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Abstract

Motion estimation is an important issue in the field of video and image processing. In video
compression, it is often combined with motion compensation to exploit the spatio-temporal
correlation of video sequences along the motion trajectory. In video coding, block-matching
algorithms (BMA) are used for motion estimation, with the full search (FS) method
guarantéeing optimal performance in terms of minimum prediction ervor and hence, picture
quality, though at the expense of a high computational overhead. Many sub-optimal,
directionally-based fast searching techniques have been proposed to reduce this computation
cost; however, they are generally based on assumptions about the video sequence that are often
either inaccurate or inappropriate. Performance is thus very dependent on the motion content
within the sequence. As yet, there is no unified fast searching approach that provides sufficient
flexibility to be able to automatically adapt system parameters, in relation to a particular
application, or a preset user-defined picture quality or computational complexity.

The research presented in this thesis details the development of an application-independent,
non-directional, block-based motion estimatiun system, which provides such flexibility for
video coding applications; The fully adaptive motion estimation framework guarantees any
level of quality of service (QoS) in terms of prediction quality and processing speed. The
approach has, as its basis, the innovative concept of a Distance-dependent Thresholding Search
(DTS) which exploits statistical analysis of the distortion characteristics of real world video
sequences. A full qualitative and quantitative evaluation of the system is provided, together with
a computation complexity analysis of the various constituent algorithms. A comparison with
other fast directionally-based search algorithms is also presented.

The flexibility of the DTS algerithm is underscored by exploiting its non-directional
characteristics to provide significant improved estimates of block-based srue object motion in
object-based video analysis applications. A special filter called the Mean Accumulated
Thresholded (MAT) filter has been designed specifically to eliminate spurious motion vectors
introduced as a result of the limitations of conventional block-based motion estimation methods.
Integration of this filter with the proposed motion estimation algorithm demonstrates that it is a

very powerful tool for block-based frue object motion estimation applications.
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MAE
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MSD
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Nomenclature

Symbols Denotation
b Number of bits in gray level image intensity.
C Threshold control parameter.
Cq The number of correct shot detections.
Cr Exponential threshold control parameter,
C, Linear threshold control parameter.
Cr. Initia! value of threshold control parameter C, for each shot of a

video sequence calculated from first three frames.

Cy Maximum value of threshold control parameter C; used in the
adaptation process in the FADTS algorithm.

Cr,. Minimum value of threshold control parameter C; used in the

adaptation process in the FADTS algorithm.

Complx,z The computational complexity in motion vector calculation of a
macroblock.

Complx, The computational complexity in evaluating one pixel match
between current and candidate macroblocks.

d Maximum displacément of a macroblock between the current and
reference frames.

Do The displacement between motion vectors of a current block and
its neighbouring biocks.

el The error signal between target and actual output at iteration m.

ET(Cg) Exponential thresholding function with control parameter Cj.

F Camera focal length.

F, ‘ Camera focal length after zooming.

Fy * Camera focal length before zooming.

F(ip) Intensity of pixel with coordinate (¢,7) in frame n.

F, The number of false positives.
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Symbols

Denotation

LT(Cy)
MAE, ,(u,v)

MSE,, _

MSE,

L}

MSE, ,(u,v)
MY, predicred

MV(u,v)

[N, N]
[Nh’ M’]

Pexey

R

SD,

S8,

Sk

Sk,

Ty
Threshold(z,C)
Threshold(t,C.)
Threshold(z,C,)
Touriuise)

T,

oul{ SP}

Vim'f

Linear thresholding function with control parameter Cp

Mean absolute error between current and candidate macroblocks

with upper left coordinate (k,/) and displacement (u,v).

Maximum prediction error in terms of MSE for C,_ .

Minimum prediction error in terms of MSE for C, .

Mean square error between current and candidate macroblocks

with upper left coordinate (£,/) and displacement (u.v).

Motion vector for the current block predicted
neighbouring blocks’ motion veciors.

Motion vector with x and y components (u,v).
Macroblock size.

Frame size.

Search centre of a search space.

from the

The number of operations required in predicting the search centre

for the current block from the neighbouring blocks.

Search diamonds with index 7,

Search squares with index 7.

Maximum search speed with threshold control parameter C,_ .

Minimum search speed with threshold control parameter C, .

False motion vector elimination threshold.

Parametric threshold function.
Parametric exponential threshold function.

Parametric linear threshold function.

Target prediction quality in terms of average MSE.

Target search speed in terms of number of search points (SP).

The initial search window’s centre from the origin of the current

block.




viii

Symbols Denotation
I}‘m Mean motion vector.
7, Initial search centre in ACDTS and ACDSDTS algorithms.
< Number of macroblocks go in the search prowess per second.
Q Number of operations required for BDM calculation at each
search point.
A Step size without normalization. ;
i Step size with normalization.
T Search square or diamond index in the search space. 1
& Total number of operations required in the first iteration for 4
calculating the camera parameters for each macroblock.
W Number of operations required per second for the FS algorithm
with integer-pel accuracy.
R Kemnel size used in the MAT filter.
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Chapter 1

Introduction

1.1 Background: Motion Estimation

Video sequences are much richer source of visual information than still image because of the
representation of motion. While a single image provides a snapshot of a scene, a sequence of
images (widely termed as frames) will register the dynamics within it. The registered motion is
a very strong cue which allows human vision to recognise objects as soon as they move, even if
they are inconspicuous when still. Motien is, therefore, the most obvious and effective feature
in providing global and local understanding as well as describing the dynamic content within a
video sequence. In Fig. 1.1, a reference frame, (n-1), shows an object on a white background.
The following frame, n (called the current frame), shows the same object but in a different.
position. The offset between these two positions is called the motion vector (MV), which
defines how to move the object in the reference frame to its new position in the current frame.
The motion vector can be estimated for either each pixel, or for a block of pixels (block-based),

in a given frame.

Motion vector

Current frame, (n)

Reference frame, (#-1)
Fig. 1.1: Representation of the motion vector.

Motion is primarily governed by movement due to the camera being used (pan and/or
zoom), referred to as global motion and movement of objects referred to as either local or true
object motion, or both. Fig. 1.2 shows the motion vector (block-based) needle diagram for
frame n with respect to frame n-1, where n = 32 in the Tuble Tennis sequence, one of the

standard video sequences used throughout this research, and whose parameters are detailed in
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Appendix B. It is clear that the only moving objects are the bat, ball, and the player’s hand. It is
also obvious that besides the movement of these objects, there is widespread motion across the
frame, which indicates the camera zooming out, with some panning as well. This motion does
not depend on any particular object movement and is global over the entire frame; it is therefore
referred to as global (camera) motion, as shown in Fig. 1.3(a). Fig. 1.3(b) shows frue object
motion, after camera motion cancellation of the aforementioned three moving objects, based on
their velocities and directions. The overall motion, if both object and camera motion is present,

is the vector sum of the frue object and global motion components.

|

(a) Global motion. (b) True object motion.

Fig 1.3: Block motion for (a) camera and (b) objects.

The extraction of motion information from sequences of time-varying images has numerous
applications in a wide range of areas especially computer vision [8] and image processing. - . -f;_‘
Some of the current applications are: - -
» Video compression. Perhaps the most important application of motion is in video data _ ':;
compression [9-13]. In the evolving digital technology era, video compression has "

become an integral part of multimedia applications for both communication and

entertainment purposes. In video compression, motion information is used to reduce
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inter-frame redundancy; instead of coding every new frame in isolation, references
are sought from previously coded frames.

*  Multimedia systems: Another important application of motion is where the
information is used to characterise video clips for automated indexing and retrieval
from large databases [14-24].

s Mobile robotics: Motion analysis plays an important role in mobile robotics {25, 26]
by aiding navigation, obstacle detection and avoidance, and tracking of moving
objects.

o Satellite imagery: In this area, motion analysis is used to measure cloud movements
and establish wind maps for weather prediction [27].

* Biomedical applications: In this area for example, motion can be used to monitor
movement Datterns of the heart using Magnetic Resonance (MR) imagery [28-30}, or
to enhance and interpret ulrasound scans.

¢ Surveillance: This includes applications for urban and road traffic monitoring, and
protection of sites from intrasion [31].

e Image restoration and enharicement. In this area, motion apalysis can be exploited to
remove telecine flicker or motion blur from old movies [32, 33].

As the diversity of these applications indicate, motion estimation (ME) has been the focus
of extensive research over many years [34-37], and this is reflected in the plethora of motion
estimation and analysis techniques that have been proposed. Existing motion estimation
techniques may be broadly classified into three distinct classes: -

1. Gradient-based [34, 37-40],
2. Pel (pixel)-recursive [41-43],
3. Block-based [36, 44-54].

These are discussed below:

1.1.1 Gradient-based Motion Estimation

Pixel-based motion estimation is a gradient-based method [34, 37-40] which focuses on
estimating the apparent motion of intensity patterns in a video sequence, known as optical flow,
and is based on two assumptions. First, that the t 1ess of an object stays constant over time.
This assumption is called the data constancy constraint [40]. Second, that pixels in a given
small image neighbourhood are likely to correspond to points on the same 3-dimensional (3-D)
surface, the so-cailed spatial coherence assumption. Since the projected motion of points on a 3-
D surface usually varies gradually, a correspondence of this assumption is to impose a

smoothness constraint on the optical flow.
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The data constancy constraint assumes that any observable change in image intensity over
time is due only to camera and object movement., This constraint has been formulated as a
single differential equation in terms of the partial derivative of the image intensity function,
known as the optical flow equation (OFE). Since the optical flow at each image point is 2-
dimensional (2-D), it contains two variables. Thus, to fully constrain the equation, the spatial
coherence assumption is used, either locally, by requiring that the optical flow over some
arbitrary small region is constant {38], or globally, by minimising the total pixel-to-pixel
variation of the cstimated motion vector [37). As these techniques generate a velocity vector for
each pixel in the image, they generate a dense motion field, which is useful in computer vision
tasks where a large set of motion vectors are often required. However, these techniques have the
following drawbacks: -

1. They require estimation of spatial and temporal gradients, and this is often noise
sensitive.

2. The intensity derivatives are numerically approximated. This requires local spatio-
temporal linearity of intensity, In image sequences with high motimi, local linearity is
vielated [55].

3. OFE is ambiguous in relation to the projected motion; that motion can only be

" defined in a direction perpendicular to a gradient means that the gradient-based

methods suffer from aperture problems [37, 56].

From a videe coding perspective, there are also two other fundamenta] drawbacks:-
4. The smoothness constraint leads to an increased prediction error energy.
5. A dense motion field requires a large information overhead.
For these various reasons, gradient-based techniques for motion estimation will not be

considered any further in this thesis.

1.1.2 Pel-Recursive Motion Estimation

Pel-recursive methods [41-43] can be considered as a subset of gradient-based methods, and
have been developed for image-sequence coding. They obtain a dense optical flow by raster
scanning, that is, they start the estimation at the top-left pixel and end at the bottom-right pixel.
The luminance of pixel x in the current image is predicted from the reference image by means
of the correspondence vector found at the previous pixel in the current image, by recursively
minimising certain prediction error criteria, commonly known as the Block Distortion Measure
(BDM). It is assumed that the previous vector is a good estimator of the new vector and thus,

only small changzs are allowed between the two vectors. The advantages of these methods are: -
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1. As the update of the motion vector is only based on previously transmitted data
(causality), the decoder is able to estimate the same motion field as is usually
estimated by the encoder, so requiring no motion information overhead {57].

2. The regular structure and causality of these methods allows for efficient
implementation in hardware.

There are however, a number of disadvantages when applying these methods to video
compression applications: -

1. The first of «::2 above advantages is obtained at a cost of increased complexity at the
decoder, as the encoder has to also estimate the motion field {57].

2. The causality constrains these algorithms and reduces their prediction capability
compare with non-causal methods.

3. As the error function for minimising generally contains many local minima, the
iterative procedure may converge to local, rather than global minima. In particular,
these algorithms are very sensitive to noise.

4. Large displacements and discontinuities in the motion field cannot be efficiently
processed.

5." The pel-recursive motion estimation technique (with recursion on pel) is not
compatible with transform coding of BDM, as, in this case, the decoder is unable to
reconstruct the motion vector.

Due to these limitations, pel-recursive techniques will not be considered any further in this
thesis. To address the shortcomings of both the gradient-based and pel-recursive methods, the
obvious alternative is to consider a block of pixels, rather than estimating motion on a pixel-by-
pixel basis. The superiority of block-matching algorithms for motion estimation in video coding

applications will now be examined.

1.1.3 Block-based Motion Estimation

Block-based methods‘ represent, in certain respects, an opposite philosophy from the previously
discussed gradient-based estimation techniques because larger analysis windows are used to
avoid some of the problems identified in previous sections. Besides the data constancy
constraint, these methods also assume that objects move in a translation movement for, at least,
a few frames. Based on this assumption, the idea in block-matching algorithms is that the image
sequence should consist of a set of regions each undergoing a single motion between frames.
Each frame is then divided into a set of non-overlapped, equally spaced, fixed size, small
rectangular blocks called macroblocks, and the translation motion within each block is assumed

to be uniform. The motion vector of each block is then found by searching for the
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corresponding blocks in the reference frame by minimising certain matching criteria between
the gray levels, such as the mean absolute error (MAE). Such block-based motion estimation
methods are popularly termed block-matching algorithms (BMAs).

BMAs have a number of advantages compared to other techniques: -

1. They are very simple, straightforward, and yet very efficient.

2. Their regular structure and causality allow for efficient implementation.

3. They are less sensitive to aperture problems since, with a suitable block size, each
block is likely to contain several image gradients. In general, block-matching
methods will also be less sensitive to noise since more image data is used in the
motion estimation process.

4. They outperform other methods in capturing #rwe motion in high motion video
sequences [57].

5. Atthough the simple BMA model considers translation motion only, other types of
motion, such as rotation and zooming of large objects, may be closely approximated
by the piecewise translation of these small blocks, provided the biocks are small. This
important observation, originaily made by Jain ef al. [36), has been frequently
confirmed [58].

These advantages are counterbalanced by two key limitations: -

1. During motion estimation, a singie motion vector is considered for all pixels within
one block and the motion vectors of partitioned blocks are estimated independently of
each other, leading to picture artifacts.

2. The fixed block size also imposes a limit on the accuracy of the estimated motion
field since the regions are unable to adapt to the underlying image data.

To address these shortcomings, one extension to the basic block-matching algorithm is to
consider sub-pel (half-pel or quarter-pel) accuracy in motion estimation which leads to a
significant improvement when compared to integer pel accuracy (59]. The half-pel approach is
detailed in Chapter 2 and is used throughout the thesis for all experimental results in video
coding applications.

From this discussion, it can be concluded that among all different motion estimation
techniques, the BMA is the most effective, especially from a video coding point of view, and
for this reason has been adopted by all the internationai video coding standards, including
MPEG-1/2 [9, 10] and H.261/263 [11, 12]. Recently, block-matching techniques for motion
estimation have been exploited for their simplicity and ease of implementation in many other
video processing applications including video object segmentation for object based video

coding [60-62], video object segmentation, detection and tracking for content bascd indexing,
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querying, browsing, and searchihg of video objects [17-24]. Two of these areas of application
are further explored below.

Block Motion for Video Coding

Video coding techniques take advantage of data redundancies in order to reduce the bit-
rate/bandwidth needed to represent visual information. There are many methods of compressing
video data but most follow a common structure which incorporates two types of compression:
intraframe and interframe coding. The former exploits the spatial characteristics of a single
video frame while the latter exploits the temporal characteristics between two or more
neighbouring video frames.

Among the different intraframe coding techniques, predictive, transform, subband wavelet,
and second generation coding [63] are the most popular. Interframe coding can be considered as
a particular case of predictive coding where the prediction is based on pixel values from the
reference frames. For instaace, in the portion of a scene with very low motion, pixels can be
precisely predicted from the pixel at the same location in the reference frame, However, this is
not valid in scenes with high motion. In this case, pixels in the reference frames spatially
displaced by the appropriate vector are more efficient for prediction. This is known as motion
compensated prediction. The difficulty of this approach lies in estimating accurately the motion
between two frames, which is the sole aim of motion estimation (ME), often referred to as
motion compensation (MC). In any ceding strategy based on this principle, the motion
compensated prediction error (residual error) as well as the motion vectors are transmitted,
instead of the frame itself.

There have been numerous contributions in the literature that aim to estimate block motion
vectors for video coding applications. A comprehensive review is provided in Chapter 2.
Among existing techniques, the full search (FS) algorithm [36] is a brute force BMA method
which searches all possible locations inside the search window and produces an optimal
solution in terms of predictibn quality. If the performance in terms of BDM is the only criterion,
FS is obviously the best and simplest approach to use. However, its high computational
complexity often makes it unsuitable for real-time implementation. This has led to the
development of fast BMAs such as the 2-D logarithmic search [36], three-step search (TSS)
[44], new three-step search (NTSS) [45], four-step search (FSS) [46], advanced centre biased
search [47), cross-search [48), prediction search algorithm [49), orthogonal search algorithm
(503, simple and efficient search [51], block-based gradient descent search algorithm [52], and
diamond search [53). All these fast BMAs have been based on a unimodal error surface

assumption (UESA) which implies that the BDM increases monotonically as the search point
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moves away from the global minimum. These algorithms perform well only if this assumption
is upheld. There have also been a number of methods developed using pixel subsampling [54,
64, 65]) and spatio-tempoeral correlation [49, 66-68]. The aim of these particular motion
estimation algorithms is to reduce the computational cost of FS aigorithm in terms of either the
number of operations, by considering a subset of pixels instead of all pixels during the BDM
calsulation, or reducing the number of search points by predicting the starting centre of the
neighbovring block’s motion vectors. Although the error performance of these algorithms is
compar: ble to the FS algorithm, the computational cost is also higher compared with other fast
algorithine. All these existing fast algorithms, however, have some inherent limitations: -

1. s to the highly non-stationary characteristics of the video signal, the wnimodal
error surface assumption is generally invalid for many video sequences. Moreover,
the search direction of fast algorithms can be ambiguous, leading to the motion
vectors becoming enirapped in a2 Jocal minimum, with a resulting degradation in
predictive performance.

2. Most fast algorithms are application and/or system dependent. For example,
elgorithms such as NTSS and FSS are intended and optimised for low bit-rate video
coding aﬁplications (video conferencing or videophone), whereas others such as TSS
are optimised for high quality video in the context of the MPEG-2 standard.

3. None of the fast algerithims have been designed to provide flexibility in controlling
the performance in terms of predicted picture quality and processing time (speed).
They do not allow any performance scalability in motion estimation, have no facility
to trade system parameters depending upon a particular application, or to preset a
user-defined level of Quality of Service (QoS) in terms of predicted picture yuality or
computational complexity.

The above discussion highlights that currently there is no single block-based motion
estimation solution that exhibits good performance at both low bit-rate and high quality video
coding cases, while providing flexibility in performance management in terms of either
predicted image quality or processing speed. Such a generic solution would be very
advantageous in facilitating complexity management in video coding, especially in real-time
software-only video CODECs (Coder and Decoder) or low~power video CODECs for mdbile or
hand-held computiné platforms which particularly require a more flexible trade-off between
complexity and quality [59]. The development of such a novel system that addresses many of
the above challenging issues is a key motivation for this thesis.

An important yet disparate area where block motion estimation theories are being
increasingly utilised will now be explored.

T R T
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Block Motion for True Object Motion Estimation

In coding applications, motion vectors are obtained to minimise the BDM irrespective of
whether the vector points in the direction of the moving objects. A motion vector that represents
the motion of a foreground moving object is termed frue object motion (Fig. 1.3). In estimating
block-based motion vectors, errors may be introduced not only because of representing all the
pixels of a macroblock by a single vector (Fig.1.2), but also in seeking the minimum BDM.
These errors following global motion compensation will lead to false object motion.

With the rapid growth in multimedia and Internet applications, there is a huge amount of
video data available, which highlights the need for efficient representation of video information
to allow content-based functionality. As motion provides one of the easiest cues to a sequence’s
temporal dimension {69], it is one of the most important visua! features for content-based video
representation and is increasingly becoming an essential part of several applications, including
content-based video indexing for browsing and retrieval [18-24], video surveillance systems
[31], video object segmentation and tracking {20, 23], and object based coding [13]. Amongst
these different applications, one of the most interesting is using object motion in video indexing
for accessing large amounts of multimedia data over the Internet.

Various algorithms [{5, 70, 71] have been proposed to index video by dense motion field
using OFE [37, 38] where the apparent velocity and direction of every pixel in the frame has to
be computed. Although it is an effective method, it is computationally intensive and very
complex. The OFE method also does not cope well with high motion video sequences [57].

To overcome this problem, many recent video processing applications have explored block-
based motion estimation techniques to estimate frue object motion. In Tancharoen er al. [60]
and Ji and Park [61, 62], BMA techniques were used to estimate the motion for moving object
segmentation from the background for object-based video coding and video analysis, As the
motion vector information of the macroblocks is available in MPEG coded video streams, an
alternative to video representation [18-23] is provided by extracting this information, thus
avoiding time consuming computation of optical flow. However, there are some drawbacks
associated with these approaches: -

1. The motion vectors in a coded bit stream do not always represent frue object motion
since motion estimation is performed solely from the coding efficiency point of view,
where minimum error matching is the only criterion.

2. As the block-matching method captures both camera (global) as well as frue object
motion, the block motion available in the video stream does not directly provide the

true object motion.
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3. Block-based motion estimation also introduces fa/se motion vectors in the form of
noise, especially in uniform regions [20]. To eliminate false vectors, a non-linear
median filter can be applied [17, 21, 31, 72) for motion field smoothing. Though
median filters work well for image processing applications such as noise reduction,
image enhancement and restoration, they are inefficient for eliminating fa/se motion
vectors, because they tend to remove significant numbers of frue object motion
vectors along the edge of the objects, especially when objects are relatively small
compared with the size of the frame.

To highlight the weakness of current BMAs, Fig. 1.4 (reproduced from Fig. 6.16 in Chapter
6) shows the average percentage of frue object motion vectors captured by different BMAs for a
range of standard and non-standard video sequences (Appendix B). It reveals that while FS is
the optimal algorithm for predicted image quality, performance is very similar to NTSS, and
overal, no fast search algorithm captures more than 60% of the #rue object motion vectors. This

is because existing BMAs only capture motion based upon a minimum matching criterion.

Average percentage of
true objcet motion
vectors

FS TSS NTSS
BMAS

Fig. 1.4: Average percentage of frue object motion vectors captured by different BMAs.

This discussion indicates that while block-based motlion can be applied for #rue object-
based video representation, to effectively capture #rue object motion using the BMA approach is
a challenging task. To place this in context, many of the desirable features identified in the
previous section on block motion estimation for video coding are equally applicable for frue
object motion estimation. It is the potential extension of these new block-based motion

principles into the area of frue object motion estimation that is one focus of the present research.

1.2 Fundamental Premise

It has been shown in Feng et al. [73] and Lim and Ho [74] that the magnitude of a motion
vector is proportional to the BDM, an observation that will be explored further in Chapter 3.
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Fig. 1.5 shows a simplified version of Fig. 3.3(a) in Chapter 3, which was obtained after
processing the high motion Foorball video sequence as follows: -
(i) The motion vectors were calculated using the FS algorithm for all blocks in the first
80 frames.
(if) The frequencies of each distinet minimum MAE of similar length motion vectors
were calculated.
(it)) These frequencies were then translated into a cumulative probability (Definition 3.3)

of minimum MAEs,
Fig. 1.5 clearly reveals that the minimum MAE for a particular cumilative probability, for
example, 0.86, increases from 25, when the motion vector length is 0, through to 60, when the
motion vector length has increased to the range [7,7¥2). The graph also confirms that there is a

higher probability of termirating the FS algorithm at a higher MAE value as the motion vector
length is increased.
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Fig. 1.5: The cumulative probability of minimum MAE for the Football video sequence.

This leads to a fundamental premise, which is that the distortion of an object in a videe
frame increases with its velocity as well as the zoom and pan factors of the camera. Thus, as the
length of the motion vector grows, so does the distortion error. Based on this tenet, it can be
concluded that locating a block with the minimum prediction error but with a motion vector of
high magnitude, is not only ineffectual in the prevailing distorted search space, but will
inevitably lead to many fa/se motion vectors being erroneously selected. Designing a new BMA
that seeks to exploit this feature has a number of potential advantages.

1. It allows a search to be restricted for any given length of motion vector beyond a

certain threshold of minimum BDM. This leads to the novel concept of a fast non-
directional BMA.
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2.

A variable threshold in the search process, which increases as the search expands
outwards, will enable the user to restrict the search boundary so that it can be used as
an effective control parameter for performance scalability and QoS in terms of
predicted image quality as well as processing time in motion estimation.

Unlike directional fast algorithms, a non-directional search means it is unlikely that
the search will be trapped in either a global minimum ¢. 1 minimum along any
specific direction, especially when the search progresses away from the centre. A
global minimum does not always represent the #7ue motion vector, especially if it is
far from the search centre, as it may be introduced by a different object or global
motion. However, such an approach has the potential to improve the ratio of captured

true object motion vectors.

The above indicates <hat this strategy affords a promising control mechanism which can te

used for performance maragement in motion estimation for coding applications as well as for

capturing more frue object motion vectors than other fast search algorithins.

1.3 Motivation and Contribution

While extensive work has been done in block-based motion estimation for video coding

applications, there are still many issues left unresolved by existing techniques, specifically for

real-time software-only and low power video coding applications. Performance scalability,

application independency, and QoS in terms of prediction error or processing time also remain

challenging issues.

It is in this context, therefore, that this dissertation presents the novel system shown in

Fig. 1.6, which is characterised by being: -

1.

A fully adaptive system which can efficiently provide flexibility in controlling the
complexity of motion estimation for software-only or low-power video coding by
trading between picture quality and complexity.

An adaptive sysiem for performance scalable motion estimation that provides QoS by
satisfying any level of user demands in terms of image prediction quality or
computational complexity for video coding applications.

A generic system that exhibits consistent performance for all types of video sequence,
including high or low motion.

A non-directional block-based motion estimation algorithm that addresses the

drawbacks of existing BMAs for both video coding and frue motion estimation

applications.
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Blocks 1, 2, and 3 in the block diagram of Fig. 1.6 are the key components of the new
motion estimation system, This flexible system also provides an opportunity to exploit the new
non-directional, variable thresholding search meihod in capturing increased numbers of true
block-based object motion vectors. Block 4 represents the additional modules that need to be
integrated to achieve this objective. It is important to emphasise that while Block 4 is not the
primary focus of the research, it demonstrates the potential of using this new search method for
block-based #rue object motion estimation and provides both improved qualitative and

quantitative performarce.

Fhestndad e e c by s

4; Global Moation Compensatiort
and False Motion Elinmnation
(MILSE and MAT)

Fig 1.6: System block diagram.

The main contributions of this research are: -
¢ Development of a novel variable distance-dependent thresholding search (DTS)
block based motion estimation algorithm for real-time video coding (Bleck 1 in
Fig. 1.6). This algorithm is independent of the ubiquitous unimodal error surface
assumption, and a unique feature is that it can be used both as the FS algorithm for
optimum quality, as well as a fast BMA. It can therefore be applied for performance

management motion estimation {1, 2]. In obtaining frue object motion, the DTS
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algorithm has also demonstrated good performance by capturing significantly more
true object motion vectors compared to existing FS and fast BMAs [3, 4].

While the DTS algorithm has provided better search efficiency compared to existing
fast BMAs such as TSS or NTSS for low motion video sequences, it was found to be
not so effective for highly complex motion sequences. To improve efficiency, a fast
adaptive-centre DTS (ACDTS) algorithm has been developed by integrating the
concept of spatio-temporal motion correlation of the neighbouring blocks’ motion
vectors with the DTS aigorithm (Block 2). The ACDTS increased the likelthood of
finding motion vector prediction quality with fewer search points compared to the
DTS algorithm.

As the actual search paitern used has a strong impact on the performance of a BMA,
to enhance the search efficiency of the ACDTS algorithm, a diamond search pattern
instead of the usual rectangular pattern has been implemented (Block 2). This
algorithm, called the adaptive-centre diamond search DTS (ACDSDTS),
outperformed both the DTS and ACDTS algorithms by trading off quality with
complexity. Because of the relatively large step size used in the horizontal and
vertical directions, such a pattern is able to find high motion blocks with fewer search
points, and also reduces its susceptibility to being trapped in local minima.

While DTS, ACDTS and ACDSDTS all provided performance scalability in motion
estimation in terms of prediction quality and processing speed with different
threshold settings, these thresholds had to be manually defined. To fully automate the
system, the ACDSDTS algorithm has been extended to a filly adaptive distance
dependent thresholding search (FADTS) block motion estimation algorithm that can
satisfy any level of user demand in terms of predicted image quality and processing
speed (Block 3) [5]. A unique feature of FADTS is that it adjusts the threshold
automatically using the desired target and the content from the actual video sequence,
to achieve a guaranteed level of QoS in terms of image quality or processing
complexity. This is very effective in facilitating performarve management of motion
estimation, especiaily for low bit rate and software-only vid=o coding. As the motion
estimation always considers the first frame of each shot as the reference frame, a shot
detection tech:iique using an Artificial Neural Network (ANN) has been developed
[6] which can be embedded in the proposed FADTS system {o detect a shot change
(Block 3) for non-real-time coding applications. A simple, yet elegant solution is

proposed, which will allow shot changes to be detected in real-time.




Chapter 1 : Introduction 15

¢ From a frue object motion estimation perspective, while the DTS algorithm (Block 1)
provided better performance compared to existing BMAs [3, 4], it did not consider
global motion cancellation (compensation), i.e. the capture of frue object motion
where both object and camera motion are involved. To resolve this issue, a Modified
Iterative Least-Square Estimation (MILSE) global motion estimation method has
been designed and implemented which reduces computational complexity without
degrading the performance in terms of global motion parameter estimation (Block 4).

» Having applied g/ebal motion cancellation (Block 4), the resultinlg' m’c\)tion field of the
DTS algorithm (Block 1) possesses a number of spurious motion v;.ctors because of
block-based estimation limitations. A new non-linear filter; called the Mean
Accumulated Threskolded (MAT filter has been designed (Block 4) to eliminate
these false motion vectors while retaining only frue object motion vectors [7].

¢ Finally, an analysis of computational corhpiexity for each of the algorithms in the
system framework shown in Fig. 1.6 has been undertaken, and is presented in each

relevant chapter.

1.4 Structure of the Dissertation

In Chapter 2, the imporiance of block-based motion for video coding is discussed and the
different block-matching criteria used in motion estimation are described. A contemporary
review of existing block-based motion estimation methods is presented. The relative merits and
shortcomings of each method are highlighted to set in context the research detai‘led in this
thesis.

In Chapter 3, a new variable distance dependent thresholding search (DTS) block-based
motion estimation algorithm is introduced for real-time video coding""l' and frue object motion
estimation based on the key premise that the distortion of an object in a video frame increases
with the velocity of the moving object and camera factors. Both\' linear and non-linear
(exponential) 'weshold functions for the DTS algorithm are evaluated, and its perfoﬁnance is
compared fo existing fast and exhaustive BMAs using both integer-pel and half-pei accuracy.
The perfbnnance of the DTS algorithm, in terms of capturing #rue object motion, is also
qualitatively assessed, with a more comprehensive evaluation being provided in Chapter 6.
Work from this chapter has been published by Sorwar et a/. in [1-4].

In Chapter 4, the DTS algorithm is extended to an adaptive-centre DTS (ACDTS)
algorithm to improve performance. A spatial motion correlation between neighbouring blocks
has been integrated to automatically predict the best search starting point in each window. As
this predicts a starting point closer to the global minimum point, it reduces the computational
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cost with better prediction quality. The performance of the ACDTS algorithm is compared with
TSS and NTSS as well as the adaptive-centre NTSS (ACNTSS) algorithms. The search
efficiency of the ACDTS algorithm is further improved by considering an efficient diamond
search pattern (ACDSDTS) based on the central-biased motion distribution characteristic of a
video sequence. The comrutational overhead introduced by using the centre prediction and
diamond pattern search is also analysed.

In Chapter 5, the ACDSDTS algorithm has been extended to a fully adaptive distance
dependent thresholding search (FADTS) algorithm. A brief review of existing adaptive
algorithms is presenied and a new model for threshold adaptation proposed. The different
parameters related to this model are analysed to achieve optimum performance of the FADTS
algorithm. As shot changes in a video sequence are used as reference frames for the adaptive
process, existing shot detection techniques are also briefly outlined. An integrated shot detection
(camera break) technique based on an artificial neural network (ANN) and BDM thresholding
are described for non-real-time and real-time applications respectively. Work from this chapter
has been published by Sorwar et al. in [5, 6]. |

Chapter 6 examines the potential of applying the DTS algorithm to capture an improvéd '

number of frue object motion vectors by using global motion estimation and compensation, and
Jalse motion vector elimination. A new jfalse motion elimination filter cailed the mean
accumulated ihreshold (MAT) filter is proposed to extract frue object motion vectors from the
motion vector field. Existing global motion (camera pan, zoom) estimation models and methods
are also reviewed, and a global motion estimation method based upon a modified iterative-least-
square estimation (MILSE) is presented to reduce the computational cost. Finally, the
performance of the DTS algorithm for frue object motion vector estimation is quantitatively
analysed. Material from this chapter has been published by Sorwar et a/. in [7].

Finally, the main conclusions from this research and proposals for future research directions

are given in Chapter 7.
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Chapter 2

Motion Estimation: A Review

2.1 Introduction

The extraction of motion information from a sequence of time-varying images has numerous
applications in the field of image processing and video coding applications. Among the different
applications, the most important application is video compression.

Video compression has become an integral part of multimedia applications for both
communication and entertainment purposes. It takes advantage of data redundancies in order to
reduce the bandwidth needed to represent the visual information. In the ffamewerk of video
coding, the redundancies arise from both spatial correlation within an image and temporal
correlation between successive images. Due to the different nature of the video signal in the
spatiél and temporal dimensions, spatial and temporal correlations are usually processed
szparately. Coding techniques that reduce the spatial correlation are referred to as intraframe
coding, whereas those that reduce the temporal correlation are called interframe coding. A
review of intraframe and intesframe coding is given by Netravali and Limb in [75] and Jain in
[76].

Among the various inter/intra-frame. compression techniques [56, 77} the motion
compensated transform coding technique is the most popular, and has been adopted in many
video coding standards such as MPEG-1/2 [9, 10] and H.261/263 [11, 12] owing to its high
compression efficiency. The latter belong to the class of nonlinear interframe predictive coding
where the prediction is based on pixel values from the previous frame. In the first stage, the
displacement of objects between successive frames is estimated (motion estimation). The
resulting motion information is then exploited in efficient interframe predictive coding, known
as motion compensated prediction. The difficulty of this approach lies in estimating accurately
the motion between two frames. In any coding scheme based on the above principle, the motion
compensated prediction error, more commonly called displaced frame difference (DFD), is
transmitted instead of the frame itself. It results in a more efficient representation of the visual

data. The motion information also has to be transmitted as an overhead.
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The previous chapter confirmed that block-matching motion estimation algorithms have
already been adopted in different video coding standards because of their simplicity and ease of
implementation. It was also shown in Section 1.1 that block motion has recently been used for
video object analysis, in particular, the block motion available in the MPEG video stream. As
the primary focus of this thesis is on block-based motion estimation, an extensive review wiil be
provided in this chapter, while applications of block motion as frue object motion will be
discussed in Chapter 6.

This chapter is organised as follows. In Section 2.2, the reasons why block-matching is
considered as a generic and efficient technique for motion compensation video coding are
presented, with some issues relating to block-matching motion estimation given in Section 2.3.
In Section 2.4, existing block-matching motion estimation techniques, with their advantages and {
disadvantages, are analysed from a computational point of view, Half-pel accuracy in motion
estimation is also discussed in this section. This chapter concludes with a summary of the key

problems associated with existing BMAs in Section 2.5.

2.2 Importance of Block-Matcking in Video Coding

Videe coding exploits temporal redundancy in order to reduce the bandwidth while preserving
the quality of the receiver-reconstructed images. This has resulted in many motion based video
compression strategies. Simple frame-differencing strategies assume that the average motion is
small, and simply compress the pixel-by-pixel difference between two frames.

Vector quantization [78] is an alternative strategy where a codebook of commonly occurring
pixel patterns is constructed. The compression process replaces a pixel pattern with its
corresponding codeword, While this technique results in superior compression, construction of
the codebook is a difficult problem. Techniques that attempt to recognise individual ol;»jects as
they move from frame to frame have been used to construct effective codebooks. Practically, to
reduce computation and storage complexity, motion parameters of objects in a picture are
estimated based on two or three adjacent frames. Most of the motion estimation algorithms are
based on the following assumptions:- . ) >

s (Ubjects are rigid bodies; hence object deformation can be neglected for adjacent
frames.

e Tlluminetion is uy:t-~n along the motion ;crajectory (Section 1.1.1).

¢ (Objects move in a translational mevement for at least a few frames.

¢ Occlusion of one object by another, and uncovered background, are neglected.

The problem with mortion estimation, in fact, consists of two related sub-prot:lems: -

e identification of the moving object boundaries, or so-called motion segmentation.
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e estimation of the motion parameters of each moving object.

Here, a moving object is a group of contiguous pixels that share the same set of motion
parameters. This definition does not necessarily match the ordinary meaning of object. For
example, in & videophone scene, the still background might include a wall, bookshelf, or
decorations. As long as these items are stationary (sharing the same motion vector), they can be
considered as a single object in the context of motion estimation and compensation. The
smallest object may contain a single pel. Cue difficulty in using small objects (or evaluation
windows) is the ambiguity problem. Similar objects (image patterns) may appear at multiple
locations inside a picture and may lead to incorrect displacements vectors. Also, statistically,
estimates based on a small set of data are more vulnerable to random noise than those based on
a larger data set.

Alternatively, if a large numbcer of pels are treated as a single unit for the estimation of their
motion pémmeters, it is important to know precisely the boundaries of the moving objects,
otherwise these may cause accuracy problems. Pixels inside an object, or evaluation window, do
not share the same motion parameters and, therefore, the estimated motion parameters are not
accurate for some, or all, pels in the object or window. On the other hand, the criterion of
grouping pels into moving objects, no matter which scheme is in use, must be consistent with

the motion information of every pel.

> X b x
(kD
IR {N
* BhacrE v
y N y
Current frame, n Reference frame, n-1

7z 2.1: Block motion estimation and compensation.

There exist practical sclutions to circumvent the aforementioned motion segmentation and
estimation difemma. One solution is partitioning images into regular, non-overlapped
macroblocks, assuming that the moving objects can be approximated reasonably well by regular
shaped blocks. A single motion vector (MV) is then estimated for each macroblock, under the
assumption that all the pels in the block share the same MYV, as illustrated in Fig. 2.1, where the

macroblock size is NN, (k,/) represents the x and y coordinates of the upper left pixel position
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of the current macroblock in the current frame, and (1,v) represents the x and y components of
MYV where the directions of x and y in Figs 2.1 and 2.2 represent the positive directions of (u,v).
This assumption of a single motion vector may not always be true because an image block
may contain more than one moving object. In image sequence coding, however, prediction
errors due to imperfect motion compensation are coded and transmitted. Hence, because of its
simplicity and small overhead, the block-based motion estimation-compensation method is

widely adopted in real video coding systems.

2.3 Block-based Motion Estimation Techniques

This section reviews the main approaches to block-based motion estimation that currently exist,
identifying key problem areas. In a broad sense, motion estimation techniques can be classified
into 3-dimensional (3-D) methods [79-81] and 2-dimensional (2-D) methods. 3-D methods
attempt o determine the motion by solving the projection equations directly by making use of
feature correspondences between frames, whereas 2-D methods estimate optical flow. As this
thesis predominantly focuses on the 2-D methods, 3-D methods v.il net be discussed further,
although a comprehensive review of techniques is provided in [79, 80].

2.3.1 Block-Matching Methods

Jain and Jain [36] first used a block-matching motion estimation for an interframe coding
structure and proposed a fast search algorithm to reduce computation. Extensive work has since
been undertaken to extend their method. Before reviewing the various existing techniques, some

of the important issues related to block-matching will be discussed.

2.3.1.1 Basic Concepts

Block matching is a correlation technique that searches for the best match between the current
image block and candidates in a confined area of the reference frame. Fig. 2.1 illustrates the
basic operations of this method. In a typical use of this method, images are partitioned into non-
overlapped rectangular blocks. Each block is viewed as an independent object and it is"assumed
that the motion of pixels within the block is uniform. The MV is the by-product when 'the_ new
location of the object (block) is identified. The size of the block affects the p'erfonnaﬁce of
motion estimation. Small block sizes afford good approximation of the natural objects’
boundaries, and of real motion, which is nrow approximated by a piecewise translation
movement. However, small block sizes prodl.ice a large amount of raw motion information,

which increases the number of transmission bits or the required data compression complexity, in

I “‘l i

s
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condensing this motion information. The international video transmission standards, H.261,
H.263, MPEG-1, MPEG-2, &i:d MI'EG-4 all adopt the block size of 16x16 pixelé.

The basic operation of block-matehing involves selecting a candidate block and calculating
the matching function (usually a non-negative function of ihe intensity difference) between the
candidate and the current block. This operation is repeated until all candidates have been
processed and the best match identified, The relative disiance betwzen the best candidate and
the current block is the estimated MV, _ |

Several parameters are involved in the searching precess and all have an impact on both
accuracy and complexity: -

¢ the number of search points {candidate blocis).
¢  the maiching function.

e the search order of candidates.

< Qd+1+N) >

>
X .

I ¢ k-i;#, L) Search window

- ‘e of reference frame

y.

\ MV (u,v).

(24+1+N)

Block of currert frame

Y _ 7
- Fig. 2.2: Search space of block-mnasching algorithms.

Assure that the maximum displacement of a raotion vector is % in both the horizontal and
vertical directions as shown in Fig. 2.2 (throughouit this thesis, pixels of a frame are nuinbered
using the Cartesian coordinate system with the origin startiny in the upper-left corner. Thus far,
integer-pei MV’ is considered, although in Sestion 2.4.10, half-pal motion _accuracy"will e

discussed). Except for the blocks at the image boundaries, the size of the search space is

: f‘i J
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(N+2d+1)x(N+2d +1), and therefore a MV(y,v) is obtained by finding a matched block within
the above mentioned search space in the reference frame by using a predetermined matching
criterion, where the number of possible search points is (2d+1)x(2d+1) for the best match of
the current block, as shown by Fig. 2.2. The algbrithm, which examines all these locations, is
called the Exhaustive Search, or Full Search (FS). If more than one block generates a mininim
BDM, the FS algorithm selects the block whose MV has the smallest magnitude, to exploit the
centre-biased motion vector distribution characteristics of real video sequences [45, 46]. To
achieve this, checking points trace a spiral trajectory starting at the centre of the search spacé.
This trajectory is used by the FS algorithm, with the exampie of a maximum displacement d =
+7 shown in Fig. 2.3. The centre of the search window is equal to the location of the searching

block (current block) of the current frame.

L

7 -5 3 101 3 5 7

Fig, 2.3: The spiral trajectory of the checking points in the FS algorithm.
2.3.1.2 Block-Matching Criteria

Choosing an appropriate maiching function is an important part of the process of searching for
the best matching block. The selection of the matching function has a direct impact on
computational complexity and coding efficiency. Several popular matching functioris that
appear in the literature are Mean: Absolute Error (MAE), Mean Square Error (MSE), Cross
Correlation Function (CCF), and Matching Pel-Count (MPC). | o

If F(ij) dexotes the intensity of the pixel with coordinates (i) for the current frame, then
the MAE, MSE, CCF, and MPC matching criteria are defined as feliows: |

Mean Absolute Error (MAE): In this criterion, the pixeis from each block in the current frame

n, are compared with the corresponding candidate block in the search area in the reference

i
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frame, n-1, and their absolute differences are summed and averaged. The MAE criterion is

given as follows:

1] NN o ’
MAE ; (u,v) 2-171322 F.(k+i,l+ j}—F,_ (k+u+i,l+v+ )| for —d cuv<d 2.1)
i=0 j=0

where F,_(u,v) is a candidate block in the search space in the reference frame, and (u, v) is a

motion vector representing the search ivocation. The search space is specified by v = (-d, +d) and
v = (-d, +d). The candidate block with the minimum MAE is considered to give the best match, o
The MAE is also known as Mean Absolute Difference (MAD). L

N
Mean Square Error (MSE): This is similar to the MAE function, except that the difference S
between pixels is squared before addition. The MSE function is definad as: ' o f
1 ¥ L
MSE () ==Y [F,(k+il+j)-F,_(k+u+il+v+ )] -
N* &4 _ (22)

The candidate block with the minimum MSE is considered to give the best match. The Mean
Square Error (MSE) function is also known as the Mean Square Difference (MSD).

Cross Correlation Function (CCF). The Cross Correlation Function (CCF) for the block-
matching criterion is derived from the following equation:
ﬁ ﬁFn (k+il+ )HF, _(k+u+il+v+)) ;
CCFyy y (u,V) =~ S — 2.3) L

N1 N-1 T INANA
S Y FHk+LI+ DY FLtk+u+il+v+ )
jalt j= i=0 j=0 '

The candidate block with the maximum value of CCF is considered to give the best match.

This is also referred to as a Normalized Cross-correlation Function (NCF) [82]. . :' :

Matching Pel-Count (MPC): The Matching Pel-Count (MPC) function compares each pixel of
the target block of the current frame, 1, with the corresponding pixe! block within the search

space of the reference frame, n-1. If the pixels arc similar to each other, the pixél pair is
classified as a matching pixel; if not, then it is a mismatching pixel. The matching and the .
mismatching classifications are done with respect to a pre-defined threshold value. The MPC R

criterion is as follows:

N N
MPC(u,v) = ZZP(u,v,i,j) for -d< u, v<d ' 24)

iwl =l

P(u,v,ij) is the binary represeniation o1 the pixel difference defined as :
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Pluviisj) {=1 if|F, (k.+i,1+j)—F,,_l (k+u+il+v+jYsT,
=(0 otherwise
(2.5)

where T, is a pre-defined threshold value. For a matching pixel, P = 1, while for a
mismatching pixel, P = 0. The greater the number of matching pixels, the better the match.

