
MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE

REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ON 16 December 2003

Sec. Research Graduate School Committee
Under ths Copyright Act 1968, this thesis must be used only under the

,!, normal conditions of scholarly fair dealing for the purposes of
i research, criticism or review. In particular no results or conclusions

:\! should be extracted from it, nor should it be copied or closely
'vi paraphrased in whole or in part without the written consent of the
. ;IJ author. Proper written acknowledgement should be made for any
-ff assistance obtained from this thesis.

• ' \

TOOL SUPPORT FOR
INTRODUCTORY SOFTWARE
ENGINEERING EDUCATION

by

Andrew Patterson

A diesis submitted in fulfilment of the
requirements for the degree of

Doctor of Philosophy

School of Computer Science and Software Engineering
Monash University

September 2002

This thesis has not been submitted for the award of any degree or diploma in any

othef tertiaty institution.. No other per son or person's worlc has been used without

due ac'-.i-.o l.edgement.

Andrew Patterson

September 2002

11

ABSTRACT

The teaching of software engineering in introductory courses can be supported

through the use of software tools. In this thesis, we identify tasks that students may

be expected to perform in an introductory software engineering course and evaluate

the tool support that is currently available for these tasks. We then concentrate on

the areas of refactoring and testing as areas diat are deficient in suitable tools for

first year students. For these two areas we propose extensions to the BlueJ

development environment that are designed for first year students.

A design for a refactoring module is proposed that adds mcthod-ccntric refactoring

functionality, where methods become first class user interface objects supporting

standard refactorings such as rename, move and extract.

A testing module is designed and implemented that integrates the existing object

interaction facilities of BlueJ with the JUnit testing framework to allow the

automatic creation of test cases based on actual user interaction.

ill

A CKNO WLED GMENTS

When you spend a long rime at university working on a project, many people

contribute and help you out along the way. I have chosen, the list form, as it is

probably moat efficient, so thanks go out:

• First and foremost to my supet visors Jolm Rosenberg and Michael Kdlling

for all their help, support and insight over the years. Despite both having

heavy workLoads during the final months of nay thesis preparation, they were

always willing to promptly read and comment on chapters. Also to Bruce

Quig, the other member of die BlucJ research group, for all the helpful

comments during meetings and for reading and commenting on my final

draft;

• To my housemates Aldko, Brad, Gurdeesh, Gajan and Toni for putting up

with my nocturnal behaviour;

• To everyone from Howitt Hall, who may not have contributed to the quick

completion of my thesis, but who were great to live with when I fust arrived

in Melbourne knowing no one;

• To my family, who have had to put up with questions like "hasn't your son

finished university yet" for the past 6 years.

IV

TABLE OF CONTENTS

INTRODUCTION 13

INTRODUCTORY SOFTWARE ENGINEERING EDUCATION 17

2.1 The Software Engineering Body of Knowledge (SWE-BOK) 17

2.1.1 Computing Fundamentals 19

2.1.2 Software Domains 20

2.1.3 Software Management 20

2.1.4 Software Product Engineering. 21

2.2 Software Product Engineering — further analysis 21

2.2.1 Software Requirements Engineering (ICA 2.1) 21

2.2.2 Software Design (KA 2.2) 22

2.2.3 Software Coding (ICA 2.3) 22

2.2.4 Software Testing (KA 2.4) 23

2.2.5 Software Operation and Maintenance (KA 2.5) 23

2.3 Software Product Engineering - casks 24

2.3.1 Design a system and draw design diagrams 25

2.3.2 Create graphical user interfaces 26

2.3.3 Search and create documentation 27

2.3.4 Enter and edit programs 29

2.3.5 Browse class libraries 30

2.3.5.1 Visualising relationships 31

2.3.5.2 Navigating relationships 32

2.3.5.3 Smalltalk 33

2.3.5.4 EiffelStudio 35

2.3.6 Build programs 37

2.3.7 Implement and execute test cases 38

2.3.7,1 Class level 39

2.3.7.2 Objectlcvel 40

2.3.8 Run and debug applications 40

2.3.8.1 Smalltalk systems 41

2.3.8.2 Sdf Environments 41

2.3.8.3 Object Class Browser 42

2.3.8.4 Drjava 42

2.3.9 Refactor code 44

2.3r9.1 Smalltalk Rcfactoting Btowser 45

2.3.9.2 IntelliJIDEA 46

2.3.10 Integrate external resources 47

2.4 Summary and motivation 47

REEACTORING 49

3.1 Introduction 49

3.2 Why refactor in Erst year? 51

3.3 What reiacLodngs are appropriate? 52

3.3.1 Changes local to a method fragment 54

3.3.2 Changes to a method signature 55

3.3.3 Changes to a class structure 56

3.3.3.1 Move operations 56

3.3.3.2 Extract operations 57

3.3.3.3 Inheritance structure operations ..59

3.3.4 Changes to the design 60

3.3.5 Summary 61

3.4 Current tool support for refactoring 63

3.5 A design for an introductory refactoring tool 66

3.5.1 Methods as user interface objects 67

3.5.2 Classes as uset: interface objects 67

3.5.3 System wide undo 68

3.5.4 Summary 69

TESTING 71

4.1 Whvtest? 71

4.2 Testing in educariofl 73

4.2.1 The early softwate engineering approach 74

4.2.2 Early testing 76

4.3 Testing techniques for students 78

4.4 Current tool support for testing 83

4.4.1 Symbolic debuggers 83

4.4.2 Unit testing-with JUnit 84

4.4-3 TestMentor 87

4.4.3.1 Construction of test assets 87

4.4.3.2 Construction of test stubs 89

4.4.3.3 Validation 90

4.4.3.4 Summary 91

4.4.4 BlueJ 92

4.5 Summary 93

DESIGN OF TESTING SUPPORT IN AN EDUCATIONAL INTEGRATED

DEVELOPMENT ENVIRONMENT 95

5.1 Blue 95

5.2 Blue] 96

5.2.1 UML style class diagrams 97

5.2.2 Direct object interaction 98

5.2.3 Object inspection 99

5.2.4 Integrated debugger , 99

5.2.5 Javadoc generation 100

5.3 Introduction to testing in BlueJ 101

5.4 Testing overview - 101

5.5 Conventional testing walk through 103

5.5.1 Recording of Ad-Hoc Test Interaction 104

5.5.2 Constructing the test class 104

5.5.3 Creating a test method 106

5.5.4 Asserting results 107

5.5.5 Run All 108

vu

5.5.6 Dealing with arrays 109

5.5.7 Testing using standard Java classes I l l

5.5.8 Sharing test objects 112

5.5.9 Creation of a test fixture 113

5.5.10 Restoring a test fixture 114

5.5.11 Extending a test fixture 116

5.5.12 Silent compilation 116

5.5.13 Tests created outside of BlueJ 116

5.5.14 Run individual tests 117

5.5.15 Testing exceptions 118

5.5.16 Free form assertions 119

5.5.17 Further ideas 11.9

5.6 Testdnven development 120

5.6.1 Walkthrough 120

5.6.2 Summary 123

IMPLEMENTATION 125

6.1 Implementation environment.. 125

6.2 High level overview 125

6.3 Constructing test fixtures 128

6.3.1 Java Object Serialization (JOS) 129

6.3.2 JSX 132

6.3.3 XMLEncoder and XMLDecoder 133

6.4 Creation of the text fixture and test; methods 135

6.5 Architectural changes to support testing 139

6.6 Implementing the Runner 141

6.7 Summary 142

STATUS AND FUTURE WORK 143

7.1 Status 143

7.2 Usability Study of the Unit Testing Extension 144

7.2.1 Experimental Procedure 144

7.2.2 Results 146

tan

7.2.3 Discussion 149

7.3 Extended functionality 149

7.3.1 Extending test methods 149

7.3.2 Support multiple test cases associated with a single target class 149

7.3.3 Test coverage analysis 150

7.4 Further tool support for introductory software engineering education

150

CONCLUSION 153

GLOSSARY 156

REFERENCES 158

LIST OF FIGURES

Figure 1 - The IBM Visual Age foe Java search dialog can search based on a.

semantic understanding of the source code. 29

Figure 2 —An example of IntelHJ Quicklnfo shelving the popup display that

occurs when the editor caret is placed on a method call 30

Figure 3 - A Smalltalk Browser 33

Figure 4 - A "Development Window" in EiffelStudio targeted oo the

STRING class (reproduced with permission from [Meyer2001

page 20]) 35

Figure 5 — The "class" view (reproduced wilii permission from [Meyer2001

page 31]) : 36

Figure 6 — The "duster" view in EiffelStudio showing the empty

MY_CLUSTER that has just been created as a child of the

ROOT_CLUSTER (reproduced with permission from

[Mcycr2001 page 21]) 38

Figure 7 — Drjiiva showing object interaction being performed in the lower

panel 43

Figure 8 - Performing a refactoring with IntelliJ IDEA 46

Figure 9 —The refactoring menu in InteUiJ IDEA 64

Figure 10 — The context in which refactorings are appropriate 65

Figure 11 —Thepopup menu attached to a method in the editor 66

Figure 12 —The popup menu attached to a class in the editor 61

Figure 13 — The History /Undo window in Adobe Photoshop 69

Figure 14 —Two orthogonal classifications of testing 73

Figure 15 —A sample of test code, written using theJUnit framework 85

Figure 16 —The SwingRunner showing the result of die EmailTest 87

Figure 17 — Construction of "steps" in Test: Mentor (reproduced with

permission from [Silvermark2002 page 92]) 88

Figure 18 — Recording object interaction with Test Mentor (reproduced with

petmission from [Silvetmark2002 page 84]) 90

Figure 19 — The main BlueJ window showing the UML style class diagram and

objects on the object bench 96

Figure 20 —The popup menu of a class in BlucJ 97

Figure 21 — Parameter passing when constructing an object in BlueJ 98

Figure 22 — Inspecting an object 99

Figure 23 -TheBlueJ debugger 100

Figure 24 — The BlueJ system showing the addition of the unit testing

functionality 102

Figure 25 - The; popup menu for creating a new test class 104

Figure 26 — The popup menu for creating a test method 106

Figure 27 — The result and assertion dialog 107

Figure 28 — The unit test source of a method created throx^h Blue]

interactions in the ParserTcst class 108

Figure 29 — The dialog showing the result of running three tests 109

Figure 30 —The result and assertion dialog for an array 110

Figure 31 — The unit test source of a basic method created through BlueJ

interactions in the ParserTest class-. I l l

Figure 32 — A j a v a . i o . S t r i n g R e a d e r object on the object bench. The

popup menu shows the method calls which can be made on the

object 112

Figure 33 — The unit test source for a method created using the Java

StringReader class 113

Figure 34 - The method call dialog executing Room's setExitsQ method 114

Figure 35 - The result and assertion dialog when the object returned is already

on the object bench 115

Figure 36 — The unit test source for a test method generated, when an

exception is caught 118

xl

Figure 37 — The free form assertion dialog. 119

Figure 38 — The unit test source for a TDD method in TransporterTloomTestl21

Figure 39 — Editing the TransporterRoomTest in the Blue} editor. 122

Figure 40 — A simplified view of the BlueJ system 126

Figure 41 —A GUI component serialized to XIV'IL vising XMLEccoder and

how the component would look as Java code 133

Figure 42 —A graph recording the transitive closure of all operations on the

object A 135

Figure 43 — The. objects on an object bench recorded as a sequence of

operations 137

Figure 44 — Using the scoping rules of Java to allow the "result" variable to be

reused within a method 139

Xll

1 Chapter 1

INTRODUCTION

T he philosophy of what to teach in introductory computer programming

courses has changed markedly over the past thirty years. Scanning the early

ACM SIGCSE proceedings, one sees a discipline struggling ro establish itself, as

new computer science departments formed from the existing mathematics and

physics departments in universities. Much of what was taught reflected the

backgrounds of the departments} leading to an emphasis on numerical methods,

computational complexity theory and proofs, alongside courses in die rapidly

advancing areas of operating systems and computer hardware [ACM1968].

However, some prescient insights were made that are now starring to be reflected in

the modern approach to teaching introductory computer programming:

"In the design of this course I haw taken a much broader view [of the meaning of software

engineering]. I take the view that programming is taught in our basic courses as a solo activity.

Such courses teach programming techniques that are suitable for use by a single person constructing

a program which will not be touched by other people. In contrast, I feel that the essential

characteristic of a software engineering task is that marry people mil be involved with the product.

Hither several people will cooperate in producing it, or it will be used or modified by persons other

than the original writer"

~ David Parwas "A Course on Software Engineering Techniques"'A.CM SICCSE 1971

As the decades went on, computing curricula evolved along with the discipline

itself. The 80's saw a shift to more experimental work as computing power became

increasingly accessible [ACM1979]. Into the 9O's5 we saw an emphasis on algorithms

and data structures, although more recognition was made of the importance of

software engineering skills [ACM1991].

13

The major change in teaching now as we enter the 00's is the change to object

orientation and the emergence of software engineering skills in introductory

courses. The shift from teaching procedural programming languages to object-

oriented programming languages., and the emergence of software engineering as a

separate discipline^ has meant that other skills now need lo be introduced to first

year students ';o best support the new paradigms.

The introduction of object-oriented programming has mandated some changes. For

instance, code reuse is now an integral part of programming and the use of class

libraries is a required skill for any competent programmer. Time must now be set

aside for the introduction of these standard class libraries. In factj some of the time

that once may have been spent learning how to implement certain data structures

may now need to be spent learning how to use standard implementations of these

data structures.

Other changes have been enabled through the introduction of object-orientation.

Modem graphical user interface toolkits and testing frameworks have a simplicity

and clarity now that was not obtainable in the world of procedural languages. This

clarity now makes it feasible to introduce these topics to students in an introductory

course.

The software engineering skills that are being introduced flow on from die change

to object-orientation. Reasonably complex programs can be constructed and

presented to students with an appropriate level of modularity, such that they are

only required to modify one class, yet perhaps understand the design of three or

four other classes. T.t is finally possible to have students work on "large" programs

without overwhelming them, with complexity, and yet not requiring too much hand

waving to explain away the advanced classes.

Other important software engineering skills such as teamwork are better supported

because there can be a much clearer separation of concerns between component

groups within the team. Similarly, testing is more effective with object-oriented

14

code because it is easier to isolate units of the overall system and test xhese

individually.

How then have the tools we use in introductory teaching changed with recent

curriculum developments? It is true that integrated development environments have

become larger and more functionality has been added, yet very little has changed

about the fundamental way in which they work. They are still very much oriented

around die concepts and abstractions of procedural programming. We contend that

some aspects of teaching object-orientation and software engineciing are not well

supported by tools that are currently available for introductory students. The

purpose of this thesis is to investigate this claim and to propose remedies for some

deficient areas of software engineering education by designing and implementing

extensions to an integrated development environment

Chapter 2 provides background to the software engineering discipline and develops

a set of software engineering tasks through which existing software tools are

evaluated. We identify two areas where existing tools are deficient, namely

refac toting and testing.

In chapter 3 we discuss the area of refactoring and the importance of support for

refactonng from software tools. A design of a refactoring tool especially designed

for introductory students is presented.

Chapter 4 discusses the area of testing and looks at approaches uo teaching testing

in first year courses. From rhis analysis, we lead into chapter 5 in which we describe

the design of a new and novel tool that integrates support for testing within the

BlueJ programming development environment In chapter 6 we then discuss the

implementation issues arising from the addition of testing support to BlueJ.

Chapter 7 discusses the status of the work that has already been performed and

contains some ideas for future work. Chapter 8 provides a conclusion and summary

of this Ihesis and its contributions.

16

2 Chapter 2

INTRODUCTORY SOFTWARE ENGINEERING EDUCATION

T he aim of this chapter is to introduce approaches used for introductory

software engineering education. We begin by examining the software

engineering body of knowledge, and identifying significant educational approaches

to teaching in each knowledge category. In particular we look at the part that

software tools play in the teaching of these concepts. The latter part of the chapter

concentrates on the software product engineering category since this aa area which.

we feel can benefit a great deal from the use of software tools. For topics in this

category we look at the tasks that snidents are required to perform, the support

software development tools give them for perforating these tasks, and the suitability

of these tools for introductory students.

2.1 The Software Engineering Body of Knowledge (SWE-BOK)

It is the contention of this thesis that many areas in software engineering can be

introduced to students in first year with appropriate support liom software tools. In

fact, we believe that the move to object-oriented programming in first year has

made tool support essential. An evaluation of the strengths and weaknesses of tools,

however, cannot be performed against generalised notions such as design,

iniplementation or testing. A better approach is to identify practical tasks that

students perform in first year and evaluate tools against these concrete tasks.

In attempting to identify some of these practical tasks, we will start by looking at

recent efforts to establish a body of knowledge1 for software engineering. This body

of knowledge will lead us through the key concepts of software engineering and

allow us to discover a set of tasks that can be used for evaluating tool support.

1A body of knowledge is an attempr to codify and categorise the nature and content of a discipline.

17

The Software Engineering Body of Knowledge (SWE-BOK) jHilburnl999] is an

effort of the SECC (Software Engineering Coordinating Committee), a joint

committee of the Association for Computing Machinery (ACM) and the IEEE

Computer Society (IEEE-CS). The development of the SWE-BOK was motivated

by "the lack of a dear and comprehensive understanding of the nature and content

of the software engineering profession" [Hilburnl999 page 1]. The SWE-BOK sets

out to define a hierarchy of concepts in software engineering. At the top level arc

the four Knowledge Categories (KC). These arc:

1. Computing Fundamentals

2. Software Product Engine ering

3. Software Management

4. Software Domains

Within each KC are Knowledge Areas (KA). Finally., within each KA are

Knowledge Units (K.U) which define each individual atomic concept.

In the following sections we will look at each category and identify methodologies.

for teaching in the area at an introductory level Of particular interest will be the

support provided by software tools for this teaching. The support that tools provide

can be twofold: firstly, some software engineering concepts are naturally tool based

and learning a tool is a necessary part of mastering the concept. For instance, using

a compiler, or the use of an integrated development environment fall into this

category. The second form of vsupport that a tool can give is in reinforcing some of

the concepts of software engineering that may not normally involve a specialist tool.

For instance, a tool can be used to visualise an algorithm which helps the student

leam how the algorithm works.

It should be noted that we will deal with knowledge categories out of sequence

compared to their ordering in the SWE-BOK. We will leave the Software Product

Engineering category until last as it contains the majority of the topics that are of

interest when looking at tool support.

18

2.1.1 Computing Fundamentals

This knowledge category covers the fundamental concepts of computing such as

algorithms and data structures [Ginat2001], computer architecture, mathematical

foundations, programming languages and operating systems |Hughes2000].

There are two main schools of thought as to how a firsc year computing course

should be structured. A "depth-first53 course emphasises one programming language

and concentrates on teaching this for the introductory course. A "bteadth-first"

approach introduces selected topics from each of the computing fundamental

knowledge areas, with less of an emphasis on prograrnmirig languages. Both

approaches are equally valid and as the use of tools is not affected by the choice of

course structure no more will be said about this topic [McKiml996j.

Another contentious question in computing education is whether to teach

procedural or object-oriented programming in the introductory course. Much has

been written about this topic over the last ten years but it is generally recognised

chat an object-oriented approach is preferable given the availability now of suitable

objecx-oriented languages for teaching (e.g. Java, C#) [Reges2002]. A review of this

debate would run into many thousands of words so we will assume in this thesis the

validity of the object-oriented approach. As we will see, the change to object-

oriented programming has raised many issues that make adequate tool support even

more crucial.

Unlike some of the other knowledge categories which we will look at later, the

concepts in this knowledge category do not require the use of software tools in

order to be taught effectively. However, there has been some work in this area with

tools that are pedagogically designed. These range from Nachos [Crmstopherl993],

a simulated operating system for operating system experimentation, to SPIM

[Larusl997]5 a MIPS R2000 simulator to help learn computer architecture.

19

LiSome have proposed tools no help in algorithm, visualisation [Naps2000] although

the usefulness of algorithm visualisation tools without interactive feedback has been

questioned [Staskol993] 0arc2OQO].

2.1.2 Software Domains

This knowledge category specifies software domains that involve the application or

utilisation of knowledge from computing and software engineering. The domains

include artificial intelligence, database systems, human-computer interaction and

real time systems. These domains ate generally taught in specialised courses in later

years, not in an introductory programming course. Because the domains are so krge

and quite specialised, we will not discuss them any further and instead refer the

interested reader to the major computer science educational conferences, SIGCSE

and ITiCSE for examples of tools and methodologies.

2.1.3 Software Management

This knowledge category specifies the domains that involve managing a project and

managing the people working on the project. The knowledge areas of this category

are project management, risk management, quality assurance, configuration

management and process management. The skills involved with many of these areas

are very much people skills. Whilst extremely important they arc generally not

taught formally at an introductory level. Instead, students gain experience at project

management by being involved with group work and perhaps by being asked to

develop on-paper testing plans.

There has been some work on introducing software management into introductory

curricula. The use of the team software process (TSP) and personal software

process (PSP) |Hilburnl997] has students evaluating their own project's success and

the success of the process of creating the project. This teaching approach is

discussed in more detail in section 4.2.1. Web-based data entry tools have been used

for data collection in one implementation of the PSP [Postema2000].

20

The tools for software management are specialised project management tools that

allow the construction of various charts and timelines. Examples of some

mainstream software In this category are Microsoft Project and Rational Concepts.

Because of the professional nature of these products they are not suitable for

students at an introductory level [Mc~Donald2001].

2.1.4 Software Product Engineering

Traditionally, software product engineering and in particular, coding and testing, are

taught before software management because it is generally accepted that software

management cannot be understood reasonably without any experience in actually

engineering software. This makes it a good candidate for potential introductory tool

support

Tine software product engineering category is also an interesting category for

investigating tool support in introductory teaching because many of the topics

ronsist of tasks that require tools in order to perform them effectively.

This knowledge category is split into five knowledge areas: requirements

engineering, design, coding, testing and operation and maintenance. These in turn

arc split into many knowledge units. In the following section, when each knowledge

area and knowledge unit is discussed it will be accompanied by its KA or ICU

number allowing it to be referenced in the SWE-BOK document Fot many of the

units we will identify a task that either requires or can be aided with the use of a

software tool. These tasks will be highlighted in bold and will be discussed in more

depth from section 2.3 onwards.

2.2 Software Product Engineering - further analysis

2.2.1 Software Requirements Engineering (IC4.2.1)

This area looks at techniques for "establisMng a common understanding of the

requirements to be addressed by a software product" [Hilburnl999 page 17].

Requirements engineering can be done in an ad-hoc manner in introductory courses

(the specifications of an assignment may be deliberately obtuse or incomplete,

21

requiring the students to ask the teacher for more defcails) but a formal treatment: of

it will visually be left for later year courses.

2.2.2 Software Design (KA 2.2)

This area is about the formation of a plan detailing how the requirements for a

software product are to be met. Most of the tasks in this area are paper/whiteboard

tasks and do not need any support from compuLer tools. However, there are two

units of the area which, can use tool support.

The Abstract Specification (KU 2.2.2) unit involves learning how to specify- object-

oriented designs, structured designs and real-time systems designs. The tasks that

introductory students rnay be required to invoice the use of various design

methodologies to design a system, and then draw designs in the form of class

diagrams and sequence diagrams.

The Interface Design (KU 2.2.3) unit is concerned with the design of the boundary

between the software system and the user. The task of designing these interfaces

may be aided by software tools such as a GUI builder. A GUI builder can be used

to create graphical user interfaces quickly and easily. Some paper tasks can

involve the evaluation and comparison of existing interfaces.

2.2.3 Software Coding (KA 2.3)

This area deals with the construction of software to meet the criteria specified, in a

design. The Code Implementation. (KU 2.3.1) unit is concerned with knowing about

various programming languages and programming paradigms and how to use

source code development tools. Tools are used for entering and editing

programs and the student needs to leam the use of the system's build tools in

order to build programs.

The Code Reuse (KU 2.3.2) unit is concerned with using existing code and Ebraries

of code in programs. It also deals with techniques for developing reusable code.

The tasks that students will be faced with in r'ais unit are reading and understanding

class interface definitions and browsing large class libraries in order to find classes

that arc suitable for reuse. Tools which help visualise the library of classes and

navigate through these libraries are of use here.

The Code Standards and Documentation (KXJ 2.3.3) unit is about document?lion

standards for software arid the development of internal and external program

documentation. Tasks that students may need to perform are searching the

documentation to find out more about a class or method given its name or

method signature. They also may want to search the documentation based on a

class keywords. Another related task is the task of creating the documentation.

2.2.4 Software Testing (KA 2.4)

This area deals with establishing the correctness of a program. It involves testing of

all scopes, from unit testing (KA 2.4.1) through to acceptance testing (KA 2.4.5).

Not. all forms of testing will be appropriate for introductory students. For instance,

because of the small scale of the software projects that they may work on, the

difference between integration (KA 2.4.2) and system testing (KA 2.4.3) is probably

not great, and this distinction may not be worth emphasising Some other elements

of testing such as performance (KA 2.4.4) and installation testing (KA 2.4.6) ate

also topics that are best left to more advanced courses.

For each of these testing scopes, students will need to develop test plans. This is an

-""•rcisc that can be done on paper. The tasks of implementing test cases and

executing test cases are tasks that can be aided with software tool support. As

part of the day to day activities of developing software, students also may test their

code by running and debugging their programs.

2.2.5 Software Operation and Maintenance (KA 2.5)

This area concerns the "methods, process, and techniques that support the ability of

a software system to change, evolve and survive" [Hilburnl999 page 18]. The unit

Software Maintenance Operations (KA 2.5.2) deals with all aspects of maintenance

such as fixing bugs, rcfactoring code to make it more maintainable, and adapting

23

software to work on other platforms. Whilst the scale and time span of projects

undertaken in an introductory course is quite limited, it is possible to introduce

some of these aspects in the course of the student's day to day programming. With

the improved tool support for refactoring and restructuring now available there is

more potential for introducing these tasks to students at an early stage.

The Software Installation and Operation (KA 2.5.1) unit deals with techniques for

installing software products and operation of products. One aspect of this of

interest to introductory students is integrating external resources into

development environments. This can occur when a teacher has provided an

external resource (such as a class library) Lhat is needed for a project. Whilst some

laboratories will automatically configure the student's development environment for

new external resources, students may need to deal with integrating these resources

on their home computing platform.

2.3 Software Product Engineering - tasks

In the previous section we have looked at all the. knowledge units that make up the

Software Product Engineering category and identified a set of tasks that students

may be requited to perfottn. We have attempted to identify the tasks from the

product engineering domain which we feel can most benefit from tool support.

The identification of tasks gives us a framework for evaluation of the usefulness of

software tools that is more "testable" than merely looking at a list of software

engineering topics. The task list is certainly not definitive though; there may be

some tasks that could be added or tasks that could be split into other tasks.

However, it gives us a good starting point for our evaluation of software tools for

introductory software engineering.

As a summary, the list of casks is presented .in the following table. The assignment

to general categories (i.e. design, coding, etc) is not an attempt to classify tasks and

thereby present a taxonomy of tasks, it is merely to identify the knowledge area

24

frorn which the task was first identified. Some tasks such as debugging could easily

be placed in multiple categories.

