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Abstract

Recent advances in telecommunication technologies and the increasing avail-

ability of location sensitive mobile devices have substantially enhanced the

user experience in location-based services (LBSs). LBSs are the services that

take into account the geographic locations (i.e., spatial coordinates) of users

to provide tailored information. In this thesis, we study a variety of location-

based queries in urban environments. Mainly, we focus on processing such

queries in the indoor space motivated by the abundance of applications of

indoor location-based services and lack of existing studies supporting indoor

spatial queries. Although the spatial query processing has been extensively

studied for outdoor space, these techniques are not efficient when applied to

indoor venues due to inherent differences in the topology of indoor space [1].

Next, we briefly describe the contributions we make in this thesis.

We study a variant of route planning query called category aware multi-

criteria route planning queries (denoted by CAM) that take into account not

only route length, but also other relevant attributes such as total price and

total waiting time etc., in determining an optimal route. Although the problem

of CAM query is NP-hard in the number of query categories, we propose

exact solutions suitable when the number of query categories is small which

is typically the case in real-world applications. To handle the case when the

number of query categories is large, we provide a fast approximation solution

based on a novel dominance-based pruning technique.

We are the first to study skyline routes search in the indoor space. We take

into account two attributes, route distance and the number of shops/stores
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visited, to determine the dominance of a route over another. We prove that

the problem is NP-hard in the number of query keywords. We propose an exact

solution, assuming the number of query keywords is small. The experiments on

a real-world dataset show the efficiency and scalabilty of the proposed solution.

Furthermore, we are also the first to investigate continuous detour queries

in the indoor space. We propose techniques that exploit the geometric prop-

erties of the hyperbolas and the unique properties of the indoor space such as

rooms, hallways, etc. The key idea behind our solution is to utilize the safe

zones to reduce the number of re-evaluation of the detour queries against users’

movements. The experiments show that our solution can process a continu-

ous detour query significantly faster than a competitor and also significantly

reduces the communication overhead.

We introduce a variant of spatial keyword query called continuous range

spatial keyword queries over moving spatio-textual objects (or CRSK-mo

queries) that returns objects within a given range where the range is deter-

mined based on both spatial proximity and textual similarity. We exploit the

spatial and textual upper bounds between queries and objects to form safe

zones (at the client-side) and buffer regions (at the server-side) to reduce both

communication and computation overhead. The experimental results demon-

strate the superior performance of the proposed solution.
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Chapter 1

Introduction

Location-based services (LBSs) provide tailored information for users with re-

spect to the location of the user. Some of the common services are navigation

systems, emergency services, local advertisement, asset management, enter-

tainment, and social networking. With the increasing availability of location

sensitive mobile devices such as smartphones and the evolution of telecommuni-

cation technologies, we have witnessed rapid advances in LBSs recently. Unlike

other traditional geographic information systems (GIS) and web-based appli-

cations, LBSs are more focused on the dynamic and mobile environments [5]

in which these services can be used on-the-go. Due to the growing ubiquity

of smartphones, these services have been utilized in a variety of people’s daily

life activities and have become the cornerstone of the mobile experience. Ac-

cording to the Australian Communication and Media Authority (ACMA) [6],

72% of Australians accessing the internet via their mobile phone use an LBS

at least once a week.

The increasing use of LBSs has led most of the companies to integrate

LBSs into their mobile applications as it has a remarkable impact on their

18



businesses. For example, retailers can increase their customers’ interaction

by providing information about their products and promotions. Meanwhile,

they can also use LBSs to gain insights on customers’ shopping behavior to

initiate promotion campaigns or tailor their market strategies. Moreover, the

recent surveys report that the majority of trending mobile applications could

not have gained such popularity in the absence of the LBSs [7, 8].

LBSs have received significant research attention in the past, and numer-

ous spatial queries have been studied to support various LBSs. For exam-

ple, k nearest neighbor queries [9, 10, 11, 12, 13, 14], range queries [15, 16,

17, 18] , reverse k nearest neighbor queries [19, 20, 21, 22], spatial keyword

queries [23, 24, 25, 26, 27], skyline queries [28, 29, 30, 31, 32], route planning

queries [33, 34, 35, 36, 37], detour queries [38, 2, 39, 40, 3], etc. In this thesis,

we study a variety of location-based queries in urban environments which typ-

ically have a high density of built structures such as shopping malls, airports,

hospitals, offices, and transportation networks. An urban environment con-

sists of indoor space and also outdoor space. But, we mainly focus on spatial

query processing in indoor venues due to the following two reasons. Firstly,

the research [41, 42] has shown that people spend more than 85% of their

daily lives in the indoor space such as office buildings, shopping centers, li-

braries, etc. Thus, it is important to support LBSs in the indoor environments

to realize a wide variety of real-world applications such as emergency services,

assisted healthcare systems, indoor asset tracking and event planning. For

example, directing people to safe exits during emergency evacuations, tracking

and monitoring assets used in an airport and providing shopping assistance for

customers. Secondly, even though the spatial query processing has been stud-

ied extensively in outdoor space (e.g., transportation networks and Euclidean

space), these techniques are not suitable for indoor venues as they do not take
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into account the unique properties of the indoor space such as hallways, stairs,

escalators, rooms, etc. It was shown in [1] that a straightforward extension

of the outdoor techniques is up to five orders of magnitude slower than the

techniques that are specifically designed for indoor environment exploiting its

unique properties. More details are discussed in Section 1.2. This motivates

us to study spatial query processing techniques specifically designed for indoor

venues.

1.1 Some Popular Spatial Queries

In this section, we briefly describe the spatial queries which are related to this

thesis.

Route Planning Queries

A traditional route planning query returns the optimal route from a given

source point to a target point that passes through at least one point of interest

from each given category. Figure 1.1 shows an example of a network with

restaurants, supermarkets and gas stations that are denoted by ri, mi and gi

respectively. Assume a user who is traveling from her workplace s to home

t and wants to visit a gas station, a supermarket and a restaurant on her

way. She can pose a route planning query to find the shortest route that goes

through each of such places on her way home. As Figure 1.1 shows, the routes

Ra = {s → r1 → m3 → g2 → t} (solid red line) and Rb = {s → g1 →

m1 → r2 → t} (solid blue line) are two possible routes with the distances (in

Manhattan distance) 16 and 20 respectively. The route Ra is returned since

it is shortest route among all the possible routes. In the past, many variants

of route planning queries have been studied. We provide a comprehensive
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overview in Section 2.

Figure 1.1: Example of a route planning query

Skyline Queries

Given a set of points P with multiple attributes, a skyline query returns each

point p ∈ P that is not dominated by any other point. These points are known

as skyline points. A point x ∈ P dominates another point y ∈ P if x is better

than y in at least one attribute and at least as good as y in all other attributes.

The skyline queries are essential for real-world applications that involve

multi-criteria decision making. For example, assume a student who is going

to a conference wants to find an accommodation that is cheap and close to

the conference venue. Figure 1.2(a) shows a table that lists the distance to

the conference venue (in kilometers) and the price per night (in dollars) of

each hotel in the city where the conference is held. Figure 1.2(b) shows the

data points that correspond to the hotels with two attributes: distance and

price. Lets consider the point H3 and H8. The point H8 dominates the point

H3 as both price and distance of H8 are smaller than those of H3. Thus, the

point H8 is a better choice than the point H3, i.e., H8 dominates H3. The

points H1, H2, H4, H6 and H8 (the points which are connected in the figure)
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(a)

(b)

Figure 1.2: Example of a skyline query

are the skyline points as they are not dominated by any other point. Therefore,

the hotels that are represented by these points are important in terms of the

distance and price because for each hotel, there is no other hotel that is better

than it in terms of both price and distance. These skyline hotels are sent to

the user as a set of shortlisted hotels and she can make a decision to finalize a

hotel of her choice.

As stated in the previous section, traditional route planning queries return

a route that optimizes a single criterion, e.g., the shortest route. If the user has

multiple criteria (e.g., total distance of the route and total price of the route),

a skyline route planning query returns all routes that are not dominated by

any other route. More details are discussed in Chapter 4.
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Detour Queries

A detour query is a special case of route planning queries where the user

specifies only one point that she wants to pass through on her way to the

target. Specifically, given a source s and a target t and a set of points P ,

a detour query returns the shortest route from s to t that passes through at

least one point of P . For example, a user shopping in a supermarket may

want to go to her car in the car park but may want to pass through a coffee

shop on her way out. She may issue a detour query that returns the shortest

path which deviates from the original route (may be the preferred path or the

shortest path), passes through a point-of-interest, e.g., a coffee, and reaches her

destination. Figure 1.3 shows an example of a detour query where the dotted

(red) line represents the shortest path while the solid (green) line represents

the detour path. We study continuous detour queries in this thesis. More

details are presented in Chapter 5.

Figure 1.3: Example of a detour query
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Spatial Keyword Queries

The spatial keyword queries are one of the most popular queries in location-

based services. Given a set of geo-textual objects O where each object o ∈ O

is described by its location and a set of keywords, a spatial keyword query q

finds objects that satisfy the requirements of the query in terms of both spatial

proximity and textual similarity. For example, Figure 1.4 shows 6 restaurants

R1 − R6. The popular dishes of the restaurants are mentioned below each

restaurant. Consider a user may want to find two nearby restaurants that are

popular for seafood and steak. She can pose a spatial keyword query with

her preferences as keywords “seafood” and “steak”. It will return R6 and R3

restaurants as these are the two closest restaurants that contain at least one

keyword. A wide variety of spatial keyword queries have been studied in the

past including range query, k nearest neighbor query, top-k query, and publish-

subscribe query. A comprehensive study of these queries can be found in [43].

Figure 1.4: Example of a spatial keyword query
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1.2 Various Problem Settings for Spatial

Queries

As we mentioned earlier, a plethora of studies that investigate the spatial

query processing can be found in the literature. These queries are studied

using various problem settings. In this section, we briefly discuss some of the

well-known problem settings that are used in spatial query processing.

Snapshot vs Continuous

A Snapshot query computes the results of the query only once. For example, a

user may want to find the coffee shops within 2 kilometers from her apartment.

She may issue a snapshot range query with the range as 2 kilometers and the

query location as her apartment. Hence, all the coffee shops within the given

range are returned.

In contrast to a snapshot query which is a one-time query processing, a

continuous query must keep the query result up-to-date until the query is ter-

minated since the underlying data may change with time. For example, a

person who is driving a car may want to find the coffee shops within 2 kilome-

ters from his current location. Hence, the query results must be continuously

monitored since his current location may change as the car moves. This exam-

ple describes a scenario where only the query object is continuously moving.

But there are real-world scenarios where both query objects and data objects

may be continuously moving. For example, a moving armored car in a bat-

tlefield wants to continually find the nearest tank until it reaches the base

camp.
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Euclidean Space vs Spatial Networks

The spatial distance is an essential feature in the spatial query processing.

Methods that are used to measure the spatial distance vary depending on the

applications. Euclidean distance, Manhattan distance and network distance

are the most common variations of the distance functions used in recent studies.

For example, a person walking on a street may want to find the closest Chinese

restaurant. In such a scenario, the network distance is more plausible than

the Euclidean distance. Hence, the spatial query must take into account the

network distance between the query object, i.e., the user, and the data objects,

i.e., the Chinese restaurants, to determine the query result. Similarly, a fighter

pilot who wants to find the nearby enemy targets may issue a range query that

uses the Euclidean distance in measuring the distances.

Outdoor Space vs Indoor Space

As we mentioned earlier, the spatial queries on outdoor space either use Eu-

clidean space or road network depending on the application. The road network

is represented using a network graph where the roads and road junctions are

represented using the edges and vertices in the graph appropriately. Similarly,

the indoor space can also represented using graphs such as the door-to-door

graph [44], where doors are represented using vertices while edges represent

the connectivity between the doors. However, a straightforward extension of

the existing outdoor techniques results in below par performance as it relies

on the properties of road networks and fails to exploit the unique properties

of indoor space. [1] provides evidence that clearly shows the uniqueness of

the indoor space. It reports that the road networks have much lower average

out-degree (2 to 4) as compared to the indoor graphs which have average out-
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degree up to 400. Therefore, the indoor graphs are much larger relative to the

actual area it covers. For example, the indoor graph corresponds to an indoor

venue (i.e., Clayton campus of Monash University) which is used in [1] consists

of 6.7 million edges and around 41,000 vertices. Compared to this, the road

network corresponds to California state consists of around 4.6 million edges

and 1.9 million vertices. Therefore, unique techniques that carefully exploit

these indoor properties are necessary to provide efficient results.

1.3 Contributions

This thesis aims to study efficient spatial query processing in urban environ-

ments. We investigate the limitations of previous studies and propose efficient

techniques to answer several spatial queries focusing on the indoor space. Be-

low, we briefly discuss the contributions made in this thesis.

1.3.1 Category Aware Multi-criteria Indoor Route

Planning Queries

A route planning query has many real-world applications and has been stud-

ied extensively in outdoor spaces such as road networks or Euclidean space.

Despite its many applications in indoor venues (e.g., shopping centres), almost

all existing studies are specifically designed for outdoor spaces and do not take

into account the unique properties of the indoor spaces. Hence, we study the

problem of category aware multi-criteria route planning query in indoor space,

denoted by CAM, which returns the optimal route from an indoor source point

to an indoor target point that passes through at least one indoor point from

each given category while minimizing the total cost of the route. Although

we show that CAM query is NP-hard, the exact solutions may be feasible for
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the scenarios when the number of query categories is small, which is typically

the case in many real-world applications. However, when the number of query

categories increases, the exact solutions become increasingly expensive. Thus,

based on a novel dominance-based pruning, we propose an efficient approxi-

mation algorithm that generates high-quality results. We provide an extensive

experimental study conducted on a real-world dataset and demonstrate that

our algorithms are efficient and produce high-quality results.

The results were published in ACM International Conference on Advances

in Geographic Information Systems (ACM SIGSPATIAL) 2018. Additionally,

an extended version has been submitted to the World Wide Web Journal and

it is currently under review.

1.3.2 Keyword-aware Skyline Routes Queries in

Indoor Venues

We study an interesting route planning problem called keyword-aware skyline

routes (KSR) query which returns a set of non-dominated routes, i.e., skyline

routes, instead of an optimal route. We take into account two attributes,

route distance and the number of shops/stores that are visited, to determine

the dominance of a route over another route. A route Rx dominates another

route Ry if Rx is better than Ry in at least one attribute and at least as good as

Ry in all other attributes. For example, let Rx and Ry be two routes that start

at a point s and end at a point t, covering all the user given keywords. Let

the distance of route Rx and Ry be 100 and 150 meters respectively. Assume

that route Rx passes through only one shop while route Ry goes through three

different shops. Thus, route Rx dominates route Ry since both route distance

and number of visited shops/stores of route Ry are smaller than those of route
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Rx. KSR queries facilitate the users to find the most promising routes among

the all possible routes, with respect to these attributes. Although we prove that

the problem of KSR query is NP-hard, we propose an efficient exact solution

for the case when the number of query keywords is small which is typically the

case in real-world applications. We present an extensive experimental study

on a large real-world shopping center containing real products and show the

efficiency of the proposed techniques.

This work was published in Ninth ACM SIGSPATIAL International Work-

shop on Indoor Spatial Awareness (ISA) 2018.

1.3.3 Continuous Detour Queries in Indoor Venues

We study continuous detour queries in the indoor space. A continuous detour

query finds the nearest indoor detour object (e.g., an ATM) for a moving user

who is walking towards a target location in an indoor venue, where the detour

distance of an indoor object is measured as the total indoor distance of the

object from the user’s current location to the detour object and from the detour

object to the target location. The continuous detour query has been already

studied in the outdoor space [3, 45], but the solutions are not adaptable for the

indoor space due to the unique characteristics of indoor venues. We develop

the first solution for the efficient processing of the continuous detour query in

the indoor space. The novelty of our solution comes from the computation

of the safe zones for the indoor objects by exploiting the geometric properties

of the hyperbolas and the uniqueness of the indoor space. A safe zone for an

indoor object represents an area where it is guaranteed that the indoor object

remains the nearest detour with respect to a partition door for a user moving

towards a fixed target. The key ideas behind the efficiency of our solution

are reducing the number of re-evaluation of the detour queries for the location
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change of a moving user, precomputing the safe zones, and indexing them

using a grid structure.

The results of this work have been submitted to International Symposium

on Spatial and Temporal Databases (SSTD) 2019 and the paper is currently

under review.

1.3.4 Continuous Range Spatial Keyword Queries over

Moving Spatio-textual Objects

We propose an efficient solution for processing continuous range spatial key-

word queries over moving spatio-textual objects (namely, CRSK-mo queries).

In CRSK-mo queries, the relevance of an object to a query is determined

in terms of both spatial proximity and textual similarity between the query

and object. Hence, every object with the relevance score less than or equal

to a user given threshold score is returned as the answer. Major challenges in

efficient processing of CRSK-mo queries are as follows: (i) the query range,

i.e., threshold score, is determined based on both spatial proximity and tex-

tual similarity; thus a straightforward spatial proximity based pruning of the

search space is not applicable as any object far from a query location with a

high textual similarity score can still be the answer (and vice versa), (ii) fre-

quent location updates may invalidate a query result, and thus require frequent

re-computing of the result set for any object updates. To address these chal-

lenges, the key idea of our approach is to exploit the spatial and textual upper

bounds between queries and objects to form safe zones (at the client-side) and

buffer regions (at the server-side), and then use these bounds to quickly prune

objects and queries through smart in-memory data structures. We conduct

extensive experiments with a real-world dataset that verify the effectiveness
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and efficiency of our proposed algorithm.

For the ease of presentation, we present our techniques for CRSk-mo queries

in Euclidean space. However, we also show how the techniques can be easily

extended for indoor venues. The results have been published in the World

Wide Web Journal 2018.

1.4 Thesis Organization

Below, we present the structure of the rest of the thesis.

• Chapter 2 presents a review of the related work.

• Chapter 3 describes our work on category-aware multi-criteria indoor

route planning queries.

• Chapter 4 covers our proposed techniques to solve keyword-aware skyline

routes search in indoor venues.

• Chapter 5 constitutes our work on continuous detour queries in indoor

venues.

• Chapter 6 covers our work on continuous monitoring of range spatial

keyword query over moving objects.

• Chapter 7 concludes our research and describes several possible directions

for future work.
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Chapter 2

Literature Review

This chapter provides a brief overview of the related work for each type of

queries we study in this thesis. More specifically, in Section 2.1, we review the

existing techniques to answer spatial queries in indoor space. We provide an

overview of the related techniques for route planning queries in Section 2.2.

We present the related work on skyline queries in Section 2.3 followed by an

insight into the indexing and query processing techniques of continuous queries

in Section 2.4. In Section 2.5, we provide a detailed discussion of the existing

techniques of detour queries. Finally, we survey the related work on spatial

keyword queries in Section 2.6.

2.1 Query Processing in Indoor Space

The query processing in indoor space has received considerable attention in

recent years where several query processing and indexing techniques were pro-

posed. A comprehensive taxonomy for querying indoor data, shortest dis-

tance/path, range, and k nearest neighbor queries under various settings can

be found in [46, 47, 48, 49]. RTR-Tree and TP2R-tree [50] are extensions of
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R-tree to index trajectories of indoor moving objects. Xie et al. [51] develop

a composite indexing structure indR-tree that indexes indoor entities into dif-

ferent layers, namely geometric, topological and object layers.

Figure 2.1: Example of an indoor venue [1]

Yang et al. [52] propose accessibility base (AB) graph that describes the

topology of a floor plan of an indoor venue by capturing the underlying con-

nectivity and accessibility of the particular indoor space. Figure 2.1 illustrates

an example of an indoor venue that consists of 17 indoor partitions (P1 to P17)

and 20 doors (d1 to d20). The AB graph corresponds to this indoor venue is

shown in Figure 2.2. As Figure 2.2 depicts, a vertex represents an indoor par-

tition while an edge captures the connectivity between two indoor partitions.

For example, there is an edge with label d4 between vertex P1 and P2 in the

AB graph since the indoor partitions P1 and P2 are connected by door d4 (See

Figure 2.1). Although the AB graphs capture the connectivity information,

they do not support indoor distance computations. To handle this problem,

distance matrix [52] is introduced. It stores door-to-door indoor minimum

walking distances. Even though this approach is optimal in retrieving the dis-

tance between any two doors, the storage and pre-processing costs do not scale

well for large indoor venues.
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Figure 2.2: Example of an AB graph [1]

The door-to-door (D2D) graph [44] is one of the most notable techniques

which has been used in most of the studies in the literature since it enables

various query processing techniques in road networks [53, 54, 55, 56, 57, 58]

to be applied in the indoor space. Figure 2.3 shows the corresponding D2D

graph for the indoor venue which is shown in Figure 2.1. As Figure 2.3 shows,

the vertices represent the doors in the indoor space. A weighted edge between

two vertices is created if they are connected to the same indoor partition (e.g.,

room, hallway, etc.) where the edge weight is the indoor distance between the

corresponding doors. For example, the doors from d1 to d5 are connected to

each as they all belong to the same partition, i.e., P1.

Figure 2.3: Example of a D2D Graph [1]

Shao et al. [1] introduce an efficient index structure called IP-tree that

takes into account the unique properties of indoor space in building the index.

In the IP-tree, adjacent indoor partitions (e.g., rooms, hallways, staircases,

etc.) are combined to form leaf nodes. Then the adjacent leaf nodes are

combined to form intermediate nodes. This process is iteratively continued

until all nodes are combined into a single node (i.e., root node). Figure 2.4
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shows the corresponding IP-Tree for the indoor venue which is shown in Figure

2.1. As Figure 2.4 illustrates, the indoor space is first converted into four

leaf nodes (N1 to N4). Each leaf node consists of several indoor partitions,

specifically N1 = {P1, . . . , P4}, N2 = {P5, . . . , P7}, N3 = {P8, . . . , P12} and

N4 = {P13, . . . , P17}. Then, the leaf nodes are iteratively merged until the root

node is formed. For example, N1 and N2 are merged to form N5, whereas N3

and N4 are merged to form N6. For each node, a distance matrix is created to

store the distances between every access door and every door in the particular

node. VIP-Tree or Vivid IP-Tree [1] is an improvement of the IP-tree. For each

door di, it stores the following additional information. Let N be a leaf node

that contains door di. For every door dj which is an access door in one of the

ancestor nodes of N , VIP-tree stores dist(di, dj) as well the next-hop door dk on

the shortest path from di to dj. This information can be efficiently computed

by the efficient shortest distance/path algorithms using an IP-tree. Compared

to the existing indexing techniques, VIP-tree has demonstrated more efficiency

and higher scalability. In this thesis, we utilize VIP-tree to index the indoor

space.

Figure 2.4: Example of a VIP-tree [1]
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2.2 Route Planning Queries

A large body of research has been done on developing techniques to efficiently

process route planning queries. Trip planning query (TPQ) [33] returns the

shortest route starts at a source location, passes through at least one object

from each given category and ends at a target location. For example, Figure 2.5

shows a network with three different categories of point sets, particularly green,

orange and blue circles represent gas stations (denoted by gi), banks (denoted

by bi) and pharmacies (denoted by pi) respectively. Moreover, source and

target points are shown in star shapes. Consider a user who is traveling from

the point s to the point t wants to go to a bank, a gas station and a pharmacy on

her way. She may use a TPQ to obtain the route R = {s→ p3 → b2 → g3 → t}

(the route that is shown in solid line) which is the shortest route that covers all

given categories. They prove that the problem of solving TPQ is NP-hard and

Figure 2.5: A network with three different categories of point sets

propose two near-optimal solutions, namely nearest neighbor algorithm and

minimum distance algorithm. These two algorithms are based on triangular

inequality property of the metric space. The nearest neighbor algorithm starts
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from the source vertex and incrementally adds the nearest neighbor of the last

vertex to the trip from the vertices that belong to the categories which have

not been covered yet. The minimum distance algorithm first finds a set of

candidate vertices by obtaining a vertex per given category with the minimum

trip distance from the starting point to the target point via the particular

vertex. Then, the trip is formed by iteratively visiting the nearest neighbors

from this set of candidate vertices.

Sharifzadeh et al. [34] introduce a variant of TPQ called optimal sequenced

route (OSR) query that takes into account an order of visiting places which

is given by the user. For example, assume a user may want to go to a gas

station first, and then to a bank and finally to a pharmacy. Therefore, the

user can use an OSR query to get an optimal route in terms of traveling

distance. As Figure 2.5 shows, the OSR query returns the route R = {s →

g1 → b1 → p1} (the route that is shown in dotted line) as the result since

it is the shortest route covering all the categories in the given sequence. In

order to solve OSR in Euclidean space, they present two exact algorithms light

optimal route discoverer (LOAD) and R-tree based LORD (R-LOAD) which is

an improvement of the LORD. They also propose a solution called progressive

neighbor exploration (PNE) to handle OSR queries in the metric space. The

idea behind the PNE is to incrementally generate a set of candidate routes for

the given category sequence. They iteratively add the nearest neighbor vertices

to a partial candidate route from the vertices that has not been visited. They

maintain the given sequence when adding a new vertex to a route. Also, they

add the next nearest neighbor of the end vertex of the previous route since it

may produce a better route later. For example, the PNE starts from the point

s and it adds the nearest neighbor belongs to the category g (first category in

the given sequence), i.e., the point g1 to the route. Then it adds the point b1
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(which belongs to the next category in the given sequence) to the end of the

current route since it is the nearest neighbor of the point g1. Meanwhile, it also

generates another route from the point s via the point g2 since it is the next

nearest neighbor of point s. They use a min-heap to store these candidate

routes based on their route distances. Hence, the route with the minimum

distance is popped from the heap at each subsequent iteration and expanded

further. There are several works in the literature [59, 60, 61, 62, 63] that study

OSR queries.

Cao et al. [35] introduce another variant of route planning query called

keyword-aware optimal route (KOR) search, which covers all the user given

keywords while satisfying a user-specified budget constraint and optimizing

objective score of the route. They show that the problem of answering the

KOR query is NP-hard. Hence, they propose two approximation algorithms,

specifically OSScaling and BucketBound, with proven approximation bounds.

The basic idea of OSScaling algorithm is to iteratively generate partial routes

from the best one among the already found partial routes. The BucketBound

algorithm uses buckets to organize the partial routes based on their best pos-

sible objective scores. Hence, the best partial route is determined efficiently

in each iteration. Zeng et al. [36] find an optimal route such that the key-

word coverage is maximized without exceeding a given budget constraint. The

purpose of such a route is to optimally satisfy the user’s weighted prefer-

ences. They define an admissible heuristic exploiting the submodular property

where the optimal route is obtained using a variant of A* algorithm. Chen

et al. [64] study a new type of route planning query called multi-rule partial

sequenced route query in which the users set traveling preferences/restrictions

when they issue a query. First, the given preferences/restrictions are evaluate

to determine a set of traveling rules by employing the topological sort. Then,

38



an optimal route that satisfies all these traveling rules is obtained utilizing

a heuristic approach. They propose three different heuristic approaches that

return optimal routes which are very close to the shortest routes.

Yao et al. [37] study another variant of route planning query called multi-

approximate-keyword routing (MAKR) query. A MAKR query finds a route

with the shortest length such that it covers at least one matching object per

given keyword while satisfying the string similarity constraints. They propose

an exact solution called progressive path expansion and refinement (PER)

algorithm that generates partial candidate paths and refines them until the

optimal path is determined. It starts with the shortest path from the source

point to the target point and progressively adds a point whose string is similar

to one of the given query keywords, to the current partial candidate path while

minimizing the route distance. Accordingly, it generates all possible candidate

paths until the shortest path that covers all keywords is determined. Moreover,

the distances of partial paths are estimated using pre-computed landmarks

to reduce the cost of the shortest path distance computations. Their exact

solution is efficient and works well for less number of query keywords since the

MARK problem is NP-hard. To support the queries with a large number of

query keywords, they present an approximate solution called global minimum

path (GMP) algorithm. First, for each query keyword, the GMP algorithm

finds the closest point with respect to both source and target points. Then,

starting from the source point, it keeps adding the nearest neighbor point from

this set of candidate points until all the keywords are covered.

Shao et al. [65] are the first to study the indoor trip planning queries.

They propose an exact solution called VIP-tree neighbor expansion (VNE).

The main idea of VNE is to explore the nearest neighbors one-by-one while

adding them to the end of the partial candidate routes. Once such a route is
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constructed, the current nearest neighbor of the second last node of the route

is replaced with the next nearest neighbor to assure that all possible partial

candidate routes are taken into account. This process is continued until the

shortest route that covers all the given categories is found. They introduce

a distance pre-computation similar to [1] where the distances between all the

access door and the indoor objects (assuming the number of objects in an

indoor venue is very small) are stored to reduce the distance computation

cost. VNE takes into account the unique properties of the indoor space and

features two levels of pruning, particularly at pre-processing phase and at query

processing time. In Section 3.3.2, we discuss the limitations of related work in

answering the problem that is studied in Chapter 3.