Among the above matching criteria, MSE and CCF require multiplication and accumulation,
while MAE and MPC require comparison and accumulation, and a multiplication is always
more computationally expensive than either a comparison or accumulation. Although MPC is
computationally less expensive compared with the MAE, its performance is highly sensitive to
the choice of the threshold value T, [74]. The optimum threshold selection is a difficult task
which en'tirely depends on the video sequence, and therefore, its performance is not guaranteed.

Among the various matching criteria therefore, MAE is the most popular and widely used in
block motion estimation due 10 its iow complexity, while its performance is comparable to that
of MSE. For this reason the MAE function will be used throughout the thesis for BDM
calculations, while the MSE function, as is the convention, will be used for prediction error

performance analysis of BMAs [45-47, 51-54].

2.3.1.3 Motion Estimation Algorithm Complexity

Motion estimation algorithm optimisation has been widely studied because of its fundamental
impact on compression efficiency and its high requirements in both processing power and data
bandwidth.

In this section, a complexity analysis of motion estimation is reviewed. At the same time, the
advantages and disadvantages of the different approaches, both in terms of compression quality
and processing speed efficiency, are characterised. Fig. 2.2 showed the motion estimationh
process for a current macroblock of size NxN within a search range of * 4 (horizontally énd
vettically) in the reference frame. To find a motion vector with minimum BDM for this cuirent

macroblock, the computational complexity of performing the motion estimation is given by:
Complx,; = SPX[(NxN)x Complxp] O (26)

This shows that the complexity,' Complxyg, is proportioﬂal to the number of search points,
SP, the number of pixels used to perfoﬁn the matching (NxN), and the complexity involved in
evaluating one pixel match, Complx,. To illustrate the complexity, consider a typical application
of a +d pixels maximum displacement used for a video sequence with frame size 1Y >N, ] and

a frame rate of /' fps (frames per second). The total number of integer arithmetic operations per
second required for an MAE-based FS algorithm is
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(ﬁr"—;‘;ﬁ]x(zdn)’ 3N X f @7

For example, for a typical MPEG-1 application of a 15x15 pixels search space used for a
video sequence with SIF format (352x240 pixels) and 30 fps, based on (2.7), the FS aigorithm
would require about 1.71 billion integer arithmetic operations per second, which car consume
up to 90% of the computational power of the whole encoding system [82]. When considering
applications which require encoding at higher resolutions and at higher quality, it is evident that
the FS algorithm has severe limitation in a real-time implementation.

Several fast algorithms, which will be discussed in next section, have thus been devised to
save computational complexity in the FS algorithm but at the price of impaired quality
performance. The most common approach is to lower the search computation by reducing the
number of SP in (2.6) inside the defined search space. Normally, a fast search algorithm starts
with a rough search, computing a set of scattered points. The distance between two nearby
search points is called the search step size. After the first step is completed, the search moves to
the most promising search point and continues with the next step. This process is continued

until satisfaction with some predefined conditions for motion estimation is established.

2.4 Fast Search Motion Estimation Algorithms

Some of the well-known types of BMAs are now reviewed, where only integer-pel accuracy is
considered. All fast search algorithms assume that either the error surface is unimodal over the
entire search arez (i.e. there is only one global ;pinimum) or the MV is centre-biased. These
assumptions essentially require that either the BDM increases monotonically as the search point

moves away from the global minimum position, or the MV is centrally distributed.

24.1 ZD-log Search

The first fast search block-matching algorithm was the 2-D log search (TDL) proposed by Jai;
and Jain in [36], and is an extension of the 1-D binary logarithm search. It uses the St. Andrew’s
cross (+) search pattern in each step."' The initial step size is equal to max(2, 2““1), where m =
Liog.d!and |- ] is a lower integer truncation function, and d is the maximum displacement. The
step size is reduced by half only when the minimum BDM point of the previous step is found at
the cenire of that step, or the current minimum BDM point reaches the search window
boundary, otherwise, the step size remains consiant. When the step size is reduced to one, all the
eight checking points adjacent to the centre checking point of that step are searched. For

example, two different search directions are shown in Fig. 2.4 for the case d = £7. The top
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search path requires (5+3+3+8)=19 checking roints, while the lower-right path requires
(5+3+2+3+2+8)=23 points. The number of search steps is dependent on the size of the search
area, and is not given by the definition of the algorithm. According to {48], for the general case,
the TDL algorithm requires (1+7|-10g2(d +l)]) checking points. This technique has the

following advantages and disadvantages: -
Advantages:
¢ Low complexity in terms of candidates to evaluate.
¢ Reascnable performance for high motion sequences.
Disadvantages:
& Poorer performance for low motion sequences as the initial step size is large and
increases the chance of its being trapped in local minima.
o Complexity increase with increased search area.
¢ Fixed performance for a particular video sequence.

¢ Lack of a control mechanism for performance scalability.

._7 fr—ni
-5
|

3 7 B ®  First step

l  { & ® Second step
-1 ¢ Third step
0 - $ ® -

Forth step

. ?—-7 - 4+ Fifth step
3 L % Sixth step
5
7

-7 -5 3 -1 01 3 5 7 -
Fig. 2.4: 2D-log search.
2.4.2 Three Step Search

The three sref;y ‘search (TSS) algorithm proposed by Koga ef al. in {44] is probably the most
well-known and popular technique and is even recommended in several standards because of its
simplicity and effectiveness. This method is based on a coarse-to-fine approach with
logarithmically decreasing .step sizes as shown in the example of Fig. 2.5 for a maximum

displacement of d = 7. The initial step size is half of the maximum motion displacement d (i.e.
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(/2] where[-1is the upper integer truncation function). At each step, nine checking points are
matched and the point with the minimurn BDM is chosen as the siarting centre of the next step.
The process repeats until the distance between these checking points is equal to one. For d =7,
the number of checking points required is (9+8+8)=25. For a larger search window (i.e. larger

d), TSS can be easily extended to #n-steps using the same searching strategy with the number of
checking points required defined as SP = [1 + 8 log, (¢+1)1]. This technique has the following
advantages and disadvantages: - '
Advantages:
¢ Low complexity in terms of candidates to evaluate.
e Good regularity in terms of motion vector generatiox.

¢ Reasonable performance with high motion sequences as it considers the uniform

motion distribution.
Disadvantages:
¢ Poorer performance with low motion sequences as the initial step size increases
linearly with maximum displacement that increases the chance of its being trapped
in local minima. ]

o Complexity factor increase with increased search area.

s A

¢ Lack of a control mechanism to provide performance scalability.

o Complexity is fixed for a particular video sequence with maximum displacement.
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¥ig. 2.5: Three step search.
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24.3 Orthogonal Search

The orthogonal search algorithm (OSA) proposed by Puri ef al. in [50] consists of pairs of
horizontal and vertical steps with a logarithmic decrease in step size where the initial step size is
Ldr2] with |.] being the lower integer truncation function. The search paths of an OSA
algorithm are shown in Fig. 2.6. Starting from the horizontal searching step, three checking
points in the horizontal direction are searched. The minimum BDM point then becomes the
centre of the vertical searching step which also consists of three checking points. The step size
is halved after each pair of horizontal and vertical steps. The algorithm ends with step size equal
{0 one. For d = 17, the OSA algorithin requires a total of (3+2+2+2+2+2)=13 cheqfl\cing points.
For the general case, the OSA algorithm reguires (1 + 4|-10g2(d+1)-|) checking points.

7 WK,
“H . r*lt—'

3

-1

€ First step
0 8 3econd step
1 ¢ Third step

05 3 401 305 7
Fig. 2.6; Orthogonal search.

This technique has the following advantages and disadvantages: -

Advantages:
¢ Lower complexity in terms of search points compared to the TSS or TDL
algorithms. -
* Reasonable performance with high motion sequences as it considers the uniform
motion distribution.
Disadvantages:

¢ Poorer performance with low motion sequences as the initial step size increases
linearly with maximum displacement that increases the chance of its being trapped
in local minima. i

s Poorer error performance compared to the TSS or TDL algorithms.
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¢ Complexity factor increase with increased search area.
e Lack of a control mechanism to provide performance scalability.

o Complexity is fixed for a particular video sequence with maximum dispiacement.

2.44 Cross Search

The cross search algorithm (CSA) proposed bv Ghanbari [48] also uses a logarithmic step
search algorithm; however, the main difference between this and the logarithmic search method
presented in previous sections is that the search location is picked at the end points of a Greek
cross (X) rather than a St. Andrew’s cross (+) in each step. Fig. 2.7 shows two search paths
where there are five checking points placed in a cross pattern at each step. The initial step size is
1/2 of d, and as the step size decreases to one, a (+) cross search pattern (as shown on the lower-
left side of Fig. 2.7) is used if the minimum BDM point of the previous step is either the centre
of that step, or the upper-left or lower-right checking point. Otherwise, a (X) cross search
pattern (as shown on the upper-right side of Fig. 2.7) is used. For d = 7, the number of checking
points required is (5+4+4+4) =17. For the general case, the number of checking points 'required
is (5+4 rlogzd]).

! . .

-5

T o First step

-1 ' ® Second step
¢ Third step
4. Fourth step

Fig. 2.7: Cross search.

This technique has the following advantages and disadvantages: -
Advantages:
» Low complexity compared to the TDL or TSS algorithms.

¢ Reasonable performance for high motion sequences.
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Disadvantages:
¢ Not suitable for low motion sequences as the initial step size is high and increases
the chance of its being trapped in local minima.
e Complexity increase with increased search area.
s Lack of a control mechanism for performance scalability.

¢ Prediction error performance is worse compared with the TDL or TSS algorithms.

2.4.5 New Three Step Search

One of the most significant contributions to motion estimation came from Li ef a/. {45], who
observed that most real world video sequences usually move slowly and vary gently. There are,
for example, low motion video conferencing sequences, where a such motion type is very
common. This essentially leads to a centre-biased giobal minimum motion vector distribution
rather than a uniform distribution, which was the assumption used in the TSS algorithm. By
employing a centre-biased checking pattern combined with the initial algorithm of TSS, an
improvement resulted called the new three step search (NTSS) [45]. Corﬁpared with the TSS,
an additional eight neighbour checking points are searched in the first step of NTSS as shown in
Fig. 2.8. The figure shows two search paths with d = 7. The centre path shows the case where
low motion is searched. In this case, the minimum BDM peint of the first step is one of the
eight neighbour checking points. The search is stopped halfiway, with the matching of three
more neighbouring check-points at the minimum BDM point of the first step. The number of
checking points required for this centre path is (17+3) = 20. In the worst case, the total number
of checking points with a maximum displacement, d, is (8 + 8 rlog2 (d+1)-|). This algorithm has
the following advantages and disadvantages: -
Advantages:
¢ Low complexity in terms of search points to be evaluated.
» Obtains high quality at low processing power for a centre-biased motion scene.
Disadvantages:
¢ Candidate vector generation is more complex. Loses the regularity and simplicity of
the TSS algorithm,

o Complexity increases with the increased search area.

¢ High probability of falling into local minima if the sequence is not centre-biased.

¢ Lack of a control parameter for performance scalability.

¢ Fixed complexity for a particular video sequence.
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Fig. 2.8: New three step search path.

2.4.6 Block-based Gradient Descent Search

The block-based gradient descent search algorithm (BBGDS) proposed by Liu [52] uses a
cenire-biased search patfern of nine checking points in each step, with a step size of one. I does
not restrict the number of searching steps but it stops when the minimum BDM point of the
current step is the centre of that step, or it reaches the search window boundary. There are also

overlapped checking points between adjacent steps. Two low motion search paths examples are

shown in Fig. 2.9. The average number of checking points is [9 + Z ﬂ,] where B3, € {3,5},

and i =2,3,..,n where n represents the number of search steps. This algorithm has the
following advantages and disadvantages: -
Advantages:
¢ Low complexity in terms of search points to be evaluated.
s  Good regularity in terms of motion vector generation.
Disadvantages:
¢ Optimised for only low motion video sequences (i.e. video conferences), as it is
highly centre-biased. |
¢ Unable to capture high motion vectors unless very large number of steps are used.
o High probability of falling into local minima if the sequence is not centre-biased.

» Lack of a control parameter to provide flexibility for performance scalability.




Chapter 2 Motion Estimation; A Review 32
-7
-5
-3
® First step
-1 B Second step
0 ¢ Third step
1
3
5
7

7 5 3 -1 01 3 5 7

Fig. 2.9: Block-based gradient descent search path.

2.4.7 Four Step Search

The four step search algorithm (FSS) proposed by Po and Ma [46] also exploits the centre-
biased characteristics of real world video sequences by using a smaller initial step size
compared with TSS. The initial step size is a quarter of the maximum motion displacement d
(i.e. [d/4]). Due to the smaller initial step size, the FSS algorithm needs four searching steps to
reach the boundary of a search window with d = £7. Fig. 2.10 shows two search paths in an FSS
algorithm for searching high motion. The lower-left path requires (9+5+3+8) = 25 checking
points while the upper-right path requires (9+5+5+8) =27 cﬁecking points, which is the worse
case for this algorithm for d = 7. This algorithm follows thé halfway-stop technique used by
the NTSS algorithm in its second and third search steps for low motion video seqﬁences.
Moreover, if the minimum BDM point is found at the centre of that search step, the step size is
reduced by half and the process jumps to the fourth step. For the general case, the algorithm can
be extended as follows. If the step size o« the fourth step is greater than one, then another four

step search is performed with the first step equal to the last step of the previous search. The

number of checking points required for the worse case is (18{ log: if-4't-l-.’+ 9) . This algorithm has

the following advantages and disadvantages: -
Advantages:
¢ Low complexity in terms of search points to be evaluated.

e Faster convergence than BBGDS if the motion vector is far from the centre,
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e Suitable for centre-biased motion scenes.
Disadvantages:

¢ Complexity increases with the increased search area.

e  High probability of falling into local minima if the sequence is not central-biased.

e Lack of a control parameter for different applications

* Fixed complexity for a particular video sequence.

-1 ® Firststep

0 T ® ¥ ® Second step
4 Third step

& 4. Fourth step

7
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Fig. 2.10: Two different search paths in a four step search.

2.4.8 Diamond Search

The diamond search (DS) algorithm proposed by [53, 83] is another efficient search algorithm

for central-biased motion distributed video sequencés. The search always starts from the centre

of the search window, by examining nine checking points as shown in Fig. 2.11(a). If the

minimum is found at the centre, then the four additional checking points, shown in Fig. 2.11(b),

are matched and the search stops. Otherwise, depending on the position of the minimum, for

example Fig. 2.11(c) for a corner point, additional points are examined and the centre of the

search is now considered to be the new minimum. This procedure continues until the minimum

is found to be in the centre. The number of search points depends on the video sequence and the

search window. This approach has the following advantages and disadvantages: -
Advantages:
¢ Low complexity in terms of search points to be evaluated.

¢ High performance with centre-biased low motion video sequences.
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E Disadvantages: -

¢ High probability of falling into local minima if the sequence is not centre-biased.
o Complexity is high with high motion video sequences.

¢ Fixed complexity for a particular video sequence.

o Lack of a control parameter for performance scalability.
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Fig. 2.11: Diamond search,

249 Concluding Comments

In reviewing the general atiributes of the fast search algorithms discussed in the section above,
the following conclusions can be drawn: - - '
Advantages:
¢ All existing fast BMAs reduce computational complexity in terms of the number of
search points the FS algorithm needs -';o estimate motion vectors.
s Most have good regularity in terms of motion vector generation.
There are, however, a number of limitations associated with these fast BMAS: -

» Lower complexity is achieved only by sacrificing quality.

o All are directional search techniques whose performance depends on the unimodal

error surface assumption (USEA). There is a probability of falling into local minima
if this assumption does not always hold true. '

» The complexity factor increases with the search area. The number of steps increases
linearly with d, so increasing the probability of falling into local minima.

e All are application-dependent. For example, TSS performs reasonably well on
uniformly distributed motion video sequences but has very poor performance with
centre-biased low motion video sequences. On the other hand, the NTSS performs
better with centre-biased motion distributed sequences (low motion) only.

¢ There is no single mechanism or parameter to provide any flexibility in controlling

the quality as well as the complexity for motion estimation in different applications.
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i
4,

None of the fast BMAS can satisfy any prescribed level of QoS in terms of prediction
image quality or processing speed.

T A A T

¢ They are not suitable for real-time software-only or jow power video coding, which

TR aFn )

requires a more flexible approach in the trade-off between quality and complexity.

The above discussion leads to the conclusion that although there are a number of fast

v
Et-gi;:\._:,'ﬂ,l..r " .,l“"l,.l- .‘,,w__.;,_.; "

algorithms available for motion estimation, there still remain many challenges. Amongst the key

issues are directionality, application dependency, performance scalability for QoS, and

i flexibility for real-time software or low power video coding applications. This thesis seeks to
address all of these in the development of a new ;notion estimation system.

?'-;! - . H . - *

5 The varicus examples that have been included in this section used integer-pel accuracy

motion estimation. While fast algorithms reduce computational complexity in terms of the

number of search points by sacrificing image quality, the prediction quality of these search

algorithms can be improved by considering sub-pel accuracy motion estimation, as discussed

below.

: 2.4.10 Half-pel Accurate Motion Estimation

Subpixel motion estimation has become a main ingredient in many inodern video compression
standards [84). This is because sub-pel accuracy (half-pel/quarter-pel) motion estimation
g improves the performance of BMA by finding a better matching block in the search window.

Although digital video is represented by pixels, the moving object is not necessarily limited
to moving by aa integer number of pixels between successive video frames. So, the true frame-
to-frame displacements are unrelated to the integer-pel sampling grids. Representing fractional
motion vectors gives sub-pel accuracy to motion cumpensation. Here, only half-pel accuracy is
considered. |

Searching using half-pel accuracy obviously requires more computational cdmplexity than
integer-pel. In order to limit the increase in complexity, it is common practice to first find the
motion vector with integer-pel accuracy using any BMA, and then to carry out a search using
the eight neighbouring half-pel positions blocks. These half-pel position blocks are calculated
using bilinear interpolation as shown in Fig. 2.12, where A, B, C, and D represent the integer
pixel values and a, b, ¢, and d represent the pixel values at the half-pel level. The example in
Fig. 2.13 highlights that the minimum BDM will be at the centre of the search window, with a
motion vector of (#,v) = (0,0) when using integer-pel accuracy, but after checking half-pel
positions, a smaller BDM is found at the (0,0.5) position. Despite the increased complexity,
half-pel motion estimation and compensation can significantly improve motion prediction

accuracy since it reduces noise by averaging and interpolating the pixels. For this reason, many
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video coding standards such as MPEG-1/2 [9, 10] and H.261/263 [11, 12] permit motion
vectors to be specified to a half-pe] accuracy.

A B @ Integer pixel positions
.a Ob o (O Half-pixel positions
O, O

¢ -4 a=A
b= (A+B+1)2
c. .D ¢ = (A+C+1)2

d = (A+B+C+DH2)/4

Fig. 2.12: Half-pel prediction by bilinear interpolation,

Integer-pel motion
vector (v =0,v=0)

Half-pel motion vector
(0,0.5)

Fig. 2.13: Half-pel accurate motion vector estimation.

2.4.11 Variants of Block-Matching Algorithms

The fast search algorithms, based on UESA, described in previous sections, are designed to
reduce computation in the process of finding the best matching block in the search window.
There are also some other approaches which can, in general, be integrated into the BMAs
mentioned in the previous sections so as to further improve the search efficiency. These
algorithms are based on using the concept of inter-block motion correlation [49, 66-68, 85-90],
the consideration of a subset of pels (pixel subsampling) inside the image blocks when
computing the matching function [54, 64, 65], and a multiresolution approach [91-931. There
also exist some different fast-matching motion estimation techniques [94-97] which can be
integrated into the FS algorithm to improve its search efficiency by reducing the computational

cost in the number of operations.




e T

R T e

-y

M

e R AR,

T o
s

Chapter 2 Motion Estimation: A Review 37

In the following section these different types of BMAs are described based on the above
options to improve the search efficiency for computational cost minimisation with, or without,

low quality degradation,

2.4.11.1 Inter-block (Spatie-Temporal) Correiation

The motion estimation search strategies previously described imply a fixed initial starting point
that can be centered on the origin of the search window. However, the spatio.temporal
correlation of the motion vector fields are often high and can be used to predict a beiter starting
point, other than the centre of the search window, which reflects the trend of the current block’s
motion, and therefore, may lead to obtaining motion vectors with less BDM using fewer search
points {66].

Indeed, usually the objects span over several macroblocks and move mostly unifermly from
frame to frame. A motion tracking algorithm proposed in [86] used the previous frames’ motion
vectors in the neighborhood of the current block to form an initial estimate of the current block
motion vector. Spatial as well as temporal motion vector correlation as an offset vector to track
the motion vector of the current block is used in {49, 67, 68, 87-90]. In [68], Luo et al.
proposed an algorithm utilising the linear weighting of the motion vectors of the three adjacent
blocks to obtain a prediction motion vector, namely the initial search point. Xu ef al. in {49] and
Cheung et al, in {85] used the spatial relation to predict the initial search centre and then used
the centre-biased block matching algorithm [67, 68] to refine the final motion vectors. All these
approaches have the following advantages and disadvantages: -

Advantages: -

¢ Incorporating these schemes in any fast search algorithms reduces the computational
cost and motion vector overhead. |

s It also increases the possibility of finding the global minima.

Disadvantages: -

¢ In case of acceleration or moving object boundaries, this technique may become
trapped in a local minimum dug fo inaccurate initial estirates.

¢ Temporal correlation requires a large memory buffer to keep the previous frame
motion vectors in the decoder, '

As the above limitations only apply to temporal, and not to spatial correlation, this technique

will be exploited further as discussed in Chapter 4.
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2.4.11.2 Pixel Subsampling

Since biock-matching is based on the assumption that all pixels move in the same way, a good
estimate can be obtained by using only a fraction of the pixels in the block to be matched. As
this approach only considers a subset of the pixels in the matching macroblock, it reduces
overall computational complexity in terms of the number of operations required for motion
vector estimation.

A straightforward approach to pixel suabsampling is to adopt a fixed chess-board like pattern
with subsampling factors ranging from two to eight with an equivalent saving in complexity. An
example of this class of fast algorithm is the simple 4:1 pixels subsampling technique {54, 64,
65] shown in Fig. 2.14. However, since only = uniform fraction of the pixels are used in the
matching computation, the use of these standard subsampling techniques can seriously affect
the accuracy of motion vector detection, and the computational cost is only reduced by four

compared to the FS algorithm.

Q| 0] 0] 0] 10} O] (O] |O
Ol JO] O] (0] [O] {O] |O] O
Ol 101 101 |0} 9] |Ce] 0] |0
Ol O] (0] 10] O] [O] JO} JO
O{ O] O] 1Of (O] O] O] O
O] 0] o] (o} o [Of O JO
Q| 10] O} |01 |O] jJO) |O] O
O] 10} |0] |O] |O] O] |Of O

Fig. 2.14: 4:1 pixel subsampling.

Liu and Zaccarin in [54] proposed a popular subsampling algerithm referred to as alternating
pixel subsampling. This corresponding 4:1 pixel subsampling pattern consists of alternating
over the locations searched so that all pixels of a block contribute to the coriputation of the
motion vector. Fig. 2.15 shows a block of 8x8 pixels with each pixel labeled asa, b, c,ordina
regular pattern. This method considers all four subsampling patterns, but only one at each
location of the search area, and in a specific alternating manner. The one that has a minimum
BDM among the four is selected as the motion vector for the block. Alternating between these
patterns allows the use of all the pixels of the current block and all the pixels of the search area.

Nevertheless, though the performance is better than the standard 4:1 subsampling method, the
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computational complexity of the FS algorithm is also reduced only by a factor of four. To

rectify this problem, in {98], Chan et al. proposed an adaptive pixel subsampling technique

instead of the regular pixel pattern in [54], where a lesser number of pixels are considered with
;5' uniform intensity blocks, and more pixels are considered with high active blocks for the BDM
« calculation. The above mentioned subsampling algorithms have the following advantages and

disadvantages: -
Advantagces:

o  All the macroblock positions in the search area are covered.

o Regular data flow and easy generation of candidate motion vectors is provided, while
pixel extraction complexity is dependent on the algorithm used,
Disadvantages:

¢ Only a small complexity reduction factor is achieved (typically four to eight) which is
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often inadequate for real-time applications.
» High probability of falling into a local minimum if a scene contains significant spatial

detail.
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. » The special structure of alternating pixel subsampling makes it difficult to embed
within algorithms such as TSS and NTSS.

§ As a result of these disadvantages, this technique for motion estimation will not be

§, considered any further in this research.
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Fig. 2.15: Alternating patterns of pixels used for computing the matching criterion with 4:1
subsampling.

2.4.11.3 Hierarchical Block-Matching Algorithm

A different approach, the hierarchical block-matching proposed in {91-93], can improve the
prediction performance of the BMA. The basic principles are similar and can be summarised as
follows. A large block size is chosen at the beginning to obtain a rough estimate of the motion

vector. By considering a large block, the ambiguity problem - blocks of similar content - can |
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often be eliminated, although motion vectors estimated from large blocks are not accurate. It is
then possible to refine the estimated motion vectors by decreasing the block size and the search
region. A new search with a smaller block size starts from an initial motion vector that is the
best matched motion vector in the previous stage. As the pels in a small block are more likely to
share the same motion vector, the reduction of block size typically increases motion vector
accuracy. In hierarchical block matchi'ng (multiresolution), the basic idea is to perform motion
estimation at each level successively, starting with the lowest resolution level as shown in
Fig. 2.16. The estimate of the motion vector at a lower resolution level is then passed onto the
next higher resolution level as an initial estimate. The motion estimation at the higher levels
refines the motion vector at the lower one. This technique has the following advantages and
disadvantages: -
Advantages: -
o All the blocks in the searching area are likely to be covered.
Disadvantages: -
¢ Memory requirement is increased because of subsampling and pre-stage filtering, and
the need to store images at several resolutions. |
s Lower accuracy results because of the high probability of local minima when a scene
contains significant spatial detail, (This depends on subsampling factors).
As a result of these disadvantages, this technique for motion estimation will not be

considered any further in this research.

Fig. 2.16: Hierarchical matching pyramid.

2.5 Summary

In this chapter, a comprehensive review of different block-matching motion estimation
techniques has been provided. It is clear that a number of key issues in block motion estimation
remain to be resolved. In particular, none of the techniques can be seen as a complete solution

for all types of motion video sequences, All the fast algorithms are directional and based on the
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unimodal er‘mr surface assumption, which does not always hold true in real world video
sequences. Moreover, these fast algorithms are not designed to provide any flexibility for
performance management in motion estimation for QoS in terms of prediction image quality or
computational complexity (processing speed).

This, therefore, has motivated the development of a general system, which can be used
under all conditions; is non-directional; is scalable for any level of quality of services; and
provides flexibility in performance management for real-time video coding applications,
especially software-only and low power video coding, where available resources are restricted.

The next chapter details one of the key constituent algorithms, which forms the basis for

such a solution.




Chapter 3

Distance-dependent Thresholding Search Algorithm

3.1 Introduction

In this chapter, a non-directional Distance-dependent Thresholding Search (DTS) block motion
estimation algorithm (Block 1 in Fig. 1.6) is proposed that employs the novel concept of
distance dependent thresholds. As revealed in Chapter 1, this algorithm is based on one key
finding from real world video sequences—this is that the distortion of an object in any video
frame increases with its velocity, as well as camera zoom and pan faciors. Te accommodate this
key finding, the DTS algorithm uses a parametric thresholding function to terminate the search
even at relatively high BDM values, especially when the length of the motion vector tends to
increase. The DTS algorithm encompasses both the FS and very fast searching modes. Different
threshold settings can provide different QoS levels and therefore, the DTS algorithm provides a
general solution for all types of video sequences and coding demands. This unique feature
provides good flexibility in controlling performance, especially the computational complexity
required for motion estimation in real-time video coding applications. Moreover, the non-
directional nature of the DTS algorithm means it does not suffer from potential difficulties due
to the unimodal error surface assumption.

Although the DTS aigorithm is developed specifically for video coding applications, it also
exhibits significantly improved performance in capturing frre object motion, a feature which
can be used in object motion-based video analysis applications such as video indexing, retrieval,
and segmentation, and object detection and tracking for surveillance applications.

This chapter is organized as follows. Error surface analysis of some typical video sequences
is presented in Section 3.2. Section 3.3 presents a detailed statistical analysis of video
sequences, which provides the key premise for the DTS algorithm. Section 3.4 explains the
proposed DTS algorithm with a comparative discussion of the influence of linear and
exponential thresholding functions. Experimental results and evaluation of the performance of
the DTS algorithm compared with other fast search algorithms are presented in Section 3.5 for

video coding applications, together with an analysis of the computational complexity of the

42
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DTS algorithm. Preliminary results for true object motion estimation using the DTS algorithm-

are presented in Section 3.6, while Section 3.7 summarises the chapter.

3.2 The Error Surface and its Characteristics

In Chapter 2, it was shown that many contributions in the domain of bleck-matching algorith;ns
are based on the principle of reducing the checking points in a search window. All of these
search algorithms are based on one assumption, that the etror surface is unimodal. If a matching
function, such as MAE in (2.1), is monotonic along any direction away from the optimal point,
a well-designed fast ajgorithm can then be guaranteed to converge to the global optimal point.
According to Chow and Liou {99], however, this assumption does not hold true for real world
video sequences. We have also tested this on a number of standard video sequences (Appendix
B) and observed that this assumption does not always hold true. The MAE error surface has, in
fact, a significant impact on the performance of these fast algorithms for block-matching motion
estimation. Fig. 3.1 shows some typical examples of MAE surfaces for a search window of 16
pixels for the Football and Table Ternis sequences. For the surface shown in Fig. 3.1(a), the
MAE error decreases monotonically as the search location moves towards the global minimum
value. It implies that most existing fast algorithms, such as TSS and NTSS will perform well for
this type of error distributed block.

The MAE surfaces in Figs. 3.1(b) and (c¢) by contrast, have many local minima due to the
non-stationary characteristics of the video signal. As a consequence, it is unlikely that
conventional fast search algorithms, which use few directional candidates, would ever converge
to the global minima. In other words, the search could easily be trapped in a local minimum
instead of the global minima and generate a higher prediction error. A non-directional search,
such as FS algorithm, on the other hand, can guarantee reaching the global minima on any kind
of error surface at the expense of a large number of search points. _

Non-directional search techniques naturally guarantee improved prediction image quality.
The key question however, is whether it is possible to develop a non-directional search
algorithm fast enough to be comparable to other fast directional search algorithms while
retaining its supremacy in achieving improved image quality. This chapter proposes a solution

that answers this question affirmatively for low motion video sequences by the development of

a Distance-dependent Thresholding Search (DTS) algorithm. The next section introduces the

basic principles behind the DTS algorithm.

il
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(a) Football sequence, current frame # 35, reference frame # 34, block coordinate (5,8), block
size 16x16 pixels, maximum search displacement d = 16.
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(b) Football sequence, current frame # 35, reference frame # 34, block coordinate (10,9), block
size 16x16 pixels, maximum search displacement d = 16.

MAE per pixel
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(¢) Table Tennis sequence, current frame # 70, reference frame # 69, block coordinate (6,12),
block size 1616 pixels, maximum search displacement d = 16.

Fig. 3.1 Three example MAE error surfaces for blocks from the Football and Table Tennis
sequences.
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3.3 Rationale in Distance-dependent Thresholding
Before introducing the full DTS algorithm, a series of key definitions need to be provided.

Definition 3.1: Consider two points with Cartesian coordinates (x,;) and (x,2). The
Euclidean distance, City-block distance, and City-block-max distance between these two points

are calculated as J(x, ﬂxz)z +(y1 —yz)z, |-"z —le"'lyl -y2|, and max(|x, —J|c2|,|yl ‘J’zl)
respectively.

It is interesting to note that the trajectory of a point mainteining constant Euclidean
distance, City-block-max distance, or City-block distance from a fixed point traces a circle, a

square, and a diamond (45° rotated square) shape, respectively.

Definition 3.2 (Search Squares §S,): The search space with maximum displacement +d,

centred at pixel p, ., can be divided into d+1 mutually exclusive concentric search squares
S8 such that a checking point at pixel p, ,, representing motion vector (x—cx,y—c¢y),isin

S8; if, and only if, the city-block-max distance (Definition 3.1) of the motion vector is
max(]x—cxl,,y-—cﬂ}=z', forall —~d+cex€x<d+ex, ~d+cy € y<d+cy, and search square

index 7 =0,),...,d.

It can be readily verified that the number of checking potnts in search square SS;,

1, =0
ISS":{&-, r=12,...,d | ¢

and SS;, represents the motion vectors of city-block-max distance 7 that translates to a
conventional Euclidean distance (Definition 3.1) in the range of [z,7V2] for all 0<7<d. The
checking points used in the first three search squares, $5, 553, and 85; are shown in Fig. 3.2.

Throughout this thesis, the length of a motion vector is expressed as Euclidean distance,

unless stated otherwise.

Definition 3.3 (Cumulative Probability): Consider a continuous probability function f(¢) ina
range of fully ordered events 0<¢<7T such that I: JS(@®dt =1. The cumulative probability
function F(¢)of this probability functibn f(¢£)is defined as:

Fo)= | f(ods (3.2)

forall 0T,
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-« —p- < >
7 A
-5
d .
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Fig. 3.2: DTS search squares SS;, S5, and §S;.

The cumulative probability of an event represcnts the probability of all possible events up to
and including that event, and it can be verified that F(1,) < F(z,) if and only if ¢ <¢, and
F()=1

Now consider the average MAE per pixel of a macroblock used as the BDM in the FS
algorithm, For each macroblock, the FS algorithm looks for the minimum MAE per pixel value
in the range of [0,2°-1] for a b-bit gray scale image. Throughout the thesis, it is assumed that b
=8.

In Feng ef al. [73] and Lim and Ho [74), it was stated that the magnitude of 2 motion vector
is proportional to the magnitude of the BDM. This observation has been explored further on a
number of standard and non-standard video sequences covering a wide range of object and
camera motions. In Fig. 3.3, the cumulative probabilities of minimum MAE are plotted for
different search squares on four different sequences, For each sequence, the minimum MAE is
calculated for each search square of macroblocks in the first 80 frames. In each search square,
the probability for each distinct minimum MAE is calculated based on frequency, and
cumulative probability using (3.2).

To interpret these graphs, consider the cumulative probability of finding a minimum MAE
of 20 or less in individual search square of the Football video sequence in Fig, 3.3(a). It follows
from this that the cumulative probability gradually decreases from 0.64 to 0.13 and then to 0.01
as the city-block-max distance of a motion vector increases from 0 to 1 and then to 7. This

means that as the motion vector length increases, so does the probability of terminating the FS
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algorithm at a higher MAE value. This observation is further enhanced by the horizontal
extension shown in Fig 3.3(a) at a cumulative probability of 0.64, which reveals that the
minimum MAE increases from 20 to 43 and 54 as the city-block-max distance of a motion
vector increases from 0 to 1 and then to 7. A similar trend is witnessed in the other three video

sequences shown in Figs. 3.3(b), (c), and (d).
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(d) Miss America sequence,

Fig. 3.3: The cumulative probability of minimum MAE for different search'squares on the
first 80 frames of four standard video sequences.

A comparison of the general trends of the cumulative probability curves for the same search
square, across all four video sequences in Fig. 3.3, indicates that the distortion level is higher in

the Flower Garden and Football sequences, which exhibit relatively high motion compared
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with the Salesman and Miss America sequences, where instead, low motion is involved. As
Miss America has almost no motion, the cumulative probability of a minimum MAE = 0 is very
high, whereas the cumulative probability of a minimum MAE = 0 in Football sequence is
almost zero.

Fig. 3.3 therefore, reveals the following : -

s The cumulative probability of having a particular minimum MAE decrease as the
motion vector length increases.
» The minimum MAE, in which the cumulative probability first reaches the value 1,
increases as the motion vector length increases.
Both these findings reveal that the probability of terminating the FS algorithm at a higher MAE
value increases with the length of the motion vector.

Based on these observations, the key finding is that the distortion of an object in a v1deo
frame increases with its velocity, as well as with the zoom and pan factors of the camera. As the
length of the motion vector grows, so does the distortion error. It can be therefore concluded
that locating a block with a minimum prediction error but with a motion vector of high length, is
not only ineffectual in the prevailing distorted search space, but may iead to fa.lse motion
vectors being erroneously selected.

This leads, elegantly, to a potential solution for the challenge raised in Section 3.2 of
developing a non-directional search algorithm which is comparable in terms of speed to the
other fast directional search algorithms, but also provides improved image quality, A non-
directional search can be effectively made faster if the search is not directed by the sole desire
of reaching the global minima unconditionally. As well, terminating a relatively high BDM
once the current minimum BDM exceeds a threshold value should also be considered, where
this threshold also increase as the search moves away from the ceriire.

By making the thresholding function distance-dependent, the searck zan be controlled by a
user-defined parameter, so that the new search algorithm can be transformed from the
qualitatively best, but slow, FS algorithm to extremely fast searches which trade-off quality for
search speed. This search technique thus provides an effective control mechanism for
performance scalability and QoS by trading between predicted image quality and processing
time in motion estimation.

Being non-directional and incorporating a relationship between distortion, object velocity
and camera factors, this new Distance-dependent Thresholding Search (DTS) algorithm has the

potential of capturing more frue object motion vectors compared with other directional fast

search algorithms and non-directional FS algorithm. This issue will be explored further in
Section 3.6.
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The DTS algorithm is now presented in detail, and includes an analysis of the influence of

using linear and non-linear thresholding functions.

3.4 The Distance-dependent Thresholding Search (DTS) Algorithm'

Definition 3.4: MAE, .,,(u,v) denotes the Mean Absolute Error per pixel of the macroblock

centred at pixel p,, ., in the current frame with respect to the block centred at pixel p ., g4y in

the reference frame.

3.4.1 The Formal DTS Algorithm

Like all block-base motion estimation search techniques, the DTS algorithm starts at the centre
of the search space. The search then progresses outwards by using search squares, S5, in order
while monitoring the current minimur MAE. A parametric thresholding function,
Threshold(%,C), is used to determine the various thresholds to be used in the search involving
cach SS, where the parameter, C, is set at the start of each search and acts as a control
parameter, as aliuded to at the end of Section 3.3. After searching each S§S, the current
minimum MAE is compared against the threshold value of that specific search square and the
search is terminated if this MAE value is not higher than the threshold value. The DTS
algorithmn is formally presented in Fig. 3.4.

¢  Parameter C _ _
s Precondition: Pixel p, ., is the centre of the search space with
maximum displacement"d.
¢ Initialisation: '
MAE i, = MAE,,. ., (0,0) (Definition 3.4)
MV =(0,0)
e  Main Algorithm:
If MAE_;, >0 Then
For r=12,..d
For each checking point p, , in SS;
e=MAE, ., (x -cx, y— cy)
If £ < MAE,,,, Then
M‘IEmin =€
MV = (x_cx’y"cy)
If MAE,, < Threshold(z,C) Then STOP

s  Postcondition: MV contains the motion vector and MAE, ;.
contains the distortion error of the respective block.

Fig. 3.4: The DTS algorithm.
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3.4.2 Characteristics of the Thresholding Function

To make sure that the DTS algorithm can be transformed to an exhaustive FS algorithm, the
threshold value for §8; is always assumed to be 0. As the maximum MAE value using a b-bit
gray level intensity is 2°-1, threshold values for all other search squares can, at most, be 2°-1.
However, to ensure the algorithm includes the entire search space, all but the outermost
threshold value must be Iess than 2°-1. Moreover, to make the thresholding function distance-
dependent, the function must monotonically increase.

The DTS algorithm, therefore, assumes the following general properties of the thresholding

function:
Threshold(0,C) =0 (3.3)
. Threshold(1,C) < Threshold(2,C) < ... < Threshold(d, C) (3.4)
Threshold(z,C) <2 -1, forall 7=12,...,d ~1 (3.5)
Threshold(d,C) < 2% -1 ' (3.6)

Parameter C plays a significant role in the DTS algorithm by allowing users to define
different sets of monotonically increasing threshold values based on specific values of C.
Obviously, a set of larger threshold values terminates a search earlier than a set of smaller
values. C, therefore, preovides a control mechanism to allow trading-off between the
computational complexity in terms of search points and prediction image quality.

The monotonic increasing function requirement means the DTS algorithm could use a
linear, exponential, or any other complex analytic function to control C. In the next two
sections, linear and exponential thresholding functions within the DTS algorithm will be

explored.

3.4.2.1 Linear Thresholding (LT) Function

A linear thresholding function can be defired as follows:
Threshold(z,C,)=C, xt,forall 7=0,],..,d 3.7

The above notation uses subscript L for the parameter, C, to specify linear thresholding, while in
the next section, subscript £ is used to indicate exponential thresholding.

It can be verified that the above definition satisfies conditions (3.3) and (3.4) if C; 20, In

order to satisfy the remaining two properties in (3.5) and (3.6), C,xd <20 -,

b

ie,C;< . So, the range of values for parameter C; is:
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2° -1
d
Sets of threshold values corresponding to C; = 0, 10, 20, and 36 are presented in Fig. 3.5, to

0sC, S (3.8)

illustrate the different values of threshold for each search square, where 8-bit gray level

intensity with a maximum search displacement d = +7 pixels is assumed.
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=] =36 .
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Threshold (1,C})
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1

o 1 2 3 4 5 6 1

Fig. 3.5: Sets of threshold va...es for different values of parameter C;.

3.4.2.2 Exponential Thresholding (ET) Function

An exponential thresholding function can be defined as follows:

0 . ifr=0
Threshold(t,Cy) = (3.9

1,
2/6*I . otherwise

The above definition satisfies conditions (3.3) and (3.4) if C; > 0. In order to satisfy the

d L
remaining two properties in (3.5) and (3.6), 2/'7* <2k~ 1, i.e,Cp2 --—2—-—1—- . So, the range
log,(2° -1)
of values for parameter C; is:
d
e & C pp < 00 . 3.10
log, @2 ~1) " " ‘ G-10)

Sets of threshold values corresponding to Cg = 0.88, 1, 3, and 7 are presented in Fig. 3.6, to
illustrate the different values of the threshold function for each search square, where 8-bit gray

level intensity with a maximum search displacement +7 pixels is assumed,
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Fig. 3.6: Sets of threshold values for different values of parameter Cj.

3.4.2.3 Selecting the Thresholding Control Parameter

The values of C;, and Cg have a significant influence on the level of computation, the quality of
the motion vector, and the prediction error. In the previous section, the upper and lower limits
on the values of Cy and Cg were defined. To clarify the nomenclature, the DTS algorithm using
the linear thresholding parameter C, and exponential thresholding parameter Cg aré denoted as
LT(Cy) and ET(Cg) respectively.

The choice of C; involves a trade-off between the quality of tﬁe motion estimation and the
computational complexity. When LT(0) in (3.7), the search terminating threshold value of any
search square (SS) is zero as shown in Fig. 3.5. In this case, the DTS algorithm translates into
the exhaustive FS algorithm as there is no threshold to terminate the search until all possible _
locations in the search space have been visited. Conversely, when Cj, is very high in (3.7), say
for example LT(36), which is close to the maximum limit of C; (3.8) for an 8-bit gray level
image and d = 7, the threshold value of each search square is shown in Fig. 3.5. In this case; the
DTS algorithm will be as fast as the probability of getting the minimum BDM within the search -
terminating threshold limit is high, especially around the search.éentre. In case of low motion
' video sequences, such as Salesman and Miss America, where MV distribution is centre-biased,
as shown in Fig. 3.7(a) and (b) respectively, a high C; performs well with low computation.
Conversely, for high motion video sequences, such as Football and Flewer Garden, where the
motion vector distribution is not centre-biased, as shown in Fig, 3.7(c) and (d), a high C; may
stop the search with an inaccurate motion vector and high prediction error.

The effect of the exponential control parémeter will now be considered. When ET(0.88)

with 2 maximum displacement, d = 7, the search terminating threshold value for different search
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squares gradually increases (3.9), as shown in Fig. 3.6. In this case, the DTS algorithm will be
faster than the FS algorithm. If the value of Cg is higher, for example ET(7), the threshold value

for all search squares, except the centre, becomes a maximum of 2 as shown in Fig. 3.6. In this

case, the likelihood of a BDM being within this smalil range is low for most types of video

sequence, especially if it is non-stationary. Therefore, a high value of Cp means the DTS

algorithm moves towards the FS algorithm.
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(c) Football. (d) Flower Garden.
; Fig. 3.7: Motion vector distributions of some high and low motion video sequences where MVs
v - have been calculated by the FS algorithm with a maximum displacement, d=7.
From the above discussion, it can be seen that the flexibility in controlling the search speed

is very limited, although different values of Cg, for example, in the range 0.88 to 7, enable the

search speed and predicted image quality to be controlled. The experimental results in Table 3.1




£
)
i
b
NN
W
:E‘
L4
i
EA
i1

B TaT o T

L |

Chapter 3 Distance-dependent Thresholding Search Algorithm 55

make clear that while the search speed of the DTS algorithm using the ET function is
comparable to the NTSS or TSS algorithm for the low motion Miss America video sequence
where ET(1), the search speed is not comparable for other values of Cg Conversely, for the
high motion Flower Garden sequence, the maximum search speed of the DTS algorithm with
the ET function, where ET(1), is on average, 70.16 search points per motion vector, whereas the
corresponding numbers for NTSS and TSS are 21.63 and 23.22 respectively. This clearly
indicates that the search speed of the DTS algorithm with the ET function does not provide
comparable performance to other fast algorithms, which leads to the conclusion that the ET
function does not afford sufficient flexibility in controlling the computational complexity in

real-time video coding applications.

Search points (SP) per motion

0 T r T T g T ™ - T T

0 2 4 6 8 10 12 14 16 18 20
Control parameter

Fig. 3.8: Flexible search speed in the DTS algorithm with an LT function usmg different
values of C; for the Flower Garden sequence.

Table 3.1 also includes the search si:_aeed of the DTS algorithm using the LT function, and
shows that it is comparable to the FS, NTSS, and TSS algorithms for both the Miss America and
Flower Garden video sequences, using various threshold settings. The search speeds in terms of
average number of search points (SP) per metion vector obtained for different values of Cy in
Table 3.1 have been plotted in Fig. 3.8, demonstrating that the DTS algorithm with LT function
provides the flexibility to control the search speed from the FS algorithm across the range of
different speeds, and is in principle, even faster than existing fast algorithms. This leads to the
conclusion that the LT function provides full flexibility in controllihg the computational
complexity for real-time video coding application®, and since complexity management is crucial
for such applications, only linear thresholding will be considered in the subsequent chapters.