Design

Coding

Testing

Maintenance

Operations

Design a system and draw design diagrams (see section 2.3.1}

Create graphical user interfaces (see section 2.3.2)

Search and create documentation (see section 2.3.3)

Enter arid edit programs (see section 2.3.4)

-Browse class libraries (see section 2.3.5)

Build programs (see section 2.3.6)

Implement and execute test cases (see section 2.3.7)

Run and debug applications (sec section 2.3.8)

Refactor code (see section 2.3.9)

Integrate external resources (see section 2.3.10)

In. die following sections we examine each of these tasks in more detail and identify

potential tools to assist •with their introduction.

2.3.1 Design a system and draiv design diagrams

Designing a system using object-oriented design techniques can be done in front of

a computer or can be done as a paper based task. The use of CRC cards can allow

groups to design systems without needing to use a computer [Beckl989]. Designing

with CRC cards involves identifying (C)lasses, their (Responsibilities and their

(Collaborators in the system. These are documented on small index sized cards,

with the class name at the top, responsibilities listed down die left and collaborators

listed on the right. Execution scenarios are used to discover classes needed and

refine the design. When an execution scenario requires a responsibility not already

covered, either a new class is created, or extra responsibilities are added to existing

classes. If adding a responsibility causes a class to become too large, it is split and its

responsibilities are copied over to the new classes. Some work has been done on

evaluating CRC card design in the teaching of an introductory subject

jjohansson2001].

25

Students may also be encouraged to construct designs on a computer using UML

diagramming tools sucli as A r̂goUML or Rational Rose [Boggsl999]. A problem

with using these tools in introductory education is that they are designed for

professional software engineers and hence often contain concepts and functionality

mat is inappropriate for introductory students. Cae aspect of this advanced

functionality is round trip engiaeering, which atlo-ws L'ML models to be converted

into code and existing code to be converted ,->sUi into UML models. This

functionality can lead studeais into constructing large., complex and inappropriate

systems because the generation of the code skeletons is automated (and the

complexity only becomes a problem when the student attempts to fill in the

skeleton).

A more appropriate tool fcr introductory students may be a general purpose

diagramming tool such as Visio [Ea-i:on2001] which can be used to construct simple

UML diagrams.

2.3.2 Create graphical user interfaces

The use of graphical user interfaces (GUIs) in introductory courses is becoming

increasingly popular. The use of GUIs has two benefits for students:

• most modem programming involves GUIs so it is a useful skill to be

introduced to [Culwin"l999]; and

• £Ti,*pidea] interfaces arc appealing to students and keep them interested in a

project [Mutchletl 996],

There are those who oppose, the introduction of GUIs and event driven

programrnkig. Some claim diat there is not enough time to deal with user interface

construction In an introductory course without skimping on other more

fundamental iurcas. Others claim that the very nature of event driven programming

is too complex to be introduced to beginning students. An excellent summary of

these issues can be found in [Bruce2001].

26

Many program development environments come with a graphical user interface

builder tool. This tool allows the rapid construction, of interfaces using simple drag

and drop of the interface components. As -with UML cools, it is important that

students do not get carried away constructing large complex user interfaces, and

then not have time to actually implement the project's functionality.

A way to deal with the complexity of GUI builders and the event driven

programming model may be to use GUI toolkits [llasala2000] [Rasala2001]. A

toolMc provides a simple set of classes that allows GUI's to be built, without many

of the complicated aspects of GUI programming.

2.3.3 Search and create documentation

The task of searching for a class with given attributes is a very common one for

programmers. In particular, the inexperience mat students have with a language

means that they are often not able to temember the types of arguments for a

method call or rhe list of methods available in a class. In some cases a student may

need to search for classes which contain a keyword in the documentation or which

match some natural language query. For all these cases an effective searching tool is

required.

The searching task can be broken down into two subtasks. Firstly, how (and what)

information about the classes in the project is entered into the project's

documentation. Secondly, what is the method through which this information is

queried?

Information about the classes in a project can come from varied sources.

(1) Information added manually.

When a student adds a class to a project they may also be required to add

documentation such as keywords or descriptions of functionality.

27

(2) Information derived automatically from the classes5 source.

At some point in the development process tools may be run -which

automatically generate information from the classes in the project. This may

be embedded documentation (for example j a v a d o c , which is a standard

for embedding documentation in the comments of Java programs

[Goslingl999] or the concept of literate programs pR_amseyl994]), or maybe

an intelligent automated analysis looL

(3) Informatioa. derived from usage patterns.

If is possible for a system to collate information about the frequency or type

of usage -which classes get and store this information, A simple example

•would be to record the most popular classes by various criteria such as

number of times used as a superclass or number of instantiations.

The Melmoth system [Hitchcnsl.994] suggests the use of a thesaurus to expand the

usefulness of keyword searches although 'its effectiveness is impeded by the

difficulty of creating an effective thesaurus.

The querying methods described above are most effective when used in

conjunction with the browsing techniques detailed in section 2.3.5. Queries may not

find the ideal class that the student desired, but they are often a very good starting

point for a browsing process.

Tool support for searching is generally very good. However, there are only a few

IDEs that support a uniform mechanism for searching of all. information about a

class. Foi instance, "Visual Age for Java (see Figure 1) has a comprehensive search

dialog that allows searching with wildcards within the names of types, methods,

fields and constructors. Visual .Age uses the semantic understanding of the source

code built during its compile phase to allow searching of these specific language

structures. However, this search dialog cannot search the associated class

documentation, nor go directly to the class documentation once a class is found.

despite the class documentation being available within the IDE (and indeed

searchable tlirough a separate mechanism).

28

Search string: (*= any string) .: .. ;•'. .

I irit sanripleMethod(S'.ring,

r Element — — - —

C Ivpe C field

C £bnstruetor (• Hethod

p Usages,——-——--

»" :.ELofJsrences

Scope

C fcife.rarchi Choose...:

; String toStrlnq{% Irit)

Step I Qos^ j

Figure 1 - The TBM Visual Age for Java search dialog can search based an a.

semantic understanding of the source code.

2.3 A Jintsr and edit programs

An editor is the tool that most first year students will spend a significant amoimc of

their time using. Luckily, student's familiarity -with word processors such as

Microsoft Word means that learning the use of text editors in the preparation of

their program source is not a significant Iiurdie.

Text editors for program development are often augmented with

highlighting, where keywords of the prograrnming language are shown in alternative

colours. Many also implement bracket matching which shows the corresponding

opposing bracket whenever the cursor is over a bracket character. The colour

highlighting hcLps students visually distinguish various parts of their source and the

bracket matching helps them track down unmatched brackets (a frustrating error

for new programmers).

A program development environment that maintains rneta-informalion about the

symbols of a source file (normally by keeping a parse-tree after compilation and

29

CL putuetrHuuity. ui. eta uci A UJ.eunui.utft. i" Aj.ifiwt.uxB" J j .

, --^j. public
dor* > end

iava.awt.Color kg)of class
„ __J return type: void

ea setlW o v s r r ± d e s »ethod of class java.airt.Ctmponent
.gecSacKgcound[3;

Figure 2 — An example of EnfeUiJ Quicklnfo showing the popup

display that occurs when the editDr caret is placed on a method call.

linking the resolved symbols back to their location in the soutce) can offer some

additional searching functionality to programmers as they edit programs. At the

point where a programmer types in a method mrne, a search is automatically made

for the details of that method or class. The result of this search is then discretely

displayed to the programmer at the point, where they are editing.

An example of this is IntelliJ's QuicHnfo (see Figure 2) that displays metadata of a

method and its class whenever the editor caret is placed on a method call in the

source text Both Microsoft Visual Studio and Borland Delphi have similar jinplictl.

searching of methods to help programmers complete method calls. This

functionality helps students determine the correct parameters to pass to methods

and the names of the methods available in a class.

Some types of editors aim to assist sLudents by only allowing syntactically correct

programs to be typed into the editor [Khwajal993]. These syntax-directed editors

may be of assistance to students early on but they do not provide an easy

progression to the good editing practices requked for more mainstream, editors of

professional development environments. This may be die reason why they arc

rarely used these days, even in introductory environments.

2.3.5 Browse class libraries

While the concept of libraries of code is not a new one, the introduction of object-

oriented programming to first year students has led to au explosion in the scale of

reusable code that is available to students io code libraries. For instance, the

standard C library contains approximately 200 functions that can be used by

30

programmers [Plaugexl992]. We can compare this to the standard Java class

libraries that contain almost 1500 classes, with each class containing tens to

hundreds of methods [Goslingl999]. Because of the size of the class libraries that

have to be dealt with, effective browsing techniques have become important.

The searching techniques described in section 2.3.3 are useful where specific

information is known about the class desired, but there are many situations where

the student may just have a vague feeling for the type of class that they require.

Browsing a class library lets them gain a broad overview of the classes available and

where to find them. It is important that the browser does not overwhelm the

student by presenting too many classes at once. To achieve this, the browser must

select a subset of the classes to display and it must display brief yet pertinent

information about each class. Section 2.3.5.1 discusses this in more depth. Because

only a subset of all the classes is displayed, it is also important that the student can

navigate amongst die subset of classes, quickly moving through the classes in order

to find the desired one. Section 2.3.5.2 talks about this navigation in detail. Sections

2.3.5.3 and 0 provide specific examples of browsing tools.

2.3.5.1 Visualising relationships

There are many options for how classes in a browser will be displayed. In the

simplest case, the classes could be displayed alphabetically by their names. More

commonly, browsers will use a graphical notation such as UML [Fowle.tl997] that

shows various forms of relationships between the classes being browsed. Each

node of the display is a class and these nodes may be augmented by colour or

pattern to indicate other features of the classes. When a diagrairxming technique is

being used, browsers may allow the author of the classes (or perhaps the user of the

browser) to manually layout classes in a diagram. Another possibility is to

automatically layout classes according to some algorithm [Scemannl997J.

A common technique for browsers is to display the inheritance relationships

between classes in a tree form with collapsible branches to allow the user to view

only the parts of the tree in which they are interested. This form of browsing

31

becomes problematic in languages with multiple inheritance because the

relationships cannot necessarily be described in a tree form.

Whilst inheritance relationships are the most common relationship used for

browsing it is interesting to consider what other relationships may be used. Broadly,

they can be broken into two categories. Technical relationships such as inheritance

and dependencies arc normally part of the metadata of the system, either retrievable

directly from a languages' reflection interface or else easily derivable from the

source code. These relationships are often able to be browsed in systems because

they can be calculated automatically.

The other broad atea is semantic relationships such as functional similarity. For

example, it .may be useful to view only those classes that serve a similar purpose to a

list class such as a stack or a. queue. Another possibility is the desire to browse

classes based on whether two classes are often used together. For instance, it may

be useful in Java to see die relationship between the llTMLDocument class and the

URL class as these classes are often used together. Semantic relationships are not

commonly supported because the information required to make them work must

be supplied manually and is difficult to keep up to daLc. The automatic inference of

these semantic relationships is an interesting area for future research.

The success of all these visualisation forms depends on the complexity of the

classes being browsed. If there are too many classes, the student may not be able to

form a mental picture of (he classes' functionality [Pintado 1990]. Some form of

filtering may be required to restrict the display in this case.

2.3.5.2 Namgating relatiofiships

The relationships between classes form an obvious basis for navigation because the

relation defines a commonality between two classes. If we are looking at oae class

which docs not quite fit our needs we can navigate to an ancestor in the inheritance

hierarchy or perhaps another class with a similar usage pattern as this gives us a

good chance of finding die class -we desire.

BifTara, B g w w Sptraaana Orjpgoiy gasa jBpxtoeat J^tsetor

Helas tory-Cpde Tools
Raranory-Ctjpdltlons
HctactCiry-Enviraiiitionl

Hofaclo-y-
Rofacio-y-ParsBr

•O category

JpeQniHuFe

mmmtwmdi
ComponteUrURulo
UntRUIaPuraeT-eeLlntRula
SmallM
Sirialllimchactor

•ybaiUnca -Ociass ^J

Intembn rsVeSJIrfl
bug:

d O q n
|!lar4).ArrayCDnialnsCgr
felumsBoo|aanAnriOth(
eendsDHTaren'SUper
aupetsendu
t R l B

•RefBfiinCBran ajislrMt dais' ,
Krranm f̂fl ' |
i - •|UbclM«R»«porn!bilK>i' ^Syirobl '"

tut)<;m«tR!»pontlbllltySynb3D

U I S I (Siiitlllill; 4iSBc[M!orw^i coolto! inlsitedaatt name
IfTnJa |rJ»UH addClasi. contB>i 48 aCKSCiassJl

Figure 3 - A Sm-alltaik Browser.

It has been noted [Cookl992] that -whilst the inheritance hierarchy is a good

navigational relationship for developers who have authored classes, it is noc

necessarily the. best for students looking for classes. Students who are looking for a

class to use should start with the most specific (the leaves of the inheritance tree).

The problems with navigation are similar to those with visualisation in that some of

the semantic relationships that would form an excellent basis for navigation are

difficult to enter and maintain.

2.3.53 Smalltalk

The Smalltalk: environment is interesting because it was the first object-oriented

programming environment and despite many different implementations over the

years, current Smalltalk implementations retain much of the same look-and-feel as

the earliest versions. Central to this look-and-feel is the importance of a. class

browser within the environment.

Smalltalk class browsers are structured as a row of scrollable list panes, each

displaying a different level of granularity. The left most list displays general

categories, the centre left list displays class names dhat belong to the chosen general

33

category, the centre right list displays categories of methods wirhin a class (such as

initialisation, private) and finally the rightmost]ist displays the actual mediod names

of a ckss. When a method is selected in the rightmost pane, its source is displayed

in the bottom pane (see Figure 3). An alternative approach that is used by some

Smalltalk systems is to replace the two leftmost panes with a ckss hierarchy

displayed as a Lree structure (Smalltalk only allows inheritance from one parent class

and all classes must have Object as an ancestor so the display of the classes in a tree

structure is trivial).

Browsing in Smalltalk is like looking at an extremely large tree structure with a view

at a number of fixed heights. Each view can navigate amongst its siblings but

cannot move up or down the tree and changing the view at the top heights

automatically moves the lower views across into the same sub-tree.

There are a few pitfalls with the Smalltalk form of browsing. Firstly, it requires

accurate categorisation of both classes and methods in order for the programmer to

be able to find source they want Not only must programmers take the time to

categorise their classes, differences in interpretation between programmers could

lead to confusion as to the category to which a class belongs.

In die Smalltalk systems that display the class hierarchy in the leftmost pane a new

problem is introduced. Rather than navigating a single tree -with a uniform

mechanism, introducing a class hierarchy in the leftmost pane means that die

hierarchy tree must be navigated -within the pane (options for this ate displaying the

•whole tree or allowing sub-crees to be expanded and collapsed) and then another

tree is navigated between the panes. This dual interface mechanism is cumbersome

and confusing.

Another pitfall is that because tbere are a fixed number of heights, the tree of

classes and methods can become extremely broad. This problem is overcome in

modem object-oriented languages by allowing nested namespaces (for instance

packages in Java allow the creation of a hierarchy of namespaces). In Smalltalk

34

JSTBIN-G

Feataaa •.
S i irtiokaflon _-;

' -ifli .Take
'iSj Mlabrflon

-! 4 i rvtr.olce
; -<fr mo(xjr»ni_s1rii

Uat_c

Clalcit :ca

sC9
a £3 facl_dutlof

Edca

1L

description: "[
SeqcRnp^d = * chorQCLCER, arcQUslbls through
In a concijMsus range,
1"

• • • • • - • • • • " • - • • • • !

ir.ddcc

Conlent .

fe x

INDEXABLE
G, H -> INTEGER

vAL

Figure 4 - A "Development Window" in F.iffelStudto targeted on the STRING ckss

(reproduced with pemiission from [Meyer2001 page 20]).

however, the lack of nested namespaces can create a broad tree that is

overwhelming for students.

2.3.5.4 EiffelStudio

EiffelStudio [Meyer2001] is a development cnvironmeiat for the object-oriented

language Eiffel. Browsing is considered patticulariy important in the EiffdSaidio

environment because "of the speed at which you can construct sophisticated class

structures, making use of inheritance, geneticity, the client relation and information

hiding..." [Meyer2001 page 17]. Rather than launching a separate browser, the

EiffelStudio environment is always in a browse mode, no matter whether editing or

debugging. Each "Development Window" (many different windows can be opened

at once, each displaying something different) of the environment targets either a

class, feature, cluster or runtime object in the system. For instance, when a class is

targeted, its source is displayed in the editor pane, wliilst other information about it

is displayed in the context pane. This other information can be simple information

35

index inn

description:
"Sequential

The View buttons

coitroitraEnC to a particular repres

Flat1

Contra
Flat Contract

Ancestors
Descendants

Clients

Exported
.Externals

iOnce and constants
Deferred

Routines
Attributes

SuppttMH

Figure 5 —The "class" view (reproduced with pcrrr' jsion from JMeyer20Ul page 31])-

such as its location on disk or more complicated information such as a diagram

showing the classes' inheritance hierarchy (see Figure 4).

The user can. browse to another class through numerous methods

• They can *^pe the name of ->. class into a search dialog to directly target that

class;

• Whenever the name of a class appears in the editor window it aces as a

hypeidink which can be clicked on to target that class:

• They can go forward and backward dnrough the classes that have been

targeted by using back and forward navigation buttons; and

• Classes can be added to a "favourites ' menu which allows them to be

targeted quickly.

One interesting feature of EiffelStudio is the "class" view (see Figure 5) that

displays information about a class with a vatieLy of filters to allow only certain types

of features to be displayed. Allowing alternative views of classes is a valuable way of

managing the complexity of object-oriented classes.

36

Like Smalltalk, Eiffel has a flat namespace for classes. Uiilike Smalltalk however,

Eiffel has a nested mechanism to help organise dasses into groups, thereby

overcoming the broad trees that can overwhelm programmers "within, a Smalltalk

environment. The grouping mechanism is called "clusters" and it relates directly to

the directory structure used to store the Eiffel files on disk, though the on-disk

structure is hidden from the programmer when using the EiffelStudio environment

When viewing classes in "cluster" view, EiffelStudio allows the programmer to

manipulate a diagram displaying relationships between classes (see Figure 6). Classes

can be hidden on the diagram if they are deemed unimportant, reducing on screen

clutter. All changes that are made to a class are automatically reflected in thr

"cluster" view diagram. For instance, if a class is added as an ancestor of another by

editing its source, the diagram automatically displays this relationship. Similarly,

changes can be made to the diiigram that are automatically reflected in the classes'

source code.

The "duster" view not only shows the duster that is cunendy targeted, it also

shows those clusters that are children of the current cluster. This allows dasses to

be dragged and dropped between dusteis, quickly and easily allowing the

organisational structure of a project to be changed.

2.3.6 Build programs

Most languages and programming development environments have a build phase

where the source code of the project is compiled into an executable program.

Students must become familiar with the process of building a project, learning both

how to spedfy the details of the project to be built and how to invoke die build. A

program development environment can simplify configuring die details of a project

(providing a user interface to various compilation options for instance) as well as

simplifying the process of launching die compiler. If a program development

cnvitonme^ .t is not being used then a tool such as Make or ANT [Ant2002] can be

used as a way of specifying die details of the project to be built.

37

«• ; • » : , [no class! (no..le»ta«| .

A 1 4 fc-: *?•£?-'-* j%A'M&«> .: >; ^ [DEFAU-T ^

• " i f? CLUSTER" ' :

Figure 6 — The "cluster" view in EiffdStiidio showing the empty MY_Q_,USTER. that has just been

created as a child of the ROOT_CLUSTER (reproduced with pennissio:: &om {Meyer2001 page 21]).

Not all systems have an explicit build procedure. Some examples arc interpreted

languages, and some modern systems such as Visual Age for Java where the build

process is a continuous one, compiling fragments of code as soon as they are

entered in the editor [Nils5on2000].

2.3.7 Implement and execute lest cases

The development of a project does not end once code is written. After coding, it is

important that a student test the project to make sure it behaves as intended. The

most simplistic tool support fot testing is one where the environment provides

hooks to launch the application and capture results. This type of support is very-

coarse grained in that the application must be tested as a whole. When using an

object-oriented language however, the natural units that the students is dealing with

ate classes and objects. .A more advanced tool should allow a finer grained approach

by supporting testing of Lhcse abstractions. Bui: what level is appropriate for

introductory students? Do current tools go far enough in supporting testing for

introductory students? We will look at two possible levels that testing support could

be added at3 the class level and the object level,

38

2.3.7.1 Class level

Testing at a class level is often done by requiring students to implement a main

method in every class that performs a test on the class. Each class can then be run

as an application in order to see the results. Of course, there are problems -with this

approach if a class has more than one test. Then, students are forced to comment

out sections of the main that perform one. test in order to isolate the test they want

to run. In the end, tests become outdated, -while they remain commented (and

uncompiled.) in the source. A better approach is to use some sort of resting

framework to organise the Lests in each class.

Some development environments have now integrated testing frameworks such as

the JUnit [|Unit2002] test framework. The JUnit testing framework defines a set of

interfaces that define how tests behave (Test, TestListener) and a set of

implementations that can be extended easily to use their testing functionality

(Assert, TestCass, SwingRunner).

A JUnit test is a standard Java class that inherits from

j-unit.framework.TestCase. "Within it arc methods with names such as

t e s t Addition!) or t e s t s o r t (). Methods can contain assertion statements

which assert a particular condition as part of the test. JUnit provides a GUI o£ text

based "runner" that executes test cases and displays which of die assertions in the

test methods failed.

The integration of JUnit into development environments is still quite primitive.

Most provide no facilities other than the ability to launch the test "runner" and a

rudimentary designation of classes in the environment as "test" classes. Some now

provide the ability to axitomaticaUy generate test classes with stubs based on existing

classes.

More details of JUnit ate provided in section 4.4.2.

23J.2 Object level

Testing at an object level should allow the student to interact with objects in the

system and test individual methods on these objects. There are very few

environments that support this fine grained testing of object oriented code. Some

systems that do allow a limited form of object oriented interaction ate discussed as

part of the "Running and debugging" task in section 2.3.8 . None of these systems

integrates the object interaction with any other testing facilities they may have. We

have identified this atea as one that lacks appropriate tools and this has motivated

our work on developing an object testing facility for introductory students. This

work is discussed in chapters 4 and 5.

2.3.8 &JM mid debug applications

Writing and executing tests is an activity that is often performed on completion of

the coding phase, either after the whole application is developed or preferably as

individual classes are completed. However, there is another activity that is akin to

testing, that is performed whilst the code is being written. This form of interaction'

is performed at runtime and involves the inspection of the state of objects in the

system and the examination of the behaviour of running code. Most environments

support this activity through the use of a symbolic debugger. The symbolic

debugger allows breakpoints co be set on code that interrupts the execution and

allows the runtime state to be inspected. Symbolic debuggers behave in much the

same way they did when students were developing with procedural languages. Few

of them, have the ability to visualise the structure of the objects in the system or

interact with these objects.

There are some environments that allow interaction with objects in a direct: and

more object-oriented manner. Whilst most are not specifically designed for

students, they have interesting ideas for ways of dealing with object interaction. A

few of these environments are discussed in the following sections.

40

2.3.8.1 Smalltalk systems

With Smalltalk being one of the first object-oriented languages with a development

environment, it is natural that one of the first systems involving direct interaction

•with object instances was developed within a Smalltalk environment. Portia is an

enhanced Smalltalk environment that is instance-centred in that it "provides facilities

for working directly with objects to debug, understand and create applications"

[Goldl991 page 62], Portia enhances the Smalltalk environment by adding the

ability to drag and drop instances of objects into the existing Smalltalk debugger,

class hietarchy browser and inspector. It also adds an object repository whose

purpose is to collect and hold object instances. Objects can be dragged from this

repository into any of the other tools and vice-versa. Utilising standard Smalltalk

techniques it is possible to simulate method calls and see how objects behave. Portia

mainly adds ways to manage the complexity of dealing with thousands of objects

and easy ways of locating and dealing with the objects of interest in a system.

The authors of Portia raise a very salient point regarding the usefulness of direct

object interaction. "Existing objects can furnish a wealth, of information about their

behaviours" [Goldl99i page 63]. In a perfect world, all classes would be adequately

documented and so there would be no need for this interaction. However, in a

world where sometimes documentation goes astray or falls out of line with the

actual implementation, the ability to sec how aa object behaves by directly

interacting with i:is an extremely useful technique.

2.3.3.2 SeifBnvironmcnts

Seity [Changl995] is an experimental uset-interface for the protcype-based object-

oriented language SeLf. The premise of Seity is to move away from view-focused

environments and move to an object-focused model. The authors of Seity define a

view-focused environment as one in "which objects are examined and tnanipulated

through intermediaries, each of which permit a certain view of the objects"

[Changl995 page 2]. For instance, although the Smalltalk object inspector displays a

particular object at any one rime, over a period of time the tool's window could be

41

used to display a variety of different objects. Whilst recognising that with frequent

use, a programmer may begin to regard <"he object inspector tool as the object, the

claim is that this abstracts and distances the objects. Seity's object-focused model

says that "the on-screen representation of die object is considered to represent die

object itself, not merely a singular tool through which the object shows itself

[Changl995 page 3]. This helps to reinforce to the student the notion of what an

object is. Unfortunately, the Seity environment is quite limited in other functionality

that is needed for introductory students and prototype languages such as Self have

not become popular. Hence the. Scity system is not still in active development.

2.3.8.3 Object Class Browser

One of the few environments to support object interaction in Java is the Object

Class Browser (OCB) that was written initially in the context of the PJama

persistent Java environment [Kirbyl997]. A persistent object environment can

potentially contain many thousands of objects and may require multiple different

techniques to help manage and discover these objects. The OCB provides one

technique which is to visualise each object in the system as a window displaying the

object's fields and which allows navigation to other objects in the system through

references from these fields. OCB is implemented entirely in Java and uses die Java

reflection mechanisms to inspect die objects in the system. OCB handles potential

confusion over object identity by only allowing one window to exist for each, object

instance, and if a window already exists for an object that is navigated to, then this

existing window is brought to die front. In this respect it is similar to the Seity

environment discussed above and similar caveats apply.

2.3.8.4 Drjava

The Drjava environment is a lightweight programming environment for Java with a

pedagogical focus [A]len2001]. It has a deliberately simple read-cval-print loop

(REPL) interface that aims to minimise die intimidation students feel when faced

with writing code, The interface consists of two windows; an interaction window

42

m.

rtlt Class Pergnntisc - MAintfiins a list: ot
**/

M-Jlii; class PesoonList

,'f Instance variables - cepl&ce thi exARpie below vl^h sout ova
pcivace FeracmliscirDde head, ta i l , curccnt;

** ConaTiciictnT; fnv

public P«cscntdst;{)

/ / ini t ial ise mac
bead *• null;
call . null;

cC plains JeroonLxnc

> SOD » new Sei:in?BBi;;ei;l"5cst.");

Figut'e 7 - Dijava showu-g object interaction being performed in the lower panel.

whete Java expressions can be entered and the results axe displayed, and a definition

window whete Java source for class definitions can be entered (see Figure 7).