2.3 Skyline Queries

The skyline operator is introduced in [28]. They propose two approaches,

block-nested-loop processing and extended divide and conquer approach. Since

then, the skyline query processing in databases has drawn a significant atten-

tion where an enormous amount of research is found in the literature [66, 29,

30, 67, 68, 69].

Most of these works focus on efficiently finding skyline points in traditional

databases. Kossmann et al. [29] propose an online algorithm to process sky-

line queries. They compute the skyline in a batch using a nearest neighbor

approach where they progressively report the skyline points. However, their

techniques process an object several times to verify whether it is a dominant

or a dominated point. Furthermore, in high dimensional spaces, this approach

is more likely to get duplicate points in the resultant skyline. To address this

issue, Papadias et al. [30] propose a solution that utilizes an R-tree to index
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the data space. They introduce an algorithm called branch-and-bound skyline

(BBS) that performs a nearest neighbor search on the R-tree index such that

only a single access to each R-tree node (each node contains unique data points)

is required to identify the skyline points. Thus, it does not retrieve duplicates

like the NN approach in [29]. Lin et al. [70] introduce an online algorithm to

compute the skyline for the most recent n elements in a rapid data stream.

All these methods focus on skyline query processing in Euclidean space. Next,

we present some important studies that apply the skyline operation on spatial

database systems, specifically, in road networks.

Tian et al. [71] introduce the concept of skyline paths and propose a novel

skyline path search algorithm called SkyPath. Their techniques utilize edge

attributes of the road network to determine the skyline paths between a given

source and target locations. First, they determine a skyline path whose sum-

mation of all attribute values is the smallest compared to other possible paths.

Then they greedily add a relay node to the path and check whether the new

path is itself a skyline path. This process is continued until all the skyline

paths are determined. Kriegel et al. [32] present a best-first-based graph ex-

ploration that takes into account route preferences based on arbitrary road

attributes. Instead of the naive method used in [71], they used triangle in-

equality based approach to estimate the minimum attribute values of a path

formed through a relay node that is greedily retrieved. They assume that dif-

ferent paths have different values correspond to each attribute. Moreover, they

do not take into account any POIs or the distance between them in route con-

struction. Deng et al. [31] study a problem called multi-source skyline query

that finds skyline POIs in road networks with respect to the relative network

distances to multiple query points. Given a set of m query objects and n data

objects, they map each data point to m-dimension space with ith dimension
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refers to the road distance between the data object o and the ith query object.

They propose three algorithms: Euclidean distance constraint, lower bound

constraint and collaborative expansion to answer multi-source skyline queries.

Huang et al. [72] study another type of skyline problem in which the domi-

nation of points takes into account two attributes, namely road distance to

the query and detour distance from a predefined route of the query. Jang et

al. [73] are the first to study the problem of continuous skyline queries in road

networks. They propose an approach that utilizes the precomputed results

to determine the skyline objects. However, their techniques are not applica-

ble in large datasets as their precomputation incurs tremendous processing

cost. Also, the query results do not deliver useful information since the skyline

points far away from the query object are also included in the query results.

Huang et al. [74] introduce a grid index to manage the information of the data

objects on the road network such that only a small proportion of data objects

are accessed in query processing. First, they determine a set of candidate

skyline points in global space by accessing only a few grid cells. Then a set

of points where the query results change is determined to support continuous

monitoring.

Hsu et al. [75] study a skyline trip planning query that returns a set of sky-

line travel routes within a user-defined spatial range. They take into account

some factors such as the visiting time information of POIs and the distances

to the set of query points, when retrieving the travel routes. Aljubayrin et

al. [76] study a problem that finds a set of skyline routes passes through mul-

tiple POIs covering a given set of categories. They take into account both

trip distance and trip aggregated cost in ranking the routes. They prove that

the problem is NP-hard and propose two fast algorithms that produce near

optimal results in practice. They precompute and store the distances between
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POIs and some geographical regions in the network. The proposed algorithms

work by repeatedly iterating through two stages, particularly POIs nomination

and trip construction stages. In the first stage, the most superior point per

given category is determined. Then, in the next stage, all possible routes from

the source point to the target point that pass through the set of nominated

POIs, are constructed using a greedy approach to determine the skyline routes.

However, these techniques are not applicable in answering the problem that is

studied in Chapter 4. More details are presented in Section 4.3.2.

2.4 Continuous Queries

Several techniques for indexing moving objects/queries have been proposed

in the literature to support continuous query processing. Below are the de-

tails. Saltenis et al. [77] propose a novel indexing technique called the time-

parameterized R-tree (TPR-tree) which indexes the current and anticipated

future positions of moving objects by transforming the location of each object

into a linear function of time. Tao et al. [78] develop an improved version of the

TPR-tree that utilizes efficient insertion and deletion techniques. But these

indexing structures are too expensive to maintain as the known-trajectory as-

sumptions do not support many real-world scenarios as the future locations

and velocities of the objects are frequently changed.

Prabhakar et al. [79] introduce a novel strategy call Q-index that indexes

the queries instead of the objects. Although it reduces the index maintenance

cost, their techniques are limited to range queries. Wu et al. [80] propose a

new query indexing method called containment encoded square (CES) based

indexing. Kalashnkov et al. [81] propose an R-tree variant called RUB -tree

which is an R-tree with update buffering where the proposed techniques are
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applicable to any other R-tree variants and various kinds of multi-dimensional

indexes (in memory grid-indexes). However, all these techniques impose high

communication and computation overhead when they are applied in real-world

applications since they focus only on reducing the evaluation cost regardless

of the location update cost. An attractive technique called safe region (also

known as safe zone) is proposed in [82, 79] to overcome these issues. Hu et

al. [82] propose a generic framework based on the safe region approach to

monitor continuous range and k-nearest neighbor queries. A safe region is

computed for each object based on the set of available queries such that the

query results are guaranteed to remain the same until the objects lie within

their safe regions. For example, Figure 2.6 shows two range queries q1 and q2

with range r1 and r2 respectively. The object o1 is a result for both queries

since o1 located within the both query ranges r1 and r2. Moreover, the shaded

area shows the safe region of object o1 where the results of two queries do not

change until object lies within this area. Consequently, the objects do not send

location updates to the server unless they move out of their safe region or the

server requests for a location update. The intuition behind the safe regions

is to reduce the communication and computation overhead by minimizing the

location updates.

Figure 2.6: Example of a safe region
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Cai et al. [83] propose a scalable and adaptive technique called monitor-

ing query management (MQM), which aims to reduce the communication cost

and the server workload by assigning a resident domain for each object. The

resident domain is computed considering the heterogeneous computational ca-

pabilities of moving objects. As opposed to the safe zone, an object (i.e., client

device) monitors some selected query boundaries along with its domain bound-

ary. Hence, the object reports its location to the server when it crosses over

some query boundary or moves out of its resident domain. In the first case, the

server updates the affected query results accordingly while in the second case,

the server determines a new resident domain for the particular object. Jung et

al. [84] propose query region tree (QR-tree) and also BQR-tree by improving

the resident domain concept. Recently, the safe regions for moving circular

range queries over stationary objects has been proposed in [85]. However, all

these techniques consider only the spatial information and fail to exploit the

textual information. Hence, these techniques cannot be used in continuous

spatial keyword query processing that is studied in Chapter 6.

The grid index structure is used in several studies that are performed on

processing continuous queries over moving objects. Yu et al. [86] propose two

approaches based on a grid index to evaluate continuous k-nearest neighbor

(CkNN) queries over moving objects. One approach is based on indexing ob-

jects while the other one is based on indexing queries. Also, they present

an extension (hierarchical grid) to address performance degradation in highly

skewed data. Mouratidis et al. [87, 88] present a new grid partitioning tech-

nique called conceptual partitioning where space around a cell is partitioned

into direction aware conceptual rectangles. Cheema et al. [89] introduce a novel

technique called CircularTrip to access data in grid-based indexing structure.

The CircularTrip starts from one cell intersected by the query point and access
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cells around the query point which are intersected by a circle centered at query

point with a determined radius. The conceptual grid tree [4] accesses the grid

by considering it as a conceptual tree. Due to the tree based structure, it

supports all the spatial query algorithms that can be applied on the R-tree.

Now we present some of the notable research in the literature that study

continuous queries in spatial networks. Kolahdouzan and Shahabi [10] propose

two approaches, particularly intersection examination (IE) and upper bound

algorithm (UBA). The IE approach performs kNN queries at every intersection

on the path to determine split points. The split points are the locations on

the path at which the results of the moving query change. In contrast to IE,

the UBA approach postpones the kNN computations to the locations that are

necessary. Cho and Chung [12] propose an approach that performs snapshot

kNN queries at each intersection point of the query path. To speed up the

kNN computation, they maintain NN results in a set of selected nodes called

condensing points. Moreover, they present an improvement of the propose

algorithm that further determines invalid points where such kNN computations

are unnecessary. Nutanong et al. [90] propose a technique called V∗-diagram

which is a safe region based technique. Each time they determine x auxiliary

objects (where k < x), i.e., some extra objects in addition to the kNN objects

of the moving query point, to construct the safe zone of the moving kNN query.

2.5 Detour Queries

In-Route Nearest Neighbor (IRNN) queries in [2] assume that the user is sticked

to a fixed daily route where she even returns back to the particular route

after visiting a detour facility. Hence, they determine the minimum detour

point by obtaining the nearest neighbors of the given route. They propose
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four approaches to process IRNN queries. More specifically, simple graph-

based approach runs the Dijkstra algorithm at each branch point with a path

search upper bound to determine the nearest neighbors. Hence, it is more

expensive when the number of branch points is large. To address this issue,

recursive spatial range query-based (RSR) is proposed. It utilizes a Euclidean

search bound to determine whether a path computation from a branch point is

necessary since the Euclidean distance provides a lower bound to the network

distance. Then, if there is no facility within the Euclidean distance range,

intuitively, no network distance based facility exists in the search area. For

example, as Figure 2.7 shows, a new path computation for branch point r4 is

unnecessary since no facility is within the Euclidean search bound T ′′. They

propose another approach called spatial distance join based that utilizes spatial

distance join operation to tighten up the search bound at the beginning of the

query rather progressively determine the bound as in the RSR. The main idea

of their final approach called precomputed zone-based is to precompute zones of

the road network such that the nearest neighbors can be determined efficiently.

Chen et al. [39] introduce Path Nearest neighbor (PNN) which is capable of

Figure 2.7: Example of RSR approach [2]

monitoring nearest neighbors to the user path, for both cases in which the user

47



moves along the preferred path and the user deviates from the preferred path.

They propose three phase algorithm based on the best first search. Initially,

they search for candidate set and then verify the set of candidate nodes that

should be visited. Finally, a monitoring phase to maintain the k-PNN results

considering the user movements. Basically, they monitor the nearest neighbor

for a dynamically changing path rather than a query point. Shang et al. [40]

study a detour problem where a preferred path is given along with a detour

distance threshold. They initially divide the path into a set of segments and

find a set of candidates whose detour distances less than a given threshold.

After finding the set of candidates, they compute lower bounds for the detour

costs of each candidate to avoid refining all of them. Then, the local best

detours are determined by refining each of them. Finally, among all the local

best detours, the detour with minimum detour cost is selected as the global

best detour.

Nutanong et al. [3] study a continuous detour query that returns k min-

imum detour objects with respect to user location. They incrementally con-

struct an order-k shortest path tree (SPT) originating from the target point.

In an order-k SPT, the branches are overlapped in a way that each node is

appeared k times in k different branches. Moreover, labels are created at each

node corresponding to these overlaps where such a set of labels accumulates k

minimum detour objects with respect to the particular node. Thus, when the

query point is at any node, the k minimum detour objects can be easily deter-

mined by looking at the set of labels of the particular node. Figure 2.8 shows

an example of order-k SPT with k of 2. Note that the Figure 2.8(b) illustrates

the order-2 SPT corresponds to the network that is shown in Figure 2.8(a).

The set of first labels (i.e., the results of a traditional SPT) is in the shaded

area. The two minimum detour objects for node n6 are objects a and f since
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the node n6 appears first in the branch of a and again in the branch of f later.

Furthermore, the result of a query point on an edge e(ni, nj), is determined by

(a)

(b)

Figure 2.8: Exmaple of (a) a network and (b) an order-2 SPT [3]

taking into account the results of nodes ni and nj, and the detour objects along

the particular edge. [45] investigates detour queries in obstructed space. They

propose an approach that constructs safe zones by retrieving k + x (x > 1)

nearest obstructed detour objects with respect to the user location where k is
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the number of detour objects that is monitored by the query.

A variant of nearest neighbor query called aggregated nearest neighbor

(ANN) query can be also utilized to answer detour snapshot queries. Yiu

et al. [13] propose three techniques that utilize Euclidean distance bounds,

spatial access methods and network distance materialization structures. [91, 92]

propose two approaches based on the network Voronoi diagrams. Each of these

approaches consists of two phases, namely, searching phase and pruning phase.

In searching phase, they continually search for the next nearest neighbor from

each query point until a common object is found. After a candidate set is

obtained, they continually expand the search by computing the next nearest

neighbor for a certain query point while pruning unqualified objects. Zhang

et al. [14] study a variant of ANN query that takes into account both spatial

proximity and textual similarity. They propose an indexing schema called

dual-granularity where bitmaps are integrated into a G-tree. They consider

POIs on the edges as newly added vertices in the network graph. Thus, it may

expand the scale of the original graph by several times when it is applied in the

indoor space, thereby leading to high space and query overheads. However,

we find these techniques are either having different aims or not applicable in

answering the problem which is studied in Chapter 5. We present more details

in Section 5.3.2.

2.6 Spatial Keyword Queries

There is a vast body of research aimed at developing efficient query processing

techniques for spatial keyword queries. A spatial keyword query returns rele-

vant contents with respect to given spatial and textual arguments. Recently,

four types of spatial keyword queries have received a special attention, namely
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Boolean kNN query, top-k kNN query, top-k range query and Boolean range

query (See [43] for a nice survey).

Focusing on the evolution of indexing structures, Zhou et al. [23] propose a

hybrid index structure that integrates inverted indexes [93] and R*-trees [94].

Felipe et al. [95] propose an index structure called information retrieval R-

tree (IR2-tree) that combines signature files with an R-tree. [96] introduces

information R-Tree (IR-tree) which is similar to IR2-tree. In this index, in-

verted files are used instead of signature files. Li et al. [97] propose an index

which is also called IR-tree that stores only one inverted file for all the nodes.

Moreover, there are several variants of IR-tree exist in the literature, such as

WIR-tree [98], CIR-tree and CDIR-tree [96]. WIR-tree is constructed in a

bottom-up manner where objects are grouped using a word partitioning al-

gorithm to form leaf nodes. Then the keyword-union and spatial properties

are taken into account in constructing the next level of the tree. CIR-tree and

CDIR-tree consist of inverted files for text retrieval and an R-tree to determine

spatial proximity. These indexes consider both textual and spatial attributes

to prune the search space at query time. Rocha-Junior et al. [99] propose

spatial inverted index (S2I) based on inverted R-trees where the set of objects

for each term/keyword is stored in a distinct aggregated R-tree (i.e., aR-tree).

Vail et al. [24] propose two spatial-textual indexing schemes, specifically spa-

tial primary index (ST) and text primary index (TS) that are based on the

grid index structure. [100, 101] also use an inverted grid index structure to

organize the related objects for each keyword. The spatial keyword inverted

file (SKIF) [102] employs an inverted file that is capable of representing both

spatial and textual information. It partitions the working space into a number

of grid cells and each cell is treated similar to a textual keyword as opposed to

the previous studies. Zhang et al. [25] present integrated inverted index (I3)
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Figure 2.9: Example of an IR-tree and its inverted files

that integrates lists of inverted files to a quad-tree. ILQ-tree [103] is another

quad-tree based index structure with an inverted index, which is designed to

exploit both spatial and keyword based pruning techniques to reduce the search

space in query time. Since all these studies do not look into continuous query

processing, we find no sensible way of extending these indexing structures to

support the problem that is studied in Chapter 6.

Moreover, [26] and [104] investigate moving top-k spatial keyword queries

over stationary objects. Similar to other traditional approaches in moving

query processing, the safe zone concept is used to continuously monitor the

query results. But their approaches are varied from other approaches since

both spatial and textual aspects are considered in computing the safe zones. [26]

proposes an algorithm that constructs multiplicatively weighted Voronoi (MW-

Voronoi) diagram to determine the safe zones. In [104], the dominant zones

for objects are identified and then those regions are utilized to compute the

safe zones. These works focus on continuously monitoring the results of mov-

ing queries. Wang et al. [27] introduce a novel adaptive index called AP-tree

which groups the registered queries with respect to their textual and spatial

properties. They propose two techniques, keyword partition and spatial parti-

tion that recursively divide the queries in a top down manner which is guided
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by a cost model. Additionally, there are variants of spatial keyword queries

in the literature such as m-closest keyword search [105, 106] which returns

spatially closest objects that match with given m keywords, collective keyword

search [107] which retrieves group of objects that cover all the given keywords,

to name a few.

Location aware publish/subscribe query is another type of spatial keyword

queries that is closely related to this thesis. Such a query reports geo-tagged

event notification to the relevant subscribers, where the relevance is measured

either by boolean matching or similarity based method. Guo et al. [108] pro-

pose an efficient location-aware pub/sub system called Elaps that updates the

moving subscriber with events within a given spatial range and also match

with a given boolean expression. They also introduce an indexing structure

called BEQ-tree to support spatial subscription matching. Moreover, the simi-

larity based methods are used to address the top-k publish/subscribe problem

where the objects are ranked according to the spatial and textual similarity

scores. [109] investigates a problem that takes into account the spatial prox-

imity, the textual relevance and also the object recency where the score of

an object decays as the time passes. Hu et al. [110] use prefix filtering and

spatial pruning techniques to address a problem where only the events which

are within a pre-given similarity threshold are returned to the particular sub-

scriber. In Section 6.2.1, we highlight the limitations of closely related work

to the problem that is investigated in Chapter 6.
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Chapter 3

Category Aware Multi-Criteria

Indoor Route Planning

In this chapter, we present our techniques to answer category aware multi-

criteria route planning queries (denoted by CAM) in the indoor space. Al-

though the problem of CAM query is NP-hard, we propose exact solutions

for the scenarios when the number of query categories is limited. Also, based

on a novel dominance-based pruning, we propose an efficient approximation

algorithm that generates high-quality results. The research presented in this

chapter was published in [111].

3.1 Overview

As stated earlier, people spend a significant amount of their time in indoor

spaces often in unfamiliar buildings such as shopping malls, airports, and li-

braries [41, 42]. Recent advances in indoor positioning technologies [112, 113],

cheap wireless networks and availability of geo-tagged data have resulted in

huge demand for indoor location-based services such as finding nearby indoor
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objects, indoor navigation, and route planning to name a few. Route planning

is one of the most popular services among both indoor and outdoor users,

which assists them in planning a route satisfying their preferences. Specifi-

cally, a user may issue a route planning query by providing a source location

and a target location along with her preferences as a set of keywords (e.g.,

restaurant, salon, supermarket). A route planning query returns an optimal

route that starts from the source location, passes through at least one location

from each given preference and ends at the target location.

Due to its popularity, the route planning query has been extensively studied

in the past few years [33, 34, 35, 36, 37]. However, all these techniques are

specifically designed for the outdoor spaces and cannot be efficiently extended

for the indoor spaces because they fail to exploit the unique properties specific

to indoor venues. For example, indoor graphs have a much higher out-degree

as compared to the road networks [1]. Furthermore, the object density is

much higher for indoor venues, e.g., the number of POIs (e.g., restaurants,

fuel stations) on the vertices of road networks is typically small whereas the

number of objects in a single room (e.g., products in a supermarket) of indoor

venues may be in thousands. Thus, specialized techniques are required to

answer route planning queries in indoor venues.

Inspired by the above, in this chapter, we provide the first set of techniques

to answer an important route planning query with various applications in

different scenarios. Consider a user who is in the car park of a large shopping

centre and has a list of items to buy (e.g., a wine bottle, a bunch of flowers, a

cake, and a wristwatch). She may want to find an optimal route such that the

total distance she needs to walk and the total price she pays to purchase all

these items are minimized. She may use a category aware multi-criteria route

planning query, denoted as CAM, which takes as input a set of categories (e.g.,
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the list of items she wants to purchase) and a scoring function, and returns

the route that passes through at least one object of each category and has the

minimum score where score of each route is computed using the user-defined

scoring function considering the total length of the route and total price of the

items along the route.

In contrast to traditional route planning queries that only consider a single

criterion (i.e., distance), category aware multi-criteria route planning queries

could retrieve optimal route considering multiple criteria such as the total

length of the route, total price, total rating of items, and total waiting time

for the activities etc. Consider another example of a user in an airport who

is running late for a flight and needs to withdraw money from an ATM, grab

a coffee, and needs to go to a service desk before she checks in. For such a

user, the total length of the route is important as well as the total waiting

time at the ATM, coffee machine and service desk. Therefore, she may issue

a CAM query where the scoring function is used to compute the score of a

route considering its total length and the total waiting time at each facility

(i.e., ATM, coffee machine and service desk) along the route.

To the best of our knowledge, we are the first to study the route planning

queries where the score of a route is computed using not only its total length

but also other relevant attributes such as total price and total waiting time etc.

Although we show that a CAM query is NP-hard in the number of categories, it

can be solved efficiently if the number of categories is small (which is typically

the case in many real-world applications). To this end, we propose two efficient

exact algorithms to answer CAM queries that cleverly exploit the properties

specific to the indoor spaces and outperform the techniques adapted from

outdoor techniques by up to three orders of magnitude. However, for a large

number of categories, the exact algorithms become increasingly expensive. In
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this case, we need approximation solutions that generate high-quality results in

a reasonable time. To address this issue, we present an efficient approximation

algorithm that utilizes a novel dominance-based pruning to significantly reduce

the number of possible candidate routes while maintaining high-quality results.

Our extensive experimental study shows the superiority of our solutions over

the existing outdoor techniques.

3.2 Contributions

We summarize our contributions below.

• We propose the category aware multi-criteria route planning (CAM)

query and show that the problem of solving CAM query is NP-hard.

• We present an efficient exact solution called BFNE to answer CAM queries

when the number of query categories is limited. Then we introduce an im-

provement of BFNE called BFNE-opt that utilizes a novel indoor graph

traversal method in network expansion.

• We present a fast approximation algorithm to retrieve high-quality re-

sults for CAM queries. Then we suggest a pre-processing phase that

employs a novel dominance-based pruning technique to accelerate the

performance of the proposed algorithm.

• We conduct an extensive set of experiments on a large real-world shop-

ping centre containing real products. The experiments demonstrate that

our algorithms outperform state-of-the-art techniques in terms of both

the runtime and the quality of results.

The rest of this chapter is organized as follows: Section 3.3 presents some

preliminaries related to this chapter and formulates the problem, Section 3.4
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describes the proposed exact solutions, Section 3.5 presents the proposed ap-

proximation solution, Section 3.6 reports the experiment results and Section

3.7 concludes the chapter.

3.3 Preliminaries

In this section, we formally define the problem of category aware multi-criteria

route planning query and prove the hardness of the problem in Section 3.3.1.

In Section 3.3.2, we briefly discuss the limitations of existing techniques in both

outdoor and indoor spaces. Notations used in this chapter are summarized in

Table 3.1.

3.3.1 Problem Definition

Definition 3.1 (Indoor Graph) The indoor space is represented by a D2D

graph G = (D,E) where D is the set of vertices (i.e., doors) and E is the set

of edges. For two adjacent vertices di, dj ∈ D, we define an edge between them

as e(di, dj) with weight w(di, dj) representing the indoor distance between the

doors di and dj, i.e., dist(di, dj).

Indoor objects. Let pi ∈ Pj be an indoor point representing an indoor object.

Each point pi is associated with a category cj ∈ C and a static score denoted by

s(pi). For example, a Samsung Galaxy S5 phone is an indoor object belongs

to a category phones, whereas its location is a point in the indoor venue and

its static score may refer to its price. The static score of a point is the score

that does not depend on the query, e.g., the price of an item, waiting time at

a service, rating of an item etc.

Definition 3.2 (Route) A route R1→m = 〈p1, . . . , pm〉 denotes a path from

indoor point p1 to pm where 〈pi, pi+1〉 is the shortest path between two points.
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Table 3.1: The summary of notations
Notation Definition
pi An indoor point
cj A category
s(pi) The static score of point pi
qi A CAM query
di A door in indoor space
Ij An indoor partition
ps/pt The start/end point of a route
ψ A set of categories
Pi The set of indoor points of category ci
Rk
i kth path from ps to pi

Lki kth Label at point pi
R̂n,j Solitary route at pn covering cj
pa ≺k pb The point pa dominates pb w.r.t door dk
Ra ≺ Rb The route Ra dominates Rb

Domk
a The dominated set of point pa w.r.t door dk

Definition 3.3 (Travel cost) Given a route R1→m = 〈p1, . . . , pm〉, the travel

cost of route R is computed as follows,

T (R1→m) =
m−1∑
i=1

dist(pi, pi+1) (3.1)

where dist(pi, pi+1) denotes the indoor distance between two points in the given

route R1→m.

Definition 3.4 (Static cost) Given a route R1→m = 〈p1, . . . , pm〉, let R.ψ =

〈c1, . . . , cm〉 be the set of categories covered by R where |R.ψ| = m and pi

denotes an indoor point that covers ci ∈ R.ψ. Hence, the static cost is computed

as follows,

S(R1→m) =
m∑
i=1

s(pi) (3.2)

where s(pi) denotes the static score of the indoor point pi.
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Definition 3.5 (Cost function) We determine the cost of a route Rn→m in

terms of travel cost and static cost, as follows,

Cost(Rn→m) = α · T (Rn→m) + (1− α) · S(Rn→m) (3.3)

Here, α is a query parameter (user-defined) that lies between 0 and 1 to control

the preference of travel cost over static cost.

Definition 3.6 (Category Aware Multi-criteria route planning (CAM) query)

Given an indoor space, a category aware multi-criteria route planning query

q = 〈ps, pt, ψ〉 where ps, pt denotes the source point and the target point of the

route, and q.ψ = 〈c1, . . . , cm〉 denotes a set of unique categories that describes

the user preferences. A route from the point ps to the point pt, that passes

through at least one indoor point from each given category, is called a complete

candidate route. Moreover, a CAM query returns a route subject to:

Ropt
s→t = arg min

Rs→t∈F (q)

Cost(Rs→t) (3.4)

where F (q) is the collection of all complete candidate routes for the given query

q.

Theorem 3.1 The problem of solving a CAM query is NP-hard.

Proof This problem can be reduced from the classical travelling salesman

problem (TSP) which is NP-hard. Given a graph in which each edge has a

length, let both start and end points equal to a node v0, each given category is

covered by a node vi with s(vi) = 0 where i = {1 . . .m} and all the other nodes

contain non-query categories. Clearly, the problem of solving CAM query is

identical to the TSP. Thus, the problem of solving CAM problem is NP-hard.
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This proof is similar to the existing proofs of related problems. We have

included this proof in the thesis for the sake of completeness.

3.3.2 Limitations of Existing Techniques

The solutions that are presented in [33] cannot be applied to answer CAM

queries because they take into account only the distance in finding an opti-

mal route while problem of CAM queries consist of multiple criteria such as

distance, static costs. The CAM queries are different from OSR queries [34,

59, 60, 61, 62, 63] since they do not take into account an order of visiting

query categories. Therefore, the solutions of these studies are inapplicable in

processing CAM queries.

[35, 36, 64] study variants of route planning queries that take into account

different constrains. We find these works have different aims compared to

CAM queries. Yao et al. [37] study a similar problem to CAM. Hence, we

employ extensions of their solutions in our experiments to evaluate our pro-

posed solutions. [65] are the first to study the indoor trip planning queries.

We observe that the pruning rules which they propose are only based on the

distance and become inapplicable when the additional attributes and a user-

defined query parameter, i.e., alpha value, appear in the scoring function. Also,

they assume that the number of categories in an indoor venue is small (Note

that this is not the number of query categories), i.e., less than 10. Therefore,

it is computationally prohibitive to employ their pruning rules when the cat-

egory domain is huge. Thus, their pruning rules and techniques do not hold

for CAM settings.
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3.4 Exact Solutions

Even though the problem of CAM query is NP-hard, it can be solved effi-

ciently when the number of categories is small. Hence, we propose two exact

algorithms to answer CAM queries that cleverly exploit the unique properties

specific to the indoor space. We present our first exact solution in Section 3.4.1.

Section 3.4.2 explains how to compute the lower bound cost for a given can-

didate route. In Section 3.4.3, we present our second exact solution which

utilizes a novel indoor graph traversal method.

3.4.1 BFNE Algorithm

A brute force approach of answering a CAM query is to conduct an exhaustive

search starting from the source point by enumerating all possible routes to the

target point and return the route with minimum route cost after all possible

routes are found. Even though the brute force method guarantees the optimal

solution, the exhaustive search is prohibitively expensive in practice. Thus, we

propose an approach called Best First Network Expansion (denoted by BFNE)

that avoids enumerating unnecessary candidate routes.