Finally, while linear thresholding means that different levels of QoS can be achieved by
trading off between predicted image quality and computational complexity, in terms of search
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points, selecting the best value of Cy still remaias a challenging problem. C;, has to be manually
set and the DTS algorithm is unable to automatically adjust C, as the motion content in the
video sequence changes over time.

In Chapter 5, the DTS algorithm will be modified to provide a mechanism for fully adapting
appropriate C; parameters automatically as the motion content changes so that a QoS target,

either in terms of search points, or predicted image quality, can be maintained.

3.5 Performance Analysis in Video Coding Applications

All experiments were performed on a Pentium III 600 MHz computer running the Windows
2000 operating system and using MATLAB 6. The FS, TSS, NTSS, and DTS algorithms were
implemented to compute the block-based inter-frame motion vectors from the luminance (Y-
component) signal of a number of standard and non-standard test video sequences (Appendix
B).

All sequences were uniformly quantised to an 8-bit gray level intensity. The block size

dimensions [N,N] and maximum displacement, d, were considered as [16,16] and %7

respectively throughout the experiments. A maximum of (2d4+1)* = 225 checking points were
used, and the MAE distortion measure was used as the matching criterion. In all cases, the
centre of the search window was examined first, and if the MAE = 0, then the search was
immediately terminated without checking any further points.

The test results for the low motion video conferencing sequence, Miss dmerica, in QCIF
format (176x144 pixels) and the high motion Flower Garden sequence in SIF format (352x240
pixels) are included, and the results for the high motion sequences, Football and Table Tennis
and low motion video conferencing sequence, Salesman, are included in the supplementary
results section in Appendix C. All test résults are shown for integer-pel accuracy whereas in
Section 3.5.4, the performance of the DTS algorithm using half-pel accuracy motion estimation

is included for comparative purposes.

3.5.1 Quantitative Evaluation

To quantitatively evaluate the performance of the DTS algorithm in video coding applications,
the following thiee measures were used: - |
i. The average MSE (2.2) between the predicted and corresponding original frames.
ii. The average peak signal-to-noise ratio (PSNR) between the predicted and
corresponding original frames.
iii. The average number of search points (SP) per motion vector as the measure of

compuiational complexity.
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Average MSE Performance
The performance of the DTS algorithm using both the LT and ET functions is compared with
the FS, TSS, and NTSS, in terms of the average MSE between the predicted and original frames

in Table 3.1 for the Miss America and Flower Garden sequences. A wide range of different

~ values for C; and Cg based on (3.8) and (3.10), were tested to analyse the performance of the

DTS algorithm, while only a subset of the results are presented in Table 3.1.

Miss America sequence Flower Garden sequence
Bl ock-matching (1-80 ﬁ'ames) : (1-80 frames)
algorithms
MSE PSNR MSE PSNR SP

SP

[dB]

FS/LT(0)
‘TS

“

LT(6) 5.408 40.800 7.90
LT(8) 5.408 40.800 7,50
LT(10) 5.408 40.800 7.30
LTI 5.408 40.800 125
LT(14) 5.408 40.800 723
LT(16) 5.408 40.800 7.22

LT(18) 5.408 40.800 7.21
LT(20) |

d
ET(2) 5.398 40.808 26.61 270.49 23.90 i55.02
ETM) 5.397 40.809 48.20 270.47 23.90 175.65
ET(8) 5397 40.809 64.31 270.46 23.90 179.18

Table 3.1: Average MSE and PSNR per pixel, and SP per motion vector comparison for the
Miss America and Flower Garden sequences (1-80 frames).

It can be observed that for the Miss America sequence, with LT(4), the speed improvement
factor was almost 20 times faster whereas the average MSE was very similar (within 0.24%) to
the optimal average MSE of the FS algorithm. The prediction error performance of the DTS
algorithm was aslo better than TSS, and comparable with NTSS when the search speed was
cither similar, or higher. For example, for the DTS algorithm with LT(2), the average MSE was
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slightlyr better than that of NTSS, and 2% better than the TSS algonfihm, while the search speed
was 26% and 3% faster than the TSS and NTSS algorithms respectively.

For the Flower Garden sequence, the speed-up factor of the DTS algorithm with LT(6) was
almost 5 times that of the FS algorithm, whereas the error performance was within 5% of the
optimal average MSE of the FS algorithm. Table 3.1 also illustrates that the performance of the
DTS algorithm was slightly better than that of the TSS algorithm when considering LT(12), but
was not so satisfactory when compared with NTSS algorithm. The reasons for these results will
be discussed in Section 3.5.2. |

In Figs. 3.9 and 3.10, the MSE performance of the DTS algorithm against the FS, TSS, and
NTSS algorithms fur each frame of both video sequences is plotted. For the sake of clarity, only
those threshold control values for the DTS algorithm that used search points comparable to the
TSS and NTSS algorithms are shown. Fig. 3.9 shows that the error performance for each
algorithm except TSS was very similar for the whole (Miss America) video sequence. Fig. 3.10
illustrates that the error performance of the DTS algorithm for most of the frames was not so
satisfactory for the high motion video sequence, Flower Garden. This limitation will be more
fully discussed in Section 3.5.2.
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Fig. 3.9: Average MSE comparison for different BMAs with the Miss America video
sequence.
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Fig. 3.10: Average MSE comparison for different BMAs with the Flower Garden sequence.

Peak Signal-to-Noise Ratio (PSNR) Performance

All PSNR values were evaluated from: -

PSNR=10log_ %ﬁ (3.11)

The performance comparison of the FS, TSS, NTSS, and the DTS algorithms using the LT
and ET functions in terms of the average PSNR between the predicted and the original image, is
given in Table 3.1. The improvement in the PSNR value for the DTS algorithm with LT(2) waé
0.088dB compared to the TSS algorithm for the Miss America sequence, while the
corresponding search speed was 26%. For the Flower Garden sequence, the DTS algorithm
with LT(12) gained 0.07dB PSNR improvement compared to the TSS algorithm, with the
search speed being similar. The DTS algorithm with LT(2) gained a negligible 0.007 dB PSNR
for the Miss America sequence while the search speed was 3% faster than that of the NTSS
algorithm. Table 3.1 also shows that the PSNR performance of the DTS algorithm compared to

the NTSS was not as satisfactory for the Flower Garden sequence using a similar search speed.
Finally, the plot in Figs. 3.11 and 3.12 illustrate the overall PSNR performance of the DTS
algorithm against the FS, TSS, and NTSS algorithms. Again, only that LT function for the DTS
algorithm that has similar search speéds compared to the TSS and NTSS algorithms, have been

included.
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Fig. 3.11: Average PSNR comparison for different BMAs with the Miss America video
sequence.
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Fig.3.12: Average PSNR comparison for different BMAs with the Flower Garden video
sequence.

Search Speed Performance

For all values beyond LT(6) in Table 3.1, for the Miss America sequence, while the search
speed increased, the quality performance in terms-of average MSE or PSNR remained constant,
indicating that although the speed-up factor was high compared to TSS, it still provided better
prediction quality. This also indicates that the search speed of the DTS algorithm with LT(4)

was on average 40% faster than that of the NTSS algorithm, with both providing similar error or
PSNR performance. This clearly demonstrates that for low motion video sequences, the DTS
algorithm, with LT function, outperforms both the TSS and NTSS algorithms. The results also :
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confirm that by choosing a suitable value for the control parameter for the selected threshold
. function, the average number of search points required by the DTS algorithm will be
considerably less, while concomitantly, having a significantly higher average PSNR or MSE.
For the Flower Garden sequehce however, the search speed of the DTS algorithm, for example
in the case of LT(12), was similar to TSS but worse than NTSS_ for a similar error performance.
In Figs. 3.13 and 3.14, the search point performance of the DTS algorithm compared with the
FS, TSS, and NTSS algorithms is shown. Again, only the LT function that genérated MSE
values similar to those of the TSS and NTSS algorithms, has been plotted. Fig. 3.13 shows that

the number of average search points per motion vector is always less compared to TSS and

NTSS for any frame of the Miss America sequehce, while Fig. 3.14 illustrates that the search
speed of the DTS algorithm was not as good for the Flower Garden sequence. This recurring
limitation, which has been identified in the DTS algorithm, will now be analysed more fully.
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Fig. 3.13: Average search points (SP) comparison for different BMAs with the Miss dmerica
video sequence.
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Fig. 3.14:_ Average search points (SP) comparison for different BMAs with the Flower
Garden video sequence.
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3.5.2 Key DTS Performance Issues

The overall conclusion from the results in Table 3.1 is that for low motibn video séquences such
as Miss America (and the Salesman sequence presénted in the supplementary results in
Appendix C), the DTS algorithm consistently performs better than either the TSS or NTSS
algorithm. This is because, as was noted in Section 2.4.2, the TSS al gorithm always searches 25
points irrespective of the video content. For the low motion case, the NTSS algorithm searches
at least 17 points (Section 2.4.5), Li et al. [45], Zhu and Ma [53}, Luo ef al. [68], and Cheung et
al. [85] show that in central-biased low motion sequences, more than 80% of blocks are
stationary or quasi-stationary, and most of the motion vectors are within a 3x3 or 5x5 area
around the search centré, as shown in Figs. 3.7(a) and (b). As the probability of getting a small
prediction error is higher nearer the centre (Figs. 3.3(c) and (d)), the DTS algorithm can stop
searching after completing the 8 neighboring search points, even when a small threshold value
is involved. For this reason, the DTS algorithm always outperforms the TSS algorithm and
provides similar or better, performance than the NTSS algorithm for low motion video
sequeﬁces.

The reverse is true however, fur high mouon video sequences where the number of search
points for TSS is again 25, and for NTSS, between 17 to 3.3 based on the level of motion
involved in the current block. In this case, the DTS algorithm may search up to 225 points if the
distortion error is higher compared to the threshold in any search square. Figs. 3.7(c) and (d)
illustrate the motion vector distributions of high motion video sequences, indicating that to
capture real motion vectors, any search algorithm has to search at least a few pixels’ distance

from the search centre. If for example, a block moves 3 pixels from the centre, and if a

threshold value in the DTS algorithm is such that it stops the search before reaching S5, (3.1), it

may produce a higher prediction error with a faster search. Conversely to obtain the real vector,
a threshold vatue should be selected that allows the DTS algorithm to search up to S5, where

the total number of checking points required is 49. This produces better prediction quality in

terms of MSE or PSNR with higher search points. For this reason, the DTS algorithm does not

perform satisfactorily with the high motion video sequence, Flower Garden, compared to the
NTSS, algorithm. In this cése, if the initial search centre of the search space could be predicted,
near to the minimum BDM pesition for the current block, by exploiting relevant information
fiom neighbouring blocks, the search efficiency of the DTS algorithm for high motion
sequences would be improved. This issue will be addressed more fully in Chapter 4.I

The most noticeable feature of Table 3.1 is that the different values of C; and C, especially
Cy, provide different levels of image prediction quality in terms of average MSE or PSNR with
different levels of computational complexity. This indicates that the DTS algorithm provides
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flexibility in controlling the predicted image quality; as well as computational complexity by
varying the control parameter. Conversely, Table 3.1 illustrates that the existing FS, as well as
the fast TSS and NTSS algorithms, have a fixed performance for both video sequences. This
proves that thase algorithms do not provide any flexibility in controlling quality or
computational complexity based -n a user's demands. These results validate one of the
objectives defined in Chapter 1 tha: ic, of developing a system which can provide QoS in terms
of prediction image quality and computational complexity. This flexibility has considerable
potential for exploitation in a range of applications ranging from low-bit rate video
conferencing through to adaptive lLijgh-quality video coding. It is especially important for low
power video coding (mobile or handheld computing platforms) and software-only video coding,
which demands a more flexible approach to trade-off beiween predicted image quality and
computational complexity. In this chapter, different values of control parameters have been set
up manually, T« gain the full poteﬁtiai of this algorithm, this control parameter in any system
has to e auw.omatically adaptable Lased on user requirements in terms of predicted image
quality or computational complexity. Such a system will be presented in Chapter 5.

While the error perfesusz.ce in using the ET function is similar to that of the FS aigorith:.,
the comp’exity is higher. This nieans the ET function for any value of Cg is not comparable with
the TSS or NTSS algorithrn, especially for the high motion video sequences, For this reason
t-erefore, in the next section, only the LT function DTS algorithm will be considered for

qualitative performance comparison,

3.5.3 Qualitative Evaluation

The percepiual performance of the LT function DTS algorithm has been ev};]uated based on the
predicted image quality for motion estimation. Figs. 3.15 and 3.16 show the estimated 76™ and
5 frames respectively of the Miss America and Flower Garden sequences, for the FS, DTS,
TSS, and NTSS algorithms. Fig. 3.15 shows that although the predicted image quality of the
DTS algorithm is very similar to that of FS, TSS, and NTSS for the Miss America video
sequence, the computational cost is approximately 55% and 40% less than TSS and NTSS
respectively. This indicates that the DTS algorithm can predict the same image quality with &
faster search speed than existing fast algorithms for low motion video sequences. Fig. 3.16
shows that the predicted image quality of the DTS algorithm is very similar to that of TSS and
NTSS algorithms for the Flower Garden sequence with comparable computational complexity
(Table 3.1).
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Fig. 3.15: Estimated image of 76™ frame of the Miss America sequence: (a) FS, (b) DTS:
LT(4), (c) TSS, and (d) NTSS algorithms.

(d)
Fig. 3.16: Estimated image of 5™ frame of the Flower Garden sequence: (a) FS, (b) DTS:
LT(12), (c) TSS, and (d) NTSS algorithms.
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The prediciion error distribution corresponding to Figs. 3.15 and 3.16 in terms of MAE per
block between each original and its predicted frame, is shown in Figs.3.17 and 3.18
respectively. As the FS is optimum in terms of error performance, Figs. 3.19 and 3.20 show the
prediction error distribution of DTS, TSS, and NTSS with respect to the FS algorithm for the
Miss America and Flower Garden video sequences. These figures indicate that the error
performance of the DTS algorithm with LT(4) is very similar to that achieved with the FS
algorithm for the Miss America video sequence, whereas error performance of the DTS
algorithm with LT(12) is comparable to NTSS, and better than the TSS aigorithm.
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Fig. 3.17: Prediction error distribution of the 76" frame of the Miss America sequence: (a) FS,
(b) DTS: LT (4), (c) TSS, and (d) NTSS algorithms.
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Fig. 3.19: Prediction error distribution of the 76™ frame of the Miss America sequence with
respect to that of the FS algorithm.
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Fig. 3.20: Prediction error distribution of the 5* frame of the Flower Garden sequence with
respect to that of the FS algorithm.

3.5.4 Performance Comparison using Half-pel Accuracy

The performance of the DTS, FS, TSS, and NTSS algorithms was also tested in terms of half-
pel accuracy, and the results compared to integer-pel accuracy motion estimation. The process
of half-pel' accuracy was detailed in Section 2.4.10. Table 3.2 shows the average MSE and
PSNR performance of the four algorithms for the Miss America and Flower Garden video
sequences using half-pel accuracy. Comparing Table 3.1 with Table 3.2 shows that half-pel
accuracy improved PSNR on average by 2.36 dB for Miss America, and 1.18 dB for the Flower
Garden sequences, Half-pixel accuracy improves, in fact, the motion prediction accuracy since
it also reduces noise by averaging and interpolation of pixels. This is balanced by, on average,
the need to check an extra 8 search points for each motion vector. Although the overhead cost
for half-pel accuracy motion estimation is higher, it has been recommended by many video
coding standards such as the MPEG-1/2 and H.261/263 for significant improvement in image

quality.
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Miss America sequence Flower Garden sequence
Bl(;clzlgc;iggzl;lsing (1-80 frarmlemss)'NR (1-80 frame;)SNR
_ MSE [dB] MSE [dB]
FS/ LT{0) 3.148 43,150 207.98 24,951
TSS 317 43.118 244.75 24.244
NTSS 3.158 43.137 214.39 24.8)9
LT(2) 3.157 43,138 208.12 240y |
LT(4) 3.158 43.137 210.10 24.907
LT(6) 3.158 43.137 214,58 24.815
LT(8) 3.159 43.135 219.52 24.716
LT(10) 3.159 43.135 226.06 24,589
LT(12) 3.159 43135 231.78 24.480
LT(14) 3.159 43.135 237.25 24.379
LT(16) 3.159 43.135 243.63 24,263
LT(18) 3.159 43.135 251.26 24,130
LT(20) 3.159 43.135 259.83 23.984
ET(1) 3.158 43,137 210.21 24.904
ET(2) 3.158 43.137 207.99 24.950
ET(4) 3.158 43.137 207.98 24951
ET(8) 3.157 43.138 207.98 24951

Table 3.2: Average MSE and PSNR per pixel, and search points (SP) per motion vector for the
Miss America and Flower Garden sequences (1-80 frames) with half-pel accuracy
motion estimation. '

3.5.5 Computational Complexity of the DTS Algorithm

The computational complexity of a motion estimation algorithm is usually expressed in terms of
either the number of search points or operations that the algorithm requires to calculate the
motion vectors. The complexity of the DTS algorithm is analysed in terms of the average
number of search points considered in calculating the best matching block for each candidate
block. However, since the DTS process calculates the motion vectors by considering all pixels
of the current and candidate blocks, the number of operations is- directly proportioﬁal to the
number of search points. In Sections 3.4.2.3 and 3.5.2, it was stated that only the LT function
would be considered for the DTS algorithm, Therefore, the complexity of the LT-based DTS
algorithm is discussed as follows. |

Consider a motion estimation system with the following parameters: frame size = [N, N];

macroblock size = NxN; maximum motion vector displacement = x4 and temporal frequency =
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S frames per second. If there are Q2 number of operations required for the BDM calculation of
one search point, then the FS algorithm requires a maximum ¥ =Q(2d +1)*¢ operations per

second using integer-pel accuracy, where ¢ is the total number of macroblocks per second,

— Nth
alwad

The DTS algorithm requires an extra d operations to compare the current minimum BDM
with the predefined threshold of each search square, for each macrboblock, while searching the

entire search space. The total number of extra operations required per second is therefore dg .

Hence, for the LT function DTS algorithm with control parameter C; = 0 (the FS case), the
number of operations required per second is:
wdg (3.12)
which is the upper computationa! bound, and thus the worst case scenario for computational
complexity.
Conversely, by using a very high threshold value, when only the corresponding centre of
the search space is checked, only one operation is required to compare the BDM found at the
search centre with a predefined threshold for each macroblock. So, the number of extra

operations required per second is ¢ and the total number of operations required per second is:
c(Q+1) (3.13)

which forms the lower bound. From (3.12) and (3.13), the computational complexity based on
user-defined levels is aiways bounded between ¢(€2+1) and ¥ +dg operations per second for
the DTS algorithm using an LT function.

When half-pel accuracy is used for motion estimation, eight neighbouring half-pel positions
(Section 2.4.10) around the current minimum poeint, obtained with integer-pel accuracy, are
checked. In this case, the upper and lower bounds of computational complexity of the DTS

algorithm increases by a further 8¢ Q operations per second.

3.6 Performance of the DTS Algorithm in True Object Motion
Estimation

In order to represent a video object using the object motion vector, it is important to extract the
true object motion. As alluded to in Chapter 1 and in Section 3.3, the DTS algorithm has, by
virtue of its non-directional nature, the potential to capture more #rue object motion vectors than
the FS or any other directional fast search algorithms. To observe this potehtial, the
performance of the LT function in the DTS algorithm was evaluated in terms of how effectively

it was able to capture true object motion. As the Miss America sequence contained very low
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object motion and the Flower Garden sequence had no object motion, they were not suited to
analysing the performance of the DTS algorithm for #rve object motion estimation. The Table
Tennis sequence has, therefore, been considered instead because this sequence contains
different object motions as well as camera motion, as previously indicated in Figs. 1.2 and 1.3,
Fig. 3.22 shows the motion vector needle diagrams for the captured motion vectors using
FS, TSS, NTSS, and DTS with LT functions for the pair of frames #32 and #33 from the Table
Tennis sequence shown in Fig. 3.21. To clearly show the exact direction of true object motion,
the next frame, instead of the previous frame, has been considered as the reference frame. Apart
from camera motion due to zooming, the only moving objects in the frame pair are a ball, bat,
and a portion of a hand holding the bat. From Fig. 3.22, it can be subjectively observed that
though the FS algorithm is optimum for video coding when minimum prediction error is the
optimum criterion, using this algorithm also captures a large number of false motion vectors as
shown in Fig. 3.22(a), particulasly in the area of the table where there are no moving objects. In
Fig. 3.22(c), it can be observed that TSS algorithm captured false motion vectors across most of
the frame even where only camera motion was involved. Figs. 3.22(b) and (d) contrast the
performance of the NTSS algorithm in capturing the frue object motion vectors with that of the
DTS algorithm for this sequence. It shows similar results, though there are even more Jalse
motion vectors visible around the side of the table. From this elementary analysis, an initial
conclusion can be drawn that the DTS algorithm is capable of outperforming existing fast, as
well as the FS algorithm, in capturing more frue object motion vectors. This discussion
indicates that motion estimation searching algorithms, driven principally by the need to locate
the minimum BDM to optimise video coding, do not necessarily lead to accurate zrue object
motion in many instances. The DTS algorithm in contrast, does provide prima facie evidence of

an improved zrue object motion performance.

Fig. 3.21: (a) Current frame #32 and (b) reference frame #33 of the Table Tennis video sequence.
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(c) TSS (d) NTSS

Fig. 3.22: The motion vectors obtained from all four search algorithms applied to the frame pair
#32 and #33 of the Table Tennis sequence.

Clearly, comparing the motion vector needle diagrams above provides only a visual
qualitative judgment as to the potential superiority of the DTS aigorithm in capturing an
improved number of frue object motion vectors. However, to prove this observation
quantitavely, motion vectors must first be compensated for their global motion components (if
any), and then all false object motion vectors must be removed. The number of true object
motio vectors retained after this process can then be compared to make an evaluation. This
process is elaborated in detail in Chapter 6 through the introduction of both modified global
motion esti: .tion and a compensation strategy, and a false motion vector elimination system

using a novel fiitering technique.

3.7 Summary

In this chapter, a new Distance-dependent Thresholding Search (DTS) algorithm has been
presented for block-based motion estimation in video coding and frue object motion estimation
for object motion based video analysis. The important feature of the DTS algorithm is that the

FS as well as fast searching modes are encompassed, with different threshold settings, providing

A O

i o i




e r—r

P e — -

Chapter 3 Distance-dependent Thresholding Search Algorithm 72

various quality-of-service levels. A unique characteristic of the DTS algorithm is that it has the
flexibility of being able to trade predicted picture quality (MSE or PSNR) for search speed,
across the full range of LT for different video sequences. This flexibility has considerable
potential for exploitation in a wide range of applications ranging from low-bit rate video
conferencing, through to adaptive high-quality video coding. Though the values of the control
parameter were manually defined in this chapter, the DTS algorithra will be extended to a fully
adaptive distance-dependent thresholding search (FADTS) algorithm in Chapter 5, to achieve
guaranteed levels of QoS based on user demands in performance management motion
estimation for video coding applications.

The performance of the DTS algorithm has also been compared te other popular fast
algorithms such as TSS and NTSS, and it has been proven that the LT function DTS provided
superior speed performance. While it retained a distortion error similar to the minimum value
produced by the optimal FS algorithm, for stationary or quasi-stationery video sequences such
as Miss America, its searching efficiency was not as high for high motion sequences such as
Flower Garden and Football. This drawback will be addressed in the next chapter where the
DTS algorithm will be modified into a fast DTS algorithm by considering additional motion
related information. |

Finally, the DTS algorithm was shown to afford superior performance in terms of capturing
true object motion vectors compared to FS, NTSS, and TSS algorithms from a qualitative
perspective. A comprehensive evaluation of this aspect of the DTS algorithm will be presented
in Chapter 6.
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Chapter 4

[

Adaypit e-Centre Diamond Search DTS Algorithm

4.1 Introduction

In the previous chapter, it has been shown that the DTS algorithm (Block 1 in Fig. 1.6) is
capable of responding to any QoS requirements in terms of predicted image quality and
computational complexity using differer.. *hreshold settings provided by a control parameter. It
was also demonstrated that with low motion video sequences such as Miss America, the error
performance of the DTS algorithm was very similar to optimum FS performance while the
computational cost was almost 55% and 40% less than existing fast algorithms, TSS and NTSS,
respectively. Howsver, it was also shown that the error performance «f the DTS algorithm was
not as satisfactory for complex motion video sequences such as Football and Flower Garden,
when the processing speed was comparable to fast algorithms such as the above. As explained
in Chapter 3, the DTS algorithm fails to improve search points for —video sequences with
complex motion, as it transforms to nearly exhaustive FS mode for a large number of
macroblocks with high motion vectors. To improve the performance of the DTS algorithm on
high motion video sequences, two well-established enhancement measures have been
implemented, which are explored in this chapter.

The review in Chapter 2 revealed that a number of enhancement algorithms exist which
nnprove $w gearch efficiency of any BMA by exploiting some interframe and/or intraframe
correlwnro; erties of a video sequence, Among these properties, spatio-temporal correlation
among s2igktouring blocks {49, 68, 86-9C) is the most researched one, and this will be
discussed in ueiail in the next section. Because of temporal and spatial correlations, the motion
vector of a block in the current frame is highly correlated *o the mol.on vector of the bloci: of
the same c¢o-prdicaiss in the previous frame, aud the adyzvent blocks in the same frame
respectively. if swhicient useful information can be obtained from the motion vectors of the
previous blocks, the total number of search points needed to find the motion vector of the
current block can be significantly reduced.

So far, the centre of the search window has been considered as the search starting point in
the DTS algorithm. In this chapter, the DTS algorithm with a Linear Thresholding (LT)
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function is refined by integrating motion correlation, referred to as the Adaptive-Centre DTS
(ACDTS) algorithm (Block 2 in Fig. 1.6), to automatically predict the best search starting point
in each search window,

Again from Chapter 2, it can be seen that the search pattern’s shape and size influence both
search speed and error performance. The distribution of MV in image sequences with a gentie
and smooth motion is highly biased towards the central region. It is shown by certain authors
[45, 46, 53, 68, 85] that nearly 80%-98% of the MVs of different video sequences such as
Football, Tennis, Miss America, and Salesman are enclosed in the central 5x5 pixel region, and
around 80% are enclosed in the 3X3 pixel area around the initial search centre prediction point
of each block. With this centre-biased characteristic, it is reasonable to place more search points
in the central region of the search window to get more samples, as implemented in [85, 100,
101]. In Zhu and Ma [53], it has also been shown that about 52.76% to 98.70% of the motion
vectors of different video sequences are enclosed in a circular area with a radius of 2 pixels,
centred on the position of zero motion. This indicates that the search points within the circle of a
2 pixels’ radius are the most appropriate ones to be chosen in composing the search pattern. it is
also mentioned by Zhu and Ma in [53] that the block displacement of real-world video
sequences are mainly in the horizontal and vertical directions. Based on these two observations,
recent research, [53, 102-104] has proved that the diamond search pattern is more efficient than
the square or any other rectangular shaped search pattern in terms of using fewer search points
for comparable prediction quality. This is because such as pattern (i) tries to behave in an ideal
circie shaped manner in order to cover all possible directions of an investigating Iﬁotion vector;
(ii) can find large motion blocks with fewer search points; and (iii) has reduced susceptibility to
falling into a local optimum due to its relatively large step size in horizontal and vertical
directions. The diamonu search pattern is not only efficient but also quite regular and very
simple to implement.

The performance of the ACDTS algorithm can be further enhanced by considering the
diamond search pattern instead of the usual square shape for trading off quality and processing

speed. Changing the pattem of searching from a square shaz to a diamond shape leads to the -

Adaptive-Centre Diamond Search ACDTS (ACDSDTS) slgorithm (Block 2 in Fig. 1.5).

This chapter is organized as follows. Section 4.2 discusses the inter-block motion
correlation among the neighbouring blocks in spatial and temporal domains. The proposed
ACDTS and ACDSDTS algorithms are presented in Section 4.3. The overhead compiexity
incurred in ACDSDTS is also analysed in this section. Section 4.4 includes experimental results

and performance analysis of the ACDTS and ACDSDTS algorithms with comparison against
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fast 51g0ﬁthms such as TSS, NTSS, and adaptive-Centre NTSS (ACNTSS). Section4.5

surnmarises the chapter.

4,2 Inter-block Motion Correlation

In general moving scenes, moving objects often cover many macroblocks such that the motion
vector of spatial neighbouring blocks may be very similar. In addition, due to the continuity of
motion in the temporal direction, the motion fields of the temporal neighbour blocks may be
highly correlated. In other words, the motion vector of the current block can be predicted from
the neighbouring blocks' motion vectors in the temporal (from the previous frame) or spatial
(neighbouring blocks® motion vectors in the same frame) direction. These spatial and temporal
correlations are clearly evident in Fig. 4.1 where the motion vectors for the Table Tennis
sequence at frames #3 and #4 are obtained using the FS algorithm with maximum displacement
d = *7. From Figs. 4.1(a) or (b), it can observed that the motion vectors of a few of the
neighbouring macroblocks of any moving object, such as a moving ball, show a similarity in
magnitude and directivn. This represents the spatizl correlation among the neighbouring block’s
motion vectors in the same frame. From Figs. 4.1(a) and (b), it can be observed that the motion
vectors of the corresponding macroblocks in both the frames are also very similar in magnitude
and direction. This represents the temporal correlation between the motion vector of the current
block and the motion vector of the corresponding block in the temporal direction. Using this
informationl, a better search starting point can be predicted which cai eventually feduce the

computational burden associated with motion estimation of the current block.

@@ (b)

Fig. 4.1: The motion vector diagram for the Table Tennis sequence at frames 73 and #4 with
respect to the previous frame.

As stated in the review in Chapter 2, a number of researchers have used this inter-block

correlation to predict ihe starting point for a search window in order to reduce the coimgutational
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cost involved in motion estimation. Although in most cases, there is a Ligh temporal cetrelation
for a high temporal sampling rate, when the motion of objects changes direction abruptly or the
speed of motion is not steady, tracking the motion from the previous frame’s motion fields in
the neighbourhood of the current block proves ineffective. Moreover, to keep the previous
frame motion vectors in the decoder requires a large memory buffer [49], which will also
complicate the system. For these reasons, only the spatial correlation has been integrated with
the DTS algorithm to predict the search starting point and reduce the computational compllexity
in motion estimation.

The four spatial neighbouring blocks of the current block, MV0, in the current frame are
shown in Fig. 4.2, where MV represents the previous block in the horizontal direction, and
MV2, MV3 and MV4 are those in the vertical directions. Thoilgh cther four neighbouring blocks
could be available around the current block, the assumption only ccnsidering the four blocks is

that motion vectors are calculated in row major order siarting from the topmost row.

Fig, 4.2: Fou. neighbsuring biecks arcurd the current block, MV0.

For neighbouring blocks, some authors [68, 88] used the motion vectors of three adiacent
blocks in the current frame, MV1, MV3 and MV4. Their azgument in ignoring the motion vector
of block MV2 is that the motion vector of this block is highly correlated wiia the horizontal or
vertical neighbour block, and subsequently can be appropriately replaced by one, or both, the
blocks. On the other hand, Xu er al. [49] and Cheung et al. [85] considered all the four
neighbouring blocks for predicting the motion vector of the current block, withou: making the
above assumption. Despit: this, all the four neighbouring blocks as shown in Fig. 4.2, are used
in this research.

The inter-block motion correlation is define * by the displacement between the current
block’s motion vector and the mean motion vector of the four neighbouring blocks’ ‘motion

vectors, which is formuiated as {497:
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ﬁm =ﬁm'o _ﬁm 4.1

4
ZVW represents the mean motion vector, Vg, is the motion vector of block

i=l

~ ]
where V¥, =z
MVi, i=0],...,4,and 5,”,, is the displacement. When the magnitude of 13,,,,, is small, the
current block’s motion vector can be considered highty correlated to those of its neighbours and

this information can be used te predict the starting search centre of the current block.

4.3 The ACDTS and ACDSDTS Algorithms
4.3.1 Adaptive-Centre DTS (ACDTS) Algorithm

The purpose of centre prediction is to refine the DTS by integrating motion correlation within
the DTS process to automaiically predict the best search starting point in each window. The
major advantage is that it can increase the chance of finding the real motion vector and reduce
the computational requirement of the DTS algorithm, especially with high motion video
sequences. This is because it reduces the distance between the starting search point and the
global optimum point. The adaptive search centre for a block is predicted using four causal
neighbouring motion vectors as shown in Fig. 4.2. This predictive centre is considered as the
initial search centre and continues the DTS process for estimating the final motion vector. The

search centre is predicted as follows:

Let vV, be the initial search window’s centre from the origin of the current block. To

predict the starting search point of any current block, it must first be determined whether the

current block and its neighbours, as shown in Fig. 4.2, contain the same object. If the difference

between the mean vector, ¥, , and each of all the four neighbouring blocks’ motion vectors is
less than a predefined threshold, it can be fairly assumed that these all blocks are covering the

same moving object, or are in the background region. In such a case, the four neighbouring

wtion vectors can be used to predict an initial search centre, 17';, . Otherwise, no correlation can

be established and no prediction will be made. The above process is formulated in [49]:

V. ={ V, ifmax, Aﬂﬁmi'ﬁml <T | (42)
t (00) otherwise

where T is a predefined threshold and |||| represents the norm of the corresponding vector.
In [49], Xu et al. proposed three Vp motion prediction methods as follows:

centre-biased prediction: V,=arg min,;m“Vm",i =1,..,4 (4.3)
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mean prediction: v, =round ¥.,) 4.4)
mean-biased prediction. fp =arg miny HV“M H i=l..4 (4.5)

where the arg function indicates that the argument, here the moiion vectors, ¥y, of all four
neighbouring biocks, for which the function value is minimum will be assigned to VP instead

of the minimum function value itself, and round (.) is the rounding of all elements of the
vectors.

Among these three search centre prediction methods, the first one is suitable for those types
of video sequences where the motion vectors of different blocks are usuaily genile, smooth and
only slowly vary with time. However, this method is not suitable for fast motion video
sequences [49). The mean prediction gives an accurate estimation if the assumption that the
blocks cover the same moving object is true [49]. Xu et al. also mentions that sometimes, the
four neighbouring blocks cover too large an area preventing tracking of any small motion,
which may lead to produce larger prediction error when the mean prediction technique fails to

track the real motion. Conversely, in mean-biase: prediction, the motion vector which is the
closest to the mean vector, 17",,“r , 18 selected to represent the object’s movement. If ali four blocks

are within the same object, the predicted initial search point will be close to the real motion
vector. Otherwise, these blocks probably belong to different motion objects. In’ this way, the
sefection of a minimum dispiacement can preserve the centre-biased distribution property of the
motion vector [49] and maintain a better balance in both cases. Xu er al. [49] proves that the
mean-biased prediction provides the best results compared tonlthe other two methods (4.3 and
4.4). Based on this, the mean-biased prediction technique will be considered in this research to

predict the initial search starting point.

4.3.2 The Formal ACDTS Algerithm

The ACDTS algorithm can be outlined as follows, If the current block s in the first row, or the
first column, or the last column of a frame, the search starts using the origin of the search space
as the initial search centre without any centre prediction. For other blocks, the ACDTS
algorithm first predicts the initial starting search centre as in Section 4.3.1, and then the search
progresses outwards by using search squares SS; (Definition 3.2) in order, while keeping track
of the current minimuum MAE, A parametric thresholding function, defired in Section 3.4.2.1, is
used to determine the various thresholds to be used with the search involving each search
square, with the parameter is initialised at the onset of the search. Afier the searching of each

search square is completed, the current minimum MAE is compared against the threshold value
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of that specific search square and the search is terminated as soon as the current minimum MAE
is found to be no higher than the threshold vatue. Fig. 4.3 summarises the proposed ACDTS
algorithm.

Parameter C;,
Precondition: Pixel p,, ., is the centre of search window with maximum displacement 4.

Prediction:
If the current block is in the first row or the first column ¢r the last column of a frame Then

MV predicied = (0,0)

Else
MVpredfcted =Vp in (4.5)

ch,cy = pct,cy + MV, predicted

Initialisation;
MAE ;, = MAE ,, ,,(0,0)
MV =MV predicted
Main algorithm:
If MAE ;, >0 Then
For t=1.2,..,d _
For each checking point p, , in SS-such that p,, ., is in the current block

£= ME(“@) {(x=cx,y—-cy)
If e< MAE,;, Then
MAE ;, =&
MV =(x—cx, y=cy)+ MV projicied
If MAE;, < Threshold(7,C;) Then STOP

s Postcondition: MV contains the motion vector and MAE,,,;, the distortion error of the
reapective biock. )

Fig. 4.3: The ACDTS algorithm.

4.3.3 Adaptive-Centre Diamond Search DTS (ACDSDTS) Algorithm

Before defining the ACDSDTS algorithm, it is importeat to define the search diamond (5D,)

pattern in the search space.

Definition 4.1 (Search Diamond §D,): The search space with maximum displacement, Xd,
centred at pixel, p,,,, can be divided into d+1 mutually exclusive concentric search diamond,
SDy, such that a checking point at pixel, p, ,, representing motion vector (x — cx, y - ¢y), is in

SD. if, and only if, the city-block distance (Definition 3.1) of the motion vector,
|x-cx1+|y-cy] =7,forall -d+ex<xsd+ex, ~d+eySsysd+ey, and 7=0),..,4.
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It can be readily verified that the number of checking points in search diamond SDy,
, ©=0
SD| =1 " 4.6
I ‘l {4‘:, r=12,....d (4.6)
and SDy, represents the motion vectors of city-block distance, 7, that translates to a conventional

Euclidean distance in the range of [—T—,f] for all 0<7 <d. The checking points used in the

V2

first four search diamonds, SDy, SDy, SD,  and SD;  are shown in Fig. 4.4. It is interesting to

note that |SD,|=-}2-|SS,| for 7=12,..,4d.

«—t pe—2L
-7 A
5
d . .
3 ®  Starting search pointin SD,
@ Checking points in SD;

-1 ® Checking points in SD,
0 Y ® Checking points in SD;
1

3 d

5

7 v

J 5 3 101 3 5 7 |
Fig. 4.4: Search diamond SDy, SDy, $D,, and SD;,

After predicting the initia! search starting point as is done in Section 4.3.1, the final motion
vector should be very close to the initial search window’s centre. Now, if the above-mentioned
diamond search pattern is used in the DTS algorithm, it will obtain the final miction vector by
searching a lower number of search points, with a trade-off between quality and processing
speed. , '

By integrating the search centre prediction method discussed in section 4.3.1 and the above-
mentioned search diamond pattern, instead of the search square in DTS algorithm, an Adaptive-
Centre Diamond Search DTS (ACDSDTS) algorithm is developed. This is presented in the next

section,
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4.3.4 The Formal ACDSDTS Algorithm

The ACDSDTS algorithm can be outlined as follows. As with the ACDTS algorithm, the search
starts using the origin of the search space as the initial search centre without any centre
prediction for a bleck in the first row, or the first column, or the last column of a frame. For
other blocks, the ACDSTDS algorithm first predicts the initial starting search centre as is done
in the ACDTS algorithm and then the search progresses outwards by using the search diamonds,
SDy, (Definition 4.1) in order, while keeping track of the current minimum MAE. A parametric
thresholding function, defined in Section 3.4.2.1, is used to determine the various thresholds to
be used with the search involving each search diamond, with the parameter being set at the
onset of the search. After completion of searching each search diamond, the current minimum
MAE is compared against the threshold value of that specific search diamond, and the search is
terminated as soon as the current minimum MAE is found to be no higher than the threshold
value, Fig 4.5 summarizes the ACDSDTS algorithm.

Parameter C;
Precondition: Pixel p.. ., is the centre of search window with maximum displacement d.

Prediction;
If the current block is in the first row or the first column or the last column of a frame Then

MY predicrea =(0,0)

Else
MVpredicted = VP in (4.5)
pc.t,cy =p ox,cy +MV, predicted

Initialisation:
MAE ;, = ME(C,,'Q,) (0,0)

MV =MV predicted

Main algorithm:
If MAE;, >0 Then

For r=12,.,d
For each checking point p, , in SD,such that p_ ., is in the current block
&= MAE o) (x—cX, y=¢y)
If £ < MAE ;, Then
MAE,,, =¢
MY =(x=cx,y=cy)+ MV pregicioa
If MAE_, < Threshold(%,C) Then STOP

¢ Postcondition: MV contains the motion vector and MAE,;, the distortion error of the
respective block,

_'..L‘! e gan s e L

Fig. 4.5: The ACDSDTS algorithm.
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4.3.5 Computational Complexity Analysis

In Chapter 3, it was defined that the computational complexity associated with the DTS
algorithm is bounded between ¢(Q+1) and y + d¢ operations per second (3.12 and 3.13) for
integer-pel motion accuracy. For half-pel accuracy, these limits will be increased by
8¢ Q operations per second (Section 3.5.5). As the mean-biased prediction (4.5) adaptive—
centre algorithm is integrated with the DTS algorithm to predict the starting search point, it will
increase the computational cost of the whole process. If the number of operations involved in

predicting the search centre for each block is R, it requires a total of R¢ operations per second;

that is the only extra overhead cost incurred in the whole motion estimation process in the
ACDSDTS algorithm. According to Xu ef al. [49], the value of R is only 23 arithmetic
operations, which is much less than that required in the matching function evaluation for motion
estimation in the DTS algorithm mentioned above. Experimental results also show that this
overhead cost can be justified by reducing the number of checking points with better prediction

CITOT,

4.4 Experimental Results

The purpose of this section is to present the results of experiments performed to compare the
performance of the FS, ACDTS, ACDSDTS, DTS, TSS, NTSS, and adaptive-centre NTSS
(ACNTSS) algorithms for motion estimation in video coding applications. Th: MAE function
was used as the criterion for locating the best motion vector for each block, and all the results

shown in this section are formulated with half-pel accuracy motion estimation.

est Video Table Tennis Football Flower Garden
r MSE SP MSE SP MSE SP
3.0 90.80 186.98 366.27 196.66 275.26 190.14
33 90.82 186.19 366.63 195.31 27528 188.71
4.0 90.84 18 .66 36€.57 194.17 275.29 188.02
4.5 50.89 184.97 366.73 192.61 275.29 187.55
5.0 90.91 184.40 367.35 190.93 275.28 187.17
5.5 90.93 183.82 367.98 189.14 275.29 186.83
6.0 50.98 183.34 368.81 187.65 275.29 186.54
6.5 91.38 182.83 369.73 186.14 275.29 186.31
1.0 91.50 182.51 37033 185.13 275.29 186.26

Table 4.1: Performance comparison of differ~ - values of the predefined threshold, 7, for the
Table Tennis, Football, and Flower ‘iarden sequences (1-50 frames).

The predefined displacement threshold, T, in {4.2) has also been tested for a range o

differ»nt values. Tabie 4.1 shows the performance of T with a range of values from 3 to 7 for
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the Foorball, Table Tennis, an¢ Flower Garden video sequences. To ensure the optimum results
for 7, the FS algorithm is considered for calculating the motion vector. Experimental results
show that the value of threshold, 7, is not very sensitive to performance, especially for
prediction error. For the T range from I to 7, the average MSE and the average number of
search points (SP), of the first 50 frames of the Table Tennis, Football, and Flower Garden
sequences, varies less than 1% and 5% respectively. For average performance, the predefined

threshold value of T'is considered as 5 in this research.

Performance Analysis

To compare the performance of the ACDSLTS, ACDTS, DTS, TSS, NTSS, and ACNTSS
algorithms, a number of tests were performed using standard video sequences—ZTuble Tennis,
Football, Flower Garden, Salesman, and Miss America (Appendix B). The block size and

maximum displacement were [16,16] and £7 respectively. As indicated in Chapter 3, although

the performance of the DTS algorithm was better than that of the TSS or NTSS algorithm on .

low motion video sequences such as the Miss America, it was not so on high motion video
sequences such as the Flower Garden and Football. The motivation of this chapter has been
primarily to improve the performance of the DTS algorithm on high motion video seouences.
For this reason, the test results for only the Football and Flower Garden sequences are included
in this chapter, and the results for the Table Tennis, Salesman, and Miss America sequences are
included in Appendix D. The Flower Garden sequence comprises mainly camera panning,
while the Football sequence consists of complex motions ranging from slow motion to very fast
motion,
To quantitatively evaluate the performance ¢f the ACDSDTS, ACDTS, DTS, FS, 1SS,
NTSS, and ACNTSS algorithms, the following three measures were considered: -
¢ The average MSE (error performance) per pixel between the estimated and the
corresponding original frames.
¢ The averags PSNR (predicted image quality) per pixel between the estimated and the

corresponding criginal frames.

¢ The average number of search points (SP) per motion vector as computational

complexity.
The experimental results are presented in the foitowing two-sub sections.
4.4.1 Perforniance Analysis of the ACDTS Algorithm

This section analysises the performance of the ACDTS algorithm against that of the DS

algorithm and some other fast BMAs for motion estimation.
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Average MSE Performance

The statistical performance comparison of the FS, ACDTS,I DTS, TSS NTSS, and ACNTSS
algorithms in terms of the average MSE per pixel are shown in Tables 4.2 and 4.3 for the
Flower Garden and Football video sequences respectively. The ACDTS algorithm achieved
better performance than that of the DTS élgorithm for both test video sequences, using different
values of the threshold control parameter, C;. It can be observed from these tables that the gain
in terms of MSE gradually increased as the values of C; were increased. This is because the
higher the value of the threshold considered, the higher the probability of search deviation from
the global minimum. This indicates that predicting the search centre through motion tracking

increases the chance of finding better motion vectors.