The KEPL that is the niain interactive interface for Drjava is a catryover from an

earlier project called DrScheme, which provided similar features for the Scheme

language, v^hilst the REPL is a natural fit for a functional language such as Scheme,

in an object-oriented language such as Java the benefits of using it as die sole

rartiv?' interface are not so clear.

We agree wifk the Drjava autliors diat a RBPL provides some useful functions for

students:

• the sturlc; > ea, rvrite simple expressions to experiment with the language

and see i ow 1: bt-hc.ves;

43

• mediods can be tested directly by executing them from the interaction

•window. The need for a main method with test code as an entry point TO

each class is obviated; and

• the students can use the interactive environment to explore die standard Java

APIs by instantiating standard objects and seeing the results of mediod calls

on these objects.

However, the disadvantages are that a KEPL hides from the student the important

concepts of object-oriented programming, namely objects and classes! Unlike some

of the other object interaction systems we have discussed, the Drjava interface does

not emphasise the distinction between objects and classes, does not reinforce the

notion of object identity and relies on implementation of a toSttingO method for

each class in order to examine object state.

2.3.9 'Refactor code

Rcfactoring is die "process of changing a software system in such as way that it

does not alter the external behaviour of the code yet improves the internal

structure" [Fowled 999].

Tool support for refactoting is the next stage in the evolution of tcfactoring as a

software methodology. Automatic tool support makes the time-cost of rcfactoring

negligible and makes refactoring less of a sepatate activity and more of an activity

that is performed hand in hand with writing code. Roberts and Brant:> authors of die

Smalltalk Refactoring Browser, have developed some criteria, both technical and

practical, which they believe are most important for tools implementing refactoring

[Robertsl999b]. The technical criteria are:

• die development of cross reference information for the project being

re factored;

• the ability to manipulate parse trees of the language being refactored; and

44

• the ability to ensure that refactorkigs are accurate and reasonably preserve

the behaviour of programs.

The practical criteria are that the tools are:

• fast enough that they do not impair the developers wotk flow;

« support the concept of undo; and

• are well integrated into the development environment.

In the following sections we describe two examples of tools that support

re factoring.

2.3.9.1 Smalltalk ^factoring Browser

The first attempt at a tool that could automate the steps of refactoiing was the

Smalltalk Refactoring Browser [Roberts!. 997]. The refa.ctoi.ing functionality was

initially integrated into the standard Smalltalk browser although in later versions it

was implemented as part of a completely new Smalltalk browser. The refactotings

supported are adding, removing and renaming methods, variables and classes. It is

also possible to perform a pull up and push down on methods and fields, Le.

moving them to an ancestor in the inheritance hierarchy. Some of the more

complicated tefactorings it can perform are adding parameters to a method and

extracting code as a method.

There were three criteria used in building the refactoring browser. One was chat it

worked with standard tools and this was achieved by integrating it with the standard

Smalltalk browser. Second was that it had to be fast, since Smalltalk programmers

are used to immediate feedback with their system. Thirdly, completely automatic

organisation was to be avoided due to the importance of naming in the Smalltalk

language. In cases where a refactoring requires the creation of a variable or a

method, the user is prompted to mter the name rather than the system attempting

to calculate it automatically.

45

i > 0 7 lylfluieJOJ.

(t i t l e lx*ao*= «t?«:j(5tO°" c*u I fsethcijci

H i m Aici
)
Mint JllMJ

• I Tr« ~ H»ITt I" ~bAl«H«li» "* I f l id ""i
: l i t rcUc»rc«mc(: I ijoe " " "~.ign ^TSfSI'-V-'^JV-i'-i - - - ^ — • • - - - '

1

icon icoe - *Yrcojtatili 'V

_. '.I

- Icon XCH,

Figure 8 - Performing a refacroring wiLb. IntcQiJ IDEA.

23.92 InlelliJ IDEA

The IDEA IDE from Intellij [lntelEJ2002] is aa advanced IDE for the. Java

programming language. It is one of the fitst Java IDEs to support advanced

refactorings such as extracting code as a method and changing method signatures

(sec Figure 8). It also supports class, method and field renaming and moving. Wlien

evaluated against Roberts and Brant's criteria for refactoring tools [Roberts!999b],

Intellij passes with flying colours.

Progress in tool support for refactoring has been very rapid with multiple

refactoring IDEs for Java appearing recently. We envisage that the number of

different refactorings supported by tools and the robustness of their

implementations will also improve rapidly over the next few years.

One aspect that has not been addressed is the application of tefactoring tools in

introductory teaching. Clearly some of the refactorings use advanced concepts and

ate only needed in large, long lived projects. In chapter 3 we address a. number of

issues related to refactoring. These include whether there are any refactorings that

are suitable for first year Rtudents and whether refactoring should be presented to

students with a tool that guides them to the correct refactorings.

46

2.3.10 Integrate external resources

When class libraries are obtained from external sources, be it libraries from external

vendors or class libraries from other students, students need to make their

development environments aware of the library to enable it to be used. Students

may merely have to place the library in a certain location for it to be automatically

recognised or may have to perform some manual configuration steps to integrate it

into their system. Some other functionality may allow code to be reused from a

centralised code repository -without any intervention by the student This is ideal for

courses where the instructor wants to make new class libraries available to students

as the weeks progress.

Tied in with the issue of integrating class libraries is the issue of how applications

are eventually distributed. If the class library is distributed as a single unit, does this

unit get integrated into the resulting application or do the users (perhaps through a

special installation program) need to perform integration steps to add the class

library to their systems before the application will run? Development environments

with support for this can greatly ease handling of students' assignment submission.

It is normally quite straightforward to integrate a class library into a development

environment. In Borland's Delphi, the student selects "Install Package..." from the

menu and then selects the package that they wish to integrate. Another example is

Sun's Java Development Kit (J^K) m which code libraries can be added to the

system namespace by placing the compiled files into a system "extension" directory.

Alternatively, the class library can be specified explicitly each time the JDK is used.

2.4 Summary and motivation.

In this chapter we have looked at a variety of approaches for teaching the

knowledge units that niake up the software engineering body of knowledge. In

particular, for die software product engineering area we have examined the role that

software tools can play in facilitating die teaching of introductory students.

Additional evaluation of some of these tools can be found in. [K611ingl999].

47

To aid our evaluation, we have identified ten tasks that covet most of the activities

that aa introductory student will perform. For each of these tasks we have discussed

the use of tools and highlighted those that provide particular pedagogical value.

In the area, of design, we have concluded that tool support for drawing system

designs is adequately provided by professional UML tools for advanced students,

and simple drawing tools for introductory students. We have also concluded that

graphic user interface builders are suitable for students to construct user interfaces.

In the area of coding, current tool support for building programs, searching

documentation, and entering and editing programs is more than adequate. There are

many tools for browsing class libraries available but not many that integrate

seamlessly into current program development environments. It is surely only a

matter of time before all mainstream development environments include class

browsing facilities.

In the area of operations, the integration of external resources is supported

satisfactorily by most development environments.

In the area of maintenance, tool support for refactoring has advanced rapidly.

However, we do not believe that refactoring tools are designed with a pedagogical

focus. In chapter 3 we look at refactoring in an educational context and develop a

design for a refactoring tool in an existing program development environment.

In the area of testing, we find a scarcity of tool support that is accessible to

introductory students, Most tool support for testing is based on techniques that

were, used in the days of procedural programming languages. Despite some tools

that allow object-oriented interaction with programs, these tools are not always

suitable for students and none has combined this object .interaction with support

for repeatablc testing. In chapters 4 and 5 we look at the development of an object

oriented test support facility in a program development environment.

48

3 Chapter 3

t'EFACTORING

T he previous chapter has identified areas of product software engineering that

were lacking in s-uitable tool support for introductory students. This chapter

looks at one of these areas, refactoting, and discusses the design of a tool for

refactoring suitable for an introductory integrated development environment.

3.1 Introduction

As mentioned in the previous chapter, refactoring is the "process of changing a

software system in such as way that it does not alter the external behaviour of the

cods yet improves the internal structure" [Fowlerl999]. Refactorkig is one aspect of

the trend in software engineering that recognises the fact that it is extremely difficult

to design object-oriented programs correctly. This is a particularly serio.»s issue for

introductory students who do not have any personal design experience to fall back

on to help guide ilieir designs. Refactoring also recognises that the development of

software is an incremental, continuous, evolving process — software will change as

its purpose and requirements change. Refactoring, along with some other new

development techniques such as pair programming and unit testing, form part of

the new development methodology called extreme programming (XP), which better

handles the process of continual change in software development fjeffries2000]

[Beckl997].

There are other schools of thought on how to improve our ability to design object-

oriented programs. Some of these attempt to identify common design patterns that

are known to be good solutions [Gam.mal995], or alternatively, identify common

design mistakes in order to prevent them occurring [Brownl998].

Refactoring accepts the reality that it is unlikely that a perfect (or even good) design

will be realised before coding starts, and dierefore concentrates on techniques that

49

will safely allow cvolutionaty changes to be made to the internal structiite of the

program. Refactoring also faces the reality that, even with an excellent design, the

needs and functional requirements of a program will change over time. Unless

programmers implementing the new functionality have a full understanding of the

original design, their changes may tend to decay the structure of the design.

Fowler [Fowler'1999] identifies the following four reasons why programmers should

refactor:

• Improves the design

Programs, especially those that have had a long life span> tend to accumulate

redundant code, obscuring the original design. Refactoring can help rnove

any code that is in the wrong place to the right place, can help to eliminate

ccdundant and duplicated code, and thereby restore structure to the

program;

• Makes software easier to understand

There are two phases in the life of code, the phase where the code is written

<md then a phase of maintenance. The second phase may occur months after

the code is initially developed and may involve a different programmer than

the initial developer. Refactoring code to make the design clearer will help

the understanding process of programmers later down the track;

• Helps you find bugs

The clearer the design and structure of a program the easier it is to write

robust code and the easier it is to spot logic flaws or mistaken assumptions

(because the clear structure emphasises the assumptions made). Thus,

refactoriag can reduce the number of bugs in code; and

• Helps you program faster

Despite the extra time taken to perform refactorings, the maintenance of a

clear design and structure in the program can lead to continued rapid

development (rather than not refactoring. which can start the coding process

50

quickly but which tends to complicate coding as the initial design starts to

decay).

Of course, refactoring is not necessarily going to be successful in every situation.

There has been very little research into the pitfalls of refactoring. Auccdotally, it has

been reported that refactoring which involves modification to database schema as

well as code may be problematic. Similarly, code with published interfaces (such as

when the Java collection classes were introduced into version 1.2) is difficult: to

refactox because many refactoring steps involve changing the interface. In some

cases, the code may be beyond repair and a complete rewrite may be more effective

than refactoring.

3.2 Why tefactor in first year?

We have discussed refactoring and. its importance in the maintenance and evolution

of code. What then is its usefulness in introductory education given that most

introductory assignments are small-scale projects or projects where there is no

maintenance component? Is there any value to teaching refactoring techniques to

first year students?

We believe that refactoring is an appropriate skill to teach in first year because it

helps students reach the goal of developing well-structured, programs. Whilst

students may not need to perform real maintenance on any of their projects, we

-want them to get into 'dhe habit of re-evaluating and restructuring the code they

develop. Refactoring is an appropriate skill not just because it will be a skill that is

useful in larger projects, but because it supports one of the goals of teaching object-

oriented programming, that is, finishing with a well designed and structured

program.

Traditional teaching has viewed software along the lines of the waterfall

development model — a staged, process that moves from design to implementation

to testing, and where each stage is unchanged once completed. The growing

awareness that the waterfall model is unrealistic in the real world, has led to a shift

51

in the model now taught to students. Students must recognise that software is an

ever changing, ever growing artefact that requires constant maintenance as it adapts

and meets changing needs. Preparing students for this requites that they be taught

different skills, including the ability to evaluate their designs and refactor their code.

3.3 What tefactorings are appropriate?

A list of refactorings has been collected by Martin Fowlet on his refactoting.com

website [Fowler2002|. The list includes all those in his book JFowlerl999j as well as

those contributed by people around the world. Currently there are almost 1(X

refactorings that have been catalogued. Only a small proportion of these

refactorings are useful for a first year student. An even smaller proportion can be

aided by a refactoring tool. We "wish to identify those rcfao.orings that -would be

useful in an introductory refactoring tool. The following criteria -will be used to

consider which refactorings to support:

• Can be automated

Some refactorings require a complex understanding of the source code or

require an understanding of the way in which code is used that is outside the

scope of what could be inferred by machine analysis. These refactorings arc

difficult to automate. Often, these complex refactorings can be performed

manually as a sequence of smaller basic automated refactorings; and

• Occuts in student sized projects

Some refactorings are not useful to consider becau. z they would never occur

in the types of projects mat students will work with in introductory courses.

An example of this would be the "Duplicate Observed Data" 1 refactoring

which involves constructing observers on GUT controls; and

1 If there is domain data available only in a GUI control and domain methods need uceess, copy the data to a
domain object and set up an observer to synchronize the cwo pieces of dara.

52

• Has no intrinsic value in being performed by band

Performing a tefactoring by hand may itself have some value. For instance

the <<:Replace Conditional With Polymorphism''1 tefactoring has pedagogical,

value in requiring a student to perform it manually. After applying the

refactoring, the student will have an improved understanding of how

polymorphism WDtks and hopefully not write the incorrect code the next

time around; anrl

• Will be used enough to warrant cluttering an interface

Each refaccoring that is included in our in introductory tool will in some way

complicate the interface that is presented to the user fox selecting

refactorings. Because we are designing an introductory tool, clarity in a user

interface is extremely important and hence trading off the usefulness of a

refactoring with the additional clutter it brings to the interface is another

criteria.

We -will nor attempt to evaluate all refactorings against these criteria. Rather, we

identify various categories of refactorings and list some key examples of these types

of refactorings. We then evaluate these general refactoring categories against our

criteria.

Of course, it is not possible to definitively identify each, and only those, refactorings

that are appropriate for an introductory refactoring tool. The suitability of many

refactorings will depend on the structure of the introductory course being taken, the

type of material that is covered and the extent to which the refactoring tool may be

used in latter courses. We will identify some rcfaciorings as "borderline" candidates.

These tefactorings coxild be suitable for an introductory tool but we have decided

not to include them in the design of our refactoring tool.

1 I£ A conditional statement makes decisions based on the type of an object it should be replaced with
polymorphic method call.

53

3.3.1 Changes heal to a method fragment

The following refactorings all deal -with improving fragments of code within a

method body. Some require the construction of a new method, but these new

methods can be private methods and "will, nor affect the public interface of the class.

Whilst it is possible to automate some of these, the localised nature of the changes

means that they can be made quite quickly by hand and tool support is not required.

There is a large group that deal -with conditional statements. Some examples are:

• Consolidate Conditional Expression

Replace a group of conditionals that all return the same value with a single

method call, to check all the conditionals;

• Consolidate Duplicate Conditional Fragments

If the same code is contained in multiple conditional fragments it should be

moved to outside the conditional statement;

• Decompose Conditional

Simplify a complicated conditional statement by adding query methods for

the complicated expressions; and

• Replace Nested Conditional with Guard Clauses

Clarify the expected path through a conditional statement by using guard

clauses.

Another group deals with the use of local variables and their scope:

• Reduce Scope of Variable

E.cduce the scope of a variable because it is only used in a small fragment of

a method body; and

• Split Temporary Variable

The use of a temporary variable for two unrelated tasks in one method

should be replaced with the use of two different temporary variables.

54

Tool support could be added to support these two refactorings by performing a

simple analysis of the usage of a variable within a method. For instance, when the

editor cursor is placed witliin the definition of a local variable, the region from the

first initialization of the variable to the last: usage in the method could be discretely

highlighted (perhaps by a small, change of colour to the background of the editor in

the region). This would clearly show the scope where the variable is actually being

used and might indicate that a lesser scope could be used. Similarly, if the colour of

the background was changed slightly upon reaching the second assignment to a

local variable, multiple use of a temporary variable could be shown.

In summary, the localised nature of the changes of these refactorings means that in

most cases performing the changes by hand is quicker and safer than constructing

an automated refactoring tool. For dais reason, these refactorings are not considered

for our introductory tool.

33.2 Changes to a txethod signature

Changing the signature of a method is oae of the key refactoring operations that

can be aided with a refactoring tooL The difficulty in performing these refactorings

by hand is that all places in the source code that refer to the method must be

identified and changed. An automated refactoting tool collates all the references to

a changed method and allows them to be updated automatically. The basic method

signature refactorings are:

• Add/Remove Parameter

Add or remove a parameter to a method call Removing a parameter is a

simple operation but adding a parameter requires providing a default

parameter value; and

• Rename Field / Method

C- tb«*. name of a field or method.

55

These refactorings meet all our criteria, and because they are also crucial to many

other refactorings, it is essential that they sure presented in our introductory

refketoring tooL

3.3.3 Changes to a class structure

A large group of refactorings deal with, changes to the structure of classes- Some

involve the splitting or merging of entire classes. Odiers involve moving methods

and fields to a different class, or up and down between classes in an inheritance

hierarchy. We will consider each of these groups iti turn.

3.3.3.1 Move operations

More operations are easy to automate as long as one can analyse a system for

references to a class, method or field [Po\ver2000] [Dewhurstl987a]. Then all that

needs to be done is to correct those references so that they now refer to the new

class, method or field location. These operations are good candidates for an

automated tool., not only because it is clear how to automate them, but also because

there is no benefit in making a student perform the laborious task of making many

simple Lyping corrections. By supporting these refactorings in a tool, students can

conceotracc on the high-level conceptual task of making structural changes -without

being distracted by the low-level mechanics of performing the task. Additionally, by

lowering the barriers to performing these tasks it is much more likely that students

will do them.

In the case of moving a non-static method or field, the reference will not always be

correctable because a reference to an object through which the method or field will

be accessed may not be held at the reference point In this case, the best an

automated tool can do is collect these reference locations and present them to the

programmer as source locations that xaeed to be corrected. Even though performing

the corrections is then a manual task, having a tool collect the reference locations is

still a valuable time saver.

56

The move refactoriags are:

• Move / Rename Class

Move a class from one package to another, or rename a class; and

• Move a Field / Method

Move a field or method from one class to another.

An appropriate user interface for enabling these refactorings is development

environments that present a high-level class overview. For instance, if a

development environment presents a UML class diagram of the system, drag and

drop or popup menus can be used to move methods and fields between classes and

perform class rename operations. This allows high level design work to be

performed on die complete system without having to look an individual class'

source. Of course, it is also important that the move refactorings ate also available

when editing a class' source, though the interface may not be so intuitive.

3.3.3.2 Extract operations

The extract refactorings are important to students because they deal widi the types

of design mistakes that beginners often make. Typically students write large

methods and classes because that is the path of least resistance — it avoids

constructing objects and making calls on diose objects diat some students find

intimidating. There is also an element of laziness in that constructing a new class

involves creating a new file, setting up constructors and other mundane overhead

before it can be used.

The intimidation felt using multiple classes must be overcome through improving

understanding, but the laziness can be overcome by making the construction of a

new class a trivial operation. Most development environments already automate the

construction of a standard empty class. The crBxtract Class" refactoring encourages

students to create new classes from existing classes when they feel diat their class

has become too large. Similarly, the "Extract Mctiiod" can be used to quickly split a

57

large method into multiple smaller methods. Through automation, these operations

become quick and painless and students are encouraged to perform them.

The extract refactonngs will also be useful during me normal gtowth of a piece of

software. As functionality is added, methods and classes naturally grow. At the.

point where the class or method Js becoming unmanageable, it can easily be split

into a new class or method. In many ways, this use of extract refactonngs is sitnilat

to the design technique of using CRC cards, where classes are assigned

responsibilities until they gain too many, at which point they are split into two

classes [Beckl989].

The basic extract refactonngs are:

• Extract Class / Interface

Create a new class containing some of the fields and mediods from an

existing class or interface;

• Extract Method / Split Method

Turn a fragment of a mediod into a new method with a name that explains

its purpose;

Based on these basic operations are the "Extract Subclass" and ecExtract

Supetclass" refactorings. As widi the "Move Field / Mediod" refactoring, some

references to the fields and methods will not be able to be. corrected due to there

being no reference to the new object at the original reference location. These

original locations must be highlighted for the user to fix manually.

As with the other inheritance structure refactorings discussed in the following

section, "Extract Subclass" and '"Extract Superclass" are borderline cases for

consideration, in our introductory refactoring tool. A more detailed explanation of

the rationale for their inclusion or exclusion is contained in section 3.3.3.3.

58

3.3.3.3 Inheritance structure operations

One category of structural changes that can be made to classes involves changes to

the class' Inheritance hierarchy. This category deals -with moving methods and fields

between subclasses and superclasses. The operations are all modifications of the

basic move refactorings disr.ussed in section 3.33.1.

Some examples of the inheritance structure refactorings are:

• Pull Up Constructor Body

The constructor code for two or more subclasses is similar so the

functionality is moved into a superclass constructor;

• Pull Up Field / Method

All subclasses of an object have a field of method in common so move it to

the superclass;

• Push Down Field / Method

A field or method is only used in some subclasses, so move the field or

method down into those subclasses; and

• Collapse Hierarchy

A superclass and subclass are not very different so merge them together into

a single class.

The construction of automated tools to perform these complete rcfactorings is

difficult. Additionally, there is trade-off between cluttering an interface with these

quite coinplex refactorings, and constructing a tool that can cope with die demands

of students in the latter stages of CS1. We have chosen to not include these

inheritance structure refactorings in our design because we believe having a simpler,

less cluttered user-interface surmounts the usefulness of having these refactorings

present for the potentially few times that they will be needed. Furthermore! it is

always possible for students who wish to petform these refactorings to perform

them as a sequence of other more basic refactorings.

59

j . 4 Changes la the design

• e final class of refactorings deal with what are termed 'Tbad smells" in a design. A

.•:d smell" is a particular design ••Jtiat works correctly, but could be improved by

plying a design, refactoring. Examples arc:

• Encapsulate Collection

Rather than returning a read/write collection, return a read-only collection

and provide a method to add to the collection;

• Encapsulate Field

Replace a public field with ft private field and accessor methods;

• Encapsulate Downcast

Replace a method that returns an object that needs to be downcast, into a

method that returns a more specialised class and performs the downcast

within the method;

'» Hide Method

A method is noL used outside a class so make it private;

••'.' Replace Error Code with Exception

Replace numeric error codes with code that throws an _ .^rion; and

v) Separate Query from Modifier

A method that makes a query and also sets a value in an object is split into

two separate functions.

yiying these refactoriiigs is done using a combiiiauon of the simpler refactorings

ussed in previous sections and thtough changing die source by hand. For

Mice, performing die "Hide Method" refactoring merely involves changing the

hod definition from public to private. This is such a simple operation that it

.3 not require automation. Applying the "Separate Query from Modifier"

ctoring involves performing an "Extract Method" on the query section of the

hod and then manually editing the resulting methods.

60

Rather than automating these ^factorings, we see interesting work on tool support

in this area as investigating techniques for detecting "bad smells"- The Revjava tool

analyses design smells according to 80 built-in design criteria including dead code

signalling, design pattern checks and scoping/visibility checks [F]ori.jn2002]. A tool

that highlighted design mistakes for students as they develop code would be very

interesting.

3.3.5 Summary

We have examined a catalogue of refactorings to determine a set of refactorings that

we consider should be included in a refactoring tool in the context of introductory

teaching. We have rejected some refactorings because they are difficult to automate.

Many of these difficult refactorings are composed of other basic refactoring

operations and hence can be still performed by the usct as a manual sequence of

basic refactorings.

Other refactorings we have discussed consist only of local changes to a method

body. These refactorings can easily be performed entirely manually and do not

require tool support.

Another category of refactorings make changes to the inheritance structure of

classes. These have been discounted because not only arc they hard to implement

automatical but we believe that on balance, the benefits of providing them are

outweighed by the additional complexity they would bring to a tool's user interface.

The following is the set of refactorings that we believe are appropriate for

consideration in the design of our introductory refactoring tool:

• Move Class

Move a class from one package to another;

• Rename Class

Chajige the name of a class;

61

• Extract Class

Extract a subset of the methods and fields in a class into a new class,

handling all the routine initialisation tasks for the new class such as building

constructors;

• Extract Interface

Exttact a subset of die methods in an interface into a new interface;

• Extract Method

Extract a block of code frc. -.••., method into a new method, handling all the

details of determining the ac: ;v. parameters which need to be passed in, and

constructing the memod head and body;

• Rename Method

Change the name of a method;

• Rename Field

Change the name of a field;

" Change Method Parameters

Add or remove one of the parameters to a method call;

• Move Field

Move a field from, one class to another;

• Move Method

Move a method from one class to another;

These refactorings have been selected because we believe they operate at a level that

is appropriate for first year students. That is, in a modern introductory software

engineering course, diese refactorings can be used to improve the basic aspects of

design that will be discussed in die course, such as increasing cohesion and reducing

coupling. Students benefit from having a tool that can support these refactorings

because it removes the incidental complexity of performing the refactoring and lets

62

them concentrate on die higher level design task. We can provide a good level of

tool support for students with these refactorings because much of the low level

tasks can be automated.

As we -will see in the next section, tools that support this sen of refactoring

functionality are. already available. We propose some changes to the user interface

of diese tools to better support introductory students.

3.4 Current tool support for refactoring

It is not only important to decide which refactorings should be supported, but also

how this can be done in an appropriate way. Since die goal of educational tool

support for refactoring is to remove incidental complexity of the tasks to allow the

student to concentrate on the concepts, it is important to ensure that the tool itself

does not introduce a large degree of added complexity in itself.

Every software tool adds some degree of complexity to the user interface that must

be learned and dealt with. The challenge is to design a tool whose external

complexity is clearly lower dian that of the tasks it seeks to automate.

The question of a degree of complexity cannot be judged in an absolute way.

Complexity of a tool is <:o a large degree a question of experience and prior

knowledge, so we have to examine the complexity of possible tool designs in the

context of our specific targeted user group: first yeax students. The aim must be to

design a tool that is simple enough to not add much overhead for an inexperienced

programmer who has little familiarity with their programming environment.

We have already looked at some tool support for refactoring in the previous

chapter. We took note in particular of the IDEA tool from IntelliJ [IntelliJ2002],

which provides all of the refactoriags we have identified as worthwhile for an

introductory teaching environment. However, IDEA has some limitations that

impinge upon its usefulness for first year students.

63

i i - .Buld Run Tools VAndnw Halp

on. Twees £irecr.laft tfchex l»*dj tc

Jt artith
* UE5C

Find Usage*..

Clou Ctt-Ft |<ov»...

GotoCwcla'atfer

• ' '

Ad-KMrt •MnonuctVar.solo.

CUt'P I * ""

E»«m»IJB«O»4 • OMt'Fi R«ploooT6TOWtlnClJl!ty...

