperformed for low motion sequences but also

for any complex motion video sequences.

Figs. 4.8 and 4.9 plot the average SP performances of the ACDSDTS, ACDTS, TSS, NTSS,

and ACNTSS algorithms for the first 80 frames of the Flower Garden and Football sequences.

For the sake of clarity in plotting, the values of CL for the ACDTS and ACDSDTS algorithms
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that achieved the PSNR or. MSE performance comparable to the TSS, rsTSS, and ACNTSS

algorithms have been considered. From the figures, it can also be observed that the performance

of ACDSDTS algorithm over the ACDTS, TSS, NTSS, and ACNTSS algorithms in terms of

processing speed in terms of SP is remarkably better for the Flower Garden sequence, and very

similar for the Football sequence.

55

15
10 19 28 37 46

Frame number
55

-TSS
-NTSS
-ACNTSS
-ACDTS(IO)
-ACDSDTS(9)

64 73

Fig. 4.8: Average search point (SP) comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Flower Garden sequence.
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Fig. 4.9: Comparisons of average search points (SP) per motion vector of the FS, TSS, NTSS,
ACNTSS, ACDTS, and ACDSDTS for the Football video sequence.

4.4.3 Qualitative Evaluation

The performance of the TSS, NTSS, ACNTSS, ACDTS, and ACDSDTS algorithms compared

to the FS algorithm for the Football video sequence was also evaluated based on the perceptual
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predicted image quality. Fig. 4.10 shows the estimated 40th frame of the Football sequence with

different BMAs.

(a)

(c)

(b)

(d)

(e) (f)

Fig. 4.10: Estimated image of the 40th frame of the Football sequence: (a) FS, (b) TSS, (c)
NTSS, (d) ACNTSS, (e) ACDTS: CL = 14, and (f) ACDSDTS: CL = 8
algorithms.

As the FS is the optimum in terms of error performance, Fig. 4.11 shows the MAE per

block distribution for all other BMAs with respect to the FS algorithm. In terms of subjective

image quality, the performance of ACDSDTS was very similar to the TSS, NTSS, and
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ACNTSS algorithms given this complex motion video sequence, where search speed was

almost 15% higher than TSS, and similar to NTSS or ACNTSS algorithm.
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Fig. 4.11: Prediction error distribution of the 40th frame of the Football sequence with respect
to that of the FS algorithm.

4.5 Summary

In this chapter, an Adaptive-Centre DTS (ACDTS) algorithm has been developed by integrating

spatial inter-block motion correlation within the DTS algorithm to automatically predict the best

search starting point close to the global minimum. Experimental results have shown that the

ACDTS algorithm improved the performance of the DTS algorithm for all test video sequences.

The search efficiency of the ACDTS algorithm has further been improved by considering the

diamond search pattern instead of the traditional rectangular search pattern, through trade-offs

between quality and computational complexity.

Experimental results have shown that the ACDSDTS algorithm effectively improved its

performance in terms of MSE or PSNR, with lower average searching points. It has also been

shown that the ACDSDTS algorithm outperformed two very well-known fast BMAs, TSS and

NTSS, for the Flower Garden video sequence, and demonstrates a very similar performance for

the Football video sequence. This indicates the effectiveness of the ACDSDTS algorithm for

use with any motion video sequences.
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The overhead complexity incurred in ACDTS or ACDSDTS algorithm in relation to motion

estimation was also analysed, and it was shown that the number of operations required for

determining the initial search centre using mean-biased prediction is very low compared to the

whole motion estimation process. This was the only overhead cost incurred in the operation of

the ACDSDTS algorithm. Thus, the proposed algorithm incurs negligible computational

overhead.

It has also been shown that like the DTS algorithm, the ACDSDTS algorithm has achieved

different levels of performance in terms of quality as well as processing speed in terms of SP

per motion vector, using different values of the threshold control parameter, where it was

selected manually. The most important and challenging part of this process is how this control

parameter can be adapted automatically to a target level of quality or processing speed. In the

next chapter, this issue will be addressed by presenting a Fully Adaptive Distance-dependent

Thresholding Search (FADTS) algorithm for motion estimation.



Chapter 5

Fully Adaptive Distance-dependent Thresholding
Search Algorithm

s

i

5.1 Introduction

The Adaptive-Centre Diamond Search Distance-dependent Thresholding Search (ACDSDTS)

algorithm (Block 2 in Fig. 1.6) signifies an important improvement to the Distance-dependent

Thresholding Search (DTS) algorithm (Block 1 in Fig. 1.6), by increasing the search efficiency

of the DTS process, by trading-off between predicted image quality and complexity. However,

both the DTS and ACDSDTS algorithms appear to be highly dependent on predefined linear

threshold values that are controlled by the control parameter, CL, for performance scalability in

motion estimation. In the ACDSDTS algorithm, the value of CL is manually set at the onset of

the search. As indicated in Chapters 3, the control parameter, CL, allows users some flexibility

to control the DTS search (or, its enhancements, as developed in Chapter 4) in order to achieve

specific target prediction error, or search points (if achievable) by the trial and error method.

However, setting the optimum d value by trial and error severely limits the flexibility of these

searching algorithms, especially when motion estimation must be carried out in real-time. On

the other hand, it is quite impractical to use the same CL value for all the frames of a video

sequence, especially when the motion content varies significantly throughout the video

sequence. Therefore, to derive the full potential of the DTS algorithm compared with algorithms

such as TSS and NTSS, or any other non-flexible BMA, the value of CL must be adjusted

automatically based on the content of the video as well as user QoS demands.

This chapter presents a new Fully Adaptive Distance-dependent Thresholding Search

(FADTS) algorithm (Block 3 in Fig. 1.6), which can dynamically adjust the value of CL to

achieve QoS requirement in terms of either predicted image quality or processing speed as the

target. This adaptive algorithm is especially important for complexity management in software-

only video coding or low power coding (mobile or handheld computing platforms), as it require

more a flexible approach in trading-off between predicted image quality and computational

complexity.

94
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The remainder of this chapter is organized as follows. In Section 5.2, an adaptive system for

the FADTS algorithm, for performance management block-based motion estimation in real-time

video coding applications, is proposed by incorporating a novel adaptive model based on the

Normalized Block Least Mean Square (NBLMS) technique. Some fundamental concepts in

adaptive systems are briefly discussed in the light of adapting the control parameter, CL, in the

ACDSDTS algorithm. In Section 5.3, an integrated shot detection technique using Artificial

Neural Network (ANN) and BDM thresholding are presented with a brief review of existing

techniques. As the initial value of the threshold control parameter impacts significantly on the

adaptation process, automatically initialisation process of this parameter is discussed in Section

5.4. The impact of other different parameters, and their possible operating ranges related to the

proposed adaptive system are then analysed in Section 5.5, while the computational complexity

of the proposed searching algorithm is analysed in Section 5.6. Both experimental results and

the performance analysis of the proposed algorithms are included in Section 5.7. Section 5.8

summarises this chapter.

5.2 Adaptive Algorithms

According to Widrow and Stearns [105], "An adaptive automation is a system whose structure

is alterable or adjustable in such a way that its behaviour or performance (according to some

desired criterion) improves through contact with its environment" These types of systems

usually have the following characteristics: -

• They can automatically adapt (self-optimise) in the face of changing (non-stationary)

environments and changing system requirements.

• They can usually be described as nonlinear systems with time-varying parameters.

Consequently, an adaptive algorithm is a procedure that changes its parameters as it gains more

knowledge of its possibly changing environment. Preferably, the algorithm will change its

parameters in a fashion that optimizes some criteria such as the mean squared difference

between two given signals. An adaptation process can be classified as [105]:

1. Open-loop adaptation

2. Closed-loop adaptation

Open-Loop Adaptation

The open-loop adaptive process involves making measurements of input or environment

characteristics, applying this information to a formula or to a computational algorithm, and

using the results to set the adjustment of an adaptive system. The principle of open-looped

adaptation is shown in Fig. 5.1. In this configuration, a computer or signal processor performs
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the adjustments based on an adaptation algorithm carried on a set of input signals and the

environment data.

Input
signal

Enviroi
data

iment

/

Processor

Adaptation
algorithm

Output
signal

w

Fig. 5.1: The open-loop adaptation process.

Closed-Loop Adaptation

Closed-loop adaptation involves automatic experimentation with the adjustments of the adaptive

system and knowledge of their outcomes in order to optimise a measured system performance.

This process may be called adaptation by performance feedback. The principle of closed-loop

adaptation is shown in Fig. 5.2. In this case, the performance criterion is the function of input

signal, output signal and the target output.

Input
signal

/

Processor

r
Adaptation
algorithm

A
T

Performance
calculation

Output
signal

Target
output

Fig. 5.2: The closed-loop adaptation process.

The main advantages of a closed-loop system over an open-loop system is that it is

workable in many applications where no analytic synthesis procedure either exists or is known;

for example, where error criteria other than the mean-square are used, where systems are

nonlinear or time variable, or where signals are non-stationary. On the other hand, the closed-

loop adaptation process may suffer from instability by diverging rather than converging. In spite

of this possibility, closed-loop adaptation through performance feedback is regarded as a

powerful technique for implementing real-time adaptation.
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5,2.1 The FADTS Closed-Loop Adaptation Model

The ACDSDTS algoritlim works sequentially on frames of an input video sequence. Although

consecutive frames are considered to be highly correlated, the input video signal can be

considered time variable or non-stationary from the adaptation point of view. Therefore, a

closed-loop adaptation model is presented for the FADTS algorithm, as shown in Fig. 5.3.

Video frame

pair, x[m]

w

Motion estimation

ACDSDTS algorithm

Adaptation of CL

Clm+l]=C[m]±f3(e
[m\y[m])

T
Performance calculation

^ out y J2\x »^i )

Output,

Target
output, Tout

Fig. 5.3: The closed-loop adaptation process for the FADTS algorithm.

The model has the following three modules:-

• Motion estimation—this module calculates motion vectors using the ACDSDTS

algorithm. The input of the module at iteration, m, are the video frame pair, x[m], and

the control parameter, c[m]. The output of the model can be either average MSE or

average speed in terms of number of search points as selected by the user. The output

at iteration m can be expressed as:

y[m]=Mx[m\c[m]) (5.1)

where/i is a monotonically increasing or decreasing function of CL (under stationary

x), if the output is MSE, or a number of search points, respectively.

• Performance calculation—this module calculates the performance of the adaptive

system by calculating the error signal as:

(5.2)

at each iteration m, where:
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;

(5.3)

The value of e must be minimised as the adaptation process progresses.

Adaptation of CL—this module updates the value of Ci for the next iteration, m+\, as:

C[w+1] = C[m] + / 3 ( e [ m ] , y m ] )
if the output is MSE or as:

(5.4a)

C[m] -f3(e
[m\yM) (5.4b)

if the output is a number of search points, where f3 can be any linear or non-linear

function.

The performance of an adaptive system largely depends on how the function f3 (e, y) is

defined. A few gradient search algorithms exist which can adapt a system in searching for the

optimal parameter to minimise error signal in (5.2). Among them, Newton's method, the

Steepest Descent method, the Least Mean Square (LMS) algorithm, and the Recursive Least

Square (RLS) algorithm are the most well-known. The suitability of these algorithms for

updating the control parameter, Ci, in Fig 5.3 is discussed below.

Newton's Method

In this method [106], f3(e
[m],yM) in (5.4a) and (5.4b) is defined as:

/3(e [ m ] , .y [ m ]) = -

dCL

(5.5)

CL =

to find the zeros of function f2{x,CL). Obviously, Newton's method is not applicable to the

FADTS algorithm as f2 (x, CL) is unknown.

The Steepest Descent Method

The principle of the steepest descent method [105] is to adjust system parameters in the

direction of the gradient at each step, thereby minimizing the function for error surface. In this

method, f^e[m],y[m]) in (5.4a) and (5.4b) is defined as:

_ [m] (5.6)

where // is a constant that regulates the step size. Like Newton's method, the steepest descent

method is also not applicable to the FADTS algorithm as f2(x,CL) is unknown.
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The LMS Algorithm

As indicated earlier, gradient estimation by derivation of the performance measurement function

is not possible when the function is unknown. The most well-known method, the Least Mean

Square (LMS) adaptive algorithm [105], overcomes such a situation by approximating the

gradient based on a single input and output example taken in isolation. In this case, for each

new input-output, an independent estimate of gradient is performed. In the LMS algorithm,

fi(e[m\y[m]) in (5.4a) and (5.4b) is defined as:

f3(e
[m],y[m]) = Ae[m]y[m] (5.7)

where A represents the correction factor or gain factor or step size.

The LMS algorithm is the most popular method for its computational simplicity, robustness,

and relatively easy implementation for on-line estimation of time-varying system parameters. A

number of variants on the LMS theme have been conceived in order to ratify potential problems

of the original LMS algorithm such as the need to guess the best value of A, slow convergence,

and numerical instability. Some of these variants are discussed as follows:

The Block LMS Algorithm

One popular LMS variant is called the Block LMS (BLMS) algorithm [107], also known as the

Fast LMS (FLMS) algorithm, which reduces computational cost by not performing the actual

correction for every input. Instead, an averaged estimate of the gradient is computed. For a

block of length, K, in which the input signal can be considered stable, the standard LMS

algorithm will perform d correction in all the K iterations while the BLMS algorithm performs

CL correction only in the first of these. The value of CL is, therefore, updated for iteration

m + Kas:

,[m+i]

if the output is MSE or as:
,=o

K-l
,[m+i]

(5.8a)

(5.8b)
,=o

if the output is the number of search points.

The Normalized LMS Algorithm

The Normalized LMS (NLMS) algorithm [107-109] replaces the step size, A, in the original

LMS algorithm with jn/Ey where fi is the normalized step size and Ey is the output signal's

energy or power.
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The NLMS algorithm has two distinct advantages over the original LMS algorithm:-

• Has a potentially faster convergence speed [107,109];

• Always converges when 0<ju<2 [ 107,107].

The Normalized BLMS Algorithm

The benefits of both the BLMS and NLMS variants can be combined in the Normalized BLMS

(NBLMS) algorithm [110] where the threshold control parameter is updated as:

if the output is MSE or as:

,[«] A ''=0 (5.9a)

A'-l

/=0 (5.9b)

if the output is the number of search points, where
/=o

The RLS Algorithm

All the adaptive algorithms discussed so far are non-recursive in nature. The Recursive Least

Square (RLS) algorithm [107, 111] is a recursive implementation of the minimisation of the

least square error theme. In this algorithm, output y is a function of not only the current input

and the adaptive control parameter, CL, but also of some of the previous outputs such as the

following:

y --
[m~2]

(5.10)

Though the RLS algorithm converges faster than the LMS algorithm, each iteration of this

method is more complex than the previous one. Therefore, this technique is not practical for

real-time adaptation applications [107].

Based on the above discussion on the various adaptation techniques, the NBLMS algorithm

can be considered as the best option for automatically adjusting the control parameter, CL, in

order to achieve a target average MSE or average number of search points while coding a video

sequence, where this sequence can be considered as a time varying non-stationary input to the

adaptation system.
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5.2.2 The Formal FADTS Algorithm

The FADTS algorithm utilising the NBLMS algorithm for adapting the control parameter, Q ,

in order to achieve a target output, i.e., predicted image quality, in terms of average MSE is now

outlined as follows. The algorithm applies the ACDSDTS algorithm (Section 4.3.3) on a block

of K frames of the video sequence using the same Q, value for motion estimation. The Q, is

initialised to 0 for the first block of K frames and the value of CL is then updated for the next

block of K frames by (5.9a) using the average output MSE and the total energy of all output

MSE of the motion estimation carried out so far on the current block of K frames. Fig. 5.4

presents the complete FADTS algorithm.

• Precondition:
Input video sequence of N frames, target output Tout, block length K, normalised step size //.

• Initialization:

Body:

For m = l,l + K, — ,l N-\
K

\K

A-Block Motion estimations:

For / = 0 , l , - - , ( , )

Calculate MV between frame pair x^m+'^, consisting of frames m + i and

w + Z + 1, using ACDSDTS(C[m+/]) algorithm and

let y[m+i] be the average MSE of the MV estimation.

(y[m+i]J
• Performance measurement:

[m]=T _S_
out K

• Adaptation of CL:

s*i[m+K] _ ^r[m+^+l] _ f _ # _ /~t[m+K+min(K-\,N-m-\)] _
L L L

• Postcondition:
Motion vector with target average MSE.

KV

Fig. 5.4: The FADTS algorithm.

The flexibility of the FADTS algorithm is illustrated by the fact that it is capable of

adapting the motion estimation in order to achieve a target prediction image quality in terms of

the average MSE output by trading off search speed in terms of average number of search

points. However, the same algorithm can easily be transformed for adapting the motion

' i <.>



Chapter 5 Fully Adaptive Distance-dependent Thresholding Search Algorithm 102

t

estimation with a target search speed in terms of average number of search points, while trading

off prediction image quality by incorporating the following minimal changes:

• The number of average search points is used as the target Tout,

• y^ is the average number of search points for motion estimation between frames / and

• The updating factor in the adaptation of Q. is negative (5.9b) instead of positive (5.9a),

• Postcondition: Motion vector with target average search points.

5.3 Shot Detection

A shot is a sequence of frames generated during a continuous operation and it represents a

continuous action in time and space [112]. As different shots contain different visual content

and motions, the motion calculated between two successive frames in each different shot can

produce a quite unrealistic prediction error and motion vector. Whenever a shot change occurs,

the first frame is always considered as the reference frame and is always intracoded (without

motion compensation). It has also been shown in the previous chapters that the different values

of CL give different performance for different types of motion sequence. For these reasons,

estimating motion with the appropriate CL, requires the incorporation of shot detection,

especially camera breaks in the FADTS algorithm, so that Q can be reinitialised as the shot

changes.

Shots can be joined together in either an abrupt transition mode, in which two shots are

simply concatenated, or through gradual transitions, in which additional frames may be

introduced using editing operations such as dissolve, fade-in, fade-out, and wipe. A number of

algorithms for shot detection in both the uncompressed and the compressed domains have been

reported in the literature. In general, automatic shot boundary detection techniques are classified

into the following categories: pixel based, statistics based, transformed based, histogram based,

and motion vectors based [113, 114]. In pixel-based methods, pixel-wise intensity difference is

considered as the indicator for shot boundary detection. Boreczky and Rowe [113], Zhang et al.

[115], Otsuji and Tonomura [116], and Hampapur et al. [117] compute the absolute sum of

pixel-by-pixel inter-frame difference and later compare it to a selected threshold. If the

difference is more than the threshold value, a shot boundary is declared. It is a very simple

method, but the drawback associated with it is that it is very sensitive to noise, and camera and

object motion. It is also difficult to adjust the threshold value manually. Shahraray [118],

Kasturi and Jain [119], and Zhang et al. [120] propose different shot boundary detection

methods based on content statistics such as mean, standard deviation, and the likelihood ratio.
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These methods are reasonably tolerant of noise, though they are slow due to the complexity of

the statistical formulas used and they generate many false positives (wrong boundaries detected

as correct ones). In order to effectively protect against camera operation and object motion, an

option is to select a motion-independent metric, like overall intensity histogram difference.

Histograms are the most common method used to detect shot boundaries. In the simplest

histogram method, the gray level or color histogram is computed and compared bin-wise

difference with a threshold. If this bin-wise difference is above a threshold, a shot boundary is

assumed. Ueda et al. [121] and Nagasaka and Tanaka [122] use the color histogram change rate

to find shot boundaries. This is the most common method and more robust to noise and object

motion. According to Boreczky and Rowe [113], the histogram methods were a good trade-off

between accuracy and speed. An alternative to all these algorithms is to work with derived

parameters directly extracted from the compressed sequence. Arman et al. [123, 124] and Liu

and Ziuk [125] use differences in DCT coefficients of JPEG [126] compressed frames to detect

shot boundaries as their measure of frame similarity, thus avoiding the need to decompress

frames. However, this DCT based technique generates false positives where it increases the

speed. Zhang et al. [115], Ueda et al. [121], and Deng and Manjunath [127] use motion vectors

in MPEG video to detect whether or not a shot change had occurred. Motion discontinuity will

occur if there is any sudden change between two consecutive frames. This results in a

significant drop of forward motion prediction coded macro blocks and can be easily detected by

setting a threshold.

From the above discussion, it can be clearly seen that different shot detection methods work

best in different situations. A histogram comparison should be less sensitive to object motion

than the DCT difference comparison algorithm, since it ignores the spatial changes in a frame.

But there maybe cases in which two images have similar histograms but completely different

content. Again, a histogram comparison may not be robust against lighting change. Therefore, if

the different features are combined appropriately, a more desirable result can be expected. As a

method of combining features, Artificial Neural Network (ANN) has been widely used and has

been successful in various applications. Based on ANN, an integrated technique for abrupt shot

detection will be presented in the next section.

Neural networks are computer algorithms inspired by the way information is processed in

the nervous system [128]. An important difference between neural networks and other Artificial

Intelligence techniques is their ability to learn. The network learns by adjusting the

interconnections between layers. When the network is adequately trained, it is able to generalize

relevant output for a set of input data. A valuable property of neural networks is that of

generalization, whereby a trained neural network is able to provide correct matching in the form
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of output data for a set of previously unseen input data. Learning typically occurs by example

through training, where the training algorithm iteratively adjusts the connection weights

(synapses). Backpropagation for example, is one of the most famous training algorithms for

multilayer perceptrons. A comprehensive descriprion of this technique can be found in Zurada

[128].

5.3.1 Proposed Integrated Shot Detection Technique

In regard to simplicity of implementation, an integrated method combining the different features

discussed above, with ANN used for camera break detection, is proposed for non-real-time

FADTS implementation. An intensity histogram, DCT, and motion vector differences are

considered as the input of the proposed algorithm. For histogram difference, a 256 level gray

scale histogram over the entire frame is calculated and then the sum of the absolute bin-wise

histogram difference is normalized. The DCT coefficient difference method closely resembles

the algorithm described by Arman et al. in [124]. As the DC coefficient represents the average

intensity of the block, only the DC component of each block (8x8 pixels) is considered in

reducing the computational cost. The absolute sum of the difference of the DC values of each

block is normalized by the total number of blocks of a frame, and these are concatenated to

produce a vector. For motion vector difference, the magnitude of each block-motion (16x16

pixels), obtained using ike DTS algorithm (Chapter 3), is calculated and then normalized for

each pair of frame.

A structure of the adopted neural network is shown in Fig. 5.5. The feed forward neural

network has an input layer of three neurons that correspond to the features of histogram

difference, DC coefficient difference, and morion vector difference, two hidden layers (selected

empirically), and an output layer of two neurons that correspond to the shot boundary and

continuous frame respectively.

Input Hidden Hidden Output

Histogram
difference

DC coefficient
difference

Motion vector
difference

Cut

Continuous

Fig. 5.5: Feed forward neural network structure for shot detection.

( , ' ' , .
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Although this integrated technique improves both the recall m& precision of detecting shot

changes compared to any of the underlying three individual methods, as is evident in Table 5.2,

the computational complexity of calculating three different input features to the neural network

is not suitable for applying this combined method in motion estimation for real-time video

coding applications. Therefore, the FADTS algorithm can only apply this ANN technique in

detecting shot changes for non-real-time motion estimation.

In order to support real-time motion estimation for video coding, the FADTS algorithm

employs a simpler, yet elegant technique to detect shot changes by utilising the abrupt change in

the error energy, BDM, over a range of threshold values, as an approximated cue to possible

shot changes. This technique has been applied to a number of video sequences with

intermediate shot changes and no unsatisfactory adaptation of Q, has been encountered. As an

example, in Fig. E.I, the shot change between Frames #89 and #90 of the Table Tennis

sequence is effectively detected by this simple BDM thresholding method.

5.4 Initialisation of CL

Generally, adaptive algorithms start by setting the initial weight vector (in this case, the value of

CL) to zero. Although in the case of a large number of iteration cycles its impact may be

negligible, the performance of adaptive algorithms with relatively fewer iteration cycles

depends heavily on the initial value of its weight. Cnce shot detection is incorporated in the

FDATS algorithm, the number of iterations based on an initialisation of Q depends on the

number of frames in each shot, which again depends on the visual content and editorial

decisions. However, after studying a large number of standard and non-standard video

sequences, it can be fairly concluded that the average number of frames in a shot is not large

enough to consider it as nullifying the impact of initialising CL to zero. Thus, the choice of the

initial value of CL impacts significantly on the performance of the FADTS algorithm for motion

estimation. Based on empirical data, the initial value of Ci, i.e., C ^ , has been determined for

quality and speed in the following two sections.

5.4.1 d Initialisation for Quality Adaptation

Fig. 5.6 shows the average search speed and prediction error characteristics of different video

sequences with a range of values for the threshold control parameter, Q. From (3.8), the upper

bound for CL with maximum displacement d is < — . For d = 7, this bound is ~ 36 for an 8 bit

d

gray level image, as indicated in Fig 5.6. The experimental results revealed that above a certain

limit, Q > 25, the speed variation was insignificant, so that the upper limit of the threshold

<-•>>
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control parameter, C ^ , can be defined as 25 instead of 36. Similarly, though the minimum

value of CL = 0 (FS case) in the ACDSDTS algorithm, experimental results also showed in

Chapters 3 and 4 that CL ̂  2 provided almost the same prediction quality as the FS algorithm.

Therefore, the lower limit of the threshold control parameter C ^ = 2 is defined.
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MSE per pixel

Fig. 5 6: Error-speed characteristics of different video sequences with different values of CL

(1-36).

Fig. 5.7 indicates that the prediction error (quality) variation in terms of the average MSE

per pixel using different values of CL is significant for all motion sequences such as Flower

Garden, Football, and Table Tennis. It is also shown that although prediction error variation

with different values of CL is not exactly linear, it can be approximated as so. Based on this

premise, the initial C ^ for a particular sequence is automatically computed from information

in the first few frames of the sequence as follows:

• Compute the minimum prediction error [MSEC j between the frame pair #1 and #2

using the C ^ .

• Compute the maximum prediction error \MSEC ) between the frame pair #2 and #3
* /-max '

using the C, ,

• Compute the initial value of CL for a particular scene in a video sequence as: -

C, =
Ant

ToutMSE>

MSEC - MSEC
> Anas '-ion ' Ami

(5.11)

where Tout{MSE) is the target prediction quality (in this instance, the average MSE). This value of

CL is used for the first K frames of an input video sequence starting from Frame 4.
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1 6 8 10 12 14 16
Threshold control parameter CL

•Flower Garden -Football -Table Tennis

Fig. 5.7: Average MSE characteristics of different video sequences with different values of
CL (3-20).

5.4.2 CL Initialisation for Search Point Adaptation

Fig. 5.8 shows the computational cost in terms of the average number of search points per

motion vectors for some standard high motion and low motion video sequences with values of

CL from 1 to 20.

•Football

•Table Tennis

•Flower Garden

5 7 9 11 13 15
Threshold control parameter CL

17 19

Fig. 5.8: Average speed characteristics of some standard video sequences with different
values of CL.

If a logarithmic scale is used instead of a linear scale, the characteristic curve can be

converted into a linear approximation as shown in Fig. 5.9. Using the same procedure described

in Section 5.4.1, the initial value of the threshold control parameter, CL, can be calculated as:

SB, -Z
I+C,'A™.

(5.12)

where SPC and SPC are the maximum and minimum speed obtained for CL and C,

(defined in the previous section) respectively, and Tout{SP) is the target speed (average number

of search points per motion vector).
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•Football
-Table Tennis
•Flower Garden

0.0 0.5 2.5 3.01.0 1.5 2.0

Threshold control paramter CL

Fig. 5.9: Speed characteristics of three standard video sequences with different values of CL.