The basic idea of the BFNE approach is to generate candidate routes based

on the network expansion method while selecting the best candidate route.

Hence, we start from the source vertex and keep generating candidate route

routes by expanding the most promising vertex. To determine such a vertex,

we utilize the concept of the traditional A∗ search where we compute lower

bound cost for a given candidate route Rs→n as follows,

LBn(Rs→t) = Cost(Rs→n) + Costest(Rn→t|Rs→n) (3.5)
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where Cost(Rs→n) denotes the cost of the covered route segment, i.e., the route

from the source vertex ds to the current vertex dn. Costest(Rn→t|Rs→n) is the

heuristic function that estimates the cost of the remaining route segment, i.e.,

the route from the current vertex dn to the target vertex dt. We comprehen-

sively discuss the process of obtaining the lower bound cost in Section 3.4.2.

Label Pruning Technique

Since the indoor graph is modelled based on the doors in the indoor space,

graph traversal is basically travelling from door to door (or partition to par-

tition). Hence, we observed that there can be more than one candidate route

from ds to dt through a door di (i.e., a graph vertex). Intuitively, we can prune

a large number of candidate routes by expanding only the best candidate route

at each vertex. Based on this strategy, we propose a pruning technique that

maintains only the best candidate route at each vertex. Before we proceed to

explain the pruning technique, we introduce the following definitions.

Definition 3.7 (Route Label) A label (denoted by Lki ) is generated in the

format of 〈Rk
i , L

k
i .ψ, LB

k
i (Rs→t)〉 where Rk

i denotes the kth route from ps to pi,

Lki .ψ is the already covered categories of Rk
i and LBk

i (Rs→t) is the lower bound

cost of Rk
i .

Definition 3.8 (Label Dominance) The dominance of a label over another

label is decided as follows. We say that label Lai dominates label Lbi iff the

Lbi .ψ ⊆ Lai .ψ and LBb
i (Rs→t) ≥ LBa

i (Rs→t).

A label Lbi is said to be dominated by another label Lai , if and only if the label

Lbi covers a subset of the categories covered by the label Lai and the route Rb
i

have a higher lower bound cost than the route Ra
i . Thus, we prune label Lbi
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since the label Lai dominates the label Lbi . Implicitly, we prune all the unneces-

sary candidate routes that do not lead to an optimal solution by keeping only

the non-dominated labels at each indoor point.

Inverted VIP-tree. In this study, we utilize VIP-tree [1] which is the state-

of-the-art indoor index as our indexing structure. In order to support category

based filtering, we modify VIP-tree by storing inverted files in each tree node.

An inverted file consists of a list of all the unique categories that appear in any

indoor partition of that node, and for each category, a list of indoor partitions

in which it appears. Additionally, in each tree node, we maintain a summary

for minimum static scores of each covered categories.

We provide more details of the usage of these summary lists in Section 3.4.2.

Now we present our first exact solution called BFNE algorithm. Basically,

we traverse the D2D graph G in order to obtain the optimal route. Unlike

the outdoor techniques, indoor points are not mapped on to either vertices

or edges. We maintain such points in the actual locations inside the corre-

sponding indoor partitions to obtain more realistic results. Hence, we need

to carefully handle these points as they lie in the Euclidean space and thou-

sands of points may reside in an indoor partition. For the sake of simplicity,

the source/target points are considered as vertices. Note that, all the tech-

niques and definitions that we present can be easily applied for the case where

source/target are indoor points.

As Algorithm 1 describes, we use a min-priority queue Q to organize the

labels by the increasing order of the lower bound cost, i.e., LBk
i (Rs→t). We

terminate the algorithm when the queue is empty (line 4) or all the labels in

the queue have lower bound costs greater than the current optimal route cost
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Algorithm 1: BFNE Algorithm

Data: D2D graph G, q = 〈ds, dt, ψ〉, Inverted VIP tree T
Result: The optimal route Ropt

1 Initialize a min-priority queue Q ← ∅;
2 Create route label L0

s ← 〈(ds), ∅, 0〉;
3 Q.enqueue(L0

s);
4 while Q is not empty do
5 Lki ← Q.dequeue();

6 if LBk
i (Rs→t) ≥ Cost(Ropt) then

7 break;
8 end

9 Obtain Rki from Lki ;
10 foreach edge (di, dj) do
11 P ∗ ← current indoor partition;

// categories in current partition

12 Ψ← P ∗.ψ ∩ q.ψ \Rki .ψ ;
13 ∆← all possible combinations of Ψ;
14 foreach category combination δ in ∆ do
15 Rlj ← generateRoute(Rki , P

∗, di, dj , δ);

16 if dj is dt then
17 if q.ψ \Rlj .ψ = ∅ AND Cost(Rlj) < Cost(Ropt) then

18 Ropt ← Rlj ;

19 end

20 else
// lower bound cost

21 Compute LBl
j(Rs→t)

22 if LBl
j(Rs→t) < Cost(Ropt) then

23 Llj ← 〈Rlj , Rlj .ψ, LBl
j(Rs→t)〉;

24 Q.enqueue(Llj);

25 end

26 end

27 end

28 end

29 end

30 return Ropt
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(line 6-7), which implies that none of the existing candidate routes in the queue

leads to an optimal solution which is better than the current optimal route. In

each iteration, we dequeue the label Lki with minimum lower bound cost, from

the queue (line 5). Then, the next promising candidate route is obtained from

the dequeued label and extended to new candidate routes by expanding all the

adjacent edges (line 9-21). As we maintain the indoor points in the Euclidean

space, we need to identify the current indoor partition that is being accessed.

Since an edge of the indoor graph actually represents an indoor partition,

the edge information is exploited to identify the current partition (line 10).

Then, we obtain a list of uncovered categories, i.e., q.ψ \ Rk
i .ψ, covered by

the current partition (denoted by Ψ) and generate the candidate routes via

indoor points inside the partition covering all possible category combinations

(denoted by ∆) (line 12). For example, let Ψ = {c1, c2}. Then, there are

following possible combinations, i.e., ∆ = {{∅}, {c1}, {c2}, {c1c2}, }. We use

a progressive neighbour exploration [34] based algorithm to find the optimal

route inside an indoor partition. Basically, we obtain a route from a given

door, i.e., di to another door, i.e., dj, of the particular partition covering the

given a set of categories, i.e., δ, by progressively finding the nearest neighbour

points from the given set of categories. After a candidate route is generated

via an indoor partition, we check whether the candidate route has reached the

target door (i.e., dt), it covers all the query categories and the route cost is less

than the cost of the current optimal route. If it satisfies all three conditions,

then the current candidate route is selected as the current optimal route (line

15-17). Otherwise, we compute the lower bound cost using Algorithm 2 and

construct a new route label. Before the label is enqueued, the label dominance

is verified where only the dominant labels are enqueued (line 17-22). Finally,

the optimal route is returned (line 23).
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Figure 3.1: Example of (a) solitary routes and (b) leaf node selection

3.4.2 Lower Bound Cost

As we mentioned earlier, we adopt the concept of traditional A∗ search to

compute the lower bound cost of a given candidate route. In order to obtain

an adequate lower bound cost, we take into account both travel and static cost

in our heuristic function, i.e., Costest(. . . ). Thus, the estimation of remaining

route segment, i.e., Rn→t, is conditioned on the covered route segment, i.e.,

Rs→n. Basically, we take into account the uncovered categories of the route

segment Rs→n for a tight estimation while maintaining the admissibility of the

heuristic function.

Definition 3.9 (Solitary Route) Let Rn→t be a route starts from a vertex

dn and ends at the target vertex dt covering a given category cj. Then, a

solitary route is determined subject to:

R̂n,j = arg min
∀Rn→t

α · T (Rn→t) + (1− α) · S(Rn→t) (3.6)

Our approach to estimate the cost for a route Rn→t conditioned on a route

Rs→n consists of two phases. First, we obtain a solitary route per uncovered

category. For example, Figure 3.1 shows a partial candidate route from the

source vertex ds to the vertex pn, and the target vertex dt along with another
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three indoor points pa, pb and pc. The category which is covered by an indoor

point is mentioned next to each point. The routes that go through each point

are Ra, Rb and Rc respectively. Assume that q = {ds, dt, {c1, c2, c3}} and the

route from ds to dn covers the category c3. According to the Definition 3.9,

Ra and Rc are identified as solitary routes for categories c1 and c2 respectively.

They can be denoted by R̂n,1 and R̂n,2.

These solitary routes articulate the individual costs of covering each uncov-

ered category. Thus, selecting the maximum cost among these costs gives us a

tight lower bound for cost of the remaining route segment, i.e., Rn→t. Hence,

we obtain the Costest(Rn→t|Rs→n) as follows,

Costest(Rn→t|Rs→n) = arg max
cj∈Ψ

Cost(R̂n,j) (3.7)

where Ψ = q.ψ \Rs→n.ψ. According to the previous example, the cost of R̂n,2

is selected as the estimated cost of Rn→t conditioned on Rs→n since it is the

solitary route with the maximum route cost.

Furthermore, we observed that obtaining a solitary route for a given cat-

egory via an indoor point is computationally very expensive as every point

in the indoor space that belongs to the given category needs to be examined.

Thus, we obtain solitary routes via indoor partitions since the number of in-

door partitions is very small compared to the number of points (i.e., indoor

objects) in an indoor venue. Even though this gives a loose lower bound we

utilize this approach while only paying a small penalty in query processing.

The summary lists that are stored at each tree node come in handy as we need

to compute minimum static scores for each partition without accessing indoor

points in the partition. In such a list, we store the minimum static scores for

each category that appear in the corresponding partition so that the minimum
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static cost of a partition can be easily determined.

As Algorithm 2 illustrates, we traverse each level of the inverted VIP-tree

starting from the root node (line 3) and compute the costs of the solitary

routes via all the sub-components, i.e., tree nodes and partitions, at each level

(line 11-16) for the set of categories (denoted by Ψ) that are not covered by

the current candidate route (line 2). Such a sub-component is enqueued into

a min-priority queue Q with the cost of the corresponding solitary route as

the key value. We utilize the summary list of minimum static scores at such

a sub-component to compute the solitary route cost without accessing the

indoor objects in the particular sub-component. Hence, the dequeued element

from the queue (line 5) can be (i) an intermediate tree node, (ii) a leaf node

or (ii) a partition. If the dequeued element is an intermediate tree node,

then we enqueue the solitary routes via its child nodes (line 14-16). If the

dequeued item is a leaf node, then we enqueue the solitary routes via the

partitions belong to the particular leaf node (line 11-13). If the dequeued item

is a partition, then we update the uncovered category set by removing the

categories covered by the partition (line 7). By doing this, we keep track of

the solitary routes per uncovered categories. When all the solitary routes per

uncovered categories have been found (line 8), intuitively, the last solitary route

give the maximum cost according to the Equation 3.7. Thus, we determine the

cost of the last solitary route as the estimated cost, i.e., Costest(Rn→t|Rs→n)

(line 9-10). Finally, we return the LBn(Rs→t) according to the Equation 3.5

(line 17-18).

3.4.3 BFNE-Opt Algorithm

As we discussed in the previous section, BFNE travels from door to door

and generates candidate routes inside indoor partitions if the corresponding
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Algorithm 2: Lower bound Cost Computation

Data: Inverted VIP-Tree T , Route label Lki
Result: Lower bound cost LBi(Rk

s→t)
1 Initialize a min-priority queue Q ← ∅;
2 Ψ← q.ψ − Lki .ψ;
3 Q.enqueue(T .root, 0);
4 while Q is not empty do
5 element← Q.dequeue();
6 if element is a partition then
7 Ψ← Ψ− element.ψ;
8 if Ψ == ∅ then
9 Costest(Rk

i→t|Rk
s→i)← element.key;

10 break;

11 end

12 end
13 else if element is a leaf node then
14 foreach partition I of element do

15 Q.enqueue(I, Cost∗(R̂n,j));
16 end

17 end
18 else
19 foreach childNode N of element do

20 Q.enqueue(N , Cost∗(R̂n,j));
21 end

22 end

23 end
24 LBi(Rk

s→t)← Cost(Rk
s→i) + Costest(Rk

i→t|Rk
s→i) ;

25 return LBi(Rk
s→t)
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partitions contain indoor points belong to the uncovered query categories. In-

tuitively, the performance of the algorithm can be improved by reducing the

number of candidate routes generated in query processing. To tackle this, we

introduce a novel indoor graph traversal method called AD2AD graph traver-

sal which visits only a specific type of doors in graph expansion while ignoring

the non-optimal candidate routes.

AD2AD Graph. The idea behind the AD2AD graph is similar to D2D

graph. Despite, only the access doors [1] in the indoor space are taken into

account in modeling the AD2AD graph. A door d is called an access door of a

vip-tree node N if d connects to the space outside of node N (i.e., one can enter

or leave node N via door d). For example, Figure 3.1(b) shows an indoor space

consists of 6 indoor partitions and 9 doors. The N1 and N2 represent two leaf

nodes of the corresponding VIP-tree for this indoor space. Hence, the doors

d1, d2, d3, d4 and d5 are identified as access doors. The AD2AD graph is con-

structed by exploiting the leaf level formation of the corresponding VIP-tree.

Therefore, an edge is created between two access doors if they are connected

to the same leaf node.

Now we present our second exact algorithm (denoted by BFNE-opt) which is

an improvement of the BFNE algorithm. In BFNE-opt, we utilize the AD2AD

graph traversal that visits only the access doors unless a leaf node consists of

indoor partition(s) covering the uncovered query categories. Hence, it avoids

generating non optimal routes as early as possible by preventing unnecessary

leaf node expansions. Furthermore, when a leaf node consists of partition(s)

covering at least one uncovered query category, we generate all possible routes

via the particular leaf node by accessing the corresponding partition(s). In the
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empirical study, we show the efficiency of AD2AD traversal method compared

to the conventional D2D traversal.

However, BFNE-opt is similar to BFNE except for it utilizes the AD2AD

graph traversal method for graph expansion. Hence, two modifications occur

in Algorithm 1 where we need to determine (i) the current leaf node in line 10

and (ii) generate all possible routes through the particular leaf node in line 14.

Since we visit from an access door to another access door, we need to determine

the leaf node which is currently being accessed (denoted by current leaf node)

in order to generate all possible candidate routes through the particular leaf

node. Therefore, the current leaf node must be carefully selected to preserve

the correctness of the algorithm. Figure 3.1(b) depicts two leaf nodes N1 and

N2 along with their corresponding access doors d1, d2, d3, d4 and d5. Let Ra and

Rb be a candidate route where Ra = {ds, . . . , d5, d3} and Rb = {ds, . . . , d2, d3}.

Assume that d3 → d4 is our current edge (i.e., the solid line) and d3 is our

current door. The dotted lines d2 → d3 and d5 → d3 represent the previous

edge of the candidate routes Ra and Rb respectively. We identified three crucial

doors (vertices) specific to a given candidate route in determining the current

leaf node. Particularly, (i) the current door (e.g., door d3), (ii) the adjacent

door (e.g., door d4) and (iii) the second last door of the route (e.g., door d5

corresponds to route Ra). Besides, we also observed two real-world scenarios

which is really useful in determining the current leaf node.

Definition 3.10 (Unique/Common leaf node) Given two doors di and dj

along with corresponding leaf nodes Na, Nb and Nc. Let door di belongs to

node Na, Nb and door dj belongs to node Nb, Nc. Hence, Na is identified as

the unique leaf node of di w.r.t dj. And Nb is identified as the common leaf

node of di and dj.

One possible scenario is a user enters and exits a leaf node from the same
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door after visiting an indoor partition(s) inside the leaf node. The candidate

route Ra provides an example for this scenario where user enters and exit the

node N1 from door d3. We can identify the current leaf node correctly for such

a scenario, by checking whether the aforementioned crucial doors (i.e., d3, d4

and d5) belong to the same leaf node and then selecting the unique leaf node

(i.e., N1) of the current door (i.e., d3) with respect to the second last door (i.e.,

d5). When those crucial doors do not belong to the same leaf node, it means

that user has used different doors to enter and exit the leaf node. The route Rb

provides an example for this scenario. Thus, common leaf node of the current

door (i.e., d3) and the adjacent door (i.e., d4) is selected as the current leaf node

(i.e., N2). To obtain all possible candidate routes via a particular leaf node, we

use the similar approach used in Algorithm 1 to obtain routes for a partition.

In which we progressively find the nearest neighbour partitions covering given

categories. i.e., δ, and generate routes via those indoor partitions.

3.5 Approximation Solution

The proposed exact solutions are efficient when the number of query categories

is limited. However, for a large number of query categories, such solutions

become increasingly expensive that efficient approximation solutions are nec-

essary to answer CAM queries. We present our approximation algorithm in

Section 3.5.1, a novel dominance-based pruning technique in Section 3.5.2 and

an improvement of the proposed approximation algorithm in Section 3.5.3.

3.5.1 GCNN Algorithm

Global Category Nearest Neighbour (GCNN) algorithm is a greedy algorithm

that greedily adds an indoor point p to an existing partial candidate route
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by minimizing the route cost considering the travel and static costs. Ba-

sically, GCNN algorithm starts from the source indoor point ps and pro-

gressively constructs a candidate route by inserting an indoor point covering

one of the uncovered query categories. For a given partial candidate route

R = {ps, p1, ..., pj}, the algorithm finds such a point p subjected to:

Score(pj, p) = α · (dist(ps, p) + dist(pj, p) + dist(p, pt))

+ (1− α) · s(p)
(3.8)

cnn(pj,Pi) = arg min
p∈Pi

Score(pj, p) (3.9)

p = arg min
∀ci∈q.ψ\R.ψ

cnn(pj,Pi) (3.10)

where cnn(pj,Pi) returns the category nearest neighbour point for a given

category ci with respect to an indoor point pj. The category nearest neigh-

bour of point p is the closest point to p in terms of both travel and static

costs. In order to obtain the category nearest neighbour point covering cat-

egory ci for a given point pj, i.e., cnn(pj,Pi), every indoor point p belongs

to the particular category ci, i.e., p ∈ Pi, is ranked using Equation (3.8). As

Equation (3.9) depicts, the point with the minimum ranking score is selected

eventually. Then the globally best category nearest neighbour point for the

current point pj is determined using Equation (3.10) and R is updated to

R = {ps, p1, ..., pj, p}. The algorithm terminates when R turns into a complete

route where all the query categories are covered. In order to determine such

an optimal route, we maintain a min-priority queue where a partial candi-

date route R is enqueued into the queue by determining the key value equals

to Cost(R) + dist(ps, p) + dist(p, pt) where p is the recently inserted point.

Whenever a candidate route is dequeued from the queue, we find the category

74



nearest neighbour points for each uncovered category and generate new candi-

date routes. Then the set of new candidate routes are enqueued into the queue.

Intuitively, the candidate route which is dequeued first in next iteration is the

answer to Equation (3.10).

Algorithm 3: GCNN Algorithm

Data: A CAM query q = {ps, pt, ψ}
Result: An optimal route R

1 Q ← ∅;
2 R← {ps};
3 Q.enqueue(R, 0);
4 while Q is NOT empty do
5 R∗ ← Q.dequeue(); // Equation (3.10)

// Let R∗ = {ps, ..., pj}
6 Q.clear();
7 Ψ← q.ψ \R.ψ;
8 if Ψ = ∅ then

// when route cover all categories

9 R← {ps, ..., pj , pt};
10 break;

11 end
12 foreach category ci ∈ Ψ do
13 p← cnn(pj ,Pi); // Equation (3.9)
14 R∗i ← {ps, ..., pj , p};
15 key ← Cost(R∗i ) + dist(ps, p) + dist(p, pt);
16 Q.enqueue(R∗i , key);

17 end

18 end

19 return R

As Algorithm 3 illustrates, initially, we enqueue a route R = {ps} with

zero as the key value (line 2-3). We terminate the algorithm either when

the queue is empty (line 4) or an optimal route is found (line 8-10). In each

iteration, we dequeue a candidate route R∗ = {ps, ..., pj} from the queue (line

5) which essentially provides the answer to Equation (3.10) of the previous

iteration. After a candidate route is dequeued, we clear the min-priority queue

by dequeuing all the routes (line 6). This allows us to maintain the current
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optimal partial candidate route in each iteration. Next, the set of categories

that is not yet covered, i.e., Ψ, is obtained (line 7). Then for each uncovered

category, we get the category nearest neighbour point p using Equation (3.9)

and generate a new candidate route by inserting that point into the current

candidate route (line 11-13). The key value of a route is determined by taking

into account route cost and the distances between the point p and the starting

and ending points, i.e., ps and pt respectively (line 14). Each route is then

enqueued into the queue with its key value (line 15). Finally, the optimal

route for the given CAM query is returned (line 16).

For example, Assume that route R = {ps, ..., pn} where R.ψ = {c3}.

Let pa, pb and pc be indoor points where pa, pc belong to category c1, i.e.,

pa, pb ∈ P1, and pc belongs to category c2, i.e., pc ∈ P2. The score of each

point with respect to Equation (3.8) is score(pa, pn) = 50, score(pb, pn) = 90

and score(pc, pn) = 70. Assume that q.ψ = {c1, c2, c3} and R be the re-

cently dequeued candidate route. Then GCNN algorithm finds the cate-

gory nearest neighbour point for each uncovered category, i.e., c1, c2, using

Equation (3.9). Hence, the points pa and pc are selected as cnn(pn,P1) and

cnn(pn,P2) respectively. Then, new candidate routes R∗1 = {ps, ..., pxjn, pa}

and R∗2 = {ps, ..., pn, pc} are generated accordingly and enqueued into the

queue. In the next iteration, R∗1 is dequeued first satisfying Equation (3.10).

Determining an optimal route in GCNN algorithm is very expensive since

all the indoor points belong to the uncovered categories are ranked in each

iteration to find category nearest neighbours. Thus, the number of times,

the ranking operation is executed in obtaining an optimal route is O(n ·m2),

where n is the average number of indoor points per category and m is the total

number of query categories. Intuitively, the performance of GCNN algorithm

is decreased as m and n are increased. Thus, the performance of the algorithm

76



can be accelerated by reducing the indoor points accessed by the algorithm in

query processing.

3.5.2 Dominance-based Pruning

In this section, we introduce a novel pruning technique called dominance-

based pruning which is capable of identifying the indoor points that are highly

unlikely to be selected in constructing an optimal route. It takes into account

both travel and static costs in determining such points and independent of

query preference value, i.e., α. Thus, these indoor points can be safely pruned

in advance of the query processing. In the experiments, we show that the ratio

of false positives is significantly small in which the deviation of the quality of

approximation after the pruning is insignificant. Before we present the pruning

technique, we introduce the following definitions.

Definition 3.11 (Point Dominance) Let pa and pb be points belong to cat-

egory ci, i.e., pa, pb ∈ Pi, reside in an indoor partition I. Let ds be one of the

doors of I. Then, the indoor point pa dominates pb with respect to door ds,

denoted by pa ≺ds pb, if and only if dist(ds, pa) < dist(ds, pb) and s(pa) < s(pb).

Definition 3.12 (Dominated Set) Let pa be a point belongs category ci,

i.e., pa ∈ Pi. Then dominated set of the point pa w.r.t door k is defined

as follows,

Domk
a =

⋃
pa≺dk

pj ,∀pj∈Pi

pj (3.11)

The dominance of a point over another point can be decided only if both

points belong to the same category and reside in the same indoor partition.

Let ds be a door and pa, pb ∈ Pi be two points in partition I. According to

the Definition 3.11, if the point pa is closer to the door ds than the point pb

77



and also has a static cost less than pb, then pa dominates pb considering the

door ds. Moreover, according to Definition 3.12, the point pb belongs to the

dominated set of pa considering door dk.

Definition 3.13 (Route Dominance) Let Ra and Rb be routes inside an

indoor partition I, start from door ds and end at door dt where Ra.ψ = Rb.ψ.

Then, Ra dominates Rb (denoted by Ra ≺ Rb) if and only if Cost(Ra) <

Cost(Rb).

A route can dominate another route only if both routes are inside the same

partition, the corresponding starting and ending doors are same, and covering

the same set of categories. According to Definition 3.13, if the cost of route

Ra is less than the cost of route Rb, then route Ra dominates Rb.

Now we present four important theorems that help to derive our pruning

rules. Note that, for all these theorems and pruning rules, we assume that

q.ψ = {cm, cn} and an indoor partition I consist of two doors ds, dt. Also,

when we say Pi, it means the set of indoor points of the partition I that

belongs to category ci.

Theorem 3.2 Let routes Ra = 〈ds, pa, px, dt〉 and Rb = 〈ds, pb, px, dt〉 where

pa, pb ∈ Pm and px ∈ Pn. Then, Ra ≺ Rb only if pa ≺ds pb and dist(pa, px) <

dist(pb, px).

Proof For the given routes Ra and Rb, if pa dominates pb then dist(ds, pa) +

s(pa) < dist(ds, pb) + s(pb). Also, we know that, dist(pa, px) < dist(pb, px).

By adding both inequalities, dist(ds, pa) + s(pa) + dist(pa, px) < dist(ds, pb) +

s(pb)+dist(pb, px). Furthermore, dist(ds, pa)+dist(pa, px)+s(pa)+dist(px, dt)+

s(px) < dist(ds, pb)+s(pb)+dist(pb, px)+dist(px, dt)+s(px). And, Cost(Ra) <

Cost(Rb). Hence, Ra ≺ Rb.
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(a) (b)

Figure 3.2: Example of Theorem 3.2 and Theorem 3.3

Theorem 3.3 Let routes Ra = 〈ds, pa, px, dt〉 and Rb = 〈ds, pb, px, dt〉 where

pa, pb ∈ Pm and px ∈ Pn, and dist(pa, px) ≥ dist(pb, px). Then, Ra ≺ Rb only

if pa ≺ds pb and dist(pa, px)−ϕ < dist(pb, px) where ϕ = dist(ds, pb) + s(pb)−

dist(ds, pa)− s(pa).

Proof We prove this by contradiction, Assume Rb ≺ Ra and pb ≺ds pa.

Then, dist(ds, pa) + s(pa) > dist(ds, pb) + s(pb). Hence, 0 > ϕ. Also, we

know dist(pa, px) ≥ dist(pb, px). By above two inequalities, dist(pa, px)− ϕ >

dist(pb, px). Therefore, it must be the case that our assumption is false. So

Ra ≺ Rb when pa ≺ds pb and dist(pa, px)− ϕ < dist(pb, px).

For given q.ψ = {cm, cn}, the dominance of route Ra = 〈ds, pa, px, dt〉 over

Rb = 〈ds, pb, px, dt〉 can be guaranteed if the point pa dominates pb and pa is

closer to px than pb (See Figure 3.2(a)). Theorem 3.3 takes into account an

instance where the point pb is closer to px than pa. In this case, Ra ≺ Rb

can be guaranteed only if the point pb resides outside the distance threshold

dist(pa, px)− ϕ as Figure 3.2(b) illustrates.

For multiple objects. Assume that there is another point pj ∈ Pm within

the distance dist(pa, px), where pb ≺ds pj. If dist(pa, px) − ϕ < dist(pj, px)

where ϕ = dist(ds, pb) + s(pb) − dist(ds, pa) − s(pa), then point pj can be
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ignored since a route via pj does not dominate Ra. If the indoor points,

i.e., pb, pj, are visited based on dominance order, then distance threshold, i.e.,

dist(pa, px) − ϕ, is guaranteed to be an upper bound as ϕ is always a lower

bound. Visiting the indoor points based on dominance order means that al-

ways a point p is visited before visiting a point dominated by p. Moreover,

if dist(pa, px) − ϕ > dist(pj, px), then ϕ needs to be updated with respect to

point pj and checked for dist(pa, px) − ϕ < dist(pj, px). Similarly, all points

need to be verified if there is more. Then we can guarantee that Ra dominates

Rj where Rj = 〈ds, pj, px, dt〉, ∀pj ∈ Pm.

Theorem 3.4 Let routes Ra = 〈ds, pa, px, dt〉 and Rb = 〈ds, pb, py, dt〉 where

pa, pb ∈ Pm and px, py ∈ Pn. Then, Ra ≺ Rb only if pa ≺ds pb, px ≺dt py and

dist(pa, px) < dist(pb, py).

Proof For the given routes Ra and Rb, if pa dominates pb and px dominates

py, then dist(ds, pa) + s(pa) < dist(ds, pb) + s(pb) and dist(dt, px) + s(px) <

dist(dt, py) + s(py) respectively. Also, we know that dist(pa, px) < dist(pb, px).

By adding them, dist(ds, pa) + s(pa) + dist(pa, px) + dist(dt, px) + s(px) <

dist(ds, pb) + s(pb) + dist(pb, py) + dist(dt, py) + s(py). And, Cost(Ra) <

Cost(Rb). Hence, Ra ≺ Rb.

