MONASH UNIVERSITY
THESIS ACCEPTED IN SATISFACTION OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ON...................ﬂcemberzow
Sec. Research Graduate School Commitiee

Under the Copyright Act 1968, this thesis must be vsed only under the
nomal conditions of scholarly fair dealing for the purposes of
rescarch, criticism or review, In pasticular no results or conclusions
should be extracted fram it, nor should it be copied or closely
paraphrased in wholc or in part without thc written consent of the
authar. Proper written ackmowledgement should be made for ony
assistence abtained from this thesis.

o

I

[

TOOL SUPPORT T'OR
INTRODUCTORY SOFTWARE
ENGINEERING EDUCATION

by

Andrew Patterson

A thesis submitted in fulfilment of the
requirements for the degree of

Doctor. of Philosophy

School of Computer Science and Software Engineering
Monash University

September 2002

"This thesis bas not been submitted for the award of any degree or diploma in any
othet tertiary institution. No other petson or person’s wotk has been used without

due ach.os edgement.

Andrew Patierson

September 2002

ABSTRACY

The teaching of softwarc engineering in mtroductory courses can be suppozted
through the use of software tools. In this thesis, we dendfy tasks that smdents may
be expected to perfotm in an introductory software engineeting course and evaluate
the tool support thal is currently available for these tasks. We then concentrate on
the areas of refactoring and testing as areas that are deficient in suitable tools for
first year students. For these two areas we propose estensions to the Blue]

development environment that are designed for first year students.

A design for a refactoting module is proposed that adds method-centric refactordng
fuanctionality, where methods become first class user interface objects supporting

standard refactorings such as rename, move and extract.

A testng module is designed and implemented that integrates the existing object
interaction facilities of Blue] with the JUnit testing framework to allow the

automatc creation of test cases based on actual user intesaction.

ACKNOWLEDGMENTS

When you spend a long time at univessity wotking on a project, many people

conuibute and help you out along the way. I have chosen the list form, as it is

probably most efficient, so thanks go cut:

First and foremost to my supervisors fohn Rosenberg and Michael Koélling
for all their help, support and insight over the years. Despite both having
heavy workloads during the final months of my thesis prepararion, they were
always willing to promptly read and comment on chaprers. Also ta Bruce
Quig, the other member of the Blue] research group, for all the helpful
comments during meetings and for reading and commenting on my final
draft;

To my housermnates Aldko, Brad, Gurdeech, Gajan and Toni for putting up
with my nocturnal behaviour;

To everyone from Howitt Hall, who may not have contrbuted to the quick
completon of my thesis, but who were great to live with when I first arrived

in Melbourme knowing no one;

To my family, who have had to put up with questions like “hasn’t your son

finished university yet” for the past 6 years.

iy

21

22

TABLE OF CONTENTS

The Software Engineening Body of Kncwledge (SWE-BOK)

211
24.2
2.1.3
2.1.4

Computing Fundamentals .. s s crssscmenseocss
SOFEWATE TDOMMIAIIS 1evvrisnisienineiiraseesisseasessssssasssssossssss ssasios simseramnssmmaonene
Softeare ManagEmMEeNT ... e ircassnsrsesssessssrns setsssarasssresent e

Software Product Engineedng. .. vmicemsessinnenns

Software Product Engineering ~ further analysis..........ccooceverrceeen.

2241
2.2.2
2.2.3
224
2.2.5

Software Requirements Engineering (KA 2.1) v vrnieionin,
Software Design (KA 2.2) .ot sssecscnsnenees
Software Coding (F{A 2.3) ittt ssaes
Software Testing (KA 2.4} .. nmirecirnssirisisssirasres

Software Operation and Maintenance (KA 2.5) wvviicns

Software Product Enginecting - tasks c.overvriecmnseconn:

2.3.1
2.3.2
2.33
2.3.4
2.3.5

2.3.5.1 Visualising relationshipsoweriene

Design a system and draw design diagramsvveiewnrinn,
Create graphical user interfaces ... s
Scarch and create documentation ..o,

Eater and edit PrOZIAMS .. v.eurmimsrsicviesssrssstrecaossseasiamssnsossisssossionses

Browse class HBratmes e ssinesietin s aesesnenessbecssessumprnessas

23.52 Navigating relationships ...

23583 Smalltalk. ... srasssseiie
2.3.5.4 BiffelSHudio caceeercoeiirioesessssessasianssssssssersaresniesmasessatsosses

23.6
2.3.7

2371 Classlevel oo,

Build programs ...

Implement and eXCCULE LESE CASES wvvv-rerrrnccrerscrrrcssssinnuns

virarere 20
w27

29

e 30
|

32

w33
e 35

w37
e 38

we 39

2.37.2 ObBJCtIOVEl et et s i
23.8 Runand debug apphcations ..o,

2.3.8.1 Smaltalle SPSTEIMS e srtirises st e iaseesss s 41

2.3.8.2 Self EnvitOntmenlS . e evsronmersieeismiciomserensras

2383 Object Class BrOWSer ..o crmierenssi s cmsaess rvrssscrs s ssens
239 RefactOr COAR. et ncesc s s st s et sm s s en s 44

2391 Smallralk Refactoring Browser .. iveesciecicirnnes e

2392 TNCE] TDBA .ooocoeeoe oo messes s ssesssess senseeess s 46

2.3.10 Integrate external LESOULCES v mrvrieiicmer e asisseesresersvavaresssvesnss 47

24 Summarty and MOTUVABON v ceeceeeereerireveries eebes nberaent s et st r et e reetmee vt 47

S

31 OGO <o eectie e esensvss s mssees s ensssaasssisas s svssrasrersnnssreassmnres s ennt

32 Why refactor In fIFSt YEAL? v e sanss e esssrssosaese

3.3 What reiactorings are apPropraate? ...

3.3.1 Changes local to a2 method fragment. e,

3.3.2 (Changes to a method signatureee e,

3.3.3 Changes to 2 class SHUCHILEcreisnsmmsensecconcssrarssssssens
3.3.3.1 MOVE OPCIAtIONS wuverirerssirssiressssinensesstsosssiasssoriorsosss

3.3.3.2 EXEHAct OPEIATIONS v ricrnrn it erisbic s s s sesssssarssves ssaesens

.51

P T T PRI -u56

.57

3.33.3 Inhentance sHuCIre OPCratONS e mmomismmmieimm s 59

3.3.4 Changes to the design cvievinicis e

3.4 Cutreat tool support for refactoring .,

3.5 A design for an introductory refactoting tool........n...

[E8)
n

LFt

S . A |
LN

A
2
.3 System wide undo .oivniniin
4

-

[
e

4.1 VTR TESL?.crververmreesimirtrmisaninses s sasassresasnmresssssasos

vi

Classes as uset interface OBJCCLS et irrsersrensnens

Methods as uscr interface ObJECtS w.immiiimnrinrireriens

w60

.63
SO 4
S Y |

6!‘1
shinanassarnvarpnariald f

SUUIUTIALY o vevarsciinrsessmsctsseoacsmcntesssosnsceseresesiorsmansarereseoesessessesrasasessres vosrnanae 69

w71

4.2 Testing in QUCATON. ccoceirnvicceermarssinesireriimasssssresessrrimssessaomisssmsssesessasas 73
42.1 The early softwate engineetng apPIOACh ..o ceerreerescremmeessseersessens 74
4.2.2 Eatly teStNG e ceeie vt s s iersantrssessarssis s sessssensrsrssnsenens 10

4.3 Testing techniques for SMAEAIR ... crrmevrnrcarmreceoimensesssssssessssrsoses 78

4.4 Current tool sUppozt fOr tE3HNE .vi. v rmrerressummmcsseseemsessssaresssns senserssssesseos 83
4.41 Symbolic debuggerscueecmrecncriireriasernna s eermcearesesoenes o 83
4.4.2 Unit testing With JUME s 84
443 TESMERION couiiniirentiisssnssssssieasas i sssians e sessasiersseoieessresreressssesisseases e 87

4431 ConsStruction Of FEEE ASSOS oo iisierreertes conearststesssessomenbate s eas R7

44.3.2 Construction Of tESt StDS wecuviererorereireriscersereniessormrrocaseieeresne 89

4433 Validatomcoeeveriraneseneremesissmminmssssissmsesssssesmsssesessressessererss 90

444 BlUE ot i st ess i bt bt 92

4.5 SUIDITIAYY 1o cvreeereicseseronsssaomsisnteneaseesseeanstassssbucsassamstartssms st mmss s ihaseatss st maontoss 03
DESIGN OF TESTING SUPPORT IIN AN EDUCATIONAL INTEGRATED

DEVELOPMENT ENVIRONMENT.......ccocineivn. .. 95

51 TBRIL ettt e o tras s ass bt ese e b e ar s b e ssnrenm e e DD

3.2 BIlie] et ettt st st e s e et e nn s s et 96

52.1 TUML style class AGLAMS ..voeeeveeicneinncsisaissssnerseresonssssinseses 37

522 Direct object MIEIACHON v ierisviserinsinsesssasimisisssissssssssssisssosssssssossssss 98

523 Object ISPEttion i msssssissssssisssersossormssssesorsrnss 99
524 Integrated debugger i e 99
525 Javadoc gOnetation w e sessenmsssnas tisnsne s s serseses KU
5.3 Introduction to testing it BIUe] ..ocrirmcerirosensecrastoncersaiassosssesssonsessss 101
54 TESHNG OVELTICW .ovevrrreanrinrssirssirvsssarssssirasssinmsssssesnsrisssrsrsissssmssssssnenss 101
55 Conventional testing wallr through .. 103
5.5.1 Recording of Ad-Hoc Test Intetacton...cvenccseiene s 104
552 Constructing the test class ..o s rssscsmomcscsmsesrssesronsinee 104
553 Creating a test Method vt esissanssessarsens 106
5.54 Asserting resultSa v sssssssiesisess 107

vii

556 IDCAUNG With ALTAYS <oovovrore oo esesssssssnesisrsesisssssissssssnssssasssssssssosens 109
5.5.7 Testing using standard Java classes . mimaismicnicsscrisniorinsecss 111
5.58 Shariog tCSE ODJECES cun ricverreremrerctistiosris isasrrnsesssessimssmsctseisesisamas o 112
5.5.9 Creation 0F a test fIXTITE i iniinmc sersssssstssisasesmasts 113
5.510 Restoring a test AXOIe. mumumnmsismmmrssiossrrascorssormssossssnrasicrirerons 118
5511 Extending a test AXMUIE i 116
5512 Sileot compPIation.. ... e smmirscssesnenisssmnesisnmsissssns 116
5.5.13 Lests created outside of BIue] ..o rinericecssisineressenencossonnies 116
5514 Rup Individual LeSTS e mmensismcsuimssmssissnennissssississosseiasssseeenss 147
5.515 Testing EXCEPHONS. .cummrimimsmsissiscmsensisrsaresssssssassssmsssssssormsisss L 18
5516 TFree forn a558ITOMS wmermmesromsrmmisertims e ststonssnmsssisesiasnnsess 119
5.5.17 Further ideas. .. e mssissss s mess 119
5.6 Test driven AevalOPIEnt . rnsimsmmsar i sssisessesmmssrsssessanssesisises 120
561 WALKEAIOUGH wvvoovs oo ceraresercnserssssssssesssscmssseseesrsenssimresessssessos 120
6.1 Imnplementation CavIIONIMCDT .- e e micssrsmmosmsesssarsornenss 12D |
6.2 High level OFEIVIEW wmimcrimmnrrnceisnsssenmmssssscs s nsssssstssstsitassisessssinsses 120
6.3 ConStructng test IXtULES ..ovveeerrmensssssinsesissssimrssiscsssssimssssosansrosmess 125
63.1 Java Object Setfalization (JOS) . i ssscnrresinsieniccnnns 129
6.3.3 XMLEncoder and XMEIDECOdET . covmiininimnarienissssisrsssinmens 133
6.4 Creation of the text fixture and test methods ..o ecovesnernicsneens 135
6.5 Architectural changes to support testing ... eevivsnsinmmenieseronensas 139
6.6 Implementng the RUNNEE .. imimmimmrtiisinenoreeemssonreconensss 141
6.7 SUMMMALY oooooeeovensross v eassssmsosssemsssoestsosissessorsssressseoesessmssesssssens 142
STATUS AND FUTURE WORK ..rvcveveceeeisrnsesasnsrississsssssssrosssssiossrossmemssorsscsncnss 543
7.2 Usability Study of the Unit Testing EXtension ... 144
7.2.1 Expermental Procedure SO ONG I.L |
7.22 ReESUUS cisritircoaresasirsssess s emsiraronsinssesarssaasrssssssnssssontississnnsarsesns 146

723 DUSCUSSIOO cerurniniesiarisansstse corinss isress srsssasssnceavsmmssossss ssssass seistinsmssmatsen oo 149
7.3 Fatended funconality ..o e sonniseesiens s ssisssssscsstsosssmssssassasssins 149
7.3.1 Extending test Methods ..o e 149
7.3.2 Support multple test cases associated with a single target class 149
7.3.3 Test coverape analysis. ...t st st ines 150

7.4 Further tool support for introductory software engineenng education

150 _

CONCILUSION c.veceeeeenrriamressaanscosesmrsrosesrssescoss cosnssssosroesentssastssssensessronssassnsoensensmseesesonss 153

ix

LIST QF I'TGURES

Figure 1 - The IBM Visual Age for Java search dialop can search based on a

semantic understanding of the source code..nniinnin @9
Figute 2 — An example of Intelli] QuickInfo showing the popup display that

occuts when the editor caret is placed on 2 method call........ce......... 30
Figure 3 ~ A Smalltalk BEOWSEL. ..oveccmccrinnimmisnisisimssssniissesmromsssssrssarsressmsss seresssssd 3
Figure 4 ~ A “Development Window” in EiffelStudio targeted oo the

STRING class {reproduced with permission from [Meyer2001

PAEE 20]). comrrrrresreessetisne s essss st s s s an s e s e e DD
Figute 5 — The “class” view (teproduced with pennission from [Meyet2001

page 31J}. IoverssaTeaIeR et ebA R st A AR R AR AR et A A DRSS 4 S sen e Rt 36
Figure 6 — The “cluster” view in FiffelStudio showing the empty

MY_CLUSTER that has just been created as a child of the

ROUT_CLUSTER (reproduced with permission from

Meyer2001 page 21T e ssts st sssnsoes IO
Figure 7 - Dtjzva showing cbject interaction being performed in the lowet
Figure 8 - Performing a refactoring with Intellif IDIEA. ... ieccsoianisssannens 46
Figure 9 — The refactoring menu in Tntellil] IDEA. .vevncvrimnsneecsseraresseormesnsinncnns 04
Figurellﬂ — The context in which refactorings are approptate.......iniin 65
Higure 11 — The popup menu attached to a method in the editor. v eicncrvercen 66
Figure 12 —'The popup menu attached to a class in the editor . ..vuwmimriiinn 67
Figute 13 — The History/Undo window in Adobe Photoshop.....ccw i 69
Figure 14 — Two orthogonal classificatons of teSHng. e wereocrcenrsanen 73
Figure 15 - A sample of test code wtitten using the JUnit framework......oc0e0... 85
Figure 16 — The SwingRunner showing the eesult of the EmailTest. ..oviiniirnnen. 87

Figure 17 — Construction of “steps” in Test Mentor (reproduced with

permission from [Sivermark2002 page 92]). coieesiessiionsicecrssnsrnnennn 88
Figure 18 — Recording object interaction with Test Mentor (reproduced with

petrassion from [Silvermark2002 page 84]). .ccvviieiiimsisnesmninnens 90
Figure 19 — The main Blue] window showing the UMIL style class diagram and

objects on the Object bench. i e 96
Figure 20 — The popup menu of a class 10 BIUC].. e 97
Figure 21 — Paramerer passing when constructing an objectin Bluej................... 98
Figure 22 — InSpecting 811 ODJECT v ns s semsssst s amsssssssissstsssnsans 99
Figure 23 — The Blue] debugger. .ottt ettt saviseas 100
Figure 24 — The Blue] system showing the addidon of the unit testing

FUNCHOTALIEY. vvvvveverens s cerssssmsesossssosssssmssisseenenssmssssssesssessiossrensnsseisnee H02
Figure 25 — The popup menu for creating a new test cass..oe mimnermimen, 104
Figure 26 — The popup menu for creating a test method. c . 106
Figute 27 — The result 20d 4586rtOn dialog. .. sssmmssieies 107
Figure 28 — The unit test source of a method created through Blue]

interactions in the Parserl'est dass. .. 108
Figure 29 — The dislog showing the result of running three tests......cocoevr. 109
Figure 30 — The result and assertion dialog for an az£ay. vuvewervevscscereninenssvinenn. 110
Figare 31 — The unit test source of a basic method created ihrough Blue]

interactions in the ParserTest cass.. s 111
Fipute 32 — A java. io.StringReader object on the object bench. The

popup menu shows the method calls which can be made on the

ODBJECE. et miss e e s b s ssas s s ssas s L 12
Figure 33 -- The unit test source for a method created using the Java

StrngReadet class. oo mssseisearssenoneene. 113
Figute 34 —'The method call dialog executing Room’s setExits() method.......... 114
Figure 35 — The result and asscrtion dinlog when the object returned is already

on the Objt;:ct DEACK oot srenenensissronmsrecs 119
Figure 36 —The unit test source for a test method penerated when an

eXCePHON &8 CAUBNL. crrvric i e s esenies 118

Figure 37 — The free form assertion Qalog, «e s mrimmmmirimnisesssssssine seariessssceans 119
Figure 38 -~ The vnit rest soutce for 2 TDD method in TransporterRoomTest. 121
Figure 39 — Editing the TransportetRoomTest in the Blue] editor..........o.ae- 122

Figure 40 — A simplified view of the Blue] system. .. . 126
Figure 41 — A GUI component serialized to XML using XMLEncoder and
how the component would look as Java code. v 133
Figure 42 — A graph recording the transitive closure of all operations on the
OBJECE A —ororrrssnesssesssssomesmeseorsemsss s asssserseentssssossomseeonnses 135
Figure 43 — The objects on an object berich recorded as a sequence of
OPEEALIONS. vovvvensmrerssrrivssronssssssissansssomassstssmss sesssopmas s rassssossanceses vorssrseresssrenss 137
Figure 44 — Using the scoping rules of Java to allow the “result’” vadable to be
reused withia a method. .o s 139

T Chaprer 1

INTRODUCTION

he philosophy of what to tcach in introductery computer programuning
T courses has changed markedly over the past thirty years. Scanning the eardy
ACM SIGCSE proceedings, onc sees a discipline struggling 1o establish itself, as
new commputer science departments formed from the existing mathematics 2nd
physics departments in universiies. Much of what was taught reflected the
backgrounds of the departments, leading to an emphasis on numerical methods,
computational complexity theory and proofs, alongside courses in the rapidly
advancing arcas of operating systems and computcr hardware [ACM1968].
However, some prescient insights were made that are now statting to be reflected in

the modern approach to teaching introductory computer programming:

“In the design of this comrse I haw taken a much broader view [of the meaning of software
engineeringl. I take the view rhal programping is tanght in our basic conrses as a sole activity,
Suck courses teach prograsmming techniques that are suitable for use by a single person construciing
a program which will net be fouched by other people. In contrash, I jfeel that the essential
charatteristic of @ software engineering task is ibat many pegpie will be involved with ihe product.
Either several peopls will covperate in producing it, or it will be nsed or modifitd by persous other

than the original writer”
-~ David Parnas ‘A Conrse on Softwars Engineering Technigues” ACM SICGCSE 1977

As the decades went on, computing cutticulz evolved along with the discipline
itself. The 80’s saw a shift to more experimental work as computing power became
increasingly accessible [ACM1979]. Into the 90%, we saw an emphasis on algorithms
and data soucrures, although mote recognition was made of the importance of

software engineeting skills [ACM1991].

13

The major change in teaching now as we enter the 00’s is the change to object
odentation and the cmergeace of sofiware engineering skills in introductory
courses. The shift from teaching procedural programming languages to object-
otented programooing languages, and the emergence of softwate engineering as a
separate discinline, has meant that other skills now need 10 be introduced to first ‘

year students 1 best support the new paradigms.

The inroduction of object-oriented programaming has mandated some changes. For
instance, code reuse is now an ntegral part of programming and the use of class
libraries is a required skill for any competent programmer. Time must now be set
aside for the introduction of these standard class libraties. In fact, some of the time
that once may have been spent learning how to imiplement certain data structures
may now nced to be spent lcaming how to use standard implementations of these

datz strocrutes.

Cther changes have been enabfed through the introduction of object-orientation.
Modern praphical uset interface toolkits and testing frameworks have 2 simplicity
and clarity now that was not obtainable in the world of procedural languages. Lhis
clarity now makes it feasible to introduce these topics to students in an in troductory

COUrsC.

The software engincering skills that are being introduced flow on from the change
to object-orientation. Reasopably complex programs can be constructed and
presented to students with an appropriate level of modulatity, such that they are
only required to modify one class, yet perhaps undetstand the design of three ot
four other classes. Tt is finally possible to have students wotk on “large” programs
without overwhelming them with complexity, and vet not requiring too much hand

waving to explain away the advanced classes.

Other important software engineering skills such as teamwork are better supported
because there can be a much clearer separation of concetns berween component

groups within the team. Similarly, testing is more effective with object-odented

14

code because it is easier to isolate units of the overall system and test these
individually.

How then have the tools we use in introductory teaching changed with recent
curdeulum developments? It is true that integrated development environments have
become larger and more functonality has beea added, yet very little has changed
about the fundamental way in which they work. They are still very much odented
around the concepts and abstractions of procedural programming. We coutend that
some aspecis of teaching object-orientation and software engineeting are not well
supported by tools that are currenily available for introductory students. The
purpose of this thesis is o investigate this claim and to propose remedics for some
deficient areas of software engineering education by designing and implementing

extensions to an integrated development eavitonment.

Chapter 2 provides background to the software engineering discipline and develops
a set of software engineering tasks through which existing software tools are
evaluated. We idendfy two areas where ewsting wols are defident, namely

refactoting and testing.

In chapter 3 we discuss the area of refactoring and the importance of suppoit for
refactoring from software tools. A design of a refactoring tool especially designed

for introductory students is presented.

Chapter 4 discusses the area of testing and looks at approaches o teaching testing
in first year courses. From dxs analysis, we lead into chapter 5 in which we describe
the design of a new and novel tool that integrates support for testing within the
Blue] programming devclopment environment. In chapter 6 we then discuss the

implementation issues arising from the addition of testing support to Blue].

Chapter 7 discusses the status of the work that has already been performed and
contains some ideas for future work. Chapter 8 provides a conclusion and summary

of this thesis and its conwibudons.

16

2 Chapter 2

INTRODUCTORY SOFTWARE ENGINEERING EDUCATION

he aim of this chapter is to introduce approaches used for introductory
T software engineering ¢ducadon. We begin by examining the software
cngineeting body of knowledge, and identifying significant educational approaches
1o teaching in each knowledge category. In particular we ook at the part that
software tools play in the teaching of these concepts. The latter part of the chapter
concentrates on the software product engineering categoty since this an area which
we feel can benefit a great deal from the use of software tools. For topics in this
category we look at the tasks that students ate required to petform, the suppott
software development tools give them for perfonming these tasks, and the suitability

of these tools for introductory students.

2.1 The Software Enginceting Body of Knowledge (SWE-BOK)

It is the contention of this thesis that many areas in software engineering can be
introduced to students in first year with appropriate support rom software tools. In
fact, we believe that the move to object-orented programming in {iest year has
made tool support essential. An evaluation of the strengths and weaknesses of tools,
however, cannot be performed against generalised notons such as design,
maplmnéntaﬁon or testing, A better approach is to identify practical tasks that

students perform in frst year and evaluate tools against thesc corctete tasks,

In attempting to identify some of these practical tasks, we will start by looking at
recent efforts to establish 2 body of knowledge' for software engineering. ‘This body
of knowledge will lead us through the key concepts of softwate englneering and

Alow us to discover a set of tasks that ean be used for evaluating tool support.

1 Abody of knowledpe is an attempe 10 codify and categorise the nature and eontent of 2 discipline.

17

The Softwate Engincesing Body of Knowledge (SWE-BOK) [Hilburn1999) is an
effort of the SECC (Software Engineering Coordinating Committes), a joint
commitice of the Association for Computing Machinery [ACM) and the JEEE
Computer Socicty JEEE-CS). The development of the SWE-BOK was motivated
by “the lack of a dear and comprehensive understanding of the natute and content
of the software engineerng profession™ [Hilburn1999 page 1]. The SWE-BOK scts
out to define a hierarchy of concepts in software engineeting. At the top level are
the four Knowledge Categories (KC). These arc:

1. Computing Fundamentals

2. Software Product Engineering
3, Softwate Manapement

4. Software Domains

Within each KC are Kopowledge Areas (IKA). Finally, within each KA are
Knowledge Units (KU) which define each individual atornic concept.