5.5 Study of Different Parameters of the FADTS Model

From (5.9), it is shown that the performance of the proposed adaptive model in Fig. 5.3 also

depends on the values of the block length K and step size //. Each of these is now explored.

Block Length K

Figs. 5.10 and 5.11 examine the impact of the value of K on adapting the Q parameter in

achieving target level quality and search speed for the Football, Flower Garden, and Salesman

video sequences. Others parameters such as CL and ju, are considered as constant. For

example, to analyse the effect of block length of K on the predicted image quality and

processing speed performance of the FADTS algorithm, average 370,300, and 15 MSE and 32,

27, and 8 search points are considered as the target error and speed for the Football, Flower

Garden and Salesman video sequences respectively. Figs 5.10 and 5.11 show that calculated

average MSE and search points using different values (1, 2, 4, 6, 8, 10, 12, and 14) of K to

follow the above-mentioned targets for 100 frames of each sequence. It is shown that the

influence of different values of K in satisfying the target MSE and search points (SP) is

insignificant. The reason for this is that the picture content does not change too frequently.

400!

6 8

Value of K
-Football -FlowerGarden -Salesman

Fig. 5.10: MSE characteristics of different video sequences with different values of K.
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Fig. 5.11: Speed characteristics of different video sequences with different values of K.

Table 5.1 also shows the performance of the FADTS algorithm with different values of AT

with average 390, 280, and 16 MSE considered as the target error for the Football, Flower

Garden and Salesman video sequences respectively. It can also be seen that the FADTS

algorithm obtained an output average MSE closer to the target MSE with a comparatively fewer

number of search points, when the block length K - 4 for all cases. Although a lower value of K

also performed almost similar performance in satisfying the targets, according to (5.9), it

increases the overhead computational cost for the adaptation process. Conversely, a higher

value of AT can be considered in order to reduce the overhead cost. As stated in Section 5.2, the

block length of K in the BNLMS algorithm cannot be too high if it is assumed that the content

of a video sequence may be unstable. Based on this assumption, and the experimental results,

the value of AT = 4 is defined for this thesis for all experiments.

Values of
K

2
4
6
8
10

Football

MSE
392.0
391.0
392.8
391.1
392.2

SP
37.5
37.8
39.1
40.6
41.7

Flower Garden

MSE
280.99
281.11
282.86
283.51
283.89

SP
46.71
4432 •
43.87
43.50
44.32

Salesman

MSE
15.42

msm •
15.42
15.42
15.42

SP
9.37
9.29
9.32
9.31
9.31

Table 5.1: Performance comparison of FADTS algorithm with different values ofK.

Step Size. //

With respect to this parameter, Meghriche [129] highlights that there is no universal solution in

finding the optimal value of /*. Section 5.2 indicates that the NLMS algorithm considers a step

size range of (o < n < 2) for signal processing applications. The lower the value of //, the

slower the convergence rate, while a high step size can lead to system instability. The
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application of ju in this thesis is not constant, as the variable step size depends on the error

signal e. If the error becomes large, then a greater step size is considered for the next iteration to

speedily move towards the target level. If error is low, the step size will be smaller in order to

follow the target line. A high value is always chosen for the step size for the first few video

frames to enable a quick adaptation towards the target level. Choosing // £ 2 can lead to

instability; however, in this system, the application of the ceiling C^ <, 25, enforces a

dampening effect which avoids such instability. For all the video sequences tested for the

FADTS algorithm, no instability was encountered.

5.6 Computational Complexity Analysis of the FADTS Algorithm

The computational complexity of a motion estimation algorithm is usually expressed in terms of

either the number of search points or operations that the algorithm requires to calculate the MV.

Since the main focus in this thesis is upon the computational cost incurred for the adaptive

processing, the latter is used as the complexity measure.

In Chapters 3 and 4 it has been shown that the range of computational complexity based on

user-defined levels is bounded between g(9Q+1) and y/+g(d+8Q) operations per second with

half-pel accuracy motion estimation, and the overhead cost for centre adaptation is Rgper

second.

Lemma 1 Computational overhead of the FADTS algorithm, compared to the ACDSDTS

algorithm, is negligible.

Proof: Assume the block distortion is measured using MAE, which requires 3 basic operations

per pixel. If the frame rate/= 30 fps, [Nh,Nv]~[352,240], d = 7 and N - 16, the number of

integer arithmetic operations required for the upper and lower complexity bounds are 1.77

billion and 68.4 million per second, respectively, with half-pel accuracy (Section 3.5.5). This

contrasts with the total number of operations for (5.9) of only (3AT + 5)x /per second. Since, in

experiments, K = 4, this means a total of only 510 additional operations per second, which is

negligible. •

In summary therefore, the FADTS algorithm consumes minimal additional computational

overhead compared to the BDM calculation in ACDSDTS algorithm, while providing

significant performance benefits including user-definability of key parameters by employing an

adaptive thresholding process.

5.7 Experimental Results

The purpose of this section is to analyse the experimental performance, first, of the integrated
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shot detection technique for temporal shot detection and second, the FADTS algorithm for

prediction error quality and processing speed adaptation. •

5.7.1 Performance Analysis of Proposed Shot Detection Technique

To evaluate the efficiency of the proposed integrated method, an objective measure, Recall and

Precision as in (5.13) are used. Recall is the relevant detection rate from all the relevant items in

the image database and precision represents the correct detection rate.

Recall-- •, Precision = •
Cd +M ~d • * P

Where Q is the number of correct detections, M is the number of missed items and Fp is the

number of false positives. So a large recall value means that the correct shot boundaries are not

missed very much, and a large precision value means that relatively few wrong boundaries are

declared as a shot boundaries.

These two {recall and precision) are interdependent and closely related to threshold values.

The threshold must be assigned so that it can tolerate variations in individual frames while still

ensuring a desired level of performance. In order to achieve high accuracy in video partitioning,

an appropriate threshold must be found. As, in general, it is a really difficult process to find an

appropriate threshold value manually, threshold selection remains a significant problem for

traditional methods. Thus, for automatic selection of the threshold, some researchers [115] have

used the following relation, Threshold'- S+aft, where <?and ft are the mean and the standard

deviation of the frame-to-frame differences, respectively, and a is constant. This is, however,

very much application- dependent, thus in this research, the threshold values have been selected

according to experimental observation.

For the experiment, different video clips such as movies, animation, and sports containing

approximately 5000 frames in total were considered. For training the neurocomputing model,

we used 80% datasets and the remaining 20% datasets were used for testing purpose. After a

clinical analysis, it was found that the neural network was giving good generalization

performance when 2 hidden layers, with 30 neurons each, were considered. Table 5.2 shows the

comparative results of histogram distance, DCT coefficient distance, motion vector distance,

and proposed integrated method for shot detection. From the table, it is shown that the recall

and precision percentage with integrated method is 11%, 4%, and 4% and 9%, 3%, and 2%

higher compared to that of the histogram, DCT, and motion distance method, respectively. It

demonstrates that the integrated technique outperformed all other three existing techniques for

camera break detection.

?v
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Different methods

Histograms distance method

DCT coefficient distance
method

Motion vector difference
method

Proposed integrated method

Recall

86%

93%

93%

97%

Precision

74%

90%

91%

93%

Table 5.2: Performance comparison of histogram, DCT coefficient, and motion difference
methods with the proposed integrated method.

5.7.2 Performance Analysis of the FADTS Algorithm

The performance of the FADTS algorithm was evaluated using the luminance (Y-component)

signal of a number of test video sequences such as Football, Flower Garden, Table Tennis, and

Salesman (Appendix B). The test results for Football and Flower Garden are included in this

chapter. Some supplementary results for the Table Tennis and Salesman video sequences are

included in Appendix E.

In the experiments, all sequences were uniformly quantised to an 8-bit gray level intensity.

The block size dimensions were N = 16 and d = ±7. The MAE measure (2.1) was used as the

criterion for locating the best motion vector for each block. The value of K = 4 was chosen for

the experiments. All the results are shown with half-pel accuracy motion estimation.

To compare the searching efficiency of the FADTS algorithm, the test results of the FS,

TSS, and NTSS algorithms have been shown in Table 5.3.

Block-
matching

algorithms

FS
TSS

••>;t>imss

Football sequence
(345 frames)

MSE

218.88
240.79

, 239:15

PSNR [dB]

24.73
24:31
24.34

SP

160.05
25.63
26.9

Flower Garden sequence
(150 frames)

MSE

208.91
242197
213;28

PSNR [dB]

24.93
24.28
24.84

SP

209.73
31.20;;
28:98x

Table 5.3: Average MSE per pixel and SP per motion vector of the FS, TSS, and NTSS
algorithms for the Football and Flower Garden video sequences.

The performance of the FADTS algorithm was tested and evaluated for quality and speed

adaptation as follows:

Quality Adaptation

The performance of the FADTS algorithm for quality adaptation is presented in Tables 5.4 and

5.5 for a number of different target values for the Football and Flower Garden sequences. From
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these tables, it can be seen that the FADTS algorithm achieved all target demands in terms of

predicted image quality and processing speed. For example, targets were set to estimate motion

with an average 230 MSE or 24.51 dB PSNR image quality for the Football sequence and 215

MSE or 24.8 idB PSNR image quality for the Flower Garden sequence. It is shown that the

FADTS algorithm satisfied these demands providing MSE or PSNR very close to targets such

as 232.04 MSE or 24.48 dB PSNR for the Football sequence, and 214.41 MSE or 24.82 dB

PSNR for the Flower Garden sequence, with average search points 49.18 and 24.54,

respectively. The flexibility of the FADTS algorithm for QoS demand was investigated by

setting different targets, for example, a target of average 250 MSE or 24.15 PSNR for the

Football sequence, and 225 MSE or 24.61 PSNR for the Flower Garden sequence. Tables 5.4

and 5.5 show that the FADTS algorithm, again, satisfied these demands by calculating motion

with 252.13 MSE or 24.11PSNR for the Football sequence, and 222.79 MSE or 24.65 PSNR

for the Flower Garden sequence, while reducing computational cost almost 3 and 1.6 times

respectively compared to previous demand. These settings reveal that the FADTS algorithm is

able to reach any bounded target level of quality, with the implicit assumption that the minimum

target error obtained by FS is the lower bound. Note that if a target is set so high that the

resultant CL exceeds CL to achieve the target, the FADTS algorithm will fail. However,

defining such a high target is very unlikely, as it will produce an extremely poor quality output.

Target quality

MSE

230
235
240

PSNR [dB]

24.51
24.42
24.32

^ • 2 4 : 1 5

Calculated Quality

MSE

232.04
234.70
241.00
252il3

PSNR [dB]

24.48
24.43
24.31
24.11

Search Point (SP)

49.18
32.25
19.87
I&56

Table 5.4: Prediction error adaptation for the Football video sequence (345 frames)

Target quality

MSE

210
215
220
225

PSNR [dB]

24.91
24.81
24.71
24.61

h '- Quality

MSE

212.80
- 214.41

218.62
222.79

PSNR [dB]

24.85
24;82
24.73
24.65

Search Points
(SP)

34.95
24.58
16.65
15.21

Table 5.5: Prediction error adaptation for the Flower Garden video sequence (150 frames).
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The corresponding adaptive values of control parameter, CL, for different frames are plotted

in Figs. 5.12 and 5.13, where the adaptive nature of the FADTS algorithm is shown for varying

content between different frames. It also indicates that the FADTS algorithm automatically

computed a different starting value for Q, based on both the content of the video sequence, and

the desired target.

SO 100 150 200 250 300 350
Frame number

(a)

50 100 150 200 250 300 350
Frame number

(c)

SO 100 150 200 250 300 350
Frame number

(b)

50 100 150 200 250 300 350
Frame number

(d)

Fig. 5.12: Threshold control parameter adaptation for the Football sequence with average (a)
230, (b) 235, (c) 240, and (d) 250 MSE per pixel prediction quality.
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50 100
Frame number

!50

(a)

50 100
Frame number

(c)

50 100
Frame number

150

(b)

50 100
Frame number

150

(d)
Fig. 5.13: Threshold control parameter adaptation for the Flower Garden sequence with

average (a) 210, (b) 215, (c) 220, and (d) 225 MSE per pixel prediction quality.

Search Point Adaptation

The performance of the FADTS algorithm for computational scalability in terms of the average

number of search points (SP) per motion vector was tested with a number of targets, i.e.,

average search points considered. Table 5.6 shows some of these targets and the actual values

obtained by the FADTS algorithm for the Football and Flower Garden video sequences.

Football sequence

Target
SP

,20
25
30
40

Actu
alSP

20.10
24.99
29.89
39.08

Actual Error

MSE

243.00
237.82

• 235.32
230.22

PSNR [dB]

24.27
24.37
24.4L
24.51

Flower Garden sequence

Target
SP

1 1 5
20
25
30 ,

Actual
SP

15.52
19.68
24.69
29.68,

Actual MSE

MSE

220,54
216.27
214.85
214.19

PSNR [dB]

24,70
24.78

. 24.81 -
, 24.82

Table 5.6: Speed adaptation for the Football and Flower Garden video sequences (345, and
150 frames respectively).
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Table 5.6 indicates that the FADTS algorithm can satisfy all user demand for different

computational complexity in terms of the average number of search points. For example,

consider the target search points of average 20 SP, for the Football sequence, and 15 SP for the

Flower Garden sequence, per motion vector. From Table 5.6, it can be observed that the

FADTS algorithm satisfied these demands by estimating motion vector with an average 20.10

and 15.52 SP, where the prediction image quality in terms of PSNR was average 24.27 and

24.70 dB for the Football and Flower Garden sequences, respectively. Another example, with

the targets of average 30 SP for the Football sequence, and 25 SP for the Flower Garden

sequence is in Table 5.6, which demonstrates that the FADTS algorithm satisfied the demands

of the target estimating motion vector with an average 29.89 and 24.69 SP, with 24.41 and

24.81 dB PSNR, respectively.

The corresponding adaptive values of control parameter, CL, for different frames are shown

in Figs. 5.14 and 5.15 which show the adaptive power of the FADTS algorithm with content

variation in different frames. It is also shown that with higher speed i.e., a lower SP, as target,

the FADTS algorithm automatically started with a higher initial value of CL based on the

content of the video sequence and the expected target.

50 100 150 200 250 300 350
Frame number

(a)

50 100 150 200 250 300 350
Frame number

(b)

50 100 150 200 250 300 350
Frame number

(C)

50 100 150 200 250 300 350
Frame number

(d)

Fig. 5.14: Threshold control parameter adaptation for the Football sequence with average (a) 20,
(b) 25, (c) 30, and (d) 40 search points per motion vector.
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50 100
Frame number

50 100
Frame number

150

(a) (b)

50 100
Frame number

150 50 100
Frame number

150

(c) (d)

Fig. 5.15: Threshold control parameter adaptation for the Flower Garden sequence with
average (a) 15, (b) 20, (c) 25, and (d) 30 search points (SP) per motion vector.

From tables 5.3,5.4,5.5, and 5.6, it is clear that the FADTS algorithm not only satisfied any

user defined targets, but also showed better error performance with computational complexity,

similar to the TSS or NTSS algorithm. For the Football sequence shown in Table 5.3, the TSS

and NSS algorithms have computational complexity in terms of average number of search

points, 25.63 and 26.9 respectively, and predicted image quality in terms of PSNR of 24.31 and

24.34 dB, respectively. As shown in Table 5.6 that the FADTS algorithm achieved even better

PSNR performance compared to that of the TSS and NTSS algorithms while considering a

smaller number of search points (average 25 SP). Tables 5.3 and 5.6 also show that the *

performance of the FADTS algorithm is very similar to the NTSS and better than that of the

TSS algorithm for the Flower Garden sequence. This is because the FADTS algorithm

adaptively selects the threshold control parameter to limit the search for different frames with

different content, whereas a directional fast algorithm, such as TSS, always searches for 25

points irrespective of the content variation. It is shown by certain authors [45, 46, 53, 68, 85],

most of the macroblocks in a video sequence are stationary or quasi-stationary in nature. In this
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case, the FADTS algorithm stopped searching after using a smaller number of search points

with similar error performance.

Although the search efficiency of the FADTS algorithm was found to be similar to the fast

TSS and NTSS algorte-ims for video sequences incorporating all kind of motions, the main

strength of the FADTS algorithm lies in its unique performance scalability as shown in Tables

5.4, 5.5, and 5.6. No other existing fast directional algorithm provides such a level of flexibility

in trading off predicted image quality and computational complexity, whereas the FADTS

algorithm demonstrates considerable flexibility in providing target-driven services, especially in

terms of computational complexity.

5.8 Summary

In this chapter & fully adaptive distance-dependent thresholding search (FADTS) algorithm has

been developed for performance management block-based motion estimation in real-time video

coding applications. A key feature of this approach is the progressive adjustment of the required

threshold control value via an adaptive process which uses the information from previous

frames to achieve specified user demands i.e., prediction quality or processing speed. The

performance of the FADTS algorithm has been examined, and proof that it affords a unique

feature in being able to trade off between two key model parameters, namely prediction quality

and sea- ch rpeed, for the entire range of values of the threshold control parameter, CL.

Experiment resuite have shown that this novel FADTS algorithm has achieved guaranteed

QoS demands. Moreover, the performance scalability, especially complexity scalability, found

in this algorithm, represents an effective solution to the overall problem of performance

scalability for reai-time sofhvare-only or low power video coding applications.

The searcJ- efficiency of the. FADTS algorithm has been compared to the most popular fast

algorithms;. TSS and NTSS. Experimental results have proved that the FADTS algorithm is not

only able to provide QoS but also demonstrates similar, or faster search speed, with similar

error performance. Therefore, the FADTS algorithm solves the problem of existing fast

directional algorithms in providing different levels of quality of service.

The initial value of the threshold control parameter is an important factor in the adaptation

process. In this regard, some adaptation techniques have been formalized based on the contents

of the first few frames of eech video shot. Consequently, the FADTS algorithm adaptively

estimates the initial value of threshold control parameter for each shot or scene. To detect a shot

change, an integrated shot detection technique using Artificial Neural Network (ANN) and

BDM thresholding technique have been presented for non-real-time and real-time applications.
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In this research, all the popular existing adaptive algorithms have been studied in order to

select the most appropriate one i.e. Normalized Block Least Mean Square (NBLMS) adaptive

algorithm, for implementing in the FADTS system.

The overhead computational complexity of the proposed FADTS algorithm for motion

estimation has also been analysed. It has been shown that although the FADTS algoritlim has

some overhead complexity in the process of threshold control parameter adaptation, this

overhead is negligible compared with BDM calculation in motion estimation.



Chapter 6

Block-based True Object Motion Estimation

6.1 Introduction

In Chapter 1, it was identified that although block-based object motion has been used in many

different applications, especially video indexing by exploiting object motion, there are

limitations in estimating block-based true object motion using existing BMAs. To address this

issue, the Distance-dependent Thresholding Search (DTS) block-based motion estimation

algorithm (Block 1 in Fig. 1.6), in Section 3.6 was subjectively examined, and perceptually

exhibited superior performance compared to existing BMAs for true object motion capture. As

the block-based technique captures both object and camera motion, and also introduces some

false motion vectors as noise, to re-affirm the superior performance of the DTS algorithm for

true object motion estimation, it is necessary to remove the global motion component and

eliminate the false motion vectors. In this chapter, a novel filter, called the Mean Accumulated

Thresholded (MAT) filter (Block 4 in Fig. 1.6) which eliminates the false motion vectors in

order to extract the true object motion vector for video object representation, is introduced. The

experimental results described in this chapter establish that the DTS algorithm (Block 1 in Fig.

1.6), when combined with the MAT filter, can be a very useful tool for block-based true object

motion estimation.

To remove camera motion when capturing true object motion vectors, a Modified Iterative-

Least-Square Estimation (MILSE) (Block 4 in Fig. 1.6) technique is presented, and is used to

estimate the global motion parameter. The MILSE technique significantly reduces the

computational overhead in calculating this parameter compared with the original Iterative-

Least-Square Estimation (ILSE) technique described by Rath and Makur in [ 130].

The chapter is organized as follows. Section 6.2 presents some different applications where

block-based object motion has recently been used. A review of existing parametric global

motion estimation techniques is presented in Section 6.3. The well-established pan-zoom global

motion modeling technique is reviewed and a MILSE technique is proposed for camera

parameter estimation. An analysis of the complexity of the MILSE technique is provided.

m t-LLi
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Section 6.4 details global motion cancellation and noise {false motion vector) elimination

techniques. The novel Mean Accumulated Thresholded (MAT) filter for false motion

elimination is then presented in detail. Experimental results on the performance of the MILSE

and ILSE techniques are described in Section 6.5, as well as the performance of the DTS and

MAT filter combination in capturing true object motion vectors compared to other BMAs. This

section also analyses the computational complexity of the MAT filter in detail. Section 6.6

summarises the chapter.

6.2 Importance of Block-based Object Motion

With the rapid expansion of digital broadcasting systems, the Internet, and digital library

services, digital video data has become pervasive. As a result, among the many video analysis

applications extant, one of the most important applications has been content-based video

indexing in order to access video material from the tremendous pool of video information

available.

A typical approach to video indexing for browsing and retrieval is the shot-based approach

[13 ls 132] where a raw video stream is first segmented into a sequence of shots. After

segmentation, features within each shot such as content, length, and camera operations are used

for video indexing purposes. Two approaches for video indexing are distinguished [133]: still

image feature (spatial) based techniques, and temporal feature based techniques. In the former, a

small set of representative (key frame) frames are selected to represent the visual content of

each shot to be stored in the database. The information from each key frame is then represented

by low level still-image features such as colour, texture and shape. The major drawback of these

still-image feature indexing techniques is that video sequences are treated as still images, so the

semantics contained in a sequence are lost [133]. Motion, especially true object motion (as a

temporal feature) allows the user to specify queries that involve the exact position and

trajectories of the objects in a shot, and so can be considered as key feature in video indexing

for the sake of searching, browsing, or retrieval.

In previous chapters, it has been shown that though block-based motion estimation

techniques are primarily designed for video coding applications, they are increasingly being

used in other video analysis applications due to their simplicity and ease of implementation.

With MPEG being the worldwide standard for video data compression, and videos being

available in MPEG-compressed form, it would be desirable to directly process the compressed

video to compute relevant motion features thereby avoiding time-consuming computation of

optical flow. As a result, current research in some video analysis applications, especially
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content-based video retrieval, seeks to exploit this MPEG coded motion information. Some

recent applications are now briefly reviewed.

An object motion descriptor for content-based indexing of MPEG video has been proposed

by Kim and Ro in [18]. This technique considers the motion vectors, which are available in the

MPEG coded bitstream, as spatially connected four nearest macroblock motion. By clustering

the object motion, this technique identifies moving objects in a shot, and the motion for each

object is then used for video indexing. In [19], Aghbari et al. use MPEG coded block motion

vectors to calculate the motion vector features such as motion velocity and angle for a video

indexing system for MPEG video retrieval. The object, as well as the camera motion, are

calculated from these block motion vectors and a motion index vector is then generated using

this information. Another video indexing method based on MPEG coded block motion vectors

has been proposed by Heuer in [24], where the motion features (magnitude or/and direction)

and motion-based frame segmented features are used for querying the video. In [31], Sahouria

and Zakor propose a system to analyse and index surveillance videos based on the block motion

of an object which are available in MPEG-1 coded bitstream. Using this information, the

trajectories of the moving object are extracted for video indexing and classification.

AbouGhazaleh [134] proposes a video indexing system based on the object's motion from

MPEG coded bitstream. Based on motion vector similarity in the adjacent block in terms of

magnitude and angle, this technique clusters the blocks for a single object. It calculates the

absolute motion trajectory of a particular object by detecting and removing the background

motion as a camera motion. In [20], Yoneyama et al. propose a technique to detect the moving

objects by macroblock information such as motion vectors and Discrete Cosine Transform

(DCT) coefficients. After determining the moving region, the macroblocks regarded as moving

regions are grouped using spatial motion similarities with the same moving regions. If the

angular difference of motion vectors between the target macroblock and one of the spatially

neighbouring eight macroblocks is smaller than the pre-determined threshold value, then these

two are regarded as the same object. Zen et al. [23] have also proposed an object detection and

tracking method usmg MPEG coded motion vectors and DCT coefficients. This technique

identifies the different moving objects by merging the different macroblocks in which the

motion vectors are similar in magnitude and direction. A target is selected from the objects and

then tracking is carried out by considering the similarity of the average motion vector of each

target object between frames. Besides video indexing, Ji and Park [62] propose a video object

segmentation technique based on the block motion vector and DCT coefficients.
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6.3 Global Motion Estimation

Different camera operations such as fixed, horizontal rotation (panning), vertical rotation

(tilting), change of focal length (zooming), rotation around the optical axis (rolling), and

horizontal transverse movement (tracking) induce different global motions in video sequences.

The following two steps are generally involved in estimating the different global motions: -

1. Global Motion Parameter Modeling

2. Parameter Estimation.

6.3.1 Global Motion Parameter Modeling

Various global motion modeling schemes have been proposed in the literature, with the most

well-known being the three-parameter model corresponding to pan and zoom [135-137], the

four-parameter model corresponding to pan, zoom and rotation [130, 138], the six-parameter

affine model [139,140], and the eight-parameter quadratic and perspective model [140].

The different parametric global motion models estimate camera motions with varying

degrees of complexity. In estimating global motion parameters, the pan-zoom model is

computationally efficient and gives sufficient accuracy in motion description to represent the

global motion of a video sequence, especially when the global motion is primarily used for

compensating for camera motion. Although there are more complex models, the associated

benefits are small and computational complexity high. Their use also leads to greater difficulty

in parameter estimation, thus incurring higher additional overhead cost. For these reasons, the

following pan zoom model for global motion representation is considered.

Assume that luminance changes between successive frames are due only to camera motion.

If there are / rows and J columns of pixels in a frame, the coordinates of any pixel will be

(/,./),/ = 0,1,...,/-l,y = 0,l,....,J-l which will be presented by %iJ={siisj) with respect to the

centre of the frame. The displacement of the pixel (y) is represented by Vjj. It is assumed that

the camera works on the central projection model [141] in which the camera coordinate system

lies at the lens of the camera, and the image coordinate system sits at the focal plane. Using

these assumptions, the following two models can be established.

6.3.1.1 Camera Pan

Pan is caused by the camera's rotation about either the x-axis (vertical) or the y-axis

(horizontal) of the camera coordinate system. It affects both the camera and the image-space

coordinates. The pan parameter is normally represented as a two-dimensional vector in which

the scalar components refer to the rotation angles & and 6^ about x-axis andj>-axis, respectively.
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If they are sufficiently small (the camera has low motion between frames), the displacement of

the pixel is given as [141]:

ex (6.1)

where F is the focal length of the camera. In general, small pan causes the entire frame to be

uniformly displaced by one vector i.e. v,y •- p, / = 0,1,...,/ - 1 , j = 0,1,..., J - 1 ,

where p s \px py j l is a constant vector and px and py are called the pan parameters. Hence,

this model includes not only the slow pan of the camera, but also the camera translation along a

plane parallel to the image plane. If the motion is due to the slow pan of the camera, then:

(6.2)

Note that if 0X and dy are not small enough, then the resulting motion is not constant [141],

and so cannot be modeled using the pan model.