Block- Flower Garden sequence
matchin .
algorithni MSE | PSNR | sp | Block-matching | MSE | PSNR [ SP
[dB] algorithms [dB] '
Ci=2 120812 | 2495 | (3543 Ci=2 | 20801 | 2495 | 133.40
Ci=4 121010 | 2491 | g4 Ci=4 | 20856 | 24.94 | 7859
C,=6 | 21458 | 2482 | 5393 Cr=6 | 209.82 | 24.91 | 5092
C,=8 121952 | 2472 | 41.59 C,=8 | 211.72 [ 2487 | 3851
DTS [C;=10 | 22606 | 2459 | 3500 | oopps [Ci=107 [ 214227 24827 31,74
C,=11 122901 | 2453 | 37.89 "G =11 1215507 724.80: 22938
C,=12 | 23178 | 2448 | 31.06 C,=12 | 21682 | 24.77 | 2758
C,=14 {23725 | 2438 [ 2847 C,=14 | 220.26 | 24.70 | 24.96
C,=18 | 25126 | 24.13 | 2521 C,=18 | 22894 | 2453 | 21.72
C,=20 | 259.83 C;=20 [ 23345 | 2445 | 2059
C,=24 | 271.23 C,=24 | 24251 ] 2428 | 19.07
FS 207.98 ACNTSS 213.41-[24.60 1172737
TSS 24475524
NTSS 314:39.:):.24.8

Table 4.2: Average MSE and PSNR per pixel, and search points (8P) per motion vector for the
Flower Garden sequence (1-80 frames) with different BMAs.

It is also shown in Table 4.2 that for the Flower Garden sequence, the performance cf the
ACDTS was better than TSS, and very similar to NTSS algorithms. For example, ACDTS with
C,=10: Cp =11, achieved almost 15% better error performance compared to TSS, and Was
similar to the NTSS and ACNTSS algorithms, with the search speed being very similar in all
cases. On the other hand, for the Football sequence, Table 4.3 shows that though the
performance of the ACDTS was not as satisfactory compared to TSS or NTSS algorithm, search
efficiency was better than that for the DTS algorithm. For example, the DTS algorithm with C;,
= 8 had an average 308.27 MSE, with a search point average of 49.75, whereas the ACDTS
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algorithm with C; = 9 had an average of 303.90 MSE, with a search point average of 42.75. In
this case, the ACDTS algorithm achieved 2% better error performance when the search speed
was 17% faster than the DTS algorithm.

Block- Football sequence
matching PSNR Block-matchi PSNR
MSE [dB] SP algorithms MSE [dB] SP

Cr=2 278.87 23.68 131.71 Cr=2 27584 | 25,72 131.48
C.=4 281.55 23.64 90.57 C,=4 2711 23.69 88.92
C=6 291.67 23.48 65.10 C,=6 284.58 1 23.59 62.99

C,=87 130827 |7 2324 [ 14695% C,=8 | 296.76 | 23.41 | 41.77
C=9 318.08 23.11 44.52 _(_.',‘L= 9:°7]17303.90::°723:30.: [-42i78 5

DTS [, =10 | 327.18 | 2298 | 40.55 | ACDTS [C,=10 | 31050 | 2321 | 38.80

C,=12 | 34545 | 2275 34.38 C,=12 | 324.08 | 23.02 33.39
Cr=14 | 361.30 | 22.55 31.18 LG =14 | 336.27 | 22.86 29.77
C =16 | 37646 | 2237 28.51 C,=16 | 346.63 { 22.73 27.19 .
C;=18 | 350.73 | 22721 26.50 C =18 | 35747 2260 | 2533
C =20 | 403.08 | 2208 24.96 C;=20 | 367.77 | 2248 23.92
ES 275.76 | 23.73 | 210.05 | ACNTSS 209511 .23:374]°728.32 ¢
TS 5T 2322 3T

NTSS __ |.303.

Table 4.3: Average MSE and PSNK per pixel, and search points (SP) per motion vector
comparison for the Football sequence (1-80 frames) with different BMAs.

Peak Signal-to-Noise Ratio (PSNR) Performance
The performance comparison of the FS, ACDTS, DTS, TSS NTSS, and ACNTSS algorithms in

terms of the average PSNR per pixel are shown in Tables 4.2 and 4.3 for the Flower Garden
and Football video sequences respectively. The PSNR value was calculated by using (3.11).
Table 4.2 shows that the PSNR performance of ACDTS was better than that of TSS, and very
similar to the NTSS algorithm for the Flower Garden sequence. For example, ACDTS with C;,
= 10 and C; = 11, achieved almost average 0.6 dB gain in PSNR compared to TSS, and an
almost similar PSNR compared to NTSS algorithm when the search speed was very similar to
TSS, and NTSS, respectively. Conversely, for the Football sequence, Table 4.3 shows that
though the performance of the ACDTS was not as satisfactory compared to TSS or NTSS
algorithm, the search efficiency was better than the DTS algorithm. For example, the DTS
algorithm with C; = 8 had an average 23.24 dB PSNR with a search point average of 49.75,
whereas the ACDTS algorithm with C; = 9 had an average 23.30 dB PSNR with a search point
average of 42.75. In this case, the ACDTS algorithm gained 0.06 dB PSNR when the search
speed was 17% faster than the DTS algorithm.
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Search Speed Comparison

The performance of the FS, TSS, NTSS, ACNTSS, DTS, and ACDTS algorithms in terms of
the average search points per block when estimating motion vectors is also presented in Tables
4.2 and 4.3 for the Flower Garden and Football sequences respectively. It is clear from these
tables that the average number of search points (SP) needed by ACDTS algorithm was always
less than that of the DTS aigourithm for both sequences with any value of C;. Table 4.2 also
demonstrates that the scarch speed of ACDTS was better than that of TSS algorithm, and very
similar to NTSS algorithm for the Flower Garden sequence, while achieving the same MSE or
PSNR values. For example, ACDTS with C;, = 24 and C; = 10, achieved the similar MSE or
PSNR performance, while the search speed was almost 40% faster than that of TSS, and very
similar to that of the NTSS algorithm. On the other hand, Table 4.3 shows that though the
searching efficiency of the ACDTS algorithm with the same average MSE or PSNR was not as
good compared to that of the NTSS or TSS or ACNTSS algorithm for the Football video
sequence, it was better than that of the DTS algorithm.

1t is interesting to note in Tables 4.2 and 4.3 that the performance of the ACNTSS algorithm
did not improve significantiy compared to the original NTSS algorithm. The reason caa be
explained as follows. If the motion vector distribution is within only a 5x3 pixels region after
predicting the search centre, the probability of reaching the global minimum point is very high
for the ACNTSS algorithm. However, the motion vector distribution around the predicted
search centre will not always be within a 3x3 pixels region. For high motion video sequences,
the motion vector distribution around the predicted search centre will be within a 5x5 region for
many macroblocks. In such cases, the ACNTSS algorithm will fail to improve, or may degrade,
compared to the NTSS algorithm due to its large directional step size. It can be conciuded that
the performance of directional algorithms may not always improve even after initial search

centre prediction,

4.4.2 Performance Analysis of the ACDSDTS Algorithm

This section presents comparative results while considering both adaptive centre-prediction and
the diamond search pattern technique in the DTS algorithm described in Section 4.3, in terms of

fast motion estimation trade-offs between quality and complexity.

Average MSE Performance
The performance of the ACDSDTS algorithm, in terms of the average MSE per'pixel between

the estimated and original frames, is shown in Tables 4.4 and 4.5 for both the Flower Garden

and Football sequences. From Tables 4.2, 4.3, 4.4, and 4., it can be observed that the
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ACDSDTS algorithm showed better performance than that of the ACDTS algorithm for both
test video sequences with trade-offs in quality and processing speed when using different values
of CL.

Block-matching Flower Garden sequence
algorithm MSE | PSNR {dB] SP
Cr=2 212,55 24.86 72.10
=4 212,70 24.85 44.96_

\\\\\

ACDSDTS

Table 4.4: Average MSE and PSNR per pixel, and search points (SP) per motion vector of the
ACDSDTS algorithm for the Flower Garden sequence (1-80 frames).

Block-matching Football sequence
algorithm MSE |PSNR[dB] | sp
23.50 65.85
23.41 46.69

ACDSDTS

23.11

22,96
22.82 18.40
. 22.70 17.50
=20 359.98 22.57 16.83

Table 4.5: Average MSE, PSNR per pixel, and search points (SP) per motion vector of the g
ACDSDTS algorithr for the Foorball sequence (1-80 frames).

From Tables 4.2 and 4.4, it can also be observed that the ACDSDTS algorithm performed
not only better than TSS but also better than NTSS, or ACNTSS, for the Flower Garden video .
sequence. For example, ACDSDTS with C; = 6 and C = 7, achieved almost 15% and 1% better _ #
error performance compared to the TSS and NTSS algorithms, while its search speed was 13%
and 8% faster than both. For this sequence, its performance was very similar to the ACNTSS R 4
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algorithm. Tables 4.3 and 4.5 prove that ACDSDTS outperformed TSS, and was very similar to
NTSS or ACNTSS even for the Football video sequence. For example, ACDSDTS with C, =9,
achieved almost 3% better error performance compared to the TSS algorithm despite its search
speed being almost 20% faster than the TSS algorithm.

Figs 4.6 and 4.7 plotted the average MSE performance of the ACDSDTS, ACDTS, FS,
TSS, NTSS, and ACNTSS algorithms for the first 80 frames of the Flower Garden and Football

sequences. For the sake of clarity in plotting, we have only considered the values of C; for the

ACDTS and ACDSDTS algorithms that used a search speed similar to the TSS, NTSS, and -

ACNTSS algorithms. These figures clearly show the improvement of the ACDSDTS algorithm
over the ACDTS algorithm in terms of prediction quality when considering the similar

computational complexity.
525
e FS
475 . g TSS
~t— NTSS
425 ) ', = ACNTSS
ir ) _ N e ACDTS(11}
.a 375 + , B —e— ACDSDTS(?)
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r'('}:], 275 j1, M 4 | : !t‘ | :: _ ¥
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Fig. 4.6: Average MSE performance comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Flower Garden video sequence.
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Fig. 4.7: Average MSE per pixel comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Football video sequence.
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Peak Signal-to-Neise Ratio (PSNR) Performance

The performance of the ACDSDTS algorithm, in terms of the average PSNR per pixel between
the estimated and original frames, is shown in Tables 4.4 and 4.5 for the Flower Garden and
Football sequences. From Tables 4.2, 4.3, 4.4, and 4.5, it can be observed that the ACDSDTS
algorithm showed better performance than that of the ACDTS algorithm for both test video
sequences with trade-offs between quality and processing speed when using different values of
C;. From Tables 4.2 and 4 .4, it can also be observed that the ACDSDTS algorithm perforned
not only better than the TSS but also better than NTSS, or ACNTSS algorithm for the Flower
Garden video sequence. For example, ACDSDTS algorithm with C; = 6 and C;, = 7, achieved
almost 0.6, 0.02, and 0.3 dB gain in PSNR compared to TSS, NTSS, and ACNTSS algorithm
respectively, while search speeds were similar in all cases. On the other hand, Tables 4.3 and
4.5 prove that ACDSDTS outperformed TSS, and was similar to NTSS or ACNTSS algorithm

even with the Football video sequence. For example, ACDSDTS with C; = 9, achieved almost

0.03 dB gain in PSNR compared to TSS, when its search speed was almost 20% faster than that
of the TSS algorithm.

Search Speed Comparison

The performance of the ACDSDTS algorithm in terms of the actual average number of search
points per block in estimating metion vectors is also presented in Tables 4.4 and 4.5 for the
Flower Garden and Football sequences. It is clear from Tables 4.2, 4.3, 4.4, and 4.5 that the
average number of search points (SP) needed with the ACDSDTS algorithm was always less
than that of the ACDTS algorithm for both video sequences, —while providing same prediction
quality, Tables 4.2 and 4.4 also prove that the search speed of the ACDSDTS algorithm, for
example, in the case where C; = 24, was more than 55% faster than the TSS algorithm, with
more than 0.4 dB gain in PSNR for the Flower Garden sequence. Again, with C; = 7 and C; =
18, the ACDSDTS algorithm achieved almost 10% and 45% faster search speeds compared to
the NTSS and ACNTSS algorithms respectively with similar MSE or PSNR performance. On
the other hand, Tables 4.3 and 4.5 show that for the Foortball sequence, the search speed of
ACDSDTS, in the case of C;, = 9 and C; = 8, was almost 20% higher than that of TSS and
similar to NTSS or ACNTSS, with the same PSNR or MSE performance. These results clearly
indicate that the ACDSDTS algorithm not only outperformed for low motion sequences but also
for any complex motion video sequences.

Figs. 4.8 and 4.9 plot the average SP performances of the ACDSDTS, ACDTS, TSS, NTSS,
and ACNTSS algerithms for the first 80 frames of the Flower Garden and Football sequences.
For the sake of clarity in plotting, the values of C, for the ACDTS and ACDSDTS algorithms
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that achieved the PSNR or MSE performance comparable to the TSS, NTSS, and ACNTSS
algorithms have been considered. From the figures, it can also be observed that the performance
of ACDSDTS algorithm over the ACDTS, TSS, NTSS, and ACNTSS algorithms in terms of
processing speed in terms of SP is remarkably better for the Flower Garden sequence, and very

similar for the Football sequence.

) 55 —
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g 50 —tr—NTSS
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Fig. 4.8: Average search point (SP) comparison of FS, TSS, NTSS, ACNTSS, ACDTS, and
ACDSDTS for the Flower Garden sequence.
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Fig. 4.9: Comparisons of average search points (SP) per motion vector of the FS, TSS, NTSS,
ACNTSS, ACDTS, and ACDSDTS for the Football video sequence.

4.4.3 Qualitative Evaluation

The performance of the TSS, NTSS, ACNTSS, ACDTS, and ACDSDTS algorithms compai‘ed
to the FS algorithm for the Football video sequence was also evaluated based on the percepiual
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predicted image quality. Fig. 4.10 shows the estimated 40" frame of the Football sequence with
] different BMAs.
|
-
%! 2
(c) (d)

(¢) ()

Fig. 4.10: Estimated image of the 40" frame of the Foorball sequence: (a) FS, (b) TSS, (c)
NTSS, (d) ACNTSS, (e) ACDTS: C, = 14, and (f) ACDSDTS: C, = 8

algorithms.

As the FS is the optimum in terms of error performance, Fig. 4.11 shows the MAE per
block distribution for all other BMAs with respect to the FS algorithm. In terms of subjective
image quality, the performance of ACDSDTS was very similar to the TSS, NTSS, and
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ACNTSS algorithms given this complex motion video sequence, where search speed was
almost 15% higher than TSS, and similar to NTSS or ACNTSS algorithm,

(d) ACDTS: C, = 14 () ACDSDTS: C; = 8
Fig. 4.11: Prediction error distribution of the 40™ frame of the Football sequence with respect
to that of the FS algorithm.
4.5 Summary

In this chapter, an Adaptive-Centre DTS (ACDTS) algorithm has been developed by integrating
spatial inter-block motion correlation within the DTS algorithm to automatically predict the best
search starting point close to the global minimum, Experimental results have shown that the
ACDTS algorithm improved the performance of the DTS algorithm for all test video sequences.
The search efficiency of the ACDTS algorithm has further been improved by considering the
diamond search pattern instead of the traditional rectangular search pattern, through trade-offs
between quality and computational complexity.

Experimental results have shown that the ACDSDTS algorithm effectively improved its
performance in terms of MSE or PSNR, with lower average searching points. It has also been
shown that the ACDSDTS aigorithm outperformed two vefy well-known fast BMAs, TSS and
NTSS, for the Flower Garden video sequence, and demonstrates a very similar performance for
the Football video sequence. This indicates the effectiveness of the ACDSDTS algorithm for

use with any motion video sequences.
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The overhead complexity incurred in ACDTS or ACDSDTS algorithm in relation to motion .
eétimation was also analysed, and it was shown that the number of operations required for
determining the initial search centre using mean-biased prediction is very low compared to the
whole motion estimation process. This was the only overhead cost incurred in the operation of
the ACDSDTS algorithm. Thus, the proposed algorithm incurs negligible computational
overhead.

It has also been shown that like the DTS algorithm, the ACDSDTS algorithm has achieved
different levels of performance in terms of quality as well as processing speed in terms of SP
per motion vector, using different values of the threshold control parameter, where it was
selected manually. The most important and challenging part of this process is how this control
parameter can be adapted automatically to a target level of quality or processing speed. In the
next chapter, this issue will be addressed by presenting a Fully Adaptive Distance-dependent
Thresholding Search (FADTS) algorithm for motion estimation.
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Chapter §

Fully Adaptive Distance-dependent Thresholding
Search Algorithn

5.1 Introduction

The Adaptive-Centre Diamond Search Distance-dependent Thresholding Search (ACDSDTS)
algorithm (Block 2 in Fig. 1.6) signifies an important improvement to the Distance-dependent
Thresholding Search (DTS) algorithm (Block 1 in Fig. 1.6), by increasing the search efficiency
of the DTS process, by trading-off between predicted image quality and complexity. However,
both the DTS and ACDSDTS aigorithms appear to be highly dependent on predefined linear
threshold values that are controlled by the control parameter, C,, for performance scalability in
motion estimation. In the ACDSDTS algorithm, the value of C; is manually set at the onset of
the search. As indicated in Chapters 3, the control parameter, C;, allows users some flexibility
to control the DTS search (or, its enhancements, as developed in Chapter 4) in order to achieve
specific target prediction error, or search points (if achievable) by the trial and error method.
However, setting the optimum C;, value by trial and error severely limits the fléxibility of these
searching algorithms, especially when motion estimation must be carried out in real-time. On
the other hand, it is quite impractical to use the same C, value for all the frames of a video
sequence, especially when the motion content varies significantly throughout the video
sequence. Therefore, to derive the full potential of the DTS algorithin compared with algorithms
such as TSS and NTSS, or any other non-flexible BMA, the value of Cp must be adjusted
automatically based on the content of the video as well as user QoS demands.

This chapter presents a new Fully Adaptive Distance-dependent Thresholding Search
(FADTS) algorithm (Block 3 in Fig. 1.6), which can dynamically Iadjust the value of C; to
achieve QoS requirement in terms of either predicted image quality or processing speed as the
target. This adaptive algorithm is especially important for complexity management in software-
only video coding or low power coding (mobile or handheld computing platforms), as it require
more a flexible approach in trading-off between predicted image quality and computational

complexity.

94
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The remainder of this chapter is organized as follows. In Section 5.2, an adaptive system for
the FADTS algorithm, for performance management block-based motion estimation in real-time
video coding applications, is proposed by incorporating a novel adaptive model based on the
Normalized Bloc: Least Mean Square (NBLMS) technique. Some fundamental concepts in
adaptive systems are briefly discussed in the light of adapting the control parameter, C;, in the
ACDSDTS algorithm. In Section 5.3, an integrated shot detection technique using Artificial
Neural Network (ANN) and BDM thresholding are presented with a brief review of existing
techniques. As the initial value of the threshold control parameter impacts significantly on the
adaptation process, automatically initialisation process of this parameter is discussed in Section
5.4. The impact of other different parameters, and their possible operating ranges related to the
proposed adaptive system are then analysed in Section 5.5, while the computational complexity
of the proposed searching algorithm is analysed in Section 5.6. Both experimental results and
the performance analysis of the proposed algorithms are included in Section 5.7. Section 5.8

summarises this chapter.

5.2 Adaptive Algorithms

According to Widrow and Stearns {105], “4n adaptive automation is a system whose structure
is alterable or adjustable in such a way that its behaviour or performance (according to some
desired criterion) improves through contact with its environment.” These types of systems
usually have the following characteristics: -

o They can automatically adapt (self-optimise) in the face of changing (non-stationary)

environments and changing system requirements.

e They can usually be described as nonlinear systems with time-varying parameters.
Consequently, an adaptive algorithm is a procedure that changes its parameters as it gains more
knowledge of its possibly changing environment. Preferably, the algorithm will change its
parameters in a fashion that optimizes some criteria such as the mean squared difference
between two given signals. An adaptation process can be classified as [105]:

1. Open-loop adaptation

2. Closed-loop adaptation

Open-Loop Adaptation

The open-loop adaptive process involves making measurements of input or environment
characteristics, applying this information to a formula or to a computational algorithm, and
using the results to set the adjustment of an adaptive system. The principle of open-looped

adaptation is shown in Fig. 5.1. In this configuration, a computer or signal processor performs
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the adjustments based on an adaptation algorithm carried on a set of input signals and the

environment data,
Ipput / Output
signal signal
——p»  Processor
—— Adaptation
——e—————p  algorithm
Environment
data
Fig. 5.1: The open-loop adaptation process.
Closed-Loop Adaptation

Closed-loop adaptation involves automatic experimentation with the adjustments of the adaptive
system and knowledge of their outcomes in order to optimise a measured system performance.
This process may be catled adaptation by performance feedback. The principle of closed-loop
adaptation is shown in Fig. 5.2. In this case, the performance criterion is the function of input
signal, output signal and the target output.

Input A Output

signal signal
~——g————JPp1  Processor |

[

Adaptation
algorithm

2

Target
Performance [M— &

t
’ calculation |« outpu

Fig. 5.2: The closed-loop adaptation process.

The main advantages of a closed-loop system over an open-loop system is that it is
workable in many applications where no analytic synthesis procedure either exists or is known;
for example, where error criteria other than the mean-square are used, where systems are
nonlinear or time variable, or where signals are non-stationary. On the other hand, the closed-
loop adaptation process may suffer from instability by diverging rather than converging. In spite
of this possibility, closed-loop adaptation through performance feedback is regarded as a
powerful technique for implementing real-time adaptation.
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T s

5.2.1 The FADTS Closed-Loop Adaptation Model

The ACDSDTS algorithm works sequentially on frames of an input video sequence. Although

consecutive frames are considered to be highly correlated, the input video signal can be
considered time variable or non-stationary from the adaptation point of view. Therefore, a

closed-loop adaptation model is presented for the FADTS algorithm, as shown in Fig. 5.3.

% Video frame Ouﬁput, o
5 pair, xI™ > Motion estimation P = £ ,CE )
ACDSDTS algorithm
ﬁ Adaptation of C;
C£m+l] = CE'm] + f3 (e[m]’ y[m])
Performance calculation — Target
el = T, — y[m] = 7,( x{ml’cim]) < output, T,

Fig. 5.3: The closed-loop adaptation process for the FADTS algorithm.

The model has the following three modules:-
o Motion estimation—this module calculates motion vectors using the ACDSDTS

[t

algorithm. The input of the module at iteration, m, are the video frame pair, x ] and
the control parameter, C{™. The output of the model can be either average MSE or
average speed in terms of aumber of search points as selected by the user. The output

at iteration m can be expressed as:
Y= [, (5.1)

where /) is a monotonically increasing or decreasing function of C; (under stationary
x), if the output is MSE, or a number of search points, respectively.
¢ Performance calculation—this module calculates the performance of the adaptive

system by calculating the error signal as:

=T

ouf

- y[M] - fz (x[m}’c£ml) (5.2)

at each iteration m, where:
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LHE,CEY =T, ~ £, Ciy, (53)

The value of e must be minimised as the adaptation process progresses.

e  Adaptation of C~—this module updates the value of C;, for the next iteration, m+1, as:

Clml = Clml g f, (™), ptmy (5.4a)
if the output is MSE or as:

clmll 2 clmt _ 1. (gl lmly (5.4b)
if the output is a number of search points, where f; can be any linear or non-linear
function.

The performance of an adaptive system largely depends on how the function f(e,y)is
defined. A few gradient search algorithms exist which can adapt a system in searching for the
optimal parameter to minimise error signal in (5.2). Among them, Newton's method, the
Steepest Descent method, the Least Mean Square (LMS) algorithm, and the Recursive Least

Square (RLS) algorithm are the most well-known. The suitability of these algorithms for

updating the control parameter, Cy, in Fig 5.3 is discussed below.

Newton’s Method

In this method [106), f;(¢"™, y™1) in (5.42) and (5.4b) is defined as:

fa(e[m}’y[m])=_ dfz(-’c,Cf.) . l (5.5)
ac, f2» ¢ ‘Cb = cim

to find the zeros of function f,(x,C,). Obviously, Newton’s method is not applicable to the

FADTS algorithm as f,(x,C,)is unknown.

The Steepest Descent Method

The principle of the steepest descent method [105] is to adjust system parameters in the

direction of the gradient at each step, thereby minimizing the function for error surface, In this

method, f;(el™, y!™) in (5.4a) and (5.4b) is defined as:

d
dc,

Sy, ythy = —p (5.6)

Salx, CL)CL - Cll,m]

where 4 is a constant that regulates the step size. Like Newton’s method, the steepest descent
method is also not applicable to the FADTS algorithm as f;(x,C, ) is unknown.
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The LMS Algorithm

As indicated earlier, gradient estimation by derivation of the performance measurement function
is not possible when the function is unknown, The most well-known method, the Least Mean

Square (LMS) adaptive algorithm {105], overcomes such a situation by approximating the

gradient based on a single input and output example taken in isolation. In this case, for each

new inpul-output, an independent estimate of gradient is performed. In the LMS algorithm,

£(e™, "1y in (5.4a) and (5.4b) is defined as:
3

fs(eIMI’y[m]) = Ze["ﬂy[ml (5.7)

where A represents the correction tactor or gain factor or step size.
The LMS algorithm is the most popular method for its computational simplicity, robustness,

and relatively easy implementation for on-line estimation of time-varying system parameters. A

i

number of variants on the LMS theme have been conceived in order to ratify potential problems

of the original LMS algorithm such as the need to guess the best value of 2, slow convergence,

and numerical instability. Some of these variants are discussed as follows:

The Block LMS Algorithm

One popular LMS variant is called the Block LMS (BLMS) algorithm [107], also known as the
Fast LMS (FLMS) algorithm, which reduces computational cost by not performing the actual
correction for every input. Instead, an averaged estimate of the gradient is computed. For a
block of length, K, in which the input signal can be considered stable, the standard LMS
algorithm will perform C;, correction in all the X iterations while the BLMS algorithm performs

C, correction only in the first of these. The value of C; is, therefore, updated for iteration

m+ K as:
K-l )
i = o4 20 L § o 9
i=0
if the output is MSE or as:
K-l
ClmK) = Gl _ gl _}(_Z Sl (5.8b)

i=0

if the output is the number of search points.

The Normalized LMS Algorithm

The Normalized LMS (NLMS) algorithm [107-109] replaces the step size, 4, in the original o
- LMS algorithm with u/E, where 4 is the normalized step size and E, is the output signal’s

€nergy or power. E
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The NLMS algorithm has two distinct advantages over the original LMS algorithm:-
+ Has a potentially faster convergence speed [107, 109];
e Always converges when 0 <z <2 [107, 107].

The Normalized BLMS Algorithm

The benefits of both the BLMS and NLMS variants can be combined in the Normalized BLMS
(NBLMS) algorithm [110] where the threshold control parameter is updated as:

1 K-l
__Zy[md-l]
K
Clm8) = Clm oy pretmd — B0 (5.92)
b.}'
if the output is MSE or as:
i K- i)
X2
ClmET = ¢l - gretm ——~=°E—-—— (5.9b)
¥

K-l

. - » i 2

if the output is the number of search points, where E, = E (y[ ”l) .
i=0

The RLS Algorithm

All the adaptive algorithms discussed so far are non-recursive in nature. The Recursive Least
Square (RLS) algorithm [107, 111] is a recursive implementation of the minimisation of the
least square error theme. In this algorithm, output y is a function of not onty the current input
and the adaptive control parameter, C;, but also of some of the previous outputs such as the

following:

ol = plto ol yln) -2l ) (5.10)

Though the RLS algorithm converges faster than the LMS algorithm, each iteration of this
method is more complex than the previous one. Therefore, this technique is not practical for
real-time adaptation applications [107].

Based on the above discussion on the various adaptation techniques, the NBLMS algorithm
can be considered as the best option for automatically'adjusting the control parameter, Cy, in
order to achieve a target average MSE or average number of search points while coding a video
sequence, where this sequence can be considered as a time varying non-staitonary input (o the

adaptation system.
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5.2.2 The Formal FADTS Algorithm

The FADTS algorithm utilising the NBLMS algorithm for adapting the control parameter, C;,
in order to achieve a target output, i.e., predicted image quality, in terms of average MSE is now
outlined as follows. The algorithm applies the ACDSDTS algorithm (Section 4.3.3) on a block
of X frames of the video sequence using the same C;, value for motion estimation. The C; is
initialised to 0 for the first block of K frames and the value of C; is then updated for the next
block of X frames by (5.9a) using the average output MSE and the total energy of all output
MSE of the motion estimation carried out so far on the current block of X frames. Fig. 5.4
presents the compleie FADTS algorithm.

®  Precondition:
Input video sequence of N frames, target output Tp,,, block length K, normalised step size u.

¢ Initialization:
Cl=CP=z..=clMl=g
e Body:

ror =i+t | 22l

¢ K-Block Motion estimations:
S=V=0
For i= 0,1,»--,min(K—1,N—m-l)

Calculate MV between frame pair X' °, consisting of frames m+i and
m+i+), using ACDSDTS(CL™) algorithm and

fet Y™ be the average MSE of the MV estimation,

S = S + y[m+i]

v =v+(pmnf

+ Performance measurement:

[m+A]

e =T S
our K
¢ Adaptation of Cy:
C‘[mel = C{mel] ——e C£m+K¢n1in(K—l,N-m-l}] - C}.ml + ﬂe[m] _S_

KV
s Postcondition:
Motion vector with target average MSE.

Fig. 5.4: The FADTS algorithm.

The flexibility of the FADTS aigorithm is illustrated by the fact that it is capable of
adapting the motion estimation in order to achieve a target prediction image quality in terms of
the average MSE output by trading off search speed in terms of average number of search

points. However, the same algorithm can easily be transformed for adapting the motion
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estimation with a target search speed in terms of average nuraber of search points, while trading
off prediction image quality by incorporating the following minimal changes:

o The number of average search points is used as the target 7,

oul ¥

o ls the average number of search points for motion estimation between frames ¢ and

i,

TS

¢ The updating factor in the adaptation of C; is negative (5.9b) instead of positive (5.9a),

¢ Postcondition: Motion vector with target average search points.

5.3 Shot Detection

A shot is a sequence of frames generated during a continuous operation and it represents a
continuous action in time and space {112]. As different shots contain different visual content
and motions, the motion calculated between two successive frames in each different shot can
produce a quite unrealistic prediction error and motion vector. Whenever a shot change occurs,
the first frame is always considered as the reference frame and is always intracoded (without
motion compensation). It has also been shown in the previous chapters that the different values
of C; give different performance for different types of motion sequence. For these reasons,
estimating motion with the appropriate C;, requires the incorporation of shot detection,
especially camera breaks in the FADTS algorithm, so that C; can be reinitialised as the shot
changes.

Shots can be joined together in either an abrupt transition mode, in which two shots are
simply concatenated, or through gradual transitions, in which additional frames may be
introduced using editing operations such as dissolve, fade-in, fade-out, and wipe. A number of
algorithms for shot detection in both the uncompressed and the compressed domains have been
reported in the literature. In general, automatic shot boundary detection techniques are classified
into the following categories: pixel based, statistics based, transformed based, histogram based,
and motion vectors based [113, 114]. In pixel-based methods, pixel-wise intensity difference is
considered as the indicator for shot boundary detection. Boreczky and Rowe [113], Zhang e al.
[115), Otsuji and Tonomura [116), and Hampapur et al. [117] compute the absolute sum of
pixel-by-pixel inter-frame difference and later compare it to a selected threshold. If the
difference is more than the threshold value, a shot boundary is declared. It is a very simple
method, but the drawback associated with it is that it is very sensitive to noise, and camera and
object motion. It is also difficult to adjust the threshold value manually. Shahraray [118],
Kasturi and Jain {119], and Zhang ef al. [120] propose different shot boundary detection

methods based on content statistics such as mean, standard deviation, and the likelihood ratio.
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These methods are reasonably tolerant of noise, though they are slow due to the complexity of
the statistical formulas used and they generate many false positives (wrong boundaries detected
as correct ones). In order to effectively protect against camera operation and object motion, an
option is to select a motion-independent metric, like overall intensity histogram difference.
Histograms are the most common method used to detect shot boundaries. In the simplest
histogram method, the gray level or color histogram is computed and compared bin-wise
difference with a threshold. If this bin-wise difference is above a threshold, a shot boundary is
assumed. Ueda et al. [121] and Nagasaka and Tanaka [122] use the color histogram cnange rate
to find shot boundaries. This is the most common method and more robust to noise and object
motion. According to Boreczky and Rowe [113], the histogram methods were a good trade-off
between accuracy and speed. An alternative to alt these algorithms is to work with derived
parameters directly extracted from the compressed sequence. Arman ef g/, [123, 124] and Liu
and Ziuk {125] use differences in DCT coefficients of JPEG [126] compressed frames to detect
shot boundaries as their measure of frame similarity, thus avoiding the need to decompress
frames. However, this DCT based technique generates false positives where it increases the
speed. Zhang et al. [115], Ueda et al. [121], and Deng and Manjunath [127] use motion vectors
in MPEG video to detect whether or not a shot change had occurred. Motion discontinuity will
occur if there is any sudden change between two consecutive frames. This results in a
significant drop of forward motion prediction coded macro blocks and can be easily detected by
setting a threshold.

From the above discussion, it can be clearly seen that different shot detection methods work
best in different situations. A histogram comparison should be less sensitive to object motion
than the DCT difference comparison algorithm, since it ignores the spatial changes in a frame.
But there maybe cases in which two images have similar histograms but completely different
content. Again, a histogram comparison may not be robust against lighting change. Therefore, if
the different features are combined appropriately, a more desirable result can be expected. As a
method of combining features, Artificial Neural Network (ANN) has been widely used and has
been successful in various applications. Based on ANN, an integrated technique for abrupt shot
detection will be presented in the next section.

Neural networks are computer algorithms inspired by the way information is processed in
the nervous system [128]. An important difference between neural networks and other Artificial
Intelligence techniques is their ability to learn. The network /earns by adjusting the
interconnections between layers. When the network is adequately trained, it is able to generalize
relevant output for a set of input data. A valuable property of neural networks is that of

generalization, whereby a trained neural network is able to provide correct matching in the form
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of output data for a set of previously unseen input data. Learning typically occurs by example
through training, where the training algorithm iteratively adjusts the connection weights
(synapses). Backpropagation for exampie, is one of the most famous training aigorithins for
multilayer perceptrons. A comprehensive description of this technique can be found in Zurada
[128].

5.3.1 Proposed Integrated Shot Detection Technique

In regard to simplicity of implementation, an integrated method combining the different features
discussed above, with ANN used for camera break detection, is proposed for non-real-time
FADTS implementation. An intensity histogram, DCT, and motion vector differences are
considered as the input of the proposed algorithm. For histogram difference, a 256 level gray
scale histogram over the entire frame is calculated and then the sum of the absolute bin-wise
histogram difference is normalized. The DCT coefficient difference method closely resembles
the algorithm described by Arman ef al. in [124]. As the DC coefficient represents the average
intensity of the block, only the DC component of each block (8x8 pixels) is considered in
reducing the computational cost. The absolute sum of the difference of the DC values of each
block is normalized by the total number of blocks of a frame, and these are concatenated to
produce a vector. For motion vector difference, the magnitude of each block-motion (1616

—y

pixels), obtained using ihe DTS algorithm (Chapter 3), is calculated and then normalized for
each pair of frame.

A structure of the adopted neural network is shown in Fig. 5.5. The feed forward neural
network has an input layer of three neurons- that correspond to the features of histogram
difference, DC coefficient difference, and motion vector difference, two hidden layers (selected
empirically), and an output layer of two neurons that correspond to the shot boundary and

continuous frame respectively.

Input Hidden Hidden  Ouftput

Histogram
difference

DC coefficient
- difference .

Motion vector ontinuous
difference

Fig. 5.5: Feed forward neural network structure for shot detection.
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Although this integrated technique improves both the recall and precision of detecting shot
changes compared to any of the underlying three individual methods, as is evident in Table 5.2,
the computational complexity of calculating three different input features to the neural network
is not suitable for applying this combined method in motion estimation for real-time video
coding applications. Therefore, the FADTS algorithm can only apply this ANN technique in
detecting shot changes for non-real-time motion estimation.

In order to support real-time motion estimation for video coding, the FADTS algorithm
employs a simpler, yet elegant technique to detect shot changes by utilising the abrupt change in
the error energy, BDM, over a range of threshold values, as an approximated cue to possible
shot changes. This technique has been applied to a number of video sequences with
intermediate shot changes and no unsatisfactory adaptation of C; has been encountered. As an
example, in Fig. E.1, the shot change between Frames #89 and #90 of the Table Tennis
sequence is effectively detected by this simple BDM thresholding method.

5.4 Initialisation of (;

Generally, adaptive algorithms start by setting the initial weight vector (in this case, the value of
Cp) to zero. Although in the case of a large number of iteration cycles its impact may be
negligible, the performance of adaptive algorithm: with relatively fewer iteration cycles
depends heavily on the initial value of its weight. Gace shot det=ction is incorporated in the
FDATS algorithm, the number of iterations based on an initialisation of C; depends on the
number of frames in each shot, which again depends on the visual content and editorial
decisions. However, after studying a large number of standard and non-standard video
sequences, it can be fairly concluded that the average number of frames in a shot is not large
enough to consider it as nullifying the impact of initialising C; to zero. Thus, the choice of the
initial value of C, impacts significantly on the performance of the FADTS algorithm for motion

estimation. Based on empirical data, the initial value of C;, i.e., C;_, has been determined for

quality and speed in the following two sections.

5.4.1 C, Initialisation for Quality Adaptation

Fig. 5.6 shows the average search speed and prediction error characteristics of different video

sequences with a range of values for the threshold control parameter, C;. From (3.8), the upper

b
bound for C; with maximum displacement d is < %—- . For d =7, this bound is =36 for an 8 bit

gray level image, as indicated in Fig 5.6. The experimental results revealed that above a certain

limit, C, > 25, the speed variation was insignificant, so that the upper limit of the threshold
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control parameter, C; ., can be defined as 25 instead of 36. Similarly, though the minimum

value of C; = 0 (FS case) in the ACDSDTS algorithm, experimental results also showed in
Chapters 3 and 4 that C; < 2 provided almost the same prediction quality as the FS algorithm,

Therefore, the lower limit of the threshold control parameter C; =2 is defined.
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Fig. 5 6: Error-speed characieristics of different video sequences with different values of ¢,
(1-36).

Fig. 5.7 indicates that the prediction error (quality) variation in terms of the average MSE
per pixel using different values of C, is significant for all motion sequences such as Flower

Garden, Football, and Table Tennis. 1t is also shown that although prediction error variation
with different values of C, is not exactly linear, it can be approximated as so. Based on this
premise, the initial €, for a particular sequence is automatically computed from information

in the first few frames of the sequence as follows:

s Compute the minimum prediction error [MSEC% J between the frame pair #1 and #2
using the C, _ . [
¢ Compute the maximuza prediction error (MSECH" ) between the frame pair #2 and #3
using the C; .
* Compute the initial value of C,_ for a particular scene in a video sequence as: -
C, = nﬂ(mﬂ = MSEC:-@
b 7| MSE, - MSE
Lmax Losin

where T, 5y 18 the target prediction quality (in this instance, the average MSE). This value of

xle -c. e, (5.11) ;

Cy is used for the first X frames of an input video sequence starting from Frame 4.
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Fig. 5.7: Average MSE characteristics of different video sequences with different values of
Cr (3-20).

5.4.2 C, Initialisation for Search Point Adaptation

Fig. 5.8 shows the computational cost in terms of the average number of search points per
motion vectors for some standard high motion and low motion video sequences with values of
C from | to 20.

5 200
=N s Football

E: 3 160 ~=2-— Table Tennis
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= 2 120
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g 40

B

0 L 1 L 1 [ 1 ] 1 L

7.9 1 13 15 17 19
Threshold control parameter C

Fig. 5.8: Average speed characteristics of some standard video sequences with different
values of Cy.

If a logarithmic scale is used instead of a linear scale, the characteristic curve can be
converted into a linear approximation as shown in Fig. 5.9. Using the same procedure described

in Section 5.4.1, the initial value of the threshold control parameter, C;, can be calculated as:

SR, ~T,
G, = _M;x(c%_ C, )+CL..-. (5.12)
3 S}% - SP& m
Luin Lowc

where SF;,  and SF, _ are the maximum and minimum speed obtained for C;  and C;

(defined in the previous section) respectively, and 7,,,,sp) is the target speed (average number

of search points per motion vector).
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Fig. 5.9: Speed characteristics of three standard video sequences with different values of C;.

5.5 Study of Different Parameters of the FADTS Model

From (5.9), it is shown that the performance of the proposed adaptive model in Fig. 5.3 also
depends on the values of the block length K and step size 4. Each of these is now explored.

Block Length K

Figs. 5.10 and 5.11 examine the impact of the value of X on adapting the C; parameter in

achieving target level quality and search speed for the Football, Flower Garden, and Salesman

video sequences. Others parameters such as C, and 4, are considered as constant. For

example, to analyse the effect of block length of K on the predicted image quality and
processing speed performance of the FADTS algorithm, average 370, 300, and 15 MSE and 32,
27, and 8 search points are considereu as the target error and speed for the Football, Flower
Garden and Salesman video sequences respectively. Figs 5.10 and 5.11 show that calculated
average MSE and search points using different values (1, 2, 4, 6, 8, 10, 12, and 14) of X to
follow the above-mentioned targets for 100 frames of each sequence. It is shown that the
influence of different values of K in satisfying the target MSE and search points (SP) is

insignificant. The reason for this is that the picture content does not change too frequently.

4m + & * 4 + *
.g 300 $————n- | - a - - 4
g200 1
H 100 -
= 0f + =5 = * = —
1 2 4 6 8 10 12 14

Value of K

wdpem Foatball —B—FlowerGarden —p—Salesman

Fig. 5.10: MSE characteristics of different video sequences with different values of X.
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Fig. 5.11: Speed characteristics of different video sequences with different values of X.

Table 5.1 also shows the performance of the FADTS algorithm with different values of X
with average 390, 280, and 16 MSE considered as the target error for the Foothall, Flower
Garden and Salesman video sequences respectively. It can aiso be seen that the FADTS
algorithm obtained an output average MSE closer to the target MSE with a comparatively fewer
number of search points, when the block length K = 4 for all cases. Although a lower value of K
also performed almost similar performance in satisfying the targets, according to (5.9), it
increases the overhead computational cost for the adaptation process. Conversely, a higher
value of K can be considered in order to reduce the overhead cost. As stated in Section 5.2, the
block length of X in the BNLMS algorithm cannot be too high if it is assumed that the content
of a video sequence may be unstable. Based on this assumption, and the experimental results,

the value of K = 4 is defined for this thesis for all experiments.

Values of Football Flower Garden Salesman
K MSE SP MSE SP MSE SP
2 392.0 37.5 280.99 46.71 15.42 9.37
4 w3910 |37 8 2R L L 44 320 [ 5 420 290 4
6 392.8 39.1 282.86 43.87 15.42 9.32
8 391.1 40.6 283.51 43.50 1542 9.31
10 392.2 41.7 283.89 4432 1542 9.31

Table 5.1: Performance comparison of FADTS algorithm with different values of K.

Step Size st

With respect to this parameter, Meghriche {129] highlights that there is no universal solution in
finding the optimal value of u. Section 5.2 indicates that the NLMS algorithm considers a step

size range of (0« u <2) for signal processing applications. The lower the value of 4, the

slower the convergence rate, while a high step size can lead to system instability. The
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application of # in this thesis is not constant, as the variable step size depends on the error
signal e. If the error becomes large, then a greater step size is considered for the next iteration to
speedily move towards the target level. If error is low, the step size will be smaller in order to
follow the target line. A high value is always chosen for the step size for the first few video
frames to enable a quick adaptation towards the target level. Choosing & = 2 can lead to

instability; however, in this system, the application of the ceiling Cfm < 25, enforces a

dampening effect which avoids such instability. For all the video sequences tested for the
FADTS algorithm, no instability was encountered.

5.6 Computational Complexity Analysis of the FADTS Algorithm 8

The computational complexity of a motion estimation algorithm is usually expressed in terms of

either the number of search points or operations that the algorithm requires to calculate the MV.

Since the main focus in this thesis is upon the computational cost incurred for the adaptive

processing, the latter is used as the complexity measure.

In Chapters 3 and 4 it has been shown that the range of computational complexity based on

user-defined levels is bounded between ¢(9C2+1) and ¥ + ¢{(d +8C2) operations per second with
' half-pel accuracy motion estimation, and the overhead cost for centre adaptation i1s R¢ per

second.

Lemma 1 Computational overhead of the FADIS algorithm, compared to the ACDSDTS

algorithm, is negligible.

Proof: Assume the block distortion is measured using MAE, which requires 3 basic operations

per pixel. If the frame rate £ = 30 fps, [N,,N,1=[352,240], d = 7 and N = 16, the number of

integer arithmetic operations required for the upper and lower complexity bounds are 1.77
billion and 68.4 million per second, respectively, with half-pel accuracy (Section 3.5.5). This
conirasts with the total number of operations for (5.9) of only (3K + 5)X f per second. Since, in

experiments, K = 4, this means a total of only 510 additional operations per second, which is
negligible. 3

In summary therefore, the FADTS algorithm consumes minimal additional computational
overhead compared to the BDM calculation in ACDSDTS algorithm, while providing
significant performance benefits including user-definability of key parameters by employing an

adaptive thresholding process.

5.7 Experimental Results

The purpose of this section is to analyse the experimental performance, first, of the integrated




Chapter 5 Fully Adaptive Distance-dependent Thresholding Search Algorithm 111}

skot detection technique for temporal shot detection and second, the FADTS algorithm for

prediction error quality and processing speed adaptation, -

5.7.1 Performance Analysis of Proposed Shot Detection Technique

To evaluate the efficiency of the proposed integrated method, an objective measure, Recall and
Precision as in (5.13) are used. Recall is the relevant detection rate from all the relevant items in

the image database and precision represents the correct detection rate.

Recall = _Ca__ » Precision= _Ca_ (5.13)
Co+M Co+F, h

Where C; is the number of correct detections, M is the number of missed items and F is the
number of false positives. So a large recall value meaas that the correct shot boundaries are not
missed very much, and a large precision value means that relatively few wrong boundaries are
declared as a shot boundaries.