In the following sectioas we will look at each categoty and identify methodologics.
for teaching in the area at an introductory level Of patdcular interest will be the
suppott provided by software tocls for this teaching. The support that tools provide
can be twofold; firstly, some software engincering concepts are naturally tool based
and learning a tool is a necessary patt of mastenng tt:u: concept. For instance, using
a compiler, or the use of an integrated development environtuent falf into this
categoty. The second form of support that a tool can give is in reinforcing some of
the concepts of software engineering that may not normally involve a specialist tool.
For instance, a tool can be used to visualise an algorithm which helps the student

learn how the algorithm warks.

It should be noted that we will deal with knowledge categories out of sequence
compated to their ordeting in the SWE-BOK., We will leave the Software Product
Engineeting categoty until last as it contains the majotity of the topics that are of

interest when looking at tool support.

18

2.1.7 Computing Fundarsentals
This knowledge caregory covers the fundamentzl conceprs of coraputing such as
algorithms and data structures [Ginzt2001], computer architectare, mathematical

foundations, programming languages and operating systerns [Hughes2000].

Thete are two main schools of thought as to how a first year compudng cousse
should be sttuctured. A “depth-first” course emphasises one programming language
and concentrates on teaching this for the introductory course. A “breadth-first™
approach introduces selected topics from cach of the computing fmdamental
knowledge areas, with less of an emphasis on programming lapguages. Both
approaches are equally valid and as the use of tools is not affected by the choice of
coursc structure no morc will be said about this topic [McXim1996).

Another contentious question in computing education is whether to teach
procedural or object-oriented programming i the introductory course. Much has
been written about this topic over the last ten years but it is generally recognised
that an object~-odented approach is preferable given the availability now of suitable
object-odented languages for teaching (e.g; Java, C#) [Reges2002]. A treview of this
debate would run into many thousands of words 56 we will assume in this thesis the
validity of the object-otiented approach. As we will see, the change to aobject-
orented programming has raised many issues that make adequate tool support even

more crucial.

Unlike some of the other knowledge categories which we will look at later, the
concepts in this knowledge category do not require the use of softwate tools in
order (o be taught effectively. However, there has been some work in this area with
tools that are pedagogically designed. These range from Nachos [Christopher1993),
a simulated operating system fot operating system expetimentation, to SPIM

[Larus1997), a MIPS R2000 simulator to help leam computer architecture.

19

Some have proposed tools to help in algorithm visualisaion [Naps2000] although
the usefulness of zlgorithm visualisation tools withourt interactive feedback has been
questoned [Stasko1993] [Jarc2000].

2.1.2 Software Domains

This knowledge category specifies software domains that involve the application or
utlisation of knowledge from computing and software enginecring. The domains
indude artificial intelligence, database systems, burnan-computer interaction and
real time systems. These domains ate generally taughi in specialised courses in later
years, not in an introductory programming course. Because the domains are 5o large
and quite specialised, we will not discuss them any further and instead refer the
interested reader o the major computer science educational conferences, SIGCST

and ITIiCSE for examples of tools and methodologies.

2.1.3 Softwars Managemsent

This knowledge category specifies the dorpatns that iavolve managing a project and
managing the peaple working on the project. The knowledge arcas of this category
are project management, rsk management, quality assurance, configuraton
manapement and process management. The skills involved with many of these areas
are very much people skills. Whilst extremely important, they are gencrally not
taught formally at an inttoductory level. Instead, students gain expenence at project
management by being involved with group work and perbaps by being asked to

develop on-paper testing plans.

There has been some work on introducing software management: into introductory
curricula. The usc of the team software process (TSP) and personal software
process (PSP) [Hilburn1997] has students evaluating their own project’s success and
the success of the process of creating the project. This teaching approach is
discussed in more detail in section 4.2.1. Web-based data entry tools have been used

for data collection in one implementation of the PSP [Postema2000)].

20

The tools for softwate management are spccialised project management tools that
allow the construchion of vadous charts and timelines. Fxamples of some
mainstream software in this category are Microsoft Project and Rational Concepts.
Becanse of the professional nature of these products they are not suitable for

studenrs at an introguctory level [McIDonald2001).

2.1.4 Software Product Engineering

'Tradigonally, software product engineering and in patticular, coding and testing;, are
taught before software management becavse it is generally accepted that software
management cannot be understood reasonably without any expetience in actually
engineeting softwate. This makes it a good candidate for potental introductory tool

S‘UPPOH‘.

The softwate product engineering categoty is also an interesting category for
investigating tool suppott in introductoty teaching because many of the topics

consist of tasks that require tools in order to perform them effectively.

This knowledge category is split into five knoﬁ;dge areas: requirements
engineering, design, coding, testing and operation and maintenance. These in turn
are split into many knowledge units. In the following section, when each knowledge
area and knowledge unit is discussed it will be accompanied by its KA or KU
number allowing it to be referenced in the SWE-BOK document. For many of the
units we will identify a task that cither requires or can be aided with the usc of a
software tool These tasks will be highlighted in bold and will be discussed in mote

depth from secdon 2.3 onwards.

2.2 Software Product Engineering — further analysis

2.2.1 Software Reguirements Engineering (KA 2.7)

This area locks at techniques for “establishing a2 common undetstanding of the
requirernents to be addressed by a software product” [Hilbural999 page 17).
Requirements engineering can be done in an ad-hoc manner in introductory courses

(the specifications of an assignment may be deliberately obwse or incomplete,

21

requiting (ke students to ask the teacher for more details) but a formal reatment of

it will usually be left for Iater year courses.

222 Software Design (KA 2.2)

This area is about the formaton of a plan detailing how the requirements for a
software product aze to be met. Most of the tasks in this atea ate paper/whiteboatd
tasks and do not need any support from computer tools. However, there are two

units of the area which can use tool support.

The Abstract Specification (KU 2.2.2) unit involves learning how to specify objeet-
otiented designs, structured designs and real-time systemns designs. The tasls that
intoductoty students may be required to invoke the use of vanous design
methodologies to design a system, and then draw designs in the formn of class
diagrams and sequence diagrams,

The Interface Design (KUJ 2.2.3) unit is concerned with the design of the boundary
between the software system and the user. The task of designing these interfaces
may be aided by software tools such as a GUI builder. A GUI builder can be used
to create graphical user interfaces quickly and easily. Some paper tasks can

involve the evaluation and comparison of existing intesfaces.

2.2.3 Software Coding (Rt 2.3)

‘This area deals with the construction of software to meet the criteria specified in a
design. The Cade Tmplementation, (IKU 2.3.1) unit is concerned with knowing about
vatious programmiog languages and programming paradigms and bow to use
source code development tools. Tools are used for entering and editing
programs and the student needs to learn the use of the system’s build tocls in

order to build programs.

The Code Reuse (KU 2.3.2) unit is concemed with using existng code and libraries
of code in programs. It also deals with techniques for developing reusable code.

The tasks that students will be faced with irt vhis unit are reading and understanding

class intetface definitions and browsing latge class librarits in order to find classes
that arc suitable for rense. Tools which help visunalise the library of classes and

navigate through these libraries are of use here.

'The Code Standards and Docamentation (KU 2.3.3) unit is about docurnentation
standards for software and the development of intcrnal and external program
documentation. Tasks that students may need to perform are searching the
documeunrtation to find out more about a class or method given its name ot
method signature. They also may want to search the documentation based on 2

class keywords. Ancther rclated task is the task of creating the documentation.

224 Software Testing (KA 2.4)

This atea deals with establishing the cotrectness of 2 program. It involves testng of
all scopes, from unit testing (KA 24.1) through to acceptance testing (KA 2.4.3).
Not all forms of testing will be appropriate for introductoty studeats. For instance,
because of the small scale of the software projects that they may work on, the
difference between integration (KA 2.4.2) and system testing (KA 2.4.3) is probably
not great, and this distinction may not be worth emphasising Some other elements
of testing such as performance (KA 2.44) and installation testing (KA 2.4.6) ate

also topics that are best left to mote advanced coutses,

For cach of these testing scopes, students will need to develop test plans, This is an
~emraisc that can be done on paper. The tasks of implementing test cases and
executing test cases are tasks that can be aided with softwate tool support. As
part of the day to day activities of developing software, students also may test their

code by running and debugging theic programs.

2.2.5 Software Operatton and Maintenance (K4 2.5)

This area concerns the “methods, process, and techniques that support the ability of
a software system to change, evolve and sugvive” [Hilburni1999 page 18], The unit
Sofrware Maintenarce Operadons (KA 2.5.2) deals with all aspects of maintenance

such as fixing bugs, refactoring code to make it more maintainable, and adapting

23

software to work on other platforms. Whilst the scale and time span of projects
undertaken ia 2n intreduciory course is quite limited, it is possible to introduce
some of these aspects in the course of the student’s day to day programming. With
the improved tool support for refactoring and restructuring now available there dis

more poteatial for introducing thesc tasks to students at an early stage.

The Software Installetion and Operation {IKA 2.5.1) unit deals with techniques for
instaliing software products and cperation of products, One aspect of this of
interest to inttoductory swmdents is integrating external resources into
development cnvironments. This can occur when a teacher has provided an
external resource {such as a class library) that is needed for a project. Whilst some
laboratories will automatically configute the student’s development environment for
new external resources, students may need to deal with integratng these resources

on their home compurng platform.

2.3 Software Product Engineering - tasks

In the previous secton we have looked at all the knowledge upits that make up the
Software Product Engineering category and Identified a set of tasks that students
may be requited to perfottn. We have attempred to jdentify the tasks from the

product engincering domain which we feel can tmost benefit from tool suppore.

The identification of tasks gives us a framework for evaluation of the usefulness of
software teols that is more “testable” than merely looking at o list of software
engincering topics, The task list is certainly not definitive though; there may be
some tasks that could be added or tasks thar could be split into other tasks.
Howecver, it gives us a good starting point for our evaluation of softwarc foo]s for

introductory software enginecring,

As a summary, the list of tasks iz presented in the following table. The assignment
to general categores {Le. design, cuding, ctc) is not an attempt to classify tasks and

thereby present a taxonomy of tasks, it is merely to identify the knowledge area

from which the task was first identificd. Some tasks such as debugging could easily

be p]acecl in rnultiple cafegoties.

Design Design a system and draw design diagrams (see section 2.3.1)

Create graphical vser interfaces {sec secton 2.3.2)

Coding Search and create documentaton (see section 2.3.3)

Enter and edit programs (see section 2.3.4)

Browse class libraties (see section 2.3.5)

Build programs (see section 2.3.6)

Testing Implement and execute test cases (see section 2.3.7)

Run and debug applications (sce section 2.3.8)

Maintenance Refactor code (see secton 2.3.9)

Operations Integrate external resources (see section 2.3.10)

In the following sections we examine each of these tasks in more detail and identify

potential tools to assist with theit intraduction.

2.3.1 Design a systems and draw design diagrams

Designing a system using object-oriented design techaigques can be done in front of
a computer or can be done as a paper based task. The usec of CRC catds can allow
groups to design systems without needing to use a computer [Beck1989]. Designlag
with CRC cards involves identifying (Cjlasses, their (R)esponsibilities and their
(C)ollabotators in the system. These are documented on small index sized catds,
with the dass name at the top, responsibilities listed down the left and collaborators
listed on the bght. Execution scenarios are used to discover classes needed and
zefine the design. When an execution scenario requires a tesponsibility not alteady
covered, either a new class is created, or cxtra responsibilities are added to existing
dlasses. [f adding a responsibility causes a class to become too latge, it is split and its
tesponsibilities are copied over to the new classcs. Some work has beca done on
evaluating CRC card design in the twaching of an introductory subject
(Johansson2001). |

25

Smidents may also be encouraged to construct designs on 2 computer using UBML

disgramming tocls such as AzpoUML or Radonal Rose [Boges1999]. A problem
with using these tools in inwoductoty educadon js that they are designed for
professional software engincers and hence often conmin concepts and functionality
that is imappropriate for introductory stndents. Cne aspect of this advanced
funciionality is round trip engineedng, which allows UMIL models to be converted
into code and cxisting code to be converted ik mto UML models. This
functionality can lead studenis inlo constructing lucge, complex and inapproptiate
systcms because the generaton of the code skeletons is automated {and the
complexity only becomes a problem when the smudent attemnpts to fill in the

skelcron).

A more approprate tool fos introductory students may be a general purpose
diagramming tool such as Visio [Eaton2001] which can be vsed 10 construct simple
UML diagrazns.

232 Create graphival nser interfaces
The use of graphical vser interfaces (GUTs) in introductory courscs is becoming

increasingly populat. The vwse of GUIs has two benefits for students:

* most inodern programming invelres GUIs so it is a usehdl skill to be
introduced to (Culwin1999]; and '

s guipaical interfaces are appealing to students and keep them interested in a
project [Mutchler1996],

There are ‘hose who. oppose the inwwoduction of GUls and event driven
programinizg, Some claim that there is not enough tme to deal with user interface
construction 36 an introductory cowrse without skimping on other more
fundamesial ateas. Others claim that the very nature of event driven programming

is too complex to be introduced to beginning students. An excellent surnmary of

these issues can be found in [Bruce2001).

Many program development environments come with a graphical user interface

builder tool. This tool allows the rapid consttuction of interfaces vsing simple drag
and drop of the interface compogents. As with UMIL mols, it is important that
students do not get carried away constructing large complex user interfaces, and

then not have time to actually implement the project’s functonality.

A way to deal with the complexity of GUI builders and the event driven
programming mode may be to use GUI toolkits {Rasala2000] [Rasala2001]. A
toolkic provides a simple set of classes that allows GUI's to be built without many

of the complicated aspects o€ GUI programming.

2.3.3 Search and create documentation

The task of scarching for a class with piven atttibutes is a very common one fot
programmers. 1o pardcular, the inexperience that students have with 2 language
means that they are often not able to temernber the types of atguments for a
method call or the list of methods available in 4 class. In some cases a student may
need to seacch for classes which contain a keyword in the documentation or which
match somme natural Janguage quety. For all these cases an effectve searching tool is

required.

The searching task can be broken down into two subtasks. Firstly, how (and whar)
information about the classes in the project is cotered into the projects
documentation. Secondly, what is the method through which this information is

queried?
Information about the classes in a project can come from varied sources.

(1) Informaton added manually.
When a student adds a class to a project they may also be required o add

documentation such as keywords or descriptions of funciionality.

27

(2) Information derived automatically from the classes” source.
At some point in the development process tools may be run which
automatically generate information from the clagses in the projece. This may
be embedded documentation (for example javadoc, which is 2 standard
for embedding documentation in the comments of Java programs
[Gosling1999] or the concept of literate programs [Ramsey1994]), or maybe

an intelligent automated analysis tool.

(3} Information deriwed from usage patterns.
It is possible for a system to collate information about the frequency or type
of usage which classes get and stote this information, A sitmple example
would be to record the most popular casses by varous criteria such as

number of tmes used as a superclass or number of instantiations.

The Melmoth systern [Hitchens1994] suggests the use of a thesaurus to expand the
usefulness of keyword searches although its effectiveness is impeded by the
difficulty of creating an effective thesaurus.

The querying methods described above are most cffective when used in
conjunction with the browsing techniques detailed in section 2.3.5. Queries may not
find the ideal class that the student desired, but they ate often a very good starting

point for a browsing process.

T'ool support for seazching is generally very good. However, there are only a few
TDEs that support a uniferm mcchanism for searching of all informaton aboul a
class. For instance, Visual Age for Java (see Figure 1) has a comprehensive seatch
dialog that allows scarching with wildcards within the names of types, methods,
fields and constructors. Visual Age uses the scmantic undersranding of the source
code built during its compile phase w allow searching of these specific Janguage
structures. However, this search dialog cannot scarch the associated class
docmnentaﬁoh, aor go directly to the class documentation once a dlass is found,
despite the class documentation being available within the 1DE (and iadeed

searchable through a separate mechanismy.

28

Sedrcﬁ gkring: (% = sny ‘steing). . S o
| int sampleMathod{Sring, *)| o =
[(R s

£ Conslrubor 7 Methad (| el

ExamplaStrlrnq tos&m{*"ﬁhif)'? 3 , ST |

s | cem |

Figure 1 - The TBM Visual Age for Jave search dislog can search hased ena

scmantic understanding of the source code.

2.3.4 Enter and edit prrograms

An editor is the tool that most first year students will spend a significant amovmnt of
theit time using. Luckily, student’s familiatity with word processots such as
Microsoft Word means that leaming the use of text editors in the prepatation of

their program source is not a significant hurdle.

Text editors for program development are often augmented with syntax
highlighting, where keywords of the programming language are shown in alternative
colours, Many also implement bracket matching which shows the corresponding
opposing bracket whenever the cutsor is over a bracket chatacter. ‘U'he colous
highlighting helps students visually distinguish various parts of their source and the
bracket matching helps them track down unmatched brackets (a frustrating error

for new programmers).

A program development envitonment that maiatains meta-information about the

symbols of a sovrce file (nommnally by keeping a parse-iree after compiladon and

29

ELOULEL LU Y CEraLlElL L oeny e peE L i 3igsduure T |) 7

lf-]rLiﬂﬂlj prab dic

rethod setBackgrouwnd |
jawa.awt.Color bo)
ef clas® javax.swWing. JComoRent
A = ety type: wvoid
ca. sel:tt.i ovarrides nzthod of class java.awt, Cocmonent

ea. 9etBafkgrownd {t1A% . getContentPane (] . ge tSackground (],

ans., len
vExcep

Figure 2 .. An example of Iatelli] QuickInfo showing the popup
display that occurs when the editor caret i placed on a merhod cak.

linking the resolved symbols back to their location in the soutce) can offer some
additional searching functionality to programmers as they edit programs. At the
point wherc a programmer types in a method name, a search is automatically made
for the details of that method or class. The result of this search is then discretely
displayed to the programmer at the point where they are editing.

An example of this is Intelli’s Quickinfo (see Figure 2) that displays metadata of 4
method and its class whenever the editor catet is placed oo a method call in ¢he
sonrce text Both Microsoft Visual Studio and Borland Delphi have similat implicit.
searching of methods to help programmers complete method calls. This
functionality helps students determine the cortect parametets to pass to methods

and the names of the methods available in a class.

Some types of editors 2im to assist students by only allowing syntactically correct
programs to be typed into the editor [Khwajal993). These syntax-directed editors
may be of essistance to students eardy on but they do not provide an easy
progression to the gbod editing practices required for more mainstream editors of
professional development environments, This may be the reason why they arc

rarcly used these days, even io introductory environments.

2.3.5 Browse class fbraries

While the concept of Libranes of code is not a aew one, the introduction of object-
vrented programming to first year students has led to an explosion in the scale of -
reusable code that is available to students in code libraries. For instance, the

standard C library contains approximately 200 functions that can be used by

30

prograrniners [Plauger1992]. We can compare this to the standard Java class

libraries that contain almost 1500 classes, with each class conrtining tcns to
hundreds of methods [Gosling1999]. Because of the size of the class libraries that

have to be dealt with, effective browsing techniques have become important.

The searching techniques described in secton 2.3.3 are useful whete specific
informaron is known about the class desired, but there are many sitnations where
the student may just have 4 vague feeling for the type of class that they require.
Browsing a class library lets them pain a broad ovetview of the classes available and
where to find them. It is important that the browser does not overwhelm the
student by presenting too many classes at once. To achieve this, the browser must
select a subset of the classes to display and it must display bref yet pertinent
information about each class. Section 2.3.5.1 discusses this in mote depth. Because
only a subset of all the classes is displayed, it is also important that the student can
navigate amongst the subser of classes, quickly moving through the dasses in order
to find the desired one. Section 2.3.5.2 tallss abour this navigation in detail. Sections

2.3.5.3 and 0 provide specific examples of browsing tools,

2.3.5.1 Visualising relalionships

There are many options for how classes in a browser will be displayed. In the
simplest case, the classes could be displayed alphabetically by their names. More
commonly, browsers will use a graphical notation such as UML [Fowler1997) that
shows vatious forms of reladonships between the classes being browsed. Fach
node of the display is a class and these nodes may be augmented by colour or
pattern to indicate other features of the classes. When a diagramming techaique is
being used, browsers may allow the author of the classes (or pethaps the vser of the
browser) to manually layout classes in a diagram. Another possibility is to

automatically layout classes according to some algotithm [Seemnann1997).

A common technique for browsers is to display the inhetitance relanonships
between classes in a tree form with collapsible branches to allow the user to view

only the parts of the tree in which they are interested. This form of browsing

31

becomnes problematic in languages with multiple inbesitance because the

relatonships cannot necessarly be described in a tree form,

Whilst ipheritaace rclationships ate the most common relationship used for
browsing it is interesting to consider what other relationships may be used. Broadly,
they can be broken into two categories. Technical relationships such as inheritance
and dependencies arc nosmally part of the metadata of the systemn, either retrievable
directly from z lenguages’ reflection interface or else easily derivable from the
source code. These relationships are often able to be browsed in systems because

they can be calculated automatically.

The other broad atea is semantic relationships such as functional similatity. For
example, it may be useful to view only those classes that serve a similat purpose to a
list class such as a stack or a queue. Another possibility is the desire to browse
classes bascd on whether two classes are often used together. For instance, it may
be useful in Java to see the reladonship between the ZTMLDocument class and the
URL class as these ciasses are often used together. Semantic rclationships are not
commonly supported because the information required to make them work muse
be supplied mapually and is difftcult to keep up to date. The automaiic inference of

these semantic relationships is an interesting area for future research,

The success of all these visualisalion forms depends on the complexity of the
classes being browsed. If there are too many classes, the smdent may not be able to
form a mental pictute of the dasses’ functionality [Pintado1990]. Some form of

filtering may be required to restrict the display in this case.

2.3.5.2 Navigating relationships

The telationships between classes form an obvious basis for navigation because the
relation defines a commonality between two classes. If we are looking at one class
which does not quite fit our needs we can navigate to an ancestor in the inheritance
hierarchy or perhaps another class with a sitnilar usape patitern as this gives us a
good chance of finding the class we desire. -

32

Figure 3 - A Smalltatk Browser.

It bas been noted [Cook1992) that whilst the inheritance hierarchy is a good
navigational zelationship for developers who have authored classes, it is nor
necessarily the best for students looking for classes. Students who are looking for a
class to use should start with the most specific (the leaves of the inheritance tree).
The problems with navigation are sirnilar to those with visualisation in that some of
the semantic relationships that would form an excellent basis for navigation are

difficult to enter and maintain.

2.3.5.3 Swmalltalk

The Smalltalk environment s interesting because it was the first object-oriented
programming environment and despite many different implementadons over the
years, current Smalltalk implementations retain much of the same logk-and-feel as
the eatliest versions. Central to this look-and-feel is the importance of a class

browser within the environtment,

Smalltalk class browsets are structured as a row of scrollable list panes, each
displaying a different level of granularity. The left most list displays general

categories, the ceatre left list displays class names that belong (o the chosen general

33

category, the centre dight list displays categotics of methods within a class (such as
inftialisation, private) and fnally the fightmost list displays the actual method names
of a dass. When a method is selected in the rghttnost pane, its soutce is displayed
in the botrom pane (see Figure 3). An alternative approach that is used by some
Smalltalk systerns is to replace the two leftmost panes with a class bierarchy
displaved as a tree siructure (Smalltalk only allows inheritance from one parent class
and all classcs must have Object as an ancestor sc the display of the classes in a tree

structure is trivial).

Browsing in Smalltalk is like looking at an exttemely large tree structure with a view
at a numbet of fixed heights. Each view can navigate amongst its siblings but
cannot move up or dowa the tree and changing the view at the top heights

automatically moves the lower views across into the same sub-tree.

There are 2 few pitfalls with the Smalltalk form of browsing. Fitstly, it requires
accurate categorisation of both classes and methods in order for the programmer to
be able to find source they want. Not only must programmers take the time to
categorise their classes, differences in intcrprcmﬁon between programmers could

lead to confusion as to the category to which a class belongs.