. erowi»1\f6 Hierartlrr . .cti<<H

F5

Clll-FB

rs

_ . . , , - i , _ _ . ,, Com-irtAisiifnsrUslDhiuf...

Figure 9 — 1 :ic iefiictoring tncnii in IntelliJ IDEA.

We see the main problem with this tool is mat it is designed for a professional

computer programmer. The functionality available on the fefactoring menu

contains all refactorings thar ate implemented by the tool (some 15 refactorings in

total). Adding to the problems with the latge menu is that die menu is not context

sensitive regarding the rcfactoring operations available at different points in the

source. In Figure 9 we can see the popup menu presented when light clicking on a

method's source in IDEA. All possible refactorings are listed, irrespective of

whether they ate actually available in the current situation. In fact, from the

situation presented in Figure 9, only a handful, of fefactoring operations are

applicable. The other menu items result in a dialog explaining why that particular

refactoring cannot be performed.

Other tools provide a similar set of lefactorings as IDEA, though with different

user interfaces. The IBM Visual Age for Java development environment has better

contextual, popup menus that only shows refactoring operations available at the

current location. We believe this contextual support k important in guiding

introductory students to which refactorings are suitable.

64

Move class

Rename class

Extract class

Extract interface

Extract method

Rename method

Rename field

Change method parameters

Move field

Move method

Operates on

selected test in

editor

Class

operation

</

*/

\/

\/

Field

operation

Method

operation

•

Figure 10 - Thci context in which refactorings afe appropriate.

The transmogrify tool [Transmogrify200"l] is a library that provides support for

analysing Java source and performing refactonng operations. It however has only a

command line interface, daough it does support integration -with standard

development environments through special hook classes. As the transmogrify tool

is available for use under the GPL [GPL1991], it would be suitable as a back-end

for an introductory refactoting cool assuming a suitable front-end interface could be

developed. As refactoring is best performed during the development cycle ranker

than as a completely separate activity, we would like to integrate the transmogrify

back-end into a development environment suitable for students. The next section

will elaborate on our design for a refactoring tool using the BlueJ integrated

development environment [K6lling2001aj. The BlueJ tool will not be presented in

this chapter, as the only aspect of BlueJ that will be utilised for refactoring is the

editor component. A more in depth look at the other features of BlueJ will be

presented in chapters 4 and 5 when a unit testing extension to BlueJ is developed.

65

'•*FS?f;V;

, c^aigti

Figure 11 — The pnpup menu attncherf to a method in the editoc.

3.5 A design for an introductory- refactotiag tool

In designing a front-end to a refactoring tool for introductory students, the

challenge is to find a balance between supporting the function ality we want and the

simplicity that the students require. We want the roll set of refactorings to be

available, but we want, it to be obvious which refactorings apply in different

locations.

A simple change to the IDEA popup menu would be to dynamically disable and

enable rnenu items depending on the context of where the cutsor is (see Figute 10).

However, this would leave the student attempliag different combinations of cursor

placement and text selection in order to try to "unlock" the menu item. This

solution may be worse than lcaxnng the design as it is.

Our design involves augmenting an editor with aa improved understanding of the

elements that make up a source file. By making the source code of methods aa

"entity' in the editor, we can tiien attach refactoring operations to it using a drop

down menu.

66

| i i»

iupozz

Class CEO: - class foe debugger deac

• BaunhOE Michael Rolling

X99S* Eversion X3
V

public class Cat

Figure 12 — The popup menu attached to a class in the editor.

3.5.1 Methods as user interface objects

A key to the BlucJ interface is rhat key abstractions in the system are represented

on-screen as objects with operations. The current Blue] interface applies this

technique to the main display of classes and objects, but docs not attempt to

represent any abstractions other than source in the editor. To make methods in the

editor a distinct user-interface element they should be ̂ isuaUy distinct. However, we

do not want the user to lose the overall feel that they are editing a single source file.

By slightly changing the background colour of the area in the editor representing

each method, this effect is achieved (sec Figure 11).

We now want to make Jill the method level refactorings available from the method

interface entiry. A drop down menu box attached to rhe method area allows access

to the .'.efactorings. This drop down menu could either be placed on the left hand

side of die editor (perhaps in the column diat some source editors reserve for

breakpoint information, line numbering, etc.), or could float in the text at the top

right corner of the. method (see Figure 11).

The drop down menu would only show those refactorings applicable to a method.

Because the "extract method" refactoring is only applicable when a portion of the

method is selected, it would be greyed out in the drop down menu unless a suitable

area is selected in the editor.

3.5.2 Classes as user interface objects

In BlueJ, a UML diagram of die classes in the system is the basic tool for interacting

with a project However., as we saw with methods, classes do not have any special

67

user interface presence in the editor view. Unlike a. method, -which is generally only

a small portion in the editor, the source for a class is generally the entire file that is

being edited. Therefore, it does not realjy make much sense to highlight the class

source by changing its background colour, as this would affect the whole source

file. Instead, just the head of the class should be distinctly coloured. This is shown

in Figure 12.

Similar to methods, classes would have a dtop down menu box displayed at their

header. It would show only those refactorings applicable to a class.

3.5,3 System tvide undo

The BlueJ editor has an undo facility that removes the most recent changes to a

source file. However, when performing refactorings., changes are made

simultaneously across many source files in the project. Therefore, adding rcfactoring

support involves redesigning undo to work at a higher level than it does at present

Our approach would be to have a special undo "window- It would track all

refactorings, changes made in the editor, and lest cases executed (see chapter 5 for

our design of integrated testing support). It many ways it would be like the Adobe

Photoshop history/undo window [McClelland2002]. The Adobe Photoshop history

window stores a growing stack of operations that have been performed on a loaded

picture, with the ability to go back to any previous state by selecting it from the list.

In Figure 13 we see where die "paintbrush" and "eraser" operations have been

undone by the user selecflGg the "crystallize'' operation in the history stack. The

"paintbrush" and "ct.?i.ser" operations can be redone by clicking on them in the

stack.

For BlueJ the operations that are tracked would be large-scale changes to source.

So, for instance^ if a user added some code to a method, an operation is not added

for each keystroke in the editor, rather an operation, is added such as "code changed

in method X". Refactoring operations are added with details of the type of

refactoring and where it was performed. Even operations that do noc result in the

68

t^^sa>j>^;'^j^vjtjba;Si^a/;^JS.>^-ij •

13 — The History/Undo window in Adobe Photoshop.

changing of soutce code could be added, such as an entry like "Unit tests run

failed;5 succeeded:2".

At any point the student could go back to any previous point in the undo stack by

clicking on tbe operation's entry in the undo window. The undo stack is not saved

with the project — it only exists during a single session of using BlueJ. Obviously,

there would be the facility to commit all the changes made by saving them to disk.

A comprehensive undo facility is valuable for a student refactoring tool because it

will encourage experimentation with refactorings. If students know that they can

perform .refactorings, run unit tests and compile and interact with the system, yet be

assured they can always go back to a previous working state it will greatly support

their experimentation.

3.5A Summary

A design for this refactoring extension to Blue] has been completed.

Implementation of diis design has started by successfully integrating the

transmogrify back-end with BlueJ, which can now be used to perform simple

refactorings. A full prototype implementation of this design will be completed

shortly.

69

70

4 Chapter 4

TESTING

T his chapter discusses testing and its role in introductory teaching. First we

examine testing in general and why it is important to software development.

Secondly we look at the position of testing in introductory courses and approaches

that have been developed for introducing it to the early computer science

curriculum. Next we look at the practical techniques of testing that are needed by

students and examine each one for its relevance and suitability in a teaching context.

Finally we look again at the tools that are available for performing testing and

conclude by asking whether a tool could be developed which better facilitates the

teaching of some of these testing activities.

4.1 Why test?

Because software plays an ever larger part in our lives, an increasing emphasis is

being placed on software reliability. Testing is an important facet in ensuring

software reliability. In fact, testing is recognised by industry as an important pait of

software development and a significant proportion of the resources devoted to

software development are consumed by testing activities.

Analysing-the reasons why testing is being conducted allows us to structure testing

activities into categories, each of which achieves a different purpose. This

categorisation is independent of the scope or method of test selection which, as we

shall sec later, both give us alternative ways of categorising testing. [Pan2002]

[IIetzell988] suggests the following testing categories:

• Correctness testing

Determining if the software behaves "correctly3'. This is the category that is

predominantly being referred to when people refer to software testing;

71

• Performance testing

Determining if the software performs within resource limits. Even though

software may not have explicit performance limits there are implicit limits

such as ir cannot take an infinite amount of time;

• Reliability testing

Takes a variety of measurements to estimate the probability that the software

is correct. These measurements can be derived in part from the results of

correctness testing on the system. This form of testing also looks at the

robustness of a system. Robustness is its ability to handle exceptional inputs

or stressful environmental conditions and continue •working (though not

necessarily produce a correct result for these inputs); and

• Security testing

Testing software for the purpose of stopping external parties accessing

resources on a system through flaws ill the software. Security testing may be

performed by simulating security attacks.

Of course, there are other possible categorisations and sub-categorisations, tliough

these four categories are generally regarded as the major types of testing. These

categories arc useful for understanding why we test, but do not help us understand

the mechanisms of how we can test. To do that we must look at categorising testing

according to scope and test selection [Whittaket2000|. When we look at the scope

of testing we are categorising the testing based upon the constituents of the system

that are being tested. The scopes are:

• Unit testing

Testing individual software components without regard to the test of the

system. This may requite the construction of code that exists solely to

emuktc the behaviour of the system in a known way so diat the units can be

placed in the environment they need widiout depending on odier parts of

the system;

72

Figure 14 — Two orthogonal classifications of testing.

• Integration testing

Testing multiple components together that have each received prior unit

testing. The focus of this integration testing is mainly on the boundary of the

components or those sections that represent communications between

components; and

• System testing

Testing a collection of components as a completed product. This

concentrates on whether the system satisfies the overall application

functionality that was the goal of the project.

Test selection determines the types of tests that ate to be used. If tests are chosen

without considering the internal structure of the component being tested then it is

called functional testing. If tests are selected based on knowledge of the

implementation of the component then this is called structural testing. It is

important to note that purpose, scope and test selection are orthogonal (see Figure

14); we may do structural unit testing in order i:o check performance criteria or we

might equally do functional system testing to check for correctness.

4.2 Testing in education

It is disappointing that despite its importance in software development, it is difficult

to fully explore testing as a topic in introductory computer science courses. The

load on students in mastering so many other fundamental topics of computer

science often squeezes a thorough treatment of testing out of the limited time

available to introductory courses. The first, and sometimes only, exposure to testing

73

may be the basic use of -: symbolic debugger in early lab classes and practical work.

Often the formal introduction to testing is left for software engineexing classes later

on in the curriculum [Shawl 991].

The. importance of Lesting in computer curricula has been noted for many years.

Software Validation is listed as a core unit in the Computing Curriculum 2001

[ACM2001], and the Guidelines for Software Engineering Education [Bagertl999] lists

testing as objectives of both the Software Quality1 and Software

Construction/Evolution modules. Even a much earlier computing curriculum

contains testing as an important objective [ACM1991],

Whilst teaching testing is not common in. practice, there have been several

proposals for introducing testing into introductory curricula. One group proposes

the introduction of software engineering concepts early in the curriculum and

thereby introduces testing as one of these software engineering techniques. The

second group has proposed various schemes for introducing just the testing

discipline to introductory courses. We will firstly look at those who favour the early

software engineering approach,

4.2.1 The early software engineering approach

Hilburn [Hilbum2000] has argued for a number of years for more of a focus on

software quality2 at the undergraduate level. He believes that software quality

"addresses a central and critical issue in the development of computer software"

and thai faculty ". . . do not devote enough attention to teaching their students how

to develop high-quality software" |Hilburn2000 page 167]. His proposal uses a

software engineering model known as the V Quality Model (a variation on the

traditional waterfall life cycle model) to be a conceptual framework for developing a

curriculum based on quality. Software processes such as the Personal Software

Process (PSP) and the Team Software Process (TSP) arc introduced across the

1 Listed as software verification and validation

3 Quality here refers to both the usefulness of the product for the customer and also to hov.' well the process
used to develop the product has worked. That is, it is a measure of both the pioduct and the process.

74

whole undergraduate curriculum [Hilbuiral997]. These processes help the students

to analyse and improve not just their designs, but also to look critically at their own

software processes and attempt to improve upon them. PSP emphasises quality

review at every stage of the software life cycle and provides for collection and.

analysis of metrics to measure quality [Fekete2000].

Although Hiiburn acknowledges the importance of testing, he strives to emphasize

the quality process over testing techniques so as not to develop students who test

only in an ad-hoc, trial and error fashion. Testing in the V Quality Model involves

two separate testing passes. In the first pass, testing frameworks are developed for

system testing, then integration testing and then unit testing. These frameworks are

developed in conjunction •with requirements analysis, architectural design and

detailed design respectively. The second pass is in the reverse order and involves

execution of the testing strategies developed. A quality review is required to move

from one test stage to another.

Another approach to introducing software engineering early in the course is that

taken by Tackson and McCauley who have used the establishment of documentation

and design standards as a framework for teachiag software engineering principles

and techniques across the undergraduate curriculum [Jacksonl997]. The document

framework has the following components: requirements documentation, design

documentation, implementation documentation and verification/validation

documentation,. Students are required to submit solutions incrementally and each

component is marked promptly so that feedback is received by the student before

the next documentation component is started. Once the students are used to the

document: framework, subsets of it are used to introduce various software

engineering concepts such as characteristics of good software, maintenance and

software testing plans and techniques. For instance, students may be given the

design documentation and code of another group and then be assigned the task of

structurally testing the code. The results of a comparative study of the performance

of later year students on project work showed that students who had been exposed

75

to the software engineering concepts through the introduction of this

documentation framework obtained grades higher on average than those who had

undertaken a more traditional introductory curriculum JMcCauleyl998].

Both of these proposals require major changes to the structure of an introductory

course and also introduce costs such as a greater load on teaching assistants who

must mark and. return, documentation before students proceed onto later sLages. In

the following section we discuss other less radical proposals which plan to

introduce testing techniques in the early curriculum whilst still lca-ving formal

software engineering training to later years.

4.2.2 Ear/y testing

Several different approaches to the inclusion of testing into introductory

programming courses have been presented over the last few years. Some of these

introduce testing methodology by requiring students to submit test plans or test logs

which are marked by teaching assistants. Otlier approaches aim to give hands-on

experience in the practice of testing.

Jones fjones2001] suggests some testing activities that can be incorporated into

introductory courses. These include:

• students grading other student's programs using their own test data; and

• instructors providing prograros •with known bugs and assigning marks for

discovering bugs and documenting the bug discovery process.

Goldwasser [Goldwasser2002] proposes a simple scheme to augment existing

programming assignments with the principles of software testing. Each student

submits both source code and a test set for the assignment; and these test sets arc

tun against all other submitted assignments from the rest of rhe class. A portion of

the student's grade is based on how well the student's test set uncovers bugs in the

other students' assignments. Despite being quadratic in the time taken to run all the

76

tests against all the solutions (this is not a large problem if the test execution is

automated), the scheme has the following advantages:

• the competitive angle of each student trying to write tests to find flaws in

there friends' code provides a level of fun;

• students who may be straggling to complete the implementation of a

solution may still feel part of the exercise because they can still write test

cases; and

• students' tests will be run on a diverse set of implementations.

Kay pCayl994] suggests providing the students with automated testers as part of a

comprehensive electronic submission system. The system incorporates some initial

feedback to the student at submission time regarding the program's performance on

a set of public tests, and reporting for teaching assistants of the program's

performance on a set of private tests.

None of the schemes mentioned above explicitly deals with testing in object-

oriented programs. "Whilst many of the techniques for testing procedural programs

are applicable in object-oriented coding, the shift to object-oriented in introductory

teaching has added new testing problems £Barbeyl994j.

One of these problems is that the overhead for the construction of test cases is

in some object-oriented languages, with a new class needing to be declared for

holding test cases. Some object-oriented languages such as Python provide

solutions to this problem by including the ability to easily include a test harness and

launcher to test on a class by class basis.

Another problem in some object-oriented languages is that scope and access levels

checks can prevent test classes from calling the application methods which need to

be tested (for instance, in Java if a test class is defined in a different package to the

class being tested, then methods with "package", "private" or "protected" level

77

access cannot be called by the test class). Of course, there are easy solutions to these

problems for experienced programmers, but at first year level, sohn'ng them may

require the introduction of language constructs that are not appropriate at that stage

of the course.

Another problem caused by object orientation relates to the size and number of

separate units that require testing. Procedural prograinming tended to produce large

monolithic applications with long function definitions. Whilst it was hard to

construct good tests for these, the infrastrucaire required to set up and run the tests

was relatively straightforward. Object oriented programming tends to produce

better separated units of code with smaller and more precise methods [Ferret2002J.

This means that testing can. be more effective because methods tend to do only one

thing, but the sheer number of tests means that some sort of testing infrastructure is

needed and hence tools to help manage the testing process are now more

important

4.3 Testing techniques for students

At a professional level, testing is a formal discipline with a large body of theory and

terminology behind it. For introductory teaching, we need to view it at a much

simpler level and see it as a set of techniques that help to achieve more reliable

software. Different techniques need to be applied at different stages in the

development process and for these techniques, tool support can be useful for both

ease of use and to help with understanding concepts.

Students gain practical skills by utilising testing tools, it is a general principle of

university level education that whilst it is valuable to learn specific skills, it is also

important to learn the general concepts behind a skill so as to be able to transfer the

knowledge to new and different domains. This principle applies to the use of tools

in introductory software engineering. So for example, learning how to use the

symbolic debugger in Visual Studio is a useful skill, but it is important that students

grasp the concept of using a symbolic debugger in general so that they can transfer

78

the knowledge to the use of a debugger in a completely different environment such

as gab under Unix.

Unfortunately, some of the tools for testing that are currently used in education are

inappropriate. This is because professional tools have a level of sophistication, and

complexity that is not appropriate for a learner. Other techniques have to be taught

without any tool support because tools in that area are at an early stage of

development, or non-existent.

The stated goal of this thesis is to design better tools for software engineering in

introductory education. To this end we need to know what the different types of

activities ate that our tools should support. We have identified the following types

of activities in relation to testing as being representative of those performed

currently:

(1) Testing .immediately after implementation

After producing an implementation for a unit of code3 tests are written to

exercise the unit and to verify that it behaves correctly. This may be done

tlxrough test drivers, small snippets of code that execute the application

code and generate results. Often these test dtiveis are thrown out after use

or are intertwined with the application code and are uncommented as

needed. A more permanent form of this type of testing is to write test

drivers in .a separate class with the aim of keeping the test code and

rerunning it later. There arc no tools required to perform this form of

testing as the test drivers can be written in the same language as the

application code. It was typical that this type of test was not fully

automated, i.e. the test execution generated results that were inspected

manually for correctness. Increasingly common though is to use a testing-

framework such as JUnit JJUnit2002] to organise the test drivers and to

collate and verify their results automatically.

79

Another way to do this testing is the use of a tool such as Blue

[K611ing'i999] or BlueJ [K611ing2001a] that allows the interactive

construction of objects and execution of method calls from "within a

development environment. This facilitates the testing of application code

immediately "without settiog up test drivers, but the tests performed are not

recorded and must be redone in their entirety to check the code again. In

particular, setting up the objects to be tested may be a time consuming

operation and as this needs to be repeated for each test, it acts as an

impediment to the students actually performing the testing

In situations where test drivers are written, testing after implementation may

be seen as identical to regression testing (discussed below in case (3)).

However because some environments such as Smalltalk, Scheme and BlueJ

also offer the more interactive forms of testing discussed above, -we have

separated (1) and (3) to include those environments in this discussion.

(2) Testing after detecting a bug

Bugs can be detected through the construction of test drivers as in (1)

above, or pethaps through user feedback and general system testing.

However, detecting that there is a bug docs not necessarily help locate the

bug or indicate how to fix it. After a bug is detected a different form of

testing is performed to elucidate the location of the bug and analyse

behaviour of the program in the area around the bug. The tests may be as

simple as adding some print statements to the code or may involve the use

of a symbolic debugger. The use of print statements is a. good technique

because it does not require any tool support and is applicable no matter

what language is being used. Using a symbolic debugger allows some

advanced functionality such as breakpoints and single stepping to better

understand the behaviour of the code. Symbolic debuggers also allow the

inspection of die state of an object which may help understanding of its

behaviour. Blue provides an alternative technique for inspecting object state

without necessarily using a symbolic debugger [Roscnbergl997].

80

(3) Testing after fixing a bug

Once a bug is detected and fixed it is important to make sure that the bug is

not reintroduced later on in the development cycle. A comprehensive set of

test drivers similar to those described in (1) arc useful to ensure this. Test

cases are developed that exercise the once buggy code and make sure it is

behaving correctly. This style of testing, usually called regression testing,

may be automated so that it is possible, to execute the tests regularly

throughout the development cycle. A tool such as TestMentor

[Silvermark2002] helps in this automation by providing facilities for

comparing expected and actual results and collating a report about the

execution of the tests. Testing frameworks such as JUnit are often also used

for this form of testing.

At an advanced level there are tools to help analyse the effectiveness of test

cases. These code coverage tools [Connelll996] inspect die execution of

test cases and report on the percentage of application code paths that have

been traversed by the tests. This can then lead to the development of more

effective test cases.

(4) Testing before implementation

Another technique advocates the construction of test cases before the

corresponding application code is written. This style of development iE

called test driven development (TDD) [Beck2002]. Test cases are

constructed but unlike in (1) and (3), the tests are designed to fail on the

current application code. That is, the tests are not written to prove the

correctness of an implementation, or the correctness of a bug fix., but are

written to show the absence of the correct implementation. Code, is then

consttneted to make the tests -work and once this is done, the cycle restarts '

with the construction of more test cases. In this development style the

design of the test cases leads the design of the code. It is argued that this

leads to systems with better cohesion and looser coupling [Beck2002].

Whilst TDD is achieving excellent results and may become an important

81

development methodology there are caveats to concentrating solely on it for

first year teaching. These include:

• despite its popularity, many of the success stories for TDD are still

anecdotal and future research may show limitations "with the test-driven

approach; and

• because of the relative infancy of TDD, techniques for teaching it have

not even began to be developed. Tn fact5 it is quite possible that some of

the tenets of TDD are unsuited to introductory level programmers and

that more traditional programming techniques need to be fcaught first. A

recent paper exploring the teaching of some of the new, so called, agile

methodologies such as 1DD concluded that it "cannot be properly

appreciated until youVe suffered the pain of alternative heavy weight

methods or indeed no methods at all" [Lappo2002 page 38]. It may be

that without experiencing the pain of non-agile development

methodologies the advantages of TDD are not obvious.

Of course, we do not want to discount TDD either so it is important to

also consider the tool support for performing it. Currently TDD is

performed using test frameworks such as JUnit but without any other

form, of tool support.

Another groxip falling into this type of testing is the extreme programming

(XP) community. Whilst not relying on construction of tests before any

functionality, XP programming tries a similar philosophy with tests writing

intertwined with the writing of the code with the goal being to build a

working minimal system first. In this way it is like a milder form of TDD.

There is increasing interest in the possibility of using XP in introductory

courses [AUen2003],

Identifying these different types of testing activities allows us to design educational

testing tools that support testing activities in early programming courses. The

82

availability of such tools can increase the .likelihood of students acti-vely performing

testing activities.

4.4 Current tool support for testing

The four testing activities (l).-(4) identified in the previous section are often

performed with, or aided by, the use of testing tools. Some of these tools are

designed explicitly for use in educational environments, whilst others have been

developed fat use in professional programming environments. We •will briefly look

at the advantages and disadvantages of some sample tools to see if the professional

tools are capable of being used in an educational setting and to see if the

educational tools available cover the range of testing activities that we have

identified.

Whilst looking at these testing tools it is helpful to examine the four stages that

execution of a test normally involves. The initial stage is the setting up of the test -

either identifying and locating the source code to be tested or constructing objects

that the test -will be performed on. The second stage is the actual writing and

construction of the test itself The third stage involves executing the test and the

final stage involves the validation of the results. Each tool approaches these stages

differently. Some stages are automated, making them easier to perform repeatedly

and quickly. Other stages are performed manually, providing more flexibility but at

the cost of increasing the time required to execute the stage.

4.4.1 Symbolic debuggers

Symbolic debuggers have existed since the early days of modem computing

[Kernighanl984j but for most of that time the debuggers in use did not evolve

much in terms of functionality or features. A reason suggested for this is that

debuggers are so specific to a particular machine, operating system and language

that improvements to debuggers on one platform were often not transferred to new

machine, architectures unless programmers were willing to re-implement the

improvements on the new architecture [Ramsey 1992], Recent years however have

seen a rationalization in the number of architectures and operating systems and now

83

symbolic debuggers all have an improved set of cote features such as breakpoints,

source level code display and data inspection |"Zcilerl996].

Tests in a symbolic debugger are set up manually by indicating breakpoints in the

source code. The construction of the actual test itself is normally performed in an

ad hoc manner through the use of single stepping and breakpoints to examine the

execution of sections of the code. The results of the test arc viewed manually by

inspecting the debugger display and comparing to expected values. Although using

them is a manual and labour intensive task, symbolic debuggers are, at least in

principle, simple to use and therefore are suitable for use in first year education in

support of testing activity (2).

4.4.2 Unit testing with JUnit

Unit testing has undergone a revival in the last few years with the adoption of

extreme programming (XI3) development techniques such as refactoring and pair

programming [Jef£riet;2000] [Beckl999]. Part of the revival is due to XP's emphasis

on testing as a means of ensuring correctness of refactorings., but the revival is also

due to die introduction of a testing framework for Java called JUnit [JUnit2002].

Whilst XP provided a compelling motivation for unit testing, JUnit provided a

standard method of performing unit testing and hence lowered the start up costs of

introducing testing to a project (previously developers would often construct their

own testing framework). The JUnit framework has since been adapted to many

other languages and now there are unit testing frameworks for languages such as

C•*"+", Python and C#. Because of die similarity between all the unit testing

frameworks, we will concentrate the rest of this discussion on the Java, version,

JUnit

Talbott defines four important components of XP style unit testing [Talbott2001]:

• unit testing is a practice - it is not effective unless the developers make a

conscious effort to do it;

84

public class EmailTsst extends junit.framework.Teau
[

Eniail -cestMaili;

public EanailTest (String name) (super (name) ;

protected vai
= new Email(M?rom: Andrew <andrewgsono.com>\ii" +

"To: Joe <joe@another.org>\n" +
"Subject: that memcArAn" -t-
"Just wanted to remind ycu\n");

public void testHeaderParse C)
{

assertirue(testMaill.haaSubj&ct());
assertEquals{testMaill-ge^SubjectField(), "-hat memo");

public void ttstHeaderAddition(}
[

testtflaill.addHeader ("X-List", "mailman");
asaertEquals f testMaill.geti'ieldCX-list") , "mailnan") ;

Fifjure 15 — A sample of test code written using rhe J Unit fratnework.