6.3.1.2 Camera Zoom

Zoom is caused by a change in the camera's focal length. It changes only the image-space

coordinates while the camera coordinates remain unchanged because there is no camera

movement. The zoom parameter is normally expressed as a scalar since it is the ratio of the

camera's focal lengths. Zoom causes linear motion along both the x-axis andy-axis of the image

plane i.e. the scalar components of the motion vector of a pixel are directly proportional to the

corresponding scalar components of its displacement from the centre of the frame. The

proportionality constants along the x-axis and the y-axis, which are functions of the zoom

parameter, are equal. It has been shown by Tse and Baker in [136] that when zooming, the

motion vector of the pixel (ij) is:

v,, = (6.3)

where Fb and Fa are the camera's focal lengths before, and after, the zoom, and FJFb is the

zoom parameter.

A similar motion vector field is created when the camera is translated along the direction of

view. Let Zb and za be the ^-coordinates (i.e. along the direction of view) of the object point,

which corresponds to the pixel on the image plane, before, and after, the camera translation,

respectively. The displacement of the pixel is given as:
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(6.4)

The above two concepts are generalized by Rath and Makur in [130] as follows. Global

motion is referred to as zoom when the scalar components of the motion vector of a pixel are

directly proportional to the corresponding scalar components of its displacement from the centre

of the frame i.e.

7. X.

(6.5)

where zx and zy are called zoom parameters. When linear moiion is due to the zooming of the

camera,

*.-*,-l£-> (6.6)

while when it is due to the translation of camera along the direction of view,

(6.7)

The reason for using two zoom parameters is that in the majority of cases, global motion is

usually accompanied by local motion. The values of the estimated parameters are affected

differently along the x-axis and the y-axis depending on the nature of the local motion. One of

the estimated parameters may be a better estimate than the other. Representing both parameters

by a single parameter will not produce a better estimate.

So far the zoom and pan motions have been discussed separately. Although less frequent,

there is still the possibility of the simultaneous occurrence of both pan and zoom motions. In

such cases, the global motion field will be a combination of both pan a d zoom.

Mathematically, an effective global motion vector has to be decomposed into two global motion

vectors, each corresponding to one of the above mentioned models. The order of these two

motion parameters is important, since the process is non-commutative (a.b * b.a), with different

orders giving rise to different models for the resultant motion vector. Zoom followed by pan

gives [130]:

ZySj
+p (6.8)

whereas pan followed by zoom gives:
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+p

or:

V;
(6.9)

Rath and Makur [130] generalise these two models as a single model:

a\s
i J ; a2 (6.10)

where

ax = zx and a2 = MPX,ZX) (6.11)

a3 = zy and a4=f2(py,zy) (6.12)

In the above definition, z* and zy are the zoom factors along the x-axis and y-axis respectively,

and (pXi py) is the pan vector. Accordingly, the pan and zoom parameters are represented by au

a2t fl3, and a4.

6.3.2 Parameter Estimation

As the global motion estimation (GME) procedure depends on parametric models of camera

motion and the way the model parameters are estimated, different GME techniques have been

reported in the literature based on the diverse motion models discussed in the previous section.

In [142], Dufaux and Konrad classify global motion parameter estimation methods into three

categories: (i) direct minimisation of the prediction by a differential technique [141]; (ii) direct

minimisation of the prediction error by a matching technique [135, 139, 143]; and (iii) a two-

step method consisting of local motion estimation followed by estimation of the global motion

parameters [130, 136,137,140,144-148].

The first two categories represent Least-Square (L^,) minimisations of motion parameter

estimation. As the minimisation is carried out on the video s' tuence without corresponding

establishment, both can be considered as direct methods. Conversely, the third category

represents methods which carry out the estimation process in two stages. In the first stage, an

overall motion field is computed generally by block-matching algorithms. The global motion

parameters are subsequently computed by regression on this motion field. The technique can be

seen as indirect as it does not compute the motion parameters from the luminance signal. Most

indirect methods use a LS estimation method to minimize the prediction error function using a

matching technique to estimate the global motion parameters.
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As the purpose of global motion estimation is to compensate for the global motion already

calculated by the block-based DTS algorithm detailed in Chapter 3, the indirect parameter

estimation (two-stage) technique is exploited in this research. Whether direct or indirect

implementation is employed, the main difficulty in estimating global motion parameters resides

in the existence of independently moving objects which introduce a bias into the estimated

parameters. To reduce the impact of localised object motion and detection errors [149] on the

determination of global motion parameters, different techniques have been proposed for

parameter estimation. A non-iterative histogram based global motion parameter estimation

technique has been used to reduce the disturbance of local objects [137, 149, 150]. In [149],

Kamikura and Watanabe calculate the parameters associated with pairs of blocks symmetrically

located with respect to the centre of the image, and then a histogram of these parameters is used

to calculate the parameters (pan and zoom) of the global motion. Meng and Chang [150]

propose a technique to calculate the global motion parameters based on a histogram of the

motion vector angles with respect to the origin of the frames. As the LS method is the most

popular global motion estimation method, to reduce the disturbance of moving objects, an

iterative-least-square estimation (ILSE) algorithm is used to remove the motion vectors of

moving objects from the LS approximation by thresholding. As well, some robust direct

methods exist, which use statistics and maximum-likelihood-theory, such as M-estimators [151]

and Least-medium-of-square method [152] for parameter estimation. However, they introduce

more computational complexity into the parameter estimation process.

For computational efficiency, sufficient accuracy and simplicity in application, the iterative

LS method has been considered in this thesis.

6.3.3 Modified Iterative Least-Square Estimation (MILSE)

To estimate the parameters using Iterative Least-Square Estimation (ELSE), the procedure

described by Rath and Makur in [130], is used with a modification, and is referred to as the

Modified Iterative Least-Square Estimation (MILSE). In work by Rath and Makur [130], all the

rows and columns of blocks in a frame of a sequence are considered for the first iteration, so

that the parameter calculation depends on the whole frame. Global motion generally spreads

over the frame uniformly as shown in Fig. 6.1. If only pan is involved, the value is constant for

the entire frame, but in the case of zoom, the value is proportional to the distance from the

centre points. The convergence centre is generally at the centre of a frame provided there is no

panning. Fig. 6.1 (a) shows the global motion characteristics of video frames where only zoom

and a little pan is involved. Consequently, the convergence centre has been shifted from the

centre of the frame.
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i
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i

(a) Global motion (Zoom) in the Table Tennis (b) Global motion (Pan) in the Flower Garden
sequence. sequence.

Fig. 6.1: Global motion needle diagrams for the Table Tennis and Flower Garden sequences.

Another assumption regarding global motion is that in most video sequences, only a few

blocks are occluded by the moving objects snd these objects are mostly in, or around, the

middle of a frame, but rarely at the edge of the frame [19]. Based on this assumption, Aghbari

et ah in [19] estimate the different types of camera motion using the macroblock motion

information at the edge of the frame; thus, for panning motion, all motion vectors at the outer

edges will be in the same direction, whereas for zocm-like motion, vectors on opposite sides

will be in the opposite directions. Therefore, instead of using the motion vectors of all

macroblocks, a few macroblocks, especially at the edge of the frame, are sufficient to enable

calculation of the global parameters. To implement this strategy, the ILSE technique [130] has

been modified, and is referred to as the MILSE technique. In the latter, instead of considering

the rows and columns as indices, the number of blocks for parameter estimation is considered as

follows.

Let there be A/blocks in a video frame, and assume that the motion vector of a block is the

motion vector of the central pixel of that block. Let (v,(£), v/&)) be the measured motion vector,

according to the original DTS algorithm (Blr.ck 1 in Fig 1.6), of the block k, k - 0, 1, ..., AM,

whose central pixel's coordinates arc isx(k), s^k)) with respect to the centre of the frame. In this

regard, the global motion estimation model represented in (6.10) can be rewritten for camera

zoom and pan as:

16.13)
(k)

(k)

[axsx

a3sy (k) +
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Now consider the ILSE algorithm [130], the optimal values for camera parameters (a\, C2,

and a4) are obtained by using the following criteria:

JV-l

- fl2 Y

^ "

(6.14)

(6.15)

By differentiating with respect to the parameters, and setting the derivatives to zero, the

following solution is obtained as:

N - 1 N-\

a, =
,1=0 *=o (6.16)

N-\ N-I

' N-\

, *=o , * = 0 (6.17)
N-\ N~}

A r - l

S (*) - f zIf-X

I'
*=0 k*=0

^-1 ' A ^ - l
(6.18)

*=o fc=o

,Jt=O ,t=0
^-1

*=0
- Z2-

Jt=O

(6.19)

As shown by Rath and Makur [130], to eliminate the influence of the presence of local

motion, the above procedure is evaluated iteratively, and each iteration eliminates blocks whose

motion vectors (estimated by any DMA) do not match with the current global motion fields.

Matching means that a motion vector lies within a threshold, called the motion vector matching

threshold, from the corresponding global motion vector.

6.3.4 Computational Complexity Analysis of MILSE

The computational complexity incurred in global motion estimation by the ILSE method

depends on two factors: the number of blocks considered in each iteration and the number of

iterations required for the convergence achieved. Rath and Makur [130] mention that the

convergence usually occurs in less than 5 iterations. Therefore, the computational complexity of
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the ILSE and MILSE techniques is analysed in terms of the number of blocks used in the first

iteration.

If the frame size, for example, is [Nh,Nv] pixels and the block size is N2 pixels, the total

number of blocks in a frame is — 2
 v . In a 2-dimentional form this can be represented as

[,#,,,i?J where Bh and Bv represent the horizontal and vertical dimension of the blocks

respectively. Suppose the total number of operations required for calculating the camera

parameters for each block is £ then the total number of operations required for the whole frame

is ^x(Bh xBv) for each iteration, which is the computational cost involved in ILSE technique.

Clearly, if a subset of blocks is considered instead of all the blocks of a frame, the number

of operations will be fewer, which is the rationale behind the MILSE technique.

i

® Blocks in outer most grid Go

• Blocks in second outer most grid G\

® Blocks in third outer most grid G2

• Centre of the frame

Fig. 6.2: An example of all the macroblocks in the three outermost grids of a frame.

If the frame size is [Nh,Nv] = [352,240] and block size is [N,N]=[\6,16], the total

number of blocks in this frame is (Bh xBv) = 330. The total number of operations required is

£<330 when all the blocks of a frame are considered for one iteration in the ILSE technique.

Conversely, if only those blocks in the outermost first and second grids, shown as Go and G\ in

Fig. 6.2, are considered, the total number of operations involved in the first iteration is £x!32. If

the second and third outermost grids G\ and G2 are considered, the total number of operations

required is ^xl 16. For these two cases, the computational cost is reduced by 60% and 65%,

respectively, compared to what is required when all the blocks are considered for parameter

estimation in the first iteration. Experimental results

This research confirms that using the outer grid block rnoti .̂ n vectors to calculate global

motion parameter exhibits better performance than using the inner grids which are located

"V ')> SSfe.
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around the centre of the frame, since the local object generally exists towards the centre of the

frame.

6.4 True Object Motion Estimation

If there is no global motion involved in a video sequence, the true object motion can be directly

obtained by eliminating the false motion components from the block motion captured by the

DTS algorithm discussed in Chapter 3. However, if there is global motion involved in a

sequence, it will be necessary to cancel the global motion components before filtering the false

motion vector, in order to retain only the true object motion vectors from the block motion

captured by the DTS algorithm. The global motion cancellation technique is described below.

6.4.1 Global Motion Cancellation

For global motion cancellation, generally known as global motion compensation, firstly global

motion paiameters are calculated. In Section 6.3, a global motion parameter estimation

technique has been described for parameters (pan-zoom) estimation wiieic rnc pan and zoom

were represented by four variables (au a2, a3, and a*). After calculating these four parameters,

the global motion vectors for each block in a frame can be calculated as (6.13).

If the true object motion vector is represented by (ox(k), oy(k)) of the kth block of a frame

where k = 0 ,1 , . . . , AM, it can be calculated as:

[Oy(k\ a3Sy(k)j

r i
(22 (6.20)

where (vx (fc), vy {k)) represents the block motion vector calculated by the DTS algorithm.

Once global motion has beeri compensated from the estimated block motion, true object

motion vectors are clustered in the blocks containing one or more objects. As block motion

estimation cannot be performed with full accuracy due to the limitations of block-based

estimation techniques discussed previously, false morion vectors appear as noise, together with

the true object motion vectors. To retain only the true object motion vectors, these false motion

vectors need to be removed.

6.4.2 Filtering the False Motion Vector

Among the various existing line-- and non-linear filters, the most popular are the mean and

median filters [153-157]. In the following two sections, the concepts behind these two type of

filters will be discussed briefly.
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6.4.2.1 The Mean Filter

The idea of mean filtering is simply to replace each value with the mean (average) value of its

neighbours, including itself. This has the effect of smoothing vslues that are unrepresentative of

their surroundings. Mean filtering is usually thought of as a convolution filter [158]. Like other

convolutions, it is based around a kernel, which represents the shape and size of the

neighbourhood to be sampled when calculating the mean. Often a 3x3 square kernel is used,

although a larger kernel (e.g. 5x5 square) can be used for heavier smoothing. For example, in

Fig. 6.3(b) the results are shown for the situation where a 3x3 mean filter is applied to a 3x3

image as shown in Fig. 6.3(a) where each value may represent the intensity of each pixel. Two

major characteristics of the mean filter are:

• A single, very unrepresentative value can significantly affect the mean value of its

neighbourhood.

• When the filter neighbourhood straddle?, an edge, the filter will interpolate new

values.

1

2

3

3

12

3

2

1

3

4.5

4.0

4.0

3.5

3.3

3.2

3.7

3.3

3.1

(a) Unfiltered values. (b) Filtered values.

Fig. 6.3: 3x3 kernel mean filter.

6.4.2.2 The Median Filter

Like the mean filter, the median filter considers each value, in turn, and looks at its nearby

neighbours to decide whether or not it is representative of its surroundings. Instead of simply

replacing a value with the mean of neighbouring values, it replaces the value with the median of

those values. The median is calculated by first sorting all the pixel values from the surrounding

neighbourhood into numerical order and then replacing the pixel under consideration with the

middle pixel value. If the neighbourhood under consideration contains an even number of

pixels, the average of the two middle pixel values is used. Fig. 6.4(b) shows the results of a 3x3

kernel median filter applied to the 3x3 image in Fig. 6.4(a). Two major characteristics of the

median filter are:

• The median is a more robust average than the mean, and so a single, very

unrepresentative, value in a neighbourhood will not affect the median value

significantly.
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• Since the median value must actually be one of the values in the neighbourhood, the

median filter does not create new, unrealistic, values when the filter straddles an edge.

1

2

3

3

12

3

2

1

3

2.5

3.0

2.5

2.0

3.0

2.0

2.0

2.0

2.0

(a) Unfiltered values. (b) Filtered values.

Fig. 6.4: 3x3 kernel median filter.

While these filter types are effective for impulse noise suppression, the median filter and its -

variants have also been used in many applications to reduce noise from block motion vectors

[17,21,31,72] for vector field smoothing. However, the main requirement for the filter in this

application is not noise reduction in image enhancement or motion vector field smoothing, but

to explicitly eliminate the false motion vectors and retain the true object motion vectors. For

this reason, a new filter design is proposed.

6.4.2.3 The Mean Accumulated Thresholded (MAT) Filter

In real world video sequences, most moving objects generally occupy more than one

neighbouring macroblock (Section 4.2). Based on this characteristic, it can be assumed that true

object motion vectors should always occur in a clustered form whereas false motion vectors will

tend to appear as impulsive noise. In order to illustrate this, the following simple example of a

motion vector field is provided in Fig. 6.5. The true motion vector is represented by m and false

motion vector by m'. Real world video will involve a much more complex motion vector field;

however, as results will show (Section 6.5.2.2. and Appendix F) the fundamental principle

holds.

0

0

0

0

0

0

0

0

0

0

0

0

0

m'

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

m

m

0

0

0

0

0

0

m

m

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 6.5: An exampL of a motion vector field.
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The objective is to eliminate tri and retain m in the vector field. The simplest strategy is to

define a noise tolerance threshold where the decision is based on that threshold value [18]. This

approach is flawed however, since the threshold only performs well if the true and false motion

vectors have different lengths. In the case where the length of both m and m' are equal, this

technique does not separate true motion vectors from false ones.

For filtering impulse noise, the most well-known technique is the median filtering technique

which has been used in [17, 21, 31, 72] for noise reduction. Though the median filter performs

well for noise reduction in a motion vector field, such a filter is not suitable for this application.

For example, if a 3x3 median filter is implemented on the motion vector field shown in Fig. 6.5,

the filtered values will be as shown in Fig. 6.6. These clearly demonstrate that though the false

vector has been removed, all the true motion vectors have also been eliminated.

0
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0

0
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0

0

0
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0
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 6.6: Filtered values for the motion vector represented in Fig. 6.5.

The performance of a mean filter is now examined in this application. After implementing a

3x3 mean filter on the motion vector field in Fig. 6.5, the filtered values are as shown in

Fig. 6.7, where a number of new false motion vectors have been introduced. To remove these

new false vectors around the true vectors shown in the shaded blocks in Fig. 6.7, a predefined

threshold, called the false motion vector elimination threshold 7}, must be used such that

< T < length of both vectors (true and false) is equal, then

or m' = 4m. In this case, any value of 7}, within the defined range, will be unable to
9 9

remove the false vectors and retain the true ones.

From this simple example, it can be seen that the length of the false motion vector is greater

than that of the true motion vector and the length ratio is 4:1. One strategy for removing these

false vectors is to consider gradually increasing the length of the true motion vector with a

iS > <
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higher ratio compared to the increasing ratio of the length of the false motion vector, so that the

ratio of the two different vector lengths is reduced gradually. When, finally, the true motion

vector length becomes greater than that of the false one, a predefined threshold can separate the

true one from the false one. To achieve this objective, accumulation of the mean vector length,

in addition to the original vector length, is utilised. The reasoning behind this is that true motion

vectors frequently occur in a clustered form, whereas false vectors tend to occur as isolated

impulsive noise.

0

0

0

0

w'/9

m'19

m'/9

0

0

0

0

0

m'/9

m'/9

m'/9

0

0

0

0

0

m'19

m'/9

m'19

0

0

0

0

0

0

0

0

0

ml9

2m/9

2m/9

m/9

0

0

0

0

2w/9

M
2m/9

0

0

0

0

2m/9

m
m
2m/9

0

0

0

0

m/9

2m/9

2ml9

m/9

0

0

0

0

Fig. 6.7: Filtered values for motion vector represented in Fig. 6.5.

For the example, in Fig. 6.7, the length ratio of the false and true motion vector is 4:1. If the

above mentioned accumulation procedure is applied to these motion vectors, the maximum

length of the false motion vector after one iteration becomes:

(6.21)
. 4m 40m
4mn =

9 9

and the length of the true vector is:
4m 13m , , -_.

m+— = (6.22)

9 9 V }

From (6.21) and (6.22), it can be shown that the ratio of the length of the false and true motion

vectors is now only 3.08:1 after one iteration.

Now, if the second iteration is considered, the length of the false motion vector becomes
. , 40m 8x4m , .
4m+ + = 5.4m,

81 81

and the length of the true motion vector is:

13m 52m 10m

(6.23)

81 81
• = 2.4m (6.24)
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so the ratio of the length of the false and true motion vectors is now 2.25 which, again,

indicates the reduction of length ratio between the false and true motion vectors. In the same

manner, if this iterative mean accumulated process continues, eventually after a number of

iterations, the length of the false motion vectors (noise) will be smaller than the length of the

true motion vectors. In that case, by applying a suitable value of 7}, it is possible to remove the

entire set offalse motion vectors in order to retain only the true one.

While a simple example has been used to explain the rationale behind the idea, the false

motion vector elimination process has been formulated in the Mean Accumulated Thresholded

(MAT) filter, which is designed explicitly for this application.

The MAT filter has two phases. The first phase is basically an iterative in-place application

of the mean filter. However, in this case, a major difference arises in how the in-place values

are updated. For each iteration, the mean value is added to, instead of replacing, the existing

value as follows:

(6.25)

where [ox(k),oy(k)j represents the x and y components of the motion vector in the current

block k, which are available after global motion cancellation, and where meanx(k) and mean//:)

are the mean values of the x and y components of the motion vectors, respectively, in the

neighbourhood of any kernel considered for the current block, k.

The second phase of the MAT filter is to apply the false motion vector elimination

threshold, 7}, so that the only motion vectors retained are those whose lengths are higher than 7}.

This is mathematically formulated as:

°x

°y

(*)

(*)

°x

°y

(*)

(*)
+

mean
mean y(k)

I If ^j(ox(k)f + (oy(k)f < Tf, eliminate the vector in block k;

[Otherwise, retain the vector in block k.
(6.26)

Before examining the performance of the filter, a few key points need to be highlighted in

respect to applying the MAT filter.

1. The MAT filter has been explicitly designed to eliminate false motion vectors while

retaining the true motion vectors. It is not designed for vector field smoothing

purposes.

2. Vhtf MAT filter can be integrated with any existing BMA for true object motion

vector capture.
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3. The number of iterations in the MAT filter depends on the video content and the

performance of the search algorithm. These must be selected empirically for

optimising the performance of any BMA using the MAT filter.

4. The threshold Tf setting is empirically derived to maximise the number of retained

true object motion vectors while minimising the number of false motion vectors.

5. The overall computational complexity of the MAT filter depends on the kernel size

used and the number of iterations required in the whole process.

6. One assumption in the literature is that motion vectors tend to occur in a clustered

form which defines moving objects. For the inherent limitation of the BMA search

technique, the performance of MAT filter will probably not be so effective, and

capture rates will deteriorate if there is large cluster of false motion vectors with no

moving objects. For most real world objects however, this clustering effect is rare,

and thus the MAT filter will improve the overall number of false motion vectors

eliminated.

6.5 Performance Analysis

The purpose of this section is to analyse the experimental performance, firstly, of the MILSE

teclinique for global motion estimation and secondly, the DTS algorithm using the MAT filter

for true object motion estimation.

6.5.1 Performance Analysis of MILSE

In this section, simulation results for global motion parameters (zoom and pan) estimation, in

terms of a\, a2, a3, and a4, are presented using the original ELSE method [130] and the new

MILSE metliod. The simulation was carried out using different video sequences with different

motion types as detailed in Appendix B.

In the simulation program, two predefined thresholds were used to compare motion vector

magnitude and angle. If the d-fference in magnitude and angle between the original motion

vector calculated 'r/ the DTS algorithm and the calculated current global motion using (6.13) is

greater than these predefined thresholds, they are considered mismatched motion vectors and

are removed during the next iteration. Tables 6.1 and 6.2 show the statistical comparison of

camera pan and zoom factors represented by a\, a2, 03, and aA, calculated by considering the

motion vectors for a range f differ mt numbers of macroblocks in given frames.
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Test sequences

Table Tennis
(Frames #32 and #33)

Flower Garden
(Frames #10 and #11)

Ballet
(Frames #99 and #100)

a\ (zoom)

-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

02 (pan)

-0.33
-0.40
-0.27
-0.47
-0.43
-0.41
-0.33
-2.00
-2.51
-2.00
-2.00
-2.00
•2.00
-2.00
4.04

3.87

3.95

3.96

3.77

3.77

03 (zoom)

-0.02
-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00

L_ 0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.01

a4(pan)

0.24
-0.14
0.14
-0.16
0.05
0.04
0.12
0.00
0.00
O.CO
0.00
0.00
0.00
0.00
0.02
0.08
0.00
0.05
0.00
0.02

No. of blocks considered

All blocks
Blocks in Go and G,
Blocks in Gjjnd G2 ^

Blocks in Gi, G2, and G^
Blocks in Gj, G2, G3, and G4

Blocks in G\, G2} G3, G4, and G5

Blocks inGuG2,GhGj, G,,and G^
All blocks

Blocks in Go and G\
Blocks in G\ and G2

Blocks in G\, G2, and G3
Blocks in G\,G2, G3) and G4

Blocks in G\, G2, G3, G4, and G5

Blocks in Gu G2, G3) G4> G5, and G6

All blocks

Blocks in Go and G\

Blocks in G\ and G2

Blocks in G,, G2, and G3

Blocks in G\, G2, G3,and G4

Blocks in Gj, G^ G^ G^ and Gs

ILSE

MILSE

ILSE

MILSE

ILSE

MILSE

• ' •s

Table 6.1: Statistical comparison of camera pan (a2 and o4) and zoom {ax and a3) factors in
relation to the different numbers of macroblocks considered.

Test sequences

Table Tennis
(Frames #33 and #34)

Flower Garden
[Frames #20 and #21)

Ballet
(Frames #97 and #98)

a\ (zoom)

-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
-0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

02 (pan)

-0.12
-0.38
-0.10
-0.22
-0.18
-0.18
-0.07
-2.00
-2.00
-2.00
-2.00
-2.00
-2.00
-2.00
2.48

2.83

3.89

3.71

3.20

2.82

#3 (zoom)

-0.02
-0.02
-0.02
-0.02
-0.01
-0.01
-0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.01

0.01

o4(pan)

0.22
0.00
0.03
-0.02
0.12
0.29
0.31
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.04

0.23

0.01

0.29

0.12

0.00

No. of blocks considered

All blocks
Blocks in Go and G\
Blocks in G\ and G2

Blocks in Gt) G2, and G3

Blocks in Gu G2, G3, and G4

Blocks in G\, G2) G3, G4> and G5

Blocks in Gu G2, G3) G4, G5) and G6

All b'.ocks
Blocks in Go and G\
Blocks in G\ and G2

Blocks in Gi,G2, and G3

Blocks in G,, G2, G3l and G4

Blocks in G,, G2, G3) G4, and Gs

Blocks in G,, G2, G3) G4, G5,and G6

All blocks

Blocks in Go and G\

Blocks in G] and G?

Blocks in G\, G2, and G3

Blocks in G\, G2, &, and G4

Blocks in Gu G2) G,, GM and G5

ILSE

MILSE

ILSE

MILSE

ILSE

MILSE

Table 6.2: Statistical comparison of camera pan (a2 and CJ4) and zoom (a\ and
relation to the different numbers of macroblocks considered.

factors in

The first test sequence reflected in both Tables 6.1 and 6.2 contains two pairs of images

(frames #32 and #33, and frames #33 and #34) of the Table Tennis (352x240 pixels) sequence



Chapter 6 Block-based True Object Motion Estimation 139

in where the camera zooms out, whilst slightly panning, with the moving objects including ball,

bat, and the hand of the player holding the bat. Tables 6.1 and 6.2 show that the values of the

zoom parameters, a\ and a3, were very similar for all cases for both sets of frames, except for

the blocks in the outermost grids, Go and GL This indicates that some noise has been introduced

due to boundary artefacts in the outermost grid, introducing a small error. It is also shown that

when the blocks of G\ and G2 were considered, the panning factors of a2 and a4 were smaller

than for all other cases. As these images contain almost no panning, the low values of a2 and aA

are fully consistent with expectations.

The next test sequence contains two pairs of images (frames #10 and #11, and frames #20

and #21) of the Flower Garden (352x240 pixels) sequence where the camera is panning

horizontally to the right, and there are no moving objects. Tables 6.1 and 6.2 show that only a2*

0, indicating that there was no zooming and vertical panning involved in this sequence. Table

6.1 also illustrates that the value of a2 was different for the blocks, Go and Gu compared to all

others, due to the aforementioned boundary artefacts.

For the Ballet (360x240 pixels) sequence, two pairs of images (frames #97 and #98, and

frames #99 and #100, respectively) were considered; these contained camera panning to the

right, and no zooming. Tables 6.1 and 6.2 also show that the zoom parameters were zero for all

cases, which is consistent with the actuality observed in this sequence.