In the Smalltalk systems that display the class hicratchy in the leftmost pane a new
problem is introduced. Rather than navigatdng a single tree¢ with a uniform
mechanism, introducing a class hierarchy in the leftmost pane means that the
hierarchy tree must be navigated #szhin the pane (options for this are displaying the
wholc tree or allowing sub-trees o be expanded and collapsed) and then another
tree is navigated berween the panes. This dual interface mechanism is cumbersome

and confusing,

Anorher pitfall is that because there are a fixed aumber of heights, the wee of
classes and methods can become extremely broad. This problem is overcome in
modern object-oriented languages by allowing nested namespaces (for instance

packages in Java allow the creation of a hicrarchy of namespaces). In Smalltalk

34

) .3 STHING mretuglai h.\-i;,njlnl'nnl mm nmpnaq,

{Eﬂ -“'Iq' .ﬂ oo ke k. 3& ﬁ l‘bc\ums{#ﬁsm &) seerch [conteuc: | ﬁ ST 2

4= *ﬁmmum[——_—ﬁl’qmdrﬁﬂ m,g. ﬁl
FEGE ﬁ]&l&)& E‘E@aa,qﬁéﬁ

Featumo,.'..-_-....- 5 = - \ T -

¥ Eistzolon pe. | 1uﬂ=xinu s
] o ke
g<ﬁ ¥lllokretion uesc::pr.mn [
i ulm neroke = et tacs, fbls t} A irndice
e make_trom_siry 1N % CORELADUES rangs.
| © ol makt_trome - L
- o e i@ ed |
¢! RV | LI_' al — ST : . . -
B AL —&%

@xr%r&»iém}é@mq I LN T

G, H.> INTECER)

Figure 4 — A “Development Window™ in FiffelStadio targeted on the STRING dass
{zepeoduced with peanission from [Meyer2001 page 20]).

however, the lack of nested pamespaces can ceeate a broad tree that is

overwbelming for students.

2.35.4 EjffelStudia

FiffelStudio [Meyer2001] is a development cnvircament for the object-oriented
language Fiffel. Browsing ts considered particulatly important in the EiffelSmdio
environment because “of the speed at which you can construct sophisticated class
structures, making use of inheritance, genericity, the client relation and informarion
hiding...” [Meyer2001 page 17]. Rather than launching a separate browser, the
EiffelStudio envitonment is always in a browse mode, no matter whether editing. or
debugging. Fach “Developnent Window” (many different windows can he opened
at once, each displajing something different) of the environment tarpets either a
class, feature, cluster or tuntime object in the systetn, For instance, when a class is
targeted, its source is displayed in the editor pane whilst other information about it

is displayed in the context pane, This nther information can be simple information

35

FEneHEMs mageom dE . .
] indexing
The View buttons
desacrincion:

t*Seguencial list ithout comritnent to & poarticuelsr seprez

T e e .

B ood VAR & v rwiy

4 L |
T ’falm Externals
Contra o Jnce end consta
L B
Flat Contre tors : Routines
Pascendants Atiributss

Clisertc Supphers

Figuze 5 — The “clacs” view {reproduced with perrssion from IMeyec2001 page 31)).

such as its locaton on disk or more complicated information such as a &iagram

showing the classes’ inhentance hicrarchy {see I'igure 43.
The user can browse to another class through numerous methods

¢ They can #3pe the name of « class into a search dialog to directly target that

class;

* Whenever the name of a class appears in the editor window it acrs 25 a

hypealink which can be clicked on to target that class;

¢ They can go forward and backward through the classes thut have hcen

tatgeted by usiag back and forward navigation buttons; and

o Classes can be added to a “favourites * menu which allows them to be

targeted quickly.

One interesting feature of LiffeiStudio is the “cass” view (see Figure 5) ihat
displays information about a class with a vadety of filters to ailow only cestain types
of features to he displayed. Allowing alternative views of classes is a valuable way of

managing the complexity of object-ostented classes.

36

Like Smalltalk, Eiffel has a flat namespace for classes. Unlike Smalltalle however,
Fiffel has a nested mechanism to help organise classcs into groups, thereby
overcoming the broad trees that can overwheln programmers within a Smalltalk
environtment. The grouping mechanism is called “clusters” and it relates directly to
the direcrory structure used to store the Eiffel files on disk, though the on-disk

structure is hidden from the programmer when using the EiffelStudio environment.

When viewing classes in “cluster” view, HiffdStudio allows the programrmer to
manipulate a diagram displaying relationships between classes {(see Figute 6). Classes
can be hidden on the diagtam if they are deemed unimportant, reducing on screen
clutter. All changes that are made to a class are automatically reiflected in the
“cluster” view diagramn. For instance, if a class is added as an ancestor of anothet by
editing its source, the diagram automatically displays this relationship. Similarly,
changes can be made to the disgram that are automadeally reflected in the classes®

source code,

The “cluster” view not only shows the cluster that is currently targeted, it also
shows those clusters that are children of the current cluster. This allows classes to
be dragged and dropped between clusters, quickly and :asm]y allowing the
otgamsauonal sttuctute of a project to be changed.

2.3.6 Build programs

Most languages and programming development environments have a build phase
whete the source code of the project is compiled into an executsble program.
Studeats must become familiar with the process of building a project, learning botl:
how 1o specify the details of the project to be built and how to involke the build. A
progtam development environment can simplify configuring the details of a project
(providing a user interface to various compilation options for instance) as well as
simplifying the process of launching the compiler. If a program development
envirgmme: & 1s not being used then a tool such zs Make or AN [Ant2002] can be
used as a way of specifying the details of the project to be built.

37

Tontmt 4.l g S [rt clase) (o lestwad .

SX A b[o]T A 2B 0T FE -

: H
b .
o M :
4 :
1
1
]

[—,

Ty

LmE,

Tiguee & — The “cluster” view in RiffelStudio showing the emoty MY_CLUSTER that has just been
ercated ag a child af the ROOT_CLUSTER (reproduced with permivsion from Meper2001 page 2i).

Not all systems have an explicit build procedure. Some examples atc intetpreted
Ianguages, and some modern systems such as Visual Age for Java where the build
process is a continuous one, compiling fragments of code as sooa as they ate

entered in the editor [Nilsson2000}.

2.3.7 Implesment and execnte test cases

The development of a project does not end once code is written. After coding, it is
important that a student test the project to make sure it behaves as intended. The
most simplistic w00l suppott for testing is onc whete the envitonment provides
hooks to launch the application and eapture results. This type of support is very
coarse gmined in that the applicadon must be tested as a whole. When uvsing an
object-otented language bowever, the natural units that the students is dealing with
are classes and objecis. A more advanced tool should allow a finer grained approach
by suppoiting testing of these abstractions. But what level is approprate for
introductory stodents? Do cutrent tools go far enough in supporting testing for
introductory students? We will look at two possible levels that testing support could
be added at, the class level and the object level,

38

23.7.1 Class level
Testing at a class level is often done by requiring students to implement a tmain
method in every class that performs a test on the class. Each class can then be run
as an application in order to see the results. Of course, there are problems with this
approach if a class has more than one test. Then, students ate forced to comment
out scctions of the main that perform one test in order to isolate the test they want
to run. In the end, tests become outdated while they remain commented (and
uncompiled) in the source. A better approach is to use some sort of testing

frarnework to organise the tests in each class.

Some development environments have now integrated testing frameworks such as
the JUnit [JUnit2002] test framework. The JUnit testing framework defines 2 set of
interfaces that define bow tests behave (Test, Testlistener) and a set of
implementations that can be extended easily to use their testing functionality

(Assert, TestCase, SwingRurner).

A JUnit test is8 a standard Java class that inhedts from
junit.framework.TestCase. Within it arc mcthods with names such as
testAddition{) oOr testSort{). Methods can contain assettion statements
which assert a particular condition as part of the test. JUnit provides a GUI ot text
based “runnet” that executes test cases and displays which of the assertions in the

test methods failed.

The integtation of JUnit into development environments is still quite primitive.
Most provide no faciities other than the ability to Jaunch the test “nmner” and a
rudimentary designation of classes in the eavironment as “test” classes. Some now
provide the ability to autamatically generate test classes with stubs based on existing

classes.

More details of JUnit ate provided in section 4.4.2.

39

2372 Odpject levsl

Testing at an object level should allow the siudent to interact with objects in the
systey and test individual methods on these objects. There are very few
environments that support this fine grained testing of object oriented code. Some

systerns thar do allow a limited form of object onented intcraction are discussed as

part of the “Ruaning and debugging” task in section 2.3.8 . Noage of these systems

integrates the object interaction with any other testing facilities they may have. We
have identified this area as one that lacks approptiate tools and this has tnotivated
our work on developing an object testing facility for introductory students. This

work is discussed in chapters 4 and 5.

238 Run and debng applications

Writing and executing tests is an activity that is often performed on completion of

the eoding phase, either aftet the whole application is developed or preferably as
individual classes are completed. However, there is another activity that is akin to !
testing, that is pesformed whilst the code is being written. This form of interaction”
is performed at runtime and involves the inspection of the state of objects in the

system and the exarnination of the behaviour of running code. Most environments

support this activity through the use of a symbolic debuggez. The symbolic
debugger allows breakpoint to be set on code that interrupts the execution and
allows the runtime state to be inspected. Symbolic debugpers behave in much the
same way they did when students were developing with procedutal languages. Few
of them have the ability to visvalise the structure of the objects in the systems or

interact with these objects.

There aze some environments that allow interaction with objects in a direct and
more object-oricnted manner. Whilst most are not specifically designed for
students, they have interesting ideas for ways of dealing with object interaction, A

few of these environments are discussed in the following sections.

2.3.8.1 Smalltalf systeprs

With Smalltalk being one of the first object-oriented langunages with a development
environment, it is natural that one of the first systems involving direct interaction
with object instances was developed within 2 Smalltalk environment, Portia is an
enhanced Smalltalk environment that is fustance-cempred in that it “provides facilities
for working ditectly with objects to debug, understanid and create applications”
[Gold1991 page 62], Portda epbances the Smalltalk environment by adding the
ability to drag and drop instances of objects into the existing Smalltalk debugger,
class hietarchy browser and inspector. It also adds an object repository whose
purpose is to collect and hold object instances. Objects can be dragped from this
repository into any of the ather tools and vice-versa. Utlising standard Smalltalk
techniques it 1s possible to simulate method calls and see how objects behave. Portia
mainly adds ways to manage the complexity of dealing with thousands of objects

and easy ways of locating and dealing with the objects of interest in a system.

The authors of Portia raise a very salient point regarding the usefulness of direct

object interaction. “Existing objects can furnish a wealth of information about their

behaviours™ [Gold1991 page 63]. In a perfect world, all classes would be adequately
documented and so there would be no need for this interacion. However, in a
world whete sometimes documecntation goes astray or falls out of line with the
actual implcmcntaﬁua, the ability to see how an object behaves by directdy

interacting with 12 is an exwemely useful technique.

2.3.3.2 Seff Environments

Seity [Chang1993] is an experimental user-interface for the protoype-based object-
crented language Self. The premise of Seity is to move away from véewqbensed
environments and maove to an objsc-fooused model. The authors of Scity define a
view-focusad environment as one in “which objects are examined and toaoipulated
through intermediaries, cach of which permit a certain view of the objccts”
[Changl1995 page 2]. Fot instance, although the Smalltalk object inspector displays a

patticular object at any one dme, over a petiod of fime the tool’s window could be

41

used to display a variety of different objects. Whilst recognising that with frequent
use, a programimer may begin to regard the object inspector tool as the object, the
chim is that this abstracts and distances the objects. Seity’s object-focused model
says that “the on-scteen representation of the objecr is considered to represent the
object itself, not mercly a singular tool through which the object shows itself”
[Chang1995 page 3). This helps to reinforce to the student the nodon of whar an
object is. Unfortunately, the Seity environment is quite limited in other functionality
that is needed for introductory students and prototype languages such as Scif have

not become popular. Hence the Seity system is not still in active development.

2.3.8.3 OQbject Class Browser

One of the few environments to support object interacrion in Java is the Object
Class Browser (OCB) that was written initially in the context of the Plama
persistent Java cnvironment [Kirby1997]. A persisteat object environment can
potentizlly contain many thousands of objects and may require mudtiple different
techniques to help manage aad discover these objects. The OCB provides onc
technicque which is to visualise each object in the system as a window displaying the
object’s fields and which allows navigation to other objects in the systern through
references from these ficlds. OCB is implemented entirely in Java and uses the Java
reflection mechanisms to inspect the objects in the system. OCB handles potential
confusion over object identity by oaly allowing one window to exist for each object
instance, and if a window already exists for an object that 1s navigated to, then this
existing window is brought to the froat. In this respect it is similar to the Seity

environment discussed above and similar caveats apply.

2384 Drjaa

The Drfava eavironment is a lightweight programming envitonment for Java with a
pedagogical focus [Allen2001]. Tt has a deliberately simple read-cval-print loop
(REPL) interface that aims to minimise the intimidation students feel when faced

with wnting code, ‘The intetface consists of two windows; an interaction window

42

wt Elaga Feraonliat ~ Rantaing a 112% of Pagupns
g ower

“ipalie class Personliac
".- !
: #/ Anezance variabbes = ceplace tht example below kith youg oem
privace Peramlisckode head, vail,cuccenty

('*
*¥ Larsccuekbnn oy objazna cf =luas Bacpenbiac
=y
public Pecsenfdat!)
{
f¥ dmirisllize ansespze vazizhles
Bead » aully

et de el R e

+ foo.append{"seringi®) s
» foo. appeni{Tatting2”) ;
S Epm.weString)
ccacazring) s\‘.rtn'ﬂl

5

L‘?‘?’.'?_"."".‘.1.&“?W.f%;‘ﬁﬂ'?‘ﬂ!ﬁ.i‘?ﬂ?!@ﬁ‘fﬁ”ff'-‘_.'.'.-. R T R e

Il

Fipute 7 — D2rjava showingy object inteeaction beinp performed in the lower panel,

whete Java expressions can be entered and the results are displayed, and a definition

window where Java source for class definitions can be entered (see Figure 7).

The REPL that is the main intctactve intetface for DeJava is a carryover from an
eatlier wroject called DrSchéme, which provided similar features for the Scheme
lanpuage. Whilst the REPL is 2 natural fit fot a functional language such as Scheme,
in an object-otiented languape such as Java the benefits of using it as the sole

interstive interface are not so clear.

We agree with the Drfava authors that 2 REPL provides some useful functions for

stadents;

® the stusly . e, wwrite simaple expressions to experiment with the language

and see ¢ow i bahoves;

e methods can be tested directdy by executing them from the interaction
window, The need for a main method with test code a8 an entry point to

cach class is obviated; and

s the students can use the interactive environment to explore the standard Java
APIs by instantiating standard objects and sceing the results of method calls

on these objects.

However, the disadvantages are that 2 REPL hides from the student the important
concepts of object-oriented programming, namcly objects and classes! Unlike some
of the other objcet interaction systems we have discussed, the DzJava interface does
not emphasise the distincion between objects and classes, does not reinforce the
notion of object ideatty and relies on implementarion of a toString() method for

each class in order to examine object state.

2.3.9 Refactor code
Refacroting is the “process of changing a software system in such as way that it
does not alter the cxternal bebaviour of the code yet improves the internal

suucture” [Fowler1999].

Tool suppott for refactoring is the next stage in the evolution of refactoring as a
software methodology. Automatic tool support makes the dme-cost of refactoring
negligible and mmakes refactoring less of a separate activity and more of an activity
that is parformed hand in hand with writing code. Roberts and Brant, authors of the
Smalltalk Refactoring Browser, have developed some criteria, both technical and
practical, which they believe are most important for tools implementing tefactoring
[Roberts1999b]. The technical criteria are:

e the development of cross reference informaton for the project being

refactored;

* the ability to manipulate parse rrees of the language being refactored; and

e the ability to ensure that refactorings are accurate and reasonably preserve

the behaviour of programs.

“The practical criteria are that the tools are:

e fast cnough that they do not impait the developers wotk flow;
& support the concept of undo; and

o are well integrated into the devclopment environment.

In the following sections we describe two examples of tools that support

refacroring.

2.3.9.1 Smalliall Refuctoring Browser

The first attempt at a 100l thar could automate the steps of rcfac;todng was the
Smalltalk Refactoring Browser [Roberts1997]. The refactoting functiomality was
initially integrated into the standard Smalltalk browser although in later versions it
was implemented as patt of a completely new Smalltalk browser. The refactotings
supported are adding, removing and fenaming methods, vatiables and classes. It is
also possible to perform a pull up and push down on methods and fields, Le.
moving thern to an ancestor in the inheritance hierarchy. Some of the more
corpplicated refactorings it can petrform are adding parametets to a method and

extracting code as a method.

There were three criteria used in building the refactoring browscr. One was that it
worked with standard tools and this was achieved by integrating it with the standard
Smalltalk browser. Second was that it had to be fast, since Smalltalk programmers
are used to immediate feedback with their system. Thirdly, completely avtomatic
organisation was to be avoided due to the importance of naming in the Smalltalk
language. In cases where a refactoring requires the creation of a vatiable or a
method, the user is prompted to eater the name rather than the system altempting

to calculate it antornatically.

45

BT Iet skl ()
rolaen myteint-lemgth » O > spfacnafé].
]

E| L haariepe WD e SN Ay Riaa Pty T

e

‘Hamar

« v squaza(Obyect i1 1 ety = e 8 e e S R I
L1 (sby Lmstaaresr KeplCenli . . CmTTw T
relum ALTagr.a quala([(konleanionsi X i“;“r“‘""‘ et i i . - e
¥ vaud
L ITT W ST ARGy = ne tor s o e
) B - I Hel g
peslie 1at perigert ametl i et =
xtes TYEscus.lengehd et . " imver .
4 Jaemel D rewarg T
pulir wid seeToonilcon 10w, inb Japrt) I
ayleerslieyer] « d0cns . e
Iasuleulanesiveds 2 l| . . . i . R . | e
g . LT SR
Peklir Tren gecTooiiar tndexd | Sl Privioaree o o < o e e Ll I I e

Teiarm apTcons[andmi)s
2

L L L L D L I e

e s e S8l A | o
“pubiie weld pecNenItimd - i

if Tewn Iowa, T o P i 3
yellic vald Talnt)ool: [(EkSCnent &, Craphl JIo L L P et N IR N Fl
8 v = 4 poried s) . H
Ly ey] B . L - o
Car|ing 3 - 95 3 Qayieema denyndyg aee} E . 0 L . o L D Tt e - e A
I¢on 1tot = wyfoanafi]: e T = e T e e e et Ry

S (stec o5 k) comUinest ST B R o J S o
Peem.pUSLIINEE, Br e LV e o [el | caned L[et
PR 1o TV ot LTS - . . . A 5 o 5 :

Figure 8 - Perfonming a refactoring with Tatelli] IDEA.

23.9.2 Inellif IDEA

The IDEA IDE from Intelli] [Inteilif2002] is an advanced [DE for the fava
programining language. It is one of the fitst Java IDEs to support advanced
tefactotings such as extracting code as a method and changing method signatures
(sec Figure 8). It also supports class, method and field renaming and moving. When
evaluated against Robetts and Brant’s critetia for refactoring tools [Robests1999b],
Latelli] passes with flying colours.

Progtess in tool support for refactoring has been very rapid with muldple
refactoring IDEs for Java appeariug recently,. We envisage that the number of
different refactotings supported by tools and the fobustness of their

implementatioas will also improve rapidly over the next few years.

One aspect that has nct been addressed is the application of refacloring tools in
introductory reaching, Clearly some of the refactorings use advanced concepts and
ate only needed in latge, long lived projects. In chapter 3 we address a number of
issues related to refactoring. These include whether there are any refactodngs that
are suitable for first year students and whether refactorng should be presented to

students with a tool that guides them to the cotrect refactorings.

46

2.3.10 Integrate external resources

When class libraties are obtained from: extemnal sources, be it libtaries from external
vendors or class libraries from other stmdents, students nced to make their
development envitonments aware of the library to cnable it to be used. Students
tay merely have to place the library in a certain location for it ro be auromatically
recognised ot may have to perform some manual configuradon steps to integrate it
into their system. Some other functionality may ailow code to be reused from a
centralised code repository without any intervention by the student. This is ideal for
courses where the instructor waats to make new class libraries available to students

as the weeks progress.

Tied in with the issue of integrating class libraries is the issue of how applications
are eventually distributed. If the class library is distributed a5 a single unit, does this
unit get integrated into the resulting application or do the users (perhaps through a
special installation program) neced to perform integration steps to add the class
library to their systems before the application will tun? Development cnvironments

with suppott for this can greatly ease handling of students® assignment submission.

It is normally quite straightforward to integrate a class library into a development
environment. In Borland’s Delphi, the student sclects “Install Package...” from the
menu and then selects the package that they wish to integrate. Ancther example is
Sun’s Java Development Kit (JOK) in which code libraties can be added to the
system namespace by placing the compiled files into a system “extension” directory.

Alternatively, the class library can be specified explicitly each time the JDIK is used.

2.4 Summary and motivatdon

In this chapter we have looked at a variety of approaches for teaching the
knowledge units that make up the software enginecting body of knowledge. In
particular, for the software product enginccting area we have examined the role that
software tools can play in facilitating the teaching of introducrory students.

Additional evaluation of some of these tools can be found in [Kolling1999].

47

To aid our evaluation, we have identified ten tasks that covet most of the activitics
that an introductory studenr will perform. For each of these tasks we have discussed

the use of tools and highlighted those that provide particular pedagogical value.

In the area of design, we have conclnded that tool support for drawing system
designs is adequately provided by professional UML rools for advanced stodents,
and simple drawing tools for introductory students. We have also concluded that

graphic user interface builders are suitable for students to construct user interfaces.

In the area of coding, curtent tool support for building programs, searching
documentation, and entering and editing programs is more tha adequate. There are
many tools for browsing class libratics available but not many that inteptate
seamlessly into current program development environments. It is surely only a
matter of time before all mainstteam development envitoaments include class

browsing facilities.

In the area of operations, the intcgration of external resources is suppotted

satisfactorly by most development eavironments.

In the area of maintenance, (ool support for refactoring has advanced rapidly.
However, we do not believe that refactoring tools are designed with a pedagogical
focus. In chapter 3 we look at refactoring in an educational context and develop a

design for a refactoring tool in an existng program devclopment environment.

In the area of testing, we find a scatcity of tool support that is accessible to
inttoductory students, Most tool support for testing is based on techniques that
were used in the days of procedural progranuning languages. Despite some tools
that allow object-oriented interaction with programs, these toecls are not always
suitable for students and none has combined this object interaction with support
for repeatable testing, In chapters 4 and 5 we lock at the development of an object

oriented test support facility in a program development environment.

3 Chapter 3

REFACTORING

T he previous chapter has identified areas of product sofrware engineering that
were lacking in suitable tool support for introductory smadents. This chapres
looks at one of these ateas, refactodng, and discusses the desipn of a tool for

refactorng suitable for an introductory integrated development environment.

31 Inwoduction

As mentioned in the previous chapter, refactoring is the “ptocess of changing a
software system in such as way that it does not alter the external beheviour of the
code yet improves the intemal structuze” [Fowler1999). Refactoting is one aspect of
the trend in software engineering that recognises the fact that it s extremely difficult
to design object-oriented programs correctly. ‘Lhis is a particularly seric.s issue for
introductory students who do not have any personal design experdence to fall back
on to help guide their designs. Refactoring also recognises that the development of
software is an incremental, continuous, evolving process — software will change as
its purpose and requirements change. Refacrorng, alopg with some other new
development techniques such as pait programming and unit testing, form part of
the new development methodology called extreme programming (XP), which better
handles the process of continual change in software development (Jeffries2000]
[Beck1997].

There ate other schools of thought on how to improve our ability to design object-
oriented programs. Some of these attempt to identify common design patterns that
are known to be good solutions [Gammal995], or alternatively, ideatify common

design mistakes in otder to ptevent them occurting [Brown1998].

Refactoring accepts the reality thav it is unlikely that a perfect (or even good) design

will be realised before coding starts, and therefore concentrates on techniques that

49

will safely allow evolutionery changes to be made to the internal structure of the -

program. Refactoring also faces the reality that, even with an excellent design, the

needs and functional requirements of a program will change over dme. Unless

programrners implementing the new functionality have a full understanding of the

criginal design, their changes may tend to decay the structure of the design,

Fowler [Fowler1999] identifies the following four reasons why programmetrs should

refactor:

Impzoves the design

Programs, especially those that have had a long life spax, tend o accumulate
redundant code, obscuring the original design. Refactoring can help move
any code that is in the wrong place ro the right place, can help ro eliminate
redundant and duplicated code, and theteby restore structure to the

program;

Makes software casier to understand

Therc ate two phases in the life of code, the phase whete the code is writeen
and then a phase of maintenance. The second phasc may occur months after
the code is initially developed and may involve a differeat programmer than
the infual developer. Refactoring code to make the design clearer will help
the understanding process of programmecrs later down the track;

Helps you find bugs

The clearer the design and strucrare of a program the easiet it is to write
robust code and the casicr v is to spot logic flaws or mistaken asswnptions
(because the clear structure emphasises the assumptions made). Thus,

refactoring can reduce the number of bugs in code; and

Helps you program faster
Despite the extra time taken to perform refactorings, the maintenance of a
clear design and structure in the program can lead to continued rapid

development (rather than not refactoring, which can start the coding process

50

quickly but which tends to complicate coding as the initial design starts to
decay).