These two (recall and precision) are interdependent and closely related to threshold values.
The threshold must be assigned so that it can tolerate variations in individual frames while still

_ensuring a desired level of performance. In order to achieve high accuracy in video partitioning,
an appropriate threshold must be found. As, in general, it is a really difficult process to find an
appropriate threshold value manually, threshold selection remains a significant problem for
traditional methods. Thus, for automatic selection of the threshold, some researchers [115] have
used the following relation, Threshold = &+af, where & and S are the mean and the standard
deviation of the frame-to-frame differences, respectively, and o is constant. This is, however,
very much application- dependent, thus in this research, the threshold values have been selected
according to experimental observation.

For the experiment, different video clips such as movies, animation, and sports containing
approximately 5000 frames in total were considered. For training the neurocomputing model,
we used 80% datasets and the remaining 20% datasets were used for testing purpose. After a
clinical analysis, it was found that the neural network was giving good generalization
performance when 2 hidden layers, with 30 neurons each, were conside:ed. Table 5.2 shows the
comparative results of histogram distance, DCT coefficient distance, motion vector distance,
and proposed integrated method for shot detection. From the table, it is shown that the recall
and precision percentage with integrated method is 11%, 4%, and 4% and 9%, 3%, and 2%
higher compared to that of the histogram, DCT, and motion distance method, respectively. It
demonstrates that the integrated technigue outperformed ail other three existing techniques for

camera break detection.
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- Different methods | Recall |- Precision
Histograms distance method 86% 74%
DCT coefficient distance 93% 90%
method
Motion vectnr difference 93% 01%
method
Proposed integrated method | 97% 93%

Table 5.2: Performance comparison of histogram, DCT coefficient, and motion difference
methods with the proposed integrated method.

5.7.2 Performance Analysis of the FADTS Algorithm

The performance of the FADTS algorithm was evaluated using the luminance (Y-component)
signal of a number of test video sequences such as Foorball, Flower Garden, Table Tennis, and
Salesman (Appendix B). The test results for Football and Fiower Garden are included in this
chapter. Some supplementary results for the Table Tennis and Salesman video sequences are
included in Appendix E. |

In the experiments, all sequences were uniformly quantised to an 8-bit gray level intensity.
The block size dimensions were N = 16 and d = 7. The MAE measure (2.1) was used as the
criterion for locating the best motion vector for each block. The value of X = 4 was chosen for
the experiments. All the results are shown with half-pei accuracy motion estimation.

To compare the searching efficiency of the FADTS algorithm, the test resuits of the FS,
TSS, and NTSS algorithms have been shown in Table 5.3.

Block- Football sequence Flower Garden sequence
matching (345 frames) (150 frames)
algorithms | g | PSNR[dB]| SP | MSE | PSNR[dB] | SP
FS 218.88 , 208.91 209.73
TTSS ... | 240.79. | 2431 1.25.63 | 24297 1. 2428 ).
TOUNTSS | 23945 ] 24 9 | 21328 | 2484 |

Table 5.3: Average MSE per pixel and SP per motion vector of the FS, TSS, and NTSS
algorithms for the Foothall and Flower Garden video sequences.

The performance of the FADTS algorithm was tested and evaluated for quality and speed

adaptation as follows:

Quality Adaptation

The performance of the FADTS algorithm for quality adaptation is presented in Tables 5.4 and

5.5 for 2 number of different target values for the Football and Flower Garden sequences. From
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these tables, it can be seen that the FADTS algorithm achieved all target demands in terms of
predicted image quality and processing speed. For example, targeis were set to estimate motion
with an average 230 MSE or 24.51 dB PSNR image quality for the Football sequence and 215
MSE or 24.81dB PSNR image quality for the Flower Garden sequence. It is silown that the
FADTS algorithm satisfied these demands providing MSE or PSNR very close to targets such
as 232.04 MSE or 24.48 dB PSNR for the Football sequence, and 214.41 MSE or 24.82 dB
PSNR for the Flower Garden sequence, with average search points 49.18 and 24.54,
respectively. The flexibility of the FADTS algorithm for QoS demand was investigated by
setting different targets, for example, a target of average 250 MSE or 24.15 PSNR for the
Football sequence, and 225 MSE or 24.61 PSNR for the Flower Garden sequence. Tables 5.4
and 5.5 show that the FADTS algorithm, again, satisfied these demands by calculating motion
with 252.13 MSE or 24.11PSNR for the Football sequence, and 222.79 MSE or 24.65 PSNR
for the Flower Garden sequence, while reducing computational cost almost 3 and 1.6 times
respectively compared to previous demand. These settings reveal that the FADTS algorithm is
able to reach aﬁy bounded target level of quality, with the implicit assumption that the minimum
target error obtained by FS is the lower bound. Note that if a target is set so high that the -

resultant C; exceeds C 1., 10 achieve the target, the FADTS algorithm will fail. However,

defining such a high target is very unlikely, as it will produce an extremely poor quality output.

Target quality Calculated Quality Search Point (SP)
MSE PSNR [dB] MSE PSNR [dB]
235 24.42 234.70 24.43

_240 24.32 241.00 2431 .
a0 [ 2aus [oes2as |24l | iese

Table 5.4; Prediction error adaptation for the Football video sequence (345 frames).

Target quality & P Quality Search Points
Sp
MSE PSNR [dB] MSE PSNR [dB] 5P)
210 24,91 212.80 24.85 34.95
G iRES 24 8 [ 2144 S TR B2 i L e e D4 88
_ ‘220_ 2471 218.62 24.73 16.65
A28 | 2406 ] IR229 2468 e T 1820 e

Table 5.5: Prediction error adaptation for the Flower Garden video sequence (150 frames).
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The corresponding adaptive values of control parameter, C;, for different frames are plotted
in Figs. 5.12 and 5.13, where the adaptive nature of the FADTS algorithm is shown for varying
content between different frames. It also indicates that the FADTS algorithm automatically

computed a different starting value for C; based on both the content of the video sequence, and

the desired target.
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Fig. 5.12: Threshold control parameter adaptation for the Football sequence with average (a)
230, (b) 235, (c) 240, and (d) 250 MSE per pixel prediction quality.
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Fig. 5.13: Threshold control parameter adaptation for the Flower Garden sequence with
average (a) 210, (b) 215, (¢) 220, and (d) 225 MSE per pixel prediction quality.

Search Point Adaptation

The performance of the FADTS algorithm for computational scalability in terms of the average
number of search points (SP) per motion vector was tested with a number of targets, ie,
average search points considered. Table 5.6 shows some of these targets and the actual values

obtained by the FADTS algorithm for the Foothall and Flower Garden video sequences.

Footbali sequence Flower Garden sequence
Target | Act Actual Error Target | Actual Actual MSE
SP al SP

MSE

2010 [ 243,00
99::237.82
:1:235:32
230.22

MSE

Table 5.6: Speed adaptation for the Football and Flower Garden video sequences (345, and
150 frames respectively).
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Table 5.6 indicates that the FADTS algorithm can satisfy all user demand for different
computational complexity in terms of the average number of search points. For example,
consider the target search points of average 20 SP, for the Football sequence, and 15 SP for the
Flower Garden sequence, per motion vector. From Table 5.6, it can be observed that the
FADTS algorithm satisfied these demands by estimating motion vector with an average 20.10
and 15.52 SP, where the prediction image quality in terms of PSNR was average 24.27 and
24.70 dB for the Football and Flower Garden sequences, respectively. Another example, with
the targets of average 30 SP for the Football sequence, and 25 SP for the Flower Garden
sequence is in Table 5.6, which denionstrates that the FADTS algorithm satisfied the demands
of the target estimating motion vector with an average 29.89 and 24.69 SP, with 24.41 and
24 81 dB PSNR, respectively. ~

The corresponding adaptive values of control parameter, Cy, for different frames are shown
in Figs. 5.14 and 5.15 which show the adaptive power of the FADTS algorithm with content
variation in different frames. It is also shown that with higher speed i.e., a lower SP, as target,
the FADTS algorithm automatically started with a higher initial value of C; based on the

content of the video sequence and the expected target.
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Fig. 5.14: Threshold control parameter adaptation for the Foothall sequence with average (a) 20,
(b) 25, (¢) 30, and {(d) 40 searcn points per motion vector.
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Fig. 5.15: Threshold control parameter adaptation for the Flower Garden sequence with
average (a) 15, (b) 20, () 25, and (d) 30 search points (SP) per motion vector.

From tables 5.3, 5.4, 5.5, and 5.6, it is clear that the FADTS algorithm not only satisfied any
user defined targets, but also showed better error performance with computational complexity,
similar to the TSS or NTSS algorithm. For the Football sequence shown in Table 5.3, the TSS
and NSS algorithms have computational complexity in terms of average number of search
points, 25.63 and 26.9 respectively, and predicted image quality in terms of PSNR of 24.31 and
24.34 dB, respectively. As shown in Table 5.6 that the FADTS algorithm achieved even better
PSNR performance compared to that of the TSS and NTSS algorithms while considering a
smaller number of search points (average 25 SP). Tables 5.3 and 5.6 also show that the
performance of the FADTS algorithm is very similar to the NTSS and better than that of the
TSS algori:hm for the Flower Garden sequence. This is because the FADTS algorithm
adaptively selects the threshold control parameter to limit the search for different frames with
different content, whereas a directional fast algorithm, such as TSS, always searches for 25
points irrespective of the content variation. It is shown by certair authors [45, 46, 53, 68, 85},

most of the macroblocks in a video sequence are stationary or quasi-stationary in nature. In this
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case, the FADTS algorithm stopped searching after using a smaller number of search points
with similar error performance.

Although the search efficiency of the FADTS algorithm was found to be similar to the fast
TSS and NTSS algorituns for video sequences incorporating all kind of motions, the main
strength of the FADTS alg:rithm lies in its unique performance scalability as shown in Tables
5.4, 5.5, and 5.6. No other existing fast dire...onal algorithm provides such a tevel of flexibility
in trading off predicted image quality and cowputational complexity, whereas the FADTS
algorithm demonstrates considerable flexibility in providing target-driven services, especially in

terms of computational complexity.

5.8 Summary

In this chapter a fully adaptive distance-depanidont thresholding search (FADTS) algorithm\has
been developed for perfosinance management block-based motion estimation in real-time video
coding applications. A key feature of this approach is the progressive adjustient of the required
threshold control value via an adaptive precess which uses the information from previous
frames to achieve specified user demands i.e., prediction quality or processing speed. The
performance of the FADTS algorithm has been examined, and proof that it affords a unique
feature in being able to trade off betwern two key model parameters, namely prediction quality
and seach 2peed, tor the entire range of values of the threshold control parameter, C;.
Experimena: resuits have shown that this novel FADTS algorithm has achieved guaranteed
QoS demands. Morcover, the performance scalability, especially complexity scalability, found
in this algorithm, represents an effective solution to the overall problem of performance
scalabilily for reai-time software-only or low power video coding applications,

The searct efficiency of the. FADTS algorithm has been compared to the most popular fast
algorithms, TSS and NTSS. Experimental results have proved that the FADTS algorithm is not
only able io nroviue QoS but also demonstrates similar, or faster search speed, with similar
etror performance. Therefore, the FADTS algorithm solves the problem of existing fast
directional algorithms in providing different levels of quulity of service.

The initial value of the threshold control parameter is an imporiant factor in the adaptation
process. In this regard, some adaptation techniques have been formalized based on the contents
of the first few frames of each video shot. Consequently, the FADTS algorithm adaptively‘
estimates the initial value of threshold control parameter for each shot or scene. To detect a shot
change, an integrated shot detection technique using Artificial Neural Neiwork (ANN) and

BDM thresholding technique have been presented for non-real-time and real-time applications.
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In this research, ali the popular existing adaptive algorithms have been studied in order to
select the most appropriate one i.e. Normalized Block Least Mean Square (NBLMS) adaptive
algorithm, for implementing in the FADTS system.

The overhead computational complexity of the proposed FADTS algorithm for motion
estimation has also been analysed. It has been shown that although the FADTS algorithm has
some overhead complexity in the process of threshold control parameter adaptation, this

overhead is negligible compared with BDM calculation in motion estimation,

To iy




Chapter 6

Block-based True Object Motion Estimation

6.1 Introduction

In Chapter 1, it was identified that although block-based object motion has been used in many
different applications, especially video indexing by exploiting object motion, there are

limitations in estimating block-based #rue object motion using existing BMAs. To addsess this

issue, the Distance~-dependent Thresholding Search (DTS) block-based motion estimation -

algorithm (Block 1 in Fig. 1.6), in Section 3.6 was subjectively examined, and perceptually
exhibited superior performance compared to existing BMAs for #rue object motion capture. As
the block-based technique captures both object and camera motion, and also introduces some
Jalse motion vectors as noise, to re-affirm the superior performance of the DTS algorithm for
{rue object motion estimation, it is necessary to remove the global motion component and
eliminate the false motion vectors. In this chapter, a novel filter, called the Mean Accunudated
Thresholded (MAT) filter (Block 4 in Fig. 1.6) which eliminates the false motion vectors in
order to extract the #rue object motion vector for video object representation, is introduced. The
experimental results described in this chapter establish that the DTS algorithm (Block 1 in Fig.
1.6), when combined with the MAT filter, can be a very useful tbol for block-based true object
motion estimation,

To remove camera motion when capturing true object motion vectors, a Modified Iterative-
Least-Square Estimation (MILSE) (Block 4 in Fig. 1.6) technique is presented, and is used to
estimate the global motion parameter. The MILSE technique significantly reduces the
computational overhead in calculating this parameter compared with the original Iterative-
Least-Square Estimation (ILSE) technique described by Rath and Makur in {130].

The chapter is organized as follows. Section 6.2 presents some different applications where
block-based object motion has recently been used. A review of existing parametric global
motion estimation techniques is presented in Section 6.3. The well-established pan-zoom global
motion modeling technique is reviewed and a MILSE technique is proposed for camera

parameter estimation. An analysis of the complexity of the MILSE technique is provided.

120
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Section 6.4 details global motion cancellation and noise (false motion vector) elimination
techniques. The novel Mean Accumulated Thresholded (MAT) filter for false motion
elimination is then presented in detail. Experimental results on the performance of the MILSE
and ILSE techniques are described in Section 6.5, as well as the performance of the DTS and
MAT filter combination in capturing frue object motion vectors compared to other BMAs. This
section also analyses the computational complexity of the MAT filter in detail. Section 6.6

summarises the chapter.

6.2 Importance of Block-based Object Motion

With the rapid expansion of digital broadcasting systems, the Internet, and digital library
services, digital video data has become pervasive. As a result, among the many video analysis
applications extant, one of the most important applications has been content-based video
indexing in order to access video material from the tremendous pool of video information
available.

A typical approach to video indexing for browsing and retrieval is the shot-based approach
[131, 132} where a raw video stream is first segmented into a sequence of shots. After
segmentation, features within each shot such as content, length, and camera operations are used
for video indexing purposes. Two approaches for video indexing are distinguished [133]: still
image feature (spatial) based techniques, and temporal feature based techniques. In the former, a
small set of representative (key frame) frames are selected to represent the visual content of
each shot to be stored in the database. The information from each key frame is then represented
by low level still-image features such as colour, texture and shape. The major drawback of these
still-image feature indexing techniques is that video sequences are treated as still images, so the
semantics contained in a sequence are lost [133]. Motion, especially frue object motion (as a
temporal feature) allows the user to specify queries that involve the exact position and
trajectories of the objecis in a shot, and so can be considered as key feature in video indexing
for the sake of searching, browsing, or retrieval.

In previous chapters, it has been shown that though block-based motion estimation
techniques are primarily designed for video coding applications, they are increasingly being
used in other video analysis applications due to their simplicity and ease of implementation.
With MPEG being the worldwide standard for video data compression, and videos being
available in MPEG-compressed form, it would be desirable to directly process the compressed
video to compute relevant motion features thereby avoiding time-consuming computation of

optical flow. As a result, current research in some video analysis applications, especially
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content-based video retrieval, seeks to exploit this MPEG coded motion information. Some
recent applications are now briefly reviewed,

An object motion descriptor for content-based indexing of MPEG video has been proposed
by Kim and Ro in [18]. This technique considers the motion vectors, which are available in the
MPEG coded bitstream, as spatially connected four nearest macroblock motion. By clustering
the object motion, this technique identifies moving objects in a shot, and the motion for each
object is then used for video indexing. In [19), Aghbari ef af. use MPEG coded block motion
vectors to calculate the motion vector features such as motion velocity and angle for a video
indexing systen for MPEG video retrieval. The object, as well as the camera motion, are
calculated from these block motion vectors and a motion index vector is then generated using
this information. Another video indexing method based on MPEG coded Llock motion vectors
has been proposed by Heuer in [24], where the motion features (magnitude or/and direction)
and motion-based frame segmented features are used for querying the video. In [31], Sahouria
and Zakor propose a system to analyse and index surveillance videos based on the block motion
of an object which are available in MPEG-1 coded bitstream. Using this information, the
trajectories‘ of the moving object are extracted for video indexing and classification.
AbouGhazaleh [134] proposes a video indexing system based on the object’s motion from
MPEG coded bitstream. Based on motion vector similarity in the adjacent block in terms of
magnitude and angle, this technique clusters the blocks for a single object. It calculates the
absolute motion trajectory of a particular object by detecting and removing the background
motion as a camera motion. In [20], Yoneyama et al. propose a technique to detect the moving
objects by macroblock information such as motion vectors and Discrete Cosine Transform
(DCT) coefficients. After determining the moving region, the macroblocks regarded as moving
regions are grouped using spatial motion similarities with the same moving regions. If the
angular difference of motion vectors between the target macroblock and one of the spatially
neighbouring eight macroblocks is smaller than the pre-determined thresheld value, then these
two are regarded as the same object. Zen et al. [23] have also proposed an object detection and
tracking method using MPEG coded motion vectors and DCT coefficients. This technique
identifies the different moving objects by merging the different macroblocks in which the
motion vectors are similar in magnitude and direction. A target is selected from the objects and
then tracking is carried out by considering the similarity of the average motion vector of each
target object between frames. Besides video indexing, Ji and Park [62] propose a video object

segmentation technique based on the block motion vector and DCT coefficients.
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6.3 Global Motion Estimation

Different camera operations such as fixed, horizontal rotation (panning), vertical rotation
(tilting), change of focal length (zooming), rotation around the optical axis (rolling), and
horizontal transverse movement (tfracking) induce different global motions in video sequences.
The following two steps are generally involved in estimating the different global motions: -

1. Global Motion Parameter Modeling

2. Parameter Estimation.

6.3.1 Global Motion Parameter Modeling

Various global motion modeling schemes have been proposed in the literature, with the most
well-known being the three-parameter model corresponding to pan and zoom [135-137], the
four-parameter model corresponding to pan, zoom and rotation [130, 138], the six-parameter
affine model [139, 140}, and the eight-parameter quadratic and perspective model [140].

The different parametric global motion models estimate camera motions with varying
degrees of complexity. In estimating global motion parameters, the pan-zoom model is
computatiﬁnally efficient and gives sufficient accuracy in motion description to represent the
global motion of a video sequence, especially when the global motion is primarily used for
compensating for camera motion. Although there are more complex models, the associated
benefits are small and computational complexity high. Their use also leads to greater difficulty
in parameter estirﬁation, thus incurring higher additional overhead cost. For these reasons, the
following pan zoom model for global motion representation is considered.

Assume that luminance changes between successive frames are due only to camera motion.
If there are I rows and J columns of pixels in a frame, the coordinates of any pixel will be

@ N, i=0,..,1-1, j=0],...,J =1 which will be presented by s g =(8;,5;) withrespect to the

centre of the frame. The displacement of the pixel (i) is represented by v;;. It is assumed that
the camera works on the central projection model {141] in which the camera coordinate system
lies at the lens of the camera, and the image coordinate system sits at the focal plane. Using

these assumptions, the following two models can be established.

6.3.1.1 Caniera Pan

Pan is caused by the camera’s rotation about either the x-axis (vertical) or the y-axis
(horizontal) of the camera coordinate system. It affects both the camera and the image-space
coordinates. The pan parameter is normally represented as a two-dimensional vector in which

the scalar compcenents refer to the rotation angles & and 6, about x-axis and y-axis, respectively.
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If they are sufficiently small (the camera has low motion between frames), the displacement of

the pixel is given as {141]:

)
v,),:F{g‘] (6.1)

¥
where F is the focal length of the camera. In general, small pan causes the entire frame to be

uniformly displaced by one vector i.e. vy =P, i 01,.,1-1,j=0).,/-1,

where p = pr py]' is a constant vector and py and py are called the pan parameters. Hence,

this model includes not only the slow pan of the camera, but also the camera translation along a
plane parallel to the image plane. If the motion is due to the slow pan of the camera, then:
P =F0, 6.2)
p,=F0,
Note that if ¢, and 6, are not small enough, then the resulting motion is not constant [141],

and so cannot be modeled using the pan model.

6.3.1.2 Camera Zoom

Zoom is caused by a change in the camera’s focal length. It changes only the image-space
coordinates while the camera coordinates remain unchanged because there is no camera
movement. The zoom parameter is normally expressed as a scalar since it is the ratio of the
camera’s focal lengths. Zoom causes linear moticn along both the x-axis and y-axis of the image
plane i.e. the scalar components of the motion vector of a pixel are directly proportional to the
corresponding scalar components of its displacement from the centre of the frame. The
proportionality constants along the x-axis and the y-axis, which are functions of the zoom
parameter, are equal. It has been shown by Tse and Baker in [136] that when zooming, the

motion vector of the pixel (i) is:

F, Y
wla) 6

where Fy and F, are the camera’s focal lengths before, and after, the zoom, and F,/F} is the
2oom parameter.

A similqr motion vector field is created when the camera is transiated along the direction of
view. Let 2, and z, be the z-coordinates (i.e. along the direction of view) of the object point,
which corresponds to the pixel on the image plane, before, and after, the camera translation,

respectively. The displacement of the pixel is given as:
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v, = (i—b - 1){:’] 64)
a J

The above two concepts are generalized by Rath and Makur in [130] as follows. Global

motion is referred to as zoom when the scalar components of the motion vector of a pixel are
directly proportional to the corresponding scalar components of its displacement from the centre

of the frame i.e.

z,$
vy =[ * ‘] (6.5)
ZyS;
where z, and zy are called zoom parameters. When linear moiion is due to the zooming of the
camera,
F,
z, =z, =(F:-- ] (6.6)
while when it is due to the translation of camera along the direction of view,
z,=z,= (ﬁ - 1] (6.7)
za

The reason for using two zoom parameters is that in the majority of cases, global motion is
usually accompanied by Jocal motion. The values of the estimated parameters are affected
differently along the x-axis and the y-axis depending on the nature of the local motion. One of
the estimated parameters may be a better estimate than the other. Representing both parameters
by a single parameter will not produce a better estimate.

So far the zoom and pan motions have been discussed separately. Although less frequent,
there is still the possibility of the simultaneous occurrence of both pan and zoom motions. In
such cases, the global motion field will be a combination of both pan a d zoom.
Mathematically, an effective global motion vector has to be decomposed into two global motion
vectors, each corresponding to one of the above mentioned models. The order of these two
motion parameters is important, since the process is non-commutative (a.b # b.a), with different
orders giving rise to different models for the resultant motion vector, Zoom followed by pan
gives [130]:

Zy8;

zxsf
vy = +p (6.8)

whereas pan followed by zoom gives:
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1
+
Vy =[Zx(si px)J+p

z,(s;+p,)

ZxS,- 1+ Zx ) x
vy =[zys,-]+[§l rr )p,,] (6.9)

Rath and Makur [130] generalise these two models as a single model:

a, =z, and a, = fi(p,,z,) 6.11)
a, =zy and a, =f2(py’zy) (612)

orl

where

In the above definition, z; and z, are the zoom factors along the x-axis and y-axis respectively,
and (p,, p,) is the pan vector. Accordingly, the pan and zoom parameters are represented by a,,

aq, as, and ay.

6.3.2 Parameter Estimation

As the global motion estimation (GME) procedure depends on parametric models of camera
motion and the way the model parameters are estimated, different GME techniques have been
reporied in the literature based on the diverse motion models discussed in the previous section.
In [142], Dufaux and Konrad classify global motion parameter estimation methods into three
categories: (i) direct minimisation of the prediction by a differential technique [141]; (ii) direct
minimisation of the prediction error by a matching technique [135, 139, 143]; and (iii) a two-
step method consisting of Jocal motion estimation followed by estimation of the global motion
parameters {130, 136, 137, 140, 144-148].

The first two categories represent Least-Square (L) minimisations of motion parameter
estimation. As the minimisation is carried out on the video s+ juence without corresponding
establishment, both can be considered as direct methods. Conversely, the third category
represents methods which carry out the estimation process in two stages. In the first stage, an
overall motion field is computed generally by block-matching algorithms. The global motion
parameters are subsequently computed by regression on this motion field. The technigue can be
seen as indirect as it does not compute the motion parameters from the luminance signal. Most
indirect methods use a LS estimation method to minimize the prediction error function using a

matching technique to estimate the global motion parameters.
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As the purpose of global motion estimation is to compensate for the glodal motion already
calculated by the block-based DTS algorithm detailed in Chapter 3, the indirect parameter
estimation (two-stage) technique is exploited in this research., Whether direct or indirect
implementation is employzed, the main difficulty in estimating global motion parameters resides
in the existence of independently moving objects which introduce a bias into the estimated
parameters. To reduce the impact of localised object motion and detection errors [149] on the
determination of global motion parameters, different techniques have been proposed for
parameter estimation. A non-iterative histogram based global motion parameter estimation
technique has been used to reduce the disturbance of local objects {137, 149, 150]). In [149],
Kamikura and Watanabe calculate the parameters associated with pairs of blocks symmetrically
located with respect to the centre of the image, and then 2 histogram of these parameters is used
to calculate the parameters (pan and zoom) of the global motion. Meng and Chang [150]
propose a technique to calculate the global motion parameters based on a histogram of the
motion vector angles with respect to the origin of the frames. As the LS method is the most
popular global motion estimation mcthod, to reduce the disturbance of moving objects, an
iterative-least-square estimation (ILSE) algorithm is used to remove the motion vectors of
moving objects from the LS approximation by thresholding. As well, some robust direct
methods exist, which use statistics and maximum-likelihood-theory, such as M-estimators [151]
and Least-medium-of-square method [152] for parameter estimation. However, they introduce
more ccﬁnputational complexity into the parameter estimation process.

For computational efficiency, sufficient accuracy and simplicity in application, the iterative

LS method has been considered in this thesis.

6.3.3 Modified Iterative Least-Square Estimation (MILSE)

To estimate the parameters using Iterative Least-Square Estimation (ILSE), the procedure
described by Rath and Makur in [130], is used with a modification, and is referred to as the
Modlified Iterative Least-Square Estimation (MILSE). In work by Rath and Makur [130], all the
rows and columns of blocks in a frame of a sequence are considered for the first iteration, so
that the parameter calculation depends on the whole frame. Global motion generally spreads
over the frame uniformly as shown in Fig. 6.1. If only pan is involved, the value is constant for
the entire frame, but in the case of zoom, the value is proportional to the distance from the
centre points, The convergence centre is generally at the centre of a frame provided there is no
panning. Fig. 6.1(a) shows the global motion characteristics of video frames where only zoom
and a little pan is involved. Consequently, the convergence centre has been shifted from the
centre of the frame.

il
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(a) Global motion (Zoom) in the Table Tennis (b) Global motion (Pan) in the Flower Garden
sequence. sequence.

Fig. 6.1: Global motion needle diagrams for the Table Tennis and Flower Garden sequences.

Another assumption regarding global motion is that in most video sequences, only a few

blocks are occluded by the moving objects snd these objects are mostly in, or around, the

middle of a frame, but rarely at the edge of the frame {19]. Based on this assumption, Aghbari
et al. in [19] estimate the different types of camera motion using the macroblock motion
information at the edge of the frame; thus, for panning motion, all motion vectors at the outer

edges will be in the same direction, whereas for zocm-like motion, vectors on opposite sides

will be in the opposite directions. Therefore, instead of using the motion vectors of all
macroblocks, a few macroblocks, especially at the edge of the frame, are sufficient to enable g
caleulation of the global parameters. To implement this strategy, the ILSE technique {130] has |
been modified, and is referred to as the MILSE technique. In the latter, instead of considering

the rows and columns as indices, the number of blocks for parameter estimation is considered as

,.% follows. g

T

Let there be N blocks in a video frame, and assume that the motion vector of a block is the
motion vector of the central pixel of that block. Let (v(k), v,(k)) be the measured motion vector,
according to the original DTS algerithm (Bl.ck 1 in Fig 1.6), of the block k, k= 0, 1, ..., N-1,

whose central pixel’s coordinates are {5.(k), 5,{(k)) with respect to the centre of the frame. In this

regard, the global motion estimation model represented. in (6.10) can be rewritten for camera

foum and pan as:

v—"(k) - alsx(k) az_l
v (K)| | ass, (k) ¥ a4_l (6..13)
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Now consider the ILSE algorithm {130}, the optimal values for camera parameters (a, @, @,
and a,) are obtained by using the following criteria:

N-l

mmZ(v (k)—-ays, (k) - az) (6.14)
N-1
mmZ( v, (k) -ass, (k)—a4) (6.15)

a;.

By differentiating with respect to the parameters, and setting the derivatives to zero, the

following solution is obtained as:

N-1 N-1
NY v (k) (k)-(z v (HJ(Z Sx(k)J
k=

a, = =0 k=0 - = (6.16)
Nz sf(k)—[ s (k))
a, = [;av (k)][kz.;s (k)} (év’(k)s’(k)} g.os‘(k)] 6.17)
Ngsf(k) (kzls (k)]
N=] N-1 N=1
Ny, vy(k)sy(k)-[z v, (k) Zs,,(k)J
a, = 2= — HN-I 20 (6.18)
NZsﬁ(k)-—(Z sy(k))
k=0 k=l
N-1 N-l
[Zv (k))(Zs (k)) (Zv (k)s (k)][Zs (k))
- (6.19)

N-t

NZ si(k) - (Z-sy(k)]

k=0

As shown by Rath and Makur [130], to eliminate the influence of the presence of local
motion, the above procedure is evaluated iteratively, and each iteration eliminates blocks whose
motion vectors (estimated by any {+MA) do not match with the current global motion fields.
Matching means that a motion vector lies within a threshold, called the motion vector matching

threshold, from the corresponding global motion vector.

6.3.4 Computational Complexity Analysis of MILSE

The computstional complexity incurred in global motion estimation by the ILSE method
depends on two factors: the number of blocks considered in each iteration and the number of
iterations required for the convergence achieved. Rath and Makur [130] mention that the

convergence usually occurs in less than § iterations. Therefore, the computational complexity of
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the ILSE and MILSE techniques is analysed in terms of the number of blocks used in the first

iteration.

If the frame size, for example, is [ N,,N,] pixels and the block size is N 2pixels, the total

N, XN,
Nz

number of blocks in a frame is . In a 2-dimentional form this can be represented as

[B;,,B‘,] where B, and B, represent the horizontal and vertical dimension of the biocks
respectively. Suppose the total number of operations required for calculating the camera
parameters for each block is £, then the total number of operations required for the whole frame
is £x(B, xB,) for each iteration, which is the computational cost invelved in ILSE technique.
Clearly, if a subset of blocks is considered instead of all the blocks of a frame, the number

of operations will be fewer, which is the rationale behind the MILSE technique.

® Blocks in outer most grid G,

® Blocks in second outer most grid G,

@ Bilocks in third outer most grid G,
@ Centre of the frame

900000 60e
9600060060

20 aé

Fig. 6.2: An example of all the macroblocks in the three outermost grids of a frame.

If the frame size is [N,,N,.]=[352,240] and block size is [N,N]=[16,16], the total
number of blocks in this frame is (B, X B,) =330. The total number of operations required is

¢x330 when all the blocks of a frame are considered for one iteration in the ILSE technique.
Conversely, if only those blocks in the outermost first and second grids, shown as Gyand G, in
Fig. 6.2, are considered, the total number of operations involved in the first iteration is &132. If
the second and third outermost grids G, and G, are considered, the total number of operations
required is &x116. For these two cases, the computationai cost is reduced by 60% and 65%,
respectively, compared to what is required when all the blocks are considered for parameter
estimaﬁon in the first iteration. Experimental results

This research confirms that using the outer grid block mot: >n vectors to calculate global

motion parameter exhibits better performance than using the inner grids which are locaied
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around the centre of the frame, since the iocal object generally exists towards the centre of the

frame,.

6.4 True Object Motion Estimaticn

If there is no global motion involved in a video sequence, the /rue object motion can be directly
obtained by eliminating the false motion components from ihe block motion captured by the
DTS algorithm discussed in Chapter 3. However, if there is globa/ motion involved in a
sequence, it will be necessary to cancel the global motion components before filtering the faise
motion vector, in order to retain only the true object motion vectors from the bleck motion

captured by the DTS algorithm. The global motion cancellation technique is described below.

6.4.1 Global Motion Cancellation

For global me:iion cancellation, generally known as global motion compensation, firstly globul
motion patameters are calculated. [n Secction 6.3, a global motion parameter estimation
technique has been described for parameters (pan-zoom) estimation wiicic tae pan and zoom
were represented by four variables (a,, 4z, @3, and a.). After calculating these four parameters,
the global motion vectors fur each block in a frame can be calculated as (6.13).

If the true object motion vector is represented by (o(k), 0,(k)) of the k™ block of a frame

where k=0, 1, ..., N-1, it can be calculated as:

0k} | _[ve(®)]_{arsx(®)]_[a
,[:Oy (k)]-ll_vy (k)] I_a:,sy (k):l [ai] (6.20)

where (v, (¥}, v, (k}) represents the block motion vector ealculated by the DYS algorithm.

Once globai motion has beer: compensated from the estimated block motion, irue object
motion vectors are clustered in the blocks contsining one or more objests. As block motion
estimation cannot be performed with full accuracy due o the iimitations of block-based
estimation techniques discussed previously, false motion vectors eppear as noise, together with
the frize object motion vectors. To retain only the #ruv object motion vectors, these faése mution

vectors need to be removed.

6.4.2 Filtcring the False Motion Vecter -

Among the various existing line:~ and non-linear filters, the most popular are the mean and
median filters [153-157). In the foliowing two sections, the concepts behind these two type of

filters will be discussed briefly,
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6.4.2.1 The Mean Filter

The idea of mean filtering is simply to replace each value with the mean (average) value of its
neighbours, including itself. This has the effect of smoothing values that are unrepresentative of
their surroundings, Mean filtering is usually thought of as a convolution filter [158). Like other
convolutions, it is based around a kernel, which represents the shape and size of the
neighbourheod to be sampled when calculating the miean, Often a 3x3 square kernel is used,
although a larger kernel (e.g. 5x5 square) can be used for heavier smoothing. For example, in
Fig. 6.3(b) the results are shown for the situation where a 3x3 inean filter is applied to a 3x3
image as shown in Fig. 6.3(a) where each value may represent the intensity of each pixel. Two
major characteristics of the mean filter are:

e A single, very unrepresentative value can significantly affect the mean value of its

neighbourhood.
» When the filter neighbourhood straddler. an edge, the filter will interpolate new .
values.
P13 ]2 45135137
2 (1211 40133 (33
31313 4003231
(a) Unfiltered values. (b) Filtered valves.

Fig. 6.3: 3x3 kernel mean filter.
9.4.2.2 The Median Filter

Like the mean filter, the median filter considers each value, in turn, and looks at its nearby
neighbours to decide whether or not it is representative of its surroundings. Instead of simply
replacing a value with the mean of neighbouring values, it replaces the value with the median of
those values. The median is calculated by first sorting all the pixel values from the sunounding
neighbourhood into numerical order and then replacing the pixel under consideration with the
middle pixel value. If the reighbourhood under consideration contains an even number of
pixels, the average of the two middie pixel values is used. Fig. 6.4(b) shows the results of a 3x3
kemnel median filter applied to the 3x3 image in Fig. 6.4(a). Two major characteristics of the
median filter are:
* The median is & more robust average than the mean, and so a single, very
unrepresentative, value in a neighbourhood will not affect the median value

significantly.
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» Since the median value must actually be one of the values in the neighbourhood, the

median filter does not create new, unrealistic, values when the filter straddies an edge.

1 §3 |2 25]2012.0

2 11211 3.013.0{2.0

313 §3 2512020
(a) Unfiltered values. (b) Filtered values.

Fig. 6.4: 3x3 kernel medien filter.

While these filter types are effective for impulse noise suppression, the median filter and its ~
variants have also been used in many applications to reduce noise from block motion vectors
[17, 21, 31, 72] for vector field smoothing. However, the main requirement for the filter in this
application is not noise reduction in image enhancement or motion vector field smcothing, but
to explicitly eliminate the false motion vectors and retain the frue object motion vectors. For

this reascn, a new filter design is proposed.

. 6.4.2.3 The Mean Accumulated Thresholded (MAT) Filter

In real world video sequences, most moving objects generally occupy more than one
neighbouring macroblock (Section 4.2). Based on this characteristic, it can be assumed that frue
object motion vectors should always occur in a clustered form whereas false motion vectors will
tend to appear as impulsive noise. In order to iilustrate this, the following simple example of 2
motion vector field is provided in Fig. 6.5. The frue motion vector is represented by m and fulse
motion vector by m’. Real world video will involve a much more complex motion vector field;

however, as results will show (Secﬁon 6.5.2.2. and Appendix F) the fundamental principle

holds.
cjoJolo|ojojofo
ojJololojo|m|m]|oO
ojo|ojo|olm|m|oO
ojolojojolojofo
o{o|lo|olofjofo]o
o|lmjoiojolojo]o
ojojojlo|lo|lojotlo
ojolojofolojofo

Fig. 6.5: An examplv of @ motion vector field.
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The objective is to eliminate m” and retain m in the vector field. The simplest strategy is to
define a noise tolerance threshold where the decision is based on that threshold value [18]). This
approach is flawed however, since the threshold only performs well if the frue and false motion
vectors have different lengths. In the case where the length of both m and m” are equal, this
technique does not separate #rue motion vectors from false ones.

For filtering impulse noise, the most well-known technique is the median filtering technique
which has been used in [17, 21, 31, 72] for noise reduction. Though the median filter performs
well for noise reduction in a motion vector field, such a filter is not suitable for this application.
For example, if a 3x3 median filter is implemented on the motion vector field shown in Fig. 6.5,
the filtered values will be as shown in Fig. 6.6. These clearly demonstrate that though the false ~

vector has been removed, all the frue motion vectors have also been eliminated.

0Ojojojojoj0{ogo
6oloyojotojotlopo
ol1ojojojojotofo
0|00 0J010]O0}O
0100100 ]0} 0] @
01000 O0]JO0O{O}O
0jojojoO|OoO]O}O}O
¢lotojojoqgo0jofo

Fig. 6.6: Filtered values for the motion vector represented in Fig. 6.5.

The performance of a mean filter is now examined in this application. Afier implementing a

3%3 mean filter on the motion vector field in Fig. 6.5, the filtered values are as shown in
Fig. 6.7, where a number of new jalse motion vectors have been introduced. To remove these 3
new false vectors around the true vectors shown in the shaded blocks in Fig. 6.7, a predefined

threshold, called the false motion vector elimination threshold Ty must be used such that

%’”_. <T, < .f.é’if_ If the length of both vectors (frue and false) is equal, then ‘ i

-"g. = 4_;".or m* = 4m. In this case, any value of T, within the defined range, will be unable to

remove the fafse vectors and retain the frue ones.
From this simple example, it can be seen that the length of the false motion vector is greater
than that of the frue motion vector and the length ratio is 4:1. One strategy for removing these

Jalse vectors is to consider gradually increasing the length of the frue motion vector with a
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higher ratio compared to the increasing ratio of the length of the fa/se motion vector, so that the
ratio of the twe different vector lengths is reduced gradually. When, finally, the frue motion
vector length becomes greater than that of the false one, a predefined threshold can separate the
true one from the false one. To achieve this objective, accumulation of the mean vector length,
in addition to the original vector length, is utilised. The reasoning behind this is that rve motion

vectors frequently occur in a clustered form, whereas false vectors tend to occur as isolated

impulsive noise,
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Fig. 6.7: Filtered values for motion vector represented in Fig, 6.5.

For the example, in Fig. 6.7, the length ratio of the false and frue motion vector is 4:1. If the
above mentioned accumulation procedure is applied to these motion vectors, the maximum

length of the false motion vector afier one iteration becomes:

f_l_{n__tl{)m

4m+ 6.21
5 =9 (6.21)
and the length of the true vector is:
madm _ 13m (6.22)
9 9

From (6.21) and (6.22), it can be shown that the ratio of the length of the fa/se and true motion
vectors is now only 3.08:1 after one iteration.

Now, if the second iteration is considered, the length of the false motion vector becomes

'4m+i‘821'1'.+3><4'" =5dm, (6.23)

and the length of the #7ue motion vector is:

13m + 52m + 10m
9 81 81

=2.4m (6.24)
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so the ratio of the length of the false and true motion vectors is now 2.25 which, again,
indicates the reduction of length ratio between the false and #rue motion vectors. In the same
manner, if this iterative mean accumulated process continues, eventually after a number of
iterations, the length of the false motion vectors (noise) will be smailer than the length of the
true motion vectors. In that case, by applying a suitable value of 7} it is possible to remove the
entirc set of false motion vectors in order to retain only the frue one.

While a simple example has been used to explain the rationale behind the idea, the false
motion vector elimination process has been formulated in the Mean Accumulated Thresholded
(MAT) filter, which is designed explicitly for this application.

The MAT filter has two phases. The first phase is basically an iterative in-place application
of the mean filter. However, in this case, a major difference arises in how the in-place values
are vpdated. For each iteration, the mean value is added to, instead of replacing, the existing

value as follows:

ox(k) _ Ox(k) + meanx(k)
0,(k)| |0, (k)| " | mean , (k) (6.25)

where (o, (k),oy(k)) represents the x and y components of the motion vector in the current

block %, which are available after global motion cancellation, and where mean,{k) and mean,(k)
are the mean values of the x and y components of the motion vectors, respectively, in the
neighbourhood of any kerne! considered for the current block, k.

The second phase of the MAT filter is to apply the false motion vector elimination
threshold, T so that the only motion vectors retained are those whose lengths are higher than 7.

This is mathematically formulated as:

{If J(O, &) + (oy ®)F < T,, eliminate the vector in block &; (6.26)

Otherwise, retain the vector in block £.

Before examining the performance of the filter, a few key points need to be highlighted in
respect to applying the MAT filter.

1. The MAT fiter has been explicitly designed to eliminate false motion vectors while
retaining the frue motion vectors. It is not designed for vector field smoothing
purposes.

2. Whe MAT filter can be integrated with any existing BMA for #ue object motion

vector capture,
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3. The number of iterations in the MAT filter depends on the video content and the
performance of the search algorithm. These must be selected empirically for
optimising the performance of any BMA using the MAT filter.

4. The threshold T setting is empirically derived to maximise the number of retained
true object motion vectors while minimising the number of false motion vectors.

5. The overall computational complexity of the MAT filter depends on the kernel size
used and the number of iterations required in the whole process.

6. One assumption in the literature is that motion vectors tend to occur in a clustered
form which defines moving objects. For the inherent limitation of the BMA search
technique, the performance of MAT filter will probably not be so effective, and
capture rates will deteriorate if there is large cluster of false motion vectors with no
moving objects. For most real world objects however, this clustering effect is rare,
and thus the MAT filter will improve the overal! number of false motion vectors

eliminated.

6.5 Performance Analysis

The purpose of this section is to analyse the experimental performance, firstly, of the MILSE
technique for global motion eshimation and secondly, the DTS algorithm using the MAT filter

for true object motion estimation.

6.5.1 Performance Analysis of MILSE

In this section, simulation results for globa/ motion parameters (zoom and pan) estimation, in
terms of a,, 4, a3, and g4, are presented using the original ILSE method [130] und the new
MILSE method. The simulation was carried out using different video sequences with different
motion types as detailed in Appendix B.

In the sitmulation program, two predefined thresholds were used to compare motion vector
magnitude and angle. If the J:fference in magnitude and angle between the original motion
vector calculated 'vy the DTS algorithm and the calculated current globa! motion usingz (6.13) is
greater than these predefined thresholds, they are considered mismatched motion vectors and
are removed during the next iteration. Tables 6.1 and 6.2 show the statistical comparison of
camera pan and zoom factors represented by ai, g, @3, and ay, calculated by considering the

motion vectors for a range -f differ:nt numbers of macroblocks in given frames.
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Test sequences o (zoom) a; (pan) ia; (zoom)( as(pan) No. of blocks considered
-0.02 -0.33 ~0.02 0.24 All blocks ILSE
-0.02 -0.40 -0.02 -0.14 Blocks in G, and G)
Table Tenniy -0.02 -9.27 -0.02 0.14 Blocks in G, and Gy
(Frames #32 und #33) | -0.02 -0.47 -0.02 -0.16 Blocks in Gy, G, and Gy _|y 411 sE
-0.02 -0.43 -0.02 0.05 Blocks in Gy, Gy, G, and G4 -
-0.02 -0.41 -0.01 0.04 Blocks in Gy, Gy, Gy, G, and Gs
-0.02 -0.33 -0.01 002 |Blocks in Gy, G;, Gy, G, Gs,and G
0,00 -2.00 $.00 0.00 All blocks ILSE
0.00 -2.51 0.00 .00 Blocks in G, and G,
Flower Garden |4 6T 0000|000 | Bioks . G, Gyand
. -2. ! ! ocks in Gy, Gy, 3
(Frames #10 and #11) —556—T"280 1 0.0 0.00 Riocks In Gy, G, G and Gy | LSE
0.00 -2.00 0.00 0.00 Blocks in Gy, Gy, Gy, Gy, and Gs
0.00 -2.00 0.00 0.00 iBlocksin Gy, &, Gy, Gy, Gs, and Gs -~
0.00 4.04 0.00 0.02 All blocks ILSE
0.00 3.87 0.00 0.08 Blocks in Gy and G,
Ballet 0.00 3.95 0.00 0.00 Blocks in Gy and G
(Frames #99 and #100)| _ 0.00 3.96 0.00 0.05 Blocks in Gy, G;. 2nd G, MILSE
0.00 3.77 0.00 0.60 Blocks in Gy, Gy, G, and G,
0.00 3.77 0.01 0.02 Blocks in G|, G, Gy, Gy and Gy

Table 6.1: Statistical comparison of camera pan (a; and a,) and zoom (a; and a;) factors in
relation to the different numbers of macroblocks considered.