Theorem 3.5 Let routes Ra = 〈ds, pa, px, dt〉 and Rb = 〈ds, pb, py, dt〉 where

pa, pb ∈ Pm and px, py ∈ Pn, and dist(pa, px) ≥ dist(pb, py). Then, Ra ≺ Rb

only if pa ≺ds pb, px ≺dt py and dist(pa, px) − ϕ̂ < dist(pb, px) where ϕ̂ =

dist(ds, pb)+s(pb)+dist(py, dt)+s(py)−dist(ds, pa)−s(pa)−dist(px, dt)−s(px).

Proof We prove this by contradiction, Assume Rb ≺ Ra, pb ≺ds pa and py ≺ds

px. Then, dist(ds, pa) + s(pa) > dist(ds, pb) + s(pb) and dist(dt, px) + s(px) >

dist(dt, py) + s(py). Hence, 0 > ϕ. Also, we know dist(pa, px) ≥ dist(pb, py).
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(a) (b)

Figure 3.3: Example of Theorem 3.4 and Theorem 3.5

By above two inequalities, dist(pa, px) − ϕ > dist(pb, py). Therefore, it must

be the case that our assumption is false. So Ra ≺ Rb when pa ≺ds pb, px ≺dt py

and dist(pa, px)− ϕ̂ < dist(pb, px).

As Figure 3.3(a) shows, Theorem 3.4 guarantees that a route via points pb ∈

Doms
a and py ∈ Domt

x , i.e., Rb = 〈ds, pb, py, dt〉, cannot dominate a route

via corresponding points pa and px, i.e., Ra = 〈ds, pa, px, dt〉 when the dis-

tance between points pa and px is less than the distance between points in

corresponding dominated sets. Theorem 3.5 explains an instance (See Fig-

ure 3.3(b)) where dist(pa, px) ≥ dist(pb, py). In this case, route Ra dominates

route Rb if the distance between the points in dominated sets is greater than

the particular distance threshold, i.e., dist(pa, px)− ϕ̂.

Next we proceed to introduce our pruning rules which are derived from

these theorems. These pruning rules help to filter all the points in an indoor

partition that are highly unlikely to be selected in generating an optimal route.

Pruning Rule 1 Let pi ∈ Doms
a and pb = nn(pa) where pa ∈ Pm and pb ∈

Pn. Then, the points pa, pb are selected and a point pj ∈ Domt
b is pruned only

if pa = nn(pb) and dist(pa, pb) < dist(pi, pj).

Proof According to Theorem 3.2, when pi ∈ Doms
a and pb = nn(pa), then

Cost(Rx) < Cost(Ry) where Rx = 〈ds, pa, pb, dt〉 and Ry = 〈ds, pi, pb, dt〉.
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Also, when pa = nn(pb) and dist(pa, pb) < dist(pi, pj), Theorem 3.4 guarantees

Cost(Rx) < Cost(Rz) where Rz = 〈ds, pi, pj, dt〉. Thus, the point pj ∈ Domb

can be pruned since any path covering category cm and cn via pj is dominated

by the path Rx.

Pruning Rule 2 Let pi ∈ Doms
a and pb = nn(pa) where pa ∈ Pm and pb ∈

Pn. Then, the points pa, pb are selected and a point pj ∈ Domt
b is pruned when

pa 6= nn(pb) and dist(pa, pb) < dist(pi, pj) only if Cost(Rx) < Cost(Ry) where

Rx = 〈ds, pa, pb, dt〉 and Ry = 〈ds, pi, pb, dt〉.

Pruning Rule 3 Let pi ∈ Doms
a and pb = nn(pa) where pa ∈ Pm and pb ∈

Pn. Then, the points pa, pb are selected and a point pj ∈ Domt
b is pruned when

pa = nn(pb) and dist(pa, pb) ≥ dist(pi, pj) only if cost(Rx) < cost(Ry) where

Rx = 〈ds, pa, pb, dt〉 and Ry = 〈ds, pi, pj, dt〉.

Pruning Rule 4 Let pi ∈ Doms
a and pb = nn(pa) where pa ∈ Pm and pb ∈

Pn. Then, the points pa, pb are selected and a point pj ∈ Domt
b is pruned when

pa 6= nn(pb) and dist(pa, pb) ≥ dist(pi, pj) only if Cost(Rx) < Cost(Ry) where

Rx = 〈ds, pa, pb, dt〉 and Ry = 〈ds, pi, pk, dt〉 for given pk ∈ Domb ∪ pb.

Note that the Pruning Rule 2, 3 and 4 can be easily proved as the Prun-

ing Rule 1. Intuitively, the pruning rules are capable of identifying the points

which are highly unlikely to be selected in generating an optimal route. Hence,

such points can be pruned. For example, let I be an indoor partition consists

of two doors ds, dt and three indoor points pa ∈ Pm and pb, pc ∈ Pn where

pb ≺dt pc. Assume that a user who wants to find a route from ds to dt cov-

ering cm, cn categories, visit the point pa first. Then either the point pb or pc

needs to be visited before visiting door dt to get a complete route. Assume

that the user visits the point pb. Then, according to Pruning Rule 1, the
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Algorithm 4: selectPoints (. . . )

Data: Doors ds, dt, A pair of categories ca, cb
Result: Sets of points Sa,Sb

1 while Pa 6= ∅ OR Pb 6= ∅ do
2 pi ← getPoint (ds,Pa); // based on dominance order

3 Sa ← Sa ∪ pi; // pi is selected

4 Pa ← Pa \ Sa;
5 Pb ← Pb;
6 while Pb 6= ∅ do
7 pj ← NextNN (pi) where pj ∈ Pb;
8 Uj ← ∀pk ∈ Pa \ Sa where dist(pi, pj) > dist(pk, pj);
9 if Uj = ∅ then

10 Sb ← Sb ∪ pj ; // pj is selected

11 Domt
j ← set of points dominated by pj ;

12 Pb ← Pb \ (Domt
j ∪ pj);

13 Pb ← Pb \ prunePonits (pi, pj ,Pa, Domt
j)

14 end
15 else
16 foreach pk ∈ Uj do

// Ascending order

17 ϕ = dist(ds, pk) + s(pk)− dist(ds, pi)− s(pi);
18 Vk ← ∀pm ∈ Uj where dist(pm, pj) < dist(pi, pj)− ϕ;
19 if Vk = ∅ then
20 Sb ← Sb ∪ pj ; // pj is selected

21 Domt
j ← set of points dominated by pj ;

22 Pb ← Pb −Domt
j ;

23 Pb ← Pb \ prunePonits (pi, pj ,Pa, Domt
j)

24 end
25 else
26 if pk ∈ Vk then

// pj is not selected

27 break

28 end
29 else

// remove points outside the range

30 Uj ← Uj \ Vk;
31 end

32 end

33 end

34 end

35 end

36 end

37 return Sa,Sb
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point pc can be pruned only if dist(pa, pb) < dist(pa, pc). Because, the route

Rx = 〈ds, pa, pb, dt〉 dominates Ry = 〈ds, pa, pc, dt〉. Hence, the points pa, pb are

selected as dominant points. Otherwise, when pc is closer to pa than pb. If

dist(pa, pc) is less than the threshold distance, i.e., dist(pa, pb) − ϕ, then the

points pa, pc is selected and the point pb is pruned.

We proceed to explain Algorithm 4 which utilizes the aforementioned prun-

ing rules to select dominant points of a given indoor partition with respect to

a given pair of categories and doors. Clearly, the visiting order of the points is

crucial in applying the aforementioned pruning rules. Thus, we visit the indoor

points based on the dominance order, i.e., a point pa is visited before visit-

ing a point p̂a ∈ Domk
a, by utilizing getPoint (di,Pn) which returns a point

p ∈ Pn with the minimum score considering a monotonic ranking function

f(p) = dist(di, p) + s(p). Initially, the sets of points Pa and Pb contain the

indoor points belong to category ca and cb respectively. If a point is either

selected or pruned, then that point is removed from the corresponding point

set. Hence, the algorithm is terminated when one of the point sets, i.e., Pa or

Pb, is empty (line 1).

First, we obtain a point pi belong to category ca by utilizing getPoint (·)

(line 2). Then the point pi is selected as a dominant point of category ca. We

use a temporary point set Pb to maintain the non-pruned set of points per

iteration. The inner while loop terminates when Pb is empty, indicating that

all the dominant points belong to category cb based on pi is selected while

the rest of the points is pruned (line 6). After point pi is selected we find

the closest point to pi, i.e., the point pj, that belongs to category cb. Then

we check whether there are any points closer to pj than pi that belong to

category ca. If not we select pj and prune all the points dominated by pj

according to the Pruning Rule 1 and the Pruning Rule 3 (line 9-13). Else,

84



Algorithm 5: prunePoints (. . . )

Data: Points pi, pj , Sets of points Pa, Domk
j ⊆ Pb

Result: A set of points Sb
1 foreach pk ∈ Domk

j do

// According to the dominance order

2 pm ← NN(pk) where pm ∈ Pa;
3 if dist(pi, pj) < dist(pk, pm) then
4 Sb ← Sb ∪ pk ; // Theorem 3.4

5 else
6 ϕ̂ = dist(ds, pm) + s(pm) + dist(pk, dt) + s(pk)− dist(ds, pi)−

s(pi)− dist(pj , dt)− s(pj);
7 if d(pk, pm) > dist(pi, pj)− ϕ̂ then
8 Sb ← Sb ∪ pk ; // Theorem 3.5

9 end

10 end

11 end

12 return Sb

each point that is closer to pj than pi is verified and pruned according to the

Pruning Rule 2 and the Pruning Rule 4 (line 15-27). Note that, each time

we update the Pb by removing the dominated points. Because, if a point

is dominated then they cannot be selected in the same iteration. But, we

update the Pb set after verifying that a point can be pruned permanently by

utilizing Algorithm 5. While we iterate the set of points closer to the point

pj, if one of the points is within the distance threshold, then the point pj is

not selected as another point in the category ca creates a better route with

the point pj (line 24-25). Also, we can remove all the points outside the

current distance threshold since it provides an upper bound as we explained

earlier (line 27). Finally, it returns the sets of selected dominant points per

given category (line 28). Algorithm 5 identifies the indoor points that can be

pruned based on Theorem 3.4 and 3.5. For a given point pj, it iterates through

each point pk ∈ Domk
j (line 1) according to the dominance order and gets the

nearest neighbours (line 2) to check whether the distance between the points

in dominated set is less than the distance between pi and pj (line 3). Then
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the points are added to the pruned point set (i.e., set of non-dominant points)

according to Theorem 3.4 (line 3-4) and Theorem 3.5 (line 5-8). Finally, the

set of non-dominant points is returned (line 9).

Algorithm 6: Dominance-based Pruning Algorithm
Data: An indoor partition I, A set of categories Ψ,
Result: Update set of points in given partition I

1 Pi ← ∅ , ∀ci ∈ Ψ;
2 foreach {di, dj} ∈ I(N) do
3 foreach {ca, cb} ∈ Ψ do

4 Sa, Sb ← selectPoints(di, dj , ca, cb)Pa ← Pa ∪ Sa;
5 Pb ← Pa ∪ Sb;
6 end

7 end
// Update set of points in indoor partition I

8 Pi = Pi , ∀ci ∈ Ψ;

Next we present the dominance-based pruning algorithm that reduces the

number of points in an indoor partition by eliminating non-dominant points

belong to a given set of categories. As Algorithm 6 illustrates, for a given

set of categories Ψ, the dominance-based pruning algorithm determines the

set of dominant points for each given category using Algorithm 4 (line 4) and

updates the set of points of indoor partition I accordingly (line 7). Since

our pruning techniques are based on pairs of doors and categories, we con-

sider all possible combinations of doors and given categories to preserve the

correctness of the algorithm. For example, let I be an indoor partition con-

sists of two doors d10, d20 where sets of indoor points of I for given categories

c1, c2 are as follows : c1 = {p1, p2, p3, p4, p5} and c2 = {p6, p7, p8, p9}. The

outer for loop of the algorithm runs four times corresponding to the num-

ber of door pairs, i.e., {d10, d10}, {d10, d20}, {d20, d10}, {d20, d20}. And the inner

for loop runs only once since there is only two given categories. Therefore,

Algorithm 4 is executed four times and the selected points are returned in

each iteration. Assume that we obtain the results as follows: {{p1, p2}, {p8}},
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{{p2, p3}, {p7, p8}}, {{p1}, {p8}} and {{p2}, {p7}}. Then, the set of points of

indoor partition I is updated as follows : c1 = {p1, p2, p3} and c2 = {p7, p8}.

The indoor points p4, p5 and p6, p9 are eliminated from c1 and c2 respectively.

3.5.3 GCNN-dom Algorithm

Since the dominance-based pruning is not affected by the query parameters, we

introduce a pre-processing phase. We utilize the results of the pre-processing

phase to accelerate the performance of the GCNN algorithm. Accordingly,

we present an improvement of GCNN algorithm called GCNN-dom. In pre-

processing phase, we utilize our dominance-based pruning technique to prune a

significant amount of non-dominant indoor points. As Algorithm 6 shows, we

iterate the collection of indoor partitions covering a set of selected categories

while pruning all the non-dominant points. Then we update the inverted VIP-

tree corresponding to the remaining dominant points of each partition. The

inverted files and the minimum static score summaries of the tree nodes are

updated appropriately.

Note that, the effectiveness of the pre-processing approach relies upon the

set of selected categories. Because if the set of selected categories has a large

number of points in the indoor space, then the dominance-based pruning tech-

nique prunes more non-dominant indoor points. We observed that the cate-

gories have a large number of points (objects) in an indoor space are the ones

that have a higher demand. Intuitively, such categories are more prone to ap-

pear in the majority of queries. Hence, we select the categories that are more

frequent in real-world queries for the pre-processing. By utilizing the results of

pre-processing, GCNN-dom algorithm achieves a significant increment in per-

formance while only paying a small penalty in the quality of approximation.
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3.6 Experiments

3.6.1 Experimental Settings

Indoor Venue and Category Datasets. We use Chadstone Shopping Cen-

tre 1 as our indoor venue. The Chadstone Shopping Centre which is the largest

shopping centre in Australia currently features more than 300 retail outlets

across 4 levels, with a total retail floor area over 200,000 m2. We manually con-

verted the floor plans of the Chadstone Shopping Centre into machine-readable

indoor venues. The OpenStreetMap 2 was used to obtain the coordinates of

the buildings in which the sizes of indoor partitions (e.g., rooms, hallways)

are determined. Moreover, a three-dimensional coordinate system is used to

represent an indoor entity in the dataset, in which the first two dimensions

represent x and y coordinates of the indoor entry while the third represents

the floor number. The corresponding D2D graph consists of 339 vertices and

3867 edges.

We crawled data from the websites of major supermarkets (e.g., Coles,

Woolworths, etc.) as well as major retail stores (e.g., JB Hi-fi, Big W, etc.)

and obtained 140,000 objects along with their categories such as dairy, pantry,

etc. Then, each object was mapped into the corresponding indoor partition

(e.g., a retail store) by randomly determining the location of the object inside

the partition. Moreover, we replicated the real-world dataset four times and

obtained a larger dataset (denoted by REP ). The objects are replicated and

randomly relocated without changing the associated category.

Query Generation. We generated 5 query sets per dataset to study the

1https://www.chadstone.com.au/
2https://www.openstreetmap.org/
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performance of the algorithms. In order to generate query sets, we took into

account a property called the objects per category (denoted by Ω) which is the

number of objects in the indoor space that belongs to the particular category.

First, we identified five category sets with respect to this property, namely

XS, S, M, L and XL. The category set XS was obtained by selecting the cat-

egories that have 80 - 120 objects in the indoor space. Similarly, the rest of

the category sets were obtained from 450 - 550, 950-1050, 1450-1550 and 1950

- 2050 objects respectively. A CAM query is generated by randomly selecting

categories from the corresponding category sets while randomly determining

the source and target points in the indoor space. 50 queries were generated

for each category set accordingly. Moreover, we followed the same procedure

to obtain different query sets for the REP dataset.

Competitors. We compare our solutions with the state-of-the-art solutions [37]

for outdoor space that solves a similar problem. We extended those solutions

to answer the CAM queries by including additional attributes in the route

search. And also, we utilized the VIP-tree [1] along with an inverted file in

those extensions to support both efficient indoor distance computation and

category-based filtering. We compare our solutions with their exact solution

called path expansion and refinement (denoted by iPER) and the approxima-

tion solution called global minimum path (denoted by iGMP).

Setup. In the real-world dataset, we observed that the categories which have

a large number of objects in the indoor space, e.g., the categories in the cat-

egory set XL, are more clustered while the categories in the category set XS,

S, M are well distributed in the indoor space. Hence, as we explained earlier,

we replicated the real-world dataset and obtained the REP dataset. And, we
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Table 3.2: The parameters used for experiments
Parameter Default Range
Objects per category (Ω) M XS, S, M, L, XL
Query categories (q.ψ) 6 2, 4, 6, 8, 10
Preference parameter (α) 0.5 0.1, 0.3, 0.5, 0.7, 0.9
Percentage (∆) 50 100, 80, 50, 20, 10, 0

take into account the same object ranges, i.e., 80- 120, 450 - 550, 950-1050,

1450-1550 and 1950 - 2050, when we were selecting categories for the category

sets. This allowed us to select categories per category set that is well dis-

tributed in the indoor space. Thus, the query categories of the REP dataset

are well distributed and have a higher object density compared to the query

categories of the real-world dataset. Table 3.2 shows the default settings we

used in our experiments. The percentage (∆) denotes the percentage of query

categories pre-processed. Suppose an approximate method X returns a route

R for CAM query where the optimal route is Ropt for the same instance. Then,

X’s approximation ratio r = cost(R)/cost(Ropt).

Moreover, all algorithms were implemented in C++ and our experiments

were conducted on a Linux platform running on an Intel Core i5 @ 3.30GHz

and 4GB RAM.

3.6.2 Experimental Results

In all experiments, we use the default settings while varying a single parameter

at a time. Moreover, we report the average runtime in milliseconds and the

approximation ratio for each experiment.

Query Performance

The objective of this set of experiments is to investigate the performance of

the proposed algorithms on the real-world dataset. Under the default settings,
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Figure 3.4: Runtime of exact solutions on the real-world dataset

each query consists of 6 categories in which each category has around 1000

related objects. Even though there are only 6000 related objects in the indoor

space, each algorithm deals with 140,000 objects in query processing. However,

all the algorithms (including iPER and iGMP) perform reasonably well since

they utilize efficient indoor distance computation and category-based filtering

techniques.

Exact Solutions. First, we compare our exact solutions BFNE and BFNE-

opt with our competitor iPER. Figure 3.4(a) reports the runtime of exact solu-

tions while varying the number of query categories. Clearly, the performance of

all algorithms decreases as |q.ψ| is increased. However, BFNE-opt outperforms

BFNE by an order of magnitude when |q.ψ| = 10. The reason is, BFNE-opt

generates only a less number of candidate routes compared to BFNE since it

utilizes AD2AD traversal method for network expansion. Clearly, BFNE-opt

is two orders of magnitude better than iPER when |q.ψ| >= 6. This is because

iPER generates all possible routes to find the optimal route and also gener-

ating a route involves expensive ranking operations. For |q.ψ| = 10, iPER is

outperformed by more than three orders of magnitude.

Figure 3.4(b) shows the runtime of exact solutions under different Ω values.
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Since each query consists of 6 categories under the default settings, the average

number of related objects in the indoor space is 0.6K, 3K, 6K, 9K and 12K

respectively. The runtime of all the algorithms increases as expected. We can

see that BFNE and iPER both become much worse as Ω is increased while

BFNE-opt maintains a reasonable runtime under all configurations. BFNE-

opt is an order of magnitude better than BFNE and three orders of magnitude

better than iPER when Ω = XL.

According to the results, BFNE-opt is the most efficient and robust exact

solution overall, with practically low runtime. Thus, we compare only BFNE-

opt with our approximation algorithms in rest of the experiments.

Approximation Solutions. Figure 3.5(a) and Figure 3.5(c) report the run-

time of both exact and approximation solutions on the real-world datasets

while varying |q.ψ| and Ω. As Figure 3.5(a) reports, the runtime of the exact

solution increases drastically when |q.ψ| is increased. This is because the num-

ber of possible combinations to form candidate paths increases with respect to

|q.ψ| . When the number of query categories is small, i.e., |q.ψ| ≤ 6, BFNE-opt

performs reasonably well where it answers a CAM query in less than 1 second.

Clearly, the approximation solutions perform much better under all the settings

as they outperform BFNE-opt by three orders of magnitude when |q.ψ| = 10.

The runtime of GCNN-dom is generally 5-6 times better than GCNN. This

is because GCNN-dom ranks a less number of objects as it pre-processes the

dataset and eliminates a large amount of non-dominant objects. Overall, the

approximation solutions achieve very small runtime to answer CAM query

where they take less than 0.2 seconds to complete. GCNN-dom takes 0.09

second while iGMP takes 0.19 seconds. Although GCNN-dom ranks indoor
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Figure 3.5: Runtime of both exact and approximation solutions on real-world
and REP datasets

objects multiple times, it is reasonably efficient compared to iGMP since it

utilizes the inverted VIP-tree which supports simultaneous travel and static

costs based filtering.

Next, we investigate the performance of our solutions while varying Ω, i.e.,

the number of indoor objects per query category. As Figure 3.5(c) shows, ob-

viously, the runtime of all solutions increases. As expected, the approximation

solutions achieve much better performance as they generate only a significantly

small amount of possible candidate routes. Hence, they answer a CAM query

in less than 0.1 seconds even for large Ω values. The approximation solutions

outperform our exact solution by an order of magnitude when Ω = XL. But,

our exact solution performs reasonably well by answering a CAM query less

than 5 seconds for the large Ω value. GCNN becomes much worse as Ω in-
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creases. The reason is, GCNN has to carry out more ranking operations when

the number of related objects in the indoor space increases. Distinctly, GCNN-

dom is superior to GCNN as it uses the dominance-based pruning technique

in the pre-processing. The results conclude that the dominance-based pruning

technique is much effective in accelerating the performance of the proposed

approximation solution.

Figure 3.5(b) and Figure 3.5(d) investigate the performance of the approx-

imation solutions on the REP dataset. Since the exact solution, i.e., BFNE,

failed to finish after a reasonable time for some settings, we have eliminated

the results of BFNE and show only the results of the approximation solutions.

In the REP dataset, the query categories are well distributed and the number

of indoor partitions that cover the query categories is very large compared to

the real-world dataset. Hence, the runtime of the approximation solutions is

increased since the ranking operations become expensive. As Figure 3.5(b)

shows, the runtime of GCNN-dom is 0.2 seconds while iGMP is 4 times slower

when |q.ψ| = 10. As we explained earlier, the number of query categories

has a significant impact on the runtime of the algorithms. According to Fig-

ure 3.5(d), distinctly, GCNN-dom outperforms iGMP as it takes only 0.2 sec-

onds to answer a CAM query while iGMP takes 0.8 seconds when Ω is very

large.

Accuracy of Approximations

This set of experiments is to verify the accuracy of the approximation algo-

rithms. Note that, the results for some of the settings are unavailable since

the exact algorithms failed to finish after a reasonable time. Figure 3.6 reports

the approximation ratios of algorithms for the experiment in Figure 3.5 where

we vary |q.ψ| and Ω. As Figure 3.6(a) reports, clearly, iGMP has the worse
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Figure 3.6: Approximation quality of GCNN, GCNN-dom and iGMP
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approximation quality under all the settings. When |q.ψ| = 10, the approxi-

mation ratio of iGMP is slightly higher than 1.5 while both GCNN-dom and

GCNN are around 1.1. Evidently, the approximation ratio of the proposed

algorithms, i.e., GCNN and GCNN-dom, are almost similar in all cases. This

concludes that the dominance-based pruning technique is highly accurate.

According to the Figure 3.6(c), the approximation ratios of all algorithms

increase when we increase the Ω. We can see that the approximation ratio

of iGMP increases drastically after Ω =M. This is because of the category

distribution of the dataset. The approximation ratio of iGMP is 1.6 when

Ω =XL, while our algorithms stay close 1.1 in all cases. Figure 3.6(e) shows

the approximation ratios of the algorithms when we vary the query preference

parameter. The approximation ratios of all algorithms affected by the alpha

value. All algorithms have the worse approximation ratio when α = 0.9. How-

ever, the approximation ratio of our algorithms are under 1.2 while iGMP is

close to 1.6. Note that, the approximation ratio of GCNN-dom and GCNN are

almost same. Figure 3.6(f) shows the difference between the approximation

ratio of our algorithms. The approximation ratio of GCNN-dom has deviated

from GCNN by 0.01 when Ω = 2000. For all other cases, clearly, the differ-

ence is negligible. This insignificant difference in ratios indicates the precision

of dominance-based pruning technique in identifying the incompetent indoor

points in the indoor space.

Next, we examine the accuracy of approximations on the REP dataset.

Figure 3.6(b) shows that the approximation ratio of iGMP is worse in all cases

where it is closer to 2 even when |q.ψ| = 6. But, GCNN-dom and GCNN stays

under 1.2. It clearly shows that the approximation ratio of iGMP drastically

increases when the distribution of the categories changes. As Figure 3.6(d)

depicts the ratio of iGMP exceeds 2 for the large Ω values. Our algorithms
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show much better approximation quality by being consistent around 1.1 under

all the settings.

Effect of pre-processing

Figure 3.7 reports the runtime of GCNN-dom and the corresponding pre-

processing time while varying the percentage of query categories that have

been pre-processed (i.e., ∆). Note that, we denote the pre-processing time

by Pre-proc. Time in Figure 3.7. The percentage of query categories ∆ = 50

denotes that half of the query categories are identified as highly frequent cate-

gories for pre-processing while ∆ = 0 indicates that no pre-processing is done

and ∆ = 100 indicates that all the query categories are pre-processed. As

Figure 3.7 shows the runtime of GCNN-dom decreases as we pre-process more

query categories. The reason is, for large ∆ values, GCNN-dom generate only

a small number of candidate routes as most of the non-dominant objects have

been eliminated in the pre-processing phase. When ∆ = 100, GCNN-dom can

answer a CAM query in 0.04 milliseconds in which it outperforms iGMP by

an order of magnitude. The approximation quality increases as we decrease

∆. But this deviation is insignificant. For example, the difference between

the approximation ratio of ∆ = 0 and ∆ = 100 is 0.001. Hence, we do not

report the approximation ratios corresponding to the experiment in Figure 3.7.

The results conclude that our dominance-based pruning technique effective in

accelerating the performance of the proposed algorithm while only paying a

small penalty in quality of approximation.
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Figure 3.7: Effect of pre-processing

3.7 Conclusions

In this chapter, we define the problem of category aware multi-criteria route

planning query, denoted by CAM, which returns a route from a given source

indoor point to a target indoor point that passes through at least one indoor

point from each given category while minimizing the route cost in terms of

travel and static costs. We show that the problem of answering a CAM query

is NP-hard in the number of query categories. We propose two efficient ex-

act solutions, namely BFNE and BFNE-opt to answer CAM queries when

the number of query categories is limited. However, the exact algorithms be-

come very expensive when the number of query categories is large. Hence,

we devise an efficient approximation algorithm called GCNN based on a novel

dominance-based pruning technique. The empirical studies on a large real-

world dataset demonstrate that the proposed algorithms are highly efficient

and offer high-quality results.
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Chapter 4

Keyword-aware Skyline Routes

Search in Indoor Venues

In this chapter, we study an interesting route planning problem called keyword-

aware skyline routes (KSR) query which returns a set of non-dominated routes,

i.e., a set of skyline routes, based on two attributes, route distance and the

number of shops/stores visited. We propose efficient techniques to handle

KSR queries in indoor venues. This chapter is based on our research reported

in [114].

4.1 Overview

There is a huge demand for indoor location-based services such as finding

nearby indoor objects, indoor navigation and route planning to name a few.

Route planning is one of the popular services among them. As we mentioned

in Chapter 3, the objective of route planning is to assist users in planning

a route satisfying their preferences. Specifically, a user may issue a route

planning query by providing a source location and a target location along with
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her preferences as a set of keywords (e.g., restaurant, salon, supermarket).

A route planning query returns an optimal route that starts from the source

location, passes through at least one location from each given preference and

ends at the target location. The existing route planning queries focus on

minimizing the total length of the route that visits all keywords. However,

in many real-world applications, especially in indoor venues, users may prefer

a slightly longer route that requires visiting fewer stores. Consider a user

who is in a large shopping center, wants to buy a few items (e.g., a milk

bottle, a loaf of bread and a bunch of flowers). She may interest in finding the

optimal route so that she can purchase these items in less time. Therefore, she

can issue a traditional route planning query to obtain such an optimal route

minimizing the distance/time that she needs to travel. The resulting route of

such a query is optimal with respect to the travel distance/time, but it may

pass through three different shops/stores to cover the given keywords. Then,

she may spend more time waiting at the counter in each store than traveling

a little bit further to a shop/store with all the required items. In real-world

applications, many users may prefer the route that requires fewer stores (due

to various reasons such as waiting times at counters, inconvenience related to

visiting a few different stores, etc.). Thus, a route can dominate another route

if its distance, as well as the number of stores visited, is smaller. Motivated

by this, we study a new interesting route searching problem called keyword-

aware skyline routes (KSR) query that returns a set of non-dominated routes

considering the route distance and the number of shops/stores visited.