• unit testing is about verification — the tests make checks diat they expect to

succeed;

• unit tests focus on behaviour - not how something is implemented but how it

should, behave; and

• unit tests focus on the external interface - this usually involves testing the public

methods of a class.

The set up phase for the JUnit testing framework consists of writing code uiat

makes available to tests a set of sample objects, known as fixtures. Fixtures ate

arbitrary Java objects that the programmer writes code to construct. JUnit ensures

that tliese objects are recreated before each test to ensure that there is no side effect

to the order in wliich tests ace performed.

The construction phase of the tests involves the programmer writing test methods

iii standard Java and using some predefined mediods for asserting test results. Tests

85

are then executed automatically through the framework: and the results are collated

and displayed in a iiser interface.

In the example (shown in Figure 15), we are constructing tests for a piece of code

that deals with email objects. We start by extending our test class ftom

jun i t . f r anewcrk . Test Case thereby gaining access to a whole set of assertion,

statements that -will determine die success and failure of each test method Along

•with asser tSqua ls () and assert-True (), which we have used in the sample

code, there are numerous other JUnit supported assertions such as assertSame ()

and assertNotNull (). The set:Up(} method, executed before each test method,

is run to ensure that out fixture objects are in a known state before being acted on.

llierc is also a corresponding method called ttarOovm () that is executed on

completion of each test We then invoke JUnit, passing in our test class (or a

Tes- Sui te object which defines a collection of test classes).

The J Unit framework comes with a variety of extensible interface5: for displaying

results. One standard output class is the TextRunner which displays the results to

standard output. An alternative is the SwingRunr.er which displays the results using

a GUI. Whichever display class is chosen, die fUnii. framework will 'display for each

test case (every method with a name stalling with t e s t is considered to be a test

case) the status of the assertions, and, if any failed, provide a stack trace showing the

expected values for the assertion ;vit failed. The res'.ilts of executing our sample

code with the SwlngRunner interlace are shown in Figure 16.

In summary, the JUnit framework is isi important step in the renaissance of the

practice of unit testing throughout the general programming community. Whilst the

framework itself is not large and could be reimplementcd quite easily, its acceptance

in die programming community has meant that it; has become a de facto standard

for unit testing. JUcit provides s*i excellent structure for the construction of test

cases and execution of those tests.

86

iRJnM •

Ta« class name:

lUtvtsamples.EmsilTesl

121 Reload ctescas every run

Runs; . Errors: Failures; ...
a / 2 » t . ' • ' ; .

t^~2i>$i^ } : ••[

lunitframewofitAssertionFailEdError.
atiunil.samples.EmallTesLlBslrlt»icDrAdditon(EinairTEist.)a>'n:3D)
at su.i.renecLNalif eMe1hodAcces3crmpl.lnvul<cO(N3livc U cthod)
atsu.n.renecLNalH'aM8ihodAccas3cr;rnpl.lnvokB(Nat.V8MeUioeAccessorlmpl.|ava:39)

Flnishgd: 0.

Figure 16 - The SwingRunner showing the resvilt of the EmailTcst.

4.4.3 TestMenlor

Test Mentoi by SilverCvliiJrk software [SiLvermark2002] is a tool that automates

testing of components. Early versions were Smalltalk based but they have now

introduced a Java Edition. Test Mentor takes design models, actual object

interactions and the static class structures and relationships, and uses them to

generate nearly complete tests. Tt is suitable fot the construction and execution of

regression cests as in testing activity (3). The generated tests are eitlier represented in

an internal structure or can be represented as standard Java source. The advantage

of the internal representation is that it can be interacted with through a GUI so that

non-developers can create and run tests without knowing how to program in Java.

The following sections outline die approach taken by Test Mentor.

4.4.3.1 Construction of test assets '

In testing object-oriented programs, the construction of objects on which test

stimuli are to be applied is often time consuming. Test Mentor provides a "simple,

means to define and reference reusable assets that embody strategies for

1 Test Mentor uses flic term assets for what unit testers wouki call a test fixture.

87

Figure 17 — Construction of "steps" in Tesr Mentor (reproduced with pcimissjoa from

[Saveanatk2002 page 92]).

instantiating and configuring objects" [Silvetmaxk20O2 page 88]. Test Mentor

provides explicit support to help in the initial phase of test construction by allowing

a set of shareable objects to be developed. Test Mentor terms these shared objects

assets.

The approach Test Mentor uses to construct assets is to build a set of ".steps".

These sLeps represent the instantiation of an object ot the application of methods to

an object, but are labelled with free form strings. These free form string

descriptions can then be used by testers to construct assets without necessarily

being able to program in Java.

To illustrate the construction of assets with Test Mentor we follow an example

presented in the user manual. Firstly, a new asset is created by selecting the class

•and constructor to use in the GUI. Then a description of the steps needed to

construct the asset are entered. These are of die form of statements such as "set

name", "set account numb ex" etc. For each of these statements, Test Mentor

constructs a test step that thea links to the actual Java methods needed to perform

the step. So for instance die "set account number" step can be linked to the

88

clearNumbsr{) and then setAccountNlumber (ir.t) memod calls. Any

parameters that are required by a method can either be specified immediately or

generalized such that they are asked for when the asset is constructed. The entire

procedure for constructing assets is performed with a GUT and the methods that

can be selected at each step are dynamically extracted from the classes in the system

(see Figure 17). One. advantage of this approach is that "steps" can be constructed

by programmers who are familiar with the language being tested, but assets and

tests can be constructed from these "steps" by specialised testers who do not know

the target language.

4,4.3.2 Construction of test stubs

Tesl: Mentor aids the second phase of performing testing by partially automating the

initial construction of test cases. This automation merely provides a starting point

for the construction of test suites, but it is claimed that this automated test

generation gives the user "a good head start on your test creation and a starting

point for further test creation" [Silvermark2002 page 137]. Test Mentor uses some

novel techniques to determine an initial set of test stubs. These include:

• taking a Rational Rose [Boggsl999] sequence diagram and constructing tests

that emulate die sequence of method calls indicated in Jibs diagram;

• working through the public methods of an object and generating a set of

tests that exercise each of these methods. These tests can be generated in

different styles including a style of test whore after each method call die state

of the object is compared to a known reference value. This aggregate

validation is discussed in the next section; and

• generating tests based on actual interactions of the objects in the system

when the program is run. A user can select a class and then tell Test Mentor

to monitor all of its interactions for a particular class. The tests that will be

generated ate based on actual calls made to the object during the course of

the execution (see Figure 1.8).

89

Show diagram <~ Show table ' B B

add_AdionPerfcrmed(|«va.awt.evenl.ActianI:vent]
gelllemCounlStrtngO

adri_ActionPeriormcdlJavB.jiwtevenLAclionEventl
SI etltem CountStrin g Q

B dd_Adl onPcrf nrmedOova. awt EVent.Anllo nEve nO
getltemCnunSStringQ

remnve_Au(ionPi!rfDn»iHrl(|>iva.»wt,i;vtnl.Acti[inEvEnl)
ge lite m Cou ntSlrlng Q

upriale_ActionPcrfcrnicd(|ava.awl.evenl.ActlanEvcntJ

addltem[java.lanfl.String]
ItcmCoUntQ

addltemOava.lang.String)
-HcmCounid
|Odil|irm()avn.lnng.Strlrg]

-removelinmA1lndex[IM)
iitcmCounlQ
•;rcplBcrilC[nAI!ndcx[[nl.Javo

<L

«Bade 1 Wext» | finish | Cancel HcJ|i

Figure 18 — Recording object interaction with Test Mentor (reproduced with permission

£cum [SilvenTiark2002 page 84]).

For each of these, it must be noted that whilst a set of test stubs is generated, the

tests are not yet complete and the user must still fill in literal values for method

parameters and add checks to make sure that the objects arc in the desired stares.

4.4JJ Validation

After the construction of assets and the generation of test stubs, the tests still need

to hare validation added to them. The validation phase of each test subjects the

assets to stimuK and then validates that the components end up in. an expected state.

Test Mentor ptovides faciliues for comparing the actual state of an object with the

expected state. Some of these facilities arc:

• a family of a s s e r t () calls that compare expected values to actual values and

throw exceptions if they are not the same;

• a validation "step" that can be specified using die GUI. This step takes a

reference to an actual value, a reference to an expected value and then

compares them using a comparison operator such as less than or greater

than. The comparison policy can be specified programmatically allowing the

implementation of custom validation steps: and

• an aggregate state "step" that extracts the property values from an object, and

collates them into a list of values. This aggregate state list can then be

compared to the expected list of values of a known reference object. These

known reference objects are referred to as gold standard objects.

4.4.3.4 Summary

Test Mentor is an example of the tools that are available for professional testing

activity. There are many other similar tools -with different languages as the focus and

with slightly differing functionality. What they have in common is a user interface

for the construction of test cases and for the automatic execution of these test cases

and the collection of the results. The target for some of these environments is the

non-programming tester — someone who works in the quality assurance department

of a company but who does not need to have particular experience with the

language that a project has been developed in. For such people, a user interface for

the generation of assets and tests that hides the underlying language details can be

invaluable.

However, while it can be used by a non-programmer, the functionality it provides is

still quite advanced. That is, whilst the non-programmer may not be familiar with

the programming language being used, diey are still professional, testers and hence

are familiar with more concepts and practices from the testing field. Furthermore,

they also have the time to invest to become familiar with a complex tool such as

Test Mentor.

The ability to generate lest stubs quickly using reflection and call monitoring can be

very useful for large legacy applications, but this is not an activity that introductory

students arc likely to be performing.

91

4.4.4 BlueJ

The BlueJ environment is an integrated development environment designed

explicitly for introductory teaching [KolibgZOOla]. BlueJ provides a unique object

interaction facility that can be used for testing activity (1). In this short section we

will examine this object interaction and its current application in testing in moire

detail. A more comprehensive look at the complete tool will be presented in section

5.1.

The objecr interaction mechanism in BlueJ allows the initial test set up phase to be

performed by the user instantiating objects and placing them on a workbench called

the object bench. Method calls can be made on these objects, with the results either

being displayed as text or resulting in an object. If an object is returned it can be

placed on the object beach and then interacted with.

The beauty of BlueJ is that tests can be performed on classes immediately after the

code has been constructed. No test harnesses or test drivers are required to execute

the methods that have just been constructed. However, this testing is ephemeral. In

particular, the potentially time consuming set up phase, where objects ate

constructed, must be repeated after each compilation. This acts as an impediment to

using the tool to testmerbods.

Also, because the interaction is not recorded, the construction and execution phase

is totally manual. Tests cannot be. easily repeated to confirm the behaviour latejr on

in the program development, and there is no automated checking of the results of a

test to confirm the behaviour is as expected. This prevents BlueJ from being used

to support regression testing as in testing activity (3).

Tn summary, the object interaction features of BlueJ make it easy to perform quick

testing of methods with, a great deal of flexibility. Jt is not ideal, however, because

the tests performed are totally manual and cannot be automated.

4.5 Summary

In this chapter we have looked at testing and its importance in introductory

education. Despite a great deal of work in incorporating testing into introductory

education we believe that there is still a. lack of adequace tool support suitable for

first year students. When looking at tool support, we have identified four activities

as being representative of the type, of testing performed by students. Each of them

is listed below:

(1) Testing immediately after implementation

Partly supported by testing frameworks though the overhead of

construciiag test drivers is an impediment. Also supported in an efficient

manner by interactive environments such as Smalltalk or BlucJ3 although

these tests arc transient;

(2) Testing after detecting a bug

Adequately addressed by symbolic debuggers and tools that allow object

inspection;

(3) Testing after fixing a bug

Supported by testing frameworks such as JUnit. Professional, tools such as

Test Mentor were examined but are too complex for use by students; and

(4) Testing before implementation

Uses testing frameworks such as JUnit, but has no other tool support.

The next chapter proposes a design for a tool that will add support for testing

activities (1.) and (3), and to a lesser extent (4). The tool incorporates the quick and

efficient BlueJ object interaction with the regression testing facilitated by JUnit, to

provide an easy way for students to construct and run test cases. We will show that

when added to the already existing BlueJ support for object inspection these

facilities can provide a tool that covers the gamut of testing activities Lhat are

required for introductory education.

93

94

5 Chapter 5

DESIGN OF TESTING SUPPORT IN AN EDUCATIONAL
INTEGRATED DEVELOPMENT ENVIRONMENT

/ I i his chapter introduces the BlueJ development environment as a platform to

J». be used for the inclusion of testing tool support. The new testing facilities

that have been added to BlueJ are shown via a walk through of a typical testing task

Other features of the testing support are also discussed. We begin with some

background on BlueJ and its predecessors.

5.1 Blue

The Blue project involved1 the developtt.ent of an integrated object-oriented

language and object-oriented development environment designed explicitly for

introductory teaching [K6llingl999]. Blue addressed the need for a development

environment suitable for teaching object-oriented programming to first year

students. The key feature of the language Blue was that all language concepts were

clear and simple, yet it supported modern functionality such as pure object

orientation, garbage collection and pre and post conditions. The Blue development

environment had an interface that was simple and easy to use, but still included

most of the important software tools required for a student; a compiler, a project

manager, an editor, a class browser and an integrated debugger. It also had novel

functionality that allowed the students to visually instantiate and interact with

objects in the system.

The Blue environment and virtual machine was written in C++ and was only

supported on Solaris and Linux. A Windows port of the Blue environment was

commenced but never completed.

Whilst die Blue system is still available for download, it is no longer under active development aud we will
therefore refer to itia the past lease.

95

Project Edit Tools Vtow Help

New Class...

Comalle

Database

"— > Person

View Staff Student

Figure 19 — The maiQ UlucJ window showing the UML style class diagram and objects on

the object bench.

5.2 BlueJ

The popularity of the Java language and its suitability for introductory teaching

called for an environment similar to Blue to be built with support for Java. This

work commenced in 1998 and resulted in a system known as BlueJ (originally

JavaBlue).

The BlueJ project provides support for Java in an environment with most of the

features of the Blue environment [K61ling2001a]. Because BlveJ is itself written in

Java, it can be run on many more platforms than Blue could.

The main features of note in BlueJ arc its support for TJML style class diagrams, its

direct, interaction widi objects, its objecL inspector and integrated debugger, and its

support for javadoc. These are discussed in more detail below.

96

New Class..
Database

compile'
L. > Person

Staff I Student

'.nevY 8Jaifo:

Open Editor

Compile :

.Remove

Figure 20 — The popup menu of a class in Blue).

5.2.1 UML, style c/ass diagrams

The main display of Blue) is a simplified UML diagram of the classes in the system.

I7,ach class is displayed as an icon with different styles of shading to indicate

compilation status and 'with UML stereotypes to indicate different class types such

as "«abstract»"5 "«interface»" or "«applct»". There arc two different relationships

between classes that are shown on the diagram. Inheritance relationships are shown

with a solid lined arrow and references between classes ate shown as dashed Ikies.

The relationships can be specified by interacting with the diagram (which creates

the corresponding relationship in the source) or can be specified by editing the

source (which automatically reflects back in the diagram). Figure 19 shows the main

display of Blue}.

Kach of the classes displayed has a popup menu (selected by right clicking on the

class — shown in Figure 20) that can be used to compile the; class, open the source

editor (double-clicking on the class is a short cut to this operation), remove the ckss

97

f Create a staff member with given name, yearofti/th and roorr.

Stair(S(rlng name, tot yearOfSirtn, String rcwnNumber)

Name of Instance: |starr_i

newStaffl "truce-

J1370

•v I , string name

•v j , iirf year OIBirth

!"2t2£" I -w 1) String roomNumtier

sueCancel

Figure 21 — Parameter passing when constructing an objerxin BiueJ.

or interact with the constructors of the class. The popup menu displays ail public

constructors for the class, as well as all public static methods defined in the class.

Figure 21 shows the dialogue that is displayed when one of these constructors is

selected. The user is first given a chance to input any parameters to the constructor,

and then a representation of the constructed object -wiU be created on the object

bench at the bottom of the main display. The user interaction with these objects will

be discussed in next: section.

Objects on the object bench ate transient. They are automatically removed if any

change is made to their corresponding class or if the project is dosed.

5,2.2 Direct object interaction

Direct object interaction is a unique featute of the BlueJ environment. The objects

on the object bench have popup menus that display the public instance methods for

objects of chat class. Methods from each of the objects3 supertypes are also

displayed in cascading popup menus. As with constructors, if a method takes a

parameter and (he method Is selected Jiom the popup menu, the viser is presented

with a dialog to enter parameters to the method. If the method returns a result, this

tcsu.lt" is displayed lo the user. For primitive types, BlueJ displays the result as a

string, but for all other types BlueJ allows the returned object to be placed on the

object bench where it can also be interacted with.

98

r

: < •

Object of class Starr

Static fie Ws

Object flouts
private Strlna room = "212E"
private String name - "bruce"
private int yearOfB Jrth = 1970

• • • • . - . ; . . • ; • • . : •

• : . . - :-•'••-.:.•:. 1 C t o s e

j llilSk*O>. 1 •
i_x_... _ij _,__!

t , • . I t

Figure 22 - Inspecting an object.

The direct interaction facility is valuable to students because they can experiment

with objects without writing any code. It allows teachers to structure an objects-first

introductory course where students can play with classes and objects before seeing

any source code jX61Hng2001b]. This direct interaction, where objects and classes

are created as first class entities in the system, also helps reinforce the concepts of

object-oriented programming i.e. the one to many relationship between classes and

objects, instance methods operate on objects, not on classes, etc.

5.2.3 Object inspection

Blue} allows the user to view the internal state of objects on the object bench (see

Figure 22). The inspection dialog shows both die instance and static fields of an

object. Fields of a primitive type are displayed as strings. If a field is an object

reference, then the object that it refers to can also be inspected. This facility of

Blue] allows students to explore the structure of objects without having to use a

symbolic debugger.

5.2.4 Integrated debugger

BlueJ has a symbolic debugger that supports breakpoints, stack inspection and

single stepping through source code (see Figure 23). Whilst it is relatively simple to

use, the debugger contains concepts that may not be appropriate for beginner

99

rhreads
Update

Close

£ j Show system threads

CJH) Sequence
Student.<inH>

Static variables

nstance variables
String S IB * <nM>
String name = "(unknown name)"
iirtyearO<Eirtli = 0

.ocal variables

'^ wb\ •?

I *Step Step Into

I

Continue ,' terminate 1

Figure 23 - T h e BlueJ debugger.

progtammers such as threads and cilJ stacks. The Blue) debugger also suffers frotn

some problems Asdth its robustness in unusual situations. An effort is underway to

improve the debugger in Blue], including looking at different models for debugging

threaded programs [SchAilz2000].

5.2.5 Javadocgeneration

Whilst BlueJ can show all the classes in a single package as a UML diagram, it is

desirable to be able co browse all the classes in a project. The standard Java way of

providing information abouc all classes in a project is to generate Javadoc

documents. Javadoc specifies a way of placing method and class documentation

into the source code of a class and then generating a set of hyper Jinked web pages

detailing this information for browsing in a web browser. BlueJ supports the

launching of the Javadoc tool and the launchixig of a web browser to view the

resulting web pages for the current project.

100

5-3 Introduction to testing in BlueJ

The testing functionality we have built iato BlueJ incorporates the object interaction

ability already existing in BlueJ with die ability of JUnit to perform regression

testing., We have seen the need for this in the previous chapter where we analysed

various testing tasks. We surmised that testing tasks (1) and (3) are particularly

deficient in tool support. Unit testing frameworks such as JUoit support a standard

way to write tests but do not provide any tools that help in this task. The BlueJ

interaction mechanism is useful for task (1) but does not provide any recording

facility, so tests must be redone by hand, eliminating its usefulness for task (3).

Wher adding unit testing to BiueJ it was important 'hat the unit resting functionality

did not impact upon students who were not using unit testing. To this end, unit

testing is integrated into the BlueJ interface in an unobtrusive -way. If a project is not

using testing then the testing functionality barely impacts upon the user experience.

The addition of the "Test" button on the main display and a "test runner" dialog,

whose display is toggled from the View menu, are the. only plainly visible testing

functions. Consideration is also being given to a preference setting that disables all

testing functionality in BlueJ (including removing the "Test" button and any other

menus relating to testing) for situations where it is not appropriate for students.

5.4 Testing overview

The most fundamental functionality provided by the unit testing extension to BlueJ

is the recognition of JUnit tests as a special type of class in the BlueJ system (see

Figure 24). The following functionality has been incorporated into the BlueJ user

interlace an order to support unit test classes:

• ability to construct a test case class,;

• ability to run all tlae tests in a test case;

• ability to run an individual test method from a test case;

• ability to move the test fixture from a test case, onto the object beach;

101

E « Tods' Via* Hfllp

evClRsS: I
• • • • • •)

Corrplls j '

RotmTeB

•srthli"
PaiserleS

L Parser

GaroaAdkm

VlBW

IB Inhontanw

\

ouwgton

ilcaonFuclorvTBta

Figure 24 — The BlueJ system showing the addition of the unit teKtdn|/ futictioiiHJity.

• ability to construct a test fixture from objects on the object bench; and

• ability' to construct a new test method in a test case by interacting with

objects on the object bench.

If we Jook at Figure 24, we can see die three user-interface changes that are present

in the unit testing version of BlueJ. Firsdy, the grey classes on. die UML diagram

represent the unit tests. An additional button labelled 'Test' has been added to the

buttons along die left edge of the main window. This button runs all die tests

present in a project. More details of the running of tests can be found in section

5.5.5. In the bottom right hand corner on the object bench, buttons have been

added to end and catxcel Lhe recording of tests. An explanation of this cest recording

functionality is in section 5.5.3.

A motre in-depth explanation of all the testing functionality is presented in the.

following sections by introducing a walkthrough of testing using & conventional

102

testing methodology. The chapter "will, end with a discussion of the use of the BlueJ

testing support in handling testing activity (4) — test driven development.

5.5 Conventional testing walk tlif ough

In order to describe the new testing functionality that has been integrated into

Blue], we -will walk through die process of implementing tests on a %prk [Spearl994]

style text adventure program. This assignment is a modified version of that

presented in [K1611ing2001b]i "with a looser coupling between the parser class and the

rest of die system,

The *prk game contains four major classes (or groups of classes). The main Game

class in the original assignment has been refactored into 3air.eAct.ion objects that

encapsulate the behaviour of a particular command such as "go" or "quit".

GameAotion objects are returned from an ActionFactory that maps command

strings to the action's class. The. Game class itself is now mainly a loop that mediates

between the other classes. The game consists of a loop that instructs the Parser to

read commands from standard input and then moves the player between locations.

Locations are represented by Room objects, which contain a description and a set of

exits that indicate in which of the four standard compass points one may leave. The

set of classes in die assignment can be seen in Figure 24.

In the following walkdirough, we will use the terminology target class io refer to a

class in BlueJ that is the being tested by a unit test class. For instance, if we had a

class called FocT-jsr tbat primarily tested Foo objects, die class Foo would be the

target class.

We will assume that v>:. have ^-i:ady constructed the Parser class. It contains two

methods tokenizeAndL-; -.var (j t r i n g) and tokenizeAndLower (Reader). The

first tokenises a string, 1. .•"-vc- xaset- : \e tokens and then returns the tokens in an

array. The second method does ''he. sum:' as the first except using die readLine ()

method from the Reader as the inpof source.

103

Protect ECBt Toot* We*

H W V C I B S S

H«k>

j Compile I I

Test

ig-lnneittanci

_ Room

nawParssrO'

Open Editor

Complls

Ftamove
AdlnnFartwy

CoftdioiJon .̂

Zr—
i : ••:' ':

Figure 25 — The popup menu for creating a new test class.

5.5.1 Recording of Ad-Hoc Test Interaction

At its most fundamental level, the functionality that is to be shown in the

walkthrough is that it allows the .recording of normal BlucJ object interactions as

unit tests. This allows the combination of ad-hoc testing that; BlucJ has always

supported to be combined with regression testing. Section 5.5.3 shows the details of

this interactive construction of a unit test method. Section 5.5.9 shows how the

BlucJ ad-hoc interaction can be used to create a unit test fixture.

5.5.2 Constructing the test class

We wish to start some testing so as our first step we construct a unit tesi: for the

Parser by selecting "Create Test Class"1 from the Parser class' popup menu (see

Figure 25). Unit tests are represented in the interface in die same way as other

classes in the system albeit with a UML stereotype of "«unit test»" and a distinctive

grey colour. The resulting unit test class will be automatically named ParserTes t .

104

The decision to represent unit tests as firsr-class user interface objects was a

fundamental design decision, l l i e alternative would be to build all the testing

functionality into die standard class object (perhaps on tiieir popup menus) and to

hide the existence of the JUnit testing cksses. We chose to present test classes to

die user because we believe that the introduction of JUnit testing is about more

than just providing additional functionality to the student. Bluej should also

reinforce concepts of testing. This is similar to the way Bluej reinforces the concept

of objects and classes by presenting them as two different types of user interface

elements in Bluej. By presenting unit test classes as separate entities., the distinction

between the class being tested and the test class is reinforced. If the JUnit classes

were bidden in the system, students would feel that the test cases are some sort of

magic, where as in reality they are relatively straightforward pieces of Java code.

Trie generated unit test class is constructed using a templaLe unit test file diat comes

packaged with Bluej. The template can be customised by the user or system

administrator to fit in with any local requirements of coding style. An alternative

approach, that was considered was to make Bluej construct the test class as a set of

sl.ub test cases that are based on die methods existing in the target class. This

obviaLes the laborious task of creating many test method stubs when we are testing

a large target class that already exists. There arc numerous systems in existence that

have this functionality such as the JUnit extensions for NetBeans [Netbeans2002].

This approach was not selected for Bluej because, it was felt that the use of BlueJ in

introductory teaching means that it is rare to have to deal with large amounts of

legacy code, and fuithcirmorc. that automatically creating empty Lest stubs may give

students a false impression that they are constructing actual tests rather man just

test stubs.

There is nothing in a standard unit test class that ties it to a particular class or set of

classes in the sysLern. However, classes arc by hi the most predominantly used

"unit" for testing in Java and hence the unit test will often be testing a single class.

Therefore, when a unit test is created from a target class, Bluej assumes that there is

1.05

Took vsaw Halo

.Mewclas

CompHa

• ! •

j '

J
1

"1-

G«rnt>

Parser - J Rut!>|!

ODJotlBohch to Tost Fixture

Tesf.fWtireXo.pbjBctEBnth

Open Editor

P.erove

Figure 26 - The popup menu for creating a test method.

a tight coupling between the two classes and will keep them, together on the

diagram. This "association" between class and unit test class is used to determine

special compilation dependency rules as will be seen in a section 5.5.12 of this

walkthrough.

5.5.3 Creating a test method

The first test we wish to create is a test to see that the Parser class is always

returning a valid S t r i ng array, no matter what the input. We start the construction

of a new test case by selecting "Create Test Method..." from the unit test class'

popup menu (see Figure 26). We are prompted for the name of the test and we

enter die name ''NotNuU". An ''end test" button appears at the bottom right corner

of the object bench. All our interactions with BlueJ3 from now until the "cod test"

button is pressed, will be recorded in the tes tNoWul l () method of the

Parser-Test class.