So far, the performance of MILSE and ILSE has been analysed in which consecutive pairs

of frames have been considered for global motion estimation. Generally, the pan and zoom

factors in a video sequence changes proportionally to the distance between the current and the

reference frames. To analyse the effectiveness of the MILSE technique, a number of

experiments were also conducted based on non-consecutive (skipping) frames. Table 6.3 shows

the simulation results when skipping one and two frames of the Table Tennis and Flower

Garden video sequences. It is interesting to note that the zoom and pan factors gradually

increase when the distance between the current and the reference frames increases. It can also

be observed that the parameter values were similar in all cases except when blocks in Goand G\

were considered, again indicating the effect of boundary artefacts.

From the above analysis, it can be observed that global motion parameter estimation docs

not require a consideration of all blocks of a frame. It is also shown that if only those blocks in

the second and third outermost grids are considered, then this provides better results compared

to others, as well as avoiding boundary artefacts. Consequently, the proposed MILSE technique

can be shown to improve computational efficiency by 65% compared with the first iteration of

the ILSE technique described by Rath ands Makur [130].
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Test sequences

Table Tennis
(Frames #32 and #34)

Table Tennis
(Frames #32 and #35))

Flower Garden
(Frames #10 and #12)

Flower Garden
(Frames #10 and #13)

a\ (zoom)

-0.03
-0.03
-0.03
-0.03
0.03.
-0.03
-0.03
-0.04
-0.03
-0.04
-0.04
-0.06
-0.05
-0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

a2 (pan)

-0.32
-0.38
-0.57
-0.44
0.40
-0.31
-0.29
-0.26
-0.08
-0.25
-0.41
-0.33
-0.24
-0.20
2.90
3.40
3.00
3.00
3.00
3.00
3.00
3.51

2.92

4.00

4.00

4.00

4.00

4.00

fl3 (zoom)

-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.05
-0.44
-0.05
-0.05
-0.05
-0.04
-0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

a4(pan)

-0.27
-0.09
-0.08
-0.02
0.17
0.27
0.31
0.51
-0.79
0.33
0.28
0.3

-0.77
0.82
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.24

0.45

0.52

1.00

0.45

0.33

0.22

No. of blocks considered

All blocks
Blocks in Go and G\
Blocks in G\ and G2

Blocks in G h G2, and G3

Blocks in Gu G2, G3, and G4

Blocks in G|, G2, G3> G4, and G5

Blocks in Gu G2, G3> G4, G5, and G6

All blocks
Blocks in Go and Gi
Blocks in G\ and G2

Blocks in G\, G2, and G3

Blocks in Gu G2) G3, and G4

Blocks in G\, G2, G3, G4) and G5

Blocks in Gu G2, G3) G4, G5, and G6

All blocks
Blocks in Go and G\
Blocks in G\ and G2

Blocks in GUG2,and G3

Blocks in G\, G2, G3, and G4

Blocks in G\, G2, G3, G4, and G5

Blocks in Gu G2, G3, G4, G5, and G6

All blocks

Blocks in Go and G\

Blocks in G\ and G2

Blocks in GUG2, and G3

Blocks in G|, G2, G3) and G4

Blocks in Gi, G2, G3, G4, and G5

Blocks in Glt G2, G3, G4, G^and Gj

ILSE

MILSE

ILSE

MILSE

ILSE

MILSE

ILSE

MILSE

Table 6.3: Statistical comparison of camera pan (a2 and a4) and zoom (a\ and a3) factors in
relation to the different numbers of macroblocks considered.

6.5.2 Performance Analysis of the DTS and MAT Filter

6.5.2.1 Analysis of the Kernel Effect in the MAT Filter

Kernel size, representing the size of the neighbourhood to be considered for calculating the

mean value, is an important factor in the performance of the MAT filter. Before analysing the

performance of the DTS algorithm with the MAT filter, it is important to analyse the kernel size

effect. The standard Table Tennis (352x240 pixels) and Foreman (176x144 pixels) video

sequences were considered in relation to this effect, with different kernel sizes being utilised.

Different numbers of iterations were also considered as the performance of the MAT filter

depends on this factor.

For the Table Tennis sequence, frames #32 and #33 shown in Fig. 6.8, were considered

where the bat, ball, and the hand of the player holding the bat are the moving objects. Based on

a priori knowledge about the moving objects in these frames, 30 moving macroblocks out of a

total of 330, each having a size of 16x16 pixels, are identified manually and indicated with the
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use of an X sign in Fig. 6.8(a). The motion vectors (MV) of these specific 30 macroblocks are

the true vectors, whereas the motion vectors of the remaining blocks are the false one.

The block motion vector calculated by the DTS algorithm is shown in Fig. 6.9, which

contains true object motion as well as global motion. To obtain the true object motion vector,

these global motion components have been compensated according to the global motion

estimation and compensation processes discussed in Sections 6.3 and 6.4. Fig. 6.10 shows the

global motion compensated motion vector needle diagram, from which it is clear that while the

only moving objects are the ball, bat and the hand holding the bat, spurious (false) motion

vectors exist together with the true object motion vectors. These false vectors were introduced

as a result of the inherent limitations of block-based motion estimation techniques. Some

impulsive noise in the form of false motion vectors was also introduced due to imperfect global

motion parameter modeling. To eliminate these spurious motion vectors, the MAT filter with

different kernel sizes was applied.

16 2G IS 61 10 36 II ! 1 3 III 1«D l i t 1S2 ZB 221 3(H £ 5 3T2 2 B XI 1 0 TO K2

(a) Current frame. (b) Reference frame.

Fig. 6.8: Frames #32 and #33 of the Table Tennis sequence.

Fig. 6.9: Block motion vector captured by the DTS algorithm.
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Fig. 6.10: Object motion vectors after global motion compensation.

Tables 6.4 and 6.5 show the experimental results for the Table Tennis and Foreman video

sequences using different kernel sizes (3x3, 5x5, 7x7, and 9x9) and different numbers of

iterations (2,3, and 4). The objective in using the filter is to capture the maximum percentage of

possible true motion vectors with a minimum percentage of false vectors. To remove the false

motion vectors after each iteration, a range of values for 7}, starting from an empirically selected

low value, is gradually increased until all the false motion vectors are removed. The length of a

motion vector increases with the number of iterations, so when the length of a motion vector is

high, the range for the threshold, 7}, in eliminating false vectors, is also correspondingly high.

The step size for incrementing 7} was empirically selected. The percentage of true and false

motion vectors after thresholding at different values of 7} was then calculated.

^Kernel

No. o f \
iterations

2

3

4

3x3

True
MV
%

56.7
46.7
70.0

u 63.3
80.0

80.0

False
MV
%

0.3
0.0
0.3
0.0
0.7
0.0

Tf

8.0
9.0
12.0:
1310-
18.0

20.0

5x5

True
MV
%

70.0
66.7
76.7
70.0
73.3

50.0

False
MV
%

1.0
0.0
1.3
0.0
0.3
0.0

Tf

5.5
6.0
7.5
8.0
16.0

17.0

7x7

True
MV
%

53.3
40.0
70.0
53.3
36.7

26.7

False
MV
%

0.3
0.9
0.3
0.0
0.0
0.0

Tf

5.5
6.0
4.0
4.5
12.0

13.0

9x9

True
MV
%

50
40

63.3
43.3
56.7

40.0

False
MV
%

0.7
0.0
0.7
0.0
0.7
0.0

Tf

5.0
5.5
3.5
4.0
9.0
10.0

Table 6.4: Kernel effect on the performance of the MAT filter for the Table Tennis sequence.

Table 6.4 shows the two best pairs of results having a maximum percentage of true object

motion vectors, and minimum percentage of false motion vectors (0%, or near 0%) for the

Table Tennis sequence. For example, for a 3x3 kernel with 3 iterations where 7} = 12, the

percentage of true object motion vectors was 70% whereas the percentage for false motion

vectors was 0.3%. To eliminate the xsmamingfalse motion vectors, a higher value, 7} = 13, was
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applied. Accordingly, the percentage of false motion vectors decreased to 0% while the

percentage of true vectors also decreased to 63.3%. It is obvious from (6.26) that the higher the

value of Tf, the higher the number of vectors will be eliminated. If a value of 7/ < 12 was

applied, the percentage of remaining false motion vectors would be £ 0,3%. Following the same

procedure, the test results using different kernel sizes and iterations are shown in Table 6.4 for

the Table Tennis sequence.

For the Foreman sequence, the pair of frames #8 and #9 shown in Fig. 6.11, were

considered, as these contain both object motion and low camera panning. The corresponding

experimental results are given in Table 6.5.

ii

(a) Current Frame. (b) Reference frame.

Fig. 6.11: Frames #8 and #9 of the Foreman sequence.

\Kernel

No. of
iteration

2

3

4

3x3

True
MV
%

43.5
39.1
71.7
69.6
78.3

76.1

False
MV
%

1.9
0.0
1.9

L 0.0
1.9
0.0

Tf

3.6
3.8
4.8
5.0
7.6
7.8

5x5

True
MV
%

28.3
23.9
76.1
65.2
76.1

67.4

False
MV
%

1.9
0.0
5.7
0.0
1.9
0.0

Tf

3.5
4.0
4.0
4.5
7.5
8.0

7x7

True
MV
%

28.3
13.0
73.9
56.5
84.8

73.9

False
MV
%

5.7
0.0
3.8
0.0
5.7
0.0

Tf

3.0
3.5
3.5
4.0
5.5
6.0

9x9

True
MV
%

15.2
10.9
41.3
19.6
80.4

63.0

False
MV
%

1.9
0.0
1.9
0.0
1.9
0.0

Tf

3.0
3.5
3.5
4.0
2.5
3.0

Table 6.5: Kernel effect on the performance of the MAT filter for the Foreman sequence.

Tables 6.4 and 6,5 show that though the kernel effect was not significant, the number of

true motion vectors captured with a kernel size of 7x7 or 9x9 was less than when compared to

that for smaller kernel sizes (3x3 or 5x5). Generally, higher kernel sizes are used for heavier

smoothing of images or motion vector fields; the propose of this filter, however, was not for

smoothing the motion vectors. Most objects in real world video sequences occur in small

clustered forms, where each object contains a few neighbouring macroblocks but not the whole
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frame. If a larger sized kernel is used, it includes a larger area of the frame, which will

eventually reduce the lengths of the true vectors. In this case, in eliminating \h& false vectors,

any value of threshold 7} will remove a higher number of true object motion vectors as well. For

this reason, larger kernel sizes perform worse compared to smaller-sized kernels. Again from

(6.25), it can be seen that the computational complexity for calculating the mean value is

directly proportional to the kernel size utilised, so from a computational point of view, the

smaller kernel incurs less computational cost compared to a larger kernel. For these reasons, the

3x3 sized kernel will be considered in the next section for analysis of the performance of the

MAT filter and the DTS algorithm in terms of true object motion estimation.

6.5.2.2 Analysis of MAT filter and DTS for True Object Motion Estimation

To evaluate the combined performance of the MAT filter and DTS algorithm for true object

motion estimation, a number of experiments were performed using the standard and non-

standard video sequences, Table Tennis, Foreman, and Rocket (Appendix B), each of which

exhibits different types of object motion. The value of linear threshold control parameter, CL, in

the DTS algorithm has been chosen such that the search speed remains similar, while comparing

DTS with the fast algorithms, TSS and NTSS.

The experimental results for the pair of frames #32 and #33 in Fig. 6.8 of the Table Tennis

sequence are given in Table 6.6, and were obtained utilising the same procedure explained in

the previous section. Detailed supplementary results have also been included in Appendix F. To

analyse the effect of the MAT filter, the experimental results from 0 to 5 iterations are shown in

Table 6.6. It is important to clarify that the number of iterations used is not optimal, but based

on the experimental results, it was found that the performance of all BMAs examined did not

change significantly after four iterations. The increased percentage of true motion vectors

captured for FS, NTSS, TSS, and DTS was 10%, 6.7%, 13.3%, and 17%, respectively, from

iteration 3 to 4, whereas it was only 6.3%, 3.3%, 6.7%, and 0% from iteration 4 to 5. For this

reason, only those results from 0 to 5 iterations have been included.

Table 6.6 shows that at iteration 0 (no MAT filter used), all the algorithms had 0% false

motion vectors. However, NTSS and TSS h?;d 0% of true motion vectors compared with the FS

and DTS algorithms which had 13.3% of true motion vectors. This confirms that the DTS

algorithm outperforms TSS and NTSS and performs as well as the FS algorithm in capturing

true object motion vectors, without needing to use the MAT filter for this sequence.

It is clear that the percentage of true motion vectors captured by any BMA significantly

increases with the number of iterations to the point at which the percentage of false motion

vectors is zero. For example, the true motion vectors captured by the DTS algorithm increased
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from 13.3% to 80% using the MAT filter over 5 iterations. This improvement can also be

observed visually in Fig. 6.12. A similar trend was also found for the NTSS, TSS, and FTS

algorithms. This demonstrates that when the MAT filter is used, the percentage of true object

motion vectors captured significantly increases, while all false motion vectors are eliminated

from the motion vector field.

\ B M A s

No.of^
iterations

0
(No MAT)

1

2

3

4

5

FS

True
MV
%

16.7
13.3-
13.3
13.3
26.7
16.7
26.7
26/7
40.0
36.7:
43.3

43.3-

False
MV
%
0.3

;.mo-\;::
0.3
0.0
0.3
0.0
0.3
0.0
0.3
0.0
0.3
0.0

Tf

5.0
6.0
8.0
9.0
12.0
13.0
19.0
19.5
23.5
24.0
60.0

62.0

NTSS

True
MV
%
6.7

^ 0 . 0 *
16.7
13.3
23.3
16.7
56.7

;5o:os
60.0

:vi56.7.S

66.7

:6o;6

False
MV
%
0.7

0.3
0.0
0.3
0.0
0.7
0.0
0.3
0.0
0.3
0.0

Tf

8.0
9.0
9.0
10.0
12.0
13.0
15.0
16.5
24.0
26.0
42.0

45.0

TSS

True
MV
%
3.3

S0.0?ft
10.0
6.7
13.3
10.0
16.7

MOM
26.7

^23.3?'
36.7

?430.0*

False
MV
%

14.3
#0.0 si:

5.7
3.3
6.3
3.7
4.7
1.7
1.3
0.7
1.0
0.7

Tf

8.0
9.0
9.0
10.0
13.0
14.0
21.0
22.5
42.0
44.0
64.0

65.0

DTS

True
MV
%

16.7
S13.3:::

46.7
S;40.0-

56.7
#46.7..-:

70.0
iv:63:3;M

80.0
.80.0/
80.0

86:o?

False
MV
%
0.3

fe0.0^j.
1.7
0.0
0.3
0.0
0.3
0.0
1.3
0.0
0.7
0.0

Tf

5.0
6.0
5.0
6.0
8.0
9.0
12.0
13.0
18.0
20.0
37.5

40.0

Table 6.6: Performance comparison of the DTS and MAT filters in capturing true object motion
vectors for the Table Tennis sequence.

(a) 0 iteration (No MAT) (b) 1 iteration (c) 2 iterations

(d) 3 iterations (e) 4 iterations (f) 5 iterations

Fig. 6.12: The true object motion vectors captured by the DTS algorithm with, and without, the
MAT filter.
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The maximum percentage of true motion vectors captured by all BMAs using the MAT

filter over 5 iterations is shown in Fig. 6.13. It can be concluded that the DTS algorithm in

conjunction with the MAT filter significantly outperformed the FS, TSS, and NTSS algorithms

by capturing 36.7%, 50%, and 20% more true motion vectors respectively, with all false motion

vectors being eliminated. It can also be concluded that the MAT filter improved not only the

performance of the DTS algorithm, but also the performance of the FS, TSS, and NTSS

algorithms by capturing 30.3%, 30%, and 60% more true motion vectors, respectively.

DTS TSS

BMAs

NTSS

Fig. 6.13: Maximum percentage of true object motion captured by different BMAs in
conjunction with the MAT filter for the Table Tennis sequence, over a maximum of
5 iterations.

The next experiment was conducted by considering the pair of frames, #8 and #9, of the

Foreman sequence in Fig. 6.11. The experimental results are given in Table 6.7. Detailed

supplementary results have also been included in Appendix F. To analyse the effect of the

MAT filter, the experimental results, from 0 to 5 iterations, are given in Table 6.7. Again the

improved percentage of true motion vectors captured for the FS, NTSS, TSS, and DTS

algorithms was 41.3%, 19.6%, 6.5%, and 8.7%, respectively, from iteration 3 to 4, whereas it

was only 3.1%, 2.2%, 34.8%, and 2.1% from iteration 4 to 5, so only results pertaining to 0 to 5

iterations are included.

Table 6.7 also shows that by using any threshold value without the MAT filter, no algorithm

could eliminate the false motion vectors without also eliminating the true motion vectors.

The percentage of true motion vectors captured is significantly increased when the MAT

filter is combined with a BMA. For example, the true motion vectors captured by the FS

algorithm increased from 0% to 77% using the MAT filter over 5 iterations. A similar trend was

found for the NTSS, TSS, and DTS algorithms. These results, again, endorse the effectiveness

of the MAT filter in eliminatingya/se vectors while retaining the true object motion vectors.

• '•s
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" ^ ^ B M A f i

No. oi
iterations

0
(No MAT)

1

2

3

4

5

FS

True
MV
%

4.6

4.4
0.0
4.4
0.0

37.0

73.9

76.1

£77;6':'.

False
MV
%

13.2

#l;li3'&
11.3
11.3

1.9
1.9
1.9
0.0
1.9
0.0
1.9

0.0

Tf

3.0

mm
4.0
4.2
7.4
7.6
10.0
10.2
10.5
11.0
17.5

18.0

NTSS

True
MV
%

2.2

2.2
2.2
13.0
10.9
58.7

£5(E5£.
78.3

S76;liv

80.4

False
MV
%

1.9
^i;9fe

1.9
0.0
1.9
0.0
1.9
0.0
1.9
0.0
1.89
0.00

Tf

6.0
mm

7.0
7.2
7.0
7.2
8.5
8.8
9.6
9.9

16.0

16.5

TSS

True
MV
%

2.2

2.2
0.0
2.2
0.0
2.2

•£:0:o;#
13.0

43.5

False
MV
%

3.8
i&3J8!&

3.8
3.8
1.9
1.9
1.9
1.9
1.9
0.0
1.9
0.0

Tf

5.6
%$&&

5.6
5.8
8.6
8.8
15.0
15.5
25.0
26.0
33.0

34.5

DTS

True
MV
%

4.3

13.0
10.9
43.5
39.1
71.7

H9.6;
78.3

80.4

False
MV
%

3.8
^r.9.^

1.9
0.0
1.9
0.0
1.9
0.0
1.9
0.0
1.9

0.0

Tf

2.6
VN2;8&

3.0
3.2
3.6
3.8
4.8
5.0
7.6
7.8
13.0

13.2

Table 6.7: Performance comparison of the DTS and MAT filter in capturing the true object
motion vectors for the Foreman video sequence.

The maximum percentage of true motion vectors captured by the different BMAs in

conjunction with the MAT filter over 5 iterations, is shown in Fig. 6.14. It demonstrates that the

DTS algorithm with the MAT filter outperformed the FS, TSS, and NTSS algorithms by

capturing 3.4%, 39.1%, and 2.1% more true motion vectors, respectively, with a\\ false motion

vectors being eliminated. Hence the MAT filter improved not only the performance of the DTS

algorithm but also the performance of the FS, TSS, and NTSS algorithms in capturing an

improved number of true motion vectors.

100%i

DTS TSS NTSS

BMAs

Fig. 6.14: Maximum percentage of true object motion captured by different BMAs in
conjunction with the MAT filter for the Foreman sequence, over a maximum of 5
iterations.

\ • : • : . ; • # ' ; • ; ' ; • ; . •



Chapter 6 Block-based True Object Motion Estimation 148

j

pi

J

£4

i

In the above results, it is important to note that the use of any threshold value, without the

MAT filter, could not eliminate all the false motion vectors even when all the true motion

vectors were eliminated. The use of MAT filter, on the other hand, successfully removed all the

false motion vectors, even when there were almost 80% true object motion vectors present. This

result clearly supports the rationale behind the MAT filter design, being specifically, the

removal of false motion vectors.

A third experiment was conducted involving the pair of frames #1 and #2 (Appendix F)

from a non-standard video sequence, Rocket, to evaluate the performance of the DTS algorithm

with the MAT filter for a high motion sequence. The experimental results are given in Table

6.8, this time however, for only 0 to 3 iterations. The number of iterations was based on

experimental results where it was shown that the performance of most BMAs did not change

significantly after two iterations. Detailed supplementary results have also been included in

Appendix F.

Table 6.8 illustrates that the performance of the DTS algorithm in capturing true object

motion vectors, without the use of the MAT filter (0 iteration), was almost 80% higher than the

FS, NTSS, and TSS algorithms, indicating that the DTS algorithm outperformed other existing

BMAs. It can also be observed that the capture of true motion vectors by FS, NTSS, DTS, and

TSS was significantly increased when using the MAT filter to eliminate false motion vectors.

Though the DTS algorithm captured 80% of true object motion vectors, without using the MAT

filter, a further 8% improvement was obtained when the MAT filter was included for just 1

iteration.

^ ^ B M A s

No. o f ^
iterations

0
(No MAT)

1

2

3

FS

True
MV
%

3.9
0.0

46.2
30.8
57.7
57.7
57.7

False
MV
%

4.6
2.3
2.3
0.0
2.3
0.0
2.3
0.0

Tf

9.0
9.5
12.5
13.0
20.5
21.0
36.0

37.0

NTSS

True
MV
%

3.85
0.00
15.4
3.9

34.6
34.6
42.3

B4.6S

False
MV
%

2.3
2.3
2.3
0.0
2.3
0.0
2.3
0.0

Tf

9.0
9.5
12.5
13.0
18.0
18.5
33.0

34.0

TSS

True
MV
%

3.9
0.0
15.4
7.7

42.3
34.6
38.5

:i:'34.6;';;

False
MV
%

2.3
2.3
2.3
0.0
2.3
0.0
2.3
0.0

Tf

9.0
9.5
8.5
9.0
15.0
15.5
36.0

37.0

DTS

True
MV
%

84.6
80.8
92.3
88v5
73.1
73.1
73.1

73.1

False
MV
%

9.1
0.0
2.3
0.0
2.3
0.0
2.3
0.0

Tf

3.5
4.0
5.0
5.5
10.5
11.0
21.5

22.0

Table 6.8: Performance comparison of the DTS and MAT filter in capturing true object motion
vectors for the Rocket sequence.

The percentage of true motion vectors captured by the DTS algorithm decreased, however,

during the second and third iterations. This is because each iteration of the MAT filter increases
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the length of clustered true vectors at a higher rate than other vectors. Thus, each iteration

improves the probability of its being able to separate the true from the false vectors when a

suitable value of 7} is chosen. However, each iteration of the MAT filter also increases the

length of false motion vectors in the vicinity of clustered true vectors at a comparable rate to the

true vectors. This phenomenon leads to a decrease in the possibility of vector separation, and

after a certain number of iterations, this decrease dominates the normal increase achieved in

each iteration. Table 6.8 illustrates that the performance of any BMA was almost the same over

2 and 3 iterations, which implies that a higher number of iterations does not always improve the

percentage of true motion vectors captured.

The highest percentage of true motion vectors captured by different search algorithms over

3 iterations is shown in Fig. 6.15. It demonstrates that the DTS algorithm in conjunction with

the MAT filter significantly outperformed the FS, TSS, and NTSS algorithms by capturing

30%, 50%, and 50% more true motion vectors, respectively. It also indicates that the FS, TSS,

and NTSS algorithms, with the MAT filter, subsequently improved their performance by

capturing almost 60%, 23%, and 23% more true object motion vectors, respectively.

DTS TSS

BMAs
NTSS

Fig. 6.15: Maximum percentage of true object motion captured by different BMAs in
conjunction with the MAT filter for the Rocket sequence, over a maximum of 3
iterations.

Finally, the average maximum percentage of true motion vectors captured by the FS, DTS,

NTSS, and TSS algorithms for Table Tennis, Foreman, and Rocket sequences has been plotted

in Fig. 6.16. This clearly demonstrates that the performance of the DTS algorithm, used with the

MAT filter, to capture true object motion vectors was considerably better than that of the FS,

TSS, and NTSS algorithms. It is interesting to note that though the FS algorithm is the optimum

algorithm for prediction image quality (Chapters 3, 4, and 5), its performance is not so

satisfactory for capturing true object motion.

&&M
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80%
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40%

20%
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DTS TSS

BMAs
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Fig. 6.16: Average percentage of true motion vectors captured by different BMAs for the Table
Tennis, Foreman, and Rocket video sequences over a maximum of 5 iterations.

6.5.3 Computational Complexity Analysis

The computational complexity of the MAT filter depends on the kernel size used and the

number of iterations involved. From (6.25), the total number of operations required for the

MAT filter is 23? additions and two divisions for each iteration, where 9? represents the kernel

size. If the frame r a t e /= 30 fps, frame size = [Nh,Nv], macroblocksize=[iVsiV], and the

number of iterations is L, then the total number of operations per second required for the MAT

filter is:

(6.27)

Assume that the block distortion is measured using MAE, which requires three basic

operations per pixel. If the frame rate i s / = 30, frame size is [Nh,Nv] = [352,240], maximum

displacement d = 7, and macroblock dimension N - 16, the number of integer arithmetic

operations required for any BMA for motion estimation is bounded between 1.71 billion and 7.6

million per second using integer-pel accuracy (2.7).

Conversely, if a 3x3 sized kernel and, at most, 5 iterations are utilised, the total number of

operations for the MAT filter is only 0.7 million per second. This overhead is not significant

compared to the complexity involved in block motion estimation. These experimental results

also prove that this overhead cost can be fully justified by the improvement in capturing a

significant number of true motion vectors by elimination of false motion vectors from the

motion vector field.
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6.6 Summary

In this chapter, the superior performance of the DTS algorithm in capturing true object motion

vectors compared to existing BMAs such as the exhaustive FS, and fast NTSS and TSS

algorithms, has been proven, so confirming the argument made in Chapter 3 regarding the

potential of the DTS algorithm.

A novel Mean Accumulated Thresholded (MAT) filter has been proposed and implemented

for eliminating false motion vectors when capturing true object motion vectors obtained using

any BMA for a video sequence. The effect of different kernel sizes and iterations of the MAT

filter has also been analysed in detail, with smaller kernel sizes such as 3x3, or 5x5, not only

exhibiting better performance than higher sized kernels, but also reducing the overhead cost for

the filtering process. The experimental results have shown that for fewer than 5 iterations, it is

possible to successfully eliminate all false vectors while retaining almost 80% of the true

motion vectors captured by the DTS algorithm.

Experimental results clearly prove that although the DTS algorithm has outperformed other

existing BMAs without the use of the MAT filter, the percentage of retained true object motion

vectors while eliminating all false motion vectors, significantly increased with the use of the

MAT filter. Nevertheless, although the performance of the DTS algorithm with the MAT filter

has proven to be an effective and useful tool in true object motion estimation, some issues still

need to be addressed in order to derive the full benefits of the MAT filter. This will constitute a

potential future research direction.

This chapter also proposed a Modified iterative-Least-square Estimation (MILSE)

technique to calculate global motion parameters. The proposed technique is flexible enough for

use with any number of blocks in a frame. Since in general, camera rotation is comparatively

much less frequent than zooming or panning, it has not been considered in calculating global

motion parameters. Experimental results show that the proposed MILSE technique has a similar

performance compared to the traditional ELSE technique [130] while reducing computational

cost involved in camera parameter estimation.