Figure 4.1 shows an indoor space consists of 16 partitions and 20 doors.

An indoor object inside a partition is illustrated by a solid blue circle and the

set of keywords covered by the particular object is mentioned within the curly

brackets. Let q = {s, t, {t1, t2, t3}} be a KSR query and, R1 = {s → o4 →

100



Figure 4.1: Example of an indoor venue

o5 → t}, R2 = {s → o1 → o3 → t} and R3 = {s → o2 → o3 → o6 → t}

be three complete routes. Note that, R1 covers all query keywords by visiting

only one partition, i.e., P7 while R2 visits two partitions, i.e., {P2, P6}, and

R3 visits three partitions, i.e., {P3, P6, P11}, respectively. Assume that the

routes R1, R2 and R3 are the non-dominated routes, i.e., skyline routes, with

route distance 700, 400 and 100 respectively. Hence, any other route in the

indoor space cannot dominate these routes in terms of the above mentioned

dimensions. For example, let R4 = {s → o2 → o4 → t} a complete route

in indoor space with route length 600. Then, R4 is dominated by R2. These

routes are illustrated in Figure 4.2 where the y-axis is the route distance and

the x-axis is the number of partitions (i.e., shops/stores) visited. To the best

of our knowledge, we are the first to study keyword-aware skyline routes search

in the indoor space. In this chapter, we propose techniques for indoor skyline

routes query where two attributes are considered in identifying the dominance

of a route over another route. Although we show that a KSR query is NP-

hard, it can be efficiently solved when the number of query keywords is small,

which is typically the case in real-world applications. To this end, we propose

an exact algorithm to answer KSR queries that cleverly exploit the properties

specific to the indoor space to improve the performance.
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Figure 4.2: Example of skyline routes

4.2 Contributions

We summarize our contributions below.

• We propose the keyword-aware skyline routes (KSR) query and show

that problem of answering KSR queries is NP-Hard.

• We present an efficient exact algorithm called GMD to answer KSR queries

in real-world applications where the number of query keywords is typi-

cally small.

• We conduct an extensive set of experiments on a real-world shopping

center containing real products. The experiments demonstrate that our

algorithm outperforms a network expansion based solution by two orders

of magnitude.

The outline of the chapter is as follows: Section 4.3 formulates the problem

and presents the limitations of closely related work, Section 4.4 describes the
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proposed techniques, Section 4.5 consists of the experimental evaluation and

Section 4.6 concludes this chapter.

4.3 Preliminaries

In this section, first, we introduce some preliminary definitions. Then, we

formally define the problem of keyword-aware skyline routes (KSR) query and

prove the hardness of the problem. Finally, we present the limitation of existing

techniques in both outdoor and indoor spaces.

4.3.1 Problem Definition

Definition 4.1 (Indoor Objects) Let pi ∈ P be an indoor point represent-

ing an indoor object. Each point pi is associated with a set of keywords denoted

by pi.ψ.

Definition 4.2 (Route) Given an indoor space, a route R = 〈ps, . . . , pm〉

denotes a path from indoor point ps to pm where 〈pi, pi+1〉 is the shortest path

between two points. And each point pi ∈ R covers one or more query keywords.

Definition 4.3 (Complete Route) For a given keyword set, a route from

the point ps to the point pt, that passes through at least one indoor point from

each given keyword, is called a compete route.

Definition 4.4 (Route Distance) Given a route R = 〈p1, . . . , pm〉, the dis-

tance of route R is computed as follows,

D(R) =
m−1∑
i=1

dist(pi, pi+1) (4.1)

where dist(pi, pi+1) denotes the indoor distance between two points in route R.

103



Definition 4.5 (Partition Count) Given a route R = 〈p1, . . . , pm〉, the par-

tition count (denoted by C(R)) is the number of unique partitions visited by

the route R in order to cover query keywords. C(R) is computed as follows,

N =
m⋃

i=1,pi∈Pj

Pj

C(R) = |N |

(4.2)

Definition 4.6 (Dominance) Given an indoor space, let Ra and Rb be com-

plete routes covering query keywords, i.e., q.ψ. Then, Ra dominates Rb

if (i) D(Ra) < D(Rb) and C(Ra) ≤ C(Rb) or (ii) C(Ra) < C(Rb) and

D(Ra) ≤ D(Rb) .

Definition 4.7 (Keyword-aware Skyline Routes (KSR) query) Given an

indoor space, a keyword-aware skyline routes query q = 〈ps, pt, ψ〉 where ps, pt

denote the source indoor point and the target indoor point of the route, and

q.ψ = 〈t1, . . . , tm〉 denotes a set of unique keywords that describes the user pref-

erences. The KSR query returns the set of non-dominated complete routes, i.e.,

the skyline routes, denoted by S .

Theorem 4.1 The problem of solving a KSR query is NP-hard.

Proof The answer to the classical travelling salesman problem (TSP) is a

skyline route because it has the smallest distance. Thus, if KSR query can

be solved in polynomial time, the results for the TSP can also be retrieved

in polynomial time by returning the skyline route with the smallest distance.

Clearly, the problem of solving KSR query is identical to the TSP. Thus, the

problem of solving KSR problem is NP-hard.
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4.3.2 Limitations of Existing Techniques

The solutions that are proposed in [33] cannot be used to answer KSR queries

since they are approximation algorithms. [34, 59, 60] study a variant of TPQ

problem called optimal sequenced route (OSR) query. The solutions of these

works are not applicable in answering KSR queries as the categories are visited

according to a user-specified order. The route planning queries that are inves-

tigated in [35, 64, 36] take into account different constraints in determining

the optimal route. There solutions cannot be extended to answer KSR queries

since they are approximation solutions. [37, 65] study an exact solution for

different types of route planning queries. We find that these works have dif-

ferent aims and settings with that of the KSR queries since [37] focuses on

finding the optimal route while [65] considers only one keyword per object

respectively.

A large body of research can be found [66, 29, 30, 67, 68, 69]. in literature

that focus on efficiently finding skyline points in traditional databases. The

proposed solution in [31] is not applicable since they consider only one keyword

at a time where we focus on multiple keywords in answering a KSR query.

[71, 115, 32] focus on retrieving routes with respect to multiple attributes

such as distance, driving time and etc. These problems are different from the

problem of KSR as they do not take into account any keywords nor distance

between them in route construction. Moreover, their solutions are mainly

focused on retrieving a set of routes for a given source point and target point

that are optimal under any arbitrary liner weighting.

Some studies [73, 74, 72] focus on processing continuous skyline queries on

the road networks. These problems find a set of skyline POIs from the same

category instead of a complete route covering given keywords. Thus, these
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solutions are not applicable to process KSR queries as KSR queries focus on

different categories given by the user. Moreover, [76] study a problem that finds

a set of skyline routes passes through multiple POIs covering given categories.

They propose two approximation algorithms to efficiently solve their problem.

Hence, these techniques cannot be extended to answer a KSR query since the

KSR query finds the optimal solution.

4.4 GMD Algorithm

Answering a skyline query on the traditional database system is a well-studied

problem. Compared to those established solutions, the problem of answering

a KSR query has to handle several challenges since routes cannot be assumed

to be previously known and also materializing the possible routes is computa-

tionally prohibitive due to the huge amount of possible routes with respect to

different queries. Hence, we have to perform expensive graph traversals to ob-

tain the all possible complete routes and perform extensive route comparisons

to identify the set of non-dominated routes. However, such an exhaustive

search is not feasible since the number of possible routes is growing expo-

nentially with the number of query keywords. Thus, we propose an efficient

solution called Global Minimum Distance based expansion (GMD) algorithm

that traverses the indoor graph in an optimal way such that it prevents gener-

ating dominated routes as early as possible. Moreover, we utilize two pruning

rules to reduce the search space.

The GMD algorithm constructs candidate routes by progressively retriev-

ing the indoor partitions that cover query keywords. Such an indoor partition

is retrieved based on its aggregated distance (denoted by global minimum dis-

tance ) considering both query points, i.e., source and target points. Let Pi
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Figure 4.3: Example of constructing a complete route

be an indoor partition and ps, pt be the source and target points respectively.

Then, the global minimum distance is computed by dist(ps, Pi) + dist(Pi, pt)

where dist(pj, Pi) is the indoor distance of the shortest path from indoor point

pj to indoor partition Pi. Whenever such a partition Pi is retrieved, all possible

routes through the partition Pi is generated and the current route is extended

with reference to the partitions previously retrieved. For example (See Fig-

ure 4.3), Let q = {ps, pt, {t1, t2, t3}} be a KSR query and Pa, Pb and Pc be

indoor partitions covering query keywords {t1, t2}, {t1} and {t3} respectively.

Assume that the order of partitions retrieved is Pa, Pb and Pc with respect

to their global minimum distances (Note that, in this study, we consider the

indoor distance not the Euclidean distance to compute the global minimum

distance). So the partition Pa is obtained first. Since it covers only t1 and

t2 keywords, a complete route cannot be generated. Next, the partition Pb is

obtained and still a complete route cannot be generated. Finally, when the par-

tition Pc is retrieved, we can generate two possible complete routes as follows.

(i) Rx = {ps → Pa → Pc → pt} and (ii) Ry = {ps → Pa → Pb → Pc → pt}.

Assume that D(Rx) = 100 and D(Ry) = 150. Then, Rx dominates Ry accord-

ing to Definition 4.6 since D(Ra) < D(Rb) and C(Ra) < C(Rb). Moreover, Let

Rz be a complete route with D(Rz) = 300 and C(Rz) = 1 (i.e., Rz covers all
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query keywords by visiting only one partition). Then, GMD algorithm returns

Ra and Rz as skyline routes. Before we present our algorithm, we introduce

following pruning rules which utilize the route dominance to reduce a large

amount of search space by eliminating dominated routes.

Pruning Rule 5 For a given KSR query q, let Ra and Rb be routes start from

ps and end at pi covering the same set of keywords. Then, Ra dominates

Rb at point pi (denoted by Ra ≺i Rb) if D(Ra) ≤ D(Rb) and C(Ra) ≤ C(Rb).

Proof In order to prove Pruning Rule 5, we can show that Ra cannot dominate

Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb). We use prove by contradiction.

Hence, we assume Ra dominates Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb).

Let D(Ra) ≤ D(Rb) and C(Ra) > C(Rb). Note that, when D(Ra) == D(Rb),

Ra cannot dominate Rb. This reveals that our assumption is incorrect. Thus,

Ra cannot dominate Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb). We have

proven the Pruning Rule 5.

Pruning Rule 6 Let Ra = {ps, . . . , pt} be a complete route and Rb = {ps, . . . , pi}

be a partially completed route. If D(Ra) ≤ D(Rb) and C(Ra) ≤ C(Rb) + 1.

Then, Ra dominates the complete route of Rb. Thus Rb can be pruned.

Proof To prove Pruning Rule 6, we can show that Ra cannot dominate the

complete route of Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb) + 1. We use

prove by contradiction. Hence, we assume Ra dominates the complete route

of Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb) + 1. Let D(Ra) > D(Rb)

and C(Ra) ≤ C(Rb) + 1. Note that, when C(Ra) == C(Rb) + 1, Ra cannot

dominate Rb. This reveals that our assumption is incorrect where Ra cannot

dominate the complete route of Rb when D(Ra) > D(Rb) or C(Ra) > C(Rb)+

1. Therefore, Ra dominates the complete route of Rb only if D(Ra) ≤ D(Rb)

and C(Ra) ≤ C(Rb) + 1. So the partially completed route Rb can be pruned.
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Algorithm 7: GMD Algorithm

Data: Query q = {ds, dt, ψ}
Result: Set of skyline routes S

1 Initialize min-priority queues Q,H ← ∅;
2 kBounds← ∅; S ← ∅; candList← ∅;
3 Pj ← getMinDistCand (H, candList, true);
4 R1

j ← generateRoute (Pj);

5 Q.enqueue(R1
j );

6 while Q is not empty do
7 Rki ← Q.dequeue ();

// let Rki = {ds, . . . , di}
8 Pj ← getMinDistCand (H, candList, false);
9 R1

j ← generateRoute (Pj);

// check for Pruning Rule 5

10 Q.enqueue (R1
j );

// check for Pruning Rule 6

11 if D(Rki ) < kBounds[k + 1] then
// uncovered keywords in the current route

12 Ψ← q.ψ \Rki .ψ;
13 if Ψ == ∅ then
14 if di == dt then
15 flag← updateBounds (Rki , kBounds, S);

// current route is a non-dominated route

16 if flag then
17 S ∪Rki
18 end

19 end

20 end
21 else
22 ∆← getAllSubsets (Ψ);
23 foreach keyword combination δ in ∆ do
24 PList← getAllCandidates (δ, k, candList);
25 foreach partition Pi in PList do

26 Rk+1
i ← generateRoute (Pi);

// check for Pruning Rule 5

27 Q.enqueue (Rk+1
i );

28 end

29 end

30 end

31 end

32 end

33 return S
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As Algorithm 7 illustrates, first, we initialize two min-priority queues Q,H

(line 1). The queue Q is used to maintain the optimal route in terms of

route distance and the queue H maintains the next closest partition with re-

spect to the global minimum distance. And also, we utilize three sets, namely,

kBounds, S and candList (line 2). The set S and kBounds maintain the current

skyline routes and their route lengths respectively. The set candList is used

to store all the partitions that are discovered by Algorithm 8. Initially, we

obtain the globally closest partition Pj that covers at least one query keyword

by utilizing getMinDistCand () function, i.e., Algorithm 8, and generate the

optimal route R1
j through Pj covering possible query keywords (line 3-5). Since

an indoor partition may consist of several doors, we find all possible optimal

routes covering given keywords for all door combinations. In order to generate

an optimal route inside an indoor partition, i.e., generateRoute (), we utilize

a progressive neighbor exploration [34] based approach that explores keyword

nearest neighbor one by one and adding them to route until it covers all key-

words. We materialize these routes so that we can efficiently return optimal

routes for the same instance, whenever they are needed in later iterations.

Then, we insert all routes into the min-priority queue Q. We terminate the

algorithm when the Q is empty (line 6). In each iteration, we get the next

globally closed partition and generate all possible optimal routes through the

partition. Furthermore, we check against the Pruning Rule 5 before we en-

queue such a candidate route into the queue Q (line 8-10). Also, we dequeue

the current optimal route Rk
i in the queue Q (line 7) and check whether it can

be dominated by another route by utilizing the Pruning Rule 6 (line 11). If it

is not dominated, then we get the uncovered query keywords of route Rk
i (line

12). When the candidate route is a complete route, i.e., all query keywords

are covered and reached the target point, we update the k bounds. And also,
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if the current route is a skyline route then we insert route into the set S (line

13-17). Otherwise, when the route is not a complete route, we generate candi-

date routes for all possible combinations of uncovered keywords, i.e., Ψ, (line

20-24). For example, if Ψ = {t1, t2}, then ∆ = {{t1}, {t2}, {t1, t2}} (line 19).

For each combination, we retrieve the indoor partitions from candList that

cover the particular keyword combination. Then, we generate routes through

each partition and extend the current route (line 23). Then, we check against

the Pruning Rule 5 before we enqueue the extended route into the queue Q

(line 24). Finally, we return the set of skyline routes S (line 25).

Next, we explain Algorithm 8 which retrieves the globally closest partition

considering the aggregate distance from ps and pt. When Algorithm 8 is called

for the first time, the root of the inverted VIP-tree is enqueued into the queue

H, i.e., when flag = true. We terminate the while loop either when the

queue H is empty (line 4) or the closest partition with respect to the global

minimum distance is found (line 6-8). In each iteration, we dequeue an element

and check whether it is (i) a non-leaf-node, (ii) a leaf node or (iii) an indoor

partition. If the dequeued element is a non-leaf node, then we enqueue its

children (that cover at least one query keyword) with the corresponding global

minimum distance as the key value (line 17-20). If the dequeued element

is a leaf node, then all the partitions that cover at least one query keyword

are selected. Then, each of the selected partitions is enqueued into H for

all possible combinations of covered keywords. For example, if the partition

Pi covers t1 and t2, then three instances of the partition Pi with different

covered keywords, i.e., {{t1}, {t2}, {t1, t2}}, are inserted into the queue H.

This is because a partition which covers two keywords may contribute only

one keyword for a complete route. Thus, it is guaranteed to obtain the exact

skyline routes. Finally, if the dequeued element is an indoor partition, then
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Algorithm 8: getMinDistCand (. . . )

Data: min-priority queue H, set of partitions candList, boolean flag
Result: partition Pk

1 T ← inverted VIP-tree;Pk ← ∅;
2 if flag then
3 H.enqueue (T .root, 0);
4 end
5 while H is not empty do
6 element← H.dequeue ();
7 if element is a partition then
8 Pk ← element;
9 break;

10 end
11 else if element is a leaf node then
12 foreach partition Pi of element do
13 if partition.ψ ∩ q.ψ 6= ∅ then
14 ∆← getAllSubsets (partition.ψ);
15 foreach keyword combination δ in ∆ do
16 mDist← dist (pn, Pi) + dist (Pi, pt);
17 H.enqueue (Pi,mDist);

18 end

19 end

20 end

21 end
22 else

// element is a non-leaf node

23 foreach childNode Ci of element do
24 if childNode.ψ ∩ q.ψ 6= ∅ then
25 mDist← dist (ds, Ci) + dist (Ci, dt) ;
26 H.enqueue (Ci,mDist);

27 end

28 end

29 end

30 end

31 return Pk
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we break the while loop (line 6-8) and return that partition (line 21).

In this chapter, we utilize VIP-tree [1] which is the state-of-the-art indoor

index as our indexing structure. In order to support keyword-based filtering,

we modify the VIP-tree by storing inverted files in each tree node. An inverted

file consists of a list of all the unique keyword that appears in any indoor

partition of that node, and for each keyword, a list of indoor partitions in

which it appears. This inverted VIP-tree allows us to efficiently obtain a

partition with the minimum distance that consists of at least a given query

keyword as it supports both distance and keyword-based filtering.

4.5 Experiments

4.5.1 Experimental Settings

Indoor Space + Keyword Datasets. We use the same indoor venue,

i.e., Chadstone Shopping Centre 1 which is the largest shopping centre in

Australia, that is used in Chapter 3 as our indoor venue. The D2D graph for

the corresponding venue consists of 338 vertices (i.e., doors) and 3847 edges.

In order to obtain the keyword dataset we follow a similar procedure where

we crawled data from the websites of major supermarkets (e.g., Coles, Wool-

worths and etc.) as well as major retail stores (e.g., JB Hi-fi, Big W, Chemist

and etc.) and obtained 140,000 objects along with their keywords. Then, each

object was mapped into the particular indoor partition (e.g., retail store) by

randomly determining the x and y coordinate of the object inside the partic-

ular partition. Furthermore, we obtain a large dataset (denoted as CHAD2 )

by placing a replica of the Chadstone Shopping Centre on top of the original

building.

1https://www.chadstone.com.au/
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Query Generation. In order to generate queries, we took into account a

property called objects per keyword (denoted by Ω) which is the number of

objects in the indoor space that contains the particular keyword. According to

the aforementioned property, we identified 5 different sets of keywords, namely

XS, S, M, L and XL. All the keywords in the set XS were obtained by selecting

the keywords that have 80 - 120 objects in the indoor space. Similarly, the

other keyword sets were obtained by varying the range 180 - 220, 280-320,

380-420 and 480 - 520 objects respectively. Also, for the query point pairs

(i.e., source and target points), we obtain three sets of point pairs, namely SH,

MI and LO, based on the indoor distance between them (denoted by ∆). The

point set SH consists of point pairs that have 180-220 indoor distance between

them and, 280-320 and 380-420 for MI and LO respectively. Note that the

indoor distances are determined in meters. Finally, a KSR query is generated

by randomly selecting the keywords and a pair of points from the correspond-

ing datasets. Accordingly, 50 queries were generated for each experimental

setting. Moreover, we followed the same procedure to obtain different query

sets for the CHAD2 dataset.

Competitor. We compare our algorithm GMD with a network expansion

based approach, denoted by NE. This approach traverses the indoor graph us-

ing network expansion method to find all the possible complete routes. Once

it visits an indoor partition it generates all the possible optimal routes through

that indoor partition and expands the current route. NE approach utilizes the

same progressive nearest neighbor approach which is used by GMD to effi-

ciently generates a candidate route through an indoor partition. Moreover, we

employ Pruning Rule 5 in NE to avoid the exhaustive search. Thus, NE ap-
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Table 4.1: The parameters used for experiments
Parameter Default Range
Objects per keyword (Ω) M XS, S, M, L, XL
# of query keywords (|q.ψ|) 3 1, 2, 3, 4, 5
Query point distance (∆) MI SH, MI, LO

proach is much better than the naive network expansion based approach.

All algorithms were implemented in C++ and our experiments were con-

ducted on Ubuntu running on an Intel Core i5 @ 3.30GHz and 4GB RAM.

4.5.2 Experimental Results

In all experiments, we use the default settings (see Table 4.1) while varying a

single parameter at a time. First, we conduct the set of experiments on the

real-world dataset. And for each experiment, we report the average runtime

in milliseconds and the average number of intermediate routes generated in

query processing.

Varying the number of keywords. Figure 4.4(a) reports the runtimes

of algorithms while varying the number of query keywords, i.e., |q.ψ|. Note

that, under the default settings, each query consist of 3 keywords where each

keyword has nearly 300 objects in the indoor space. Even though there are

only around 900 related objects in the indoor space, each algorithm deals with

140,000 objects in query processing. We can clearly see that GMD outperforms

NE under all configurations. The reason is that GMD can quickly identify a

skyline route as it uses the minimum distance approach to retrieve a candidate

indoor partition. Also, GMD visits only the candidate partitions that cover

the query keywords. GMD answer a KSR query less than 0.3 seconds while

NE takes 10 seconds when |q.ψ| = 3. Obviously, the performance of both
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algorithms decreases when |q.ψ| increases as the number of possible candidate

routes increases. GMD performs more than two orders of magnitude faster

than NE when |q.ψ| = 5. Figure 4.4(b) shows the number of intermediate

routes processed by each algorithm while varying q.ψ. This clearly explains

the reason behind the performance degradation of both algorithms. NE gener-

ates more intermediate candidate routes as it uses a network expansion based

approach.

Varying the object per keyword. Figure 4.4(c) investigates the runtimes

of algorithms varying the number of related objects per keyword, i.e., Ω. Since

each query consists of 3 keywords under the default settings, the average num-

ber of related objects in the indoor space is 300, 600, 900, 1200 and 1500

respectively. GMD answers a KSR query nearly in one second while NE takes

45 seconds when Ω = XL. Moreover, NE is an order of magnitude worse un-

der all Ω values. As Figure 4.4(d) reports, the number of intermediate routes

generated by NE is large compared to GMD. Basically, the number of routes

generated by NE is two orders of magnitude higher than GMD. Even though

the number of intermediate routes varies in small amounts the runtime drasti-

cally increases as the number of computations generating optimal routes inside

partitions increases as the number of related objects increases.

Varying the distance. Next, we evaluate the algorithms by varying the dis-

tance between query points, i.e., ∆. As Figure 4.4(e) depicts, GMD performs

nearly two orders of magnitude better than NE for the short distance query,

i.e., ∆ =SH, in which GMD takes only 0.1 seconds to answer a KSR query

while NE takes 11 seconds. Moreover, GMD outperforms NE by an order

of magnitude for medium and long distance queries, i.e., MI and LO respec-
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Figure 4.4: Results on the real-world dataset

117



100
101
102
103
104
105
106

1 2 3 4 5

R
u

n
ti

m
e 

(m
s)

|q.ψ|

GMD
NE

(a)

100

101

102

103

104

105

1 2 3 4 5

# 
o

f 
ro

u
te

s 

|q.ψ|

GMD
NE

(b)

101

102

103

104

105

106

XS S M L XL

R
u

n
ti

m
e 

(m
s)

Ω

GMD
NE

(c)

102

103

104

105

106

SH MI LO

R
u

n
ti

m
e 

(m
s)

∆

GMD NE

(d)

Figure 4.5: Runtime on the CHAD2 dataset

tively. The performances of algorithms decreases when ∆ is increased as the

search space increases for both algorithms. Figure 4.4(f) reports the corre-

sponding intermediate routes while varying the distances between the query

points. Clearly, the GMD generates a less amount of routes compared to NE as

it progressively retrieves the globally closest partition each time.

Experiments on a large dataset. The objective of this set of experiments

is to study the scalability of the algorithm. Hence, we use the CHAD2 dataset

which is a replica of the real-world dataset. Note that, this indoor space

consists of 240,000 objects and its corresponding D2D graph consist of 676

vertices (i.e., doors) and 7698 edges. Also, we observed that the number of

partitions with keywords is much higher in this dataset. Figure 4.5(a) shows

the runtimes of algorithms varying |q.ψ|. GMD outperforms NE by two orders
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of magnitude even when |q.ψ| = 3. Also, our algorithm performs reason-

ably well even for large |q.ψ| values. The performances of both algorithms

decreases for this dataset as each algorithm has to visit more partitions. Fig-

ure 4.5(b) reports the intermediate routes correspond to the experiment that

is performed in Figure 4.5(a). Moreover, as Figure 4.5(c) depicts, the runtimes

of algorithms increase when Ω is increased since both algorithms have to gen-

erate more routes inside partitions. GMD is two orders of magnitude better

than NE when Ω = XL. Finally, Figure 4.5(d) investigates the runtimes of

algorithms varying ∆. Clearly, GMD is two orders of magnitude better than

NE under all configurations.

4.6 Conclusions

In this chapter, we study a new interesting route planning problem called

keyword-aware skyline routes (KSR) query which returns a set of non-dominated

routes instead of an optimal route. The dominance of a route over another

route is determined based on two attributes, particularly route distance and

number of stores/shops visited. KSR queries facilitate the users to find the

most suitable route among the skyline routes based on these dimensions. Al-

though the problem of answering a KSR query is NP-hard, it is feasible to

design exact solutions for the case where the number of query keywords is

limited. The results of the empirical studies on a real-world dataset show the

efficiency and the scalability of our exact solution.
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Chapter 5

Continuous Detour Queries in

Indoor Venues

In this chapter, we investigate continuous detour queries in the indoor space.

We propose an efficient client-server framework to continuously answer detour

queries in the indoor space. We address the problem by solving two indi-

vidual subproblems, namely, local and remote computation. We introduce a

pre-processing approach for efficient local computation that constructs safe

zones for indoor objects. We also propose a best first algorithm for efficient

remote computation. Finally, we utilize the outcome of the local and remote

computations to answer the continuous detour queries efficiently.

5.1 Overview

Indoor location-based services (LBSs) play an important role in planning daily

activities with convenience as people usually spend most of their time in-

side the indoor venues like office, shopping center, transport facilities, and

libraries. Though the efficient processing of variant outdoor LBSs has been
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extensively studied over the last decades, with the recent advancement of in-

door positioning technologies, the indoor LBSs have received attention from

the researchers in the last few years. It has been already shown that the tech-

niques [53, 54, 55, 57, 58] for outdoor LBSs are not adoptable for indoor LBSs

due to the unique characteristics of indoor venues. For example, in the road

network setting, people move along the roads whereas the buildings are nor-

mally organized into partitions with walls, doors, stairs and lifts, and people

are free to move inside a partition. Thus, to continue the proliferation of in-

door LBSs, it is essential to develop efficient solutions for processing location

based queries in indoor venues.

In this chapter, we propose the first solution for continuous detour queries

in indoor venues, an essential class of LBSs that allows a moving user to

continuously monitor the nearest detour object like an ATM, a printer or a

coffee while walking towards a target location in an indoor venue. For example,

a user in a library or a shopping centre may want to print or have a coffee before

returning to the car park. A detour query returns the indoor object that has

the smallest detour distance, where the detour distance is measured as the total

indoor distance of an indoor object from the user’s current and target locations.

However, it is a typical scenario in the indoor venues that a user deviates from

the path to the target location via the nearest indoor detour object and the

nearest detour object may change. In the library, users may deviate from their

current paths to have a look at some books that was not planned or in the

shopping centre users may do some window shopping. Sometimes, users may

also miss a turn while walking towards the nearest indoor detour object. Thus,

it is important to continuously monitor the nearest indoor detour object for

every location update of the user walking towards a target location.

Processing a continuous detour query using a detour query for every loca-
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tion update of a moving user would incur an extremely high processing over-

head. Thus, the efficiency of a continuous detour query processing algorithm

for indoor venues highly depends on reducing the number of re-evaluations of

the detour queries. To address this issue, in addition to the current nearest

indoor detour object, our solution provides a user with additional informa-

tion so that the user does not need to communicate with the server for the

re-evaluation of the detour query for moving within a specific area.