106

ffljjir. , (,,...........f.,....,.
Object resu* •= <object reference>

i

r" aandard Assarttons | | ^ ^ ^ ^ ^ ^ f e ; |

rest*te fifliialto v | |

• : . . : • - . . r . • • : > ; - : • - .

p:" " '"7" 1

• Assert that

1 »

Figure 27 — The result and assertion dialog.

We construct a new Parser object by selecting "new ParserQ" from the Parser

class* popup menu. This creates a Parser object and places it on die object bench.

We can now execute -methods on the Parser object and Blue] will perform the

operation. We select the tokenizaAndLower (String) method and are presented

•with a dialog asking for parameters to the method call. As we are testing to make

sure the method always give us a non-null string array, we start with a boundary

case like the empty string "". .As with normal Blue] interactions, a result dialog is

now displayed showing the returned object. However, because we are in test mode,

the result dialog is extended to show an assertion panel that can be used to make

Assertions in the current test. The assertion pane] is shown in Figure 27.

5.5.4 Asserting results

We want to assert that the result we received from the method is not null. To do

this we check the "Assert that" checkbox. We can then select the type of assertion

that we want from the drop down list of supported JUnit assertions. In our case, we

select the "not null" assertion. When we click on the "Ok5> button, this assertion is

added to the current test We repeat this process fot some other cases we wish co

test such as the strings "a" and "AA ab". As a final test we execute the

tokenizeAndLower (String) method, passing in null as a parameter. The code is

actually being run on a second virtual machine so we will ger an exception thrown

when attempting to use the null pointer. Elutif catches the exception and highlights

107

public void tesfcMotNullU
{

Parser parser 1 = new Parser();
;
1

String I] result = parser_l.tokenizeAndLower(w");
assert'otNull(result);

String!] result = parser_l,tokenizeAndLower("a");
assertNotNull(result);

String[j result = parser_l.tokeniseAndLower£WAA ab");
assertKotNull(result);

Figure 28 — The unit test saurcB of a method created through BhieJ interactions in the:

ParserTcst class.

the line in die Parser class that the exception occurred at. Because we get no result

dialog when an exception is thrown, we do not get any chance to make any

assertions about the result. For the time being we will have to leave off testing for

this exception. We revisit f:he testing of exceptions in section 5.5.1.5.

After exhausting all the cases that we wish to check we click die "end test" button

in the bottom right corner of the object bench. The tes tNot^ul l method has now

been added to the ParssrTest class (its source is shown in Figure 28). After

compiling the test, we are now ready to run it.

5.5.5 Ritn.AU

The "Run All" popup menu item runs all the tests in the selected test case, The

results are displayed in a dialog indicating the list of test methods and whether they

passed ot failed. A large bar is displayed in green if all the test methods pass. If there

are any failures then die bar is displayed in red. In a case where die test has failed,

the bottom half of die dialog displays the results of the assertion, showing the line

where the assertion failed and what the actual and expected results were. An

example of this test dialog is shown in Figure 29.

108

^ ^ y ^ ^

/ SlringyTBsitesfFlrstWithData
\/ StringyTeslteslLastWithData

Runs: 3/3 ^Errors Q • x Failures: 1

: * * buiwas:*nufl>

junit.fi'amework.CompsrlsonFailuj'6: exp8c!ec':«>

a[StringyTGst.tesWlWthEmpty(SiringyT2st.Java:5i)

Hgure 29 — 'j"he dialog showing che result of running rhree tests.

BlueJ utilises its own implementation of the standard JUnit SwingRunner user

interface, The Blue[implementation adds the ability to jump from an assertion

failure ro the line of code in the test case that caused the failure by double clicking.

The BlueJ version differs internally from the normal SwincRunnsr in that i:he

interface code and die execution of the tests occur on different virtual machines.

This will be discussed in more depth in the implementation section 6.6.

5.5.6 Dealing with arrays

We have successfully constructed a test' method for the Parser class that ensures the

tokenizeAndLower (St r ing) method always returns a non-null string array. We

would now like to construct a test ensuring the actual values returned in the airay

are accurate. We start in the same manner we did for the previous test by selecting

"Create Test Method..." from die test class' popup menu. This time we will call the

test ccBasic". We construct a Parser object and execute the

tokenizeAndLcwer (Str ing) method with a parameter of " AA Ab bb". From

the resulting dialog, we click on "Inspect" to view the returned object. The string

array is then displayed as in Figure 30.

109

Obtact of class Strlnen

CJj'Assatthat'

StWKlira Assertions

resuS la equalto " pa"
r

Figure 30 — The result and assertion dialog for an -urray.

The difference between arrays and normal method results is that BlueJ cannor add

a single assertion when the "Ok" button is pressed because there are multiple

elements in the array and therefore there could be multiple assertions requited. To

handle this, when, an array result is being viewed, each array element has its own

"Assert that" checkbox. When an array element is selected and the "Assert that"

checkbox is checked, the assertion type and value are particular to that array

element

As a time saving device, when the "Assert that" checkbox is checked, the value of

the actual result from the corresponding array element is copied into die assertion

value text field. So for instance, when we click on array element result[l] and check

"Assert that", the string "ab" is copied into the assert value test field, If the current

implementation had generated the incorrect result it is easy to indicate the correct

value by changing the text field.

For each array result we. check the "Assert that" checkbox and then select "Ok".

We then click the "end test" button and BlueJ constructs a t e s t B a s i c (1 method

that contains all the assertions. The source of the resulting FarserTest class is

110

nublic void testEasic()
"{

Parser parser_l = new ?arser();
{
String[] result — parscr_l.tokenizeAnciLower<" AA. Ab bb") ;
asser-Equals{result[0], "aa");
essertEquals(result[1], "ab");
as3ertEquals(result[2], "bb");

Figure 31 — The unit test source of a basic method created through BhieJ interactions in the

PaiserTest class.

shown in Figure 31. The details of how the tests are constructed from the object

interactions is discussed in the implementation section 6.4.

5.5.7 Testing using standard Java classes

The final test we -wish to make for the Parser class is a test for the

toXenizeAnciLower (Reader) method. Our first step is to construct a Parser

object on the object bench. Secondly, we need to construct an object that satisfies

the j a v a . i o . R e a d e r interface so we can pass it as a parameter to the method.

Luckily there is a standard Java class called Java. io . StringReader which can be

constructed from a string and which satisfies the Reader interface. We can construct

a StringReacLer object using the "Use Library Ckss.. ." facility of BlueJ. Firsdy we

start the recording of a new test case named "BasicRcad" using the "Create 'lest

Method..." menu option. We men select "Use Library Class..." from the "Tools"

menu. In the resulting dialog we enter java . i o . Str ingReader and press return.

A list of all the constructors for the java . i o . StringReader class will appear. As

there is only one, the j ava . i o .S t r i ngReade r (String) constructor will be

highlighted. When we now press "Ok", the noirmal object construction dialog of

BlueT will appear. We pass in the scring "Go East" as the parameter to the

StringReader. Tt will now appear as an object on the object bench. This can be

seen in Figure 32.

The Str ingReader on the object bench can be interacted with using the same

BlueJ mechanisms as the Parser and other objects we have dealt with. For

111

'- ViCW

intteriltnttmmRe&der

yolci close!)

vole mart<(lnt)

IntreadlcnaiUJn'JM)

boa

yoiii

1

—\..j-—x—I—i- ->
! /

QuitAcUon

V i i
GDA'c(kmf«st

GoActlon

AcUonFactorv

1!

Jj

1

•Ineatci

Figure 32 - A j ava . i n . S t r ingRef ids r object on. the oh-ect hench. The popup menu shows the method

calls which can be made on die object.

instance, we could call the read {) mediod or inspecr die fields of the object.

However, in this case we have constructed the object ic :seasa parameter to the

toker.i2eAndLower{Reader) method.

We select die method from the Parser object's popup menu and the method call

dialog is displayed. We select the text field for the pararnetet to the method and

then we elide on the StringReader object. BlueJ will check that the object is of a

compatible type, and if it is., will enter the name of the StringR^ader object in the

method call. When we select "Ok" this call will then be executed and the resulting

array will he displayed. We make assertions about this result in the same manner

that we did eatlict in the walk through. The resulting test's source code is shown in

Figure 33.

All Java classes can be constructed and used in this way. For instance, if a method

dealt with Java collections tiien LinkedList objects or HashMap objects could be

created on the BlueJ object be>^h and used in testing.

5.5.8 Sharing test objects

In constructing tests for the Parser class we notice that there are some- objects that

we use in each test (a Parser object for example). It "would be useful to be able to

share the effort of constructing the objects between all the test methods. JUnit also

has its owa concept of objects which are shared between tests. The set of these

objects in a test case is called the test fixture and are instance variables which are

112

public void test3asicHead{)
{
StringReader reader_l = new Strir.gReader {"Go East");
Parser parser_l = new Parser(reader_l);

Stringf] result = parser_l.tokenizeAndLower(resder_l) /
assertEquals(result[0], "go") ;
assertEquals(result[1], "east");

Figure 33 — The unit test KOUTCC for a method created using the Java StringReader class.

created in a designated method in the test case called setup {)- A natural fit

between BlueJ and JUnit would be if the object interaction methods of Blue] could

be used to construct the test fixtures in standard JUnit tests (in the same way that

the BlueJ interaction is being used to construct JUnit test methods). Similarly, if

JUnit test fixtures could be brought into BlueJ, then object interaction and test

generation could be performed with existingJUnit tests. The unit testing features of

BlueJ have this ability.

5,5.9 Creation of a test fixture

To illustrate the construction of a test fixture we "will construct some tests for the

Room class. The purpose of this class is to represent the locations between which

rhe player can move in the qvr& game. There are four exits that a room can have

(north, south, east, west) though it is not necessary that each room has all of the

named exits. Exits are specified using the setEKits (Room north, Room south,

Room west, Room east) method, with a null parameter for a direction meaning

that dietc is no Roon accessible through fiiat exit.

Our first step it to construct a test class for Room. We select "Create Test Class"

from the Room class1 popup menu and the new RcomTest class is created. We

would like to make a small set of connected rooms to test that rooms can be

successfully navigated. We construct three room objects on the object bench with

descriptions of "west room", "east room" and "south of east room" respectively.

On the. object bench these objects have the names room_l, room_2 and room_3.

113

#Defineme exfls orl/)/s room fi/e/ydirection ePtorteadsio
Vanotherroom or Is wi!(r>o exit there),

: v . • . . . • • ' . ' - . - . . ' '

//Qparam north The Room to toe norffc
i/^ioerametfsl 7fie #oom to the eatl
ffQparam south TheRmraio ihe stuth
^©paramwea! TheHoomio the veal
void aetExttstRoom north, Room east, Room south, Room west)

room_1,sfl1E>dt8.< [nuii j ; < r j , Room north

room_2 Room bast

Kill ' T i, Room south

null •w <) Room Wftdt

OKI cancel

Mgure 34 — The method call dialog executing koom's secExitsQ method.

We use the method interaction facilities to call the se tExi t s () method on each

room instance, passing in the odacr room objects as parameters. BlueJ extracts

method header comments from the Java source and displays this in the method call

dialog. It also displays the method's variable names, which is useful in this case to

distinguish between the four room objects that the se tEx i t s 0 method twites. The

method call dialog is shown in Figure 34.

We now want to store the three Room objects on die object bench as shareable

objects in our RoomTest class. We select "Object Bench to Test Fixture" from the

RoomTest class5 popup menu. The source code to construct the objects is saved

into the Roorr.TRSt classes' se tup () method. The objects which have been saved

now disappear from the object bench. They can be restored .in two different ways as

explained in the next section.

5.5.10 Ikestoring a test fixture

A test fixture can be restored to the object bench by selecting "Test Fixture to

Object Bench" from the test class' popup menu. This will execute the setup ()

method and place die constructed objects onto the object bench. Users can interact

114

|j£ Assort: thaJ

dk!

Figure 35 — The res«lk and assertion dialog when the nbject returned is already

on the object bench.

with these objects on the object bench identically to the way that they handle

objects that have been constructed through normal interaction.

The other method of restoring a test fixture to the object bench is by creating a test

method. Wbcti a test class has a test fixture, the fixture's objects are automatically

placed on the object bench whenever the recording of a test metliod is started. Any

method calls which are made on these objects are local to the test method being

recoided and will not impact upon the state of die test fixtuire objects in other test

methods.

We can see the restoration of a test fixture in action by constructing a test metliod

for the Room class. We select csCrca.te Test Method...3' from the test class' popup

menu. We give the test method the. name "RoornExit". The three room objects that

we created as the test fixtures for this class now appear on the object bench. We

select the nextRocci(S t r ing) method oo the room_l instance and enter "east" as

a parameter. The resulting dialog is shown in Figure 35. We note that, whenever an

object reference is given as a result. Blue] attempts to see if this object is already on

the object bench. If so, the name of the object on the object bench is automatically

placed in die assertion text field and the type of the assertion is set to "Same As".

We can see this in. Figure 35 where the result of the going "east" is the room_2

115

object on the object bench, winch js therefore automatically copied in as the

assertion value.

5.5.11 Extending a test fixture

We may not always know exactly what objects we would like in a test fixture when

the test class is first constructed, so it is necessary that BlueJ has the ability to add to

objects in a test fixture. We can extend a test fixture by selecting "Test Fixture to

Object Bench" and then constructing new objects or calling methods. "When the

objects on the object beoch reach the new state we wish for them, we then select

"Object Bench to Test Fixture" from the test class3 popup menu. BlucJ will now

rewrite the 3etUp() method of the test class with ths current object bench. To

prevent accidental deletion of a test fixture, a warning message is displayed when

attempting to replace a test fixture with objects from an object bench that was not

initially constructed from the same set of objects.

5.5.12 Silent compilation

When a class is compiled, BlueJ will automatically attempt to compile the

corresponding unit test class. This compilation is atLeinptcd silently — any errors will

not be presented to the user with the usual "Might line in the editor" technique.

When a test class fails to compile, an error message is displayed in the status bat and

the class is left widi an uncompiled state appearance in the class diagram. This

should provide enough feedback to the user that something is wrong in the test

class. However, if a user selects "Compile" from the unit test class' popup menu

then it is assumed that the user wanrs this class in particular to be compiled and

hence is interested in any error messages. In this case, BlueJ presents the test class'

compilation errors to the user in the standard way.

5.5.13 Tests created outside of Blue]

A design philosophy of BlueJ is that it must be able to work with standard Java

projects taken from other sources. BlueJ augments the projects with a file that

stores details such as the arrangement of the class diagram or details such as which

test is associated with which class. However, if this information, is lost or is not

116

available, Blue] lmust still work without it. For this reason, the unit testing support

has the facility to deal -with unit test classes that ate not associated with any other

class.

A test class can become disassociated from its tr rget in a variety of ways. Test

classes can start out disassociated if they are created through the ccNew class..."

dialog (as opposed to selecting "Create Test Class" from the target classes' popup

menu]). BlueJ also allows the importation of existing Java classes using the "Add

Class...'; dialog— an existing unil test class could be imported in this manner.

A disassociated test class can be associated with another class by selecting

"Associate" from its popup menu. A dialog is then displayed showing the classes in

the system that allows the user to select one for association. Only test classes that

are not already associated have this menu option displayed.

When a test class is left disassociated, all that it loses is the diagram coupling and the

benefits of automatic compilation when the target class is compiled. Other than

this, they function identically to associated unit test classes.

5.5.7 4 Raw individual tests

Whereas traditional IDE's only allow interaction with an application in a monolithic

way (by executing the main method of the program), BlueJ allows interaction at an

object, class and method level. The standard jllnit interface only allows the

execution of all tests in a test class (although JUnit does allow test suites to be

created, containing individual tests from multiple test classes, this must be done

p rogrammatically).

The popup menu for a unit test class in BlueJ has a menu item for each test defined

in the class. By selecting a. test method from the popup menu, just a single rest

method is run. If a test is successful then a simple message indicating the success is

displayed in the status bar at the bottom of the screen. If the test fails then the

result is displayed in a dialog showing the failed assertion, similar to the dialog

117

public void testiHlxceptionO
{

Parser parssr_l = new ParserC);
{

try
{

parser_l.toksnizeAndLower(null);

fail ("NuliPointerrxcsption should have been t.hrown") ;

catch (NullPointerException success)

]-*igure 36 —Tim unit test source for a test method generated when an exception is caught.

shown by the "Hun All" menu. This allows quick execution of specific tests, which

is useful when editing the particular area of code that those tests target.

5.5.15 Testing exceptions

In secu'oii 5.5.4 we passed null to the tokenizeAnd.\ower () method which

genetaLed an exception. Normally when an exception is generated and is not caught

by any user method, BlueJ catches the exception and displays the line of source

code that threw the exception. Because no result dialog is displayed, the user misses

the opportunity to make an assertion about the rcsu't. To deal with this, when BlueJ

is in test method construction mode and an exception is encountered, BlueJ will

generate test method code that ensures that an exception is thrown. The basic

pattern of the code, is to wrap the mediod call in a try/catch block, indicating

success when an exception is caught, and to fail if the code readies the end of the

try block. An example of this is shown in Figure 36.

We should make the point that any choice would have been valid for the decision

on what to do when token!zeAndLower {) is passed a null parameter value. It

could have been programmed to return null in the case where it was unable to

process tokens, rather than allowing it to throw an exception. We then would have

constructed a test to assert that when a null value is passed into it, we do get a null

as the return value. An important aspect of the construction of unit tests is that they

118

W T 6 « l t t * 2 : -.-̂ • : . . • ; • : ., : • :

Free form assertionsuse the identifier "r«sirt"to
refer to rhe method raw*

. assart that
|rasul: > C

tetrue

. • • • . - • - 1 . ^ . • • •

I !

12

•. i

TU-^i-- i . ' . : _ - ;

Assort that

j

i

.'OK

Figure 37 — The free form assertion, dialog.

act as a form of documentation for the code. An explicit test of its behaviour when

passed a null dispels any ambiguity about how clients should expect the code to

behave in that situation.

5.5.16 Free form assertions

There are some rare cases where the default JUnit assertions cannot express an

assertion die way a programmer would]ike. An example of this would be if a

programmer wanted to assert that a method result was within soinc range. To

support this, BlueJ allows the programmer to insert tree form assertions. This is a

tabbed panel on the assertion dialog that allows entry of a free form text string. The

free form string (which can refer to "result" in order to reference the return value)

should be a boolean expression, and is insetted directly into an asser tTrue ()

assertion statement in the resulting test aiedaod (see Figure 37).

5.5.17 Further ideas

There are some other potential features of the unit testing extension that have been

considered but which have not been implemented because it is not clear what their

interface would look like, or there are still technical problems remaining with their

implementation, One of these would be to allow assertions that are more powerful

than just single expressions — one would like to be able to assert that all results from

a particular function satisfy a given function f(x), Another useful feature would be

119

to have an interface that allows the construction of tests that cover a wide scope of

input values. For instance;, the user could specify a range of .input values rather than

needing to call the tested method by hand for each vakie.

5.6 Test driven development

Test driven development (TDD) was first discussed in section 4.3. It is a

development style that encourages the construction of test cases before the

corresponding implementation is coded. TDD is a new style of development and it

was not initially considered when the design for the unit testing in BlueJ was first

developed. However, as we will see, the unit testing support in BlueJ is compatible

with the TDD methodology.

5.6.1 Walkthrough

Let us imagine that we are still working on the %prk example. We 'wish to use TDD

to develop a new type of Room, one that has more than the standard north, south,

east and west exits of a regular room. We will call our new room

TransporLerRooiti. We create the new Transporterttoom class by selecting "New

Class..." from the edit menu. "Using the dependency arrow button, we add an

inheritance dependency between the class Room and TranspcrzerRoorn. We now

select "Create Test Class" from the Transporter-Room class' popup menu to create

a TransporterRoomTest class.

We double-click on the TrsnsporterRoorelest class and the standard BlueJ editor

window opens showing us the source code to the unit test. All the unit test classes

we have developed in the first part of diis walk through caii similarly be edited just

like standard BlueJ classes.

The idea of TDD is that we start by constructing a test that fails. First we need to

decide what functionality and interface we would like our TransporterRoom class

to have, We write the test under the assumption that our TransporterRoom will be

able to be implemented using the interface we select. We do not allow the

implementation details to affect how we •would like to TransporterRoom to

120

public void testPortalRoomO
{

TransporterRoon troom = new TransparterRoomptransportex room");
Raom dGstroom = new Roon("somewhere to go");
•broom. addExit <wportal", destroom) ;

assertSaine {destroom, troon.nextRoom("portal")) ;

Figure 38 — The unit tcsr souice for a TDD meilioLl in TranspoiterRoomTcst

behave. If it turns out we have created an unimplemcQlablc interface, we can back

up a few steps and try a different interface with a new understanding of how the

implementation needs to be done in practice.

We decide that the functionality we would like is to be able to add an extra exit to

the room. The parameters for this should be the name of the exit and the room that

the exit leads to. We construct our tesi "PortalRooai" by constructing a new

method called tes tPor ta lRoomt) . We write code to construct a

TransporterRccrr. object and a Room object that we can use in this test. We then

make a call to sddExit:() on the TransporterRoom object Finally, -we make an

assertion that the next room through our exit we have just constructed is indeed the

correct room. The source code to chis test is shown in Figure 38.

We now click on the "Compile" button in the editor. The compilation fails because

there is no String constructor for the TransporterRoom class. We add a

constructor and try to compile the test again. It fails again because there is no

addExit () method. We add an empty adc3xi t () method, taking a S t r ing and a

Room as parameters and try to compile the test again. The compilation succeeds! We

can now run our test by selecting the "Test" button in the editor window for the

TransportRoomTest class. The "Test" butlon is identical to selecting "Run All"

from the test class' popup menu, but does not require die programmer to switch

back to the main BlucJ window and therefore is a convenient shortcut (see Figure

39).

121

Figure 39 - Editing the TfiwspccterRoomTcst iu the BlueJ editor.

The test runner dialog appears, showing the red bar indicating that a test has failed.

Obviously, we have not implemented the addExit (} method yet so we expected

the test to fail. It is a good check however to make sure that there is nothing wrong

•with our test. Tf.it had of succeeded without us implementing the method then we

would need to be worried!

We edit the TransporterRcoir. class in order to implement the addExit ()

method. It turns out to he a simple matter of adding a pair to the Map of Rocrc.

objects and exits. We add the implementation and run the tests again. We now get a

green bar indicating that the test was a success. We can now move on to out next

bit of functionality.

Whilst this walk through is a very simple example of how TDD works it shows die

basic pattern of TDD. We write a test mat will fail then implement code that raakes

it succeed. Then we start the cycle again..

The nature, of TDD prevents fbc object interaction facilities of BlueJ being used,

largely because the definitions of the objects and mediods are not complete before

122

testing begins. However, there is nothing in BlueJ that prevents TDD from being

used, and some facilities, such as being able to run the tests directly from the editor,

actually help make some tasks easier.

5.6.2 Summary

'Hie unit testing extensions Lo BlueJ aim to improve the tool support available for

testing in introductory teaching. We have achieved this by integrating the JUnit

testing framework into the BlueJ development environment in a manner that

diminishes neither, At its most basic, die unit testing extensions allow the

recognition and execution of JUnit test classes. We have extended this to also allow

a JUnit test fixture to be moved onto the BlueJ object bench, and provided a

method for converting objects on the BlueJ object bench into a JUnit test fixture.

We have also developed a rnediod for helping in the construction of unit test

methods through the recording of object interactions on the object bench.

123

124

6 C b dp I e r 6

IMPLEMENTATION

T his chapter introduces some of the details of the implementation of die

testing support in BlueJ. Firstly, the approach to serializing objects into test

fixtures is discussed, including possible alternative implementations. This is

followed by an examination of die modification of the BlueJ architecture to allow

for the creation of test fixtures. Finally, the technique used for the construction of

test methods is described.

6.1 Implementation envitoninent

As mentioned previously., BlueJ is implemented in Java using the JDK compiler.

Ant [Ant2002] is used as the build tool resulting in the ability Co build the system on

diverse platforms such as Solaris, Mac OS X and Windows. BlueJ can be run on any

1.3 compliant Java platform. The source fox BlueJ] s approximately 80,000 lines of

code.

The Blue] development team consists of 3 programmers. All of the development of

the testing support ia Blue) was the work of the author.

6.2 High level overview

The i>iucj system consists of 350 classes contained within twenty packages, A

simplified diagram of die major components of BlueJ is shown in Figure 40. The

architecture of BlueJ consists of two virtual machines which cooperate to provide

facilities such as object interaction and debugging.

The top half of the diagram shows the classes that operate on the local virtual

machine (die first virtual machine that is started when Blue] is launched). This

virtual machine is responsible for all aspects of the user interface, parsing the source

for dependencies., and invoking the compiler. The boLtom half of die diagram

shows the classes that operate on the debug virtual machine (the virtual machine

125

local virtual machine
o..#

Target

[RBladmeTargtrtj

CtuasHole |

ZT2X~~"

| Pickaje |

0..1

I «
PkOMflrFrame j

0..* ,.

0..*

| Project

UnllT«8ICIa«iRoli>

ObJoolSflnch _|pb]«clWnipp«f

AbstrjctGlassR°l» JdlObJact

debug virtual machine

j R«mc.t»Cli.».Loader |

Figure 40 — A simplified view of the BlueJ system.

thai is launched after start up by BlueJ). The debug virtual machine maintains the

actual instances of objects on die object bench and the classes that allow operations

on these instances. When a method is executed on an object through object

interaction, the thread that runs the method lives on this debug virtual machine. All

interaction with die debug virtual machine is performed using the JDl debugger

interface Qavasoft2002].

The key user interface class is die PkgMgrFrame. This class implements the window

and menus tliat arc presented to die user, Wiriiin this window arc two lairge panels.

One panel displays objects on. the object bench and is implemented b}r the class

ObjectEench. Bach object on die ObjectBench is represented by an

ObjectWrapper which encapstilates die refetence to the actual object on die debug

virtual machine.

126

The other panel is a simplified UML diagram of a package and is implemented by

the class Package. Each Package object corresponds one-to-one "with an actual

Java package. A Package object can exist outside of a PkgMgrFrane (in fact, the

package objects for a project are all created on project load). When a Package

object is placed into a PkgMgr Frame it then "becomes visible. There are no

references from Fackage objects to the PkgMgrFrame object that they are in.

When a Package wants to indicate that the user has performed sonic action, it raises

a PackageEvent object which can be heard by any PkgMgrFramc objects that are

registered as listeners. Without ubis decoupling, Package and PkgMgrFrame

become so intertwined that the dependencies between them are hard to monitor.

The decoupling will allow the Fackage code to be reused to display Java packages

in a proposed class library browser within BlueJ.

The P ro j ec t class is responsible for maintaining the collection of Package

objects of a single project. It also controls all functionality that operates over an

entire project, such as documentation generation.