Of course, refactoring is not necessarily going to be successful in every situation.
There has been very little research into the pitfalls of refactoring, Anccdotally, it has
been reported that refactoring which involves modification to database schema as
well a8 code may be problematic. Similarly, code with published interfaces (such as
when the Java collection classes were introduced into version 1.2) is difficulr to
refactor because many refactoring steps involve changing the interface. In some
cases, the code may be beyond sepair and a complete tewrite may be mote effective

than refactoting,

3.2 Why refactor in first year?

We have discussed refactoring and irs importance in the maintenance and evolution
of code. What then is its usefulness in introductory education given thar most
inttoductory assignments ate small-scale projects or projects where there is no
maintenance component? s there any value to teaching refactoting techniques to

fizst year students?

We believe that refactoring is an appropriate skill to teach in first year because it
helps students reach: the goal of developing well-structuted programs. Whilst
students mray not need to petform real maintenance on any of their projects, we
want them to get into he habit of re-evaluating and restructuting the code they
develop. Refactoring is an appropriate skill not just because it will be a skill that is
useful in Jarger projects, but because it supports one of the goals of teaching object-

odented progtamming, that is, finishing with a well designed and structured

program.

Traditonal teaching has viewed software along the lines of the waterfall
development model — 2 staged process that moves from design to implementaton
to testng, and where each stage is unchanged once completed. The gtowing

awareress that the waterfall model is unrealistic in the real world, has led to a shift

31

in the model now taught to students. Students must recognise that software is an
ever changing, ever growing artefact that tequires constant pwintenance as it adapts
and meets changing nceds. Preparing students for this requites that they be taught
different skills, including the ability to evaluate their designs aod refactor their code.

3.3 What refactorings are appropriate?

A list of tefactorings has been collected by Martin Fowler on his refactordng com
website [Fowler2002). The list includes all those in his book [Fowler1999] as well as
those contributed by people arcuad the world. Curtently thezc are almost 10w
refactorings that have been catalogued. Onply a small proportion of these
refactorings are uscful for a first year student. An even smaller proportion can be
aided by a refactoting tool. We wish to identify those refaciorings that would be
wsefl in an introductory refactoting tool. The following crtetia will be used to

consider which refactorings to support:

e (Can be auromated
Some refactornings require 2 complex nnderstanding of the source code or
require an understanding of the way in which code is used that is outside the
- scope of what could be inferred by machine analysis. These refactorings are
difficult to automate. Often, these complex refactorings can be performed

manually as a sequence of smaller basic automated refactorings; and

¢ Ocecurs in student sized projects
Some refactorings are not useful to consider becaw. & they would never oceur
in the types of projects that stadents will work with in introductory courses,
An cxample of this would be the “Duplicate Observed Data” ' refactoring

which invalves constructing obsetvers on GUT controls; and

UIf there is domain data available only in o GUT conteol and domain methods nced wceess, copy the data o =
domain object and set up an observer to synehsonize the cwo picees of data,

52

® Has no intrinsic value in being performed by hand
Performing a refactoring by hand may itself have some value. For instance
the “Replace Conditionial With Polymorphism™ ' refactoring has pedagogical
value in requiring 2 student to petform it manually. After applying the
refactoring, the student will have an improved understanding of how
polymorphism wotks and hopefully not wiite the incorrect code the next

time around; anvl

o Will be used enough to wartant cluttering an interface
Bach refacroring that is included in out in inttoductory tool will in some way
complicate the interface thatis presented to the nser for selecting
refactorings. Because we are designing an introducrory tool, clarity io a user
interface is extremely important and hence trading off the usefulness of a
refactoring with the additional dutter i brings to the interface is another

.ctitceia,

We will not attemnpt o evaluate all refactorings against these criterda, Rather, we
identify various caregories of refactorings and list some key examples of these types
of refactorings. We then evaluate these general refactoring categoties against our

crteria.

Of course, it is not possible to definitively identify each, and only those, refactorings
that are appropriate for an introductory refactoring tool. The suitability of many
refactorings will depend on the structure of the introductory course being taken, the
type of material that is covered and the extent to which the refactoring tool may be
used in latter courses. We will identify some refactortngs 2s “bordetline’ candidates.
These refactorings could be suitable for an introductory tool but we have decided

not to include them in the design of our refactoring tool.

1 1f a conditional statement makes decisions based on the type of an abject it should be replaced with a
polymorphic methad call.

53

ek

3.3.1 Changes local to a method fragment

The following tefactorings all deal with improving fragments of code within a
method body. Some tequite the coastruction of a new merthod, but these new
methods can be private methods and will nor affect the public interface of the class.
Whilst it is possible to automate some of these, the localised nature of the changes
means that they can be made quite quickly by hand and tocl support is not required.

There is a large group that deal with conditional statements. Some examples are:

» Consolidate Conditional Expression
Replace a group of conditionals thar all return the samc value with a single
method call to check all the conditonals;

» Consolidate Duplicate Conditional Fragments
If the same code is contained in multiple conditional fragments it should be

maoved to cutside the condinonal statement

¢ Dccompose Conditionat
Simplify a complicated conditional staternent by adding quety methods for

the complicated expressions; and

¢ Replace Nested Conditonal with Guard Clauses
Clazify the expected path through a conditional statement by using guard

clauses.

Another group deals with the use of local variables and their scope:

s Reduce Scope of Vatiable

Reduce the scope of a variable because it is only used in 2 small fragmént of

a method hody; and

o Split Temporary Varable
The use of a termporaty vatiable for two unrelated tasks in one method

should be replaced with the usc of two different temporary variables.

54

Tool support could be added to support these two refactorings by petfonming a
simple analysis of the nsage of a varizble within 2 method. For instance, when the
editor cursor is placed within the definition of a local vardable, the region from the
first initialization of the vatiable to the last usage in the method could be discretely
highlighted (pethaps by a small change of colour to the background of the editor in
the region). This would clearly show the scope where the vanable is actually being
used and might indicate that 2 lesser scope could be used. Similazly, if the colour of
the background was changed slightly upon reaching the second assignment to 2

local vatiable, multiple use of a temporary varable could be shown.

In sumrmary, the localised nabare of the changes of these refactorings means that in
most cases performing the changes by hand is quicker and safer than constructing
an automated refactoring tool. For this reason, these refactorngs are not considered

for our introductory tool.

3.3.2 Changes to a method signainre

Changing the signarure of a method is one of the key refactoting operations that
can be aided with a refactoting tool. The difficulty in petforming these refactorings
by hand is that all places in the source code that refer to the method must be
identified and changed. An automnated refactoring tool collates all the references to
a chanped method and allows them to be updated automatically. The basic method

signature refactorings are:

e Add/Remove Parameter
Add ot temove a parameter to a method call Remeoving a parameter Is 2
simple operation but adding a parameter requires providing a default

paramerer value; and

¢ Rename Field / Method

Ciiangs the name of a field or method.

55

These refactotings meet all our critetia, and because they are also crucial to many

other refactorings, it i§ essentiai that they ate presented in our introductory

refactoring tool.

333 Changes to @ cuss strusisre

A large grovp of trefactorings deal with changes to the structure of classes. Some
involve the spliting or merging of entite classes. Others involve moving methods
and fields to a different class, ot up and down between classes in an inheritance

hierarchy. We will consider each of these groups in tum.

33317 Move gperations

Move operations are €asy to automate as long as one can analyse a system for
references to a class, method or field [Power2000] [Dewhurst1987a). Then all that
needs to be done is to correct those references so that they now tefer to the new
class, method or field location. These operations are good candidates for an
automated tool, not only because it is clear how to automate thém, but also because
there is no benefit in making a student perform the labortious task of making many
simple typing cotrecdons. By suppotting these refactorings in 2 tool, students can
concenrrate on the high-level conceptual task of making suuctural changes without
being aistracted by the low-level mechanics of performing the task, Additionally, by
lowering the barriets to performing these tasks it'is much more likely that studenrs
will do them.

Ta the case of moving a non-static methed or field, the reference will not always be
correctable because a teference to an object through which the method or freld will
be accessed may not be held ar the reference point. In this case, the best an
autormnated tool can do is collect these reference locations and present them to the
programmer as source locations that aced to be corrected. Even though performing
the corrections 1s then a manual task, having a tool collect the reference locations is

still a valuable Hime saver.

56

The move refactorings are:

o Move / Rename Class

Move z class from one package to anather, or rename a class; and

* Move a Field / Method
Move a field or method from one class 1o another.

An appropriate user inierface for enubling these refactorings is development
cavironmenis that present a high-level class overview. For instance, if a
development eavitonment presents 2 UMIL class diagram of the systemn, drag and
dtop or popup menus can be used 1o move methods and fields between classes and
perform class remame operations. This allows high level design work to be
pecformed on the complete system without having to look ar individual class’
source. Of course, it is also important that the move rcfacrorings are also available

when editing a class® source, though the interface may not be so intuitive.

3.3.3.2 Extract operations

The extract refactorings are important to students because they deal with the types
of design mistakes that beginners often make. Typically students weite large
methods and classes because that is the path of least resistance — it avoids
constructing objects and making calls on those objects that some students find
intimidating. There is also an element of laziness o that constructing a new class
involves cteating a new file, setting up constructors and other mundane overhead

before it can be used.

The intimidation fele using muliiple classes must be overcome through improving
understanding, but the laziness can be nvercome by making the construction of a
new class a trivial operation. Most development eavironments already automate the
construction of a standard empty class. The “Extract Class” refactoring encourages
students to create new classes from existing classes when they feel that their class
has become too large. Similarly, the “Extract Mcthod” can be used to quickly splita

57

large method into multiple smaller methods. Through automation, these operations

become quick and painless and students are encouraged to performn them

The extracr refactorings will also be useful during the nomal growth of a piece of
software. As functonality is added, methods and dasses naturally grow. At the
point where the class ar method is becoming umimanageable, it can easily be split
into a new class or method. In many ways, this use of extract refactorings is sitnilar
to the design technique of using CRC cerds, whete cdasses arc assigned
responsibilities untl they gain too many, at which point they are split into two
classes [Beck19891

The basic extract refactorings are:

o Extract Class / [nterface
Create a new dass conraining some of the fields and methods from an

existing class or interface;

* Extract Merhod / Split Method

Tutn a fragment of 2 method into a new method with a name thar explains

its purpose;

Based on these basic operations are the “Extract Subclass” and “Extract
Superclass™ refactorings. As with the “Move Ficld / Method™” refactoring, some
references to the fields and methods will not be able to be corrected due to there
being no refercace to the new object at the onginal reference location, These

original locations must be highlighted for the user to fix manually,

As with the other inheritance strucrare refactorings discussed in the following
secdon, “Extract Subclass” and “Extract Superclass” are borderline cases for
consideration in our introductory refactoring tool. A more detailed explanation of

the radonale for their inclusion or exclusion fs contained in section 3.3.3.3.

58

3.3.3.3 Inberitance siructure operations

One category of structural changes that can be made to classes involves changes to
the class’ inheritance hierarchy. This category deals with moving methods and fields
between subclasses and superclasses. The operations are all modifications of the

basic move refactotings discussed in section 3.3.3.1.

Some examples of the inhetitance situctute refactorings ate:

« Puli Up Constructor Body
The constructor code for two or more subclasses is similar so the

functionality is moved into a superclass constrictor;

s Pull Up Field / Method
All subclasses of an object have a ficld of method in common so tnove it to

the superclass;

¢ Push Down Field / Method
A field or method is only used in some subclasses, so move the field or

method down into those subclasses; and

¢ Collapse Hierarchy
A superclass and subclass are not very different so merge them togethet into

a single class.

The construction of automated tools to perform these complete refactorings is
difficult. Additionally, there is trade-off between cluttering an interface with these
quite complex refactorings, and constructing a tool that can cope with the dernands
of students in the latrer stages of CS1. We have chosen to not include these
inhcritance struckure refactorings in our desipn because we believe having a simpler,
less cluttered user-interface sutmounts the usefuiness of having these refactorings
present for the potentially few times that they will be needed. Furthermore, it is
always possible for smudeats who wish to perform these refactorings to perform

them as a sequence of other more basic refactorings.

59

5.4 Changer fo the design

- & final class of refactotings deal with what are termed “bad smells™ in a design. A
+d smell” is a partcular design thar works correctly, but could be improved by
Hlying 2 design refactoring, Examples are:

¢ Encapsulate Collection
Rather than returning a read /write collection, return 2 read-only collection

and provide a method to add 1o the collection;

¢ Encapsulate Field
Replace a public fcld with a privare field and accessor methods;

» Encapsulate Downcast
Replace 2 method that returns an object that needs to be downcast, into 2
method that returns a more specialised class and performs the downcast

within the method;

@+ Hide Method

A method is not used outside a class so make it private;

« Replace Error Code with Exception

Replace numetic erzor codes with code that throws an . “Hon; and

Separate Query from Modifier
A method that makes a query and also sets a value in an object is split into

two scparate fupctions.

oiying these refactorings is done using a combinarion of the simpler refactorings
ussed in previous sections and through changing the source by hand. lior
nce, pezforming the “Hide Method” refactoring merely jnvolves changing the
nod definition from public to private. This is such a simple operation that it
s not require automation. ﬁpphing the “Separate Query from Modifier”
ctoting involves performing an “Rxrract Method” on the quety secdon of the

'hod and then manually editing the resulting methods.

60

Rather than automating these refactorings, we see interesting work on tool support
in this area as investigating techniques for detecting “bad smells”. The Revjava tool
analyses design stells according to 80 built-in design criteda including dead code
signalling, design pattern checks and scoping/visibility checks [Flodjn2002]. A tool
that highlichted design mistakes for students as they develop code would be very

interesting.

335 Swumary

We have examined a caralogue of refactorings to determine a set of refactorings that
we consider should be included in a refactoring tool in the context of introductory
teaching. We have rejected some scfacrorings because they are difficult to automate.
Many of these difficult refactorings are composed of other basic refactoring
operations and hence can be still performed by the user as a manual sequence of

basic refactorings.

Other refactorings we have discussed consist only of local changes 10 a method
body. These refactorings can easily be performed entirely manuaily and do not

require tool support.

Another category of refactodngs make changes to the inheritance steucture of
clagses. These bave beea discounted because not only ate they hard to implement
automatically, but we believe that on balance, the benefits of providing them are
outweighed by the additional complexity they would bring to a tool’s user interface.

The following is the set of refactorings that we believe are approptiate fot

consideration in the desigm of our inttoductory refactoting tool:

& DMove Class

Move a class from one package to another;

¢ Rename Class

Change the name of a dass;

61

¢ Extract Class
Extract a subset of the methods 2ad fields in a class into a new class,
handling all the routine initialisation tasks for the new class such as building

consttuctors;

e Extract Interface

Extract a subsct of the methods in an interface into a new interface;

e Extract Method
Exteact a block of code fir. .. - method into a new method, bandling all the
details of determining the s = parameters which need to be passed in, and

constructing the method head and body;

& Renzme Method

Change the name of a method;

* Rename Field
Change the name of a field;

= Change Method Parameters

Add or temove onc of the patametets to a method cali;

» Move Field

Move a ficld from one class to another;

* Move Mcthod

Move a method from one class to another;

'These refactorings have been selected because we believe they operate at a level that
is approprtiate for first year students. That is, in a modern introductory software
engineeting course, these refactorings can be vsed to improve the basic aspects of
design that will be discussed in the course, such as increasing cohesion and reducing
coupling. Students benefit from having a tool that can support these refactorings

because it removes the incidental complexity of performing the refactoring and lets

62

them concentrate on the higher level design task. We can provide a good level of
tool support for students with these refactorings because much of the low level

tasks can be avtomated.

As we will see in the next section, tools that support this set of refactoring
functionality are already available. We propose some changes 1o the user interface

of these tools to better support introductory students.

34 Current tool support for refacroring

It is not only iImportanc to decide which refactorings should be supported, but also
how this can bc done in an approptiate way. Since the goal of educational tool
suppott for refactoring is to remove incidental complexity of the tasks to allow the
student to concenttate on the concepts, it is important to ensure that the tool iwself

does not introduce a large degree of added complexity in itself,

Evety software tool adds some degree of complexity to the user interface that must
be learned and dealt with. The challenge is to design a toal whose external

complexity is clearly lower than that of the tasks it seeks to automate.

The questdon of a degree of complexity cannot be jndged in an absolute way.
Cornplexity of a tool is to 2 larpe degree a question of expertence and prior
knowledge, so we have to examine the complexity of possible tool designs in the
context of out specific tatgeted user gtoup: fitst yeat stadents. The aim must be to
design a tool that is simple enough to not add much overhead for an inexperienced

progtammer who has little familiarivy with their programming environment.

We have already looked at some tool support for refactoring in the previous
chaptet. We took note in particular of the TDEA ool from Intelli [Ineelli]2002),
which provides all of the refactorings we have identified as worthwhile for an
introductory teaching environment. However, IDEA has some limitations that

impinge upon its usefulness for first year students.

63

W T o Tl g A ki AR e it D I R B s T U R 7 Lty kil 1l W Pty Brt e e by T it i cmie PRty g wm
o Buld !hm Taole Windiw H.llp _
3 &1 Ioﬁﬁm_ﬁo“—r_! p g le - ? N
Eﬁ. TR T D O SR 4 §
¢
=
. Tvery Girgevion elipher Ledds o 5
eert ey, _ DL E
Find Jsagax.. . ANeFZ ®
£ mesh
& dnal T o Pt o
i :’:‘:’:‘ clusa i Gti=Fe Heve., [v
- 00k Detlaaior B Charg Wtnd Bighshure... SUIFB :
B, Toma cato, Roce douth, Fed% 0t guy oy pecaioy GUMSMB ComrCine. rs
Gols Cugor Mizhod CateONney -—_—qur._.ugnsd,. Pl B Y|
s Ganerst.. “‘l’lﬂﬂ rasuce vacatle.. CllAltY :
A3 CrawPaamelec ke T et Fibid. _ i
i SAGSURIIBINE - - CCaleq - 0. - . Ccuaten) |
EvmatdevaDae - GAMOFY Repioos Teme win Cuen.. !
a - CowsTro sy . ot T Gammaetienyce. :
Crrple Room, wa" mmam-rn !mnc'amman- .
Encsnuaunﬂds... e N
B ComuniesaticFiel,, Gtteats, [B]2
ComeR AV WL o bnal.,
R (ORI Y T oW dew

Figuee 9 ~ “Ihe refactosing meny in arelt] IDEA.

We see the main problem with this tool is that it is designed for a professional
computer programmer. The funcdonality available on the refactoring menu
contains all refactorings that z.te. implemented by the tool (some 15 refactorings in
total), Adding to the problems with the larpe mem: is that the menu is not contest
sensitive regarding the refaclorng opctations available at different points in the
source. In Figure 9 we can see the popup menu presented when right dicking on a
methed’s source in IDEA. All possible refactorings are listed, imespecdve of
whethet they are zctually available in the current situaton. Tn fact, from the
sitvation ptescated in Figure 9, only a handful of refactorng operations are
applicable. The other menu items result in a dialog explaining why that particular

refactoring cannot be performed.

Other tools provide a similar set of refactorings as IDEA, though with different
user interfaces. The IBM Visual Age for Java devdlopment environment has better
contextual popup menus that ooly shows refactoting operations available at the
current locaton. We believe this contestual support is impottant in guiding

introductory stadents to which refactorings are suitable.

64

Operates on _
. Class Field Method
selected test in . . .
) operalion | operation | opetation
editor
Move class v
Rename class
Extract class v
Extrzet inrerface v
LEixtract method v v
Renaime tmethod v
Rename feld v
Change method parameters _ v
Move field v
Move method v

Figure 16 .- The context in which refactonngs ace appropriate.

The transmogtify tool [Transmogsify2001] is a library that provides support for
analysing Java source and petforming refactoting operations. It however has only a
command line interface, though it does support integration with standard
dévclopmcnt envitonments through special hook clagses. As the transmogtify rool
is available for use under the GPL. [GPL1991)], it would be suitable as a back-end
for an introductory refactoring tool assuming a suitable front-end interface could be
developed. As refactoring is best performed during the development cycle rather
than as a completely separate activity, we would like to integrate the transmogrify
back-end into a development environment suitable for students. The next section
will elaborate on our design for a refactoring tool using the Blue] integtrated
devclopment eavironment [Kolling2001a|. The Blue] tool will not be presented in
this chapter, as the only aspect of Blue] that will be utllised for refactoring is the
editor component. A more in depth look at the othet features of Blue] will be

presented in chaptets 4 and 5 when a unit testing extension to Blue] is developed,

65

Tignre 11 — The popup menn anached to a method in the ediroe.

3.5 A design for an intraductory refactoting tool

In designing a front-end to a refactoring tool for intreductory studeats, the
challenge is to find a balance between supporting the functionality we want and the
simplicity that the studeats require. We want the fall set of refactorings to be
available, but we want it 1o be obvious which refactorings apply in different

locations.

A simple change to the IDEA popup meou would be to dynamically disable and
enable menu items depending on the context of whete the cutsor is (see Figure 10).
However, this would leave the student attempling different combinations of cuarsor
placement and text selection in order to try to “unlock™ the menu item. This

solution may be worsc than leaving the design as it is.

Our design involves angmenting an editor with an improved understanding of the
clements that make up 4 source file. By making the source code of methods an
“eatity” in the editor, we can then attach refactoring operations to it using a drop

down menu.

66

pintabaanka | Ak Theksumed | Enta | bkt | bkt | R i PR, o e T
- B A S P e - T T Y TR P

igpore jove,usil,¥2

7~

7 Clasa Cay - 2lass fop debugger dewc
* Bauthur Michael Kolling

* Boersion 13 Zuguay 1959

L4

[pub.l.ic class Care

E1F)

- T e g S L s, T

Figure 12 - The popuop menu artached to a class in the editor,

3.5.1 Methods as nser interfase objects

A key to the Blue] interface 15 that kcy abstractions in the system are represented
on-screen a4s objects with operations. The current Blue] interface applies this
technique to the main display of classes and objects, but docs not attempt to
represent any abstracions other than soutce in the editor. To make methods in the
editor a distinct user-intetface element they should be visually distncr. However, we
do not want the user to lose the overall feel that they are editing a single source file,
By slightly changing the background colour of the area in the editor representing
cach method, this effect is achieved (sce Figute 11).

We now want t¢ make all the method level refactorings available from the method
interface entity. A drop down menu box attached to the method atea allows access
to the tefactorngs. This drop down menu could either be placed on the left hand
side of the editor (perhaps in the column that some source editors reserve for
bregkpoint information, line numbering, etc)), ot could float in the text at the top

right corner of the method (see Figure 11).

The drop down menu would only show those refactorings applicable to a merhod.
Because the “extract method” refactoring is only applicable when a pordon of the
method is selected, it would be greyed out in the drop dewn meou uniess a suitable

area is selected in the editor.

3.5.2 Classes as user interface objects
In Blue], s UML diagram of the classes in the system is the basic tool for interacting

with a project. However, as we saw with methods, classes do not have any special

67

usct interface presence in the cditor view. Unlike a method, which is generally only

a sroall portion in the cditor, the source for a class is generally the entire file that is
being edited. Therefore, it does not really make much sense to highlight the dass
source by changing its background colour, as. this would affect the whole soutce
file. Instead, just the head of the class should be distinetly coloured, This is shown

in Figure 12,

Similar to methads, classes would have a dtop down menu box displayed at their
header. It would show oaly those refactorings applicable to a clags.

3.5.3 System wide uudo

The Blue] editor has an undo facility that removes the most recent changes to a
soutce file. However, when performing refactorings, changes are roade
simultaneously across many source files in the project. Therefore, adding refactoting

support involves redesigning undo to work at a higher level than it does at present.

Our apptroach would be to have a special undo window. It would track all
refactotings, changes made in the editor, and test cases exccuted (see chapter 5 for
our design of integrated testing suppott). Tt many ways it would be like the Adobe
Photoshop history/undo window [McClelland2002]. The Adobe Photoshop history
window stores a growing stack of operations that have been performed on a loaded
picture, with the abiiity to go back to any previous state by selecting it from the list.
In Figure 13 we gsee where the “paiotbrush™ and “eraser” operations have been
undone by the uscr selecting the “crystallize™ operation in the history stack, The
“paintbrush” and “eraser” operations can be redone by dicking on them in the
stack

I'or. Blue] the operations that are tracked swould be large-scale changes to soutce.
So, for instance, if a user added sorme code to 4 method, an operation is not added
for each keysttoke in the editor, rather an operation is added such as “code changed
in method X”. Refactoting operations are added with details of the type of

refactoting and where it was petformed. Fven operations that do not result in the

68

Figuee 13 — Tha Hirtory/ Undo window in Adobe Photest op.

changing of source code could be added, such as an entry like “Unit tests mn

failed;5 succeeded:2”,

At any point the student could go back to any previous point in the undo stack by
dicking on the operation’s eatry in the undo window. The undo stack is not saved
with the project ~ it only exists duting a single scssion of using Blue]. Obviously,

there would be the facility to comrmit all the changes madc by saving them to disk.