Since the density of the indoor objects is much higher than that of the

outdoor space, performing all computations in query time is not feasible for

the indoor space. We develop a novel technique to compute the safe zones for

indoor objects by exploiting the geometric properties of the hyperbolas and the

uniqueness of the indoor space. A safe zone for an indoor object represents an

area where it is guaranteed that the indoor object remains the nearest detour

with respect to a partition door for a user who is moving towards a fixed

target point. Our safe zone computation technique does not depend on any

query time parameter and thus, allows us to precompute the safe zones and

store them for future access. The precomputed safe zones significantly reduce

the computational overhead for identifying the nearest detour objects, and

the communication overhead by allowing the user to have the nearest detour

objects for a guaranteed area without sending a re-evaluation request of the

detour query to the location-based service provider.

The underlying idea of our solution is to divide the problem of finding a

nearest detour for a user’s current and target locations into two subproblems:

identifying the minimum local detour and the minimum remote detour with

respect to an indoor partition. For the minimum local detour, using the stored

safe zones, we find the indoor object that has the smallest detour distance

among all indoor objects in the indoor partition where the user is currently
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located. We also develop an efficient algorithm to identify the indoor object

that has the smallest detour distance among all indoor objects outside the

user’s current partition and we consider the identified indoor object as the

minimum remote detour. Finally, the indoor object that provides the smallest

detour distance between the minimum local detour and the minimum remote

detour is selected as the query answer.

The query answer, a grid cell representing an area that may overlap with

the safe zones of one or multiple indoor objects along with other additional

information are sent to the user. The query answer may change as the user

moves but as long as the user resides within the grid cell ( denoted as the

client-side safe zone), the user can compute the new nearest indoor detour

object without communicating with the server. Thus the user’s location is

again updated to the server for finding the nearest indoor detour object, if the

user moves outside the client-side safe zone.

Continuous detour queries have been addressed in the outdoor space [3, 45].

In the road networks, users are restricted to move towards the roads and thus,

the existing solution [3] for processing continuous detour queries in the road

network is not applicable for indoor scenarios. On the other hand, [45] contin-

uously monitors the nearest detour objects in the outdoor space in presence of

obstacles like a building, a river or a fence. Due to the random distribution of

the obstacles in the outdoor space, the solution [45] performs all computations

during query time and is not suitable for the indoor space.

5.2 Contributions

In summary, the contributions of this chapter are summarized as follows:

• We formulate the problem of answering continuous detour queries in the
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indoor space.

• We propose an efficient solution for continuously monitoring the nearest

indoor detour object for a user walking towards a fixed target location.

• We develop a novel technique to precompute the safe zones for indoor

objects inside a partition.

• We perform an extensive set of experiments and show that our solution

performs significantly better than the competitors.

This chapter is organized as follows. Section 5.3 formulates the problem of

the continuous detour query and presents a brief discussion about the limita-

tions of existing work, Section 5.4 presents our techniques to answer continuous

detour queries in indoor space, Section 5.5 consists of the experiment results

and Section 5.6 summarizes this chapter.

5.3 Preliminaries

In this section, we introduce some preliminary definitions and formally define

the problem in Section 5.3.1. We present the limitation of existing techniques

in both outdoor and indoor spaces in Section 5.3.2. Notations used in this

chapter are summarized in Table 5.1.

5.3.1 Problem Definition

Indoor objects

Let pi ∈ P be an indoor point representing an indoor object1. The location of

an indoor point pi is given by x and y coordinates.

1In this chapter, we use the terms indoor object and indoor point interchangeably.
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Definition 5.1 (Detour) Given a set of indoor points P, the detour D =

{ps, pi, pt} is a route from a given source indoor point ps to a given target

indoor point pt going through an indoor point pi ∈ P (denoted as detour point).

Definition 5.2 (Candidate Partition) Given a set of indoor points P, an

indoor partition I is called a candidate partition only if it consists of at least

one indoor point p ∈ P.

Definition 5.3 (Local/Remote Detour) Given a detour D = {ps, pi, pt}

is called a local detour (denoted by DL) if the detour point, i.e., pi, belongs

to the current indoor partition I where the user resides in. Otherwise, if the

detour point lies outside the current indoor partition, it is called a remote

detour (denoted by DR).

Moreover, when the context is ambiguous, we define a local detour by DL
i:j =

{ps → pi → dj → pt} where pi is an indoor point and dj is a partition door.

And a remote detour starts at door dj by DR
j .

Definition 5.4 (Detour query) Given a set of indoor points P, a query

q = 〈ps, pt〉 where ps denotes the current user location and pt denote the target

indoor point. The detour query returns the detour D = {ps, pi, pt} subject to:

L(D) = arg min
∀pi∈P

d(ps, pi) + d(pi, pt) (5.1)

where d(pi, pj) is the shortest indoor distance between indoor points pi and pj

and the L(D) is the indoor distance of the detour.

Definition 5.5 (Continuous Detour query) Given an indoor space and a

moving detour query where ps continuously changes as a user moves. The con-

tinuous detour query continuously find the minimum detour w.r.t the current

user point ps.
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Table 5.1: The summary of notations

Notation Definition
pi an indoor point
qi a detour query
I an indoor partition
Si:j the splitter between points pi and pj
Hi:j the region where DL

i:j is the minimum

DL
i:j the minimum local detour from point pi via door dj

DR
i the minimum remote detour at door di

d(pi, pj) the indoor distance between points pi and pj
L(D) the indoor distance of detour D

5.3.2 Limitations of Existing Techniques

In-Route Nearest Neighbor Queries (IRNN) [38, 2], Path Nearest Neighbor

(PNN) [39] and Best point detour [40] study detour problems where the

path must be predetermined. Thus, these techniques cannot be extended to

answer our problem. In [3], they propose a solution where an order-k shortest

path tree is incrementally build. Even though they study a similar problem

to ours, we find that their techniques cannot be extended to answer detour

queries in indoor space as the indoor detour objects are in Euclidean space.

Moreover, [45] investigates detour queries in obstructed space. We find their

work have a different aim compared to our problem.

[13, 91, 92, 14] study a variant of nearest neighbor queries called aggregated

nearest neighbor which can also be utilized to answer detour snapshot queries.

As they do not consider the Euclidean space in the indoor space, we find

all these techniques are inapplicable in answering detour queries in indoor

space. [65] propose a exact solution to answer route planning queries in indoor

space which can be used to answer snapshot detour queries. Their techniques

cannot be extended to answer detour queries as they are only efficient when
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the number of objects in the indoor space is very small.

5.4 Our Solution

In this section, we develop an efficient solution for processing continuous detour

queries in indoor venues. The key idea behind the efficiency of our solution

is our novel technique to identify the safe zones, i.e., the areas where indoor

objects remain the nearest detours for a user moving towards a fixed tar-

get location. We exploit the geometric properties of the hyperbolas, additive

weighted Voronoi diagram and indoor partitions to compute the safe zones. A

significant advantage of our safe region computation technique is that it does

not depend on the query time parameters and thus, allows us to pre-compute

the safe zones and index them for use during the query evaluation time. Since

the density of indoor objects is much higher than the outdoor space, computing

the safe zones during the query evaluation is not feasible for the indoor space.

Pre-processed safe zones reduce the computational complexity for finding the

nearest detour objects significantly and allows us to provide users with guar-

anteed areas where the users can locally determine the nearest detour objects

without re-evaluating the detour queries for their changed locations. Since a

user can freely move inside an indoor partition, the straightforward evaluation

of a continuous detour query by using a detour query for every location update

of the moving user would incur excessive processing overhead.

Our solution is based on the client-server paradigm for processing the con-

tinuous detour queries in the indoor space. The server is the location based

service provider and is responsible for evaluating the continuous detour queries,

and the client is the user who requests a continuous detour query. The clients

send location updates to the server as they move outside the guaranteed area.
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Figure 5.1: Example of a splitter

The server is responsible for maintaining the up-to-date results for the queries

with respect to the user’s movements. We divide the problem of finding the

nearest detour objects into two subproblems, where we compute the mini-

mum local and remote detours separately for each location update. Hence, the

query result, i.e., the minimum detour, for a location update can efficiently

be determined by utilizing the results of the subproblems. Intuitively, when a

movement of a user does not invalidate the previous results of a subproblem,

such results can be resued to obtain the minimum detour for the new location

of the user. Section 5.4.1 presents the proposed techniques to pre-compute the

safe zones, and find the minimum local detour with respect to a user’s current

and target locations. Section 5.4.2 introduces an efficient algorithm that uti-

lizes the VIP-tree to find the minimum remote detour for a given door of an

indoor partition. Section 5.4.3 explains the algorithm for evaluating a detour

query and Section 5.4.4 presents the technique for monitoring the nearest de-

tour against the continuous location updates. Finally, Section 5.4.5 discusses a

competitive algorithm that performs the local computation for a detour query

by generating all possible local detours.
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5.4.1 Local Computation

In this section, we explain the process of obtaining the minimum local detour

for a given user location. We denote this process as the “local computation”.

We propose an efficient solution that utilize safe zones to quickly identify the

minimum local detour for a given indoor point. First, we introduce a pre-

processing method to construct such safe zones. Then, we present an indexing

method to store the pre-processing results, i.e., safe zones, to utilize in query

processing time.

Pre-processing

Naively, the minimum local detour can be determined by generating all possible

local detours. Since the indoor space consists of thousands of objects, such an

approach is computationally expensive. By exploiting the geometric properties

of the hyperbolas, we identify safe zones in the indoor space, where a user’s

movement does not change the current local detour point that provides the

smallest detour distance with respect to a door of an indoor partition. Since

these safe zones are independent of the query parameters, we pre-compute

and utilize them in the query processing to perform the local computation

efficiently. Before we present the pre-processing method, we introduce the

following definitions.

As Figure5.1 shows, a hyperbola is a set of points, such that for any point

P of the set, the absolute difference of the distances to two fixed points F1, F2

(the foci), is constant, i.e., H = {P | |d(P, F1) − d(P, F2)| = 2a}. Note that

the curve goes through vertex V2 divides the space into two half spaces where

d(P̂ , F1) − d(P̂ , F2) < 2a if the point P̂ in the left half space and d(P̂ , F1) −

d(P̂ , F2) > 2a if the point P̂ in the right half space. Hence, we define such a
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curve as follows.

Definition 5.6 (Splitter) Given a hyperbola of |d(P, Fi) − d(P, Fj)| = 2a.

We identify one of the curves as a splitter that divides the space into two half

spaces d(P, Fi) − d(P, Fj) < 2a and d(P, Fi) − d(P, Fj) > 2a, denoted by Si:j

where i and j are the two foci. The corresponding vertex that the curve goes

through is called the split point.

Figure 5.2 depicts an indoor partition I with door d1. The partition consists

of two indoor points p1, p2. Assume that the partition I is the only candidate

partition in the indoor space. Hence, the minimum detour must be one of the

local detours passes through the door d1 , i.e., DL
1:1 = {ps → p1 → d1 → pt}

and DL
2:1 = {ps → p2 → d1 → pt}.

Let H1:1 and H2:1 be the regions inside the indoor partition where DL
1:1 and

DL
2:1 are minimum detours respectively. When ps lies in the region H1:1, the

following inequality must be satisfied.

L(DL
1:1) < L(DL

2:1)

d(ps, p1) + d(p1, d1) + d(d1, pt) < d(ps, p2) + d(p2, d1) + d(d1, pt)

d(ps, p1) + d(p1, d1) < d(ps, p2) + d(p2, d1)

d(ps, p1)− d(ps, p2) < d(p2, d1)− d(p1, d1)

According to the Definition 5.6, we can construct a splitter (i.e., S1:2) by

selecting the indoor points p1, p2 as foci and 2a = d(p2, d1) − d(p1, d1). The

most important step in constructing a splitter is to determine the split point

correctly. Let point x be the split point and point c be the center. Then the
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Figure 5.2: Example of a region divided by a splitter

split point is determined as follows,

d(p1, x)− d(p1, c) = a

d(p1, x)− d(p1, p2)

2
=

1

2

(
d(p2, d1)− d(p1, d1)

)
d(p1, x) =

1

2

(
d(p1, p2) + d(p2, d1)− d(p1, d1)

) (5.2)

Once the splitter S1:2 is constructed, space is divided into two half spaces

d(p, p1) − d(p, p2) < 2a (i.e., the shaded area in Figure 5.2) and d(p, p1) −

d(p, p2) > 2a which is basically the required H1:1 and H2:1 regions respectively.

Intuitively, these two regions act as safe zones where we can guarantee that

the minimum local detour does not change until the current location of the

user is within a particular region. Moreover, as the Equation 5.4.1 depicts,

the splitter S1:2 is independent of the query parameters. Hence, these two

regions can be pre-computed and utilized in query time to quickly identify the

minimum local detour that goes through the door d1 with respect to a location

update inside the partition I.
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Furthermore, for the candidate partitions with indoor points more than

two, we need to construct splitters for each possible pair of indoor points to

determine such safe zones. Note that these regions are AW Voronoi cells with

additive weight d(di, pi). Hence, in the pre-processing approach, we generate

AW Voronoi diagram for each partition door di. In query processing, we can

easily determine the minimum local detour that goes through a particular

door by looking at the corresponding AW Voronoi cell with respect to the

current user location. For the indoor partitions that have more than one door,

AW Voronoi diagram for each door di is created with the additive weight

d(di, pi). For such a partition, the local computation is done as follows. First,

the minimum local detour points with respect to each door is obtained using

corresponding AW Voronoi diagrams. Then, these results are evaluated to

determine the minimum local detour point. Since the number of doors of a

candidate partition is small in real-world applications, i.e., at most 3-4 doors,

the local computation can be done efficiently.

Safe zone Indexing

As we have already stated, AW Voronoi diagrams for each candidate partition

is determined by constructing the splitters between the indoor points. Since

these Voronoi cells are formed by curved splitters, such an AW Voronoi diagram

cannot be easily indexed unless they are approximated using polygons. But it

incurs inaccurate results in query time. Hence, we accompanied an approach

that index AW Voronoi diagrams by utilizing the grid data structure. In our

grid index, the space of the corresponding indoor partition is subdivided into

2n×2n grid cells (where n > 0) as shown in Figure 5.3. Then in each grid cell,

we store the splitters that overlap with the cell. To record these overlapping

splitters in each grid cell, we used conceptual tree-based grid access method [4]
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Figure 5.3: Example of a 4× 4 grid

where we consider the root of the conceptual tree is a rectangle covering the

whole indoor partition. Then the root cell is divided into four equal grid cells

that represent the next level of the tree. The process continues until each entry

of the leaf level represents one grid cell. During the process, for an intermediate

cell, we take into account the splitters overlaps with the cell and only these

splitters are considered when marking the child cells of the particular cell.

By doing this, we significantly improve the process of constructing the AW

Voronoi diagrams for a given partition.

For example, Figure 5.3 shows the AW Voronoi diagram (which is a 4× 4

grid) for door d1 of the partition I . The grid cell 2 will be marked with S1:2

and S2:3 as they overlap with the particular grid cell. Similarly, grid cell 11

is marked with S1:3 and S2:3. The grid cells 1, 3, 9, 13, 16 remains empty as

they are not overlap by a splitter. Which indicates that these grid cells are

completely inside AW Voronoi cells. Thus, the minimum local detour point

(i.e., the corresponding indoor point that the Voronoi Cell belongs to) for a

user location within these grid cells can be quickly determined. For the grid

cells with overlapping splitters, we have to check with the overlapping splitters
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to determine the minimum local detour point accordingly.

5.4.2 Remote Computation

In this section, we present an efficient approach to compute results for our

second subproblem which is determining the minimum remote detour with

respect to the user’s location (denoted as “remote computation”). Intuitively,

for any user location inside an indoor partition, the minimum remote detour

must be a remote detour that starts from one of the partition doors. Hence,

we propose an algorithm getRemoteDetour(), i.e, Algorithm 9, based on best

first search that retrieves the minimum remote detour from a given door to

the query target point pt. This algorithm accesses the VIP-tree components,

i.e, tree nodes, partitions and indoor points, based on the smallest aggregated

indoor distance from the given door and the query target point to retrieve the

minimum remote detour point. After obtaining the minimum remote detour

points for each partition door, the minimum remote detour with respect to

the user location can be readily determined. Moreover, if the next location

update is within the same partition, then we can reuse these remote detour

results to determine the minimum remote detour for the new user location. As

Algorithm 9 illustrates, we traverse each level of the VIP-tree starting from

the root node (line 2) and compute the detour costs for tree nodes at each

level. We terminate the algorithm when the min-priority queue Q is empty

(line 3) or the minimum detour point is found (line 5-6). We enqueue each

element with the detour distance as its key value. In each iteration we dequeue

the element with the minimum key value, i.e., smallest detour distance. If the

dequeued element is a node we enqueue all the child nodes (line 16-21). If the

element is an indoor partition then we enqueue all the indoor points inside the

partition. Note that, an indoor point may be enqueued multiple times into
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Algorithm 9: getRemoteDetour(dk, pt)

Data: VIP-tree V, door dk, indoor point pt
Result: minimum remote detour DR

1 p← ∅; D ← ∅
2 Q.enqueue (V.root, 0);
3 while Q is not empty do
4 element← Q.dequeue();
5 if element is a point then
6 p← element;
7 end
8 else if element is a partition then
9 foreach point pa in element do

10 foreach {di, dj} door combination do
11 minCost← d(dk, di) + d(dj , pt) + d(di, pk) + d(pk, dj);
12 Q.enqueue (pa,minCost);

13 end

14 end

15 end
16 else

// element is a tree node

17 foreach child-node N of element do
18 minCost← d(dk, N) + d(N, pt);
19 Q.enqueue (N,minCost);

20 end

21 end

22 end
23 DR ← {di, p, pt}
24 return DR;
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the queue as the detours through different door combination are possible (line

8-15). When the dequeued element is an indoor point, we terminate. Finally,

we return that indoor point and its detour distance (line 24).

5.4.3 Query Processing

Now we proceed to explain our solution that utilize the results of the two

subproblems, i.e., local and remote computations, to determine the minimum

detour for a given query. When the sytem is initiated, the AW Voronoi di-

agrams of all the partitions are loaded into the server memory. Thus, the

AW Voronoi diagram for an indoor partition can be accessed efficiently in the

query processing. As Algorithm 10 illustrates, first, we initialize I with the

current partition (line 3). Next we compute the remote detours for each door

of the partition I (line 5). Meanwhile, we update the minimum remote detour

with respect to the current user location by selecting the remote detour with

the smallest detour distance (line 6-7). Then, we check whether the current

partition, i.e., I, is a candidate partition (line 10). If so we must perform the

local computation to obtain the minimum local detour point. Thus, we utilize

each of the AWVDs of partition doors to compute the minimum local detour.

Initially, the grid cell that the current user location ps lies is identified. Then,

the splitters overlaps with the corresponding grid cell are retrieved (line 14).

Also, we store these splitters using the list sList, (in Section 5.4.3, we ex-

plain the purpose of storing these splitters). Next, the minimum local detour

point is obtained by evaluating the overlapping splitters (line 12-14). After

determining the local detour points per door, we generate the corresponding

local detours to find the one with minimum detour distance among them (line

15-17). Note that, the shortest path distances from door di to target point

pt, i.e., dt(di, pt), must be determined to compute the local detour distances.
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Then the safe zone for the user is constructed (line 21). Note that the safe zone

for the user is computed using the indexed safe zones of the indoor points and

the detail of the construction of such a safe zone for the user is discussed in

Section 5.4.3. The minimum detour is determined by selecting the minimum

of the remote and local detours (line 22). Finally, the minimum detour and

the safe zone are returned (line 23).

Safe zone Construction for Users

In order to reduce the communication cost, we send a safe zone such that the

client device can monitor the query results by itself without contacting the

server. Even though the actual safe region for a minimum local detour via

a door is the corresponding AW Voronoi cell, we assign the area of the grid

cell that user located in. The reason behind this is to reduce the workload

at the client-side by sending only a small number of boundaries to monitor

(Note that an AW Voronoi cell may consist of a large number of boundaries.)

Since a grid cell may belong to different AW Voronoi cells, the overlapping

splitters of the particular cell are sent to the user to determine the minimum

local detour point for the next location update without communicating the

server. Moreover, the distances of the shortest paths from each partition door

are also sent to assist the client-side local computation.

In addition to that, the remote detours for each door are sent to the user

for the client-side remote computation. Thus, the client device can compute

the query result for the next location update without communicating with the

server if the user is still inside the safe zone. Note that, for a non-candidate

partition, only the remote computation is required. Thus, we assign the whole

space of the indoor partition as the safe zone and send the materialized re-

mote detours to support the client-side remote computation. Thus, the client
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device can determine the minimum detour for any location update within the

particular partition without contacting the server.

Algorithm 10: Query Processing

Data: VIP-tree V, a query q = {ps, pt}
Result: Minimum Detour D, Safe zone safe

1 DR ← ∅; DL ← ∅; sList← ∅;
2 I ← current partition;
// Remote Computation

3 foreach di door of I do
4 DR

i ← getRemoteDetour(di, pt) ; // Algorithm 9

5 if d(ps, di)+L(DR
i ) < L(DR) then

6 DR ← DR
i ; // minimum remote detour w.r.t ps

7 end

8 end
// Local Computation

9 if I is a candidate partition then
10 foreach di door of I do
11 Cell← the corresponding grid cell; // using AWVD of door di
12 sList← sList ∪ the set of splitters overlaps with Cell;
13 pj ← local detour point for di
14 L(DL

i )← {ps → pj → di → dt};
15 if L(DL

i ) < L(DL) then
16 DL ← DL

i ; // minimum local detour w.r.t ps
17 end

18 end

19 end
20 construct safe ; // Section 5.4.3

21 D ← min{DR, DL};
22 return D, safe;

5.4.4 Continuous Monitoring

The result of the query needs to be continuously monitored since the user

is continuously moving and user movements may change the query result.

Naively, the server can recompute the query result at each time the server

receives a location update from the user. Since the indoor venues consist of

thousands of indoor points, these re-computations are very expensive. In the

experiments, we show the performance difference between this naive approach
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and our solution. As we already stated, some initial computations for an indoor

partition can be reused until the user leaves the particular partition. Hence, we

materialize the minimum remote detours (line 5 in Algorithm 10) and shortest

path distances (line 16 in Algorithm 10) for each door of the current indoor

partition. Then, query result computation for any location update about to

happen inside the current partition can be handled efficiently.

In continuous monitoring, first, the server checks whether the user still in

the same partition so that the server can reuse the materialized data to deter-

mine the minimum detour. The server uses the materialized remote detours

to compute the minimum remote detour for the location update. Then the

server accesses AW Voronoi diagrams to figure out the minimum local detour

points for each door of the partition and determines the minimum local de-

tour. Finally, the server sends the safe zone along with the minimum detour to

reduce the communication cost occur due to frequent location updates. With

the help of the safe zone constructed for the user, the client device can monitor

the query result without communicating the server.

In the client side, we assume that the client device is capable of storing all

the information that is sent by the server, i.e., the remote detours, the shortest

path distances and the safe zone, and computing minimum detour for any user

movement within the safe zone. Once the user moves outside the safe zone,

it sends a location update to the server. Then the server computes the query

result for the new location and send the result along with the safe zone.

For example, Figure 5.4 shows a 4 × 4 grid of a candidate partition with

door d1. The area shaded in grey is the AW Voronoi cell of the indoor point p1

and white area is the AW Voronoi cell of the indoor point p2. Let the user is at

ps1 position. Thus, the area of the grid cell 1 is allocated as the safe zone for

the user. Assume that the user moves to ps2 . Since the user is still within the
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Figure 5.4: Example of continuous monitoring

safe zone, the client device will determine the local minimum detour point as

p1 by evaluating the splitter S1:2 . Moreover, the client device will perform the

remote computation by utilizing materialized data to determine the minimum

detour without communicating with the server. For the next movement, i.e.,

ps3 , the client device will send a location update to the server since the user

has leaf the safe zone.

5.4.5 Local Computation without AWVDs

As indoor venues consist of a considerable number of indoor points, most of

the indoor partitions are highly populated with indoor points. Hence, a large

amount of possible local detours must be generated to determine the minimum

local detour. We develop a competitive approach called local which is an im-

provement of the naive approach. Similar to our approach, the local approach

utilizes the materialized data such as the remote detours and the distances

of the shortest paths from each partition door such that they are utilized in

the next location updates happen within the current partition. Besides, the
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local approach generates all possible local detours to determine the minimum

local detour and send only the result to the user. Thus, the communication

overhead remains the same as the naive approach. In the empirical study, we

show that our solution performs much better than this approach.

5.5 Experiments

5.5.1 Experimental Settings

Indoor Space Datasets.

We used two indoor space datasets for our experiments. One of them is

the real-world dataset [111] of the largest shopping centre in Australia. The

dataset consists of over 300 indoor partitions that are spread over 4 levels. This

dataset was manually converted into machine-readable indoor venues and the

sizes of indoor partitions (e.g., rooms, hallways) were determined using Open-

StreetMap 2. We denote this dataset by CHAD. The D2D graph for this indoor

space consists of 338 vertices (i.e., doors) and 3847 edges. We synthetically

generated five indoor object datasets that have 1K, 2K, 3K, 4K and 5K in-

door points, respectively. Each indoor point was randomly selected inside a

partition of the indoor space.

The other dataset is a replica of the CHAD dataset (denoted as CHAD-2).

It was obtained by placing a replica of Chadstone Shopping Centre on top of

the original building. This dataset consists of 678 rooms and the D2D graph

for this indoor space consists of 676 vertices (i.e., doors) and 7698 edges. We

again generated five indoor object datasets for this indoor space by randomly

selecting 5K, 10K, 15K, 20K and 25K indoors points, respectively. Moreover,

2https://www.openstreetmap.org/
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we generate 100 queries for each experimental setting. The source and target

indoor points of each query are randomly determined.

Trajectory Generation.

We created synthetic trajectory datasets for all our experiments. To generate

a trajectory, we start from the query source point and randomly pick an in-

door point inside a candidate partition. By doing this, we make sure that the

user trajectories pass through candidate partitions. Also, these random points

are selected in a way that the trajectory leads towards the query target point

to demonstrate the real-world scenarios. After determining a random indoor

point, we let the user moves towards that point with a particular speed. We

continued this for 500 timestamps, by determining a new random point simi-

larly as the user reaches one. The walking speeds of the users are determined

as follows. We chose 0.5, 1.5 and 2.5 meters per timestamp as the user speeds

in generating the different trajectory datasets. Furthermore, we denote these

speeds by slow, medium and fast respectively in the later discussions.

Competitors.

We compare our algorithm with two competitors. First one is the naive ap-

proach which computes the query result from scratch for each location update.

We denote this by “naive”. Our second competitor is the approach mentioned

in Section 5.4.5 denoted by “local” which is an improvement of the naive ap-

proach that does only the local computation naively for each location update.

All algorithms were implemented in C++ and our experiments were con-

ducted on Ubuntu running on an Intel Core i5 @ 3.30GHz and 4GB RAM.
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Table 5.2: The parameters used for experiments
Parameter Default Range
# indoor points 3K 1K, 2K, 3K, 4K, 5K
speed medium slow, medium, fast
grid size 8 1, 2, 4, 8, 16, 32

5.5.2 Experimental Results

In all the experiments, we use the default settings (see Table 5.2) while vary-

ing a single parameter at a time. First, we conduct the set of experiments

using CHAD. Then for CHAD-2 which is the replica of the real-world dataset.

Moreover, for each experiment, we report the average continuous time in mil-

liseconds.

Varying the grid size

As mentioned in Section 5.4.1, we use the grid indexing structure to index

the additively weighted voronoi diagrams (AWVDs). And these voronoi cells

are utilized in query time for efficient local computation. As Figure 5.5(a)

illustrates, our solution perform well when grid size is 8 which is less than

0.003 seconds. Figure 5.5(b) report the communication cost and the number of

splitters which are basically the average number of times that the client device

communicate with the server and the average number of splitters monitored

by the system respectively. As Figure 5.5(b) illustrates, the communication

cost can be reduced by selecting the grid size as 1. The reason is that the

whole space of indoor partition is assigned as the safe zone. Even though

small grid sizes give low communication cost as large area is assigned as safe

zones, the client side computational cost increases since the number of splitters

monitored by the client device increases accordingly. For example, even though

the average communication cost for grid size 1 is 15, the client device has to
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Figure 5.5: Varying grid size on the CHAD dataset
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Figure 5.6: Indexing Cost

monitor more than 650 splitters in the local computation. We selected the

grid size 8 as the default gird size as it gives the best performance for our

solution. For grid size 8, the communication overhead is 25 which is 20 times

better than the competitors. And also, the system has to monitor nearly 100

splitters per detour query.

Moreover, we report the indexing cost of AW Voronoi diagrams in megabytes.