The implementation of testing support presented four major problems

• Objects on the Bluej object bench needed to be stored so that they do not

need to be recreated every time the source is changed. This problem comes

about because die behaviour of the objects in the presence of multiple

versions of theit classes is unpredictable;

• A technique was needed for recording BlueJ interactions and constructing

unit test methods from them;

• Architectural changes were needed l:o the organization of die Blue] virtual

machines to better support dealing with JUnit classes; and

• JUnit's TestRunner interface had to be split in order to run JUnit tests

across two cooperating virtual machines.

127

In the rest of this chapter, each of these implementation problems and the solution

devised is presented.

6.3 Constructing test fixtures

The motivation for the initial implementation work in the testing area was not in

fact: testing. A common complaint about BlueJ is that objects on the object bench

are removed on compilation. This removal of all live objects is required because

their behaviour when interacting with objects rtiat were constructed from previous

versions of the source is unpredictable. There is a similar requirement in reLation to

testing where we want to be able to create test objects that survive recompilation.

The first approach to dealing with this problem was to consider analysing the

changes made to the source to identify those changes that had no effect on the

current set of objects. Whilst this works in the most trivial of cases (a class is edited

with oo dependency on any class depended on by any objects on the object bench)

the analysis becomes complicated extremely quickly for more complex cases.

The second approach to die problem was to look at serializing objects on the object

bench in some form. Serialization involves saving die contents of the object such

that it can be reconstructed later in the same state. There are multiple techniques for

serialization in Java, each with strengths and weaknesses. When evaluating their

appropriateness for BlueJ the following criteria were considered

1. Ability to survive class evolution

The objects being serialized -arc most probably going to be those whose

source code is being worked on. It is important that the serialization is

robust in handling changes to the source of" me class;

2. Works without programmer intervention

'The- serialisation should work widaouc die user of BlueJ needing to modify

the class1 source;

3. Works on many types of objects

128

It is important that as many types of object as possible are able to be

serialized; and

4. Does not need to introduce advanced concepts

Because BlueJ is an introductory teaching environment the serialization

should not require the user of BlueJ to learn any advanced Java concepts.

The criteria were not absolute — support for all of them was not a requirement for

vise in BlueJ. As with all engineering decisions, we were looking for a solution which

balanced the competing criteria. The following sections discuss a number of

techniques for object serialization and consider their advantages and disadvantages.

6.3.1 Java Object Serialisation QOS)

JOS depends on programmers tagging a class as implementing Serializ.ab.le. The

Object Output Stream class can then be used to marshal all the fields of any

objects of this class into a stream. The serializing technique is of course recursive,

so any field which is of a class that is also marked as serializable is marshalled into

the stream as well (in fact the serialization will throw an Exception if it encoiintett"

any fields in the object graph that are not serializable and which are not flagged with

the t r a n s i e n t keyword). .Although the primitive Java types are not real objects and

hence cannot implement Ser ia l izab le . , JOS has provisions to allow them to be

marshalled into the output stream. Because it requires tagging classes with the

S e r i a l ! z a b l e tag, JOS requires programmers to make changes to source in order

to support serialization. However, the change is minor and many of the standard

Java classes support serialization so data structures such as members of the

collections framework can be serialized with this technique.

Java seriali2ation can handle evolution of classes but with some caveats. A

compatible evolutionary change is one in which objects can be evolved from an old

version of the class to a new version of the class and vice-versa. The serialization

specification defines the following changes as valid

129

1. Adding fields

It is allowable to evolve to a class that has an extra field because the extra

field can be trivially set to the default value.

2. Adding classes

By comparing the evolved class's hierarchy with the class hierarchy

represented in the stream, additional classes can be detected and the

additional class's fields can be Initialised to the default values.

3. Removing classes

In a method similar to adding classes, the serialization can detect when a

class has been deleted from the evolved class's hierarchy. Because objects

referenced in die deleted class may be referred to later in the stream the

class still has to be demarshallcd, but all primitive fields can be discarded

and any objects of the deleted class demarshalled will be garbage collected if

they turn out not to be referred to again.

4. Changing i:he access to a field

When the access modifiers snch as public, package, protected or private ate

changed it docs not affect serialization. Serialization has special support

from the VM that allows it to bypass the normal language field access rules.

5. Changing a field from static to non-static or transient to non-transient

These fields are normally not serialized so changing a field to non-static or

non-transient is the same as adding a field and the same technique is used to

handle it.

The following changes to a class are considered incompatible. Some of these

changes will work if evolution is only required from an old version to a new

version.

1. Deleting fields

When a field is deleted its value will not be written out to the stream. This is

line when evolving from an old to a. new class but when going in the

130

.reverse direction, the field data will not be in. the stream and so the field will

have to be initialised to a default value. This change is considered

incompatible according to the JOS definition, but the evolution will work as

long as the old version of the class can cope with die data in the deleted

field being set to a default value.

2. Moving classes up or down the hierarchy

The object data from each level in the hierarchy is serialized in order, so

moving classes up or down the hierarchy means that data -will not be

available from the stream when required.

3. Changing a non-static field to static or a non.-transient field to transient

This is identical to deleting a field because marking the field transient or

changing it to static means that it will now not be written out into the

stream.

4. Changing the declared type of a primitive field

The type of all primitive fields arc serialized along with the data so if the

field rypc is changed then the object can no longer be demarshalled

because it will expect a different type.

JOS supports many of the forms of evolution that would be required by BlueJ. An

important evolution that it does not support is renaming of fields (technically just a

delete field and an add field but rename field needs to retain the value of the field).

More importantly, in the cases where JOS does not work it fails without any means

of correction. The serialized data is in a binary format and so it cannot be examined

to make potentially simple corrections. For this reason, and because of the need for

die source code to be tagged as S e r i a l i z a b l e , requiring modification of the

source code, JOS is unsuitable for use as the serialization technique in BlueJ.

131

6.3.2 JSX

The "Java Serialization to XML" project (JSX) [>'Iacmillan2002] utilises a similar

approach, to JOS, but rather than serializing to a custom binary stream format, it

creates XML documents that represent the structure of the serialized objects.

The first advantage of JSX is that it does not require classes to be tagged as

Se r i a l i z ab l e . This means that programmers do not need to change their source

or learn about the 'implements1 keyword before using the serialization.

The second advantage of JSX is dial: the output format; is a human readable XML

document. As a consequence of being able to view and edit the serialized data we

can massage the data to perform more advanced class evolutions. For instance, a

field rename can be performed by loading the serialized object into a text editor and

editing the Held name. Also, because JSX writes primitive types as strings inno the

XML document, it can change the primitive type of the field in the case where the

string representation is convertible from one primitive to another.

However, performing class evolution like this is quite advanced — introductory

students may not understand the XML format or understand how objects are

structured when serialized If students were to edit: the object format and make a

mistake (perhaps only renaming one instance of a field name in a collection of

objects) then JSX will silently accept the error assuming that the unknown field

name has been deleted.

It should be noted that some of the class evolutions possible because of the XML

representation are not exclusive to JSX. Ic would also be possible to write a parser

for the binary JOS format and to perform, the same transformations of the.

serialized data that are feasible for JSX. However, die advantage of JSX is chat by

converting the objects to XML it leverages a lot of standard editing, parsing and

tree transformation tools that are already available for the XML format.

132

<?xml version="1.0" enooding=y/DTF-8" ?>
<java version="l.4 . 0" class—"java.beans.XMLDecoder">

<void id-"myController" property="owner"/>
<object cla3s="jaxax.swing.JPanel">

<void method=''add">
<object ±d="buttoni" class="javax.swing.JButton">
<string>Contir.-ue</striiig>

</object>
</void>
<void method="add">
<object claas="javax.swing.JLab3l">
<void method="setLabelFor">

<object idref="buttonl"/>
</void>

</object>
</void>

</object>
</java>

jPanel panell = new uPanel();
JButton buttonl = new JButton(^Continue") ;
jLabel labell = new <JLabel();
paneil.add(butronl);
panell.addClabell);
labell.setLabelFor(bnttonl);

Figure 41 — A GUI component serialized to XML using XMLEucodec and how the

component would look as Java code.

6.3.3 XMluBticoder and'XMJ'^Decoder

The introduction of the 1.4 JDK from Sun has seen a new form of serialization

added to the Java platform. The new serialization technique was motivated by the

desire to allow Java GUI components to be serialized into a form that was robust

enough to survive class evolution of the GUI components. Because of the

complexity of the implementation of die Java GUI components, coupled with the

restrictions that JOS puts on evolution of classes, it had previously been impossible

to save a GUI object in a state that would guarantee daat they could be deserialized.

The XMLEncoder and XMLDecoder classes have been added which can handle this

serialization by converting a GUI component into an XML document. A sample of

a serialized object is shown In Figure 41.

133

Unlike JOS or JSX, where each object's class can cither rely on a defarilt

serialization routine or implement its own serialization technique by overriding

writeObjec't (}; the XMLSncoder uses a set of delegate classes which are

responsible for the serialisation of different types of classes. At its base level,

XMLEr.coder can work on a JavaBean coinponcnt by using bean introspection to

determine the properties of die class and for each property value (a property value

is a special type of field that has both a getter and setter method) writing out the

corresponding XML. The default persistence delegate class that is included with

XMLEncoder handles this serialization of beans automatically.

It is also useful to be able to serialize objects that are not quite beans. Some of these

objects like Color and Font,, which do not have a no-argument constructor, can be

serialized by providing a delegate that knows which bean properties should be

passed to the constructor. Some objects which can only be constructed using a

factory method can be serialized with XMLEncoder using persistence delegates that

know which expression to output to create the object. It is important to note with

XMLEncoder and XMLDecoder that any special case code required to serialize an

object is only needed on the encoding side. The generated XML document is a

complete description of all the constructor calls and method calls needed to recreate

an object and hence the XMLDscoder does not need to be specialised for objects

that are difficult to serialize.

XMLEncoder is not suitable for the serialization in BlueJ because it cannot deal with

all types of objects. In particular, whilst it has support for serializing many of the

complex standard Java GUT classes, it would require the user to add persistence

delegates for any of their classes that did not conform to the JavaBean

specifications. Requiring students to write classes in a JavaBean format is non-trivial

and is tioc suitable for introductory teaching.

The notion of reconstructing objects as a sequence of constructor and method calls

is an interesting idea however, and one that naturally fits in with the interaction

134

I £ • SninaBiiffgr""!

I new Str-i.ngBuffor-{"your payout ia "} ;
•• conslrjcor

i append (?)j_
. men. c.i

nsv Bignacimal (c , 5) ;

I Cj_BiflkdaoaM
i

nav Biglntegar ("10"}

append("million dollars");

Figure 42 —A graph recording the transitive closure of al! operations on the objcd A,

mechanisms already in place within Blue]'. This idea is investigated in the next

section.

6.4 Creation of the text fixture and test methods

BlueJ has an advantage over other serialization methods in that it has the facility to

record how an object came to be in its current state, not just what its state currently

is. This is because objects placed on the object bench in BlueJ are constructed and

manipulated darough die BlueJ user interface. BlueJ can record each interaction with

the user, be it an object construction or a method call, and use this to reconstruct

the object at a later point.

The first model for implementing die creation of test fixtures in BlueJ was heavily

influenced by traditional implementations of serialization. "When serializing an

object using traditional serialization, a transitive closure of die object (i.e. the object

and all objects referenced by it) is formed and this closure is flattened into a data

stream. We implemented a technique where the transitive closure of all operations

on an object is formed and recorded by BlueJ as a graph. For any operation that

requires another object as a parameter, the graph of die transitive closure of chat

object is linked in at that point An example of the graph structure formed is shown

in Figure 42.

135

The idea "was that the user interface of BlueJ was going to allow an iodividual object

to be turned into a fixture, through selection of a menu item, and at this point die

graph of due operations on die object were to be turned into source and inserted

into die test class. The ordering of operations "was to be calculated from an analysis

of the graph structure. A problem with this implementation is that care needs to be

taken to correcdy capture die state of objects on die object bench at the time that

they are used as a parameter in anotiicr object's method call. For instance, consider

the case where an object X is constructed talcing a StringBuf f e r as a parameter.

Let us imagine we have constructed the StringBuf fer on the object bench as an

object called S and then passed it as a parameter to die constructor call for X. We

now call die append •() method on S to add some characters to die St r ing3uf f er.

A naive attempt at serialising X would petform the operations to construct S,

including the append () mcdiod call, and then, pass this object S as a parameter to

che constructor of X. Cleady, die correct solution is to only perform operations on

S, up unto die point at which it is used as a parameter, therefore not including the

final append () xnediod call. Whilst not an unsolvable problem, correcdy dealing

with situations like this complicates the data structures used to record operations.

Instead, we took a step back and looked again at the overall goals of the

serialization. The purpose of die serialization is to construct a test: fixture — objects

of a known state that can be used by each test method widiout having to be

reconstructed in die test mctiiod. In most cases there will be more than one object

in a fixture. If we look at the fixture as a set of objects that need to be serialized, we

can see that the fixture corresponds with the object bench. The object bench is

itself a set of objects. Ratiier tiian trying to serialize a single object^ die entire state

of die object bench can be serialized, thereby constructing the fixture for a

particular test case.

Once this observation had been made il: was trivial to see a solution for recording

die construction of die fixture. By considering the object bench as a whole, all

operations, on atry object of the object bench are. recorded in die sequence that diey

136

C : Biolnteger |

new Biglnteger("10") ;
constructor

B : BiaDecimal |

new BigDecimal(c,5) ;
constructor

A : StrlnaBpffer |

new Str ingBuf£er ("your payout i s ") ;
constructor

I A : StrlnoBuffar |

app«nd(B);
meihod ceil

\A: StrJnqBuffer |

append("million dollars");
meltiodcsil

Figure 43 —The objects on ail object bench recorded as a sequence of operations.

occur. To recreate the state of the object bench, the operations are replayed in the

order in which they -were recorded, assuming an identical starring state. Rather lliaa

storing operations in a complicated graph structure, they are recorded in a simple

linked list (see Figure 43).

This implementation does have some caveats. Firstly, the fixtures for a test case

must include all objects on an object bench — individual objects cannot be turned

into fixtures. Secondly, all operations on all objects arc included in the resulting

source, even those that turn out to be redundant. For instance, if an object is

created on the object, bench and then removed from the object bench, the source

code to construct it will be retained. This does not pose too much of a problem as it

occurs raiely and the resulting redundant code is generally insignificant compared to

the other set up code. It would be possible to scan the record of interactions for

objects that are not used, and to then prune these from the list, however this has

not been done in the current implementation.

137

The last problem is to ensure that the starring state for the replay of the object

interactions is consistent. Because of the nature of the BlueJ object bench, where it

must be cleared -when classes are recompiled, the obvious starling state is an empty

bench. Therefore, the recording of object interactions is always reset on.

compilation.

The actual construction of the test fixture set up code is performed by translating

the recorded interactions into source code. Interactions that result in the

construction of an object must be distinguished from other interactions in order for

the field definitions of the objects to be inserted at the top of the test case. Both the

existing field definitions and set up code must be replaced completely by the newly

constructed code. A Java grammar using the ANTLR [Parr2002] parser generator

was modified to identify the regions of the source code that need to be replaced by

the newly constructed code.

In the same manner that BiueJ records the user interactions to create test fixtures,

BlucJ also records die interactions and assertions that make up each test method.

When a test method is being recorded and an interaction returns a result, BlueJ

augments the result dialog with an assertion panel. If the user checks the checkbox

indicating they wish to make an assertion, BlueJ translates the assertion into one of

die standard JLJnit assertion statements.

Because die variable "result" is used as the name of the return value of each method

call, it is important to be able to either reuse the "result" variable or change the

result name so than there is no naming clash. It was decided to structure the test

methods in a way that the scoping rules of Java allow the "result" variable to be

reused. Before each method call that is responsible for an assertion, BlueJ uses curly

brackets to introduce a new scope. Within this scope, "result" is declared with the

correct type and an assignment is made to it. Any assertions that have been made

are then called within this scope, For arrays, where the method call must only be

made once, yet multiple assertions can be made on the result, this scoping technique

is particularly useful. This is shown in Figure 44.

138

Parser parser_l = new Parser!);

// assertion
{
String!] result -» pa.rser_l. tokenizeAndLower ("") ;
assertNotKull(result);

)

// normal method interactions
parser_l.addTaken("y">;
parser_l.addToken("x");

//an array assertion
{
string [] result = parser_l. toJcenizeAndLower (" AA Ab bb");
asser-Equals{result[0], "aa");
assertEquals{result[1], "ab");
asser-Ecuals(result[2], "bb");

. . . rest of issi method

Figure 44 — Using the scoping rules ofjiiva to allow the "result" variable to he reused

wkhin a method.

6.5 Architectural changes to support testing

Recall that the basic architecture of Blue} is two virtual machines — one that

supports the user interface and compilation (called the local virtual machine), and

one that supports the execution of methods and construction of objects (called the

debug virtual machine). Coramunication between the (wo virtual machines is

performed with the Java Debug Interface (JDI). JDI allows primitive types to be

exchanged between machines but uses object references to facilitate the access to

objects in one machine from the other. JDI does not therefore return a serialized

object when returning an object from a method call, it returns only a reference to

the object in the debug virtual machine.

The implementation of test fixtures required a substantial change to the architecture

of the cross virtual machine communication. All communication between the

victual machines is routed through a virtual machine controlling class that handles

the marshalling of parameters in the local virtual machine. The prc-unk testing

implementation of this class dealt only with String objects, as this was the most

flexible primitive type to deal with. Using String objects also avoided having to

139

deal with cross machine references. To deal with the construction of test fixtures

and the execution of tesL methods required an interface that: could handle object

references as both parameters and return values.

The new implementation of the virtual machine controlling class supports both of

these. "When a method returns an object reference, BlueJ wraps this object reference

in its own type called a DebuggerObject. DebuggerObject objects can then be

placed on the object bench by constructing an Object:Wrapper and placing it as a

component, on the bench. The ObjectWrapper handles all the details of

constructing the popup menus for the object's methods.

When the recording of a test method is begun, BlueJ needs to place the fixture

objects on the object bench. To do this it needs to execute the se tup () method of

the test case and place all the fields of the test case on the object bench. The code

"which executes the se tup () method on the debug virtual machine returns a L i s t

of objects that have been constructed. The reference to the L i s t object is returned

and this is then converted into an array of DebuggerObject objects that are then

placed on the object bench.

The odier atchilectunil change thut was required was changes to die security system

of the debug virtual machine in order to support the execution of the test case

setup {) method. Because the se tup () method is a protected method, it ca-nnot

be executed by classes that do not directly inherit from it. However, Java, has the

ability to suppress the access checks on a method by installing a custom security

manager in the victual macliinc. Once the access checks are suppressed, the mcdiod

must also be marked as accessible by calling its set7-iccessiblo{) method. The

suppression of access checks in. the debug virtual machine would appeal to perhaps

allow students to construct code that may bypass die standard access controls of

Java. This is not the case though, because the compiler still will not allow code to be

compiled that violates the Java access rules. The only way that students may

encounter the changes to the security system is if they use reflection to gain access

to methods. Additionally, medhods and fields obtained through reflection must still

140

have their sstAcc:essii>le;) method called before all access checks are

5\rppresse.d. It is unlikely that any student will inadvertently encounter this difference

between the BlueJ virtual machine and a standard virtual machine.

6.6 Implementing the Runner

The JUnit framework includes two user interfaces that allow tests to be run. The

TextRunner executes a test case and displays the result to standard output. T'he.

SwingRurmer interfaces displays the result of the test in a GUI. The basic

SwingRunner interface had to be modified to work with BlueJ's dual •virtual

machine architecture. The simplest implementation would have been to run test

cases on the local virtual machine, thereby using an almost unchanged

SwingRunner interface. However, all the other method execution and object

construction performed in BlueJ is done on die debug virtual machine. Executing1

the code on the local machine would potentially result in differing behaviour

between test creation (when the code would run on the debug machine) and test

execution (when the code would run on the local machine).

Another possibility is for the entire SwingRunner interface to be loaded into the

debug virtual machine, thereby allowing it to run tests on the desired virtual

machine. Unfortunately;, the threads running in the debug virtual machine are

started and stopped numerous times in order to perform some of the method

interactions. If the user interface code were running on this machine it would

become unresponsive whilst its graphics helper thread was stopped.

The actual implementation splits the SwingRunner code into two parts. One part

thai deals with the actual execution of tests resides on the debug virtual machine.

The other part of the code is passed the test class, and after executing the test case,

returns a TestResult object- The runner user interface on the local virtual machine

accesses the TestResult object and displays the results.

141

6.7 Summary

The integration of testing support in BlueJ posed numerous implementation

challenges. Foremost was the challenge of determining a method for serializing

objects on Bluej's object bench into test fixtures. The final method selected was to

have the fixture creation code "replay1' all the BlueJ interaction events used to create

objeccs on an object bench. A similar technique is used to create the unit test

methods. Other implementation changes were mandated by the BiueJ architecture

of having two separate virtual machines.

142

I

7 C hapt e r 7

STATUS AND FUTURE WORK

n this chapter the status of the work presented in rhis thesis is discussed along

with discussion of ideas for the future direction of work relating to BlueJ.

7.1 Status

Although the design of the refactoring functionality described in chapter 3 has been

completed, only the basic back-end of the functionality has been implemented.

Other than prototype mock interfaces, no implementation has been made of the

interface. A prototype implementation is planned for the future.

A working version of the unit testing functionality described in chapter 5 has been

developed and is currently undergoing testing. Release of the production version is

awaiting the completion of several tasks:

• Development of user manual,

Whilst the aim of adding unit testing to BlueJ was to integrate functionality

as simply as possible, it is evident that the functionality requires an

explanation for students to be able to use it to full effect. The development

of a simple tutorial document (either as an extension to the current Bluej

tutorial or as a separate document) will greatly assist teachers introducing the

functionality to students.

• Internationalization of user interface strings.

Because BlueJ is used in many different countries it supports the

internationalization of all user interface text, For the unit testing extension,

adding the new text translations will not be possible for all currently

supported languages, but is necessary for the major languages that we

support such as G-erman and Chinese.

143

• Integration with the latest BlueJ release.

Whilst Lhe unit testing extension was under development, other work on

BlueJ did not cease. Two versions of BlueJ., including the major release 1.2.0,

have been completed in the interim and work is required l.o integrate the unit

testing functionality into the main source tree.

It should be noted that BiueJ is a being used in production environments in

universities around tlie world and hence stability and robustness are key criteria for

the inclusion of new features. Because of this, the unit testing extension has been

released to the public firstly in tine form of a beta version, and this has lead to some

valuable feedback being received about the extension.

7-2 Usability Study of the Unit Testing Extension

An initial usability study was conducted to determine the effectiveness of the

interface at performing some representative student tasks [Kantnerl994]. The

usability study used four participants [Nielscnl994], two first year undergraduates,

one latter ycai: •undergraduate and one postgraduate. Because the aim of the study

was to identify usability faults with the program, it was considered useful to obtain

usability feedback from a wider variety of participants than just introductory

software engineering students.

7.2.1 Experimental Procedure

Participants were invited to take part in the. study through the posting of notices in

computing laboratories. The invitation was made to students who were already

familiar with die BlueJ development environment as we wished to concentrate on

the usability aspects of just tlie unit testing extension.

Participants in the test were given a consent form and a leaflet describing the

project and the aims of the usability test. At the start of tlie allotted testing period

(one hour was nominally sei aside for each participant), the participants were given

a printed tutorial on the unit testing extension in Blue]. They were allowed to refer

to this during the testing, although most of them chose not to.

144

The usability test undertaken was a think-aloud test. la this form of testing, the

participant is asked to perform a set of tasks whilst articulating rhe thought

processes that they are going through to achieve each task. For instance, whilst

performing the task "open a project X", they first might go to the menu bar and

click in the "File" menu, whilst saying aloud "I am going to the File menu to see if

there is a menu item to open a project". The usability sessions are audio taped and

the session is analysed to find places where the mental model that a participant had

for a particular task did not match the actual interface of the program.

A number of sample projects were created (an various stages of completion) and

some representative tasks on the projects were developed. As the participant

stepped through the tasks, the usability problems that they identified were recorded.

The summary of the 11 task that the users were asked to perform is presented in

the following table. Obviously, die task sheet diat was given to the participant was

more detailed than this (containing details of each task such as where the project is

located on disk and what die task involved) but these details have been stripped out

of the table presented here.

Task No.

1

2

ii

4

5

6

7

8

9

10

11

Task

Recognising existing unit tests

Running a single test method on an existing unit test; class

Running all the tests on an existing unit test class

Running all the existing unit tests in a project

Interpreting the result of a unit test execution

Using test results to fix some failingjava source

Using object interaction on the object bench

Constructing a unit test for an existing class

Constructing a unit test method using object interaction

Cons cructing a fixture

Using a fixture in the construction of a unit test method

145

7.2.2 Results

A usability problem "was noted if any of the participants failed to complete the task

correctly or could not see how to proceed towards 'he completion of the task.

Other problems -were noted where the participant suggested thar they would have

expected a different user interface at a particular point, even if they then

successfully completed the task. A final class of usability problem occurred when

the participant discovered a bug in the software that put them in a state from which

they could then not complete the task. Most of these bugs have since been dealt

with but we liave noted the problems here for completeness.

We have pat the usability problems into 5 categories

• STATE

The user is confused as to the state that the program is in. Additional visual

indicators or dialogs may be needed to remind the user what state they are

in. Alternatively, a redesign of th/*. interface to remove stateful operations

may be required:

• TEXT

The terminology used in die user iniarEice has confused the user. These

problems can be addressed by reconsidc-.ir.ig the wording used in menu items

and dialogs;

• VISUAL

The appearance of a user interface element was not cleat. A redesign of die

particular user interface element naay be required;

• GENERAL

There is some general usability flaw in the program. These need to be fixed

on a case-by-case basis; and

• BUG

The user has uncovered a bug in the unit testing extension,

146

Problem

No.

1

2

3

4

5

6

7

8

9

Usability Problem

User not clear that they are in a "recording" state.

Problems with use of "fixture" terminology. The

user was -unclear as to what constituted a "fixture",

despite having some proficiency with JUait

Construction of objects before using "create test

method" menu item, leaves objects on the bench

but not recorded in die test

Attempted ro "run test" before ending the

recording of a test.

Used "fixture to bench" before "create test

mediod" because that's what the user wanted. Was

unaware that "create test method" will do ihis

automatically.

Did not realise object interaction could be used to

construct tests and wanted to construct tests by

hand.

Use of a string in the assertion panel without quotes

causes an error in the resulting test mediod. The

resulting test class does not compile but no ettor

message is shown to the user. Instead, the test class

remains "striped".

User was unaware diat clicking objects on the

object-bench can be used to insert dieir name into

method parameters.

Created a test named "balanceTcst" as opposed to

the JUnit naming standard "testBaknce". This

results in a test called "testBalanceTest".

Category

STATE

TEXT

BUG

STATE

GENERAL

GENERAL

GENERAL

GENERAL

GENERAL

147

10

11

12

13

14

Test failure dialog allows user to go to the line of

the "test" class that fails. User was confused as to

how ro find out how this then relates back to the

method that is being tested.