Test sequences ) (zoom)| a; (pan) [a; (zoom)| ay(pan) No. of blocks considered
-0.02 -0.12 -0.02 0.22 All blocks 1LSE
-0.02 -0.38 -0.02 0.00 Blocks in G, and G,
Table Tennis -0.02 -0.10 -0.02 0.03 Blocks in G and G, |
-0.02 -0.22 -0.02 -0.02 Blocks in G;, Gy, and G, S
(Frames #33 and #34) 05T 008|001 | 013 | Blocksin Gy, Gy, Grand Gy ™ o |
-0.02 -0.18 -0.01 029 | Blocks in Gy, s, Gy, G, and G
-0.02 -0.07 -0.01 031 _ |Blocks in Gy, Gy, Gy, Gy, Gs,and Ge
n.00 -2.00 0.00 0.00 All b.ocks ILSE
V.00 -2.00 0.00 0.00 Blocks in G, and G;
0.00 -2.00 0.00 0.00 Blocks in G, and G,
¥ mf} ’;“’g 0681’:;’;1 y 000 200 T 040 0.00 Blocksin G, G, ond Gy} o
0.00 -2.00 0.00 0.00 Blocks in G), G, Gy, and G :
S 0.00 -2.00 0.00 0.00 Blocks in Gy, Gy, Gy, Gy, and G
i 0.00 -2.00 0.00 0.00 _ |Blocks in Gy, Gy, Gy, Gi, Gs, and Gy
0.00 2.48 0.00 0.04 All blocks ILSE
0.00 283 0.00 0.23 Blocks in G and G,
Ballet 0.00 3.89 0.00 0.01 Blocks in G, and G,
(Frames #97 and #98) | 0.0 3.7 0.00 0.29 Blocks in Gy, G, and Gy |MILSE
g 0.00 3.20 0.01 0.12 Blocks in: Gy, G;; G», and G,
8¢ 0.00 282 ! 001 0.00 | Blocksin Gy, Gz, Gy, Gy, and Gs_|

Table 6.2: Statistical comparison of camera pan (a; and a,) and zoom (a, and «;) factors in
relation to the diffcrent numbers of macroblocks considered.

The first test sequence reflected in both Tables 6.1 and 6.2 contains two pairs of images
(frames #32 and #33, and frames #33 and #34) of the Table Tennis (352x240 pixels) sequence
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in where the camera zooms out, wiiilst slightly panning, with the moving objects including ball,
bat, and the hand of the player holding the bat, Tables 6.1 and 6.2 show that the values of the
zoom parameters, @, and a, were very similar for all cases for both sets of frames, except for
the blocks in the outermost grids, Gy and G;_ This indicates that some noise has been introduced
due to boundary artefacts in the outermost grid, introducing a small error. It is also shown that
when the blocks of G| and G, were considered, the panning factors of @; and a, were smaller
than for all other cases. As these images contain almost no panning, the low values of @, and a,
are fully consistent with expectations.

The next test sequence contains two pairs of images (frames #10 and #11, and frames #20
and #21) of the Flower Gavden (352x240 pixels) sequence where the camera is panning
horizontally to the right, and there are no moving objects. Tables 6.1 and 6.2 show that only a; #
0, indicating that there was no zooming and vertical panning involved in this sequence. Table
6.1 also illustrates that the value of @, was different for the blocks, Gy and Gy, compared to all
others, due to the aforementioned boundary artefacts.

For the Ballet (360x240 pixels) sequence, two pairs of images (frames #97 and #98, and
frames #99 and #100, respectively) were considered; these contained camera panning to the
right, and no zooming. Tables 6.1 and 6.2 also show that the zoom parameters were zero for all
cases, which is consistent with the actuality observed in this sequence.

So far, the performance of MILSE and ILSE has been analysed in which consecutive pairs
of frames have been considered for global motion estimation. Generally, the pan and 2oom
factors in a video sequence changes proportionally to the disiance between the cwrent and the
reference frames. To analyse the effectiveness of the MILSE technique, a number of
experiments were also conducted based on non-consecutive (skipping) frames. Table 6.3 shows
the simulation results when skipping one and two frames of the Table Tennis and Flower
Garden video sequences. It is interesting to note that the zoom and pan factors gradually
increase when the distance between the current and the reference frames increases. It can also
be observed that the parameter values were similar in all cases except when blocks in Ggand G,
were considered, again indicating the effect of boundary artefacts.

From the above analysis, it can be observed that globa/ motion parameter estimation docs
not require a consideration of all blocks of a frame. It is also shown that if only those blocks in
the second and third outermost grids are considered, then this provides better results compared
to others, as well as avoiding boundary artefacts. Consequently, the proposed MILSE technique
can be shown to improve computational efficiency by 65% compared with the first iteration of
the ILSE technique described by Rath ands Makur [130].
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Test sequences g, (zcom) a; (pan) |a; (Zoom): as(pan) No, of blocks considered
-0.03 -0.32 -0.03 -0.27 All blocks ILSE
0.03 -0.38 -0.03 -0.09 Blocks in G, and G,
Table Tennis -0.03 -0.57 -0.03 -0.08 Blocks in Gy and G,
(Frames #32 and #34) [ 0,03 -0.44 -0.03 20.02 Blocks in Gy, Gy, and G, MILSE
0.03 " 0.40 -0.03 0.17 Blocks in G, Gy, Gy, and Gy
-0.03 -0.31 .0.03 0.27 Blocks in Gy, Gy, Gy, G, and Gs
-0.03 -0.29 -0.03 0.31 Blocks in G[, G;_, G;, G4. Gs, and Gs
-0.04 -0.26 -0.05 0.51 All blocks ILSE
-0.03 -0.08 -0.44 0.79 Blocks in G, and G,
Table Tennis 50— T 00 T 0 T Beaonos s
*\J, V. =\, " QCKS 10 L7y, Lra, '3
(Frames #32 and #33)) —5 661033 | -6.05 03 Biocks in G, Gy, Gy.and Gy | ILSE
-0.05 -0.24 -0.04 -0.77 | Blocksin G, Gy, Gs, Gs,and Gs
-0.05 .0.20 -0.04 0.82__|Blocks in G), G, Gy, Gy, Gs, and Gg
0.00 2.90 0.00 0.00 All blocks ILSE
0.06 3.40 0.00 0.00 Blocks in G, and G,
0.00 3.00 0,00 0.00 Blocks in G, and G,
(Fr aﬂ::;;ggg;"l 2 o 3.00 0.00 0.00 Blocks in G, 6,804 Gy |y sk
0.00 3.00 0.00 0.00 Blocks in Gy, G;, Gy, and Gy
0.00 3.00 0.00 0.00 Blocks in Gy, Gy, Gy, Gy, and Gs
0.00 3.00 0.00 0.00 Blocks in G[. Gz: G_;, Gy, Gs, and Gﬁ
0.00 3.51 0.00 0.24 All blocks ILSE
0.00 2.92 0.00 0.45 Blocks in Gy and Gy
Flower G arden 0.00 4.00 0.00 0.52 Blocks in & 1 and G}_
(Frames #10 and #13) 0.00 4.00 0.00 1.00 Blocks in &y, G, and G MILSE
0.00 4.00 0.00 0.45 Blocks in G] , Os, Gy, and G,
0.00 4.00 0.00 0.33 Blocks in G|, Gy, Gy, G, and G
0.00 4.00 0.00 0.2 _ |Blocks in G, Gy, Gy, Gy Gy and G

Table 6.3: Statistical comparison of camera pan (¢, and ag) and zoom (a; and a;) factors in
relation to the different numbers of macroblocks considered.

6.5.2 Performance Analysis of the DTS and MAT Filter
6.5.2.1 Analysis of the Kernel Effect in the MAT Filter

Kernel size, representing the size of the neighbourhood to be considered for caiculating the
mean value, is an important factor in the performance of the MAT filter. Before analysing the
performance of the DTS algorithm with the MAT filter, it is important to analyse the kernel size
effect. The standard Table Tennis (352x240 pixels) and Foreman (176x144 pixels) video
sequences were considered in relation to this effect, with different kernel sizes being utilised.
Different numbers of iterations were also considered as the performance of the MAT filter
depends on this factor. _

For the Table Tennis sequence, frames #32 and #33 shown in Fig. 6.8, were considered
where the bat, ball, and the hand of the player holding the bat are the moving objects. Based on
a priori knowledge about the moving objects in these frames, 30 moving macroblocks out of a

total of 330, each having a size of 16x16 pixels, are identified manually and indicated with the
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use of an X sign in Fig. 6.8(a). The motion vectors (MV) of these specific 30 macroblocks are
the frue vectors, whereas the motion vectors of the remaining blocks are the false one.

The block motion vector calculated by the DTS algorithm is shown in Fig. 6.9, which
contains frue object motion as well as global motion. To obtain the #7ue object motion vector,
these global motion components have been compensated according to the global motion
estimation and compensation processes discussed in Sections 6.3 and 6.4, Fig. 6.10 shows the
global motion compensated motion vector needle diagram, from which it is clear that while the
only moving objects are the ball, bat and the hand holding the bat, spurious (false) motion
vectors exist together with the frue object motion vectors. These false vectors were introduced
as a result of the inherent limitations of block-based motion estimation techniques. Some
impulsive noise in the form of false motion vectors was also introduced due to imperfect global
motion parameter rriodeling. To eliminate these spurious motion vectors, the MAT filter with

different kernel sizes was applied.
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(a) Current frame. . (b) Reference frame,

Fig. 6.8: Frames #32 and #33 of the Table Tennis sequence.

Fig. 6.9: Block motion vector captured by the DTS algorithm.
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Fig. 6.10: Object motion vectors after globai inotion compensation.

Tables 6.4 and 6.5 show the experimental results for the Table Tennis and Foreman video
sequences using different kernel sizes (3x3, 5x5, 7x7, and 9%9) and different numbers of
iterations (2, 3, and 4). The objective in using the filter is to capture the maximum percentage of
possible #ue motion vectors with a minimum percentage of false vectors. To remove the false
motion vectors after each iteration, a range of values for T}, starting from an empirically selected
low value, is gradually increased until all the fa/se motion vectors are removed. The length of a
motion vector increases with the number of iterations, so when the length of a motion vector is
high, the range for the threshold, 7} in eliminating faise vectors, is also correspondingly high.
The step size for incrementing Ty was empirically selected. The percentage of frue and faise

motion vectors after thresholding at different values of 7, was then calculated.

Kernel
ize 3x3 5%5 <7 9%9
No. of
iterations True | False True | False True | False
MV MV I; MV MV T MV MV T
% % % % % %
2 70.0 1.0 5.5 53.3 0.3 5.5 50 0.7 5.0
66,7 0.0 6.0 40.0 0.9 6.0 40 0.0 3.5
3 76.7 1.3 1.5 70.0 0.3 4.0 63.3 0.7 | 35
005711301 70,0 0.0 8.0 53.3 0.0 - 4.5 43.3 0.0 4.0
4 . 0.7 18.0 § 733 0.3 16.0 36.7 0.0 12.0 56.7 0.7 9.0
0.0 | 2007 500 0.0 17.0 26.7 0.0 13.0 40,0 0.0 10.0

Table 6.4: Kernel effect on the performance of the MAT filter for the Table Tennis sequence.

Table 6.4 shows the two best pairs of results having a maximum percentage of frue object
motion vectors, and minimum percentage of false motion vectors (0%, or near 0%) for the
Table Tennis sequence. For example, for a 3x3 kernel with 3 iterations where T, = 12, the
percentage of true object motion vectors was 70% whereas the percentage for false motion

vectors was 0.3%. To eliminate the remaining false motion vectors, a higher value, T, = 13, was
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applied. Accordingly, the percentage of false motion vectors decreased to 0% while the
percentage of true vectors also decreased to 63.3%. It is obvious from (6.26) that the higher the
value of 7; the higher the number of vectors will be eliminated. If a value of 7; < 12 was
applied, the percentage of remaining false motion vectors would be 2 0.3%. Following the same
procedure, the test results using different kernel sizes and iterations are shown in Table 6.4 for
the Table Tennis sequence.

For the Foreman sequence, the pair of frames #8 and #9 shown in Fig. 6.11, were
considered, as these contain both object motion and low camera panning. The corresponding

experimental results are given in Table 6.5,

(a) Current Frame. (b) Reference frame.

Fig. 6.11: Frames #8 and #9 of the Foreman sequence.

Kernet
size 3x3 5%5 %7 9%9
No. of True | False True | False True | False True | False
iteration MV MV T; MV MV T, MV MV I MV MV Yy
% % % % % % Y %
2 435 1.9 3.6 283 1.9 3.5 28.3 5.7 3.0 15.2 1.9 3.0
39.1 0.0 1.8 23.9 0.0 4.0 13.0 0.0 35 10.9 0.0 3.5
3 7.7 1.9 4.8 76.1 5.7 4.0 73.9 3.8 3.5 41.3 1.9 3.5
69.6 0.0 3.0 652 0.0 4.5 56.5 0.0 4.0 19.6 0.0 4.0
4 78.3 1.9 1.6 76.1 1.9 1.5 84.8 8.7 5.5 80.4 1.9 2.5
76.1 0.0 7.8 1 674 ] 0.0 | 80 | 739 | 0.0 6.0 63.0 0.0 | 3.0

Table 6.5: Kernel effect on the performance of the MAT filter for the Foreman sequence.

Tables 6.4 and 6.5 show that though the kernel effect was not significant, the number of
true motion vectors captured with a kernel size of 77 or 9x9 was less than when compared to
that for smaller kernel sizes (3x3 or 5x5). Generally, higher kernel sizes are used for heavier
smoothing of images or motion vector fields; the purpose of this filter, however, was not for
smoothing the motion vectors. Most objects in real world video sequences occur in small

clustered forms, where each object contains a few neighbouring macroblocks but not the whole
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frame. If a larger sized kernel is used, it includes a larger area of the frame, which will
eventually reduce the lengths of the frue vectors. In this case, in eliminating the false vectors,
any value of threshold 7y will remove a higher number of true object motion vectors as well. For
this reason, larger kemel sizes perform worse compared to smaller-sized kernels. Again from
(6.25), it can be seen that the computational complexity for calculating the mean value is
directly proportional to the kernel size utilised, so from a computational point of view, the
smaller kernel incurs less computational cost compared to a larger kemel. For these reasons, the
3x3 sized kernel will be considered in the next section for analysis of the performance of the

MAT filter and the DTS algorithm in terms of true object motion estimation.

6.5.2.2 Analysis of MAT filter and DTS for True Object Motion Estimation

To evaluate the combined performance of the MAT filier and DTS algorithm for frue object
motion estimation, a number of experiments were performed using the standard and non-
standard video sequences, Table Tennis, Foreman, and Rocket (Appendix B), each of which
exhibits different types of object motion. The value of linear threshold control parameter, C;, in
the DTS algorithm has been chosen such that the search speed remains similar, while comparing
DTS with the fast algorithms, TSS and NTSS.

The experimental results for the pair of frames #32 and #33 in Fig. 6.8 of the Table Tennis
sequence are given in Table 6.6, and were obtained utilising the same procedure explained in
the previous section. Detailed supplementary results have also been included in Appendix F. To
analyse the effect of the MAT filter, the experimental results from 0 to S iterations are shown in
Table 6.6. It is important to clarify that the number of iterations used is not optimal, but based
on the experimental results, it was found that the performance of all BMAs examined did not
change significantly after four iterations. Thé increased percentage of frue motion vectors
captured for FS, NTSS, TSS, and DTS was 10%, 6.7%, 13.3%, and 17%, respectively, from
iteration 3 to 4, whereas it was only 6.3%, 3.3%, 6.7%, and 0% from iteration 4 to 5. For this
reason, only those results from 0 to 5 iterations have been included.

Table 6.6 shows that at iteration 0 (no MAT filter used), all the algorithms had 0% false
motion vectors. However, NTSS and TSS had 0% of true motion vectors compared with the FS
and DTS algorithms which had 13.3% of frue motion vectors. This confirms that the DTS
algorithm outperforms TSS and NTSS and performs as well as the FS algorithm in capturing
{rue object motion vectors, without needing to use the MAT filter for this sequence.

It is clear that the percentage of frue motion vectors captured by any BMA significantly
increases with the number of iterations to the point at which the percentage of false motion

vectors is zero. For example, the rue motion vectors captured by the DTS algorithm increased
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from 13.3% to 80% using the MAT filter over 5 iterations. This improvement can also be
observed visually in Fig. 6.12. A similar trend was also found for the NTSS, TSS, and FTS
algorithms. This demonstrates that when the MAT filter is used, the percentage of frue object
motion vectors captured significantly increases, while all false motion vectors are eliminated

from the motion vector field.

EMAs FS NTSS TSS DTS
. tNr;.Of True | False True | False True | False True | False
eraonS | My F MV | 7, | MV | MV { T, | MV | MV | T, | MV | MV T
% % % % % % % %
0 167 03 | 50 ] 67 [ 07 | 80 ] 33 | 143 | 80 | 167 [ 03 5.0 ~

NoMAT) |+13.301:00,0:5] 6.0 1500k 0.05d 9.0 [5:0.000:20.0:] 9.0 [:513.3 100,08 6,0
13.3 0.3 8.0 16.7 0.3 9.¢ | 10.0 5.7 9.0 | 46.7 1.7 5.0

: 13.3 0.0 9.0 13.3 0.0 (100 ] 67 33 | 100 134000 0.0 6.0
2 26.7 03 120 | 23.3 03 126 | 133 1 63 | 13.0 | 56.7 0.3 8.0
16.7 [ 0.0 13.0 | 167 0.0 (113.0f 100 | 3.7 |} 140|467 0.0 9.0

3 267 {03 9.0 | 56.7 0.7 1150 [ 167 | 4.7 §21.0] 70.0 0.3 12.0
.. 26,11 0.0 19.5 [450.0%] 0.0 | 165 11007 1.7 |225 [+63.37] 0.0 13.0

4 40.0 0.3 23.5 | 600 | 03 124.0 | 26.7 1.3 | 420 ] 80.¢ 1.3 18.0
~36.7: 0.0 ]| 240 1567 0.0 | 26.0 15233 0.7 | 440 |180:0::| 0.0 20.0

5 433 | 03 | 600 ) 66.7 | 03 {420} 367 | 1.0 | 640 | 80.0 0.7 37.5

4331 00 | 620 1:60.0:] 0.0 _|45.0 |+30.0:] 0.7 |650]80.01 00 | 40.0

Table 6.6: Performance comparison of the DTS and MAT filters in capturing #rue object motion
vectors for the Table Tennis sequence.

(d) 3 iterations (e) 4 iterations (f) 5 iterations

Fig. 6.12: The true object motion vectors captured by the DTS algorithm with, and without, the
MAT filter.
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The maximum percentage of frue motion vectors captured by all BMAs using the MAT
filter over 5 iterations is shown in Fig. 6.13. It can be concluded that the DTS algorithm in
conjunction with the MAT filter significantly outperformed the FS, TSS, and NTSS algorithms
by capturing 36.7%, 50%, and 20% more frue motion vectors respectively, with all false motion
vectors being eliminated. It can also be concluded that the MAT filter improved not only the
performance of the DTS algorittin, but also the performance of the FS, TSS, and NTSS

algorithms by capturing 30.3%, 30%, and 60% more frue motion vectors, respectively.

vectors captured

True objcet motion

FS DTS TSS NTSS
BMAs

Fig. 6.13: Maximum percentage of #rue object motion captured by different BMAs in
conjunction with the MAT filter for the Table Ternis sequence, over a maximum of
5 iterations.

The next experiment was conducted by considering the pair of frames, #8 and #9, of the
Foreman sequence in Fig. 6.11. The experimental results are given in Table 6.7. Detailed
supplementary results have aiso been included in Appendix F. To analyse the effect of the
MAT filter, the experimental results, from 0 to 5 iterations, are given in Table 6.7. Again the
improved percentage of frue motion vectors captured for the FS, NTSS, TSS, and DTS
algorithms was 41.3%, 19.6%, 6.5%, and 8.7%, respectively, from iteration 3 to 4, whereas it
was only 3.1%, 2.2%, 34.8%, and 2.1% from iteration 4 to 5, so only results pertaining to 0 to 5
iterations are included.

Table 6.7 also shows that by using any threshold value without the MAT filter, no algorithm
could eliminate the false motion vectors without also eliminating the frue motion vectors.

The percentage of frue motion vectors captured is sigﬁiﬁcantly increased when the MAT
filter is combined with a BMA. For example, the frue motion vectors captured by the FS
algorithm increased from 0% to 77% using the MAT filter over § iterations. A similar trend was
found for the NTSS, TSS, and DTS algorithms. These results, again, endorse the effectiveness

of the MAT fiiter in eliminating fa/se vectors while retaining the #rue object motion vectors,
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BMAs FS NTSS TSS DTS
. tNO;.Of True | False True | False True | False True | False
NerallohS | mv [ Mv | o, [ Mv [ Mv | 1 [ MV [ MV | 1 [ Mv My | T
% % % % %o % % %
0 4.6 132 | 3.0 2.2 1.% 6.0 2.2 3.8 56 4.3 38 2.6

(NoMAT) 0.0 3328 [0,0- g Jive 2ol w00 s 3.8 5.8 0 i1 90n) 286
44 | 113 140§ 22 | 19 | 70 | 22 | 38 | 56 [ 130 ]| 19 | 3.0

! 0.0 { N3 V42 ) 22 J oo 1 72 7T 0.0 | 3.8 [ 58 {109 ] 00 | 3.2
5 44 ) 19 |74 1 13.0 ] 19 | 70 | 22 1.9 86 [ 4351 19 | 3.6
00 { 19 [ 76 1109 ] 00 | 722 | 0.0 19 | 88 [391] 00 | 3.8

3 37.0 { 19 | 100} 587 | 19 | 85 | 22 | 19 | 150 [ 71.7 | 19 } 48
232657 00 | 10.2 1256540 0.0 [ 88 [40.0°] 1.9 | 155 {#69.6 0.0 | 5.0

4 739 1 19 |105] 783 | t9 | 96 [ 13.0] 19 [ 250 [ 783 | 19 | 7.6
7391 0.0 | 11.0 f576:05 00 | 99 [6.5:+] 0.0 | 260 1°783:] 00 [ 7.8

5 761 | 1.9 [17.5] 804 | 1.89 [ 160 | 435 ]| 1.9 [ 330 | 204 | 19 | 13.0

2770} 0.0 | 18.0 .'{83 1 000 | 165 |741:3% 0.0 | 345 lisods| oo | 132

Table 6.7: Performance comparison of the DTS and MAT filter in capturing the frue object
motion vectors for the Foreman video sequence.

The maximum percentage of frue motion vectors captured by the different BMAs in
conjunction with the MAT filter over S iterations, is shown in Fig, 6.14. It demonstrates that the
DTS algorithm with the MAT filter outperformed the FS, TSS, and NTSS algorithms by
capturing 3.4%, 39.1%, and 2.1% more frue motion vectors, respectively, with all false motion
vectors being eliminated. Hence the MAT filter improved not only the performance of the DTS
algorithm but also the performance of the FS, TSS, and NTSS algorithms in capturing an

improved number of frue motion vectors,

True object motion
vectors captured

BMAs

Fig. 6.14: Maximum percentage of frue object motion captured by different BMAs in
conjunction with the MAT filter for the Foreman sequence, over a maximum of 5
iterations.
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In the above results, it is important to note that the use of any threshold value, without the
MAT filter, could not eliminate all the false motion veciors even when all the true motion
vectors were eliminated, The use of MAT filter, on the other hand, successfully removed all the
false motion vectors, even when there were almost 80% #rue object motion vectors present. This
result clearly supports the rationale behind the MAT filter design, being specifically, the
removal of false motion vectors.

A third experiment was conducted involving the pair of frames #1 and #2 (Appendix F)
from: a non-standard video sequence, Rocket, to evaluate the performance of the DTS algorithm
with the MAT filter for a high motion sequence. The experimental results are given in Table
6.8, this time however, for only 0 to 3 iterations. The number of iterations was based on
experimental results where it was shown that the performance of most BMAs did not change
significantly after two iterations. Detailed supplementary results have also been included in
Appendix F.

Table 6.8 illustrates that the performance of the DTS algorithm in capturing true object
motion vectors, without the use of the MAT filter (0 iteration), was almost 80% higher than the
FS, NTSS, and TSS algorithms, indicating that the DTS aigorithm outperformed other existing
BMAs. It can also be observed that the capture of #rue motion vectors by FS, NTSS, DTS, and
TSS was significantly increased when using the MAT filter to eliminate false motion vectors.
Tho:.igh the DTS algorithm captured 80% of frue object motion vectors, without using the MAT

filter, a further 8% improvement was ouizined when the MAT filter was included for just 1

e
Ty

iteration,
BMA
S FS NTSS TSS DTS
itg:i'Of True | False True | False True | Faise Tre | False
ons f mv [ MV | T [ MV MV | T, | MV MV | T, MV | MV T
% % % % % % % %
0 39 | 46 | 9.0 1385 ) 23 [ 90| 39 ] 23 | 90 ] 346 | 5.1 | 3.3

o | e

(No MAT) 0.0 23 195 1 000 2.3 9.5 0.0 2.3 95 §:80.8°] 0.0 | 40

1 46.2 23 12541 154 2.3 125 | 154 { 23 8.5 92.3 2.3 5.0

30.8 00 |13.04{ 39 0.0 13.0 | 7.7 0.0 %0 1-885: 0.0 | 55

2 5.7 23 12051 346 2.3 18.0 | 423 | 23 150 1 73.1 23 1105

51.7 0.0 | 2101 346 0.0 185 | 346 | 0.0 | 155 } 73.1 0.0 f11.0

5.7 23 1360 423 2.3 33.0 | 385 1 23 | 360 | 73.1 23 | 215

3 il 0.0 1370 1534671 00 | 340 3465 00 | 370 1 73 | 00 | 220

Table 6.8: Performance comparison of the DTS and MAT filter in capturing ¢rue object motion
vectors for the Rocket sequence.

The percentage of true motion vectors captured by the DTS algorithm decreased, however,

during the second and third iterations. This is because each iteration of the MAT filier increases




Chapter 6 Block-based True Object Motion Estimation 149

the length of clustered frue vectors at a higher rate than other vectors. Thus, each iteration
improves the probability of its being able to separaie the frue from the false vectors when a
suitable value of 7, is chosen. However, each iteration of the MAT filter also increases the
length of false motion vectors in the vicinity of clustered #ue vectors at a comparable rate to the
true vectors. This phenomenon leads to a decrease in the possibility of vector separation, and
after a certain number of iterations, this decrease dominates the normal ircrease achieved in
each iteration. Table 6.8 illustrates that the performance of any BMA was almost the same over
2 and 3 iterations, which implies that a higher number of iterations does not always improve the
percentage of true motion vectors captured.

The highest percentage of frue motion vectors captured by different search algorithms over
3 iterations is shown in Fig. 6.15. It demonstrates that the DTS algorithm in conjunction with
the MAT filter significantly outperformed the FS, TSS, and NTSS algorithms by capturing
30%, 50%, and 50% more frue motion vectors, respectively. It 2lso indicates that the FS, TSS,
and NTSS algorithms, with the MAT filter, subsequently improved their performance by

capturing almost 60%, 23%, and 23% more true object motion vectors, respectively.

True object motion vectors

FS DTS TSS NTSS
BMAs

Fig. 6.15;: Maximum percentage of #rue- object motion captured by different BMAs in
conjunction with the MAT filter for the Rocket sequence, over a maximuin of 3
iterations.

Finally, the average maximum percentage of #rue motion vectors captured by the FS, DTS,
NTSS, and TSS algorithms for Table Tennis, Foreman, and Rocket sequences has beeri plotted
in Fig. 6.16. This clearly demonstrates that the performance of the DTS algorithm, used with the
MAT filter, to capture frue object motion vectors was considerably better than that of the FS,
TSS, and NTSS algorithms. It is interesting to note that though the FS algorithm is the optimum
algoriﬂ;m for prediction image quality (Chapters 3, 4, and 5), its performance is not so

satisfactory for capturing srue object motion.
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Average true object motion
vectors captured

FS DTS TSS NTSS
BMAs

Fig. 6.16: Average percentage of frue motion vectors captured by different BMAs for the Table
Tennis, Foreman, and Rocket video sequences over a maximum of 5 iterations.

6.5.3 Computational Complexity Analysis

The computational complexity of the MAT filter depends on the kernel size used and the
number of iterations involved. From (6.25), the total number of operations required for the
MAT filter is 23 additions and two divisions for each iteration, where R represents the kernel
size. If the frame rate = 30 fps, framesize=[N,,N,], macroblocksize=[N,N], and the

number of iterations is L, then the total number of operations per second required for the MAT

filter is:

N, XN,
2R+ l)xLx[——{'&T—Jx f 6.27)
Assume that the block distortion is measured using MAE, which requires three basic

operations per pixel. If the frame rate is = 30, frame size is {N,,N,]1=[352,240], maximum

displacement d = 7, and macroblock dimension N = 16, the number of integer arithmetic
operations required for any BMA for motion estimation is bounded between 1.71 billion and 7.6
million per second using integer-pel accuracy (2.7).

Conversely, if a 3x3 sized kernel and, at most, 5 iterations are utilised, the total number of
operations for the MAT filter is only 0.7 million per second. This overhead is not significant
compared to the complexity involved in block motion estimation. These experimental results
also prove that this overhead cost can be fully justified by the improvement in capturing a
signiﬁ‘cant number of frue motion vectors by elimination of fulse motion vectors from the

motion vector field.

s
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6.6 Summary

In this chapter, the superior performance of the DTS algorithm in capturing #rue object motion
vectors compared to existing BMAs such as the exhaustive FS, and fast NTSS and TSS
algorithms, has been proven, so confirming the argument made in Chapter 3 regarding the
potential of the DTS algorithm.

A novel Mean Accumidated Thresholded (MAT) filter has been proposed and implemented
for eliminating false motion vectors when capturing frue object motion vectors obtained using
any BMA for a video sequence. The effect of different kernel sizes and iterations of the MAT
filter has also been analysed in detail, with smaller kernel sizes such as 3x3, or 5x5, not only
exhibiting better performance than higher sized kernels, but also reducing the overhead cost for
the filtering process. The experimental results have shown that for fewer than § iterations, it is
possible to successfully eliminate all false vectors while retaining almost 80% of the true
motion vectors captured by the DTS algorithm.

Experimental results clearly prove that although the DTS algorithm has outperformed other
existing BMAs without the use of the MAT filter, the percentage of retained #rue object motion
vectors while eliminating all false motion vectors, significantly increased with the use of the
MAT filter. Nevertheless, although the performance of the DTS algorithm with the MAT filter
has proven to be an effective and useful tool in true object motion estimation, some issues still
need to be addressed in order to derive the full benefits of the MAT filter. This will constitute a
potential future research direction.

This chapter also proposed a Modified Ilterative-Least-square Estimation (MILSE)
technique to calculate globa/ motion parameters. The proposed technique is fiexible enough for
use with any number of blocks in a frame. Since in general, camera rotation is comparatively
much less frequent than zooming or panning, it has not been considered in calculating global
motion parameters. Experimental results show that the proposed MILSE technique has a similar
performance compared to the traditional ILSE technique [130] while reducing computational

cost involved in camera parameter estimation.




Chapter 7

Conclusions and Future Work

7.1 Conclusions

Block-based motion estimation represents one of the most powerful compressio.. strategies in
video coding. Among the different techniques, the best from a picture quality point of view is
the full search (FS) algorithm, which guarantees optimal image quality, but at a very high
computational cost. To reduce the computational complexity, a number of fast directiohally—-
based BMAs have been developed. The fundamental drawback with existing BMAs such as
TSS and NTSS, however, is that these algorithms do not provide any mechanism to support
Quality of Service (QoS) in terms of either prediction quality or computational speed. This is a
key issue in real-time video coding applications, especially for low bit-rate applications such as
video over mobile and real-time software-only video encoding. Another drawback is that they
have been designed solely for video coding where prediction error minimisation is the only
criterion, irrespective of whether the motion vector indicates the direction of the #ue moving
objects involved or not.

This thesis has directly addressed the above issues by presenting a flexible, generic, non-
directional block-based motion estimation system that guarantees the achievement of a user-
specified level of either prediction quality or computational speed for video coding applications.
This system has also been proven to be very effective in capturing significantly more frue object
motion vectors than other approaches for object motion based video analysis applications. The
system comprises the following constituent components: -

A new Distance-dependent Thresholding Search (DTS) block-based motion estimation
algorithm, which has the advantage over other BMAs that it encompasses both the FS as well as
fast searching modes. This unique feature provides a wide range of levels for performance
scalability in motion estimation and QoS in terms of both predicted image quality and
processing speed. This system also provides a general solution from high through very low bit-
rate coding applications while the non-directional nature of the system means it does not suffer

from any potential difficulties due to the unimodal error surface assumption.
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The DTS algorithm, using a linear thresholding function, proved to be most effective in
terms of flexibility and outperformed existing fast algorithms from a prediction image quality
and search speed perspective for low motion video sequences.

Two limitations of the DTS algorithm however, were identified: its limited search
efficiency for high motion video sequences and the need to manually define the threshold
control parameter. To solve these issues, the Adaptive-Centre DTS (ACDTS) and Adaptive-
Centre Diamond Search DTS (ACDSDTS) algorithms were developed. The ACDTS algorithm
integrated spatial motion correlation of the neighbouring biocks® motion vectors with the DTS
algorithm to improve the search efficiency by reducing the processing time while providing
better prediction quality.

Implementing a diamond shaped instead of a gencral rectangular search pattern further
enhanced the performance of the ACDTS algorithm. The subsequent Adaprive-Centre Diamond
Search DIS (ACDSDTS) outperformed existing fast algorithms for all types of motion
sequence, by being able to flexibly trade-off quality with computational complexity. The
additional overhead cost incurred in the ACDSDTS algorithm was shown to be negligibly small
compared to that required for the BDM calculation for motion estimation.

While the ACDSDTS algorithm enhanced the search efficiency of the DTS algorithm, to
provide QoS, the threshold control parameter needed to be automatically set and adjusted
depending on the video content and user demands. This was achieved in the Fully Adaptive
Distance-dependent Thresholding Search (FADTS) block motion estimation algorithm which
satisfied any level of user demand in terms of prediction image quality as well as processing
speed. This system feature clearly provided flexibility in performance management in motion
estimation, which is the crucial issue in real-time software-only or low power video coding
applications. This system also had superior performance in terms of both prediction image
quality and search speed compared to existing fast algorithms. The computational overhead cost
associated with adapting process proved to be negligible compared to the computational cost
involved in the BDM calculation, As shot changes in a video sequence are used as reference
frames for the adaptation process, the choice of the imitial value of the threshold control
parameter impacted significantly on performance. To incorporate a shot change in the FADTS
algorithm, an integrated shot detection (camera break) technique, based on an artificial neural
network (ANN) has also been presented for non-real-time video coding, while for real-time
processing, the FADTS algorithm employed an inexpensive strategy of detecting abrupt
changes in the BDM to approximate possible shot changes.

Finaily, the thesis explored extending the basic DTS algorithm into the burgeoning area of

frue object motion estimation. In the presence of camera motion, global motion compensation
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was successfully applied to eliminate any effect of this motion from the true object’s motion. A
Modified Ilterative Least-Square Estimation (MILSE) technique was implemented which
reduced the computational cost for global motion estimation compared with the conventional
{terative Least-Square Estimation (ILSE) technique, The DTS algorithm, then in combination
with a novel Mean Accumulated Thresholded (MAT) filter, provided a very powerful tool for
block-based frue object motion estimation, and significantly outperformed existing BMAs. The
MAT filter design was also shown to be both very flexible and general enough that it could be
combined with other BMASs to enhance their respective performances as well, in capturing more
true object motion vectors.

In summary, this thesis has presented a generic distance-dependent thresholding block-
based motion estimation system which has proved not only effective in providing performance
scalability and QoS in motion estimation for video coding applications, but also for #rue object

motion estimation in object motion based video representation.

7.2 Future Work

There are a number of potential areas where the research findings can be extended: -

1. Rate-complexity-distortion [59] of the encoding process is a challenging and relatively
. recent research direction for real-time video coding applications, especially for
software-only or low power video encoding (mobile or handheld computing platforms).
The performance of the video CODEC in these applications is often limited by
available processing power and bandwidth. As motion estimation is the most costly part
of an encoder, it requires variable complexity motion estimation. Therefore, an
important extension of this work would be to implement the flexible FADTS algorithm

to optimise the three parameters for coding applications.

2. The performance of the DTS algorithm depends on predefined threshold values, which
have been controlled by a control parameter. For this threshold so far, the linear and
exponential functions have been considered, though this threshold function can be any
other complex form. Possible future research work could include investigating the
impact of other complex functions on the performance of the DTS algorithm.

3. The effectiveness of the MAT filter in false motion vector elimination in improving the
performance of the DTS algorithm in capturing #rue object motion has opened a
potential new research direction in biock-based true object motion estimation. Future
research could extend to optimising the performance of the MAT filter by analysing the
impact of video content on different design parameters. This area also includes the

implementation of this filter for motion field smoothing purposes.
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DISTANCE DEPENDENT THRESHOLDING SEARCH FOR FAST MOTION ESTIMATION
IN REAL WORLD VIDEO CODING APPLICATION

Golam Sorwar, Manzur Murshed and Laurence Dooley
Gippstand School of Computing and Information Technology

Monash Universii, Churchill Vic 3842, Australia

ABSTRACT

This paper presents a distance dependent thresholding
search (DTS) block motion estimation algorithm that
employs the novel concept i distance dependent
thresholds. The key feature of this algorithm is its
flexibility with trading-off quality and complexity with
threshold variaiion. Where as the performance of the
existing algorithms is fixed in terms of prediction quality
as wel} as compl xity, DTS can be used as full search (FS)
where high quality video entertainments require motion
estimation with small prediction error, as well as fast
motion estimation such as three-step search (TSS), new-
three-step search (NTSS) eic while real-time video
applications, such as the speed-oriented video
conferencing require fast motion estimation with
sacrificing quality. Experithental results show that this
dissince dependent thresholding search (DTS} algorithm
also achieves better peak signal-to-noise ratio (PSNR), as
well 2s lowerse arch times in comparison to both the TSS
and NTSS algorithms. ' :

I. INTRODUCTION

Motion estimation in image sequences has been a key
clement in a wide range of applications from computer
vision through to popular video compression standards
such as MPEG (Motion Picture Expert Group).

There are many motion estimation algorithms available
including pel-recursive [3], block matching [4], and the
optical flow based method, [5]. Amongst these techniques,
the block-matching algorithm (BMA) is the most popular
and is widely used in video coding standards such as
MPEG-12 [1){2] and H.261/263 [7](8] due to its
simplicity and also the superior performance {6] it exhibits
for large pixel block displacements.

The exhaustive BMA, known as the full search (FS)
algorithm, searches each candidate block for the closest
match within the entire search region to minimize the
block-distortion measure (BDM). The BDM of image
blocks may be measured using various criteria such as, the
meant absolute error (MAE), the mean square error
(MSE), and the matching pel-count (MPC) [18). Since FS
method uses an exhaustive search to locate the minimum

0-7803-7690-0/02/517.00 ©2002 IEEE

BDM for each candidate block, it provides pgood
performance, but at the expense of a very high
computational overhead. Motion estimation indeed is the
major bottleneck in real-time video coding applications;
hence the need for faster algorithms is obviously felt.

A number of efficient fast block motion estimation
algorithms have been proposed. In particular, three
categories of algorithms have been identified, which are
characterised by the strategy adopted in order to speed up
the search process. These are (i) limiting the number of
search candidates, (ii) subsampling in them otion vector
field, and (iii} subsampling in the spatial domain. The first
class of fast aigorithm includes the 2-D logarithmic search
(2DLCG) {4), the three-step search (TSS) [9], the new
three-step search (NTSS) [10), the four-step search (FSS)
[11], the cross-search [12]), and the prediction search
algorithm {13] etc. All the aforementioned fast algorithms
have been based upon the assumption that the BDM
increases as the checking points move away from the
global minima. However, these assumptions are reasonable
for certain applications e.g., in video-conferencing, where
the motion is neither very fast nor complicated. However,
they are generally invalid for many real video sequences
because of the highly nun-stationary characteristics of the
video signal. Moreover, the search directions of these
algorithms can be ambiguaous, leading to the MV becoming
entrapped in a local minimum, with a resulting degradation
in predictive performarce.

An example of the second class of fast algorithms is the
2:1 motion field subsampling technique [14). This
technique is rarely used in isolation and is normally
integrated together with other methods because it only
gives a small speed-up ratio. Another probiem is that the
approach does not perform well for blocks containing
small objects moving in different directions to
neighbouring objects. '

The third class refers to subsampling in the spatiat
domain [14]{15). A drawback of this approach however is
that the reduction in search complexity is often inadeguate
for real-time application and is therefore diflicult 10 embed
within algorithms such as the TSS and N7 8S.

In reality, the distortion of an objec! in a video iame is
proportional to its velocity and therefore, as the leagth of a
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motion vector grows so does the block difference error. In
[17)[18), the authors addressed this issue by modifying the
FS algorithm to incorporate variable distance dependent
thresholds for fast and robust true motion vector estimation
for object-based video indexing applications. In this paper,
the principles are further extended so they can be applied
in real time video coding. Compared with the TSS and
NTSS algorithms, the proposed technique is more robust,
since it visits all candidates around the centre tracing out a
concentric-square  arcangement, and hence reducing
significantly the probability of being trapped in some tocal
minima. The main strength of this algorithm is its
flexibility with trading-off quality and complexity with
threshold variation. Where as the performance of the
‘existing algorithms is fixed in terms of prediction quality
as well as complexity, DTS can be used as full search (FS)
where high quality video entertainments require motion
estimation with small prediction error, as well as fast
motion estimation such as three-step search (TSS), new-
three-step search (NTSS) etc while real-time video
applications, such as the speed-oriented video
conferencing require fast motion estimation with
sacrificing quality. Experimental results show that this
distonce dependent thresholding search (DTS) algorithm
also achisves better peak signal-to-noise ratio (PSNR), as
well a3 lowerse arch times in comparison to both the TSS
and NTSS alzorithms.

The papsr is organized as follows. The DTS algorithm
is detailed in Section 2. Section 3 includes experimental
results and analysis of the performance of the DTS
algorithm, compared with other algorithms, Section 4
concludes the paper.
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2. THE DISTANCE DEPENDENT THRESHOLDING
SEARCH (DTS) ALGORITHM

In the FS algorithm, the suitability of & matching block is
measured based on the optimal (minimum)B DM. The FS
algorithm works effectively when there is no distortion,
but as alluded earlier, the level of distortion present in any
video frame increases with the velocity of the moving
objects and/or the zoom factor used for the camera, The
exhaustive FS aigérithm therefore becomnes increasingly
inefficient as the search trajectory, which is spiral in nature
is traversed,

This paper proposss that the suitability measure of the
FS algorithm is relaxed from the optimal criterion as the
search trajectory moves from the centre, and becomes
distance dependent. Locating a block with the minimum

~ difference, but with a motion vector of high magnitude, is

not only ineffectual in the prevailing distorted search
space, but may lead to many “false” motion vectors being
erroneously selected,
Definition 1: Search Squares SS; The search space with
maximum displacement d, centred at pixel p..,, can be
divided into d+1 mutually exclusive concentric search
squares S8, for all 0 £ i < d, such that a checking point at
pixel p,, ise S8y if and only if max(lx-ex,[y-c)i)y=k, for all ~
d+ex Sx £ d¥ex and ~d+cy S y Sd+ey.

The checking poinis used in the first three search
syuares 855, $3;, and SS; are clearly shown in Fig. 1. From
this figure it can be easily identified that

, i=0
ISS‘I-{B:‘. i=)2,..,d M

2.1, The DTS Algorithm

+  Precondition: Pixel pe., is the centre of the search
space with maximum displacement d.
* Initialisation;
MinMSE = MSE ., ,,(0.0)
MV={0,0)
Body:
If MinMSE > 0 Then
Fori=1,2,...,d
For each checking point p,, in SS;
e = MSE oy(x-cxy~cy)
If e < MinMSE Thea
MinMSE=¢
MV = (x-cx y-cy)
If YMinMSE < Thresnold(i) Then Stop

»  Posteondition: MY coutains the moiion vector and
MinMSE contains the distortion error of the
respective block.

Fig. 2. The DTS algorithm,
Threshold(i} in the DTS algorithm is a monotonically

increasing function with respect to #, which can have a
linear, exponential, or any other complex analytic form, In




[17][18]) for example, a comparison was made on the
pecformance  of DTS algorithm wusing linear and
exponential  thresholding  functions  respectively.
Experimental results confirmed that linear function
consistently provided a better performance for a range of
different types of video sequence. This was due to the fact
that the distortion of an object in any frame tended to be
directly proportional to its velocity, as well as the zoom
factor of the camera. In the next section, we elaborate on
the linear thresholding function.

2.2. Linear threshelding (LT) function

Let the centre of thesearc h region be at pixel poo,
which also defines the starting point of the search, In LT,
the search will terminate at search square SS.when:-

JMSE( oy (x~ex,y~) C X7 @)

Assuming b-bit gray level intensity, the maximum
valueo f theMS E is (2°-1)%, since thep ixel intensity is
measured 1sing 2® levels. As SS; is the outermost search
square, an upper bound for the constant ( can be set as:-
b

e ®
Note, that setiing C; = 0 in Eq. (2) transforms the DTS
algorithm into the exhaustive FS algorithm, It is also clear
that the search time required reduces as C; increases. It is
also interesting to note that if C; is set higher than the
above upper bound, the search will not explore the entire
search area defined by the maximum displacement 4.

3. EXPERIMENTAL RESULTS

The performance of the DTS algorithm for video
coding was evaluated using the luminance (Y-component)
signal of a number of standard test video sequences
including  “Tennis”, “Flower Garden”, *Football”
“Salesman™, “Foreman”, “Carphone™ and “Mis_America”
(www-mugc.cc.monash.edu.auw/~golam/). The results for
the §0-frame “Tennis™ sequence (SIF 352*240 pixel frame
size) and “Salesman” (CIF 360*288 pixsl frame size) are
included in this paper, The “Tennis” sequence comprised
various kinds of motions, including translation, zooming,
and panning, while the “Salesman” sequence mainly
consisted of low motion that was very similar to image
sequences in low bit-rate video application such as
videophone and videoconferencing.