As Figure 5.6 illustrates, the amount of memory required to store the AW

Voronoi diagrams increases as the grid size increases because the number of

cells increases exponentially. But the required memory spaces for small grid

sizes are feasible. For the default grid size which is 8, the AW Voronoi dia-

grams of CHAD and CHAD-2 datasets need only 117MB and 567MB memory

space respectively.
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Figure 5.7: Varying the number of indoor points

Varying the number of indoor points

This set of experiments is done to evaluate all the algorithms on the CHAD

dataset. First, we investigate the continuous time of the algorithms by varying

the number of points (i.e., indoor objects) in the indoor venue. As Figure 5.7(a)

shows, the continuous times of all algorithms increase as the number of indoor

points are increased. The reason is both remote and local detour computa-

tion costs increase as the number possible detours increases. Even though our

solution does not consider all possible detours in local computation, still the

continuous time increases accordingly as the number of splitters to be moni-

tored increases. For the default settings, our algorithm is 15 times better than

the local approach while three orders of magnitude better than the naive ap-

proach. As the competitors do not use the safe zone concept, in terms of the

communication overhead we are always better since they have to communicate

the server to get the results. The continuous time of naive drastically increases

as it does both remote and local computation for each location update. Clearly,

our solution outperforms the competitors under all the settings. Figure 5.7(b)

reports the average number of indoor points accessed by the local approach

and the average number of splitters monitored by our approach. It is obvious

that both values increases as the indoor points in the indoor venue increases.
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Moreover, the reported results clearly explain the performance degradation of

both our and local approaches in the experiments shown in Figure 5.7(a).

Varying the speed

Next, we evaluate the algorithms by varying the walking speed of the user. As

Figure 5.8(a) shows, the continuous time increases for all algorithms when the

speed is increased. It’s obvious for our and local solution that the continuous

time increases as the user quickly leaves partition due to the higher walking

speed. Note that, for our solution, the user stays inside a safe zone only for

a small amount of time. The reasons for this performance degradation of the

naive solution is that the user is visiting more candidate partition when the

speed is increased. Thus, local and remote detour computations increases.

Figure 5.8(b) reports the average number of rooms visited by the user

and the average number of indoor points accessed by the local algorithm by

varying the speed of the user. When the user’s speed is fast, the user visits

30 rooms while only 5 rooms when speed is slow. As we mentioned earlier,

clearly the continuous times of all algorithms increase as the speed increased

since the user is quickly leaving partitions. Also, the number of candidate

partitions visited by the user has increased as she visits more rooms. Thus,

the continuous times of both our and local approaches increases as the number

of indoor points accessed and the number of splitters monitored increase.

Experiments on a large dataset.

The objective of this set of experiments is to study the scalability of the al-

gorithm. Hence, we use the CHAD-2 dataset. Since this dataset has a large

number of indoor points, the number of candidate partitions for this dataset is

higher than the real-world dataset. Figure 5.9(a) shows the continuous times
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Figure 5.8: Varying the speed of the user
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Figure 5.9: Results on the CHAD-2 dataset

of algorithms varying the number of indoor points. The performances of all the

algorithms decrease when the number of indoor points is increased. Clearly,

our approach is three order of magnitude better than naive solution when the

dataset consists of 25K indoor points. And also 20 times better than the local

approach. Moreover, Figure 5.9(b) reports continuous times by varying the

user speed on CHAD-2 dataset. Under all the settings, our approach performs

better than competitive approaches. The performance of all algorithms has

decreased compared to the results on CHAD dataset due to a large number of

indoor points and candidate partitions. Note that, our approach is still able to

answer a query in a reasonable time. These results conclude that our approach

has good scalability.
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Figure 5.10: Escape Probability

Effectiveness of safe zones

Figure 5.10 reports the escape probability of our solution varying the users’

speed. The escape probability is determined by dividing the number of times

user communicate with the server by the total number of movements. As

expected, the escape probability increases with the user speed. The reason is,

the users leave safe zones very quickly due to the speed. The escape probability

is 0.1 in CHAD dataset while 0.25 in CHAD-2 dataset when the user is moving

fast. The reason behind the high escape probability of the CHAD-2 dataset

is that the number of candidate partitions in the CHAD-2 dataset is large.

Hence, the users pass through many candidate partitions in their trajectories.

The results conclude that the escape probability is small and the proposed

solution is effective in real-world applications.

5.6 Conclusions

In this chapter, we propose an efficient solution for continuously answering

detour queries in the indoor space. We address the problem by solving two

individual subproblems, namely, local and remote computation. First, a pre-

processing approach is introduced for efficient local computation that con-

structs safe zones for indoor objects. Then a best first search algorithm is
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presented to efficiently compute a remote detour for a given door of an indoor

partition. Finally, we introduce a client-server framework that utilize the out-

come of the local and remote computations to answer the continuous detour

queries efficiently.

The results of the empirical studies show that our approach outperforms

the naive approach by at least three orders of magnitude while average 15

times faster than the improved naive approach. Also, our approach incurs less

communication overhead due to the safe zone approach in which it is at least

20 times better than the competitors.
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Chapter 6

Continuous Monitoring of

Range Spatial Keyword Query

over Moving Objects

In this chapter, we propose an efficient solution for processing continuous range

spatial keyword queries over moving spatio-textual objects (namely CRSK-

mo queries). The key idea of our approach is to exploit the spatial and textual

upper bounds between queries and objects to form safe zones (at the client-

side) and buffer regions (at the server-side), and then use these bounds to

quickly prune objects and queries through smart in-memory data structures.

Our research reported in this chapter appears in [116].

6.1 Overview

The proliferation of GPS-enabled mobile devices, and the huge popularity of

location based social networking sites (LBSN, e.g., Foursquare, Yelp) have

facilitated the generation of a large volume of geo-textual (or spatio-textual)
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datasets which form the basis of many emerging location based services (LBS).

One of the important and popular forms of queries in LBS is the spatial key-

word query: given a set O of spatio-textual objects where each o ∈ O is

described by its location and a set of keywords, a spatial keyword query q

finds objects that meet the requirements of the query in terms of both spa-

tial proximity and textual similarity. The spatial keyword queries have been

extensively studied in different contexts that include range query, k nearest

neighbour query, top-k query, and publish-subscribe query. A comprehensive

study of these queries can be found in [43]. However, to the best of our knowl-

edge, we are the first to study continuous monitoring of moving spatio-textual

objects for thousands of continuous (long running) queries in real time. Next,

we present our motivation for studying this problem.

6.1.1 Motivation

Consider the example of a fast food chain that wants to continuously moni-

tor the potential customers to send them targeted advertisements and deals.

Potential customers of a fast food outlet are the users that are close to it and

whose preferences (keywords) match the menu of the restaurant. The fast

food chain may want to continuously monitor all such potential customers to

increase their sale. Similarly, a supermarket may want monitor the people who

are close to it and are looking for products sold at the supermarket. These

people may be attracted by sending e-coupons or personalized deals. Spatial

keyword queries are also important in other domains. For example, in an

emergency scenario, hospitals could monitor the locations of health workers

or volunteers, and send requests to those who are nearby and whose expertise

match with the required expertise. In all of the above scenarios, we need to

continuously monitor moving spatio-textual objects (e.g., customers or users)
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for multiple long running range queries with respect to query objects (e.g.,

facilities such as restaurants or hospitals). We call these queries continuous

range spatial keyword queries over moving spatio-textual objects (or CRSK-

mo queries). Next, we provide an example of such queries.

Example Figure 6.1(a) shows three range queries q1, q2, and q3 and five spatio-

textual moving objects (users) o1, o2, o3, o4, and o5. Assume that a query wants

to track every user whose current location is inside the query range, and who

has at least one common keyword with the query keywords. In this case,

at time t1, the CRSK-mo query returns RSt1q1 = {o3}, RSt1q2 = {o2, o4} and

RSt1q3 = {o4} as the result sets of q1, q2, and q3, respectively. Now, at time

t2, objects o1, o3, o4 move to new locations as shown using small blank circles.

Thus, the query results are updated as RSt2q1 = {o1, o3}, RSt2q2 = {o2} and

RSt2q3 = {o4}.

In the above example, we explain the concept of CRSK-mo queries by

using boolean range queries [95, 98, 27] where an object is a result of a query

if it is within a specific range and matches a keyword criteria (e.g., at least

one keyword matches). A general and often preferred approach is to define

the relevance of an object to a query using a relevance score that combines

both spatial proximity and textual similarity between the query and object.

In this case, a query user may set a threshold score Ts and every object with

relevance score less than or equal to the given threshold score is returned as an

answer. Figure 6.1(b) shows an example where the objects’ relevance scores

are shown next to each object and the movement to a new location is shown

by an arrow. Thus, the results of the query q1 for the two timestamps are

RSt1q1 = {o3, o4, o5}, and RSt2q1 = {o1, o3, o5}, respectively, where the threshold

score of query q1, is set to 0.5, i.e., Ts = 0.5. In this chapter, we study CRSK-
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(a) Boolean range

(b) Spatio-textual relevance score based range

Figure 6.1: An example of CRSK-mo query

mo queries by considering this general notion of relevance (for more details,

see Section 6.2.2).

6.1.2 Challenges

Key challenges of solving CRSK − mo queries are as follows: (i) the range

threshold Ts is determined based on both spatial proximity and textual sim-

ilarity; any object far from a query location with a high textual similarity

score can still be the answer (and vice versa), and thus it is hard to prune
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the search space, and (ii) frequent location updates may invalidate a query re-

sult, therefore, it requires continuously maintaining the the up-to-date results

while minimizing the total computation cost and communication cost between

clients (objects) and the server.

To address the above challenges, in this chapter, we propose a client-server

based comprehensive solution for monitoring continuous range spatial keyword

queries over moving spatio-textual objects. Inspired by the usefulness of safe

zone-based approaches [4, 26, 104, 85, 117, 118] for monitoring other types of

spatial queries, we also develop a safe zone based approach where each object

is assigned an area (called safe zone) such that the object does not affect the

result of any continuous query in the system as long as the object remains in

its safe zone. The advantage is that the system does not need to recompute

the results (reducing computation cost) and the object does not need to report

its location to the server (reducing communication cost) as long as the object

is inside its safe zone.

In addition to safe zone, we also maintain another region on the server

side, which we call, buffer region. The buffer region reduces frequent safe

zone computations and also ensures that the workload assigned to each client

device is manageable. We propose a novel framework that elegantly handles

frequent updates from objects while answering CRSK-mo queries. We propose

a grid based in-memory data structure that enables us to efficiently process

multiple long-running registered queries over a large number of moving spatio-

textual objects in tandem with the efficient construction of safe zones and

buffer regions. Our experimental study shows that our approach significantly

outperforms the competitive PCR method for a wide range of parameters.
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6.1.3 Contributions

Our contributions in this chapter can be summarized as follows:

• To the best of our knowledge, we are the first to study continuous mon-

itoring of moving spatio-textual objects for multiple continuous range

spatial keyword queries.

• We propose pruning rules based on spatial and textual upper bounds

between queries and objects to reduce the workload by pruning a large

number of irrelevant queries. Then the safe zones and buffer regions are

determined by utilizing the remaining queries.

• We propose a grid based in-memory data structure that elegantly handles

frequent location updates while processing multiple CRSK-mo queries.

• We conduct an extensive set of experiments to show that our proposed

approach outperforms the competitive approach significantly.

The remainder of this chapter is organized as follows: Section 6.2 presents

some preliminaries related to this chapter, Section 6.3 describes the proposed

techniques, Section 6.5 consists of experimental evaluation. In Section 6.6 we

discuss the extensions of our techniques to support the indoor space. Section

6.7 concludes the chapter.

6.2 Preliminaries

In this section, first, we discuss the limitations of existing techniques in Sec-

tion 6.2.1. Then, we formulate the problem in Section 6.2.2. Finally, in Sec-

tion 6.2.3, we present a descriptive discussion on our system architecture.
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6.2.1 Limitations of Existing Techniques

[77, 78] suggest a technique to index moving objects trajectories. However,

maintaining the index continuously for moving objects is expensive. [79, 80]

introduce a strategy to index the queries instead of the objects which signif-

icantly reduces the index maintenance cost. These techniques impose a high

communication and computational overhead on the server and also affect the

battery life of hand-held devices due to frequent location updates and compu-

tations. To overcome these issues, [82, 79] propose an efficient and attractive

technique called safe zone. In addition, [15, 85] utilize the safe zone concept

to continuously evaluate moving queries. But all these techniques consider

the spatial information but did not take into account the textual information.

Therefore, these techniques cannot be used in continuous spatial keyword query

processing over moving spatio-textual objects. However, we adopt the concept

of safe zone in the context of spatio-textual queries.

[26, 104] investigate moving top-k spatial keyword queries over station-

ary geo-textual objects. [26] proposes a technique that uses multiplicatively

weighted Voronoi diagrams. However, the proposed technique used polygons

to approximate circles and thereby could not find the exact safe zone. [104]

introduces a method that identify the dominant zones for objects and then

used those regions to compute the safe zone for a query. Wang et al. [27] intro-

duce a novel adaptive index called AP-tree which groups the registered queries

considering their textual and spatial properties. In these studies, either they

evaluate each moving query against the set of static spatio-textual objects or

data static query against streaming spatial-textual data. In contrast, we eval-

uate each spatio-textual object against the set of queries in order to maintain

an up-to-date result set with response to the movements of the objects.
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Table 6.1: The summary of notations
Notation Definition
o a spatio-textual object
q a continuous range spatial-keyword query
o.λ(q.λ) the location of object o(query q)
o.ψ (q.ψ) a set of keywords for object o(query q)
o.m capacity of object o
q.Ts threshold score of query q
q.α query preference factor of query q
RStq result set of query q at timestamp t

Cloq conditional circle of object o w.r.t query q

roq radius of Cloq
BR(o) buffer region of object o
Clmaxq largest conditional circle of query q

rmaxq radius of Clmaxq

Ω default range of buffer regions

6.2.2 Problem Statement

Let O be a set of spatio-textual objects (users) and Q be a set of facilities or

POIs (queries). Each spatio-textual object o ∈ O is defined as a pair (o.λ, o.ψ),

where o.λ is the current point location of the user and o.ψ is a set of keywords

representing her preferences. Similarly, a query object q ∈ Q is also defined

as a pair (q.λ, q.ψ), where q.λ is the location of the facility and o.ψ is a set

of keywords representing its attributes in the form of a textual description.

Notations frequently used in this chapter are summarized in Table 6.1.

The geo-textual relevance between an object and a query is defined in terms

of both spatial proximity and textual similarity. Let dist(q, o) be the spatial

distance between query location q.λ and object location o.λ, and text(q, o) be

the textual similarity between the two keyword sets q.ψ and o.ψ. To convert

the textual similarity to the textual distance, we use textual score as St(q, o) =

1−text(q, o), here a smaller value of St(q, o) signifies a higher textual similarity

between q and o. We assume our working space is normalized so that both
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spatial distance score dist(q, o), and textual distance score St(q, o) lie between

0 and 1 (inclusive). Thus, geo-textual relevance score, score(q, o) of o with

respect to q can be expressed as follows:

score(q, o) = α · dist(q, o) + (1− α) · St(q, o) (6.1)

Here, α is a query parameter (user-defined) that lies between 0 and 1(ex-

clusive) to control the preference of spatial proximity over textual similarity.

We compute the spatial proximity score dist(q, o) = 1 if ||q.λ, o.λ|| ≥ R

where ||q.λ, o.λ|| is the normalized euclidean distance between q and o, and R

is a system defined range. If ||q.λ, o.λ|| < R, then dist(q, o) is computed as

follows,

dist(q, o) =
||q.λ, o.λ||

R
(6.2)

The intuition of using R is as follows. Assume that each object has exactly

three keywords. An object o’s textual distance St(q, o) will be 0 if query q

contains all keywords. Its textual distance will be 1/3, 2/3 or 1 if q contains 2,

1 or 0 of its keywords, respectively. Now, consider the example of objects in Los

Angeles (the data set used in our experiments) and assume that the maximum

distance between two points in the space is 100km. Now consider two objects

o1 and o2 such that distance between q to o1 is 0.1 km and distance between

q to o2 is 15 km. Their spatial similarity scores (without considering R) will

be their distances from q normalized in the range 0 to 1, i.e., dist(q, o1) =

0.1/100 = 0.001 and dist(q, o2) = 15/100 = 0.15. Now, assume that q contains

2 out of 3 keywords of o1 (i.e., St(q, o1) = 1/3) and q contains all three keywords

of o2 (i.e., St(q, o2) = 0). If α = 0.5, their total scores will be score(q, o1) =
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0.5× 0.001 + 0.5× 1/3 = 0.167 and score(q, o2) = 0.5× 0.15 + 0.5× 0 = 0.075.

Therefore, o2 gets a better score although its distance from q is much larger

compared to the distance of o1. In other words, the scores are biased towards

textual similarity, i.e., the objects that have better textual similarity have

higher chance to be the result even if they are quite far from q.

Now, consider the same example, and assume that R = 0.2. In this case,

dist(q, o1) = 0.001/0.2 = 0.005 and dist(q, o2) = 0.75 and score(q, o1) = 0.169

and score(q, o2) = 0.375. Note that R normalizes the spatial proximity score

to reduce the bias towards the textual similarity score. In short, R was in-

troduced to address the bias towards textual similarity. Its effect is similar to

setting α to a higher value.

Note that, the textual similarity (text) can be computed using any infor-

mation retrieval model. In this chapter, we use a function [110] similar to the

weighted Jaccard coefficient, described as follows:

text(q, o) =

∑
t∈q.ψ∩o.ψ w(t)

w(o.ψ) =
∑

t∈o.ψ w(t)
(6.3)

where, w(t) denotes the weight of keyword t, computed by obtaining the in-

verted document frequency (idf ). And w(o.ψ) indicates the weighted sum of

object keywords (i.e., o.ψ).

Definition 6.1 Range Spatial Keyword Query (RSKQ)

Let O be a set of spatio-textual objects and, q be a range spatial keyword query,

q = {λ, ψ, α, Ts} where λ is the query location, ψ is the set of keywords, α

the query preference factor between spatial proximity and keyword set simi-

larity, and Ts is the range threshold score combining both spatial and textual
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factors. The query q returns a set of objects, RSq ⊆ O, whose geo-textual

relevance scores are less than or equal to the given threshold score Ts, i.e,

∀o∗ ∈ RSq, score(q, o∗) ≤ Ts.

Definition 6.2 Continuous Range Spatial Keyword Query on Mov-

ing Objects (CRSK-mo)

Let O be a set of moving spatio-textual objects, and Q be a set of long run-

ning static range spatial keyword queries, for each q ∈ Q, the continuous range

spatial keyword query over moving objects (CRSK-mo) finds a set RStq ⊆ O of

objects for every time instance t, where ∀o∗ ∈ RStq, score(q, o∗) ≤ Ts.

6.2.3 Client-Server Model:

We utilize the client-server paradigm, in which we have two types of client

objects: facilities (static) and users (moving). The facilities (e.g., restaurants,

shops, etc. ) are static clients who issue queries to the server. The users are

moving clients who use their GPS-enabled mobile phones to continuously track

their respective locations, and send updates to the server. The latter type of

clients is referred as spatio-textual moving objects in this chapter. Figure 6.2

shows the schematic diagram of our system model where clients send their

updates and issue queries to the central server, and the server is responsible

for maintaining moving object and processing the queries. Finally, the server

returns the result sets to the clients.

The current location of object o is represented using x-y coordinates, i.e.,

(o.λ.x, o.λ.y). Initially, an object sends its location and preferences (keywords)

as a tuple (o.λ, o.ψ). Since objects frequently change their positions (i.e., mov-
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Figure 6.2: The system architecture

ing), an object o sends its location update to the server as< oID, λ.xcur, λ.ycur >,

where (xcur, ycur) is the current location of object o.

6.3 Solution Overview

In this section, we present a comprehensive solution for monitoring continuous

range spatial keyword queries over moving objects. Processing continuous

queries over moving objects is more challenging since a slight movement of an

object may invalidate a query result. Thus, it requires monitoring the locations

of the objects and maintaining the results continuously as the objects move.

To address this challenge, we utilize the concept of safe zones [83, 84, 82, 79].

The safe zone of an object is an area such that as long as the object remains

inside this area, it does not affect the result of any query. Hence, the object

does not need to send location updates to the server unless it leaves the safe

zone. Thus, the safe zone based approach reduces both the query processing

cost and the communication cost between clients and the server.

In CRSK-mo query processing, the query range is determined based on both

spatial proximity and textual similarity; any object far from a query location
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with a high textual similarity score can still be an answer for the query (and

vice verse). The key idea of our approach is to exploit the spatial and textual

upper bounds between queries and objects to form safe zones for each object.

We also introduce the concept of buffer regions, which is maintained in the

server side to avoid frequent re-computations of safe zones. Moreover, we

utilize these bounds to quickly prune queries through efficient in-memory data

structures. We describe our solution in the following subsections.

Section 6.3.1 presents the concept of safe zones that form the basis of our

algorithm. Section 6.3.2 presents the pruning rules based on spatial proximity

and textual similarity that are used by our algorithm to prune the search space.

6.3.1 Safe zone of an object

In a range spatial keyword query, an object o is a result for a given query q

when the spatio-textual relevance score of the object is less than or equal to the

given query threshold score, i.e., score(q, o) ≤ Ts. To continuously monitor an

object for a registered query, we need to essentially monitor the corresponding

inequality over the time. Hence, we have the following lemma formalizing it.

Lemma 6.1 An object o ∈ O is a result of query q (i.e., o ∈ RSq) iff

dist(q, o) ≤ Ts
α
− (1−α)

α
· St(q, o).

Proof Let q be a range spatial keyword query and an object o be one of the

results of the query q, i.e., o ∈ RSq. To satisfy the query condition, the object

o must follow the condition, score(q, o) ≤ Ts as depicted in the Definition 6.1.

Thus, we can rewrite Equation 6.1 as follows: α·dist(q, o)+(1−α)·St(q, o) ≤ Ts.

Hence, dist(q, o) ≤ Ts
α
− (1−α)

α
· St(q, o).

Based on the above lemma, we define a circle called conditional circle, Cloq ,

centred at the query location q.λ with the radius of roq , where the radius is
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(a) (b)

Figure 6.3: Example of conditional areas

defined as follows:

roq =
Ts
α
− (1− α)

α
· St(q, o) (6.4)

Intuitively, a conditional circle, Cloq , is a spatial area such that object o

does not affect the result of the query q as long as o does not enter or leave

the area. We identify this area as the conditional area. Figure 6.3(a) shows an

example of the conditional area (shaded in gray) for object o when the object

resides inside (i.e dist(q, o) ≤ roq) the conditional circle, i.e., Cloq . In this case

o remains as a result of q as long as it resides inside the cirlce. Otherwise,

the object o is outside the Cloq , then o /∈ RSq and the conditional area is the

shaded area as shown in Figure 6.3(b).

Intuitively, the safe zone of an object involving multiple queries is con-

structed by taking the intersection of the conditional areas of the object with

respect to all the queries. For example, Figure 6.4 shows conditional circles of

object o1 and o2 for queries q1,q2,q3 and q4. Since o1 only lies inside the Clo1q2

and Clo1q3 , the safe zone of the object o1 is the shaded area as shown in Fig-

ure 6.4(a). As long as the object o1 resides inside this area, it does not affect
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the results of any query. The object o1 can determine whether it is inside the

safe zone by checking whether it is inside the two conditional circles Clo1q2 and

Clo1q3 .

The number of conditional circle boundaries that an object can monitor

entirely depends on the computational capability of the object (i.e., client

device). An object with low computational capability may result an over-

whelming workload on the processor and short battery life, if the safe zone

assigned to that object involves a large number of conditional circles. For ex-

ample, assume that both objects o1 and o2 have the same set of keywords, i.e.,

conditional circles for each query is identical for both objects because the tex-

tual similarity is same. Figure 6.4(b) shows the safe zone of object o2 shaded

in gray, which is outside of all the conditional circles. In such a scenario, the

object may need to monitor a large number of conditional circles, which is

computationally expensive.

To address this problem, we introduce a concept called Buffer Region (BR),

to support clients’ mobile devices with heterogeneous computational capabil-

ities. Based on the computational capability of each registered object, the

server assigns a value called capacity (denoted by m) which is the maximum

number of conditional circles that particular object can monitor at a time.

Thus, the capacity of the object is used to bound the number of conditional

circles involved in constructing the safe zone of that object. Thereby, each

device is assigned with a reasonable computational workload.

Definition 6.3 Buffer Region (BR)

Let o ∈ O be a spatio-textual object, where o = {λ, ψ,m}. The Buffer region is

a circle centered at o.λ and the radius is the Euclidean distance from o.λ to the

m− 1th nearest conditional circle. We denote the buffer region of the object o

by BR(o).
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(a)

(b)

Figure 6.4: Buffer regions for (a) object o1, (b) object o2
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The buffer region of an object includes nearest m − 1 conditional circles

ensuring that the number of conditional circles involved in constructing the

safe zone of the object does not exceed the capacity of the object. Figure 6.4

shows the buffer regions (i.e., dotted circle) and the safe zones (i.e., shaded

area) of object o1 and o2. After the buffer region is constructed, it is stored

in the server and the safe zone is sent to the client device of the particular

object. For example, assume o1 is an object in O, where o1.m = 4. Then

the buffer region of object o1 involves three (i.e., m − 1) conditional circles

(see Figure 6.4(a)). Thus, o1 will monitor four circle boundaries including the

buffer region boundary. Hence, the radius of the buffer region is dist(o1, Cl
o1
q4).

Figure 6.4(b) shows the buffer region for object o2 assuming its capacity is also

four. Thus, it reduces the number of conditional circles that object o2 has to

monitor to check whether it is inside the safe zone. Note that the buffer region

concept reduces the frequent safe zone computations and ensures the workload

assigned to each client device is manageable.

6.3.2 Pruning Rules

Processing CRSK-mo queries involves computing the results of the queries and

constructing the buffer regions for each object to reduce the computational and

communication overhead. Naively, for each object, we can compute conditional

circles for all the queries to determine the affected queries (i.e., the queries for

which the object is a result) and also to construct the buffer regions. Since

the number of objects and queries are large in numbers, this naive approach

is highly inefficient. To avoid this limitation, in this section, we introduce two

simple pruning rules based on the bounds derived from spatial proximity and

textual similarity between an object and a query. Using these pruning rules

we filter a large number of irrelevant queries and obtain a set of candidate
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queries. Then we compute conditional circles for these candidate queries to

identify the queries for which the object is a result.

According to Equation 6.4, the radius of the conditional circle depends

on threshold score, textual relevance, and preference parameter(α). Since the

textual relevance is the only value that can vary from one object to another

object, we can obtain an upper bound for the radius of the conditional circle

when we set the textual relevance as zero (i.e., St(q, o) = 0). Thus, we define

Clmaxq as the largest conditional circle of query q, where the radius rmaxq can

be defined as follows,

rmaxq =
Ts
α

(6.5)

Lemma 6.2 (Pruning Rule 1) Let an object o ∈ O be outside the Clmaxq of

query q, then object o cannot be a result for the query q.

Proof Let an object o be a result of query q. According to Lemma 6.1,

dist(q, o) ≤ roq . Hence, roq ≤ rmaxq , and dist(q, o) ≤ rmaxq . It concludes that

object o is not a result of the query if dist(q, o) > rmaxq .

In line with Pruning Rule 1, if the object o is outside the Clmaxq , then the

query q can be pruned. Otherwise, the conditional circle of object o for query

q, i.e., Cloq is computed to verify whether the object is a result of the query

(according to Lemma 6.1). Figure 6.5 shows an example for Pruning Rule 1.

The solid circles depict the largest conditional circles of queries q1,q2 and q3

while dotted circles depict the conditional circles of object o1 for each query.

Since object o1 is inside the Clmaxq1
and Clmaxq2

, queries q1 and q2 are identified

as candidates while query q3 is filtered out. Since o1 is inside the Clo1q1 , object

o1 can only be a result for q1.
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However, Pruning Rule 1 may include a large number of candidate queries

since it only considers the spatial proximity. So we present our next prun-

ing rule that exploits textual relevance to filter the irrelevant queries. Next,

we determine an upper bound (denoted by maxT ) for the textual similarity

between an object and a query as follows.

From the scoring function (Equation 6.1), if an object o is a result, then

α·dist(q, o)+(1−α)·St(q, o) ≤ Ts. Hence, when the dist(q, o) = 0, Equation 6.1

can be rewritten as follows.

(1− α) · St(q, o) ≤ Ts

St(q, o) ≤
Ts

(1− α)

Thus, the maxTq can be expressed as follows.

maxTq =
Ts

(1− α)
(6.6)

Lemma 6.3 (Pruning Rule 2) An object o has potential of becoming a

result of query q if St(q, o) ≤ maxTq.

Proof Let o be an object with St(q, o) > maxTq. By Equation 6.6, St(q, o) >

Ts
(1−α)

. Hence, we have Ts
α
− (1−α)

α
· St(q, o) < 0. By Equation 6.4, roq < 0

concludes that object o ca never be a result of query q.

If an object does not satisfy Pruning Rule 2 for a query, then that object can

never be a result for the query as the conditional circle of that object does not

exist(i.e., roq < 0). Thus, we filter those queries in order to reduce the search

space. Consider the previous example (see Figure 6.5), if St(q2, o1) > maxTq2

then q2 will be filtered out even though the Clmaxq2 overlaps with object o1.
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Figure 6.5: An example for pruning rules

6.4 Algorithm

In this section, we discuss our algorithm for processing CRSK-mo queries.