A comptehensive undo facility is valuable for a student refactoring tool because it
will encourage experdimentation with refactorings, If students know that they can
perform refactorngs, run unit tests and compile and interact with the system, yet be
assured they can always ge back to a previous wotking state it will greatly support

their expérimentadon.

354 Summary

A design for this refactoring extension to Blue] has been completed.
Implementadon of this desipn has started by successfully integratiog the
mansmogtify back-end with Blue], which can now be used to perform simple
refactorings. A full prototype implemcntatton of this design will be completed
shortdy.

69

4 Chapter 4

TESTING

his chapter discusses testing and its role in inroductory teaching, Fitst we

examine testung in general and why it is impottant to software development.
Secondly we look at the positon of testing in intwoductory courses and approaches
that have been developed for introducing it to the ecady computer science
curricihum. Next we look at the practical techniques of testing that are needed by
students and examine cach one for its relevance and suitabdity in a teaching context.
Finally we look again at the tocls that are available for performing testing and
conclude by asking whether a tool could be developed which better facilitates the

teaching of some of these testing activities,

41 Why test?

Because software plays an ever larger part in our lives, an incteasing ernphasis is
being placed on software reliability. Testing is an important facet in ensuring
software rcliability. In fact, testing is recognised by industry as an important part of
software development and 2 significant proportion of the resoutces devoted to

software dcvclopmcnt are consumed by testing actvitics.

Amnalysing -the reasons why testing is beirig conducred allows us to structure testing
activities into categories, each of which achieves a diffetent purpose. This
categorisation is independent of the scope or method of test selection which, as we
shall sce later, both give us alternative ways of categorising testing. [Pan2002]
[[Tetzel1 988) suggests the following testing categoties:

¢ Cortectness testing
Determining if the software behaves “correctly”. This is the category that is

predominantly being referred to when pcople refer to software testing;

IA!

Performance testing
Determining if the software performs within tesource limits. Even though
software may not have explidt performance limits there are implicit limits

such as it cannot take an infiniee amount of time;

Reliability testing

Takes a variety of measuremcents to estimate the probability that the software
is correct. These measurements can be derived in part from the results of
cotrectness testing on the system. This forn of testing also locks at the
robustness of a system. Robustaess is its ability to handle exceptional inputs
or stressful environmental conditions and contiaue working (though not

necessarily produce a correct tesult for these inputs); and

Secunity testing
Testing softwatc for the purpose of stopping external patties accessing
resources on a system through flaws in the software. Security testing rmay be

petformed by simulating security attacks.

Of course, there are other possible categorisations and sub-categorisations, though

these four categories ate generally regarded as the major types of testing, Thesc

categorics are useful for understanding why we test, but do not help us understand

the mechanisims of how we can test. To do that we must look at categorising testing

according to scope and test selection (Whittaker2000]. When we look at the scope

of testing we are categorising the testing bascd upon the constituents of the system

that are being tested. The scopes are:

Unit testing

Testing individual sofiware components without regard (o the rest of the
system. This may requite the construction of codc that exists solely to
eanudate the behaviour of the systern in 2 known way so that the units can be
placed in the environment they need without dependiag on other parts of

the system;

72

lignre 14 — Twa orthogonal classificadons ol testing.

s Integration testing
Testing multiple components together that have each received priot unit
testing. 'L'he focus of this integration testing is maialy on the boundary of the
components or those sections that represent communications between

components; and

& OSystem testng
Testing a collection of components as a completed product. This
concentrates on whether the system satisfies the overall application

functionality that was the goal of the project.

Test selection determines the types of tests that are to be used. If tests are chosen
without considering the internal struciure of the component being tested then it is
called functonal testing. If tests are selected based on knowledge of the
implemearation of the cormponent then this is called structural testing, It is
impozrtant to note that purpose, scope and test selection are orthogonal (see Figure
14); we may do siructural unit testing in order to check petformance criteria ot we

might equally do functional system tésting to check for cotrectmess.

4.2 Testing in education

It is disappointing that despitc its importance in software development, it is difficule
to fully explore testing as a topic in introductory compurer science courses. The
load on smudents in mastering so many other fundamental topics of compuiet
science often squeezes a thorough treatment of testing out of the limited time

available to introductory courses. The first, and sometimes only, exposure to testing

73

may be the basic use of srinbclic debugper in eatly lab classes and practical wotk,
Often the formal introduction to testing is left for software engineering classes later

on in the carriculum [Shaw1991].

The importance of testing in computer curricula has been noted for many yeats.
Software Validation is listed as a core unit in the Compating Curiicniwrn 2007
[ACM20011, and the Guidelines for Software Enginzering Educativn [Bagert1999] lists
testing as objectives of both the Software Quality’ and Software
Construction/Evolution modules. Even a much carlier computing currculum

contains testing as an important objective [ACM1991],

Whilst teaching testing is not comumon in practice, there have been several
proposals for introducing testing into introductory curricula. One group proposcs
the introduction of software engineering concepts eady in the curriculum and
theteby introduces testing as one of these software cngineedng techniques. The
second group has proposed various schemes for iatroducing just the tesdng
discipline to introductory courses. We will firstly lock at those who favour the early
software cogineering approach.

4.2.1 The carly softmware engineering approach

Hiiburn [Hilburn2000) has argoed for a mumber of vears for more of 2 focus on
softwate quality’ at the undergraduate lovel. He believes that software quality
“addresses a central and critical issue in the developiment of computer software™
and that faculty “... do not devote enough attention to teaching their students how
to develop high-quality software” [f*leumZOdO page 167). His proposal uses a
softwate engineeting model known as the V Quality Model (a varadon on the
traditional waterfall life cycle modcl) to be a conceptual framework for developing a
currculurn based on quality. Softwarc processes such as the Personal Software

Process (PSP) and the Team Software Process (TSP) arc introduced across the

1 asted o4 software vedfication and validaton

2 Quulity here refers to both the usefulness of the producr for the cusromer and also to haow well the process
used 10 develop the product has worked. That i, it is 2 measure of hoth the product and the process.

74

whole undergraduate curricalum [Hilbural1997]. These processes help the students
1o analyse and improve not just their designs, but also to look crtically at their own
soitwate processes and attempt to improve upon them. PSP emphasises quality
teview at cvery stage of the software life cycle and provides for collecdon and

analysis of metrics to reasure quality [Fekete2000].

Although Hilburn acknowledges the importance of testing, he strives to emphasize
the quality process over testing techniques so as not to develop students who test
only in an ad-hoc, tdal and crror fashion. Testng in the V Quality Model involves
rwo separate testing passes. In the first pass, testing frameworks are developed for
system testing, then integration testing and then unit testing, These framewortks ate
developed in conjunction with requirements analysis, architectural design and
detailed design respectively. The second pass is in the reverse order and involves
executon of the tesung strategies developed. A quality review is tequired to move

from one test stage to anothet,

Another approach to introducing software enginecring early in the course is that
taken by Jackson and McCauley who have used the establishrnent of documentation
and design standards as a framework for teaching software engineering principles
and techniques across the undergraduate curriculum [Jacksonl997]. The document
framework has the following components: requirements documentation, design
documentation, implementation documentation and verification/validation
documentation, Students are required to submit solutions inctemeatally and each
component is marked promptly so that feedback is received by the student before
the next documentation componeat is statted. Once the students are used to the
document framework, subsets of it are used to introduce wvarious software
engineering concepts such as characteristics of good software, maintenance and
software testing plans and techniques. For instance, students may be given the
design documentation and code of another gtoup and then be assigned the task of
structurally testing the code. The results of a comparative study of the performance

of later year students on project work showed that students who had been exposed

75

to the softwarc engineering concepts through the introductdon of this
documeniation framework obtained grades higher on average than those who had
undertaken a more traditional introductory curdculum [McCauley1998],

Both of these proposals require moajor changes to the structure of an introductory
course and also introduce costs such as a greater load on teaching assistants who
must mark and return documentation before students proceed onto later stages. In
the following secdon we discuss other less radical proposals which plan to
introduce testing techniques in the early curriculum whilst still leaving formal

software engineering training to later years.

4.2.2 Larly festing

Several different approaches te the inclusion of testng into introductory
programuming courses have been presented over the last few years, Some of these
introduce testing methodology by requiring students to subinit test plans or test logs
which are marked by teaching assistants. Other approaches aim to give hands-on

expefience in the practice of testing.

Jones [Jones2001] suggests some testing activities that can be incorporated into

introductory courses. These include:

» students grading other student’s programs using their own test data; and

e instructors providing programs with known bugs and assigning marks for
discovedng bugs and docurnenting the bug discovery process.

Goldwasser [Goldwasser2002] proposes a simple scheme to augment existing
programming assignments with the prnciples of software testing, Fach student
submits both source code and a test set for the assignment and thesc test sets arc
tun against all other submitted assignments from the rest of the class. A pordon of
the student’s grade is based on how well the student’s tost st uncovers bugs in the

other students’ assignments. Despite being quadratic in the tdme taken to ran all the

76

tests against all the solutons (this is not a large problem if the test execution is

auromzated), the scheme has the following advantages:

¢ the competitive angle of each student trying to wiite tests to find flaws in

their friends’ code provides a level of fun;

¢« students who may be struggling to complete the impiementation of a
solution may still feel part of the exercise because they can stll wrte test

cases; ana
o smdents’ tests will be run on a divetse sct of implementations.

Kay [Kay1994] suggests providing the students with automated testers as part of a
comprehensive clectronic submission system. The system incorporates some initial
feedback to the student at submission time regarding the ptogram’s performance on
a set of public tests, and teporting for teaching assistants of the program’s

petformance on a set of private tests.

None of the schemes mentioned above explicitly deals with testing in object-
otiented programs. Whilst many of the techaiques for testing procedural programs
are applicable in object-oricnted coding, the shift to object-oriented in introductory

teaching has added new testing probléms [Batbey1994].

Oane of these problems is thar the overhead for the construction of test cases is high
in some objcct-o;icntcd languages, with a new class needing to be declared for
holding test cases. Some object-oriented languages such as Python provide
solutions to this problem by including the ability to easily incude a test harness and

launchet to test on a class by class basts.

Another problem in some object-oriented languages is that scope and access levels
checks can prevent test classes from calling the application methods which need to
be tested (for instance, in Java if a test class is defined in a different package to the

PR 2

class being tested, then methods with “package”, “private” or “protected” level

77

access cannot be called by the test class). Of course, there are easy solutions to these

ptoblems for expeticnced programmers, but ar fitst year level, solving them may
require the introduction of language constructs that arc not appropriate at that stage

of the course.

Ancther problem caused by object orientation relates to the size and number of
separatc units that require testing. Procedural programming tended to produce large
monolithic applications with lopg fonction definiions. Whilst it was hard to
construct good tests for these, the infrastrucrare required to set up and run the tests
was relatively straightforwazd, Object odented programming tends to produce
better separated units of code with smaller and more precise methods [Ferret2002).
This means that testing can be motre effective because methods tend to do oniy one
thing, but the sheer number of tests means that sotne sort of testing infrastructure is
needed and hence tools to help :nmanage the testing process are now fnore

important,

4.3 Testing techniques for students

At a professional level, testing 1s a forimal discipline with a latge body of theory and
terminclogy behind it. For introductory teaching, we need to view it at a much
simpler level and see it as a set of techniques that help to achieve more reliable
software. Different techniques need to be applied at different stages in the
development process and for these rechniques, tool support can be useful for both

case of use and to help with undetstanding concepts.

Students gain practical skills by utilising testing tools. It is a general ptinciple of
university level education that whilst it is valuable to lcarn specific skills, it is also
important to learn the general concepts behind a skill so as to be able to transfer the
kriowledgc: to new and different domains. This principle applies to the use of tools
in introductory software engineering. So for example, learning how to use the
symbolic debugger in Visual Studio is a useful skill, but it is important that students

grasp the concept of using a symbolic debugger in general so that they can transfer

78

the knowledge to the use of a debugger in a completely different environmeat such

as b under Unix.

Uaformnately, some of the tools for testing that are curtently used in education are
inappropriate. This is because professiopal tools have a level of sophistication 2ad
comiplexity that is oot approptiate for a learner. Other technigues have to be taught
without any tool support because tools in that area are at an early stage of

developmenr, or non-existent.

‘The stated goal of this thesis is to design better wols for software enginecring in
introductotry education. To this end we need to know what the different wypes of
acuvities are that our tools should support. We have identified the following types
of activities in rclation to testing as being representative of those performed

currently:

(1) Testing :mmediately after implementation
Aftet producing an implemenration for 2 uait of code, tests are written to
exercise the unit and to verify that it behaves comrectly. This may be done
through test drivers, small snippets of code that execute the application
code and generare results. Often these test drivers are thrown out after use
ot ate intertwined with the application code and are uncommented as
needed. A mote permanent form of this type of testing Is to write test
drivers in a separate class with the aim of keeping the test code and
rerunning it later. There ate vo tools required to perform this form of
_ testing as the test dtivets can be written in the same language as the
application code. It was typical that this type of test was not fully
automated, ie. the test execution generated results that were inspected
manually for correctness. Iacreasingly common though is to use a testing
fratmework such as JUnit JUnit2002) to otganise the test dhvers and to

collate and verify their results automatically.

79

Another way to do this testing is the use of a tonl such as Blue
[Kollingl999] or Blue] [Kélling20014] that allows the interactive
construction of objects and cxecution of method calls from within a
development environment. This facilitates the testing of application code
immediately without setting up test drivers, but the tests perfoumed are not
recotded and must be redone in their entirety to check thie code again. In
particular, sctiing up the objects to be tested may be a time consuming
operation and as this nceds o be repeated for cach test, it acts as .an

impediment to the students actually perforining the testing

Ia situations where test dtivers ate writteq, testing aftet implernentation may
be seen as identical to regression testing (discussed below in casc (3)).
However because some eavironments such as Smalltalk, Scheme and Blue]
also offer the more interactive forms of testing discussed above, we have

separated (1) and (3) to include those environments in this discussion.

(@) Testing after detecting a bug
Bugs can be detected through the construction of twest drivers as in (1)
above, or pethaps through uscr feedback and general system testing,
However, detecting thar there is a bug does not necessarily help locate the
bug or indicate how 1o fix it. After a bug is detected a different form of
testing is performed to clucidate the locaton of the bug and analyse
behaviour of the program in the arca atound the bug. The tests may be as
simple a5 adding some print statements to the code or may involve the use
of a symbolic debugger. The use of print statements is a good technique
because it does not require any tool support and is applicable no matter
what language is being used. Using a symbolic debugger allows some
advanced functionalty such as breakpeints and single stepping to better
understand the behaviour of the code. Symbolic debuggers also allow the
inspection of the state of an object which may help vodetstanding of its
behaviour. Blue provides an alternative technique for inspecting object state

without necessarily using a symbolic debugger [Roscaberg1997].

80

(3) Testing after fixing 2 bug
Once a bug is detected and fixed itis itnportant to make sure that the bug is
not reintroduced later on in the development cyde. A comprehensive set of
test drvers similar to those desciibed in {1} are useful to ensure this. Test
cases are developed that exercise the once buggy code and make sure it is
behaving correctly. This style of tesdng, vsually called tegression testing,
may be automated so that it is possible 10 execute the tests regularly
throughout the development cyclee A tool such as TesiMentor
[Silvermark2002] helps in this automnaiion by providing facilities for
comparing expected and actual results and collating a repott about the
execution of the tests. Testing frameworks such as JUnit are often also used

for this form of testing.

At an advanced leval there are tools to help analyse the effccdve:gss of test
cases. These code coverage rools [Connell1®90] inspect the execution of
test cases and report on the percentage of application code paths that have
been traversed by the tests. This can then lead to the development of mere

ctfecove test cases.

{(4) Testing before implementation
Another technique advocates the constructon of test cases before the
corresponding application code is written. This style of development is
called test drives development {TDD) [Beck2002]. Test rases are
constructed but ualike in (1) and (3), the tests are designed to fail on the
current application code. That is, the tests are not written to prove the
cottectness of an implementation, ot the correctness of a bug fix, but are
wtten to show the absence of the correct implementation. Code is then
constrﬁctcd to make the tests work and once this is done, the cycde restarts ©
with the construction of mote test cages. In this development style the
design of the test cases leads the desipn of the code. It is argued that this
leads to systems with better cohesion and looser coupling [Beck2002].

Whilst TDD js achieving excellent results and may become an important

81

development methodology there are caveats to concentrating solely on it for
brst year teaching, These include:

¢ despite its popularity, many of the success stordes for TDD are still
anccdotal and future research may show limitations with the test-diiven

approach; and

® because of the relative infancy of TDD, techniques for teaching it have
not even begun to be developed. In fact, it is quite possible thar some of
the tenets of TDD are unsuited to introductory level programmers and
that more traditional programining techniques need to be taught fitst. A
recent paper exploring the teaching of some of the new, so called, agile
methodologies such as TDD concluded that it “cannot be propetly
appreciated until you've suffered the pain of alternatve heavy weight
methods or indeed no methods at 21l [Lappo2002 page 38]. It may be
that without experiencing the pain of non-agile development

methodologies the advantages of TDD are nor obvious.

Of course, we do not want to discount TTOD either so it is important to
also consider the tool support for petforming it. Cutreatly TDD is
petformed using test frameworks such as JUnit but without any other

form of tool suppoxt.

Another group falling into this type of testing is the extreme programming
(XP) cornmunity. Whilst not relying -on construction of tests before any
functionality, XP programming trics a similar philosophy with tcsts writing
intertwined with the writing of the code with the goal being to build a
working minimal systerm frsc In this way it is like a milder form of TDD.
There is increasing intcrest in the possibility of using XP in introductory
courses [Allen2003].

Identifying these different types of testing activities allows us to desigm educational

testing tools that support testing activities in early programming courses. The

availability of such tools can increase the likelibood of students actively performing

testing acrivities.

44 Current tool support for testing

The four testing actvides (1).(4) identified in the previous secon are often
performed with, or aided by, the use of tesiing tools. Some of these tools are
designed cxplicitly for use in educational environments, whilst others have been
developed for use in professional programming environments. We will bretly look
at the advantages and disadvantages of some sample tools to see if the professional
tools are capable of being used in an educatonal setting and to see if the
educational tools available cover the range of testing activities that we have

identified,

Whilst looking at these testing tools it is helpful to examine the four stages that
execution of a test nommally involves. The initial stage 15 the setdng up of the test -
either identifying and locating the source code to be tested or constructng objects
that the test will be performed on. The second stage is the actual writing and
construction of the test itself. The third stage involves executing the test and the
final stage involves the validation of the results. Each tool approaches these stages
differently. Some stages are automated, making them easier to perform repeatedly
and quickly. Other stages are petformed manually, providing more flexibility but at

the cost of increasing the time required to execute the stage.

441 Symbolic debuggers

Symbolic debuggers have existed since the eady days of modetn computing
[Kernighan1984] but for most of that time the debuggers in use did not evolve
nmch in terms of functonality or features. A reason supgested for this is that
debuggers are so specific to a partcular machine, operating system and language
that improvements to debuggers on one platform were often not transferred to new
machine architectures unless programmers were willing to re-implement the
improvements on the new architecture [Ramsey1992]. Recent years however have

scen 2 rationalization in the number of architeciures and operating systems and now

83

symbolic debuggers all have an improved set of cote features such as breakpoints,

source level code display and data inspecton [Zeiler1996).

Tests in a symbolic debugger are set up manually by indicating breakpoints in the
source code. The constrncdon of the actual test dtself is normally perfotmed in an
ad hoc manner through the use of single stepping and breakpoints to examine the
execution of sections of the code. The resulls of the test atc viewed manually by
inspecting the debugger display and compating to expected values. Although using
them is a manual and labour intensive fask, symbolic debuggers are, at least in
principle, simple to use and therefore are suitable for use in fitst year education in

support of testing activity {2).

4.4.2 Unit testing with [Unit

Unit testing has undergone a revival in the Jast few years with the adoption of
extremne programming (XP) development techntques such as refactoring and pair
programning [Jeffaes2000] [Beck1999]. Part of the tevival is due to XP’s emphasis
on testing 2s 2 means of ensuring cortectness of refactorings, but the revival is also
due to the introducton of a testing framework for Java called JUnit [JUnie2002].
Whilst XP provided s compelling motfpation for unit testing, JUnit provided a
standard method of perfbrming unit testing and heace loweted the start up costs of
introducing testing to a project (previously developers would often construct their
own testing frarmework). The JUnit framework has since been adapted to many
other languages and now there are unit testing framewotks for languages such as
C++, Python and C#. Because of the similasity between all the unit testing
frameworks, we will concentrate the rest of this discussion on the Java version,

JUnit
Talbott defines four importanr components of XP style unit testing [Talbott2001]:

e unit testing is a pradire - it is not cffective unless the devclopers make a

conscious effort to do i

84

public claes EmailT=st extemds qunit, framewozk.Tes:Casme
(

Email testiaill:
public Emailfest(String name) [suoperiname); §

provected wvoid setUpi)

A

<estMaill = now Email (“From: Andrew <andveufsono,comr\n” +
“To: Joe <joefanotner.org>\n” t
“Suhject: that memo\n'n” +
“Just wanted to remind ycu'\n”:

}

puklic void testHeaderParse{)
{
assertTrus (testMaill hasSubjact());
asserzEguals (testMaill .gezSubjectField (), “chat memo”};
1

rublic void testHeaderaddition)

1
testMaill. addiezder (YY-Liat?, *mailman“};
assertEguals (testMaill .ger¥ield ("%~List*), “mailman”):

Figuee 15— A sample of test code written using the | Unit framewode

unit testing is about wmrification — the tests make checks that they expect to

succeed;

unit tests focus on bedaviowr - not how something is implemented but how it
should behave; and

unit tests focus on the exzernal imterface - this usually involves testing the public

methods of a ¢lass.

The set up phase for the JUnit testing framewotk consists of wiiting code that

makes available to tests a sct of sample objects, known as fixtures. Fixtures ate

arbitrary Java objects that the ptogrammer writes code te construct. JUnit ensures

that these objects are recteated before each test to ensure that there is no side effect

to the order in which tests are performed.

‘The construction phase of the tests involves the programmer writng test methods

in standard Java and vsing some predefined methods for assextivg test results. Tests

85

are then executed automatically through the framewoik and the results are collated

and displayed in a user intetface.

In the example (shown in Figure 15), we are constructiag tests for a piece of code
thar deals with email objects. We start by exwending our test class from
junit, franewcrk. TestCase thereby gaining access 10 a whole set of zucertion
statements that will detetmine the suecess and faflure of each test methoch Along
with assertZquals(} and assertTrue(), which we have used in the sample
code, there are numerons other JUnit supported assertions such as assert3Same ()
and assertMoiNill (). The secup () method, executed before each test method,
is run to ensute that out fixture objects are in 2 known state before being 2cted on,
There is also a correspoading method called tearfown ()} that is exccuted on
completion of each test. We then invoke JUnit, passing in our test class (or a

TeszSuite object which defines a collection of test classes).

The JUnit framework comes with 2 variety of exteasible interfaces for displaying
results. One standard output class is the TextRunner which displays the results to
standard output. An alternative is the SwingRunrer which displays the results using
a GUL Whichever display dlass is chosen, the {Ugit framewodk will display for each
test case (every method with a name starting with £est is considered to be 2 test
case) the status of the assertions, and, if any fadled, provide a stack trace showing the
expected values for the asserdow it failed. The results of executing our sample

code with the SwingRunnar interiace are shown in Figure 10.

In summrary, the JUnit framework 1 «n important step in the renaissance of the
practice of unit testing throughout the geseral prograsmming comumunity. Whilst the
Framework 1tself is not large and could Be reimplemented quite casily, its acceptance
in the programming community hes tncant that it has become a de facto standard
for unit testing. JUnit provides aa excellent structure for the construction of test

cases and execution of those tests,

B6

[l Relnad clascas avaly run -

iﬂ?mﬁas.EMT;m‘_ — . - |L |_J|—ﬁ_|

Renss . Erors: Folwosi . . -, . ..

WriLTrarmewnrk AssenionF alledEmor. expetled:<matknan> bul wat=maliman=
Hat junil sarnples EmaliTes tesiHeaceraddibonEmmilTes uva: 30)
at suirefectNalived ethodAccessoi mplinveked{Nalive K cthod)
12t sun refiectNallvaM alhodAccesser mplinvekeatvaMetho SAcs essasImpl [ava:38)
18t sunsenectCelepatingMethodAccassormpliny ska{D e'e gatingM ethodAccessosimpl [ava: 25}

Ik

=i

JFimshogo-Ge soeongs T — [eat |
c) P - . LR - . L. N

Figre 16 — The SwingRunnsr showing the result of the EmailTest.