Bill
iittii



V

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Block-based motion estimation represents one of the most powerful compression strategies in

video coding. Among the different techniques, the best from a picture quality point of^view is

the full search (FS) algorithm, which guarantees optimal image quality, but at a very high

computational cost. To reduce the computational complexity, a number of fast directionally-

based BMAs have been developed. The fundamental drawback with existing BMAs such as

TSS and NTSS, however, is that these algorithms do not provide any mechanism to support

Quality of Service (QoS) in terms of either prediction quality or computational speed. This is a

key issue in real-time video coding applications, especially for low bit-rate applications such as

video over mobile and real-time software-only video encoding. Another drawback is that they

have been designed solely for video coding where prediction error minimisation is the only

criterion, irrespective of whether the motion vector indicates the direction of the true moving

objects involved or not.

This thesis has directly addressed the above issues by presenting a flexible, generic, non-

directional block-based motion estimation system that guarantees the achievement of a user-

specified level of either prediction quality or computational speed for video coding applications.

This system has also been proven to be very effective in capturing significantly more true object

motion vectors than other approaches for object motion based video analysis applications. The

system comprises the following constituent components: -

A new Distance-dependent Thresholding Search (DTS) block-based motion estimation

algorithm, which has the advantage over other BMAs that it encompasses both the FS as well as

fast searching modes. This unique feature provides a wide range of levels for performance

scalability in motion estimation and QoS in terms of both predicted image quality and

processing speed. This system also provides a general solution from high through very low bit-

rate coding applications while the non-directional nature of the system means it does not suffer

from any potential difficulties due to the unimodal error surface assumption.
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The DTS algorithm, using a linear thresholding function, proved to be most effective in

terms of flexibility and outperformed existing fast algorithms from a prediction image quality

and search speed perspective for low motion video sequences.

Two limitations of the DTS algorithm however, were identified: its limited search

efficiency for high motion video sequences and the need to manually define the threshold

control parameter. To solve these issues, the Adaptive-Centre DTS (ACDTS) and Adaptive-

Centre Diamond Search DTS (ACDSDTS) algorithms were developed. The ACDTS algorithm

integrated spatial motion correlation of the neighbouring blocks' motion vectors with the DTS

algorithm to improve the search efficiency by reducing the processing time while providing

better prediction quality.

Implementing a diamond shaped instead of a general rectangular search pattern further

enhanced the performance of the ACDTS algorithm. The subsequent Adaptive-Centre Diamond

Search DTS (ACDSDTS) outperformed existing fast algorithms for all types of motion

sequence, by being able to flexibly trade-off quality with computational complexity. The

additional overhead cost incurred in the ACDSDTS algorithm was shown to be negligibly small

compared to that required for the BDM calculation for motion estimation.

While the ACDSDTS algorithm enhanced the search efficiency of the DTS algorithm, to

provide QoS, the threshold control parameter needed to be automatically set and adjusted

depending on the video content and user demands. This was achieved in the Fully Adaptive

Distance-dependent Thresholding Search (FADTS) block motion estimation algorithm which

satisfied any level of user demand in terms of prediction image quality as well as processing

speed. This system feature clearly provided flexibility in performance management in motion

estimation, which is the crucial issue in real-time software-only or low power video coding

applications. This system also had superior performance in terms of both prediction image

quality and search speed compared to existing fast algorithms. The computational overhead cost

associated with adapting process proved to be negligible compared to the computational cost

involved in the BDM calculation. As shot changes in a video sequence are used as reference

frames for the adaptation process, the choice of the initial value of the threshold control

parameter impacted significantly on performance. To incorporate a shot change in the FADTS

algorithm, an integrated shot detection (camera break) technique, based on an artificial neural

network (ANN) has also been presented for non-real-time video coding, while for real-time

processing, the FADTS algorithm employed an inexpensive strategy of detecting abrupt

changes in the BDM to approximate possible shot changes.

Finally, the thesis explored extending the basic DTS algorithm into the burgeoning area of

true object motion estimation. In the presence of camera motion, global motion compensation
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was successfully applied to eliminate any effect of this motion from the true object's motion. A

Modified Iterative Least-Square Estimation (MELSE) technique was implemented which

reduced the computational cost for global motion estimation compared with the conventional

Iterative Least-Square Estimation (ILSE) technique. The DTS algorithm, then in combination

with a novel Mean Accumulated Thresholded (MAT) filter, provided a very powerful tool for

block-based true object motion estimation, and significantly outperformed existing BMAs. The

MAT filter design was also shown to be both very flexible and general enough that it could be

combined with other BMAs to enhance their respective performances as well, in capturing more

true object motion vectors.

In summary, this thesis has presented a generic distance-dependent thresholding block-

based motion estimation system which has proved not only effective in providing performance

scalability and QoS in motion estimation for video coding applications, but also for true object

motion estimation in object motion based video representation.

7.2 Future Work

There are a number of potential areas where the research findings can be extended: -

1. Rate-complexity-distortion [59] of the encoding process is a challenging and relatively

recent research direction for real-time video coding applications, especially for

software-only or low power video encoding (mobile or handheld computing platforms).

The performance of the video CODEC in these applications is often limited by

available processing power and bandwidth. As motion estimation is the most costly part

of an encoder, it requires variable complexity motion estimation. Therefore, an

important extension of this work would be to implement the flexible FADTS algorithm

to optimise the three parameters for coding applications.

2. The performance of the DTS algorithm depends on predefined threshold values, which

have been controlled by a control parameter. For this threshold so far, the linear and

exponential functions have been considered, though this threshold function can be any

other complex form. Possible future research work could include investigating the

impact of other complex functions on the performance of the DTS algorithm.

3. The effectiveness of the MAT filter in false motion vector elimination in improving the

performance of the DTS algorithm in capturing true object motion has opened a

potential new research direction in block-based true object motion estimation. Future

research could extend to optimising the performance of the MAT filter by analysing the

impact of video content on different design parameters. This area also includes the

implementation of this filter for motion field smoothing purposes.
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DISTANCE DEPENDENT THRESHOLDING SEARCH FOR FAST MOTION ESTIMATION
IN REAL WORLD VIDEO CODING APPLICATION

Golam Sorwar, Manzur Murshed andLaurence Dooley
Gippsland School of Computing and Information Technology

Monash University, Churchill Vic 3842, Australia

ABSTRACT

This paper presents a distance dependent thresholding
search (T>TS) block motion estimation algorithm that
employs the novel concept of distance dependent
thresholds. The key feature of this algorithm is its
flexibility with trading-off quality and complexity with
threshold variation. Where as the performance of the
existing algorithms is fixed in terms of prediction quality
as well as compli xity, DTS can be used as full search (FS)
where high quality video entertainments require motion
estimation with small prediction error, as well as fast
motion estimation such as three-step search (TSS), new-
three-step search (NTSS) etc while real-time video
applications, such as the speed-oriented video
conferencing require fast motion estimation with
sacrificing quality. Experimental results show that this
dis'mce dependent thresholding search (DTS) algorithm
also achieves better peak signal-to-noise ratio (PSNR), as
well as lowerse arch times in comparison to both the TSS
and NTSS algorithms.

1. INTRODUCTION

Motion estimation in image sequences has been a key
clement in a wide range of applications from computer
vision through to popular video compression standards
such as MPEG (Motion Picture Expert Group).

There are many motion estimation algorithms available
including pel-recursive [3], block matching [4], and the
optical flow based method, [5]. Amongst these techniques,
the block-matching algorithm (BMA) is the most popular
and is widely used in video coding standards such as
MPEG-1/2 [1][2] and H.261/263 [7][8] due to its
simplicity and also the superior performance [6] it exhibits
for large pixel block displacements.

The exhaustive BMA, known as the full search (FS)
algorithm, searches each candidate block for the closest
match within the entire search region to minimize the
block-distortion measure (BDM). The BDM of image
blocks may be measured using various criteria such as, the
mean absolute error (MAE), • the mean square error
{USE), and the matching pel-count (MPC) [18]. Since FS
method uses an exhaustive search to locate the minimum

BDM for each candidate block, it provides good
performance, but at the expense of a very high
computational overhead. Motion estimation indeed is the
major bottleneck in real-time video coding applications;
hence the need for faster algorithms is obviously felt.

A number of efficient fast block motion estimation
algorithms have been proposed. In particular, three
categories of algorithms have been identified, which are
characterised by the strategy adopted in order to speed up
the search process. These are (i) limiting the number of
search candidates, (ii) subsampling in them otion vector
field, and (iii) subsampling in the spatial domain. The first
class of fast algorithm includes the 2-D logarithmic search
(2DLOG) [4], the three-step search (TSS) [9], the new
three-step search (NTSS) [10], the four-step search (FSS)
[11], the cross-search [12], and the prediction search
algorithm [13] etc. All the aforementioned fast algorithms
have been based upon the assumption that the BDM
increases as the checking points move away from the
global minima. However, these assumptions are reasonable
for certain applications e.g., in video-conferencing, where
the motion is neither very fast nor complicated. However,
they are generally invalid for many real video sequences
because of the highly non-stationary characteristics of the
video signal. Moreover, the search directions of these
algorithms can be ambiguous, leading to the MV becoming
entrapped in a local minimum, with a resulting degradation
in predictive performance.

An example of ihe second class of fast algorithms is the
2:1 motion field subsampling technique [14]. This
technique is rarely used in isolation and is normally
integrated together with other methods because it only
gives a small speed-up ratio. Another problem is that the
approach does not perform well for blocks containing
small objects moving in different directions to
neighbouring objects.

The third class refers to subsampling in the spatial
domain [14][15]. A drawback of this approach however is
that the reduction in search complexity is often inadequate
for real-time application and is therefore difficult ic embed
within algorithms such as the TSS and NTSS.

In reality, the distortion of an objec'. in a video fiaxne is
proportional to its velocity and therefoie, as the length of a
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motion vector grows so does the block difference error. In
[17][18], the authors addressed this issue by modifying the
FS algorithm to incorporate variable distance dependent
thresholds for fast and robust true motion vector estimation
for object-based video indexing applications. In this paper,
the principles are further extended so they can be applied
in real time video coding. Compared with the TSS and
NTSS algorithms, the proposed technique is more robust,
since it visits all candidates around the centre tracing out a
concentric-square arrangement, and hence reducing
significantly the probability of being trapped in some local
minima. The main strength of this algorithm is its
flexibility with trading-off quality and complexity with
threshold variation. Where as the performance of the
existing algorithms is fixed in terms of prediction quality
as well as complexity,. DTS can be used as full search (FS)
where high quality vid^o entertainments require motion
estimation with small prediction error, as well as fast
motion estimation such as three-step search (TSS), new-
three-step search (NTSS) etc while real-time video
applications, such as the speed-oriented video
conferencing require fast motion estimation with
sacrificing quality. Experimental results show that this
distance dependent thresholding search (DTS) algorithm
also achisves better peak signal-to-noise ratio (PSNR), as
well as lowerse arch times in comparison to both the TSS
and NTSS algorithms.

The paper is organized as follows. The DTS algorithm
is detailed in Section 2. Section 3 includes experimental
results and analysis of the performance of the DTS
algorithm, compared with other algorithms. Section 4
concludes the paper.
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2. THE DISTANCE DEPENDENT THRESHOLDING
SEARCH (DTS) ALGORITHM

In the FS algorithm, the suitability of a matching block is
measured based on the optima! (minimum)B DM. The FS
algorithm works effectively when there is no distortion,
but as alluded earlier, the level of distortion present in any
video frame increases with the velocity of the moving
objects and/or the zoom factor used for the camera. The
exhaustive FS algorithm therefore becomes increasingly
inefficient as the search trajectory, which is spiral in nature
is traversed.

This paper proposes that the suitability measure of the
FS algorithm is relaxed from the optimal criterion as the
search trajectory moves from the centre, and becomes
distance dependent. Locating a block with the minimum
difference, but with a motion vector of high magnitude, is
not only ineffectual in the prevailing distorted search
space, but may lead to many "false" motion vectors being
erroneously selected.
Definition 1: Search Squares SS; The search space with
maximum displacement d, centred at pixel Pcx.cy can be
divided into d+l mutually exclusive concentric search
squares SSitfor all 0 <, i < d, such that a checking point at
pixel pXiV ise SSk if and only !fmax.Qx-cx\,\y-cy\y=k,for all-
d+cx <x< d+cx and-d+cy £y£ d+cy.

The checking points used in the first three search
squares SS0, SSU and SS2 are clearly shown in Fig. 1. From
this figure it can be easily identified that

/=0. , o>
2.1. The DTS Algorithm

Precondition: Pixel paey is the centre of the search
space with maximum displacement d.
Initialisation:

(

MV*> (0,0)
Body:

IfM>iMS£>0Then
Fori = l,2, ...,d

For each checking p o i n t y in
e = MSEtesyfc-cxj-cy)
Ife<MinM3EThen

MinMSE = e
MV- (x-cxy-cy)

If -jMinMSE 5 Thresnold(i) Then Stop
• Postcondition: A/Kcontains the motion vector and

MinMSE contains the distortion error of the
respective block.

Fig. 2. The DTS algorithm.

Threshold(i) in the DTS algorithm is a monotonically
increasing function with respect to i, which can have a
linear, exponential, or any other complex analytic form. In
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[17][18] for example, a comparison was made on the
performance of DTS algorithm using linear and
exponential thresholding functions respectively.
Experimental results confirmed thai linear fiinction
consistently provided a better performance for a range of
different types of video sequence. This was due to the fact
that the distortion of an object in any frame tended to be
directly proportional to its velocity, as well as the zoom
factor of the camera. In the next section, we elaborate on
the linear thresholding function.

2.2. Linear thresholding (LT) function

Let the centre of thesearc h region be at pixel pacy,
which also defines the starting point of the search. In LT,
the search will terminate at search square 55rwhen>

-cy) < CL XT (2)

Assuming b-bil gray level intensity, the maximum
valueo f theMS E is (24-l)2, since thep ixel intensity is
measured using 2* levels. As SSj is the outermost search
square, an upper bound for the constant Q can be set as>

<:,<•=-. (3)

Note, that setting Q = 0 in Eq. (2) transforms the DTS
algorithm into the exhaustive FS algorithm. It is Jilso clear
that the search time required reduces as Q, increases. It is
also interesting to note that if CL is set higher than the
above upper bound, the search will not explore the entire
search area defined by the maximum displacement d

3. EXPERIMENTAL RESULTS

The performance of the DTS algorithm for video
coding was evaluated using the luminance (Y-component)
signal of a number of standard test video sequences
including "Tennis", "Flower Garden", "Football"
"Salesman", "Foreman", "Carphone" and "Mis_America"
(wAwv-mugc.cc.monash.edu.au/~golam/). The results for
the 80-frame "Tennis" sequence (SIF 352*240 pixel frame
size) and "Salesman" (CIF 360*288 pixel frame size) are
included in this paper. The "Tennis" sequence comprised
various kinds of motions, including translation, zooming,
and panning, while the "Salesman" sequence mainly
consisted of low motion that was very similar to image
sequences in low bit-rate video application such as
videophone and videoconferencing.

In the experiments, all sequences were uniformly
quantised to an 8-bit gray level intensity. The block size
dimensions were M= N= 16 and d= ±7, i.e., each frame
was divided into 16x16 pixel blocks and within each
frame, a maximum of (2d+l)2 = 225 checking points were
used. The MSE measure was used as the criterion for
locating the best motion vector for each block.

To quantitatively evaluate the video coding performance of
the DTS algorithm, the following two measures were
considered: -

i) The average peak signal-to-noise ratio (PSNR) after
picture reconstruction.

ii) The average number of search points for
computational complexity.

Table I: Avg. PSNR and avg. search points per motion
vector for the "Tennis" sequences (1-80 Frames)

BMA

FS(±7)

LT(2)

LT(4)

LT(6)

LT(8)

LT(12)

LT(20)

TSS

NTSS

Tennis

PSNR
(dB],.vo

27.94

27.63

27.48

27.27

26.98

26.42

25.68

26.14

26.85

Search points^)

196.98

75.68

38.14

26.03

20.35

14.65

11.14

23.01

20.83

Table II: Avg. PSNR and avg.se arch points per motion
vector for the "Salesman" sequences (1-80 Frames)

BMA

FS(±7)

LT(2)

LT(4)

LT(6)

-LT(8)

LT(10)

LT(20)

TSS

NTSS

Tennis

PSNR
[dB],.,s,

35.52
35.51
35.47
35.43
35.38
35.34
35.13
35.23
35.39

Search points^,)

204.17

34.65
14.46

10.37

9.24
8.84

8.26
23.21

16.96

3.1. Peak Signal-to-Noise Ratio (PSNR) Results

The performance comparison of FS, TSS, NTSS and
DTS using the LT function in terms of the average Peak
Signal-to-Noise Ratio (PSNR), is given in Table I and
Table II. It was observed that the PSNR value for the DTS
algorithm improved by up to 0.85dB, when the number of
search points was comparable with the TSS and NTSS
algorithms, as for example in the "Tennis" LT(8) case. At
higher search speeds, where the improvement factor was
typically between 3 and 6, the average PSNR for the DTS
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algorithm was still very close to the optimal average PSNR
value of the FS algorithm. In contrast, the performance of
the TSS and NTSS algorithms was significantly inferior,
especially in respect of the fast motion segments involved
in the "Tennis" video sequence, from frame 23 onwards.
Being a directional search algorithm, TSS tended to
converge to one of the local minima as explained in the
introduction. The plot in Fig. 3 and 4 confirm the PSNR
performance of the DTS algorithm against the FS, TSS and
NTSS algorithms. Note for clarity, that only LT functions
for the DTS algorithm that produced a comparable number
of search points to the TSS and NTSS algorithms, have
been included.

3.2. Search points results

The performance of the FS, TSS, NTSS and DTS
algorithms in terms of the average number of search points
to estimate the motion vectors is also presented in Table I
and Table II. Again it is clear, that the DTS algorithm was
faster by a factor of at least 3, and in the "Salesman" LT
(6) case, more than 18 times, than the FS algorithm, while
the PSNR remained comparable with the TSS and NTSS
algorithms. The results also proved that by choosing a
suitable constant for the selected threshold function, the
average number of search points required by the DTS
algorithm was considerably less, while concomitantly
having a significantly higher average PSNR.

0 10 20 30 40 50 60 70
Frame number

Fig. 3. PSNR Comparison of "Tennis" video sequence

It is interesting to note in Fig. 3, that during the first 23
frames of the "Tennis" sequence, which contain almost no
camera motion, and only some object motion, there is
considerable uniformity in the performance of all four
search algorithms. In subsequent frames (24 to 80)
however, where much faster object and camera motion is
present, the DTS algorithm performs significantly better
than the other two fast algorithms, while retaining the low
number of search points.

Fig. 5 and 7 show the estimated 80th and 5th frame of
"Tennis" and "Salesman" sequences with FS, DTS, TSS
and NTSS algorithms respectively. As FS is optimum in
terms of error performance, Fig. 6 and 8 show the
prediction error distribution of DTS, TSS and NTSS with
respect to FS algorithm. In terms of subjective image
quality, the performance of DTS was very close to the FS
algorithm and much better than both the TSS and NTSS.

0 10 20 30 40 50 60 70
Frame number

Fig. 4. PSNR Comparison of "Tennis" video sequence

Fig. 5 and 7 show the estimated 80th and 5th frame of
"Tennis" and "Salesman" sequences with FS, DTS, TSS
and NTSS algorithms respectively. As FS is optimum in
terms of error performance, Fig. 6 and 8 show the
prediction error distribution of DTS, TSS and NTSS with
respect to FS algorithm. In terms of subjective image
quality, the performance of DTS was very close to the FS
algorithm and much better than both the TSS and NTSS.

The Table I and II clearly show the power of DTS in
terms of its flexibility by trading of quality and
complexity. It is also clear that the performance of FS, TSS
and NTSS in terms of quality (PSNR) or computational
times (avg. search point per motion vector) is fixed. On the
other hand, DTS can be used as FS (with threshold
constant 0) where high quality prediction required as well
as faster even faster than TSS, NTSS (with higher
threshold, say 10) with sacrificing quality.

4. CONCLUSIONS

This paper has presented a new distance dependent
thresholding search (DTS) algorithm for block-based
motion estimation in real-time video coding applications.
The performance of DTS has been examined and proven
that, in comparison to other popular fast algorithms such
as, the three-step-search (TSS) and new three-step search
(NTSS) algorithms, it provided comparable speed
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peiformance, while retaining a distortion error similar to
the minimum value produced by the optimal the full-search
(FS) algorithm. In addition.th e DTS algorithm facilitated a
flexibility that enabled a direct trade-off between PSNR
and search speed for the entire range of threshold values.
Automatically threshold adaptation for different level of
performances is our on going work.
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(a) (b) (c) (d)
Fig. 5. Estimated image of 80th frame of the "Tennis" sequence: (a) FS; (b) DTS: LT (8); (c) TSS; (d) NTSS algorithms.

(a) LT(8) (b) TSS (c) NTSS
Fif. 6. Prediction error distribution of 80th frame of the "Tennis" sequence with respect to that of FS algorithm.

(a) (b) (c) (d)

Fig. 7. Estimated image of 5th frame of the "Salesman" sequence: (a) FS; (b) LT(6); (c) TSS; (d) NTSS algorithms.

(a)LT(6) (b)TSS (c) NTSS
Fig. 8. Predjgtiop. ftrror distribution of 5th frame of the "Salesman" sequence with respect to that of FS algorithm.

524



BEAMLET CODER: A TREE-BASED, HIERARCHICAL CONTOUR REPRESENTATION
AND CODING METHOD

Jihong Chen; Xiaoming Huo, Georgia Institute of Technology, United States

A quad-tree-based hierarchical contour representation and coding method is • .udied. This method is based on multiscale line
segments—beamlets. Simulations are reported to evaluate the effectiveness of such an approach. This is a proof-of-concept
study. The reported compression ratios are not the ''best". However, the idea of tree-based coding is novel; and this idea has
good potential to realize a progressive contour coding, which is important in applications such as content-based video
transmission.

MODIFIED FULL-SEARCH BLOCK-BASED MOTION ESTIMATION ALGORITHM WITH
DISTANCE DEPENDENT THRESHOLDS

Golam Sorwar; Manzur Murshed; Laurence Dooley, Monash University, Australia

A modified full-search (MFS) algorithm is presented for block-based motion estimation applications, which introduces the
novel concept of variable distance dependent thresholds. The performance of the MFS algorithm is analyzed and
quantitatively compared with both the traditional and exhaustive full-search (FS) technique, and the computationally faster,
non-exhaustive three-step-search (TSS) algorithm. Experimental results show that by applying an appropriate threshold
function, the MFS algorithm not only matches the speed of the TSS algorithm, but both retains a block distortion error
comparable to the global minimum produced by the FS algorithm, and avoids the problem of identifying large numbers of
spurious motion vectors in the search process.

PERCEPTUAL CODING OF DIGITAL IMAGES

Damian Tan; Hong Ren Wu, Monash University, Australia; Zheng Yu, Motorola Research Centre, Australia

A novel perceptual image coder of grey level images is presented. This coder is an improved version of the coder by Tan et al
with better optimised parameters featuring a local contrast sensitivity function, intra-frequency masking and inter-orientation
masking functions for perceptual error modelling. The architecture of the proposed coder follows that of the state-of-the-art
EBCOT by Taubman and adopted by the JPEG2000 standard as the core coding structure. The overall perceptual performance
improvement of the proposed coder is noticeable compared with the EBCOT coder with the MSE and CVIS error measures.
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FAST BLOCK-BASED TRUE MOTION ESTIMATION USING
DISTANCE DEPENDENT THRESHOLDS (DTS)

Golam Sorvvar, Manzur Murshed, and Laurence Dooley
Gippslaiid School of Computing and Infonnau'onTechnologyMonnsh University. Churcliill Vic 3842. Australia
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ABSTRACT

A new fast motion estimation algorithm, called distance
dependent thresholding search (DTS). is presented for block-
bawd true motion estimation applications, and introduces the
novel concept of variable distance dependent thresholds. The
performance of the DTS algorithm is analyzed and quantitatively
compared with both the traditional and exhaustive full-search
(FS) technique, and the computationally faster, non-exhaustive
thw-step-search (TSS) algorithm. Experimental results show
that by applying an appropriate threshold function, the DTS
algorithm not onl\ matches the speed oi' the TSS algorithm, but
both retains a block distortion error comparable to the global
minimum produced by the FS algorithm, and avoids the problem
of identifying a large number of spurious motion vectors in the
search process.

1. INTRODUCTION

Motion estimation in image sequences has been a key element in
a wide range of applications from computer vision through to
popular video compression standards such as the MPEG (Motion
Picture Expert Group) family.

Many different motion estimation algorithms have been
proposed, including pel-recursive [11][13J. block-matching [5],
and the optical flow-based method [4][8], The block-matching
algorithm (BMA) has proved to be very popular because of its
simplicity, robustness, and ease of implementation. It estimates
motion on a block-by-block basis and has been widely exploited
in many video coding standards including MPEG-1 and -2 as
well as H.261 263. One particularly important feature [2] of the
BMA is that it exhibits superior performance for larger pixel
block displacements.

The exhaustive BMA. known as the full search (FS)
algorithm, searches each candidate block for the closest match
within the entire search region to minimize the block-distortion
measure (I)DM). The BDM of image blocks may be measured
using various criteria such as. the mean absolute error (MAE).
the DUMII sijiiare error (MSE). and the matching pel-count
(KLPC).

Since the FS algorithm exhaustively searches for a global
minimum block-difference error for each candidate block., it
generally provides the lowest possible distortion error of any
BMA. The algorithm however, suffers two major drawbacks. Its
exhaustive nature means it is computationally expensive and in
addition, the algorithm tends to capture many "false" motion
vectors even when there is no object motion within the search
region. This is due to the fact that the distortion of an object in a
video frame is directly proportional to its velocity as well as the
zoom factor of the camera and therefore, as the length of a

motion vector grows so does the block difference distortion error
Although this observation has very- little impact when the
algorithm is used for video coding, severe artifacts can arise
when the algorithm is applied to estimate the true motion vectors,
where both object and or camera motion is present.

A number of fast non-exhaustive block matching approaches
have been proposed including the three-step search algorithm
(TSS) [6]. the nen- three-step search algorithm (NTSS) [7]. the
2D-logariihmic search algorithm (2DLOG) [5]. the fpur-step
search algorithm (4SS) [10]. and the cross-search algorithm [?\
Of these the TSS has gained popularity because of its simplicit\
and effectiveness, and has been recommended by RMS of H.2M
imdSM3ofMPEG[10].

All the aforementioned fast algorithms are based upon the
assumption that the BDM increases as the checking points move
away from the global minima. According to [1J. however, this
assumption does not hold true for real world video sequences.
Any directional search algorithm can. therefore, be ambiguous
and converge to one of the local minima. Moreover, none of the
above fast algorithms address the key issue of avoiding the
capture of significant numbers of spurious motion vectors in the
search process [2].

This paper directly addresses these issues by introducing a
new distance dependent thresholding search algorithm (DTS).
which not only avoid picking a large number of "false" motion
vectors, but also simultaneously exhibits the characteristics of a
fast search and low BDM.

The paper is structured as follows. Section 2 describes the
new distance dependent threshold search (DTS) algorithm using
both linear and exponential thresholding functions. Experimental
results to verify the performance of the DTS algorithm in temi>
of both its search speed and corresponding BDM error measure
are presented in Section 3. which also discusses.the selection of
the threshold function and related parameters, as well as
explaining how the DTS algorithm avoids a large number of
spurious motion vectors in the search process. Conclusions are
provided in Section 4.