In the experiments, all sequences were uniformly
quaniised to an 8-bit gray level intensity. The block size
dimensions were M= N = 16 and d = 7, i.c., each frame
was civided into 16x16 pixel blocks and within each
frame, a maximum of (24+1)? = 225 checking points were
used. The MSE measure was used as the criterion for
locating the best motion vector for each block.

0-7803-7690-0/02/817.00 ©2012 tEEE

To quantitatively evaluate the video coding performance of
the DTS algorithm, the following two measures were
considered: -
i) The average peak signal-to-noise ratio (PSNR) after
picture reconstruction,
i) The average number of search points for
computational complexity.

Table I: Avg. PSNR and avg. search points per motion
vector for the “Tennis” sequences (1-80 Frames)

Tennis
BMA PSNR Scarch pointsy
[dB_h».-
FS(t7) 27.94 196.98
LT(2) 27.63 75.68
LT{4) 27.48 38.14
LT(6) 27.27 26.03
LT(8) 26.9% 20,35
LT(12) 2642 14.65
LT(20) 25.68 11.44
T58 26.14 - 2301
NTSS 26.85 20.83

Table II: Avg. PSNR and avg.se arch points per motion
vector for the “Salesman” sequences (1-80 Frames)

Tennis
BMa PSNR Starch pointiey
[dBlag_

FS(£7) 35.52 204.17
LT(2} 35.51 34.65
LT(4) 35.47 14.46
LT(6) 3543 10.37
-LT(8) 35.38 9.24
LT(10) 35.34 3.84
LT(20) 35.13 8.26
TSS 35.23 23.21
NTSS 35.39 16.96

3.1, Peak Signal-to-Noise Ratio (PSNR) Results

The performance comparison of FS, TSS, NTSS and
DTS using the LT function in terms of the average Peak
Signal-to-Noise Ratio (PSNR), is given in Table] and
Table I1. It was observed that the PSNR value for the DTS
algorithm improved by up to 0.85dB, when the number of
search points was comparable with the TSS and NTSS
aigorithms, as for example in the “Tennis” LT(8) case. At
higher search speeds, where the improvement factor was
typically between 3 and 6, the average PSNR for the DTS
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algorithm was still very close to the optimal average PSNR
value of the FS algorithm. In contrast, the performance of
the TSS and NTSS algorithms was significantly inferior,
especially in respect of the fast motion segments involved
in the “Tennis” video sequence, from frame 23 onwards.
Being a directional search algorithm, TSS tended to
convérge to one of the local minima as explained in the
introduction. The plot in Fig. 3 and 4 confirm the PSNR
performance of the DTS algorithm against the FS, TSS and
NTSS algorithms. Note for clarity, that only LT functions
for the DTS algorithm that produced a comparable number
of search points to the TSS and NTSS algorithms, have
been included.

1.2, Search points results

The performance of the FS, TSS, NTSS and DTS
algorithms in terms of the average number of search points
to estimate the motion vectors is also presented in Table I
and Table II. Again it is clear, that the DTS algorithm was
faster by a factor of at least 3, and in the “Salesman” LT
(6) case, more than 18 times, than the FS algorithm, while
the PSNR remained comparable with the TSS and NTSS
algorithms. The results also proved that by choosing a
suitable constant for the selected threshold function, the
average number of search points required by the DTS
algorithm was considerably less, while concomitantly
having a significantly higher average PSNR.

FS
— - —LT{8)
“ e ke o TSS

PSNR{dB)

10 20 30 40 50 60 70
Frame number

Fig. 3. PSNR Comparison of “Tennis™ video sequence

Itis interesting to note in Fig. 3, that during the first 23
frames of the “Tennis” sequence, which contain aimost no
tamera motion, and only some object motion, there is
considerable uniformity in the performance of all four
search algorithms. In subsequent frames (24 to 80)
however, where much faster object and camera motion is
present, the DTS algorithim performs significantly better
than the other two fast algorithms, while retaining the low
number of search points.

Fig. 5 and 7 show the estimated 80th and 5th frame of
“Tennis” and “Salesman” sequences with FS, DTS, TSS
and NTSS algorithms respectively. As FS is optimum in
terms of emor performance, Fig.6 and 8 show the
prediction error distribution of DTS, TSS and NTSS with
respect to FS algorithm. In terms of subjective image
quality, the performance of DTS was very close to the FS
algorithm and much better than both the TSS and NTSS.

38
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Fig. 4. PSNR Comparison of “Tennis” video sequence

Fig. 5 and 7 show the estimated 80tk and 5th frame of
“Tennis” and “Salesman” sequences with FS, DTS, TSS
and NTSS algorithms respectively, As FS is optimum in
terms of error performance, Fig. ¢ and 8 show the
prediction error distribution of DTS, TSS and NTSS with
respect to FS algorithm. In terms of subjective image

- quality, the performance of DTS was very close to the FS

522

algorithm and much better than both the TSS and NTSS.

The Table I and 11 clearly show the power of DTS in
terms of its flexibility by trading of quality and
complexity. It is also clear that the performance of FS, TSS
and NTSS in terms of quality (PSNR) or computational
times (avg. search point per motion vector) is fixed. On the
other hand, DTS can be used as FS (with threshold
constant 0) where high quality prediction required as well
as faster even faster than TSS, NTSS (with higher
threshold, say 10) with sacrificing quality.

4. CONCLUSIONS

This paper has presented a new distance dependent
thresholding search (DTS} algorithm for block-based
motion estimation in real-time video coding applications.
The performance of DTS has been examined and proven
that, in comparison to other popular fast algorithms such
as, the three-step-search (TSS) and new three-step search
(NTSS) algorithms, it provided comparable speed
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petformance, while retaining a distortion error similar to
the minimum value produced by the optimal the full-search
(FS) algorithm. In addition,th e DTS algorithm facilitated a
flexibility that enabled a direct trade-off between PSNR
and search speed for the entire range of threshold values.
Automatically threshold adaptation for different level of
petformances is our on going work.
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Fig. 5. Estimated image of 80" frame of the “Tennis” sequence: (a) FS; (b) DTS: LT (8); (¢} TSS; (d) NTSS algorithms.
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BEAMLET CODER: A TREE-BASED, HIERARCHICAL CONTOUR REPRESENTATION
AND CODING METHOD

Jihong Chen; Xiaonting Huo, Georgia Institute of Technology, United States

A quad-tree-based hierarchical contour representation and coding method s : Ludied. This method is based on multiscale line
segments---bearnlets, Simulations are reported to evaluate the effectiveness of such an approach. This is a proof-of-concept
study. The reported compression ratios are not the ~best", However, the idea of tree-based coding is novel; and this idea has
good potential to realize a progressive contour coding, which is important in applications such as content-based video
transmission. ~

MODIFIED FULL-SEARCH BLOCK-BASED MOTION ESTIMATION ALGORITHM WITH
DISTANCE DEPENDENT THRESHOLDS

-

Golam Sorwar; Manzur Murshed; Laurence Dooley, Monash University, Australia

A modified full-search (MFS) algorithm is presented for block-based motion estimation applications, which introduces the
novel concept of variable distance dependent thresholds. The performance of the MFS algorithm is analyzed and
quantitatively compared with both the traditional and exhaustive full-search (FS) technique, and the computationally faster,
non-exhaustive three-step-search (TSS) algorithm. Experimental resulis show that by applying an appropriate threshold
function, the MFS algorithm not only matches the speed of the TSS algorithm, but both retains a block distortion error
comparable to the global minimumn produced by the FS$ algorithm, and avoids the problem of identifying large numbers of
spurious motion vectors in the search process. :

PERCEPTUAL CODING OF DIGITAL IMAGES

Damian Tan; Hong Ren Wu, Monash University, Australia; Zheng Yu, Moltorola Research Centre, Australia

Anovel perceptual image coder of grey level images is presented. This coder is an improved version of the coder by Tan et al
with beiter optimised parameters featuring a local contrast sensitivity function, intra-frequency masking and inter-orientation
masking functions for perceptual error modelling, The architecture of the proposed coder follows that of the state-of-the-art
EBCOT by Taubman and adopted by the JPEG2000 standard as the core coding structure, The overall perceptual performance
improvement of the proposed coder is noticeable compared with the EBCOT coder with the MSE and CVIS error measures,
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FAST BLOCK-BASED TRUE MOTION ESTIMATION USING
DISTANCE DEPENDENT THRFESHOLDS (DTS)

Golam Sorwar, Manzur Murshed, and Laurence Dooley
Gippsland School of Computing and Information TechnologyMonash University. Churchill Vic 3842, Australin
fGolam.Sorwar.Manzur. Murshed Lanrence Dooley ‘@ infotech.monash.edu.an

ABSTRACT

A new fast motion estimation algorithm. called distance
dependent thresholding search (DTS). s presented for block-
based true motion estimation applications. and introduees the
nevel concepl of variable distance dependent thresholds. The
performance of the DTS algorithin is analyzed and quantitatively
compared with both the traditional and exhaustive full-search
(F$» techuique. and the computationally faster, non-exhaustive
trea-step-search (TSS) algorithm. Experimental results show
dat by applving an appropriate theeshold function. the DTS
alwotithm not onhy matehes (he speed ol the TSS algorithm, but
poth retaing a block distortion crror comparable to the global
ainimum produced by the FS algorithm, and avoids the problem
of ideniifving a large number of spurious motion vectors in the
search process.

1. INTRODUCTION

Motion estimation in image sequences has been a kev element in
a wide range of applications from computer vision through to
poputar video compression standards such as the MPEG (Motion
Pieture Expert Group) family,

Manv ditterent motion estimation algorithms have been
proposed. including pel-recursive [11][13). block-matching [3]),
and the opiical flow-based method [4](8]). The block-matching
igorithm (BMA) has proved to be very popular because of its
simplicity, robustness. and ease of implementation. It estimates
motion en a block-by-block basis and has been widely exploited
i many video coding standards including MPEG-1 and -2 as
well as H261 2683, One particularly important feature [2] of the
BALA is that it exhibits superior performance Jor larger pixel
block displacements, :

The exhaustive BMA. known as the full search (FS)
aleorithi, searches each candidate block for the closest match
within the entire search region to minimize the block-distortion
meastee (BDM), The BDM ol image blocks may be measured
using vanous criteria such as. the mean absofure error (MAE).
the mean square error (MSE). and the matching pel-counmt
(MPC).

Stnce the FS algorithm exhaustively searches for a global
minimum bloek-difference error for each candidate block, it
generally provides the lowest possible distortion error of any
BMA. The algorithm however, suffers two major drawbacks. Its
exhaustive nature means it is computationally expensive and in
addition. the algorithm tends to capture many “false™ motion
vectors even when there is no object motion within the search
region. This is due to the fact that the distortion of an object in a
video frame is direetly proportional to its velocity as well as the
700m factor of the camera and therefore. as the length of a

0-7303-7488-6/02/817.00 © 2002 1EEE.
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motion vector grows so does the black dilterence distortion eeror
Although this observation has verv little impact when the
algorithim is used tor video coding. severe artifacts can arise
when the algorithm is applied to estimate the true motion vectors,
where both object and ‘or camera motion is present,

A number of fast non-exhaustive block matehing approaches
have been proposed including the three-step search algorithun
(TSS) [6]. the new three-step search algorithn: (NTSS) {7]. the
2D-logarithmic search algorithm (2DLOG) [5). the four-step
search algoridhn (A5S) [10). and the cross-search algorithm [3)
Of these the TSS has gained popularity because of its simplicity
and eflectivensss. and has been reconunended by RMS of H.2n!
and SM3 of MPEG [10].

All the aforementioned fast algorithing are based upon the
assumpiion that the BDM increases as the checking ppints move
away from the global minima. According to [1]. however. this
assumption does not hold true for real world video sequences.
Anv directional search algorithm can, therefore. be ambiguous
and converge to one of the local minima. Morcover. none of the
above fast algorithms address the kev issue of avoiding the
capture of significant numbers of spurious motion vectors in the
search process 2],

This paper directly addresses these issues by introducing a
new distanee dependent thresholding search aigorithm (DTS).
which not only avoid picking a large number of “False”™ motion
vectors. but also simulianeously exhibits the characteristics of a
fast search and low BDM.

The paper is structured as follows. Section 2 descnbes the
new distance dependent threshold search (DTS) algorithm using
both linear and exponential thresholding tunctions. Experimental
results to verify the performance of the DTS algorithin in terms
of both its search speed and corresponding BDM error mieasure
are presented in Section 3. which also discusses,the selection of
tbe threshold Function and related parameters, as well as
explaining how the DTS algorithm avoids a large number of
spurious motion vectors in the search process. Conclusions aie
provided in Section 4.

2. THEDISTANCE DEPENEDNT THRESHOLDING
SEARCH (DTS) ALGORITHM

In the FS algoriiha, the suitability of a matching block is
measured based on the optimal (minimwn) BDM. The FS
algorithm works well when there is no distortion. but as alluded
in Scetion 1, the level of distortion present in any video frame
increases with the velocity of the moving objects and or the
zoom factor vsed for the camera. The exhaustive FS algorithm
therefore, becomes increasingly inefficient as the spiral trajectory
(scarch pattern) expands.
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This paper proposes that the suitability measure of the FS
atgorithm is relaxed from the optimal criterion as the spiral
search trajectory moves from the centre, and becomes distance
Jependent. Locating a block with the minimum difference. but
with a motion vector of high magnitude, is both inetfectual in the
prevailing distorted search space. and may also lead to many
“false™ motion vevtors being erroncously selected. In estimating
true motion. the suitability measure of the FS algorithm must be
relaxed and for the new DTS algorithm. the following two
variable distance dependent threshold Functions are apphied.

2.1. Linear Threshokling (LT)

Let the centre of the search region be at pixel pece,. which also
defines the spiral search starting point, In LT, the spiral search
will terminate at search peimw oy ep- v When:-

MAE e,y (1.v) £ Cr xmagnitude(u.v) (N

Assuming b-bit grav level intensity, the maximum value of
the MAE will be 2%-1. since the pixel intensity {s measured using
2 teveis with values 0, 1..... 2% 1, As (d.d) is the longest possible
molion vector within the search region. an upper bound may be
set for constant Cy such that :-

2b
< .
magnitude (d.d)

)

2.2 Exponential thresholding (ET)

In ET, the spiral search terminates at search point Peyeneyen
when

MAE () (vv)S2 C g xmagnitudeit. . (3)

Using a similar argument to that in section 2.1, an upper limit
can be sef for the constant Cy 3~
= b
Cp< - .
magnitude (d, )

[t is interesting to note that setting either Cp = Oor Ce = Gin
(1) or (3) respectively. it transfon - the DTS algorithm into the
original exhaustive FS algorithm. It is also clear that the search
time for the DTS algorithm decreases as the value of the constant
(Cy or Cg). used in the respective threshold function is increased,

S

3. EXPERIMENTAL RESULTS

All experiments were performed on a Pentiun 111 600 MHz
computer under Windows NT and using MATLAB 6. The FS,
15S. and DTS algorithms were used (o compute the block-based
inter-frame motion vectors from the luminance (Y-component)
signal of the first 80 frames of two standard fest video sequences
“Teonis”™ and “Flower Garden™. The “Tennis™ sequence
comprised various kinds of motions. including translation,
zeoming. and panning. while the “Flower Garden” sequence
mainly consisted of high portions of fast panning wotion. Both
sequences had the same trame size of 332x240 pixels. uniformly
quantized to an S-bit gray level intensity. In the experiments. the
block size dimensions were M = N = 16 and & = #7. i.c., each

frame was divided into 16x16 pixel biocks and within
frame. a maximum of (2d=1) = 223 checking points were us

Both linear and exponential threshold tunctions were us
assess the performance of the DTS algorithm. In the follo
results. the lnear threshold function with constam Cp is des
as LI(C:) and the exponential threshold tunetion with cor
Cgis denoted as ET{C:).

To quanutatively evaluate the performance of the
algorithm for both the LT and ET funciions. the following
specitic measures were identified:

¢ Theaverage MSE between the reconstructed and the

corresponding original frames.

+  The average number of search points,

¢ The average percentage of frue objzct motion vecio

captured. N

Table I: Average MSE and average search points pt
motion vector for “Flower Gavden™ amd “Tennis
sequences {1-80 frames).

Flower Garden Tennis

BMA MSE,,, Search Search
® POINS(a1e) MSEqwe) POINISey

FS(x7) | 27046 | 199.76 126.34 196.95
LT 270.97 135.02 127,25 75.63
LT(4) 273.80 7348 131.64 A8.14
LT{6) 28393 45.93 138.26 26.03
LT(8) 209361 33.59 147.39 20,35
LT(12) | 318.73 23.05 166.71 1.1.63
LT(16) | 353.03 18.60 183.63 12.36
ET(1) 27556 70.16 135.22 49,22
ET(2) 270.49 1535.02 126.3 120.80
ET(4) 270.47 175,65 126.35 171.16
ET(8) 27047 180.63 126.33 182.36
TSS 32288 23.22 190.81 2275

3.1, MSE Results

The performance of the DTS algorithm using both the LT am
Tunctions in terms of the average MSE between the estimatec
original framies is shown in Table 1. It can be observed 1he
DST algorithm variants compared very favourably with tiw
algorithm for boil test video sequences. even when the nu
of search points was comparable with the TSS aigorithin. a
example in the “Tennis™ LT (8) case. At higher «carch spe
where the improvement factor was typically between 3 and 3
average MSE for the DTS algorithm was still very ¢lose {w
1%0) of the optimal average MSE produced by the FS algori
In contrast, the performance of the TSS algorithm

significantly inferior, especially in respect of the motion inve
in the “Tennis™ video sequence. since being a directional se
algorithim, TSS tends to converge to one of the Jocal mimw
explained in Sectionl. In Figures I and 2 respectively. the 1
performance of the DTS algorithm against the FS and

algorithms is plotted. For the sake of elarity in plotting. only
threshold function for the DTS algorithm that used a numbe
search points comparable 1o the TSS algorithm was considere
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3.2, Search Points Results

The performance of the FS, TSS and DTS algorthms in
«wsms of the average search points to estimate motion vectors is
~eated in Table 1. Again it is clear that the various versions of
» » DTS algorithm were faster by a factor of at least 3, and in the
~mepnis” LT(16) case, it is more than 13 times laster than the FS
stzoritum while the MSE is comparable to the TSS algorithm (9
rmes taster). The results also proved that by choosing a suitable
wastant for the selected threshold function, the average search
coints required by the DTS algorithm could be considerably less,
winle concomitantly having a significantly lower average MSE.

Anather finding tront the results in Table I was that the LT
fwwclion  consistently  provided a  better  performance in
cangparison with the ET function for a wide range of ditferent
video sequences. This was due o the fact that the distorfion of an
ohjeet in anv frame was linearly proportional to its velocity as
well as the zoom factor of the camera.
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3.3, True Motion Result

The performance of the DTS algorithm was also evaluated i
terms of how eflectively it could capture true object motion. Tru
object motion vectors were calculated from the block motio
vectors by compensating lor camera motion and then filterin
noisc at various threshold levels. True motion vectors obtaine
by the DTS algorithm were then compared with the result
obtained from the newly proposed Mean Accromidated Threshol
MAT) filter [12] that captures true object motion wit
signifteantly higher accuraey, '

The performance of the MAT filter has been proven t
signilicantly increase the length of “true”™ object motion vector
compared with all other vectors, within a relatively small numbe
of iterations (as low as 2). This has been achieved by a two-stag
combination of mean {iltering and thresholding,

Comparative resulis were made against the output from th
MAT filter. by manually checking those blocks, which ha
already been identified as containing moving objects in th
frames.

800 o . . . . .
T ] - o F !
.‘?_’ 80.0 e
E=] . "
o) 7001r_: T " ,
5 800 n P
I-l—- _5, 59.0 4 ’
L] “6 N
s 40,0 At
g‘ & ) :‘.:::,:""“--., *
4 M e T i
2 300 S T
3 200 4
& 100
0-0 T ¥ L) L]

2 25 3 3.5 4
Noise Toterance Threshold

—o~FS 3 LT ~=-ET  .4-T8§ .

Figure 3. Comparison of LT. ET. FS and TSS in terms of Ul
percentage of true wotion vectors captured with difterent nois
tolerance thresholds.

80
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True object motion vector
5 ¢
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Figure 4. Average number of true object motion vector capturec
by difterent algorithms.
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The above process was applicd to six diflerent standard video
sequences and the average values are plotted in Figures 3 and 4.
tese clearly showed that the performance of the DTS algorithm,
using both the LT and ET functions in capturing the true object
motion vectors. was considerably better than that of both the FS
and TSS algorithms for all noise tolerance threshold levels
considered. The graphs also reallirmed the carlier judgment that
LT was a betier thresholding function than ET for the DTS
algorithm,

Figure 5 shows the motion vectors captured by all three
aloorithms for the contiguous pair of frames 32 and 33 from the
“Fennis™ sequence. Besides low camera motion (zoom out). the
only moving objects appearing in these frames are the ball, the
bat, and a portion of the hand holding the bat. The tigure reveals
that the FS and TSS algorithims perform far worse compared 1o
the DTS algorithm. by capturing a large number of spurious true
motion veetors. The DTS algorithm eliminates many of the laise
vectors so ensuring an overall superior performanee.

(a)FS (LT
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Frgure 3. The motion vectors obtained from al! algorithms applied
to the frame pair 32 and 33 of the "Tennis™ scquence,

4. CONCLUSIONS

This paper has presented a new fast true motion estimation
algerithm, based on the concept of variable distance dependent
thresholding. The performance of the NEW DTS algorithm was
vxamined and shown. in comparison to both the full-search (FS)
and the fast three-step-search (TSS) algorithms. that it provided
vomparable speed performance. while retaining a distortion error
similar to the minimum value produced by the FS algorithm.
Both li!war and exponential thresholding functions were applied

in the DTS algorithm, with the former consistently providing
better perforivance. The variable {hresholding feature ol the DTS
algorithm also avoided identitving large numbers of spurious

motion vectors in the search process.
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Abstract

The full-search (FS) block-inatching algorithm for block-
based motion estimation works best for video coding in
terms of minimuom block-distortion error. But in true motion
estimation the FS algorithm tends 1o capture many “faise”
motion vectors even when no object motion is present in the
search region. This is due to the fact that the distortion of an
object in a video frame is proportional to its velocity and
therefore, as the length of a motion vecior grows so does the
block- difference error. This paper introduces an improved
version ~€ the FS algorithm including disiance dependent
thresholas to avoid capturing “false™ motion vectors and
improve the efficiency of the search.

Keyword:  Block-based
dependent thresholds.

motion  estimation, Distance

1 INTRODUCTION

Motion estimation in image sequences has been a key
element in a wide range of applications from computer
vision through to popular video compression standards such
as MPEG (Motion Picture Expert Group).

Motion is primarily due to the movement of a camera,
moveroent of objects in the frame, or movement of both
camera and objects, There are many types of estimation
algorithros such as pel-recursive [12], block-inatching {6],
and optical flow based method [5]{9]. In general, the block-
matching algorithm (BMA) is popular due to its simplicity,
robustness, and ease. of implementation. This algorithm
estimates mnotion block-by-block basis, which is already
adopted by a large number of video coding standards
(MPEG-1/2 aud H.261/263 etc.).

The exsaustive block-malching algorithm, knowa as the
full search (FS) algorithm, searches each candidate block for
the closest mateh within the entire searc} region to minimize
the block-distortion measw : {BDM), ‘the algorithms have
been widely used in block :uotion cstimation for video

 coding and indexing, Since the FS algorithm exhaustively
b searches for the minimum BDM for each candidate block, it
§ gencrally provides reasonably good performance with the
§ expense of high computational time.

BLOCK-BASED TRUE MOTION ESTIMATION USING DISTANCE DEPENDENT
THRESHOLDED SEARCH

Golam Sorwar, Manzur Murshed, and Laurence Dooley
Gippsland School of Cornputing and Information Technology
Monash University, Churchill Vic 3842, Australia
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Several fast algorithms have already been proposed to
address the above issue. The three-step search algorithm
(38S) [71, the new three-step search (N3SS) [8), the four-
step search algorithm (4SS) [i1], and the cross-search
algorithm {4] arc based on the assumption that the block
distortion measure increases as the checking points move
away from the global minima. But this assumption dose not
hold true in the real world video sequences [2]. Morgover,
search directions of the above algorithms can be amblguous
and therefore, may converge to local minima, In order to
solve the direction problem, a new wmethod based on
teraporal and spatial correlation of motion vector is
presented in [10].

In true motion estimation, where object and/or camera
niotions are estimated, the FS algorithm tends to capture
many “false” motion vectors even when no object motion is
present in the search region. This is due to the fact thai the
distortion of an object in a video frame is proportional to its
velocity and therefore, as the length of a mmotion vector
grows so does the BDM. This phenomenon has been
observed in [1][3]. In spite of the above drawbacks, block-
matching algorithms show better performancea, especially
for large displacement [3]. In this pape. we address this issue
by modifying the FS algorithm to incorporate distance
dependent thresholds. This meodification not only avoids
picking a large muaber of “false” motion vectors but also
makes the search quite faster.

The remainder of this paper is organized as follows.
Section 2 describes different block-malching criteria used in
various block-based motion estimation algorithms, The
general block-based motion estimation technique, including
the FS algorithm, is discussed in Section 3. In Section 4 we
present two new algonthms developed using dynamic
thresholds in the FS algurithm. Some experimental results
are included in Section 5. Section 6 concludes the paper.

2 BLOCK MATCHING CRITERIA

Matching of image blocks can be measured using various
criteria e.g., the mean absolute error (MAE), the mean
square error (MSE), and the matching pel-count (MPC) etc.
In block-based algorithms, cach frame is divided into equal
sized rectangular blocks, of size (say) MxN, as shown in
Figure 1. Throughout this paper, pixels of a iframe are
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numbered using the Carlesian coordinate system with the
origin starting from the upper-left corner.

Let F,(k,/) denotes the intensity function of the MxN
sized block containing all the pixels p,, of frame number n,
where k € x <k+Nand ! <y </+M. So, F(kD(ij) represents
the intensity of the pixel py,is; of fraroe number n, for all 0
Ci<MandQ<j<N.

X

LY

Cumrent ffame, .~ Next frame, ntl
Figure 1: Frame-Block coordinate system.
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Among the above matching criterta, MSE require
multiplication and accumulation while the others require
comparison and accumulation. Since multiplication is
expensive compared to comparison, the MAE criterion is
most widely used and s adopted ib this paper.

3 BLOCK-BASED MOTION ESTIMATION

In 2 block-matching algorithm, the cument frame is
divided into- small rectangular blocks as explained in
Figure 1 and Figure 2. For each block of the current frarme, a
motion vector is obtained by finding a suitably matched
block within the search window of the reference frame.

1——-———-——-{2d+l+hﬂ-—-————-—o-

Search window of
refercnce frame

Block of curent
d frume

|

Figure 2: Search region of block-matching algorithms,

———e—2d+ 1+ N

3.1 Full-Search Algorithm

The most straightforward block-matching algorithm is
the full search (FS) algorithm. In selecting a suitably
matched block, the FS aigorithin searches the entire search
region for 2 block such that the BDM is the mmunurn if the
maximum displacement of 2 motion vector is *d pixels
shown in Figure 2, both in horizontal and vertical directions,
the total number of search points used to find the motion
vector for each block can be as high as (2d+1)*. If more
than one blocks produces the minimum BDM, the FS
algorithm obviously prefers the block with modon vector of
smaller magunitude. Therefore, the FS algorithm computes
block-differences in a spiral trajectory starting from the
center of the search region as shown in Figure 3.

y

e Starting point

s

Figure 3. The spiral trajectory of searching.
4 OURALGORITHMS

In the FS search, the suitability of a matching block is
measured based on optimal (minimum) block-difference
error. The distortion of an object in a video frame is
proportional to its velocity and therefore, as the length of a
motion vector grows so does thé block-difference error.
Obviously, the exbaustive search in the FS algorithm is
inefficient, especially when it fails to obtain a close match -
within a closer distance from the center of the search region.

We propose that the suitability measure of the FS
algorithm be relaxed from the optimal criterion as the
trajectory of the spiral searching moves away from the
ceater. Looking for a block with the minimum difference,
but with a motion vector of high magnitude, is not only
useless in the prevailing distorted search space, but also
erroneous as it may lead to many “false” raotion vectors.
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In estimating true motion, the suitability measure of the
FS algorithm must be relaxed and we apply the following
two threshold functions in relaxieg the measure.

Let the center of the search region be at pixel p.. o, ie.,
the spiral search starts from search point p ;-

4.1 Linear Thresholding (LT)

The spiral search terminates in scarch point peeyyeyer if
MAE (V) S C, xmagnitude(u,v). 4

The value of the MAE can be at most 255, considering
that intensity of a pixel is measured using 256 levels. As
(d,d) is the longest possible motion vector within the search
region, we can set an upper limit to the constant C; as

256

. 5
< magnitude (d,d) ©)

4.2 Exponential Thresholding (ET)

The spiral search tenininates in seacch point peeyyeyevs i
MAE g, oy i1, v) S 2€E%meBritudelit) ©

Using the same argument as used in Section 4.1, we can
set an upper limit to the constant Cg as

8
< .
magnitude (d,d)

()

It is interesting to observe that setting C; =0 or Cg=0

* would transform the above two algorithms into the original

exhaustive FS algorithm.

5 EXPERIMENTAL RESULTS

We conducted a series of experiments on a Pentium III
600 MHz computer with Windows NT operating system.
Inter-frame motion vectors were calculated based on the FS,
the LT, and the ET algorithms iraplemented in MATLAB 6.
Throughout the experiments, we used M = N=d = 16, i.e,,
each frame was divided into 16x16 pixel blocks and the size
of the search region was 49x49 pixels, where at most 33°
search points are used. All experiments were performed on
the luminance (Y-component) of the frames.

In Table | we present comparative computational times
of all the three algorithms applied on two candidate frame
pair from cach of the nine test video sequences. The last row
in Table I reveals that the LT and the ET algoritbms require
no more than 1/8% of time of the FS algorithm.

Table 1: Motion computational time comparison.

1 -_";Mohon Computaﬁonal T
R A {Seconds}‘n EARTS :ﬁ
S FS k4 -‘; ?- S LT3 | vy BTVl
Tennis 139.27 8.38 16.90
Flower 132.76 26.59 26.10
Us2] 111.25 2,30 3.52
Interview 125,62 6.12 10.84
Ballet 126.49 4.90 8.39
Bicycle 136.66 44.09 37.69
Testa 43,73 16,37 11.92
Seinfield 40.59 4,84 5,90
Foreman 38.02 5.04 6.00
" Average Time .|~ - 9938 | » 1318 1. . 141;4:
- : i ottt

In Figure 4, the MAE per pixel for cach of the three
algorithms is plotted. In all the nine cases, the performance
of our two algorithms appears to be the same as that of the
FS algorithm. It may, therefore, be concluded that by
relaxing the suitability measure of the FS algorithm, through
the introduction of thresholding, the displaced block
selection by both of our algorithms are at Jeast as good as the
selection by the FS algorithm.

£000

§ & §

MAE per h:me
3

Figure 4: Comparative prediction errors.

Figure 5 shows the luminance of the frame number 32
and 33 of the test video sequence “Tennis” where besides
low camera motion (zoom out}, the only moving objects are
the ball, the bai, and the band holding the bat. The motion
vectors obtained by all the three discussed algorithms,
applied to these frame pair, are shown in Figure 6,
Figure 6{a) clearly shows comparatively bow badly the FS
algorithm performas by capturing a large number of “false”
motion vectors.,

6 CONCLUSIGN

The full-search block-matching algorithm for block-
based motion estimation works best for video coding. But in
irue motion estimation the FS algorithm teads to capture
many “false” motion vectors even when no object motion is
present in the search region. In this paper, we have modified
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[2)

[3]

[4)

(5]

6}

the FS algorithm by introducing distance dependent linear
and exponential thresholds that have not only made the
search faster but also avoided capturing a large nuruber of
.“false” motion vectors.
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ABSTRACT

Trading-off computational complexity and quality is an
important performance constraint for real time application
of motion estimation algorithm. To address this issue, a
distance dependent threshoiding search (DTS) algorithm
has been proposed for fast and robust true motion
estimation in video coding/indexing applications. DTS
encompassed both the fidl search (FS) as well s fast
searching modes, with different threshold settings
providing various quality-of-service levels, The main
drawback of DTS was that the threshold value was
manually defined. In this paper, the DTS algorithm has
been extended to a fully adaptive distance dependent
thresholding search (FADTS), a key feature of which is
the automatic adaptation of the threshold using the desired
target and the content from the actual video sequence, to
achieve a guaranteed level of quality or processing
complexity. Experimental results confirm the performance
of the FADTS algorithm in achieving this objective with
minimal additional computational cost. )

1. INTRODUCTION

Motion estimation (ME) plays a vital role in video coding
standards, such as MPEG-1/2 [1] [2] and H.261/3 [3]}[4],
in exploiting latent temporal rtedundancy in video
sequences. Most ME techniques use block matching
algorithms (BMA) to compute motion vectors on a block-
by-block basis, The most straightforward method, known
as full search (FS), provides optimal performance by
searching all possible locations within a given search area,
but at the expense of very high computation. 1t is for this
reason that FS is not used in real-time systems. Indeed ME
15 the major bottleneck in real-time video coding
applications, hence the need for faster algorithms,

A number of fast block ME algorithims [5)-[10] have
been proposed to lower the computation complexity by
sacrificing quality. Among these, three-step search (TSS)
(6] and new three-step search (NTSS) algorithms [7)
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become more mainly due to their simplicity. However,
these motion estimation algorithms are not designed to
provide flexible and predictable contrel of performance in
terms of picture quality and computational cost (speed).
There is no facility o trade system parameters depending
upon a particular application or to preset a user-defined
level of picture quality or computational complexity. Such
a feature would be very advantageous in facilitating
scalable performance management especially in the area of
computational complexity management in real time video
encoders. . '

It has been observed that the distortion of an object ii
a video frame is proportional to its velocity as well as the
camera parameters (zoom and pan) and thus, as the length
of a motion vector grows so does the block distortion
error. Sorwar e al. [11]-{14] have addressed this issue by
introducing the concept of a distance-dependent
thresholding zearch (DTS) algorithm for fast and robust
true motion estimation in object-based video indexing and
coding applications. By varying the value of the threshold,
the DTS algorithm provides both a FS capability for
maximum quality as well as fast searching modes for ME
(faster than most traditional algorithms [12]). The main
drawbacks associated with DTS are that the threshold
value has to be manually selected and cannot be adapted to
the coutent of a particular video sequence.

This paper presents a new fully automatic adaptive
distance-dependent thresholding search (FADTS) algo-
rithm, which can dynamically adjust the threshold to
achieve any level of service required in terms of both
quality and processing speed. This means for example,
that a higher (lower) error or speed can be achieved by
automatically adapting the threshold te a correspondiugly
level, depending on video coutent so providing the
potential for performance management real time video
coding.

The paper is oiganized as follows. Section2 briefly
describes the basic distance dependent thresholding search
(DTS) algorithm, while Section 3 details the new fully
adaptive DTS (FADTS) algorithm. Section4 includes
both experimental results and analysis of the performance,




including a computational cost analysis of FADTS for
various levels of quality and speed. Section 5 presents the
conclusions,

2. DISTANCE-DEPENDENT THRESHOLDING
SEARCH (DTS) ALGORITHM INTRCDUCTION

A detailed description of DTS algorithm can be found
in [11-14], where a technique is presented to estimate the
motion vector by introducing the concept of distance-
dependent threshold search for variable performance video
encoder. This algorithm searches spirally starting from the
center of the search window and the search temminates
when the block distortion measure (BDM) becomes less
than a predefined threshold.

Let the centre of the search region be at pixel pe.,
which also defines the starting point of the spiral search
starting point. In DTS, the spiral search terminates at
search square §S; [12] when the mean absolute error
(MAE), used as the BDM, is:-

MAE (o (x=cx,y-cy)SCxt (1)

where C is the threshold value and T :s the concentric
square index. Assuming b-bit gray level intensity, the
maximum value of the MAE is (2°1), since the pixel
intensity is measured using 2% levels. As SS; is the
outermost search square where d is the maximum
displacement; an upper bound for the constant C can be set
as:-

26 ) 9
¢ <= 2
Note, that by setting C = 0 in (1), it {ransforms the DTS
algorithm into the exhaustive FS algorithm. It is clear that
the search time reduces as C increases and interesting to
note that if C is set higher than the upper bound in (2), the
search will not explore the entire search area defined by
the maximum displacement d.

3. PROPOSED ADAPTIVE THRESHOLD MODEL

The approach adopted for embedding an adaptive
threshold into the DTS algorithm is based upon the
normalized least-mean-square (NLMS) algorithm {15]-
i18). The threshold is automatically adjusied between
frames to achieve either a target level of prediction error
{quality) or computation by considering specifically the
number of search points per MV,

The block diagram of the proposed model is shown in
Fig. 1, and has two modules: (i) motion estimation and (ii)
threshold control. In the former, K is the sample vestor
tength, which governs the number of consecutive frames

that use the same threshold value, where sample means a
pair of frames between which motion has to be calculated.
Thus for K=1, a particular threshold value is used to
calculate the motion between two consecutive frames,
while K=L means the same threshold is used for L-1
consecutive frames (ME always being calculated between
two successive frames).

v

Input Eror (1,...K)
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[hreshold
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-
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el |
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Threshold Control
Fig. 1: The propesed DTS adaptive model.
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The sample window size is Af in the threshold coniioi
module, so the total memory requirement for this module
is KM. Based on the NLMS method in [16][17] the
following is used for threshold adaptation:-

_ 1 @
CJ+|=CJ+J“91(X;) X M
Z x:vmcj
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where

K M
' 21X k.m, f
e, = Desired ; - Actual IT Actual I Aeimal s /18

KM

the number of iterations, 1 is the step size, X ; Tepresents

the average value of input vector (output of motion
estimation moduie) X, where the total number of elements
of X is K.

The output of the motion estimation module is either
prediction quality (mean square error (MSE)) per pixel or
computational time (the number of search points (SP) per
MV). This information is used to vpdate the threshold for
the following frames. The threshold control module selects
whether the threshold for the next iteration is to be either
increased or decreased depending on the average error or
average number of search points so far calculated (dctual)
and the target (Desired). As C decreases, the number of
search points corresponding increase and the update factor
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for speed adaptation is therefore negative.

The update term also depends on the value of M. The
higher the value of M, the larger the update factor while
other paramelers remain constant. So the performance of
the adaptive algorithms depends on the initial threshold
constant selection, the step size and the values of K and M.

4. EXPERIMENTAL RESULTS

The performance of the FADTS algorithm was evaluated
using the luminance (Y-component) signal of the
following standard test video sequences:- “Fooball”
(320x240 pixels), “Flower garden” (352x240 pixels),
“Salesman” (360x288 pixels), “Miss America” (176x144
pixels), “Tennis” (352x240 pixels) and “Foreman™ (176
x144 pixels). In this paper only the results for the
“Football” and “Flower Garden™ are presented. The
“Football” sequence contains various kinds of meotion,
including translation, zooming, and panning, while the
“Flower Garden” sequence comprises high panning.

In the experiments, all sequences were uniformly
quantised to an 8-bit gray level intensity. The block size
dimensions were 16x16 and d = %7, i.e., within each
16x16 block, a maximum of (2d+1)* = 225 checking
points were used. The MSE measure was used to represent
the prediction quality for the best motion vector for each
block and the value of X and M are selected as 4 and |
respectively based on the experiments. All results are
shown using half-pel motion accuracy.

The performance of FS, TSS and NTSS algorithms are
contrasted in Table I, for showing the comparative
performance of FADTS algorithm.

Table I: Avg. MSE and SP of FS, TSS and NTSS algorithms for
“Football” (344 frames) and “Flower garden™ (150frames) video

sequences.
Football l Flower garden
BAM  "MSE [ sp MSE | SP
FS 218.88 160.05 208.91 209.73
TSS 240.79 25.63 242,97 31,20
NTSS 239.15 26.9 213.2¢8 28.98

The performance of the FADTS algorithm was
evaluated for both quality and speed adaptation as follows.

4.1. Quality Adaptation
The FADTS algorithm results in terms of quality
adaptation are presented in Table II for a number of
different target values for the high motion *Football” and
“Flower Garden” sequences. This reveals the FADTS
algorithm is able to reach any bounded target level of
quality, with the implicit assumption that the minimum
target ertor obtained by FS is the lower bound.

If the target is set so high that the resultant threshold

constant will exceed the maximum threshold Cg,,, FADTS
algorithm limits the upper bound to C,,. However,
defining such a high target is unrealistic, because it wiil
produce an extremely poor picture quality output.

Table {I: Prediction error ndaptation for “Football” a “Flower
garden” Video sequences (344 and 150 Frames respectively)
with K= 4 and M=1

Football Flower garden
Target | Actual Search | Target Actual  [.Search
guality Point | guality Points
(SP) (SP)
MSE | MSE MESE MSE

220 | 22035 | 3477 | 210 | 21213 | 49.82

230 22895 { 2590 215 215.52 | 26.68

Threshold Constant C

240 240.77 | 20.89 230 229.34 | 17.68
250 252.23 | 18.46 240 237718 | 16.18

The corresponding adaptive threshold values for
different frames are plotted in Fig, 2. This shows clearly
the adaptive nature of the FADTS algorithm as content
varies between different frames. It also confirms that
FADTS automatically computes a different starting
threshold value directly proportiona! to the target value.
Thus initial thresholds are adaptive based on both the
content of the video sequence and the desired target.
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Fig. 2: Threshold constant adaptation for Football (left, 240

MSE} and Flower garden (right, 215 MSE) sequences.
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Fig. 3: Threshold constant adapiation for Football (left, 25 SP)
and Flower garden {right, 30 SP) sequences.

4.2. Computationzl complexity adaptation

The computational performance of the FADTS algorithm
for a number of different target speeds (average number of
search points per MV) is shown in Tabie IIl. The table
proves that FADTS can reach any average target level of
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speed within the bounds (depends on d) by varying the
tneshold constant. Fig. 3 clearly shows both the adaptive
nature of the algorithm as the content in the video
sequence varies and also its ability to meet the user-
defined target.

Table IH: Processing speed adaptation For “Football” and
“Flows: garden” video sequences {149 Frames) with k=4

angd M=1
Football Flower garden

Target Actuai | Actual | Target Actuzl Actual
Speed Error Speed Speed Error
{SP) MSE | (8P) (SP) MSE
SP Sp SP SP

20 19.89 | 23093 20 19.55 21947

23 2486 | 2349} 25 24.53 215.68

30 29.82 | 227.09 30 29.56 214.28

40 407 | 22022 40 39.78 21299

Table 1, If and IIT also prove that FADTS does not only
reach any user defined target, but also shows better error
performance when complexity is comparable to TSS or
NTSS. Another noteworthy point is that FADTS can
achieve the same MSE performance as FS but with
reduced complexity (SP) by a factor of 4 (approx.).

The total number of operations for (3) is only

(3KM +4)7'£- per second where fis the number of frames

per second. Since in the experiments, 2/=1 and K=4, this
means a total of only 120 additional operations per
second. This is negligible compare to the complexiiy
involved in MAE distortion calculation for motion
estimation, where one MAE calculation requires 511
additions, 256 absolute operations, and one comparison
for a 16x16 Hlock.

In summary therefore, the FADTS algorithm consumes
minimaj additional computational overhead, while
providing significant performance benefits including user-
definability of key parameters,

5. CONCLUSIONS

This paper has presented a fully adaptive distance
dependent thresholding search (FADTS) algorithm for
real-time block-based motion estimation in video coding.
The performance of FADTS has been examined and
proven that it affords a unique feature in being able to
trade-off ficely between the two key system parameters,
namely prediction quality and search speed, for the entire
tange of threshold values, A key feature of this novel
algovithm is its ability to progressively adjust the required
threshold value based on the actual video content to
achieve any user-specific level-of-service, in temms either

prediction quality or processing speed. FADTS can
therefore be used as an optimum algorithm for high quality
prediction as well as a very fast algorithm. The algorithm
proposed in this paper could also form pant of a video
encoder that can optimize performance in scenarios where
computational resources are restricted. Further work is
required to integrate this algorithm with other functions of
the encoder such as the DCT and quantization scale to
control the rate, complexity and distorrion performance,
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Integrated Technique with Neurocomputing for
Temporal Video Segmentation

Golam Sorwar, Laurence Dooley and Manzur Murshed
Gippsiand School of Computing and Information Technology
Monash University, Churchill Vic 3842, Australia

Abstract: Panitioning a video source into meaningful segments is an important step for
video indexing. Many algorithms have been proposed for detecting video shot boundaries
and classifying both shot and shot transition types. Different methods are -suitable for
different situations and most of the existing methods consider a threshold value determining
the boundary between the two shots. However, selection of a generalized optimal threshold
value is an extremely difticult task. In this paper, we propose an integrated method based on
one of the popular soft computing techniques, namely neurocomputing, for temporal video
segmentation that avoids problem with threshold calculations. We used a feedforward neural
network trained using backpropagation algorithms. The soft computing model was trained
using 80% of the frames data and the remaining 20% was used for testing and validation
purposes. A performance comparison was made among the proposed soft computing method
and traditional methods namely  lListogram difference. DCT difference, and Motion
difference, for temporal shot detection.

1 Introduction

The use of digital video in many multimedia systems is becoming quite popular.
Videos are plaving an increasingly important role in both education a4 commerce.
Besides the currently emerging services such as video-on demund and pay
television, we see quite a number of new non-television like information services
such as digital catalogues and interactive multimedia documents, including text,
audio and video. Applications with digital video use time consuming fast forward
or rewind to search, reirieval and get a ¢ ick overview of the content. In today’s
world, time is very expensive and time efficient media management is the key for
the next generation. We need to devise new ways to index and access video
content, which presents the visual information in compact forms such that the
operator can quickly browse a video clip, retrieve content in different levels of
detail and locate a segment of interest.