4.4.3 TestMenror

‘Test Mentor by SilvexMark sofrware [Silvermark?2002] is a tool that automates
testing of compeaneants. Eady versions were Smalltalk based but they have now
introduced a Java Edition. ‘l'est Mentor takes design models, actual object
intcractions and the static class structures and relatonships, and uses them to
generate nearly complete tests. Tt is suitable for the constructon and execution of
regression tests as in testing acrvity (3). The generated tests are either represented in
an internal structure or can be represented as standard Java source. The advantage
of the internal represeatation is that it can be interacted with through a GUI so that
non-developers can create and run tests without knowing how to prograrn in Java,

The following sections outline the approach taken by Test Mentor.

4.4.3.1 Construction of test assets'
Tn testing object-oriented programs, the constructon of objects on which test
stimuli are to be applied is often time consurning. Test Mentor provides a “simple

means to define and reference reusable assets that embody strategies for

1 Test Mentor uses the term assets for what unir sesters wonld call a tese fixiure,

87

Tigure 17 — Consteuction of “steps™ in Tesr Mentor {reproduced with permission feom
[Silvermark2002 page 923),

inswmntiating and configuring objects” [Silvermark2002 page 88). Test Mentor
provides exuplicit support o help in the initial phase of test construction by allowing
a set. of shareable objects 1o be developed. "[est Mentor terms these shared objects

assets.

The approach Test Mentor uses to construct assels is to build a set of “steps”,
Thesce steps represent the instantiation of an object or the application of methods to
an objecr, but are labelled with free form suings. These frec form string
descriptions can then be used by testers to construct assets without necessarily

being able to progtam in Java.

To illustrate the construction of assets with Test Mentor we follow an example
preseated in the nser manual. Firstly, a new asset 1s created by sclecting the class
and constructor to wse in the GUL Then a description of the steps necded to
construct the asset are entered. ‘These are of the form of statements such as “set
name”, “set account number” cte. For each of these statements, Tesc Mentor
constructs a test step that then links to the actual Java methods needed to perform

the step. So for instance the “set account number” step can be linked to the

88

clearNumber{} and then setAccountNumber(int) method calls. Aoy
parameters that are required by a method can either be specified immediately o
generalized such that they are asked for when the asset is constructed. The entire
procedure for constructng assets is performed with a GUI and the methods that
can be selected at each step are dynamically extracied from the classes in the system
(see Figure 17). One advantage of this approach is that “steps™ can be constructed
by programmers who are familiar with the language being tested, but assets and

tests can be constructed from these “steps™ by speciafised resiers who do not know

the target language.

4.4.3.2 Conséruction of fest stubs

Test Mentor aids the second phase of petforming testing by partially automating the
mitial construction of test cases. This automation merely provides a starting point
for the constructon of test suites, but it is clatmed thar this automated test
generation gives the user “a good head statt on your test crcation and a starting
point for fusther test creation™ |Silvermark2002 page 137). Test Mentor uses some

novel techniques to determine an initial set of test stubs. These include:

¢ taking 4 Rational Rose [Boggs1999] sequence diagram and construcling tests

that emulate the sequence of method calls indicated in the diagram;

e working through the public methods of an object and generating a set of
tests that exercise each of these methods. These tests can be generated in
different styles including a style of test where after each method call the state
of the object is compared to = 1u1bwn reference wvalue. This upgregare

validation is discussed in the next section; and

* generating tests based on actual interactions of the objects in the system
when the program is tun. A user can select a class and then tell Test Mentor
to monitor all of its interactions for a particular class. The tests that will be
generated ate based on actual calls made to the object during the course of

the cxecution (sec Figute 18).

89

For each of these, it must be noted that whilst a set of test stubs is generated, the
tests are not yet complete and the user must stll Al in Literal values for method

paramerers and add checls o make sure that the objecrs ate in the desired states.

Pauge Rroume ‘l 1" Updeiz_ | End J Clear i . Crcateteutl .
& Shiw diagram £ Show table o B 8 . ﬂ
udd _ActionPerdormad|java.awt.evenbActionE vent] i'—-iaddllem[iwa.lann.smag] ;i
grilemCountString ;'——"""Itl!ml:!ullll[l :
add_ActionPerdermed|jsva.owt eventActonEvent) Pemaper 1 1t emjava. iang_String)
nelemCountString -—-o—:ucmccma
udd_AciionPedormed(java. 2wt rvent ArtlonEvenl} ot s drilie mfJavalung.String)
getitem CovntString P]-—-- emCount])
1emnve_AcivnPeronmedsvs. amd evenlActionEvenl} ; remavelemalindesding
gethiem CountSiring f} : iftemCount])
update_ActionPedormedjava.ami.eventAstisnEvent) - ireplnceiiematindesding,)ava
-
<| . | [
Moish -)" Caheel | b |

Figree 18 — Recording object Intemetion with Test Mentor (ceproduced with permission
fom [Silvermark2002 page 84]).

4.4.3.3 Validation

After the construction of assets and the generation of test smbs, the tests stll need
to have validation added to them. The validation phase of each test subjects the
asscts to stirnuli and then validates thet the components end up in an expected state.

Test Mentor provides facilides for comparing the actual state of an object with the

expected state. Some of these facilities are:

a family of assert () calls that compare expected values to acmal values and

throw exceptions if they are not the samc;

a valtdation “step” that can be specified using the GUIL This step takes a
reference to an actuzl value, a reference t© an expected value and then

compares them using a comparison operator such as less than or greater

90

than. The comparison poliey can be specified programmatically allowing the

implernentation of custom validation steps; and

e an aggregate state “step” that extracts the property values from an object and
collates themn into a lst of values. This aggregate state list can then be
compared to the expected list of values of 2 known teference object. These

known reference objects are refetred to as gold standard objects.

4.4.3.4 Snmmary

Test Mentor is an example of the tools that are available for professional resnng
activity. There are many othet similat tools with different languages as the focus and
with slightly differing functionality, What they have in common is a user interface
for the construction of test cases and for the autornatic execution of these test cases
and the collection of the results. The target fot some of these environments is the
non-programming tester — someone who works in the quality assufance departmeat
of a company but who does not need to have particular experience with the
language that a project has been developed in. For such people, a user intesface for
the generadon of assets and tests that hides the undetlying language details can be

invaluable.

However, while it can be used by a non-programmer, the functionality it provides is
sdll quite advanced. That is, whilst the non-programmer may not be farmiliar with
the prograrming language being used, they are still professional testers and hence
ate familiar with mote concepts and practices from the testing field. Furthermore,
they alse have the time to invest to become familiar with a compiex tool such as

Test Mentor.

The ability to generare test stubs quickly using tcflection and call monitoring can be
very useful for large legacy applications, but this is not an acuvity thar introductory

students are likely to be petforming,

91

444 DBlwef

“The Blue] enviropment is an integrated development environment designed
explicitly for introductory teaching [Kolling20012]. Bluej provides 2 umique object
interaction facility that can be used for testing activity (1). In this short section we
wili examine this object interaction and its cuirent applicatdon in testing in mote
detail. A more comprehensive look at the complete tool will be presented in section

5.1.

The object inleraction mechanism in Blue] allows the initial test set up phase to be
petfouned by the user instantiating objects and placing them on a workbench called
the object bench. Method calls can be made on these objects, with the results either
being displayed as texr or resulting in an object. If an object iz returned it can be

placed on the object bench and then interacted with.

The beauty of Blue] is that tests can be perfonned on classes immediately after the
code has been coanstructed. No test harnesses or test deivers are required o execuate
the methods that have just been construered. Flowever, this testing is ephemeral, Tn
particulat, the potentially time consuming set up phase, where objects ate
constructed, must be repeated after each compilation. This acts as an impediment to

using the ool to test methods.

Also, because the interactdon is not recorded, the construction and exccution phase
is totally manual. Tests cannot be casily repeated to confirra the behaviour later on
in the program development, and there is no antomated checking of the results of 2
test to confirmn the behavionr is as expected. This prevents Blue] from being used

to support regression testing as in testing activicy (3).

2 summary, the object interaction features of Blue] make it casy to perform quick
testing of methods with a great deal of flexibility. Tt is not ideal, however, because

the tests performed are totally manual and cannot be automared.

92

4.5 Summary

In this chapter we have looked at testing and its importance in introductory
education. Despite a great deal of work in incorporating testing into introductory
education we belicve that there is stll a Jack of adequate tool support suitable for
first year studenes. When looking at tool support, we have identified four activides
as being representative of the type of testing performed by students. Each of them
is listed bclow:

(1) Testing immediately after implementation
Pardy suppoited by testing framewoiks though the overhead of
constructing test drivers is an impediment. Also supported io an efficient
manner by interactive environments such as Smalltalk or Bluej, although

these tests ate transient;

(@) Testing after detecting a bug
Adequately addtessed by symbolic debugpers and tools that allow object

inspection;

{3) Testing after fixinga bug
Supported by testing frameworks such as JUnit. Professional tocls such as

Test Mentot wete examined but ate too complex for use by students; and

(4) Testing before implementation

Uses testing framewaorks such as JUnit, but has no other tool support.

The next chapter proposes a design for a tool that will add support for testng
activitics (1) and (3}, and to a lcsser extent (4). The tool incorporates the quick and
efficient Blue] object intetaction with the regression testing facilitated by JUnit, to
provide an easy way for studeats to construct and run test cases. We will show that
when added to the already existing Bluc] support for object inspection these
facilifes can provide a tool that covers the gamut of testing activites that are

required for introductory education.

93

3 Chapiter 5

DESIGN OF TESTING SUPPORT IN AN EDUCATIONAL
INTEGRATED DEVELOPMENT ENVIRONMENT

his chapter introduces the Blue] development environment as a platform to
be used for the indusion of testing tool support. The new resting facilities
that have been added to Blue] are shown via a walk through of a typical testing task.
Other features of the testing suppott are also discussed. We begin with some

background on Blue] and its predecessots.

51 Blue

The Blue project involved' the development of an inteprated object-orented
Janguage and object-oriented developmeut envitonment designed explicidy for
inwroductory teaching [[Koling1999]. Blue addressed the need for a development
envitonment suitable for teaching object-orented programming to first year
students. The key feature of the language Blue was that all language concepts were
clear and simple, yet it supported modern functionality such as purc object
orentation, garbage collection and pre and post conditions. The Blue development
environment had an interface that was simple and easy to use, bur stll included
most of the important software t00ls required for a student; a compiler, a project
managet, an editor, a class browser and an integrated debugger. It also had novel
functionality that allowed the students to visually instantiate and inteeact with

objects in the systen.

The Blue environment and virtual machine was written in C++ apd was only
supported on Solatis and Linux. A Windows port of the Blue environment was

conunenced but never completed.

{ Whilsc he Blue system is still available for download, it is no louger vader active devdopment and we will
thetefore refer ko itan the past ense.

95

. B - o] B2
. - R I e e Lo D B B LA el e T LPehemg e T o S A .'w.f--..em.:.;.':.-a-'-;'..r.'.u,.-.'-;.‘.“-".;"-"'-'.'-ﬁL:m
1 Droject Edit Taols View Help

—» |{|=

o
th*Olasaﬂi
=] =] 7

= | i
§ : Complle]) assbtransn
y - - PoveeeZn, Par
View § Staff Student

Figuaee 19 = The main Bluc] window showing the LML siyle elass disgrarn and objects on
the object bench.

5.2 Blue]

The populatity of the Java language and its suitability for introductory teaching
called for an epvironment similar to Blue te be built with support for Jawa. This
work commenced in 1998 and resulted in a system known as Blue] (orginally
JavaBlue).

The Blue] project provides support for Java in an cnvirc.oment with most of the
features of the Blue envitonment [Kolling2001a]. Because Bke] 15 itself written io

Java, it can be run on many more platforms than Blue could.

The main fzatures of note in Blue] arc its support for UML style class diagrams, its
direct interactinn with objects, its object inspector and integeared debugger, and its

supporl for Javadoc. These are discussed in more detail below.

96

I=kalx

Project Edit Tools Viéw - R

B LT L DTy

T

==
L —& |
| co;lr.pl_la« ‘

Database

<«abstract>s
~——=—3| Person |

Jr———-

~Complis
:ﬁh{move'

Figure 20 — The popup menu of 2 class in Blue).

52,1 UML style cluss digqgrams

The main display of Bluef is a simplified UML diagram of the dassés in the system.
[ach class is displayed as an icon with different styles of shading to indicate
cornpilation status and with UML srereotypes to indicate different class types such
as “«abstracty”, “dnterfacen” or “capplety”. There are two different relationships
between classes that are shown on the diagram. Inheritance relatdonships are shown
with 2 solid lined arrow and refetences between classes ate shown as dashed liaes.
The relationships can be specificd by interacting with the diagram (which creates
the corresponding relationship in the soutce) or can be specified by ediing the
soutce {(which automatcally teflects back in the diagram). Figure 19 shows the main

display of Blue].

Each of the classes displayed has a popup menu (selected by right clicking on the
class — shown in Figure 20) that can be used to compile the class, open the source

editor (double-clicking on the class is a short cut to this operation), remove the class

97

a

T ¢ oat, i\ R A AT R R H 35 7 e 3 T e s o ZAT e Ak ;,b--«b.é-r-« o

K4 Creale a stamember wm Ghen mm:e, yearof tith &ng roor:
¥ numbor,
'S!a‘l'ltstrhg eIne, int yexromirty, smng rmnwnber)

Hame ofmstanne Jstarr_1 |

new S1aft(l‘_brff:e' L J& _v_‘ ., String name
51970 ~ J - I, it yaarOfisth
f2tze | ML Stﬂnu-rummluﬁﬁer_

F ey

Figure 21 — Pammete: passicg when coasteucting an objecr in Blue).

ot interact with the constructors of the class. The popup menu displays all public
constructors for the class, as well as 4ll public static methods defined in the class.
Figure 21 shows the dialogue that is displayed when one of these constructors is
selected. The user is first given a chance to input any parameters to the constructor,
and then a tepresentation of the constructed object wiil be created on the object
bench at the bottom of the main display. ‘The user interaction with these objects will

be discussed in next secton.

Objects on the object bench are transient. They are automatically removed if any

change is made to their corresponding dass ot if the project is closed.

5.2.2 Direct object imteraction

Direct object interaction is a unique featute of the Bluef environment. The objects
on the object bench have popup menus that display the public instance metbods for
objects of that class, Methods from each of the objects” supertypes ate also
displayed in cascading popup menus. As with constructors, if 2 method takes a
parameter and the method is selected from the popup menu, the user is presented
with a dinlog to enter patameters to the method. If the method returns a vesult, this
esull is displayed (o the user. For primitive types, Blue] displays the result as a
string, but for all other types Blue] allows the eturncd object to be placed on the

object beneb where it can also be interacted with.

98

o . . : p - aes® e e I-,}ﬂﬂzl
ikt g e g e [T L el e s b el il

§ [Static flslis . [mpeet) "
. : Gut

| Oujacttionts '

N |nrivate Siring room = “212E*

8 [private String name = “bruce™
. |private int yearOrEFih = 1079

Figure 22 — Inspecting an olbject.

The direct interacton facility is valuable to students because they can experiment
with objects without writing any code. It allows teachets to structure an objects-first.
introductory course whete students can play with classes and abjects before secing
any soutce code [KoHling2001b]. This direct interaction, where cbjects and classes
are treated as first cluss enttics inn the system, also belps reinforce the concepts of
object-orented programming ie. the one to many relationship berween classes and

objects, instance methods operate on objects, not on classes, etc.

3.2.3 Qbject inspection
Blue] allows the user to view the internal state of objects on the object beach (see

Figure 22). The inspecdon dialog shows both the instance and static fields of an

- object, Fields of a primitive pe are displayed as strings. If 2 field is an object

refereace, then the object that it refers w0 cen also be inspected. This facility of
Blue] allows students to explore the structure of objects without having to use a

symbolic debugger.

524 Inregrated debupger
Blue] has a symbolic debugger thar supports breakpoints, stack inspection and
single stepping through source code (see Figure 23). Whilst it 1s relatvely simple 1o

use, the debugger contains concepts that may not be appropriate for beginner

99

T B LATER g et e T :;.g‘-.l::-‘:t.‘..m-.u&-‘_‘_tcs:f..-..u
H spdete: [
Cloge -

| =) Show systernthreacs

§ CanSenuence | Ftatic variabies
g ISstudent.<init:

stance variahles -
Steling SIB = <Hull>

IString name = “(unknown ame)”
Hmt yearofBir = ¢

fLocal vanalles

ST

Confinuie | Terminata -

e,
R S PR

Figure 23 — The Blue] debupyer.

prograsnmets such as threads and eall stacks. The Blue] debugger also suffers from
some problems with its robustness in unusual situalions. An effort is underway o
irnprove the debugger in Bluef, including looking at different models for debugging
thweaded programs [Schul22000).

3.2.5 Janadoc generation

Whilst Blue] can show all the classes in a single package as a UML diagrarm, it is
desirable to be able to browse all the classes in 2 project The standard Java way of
providing information abouc all classes in a project is to generate Javadoc
documents. Javadoc specifies a way of placiog method and class documentation
mto the source code of a class and then generating a set of hyper linked web pages
detailing this information for hrowsing in a web browser, Blue] supports the
launching of the Javadoc tool and the launching of 2 web browser 1o view the

resulting web pages for the current project.

100

5.3 Introduction to testing in Blue]

The testing functionality we have built into Blue] incorporates the object interaction
ability alrcady existing in Blue] with the ability of JUnit o perform regression
testing. We have seen the nceed for this in the previous chapter where we analysed
various testing tasks. We surmised that testing tasks (1) and (3) arc particularly
deficient in tool support. Unit testing framewotks such as JUnit support a standard
way to wrte tests but do mot provide any tools that help in this task. The Blue]
interaction mechanism is useful for task (1} but does not provide any recording

facility, so tests must be redone by hand, eliminating irs usefidness for task (3).

Wher adding unit testing to Blue] it was important that the upit testing functionality
did not impact upon students who were not using unit testing. To this end, unit
testing is integrated into the Blue] interface in an unoburusive way. If a project is not
using testing then the testing funcdonality barely impacts upon the user experience.
The addition of the “Test” button on the main display and a “test runncy” dialog,
whose display is toggled from the View menu, are the ooly plainly visible testing
funcroas. Consideration is also being given 10 a preference sctting that disables all
testing funcdonality in Blue] (inchwling removing the “Lest” button and any other

tenus relating to testing) for situations where it is not appropriate for students.

5.4 Testing aoverview

The most fundamental funcionality provided by the unit testing extension to Blue]
is the recogmiton of JUnit tests as a special type of class in the Blue] syscem (see
Figure 24). The following functionality has been incorporared into the Blue] user

interiace in order to support unit test classes:

o ability to construct a test case class;
» ability to run all the tests in 4 test case;
* ability to tun 4an individual test methed from a test case;

¢ ability te move the test fixture from 2 test case onto the object beach;

101

: =§ a]{x
m-!:.’.. S bt A P s A6 - e B W e - SR e S LD e sy R S b i -,‘J-!L-J@
Prejact Eat e Viow - - Hayt §

[l]

g 1 | Sente | s it

i TrensporieiRoom
it
Barssrlag,

hat . 1

| Wi
Ao vea
& ma‘r'mm

e

Bt P ——— o i =

Figure 24 - 'T'he Blug] system showing the addition of the unit tesrng functionality,
» ability to construct test fixture from objects on the object bench; and

o ability to construct a mew test methed in a test case by interacting with

objects on the object bench.

If we look at Figure 24, we can see¢ the three uscr-interface changes that are present
in the unit testing version of Bive]. Firsdy, the grey classes on the UM, diagram
represent the unit tests. An additional bution labelled “Test” has been added to the
buctons along the left edge of the main window. ‘this button runs all the tests
present in a project. More details of the running of tests can be found in section

5.5.5. In the bottom right hand corner on the object beneh, butrons have been

added to end and cancel the recording of tests. An explanadon of this cest recording

funcdonality is in section 5.5.3.

A mote in-depth explanation of all the testing functionality is presented in the

following sectons by introducing a wallithrough of testing using & conventonal

102

testing methodology. The chaptet will end with 2 discussion of the use of the Blue]

testing support in handling testing activity (4) ~ test driven development.

5.5 Conventional testing walk through

In otder to descrbe the new testing functionality that has heen integrated into
Blue], we will walk through the process of implementing tests on a ork [Speari994]
style texr adventure program. This assignment is a modified version of that
presented in [K6ling2001b), with a looser coupling betwreen the parser class and the

rest of the system,

The zork game contains four major classes (or groups of classes). The mein Game
class in the otiginal assignment has been refactored into GawreAction objects that
encapsulate the behaviour of a particular command such as “go” or “Quit”™
GameAction objects are returned from an ActionFactory that maps conunand
strings to the action’s class. The Game class itself is now mainly 2 loop that mediates
berween the other classes. The game consists of a loop that insuuicts the Parser to
read commands from standard input and then moves the player between locations,
Locations are tepresented by Room abjects, which contain a description and a set of
exits that indicate in which of the four standard compass points oae may leave. The

set of classes in the assignment can be scen in Figure 24.

I the following walithrough, we will use the terminology derget dlass 10 refer to a
class in Blue] thar is the being tested by 4 unit test class, For instance, if we had a
class called Foc¥sst that primardy tested Foo objects, the class Foo would be the

target class.

We will assume that w . have <l eady constructed the Parser class. It contains two
mcthods tokenizeAndL~ ior (5tring) and tokenizeAndLower {Reader). The
first tokenises a string, I ~ve cases e tokens and then returns the tokens in an
array. The second method does “he sarn: as the first except using the readLine ()

method from the Reader as the inpot “ource.

103

TN A T A e L B A e R ! =) L-m

G arma i

I
:_E':_:'_:'f“‘;::::g S I

i
]'l

T ik et)

[

: ' ! i

H . HE
! L] .
: it o ey coautirasivs | .

i
1

Rk Parssi)’ (o) Gameketion [« i
Opn Erip: — —4" ;
1
Camaila R ' .
Rumo st : S ——
Gohcllon b
I o G - .

Figure 25 - The pupep menu for creating n new test clags.

5.5.1 Recording of Ad-Yoc Test Interaction

Atits most fundamental level, the functionality that is to be shown in the followiag
walkthrough is that it aliows the sucording of normal Bluc] object interactions as
unit rests. This allows the combimatdon of ad-hoc resting that Blue] has always
suppotted to be combined with regression testing. Section 5.5.3 shows the details of
this interactive construction of 4 unit test method. Secdon 5.5.9 shows how the

Blug] ad-hoc interaction ¢an be used to create a unit test fixeurc.

5.5.2 Constructing the lest efass

We wish to start some testing so as owr first step 'we construct a unit tes: for the
Parser by selecting “Create Test Class” from the Parser class® popup menu (see
Figure 23). Unit tests are reptesented in the interface in the same way as other
classes in the system albeit with a UML stercotype of “cunit tesp’” and a distinctive

grey colouz, The resulting unit test class will be automaticady named ParserTest.

104

The dedsion to represent unit tests as first-class user inrerface objects was a
fundamental desipn decision. The alternative would be to build all the testing
functionality into the standard class object (perhaps on their popup menus) and to
hide the existence of the JUnit testing classes. We chose to present test classes to
the user because we believe that the introduction of JUnit testing is about more
than just providing additonal functionality to the student. Bluej should also
reinforce concepts of testing. This is similar to the way Blue] reinforces the concept
of objects and classes by presenting them as two different types of uset inrerface
eletnents in Blue]. By presenting unit test classes 25 separate endties, the distinetion
between the class being tested and the test class is reinforced. If the JUnit classes
were hiddea in the systemn, students would feel that the test cases are some sort of

magic, where as in reality they are relatively stratghtforward pieces of Java code.

The penerared unit test class is constructed using a templale vnit test file that comes
packaged with Blue]. ‘Lhe template can be customised by the user or system
administrator to fit in with any local requirernents of coding style. An alternative
approach that was considered was to make Blue] construct the test class as a set of
stub test cases that are based on the methods existing in the target class. This
obviates the laborious task of creating many test method stubs when we are estng
a large target class that already exists. There are numerous systems in existence that
have this functionality such as the JUnit exrensions for NetBeans [Netbeans2002).
This approach was not selected for Blue] because it was felt that the vse of Blue] in
introductory teaching means that it is rare to have to deal with large amounts of
legacy code, and furthcemore, thar automatically creating émpty Lest stubs may give
studeats a false impression that they are constiucting actual tests rather than just

test stubs.