We first present, the server-side query processing framework, and then we

propose a filter-verification algorithm that constructs buffer regions for each

object while computing the result sets for each query. After that, we discuss

continuous monitoring of range spatial keyword queries with respect to location

updates of the objects. Finally, we present client-side processing of the system.

6.4.1 The Framework

We use a gird-based index structure to index the CRSK-mo queries. We prefer

grid-based index over the other index structures like an R-tree as it supports

frequent location updates and also it is usually preferred in continuous query

processing [86, 119, 87]. In our index, the data space is partitioned into 2n×2n

grid cells (where n ≥ 0) as shown in Figure 6.6. To access a particular cell

quickly, we consider the grid as a conceptual tree as used in [4]. The root of
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the conceptual tree is a rectangle that covers the whole work space (i.e., all

the cells). The root cell is divided into four equal grid cells that represent the

next level of the tree. The process continues until each entry of the leaf level

represents one grid cell.

Figure 6.6: Conceptual grid-tree of a 4× 4 grid [4]

Since the grid-tree is a conceptual visualization of the grid, the root entry

and intermediate entries do not exist physically. So that the information is

stored only in leaf level grid cells. Hence, in each grid cell, we store all the

queries whose Clmaxq circles overlap with the particular cell. So that when an

object lies inside the cell, we can filter out all the other queries according to

Pruning Rule 1. To efficiently access the queries based on keywords, instead of

using a flat list we use an inverted list (i.e., iQList) to store these overlapping

queries. Figure 6.7 shows our grid based index structure that consist of inverted

lists at each grid cell. In the inverted index, for each keyword ki, we store the

queries whose description contains ki. Accordingly, each keyword contains a

posting (query) list ordered by the query id. Thus, we access the inverted list

by using document at a time access method. Thereby, we consider only the

queries contains at least one matching keyword with the objects. Moreover,

by using the inverted index and Pruning Rule 2, we obtain the candidate set
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more efficiently.

Figure 6.7: Example of the index structure

6.4.2 CRSK-mo Processing

We assume that all registered queries are indexed using our grid-based index

structure, and objects arrive into the system in a stream-like fashion. As

soon as an object arrives, it is immediately evaluated by our algorithm to

see whether it can affect any query result. At the same time, our algorithm

determines the buffer region (BR) for the object in tandem with the query

evaluation. The buffer region is stored in the server and the safe zone is sent

to the device of the corresponding object. Finally, query results are reported

to the respective query client.

Our approach consists of two phases: filtering phase and verification phase.

In the filtering phase, all the queries whose Clmaxq do not overlap with the object
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location (Pruning Rule 1) and the queries whose textual relevance is greater

than its maxTq (Pruning Rule 2) are filtered out. Then, in the verification

phase, conditional circles for each candidate query are computed and the result

sets of candidate queries are updated. Finally, the buffer region and the safe

zone of the object are constructed.

Algorithm 11 shows the pseudocode of our algorithm. The algorithm takes

an object o, and grid-based index G as input, and updates the result sets of

the queries and returns the buffer region and safe zone of the object o. We

start traversing the conceptual grid-tree from the root. The root entry is first

inserted into the priority queue, Qp. The elements in the priority queue are

maintained in increasing order of their minimum Euclidean distance from the

object. If the dequeued element is an intermediate cell and satisfies a system

defined default range denoted by Ω (later we explain the intuition of this value),

then we insert its children into the queue, where mindist(chlidCell, o) is the

key (Lines 5-7). If the dequeued element is a cell, we use the inverted list

iQList of the cell to select a candidate list of queries cQList, and for each

q ∈ cQList, we compute the conditional circle Cloq , and finally, the object

o is inserted into the result set for the query q if the object falls inside the

conditional circle Cloq . Note that, when we process the inverted list of each

cell, we record the queries already processed in order to avoid the redundant

access.

To compute the buffer region in tandem with the CRSK-mo query pro-

cessing, we continue inserting the conditional circle into the priority queue,

where mindist(Cloq , o) is used as the key. If the dequeued item is a Cloq then

it is added to the list maintaining conditional circles for computing the buffer

region. When this list size becomes m− 1, we stop the process since we have

sufficient Cloqs to construct the buffer region of object o, BR(o) (Lines 22-24).
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Algorithm 11: RSKQInit(o)

Data: Object o, Grid-index G
Result: RSq for all q ∈ Q, BR(o)

1 Qp.Enqueue(G.root,0)
2 while Qp NOT Empty do
3 element← Qp.Dequeue()
4 if element is an intermediate cell then
5 foreach childCell ∈ element do
6 if mindist(childCell, o) ≤ Ω then
7 Qp.Enqueue(childCell,mindist(childCell, o))
8 end

9 end

10 else if element is a cell then
11 cQList = getCandidateList(o, iQList)
12 foreach q ∈ cQList do
13 if St(q, o) ≤ maxTq then
14 Compute Cloq ; // compute conditional circle

15 Update RSq ; // update query answer

16 if mindist(Cloq , o) ≤ Ω then

17 Qp.Enqueue(q,mindist(Cl
o
q , o))

18 end

19 end

20 end

21 else
22 o.CLList.add(element, element.key) ; // add to candidate set

23 if sizeof(o.CLList) = m− 1 then
24 break;
25 end

26 end

27 end
28 BR(o)← computeBR(o.CLList) ; // computing buffer region
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Note that, it may happen that an object has less than m − 1 nearby queries

so that it is required to traverse a wider area to compute its buffer region. In

such a scenario, we take a system defined default range for the buffer region,

denoted by Ω, that bounds the traversal area. From the conditional circle list,

CLList of object o, we compute the buffer region of the object, BR(o) in Line

28. Thus, the safe zone of the object o is also determined while the buffer

region is generated.

6.4.3 Continuous Monitoring

Since the objects may frequently update their positions, we need to update the

results of all the queries. In this section, we discuss our approach for handling

frequent location updates of moving objects for processing CRSK-mo queries.

When an object o sends its location to the server, the server performs the

following steps to update the results (see Algorithm 12). First, the server

checks whether the new location is inside the current BR(o), if it is true, then

it checks against each conditional circle that forms the BR(o) to identify which

queries have been affected by this location update. Then the affected queries

are updated accordingly. If the new reported location is outside the current

BR(o), a new buffer region needs to be computed using Algorithm 11.

6.4.4 Client Side

In our system, we assume that the client tracks its own location and nearby

conditional circles. Since the client has a limited computational capability and

wants to be a part of a limited number of nearby conditional circles, each client

is assigned with a capacity (i.e m) to limit the number of conditional circles

that involve in constructing the safe zone. The client initially sends its current
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Algorithm 12: Continuous monitoring
Data: Location Update < o, λnew, λold >
Result: Update RSq for all q ∈ Q, BR(o)
// determining the affected queries

1 if Object o.λnew is inside BR(o) then
2 foreach Cloq ∈ o.CLList do

// Update the query results

3 if o.λold is outside Cloq AND o.λnew is inside Cloq then

4 Insert o into RSq
5 else if o.λold is inside Cloq AND o.λnew is outside Cloq then

6 Delete o from RSq
7 end

8 else
9 BR(o)← computeBR()

10 end

point location and a set of keywords to the server. Then the server evaluates

the object against all registered queries, and sends the safe zone to the object.

Subsequently , the client sends its location update to the server when it leaves

the current safe zone and then the server sends back a new safe zone.

6.5 Experimental Evaluation

In this section, we evaluate the performance of our algorithm (Our) by com-

paring with two competitive algorithms. Section 6.5.1 explains the PCR ap-

proach. Section 6.5.2 introduces the parameters and the settings we used in

our experiments while Section 6.5.3 describes how the default parameters were

determined. Section 6.5.4 compares our algorithm with a spatial filtering based

algorithm . Section 6.5.5 presents a detailed discussion on empirical studies.

6.5.1 Pre-Circular Range (PCR) Approach

The straightforward approach for processing CSRK-mo queries involves evalu-

ating each incoming object updates against all the registered queries, which is
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very expensive in terms of computational and communication overhead. Thus,

we develop a competitive approach called Pre-Circular Range (PCR) to com-

pare with our technique. In the PCR approach, for each object, we first identify

a set of queries that can be affected by the movement of the object for a certain

period of future time. We set a circular area, Cir(o) around the object where

the object can belong in a defined period of time. Thus, we first identify a

set of queries whose results can be affected by the movement of the object

within this circular area. In general, there can be four categories of queries:

(i) a query whose Cloq is completely inside the Cir(o), (ii) a query whose Cloq

partially overlaps with Cir(o), (iii) a query whose Cloq is completely outside

Cir(o), and (iv) a query whose Cloq completely contains Cir(o). Naturally,

the movement of object o within Cir(o) only affects the queries, say AQ(o),

that fall under category (i) and (ii), as the boundaries of these Cloqs can be

crossed by the object. Then we select the nearest m − 1 queries from AQ(o)

to construct the BR(o). If the object goes outside BR(o), we need to assign a

new Cir(o) and repeat the above procedure. The communication between the

client and the server remains similar to our approach where an object sends a

location update to the server as it leaves the safe zones and so on.

6.5.2 Experiment Settings

The experiments were conducted on a dataset which was generated as follows.

We used a real-world dataset (from Yelp) that contains check-in data in Los

Angeles to extract the POIs. The keywords for POIs were collected from

the descriptions of the relevant user check-ins. Thus, the trajectories of the

moving objects were generated using the brinkhoff data generator [120] based

on the road network of the Los Angeles. Then we selected a set of POIs

for each object by taking the nearest POI to the object trajectory at different
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timestamps assuming the users checked-in to those places. Finally, we obtained

the keywords for each object (user) by randomly selecting keywords from the

checked-in POIs.

We have varied a wide range of parameters to test the supremacy of our

approach over the PCR approach in a wide variety of real world settings. The

details about the parameter values are given in Table 6.2. All the experiments

were conducted in an Intel processor of 3.30GHz and 4GB of RAM, running

Linux Ubuntu. We used C++ to implement all the algorithms and used in-

memory setting by adopting the grid index structure since continuous result

computation is essential.

We have measured the query processing time on the server side in two

different metric: initial time and the continuous monitoring time. The initial

time is the time spent to compute results for all the queries and construct safe

zones for all the objects for the first time. Since all the queries are continuously

monitored for 100 timestamps, in each timestamp server needs to maintain an

up-to-date result set for all the queries as it receives location updates. In

which server updates the query results, compute new buffer regions and send

new safe zones to the particular objects. The continuous monitoring time sums

up the time consumed by the server to maintain an up-to-date result set for

the duration of 100 timestamps. In Section 6.5.5, we use the term continuous

time to represent the continuous monitoring time for brevity.

6.5.3 Default Parameters

In this section, we describe how the default parameters were determined to

obtain the best performance of the proposed framework for all simulations.
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Table 6.2: The parameters used for experiments
Parameter Default Range
Threshold score 0.5 0.1 - 0.9
Preference parameter 0.5 0.1 - 0.9
Keywords per object 5 2 - 10
Keywords per query 15 10 - 30
Number of queries 10K 5K - 20K
Number of objects 100K 50K - 200K
Speed medium slow, medium, fast

Grid size

We conducted experiments to study the effect of the grid size. Figure 6.8

shows the effect of grid size where we change the grid size from 1×1 to 32×32

and report the continuous time. The performance degrades if grid size is too

small or too large. This is because if grid cells are too large then the number

of queries in each cell (and the size of inverted index) increases resulting in

a poor performance. On the other hand, when the grid cells are too small,

the algorithm needs to access more cells of the grid to compute the safe zone

resulting in a higher computation time. Based on these experiments, we chose

4× 4 as our default grid size in the experiments.
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Figure 6.8: Effect of grid size
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Omega value

In Figure 6.9(a), we conducted experiments by varying the default range (i.e.,

Ω) and study its effect on the total cost at the server side and the total cost at

the client side. Figure 6.9(a) shows that the total cost at server side reduces

as Ω increases. This is because, as Ω increases, the buffer region size increases

which results in requiring to recompute the buffer regions fewer times. In con-

trast, the computation cost at the client side increases as Ω increases because

the area that the client device needs to monitor becomes larger. In our exper-

iments, the default value of Ω is set to 0.1 with an aim to minimize the total

cost at the server side.
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Figure 6.9: Varying Ω and m

Capacity

Recall that the capacity of an object (i.e., m) is decided based on the compu-

tational power of each client device (i.e., object) because the system consists

of objects with heterogeneous computational capabilities. In Figure 6.9(b), we

study the effect of capacity on the total computation cost on the server and

the total computation cost on all client devices for all 100 timestamps.

Figure 6.9(b) shows that the total cost on server side is reduced as the

capacity increases. This is because the size of buffer region increases as the
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capacity increases and, as a result, the server needs to update the buffer regions

fewer times. In contrast, the total cost on client devices increases as the

capacity increases. This is because, to check whether a client is inside its

safe zone or not, it needs to check its location against m circles and this cost

increases as m increases. Therefore, there is a trade off in choosing a suitable

value of m. In this chapter, we choose m = 20 to optimize the total cost at the

server side. In real world scenarios, the client devices may be asked for their

preferred values of m based on their computational capabilities.

6.5.4 Comparison with Spatial Filtering based

Approaches

Even though a simple spatial filtering based approach (e.g., range queries)

may not work, we designed another competitor that first filters based on a

particular range ρ and then retrieves the results among the filtered queries.

The range ρ is set assuming the maximum possible textual similarity for each

object, i.e., ρ is set such that an object o which has distance greater than ρ

from q cannot be an answer even if it has maximum textual relevance. We call

this approach spatial filtering (SF). This approach first applies spatial filtering

based on distance ρ and then processes the candidates within the range to

determine if they are the results or not.

Figure 6.10 compares the performance of our approach, PCR and SF meth-

ods for different number of queries. Our algorithms and PCR both outperform

SF approach and scale much better with the increase in the number of queries.

The performance of SF severely deteriorates as the number of queries increases

mainly because more queries are found in the filtering range ρ and require veri-

fication. Since the performance of SF is comparatively much worse than PCR,
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Figure 6.10: The performance of our approach, PCR and SF

we compare our algorithm only with PCR in the forthcoming experiments.

6.5.5 Performance Evaluation

In this section, we present the experimental results of proposed algorithm and

compare our approach with the pre-circular range (PCR) approach by varying

different parameters.

Varying query parameters

In this experiment, we evaluate the performance of our algorithm by varying

the threshold score from 0.1 to 0.9 . As the Figure 6.11 shows, our algorithm

significantly outperforms PCR approach in terms of continuous time and initial

time due to the efficient filtering techniques. With the increase of threshold

score value, the continuous time shows an increasing trend for both algorithms

as higher threshold scores incur large result sets.

Moreover, we varied the value of alpha from 0.1 to 0.9 . Figure 6.12 shows

results. It can be clearly seen that our algorithm performs better compared

to PCR when the alpha is increased. Furthermore, the continuous time of our

algorithm is approximately 12 times faster than PCR while the initial time of

our algorithm outperforms PCR in two orders of magnitude for both settings.
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Figure 6.11: Varying threshold score
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Figure 6.12: Varying alpha

Varying number of objects

We evaluate the performance with respect to the number of objects (users).

The number of objects scales from 50K to 200K. Figure 6.13 shows the perfor-

mance of both algorithms decrease as the number of objects is increased. But

our algorithm performs much better in all cases due to the efficient pruning

techniques. PCR performs 10 times slower than our algorithm when the both

algorithms run with 200K objects. Moreover, the initial time of our algorithm

is much smaller compared to PCR.
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Figure 6.13: Varying the number of objects

Varying number of queries

Figure 6.14 studies the performance of our algorithm with respect to the num-

ber of queries. We scaled the number of queries from 5K to 20K. Obviously, the

continuous time of the both algorithms increases as the the number of queries

increases. Note that, our algorithms performs much better compared to PCR

due to the effective pruning techniques. Moreover, our algorithm performs 40

times faster when the number of queries is 20K and also the initial time of our

algorithm outperforms PCR in two orders of magnitude.
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Figure 6.14: Varying the number of queries
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Varying timestamps

To evaluate the efficiency of the proposed algorithm, we varied the monitoring

time interval from 50 to 200 timestamps. Figure 6.15 shows the effectiveness

of our algorithm with respect to PCR. PCR perform much worse as the time

interval is increased since number of times that the buffer regions are generated

increases.
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Figure 6.15: Varying timestamps

Varying speed

In this experiment, we study the effect of the speed of the objects on the

performance of our algorithm. Figure 6.16 shows an increasing trend in con-

tinuous times for both algorithms. This happens because the probability of

an object leaving its buffer region is proportional to the moving speed of the

object. Thus, when the speed increases, the performance starts to decrease as

the number of times the server regenerates the buffer regions increases. The

performance of PCR decreases dramatically since its computation cost of re-

generating a buffer region is really high. Moreover, our algorithm performs 40

times faster than PCR when the objects move fast.
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Figure 6.16: Varying the speed

Varying number of keywords

Figure 6.17 and Figure 6.18 illustrate the effect of number of keywords in

objects and queries respectively. Both algorithms present an increasing trend

as the number of keyword is increased. Our algorithm performs much better

compared to PCR since our algorithm uses inverted indexes to filter the queries

based on textual relevance. Moreover, our algorithm performs 30 times faster

than PCR when each query has 30 keywords.
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Figure 6.17: Varying the number of object keywords

Effectiveness of safe zones

In this experiment, we illustrate the effect of safe zones on communication

cost. In Figure 6.19, we study the effect of capacity (which affects the safe zone
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Figure 6.18: Varying the number of query keywords

size) and the effect of total number of objects (users) on total communication

cost. The baseline approach requires every object to send its location at every

timestamp. In contrast, the safe zone based approaches (our and PCR) require

the objects sending their locations only when they leave their respective safe

zones. Since PCR is designed such that it always assigns the same safe zone

as our approach, it has the same total communication cost as our approach.

Figure 6.19 shows that safe zones significantly reduce the total communication

cost. In Figure 6.19(a), the total communication cost reduces as the capacity

increases because the safe zone size increases with the increase in capacity.

Moreover, Figure 6.20(a) shows the average size of safe zones for different

thresholds. Note that we designed our competitor PCR such that it assigns

the same sized safe zone as our approach and then retrieves queries to guar-

antee that the results are unaffected as long as the objects remain in their

respective safe zones. Therefore, the safe zone size for both approaches is the

same. Figure 6.20(a) shows that the size of safe zones reduces as the threshold

increases. This is mainly because, as the threshold increases, the object is an

answer for more queries which results in a reduced safe zone size. Nevertheless,

even for large thresholds, the safe zone is reasonably large (0.67km2 – roughly

800m × 800m) which is critical for its effectiveness, e.g., the safe zone based
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approach is effective when an object stays in it for longer.
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Figure 6.19: Communication cost
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Figure 6.20: Experiments on safe zones and buffer regions

Effectiveness of buffer regions

In order to show the effect of buffer regions on client workload, we evaluate

the effect of buffer regions on the total computation cost at the client devices.

Specifically, we compare our approach that uses the buffer region with a version

(denoted as “No BR”) that does not use buffer regions (i.e., default range Ω

and the capacity m are both set to infinity). In Figure 6.20(b), we study the

effect of total number of users (client devices) on the total computation cost on

all clients for all 100 timestamps. Figure 6.20(b) shows that the buffer region

reduces the client side computation cost by up to four times.
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6.6 Extension to Indoor Space

In this section, we extend these techniques to process CRSK-mo queries in in-

door space. The indoor space can be considered as Euclidean space subdivided

into several partitions connected to each other, i.e., indoor partitions such as

rooms, hallways and stairs. We show that the techniques which are presented

in Section 6.3 can be easily extended to the indoor space by considering the

indoor distance rather the Euclidean distance. Thus, we redefine our scoring

function as follows.

score(q, o) = α.dist(q, o) + (1− α).St(q, o) (6.7)

where dist(q, o) is the indoor distance between q.λ and o.λ.

It is easy to see that all the lemmas and pruning rules are correct, even when

the indoor distance is used instead of the Euclidean distance.

6.6.1 Safe zone of an object Revisited

In Section 6.3.1, we define the safe zone of an object involving multiple queries

as the intersection of the conditional areas of the object with respect to all

the CRSK-mo queries. As we mentioned earlier, we must consider the indoor

distance instead of the Euclidean distance thus the conditional area of an ob-

ject with respect to a query cannot be regarded as a circle if it overlaps with

neighbourhood partitions. For example, Figure 6.21, shows that an indoor

venue consists of four indoor partitions, i.e., P1, P2, P3, P4 and P5, and corre-

sponding doors d1, d2, d3, d4, d5 and d6. Let q1 be a CRSK-mo query and o1 be

an object. Assume that both q1 and o1 are located in the partition P2. The

188



Figure 6.21: Example of a safe zone

corresponding conditional circle of object o1 with respect to q1, i.e., Clo1q1 , is

shown in dotted line. Note that the area covered by Clo1q1 is no longer a valid

safe region as it overlaps with P1 and P3 partitions. Hence, the conditional

area of object o1 must be determined considering the indoor distances. Such

an area is called a “conditional region” (denoted by Croiqj). The shaded area

shown in Figure 6.21 depicts the conditional region of object o1, i.e., Cro1q1 .

Here, r1 = ro1q1 −dist(q1, d2) where dist(qi, di) is the indoor distance from query

qi to door di. Since the object is within the Cro1q1 and one query is available,

the Cro1q1 is allocated as the safe zone of the object o1.

Moreover, the intersection of the conditional regions of an object with re-

spect to all the CRSK-mo queries is determined as the safe region of the

particular object.
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6.6.2 Buffer Region Revisited

A buffer region is formed using m− 1 conditional regions such that the client

device is assigned with a reasonable computational workload. Since the indoor

space is partitioned, we can allocate the whole partition as a buffer region

only if partition overlaps with m− 1 conditional regions. Otherwise, we have

to determine an area inside the partition that overlaps with at most m − 1

conditional regions. Figure 6.22 shows three conditional regions of object o1

with respect to query q1, q2 and q3. The regions boundaries of Cro1q1 , Cro1q2 and

Cro1q3 are shown in red, green and blue solid lines respectively. As Figure 6.22

illustrates, the whole space of the partition P2 can be determined as the buffer

region of object o1 only if object capacity is 3. And the area shaded in grey

color is assigned as the safe zone of the object o1. Assume the capacity of the

object o1 is 2. Then the area of the circle centered at o1 is assigned as the buffer

region and the safe zone will be the shaded area within the circle. Moreover,

If the capacity of the object is large and the current partition overlaps with

less number of conditional regions (i.e., < m − 1), then the buffer region can

be determined by exploring the neighborhood partitions.

6.6.3 Indexing CRSK-mo Queries Revisited

As we already stated, circles may not be valid since the dist(q, o) is determined

using the indoor distance. Hence, the area within the rmaxq is called “largest

conditional region”, denoted by Crmaxq . Figure 6.23 shows an example of such a

region. The corresponding indoor venue consists of four indoor partitions, i.e.,

P1, P2, P3, P4 and P5, and doors d1, d2, d3, d4, d5 and d6. Let q1 be a CRSK-mo

query. The largest conditional circle Clmaxq1
, is marked using dotted lines. The

area shaded in grey color is the largest conditional region of query q1 Cr
max
q1

.
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Figure 6.22: Example of a buffer region

Note that r1 = rmaxq1
− dist(q1, d2) and r2 = rmaxq1

− dist(q1, d4) accordingly.

We can either use a single grid index or multiple grid indexes (i.e., one

grid index per indoor partition) to index the CRSK-mo queries. Hence, the

queries can be stored in the particular grid cells as described in Section 6.4.1.

Figure 6.23 shows a grid index covering whole indoor space. Hence, the query

q1 is stored at all the grid cells that overlap with Crmaxq1
(i.e., partially or fully

shaded grid cells).
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Figure 6.23: Example of marking indoor grid

6.7 Conclusions

In this chapter, we have proposed an efficient solution for processing continu-

ous range spatial keyword queries over moving spatio-textual objects (namely,

CRSK-mo queries). We exploit the spatial and textual upper bounds between

queries and objects to form safe zones and boundary regions to reduce both

communication and computation overhead at both ends, i.e., the client-side

and the server-side. We have also devised efficient pruning rules to quickly

prune objects and queries through smart in-memory data structures for faster

query processing. Our experimental results show that our approach achieves

high performance and good scalability compared to the competitive PCR ap-

proach. Finally, we explain how to extend the proposed techniques to the

indoor space.
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Chapter 7

Concluding Remarks

7.1 Conclusions

In this thesis, we focus on the urban environment specifically the indoor space

and present efficient techniques to process various spatial queries under dif-

ferent settings. We show that using the specialized indexing techniques, it is

possible to improve the performance compared to the existing techniques and

all our techniques can be applied for indoor as well as outdoor covering the

urban areas. Chapter 3 presents our research on route planning queries. We

present efficient techniques to answer skyline route planning queries in Chap-

ter 4. Chapter 5 provides our approach to answer continuous detour queries.

We discuss our research on continuous spatial keyword queries in Chapter 6.

Below are the details.

In Chapter 3 , we study the problem of category aware multi-criteria route

planning query, denoted by CAM, which returns a route from a given source

indoor point to a target indoor point that passes through at least one indoor

point from each given category while minimizing the route cost in terms of
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travel and static costs. We show that the problem of answering a CAM query

is NP-hard in the number of query categories. We propose two efficient ex-

act solutions, namely BFNE and BFNE-opt to answer CAM queries when

the number of query categories is limited. The second solution BFNE-opt

is an improvement of BFNE that utilizes a novel traversal method for graph

expansion. However, the exact algorithms become very expensive when the

number of query categories is large. Hence, we devise an efficient approxima-

tion algorithm called GCNN. Later, we propose an improved solution called

GCNN-dom which is based on a novel dominance-based pruning technique.

It utilizes a pre-processing phase to eliminate all the points that are highly

unlikely to be selected in generating an optimal route. The empirical studies

on a large real-world dataset demonstrate that the proposed algorithms are

highly efficient and offer high-quality results.

In Chapter 4, we study an interesting route planning problem called keyword-

aware skyline routes (KSR) query which returns a set of non-dominated routes

instead of an optimal route. We consider two attributes in determining the

dominance of a route over another route, namely the route distance and the

number of partitions that the route visits to cover query keywords. KSR queries

facilitate the users to find the most suitable route among the skyline routes

based on these dimensions. We prove that the problem of answering a KSR query

is NP-hard. We devise an efficient exact algorithm for this problem, assum-

ing that the number of query keywords is small. The results of the empirical

studies on a real-world dataset show the efficiency and the scalability of our

algorithm.

In Chapter 5, we propose an efficient solution for continuously answer-

ing detour queries in the indoor space. We address the problem by solving

two individual subproblems, namely, local and remote computation. First, we
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introduce a pre-processing approach for efficient local computation that con-

structs safe zones for indoor objects. Then propose a best first algorithm to

efficiently compute a remote detour for a given door of an indoor partition.

Finally, we integrate the outcome of the local and remote computations and

introduce a client-server framework to answer the continuous detour queries

efficiently. The extensive set of experiments show that our proposed approach

outperforms the competitive approaches with respect to both computation and

communication cost.

In Chapter 6, we have proposed an efficient solution for processing contin-

uous range spatial keyword queries over moving geo-textual objects (namely

CRSK-mo queries). To efficiently process CRSK-mo queries, we have ex-

ploited the spatial and textual upper bounds between queries and objects to

form safe zones (at the client-side) and boundary regions (at the server-side)

to reduce both communication and computation overhead. We have also de-

vised efficient pruning rules to quickly prune objects and queries through smart

in-memory data structures for faster processing of queries. Our experimental

results show that our approach achieves high performance and good scalability

compared to the competitive PCR approach. Finally, we provide a discussion

on extending these techniques to the indoor space.

7.2 Directions for Future Work

In this section, we propose several possible directions for future work.

• In Chapter 3, we study category aware multi-criteria route planning

queries that take into account the category of each indoor point. How-

ever, with the advent of Web 2.0, indoor objects are annotated with a

set of keywords describing its own substructure. The keywords provide
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low level descriptions and they are more specific. Hence, it will be inter-

esting to investigate route planning queries that take into account indoor

objects consist of multiple keywords in route planning where the textual

similarity is determined as another criterion to compute the route cost

in addition to the current criteria.

• In Chapter 5, we study continuous detour queries in indoor venues. An-

other attractive indoor LBS is the continuous nearest neighbor queries.

For example, a user may be interested in finding the nearby ATM while

she is doing some window shopping. The proposed pre-processing tech-

niques that facilitate efficient local computations in query time can be

extended to answer continuous nearest neighbor queries.

• We focus mainly on the case where the indoor space does not have any

updates. In real-world, some properties of indoor space may change over

time. For example, some doors are closed after hours or indoor objects

are moved. So it is an important direction to see how to update the

existing indexes such as VIP-tree efficiently or alternative indexes which

are more efficient to update.
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