To enable time efficient and effective access, digital video has to be analyzed and
processed to provide a representation that allows the user to locaie any event in the
video and browse it very quickly. Shot detection is the first step in this direction. A
simplified structure of a content-based video database model is shown in Fig. 1.
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Fig. it A videa date base model

As an enormous amount of informaiion is available in each frame of video
sequence, it is computationally expensive indexing based on each frame content,
On the other hand if the video shots are properly detected, key frames
(representatative frames) can be selected froni ¢ach shot, it can represent the overall
content of the whole sequence. So shot detection is the key part for extracting the
representation frame, which can be used for video indexing.

The paper is structured as follows, Section 2 discusses the existing shot boundary
detection techniques in detail. In Section 3, we present some basic theoretical
aspects of neural networks while the proposed integrated method is described in
Section 4. The results to verify the performance of the proposed method in terms of
recall and precision values are presented in Section 5. The conclusions are provided
in Section 6.

2 Related Work

The most important and fundamental processing step is 10 segment video into an
appropriate set of units, which is known as shots. A shot is an uninterrupted video
segment, that is, a sequence of consecutive frames generated as the result of a
continuous single-camera operation. There ae generally two types of shet
transition-abrupt and progressive. Abrupt shot transition is the cut or camera break.
It occurs in a singie frame showa in Fig. 2(a). In this case, the prior 2 and the
posterior 3 frames of the boundary show very different characteristics in terms of
their content. But in case of progressive shot transition generated via the

A
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applicatior: of mcre elaborated edition effects that involve several frames such as
fading, dissolves, wipes and many other types of gradual transition. An example of
progressive chot transition (fade out) is shown in Fig. 2(b).
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Fig. 2(b) Frames in fade

In general automatic shot boundary detection techniques are classified into the
following categories: pixel based, statistics based, wansformed based, histogram

.b . based and motion vectors based [12]{18]. In pixel based methods, pixel-wise
; intensity difference is considered as the indicator for shot boundary detection.
s [12][13)[10}{9] computed the absolute sum of the pixel-by-pixel inter-frame

difference and later compared it to a selected threshold. If the difference is more
than the threshold value, a shot boundary is declared. 1t is very simple method,
however the drawback associated with this method is that it is very sensitive to
noise and camera and object motion. It is also difficult to adjust threshold value
manually. In statistical difference based methods, large local changes lower most of
the aforementioned detection algorithms’ quality. Solution: compute the difference
metri¢ in image regions, instead of using the overall image, and later discare some
of them for final sum up. Statistical methods expand on the idea of pixels
differences by breaking the images into regions and comparing statistical meazures
of the pixels in those regions.[15][2][8] proposed some different shot boundary
detection method Lased on cuatent seatistics such as mean, standard deviatioa,
likelihood ratio. It is reasonably tolerant of noise, though its drawback is that it is
slow due to complexity of the statistical formulas and it generates many false
positive (wrong boundary detected as correct one). In order to effectively protect
against camera operation and object motion. an option it to select a motion
independent metric, like overall intensity histogram difierence. Histograms are the -
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most common method used to detect shot boundary. In the simplest histogram
method, the gray level or color histogram is computed and compared bin-wise
difference with a threshold. If this bin-wise difference is above a threshold, a shot
boundary is assumed. [6)[14] used the color histogram change rate to find shot
boundaries. This is very most common method and more robust to noise and object
motion. According to [12]{10], the histogram methods were a good trade-off
between accuracy and speed. In order to properly detect gradual transitions such as
wipes and dissolves, they used two thresholds. If the histogram difference fell
between the thresholds, they tentatively marked it as the beginning of a gradual
transition sequence, and succeeding frames ware compared against the first frame
in the sequence. If the running difference exceeded the larger threshold, the
sequence was marked as a gradual transition. An alternative to all these algorithms
is to work with derived parameters directly extracted from the compressed
sequence. {¢][3] used differences in the size of JPEG [20] compressed frames to
detect shot boundaries as a supplemen: to a manual indexing system. [16] found
shot boundaries by comparing a small number of connected regions. They used
differences in DCT coefficients of JPEG compressed frames as their measure of
frame similarity, thus avoiding the need to decompress frames and increases the™
speed. But it generates too inany false positive. [10](6] used motion vectors
determined from block matching to detect whether or not a shot was a zoom or pan.
[2] used the motion vectors extracted as part of the region-based pixel difference
computation described above to decide if there is a large amount of camera or
object motion in & shot. {17} detected the camera breaks using macroblock (16*16
pixels) information of P and B frames in MPEG [21] video sequences. Motion
discontinuity will occur if there is any sudden change between two consecutive
frames. This results in a significant drop of forward motion prediction coded macro
blocks and can be easily detected by setting a threshold.

3 Artificial Neural Networks

Neural networks are computer algorithms inspired by the way information is
processed in the nervous system [11]. An important difference between neural
networks and other Al techniques is their ability to leamn. The network “leams” by
adjusting the interconnections between lavers. When the network is adequately
trained, it is able to generalize relevant output for a set of input data. A valuable
property of neural networks is that of generalization, whereby a trained neural
network is able to provide a correct matching in the form of output data for a set of
previousiy unseen input data.

Learning typically occurs by example through training, where the training
algorithm iteratively adjusts the connection weights (synapses). Backpropagation
(BP) is one of the most famous training algorithms for multilayer perceptrons. BP
is a gradient descent tcchnique to minimize the error E for a particular training
pattern. For adjusting the weight (w;;) from the i-th input unit 1o the j-th output, in
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‘the baiched mod_e variant the descent is based on the gradient VE(ﬁ—E-) for the

vy
total training set:

oE
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The gradient gives the direction of error E. The parameters ¢ and o are the
learning rate and momentum respectively [1].

4 Proposed Integrated Algorithm

According to the discussion in section 2, it is very clear that the different methods
are robust in different situation. The histogram comparison should be less sensitive
to object motion than the DCT difference comparison algorithm, since it ignores
the spatial change in a frame. But there may be the cases in which two images have
similar histogram but completely different content. Again it is not robust against
lighting change. So, if the different features are combined appropriately, a more
desirable resuit can be expected. As a method of combining features, there can be a
lot of alternative such as multi-level slicing, minimum distance method or
maximum likelihood method. As another alternative, recently neural networks have
been widely used for these purposes and have been successful in various
applications. Considering these reported results and simplicity of implementation, a
neural network of back error propagation model is adopted for the combination.

Intensity Input Hidden " Hidden Output
Histogram
difference Cut
DCT
differenc:

Motion Vector
difference

Continuous

Fig. 3: Feed forward Neural network structure for shot detection
Histogram difference, DC componeni difference and Motion vector difference are
considered as the input of the proposed algorithm
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A structure of the adopted neural network is shown in Fig. 3. The feed forward
neural network has an input layer of three neurons that correspond to the above
three features, two hidden layers, and an output layer of two neurons that
correspond to the shot boundary and continuous frame respectively.

5 Implementation and Evaluation

The shot detection algorithm proposed here was implemented and applied on 2
variety of video materials. For comparison the performance of this method we
considered the histograms, DCT coefficient, motion vector difference method.

For histogram, we computed the 256 level gray scale histogram over the entire
frame using the MATLAB version 6. The difference measure is the sum of the
absolute bin-wise histogram difference that is as

f
\/i (Hi(m)= Hin(m))?

M @)

Where M is the no of bins of each histogram, H{m) is the current frame and
H,.(m) is the next frame.

The DCT coefficient difference method closely resembles the algorithm
described by [3]). As the DC coefficient represents the average intensity of the
block, we only considered the DC component of each block (8x8 pixels) for
reducing the computational cost and concatenated them to produce a vector. The
difference measure was computed by subtracting the inner product of the vectors of
consecutive frames from one, If the difference exceeded the threshold, declare a
possible shot boundary. '

For motion vector difference method, we computed the magnitude of each block
motion (16x16 pixels) extracted from mpeg encoded video sequences by [5] and
procuced a motion vector as in the DCT-based method. Then, comparing the
difference with a threshold as DCT based to {ind the possible shot change.

To evaluate the efficiency of the proposed integrated method, we used the
objective measure, Recall and Precision as in (3). Recall is the relevant detection
rate from all the rclevant items in the image database and Precision represents the
correct detection rate.

Hag =

Recall = .__‘:"L_ , Precision = 3)
Caq+ M Ca+F

Where Cy is the number of correct detection, M is the number of missed item

and F is the number of false positive. So a large recall value means that the correct
shot boundaries are not missed very much and a large precision value means that
-elatively few wrong boundaries are declared as a boundary,

Of course these two are interdependent and closely related to threshold values.
Fhe threshold must be assigned so that it can tolerate variations in individual




185

frames while still ensuring a desired leve! of performance. A “tight threshold
makes it difficult for * imposters™ to be falsely accepted by the systems, but at the
risk of falsely rejecting true transitions. Inversely, a “loose” threshold enables
transition to be accepted consistently, at the risk of falsely accepting “imposters”,
In order to achieve high accuracy in video partitioning, an appropriate thrashold
must be found. It is really difficult to find an appropriate threshold value manually
in general. So threshold selection is another great problem for the traditional
methods. For automatic selection of threshold, some researchers used the following
relation,

Threshold = &+apf, where & and § are mean and the standard deviation of the
frame-to-frame differences respectively and « is constant. This is however very
much application dependent, so in our experiments, we evaluated the threshold
according to experimental observation.

Table 1. Performance comparison of different methods with proposed method

Recall | Precision .
Histograms distance method 0.86 0.74
DCT coefficient distance method | 093 0.90
Motion vector difference method | 0.93 0.91
Proposed integrated method 0.97 0.93

For our experiment, we consider the different video clips such as movie;
animation and sports contain approximately 5000 frames in total. For training the
soft computing model, we used 80% datasets and remaining 20% datasets were
used for testing purpose. After a trial and error approach we found that the neural
network was giving good generalization performance when we had 2 hidden layers
with 30 neurons each. According to Table 1, the proposed integrated algorithm
shows better performance compare to other considered algorithms.

6 Conclusions

The extraction of the internal structure of the video contents is very important for
the problem of searching and browsing of digital video. In this paper, we propose
an integrated method for detecting abrupt shot boundary using artificial neural
networks. On the contrary to the existing methods, the proposed method based on
neurocomputing, avoids any threshold calculation, which is considered to be one of




166

the major problems in existing algorithms. Experimental results showed that the
proposed irtegrated algorithm is more accurate, in detecting shot boundaries, than
_ the other traditional approaches.

3 Incorporating progressive shot boundary detection and other soft computing
3 ' models with extended daiabase is on going work.
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A Novel Filter for Block-Based Object Motion Estimation
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Abstract

Noises, in the form of false motion vectors, cannot be
avoided while capturing block motion vectors using block-
based motion estimation techniques. Similar noises are
further introduced when the technique of global motion
compensation is applied to obtain “true™ object motion
from video sequences, where both the camera and object
motions are present. We observe that the performance of
the mean and the median filters in removing false motion
vectors, for estimating “true” object motion, is not
satisfactory, especialty when the size of the object is
significantly smaller than the scene. In this paper we
introduce a novel filter, named as the Mean-Accumulated-
Thresholded (MAT) filter, in order to capture “truc™ cbject
molion vectors from video sequences with or without the
camera motion (zoom and/or pan). Experimental results
on representative standard video sequences are included to
establish the superiority of our filter compared with the
traditional median and mean filters.

1. Iatroduction

Extracting melion parameters from image sequences
has been a central theme in the areas of computer vision
and image coding. There are many types of motion
estimation algorithm such as pel-recursive [22], block-
matching [8], and optical flow based method [7]. In
general, block-matching algorithm [B] atiracted wider
acceplance due o its simplicity, robustness, and lesser
hardware complexity which is already adopted by a large
number of video coding standards {MPEG-1/2 and
H.261/262/263 etc.).

The exhaustive block-matching fidl-search (FS) (8],
where each candidate block is searched for the closest
match within the entire search region, it gencrally provides
reasonably good performance with the expense of high
computational time. '

Several fast algorithms have already been proposed to
address the above issue. The three-step search aigorithm
(388) [12), the new three-step search (N38S) [13], the
four-step search algorithm (4SS} [17], and the cross-

search algorithm {6] are based on the assumption that the
block distortion measure increases as the checking points
move away from the global minima. But this assumption
does not hold true in the real world video sequences [4].
Moreover, search directions of the above algorithms can
be ambiguous and {herefore, may converge to local
minima,

In true motion estimation, where object and/or camera
motions are cstimated, the FS algorithm tends to pick
many “faise” motion vectors even when no object motion
is present in the search region, This is due to the fact that
the distortion of an object in a video frame is proportional
to its velocity and therefore, as the length of a motion
vector grows so does the block difference error, The FS
algorithm is, therefore, modified in our paper [19] by
introducing distance dependent linear threshold (LT) and
exponential threshold (ET) named as the Modilied Full
Scarch (MFS) algorithm. In this paper we use this MFS
algorithm for estimating true block motions.

Block motion is governed by the movement due to the
camera (pan and/or zoom} referred as global motion,
movement of the objects referred as object motion or
“true” motion, or both. Many motion estimation
techniques ignore this aspect and make no distinction
between the global and the local motion. However,
scparating these two classes of motions is significant for
“true” object motion. In case where both the local and the
global motions are present in the video sequences, “true”
cbject motions (i.e., the local motion), necessary for
obiject-based video representation, segmentation, and
retrieval, can only be obtained by canceling out the global
motion component from the block motion, known as
global motion compensation.

Once the global motion is compensated from the
estimated block motion, “truc™ object motion vectors are
clustered ini the blocks containing one or more objects, As
the block motion estimation cannot be done with complete
accuracy due to the limitation of block-based estimation
techniques, a number of impulse noises (false motion
vectors) are also likely to be introduced afier the above
processing along with the “true” object motion vectors, To
retain only the “true™ object motion vectors, we must filter
out these impulse noises from the scene.




Many types of filters have already becn propused and
examined for filtering impulse noises. Among them the
median filter and the mean filter are widely used. While
applied to reduce noises in an image, the median filter
performs better than the mean f{ilter as the mean filter
often blurs the edges [5][2i]. The same is not irue for
filtering out noises from the motion vectors, especially
when objects are quite small compare to the size of the
scene. In such cases, the median filter tends to remove
significant number of “true” ohject motion vectors along
the edge of the objects whereas the mean filter reduces the
length of all the motion vectors, including the “true™ ones.
To address this issue we develop a new filter, named as
the Mean-Accumulative-Thresholded (MAT) filter, which
is successfully applied to a number of rcpresentative
standard video sequences to capture the “true” object
motion vectors.

The remainder of this paper is organized as follows.
Section 2 describes the block motion estimation technique
used in this paper. The parametric global motion
estimation techniques are introduced in Section3. In
Section 4 the general process of estimating local (object)
motion, including our proposed MAT fiiter, is discussed.
Some experimental results are included in Section 5.
Section 6 concludes the paper.

2. Block Motion Estimation

In [19], we observed that in true motion estimation, the
FS algorithm fends to pick many *false” motion vectors
even when no object motion is presemt in the search
rcgion. To address this issue we modified the FS
algorithm (names as the MFS algorithm) by introducing
distance dependent thresholds. The MFS algorithm not
only avoids capturing a large number of “false” motion
vectors but also reduces the search time significantly. In
this paper we use the MFS algerithm for estimating true
block motions. '

3. Gloebal Motion Estimation

If there is no local motion in a scene and only the
camera is moving, the Jynausics of the resulting video
sequences can be adequatery described by only a few
camera operation parameters,

3.1. Motion Model

Techniques for global motion estimation (GME) have
been proposed in [9][18][20]. Most of the GME methods
differ in the parametric model to represent the camera
moiion -as well as in the technique to estimate the
parameters of the chosen model. Although a complex

model results in a better description of the motion, it also
leads to a greater difficulty in parameter estimation and
higher computational complexity. Conversely, a simple
model is sufficient enough to represeni the global motion
of a small videe sequence, espec.ally when the global
motion is primarily used for compensating the camera
motion from the block motion to obtain “true™ object
motion,

The conventional block-matching algorithm assumes
that all the pixels in a block have equal displacements, and
thus estimates one motion vector for each block. Let there
be N blocks in a video frame. Lat us assume that the
molion vector of a block is the motion vector of the center
pixel of that block. Let (v(k), w(k)) be the measured
maotion vector, according to our MFS algorithms explained
in Section 2, of the block £, k=0, 1, ..., N-1, whose center
pixel's coordinates are (si(x), 5,{k)) with respect to the
center of the frame,

For global motion estimation, we consider the 4-
parameter motion medel depicted in [18] with some
medification. The generalized 4-parameter motion model
for camera zoomn and pan is defined as

v.r(k) - ale(k)
[vy (k)]-[aasy (k)]*[ﬁi] O
where
a =2¢ and a2 = fi(ps, py) 2(a)
ay=zy and ay = f2(py,zy) 2(b)

In the above definilion, z, and z, are the zoom f{actors
along the x-axis and y-axis respectiveiy, (py, p)) is the pan
vector,

3.2, Motion Parameter Estimation

Now consider the iterative least-square estimation
algorithm for obtaining the optimal values for camera
parameters (@, az, a3, a4} by using the following criteria:

Nl

min 3 (v, (k) - as, () =a,)’ )
&85 =0

N~-l 2
min S (v, ~ays, (k) -a,) )
3 d*=0

By differentiating with respect to the parameters, and
selting the derivatives to zero, we obtain the following
solution as shown in (5, 6, 7, 8).
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Since all the blocks are taken into consideration, the
above estimate will be affected by the presence of the
local motion. To eliminate this influence we use the
above procedure iteratively, each time eliminating the
blocks whose motion vectors do not match with the so-far-
estimated global motion fields. As observed in {18], the
iteration converges very quickly in our experiments.

4. Object Motion Estimation

In case where both the local and the global mations are
present in the video sequences, “true” object motions can
only be obtained by canceling out the global motion
componemt from the block motion, known as global
motion campensation. '

Once the global motion parameters for the scene is
calculated according to section 3, the “true”™ object motion
vector (o,(k), 0,(k)) of the block &, k=0, 1, ..., A1, can be
calculated as:
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Once the global motion is compensated from the
estimated block motion, “truc” objcct motion vectors are
clustered in the biocks containing one or more objects. As
the bleck motion estimation cannot be done with complete
accuracy due to the limitation of block-based estimation
techniques, a number of impulse noises are also likely to
be introduced after the above processing along with the
“true” object motion vectors. To retain only the “irue”
object motion vectors, we must filter out these impuise
noises from the scene.

Many types of filters have already been proposed and
examined for filtering impulse noises. Among them the

median filter and the mean filter are widely used
[2)I51[1i][16][21]). The median filier and its variants have
already been applied in many applications for noise
rejection from block motion vectors [(1](10](14][23].

4.1. The Mean Filter

The idea of mean filtering is simply 1o replace each
value with the mean (Caverage') value of its neighbors,
including itself. This has the effect of smoothing values
that are uwnrepresentative of their surroundings, Mean
filtering is usually thought of as a convelution filter [24],
Like other convolutions it is based around a kernel,-which

_ represents the shape and size of the neighborhood 0 be

sampled when calculating the mean, Often a 3<3 square
kernetl is used, Two major characteristics of the mean filter
are:

+ A single very unrepresentative value can
significantly affect the mean value of iis
neighborhood.

¢ When the filter neighborhood straddles an edge,
the filter will interpolate new values.

4.2. The Median Filter

Like the mean filter, the median filler considers each
value in tum and looks at its nearby neighbors to decide
whether or not it is representative of its surroundings.
Instead of simply replacing the value with the mean of
neighboring values, it replaces it with the median of those
values. Two major characteristics of the median filter are:

¢ The median is a more robust average than the
mean and so a single very unrepresentative value
... a neighborhood will not affect the median value
significantly.

+ Since the median value must actually be one of
the values in the neighborhood, the median filter
does not create new unrealistic values when the
filter straddles an edge.

4.3. The Mean-Accumulated-Thresholded (MAT)
Filter

While applied to reduce noises in an image, the median
filter performs better than the mean filter as the mean filter
oflen blurs the edges [5)[21]. The same is not true for
filtering out notses from the motion vectors, especially
when objects are quite small compare to the size of the
scene. In such cases, the median filter tends to remove.
significant number of “true™ object motion vectors along
the edge of the objects, If the length of the “true” object
motion vector is ¢ same order of the introduced impulsive
noises after the plobal motion compensation, a single
iteration of the mean filtering would fail to remove all the
impulsive noises, introduced by the global motion
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compensation, even after using a threshold value. To
address this issue we introduce a new filter, named as the
Mean-Accumulated-Thresholded (MAT) filter.

The MAT itlter has two phases. The {irst phase of the
MAT filter is basically an iterative “In-place” application
of the mean filter. But the major difference lies in how the
“in-place” values are updated. In each iteration, the mean
value is added on top, instead of replacing, the existing
value as follows:

0,(t)] [o,(6)]  [mean, (k) .
[oy (;c)]"[o_,,(k)]+[meany(k)] 0
where, mean(k)and mean, (k) are the mean values,

along the x-axis and the y-axis respectively, in the 3x3
neighborhood kernel for all &, k=0, 1, ..., N-1.

With the mean and the median filters, even after the

iterative “in-place” application, the length of the updated
motion vectors will never exceed the maximum length of
the original vectors in the neighborhood. But the same is
not true for the MAT filter. Just after a few iterations (as
low as 2), length of the “true™ object motion vectors will
be increased significantly, compare to the other vectors,
including the impulses introduced during the global
motion compensation and/or due to the limitations of the
block-based motion estimation.
. Itis, therefore, highly likely that only the “truc” object
motion will be retained if the vectors, with length higher
than a preset threshold, are selected as the last phase of the
MAT filter.

5. Experimental Results

This MAT filter has been successfully applied to a
number of representative standard video sequences to
capture the “true™ object motions vectors. Throughout the
experiments, we use M = N = 4 = 16, i.e.,, each frame is
divided into 16x16 pixe! blocks and the size of the search
region is 49x49 pixels, where at most 33? search points are
used. Ali experiments are performed on the luminance (Y-
component) of the frames.

In Figures i-3, we present (a) the cumrent frame, (b)
the next frame, (¢) block motion vectors computed using
the MFS algorithun [19], (d) object motion vectors using
the median filter of 3x3 kernel, (e) object motion vectors
using the mean filter of 3x3 kemel, and (f) object motion
vectors using the proposed MAT filter. In all the above-
mentioned figures, the MAT filter outperforms the populac
median filter, while capturing *true™ object motion,

6. Conclusions and Discussion

The median and the mean filiers and their variants
have been used widely to remove noises from images and

to smooth global motion vectors of video sequences. We
have observed that the performance of these filters in
removing false motion vectors for estimating “true™ object
motion is not satisfactory, especizlly when the size of the
chject is significantly smailer than the scene. In this paper
we have introduced a novel filter, named as the Mean-
Accumulated-Threskolded (MAT) filter, in order to
capture “true” object motion vectors from videe sequences
with or without the camera motion (zoom andfor pan),
Experimental results on representative standard video
sequences have been included to establish the superiority
of our filter compared with the mean and the modian .
filters.

It is worth mentioning that although the MAT filler
increases the length of the original object motion vectors
significantly, it shoul? not cause any problem as long as
these vectors are not used for video coding. In case we are
interested in eepiuring object motion vectors of “ormal”
length, it can easily be 2chieved by normalizing the MAT
fittered vectors. )

Although in our definition, the MAT filter uses the
mean filter of 3x3 kernel, rny other kernel size can also be
used without loosini any generality, No study is done on
the optimal kemel size to be used with the MAT filter. In
future, we also like to explore whether different optimal
kemel sizes exist for different video sequences with
objects of different velocity.
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H
Figure 2: (a) Current frame (frame #99 of “Baliet™); (b) Next frame, (frame #100 of the same video sequence); (¢) Block
motion vectors computed using the LT algorithm (19]; (d) Object motion vectors using the median filter of 3x3 kernel; ()
Object motion vectors using the mean filter of 3x3 kernel; (f) Object motion vectors using the MAT filter,

Figure 3: (a) Current frame (frame #15 of “Foreman™); (b) Next frame, {frame #16 of the same video sequence); (¢) Block
motion vectors computed using the LT algorithm [19}; (d) Object motion vectors using the median filter of 3x3 kernel; (e)
Object motion vectors using the mean filter of 3x3 kernel; (f) Object motion vectors using the MAT filter.
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Appendix B

Test Video Sequences

Sequences Name No. of | Resolution Motion Description
Frames

Object translation, camera
Table 149 SIF zooming and panning.

Tennis (352x240) | Note: a shot change at Frame
#90.

e Y s

et < e e
b G bl o

CIF General motion pictures with
Football 1 345 | 360x240) | high motion activity.

Flower 150 SIF Fast panning with high
Garden (352x240) | motion activity.

Head and shoulder type
300 CIF sequence with very low
(360x288) | object translation with low
motion activity.

Salesman




- e ST R T S e s e 1

e T s

B o T

A s YT TR e

B

(352x240)

Appendix B Test Video Sequences B-2
Sequences Name No.of | Resolution Motion Description
Frames

QCIF Fast object translation and

Carphone [ 382 (196x144) | camera panning.

Y

Head and shoulder type
Miss 150 QCIF sequence with very low
America (176x144) | object trenslation with low

motion activity.
QCIF Object translation and camera

Foreman 298 (176x144) | panning

Head and shoulder type
, QCIF sequence with very low
Suise 1 (176x144) | object translation with low

motion activity.
Cycle 413 SIF Object translation and camera

panning
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Appendix B Test Video Sequences B-3

Sequences Name No.of | Resolution Motion Description
Frames

QCIF , .
Rocket 50 Very fast object translation.
(176x144) N

i riamre e s b T Rt 0 S TS PR T T PN L L s T

174 CIF Object translation and camera

Son (352x288) | panning.

SIF Object translation and camera

Ballet 100 | (352x240) | panning

3
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Appendix C
Supplementary Results for the DTS Algorithm Presented :
in Chapter 3
Integer-pel Half-pel
Block-matching ki P
algorithms PSNR PSNR
MSE SP MSE SP
[dB] [dB]
FS/LT(0) 33570 | 2294 | 20205 | 27576 | 2373 | 210.05
LT(2) 33596 | 2294 | 12371 | 278.87 | 23.68 | 13171
LT(4) 34067 | 2288 | 8257 | 28155 | 2364 | 9057
LT(6) 35653 | 22.68 | 57.10 | 291.67 | 2348 | 65.10
LT(8) 380.03 | 2241 4175 | 30827 | 2324 | 4975
LT(10) 40582 | 2214 | 3255 | 32718 | 2298 | 40.55
LT(12) 43026 | 2189 | 2688 | 34545 | 2275 | 3488
LT(14) 45126 | 2168 | 23.8 | 361.30 | 22.55 | 31.i8
LT(i6) 47112 | 2150 | 2051 | 37646 | 2237 | 2851
LT(18) 489.40 | 21.34 1850 | 390.73 | 2221 | 2650
LT(20) 50544 | 21.19 1696 | 40308 | 22.08 | 24.96
TSS 37032 | 2251 2311 | 309.11 | 2322 | 3LI11
NTSS 36381 | 2259 | 2079 | 30335 | 2331 | 30.79

Table C.1: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion
vector for the Football sequence (1-80 frames) with different BMAs.
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Appendix C Supplementary Resuits for the DTS Algorithm  C-2

_ Integer-pel Holf-pel 33
Block-matching o [
algorithms PSNR PSNR '
MSE | /g SP MSE | o SP 1
FS/LT(0) 126.34 27.94 197.14 102.72 28.01 205.14 i
LT(2) 127.25 27.63 75.68 103.14 28.00 83.68
LT(4) 131.64 2748 38.14 105.34 27.91 46.14
LT(6) 138.26 27.27 26.03 109.07 27.75 34.03 3
LT(3) 147.50 | 2698 | 2035 | 114.64 | 2754 | 2835 |
LT 157.34 26.69 16.88 120.91 27.32 24 .88 ;, !
LT(12) 166.71 2642 14.65 127.04 27.09 22.65 g3
LT(14) 175.16 26.21 13.30 132.08 26.92 21.30
LT(16) 183.65 26.00 12.36 137.22 26.76 20.36 ;
LT(18) 191.71 25.82 11.66 142.57 26.59 19.66
LT(20) 198.84 | 2568 11.14 | 146.61 | 2647 | 19.14 j-‘=
TSS 190.81 25.32 23.01 159.18 26.11 31.01
NTSS 159.10 26.11 20.83 127.85 27.06 28.83 g

Table C.2: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion
: vector for the Table Tennis sequence (1-80 frames) with different BMAs.

_ Integer-pel Half-pel -3
Block-matching ]
algorithms PSNR PSNR =
MSE [dB] SP MSE [dB) Sp

FS/LT(0) 15.71 "36.17 192.04 13.30 36.89 200.04 ‘ :
LT(2) 15.75 -36.16 29.60 13.32 36.89 376 T
LT(4) 15.99 36.09 13.27 13.43 36.85 21,27 .
LT(6) 16.26 36.02 9.90 13.59 36.80 17.90 {7
LT(8) 16.65 3592 8.89 13.82 36.73 16.89 | :
LT(10} 16.85 35.86 8.49 13.92 36.70 1649 ;
LT(12} 17.08 35.81 8.28 14.04 36.66 16.28 A
LT(14) 17.35 35.74 8.17 14.17 36.62 16.17 :
LT(16) 17.57 35.68 8.10 14.30 36.58 16.10
LT(18) 17.88 35.61 8.05 14.47 36.52 16.05
LT(20) 18.10 35.55 8.02 14.62 36.48 16.02
TSS 16.40 35.98 21.89 13.77 36.74 29.89
NTSS 16.01 36.09 15.93 13.44 36.85 23.93
Table C.3: Comparison of average MSE and PSNR per pixel, and search points (SP) per motion -

vector for the Salesman sequence (1-80 frames) with different BMAs. t




Appendix D

Supplementary Results for the ACDTS and ACDSDTS

Algorithms Presented in Chapter 4

Block-matching PSNR

algorithms MSE [dB] SP
Ci=2 103.23 27.99 82.8

Ci=4 105.07 27.92 4497

Ci=6 108.60 27.77 32.42

Ci=8 113.56 27.58 26.95

Ci=t0 119.44 27.36 23.81

ACDTS Ci=12 125.35 27.15 21.88
Ci=14 130.03 26.99 20.59

C=16 135.47 26.81 31.09

C=18 140.35 26.66 31.03

C=20 144.21 26.54 18.57

Ci=2 111.42 27.66 46.92

Ci=4 112.64 27.61 27.70

C=6 114.67 27.54 21.30

Ci=8 118.89 27.38 18.50

C=10 123.23 27.22 16.90

ACDSDTS Ci=12 128.93 27.03 15.86
Ci=14 133.30 26.88 15.22

C.=16 137.81 26.74 14.77

C,=18 140.70 26.65 14.41

Ci=20 145.56 26.50 14.14
FS 102.72 28.01 205.14

TSS 159.18 26.11 30.75
NTSS 127.85 27.06 28.83

Table D.1: Average MSE and PSNR per pixel, and average search points
(SP) per motion vector comparison of different BMAs for the

Table Tennis sequence (1-80 frames).
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Appendix D Supplementary Results for ACDTS and ACDSDTS Algorithms ~ D-2 ]
Rlock-matching PSNR

algorithms MSE [dB] SP

C=2 13.30 36.89 37.62

Ci=4 - 13.39 36.86 21.25

=6 13.52 36.82 17.87 :

Ci=8 13.67 36.77 16.86

C=10 13.75 36.75 1646

ACDTS C=12 13.85 36.72 - 16.25 ]

C.=14 13.94 36.69 16.15 )

C=16 14.06 36.65 16.09 g

Ci=18 14.18 36.61 16.04

. C1=20 14.26 36.59 16.02
3 ' Ci=2 13.42 36.85 23.67
| Ci=4 1347 36.84 15.29
Ci=6 13.56 36.81 13.56 ;

C,=8 13.65 36.78 13.05 f;

C=10 13.78 36.74 12.84

ACDSDTS C=12 13.91 36.70 12.73

C=i4 13.97 36.68 12,68

C=16 1410 36.64 12.65 ;

C=18 14,27 36.59 12.62 :

Ci=20 14.46 36.53 12.61

FS 13.30 36.89 200.04

TSS 13.77 36.74 29.89

NTSS 13.44 36.85 23.93 .

Table D.2: Average MSE and PSNR per pixel, and search points (SP) per i

motion vector comparison of different BMAs for the Salesman § o

sequence (1-80 frames). i
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.




Appendix D Supplementary Resuits for ACDTS and ACDSDTS Algorithtms  D-3

Black-matchin PSNR
algorithms ) MSE {dB] S
C=2 3.159 43.135 22.63
C=4 3.158 43,137 17.04
Ci=6 3.155 43.141 1593
C,=8 3.155 43.141 15.54
C=10 3,155 43.141 15.33
ACDTS C=12 3.155 43.141 15.28
C =14 3.155 43.141 15.26
C.=16 3.155 43.141 15.25
C=18 3.155 43.141 15.25
C;=20 3.155 43,141 15.25
% Ci=2 3.163 43.130 16.03
Ci=4 3.161 43.133 13.20
Ci=6 3.162 43.131 12.63
C.=8 3.159 43.135 12.43
C=10 3.160 43,134 12.33
ACDSDTS Ci=12 3.160 43,134 12.30
C=14 3.160 43,134 12.29
C=16 3.160 43.134 12.28
C.=18 3.160 43.134 12.28
C=20 3.160 43.134 12.28
FS 3.150 43.152 176.21
TSS 3.170 43,123 27.67
NTSS 3.158 43.135 23.14

Table D.3: Average MSE and PSNR per pixel, and average search points
(SP) per motion vector comparison of different BMAs for the
Miss America sequence (1-80 frames).
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Supplementary Results for the FADTS Algorithm
Presented in Chapter 5

Table Tennis

Salesman

Target
Speed (SP)

Actual
Sp

Actual Error
MSE

Target
Speed (SP)

Actual
SP

Actual MSE

16

15.54

95.05

16

15.61

12.96

20

19.42

85.04

20

19.75

12.95

25

24.94

§2.56

25

23.74

12.95

30

29.97

81.59

30

30.22

12.92

Table E.1: Search speed adaptation for Zable Tennis and Salesinan video sequence (149 and 300
frames respectively).
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. Appendix E Supplementary Results for FADTS Algorithm E-2
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Fig. E.1: Threshold control parameter adaptation for the Table Tennis sequence with (a) 16, (b) -
20, (c) 25, and (d) 30 average search points (SP) per motion vector.
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Appendix E Supplementary Results for FADTS Algorithm E-3

25 o 25
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Fig. E.2: Threshold conirol parameter adaptation for the Salesman sequence with (a) 16, (b) 20,
(c) 25, and (d) 30 average search points (SP) ver n:otion vector.
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Appendix F

Supplementary Results of the DTS and MAT Filter
Presented in Chapter 6

FS NTSS TSS DTS
.No..of True | False True | False True | False True | False
tterations | wey | My T, | MV | MY T MV MV T, MV MV T
% Y% % %o % Yo % Y%
9001 203 10| 333 4.0 40 ] 333 8.1 4,0 90.0 20.3 1.0
733 701 201 200 2.7 5.0 200 6.3 5.0 73.3 7.0 2.0
0 46.7 40| 30| 167 23 601 133 63 6.0 46,7 4.0 3.0
30,0 13 ] 406 133 13 7.0 6.7 71 1.0 309 1.7 4,0
16.7 031 5.0 6.7 0.7 8.0 33 143 8.0 16,7 0.3 5.0
13.3 00] 60 0.0 0.0 9.0 0.0 0.0 9.0 13.3 0.0 6.0
46.7 371 60| 46.7 3.0 5.0 | 433 343 501 1000 370 1.0
333 201 7.0 367 2.7 6.0 367 217 6.0 86,7 13 20
1 23 10| 60| 26.7 23 1.0 | 267 19.3 7.0 76,7 5.3 3.0
167 071 104§ 167 1.3 801 167 12.7 8.0 63.3 33 4.0
13.3 03| 80 167 0.3 9.0 | 100 5.7 2.0 46.7 1.7 50
133 00] 96, 133 00| 1007 67 33 1061 400 0.0 6.0
60.0 371 70| 56.7 23 80| 433 20.7 9.0 90.0 4.7 4.0
50.0 301 8.0 467 20 9.01{ 367 15.7 10.0 76.7 3.0 5.0
2 40,0 1.7] 2.0 433 13| 100]| 267 133 11.0 76.7 2.3 6.0
26.7 104100 | 267 071 11.0] 200 10.7 12.0 633 1.0 7.0
26,7 031110 233 03| 1201 133 6.3 13.0 56,7 0.3 8.0
16.7 031]120] 167 00| 13.0] 100 3.7 14.0 46.7 0.0 9.0
63.3 30| 150 833 8.3 201 500 110 15.0 86,7 53 3.0
60,0 271165 767 30 105] 433 14,3 16,5 80.0 2.0 2.0
3 46.7 20 17.0 | 66.7 20| 120 300 11.0 15.0 80.0 1.0 10.0
40,0 071185 | 567 1.7 135 233 8.0 19,5 733 1.0 11.0
26.7 03] 190 56.7 07| 15.0] 167 4.7 21.0 70.0 0.3 12,0
26.7 00 ] 1951 50.0 00| 165] 100 1.7 225 63.3 0.0 13,0
63.3 20| 21.5f 83.3 8.3 160 | 66.7 8.0 340 ] 1000 11,3 10.0
53.3 1.7 1 22.0 { 80.0 5.0 [ 18.0] 600 6.3 36.0 93.3 8.7 12.0
4 50.0 13]225) 800 33| 200]| 467 4.7 38.0 86.7 6.3 14.0
433 03230 667 10| 220| 400 2.7 40.0 86.7 4.7 16,0
400 03] 23.5! 600 03] 240 267 1.3 42.0 80.0 1.3 18.0
36.7 0.0} 240 56.7 00| 260 233 0.7 44.0 80,0 0.0 20.0
63.3 20 520 8.7 100 279| 700 6.0 .60.0 86.7 6.0 275
56.7 1.3 ) 54.0( 833 7.7 300| 66.7 4.0 61.0 86.7 4.0 30.0
5 500 .1.0] 560} 80.0 474} 330 533 3.3 62.0 80.0 2.7 32.5
46.7 03] 5801 800 3.0 | 360 36.7 1.7 63.0 80.0 1.3 35.0
43.3 03600} 733 171 39.0| 36.7 1.0 64.0 30.0 0.7 375
433 0.01620] 667 03] 420 300 0.7 65.0 83.3 0.0 40.0

Table F.}: Performance comparison of the DTS algorithm with and/without the MAT filter in
capturing frue object motion vectors for the Table Tennis (frames #32 and #33) video
sequence.
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Appendix F Supplementary Results DTS and MAT Filter F-2

Fig. F.1: (a) Current Frame #8 in which X indicates the moving macroblocks; and (b) Reference frame
#9 of the Foreman sequence.

(¢) NTSS (&) DTS

Fig. F.2: Motion vector obtained from all four search algorithms applied to the frame pair shown in
Fig. F.1 for the Foremnan sequence.
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2391 113 32 2.2 1.9 6.2 2.2 3.3 4.8 34.8 5.7 2.2
21,71 113 | 34 22 1.9 6.4 2.2 38 3.0 239 5.7 2.4
1304 1L3] 3.6 22 1.9 6.6 2.2 38 5.2 21.7 5.7 256 N

87 113} 38 2.2 1.9 6.8 2.2 3.3 5.4 174 3.7 2.8
431 113] 4.0 2.2 1.9 7.0 2.2 38 3.6 13.0 1.9 3.0
2 001 113] 42 22 0.0 7.2 0.0 3.8 5.8 10.9 0.0 3.2
' 15.2 38) 66| 196 1.9 6.2 4.3 5.7 7.8 69.6 7.5 2.8

i

: Appendix F Supplementary Results DTS and MAT Filter F-3 W
5 FS NTSS TSS DTS

. No'.Of True | False True | False True | Faise True | False {
werations | My | Mv | T, [Mv [ Mv | T, | Mv | mv T, | Mv | MV T
% | % % | % % % % % a4
: 2174 1514 2241 22| 38| 352 22 5.7 481 152 5.7 18 g
E 431 132 24| 22) 38| s54) 323 57 50| 152 571 20 e
0 43| 132 26 221 38| 56| 22 57 532|152 57| 32 g%
43 132 28] 221 191 58| 22 33| 54 8.7 38| 24 é
431 132 30] 22| 191 60| 22 38 5.6 43 33 2.6 %
00 1i3] 32| 00| 19| 62| 00 38 58| 00 1.9 238

8.7 38| 681 174 1.9 6.4 4.3 33 &0 63.0 3.8 30
8.7 38] 70| 174 1.9 6.6 4.3 3.8 8.2 58.7 1.9 3.2

s *‘,t_;‘;’sg’ ﬁd’.‘;;‘?‘\ f%i,;i(-‘.”‘:\;s' Doe L arigtior

2 6.5 191 721 152 1.9 6.8 43 1.9 8.4 50.0 1.9 34 1
4.3 19 ] 741 130G 1.9 1.0 2.2 1.9 8.6 43.5 1.9 36 q
1 00| 19| 76 109 00| 72| 00 19 88 |_ 39.1 00] 38 3
37.0 191 921 1.7 1.9 131 13.0 1.9 13.0 304 9.4 40 X
37.0 191 941 674 1.9 76 ] 13.0 1.9 13.5 80.4 1.5 4.2 N
3 3 37.0 19] 961 652 1.9 7.9 43 1.9 14.0 78.3 5.7 4.4
3 37.0 191 98| 63.0 19 8.2 22 1.9 14.5 78.3 1.9 4.6 A
37.0 1.9 ) 100 | 587 1.9 8.5 22 1.9 15.0 71.7 1.9 48 :
' 32.6 0.0 102 | 56.5 0.0 8.8 00 1.9 15.5 69.6 0.0 50
| 76.1 57 85)] 826 5.7 84| 217 1.9 21.0 82.6 9.4 6.8 )
76.1 38| 90| 826 5.7 87| 196 1.9 22.0 804 7.5 7.0 :
4 76.1 19] 85| 304 3.3 50| 174 1.9 230 30.4 5.7 7.2
76.1 191 10.0 | 804 33 93] 152 1.9 24.0 304 38 74
3 739 191105 .3 1.9 96 ] 13.0 1.9 25.0 783 19 16 :
. 73.9 001 110 ] 761 0.0 9.9 6.5 0.0 26.0 78.3 0.0 7.8 g
3 : 78.3 19] 155 ]| 826 3571 140 ] 563 1.9 27.0 804 3.8 12,2
’ 78.3 1.9 1601 826 571 145 522 1.9 28.5 80.4 3.8 124
1 S 183 19]165] 8261 57| 150] s0.0 19] 300] 804 38| 126
78.3 1.9 | 17.0] 804 381 155] 435 1.9 315 80.4 38 12.8
760 | 19[17.5] 804 19| 160] 435 1.9 330| 804 1.9] 130 i
76.1 0.0 | 18.0| 783 00 165] 413 0.0 34.5 804 0.0 13.2 4
5 Table F.2; Performance comparison of the DTS algorithm with and without the MAT filter in i
capturing frue object motion vectors for the Foreman (frames #8 and #9) video . /
sequence. k
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Appendix F Supplementary Results DTS and MAT Filter F-4

16 32 & & % 02 13 O 1H 1
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Fig. F.3: (a) Current Frame #1 in which X indicates the moving macroblocks, and (b) Reference frame
#2 of the Rocket sequence.
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Fig. F.4: Motion vectors obtained from all four search algorithms applied to the frame pair shown in
Fig. F.3 for the Rocket sequence.
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Appendix F Supplementary Results DTS and MAT Filter F-5
FS NTSS TSS DTS
. No, ‘of True | False True | Faise True | False True | False

terations | py | My | 7 { Mv [ Mv ) T [ Mv | Mv | T | Mv | MV | T N
% % % % % % % % '

69.2 | 3411 7.0 462 ] 273 701 53.8 29.5 7.0 1000 61.4 1.0

7.7 911 75 1.7 4.5 7.5 1.7 4.5 7.5 92.3 36.4 L3

0 3.8 45} 8.0 3.8 2.3 3.0 3.8 23 8.0 92.3 36.4 20

3.8 45| 85 3.8 23 8.5 3.8 23 8.5 923 11.4 2.5

338 451 9.0 3.8 2.3 9.0 3.8 2.3 9.0 84.6 9.1 3.0

0.0 23| 95 0.0 2.3 9.5 0.0 23 9.5 80.8 0.0 3.5

69.2 | 136 105 385 68| 105] 423 9.1 6.5] 923 18.2 30

65.4 68 [ 11.0]| 308 23] 110 423 23 7.0 92.3 4.5 35

i | 317 681 11.5] 308 23] 11.5] 308 23 1.5 92.3 2.3 4.0

53.8 23 [ 120] 19.2 231 120] 231 23 3.0 923 2.3 4.5

46.2 23 ) 125 | 154 231 1251 154 23 8.5 92.3 2.3 5.0

30.8 00 [ 13.0 3.8 001 13.0 7.7 0.0 9.0 88.5 0.0 5.5

65.4 68 { 185} 500 9.1} 160 538 114 13.0 73.1 2.3 8.5

65.4 68 | 1901 50 681 165] 538 4.5 13.5 731 23 9.0

> 61.5 454 195 | 5090 68| 17.0] 500 4.5 14.0 73.1 2.3 9.5

51.7 4.5 | 200 | 46.2 231 12.5] 423 2.3 14.5 73.1 2.3 10.0

57.7 231 205 | 346 23] 18.0] 423 23 13.0 73.1 2.3 10.5

51.7 00| 210 346 00| 185 346 0.0 15.5 73.1 0.0 11.0

571.7 68 1320 500 23 [ 290 | 50.0 23 320 73.1 2.3 19.5

57.7 68 | 33.0{ 500 23] 300 ] 500 23 33.0 731 2.3 20.¢

3 51.7 451 340 3500 23| 310] 500 23 340 73.1 2.3 20.5

571.7 23 [ 350 ] 462 23] 320 385 23 35.0 73.1 2.3 210

5791 23360 a23] 23] 330] 385 23] 360] 7. 23| 215

51.7 00 ] 370 346 00| 34.0| 346 0.0 37.0 73.1 0.0 22.0

Table F.3: Performance comparison of the DTS algorithm with and/without the MAT filter in
capturing frue object motion vectors for the Rocket (frames #1 and #2) video sequence.