JUnit error output format was confusing when

showing two strings that had been used in an

assertion (the actual result and the desired results

ate displayed surrounded by <> rather than normal

string cjuotes).

Running an individual test that succeeds results in

only a message being displayed in the status bar.

This was not noticed by the user.

After running a single class test and then running all

tests, the iiser did not notice the new test results

displayed in die test window.

User did not: undetsrand the significance of the

JUnit green bar.

GENERAL

"VISUAL

VISUAL

VISUAL

GENERAL

A usability success "was noted when none of the participants had any difficulty

accomplishing a task (or part of a task). The usability success table is not

comprehensive (i.e. most of the tasks were completed successfully but arc not listed

here), instead it is a. list of the areas that we had identified as potentially problematic,

but which turned out not to cause any concerns.

Success

No.

1

2

3

4

Usability Success

Recognised test classes by distinct colotir and UML stereotype.

Technique for creating new test classes was clear.

Purpose of assertion panel was clear.

Automatic insertion of correct result into assertion panel was clear.

148

7.2.3 Discussion

The usability testing has uncovered some usability flaws in the unit testing

extension;, though none that we would consider serious enough to prevent the

release of the unit testing extension to the public.

The main problem encountered was chat the users did not realise that they were in a

special "recording" state once they had selected "create rest method". This is a

problem because it could lead the user ro fail to realise that some of the features of

the unit testing extension even exist. We are evaluating mediods that we can

implement that make this change of state more evident to the user.

As part of the regular review cycle that all components of Blue} undergo, along with

feedback from users in the field, the usability study will help us identify and

prioritize our work on improving the BlueJ unit testing extension.

7.3 Extended functionality

Some additional functionality considered in the initial design has not been

iinplcmented due to time constraints but may be included in the upcoming public

release. Some of this functionality is described in. the following sections.

7.3.1 Extending test methods

Whilst the test fixture of a test case can be extended by BlueJ, it is currently not

possible to record a test method, use it in BlueJ and men continue the recording of

the method. This functionality was not considered a priority due to the nature of

test methods. Test methods ate normally quite short and do not often require

extending. Despite this, tiiere are some situations where it may be useful and as the

implementation is similar to the extension of a test fixture ir should be easy to

implement

73.2 Support multiple test cases associated with a single target class

Currently, only one test case can be associated with each class in the BlueJ system.

Whilst adequate for the majority of student use, some classes require multiple test

149

cases to help organise tests logically. Multiple test cases could be attached to a single

class and stacked behind one another in the BlueJ class diagram.

7.3.3 Test coverage analysis

Test coverage tools provide metrics to understand the usefulness of test methods

by analysing what proportion of the code in an application is reached by test code.

Whilst full-scale test coverage analysis is beyond the scope of introductory students,,

a simple facility to highlight source code in a class that is not reached by test code

would be useful.

7.4 Further tool support for introductory software engineering education

The analysis of the SWE-BOK in chapter 2 helped us identify two areas that we

considered particularly deficient in tool support for introductory students, testing

and refactoring. It also enabled us to review other areas of software engineering to

gain an understanding of the current state of introductory tool support in those

areas. Whilst an excellent basis for categorising and identifying areas of software

engineering that may need tool support, the SWK-BOK. is by no means a complete

listing of all things that a software engineer, may need to know. In particular, as the

SWR-BOK is a document intending to capture the current mainstream areas of

software engineering, there is the potential for other areas not mentioned to also

make use of inttoductoiy tool support Some of these areas that we see potential for

adding introductory tool support are:

• Web services — the increasing interest in web based programming, and in

particular the construction of web services means that these server

environments may be considered for introductory software engineering

courses. A tool that helps with server side deployment and deals with the

issues of debugging and configuring server side programs may be useful.

• Version management — the change to object-oriented languages means that it

is much mote feasible that students will, work on group projects, even in

introductory courses. A tool that facilitates this gcoup work through an

150

introductory version management system would also be useful for teaching

the concepts of version control (branching, merging, conflicts, locking etc).

Tools to support agile methodologies — unit testing is but one part of the

agile methodologies that arc becoming popular, even at an introductory level.

There may be some benefit to tool support for some of these agile

processes.

151

152

8 Chapter 8

CONCLUSION

T his thesis has looked at the level of tool support for teaching introductory

software engineering, Hie area of software engineering that we have

examined in depth is the area of software product engineering. This area involves

the design, coding, testing and maintenance of computer programs. In particular,

we are interested in computer programs that are written in object-oriented

languages and designed -with object-oriented design techniques. Object-oriented

languages arc increasingly being used as a first language and we contend that many

of the changes that object-orientation brings requite more tool support than "with

procedural languages.

From the Software Engineering Body of Knowledge document, which describes

concepts "within software product engineering, we have composed a list of tasks that

cover a large propordon of die practical skills that a first year student may be

expected to develop from introductory courses. These skills represent such activities

as entering code, building programs, designing programs and testing. It was our

contention that some of these tasks are not well supported by software tools.

Software tools can play one of two roles in supporting a software engineering task.

They may either be an integral part of the task, in the way that a compiler is an

integral software tool when building programs. Alternatively, they may provide a

level of pedagogical support for concepts, in the way that a development

environment can reinforce, important object-oriented notions such as objects and

classes.

153

This diesis has made a number of contributions to the task of teaching software

engineering concepts to introductory students. These include:

• A number of software engineering concepts that are suitable for inclusion in

an introductory software engineering course have been identified.

• A number of software tools have been evaluated against their suitability to

support these software engineering concepts in a teaching situation.

• Two areas \vc believe profit most from enhanced tool support in

introductory courses have been identified: refactoring and testing

• A set of concrete refactorings suitable for inclusion in an introductory

software engineering education has been identified.

• A detailed design for a refactoring tool suitable for use by first year students

has been presented. The design presented reinforces the level at which

refactorings operate. For instance, refactorings that act on methods arc

accessed through the "method" user interface component. Class level

refactorings are accessed through a similar "class" user interface component.

The design for a system wide "undo" stack that tracks large sca'.e operations

on the source code was also presented. The tefactoring tool design has been

integrated into an environment currently in widespread use in introductory

courses to facilitate its implementation and adoption in the future. An

implementation of this design has started.

• A detailed design of a testing facility suitable to teach .modern testing

activities to first year students has been presented. This design integrates the

two leading software systems for introductory teaching of object-oriented

programming and unit testing, Blue] and JUnit, creating a new user interface

style to approach testing activities. This new interaction style, facilitated by

our system allows techniques of testing (and the teaching of testing) that

were not previously available to teachers and students.

154

• A full implementation of this testing facility has been developed, which has

reached anal testing stage aad will be included in a full release version of the

BlueJ environment.

We are convinced that the teaching of software engineering concepts in

introductory courses has gained in importance over the last few years, and will

continue the gain importance for the foreseeable future. For this development to be

successful, the teaching community needs to develop teaching strategies and

support tools geared towards this subject area. The contributions of this thesis are a

step in. that direction.

155

GLOSSARY

assets

black-box testing

functional testing

integration testing

structural testing

system testing

test case

test class

test fixture

tost method

unit testing

white-box testing

terminology used by TestMentor — sec test fixture

see functional testing

testing that select test methods based solely on the public

external interfaces of the source code being tested

testing that tests the interactions between several smaller

modules of code

testing that selects inputs based on knowledge of the

internal structure of the source code or its data structures

testing that tests the overall functionality of a complete

system

a class that holds a set of test methods. Each method with a

name starting with test goes ro make the set of tests for this

lest case

see test case

a common set of test data and collaborating objects shared

by many test methods. Generally they are implemented as

instance variables in a test case and ?.rt constructed in the

setUpO method of the test case

an single method containing test assertions diat exists in a

test case class

testing that concentrates on a single module of code in a

program

see structural testing

156

zork from the zork manual... "Zork is a game of adventure,

danger and low cunning. In it you -will explore some of the

most amazing territory ever seen by mortals. No computer

should be without one!"

157

REFERENCES

[ACM1968]

[ACM1979]

[ACM1991]

[ACM2001]

[Allen2001]

W. F. Atchison, S. D. Conte, J. W. Hamblen, T. E. Hull, T.

A. Keenan, W. B. Kehi, E. J. McCluskey, S. O. Navarro, W.

C. Rheinboldt, E. J. Schweppe, W. Viavant, -and D. M.

Young, ''Curriculum 68: Recommendations for academic

programs in computer science: a report of the ACM

curriculum committee on computer science," in

Comtmtmcatiotis of'the ACM, voL 11(3), 1968, pp. 151-197.

R. H. Austing, B. II. Barnes, D. T. Bonnette, G. L. Engel,

and G. Stokes, "Curriculum '78: recommendations for the

undergraduate program in computer science - a report of the

ACM curriculum committee on computer science," in

Communications oftbeslCM, vol. 22(3), 1979, pp. 147-166.

A. B. Tucker, B. H. Barnes, R. M. Aikcn, K Barker, K. B.

Bruce, j . T. Cain, S. E. Corny, G. L. Engel, R. G. Epstein, D.

K. lidtke, M. C. Mulder, J, B. Rogers, E. H. Spafford, and A.

J. Turner, Computing Currictila '91: ACM/IEEE-CS, 1991.

ACM, "The Joint Task Force on Computing Curricula:

Computing curricula 2001," Journal of Educational Resources in

Computing (fERICJ, vol. 1,2001.

E. Allen, R. Cariwright, and B. Stoler, "Drjava: A lightweight

pedagogic environment for Java," presented at Proceedings

of the 32nd Annual SIGCSE Technical Symposium on

Computer Science Education, Charlotte, NC, 2001.

158

[AHen2003]

[Ant2002J

[Bagertl999j

E. Allen. R Caxtwiight, and C. Reis, "Production

Progratnming in die Classroom," presented at Proceedings

of the 34nd Annual SIGCSE Technical Symposium on

Computer Science Education, Reno. NV. 2003.

"Apache ANT Project," 2002, http://jakarta.apa.che.nrg/ant

(accessed July 2002)

D. Bagci% T. Hilburn, G. Hislop, M. Lutz, M. McGtacken,

and S. Mcngel, "Guidelines for Software Engineering

Education Version 1.0," CMU5 Technical Report CMUSEI-

99-TR-032, October 1999.

[Barbcy'1994]

[Beckl989]

[Beckl997]

[Beckl999J

S. Barbey and A. Slrohmeier, "The Problematics of Testing

Object-Oriented Software," presented at The Second

Conference on Software Quality Management, Edinburgh,

Scotiand, 1994.

K. Beck and W. Cunningham, "A Laboratory for Teaching

Object-Oriented Thinking," presented at Object-Oriented

Programming Systems, Languages and .Applications

(OOPSLA), New Orleans, LA, 1989.

K. Beck, "Make it Run, Make it Right: Design Through

Refactoring," in The Smalltalk Report, vol. 6,1997, pp. 19-24.

K. Beck, sKtnme Programming eKphined. Addison-Wesley,

1999.

[Beck2002] K. Beck, Test Driven Development: By Example: Addis on

Wesley, 2002.

159

[Boggsl 999] W. Boggs and M. Boggs, Mastering UML with Rational Hose:

Sybex, 1999.

[Brownl998] W. II. Brown, R. C. Malveau, PI. W. McComoick III, and T.

J. Mowbray, A.niiPattertts: Kefadoring Software, Architectures, and

Projects in Crisis.: John Wiley- & Sons, 1998.

|13ruce2001] IC B. Brace, A. P. Danyluk, and T. P. Murtagh, "Event-

driven Programming is Simple Enough for CS1," preserved

aL ITiCSE, Canterbury, UK, 2001.

[ChangT 995] B. "W. Chang, D. Ungar, and R. B. Srnirh,lfGetting Close to

Objects: ObjecL-Focused Programming; Environments," in

Visual Object Oriented Programming, M. Burnett, A. Goldberg,

and T. Lewis, Eds.: Prentice-Hall, 1995, pp. 185-198.

[Christopherl 993] W. A Christopher, S. J. Procter, aad T. E. Anderson, "The

Nachos Iflsttuctioaal Operating System," USENIX Winter,

pp.4S1-488,1993.

[Comielll996]

[Cookl992j

[Cul\vinl999]

M. Council, and T, Menxies, "Quality Metrics: Test Coverage

Analysis for Smalltalk." presented at TOOLS Pacific,

Melbourne, 1996.

W. R. Cook, "Interfaces and Specifications for the Smalltalk-

80 Collection Classes," .ACM SIGPLAN'Notices, vol. 27, pp.

1-15, 1992.

F. Culwln, "Object Imperatives," presented at Proceedings

of the 30th SIGCSE Technical Symposium on Computer

Science Education, New Orleans, LA, 1999.

160

pewhuistl987a]

[Eaton2001]

S. C. Dewhutst, "Object Representation of Scope During

Translation," presented at Proceedings of the 1st European

Conference on Object-Oriented Programming (ECOOP),

Paris, France, 1987,

Nl. j . Eaton, Microsoft Visio Version 2002 Inside Out. Microsoft

Press, 2001.

[Fekere2000] A. Fekcte, J. Kay, J. Kingston, and K. Wimalaratne,

"Supporting reflection in introductory computer science,"

presented at Proceedings of die 31st SIGCSE Technical

Symposium on Computer Science Education. Auslia, TX3

2000.

[Ferret2002]

[Florijn2002]

[i7owlerl997]

[Fowlerl999]

L. Ferrett and J. Offutt. "An Empirical Comparison of

Modularity of Procedural and Object-oriented Software,"

presented at Thirteenth International Conference on

Engineering of Complex Computer Software, Annapolis,

MD, 2002.

G. Fiorijn3 "Revjava - Design Critiqiies and Architectural

Coiiformajice Checking for Java Software," 2002,

hi ip: / Av^ryv.serc.ni/people/florijn/pnpers /ReyTava-

overview-recent-pd f (accessed September 2002)

M. Fowlet and K. Scott, UML Distilled: Applying the Standard

ObjectAiodeling~Lartgnage: Addison-Wesley, 1997.

M. Fowler, "Re/adoring: 'Lnrproving the Design of Existing Code;

Addison-Weslcy, 1999.

161

[Fowler2002]

[Gamrml995]

[Ginat2001]

M. Fowler, "Catalogue of Rcfactorings,1' 2002,

help://n^av.x-cfactoring.com/catalog (accessed August 2002)

E. Gamma, R. Helm, R Johnson, andJ. "Vlissides, Design

'Patterns: Skments of Reusable Object-Oriented Software*. Addison-

Wesley, 1995.

D. Ginat, "Early Algorithm Efficiency with Design.

Patterns," Journal ofContputer Sdense 'Bducation, vol. 11 (2}s pp.

89-109,2001.

[Goldl991]

[Goldwasscr2002]

[GosHngl999]

[GPL1991]

[EIeteell98B]

E. Gold and M, B. Rossoa, "Portia: an instance-centered

en\ironmeni for Smalltalk;," presented at Object-Oriented

Programming Systems. Languages and Applications

(OOPSLA), Phoenix, AZ, 1991.

M. Goldwasser^ "A Gimmick to Integrate Software Testing

Throughout the Curriculum," presented at Proceedings of

die 33rd Annual SIGCSK Technical Symposiuim on

Computer Science Education, 2002.

J. Gosling, B.Joy, G. Steele, and G. Braclm, The]ava'L-angi<qge

Sperificatioti, SecondHdition: Addison-Wesley, 1999.

"'Itie GNU General Public License," 1991,

http:/ Av\v\.v.gn_u.org/copyleft/gp],htnil (accessed January

2001)

W. fletzel, The Complete Guide to Software Testing, 2nd ed.

Wellesley, Mass.: QBD Information Sciences, 1988.

162

[Hilburnl997]

[Hflbuml999]

[Hilbum2000]

[Hkchensl994]

flughesSOOO]

[lnLelliJ2O02]

T. Hilbutn and M. Towhidnejad, "Integrating Personal

Software Process (PSP) Across the Undergraduate

Curriculum," presented at Proceedings of the 1997 Frontiers

in Education Conference, 1997.

T. B. Hilburn, I. I-Iirmanpour, S. Kkajenoori, R. Turner, and

A. Qasem, "A Software Engineering Body of Knowledge

Version 1.0," CMU, Technical Report CMU5EI-99-TR-004,

April 1999.

X Hilburn and M. Towhidnejadj "Software quality: A

curriculum postscript?," presented at Proceedings of tlie 31st

Annual SIGCSE Technical Symposium on Compute*

Science Education, Austin, TX, 2000.

M. Iiitchens, P. English, and F. Maroufi, "Melmodi a class

library management system," presented at Technology of

Object-Oriented Languages and Systems 15, 1994.

L. I-Iughes, "An Applied Approach to Teaching the

Fundamentals of Operating Systems," Journal of Computer

Science Education, vol. 10(1), pp. 1-23, 2000.

Intellij, "IntdliJ IDEA 2.6," 2002, http:/ /wvnwJntdlii.com

(accessed

163

|Jacksonl997]

Qarc2000]

U.Jackson, B. Manaris. and R. McCauley, "Strategies for

effective integration of software engineering concepts and

techniques into the undergraduate computer science

curriculum," presented at Proceedings of the 28th Annual

SIGCSE Technical Symposium on Computer Science

Education, San Jose, CA, 1997.

D. J. Jarc, M. B. Feidman, andR. S. Hdlcr, "Assessing the

Benefits of Interactive Prediction Using Web-bascd

Algorithm Animation Courseware," presented at

Proceedings of the 31st Annual SIGCSE Technical

Symposium on Computer Science Education, Austin, TX,

2000.

Qavasoft2002]

[Jeffries 2000]

Johansson200l]

Javasoft, "JPDA Architecture," 2002,

htip://java.sua.coni/j2$e/1.4/docs/guide/jpda/architec[iu-e

.html (accessed June 2002)

R. Jeffries, C. Hendrickson, A. Anderson, and K. Beck,

Extreme Programming Installed. Addis on-Wesley, 2000.

T. Johansson and M. Nordstrom, "Introducing OOConccpts

with CRC-caids and BlueJ - a case study," presented at

OOPSLA.01 - Workshop on Pedagogies and Tools for

Assimilating Object Oriented Concepts. Tampa Bay, PL,

2001.

Qones2001J E. Jones, "An Experimental Approach to Incorporating

Software Testing Into The Computer Science Curriculum,"

presented at 31st ASEE/1EEE Frontiers in Education

Conference, Reixo, NV, 2001.

164

[JUnit2002]

JKantaerl994]

[Kayl994]

"The JUnit TestingFramework," 2002, htup:/Avww.janit.org

(accessed March 2002)

L. Kantaer, "Techniques for Managing a Usability Test,"

IEEE Transactions on "Professional'Communication,^^. 37(3), pp.

143-148,1994.

D. Kay, T. Scott, P. Isaacson, and K. Reck, "Automated

grading assistance for student programs," presented at

Proceedings of the 25th Annual S1GSCE Technical

Symposium on Computer Science Education, Phoenix, AZ,

1994.

pCernighanl984]

[Kh\vajal993]

|Kirbyl997]

pC6Uingl999]

B. W. Kernighan and 3L Pike, The Unix Programming

Environment, 1984.

A. Khwaja andj. Urban, "Syntax-directed editing

environments: issues and features," presented at Proceedings

of the 1993 ACM/SIGAPP Symposium on Applied

Computing, Indianapolis, IN, 1993.

G. Kirby and K Morrison, "OCB: An Object/Class Browser

for Java." presented at 2nd International Workshop on

Persistence and Java, Half Moon Bay, CA, 1997.

M. Kolling, "The Design of an Object-Oriented

Environment and Language for Teaching," in PhD: Basser

Department of Computer Science, University of Sydney,

1999.

165

[K6lling2001aJ

[K6lling2001b]

[Lappo2002]

[Larusl997]

M. KoUing and J. Rosenberg, "BlueJ - The Hitch-Hikers

Guide to Object Orientation," Journal ofObject Oriented

Programming, 2001.

M. KollingandJ. Rosenberg, "Guidelines for Teaching

Object Orientation with. Java," presented at Proceedings of

the 6th conference on Information Technology in Computer

Science Education. (ITiCSE 2001), Canterbury, UK, 2001.

P. Lappo. "No Pain., No XP - Observations on Teaching and

Mentoring Extreme Programming to University Students,"

presented Jit XP2002, Caligari, Italy.. 2002.

J. R. Lams, "SPIM S20: A MTPS R2000 Simulator,"

Computer Sciences Department, University of Wisconsin,

1997.

|MacmiIkn20Q2]

[McCauleyl998]

B. MacmiJlaa, "Java Serialization to XML QSX)," 2002,

hctp:/ /www.csscrnonash.edu.au/~bren/[SX (accessed June

2002)

R. McCaulcy and U. Jackson, "Teaching Software

Engineering Early - Experiences and Results," presented at

Proceedings of the 1998 Frontiers in Education Conference,

Tempe, AZ, 1998.

[McCleliand2002] D. McClelland, Photoshop 7 Bibk John Wiley & Sons, 2002.

[McDonald2001] J. McDonald, "Why Is Software Project Management

Difficult? And What That Implies for Teaching Software

Project: Management," Journal of Computer Sdence Edttcatioti^

vol.. 11(1), pp. 55-71,2001.

166

|McK3ml996] J. McKim and M. L. Manns, "Teaching OT: A Breadth-first

Versus a Depth-first Approach,11 presented at Proceedings of

die Educator's Symposium in. conjunction ^vith OOPSLA,

1996.

[Meyer2001]

|Mutchlerl996]

£Naps2000]

|Netbeans20Q2]

[Nielsenl994]

[Nilsson2000]

[Pan2002]

B. Meyer, "EiffclStudio: A Guided Tour," ISE Technical

Report TR-EI-68/GT, 2001.

D. MuLchler and C. Laxcr, "Using Multimedia and GUI

Programming in CS1," presented at TTiCSE, Barcelona,

Spain, 1996.

T. L. Naps J . R. Eagan, and L. L. Norton, "JHAVE ~ An

Environment to Actively Engage Students in Web-based

Algoridim Visualizations," presented at SIGCSE, Austin,

TX> 2000.

Neifbeans, "Netbcaos JUnit Module," 2002,

http://junit.neibeaos.org (accessed June 2002)

J. Nielsen, "Estimating the number of subjects needed for a

dunking aloud test/' InternationalJourna] of Human-Computer

Stodies^aL 41(3), pp. 385-397,1994.

D. R. Nilsson, P. M. Jakab, B. Saranrakos, and K_ A.

Stinehour, "Enterprise development with VisnaLAgefor Java, Version

3: John Wiley & Sons, 2000.

J. Pan, "Software Testing," 1999, http://ww\y.cmu.edu

(accessed March 2002)

167

jPari-2002]

[Pintadol990]

[Plaugerl 992]

[Postema2000]

[Power2000]

[Rflinseyl992J

[Ramseyl994j

[Rasala2000]

T. Parr, "ANTLR/' 2002, brto://ww\v.antlr.on5 (accessed

July 2002)

X. Pintado, "Selection and Exploration in an Object-

Oriented Environment: The Affinity Browser," Centre

Univcrsitaire d'lnforrnatique, University of Geneva, 1990.

P. j . Plauger, The Standard CUbrary: Prentice Hall, 1992.

M. Posterna, M. Dick, J. Miller, and S. Guce, "Tool Support

for Teaching the Personal Software Process," Journal of

ComputerScienceEJtKatio^ vol 10(2), pp. 179-193,2000.

J. F. Power and B. A. Malloy, "Symbol table construction

and name lookup in ISO C++." presented at Technology of

Object-Oriented Languages and Systems - Pacific, 2000.

N. Ramsey and D. R. Hanson, "A rctargctable debugger,"

presented at Proceedings of the Conference on

Programming Language Design and Implementation, 1992.

N. Ramsey, "literate Programming Simplified," IEEB

Sofhvan,vo\. 11,pp. 97-105, 1994.

R. Rasala, "Toolkits in first year computer science: a

pedagogical, imperative," presented at Proceedings of the

31st SIGCSE Technical Symposium on CompuLet Science

Education, Austin, TX, 2000.

168

[Rasak2001] R. Rasala, J. Raab., and V. K. Proulx, "Java power tools:

model software for teaching object-orienLed design,"

presented at Proceedings of the 32nd STGCSE Technical

Symposium on Computer Science Education, Charlotte, NC,

2001.

[Reges2002]

[Robertsl997J

£R.obertsl999b]

[Rosenbergl997j

[Schulz2000]

[Sccmannl997]

S. Reges, "Can C# Replace Java in CS1 and CS2?," presented

at ITiCSE, Aarhus, Denmark, 2002.

D. Roberts, J. Brant, and R Johnson, "A Refactoring Tool

for Smalltalk," Theory and Practice of 'Object-Systems, vol. 3,1997.

D. Roberts andj. Brant, "Refactoring Tools," in Refactoring:

Improving the Design ofELxisting Code, M. Fowler, Ed.: Addison-

Wesley, 1999, pp. 401-407.

J. Rosenberg and M. Kolling, "I/O Considered Harmful (At

least for the first few weeks)," presented at Proceedings of

the Second Australasian Conference on Computer Science

Education, Melbourne, Australia., 1997.

D. Schulz and F, Mueller, "A Tliread-Aware Debugger with

an Open Interface," presented at International Symposium

on Software Testing and Analysis, Portland, OR, 2000.

J. Seemann, "Extending the Sugiyama Algorithm for

Drawing UML Class Diagrams: Towards Automatic Layout

of Object-Oriented Software Diagrams," presented at

Proceedings of Graph Drawing, 5th International

Symposium, GD'97, Rome, Italy, 1997.

169

[Shawl991] M. Shaw andj. Tornayko, "Models for undergraduate project

courses in software engineering," presented at Proceedings

of the Fifth Annual SEI Conference on Software

Engineering, Pittsburgh, PA, 1991.

[Silvcrrmrk2002] Silvermark» "Test Mentor Java Edition User Reference 5.4,"

2002,

httn: / /www.sitvemiark.com/dociimenfation/staijaT-a.pdf

(accessed February 2002)

[Spcarl994]

[Staskol993]

[Talbott2001]

P. Spear, Return lo Zork - The Official Guide la the Great

Underground Empire Brady Publishing, 1994.

J. SfeL?lLo, A. Badre, and C. Lewis, "Do Algorithm

Animations Assist Learning? An Empirical Saidy and

Analysis," presented at Proceedings of the 1NTERCHI '93

Conference on Human Factors in Computer Systems,

Amsterdam, Netherlands, 1993.

N. TalbotL, "Testing in reverse," 2001,

http: / /www.rubyconr.org/2001 /talks /tastinginrcverse

(accessed March 2002)

[Transmogrify2001] "Transmogrify - A Java Refactoring Tool," 2001,

http://transmog-fjf\r,sourcefnr'gc.net (accessed July 2001)

[Whittaker2000] . J. Whittaker, "Viliat is software testing? And why is if. so

liard?," IEEE Software, vol. 17, pp. 70-79, 2000.

[Zellcrl996] A. Zeller and D. Lutkehaus, "DDD - A Free Graphical

Front-End for UNIX Debuggers/1 SIGP'LANNotices., vol.

31, pp. 22-27,1996.

170