2. THE DISTANCE DEPENEDNT THRESHOLDING
SEARCH (DTS) ALGORITHM

In the FS algom'.in. the suitability of a matching .block is
measured based on the optimal (minimum) BDM. The FS
algorithm works well when there is no distortion, but as alluded
in Section 1. the level of distortion present in any video frame
increases with the velocity of the moving objects and or the
zoom factor used for the camera. The exhaustive FS algorithm
therefore, becomes increasingly inefficient as the spiral trajectory
(search pattern) expands.

0-7803-7488-6/02/$17.00 © 2002 IEEE.
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This paper proposes that the suitability measure of the FS
alcorithm is relaxed from the optimal criterion as the spiral
search trajectory moves from the centre, and becomes distance
dependent. Locating a block with the minimum difference, but
with a motion vector of high magnitude, is both ineffectual in the
prevailing distorted search space, and may also lead to many
•false" motion vectors being erroneously selected. In estimating
true motion, the suitability measure of the FS algorithm must be
relaxed and for '.lie new DTS algorithm, the following two
variable distance dependent threshold functions are applied.

2.1. Linear Thresholding (LT)

Let the centre of the search region be at pixel />„<.,, which also
defines the spiral search starting point. In LT. the spiral search
will terminate at search point/>„•*„.,.,.,.,.. when:-

M4E(cx,<.y) ("• v) < CL x magninide(u. v) (1)

Assuming 6-bit gray level intensity, the maximum value of
the MAE will be 2A-1. since the pixel intensity is measured using
2(' levels with values 0, 1 2*-l. As (d.d) is the longest possible
motion vector within the search region, an upper bound may be
set for constant CL such that :-

cL< magnitude (d. d)
(2)

2.2 Exponential thresholding (ET)

In ET, the spiral search terminates at search point />c»+».oi+»f
when

(3)

Using a similar argument to that in section 2.1. an upper limit
can be set for the constant C f :-

CE< . (4)
magnitude (d. d)

It is interesting to note that setting either Q. = 0 or CE = 0 in
(1) or (3) respectively, it transfon • the DTS algorithm into the
original exhaustive FS algorithm. Ii is also clear that the search
time for the DTS algorithm decreases as the value of the constant
{CL or Cf). used in the respective threshold function is increased.

3. EXPERIMENTAL RESULTS

All experiments were performed on a Pentium III 600 MHz
computer under Windows NT and using MATLAB 6. The FS.
TSS. and DTS algorithms were used to compute the block-based
inter-frame motion vectors from the luminance (Y-component)
signal of the first SO frames of two standard test video sequences
•"Tennis" and "Flower Garden". The "Tennis" sequence
comprised various kinds of motions, including translation,
zooming, and panning, while the "Flower. Garden" sequence
mainly consisted of high portions of fast panning motion. Both
sequences had the same frame size of 352x240 pixels, uniformly
quantized to an S-bit gray level intensity. In the experiments, the
block size dimensions were M = N = 16 and d = ±7. i.e.. each

frame was divided into 16x16 pixel blocks and within
frame, a maximum of (2cM)' = 225 checking points were us

Both linear and exponential threshold functions were us
assess the performance of the DTS algorithm. In the folio
results, the linear threshold function with constant CL is dei
as LT(Ci) and the exponential threshold functicMi with coi:
CE is denoted as £7\Cr).

To quantitatively evaluate the performance of the
algorithm for both the LT and ET functions, the following
specific measures were identified:

• The average MSE between the reconstructed and tlv
corresponding original frames.

• The average number of search points.
• The average percentage of true object motion veeici

captured. • ' • N

Table I: Average MSE and average search points pi
motion vector for "Flower Garden" ami "Tennij
sequences (1-80 frames).

BMA

FS(±7)
LT(2)
LT(4)
LT(6)
LT(8)
LT(12)
LT(16)
ET(1)
ET(2)
ET(4)
ET(8)
TSS

Flower Garden

MSEfavg)

270.46
270.97
275.80
283.9S
293.61
31S.73
353.03
275.96
270.49
270.47
270.47
322.88

Search
points, aVB)

199.76
155.02
73.48
45.93
33.59
23.05
18.60
70.16
155.02
175.65
1S0.65
23.22

Tennis

MSE,,vg)

126.34
127.25
131.64
13S.26
147.59
166.71
183.65
135.22
126.5

126.35
1 126.35

190.81

Search
points,^-

196.9?
75.68
3S.14
26.03
20.35
14.65
12.36
49.22
120.S0
171.16
182.36
22.75

3.1. MSE Results

The performance of the DTS algorithm using both the LT ;m>
functions in terms of the average MSE between the estimatec
original frames is shown in Table I. It can be observed Uu
DST algorithm variants compared very favourably with th>
algorithm for both test video sequences, even when the inn
of search points was comparable with the TSS alcorithm. a
example in the "Tennis" LT (8) case. At higher • earch spt
where the improvement factor was typically between 3 ancl 5
average MSE for the DTS algorithm was still very close (w
l^o) of the optimal average MSE produced by the FS algori
In contrast, the performance of the TSS algorithm
significantly inferior, especially in respect of the motion invo
in the "Tennis" video sequence, since being a directional se
algorithm. TSS tends to converge to one of the local miniir
explained in Section!. In Figures 1 and 2 respectively, the I
performance of the DTS algorithm against the FS and
algorithms is plotted. For the sake of clarity in plotting. onl\
threshold function for the DTS algorithm that used a numbt
search points comparable to the TSS algorithm was considers
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3.2. Search Points Results

The performance of the FS. TSS and DTS algorithms in
:-.-MIIS of the average search points to estimate motion \ectors is
•.-••.sented in Table I. Again it is clear that the various versions of
i: o DTS algorithm were faster by a factor of at least 3. and in the
•••rennis'" LT(16) case, it is more than 15 times faster than the FS
••î oiithm while the MSE is comparable to the TSS algorithm (9
fnies faster). The results also proved that by choosing a suitable
(..•astant for the selected threshold function, the average search
joints required by the DTS algorithm could be considerably less.
v, hile coacomitantly having a significantly lower average MSE.

Another finding from the results in Table I was that the LT
Tuition consistently provided a better performance in
toiiiparison with the ET function for a wide range of different
video sequences. This was due to the fact that the distortion of an
object in any frame was linearly proportional to its velocity as
well as the zoom factor of the camera.
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Figure I. MSE Comparison of "Tennis" video sequence
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Figure.2. MSE Comparison "Flower Garden" video sequences.

3.3. True Motion Result

The performance of the DTS algorithm was also evaluated i
terms of how effectively it could capture true object motion. Tru
object motion vectors were calculated from the block motio
vectors by compensating for camera motion and then filterin
noise at various threshold levels. True motion vectors obtaine
by the DTS algorithm were then compared with the result
obtained from the newly proposed Mean Accumulated Tlireshol
(MAT) filter [12] that captures true object motion wit
significantly higher accuracy.

The performance of the MAT filter has been proven t
significantly increase the length of "true" object motion vector
compared with all other vectors, within a relatively small numhe
of iterations (as low as 2). This has been achieved by a two-stag
combination of mean filtering and thresholding.

Comparative results were made against the output from th
MAT filter, by manually checking those blocks, which ha
already been identified as containing moving objects in th
frames.

o
" j o "
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J2
"c
<D
o
a >a.

o
"5

2.5 3 3.5 4 4.5
Noise Tolerance Threshold
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Figure 3. Comparison of LT. ET. FS and TSS in terms of tl
percentage of true motion vectors captured with different noi:
tolerance thresholds.
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Figure 4. Average number of true object motion vector captured
by dilTerent algorithms.
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The above process was applied to six different standard video
sequences and the average values are plotted in Figures 3 and -4.
These clearly showed that the performance of the DTS algorithm.
usinc both the LT and ET functions in capturing the true object
motion vectors, was considerably better than that of both the FS
and TSS algorithms for all noise tolerance threshold levels
considered. The graphs also reaffirmed the earlier judgment that
LT was a better thresholding function than ET for the DTS
algorithm.

" Figure 5 shows the motion vectors captured by all three
algorithms for the contiguous pair of frames 32 and 33 from the
"Tennis7' sequence. Besides low camera motion (zoom out), the
only moving objects appearing in these frames are the ball, the
bat. and a portion of the hand holding the bat. The figure reveals
that the FS and TSS algorithms perform far worse compared to
the DTS algorithm, by capturing a large number of spurious true
motion vectors. The DTS algorithm eliminates main' of the false
vectors so ensuring an overall superior performance.

£

' • * »

(a)FS (b)LT

. . . . I ' . i i . \

i - ' v r r ^ ! , •!•':•'

(c)ET (d)TSS
Figure 5. The motion vectors obtained from all algorithms applied
to ihe frame pair 32 and 33 of the "Tennis" sequence.

A. CONCLUSIONS

This paper has presented a new fast true motion estimation
algorithm, based on the concept of variable distance dependent
thresholding. The performance of the NEW DTS algorithm was
examined and shown, in comparison to both the full-search (FS)
and the fast '.hree-step-search (TSS) algorithms, that it provided
comparable speed performance, while retaining a distortion error
similar to the minimum value produced by the FS algorithm.
Both linear and exponential thresholding functions were applied

in the DTS algorithm, with the former consistently providing
better performance. The variable thresholding feature of the DTS
algorithm also avoided identifying large numbers of spurious
motion vectors in the search process.
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BLOCK-BASED TRUE MOTION ESTIMATION USING DISTANCE DEPENDENT
THRESHOLDED SEARCH

Golam Sonvar, Manzur Murshed, and Laurence Dooley
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Monash University, Churchill Vic 3842, Australia

Abstract

The full-search (FS) block-matching algorithm for block-
based motion estimation works best for video coding in
tenns of minimum block-distortion error. But in true motion
estimation the FS algorithm tends to capture many "false "
motion vectors even when no object motion is present in the
search region. This is due to the fact that the distortion of an
object in a video frame is proportional to its velocity and
therefore, as the length of a motion vector grows so does the
block- difference error. This paper introduces an improved
version ~f the FS algorithm including distance dependent
thresholas to avoid capturing "false" motion vectors and
improve the efficiency of the search.

Keyword: Block-based motion estimation, Distance
dependent thresholds.

1 INTRODUCTION

Motion estimation in image sequences has been a key
element in a wide range of applications from computer
vision through to popular video compression standards such
as MPEG (Motion Picture Expert Group).

Motion is primarily due to the movement of a camera,
movement of objects in the frame, or movement of both
camera and objects. There are many types of estimation
algorithms such as pel-recursive [12], block-matching [6],
and optical flow based method [5] [9]. In general, the block-
matching algorithm (BMA) is popular due to its simplicity,
robustness, and ease of implementation. This algorithm
estimates motion block-by-block basis, which is already
adopted by a large number of video coding standards
(MPEG-1/2 and H.261/263 etc.).

The exhaustive block-matching algorithm, known as the
full search (FS) algorithm, searches each candidate block for
the closest match within the entire seard »egion to minimize
the block-distortion measui; ''RDM). The algorithms have
been widely used in block '-notion estimation for video
coding and indexing. Since the FS algorithm exhaustively
searches for the minimum BDM for each candidate bloc'c, it
generally provides reasonably good performance with the
expense of high computational time.

Several fast algorithms have already been proposed to
address the above issue. The three-step search algorithm
(3SS) [7], the new three-step search (N3SS) [8], the four-
step search algorithm (4SS) [11], and the cross-search
algorithm [4] are based on the assumption that the block
distortion measure increases as the checking points move
away from the global minima. But this assumption dose not
hold true in the real world video sequences [2]. Moreover,
search directions of tho above algorithms can be ambiguous
and therefore, may converge to local minima. In order to
solve the direction problem, a new method based on
temporal and spatial correlation of motion vector is
presented in [10].

In true motion estimation, where object and/or camera
motions are estimated, the FS algorithm tends to capture
many "false" motion vectors even when no object motion is
present in the search region. This is due to the fact that the
distortion of an object in a video frame is proportional to its
velocity and therefore, as the length of a motion vector
grows so does the BDM. This phenomenon has been
observed in [1][3]. In spite of the above drawbacks, block-
matching algorithms show better performances, especially
for large displacement [3]. In this paper we address this issue
by modifying the FS algorithm to incorporate distance
dependent thresholds. This modification not only avoids
picking a large number of "false" motion vectors but also
makes the search quite faster.

The remainder of this paper is organized as follows.
Section 2 describes different block-matching criteria used in
various block-based motion estimation algorithms. The
general block-based motion estimation technique, including
the FS algorithm, is discussed in Section 3. In Section 4 we
present two new algorithms developed using dynamic
thresholds in the FS algorithm. Some experimental results
are included in Section 5. Section 6 concludes the paper.

2 BLOCK MATCHING CRITERIA

Matching of image blocks can be measured using various
criteria e.g., the mean absolute error (MAE), the mean
square error (MSE), and the matching pel-count (MPC) etc.
In block-based algorithms, e^n frame is divided into equal
sized rectangular blocks, of size (say) MxN, as shown in
Figure 1. Throughout this paper, pixels of a frame are
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numbered using the Cartesian coordinate system with the
origin starting from the upper-left comer.

Let Fn(k,l) denotes the intensity function of the MxN
steed block containing all the pixels pxy of frame number n,
where k<x< k+N and / < >• < l+M. So, Fn(k,l)(iJ) represents
the intensity of the pixel pk+u+j o f frame number n, for all 0
</<A/andO<;<M

Current frame, n Next frame, n+l

Figure 1: Frame-Block coordinate system.

(a) Mean Absolute Error (MAE)

i AM N-\
()

MN':
i, l+j)

1=0 ;=0

(b) Mean Square Error (MSE)

(2)

-Fnn(k+u+i,l+v+j)f

(c) Matching Pel-Count (MPC)

Fn+l (k + u,l+v)(i, f) |< Threshold

0, Otherwise

') (3)

Among the above matching criteria, MSB require
multiplication and accumulation while the others require
comparison and accumulation. Since multiplication is
expensive compared to comparison, the MAE criterion is
most widely used and is adopted in this paper.

3 BLOCK-BASED MOTION ESTIMATION

In a block-matching algorithm, the current frame is
divided into small rectangular blocks as explained in
Figure 1 and Figure 2. For each block of the current frame, a
motion vector is obtained by finding a suitably matched
block within the search window of the reference frame.

Search window of
reference frame

Block of current
d fiame

Figure 2: Search region of block-matching algorithms.

3.1 Full-Search Algorithm

The most straightforward block-matching algorithm is
the full search (FS) algorithm. In selecting a suitably
matched block, the FS algorithm searches the entire search
region for a block such that the BDM is the minimum If the
maximum displacement of a motion vector is ±d pixels
shown in Figure 2, both in horizontal and vertical directions,
the total number of search points used to find the motion
vector for each block can be as high as (2d+l)2\ If more
than one blocks produces the rninimum BDM, the FS
algorithm obviously prefers the block with motion vector of
smaller magnitude. Therefore, the FS algorithm computes
block-differences in a spiral trajectory starting from the
center of the search region as shown in Figure 3.

• Starting point

Figure 3. The spiral trajectory of searching.

4 OUR ALGORITHMS

In the FS search, the suitability of a matching block is
measured based on optimal (rninimum) block-difference
error. The distortion of an object in a video frame is
proportional to its velocity and therefore, as the length of a
motion vector grows so does the block-difference error.
Obviously, the exhaustive search in the FS algorithm is
inefficient, especially when it fails to obtain a close match
within a closer distance from the center of the search region.

We propose that the suitability measure of the FS
algorithm be relaxed from the optimal criterion as the
trajectory of the spiral searching moves away from the
center. Looking for a block with the rninimum difference,
but with a motion vector of high magnitude, is not only
useless in the prevailing distorted search space, but also
erroneous as it may lead to many "false" motion vectors.
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In estimating true motion, the suitability measure of the
FS algorithm must be relaxed and we apply the following
two threshold functions in relaxing the measure.

Lst the center of the search region be at pixel pcx%Cf, i.e.,
the spiral search starts from search point pCACy.

4.1 Linear Thresholding (LT)

The spiral search terminates in search point/?

tiO.)(", v) < CLxmagnitude(u,v). (4)

rjt+aiO>+v., i f

The value of the MAE can be at most 255, considering
that intensity of a pixel is measured using 256 levels. As
{d,d) is the longest possible motion vector within the search
region, we can set an upper limit to the constant Q, as

256
(5)

magnitude (d,d)

4.2 Exponential Thresholding (ET)

The spiral search terminates in search point p f J+u ,o+v , if

cx,cy) \ > / * ^ '

Using the same argmnent as used in Section 4.1, we can
set an upper limit to the constant CE as

Cr<
8

magnitude (d,d)
(7)

It is interesting to observe that setting CL = 0 or CE = 0
would transform the above two algorithms into the original
exhaustive FS algorithm.

Table 1: Motion computational time comparison.

Tennis
Flower

Us21
Interview

Ballet
Bicycle

Testa
Seinfield
Foreman

: Average Time

i-'MVIoUdri Computational Time^«5

139.27
132.76
111.25
125.62
126.49
136.66
43.73
40.59
38.02
95.38

8.38
26.59

2.30
6.12
4.90

44.09
16.37
4.84
5.04

; 13.18

16.90
26.10

3.52
10.84

8.39
37.69
11.92
5.90
6.00

In Figure 4, the MAE per pixel for each of the three
algorithms is plotted. In all the nine cases, the performance
of our two algorithms appears to be the same as that of the
FS algorithm. It may, therefore, be concluded tEat by
relaxing the suitability measure of the FS algorithm, through
the introduction of thresholding, the displaced block
selection by both of our algorithms are at least as good as the
selection by the FS algorithm.

6000

5000

F. *ooo

5 3000
CL

ijjj 2000

1000

0

• FS
HLT
DET

rm

5 EXPERIMENTAL RESULTS

We conducted a series of experiments on a Pentium III
600 MHz computer with Windows NT operating system.
Inter-frame motion vectors were calculated based on the FS,
the LT, and the ET algorithms implemented in MATLAB 6.
Throughout the experiments, we used M = N = d= 16, i.e.,
each frame was divided into 16x16 pixel blocks and the size
of the search region was 49x49 pixels, where at most 332

search points are used. All experiments were performed on
the luminance (Y-component) of the frames.

In Table 1 we present comparative computational times
of all the three algorithms applied on two candidate frame
pair from each of the nine test video sequences. The last row
in Table 1 reveals that the LT and the ET algorithms require
no more than 1/8* of time of the FS algorithm.

Figure 4: Comparative prediction errors.

Figure 5 shows the luminance of the frame number 32
and 33 of the test video sequence 'Tennis" where besides
low camera motion (zoom out), the only moving objects are
the ball, the bai. and the hand holding the bat. The motion
vectors obtained by all the three discussed algorithms,
applied to these frame pair, are shown in Figure 6.
Figure 6(a) clearly shows comparatively how badly the FS
algorithm performs by capturing a large number of "false"
motion vectors.

6 CONCLUSION

The full-search block-matching algorithm for block-
based motion estimation works best for video coding. But in
true motion estimation the FS algorithm tends to capture
many "false" motion vectors even when no object motion is
present in the search region. In this paper, we have modified
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the FS algorithm by introducing distance dependent linear
and exponential thresholds that have not only made the
search faster but also avoided capturing a large number of
"false" motion vectors.

REFERENECES

[1] Cheung C.-H. and Po L.-M., "A fast block motion
estimation using progressive partial distortion
search," International Symposium on Intelligent
Multimedia, Video and Speech Processing, pp. (s):
506-509,2001.

[2] Chow H.-K. and Liou M.L., "Genetic motion search
algorithm for video compression," IEEE Trans, on
Circuits and Systems for Video Technology, vol. 3,
pp. (s): 440-445, 1993.

[3] Dufaux F. and Moscheni F., "Motion estimation
techniques for digital TV: a review and a new
contribution," Proc. of the IEEE, vol. 83, pp. 858-
876,1995.

[4] Ghanbari M, "The cross-search algorithm for motion
estimation (Linage coding)," IEEE Trans, on Comm.,
vol. 38, pp. 950-953, 1990.

[5] Horn K.P. and Schunck B.G., "Determining Optical
flow," Artificial Intelligence, Vol. 17, pp. 185-203,
1981.

[6] Jair. J.R. and Jain A.K., "Displacement measurement
anci its application in inter frame image coding,"

IEEE Trans. Comm., vol. COM-29, pp. 1799-1808,
19S4.

[7] Koga T., Iinuma K., Hirano A., Iijima Y. and
Ishiguro T., "Motion-compensated inter frame coding
for videoconferencing," IEEE National
T^lecomrauniwtions Conference, vol. 4, pp. G5. 1-5,
1981.

fS] Li R., Zeng B. and Liou MX., "A new three-step
search algorithm for block motion estimation," IEEE
Trans, on Circuits & Systems for Video Technology,
vol. 4, pp .438-442, 1994.

[9] Lucas B.D. and Kanade T., "An iterative image
registration technique with an application to stereo
vision," Proc. DARPA Image Understanding
Workshop, pp. 121-130, 1981.

[10] Nam J.-Y., Seo J.-S., Kwak J.-S., Lee M.-H. and
Yeong H.H., "New fast-r-earch algorithm for block
matching motion estimation using temporal and
spatial correlation of motion vector," IEEE Trans, on
Consumer Electronics, vol. 46, pp. 934-942, 2000.

[11] Po L.-M. and Ma W.-C, "Novel four-step search
algorithm for fast block motion estimation," IEEE
Trans, on Circuits & Systems for Video Technology,
vol. 6, pp. 313-317,1996.

[12] Robbins J.D. and Neiravali A.N., "Recursive motion
compensation: a review," Image Sequence
Processing And Dynamic Sconce Analysis,
pp. 76-103, Spriger-Verlag, 1983.

(a) (b)
Figure 5: (a) Frame #32; (b) Frame #33; of the test video sequence "Tennis' sequence

FS LT ET
Figure 6: The motion vectors obtained by all the three algorithms applied to the frame pair of Figure 5.



A FULLY ADAPTIVE PERFORMANCE-SCALABLE DISTANCE-DEPENDENT
THRESHOLDING SEARCH ALGORITHM FOR VIDEO CODING

Golam Sorwar, Manzur Murshed and Laurence Dooley

Gippsland School of Computing and Info. Tech., Monash University, Churchill Vic 3842, Australia
{Golam.Sorwar,Manzur.Murshed,Laurence.Dooley}@infotech.monash.edu.au

ABSTRACT

Trading-off computational complexity and quality is an
important performance constraint for real time application
of motion estimation algorithm. To address this issue, a
distance dependent thresholding search (DTS) algorithm
has been proposed for fast and robust true motion
estimation in video coding/indexing applications. DTS
encompassed both the full search (FS) as well v3 fast
searching modes, with different threshold settings
providing various quality-of-service levels. The main
drawback of DTS was that the threshold value was
manually defined. In this paper, the DTS algorithm has
been extended to a fully adaptive distance dependent
thresholding search (FADTS), a key feature of which is
the automatic adaptation of the threshold using the desired
target and the content from the actual video sequence, to
achieve a guaranteed level of quality or processing
complexity. Experimental results confirm the performance
of the FADTS algorithm in achieving this objective with
minimal additional computational cost.

1. INTRODUCTION

Motion estimation (ME) plays a vital role in video coding
standards, such as MPEG-1/2 [1] [2] and H.261/3 [3][4],
in exploiting latent temporal redundancy in video
sequences. Most ME techniques use block matching
algorithms (BMA) to compute motion vectors on a block-
by-block basis. The most straightforward method, known
as full search (FS), provides optimal performance by
searching all possible locations within a given search area,
but at the expense of very high computation. It is for this
reason that FS is not used in real-time systenre. Indeed ME
is the major bottleneck in real-time video coding
applications, hence the need for faster algorithms.

A number of fast block ME algorithms [5]-[10] have
been proposed to lower the computation complexity by
sacrificing quality. Among these, three-step search (TSS)
[6] and new three-step search (NTSS) algorithms [7]

become more mainly due to their simplicity. However,
these motion estimation algorithms are not designed to
provide flexible and predictable control of performance in
terms of picture quality and computational cost (speed).
There is no facility to trade system parameters depending
upon a particular application or to preset a user-defined
level of picture quality or computational complexity. Such
a feature would be very advantageous in facilitating
scalable performance management especially in the area of
computational complexity management in real time video
encoders.

It has been observed that the distortion of an object in
a video frame is proportional to its velocity as well as the
camera parameters (zoom and pan) and thus, as the length
of a motion vector grows so does the block distortion
error. Sorwar et al. [11]-[14] have addressed this issue by
introducing the concept of a distance-dependent
thresholding search (DTS) algorithm for fast and robust
true motion estimation in object-based video indexing and
coding applications. By varying the value of the threshold,
the DTS algorithm provides both a FS capability for
maximum quality as well as fast searching modes for ME
(faster than most traditional algorithms [12]). The main
drawbacks associated with DTS are that the threshold
value has to be manually selected and cannot be adapted to
the content of a particular video sequence.

This paper presents a new fully automatic adaptive
distance-dependent thresholding search (FADTS) algo-
rithm, which can dynamically adjust the threshold to
achieve any level of service required in terms of both
quality and processing speed. This means for example,
that a higher (lower) error or speed can be achieved by
automatically adapting the threshold to a correspondingly
level, depending on video content so providing the
potential for performance management real time video
coding.

The paper is organized as follows. Section 2 briefly
describes the basic distance dependent thresholding search
(DTS) algorithm, while Section 3 details the new fully
adaptive DTS (FADTS) algorithm. Section 4 includes
both experimental results and analysis of the performance,



including a computational cost analysis of FADTS for
various levels of quality and speed. Section 5 presents the
conclusions.

2. DISTANCE-DEPENDENT THRESHOLDING
SEARCH (DTS) ALGORITHM INTRODUCTION

A detailed description of DTS algorithm can be found
in [11-14], where a technique is presented to estimate the
motion vector by introducing the concept of distance-
dependent threshold search for variable performance video
encoder. This algorithm searches spirally starting from the
center of the search window and the search terminates
when the block distortion measure (BDM) becomes less
than a predefined threshold.

Let the centre of the search region be at pixel pcxxy,
which also defines the starting point of the spiral search
starting point. In DTS, the spiral search terminates at
search square SSr [12] when the mean absolute error
(MAE), used as the BDM, is:-

) (x-cx,y-cy)<Cxr (1)

where C is the threshold value and T is the concentric
square index. Assuming 6-bit gray level intensity, the
maximum value of the MAE is (26-l), since the pixel
intensity is measured using 2b levels. As SS,i is the
outermost search square where d is the maximum
displacement, an upper bound for the constant C can be set
as:-

2" (2)

Note, that by setting C = 0 in (1), it transforms the DTS
algorithm into the exhaustive FS algorithm. It is clear that
the search time reduces as C increases and interesting to
note that if C is set higher than the upper bound in (2), the
search will not explore the entire search area defined by
the maximum displacement d.

3. PROPOSED ADAPTIVE THRESHOLD MODEL

The approach adopted for embedding an adaptive
threshold into the DTS algorithm is based upon the
normalized least-mean-square (NLMS) algorithm [15]-
[18]. The threshold is automatically adjusted between
frames to achieve either a target level of prediction error
(quality) or computation by considering specifically the
number of search points per MV.

The block diagram of the proposed model is shown in
Fig. 1, and has two modules: (i) motion estimation and (ii)
threshold control. In the former, K is the sample vector
length, which governs the number of consecutive frames

that use the same threshold value, where sample means a
pair of frames between which motion has to be calculated.
Thus for K=\, a particular threshold value is used to
calculate the motion between two consecutive frames,
while K=L means the same threshold is used for L-\
consecutive frames (ME always being calculated between
two successive frames).