Thete is nothing in a standard unir test class that tes it to a partcular class or set of
classes in the systetm. However, classes are by far the most predominantly used
“unit” for testing in Java and hence the unit test will often be testing a single class,

Therefore, when a unir test is created ftom a arget class, Blue] assumes that there is

105

3]
u.‘!\u-w‘:‘\ i i 3% i s P e 1 L 4 st ; b it e e e e L T DT] i et T .-'..M

...............

Onjlulﬂnn..h .a‘l'm: thlurt: - ;
'resl Fixtue fo, Objmeamh 5 ’

| Opencotar - (. j__.__‘_.__) | _ActionFectany]
3 B X]
REmve '_ S :L e, 1
L | \! !
- o Godetlon j

Fipure 26 ~ The popup menu for creating a test method.

a tight coupling between the two classes and will keep them together on the
diagram. This “ascociaton” between class and unit test class is used o determine

special compilation dependency rules as will be seen in a section 5.5.12 of this

walkthrough.

5.5.3 Creating a fest method

The first test we wish to create is a test to see that the Parser class is always
returning a valid String amay, no matter what the input. We start the construction
of & new test casc by selecting “Create Test Method...” from the unit test class’
popup menu {see Figure 26). We are prompted for the name of the test and we
enter the name “NotNull”. An “end test” button appeats at the bottom tight cornet
of the object bench. All our intetactions with Blue], from now until the “end test”
button is pressed, will be gecorded in the testNotNull() method of the

ParserTest: class.

106

Figure 27 ~ The result and assection dialog,

We construct a new Parsex object by selecting “new Parser()” feom the Parser
class” popup menu. This ereates 2 Paxrser object and places it on the object bench.
We can now execute methods on the Parser object and Blue] will perform the
operaton. We select the tokenizeandLower (String) method and are presented
with a dialog asking for parameters to the method call. As we are testing to make
sure the method always give us a non-null string ateay, we start with a boundary
casc like the empty string “. As with normal Blue) interactons, 2 result dialog is
now displayed showing the remarned abject. However, because we are in test mode,
the result dialog is extended to show an assertion panel that can be used to make

assertions in the current test. The asscrtion panel is shown in Figute 27.

554 Asserting resulls

We want to assert that the result we received from the method is not null. To do
this we check the “Assert that” checkbox. We can then select the cype of assertion
that we want from the drop down list of supported JUnit assertions. In our case, we
select the “not null” assertion. When we click on the “Ok” button, this assertion is
added to the current test. We repeat this process fotr some other cases we wish to
test such as the sttings “a” and “AA ab”, As a final test we execute the
takenizeAndLower (String) method, passing in null as a parameter. The code is
actually being tun on a second virtual machine so we will ger an exception thrown

when attemptng to vse the null pointer. Blsef carches the exception and highlights

107

public veid testMotNull()
{
Parser pargexr_1 = new Parser(};
.:
Strinci] result = parser 1l.tokenlzeAndLower (*"):
assert otNuli (result};
}
{
Striang'] resuvlt = parser_l.tokenizeAndLower(“a”):
asgerchotNuil [resuldt);

String[] result = parser_l.tokenlzeAndLower{“Aa ab”);
assertlotNull{result);

Fipuse 28 —1'be 20it test source of a method ceeared throogh Blug] intcracions in the

ParseTest Aass,

the line in the Parser class that the exception occurred at Because we get no result
dialog when an excepton is thrown, we do not get any chance to make any
asgsertions about the tesult. For the tme being we will have to leave off testing for

this exception. We revisit the testing of exceptions in secdon 3.5.15.

After exhausting all the cases that we wish to check we click the “end rest” button
in the bottom rght corner of the object bench. The testNet¥ull mcthod has now
becn added to the ParserTest dlass (its source s shown in Figure 28). Aftex

comnpiling the test, we ate now ready to run it.

555 Run Al

The “Run AL” popup menu item runs all the tests in the selecred test case, The
results are displayed in a dialog indicating the list of test methods and whether they
passed or faled. A large bar is displayed in green if all rhe test methods pass. 1f there
are any failures then the bar is displayed in red. In 2 case whete the test has failed,
the bottom half of the dizlog displays the results of the assertion, showing the line
where the assertion faded and what the acrual and expected results were. An

example of this test dialog is shown in Fipure 29.

108

B i T B e R e T B T Toa s e £ S s T i T

| 7 SitngyTasttestrirstAfthData
§ 4 SlringyTesttesiLastithiData
§ 1% StringyTesLeSIWIhEmMDl "2 "<

R |epacted:<= butwas:<aull>

—a

A [Junitframewark Compatsonfailure: expestec:«» bu: was:<ntill>
| at StringyTest tesiatilhEmzh(SiringyTastJavag1)

Figure 29 — The dialog showing the result of minning three teszs.

Blue] utilises its own implementation of the standard JUnit SwingRunner user
interface. 'The Blue] implementaton adds the ability to jump from an assertion
failure o the line of code in the test case that caused the failure by double clicking.
The Blue] version differs internally from the nommal SwingRunnex in that rthe
interface code and the execution of the tests occur on different virtual machines.

This will be discussed in more depth in the implementation section 6.6.

5.5.6 Dealing with arrays

We have successfully constructed a test method for the Parser class that ensures the
tokenizeAndLower (String) method always rewrns a non-null string array. We
would now like to construct a tcst ensusing the acmual values returned in the ammy
ate accurate. We start in the same manner we did for the previous test by selecting
“Create 'Test Method...” from the test class’ popup menu. This time we will call the
test “Basic”. We conmsmuct a Parser object and execute the
toxenizerndLewer (String) method with a paramerer of “ AA Ab bb”. From
the resulting dialog, we dick on “Inspect” to view the returned object. The string
array is then displayed as in Figure 30.

109

E AT o e e e B O £ 1 T2 .‘-ﬁz.:&-'_-'*:.:mmﬂﬁ'
. Obisit of clazs st:lng[] _ .
hmdl

[LT

Figure 30 — The result and asserdon dialog for an acray.

The differcnce between arrays and normal method resudts is that Blue] cannor add
a single asseron when the “Ok” button is pressed because there are nmultiple
elements in the artay and therefore there could be multiple assertions requited. To
handle this, when an atray result is being viewed, cach array element has its own
“Assert that” checkbox. When an array clemenrt is selected and the “Assert that”
checkbox is checked, the assertion type and value are particular o that array

elernent,

As a time saving device, when the “Assett that” checkbox is checked, the value of
the actual result froto the cotresponding atray element is copied into the assettion
value text field. So for instance, when we click on array element result[1] and check
‘Assert that”, the stang “ab” is copied into the assett valuc test field. If the current
implementation had generated the incotrect result it is easy to indicate the correct

value by changing the text field.

For each. atray result we check the “Assert thai® checkbox and then select: “Ok”.
We then click the “end test” button and Blue] constructs a testBasic () rnethod

that contains all the assertions. The source of the resulung ParserTest class is

110

oublic void testBasic!}
{
Parser parser_ 1l = new Pazser():
{
String[] result = parscr_l.tokenizeAndLower{™ 2a Ab bb");
gssertEquals {resvlt [0}, “aa”):;
gssertBgquals (reselt[2l, “ab”};
as3dercEquals {(reselt[2], “bb”};

Figure 31 = The unit rest source of a basic method created dirough Bluej interactions in the

PuiserTes: class,

shown in Figure 31, The details of how the tests are constructed from the object

interactions is discussed in the implementadon section 6.4.

5.5.7 Testing using siandard Java classes

The final test we wish to make for the pParser class is a test for the
tokenizeAndLower (Reader} method. Our first step is to construct A Parser
object on the object bench. Secondly, we need to construct an object that satisfies
the java.io.Reader interface so we can pass it ag a parameter (o the method.
Luckily there is 2 standard Java class called java.io.StringReader which can be
constructed from a string and which sausfies the Reader interface. We can construct
a StringReadex object using the “Use Libtary Class...” facility of Blue]. Firsdy we
statt the recording of a new test case named “BasicRead” using the “Create Test
Method...” menu option. We then select “Use Libeary Class...” from the “Tools™
menu. In the resulting dialog we eater java.io.StringReader and press rehurn.
A list of all the constructoss for the javs.io.StringReader cdass will appear. As
there is only one, the java.ic.StringReader (String) constructor will be
highlighted. When we now press “Ok”, the normal object constrction dialog of
Bluef will appear. We pass in the seing “Go East” as the paramerer to the
StringReader. It will now appeat as an object on the object bench. This can be

seen in Figure 32.

The StringReader on the object bench can be interacted with using the same

Bluz] mcchanisms as the Parser and other objects we have dealt with. For

111

1 T
| keod fomidtdect v 3 /J R\
| inborted romFeader ¢) /

A ol dwao . Quirthction J
volg matkqit) - I i 7 e
Soact

| &
2)
]
l.'}.lj

1| bealoan marxBuspxitedd
'=._ :-W
=i ot readieriainting
i hﬁmé’nnmnm
ol reestd
fong sip(cng) o

T

™

Dipure 32 - A java.ic, StringReadsxs object oo the ohiect heach, The popap meny shows the method

calls which can he made on the object.

instance, we could call the zead(} method or inspecr the fields of the object.
However, in this case we have consttucted the object w st as a parameter (o the

tokenizeandlower {Reader) rnethod.

We select the methed from the Purser object’s popup menu and the method call
dialog is displayed. We select the text field for the parameter to the method and
then we click on the StringReader object. Blue] will check that the object is of a
compatible type, and if it is, will enter the name of the StringReader object in the
method call. When we select “Ok’” this call will then be executed and the resuldng
array will be displayed. We meke assertions about this result in the same manncr
that we did eatlicr in the walk through. The tesulting test’s soutce code is shown in

Figure 33.

All Java classes can be constructed and used in this way. For instance, if a method
dealt with Java collecdons thea LinkedList objccts or HashMap objects could be

creazted on the Blue] object berch and used in testing.

5.5.8 Sharing test objects

In constructing tests for the Parser cdass we notice that there are some objects that
we use in each test (a Parsex object for cxample). It would be useful to be able to
share the effort of constructing the objects between all the test methods. JUnit also
has its own concept of objects which are shared between tests. The set of these

objects in a test case is called the Zesr fwr and are instance variables which are

112

public veoid testBasicRead{)
{
tringReader reader 1 = new StringReader{“Go East”):
Parser parser_ 1 = new Parser(reader_1);
String{] resul:t = parser l,toxenizeAndiower(reader 1);:
asseyrtEgquals (result[D], “go©);
assertBqeals {result(l], “east”};

-

}

Figuze 33 — The unit vest source for a method created using the Java StringReader class.

created in a desigonated method in the test case called setUp (). A namral fic
between Blue] and JUnit would be if the object interaction methods of Blue) could
be used to construct the test {ixtures in standard JUnit tests (o the same way that
the Blue] interaction is being used to construct JUnit test methods). Similarly, if
JUnit test fixtures could be brought into Blocef, then object interaction and test
generation could be performed with existing JUnit tests. The unit testing features of
Blue] have this ability.

5.5.9 Creation of a tes! fixcture

To iliustrate the construction of a test fixture we will construct some tests for the
Room class. The putpose of this class is to represent the locations between which
the player can move in the gurk game. There are four exits that a room can have
(north, south, east, west) though it is not necessary that each room has all of the
narmed exits. Exirs are specified using the setExits (Room north, Room south,
Roem west, Room east) method, with a aull parameter for a direction meaning

that therc is no Roon accessible through that exit.

Our first step it to construct a test class for Reom We select “Create Test Class”
from the Room class’ popup menu and the new ReomTest class is created. We
would like to make a small set of connected rooms to test that rooms can be
successfully navigated. We construct three room objects on the object bench with
descripdons of “west room”, “east room” and “south of east room” respectively.

On the ohject beach these abjects have the names room_1, room_2 and room_3.

113

= LA IR SRR SRS £ (R EWALE AV SRARL E TR T C P AL ATE Phiec3 :@

4 Dbtins the s of this room, Every dicecticn efther jeads 1o
#ammwmqrfs nutt{no exitihere).
- L S
| @bammnorth The Réomiod the norh
s @pasmesst The Roomio the east
- #@paramsauth The Roorn o ihe scuth
£ @parsmwes! TheRoomio the wesl
- woid aetExits (oo harth, Room east, Room sputh, Room west)

" foom. 1.se1Ems-([;u_l]__| ‘Room horth

s [5]. e

o T i, ‘Radinsotth

Room weit

Iigure 34 —"T'he method call dinlog execuing Room™s setBxits(} method.

We use the method interacdon faciliies to call the setExits () method on each
room instance, passing in the other room objects as paramcters, Blue] cxtracts
method header comments from the Java source and displays this in the method call
dialog. It also displays the method’s variable names, which is useful in this case to
distinguish belween the fout room objects that the setExits () method tekes. The

method czll dialog is shown in Figure 34.

We now want to stote the three Room objects on the cbject bench as sharcable
objeets in our ReomTest dass. We selcet “Object Bench to Test Fixture” from the
RoomTest class’ popup menu. The source code w0 coustruct the objects is saved
int the RoorTest: classes” setUp () method. The objects which have been saved
now disappear from the object bench. ‘They can be restored in two different ways as

explained in the next section.

 5.5.10 Restoring a fest Jixture
A test Dxturc can be restored to the object bench by selecting “Test Fixture to
(Object Bench” from the fest class’ popup menu. This will execute the setup!)

method and place the construcied objects onto the object bench. Usets can interact

114

] -
£ A el T e i L N e e 2 bt

§ Dblact resist = cakjact rafarenpes 1 tmgrertr |

Sy

Figure 35 — The resilt und assection dialog when the object returned is aleeady

on the object bench.

with these objects on the object bench identically o the way that they handle

objects that have been constructed through normal interaction.

The other method of restoring a test fixture to the object bench is by creating a test
method. When a test class has a test fixture, the fixiure’s objects are automatically
placed on the object bench whenever the recording of a test method is started. Any
methad calls which are made on these objects are local to the test method being
recorded and will not impact upon the state of the test fixture objects in other test

methods.

We can see the rescoration of a test fixture in action by constructing a test method
for the Room class, We select “Create Test Method...” from the test class® popup
menu. We give the test method the name “RoomEaxdt”. The three roomt objects that
we created as the test fixtures for this class now appear on the object bench. We
sclect the nextRoan{String) method on the room_1 instance and enter “east”™ as
a paramcter. The resulting dislog is shown in Figure 35. We note that whenever an
object reference is given as a result, Bluce] attempts to sce if this object is already on
the object bench. If so, the name of the object on the object bench is automatically
placed in the assertion text field and the type of the assertion is sct to “Same As™.

We can see this in Figure 35 whete the result of the going “east™ is the room_2

115

object on the object bench, which is therefore automatically copied in as the

asscrtion value.

5.5.11 Exctending a test frxcture

We may cot always know exactly what objects we would like in 2 test. fixture when
the test class is first constructad, s0 it is necessazry that Blue] has the ability to 2dd to
objects in a test fixture. We can extend a test hxmure by selecing “Test Fixture to
Object Bench™ and then constructing new objects or calling methods. When the
objects on the object heich reach the new state we wish for them, we then seleet
“Object Bench to Test Fixwre” from the test class’ popup menu. Bluc] will now
rewrite the setUp () method of the test class with th: cument object bench. To
prevent accidental deletion of 4 test fixture, a warning message is displayed when
atternpting to replace a test fixture with objects from an object bench that was not

initially constructed from the same set of objects.

5.5.12 Sitent compilation

When a class is compiled, Blue] will automatically artempt to cornpile the
corresponding unit test class, ‘This compilation is artenpted silently — any ertors will
not be presented to the user with the usnal “hilight line in the editor” technique.
When a test class fails to compile, an error message is displayed in the status bar and
the dass is left with an uncompiled state appearance in the dass diagram. This
should provide cnough feedback to the user that something is wrong in the test
class. Hlowever, if 2 user sclects “Compile” from the unit test class’ popup menu
then it is assumed that the user wanrs this class in particular to be compiled and
hence is interested in any error messages. In this case, Blue] preseats the test class’

compilation crrors to the user ir: the standard way.

5.5.13 Tests creared ontstde of Bine]

A design philosophy of BlueJ is that it must be able to work with standard Java
projects taken from other sources. Blue] augments the projects with a file that
stores details such as the arrangement of the class diagtam or details such as which

test is associared with which class. Howevet, if this information is lost or is not

116

available, Blue] must still work without it For chis reason, the vnit testing support
has the facility to deal with noit test classes that ate not associated with any other

class.

A test class can become disassociated from its forget in a variety of ways. Test
classes can stazt out disassociated if they are created through the “New class...”
dialog (as opposed to selecling “Create Test Class” from the target dasses’ popup
menu). Bluej also allows the importation of existing Java classes using the “Add

Class...” dizlog — an existing unit test class could be imported in this manner.

A disassociated test class can be associated with another class by selecting
“Associate” from its popup menu, A dialog is then displayed showing the classes in
the system that allows the vser to sclect one for association. Only test classes that

are not already associated have this menu option displayed.

When 2 test class is left disassociated, all that it loses is the diagram coupling and the
benefits of automatic compilation when the target class is compiled. Othet than

this, they functon identically w0 associated unit test classes.

5.5.14 Run individual tests

Wheteas traditional IDE’s only allow interaction with an applicarion in a monolithic
way (by execuung the main method of the program), Blue] allows interaction at an
object, class and method Jevel The standard JUnit interface oaly allows the
execution of all tests in a test class {although JUnit does allow test suites to be
created, containing individval tests from muldple test <lasses, this must be done

programmatically).

The popup menu for a unit test class in Blue] has a menu item for each test defined
in the class. By selecting a test method from the popup menu, juse a single test
method is tun. If a test is successful then a simple message indicating the success is
displayed in the status bar at the bottom of the screen. If the rest fails then the
result is displayed in a dialog showing the failed assertion, similar to the dialog

117

public veid testIxception{}
: .
Farser parssr_1 = naw Parsar():
i
try
{ :
parser_l.tokenizeAndlower (null) ;

fail {"¥ulliPointerl xcsption shoulid have been thrown”);
catch {(HullFointerBxception succeRss)
i
)
}
}

Fipree 36 -~ The unit test spuece for o 1est method generand when an excepdon i3 caught,

shown by the “Ruan All” menw. This allows quick execution of specific tests, which

is useful when cditing the particular arca of eode that those tests target.

5.5.15 Tetting exveplions

In sectun 5.5.4 we passed null to the tokenizeAnd'ower() method which
generaled an exception. Normally, when an exception is generated and is not caught
by any uset method, Blue] catches the exception and displays the line of source
cede that threw the cxcepdon. Because no resuit dialog is displayed, the user misscs
the opportunity to make an assertion about the resu't. To deal with this, when Blue]
is in test method coastruction mode and an exception is encouatered, Blue] will
generate test method code that ensures that ar exception is thrown. The basic
patteen of the code is to wrap the method call in a wuy/catch block, indicating
success when an exception is cavght, and to ful if the code reaches the end of the

try black. An example of this is shown in Figure 36.

We should make the poiat that any choice would have been wvalid fot the decision
on what to do when tokenizeAndLower{) is passed a null parameter value. It
could have been programmed to return nall in the case where it 'was unable to
process tokens, rather than allowing it to throw an exception. We then would have
constructed a test to assert that when a null value is passed into it, we do get a null

as the return value, An important aspect of the construction of unit tests is that they

118

mﬁ;ﬁﬁ;&*wé‘ﬂlhﬁd}.;n‘.‘.:&; B LR e T b ai’ :
MRy T

Fraefam ascmmsmeumm 'rawto . |
refar (o the methed Tesult) ’ !
. assart (hat
[resut =
st

.-

Figure 37 —Lhe free form assertion dialog.

act as 2 form of documentation for the code. An explicit test of its behaviour when
passed a null dispels any ambiguity about how clients should expect the code to

Irchave in chat situation.

5.5.16 Free form asseriions

There are sotpe rare cases where the default JUnit assertions cannot cxpress an
assertion the way a programmer would like. An example of chis would be if 2
programimer wanted to assett that 2 method result was within some range. To
support this, Blue] allows the programmer to inscrt free form assertions. Thisis 2
1abbed panel on the assettion dialog that allows entry of 2 free form texr string, The
free fotm string (which can refer to “result” in order to reference the return value)
should be a boolean expression, and is inserted directly into an assertTrue()

asscrtion statement in the resulting test method (sce Figure 37).

5.5.17 Further edeas

‘I'here are some other potential featutes of the unit testing extension that have been
considered but which have not been implemented because it is not clear what their
interface would look like, or there are stll technical problems remaining with theie
implementation. One of these would be to allow assertions that are more powerful
than just single cxpressions — onc would like to be able to assert that all results from

a pariicular funcdon satisfy a given function ffx). Another useful feature would be

119

to have an mterface that allows the construction of tests that cover a wide scope of
input values, For instance, the user could spedfy a range of input values rather than
needing to call the tested method by hand for each valve.

5.6 Testdriven development

Test driven development (TDD) was first discussed in section 4.3. It is a
development style that cocourages the construcdon of test cases 2gfore the
cortesponding implementation is coded. TDID is 2 new style of development and it
was not inidally considered when the design for the unit testing in Blue] was fizst
developed. Howevet, as we will sce, the unit testing suppott in Blue] is compatible
with the TDD methodology.

5.6.7 Walkthrough

Let us imagine thar we are still working on the s cxample. We wish to use TIDD
to develop a new type of Room, one that has more than the standard nozxth, south,
east and west exits of a regular room. We will call ow new room
Transpor Lerioom We create the new “ransporterioom class by selecting “New
Class...” from the edit menu. Using the dependency atrow button, we add an
inheritance dependency between the class Room and TransporzerRoom. We now
select “Creatc Test Class” from the TransporterRoon class’ popup menu to create

a TransportarRoomTast class.

We double-click an the TransporterRocrlest class and the standard Blue] editor
window opens showing us the source code to the unit test. All the unit test classes
we have developed in the frst part of this walk through can sitilarly be edited just
like standard Blue] classes.

The idca of TIDD is that we start by consttucting a test that fails. First we nced to
decide what functionality and intetface we would ke our TransporterRoom class
to have, We write the test under the assumption that our TransportezRoom will be
able to be implemented vsiug the interface we sclect. We do got allow the

implementation dctails to affect how we would like to TransporterRoar to

120

public void testPortalRooml)

{
TrangporterRoon troom = new TransporterRoom(“transpertexr room™);
Room destroom = new Rocni{“somewhere to go’);
troom. addExit ("portal”, destzoom):

assextsSane {(destroom, troom.nextRoom(“portal“});

Figure 38 — The unit 1057 sowce fora TDD miethod in TransporterRonmTest.

behave. If it turos out we have created an unimplementable interface, we can back
up a few sieps and uy a different interface with a new understanding of how the

implementation needs to be done in practce.

We dedde that the functionality we would like 1s to be able to add an extra exit to
the room. The parameters for this should be the name of the exit and the room that
the exit leads fo. We construct our test “PortalRootn” by constructing a new
method called testPortalRoom(). We write code to construct a
TransporterRocr object and 2 Room object that we can use in this test. We then
make a call to addExit () on the TraznsporterRoom object. Finally, we make an
assertion that the next room through our exit we have just constructed 1s indeed the

correct room. The souree code to this test is shown in Figure 38.

We now click on the “Compile” button in the editor. The compilation fails because
there is no Suwing constructor for the TransporterRoom class. We add 2
constructor and try to compile the test apain. It fails again because there is no
addExit () method. We add an empty add=xit () method, taking a String and a
Room 43 patameters and try to compile the test again, The compilation succeeds! We
can now run our test by selecting the “Test” button in the editor window for the
TransportRoonTest class. The “Test” butlon is identical to sclecting “Run AlF”
from the test class’ popup menu, bur does not require the programmer to switch
back to the main Bluc] window and therefore is a convenient shortcut (see Figure

39).

121

ke Tt U1 a4 b i b it B ool e S 3 P M T i Y L DL S b L

Profoct Eom ok Yiem ol |
— -
! NewClass | % :
B | Lt .
R - i
= I
Cemglla =
et e L 2 el WA ol a7 i 4 - s i 3 e 17 P :n.-,---?n-vm Ipord §5r A0
Chass. €l Ynok [JersonaRoem |
Paiiani i e e - e o] -
-] e T "
-;cmi;ronlLu_no'oj =1 ;
L g ——
4 T aerftbedes
o o mq ;
- T Tebt acvracot into & Cors chrough Lhr qew cede : o ;__ h
ET™ LF
¥ gublic vuid Ceathoczaifmen))
' 4
o TrAZIPOEKecRIon JEU0R # grw Tranvpnriechoss{TLE4NE Pt Toow'lF E"‘.}:"
w foox o % « new Fam| X LW H
H Cetun. addide{~p oroal”, 2estvece] ; ’:""—*
N
iay acziptToamsfdeatioon; o+ v o WIRDGE{TReItalT)N; ?
N \ L vl I =
nlt 5
1] el
e . a2 i
-]
l “ ravad f

Figure 39 — Edidng 1he TransposterRoomTest in the Blue] editor.