Input
Video

1 2

k — •

K

Motion Estimation

Error(l K)f

1,1

K,\

m
1,2

K,2

> •

\,M

K,M
Threshold Control

Fig. 1: The proposed DTS adaptive model.

The sample window size is M in the threshold conitoi
module, so the total memory requirement for this module
is KM. Based on the NLMS method in [16] [17] the
following is used for threshold adaptation:-

1 (3)
K

I
k*>\ m

\<
•*• k.n.j

KM

where
K M

k,m,j
e, = Desired, - Actual,, Actual, = *=|OT=1 , / is

J J J> J KM J

the number of iterations, // is the step size, X , represents

the average value of input vector (output of motion

estimation module) X, where the total number of elements

ofXis/C
The output of the motion estimation module is either

prediction quality (mean square error (MSE)) per pixel or
computational time (the number of search points (SP) per
MV). This information is used to update the threshold for
the following frames. The threshold control module selects
whether the threshold for the next iteration is to be either
increased or decreased depending on the average error or
average number of search points so far calculated (Actual)
and the target (Desired). As C decreases, the number of
search points corresponding increase and the update factor



for speed adaptation is therefore negative.
The update term also depends on the value of M. The

higher the value of M, the larger the update factor while
other parameters remain constant. So the performance of
the adaptive algorithms depends on the initial threshold
constant selection, the step size and the values of K and M.

4. EXPERIMENTAL RESULTS

The performance of the FADTS algorithm was evaluated
using the luminance (Y-component) signal of the
following standard test video sequences:- "Foo-.ball"
(320x240 pixels), "Flower garden" (352x240 pixels),
"Salesman" (360x288 pixels), "Miss America" (176x144
pixels), "Tennis" (352x240 pixels) and "Foreman" (176
xl44 pixels). In this paper only the results for the
"Football" and "Flower Garden" are presented. The
"Football" sequence contains various kinds of motion,
including translation, zooming, and panning, while the
"Flower Garden" sequence comprises high panning.

In the experiments, all sequences were uniformly
quantised to an 8-bit gray level intensity. The block size
dimensions were 16x16 and d = ±7, i.e., within each
16x16 block, a maximum of (2d+l)2 = 225 checking
points were used. The MSE measure was used to represent
the prediction quality for the best motion vector for each
block and the value of K and M are selected as 4 and 1
respectively based on the experiments. All results are
shown using half-pel motion accuracy.

The performance of FS, TSS and NTSS algorithms are
contrasted in Table I, for showing the comparative
performance of FADTS algorithm.

Table I: Avg. MSE and SP of FS, TSS and NTSS algorithms for
"Football" (344 frames) and "Flower garden" (150frames) video

sequences.

BAM

FS

TSS
NTSS

Football

MSE

218.88

240.79
239.15

SP

160.05

25.63
26.9

Flower garden

MSE

208.91

242.97
213.2S

SP

209.73

31.20
28.98

The performance of the FADTS algorithm was
evaluated for both quality and speed adaptation as follows.

4.1. Quality Adaptation
The FADTS algorithm results in terms of quality
adaptation are presented in Table II for a number of
different target values for the high motion "Football" and
"Flower Garden" sequences. This reveals the FADTS
algorithm is able to reach any bounded target level of
quality, with the implicit assumption that the minimum
target error obtained by FS is the lower bound.

If the target is set so high that the resultant threshold

constant will exceed the maximum threshold Cmax, FADTS
algorithm limits the upper bound to Cmw. However,
defining such a high target is unrealistic, because it will
produce an extremely poor picture quality output.

Table II: Prediction error adaptation for "Football" a "Flower
garden" Video sequences (344 and 150 Frames respectively)

with/T=4andA/=l

Football

Target
quality

MSE

220

230
240
250

Actual

MSE

220.35

228.95
240.77
252.23

Search
Point
(SP)

34.77

25.90
20.89
18.46

Flower garden

Target
quality

MSE

210

215
230
240

Actual

MSE

212.13

215.52
229.34
237.78

,-Search
Points
(SP)

49.82

26.68
17.68
16.18

The corresponding adaptive threshold values for
different frames are plotted in Fig. 2. This shows clearly
the adaptive nature of the FADTS algorithm as content
varies between different frames. It also confirms that
FADTS automatically computes a different starting
threshold value directly proportional to the target value.
Thus initial thresholds are adaptive based on both the
content of the video sequence and the desired target.

100 „ .200
Frame Numter

,50 „ . 100
tame Number

Fig. 2: Threshold constant adaptation for Football (left, 240

MSE) and Flower garden (right, 215 MSE) sequences.

100 200
rams Number

150Frare Number

Fig. 3: Threshold constant adaptation for Football (left, 25 SP)
and Flower garden (right, 30 SP) sequences.

4.2. Computational complexity adaptation
The computational performance of the FADTS algorithm
for a number of different target speeds (average number of
search points per MV) is shown in Table III. The table
proves that FADTS can reach any average target level of



speed within the bounds (depends on d) by varying the
tlneshold constant. Fig. 3 clearly shows both the adaptive
nature of the algorithm as the content in the video
sequence varies and also its ability to meet the user-
defined target.

Table III: Processing speed adaptation For "Football" and
"Flower garden" video sequences (149 Frames) with K= 4

and M=\

Football

Target
Speed
(SP)

SP

20

25
30
40

Actual

SP

19.89

24.86

29.82
40.97

Actual
Error
MSE

250.93

234.93

227.09
220.22

Flower garden

Target
Speed
(SP)

SP

20

25
30
40

Actual
Speed
(SP)

SP

19.55

24.53

29.56
39.78

Actual
Error
MSE

219.47

215.68

214.28
212.99

Table I, II and III also prove that FADTS does not only
reach any user defined target, but also shows better error
performance when complexity is comparable to TSS or
NTSS. Another noteworthy point is that FADTS can
achieve the same MSE performance as FS but with
reduced complexity (SP) by a factor of 4 (approx.).

The total number of operations for (3) is only
/

(3AJV/ + 4 ) —per second where/is the number of frames
K

per second. Since in the experiments, M=\ and K=4, this
means a total of only 120 additional operations per
second. This is negligible compare to the complexity
involved in MAE distortion calculation for motion
estimation, where one MAE calculation requires 511
additions, 256 absolute operations, and one comparison
fora 16x16 block.

In summary therefore, the FADTS algorithm consumes
minimal additional computational overhead, while
providing significant performance benefits including user-
definability of key parameters.

5. CONCLUSIONS

This paper has presented a fully adaptive distance
dependent thresholding search (FADTS) algorithm for
real-time block-based motion estimation in video coding.
The performance of FADTS has been examined and
proven that it affords a unique feature in being able to
trade-off freely between the two key system parameters,
namely prediction quality and search speed, for the entire
range of threshold values. A key feature of this novel
algorithm is its ability to progressively adjust the required
threshold value based on the actual video content to
achieve any user-specific level-of-service, in terms either

prediction quality or processing speed. FADTS can
therefore be used as an optimum algorithm for high quality
prediction as well as a very fast algorithm. The algorithm
proposed in this paper could also form part of a video
encoder that can optimize performance in scenarios where
computational resources are restricted. Further work is
required to integrate this algorithm with other functions of
the encoder such as the DCT and quantization scale to
control the rate, complexity and distortion performance.
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Integrated Technique with Neurocomputing for
Temporal Video Segmentation
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Abstract: Partitioning a video source into meaningful segments is an important step for
video indexing. Many algorithms have been proposed for detecting video shot boundaries
and classifying both shot and shot transition types. Different methods arc-suitable for
different situations and most of the existing methods consider a threshold value determining
the boundary between the two shots. However, selection of a generalized optimal threshold
value is an extremely difficult task. In this paper, we propose an integrated method based on
one of the popular soft computing techniques, namely neurocomputing, for temporal video
segmentation that avoids problem with threshold calculations. We used a feedforward neural
network trained using backpropagation algorithms. The soft computing model was trained
using 80% of the frames data and the remaining 20% was used for testing and validation
purposes. A performance comparison was made among the proposed soft computing method
and traditional methods namely histogram difference. DCT difference, and Motion
difference, for temporal shot detection.

1 Introduction

The use of digital video in many multimedia systems is becoming quite popular.
Videos are playing an increasingly important role in both education a/>d commerce.
Besides the currently emerging services such as video-on demand and pay
television, we see quite a number of new non-television like information services
such as digital catalogues and interactive multimedia documents, including text,
audio and video. Applications with digital video use time consuming fast forward
or rewind to search, retrieval and get a quick overview of the content. In today's
world, time is very expensive and time efficient media management is the key for
the next generation. We need to devise new ways to index and access video
content, which presents the visual information in compact forms such that the
operator can quickly browse a video clip, retrieve content in different levels of
detail and locate a segment of interest.

To enable time efficient and effective access, digital video has to be analyzed and
processed to provide a representation that allows the user to locate any event in the
video and browse it very quickly. Shot detection is the first step in this 'direction. A
simplified structure of a content-based video database model is shown in Fig. 1.

.
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\ Feature Data Base

Fig. 1: A video date base model

As an enormous amount of information is available in each frame of video
sequence, it is computationally expensive indexing based on each frame content.
On the other hand if the video shots are properly detected, key frames
(representatative frames) can be selected from each shot, it can represent the overall
content of the whole sequence. So shot detection is the key part for extracting the
representation frame, which can be used for video indexing.

The paper is structured as follows. Section 2 discusses the existing shot boundary
detection techniques in detail. In Sections, we present some basic theoretical
aspects of neural networks while the proposed integrated method is described in
Section 4. The results to verify the performance of the proposed method in terms of
recall and precision values are presented in Section 5. The conclusions are provided
in Section 6.

2 Related Work

The most important and fundamental processing step is to segment video into an
appropriate set of units, which is known as shots. A shot is an uninterrupted video
segment, that is, a sequence of consecutive frames generated as the result of a
continuous single-camera operation. There aie generally two types of shot
transition-abrupt and progressive. Abrupt shot transition is the cut or camera break.
It occurs in a single frame shown in Fig. 2(a). In this case, the prior 2 and the
posterior 3 frames of the boundary show very different characteristics in terms of
their content. But in case of progressive shot transition generated via the

)K3
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application of mere elaborated edition effects that involve several frames such as
fading, dissolves, wipes and many other types of gradual transition. An example cf
progressive shot transition (fade out) is shown in Fig. 2(b),

Fig. 2(a): Frames in camera break

Fig. 2(b) Frames in fade

In general automatic shot boundary detection techniques are classified into the
following categories: pixel based, statistics based, transformed based, histogram
based and motion vectors based [12][18]. In pixel based methods, pixel-wise
intensity difference is considered as the indicator for shot boundary detection.
[12][13][10][9] computed the absolute sum of the pixel-by-pixel inter-frame
difference and later compared it to a selected threshold. If the difference is more
than the threshold value, a shot boundary is declared. It is very simple method,
however the drawback associated with this method is ihat it is very sensitive to
noise and camera and object motion. It is also difficult to adjust threshold value
manually. In statistical difference based methods, large local changes lower most of
the aforementioned detection algorithms' quality. Solution: compute the difference
metric in image regions, instead of using the overall image, and later discarc some
of them for final sum up. Statistical methods expand on the idea of pixels
differences by breaking the images into regions and comparing statistical measures
of the pixels in those regions.[15][2][8] proposed some different shot boundary
detection method based on coitent statistics such as mean, standard deviation,
likelihood ratio. It is reasonably tolerant of noise, though its drawback is that it is
slow due to complexity of the statistical formulas and it generates many false
positive (wrong boundary detected as correct one). In order to effectively protect
against camera operation and object motion, an option k to select a motion
independent metric, like overall intensity histogram difference. Histograms are the
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most common method used to detect shot boundary. In the simplest histogram
method, the gray level or color histogram is computed and compared bin-wise
difference with a threshold. If this bin-wise difference is above a threshold, a shot
boundary is assumed. [6][14] used the color histogram change rate to find shot
boundaries. This is very most common method and more robust to noise and object
motion. According to [12][10], the histogram methods were a good trade-off
between accuracy and speed. In order to properly detect gradual transitions such as
wipes and dissolves, they used two thresholds. If the histogram difference fell
between the thresholds, they tentatively marked it as the beginning of a gradual
transition sequence, and succeeding frames ware compared against the first frame
in the sequence. If the running difference exceeded the larger threshold, the
sequence was marked as a gradual transition. An alternative to all these algorithms
is to work with derived parameters directly extracted from the compressed
sequence. [4][3] used differences in the size of JPEG [20] compressed frames to
detect shot boundaries as a supplement to a manual indexing system. [16] found
shot boundaries by comparing a small number of connected regions. They used
differences in DCT coefficients of JPEG compressed frames as their measure of
frame similarity, thus avoiding the need to decompress frames and increases the '
speed. But it generates too many false positive. [10][6] used motion vectors
determined from block matching to detect whether or not a shot was a zoom or pan.
[2] used the motion vectors extracted as part of the region-based pixel difference
computation described above to decide if there is a large amount of camera or
object motion in a shot. [17] detected the camera breaks using macroblock (16*16
pixels) information of P and B frames in MPEG [21] video sequences. Motion
discontinuity will occur if there is any sudden change between two consecutive
frames. This results in a significant drop of forward motion prediction coded macro
blocks and can be easily detected by setting a threshold.

3 Artificial Neural Networks

Neural networks are computer algorithms inspired by the way information is
processed in the nervous system [11]. An important difference between neural
networks and other AI techniques is their ability to learn. The network "learns" by
adjusting the interconnections between layers. When the network is adequately
trained, it is able to generalize relevant output for a set of input data. A valuable
property of neural, networks is that of generalization, whereby a trained neural
network is able to provide a correct matching in the form of output data for a set of
previously unseen input data.

Learning typically occurs by example through training, where the training
algorithm iteratively adjusts the connection weights (synapses). Backpropagation
(BP) is one of the most famous training algorithms for multilayer perceptrons. BP
is a gradient descent technique to minimize the error E for a particular training
pattern. For adjusting the weight (wy-) from the i-th input unit to the j-th output, in
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the batched mode variant the descent is based on the gradient V£(--—-) for ihe
SwtJ

total training set:

J (1)
The gradient gives the direction of error E. The parameters e and a are the

learning rate and momentum respectively [ 1 ].

4 Proposed Integrated Algorithm

According to the discussion in section 2, it is very clear that the different methods
are robust in different situation. The histogram comparison should be less sensitive
to object motion than the DCT difference comparison algorithm, since it ignores
the spatial change in a frame. But there may be the cases in which two images have
similar histogram but completely different content. Again it is not robust against
lighting change. So, if the different features are combined appropriately, a more
desirable result can be expected. As a method of combining features, there can be a
lot of alternative such as multi-level slicing, minimum distance method or
maximum likelihood method. As another alternative, recently neural networks have
been widely used for these purposes and have been successful in various
applications. Considering these reported results and simplicity of implementation, a
neural network of back error propagation model is adopted for the combination.

Intensity

Histogram
difference

DCT
difference

Input Hidden Hidden Output

Motion Vector
difference

Continuous

Fig. 3: Feed forward Neural network structure for shot detection
Histogram difference, DC component difference and Motion vector difference are

considered as the input of the proposed algorithm



164

A structure of the adopted neural network is shown in Fig. 3. The feed forward
neural network has an input layer of three neurons that correspond to the above
three features, two hidden layers, and an output layer of two neurons that
correspond to the shot boundary and continuous frame respectively.

5 Implementation and Evaluation

The shot detection algorithm proposed here was implemented and applied on a
variety of video materials. For comparison the performance of this method we
considered the histograms, DCT coefficient, motion vector difference method.

For histogram, we computed the 256 level gray scale histogram over the entire
frame using the MATLAB version 6. The difference measure is the sum of the
absolute bin-wise histogram difference that is as

H Aff =
M (2)

Where M is the no of bins of each histogram, H,(m) is the current frame and
H,r\(m) is the next frame.

The DCT coefficient difference method closely resembles the algorithm
described by [3]. As the DC coefficient represents the average intensity of the
block, we only considered the DC component of each block (Sx8 pixels) for
reducing the computational cost and concatenated them to produce a vector. The
difference measure was computed by subtracting the inner product of the vectors of
consecutive frames from one. If the difference exceeded the threshold, declare a
possible shot boundary'.

For motion vector difference method, we computed the magnitude of each block
motion (16x16 pixels) extracted from mpeg encoded video sequences by [5] and
produced a motion vector as in the DCT-based method. Then, comparing the
difference with a threshold as DCT based to und the possible shot change.

To evaluate the efficiency of the proposed integrated method, we used the
objective measure, Recall and Precision as in (3). Recall is the relevant detection
rate from all the relevant items in the image database and Precision represents the
correct detection rate.

Recall = _Cd , , Precision = -^— (3)
Cd + M Cd+F

Where Cd is the number of correct detection, A/ is the number of missed item

ind F is the number of false positive. So a large recall value means that the correct
shot boundaries are not missed very much and a large precision value means that
•elatively few wrong boundaries are declared as a boundary.

Of course these two are interdependent and closely related to threshold values.
The threshold must be assigned so that it can tolerate variations in individual
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frames while still ensuring a desired level of performance. A "tight" threshold
makes it difficult for" imposters1' to be falsely accepted by the systems, but at the
risk of falsely rejecting true transitions. Inversely, a "loose" threshold enables
transition to be accepted consistently, at the risk of falsely accepting "imposters".
In order to achieve high accuracy in video partitioning, an appropriate threshold
must be found. It is really difficult to find an appropriate threshold value manually
in general. So threshold selection is another great problem for the traditional
methods. For automatic selection of threshold, some researchers used the following
relation,

Threshold = 5+aj3, where Sand /?are mean and the standard deviation of the
frame-to-frame differences respectively and a is constant. This is however very
much application dependent, so in our experiments, we evaluated the threshold
according to experimental observation.

Table 1. Performance comparison of different methods with proposed method

Histograms distance method

DCT coefficient distance method

Motion vector difference method

Proposed integrated method

Recall

0.86

0.93

0.93

0.97

Precision

0.74

0.90

0.91

0.93

.-'"S

For our experiment, we consider the different video clips such as movie;
animation and sports contain approximately 5000 frames in total. For training the
soft computing model, we used 80% datasets and remaining 20% datasets were
used for testing purpose. After a trial and error approach we found that the neural
network was giving good generalization performance when we had 2 hidden layers
with 30 neurons each. According to Table 1, the proposed integrated algorithm
shows better performance compare to other considered algorithms.

6 Conclusions

The extraction of the internal structure of the video contents is very important for
the problem of searching and browsing of digital video. In this paper, we propose
an integrated method for detecting abrupt shot boundary using artificial neural
networks. On the contrary to the existing methods, the proposed method based on
neurocomputing, avoids any threshold calculation, which is considered to be one of
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the major problems in existing algorithms. Experimental results showed that the
proposed integrated algorithm is more accurate, in detecting shot boundaries, than
the other traditional approaches.

Incorporating progressive shot boundary detection and other soft computing
models with extended database is on going work.
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Abstract

Noises, in the form of false motion vectors, cannot be
avoided while capturing block motion vectors using block-
based motion estimation techniques. Similar noises are
further introduced when the technique of global motion
compensation is applied to obtain "true" object motion
from video sequences, where both the camera and object
motions are present. We observe that the performance of
the mean and the median filters in removing false motion
vectors, for estimating "true" object motion, is not
satisfactory, especially when the size of the object is
significantly smaller than the scene. In this paper we
introduce a novel filter, named as the Mean-Accumulated-
Thresholded (MAT) filter, in order to capture "true" object
motion vectors from video sequences with or without the
camera motion (zoom and/or pan). Experimental results
on representative standard video sequences are included to
establish the superiority of our filter compared with the
traditional median and mean filters.

1. Introduction

Extracting motion parameters from image sequences
has been a central theme in the areas of computer vision
and image coding. There are many types of motion
estimation algorithm such as pel-recursive [22], block-
matching [8], and optical flow based method [7]. In
general, block-matching algorithm [8] attracted wider
acceptance due to its simplicity, robustness, and lesser
hardware complexity which is already adopted by a large
number of video coding standards (MPEG-1/2 and
H.261/262/263 etc.).

The exhaustive block-matching full-search (FS) [8],
where each candidate block is searched for the closest
match within the entire search region, it generally provides
reasonably good performance with the expense of high
computational time.

Several fast algorithms have already been proposed to
address the above issue. The three-step search algorithm
(3SS) [12], the new three-step search (N3SS) [13], the
four-step search algorithm (4SS) [17], and the cross-

search algorithm [6] are based on the assumption that the
block distortion measure increases as the checking points
move away from the global minima. But this assumption
does not hold true in the real world video sequences [4].
Moreover, search directions of the above algorithms can
be ambiguous and therefore, may converge to local
minima.

In true motion estimation, where object and/or camera
motions are estimated, the FS algorithm tends to pick
many "false" motion vectors even when no object motion
is present in the search region. This is due to the fact that
the distortion of an object in a video frame is. proportional
to its velocity and therefore, as the length of a motion
vector grows so does the block difference error. The FS
algorithm is, therefore, modified in our paper [19] by
introducing distance dependent linear threshold (LT) and
exponential threshold (ET) named as the Modified Full
Search (MFS) algorithm. In this paper we use this MFS
algorithm for estimating true block motions.

Block motion is governed by the movement due to the
camera (pan and/or zoom) referred as global motion,
movement of the objects referred as object motion or
"true" motion, or both. Many motion estimation
techniques ignore this aspect and make no distinction
between the global and the local motion. However,
separating these two classes of motions is significant for
"true" object motion. In case where both the local and the
global motions are present in the video sequences, "true"
object motions (i.e., the local motion), necessary for
object-based video representation, segmentation, and
retrieval, can only be obtained by canceling out the global
motion component from the block motion, known as
global motion compensation.

Once the global motion is compensated from the
estimated block motion, "true" object motion vectors are
clustered in the blocks containing one or more objects. As
the block motion estimation cannot be done with complete
accuracy due to the limitation of block-based estimation
techniques, a number of impulse noises (false motion
vectors) are also likely to be introduced after the above
processing along with the "true" object motion vectors. To
retain only the "true" object motion vectors, we must filter
out these impulse noises from the scene.

-•-s
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Many types of filters have already been proposed and
examined for filtering impulse noises. Among them the
median filter and the mean filter are widely used. While
applied to reduce noises in an image, the median filter
performs better than the mean filter as the mean filter
often blurs the edges [5][21]. The same is not true for
filtering out noises from the motion vectors, especially
when objects are quite small compare to the size of the
scene. In such cases, the median filter tends to remove
significant number of "true" object motion vectors along
the edge of the objects whereas the mean filter reduces the
length of all the motion vectors, including the "true" ones.
To address this issue we develop a new filter, named as
the Mean-Accumulative-Thresholded (MAT) filter, which
is successfully applied to a number of representative
standard video sequences to capture the "true" object
motion vectors.

The remainder of this paper is organized as follows.
Section 2 describes the block motion estimation technique
used in this paper. The parametric global motion
estimation techniques are introduced in Section 3. In
Section 4 the general process of estimating local (object)
motion, including our proposed MAT filter, is discussed.
Some experimental results are included in Section 5.
Section 6 concludes the paper.

2. Block Motion Estimation

In [19], we observed that in true motion estimation, the
FS algorithm tends to pick many "false" motion vectors
even when no object motion is present in the search
region. To address this issue we modified the FS
algorithm (names as the MFS algorithm) by introducing
distance dependent thresholds. The MFS algorithm not
only avoids capturing a large number of "false" motion
vectors but also reduces the search time significantly. In
this paper we use the MFS algorithm for estimating true
block motions.

3. Global Motion Estimation

If there is no local motion in a scene and only the
camera is moving, the dynamics of the resulting video
sequences can be adequately described by only a few
camera operation parameters.

3.1. Motion Model

Techniques for global motion estimation (GME) have
been proposed in [9][18][20]. Most of the GME methods
differ in the parametric model to represent the camera
motion as well as in the technique to estimate the
parameters of the chosen model. Although a complex

model results in a better description of the motion, it also
leads to a greater difficulty in parameter estimation and
higher computational complexity. Conversely, a simple
model is sufficient enough to represent the global motion
of a small video sequence, cspec.ally when the global
motion is primarily used for compensating the camera
motion from the block motion to obtain "true" object
motion.

The conventional block-matching algorithm assumes
that all the pixels in a block have equal displacements, and
thus estimates one motion vector for each block. Let there
be N blocks in a video frame. Lat us assume that the
motion vector of a block is the motion vector of the center
pixel of that block. Let (vx(k), vy(k)) be the measured
motion vector, according to our MFS algorithms explained
in Section 2, of the block k,k~Q,l,...,N-l, whose center
pixel's coordinates are (sx(k), s^{k)) with respect to the
center of the frame.

For global motion estimation, we consider the 4-
parameter motion model depicted in [18] with some
modification. The generalized 4-parameter motion model
for camera zoom and pan is defined as

M (i)

where
ai =zx and 02 =fi(Px,py) 2(a)

ai =zy and at, = ./•> (py, zy) 2(b)
In the above definition, zx and zy are the zoom factors

along the x-axis and y-axis respectively, (px, py) is the pan
vector.

3.2. Motion Parameter Estimation

Now consider the iterative least-square estimation
algorithm for obtaining the optimal values for camera
parameters (at, a2, a3, 04) by using the following criteria:

N-l

nun

N-l

nun vy (k) - a^y (k) - aA

(3)

(4)
1 *=o

By differentiating with respect to the parameters, and
setting the derivatives to zero, we obtain the following
solution as shown in (5,6, 7,8).

(5)
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Since all the blocks are taken into consideration, the

above estimate will be affected by the presence of the
local motion. To eliminate this influence we use the
above procedure iteratively, each time eliminating the
blocks whose motion vectors do not match with the so-far-
estimated global motion fields. As observed in [18], the
iteration converges very quickly in our experiments.

4. Object Motion Estimation

In case where both the local and the global motions are
present in the video sequences, "true" object motions can
only be obtained by canceling out the global motion
component from the block motion, known as global
motion compensation.

Once the global motion parameters for the scene is
calculated according to section 3, the "true" object motion
vector (ox(k), o^k)) of the block k, k = 0, 1,..., A'-l, can be
calculated as:

s* (k) Ja2]

Once the global motion is compensated from the
estimated block motion, "true" object motion vectors are
clustered in the blocks containing one or more objects. As
the block motion estimation cannot be done with complete
accuracy due to the limitation of block-based estimation
techniques, a number of impulse noises are also likely to
be introduced after the above processing along with the
"true" object motion vectors. To retain only the "true"
object motion vectors, we must filter out these impulse
noises from the scene.

Many types of filters have already been proposed and
examined for filtering impulse noises. Among them the

median filter and the mean filter are widely used
[2][5][11][16][21]. The median filter and its variants have
already been applied in many applications for noise
rejection from block motion vectors [l][10][14][23].

4.1. The Mean Filter

The idea of mean filtering is simply to replace each
value with the mean ('average') value of its neighbors,
including itself. This has the effect of smoothing values
that are unrepresentative of their surroundings. Mean
filtering is usually thought of as a convolution filter [24].
Like other convolutions it is based around a kernel,~which
represents the shape and size of the neighborhood to be
sampled when calculating the mean. Often a 3*3 square
kernel is used. Two major characteristics of the mean filter
are:

• A single very unrepresentative value can
significantly affect the mean value of its
neighborhood.

• When the filter neighborhood straddles an edge,
the filter will interpolate new values.

4.2. The Median Filter

Like the mean filter, the median filter considers each
value in turn and looks at its nearby neighbors to decide
whether or not it is representative of its surroundings.
Instead of simply replacing the value with the mean of
neighboring values, it replaces it with the median of those
values. Two major characteristics of the median filter are:

• The median is a more robust average than the
mean and so a single very unrepresentative value
..; a neighborhood will not affect the median value
significantly.

• Since the median value must actually be one of
the values in the neighborhood, the median filter
does not create new unrealistic values when the
filter straddles an edge.

4.3. The Mean-Accumulated-Thresholded (MAT)
Filter

While applied to reduce noises in an image, the median
filter performs better than the mean filter as the mean filter
often blurs the edges [5][21]. The same is not true for
filtering out noises from the motion vectors, especially
when objects are quite small compare to the size of the
scene. In such cases, the median filter tends to remove-
significant number of "true" object motion vectors along
the edge of the objects. If the length of the "true" object
motion vector is of same order of the introduced impulsive
noises after the global motion compensation, a single
iteration of the mean filtering would fail to remove all the
impulsive noises, introduced by the global motion

i :



compensation, even after using a threshold value. To
address this issue we introduce a new filter, named as the
Mean-Accumulated-Thresholded (MAT) filter.

The MAT ill'er has two phases. The first phase of the
MAT filter is basically an iterative "in-place" application
of tht. mean filter. But the major difference lies in how the
"in-place" values are updated. In each iteration, the mean
value is added on top, instead of replacing, the existing
value as follows:

ox(k)
oy(k)

ox(k)

ov(k)
mean

mean ,<*)J (10)

where, meanx(£)and meany (k) are the mean values,

along the *-axis and the y-axis respectively, in the 3x3
neighborhood kernel for all k, k= 0, 1,..., AM.

With the mean and the median filters, even after the
iterative "in-place" application, the length of the updated
motion vectors will never exceed the maximum length of
the original vectors in the neighborhood. But the same is
not true for the MAT filter. Just after a few iterations (as
low as 2), length of the "true" object motion vectors will
be increased significantly, compare to the other vectors,
including the impulses introduced during the global
motion compensation and/or due to the limitations of the
block-based motion estimation.

It is, therefore, highly likely that only the "true" object
motion will be retained if the vectors, with length higher
than a preset threshold, are selected as the last phase of the
MAT filter.

to smooth global motion vectors of video sequences. We
have observed that the performance of these filters in
removing false motion vectors for estimating "true" object
motion is not satisfactory, especially when the size of the
object is significantly smaller than the scene. In this paper
we have introduced a novel filter, named as the Mean-
Accumulated-Thresholded (MAT) filter, in order to
capture "true" object motion vectors from video sequences
with or without the camera motion (zoom and/or pan).
Experimental results on representative standard video
sequences have been included to establish the superiority
of our filter compared with the mean and the median^
filters.

It is worth mentioning that although the MAT filter
increases the length of the original object motion vectors
significantly, it shouW not cause any problem as long as
these vectors are not used for video coding. In case we are
interested in capturing object motion vectors of "normal"
length, it can easily be achieved by normalizing the MAT
filtered vectors.

Although in our definition, the MAT filter uses the
mean filter of 3x3 kernel, rmy other kernel size can also be
used without loosing any generality. No study is done on
the optimal kernel size to be used with the MAT filter. In
future, we also like to explore whether different optimal
kernel sizes exist for different video sequences with
objects of different velocity.
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(<1) (e) (0
Figure 1: (a) Current frame (frame #32 of "Tennis"); (b) Next frame, (frame #33 of the same video sequence); (c) Block motion
vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3x3 kernel; (e) Object
motion vectors using the mean filter of 3x3 kernel; (f) Object motion vectors using the MAT filter.
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(a) (b) (c)

(d) (e) (0
Figure 2: (a) Current frame (frame #99 of "Ballet"); (b) Next frame, (frame #100 of the same video sequence); (c) Block
motion vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3x3 kernel; (e)
Object motion vectors using the mean filter of 3x3 kernel; (f) Object morion vectors using the MAT filter.

(a) (b) (c)

(d) (e) (0
Figure 3: (a) Current frame (frame #15 of "Foreman"); (b) Next frame, (frame #16 of the same video sequence); (c) Block
motion vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3x3 kernel; (e)
Object motion vectors using the mean filter of 3x3 kernel; (f) Object motion vectors using the MAT filter.
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Appendix B

Test Video Sequences

Sequences
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Name

7oZ>/e
Tennis

Football

Flower
Garden

Salesman

No. of
Frames

149

345

150

300

Resolution

SIF
(352x240)

CIF
(360x240)

SIF
(352x240)

CIF
(360x288)

Motion Description

Object translation, camera
zooming and panning.
Note: a shot change at Frame
#90.

General motion pictures with
high motion activity.

Fast panning with high
motion activity.

Head and shoulder type
sequence with very low
object translation with low
motion activity.

B-l

• ' !
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Appendix B Test Video Sequences B-2

Name

Carphone

Miss
America

No. of
Frames

382

150

Resolution

QCIF
(176x144)

QCIF
(176x144)

Motion Description

Fast object translation and
camera panning.

Head and shoulder type
sequence with very low
object translation with low
motion activity.

298
QCIF

(176x144)
Object translation and camera
panning

51
QCIF

(176x144)

Head and shoulder type
sequence with very low
object translation with low
motion activity.

Cycle 413
SIF

(352x240)
Object translation and. camera
panning

! i
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Appendix B Test Video Sequences B-3

Name

Rocket

Son

Ballet

No. of
Frames

50

174

100

Resolution

QCIF
(176x144)

CIF
(352x288)

SIF
(352x240)

Motion Description

Very fast object translation.
• ' •S

Object translation and camera
panning.

Object translation and camera
panning



Appendix C

Supplementary Results for the DTS Algorithm Presented
in Chapter 3

Block-matching
algorithms

FS/LT(0)
LT(2)
LT(4)
LT(6)
LT(8)

LT(10)
LT(12)
LT(14)
LT(16)
LT(18)
LT(20)

TSS
NTSS

Integer-pel

MSE

335.70
335.96
340.67
356.53
380.03
405.82
430.26
451.26
471.12
489.40
505.44
370.32
363.81

PSNR
[dB]

22.94
22.94
22.88
22.68
22.41
22.14
21.89
21.68
21.50
21.34
21.19
22.51
22.59

SP

202.05
123.71
82.57
57.10
41.75
32.55
26.88
23.18
20.51
18.50
16.96
23.11
20.79

Half-pel

MSE

275.76
278.87
281.55
291.67
308.27
327.18
345.45
361.30
376.46
390.73
403.08
309.11
303.35

PSNR
[dB]

23.73
23.68
23.64
23.48
23.24
22.98
22,75
22.55
22.37
22.21
22.08
23.22
23.31

SP

210.05
131.71
90.57
65.10
49.75
40.55
34.88
31.18
28.51
26.50
24.96
31.11
30.79

J f :

Table C.I: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion
vector for the Football sequence (1 -80 frames) with different BMAs.
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Appendix C Supplementary Results for the DTS Algorithm C-2

Block-matching
algorithms

FS/LT(0)
LT(2)
LT(4)
LT(6)
LT(8)

LT{10)
LT(12)
LT(14)
LT(16)
LT(18)
LT(20)

TSS
NTSS

Integer-pel

MSE

126.34
127.25
131.64
138.26
147.59
157.34
166.71
175.16
183.65
191.71
198.84
190.81
159.10

PSNR
[dB]

27.94
27.63
27.48
27.27
26.98
26.69
26.42
26.21
26.00
25.82
25.68
25.32
26.11

SP

197.14
75.68
38.14
26.03
20.35
16.88
14.65
13.30
12.36
11.66
11.14
23.01
20.83

Holf-pel

MSE

102.72
103.14
105.34
109.07
114.64
120.91
127.04
132.08
137.22
142.57
146.61
159.18

j 127.85

PSNR

[#sn
28.01
28.00
27.91
27.75
27.54
27.32
27.09
26.92
26.76
26.59
26.47
26.11
27.06

SP

205.14
83.68
46.14
34.03
28.35
24.88
22.65
21.30
20.36
19.66
19.14
31.01
28.83

I ••!

Table C.2: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion
vector for the Table Tennis sequence (1-80 frames) with different BMAs.

Block-matching
algorithms

FS/LT(0)
LT(2)
LT(4)
LT(6)
LT(8)

LT(10)
LT(12)
LT(14)
LT(16)
LT(18)
LT(20)

TSS
NTSS

Integer-pel

MSE

15.71
15.75
15.99
16.26
16.65
16.85
17.08
17.35
17.57
17.88
18.10
16.40
16.01

PSNR
[dB]

36.17
36.16
36.09
36.02
35.92
35.86
35.81
35.74
35.68
35.61
35.55
35.98
36.09

SP

192.04
29.60
13.27
9.90
8.89
8.49
8.28
8.17
8.10
8.05
8.02

21.89
15.93

Half-pel

MSE

13.30
13.32
13.43
13.59
13.82
13.92

L 14.04
14.17
14.30
14.47
14.62
13.77
13.44

PSNR
[dB]

36.89
36.89
36.85
36.80
36.73
36.70
36.66
36.62
36.58
36.52
36.48
36.74
36.85

SP

200.04
37.6
21,27
17.90
16.89
16.49
16.28
16.17
16.10
16.05
16.02
29.89
23.93

Table C.3: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion
vector for the Salesman sequence (1-80 frames) with different BMAs.



Appendix D

Supplementary Results for the ACDTS and ACDSDTS
Algorithms Presented in Chapter 4

Block-matching
algorithms

ACDTS

ACDSDTS

CL=2
CL=4
CL=6
CL=8

CL=10
CL=12
CL=14
CL=16
CL=18
CL=20
CL=2
CL=4
CL=6
CL=8

CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

FS
TSS

NTSS

MSE

103.23
105.07
108.60
113.56
119.44
125.35
130.03
135.47
140.35
144.21
111.42
112.64
114.67
118.89
123.23
128.93
133.30
137.81
140.70
145.56
102.72
159.18
127.85

PSNR
[dB]

27.99
27.92
27.77
27.58
27.36
27.15
26.99
26.81
26.66
26.54
27.66
27.61
27.54
27.38
27.22
27.03
26.88
26.74
26.65
26.50
28.01
26.11
27.06

SP

82.8
44.97
32.42
26.95
23.81
21.88
20.59
31.09
31.03
18.57
46.92
27.70
21.30
18.50
16.90
15.86
15.22
14.77
14.41
14.14

205.14
30.75
28.83

Table D.I: Average MSE and PSNR per pixel, and average search points
(SP) per motion vector comparison of different BMAs for the
Table Tennis sequence (1-80 frames).
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Appendix D Supplementary Results for ACDTS and ACDSDTS Algorithms D-2

PI

Block-matching
algorithms

ACDTS

ACDSDTS

CL=2
Q=4

[_CL=6
CL=8

CL=10
CL=12
CL=14
CL=16
CL=18
CL=20
CL=2
CL=4
O=6
O=8
CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

FS
TSS

NTSS

MSE

13.30
13.39
13.52
13.67
13.75
13.85
13.94
14.06
14.18
14.26
13.42
13.47
13.56
13.65
13.78
13.91
13.97
14.10
14.27
14.46
13.30
13.77
13.44

PSNR
[dB]

36.89
36.86
36.82
36.77
36.75
36.72
36.69
36.65
36.61
36.59
36.85
36.84
36.81
36.78
36.74
36.70
36.68
36.64
36.59
36.53
36.89
36.74
36.85

SP

37.62
21.25
17.87
16.86
16.46
16.25
16.15
16.09
16.04
16.02
23.67
15.29
13.56
13.05
12.84
12.73
12.68
12.65
12.62
12.61

200.04
29.89
23.93

Table D.2: Average MSE and PSNR per pixel, and search points (SP) per
motion vector comparison of different BMAs for the Salesman
sequence (1-80 frames).
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Appendix D Supplementary Results for ACDTS and ACDSDTS Algorithms D-3

Block-matching
algorithms

ACDTS

ACDSDTS

CL=2
CL=4
CL=6
CL=8

CL=10
CL=12
CL=14
CL=16
CL=18
CL=20
CL=2
CL=4
CL=6
CL=8

CL=10
CL=12
CL=14
CL=16
CL=18
CL=20

FS
TSS

NTSS

MSE

3.159
3.158
3.155
3.155
3.155
3.155
3.155
3.155
3.155
3.155
3.163
3.161
3.162
3.159
3.160
3.160
3.160
3.160
3.160
3.160
3.150
3.170
3.158

PSNR
[dB]

43.135
43.137
43.141
43.141
43.141
43.141
43.141
43.141
43.141
43.141
43.130
43.133
43.131
43.135
43.134
43.134
43.134
43.134
43.134
43.134
43.152
43.123
43.135

SP

22.63
17.04
15.93
15.54
15.33
15.28
15.26
15.25
15.25
15.25
16.03
13.20
12.63
12.43
12.33
12.30
12.29
12.28
12.28
12.28

176.21
27.67
23.14

Table D.3: Average MSE and PSNR per pixel, and average search points
(SP) per motion vector comparison of different BMAs for the
Miss America sequence (1-80 frames).
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Appendix £

Supplementary Results for the FADTS Algorithm
Presented in Chapter 5

s
i

i

Table Tennis

Target
Speed (SP)

16
20
25
30

Actual
SP

15.54
19.42
24.94
29.97

Actual Error
MSE

95.05

85.04
82.56
81.59

Salesman

Target
Speed (SP)

16
20
25
30

Actual
SP

15.61
19.75
23.74
30.22

Actual MSE

12.96

12.95
12.95
12.92

Table E.I: Search speed adaptation for Table Tennis and Salesman video sequence (149 and 300
frames respectively).

I
I

I

E-l 'Si

if



T
Appendix E Supplementary Results for FADTS Algorithm E-2

U

o

50 100
Frame number

(a)

150

25\r

15

(X

1
6

10

0

50 100
Frame number

150

(b)

15050 100 150 0 50 100

Frame number Frame numbvV
(c) (d)

Fig. E.I: Threshold control parameter adaptation for the Table Tennis sequence with (a) 16, (b)
20, (c) 25, and (d) 30 average search points (SP) per motion vector.



Appendix E Supplementary Results for FADTS Algorithm E-3

50 100 150 200
Frame number

(a)

250 300 50 100 150 200
Frame number

250 300

(b)

50 100 150 200 250

Frame number
300 50 100 150 200 250 300

Frame number
(c) (d)

Fig. E.2: Threshold control parameter adaptation for the Salesman sequence with (a) 16, (b) 20,
(c) 25, and (d) 30 average search points (SP) oer motion vector.
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Appendix F

Supplementary Results of the DTS and MAT Filter
Presented in Chapter 6

No. of
iterations

0

1

2

3

4

5

FS
True
MV
%

90.0
73.3
46.7
30.0
16.7
13.3
46.7
33.3
23.3
16.7
13.3
13.3
60.0
50.0
40.0
26.7
26.7
16.7
63.3
60.0
46.7
40.0
26.7
26.7
63.3
53.3
50.0
43.3
40.0
36.7
63.3

56.7
50.0

46.7

43.3
43.3

False
MV

L %
20.3
7.0
4.0

L L 3

0.3
0.0
3.7
2.0
1.0
0.7
0.3
0.0
3.7
3.0
1.7
1.0
0.3
0.3
3.0
2.7
2.0
0.7
0.3
0.0
2.0
1.7
1.3
0.3
0.3
0.0
2.0

1.3

.1.0
0.3

0.3

0.0

Tf

1.0
2.0
3.0
4.0
5.0
6.0
6.0
7.0
6.0
7.0

NTSS

True
MV
%
33.3
20.0
16.7
13.3
6.7
0.0

46.7
36.7
26.7
16.7

8.0 16.7
9.G
7.0
8.0
9.0

10.0
11.0
12.0
15.0
16.5
17.0
18.5
19.0
19.5
21.5
22.0
22.5
23.0
23.5
24.0
52.0

54.0
56.0

58.0

60.0

62.0

13.3
56.7
46.7
43.3
26.7
23.3
16.7
83.3
76.7
66.7
56.7
56.7
50.0
83.3
80.0
80.0
66.7
60.0
56.7
86.7

83.3

80.0

80.0
73.3
66.7

False
MV
%

4.0
2.7
2.3
1.3
0.7
0.0
3.0
2.7
2.3
1.3
0.3
0.0
2.3
2.0
1.3
0.7
0.3
0.0
8.3
3.0
2.0
1.7
0.7
0.0
8.3
5.0
3.3
1.0
0.3
0.0

10.0

7.7

4.7

3.0
1.7

0.3

Tf

4.0
5.0
6.0
7.0
8.0
9.0
5.0
6.0
7.0
8.0
9.0

10.0
8.0
9.0

10.0
11.0
12.0
13.0
9.0

10.5
12.0
13.5
15.0
16.5
16.0
18.0
20.0
22.0
24.0
26.0
27.0

30.0
33.0

36.0

39.0

42.0

TSS
True
MV
%

33.3
20.0
13.3
6.7
3.3
0.0

43.3
36.7
26.7
16.7
10.0
6.7

43.3
36.7
26.7
20.0
13.3
10.0
50.0
43.3
30.0
23.3
16.7
10.0
66.7
60.0
46.7
40.0
26.7
23.3
70.0

66.7
53.3

36.7

36.7

30.0

False
MV
%

8.1
6.3
6.3
7.1

14.3
0.0

34.3
27.7
19.3
12.7
5.7

l_ 3.3
20.7
15.7
13.3
10.7
6.3
3.7

;7.0
14.3
11.0
8.0
4.7
1.7
8.0
6.3
4.7
2.7
1.3
0.7
6.0

4.0
3.3

1.7

1.0
0.7

Tf

4.0
5.0
6.0
7.0
8.0
9.0
5.0
6.0
7.0
8.0
9.0

10.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.5
18.0
19.5
21.0
22.5
34.0
36.0
38.0
40.0
42.0
44.0
.60.0

61.0
62.0

63.0

64.0

65.0

DTS

True
MV
%

90.0
73.3
46.7
30.0
16.7
13.3

100.0
86.7
76.7
63.3
46.7
40.0
90.0
76.7
76.7
63.3
56.7
46.7
86.7
80.0
80.0
73.3
70.0
63.3

100.0
93.3
86.7
86.7
80.0
80.0
86.7

86.7

80.0

80.0

80.0
83.3

False
MV
%
20.3

7.0
4.0
1.7
0.3
0.0

37.0
7.3
5.3
3.3
1.7
0.0
4.7
3.0
2.3
1.0
0.3
0.0
5.3
2.0
1.0
1.0
0.3
0.0

11.3
8.7
6.3
4.7
1.3
0.0
6.0

4.0
2.7

1.3
0.7

0.0

Tf

1.0
2.0
3.0
4.0
5.0
6.0
1.0
2.0
3.0
4.0
5.0
6.0
4.0
5.0
6.0
7.0
8.0
9.0
8.0
9.0

10.0
11.0
12.0
13.0
10.0
12.0
14.0
16.0
18.0
20.0
27.5

30.0

32.5
35.0

37.5

40.0

Table F.I: Performance comparison of the DTS algorithm with and/without the MAT filter in
capturing true object motion vectors for the Table Tennis (frames #32 and #33) video
sequence.
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Appendix F Supplementary Results DTS and MAT Filter F-2

(a) (b)
Fig. F.I: (a) Current Frame #8 in which X indicates the moving macroblocks; and (b) Reference frame

#9 of the Foreman sequence.

(a)FS (b)TSS

(c) NTSS (d) DTS

Fig. F.2: Motion vector obtained from all four search algorithms applied to the frame pair shown in
Fig. F.I for the Foreman sequence.
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Appendix F Supplementarj' Results DTS and MAT Filter F-3

No. of
iterations

0

1

2

3

4

5

FS
True
MV
%
21.7
4.3
4.3
4.3
4.3
0.0

23.9
21.7
13.0
8.7
4.3
0.0

15.2
8.7
8.7
6.5
4.3
0.0

37.0
37.0
37.0
37.0
37.0
32.6
76.1
76.1
76.1
76.1
73.9
73.9
78.3
78.3

78.3

78.3

76.1

76.1

False
MV
%
15.1
13.2
13.2
13.2
13.2
11.3
11.3
11.3
11.3
11.3
11.3
11.3
3.8
3.8
3.8
1.9
1.9
1.9
1.9
1.9
1.9
.9

1.9
0.0
5.7
3.8
1.9
1.9
1.9
0.0
1.9
1.9
1.9
1.9
1.9
0.0

Tf

2.2
2.4
2.6
2.8
3.0
3.2
3.2
3.4
3.6
3.8
4.0
4.2
6.6
6.8
7.0
7.2
7.4
7.6
9.2
9.4
9.6
9.8

10.0
10.2
8.5
9.0
9.5

10.0
10.5
11.0
15.5

16.0
16.5

17.0

17.5
18.0

NTSS
True
MV
%
2.2
2.2
2.2
2.2
2.2
0.0
2.2
2.2
2.2
2.2
2.2
2.2

19.6
17.4
17.4
15.2
13.0
10.9
71.7
67.4
65.2
63.0
58.7
56.5
82.6
82.6
80.4
80.4
78.3
76.1
82.6

82.6

82.6

80.4

80.4

78.3

False
MV
%

3.8
3.8
3.8
1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9
0.0
1.9
1.9
1.9
1.9
1.9
0.0
1.9
1.9
1.9
1.9
1.9
0.0
5.7
5.7
3.8
3.8
1.9
0.0
5.7
5.7
5.7
3.8
1.9
0.0

Tf

5.2
5.4
5.6
5.8
6.0
6.2
6.2
6.4
6.6
6.8
7.0
7.2
6.2
6,4
6.6
6.8
7.0
7.2
7.3
7.6
7.9
8.2
8.5
8.8
8.4
8.7
9.0
9.3
9.6
9.9

14.0

14.5

15.0

15.5
16.0

16.5

TSS
True
MV
%

22
2.2
2.2
2.2
2.2
0.0
2.2
2.2
2.2
2.2
2.2
0.0
4.3
4.3
4.3
4.3
2.2
0.0

13.0
13.0
4.3
2.2
2.2
0.0

21.7
19.6
17.4
15.2
13.0
6.5

56.5

52.2

50.0

43.5

43.5
41.3

False
MV
%

5.7
5.7
5.7
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
5.7
3.8
3.8
1.9
1.9
1.9
[.9
[.9
1.9
[.9
.9

1.9
1.9
1.9
1.9
1.9
1.9
0.0
1.9
1.9
1.9
1.9
1.9
0.0

Tf

4.8
5.0
5.2
5.4
5.6
5.8
4.8
5.0
5.2
5.4
5.6
5.8
7.8
8.0
8.2
8.4
8.6
8.8

13.0
13.5
14.0
14.5
15.0
15.5
21.0
22.0
23.0
24.0
25.0
26.0
27.0

28.5

30.0

31.5

33.0
34.5

DTS
True
MV
%
15.2
15.2
15.2
8.7
4.3
0.0

34.8
23.9
21.7
17.4
13.0
10.9
69.6
63.0
58.7
50.0
43.5
39.1
80.4
80.4
78.3
78.3
71.7
69.6
82.6
80.4
80.4
80.4
78.3
78.3
80.4

80.4

80.4

80.4

80.4

80.4

False
MV
%

5.7
5.7
5.7
3.8
3.8
1.9
5.7
5.7
5.7
5.7
1.9
0.0
7.5
3.8
1.9
1.9
1.9
0.0
9.4
7.5
5.7
1.9
1.9
0.0
9.4
7.5
5.7
3.8
1.9
0.0
3.8
3.8
3.8
3.8
1.9
0.0

Tf

1.8
2.0
2.2
2.4
2.6
2.8
2.2
2.4
2.6
2.8
3.0
3.2
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
6.8
7.0
7.2
7.4
7.6
7.8

12.2
12.4

12.6

12.8

13.0
13.2

Table F.2: Performance comparison of the DTS algorithm with and without the MAT filter in
capturing true object motion vectors for the Foreman (frames #8 and #9) video
sequence.
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Appendix F Supplementary Results DTS and MAT Filter F-4

16 32 48 64 SO 96 1

(a) (b)
Fig. F.3: (a) Current Frame #1 in which X indicates the moving macroblocks; and (b) Reference frame

#2 of the Rocket sequence.

(a)FS (b) TSS

(c)NTSS (d) DTS

Fig. F.4: Motion vectors obtained from all four search algorithms applied to the frame pair shown in
Fig. F.3 for the Rocket sequence.



Appendix F Supplementary Resu Its DTS and MAT Filter F-5

No. of
iterations

0

1

2

3

FS
True
MV
%

69.2
7.7
3.8
3.8
3.8
0.0

69.2
65.4
57.7
53.8
46.2
30.8
65.4
65.4
61.5
57.7
57.7
57.7
57.7

57.7
57.7

57.7

57.7

57.7

False
MV
%

34.1
9.1
4.5
4.5
4.5
2.3

13.6
6.8

L 6.8
2.3
2.3
0.0
6.8
6.8
4.5
4.5
2.3
0.0
6.8
6.8
4.5

2.3
2.3

0.0

Tf

7.0
7.5
8.0
8.5
9.0
9.5

10.5
11.0
11.5
12.0
12.5
13.0
18.5
19.0
19.5
20.0
20.5
21.0
32.0

33.0
34.0

35.0

36.0

37.0

NTSS
True
MV
%
46.2

7.7
3.8
3.8
3.8
0.0

38.5
30.8
30.8
19.2
15.4
3.8

50.0
50.0
50.0
46.2
34.6
34.6
50.0
50.0
50.0

46.2

42.3
34.6

False
MV
%

27.3
4.5
2.3
2.3
2.3
2.3
6.8
2.3
2.3
2.3
2.3
0.0
9.1
6.8
6.8
2.3
2.3
0.0
2.3

2.3

2.3

2.3
2.3

0.0

Tf

7.0
7.5
8.0
8.5
9.0
9.5

10.5
11.0
11.5
12.0
12.5
13.0
16.0
16.5
17.0
17.5
18.0
18.5
29.0

30.0

31.0
32.0

33.0

34.0

TSS
True
MV
%

53.8
7.7
3.8
3.8
3.8
0.0

42.3
42.3
30.8
23.1
15.4
7.7

53.8
53.8
50.0
42.3
42.3
34.6
50.0

50.0
50.0

38.5

38.5
34.6

False
MV
%

29.5
4.5
2.3
2.3
2.3
2.3
9.1
2.3
2.3
2.3
2.3
0.0

11.4
4.5
4.5
2.3
2.3
0.0
2.3

2.3
2.3

2.3

2.3

0.0

Tf

7.0
7.5
8.0
8.5
9.0
9.5
6.5
7.0
7.5
8.0
8.5
9.0

13.0
13.5
14.0
14.5
15.0
15.5
32.0

33.0
34.0

35.0

36.0

37.0

DTS
True
MV
%

100.0
92.3
92.3
92.3
84.6
80.8
92.3
92.3
92.3
92.3
92.3
88.5
73.1
73.1
73.1
73.1
73.1
73.1
73.1

73.1
73.1

73.1

73.1

73.1

False
MV
%

61.4
36.4
36.4
11.4
9.1
0.0

18.2
4.5
2.3
2.3
2.3
0.0
2.3
2.3
2.3
2.3
2.3
0.0
2.3

2.3

2.3
2.3

2.3

0.0

Tf

1.0
1.5
2.0
2.5
3.0
3.5
3.0
3.5
4.0
4.5
5.0
5.5
8.5
9.0
9.5

10.0
10.5
11.0
19.5

20.0
20.5

21.0
21.5

22.0

,3
i

I

Table F.3: Performance comparison of the DTS algorithm with and/without the MAT filter in
capturing true object motion vectors for the Rocket (frames #1 and #2) video sequence.
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