The test runner JGialog appears, showing the red bar indicating that a test has failed.
Obviously, we have not implemenmed the addExit () method yet so we expected
the test to fail. Ttis a good check however (o make sure that there is nothing wrong
with our test Tf it bad of succecded without us implementng the method then we

would need to be worrnied!

We edit the Transporterficom class in order to implement the addBExit()
method. It turas out to be a simple matter of adding 4 pair to the Map of Rocm
objects and exits. We add the itmplementation and cun the tests again, We now get a
green bar indicating that the test was a success. We can now move on to our next

bit of functionality.

Whilst this watk through is a very simple example of how TDD works it shows the
basic paween of TDD. We write a test that will fail then implement code that malees

it succeed, "Then we start the cycle again.

The nature of TDD prevents the object interaction facilides of Blue] being used,

latgely because the definitions of the objects and methods are not complete before

122

testiag begins. However, there is nothing in Blue] that prevents TDD from being
used, and some facilities, such as being able to run the tests directly from the editor,

actually help make some tasks ecasier.

5.6.2 Summary

The unit testing extensions to Blue] aim to improve the tool suppost available for
testing in inuwoductory teaching, We bave achieved this by integrating the JUnit
testing framework into the Blue] development environment in a manner that
diminishes neither. Al its most basie, the uvnit testing extensions alow the
recogrition and execution of JUnit test classes. We have extended this to also allow
a JUnit test fixrure to be moved onto the Blue] object bench, and provided a
method for converting objects on the Blue] object bench into a JUnit test fixoure.
We have also developed a method for helping in the construction of vnit test

wmethods through the recording of object interactions on the object bench.

123

6 Chapter 6

IMPLEMENTATION

T his chapter introduces some of the details of the implementadon of the
testing support in Blue], Firstly, the approach 1o cedalizing objects into test
fixtures 15 discussed, incuding possible altetnative implementations. This is
followed by an examination of the modification of the Bluef architecture to allow
for the creation of test fixtures. Finally, the technique used for the construcdon of

test methods is described.

€1 Implementation envitonment

As mendoned previously, Blue] is implemented in Java using the JDK compiler.
Ant [Ant2002] is used as the build tool resulting in the ability to build the system on
diverse platforms such as Solaris, Mac OS X and Windows. Blue] can be run on any
1.3 compliznt Java platform. The source for Bhie] 58 approximatély 80,000 lines of

code.

The Blue] development teatn consists of 3 programmers. All of the development of

the testing suppott. in Blue] was cthe work of the author.

6.2 High level overview

The biue] system consists of 350 classes contained within twenty packages, A
simplified diagram of the major components of Blue] is shown in Higute 40. The
architecture of Blue] consists of two virtual machines which cooperate to provide

facilities such as abject interaction and debugping.

The top half of the diagram shows the classes that operate on the local virtual
machine (the first virrual machine that is started when Blue] is lanoched). This
virtual machine is responsible for all aspcets of the user interface, patsing the source
for depeadencies, and invoking the compiler. The botlom half of the diagram

shows the classes that operate on the debug virtual machine (the virtual machine

125

G.1
2.1 L
 PachmgeTarges
| PrpmgrFrame Project
el
0.
["GbjentSanch L. leciWrapper]
[_Unlt‘!'ull::lauﬂnh 1 r ImarfaceClassRale _I
AbsiractClassRole [Jeirobjnat]
u - :
[debugv-.rtual machmaj r—— ——

i RemaolelivusLosder _]—- e

Figure 40 - A simplified view of dhe Blug] system.

that is launched after start up by Blue]). The debug virtual machine mamtains the
acnial instances of objects on the object beach and the classes that allow operations
on these instances. When a method is executed on an object through object
interaction, the thread that runs the methed lives on this debug virtual machine. All
interaction with the debug virtal machine is petformed using the JDI debugger

interface [Javasoft2002)].

The key user interface class is the PkghMgrFrame. This class implements the window
and menus that are presented to the user, Within this window arc two large panels.
One panel displays objects on. the object bench and is implemented by the class
ObjectRench. Fach object on the oObjiectBench is represented by an
ObjectWrapper which encapsulates the reference o the actual object on the debug

virtual machine.

126

The other panel is 2 simplified UML diagram of a package and is implemented by

the class Package. Bach Package object corresponds one-to-one with an acmal
Java package. A Package objecr can exist outside of a PkgMgrFzame (in fact, the
package objecrs for a project are all created on project load). When a Package
object is placed into a PkgMgrirame it then becomes wisible. There are no
references from Package objects to the PkgMgrFrame object that they are in.
When a Package wants to indicate that the user has performed some actdon it raises
a PackageEvent object which can be heard by any PkgMgrFrame objects that are
registered as listeners. Without this decoupling, Package and PkgMgrFrane
become so intertwined that the dependencies between themn are hard to monitor.
The decoupling will allow the Package code 1o be reused to display Java packages
in a proposed class brary browser within Blue].

The Project class is responsible for maintaining the collecion of Package
objects of a single project. It also conwols all functonality that operates over an

entire project, such as documentation generaton.
The implementation of testing support presented four major problems

e Objects on the Blue) object bench needed 1o be stored so that they do aot
need to be recreated every tme the source is changed. This problem comes
about because the behaviour of the objects in the presence of multiple

versions of theit classes is unpredicuble;

¢ A technique was needed for recording Blue] interactions and constructing

unit test methods from them;

+ Architectural changes were needed 1o the organization of the Blue] virmal

machines (o better support dealing with JUnit classes; and

¢ JUnit’s TestRunner interface had to be split in order to run JUnic tests

across two cooperating virtual machines.

127

In the rest of this chapter, each of these implementation problems and the solution

devised is presented.

6.3 Constructing test fixtures

The mpotivadon for the initial implementagon work in the testing area was not in
fact testing. A common complaint about Blue] is that objects on the object beach
are removed on compilation. This removwal of all live objects is required because
their behaviout when interacting with objects that were consrructed from previous
versions of the source is unpredictable. There is a similar requirement in telation to

testing whete we want to be able to create test objects that survive recompilation.

The first approach to dcaling with this problem was to consider analysing the
changes made to the source to identify those changes that had no effect on the
current set of objects. Whilst this works in the most trivial of cases {a class is edited
with 0o dependency on any class depended on by any objects on the object bench)

the analysis becomes complicated extremely quickly for more complex cases.

‘The second approach to the problem was to lock at serializing objects on the object
bench in somc form. Seralization involves saving the contents of the object such
that it can be reconstructed latet in the same state. There are multiple lechniques for
seralization in Java, each with strengths and weaknesses. When evaluating their

appropriatencss for Blue] the following critetia wete considered

1. Ability to survive class evolution
The objects being serialized arc most probably going to be those whose
source code is bciug worked on. It is irnportant that the seralization is

robust in handling chaoges to the source of the class;

2. Works without programmer intervention
‘The serialization should wozk withour the user of Blue] needing to modify

the class’ soutce;

3. Works on tnuny types of objects

128

It is important that as many types of object as possible are able w be
scralized; and

4. Does not need to introduce advanced concepts
Because Blue] is an introduciory teaching environment the sedalizadon

should not require the user of Blug] 1o learn any advanced Java concepts.

The cdteria were not absolute — suppozt for all of them was not a requirement for
use in Blue]. As with all engineering decisions, we were looking for 2 solution which
halanced the competing criteda. The following sections discuss a number of

techniques for object setialization and consider their advantages and disadvantages.

6.3.1 Java Object Seriulization (JOS)

JOS depends on progtammers tagging a class as implementing Seriazizable. The
ObjectoutputStream class can then be used to marshal all the fields of any
objects of this class into a stream. The seralizing technique is of course recursive,
s0 any field which is of a class that is also marked as sedalizable is marshalled into
the stream as well (n fact the serfabzation will throw an Exception if it encounters
any ficlds in the object graph that are not setializable and which are not flagged with
the tranaient keyword). Although the primitive Java types ate not real objects and
hence cannot implermnent Serializaplie, JOS has provisions to aliow them to be
marshalled into the output stream. Because it requires tagging classes with the
Serializable tag, JOS requires programmers to make changes to source in order
to support seralization. However, the change is minor and many of the stendard
Java classes support serialization so data sttuctures such as members of the

collections framework can be seralized with this technique.

Java sedalizaton can bandle evolution of classes bt with some caveats. A
compatble evolutonary change is one in which objects can be evolved from an old
version of the class to a new version of the class and ww-rersa. The serialization

specification defines the following changes as valid

129

'lJ'I

1.

Adding fields

It is allowable to evolve to a class that has an extra field because the extra

field can be tavially zet to the default value.

Adding classes

By comparing the evolved class’s hierarchy with the class hierarchy
represented in the stream, additonal classes can be detecied and the
additional class's fields can be iniiialised to the default values.

Removing classes

In a method similar to adding classes, the serdalization can detect when a
class has been deleted from the evolved class’s hierarchy, Because objects
referenced in the deleted class may be teferred to later in the stream the
class still has to be demarshalled, but all primidve ficlds can be discarded
and any objects of the deleted class demarshalled will be garbage collected if

they turn out not t be referred to again.

Changing the access ro a field
When the access modifiers such as public, package, protected ot private ate
changed it does not affect sctializaton. Sctialization has special support

from the VM that allows it to bypass the normal language ficld access rules.

Changing a ficld from static to non-static or transicnt to non-ttansient
These fields ate nommally not seralized so changing a field to non-static ot
non-transient is the same as adding a field angd the same technique is used o

handle it.

The following chaunges to a class are considered incompatible. Some of these
changes will work if evolution is only required from an old version to a new

version.

Deletng fields
When a D2id 15 deleted its value will not be written out to the stream, ‘This is

fine when cvolving from an old to a new class but when going in the

130

teverse direction, the field datz will not be in the stream and so the field will
have to be initialised to a defaulc value. This chanpe is considered
incompatible according to the JOS definition, but the evolution will work as
long as the old version of the class can cope with the data in the deleted

field being ser to a default value.

2. Moving classes up or down the hierarchy
The object data from cach level in the hierarchy is sedalized in order, so
moving classes up or down the hierarchy means that data will not be

available from the stream when required.

3. Changing a non-static field to static or a non-transient field to transieat
This is identical to deleting a ficld becausc marking the ficld transient or
changing it to statc means that it will now vot be wrlten out into the

strean.

4. Changing the declared type of a primitive fietd
The type of all primitive ficlds are sedalized along with the data so if the
field ype is changed then the object can no longer be demarshalled

because it will expect 2 different type.

$OS supports many of the forms of evolution thar would be required by Blue]. An
important evolution that it does not support is renaming of ficlds (technically just a
delete field and an add field but rename field needs to retain the value of the feld).

More importantly, in the cases whete JOS does not work it fails without any means

of correction, The serialized data is in a binary format and so it cannot be examined
to make potentially simple cotrections. For this reason, and because of the need for
che source code to be tagged as Serializable, requiring modification of the

source code, JOS is unsuirable for use as the seralization technique in Blue].

i3

632 JIX
The “Java Setislization to XML” project (JSX) Macmillan2002] utilises 2 simiiar
approach to JOS, bur rather than sedalizing to a custom binary stwecam format, it

creates XML documents thar tepresent the structure of the sedalized objects.

The first advantage of JSX is that it does not require classes to be tagged as
Serializable. This means that programmers do not aced to change their source

ot leam about the ‘implemcnts’ keyword beforc using the serialization.

The second advaniage of JSX is that the output format is 2 human readable XML
document. As a consequence of being able to view and edit the setialized data we
can massage the data to perform more advanced class evolutions, For insmnce, a
Geld repame can be performed by loading the serialized object into 2 text editor and
editing the fe/d name. Also, because JSX writes primitive types as strings into the
XML docuament, it can change the pumitive type of the field in the case where the

stting lrepresentation is convertible from one primitive ro anothier.

However, performing class evolution like this 1s quite advanced — introductory
students may not undesstand the XML format or understand how objects ate
structured when serialized If sudents wete to edit the object formar and make 2
mistake (perhaps only repaming one instance of a field name in a collection of
objects) thea JSX will silently accept the error assuming that the unknown field

name has been deleted,

It should be noted that some of the class evolutions possible because of the XML
representation are not exclusive to JSX. It would also be possible to write a parscr
for the binary JOS format and to petform. the same transformadons of the
serialized data that are feasible for J8X. However, the advantage of J8X is chat by
converting the objects to XML it leverages a lot of standard editing, parsing and

tree transformation tools that are already available for the XML format.

132

<?uml version="1,0” encoding=*uUTF-8" 7>
<java version="1.4.0"” class="java.beans.XMLDecoder”>
<void id="myController” property="owner"”/>
<objzct class="Jjaxax.swing.CPanal”>
<void method="add">
<object id="buttonl” class=“"javax.swing.JBution”>
<string>Contirue</string>
</cobject>
</void>
<void method="add”>»
<obhject class=“javax,swing.JLabal">
<void method="setLabelFor”>
<gpiect idref="buttonl”/>
</void>
</object>
</void>
</abject>
</java>

Jranel panell = new CPanel(];

JButton butteonl = new JButton (“Continue”};
JLabel labell = new JLabel();
paneil.add(buttonl; ;

panell.add(labell);

labell.setiabelFor (buttonl);

Pigure 41 — A G component sedalized to XML using XMLEncodee and how the

component would look as Java code.

6.3.3 XMI.Enceder and XM Decoder

The introducdon of the 1.4 JDK from Sun has secen 2 new form of seralization

added to the Java platform. The new seralization technique was motivated by the
desire to allow Java GUI components to be serialized into 2 form that was robust
enough to survive class evoludon of the GUI components. Because. of the
complexity of the implementation of the Java GUI components, coupled with the
restrictions that JOS puts on evoludon of classes, it had previously been impossible
to save 2 GUI object in a state that would guarantee that they could be deserialized.
The XMLEncoder and XMLDecodex dasses bave been added which can handle this

serfalizafion by converting a GUI component into an XMT, document. A sample of

a setialized object is shown in Figure 41,

Udlike JOS or JSX, where cach object’s class can citber rely on a default

serialization routine or implement its own serializaton technique by overriding

writeObject (i, the RMLEncoder uses a set of delegate classes which are
responsible for the setialization of different types of classes. At its base level,
XMLEncoder can wotk on a JavaBean component by using bean introspection to
detenmine the properties of the class and for each property value (a property value
is a special type of field that has both a getter and setter method) writing out the
cortesponding XMI.. The default persistence delegate class that is included with
XMLEncoder handles this serialization of beans automatically,

It is also useful to be able to setialize obiccrs that are not quite beans. Some of these
objects like Color and Fent, which do not have a no-argument constructor, can be
setialized by providing a delegate that knows which bean propetties should be
passcd to the constructor. Some objects which can only be constructed using a
factoty method can be scrialized with XMLEncoder usiog petsistence delegates that
know which expression to ouiput to create the object. Tt is important to note with
XMLEncoder and XMLDecoder that any special case code required to seralize an
object is only needed on the encoding side. The generated XML documcnt is a
complete description of all the constructor calls and method calls nceded to recreate
an object and hence the XMLDacoder does not need to be specialised for objects

that are difficult to sedalize.

X¥MLEncoder is not suitable for the serjalization in Blue] becausc it cannot deal with
all types of vbjects. Ta pardculat, whilst it has support for sedalizing many of the
complex standard Java GUIT classes, it would requite the user to add persistence
delegntes for any of their classes that did not conform to the JavaBean
specifications. Requinng students to write classes in a JavaBean format is non-trivial

and is not suttzble for introductory teaching;

‘I'he notion of reconstructing objects as 2 sequence of constructor 2nd method calls

Is an interesting idea however, and one that gaturally fits in with the intetaction

134

A StringBufter !
T e————
i
{ new StringBuifer [“yeur payout ia 7);

eIt

] append (B ¥i

oed Gl

B: BigDecimal
naw Bighacimal (c ¢ 315
CONSUIILE -

i
: new BigIntegex [“10“):
MR

append{*million dollara”};
mema ool

Figure 42 — A graph recording the tnnsitive closure of all opeearions on the objecr A,

mechanisms already in place within Blue]. This idea is investigated in the next

section.

6.4 Creation of the text fixture and test methods

Blue] has an advantage over other serialization methods in that it bas the fadility to
record bow an object came to be in its current stare, not just what its state currcatly
is. This is because objects placed on the object bench in Bluc] are constructed and
manipulated through the Blue] user interface. Blue] can record each interacdon with
the user, be it an object construction or a method call, and use this to reconstruct

the object at a later point

The BHrst model for implementing the creation of test bxtutes in Blue} was heavily
influenced by tradidonal implementations of serializadon. When seralizing an
object using traditional serialization, a transitive closure of the object (l.e. the object
and all objects referenced by it) is formed and this closure is flattened into a data
stream. We implemented a technique where the tansitive closure of all operations
on an object is formed and recorded by Bluef as a graph. For any operation that
requites another object as a patameter, the graph of the transitive closure of that
object is linked in ar that point. An example of the graph structure formed is shown

in Digure 42,

135

The idea was that the user interface of Blue] was going to allow an individual object
to be turned into a fixture, through selection of 2 menu item, and ar this point the
graph of the operations on the object were to be turned into source and inserted
into the test class. The ordeting of operations was to be calculated from an analysis
of the graph structure. A problem with this implemeatation is that care needs to be
taken to correctly caprure the state of objects on the object bench af the #me that
they are used as a parametet in another object’s mcethod call. For instance, considet
the case where an object X is constructed taking a StringBuffer as a parameter,
Let us imagine we have copsttucted the StringBuffexr on the object bench as an
object called § and then passed it as a parameter to the constructor call for X. We
now call the append{) method on § to 2dd some characters to the String3uffer.
A naive attempt at seralizing X would petform the opetations to construct S,
including the append (} method call, and then pass this object S as a pararmcter to
the constructor of X, Cleady, the correct solution is to only pecform operations on
S, up unto the point at which it is used 45 a parameter, therefore not including the
final append (} method call ‘Whilst not an unsolvable problem, correctdy dealing

with situations like this complicates the data structures used to record opetations.

Instead, we tock a step back and looked again at the overall goals of the
serialization. The purpose of the sedahzaton is to construct a test fixture — objects
of a known state that can be used by cach test method without having to be
reconstructed in the test method. In most cases there will be more than one object
i a fxture. If we look at the {ixture as a set of objects that peed 1o be seiialized, we
can sce that the fixture corresponds with the object hench. The object bench is
itself a set of objects, Rather than aying to scralize a single object, the entre state
of the object bench can be serialized, thereby consttucting the fixture for a

particular test casc.

Once this observation had been made it was trivial to see a solution for recording
the construction of the fixtute. By considering the object bench as a whole, all

operations, on awy object of the object benzh are recorded in the sequence that they

136

[S<Eilrteger |

new BigIntegex{“10"}:

censtruclar

new BigDecimal {C,5);

" construchar

|_A.StringBuffer |

new StringBuffer (“your payout is ”);
torstrucior

[A StringBufier |

append (B) ;

meihod ceti

[_A: StinaBuffer |

append (“million dollars”);
methad o3l

Figure 43 —~The objects on an object bench recorded 25 2 sequence of operations.

occur. To recreate the state of the object bench, the operations are replayed in the
order in which they wete recorded, assuming an identical statdng state. Rather than
storing operarions in a complicated graph structure, they ate recorded in a simple

linked list (sce Figure 43).

This implementation does have some caveats. Firstly, the fxtures for a test case
must include all objects on an object bench — individual objects cannot be turned
into fixtures. Secondly, all operations on all objects are induded in the tesulting
source, even those that turn out to be redundant. For instance, 1f an object is
created on the object bench and then removed from the object bench, the souvrce
code to construct it will be retained. This does not pose too much of a problem as it
oceurs rately and the resulting redundant code is generally insignificant compared to
the other ser up code. It would be possible to scan the record of interactions for
objects that are not used, and to then prune these from the list, however this has

not been done in the current implementation.

137

The last problem is to ensure thar the starting state for the replay of the object

interactions is consistent. Because of the nature of the Blue] object bench, where it
must be cleared when classes are recompiled, the obvious starting state is 20 empty
bepch. Thetefore, the recording of object interactions is always resct on

compilaton.

The actual construction of the test fixture set up code is perfommed by tanslating
the recorded interacion: into source code. Interactions that result in the
construction of an object must he distnguished from other intetactions in order for
the field definitions of the objects to be inserted at the top of the test case. Both the
existing feld definidons and set up code must be replaced completely by the newly
constructed code. A Java grammar using the ANTLR [Parr2002] parser generator
was modified to identfy the regions of the source code that need to be replaced by

the sewly constructed code.

In the same manner that Blue] records the user interactions to create test fixtures,
Bluef also records the interactions and assertions that make up cach tost method.
When a test inethod is being recorded and an interaction retrns a result, Blue)
augrnents the result dialog with an assertion panel. If the user checks the checkbox
indicating they wish to make an assertion, Blue] translates the assertion into one of

the standard JUnit asscrtion statements.

Because the vatiable “result” is used 25 the name of the retutn value of each method
call, it is impormant to be able to either reuse the “result” varable or change the
result name so thar there is no naming clash, Tt was decided to structure the test
methods in a way that the scoping riles of java allow the “resule” vatiable to be
rcused. Before cach method call that is respoasible for an assertion, Bluef uses curly
brackets to introduce a new scope. Within this scope, “result” is declared with the
correct type and an assigament is made Lo it. Any assertions that have been made
are then called within this scope, For arrays, where the method call must only be
made once, yet multiple agsertions can be made on the result, this scoping rechnique

is particulardy useful. This is shown in Figure 44.

138

Parser Darser_l = new Farser(};

/¢ assertion

{
Stringi] result ~ perser_i.tokernizeandLowar(™"):
assertNoatiull {result);

}

f/ normal method Znteractiens
parser_l.addToken (“y"”);
pareer 1.addPoken (“27);

// en array assertion
{
$=ring[] result = parser l.tokenizeRndLower("™ AA Ak bh");
assextEguals (resuvlt[a], “aa"}:
assertEquals {result[i], “ab");
assertEquals{result[2], “bb"});

oo rest of tost wrethod

Fignre 44 = Using the scoping mles of Java to allow the “result” vadable o be rensed

within a method.

6.5 Architectural changes to support testing

Recall that the basic atchitechure of Blue] is two wvirtual machincs — one that
supports the uscr interface and compilation (called the local virtual machine), and
one that supportts the execution of mcthods and construction of objects (called the
debug virtual machine). Communication between the two vithal machines is
performed with the Java Debug Interface (JOI. JDI allows primitive types wo be
exchanged berween machines but uses abject references to facilitate the access to
objects in one machine from the other. JDI does not thercfore retum a scrialized
object when retutning an object from a method call, it retarns only a reference to

the object in the debug virtual machine.

The implementation of test fixtures required a substantial change o the architecture
of the cross vittual machine communication. All communication between the
virtual machines is routed through a vittual machine controlling class that handles
the matshalling of parameters in the local virtual machine. The prc-unit testng
implementation of this class dealt only with String objects, as this was the most

flexible primitive type to deal with. Using string objects also avoided having to

139

dea! with cross machine references. ‘To dez] with the constructdon of test fixtures
and the execution of test methods tequired an interface thai could handle object

references as both parameters and rehuin walues.

The new implementation of the virthal machine controlling class supports both of
these. When a method retueos an object reference, Blue] wraps this object reference
in irs own type called a DebuggezObject. DebuggerObject objects can then be
placed on the object beach by constructing an Objec¥rapper and placing it as a
component on the bench. The ObjectWrapper bandles all the details of

constructing the popup menus for the object’s methods.

When the recording of a test method is bepun, Blue] needs to place the fixture
objects on the object bench. To do this it needs to execute the setUp {) method of
the test case and place all the fields of the test case on the object bench, The code
which executes the setUp() inethod on the debug virtual machine returns a Lisc
of objects that have been constructed. The reference 1o the List object is returned
and this is then converted into an array of DeruggerChject objects that are then

placed on thic objeet bench.

The other architectural change that was required was changes vo the security system
of the debug wirtual machine in order to support the execution of the test casc
setUp{) method. Because the setUp () method is a protected method, it cannot
be executed by classes that do not directly inhent from it. However, Java has the
ability 1o suppress the access checks on a method by mstalling a custom secuzity
managet in the virtual machine. Once the access chiecks are suppressed, the method
must also be marked as accessible by calling its sethccessible () method. The
suppression of access checks in the debug virmial machine would appeat 1o perhaps
allow students to construct code that may bypass the standard access controls of
Java. This is not the case though, because the compiler still will not allow code to be
compiled that violates the Java access rules. The only way that students may
encounter the changes to the security system is if they use reflection to gain access

to methods. Additionally, methods and fields obtained through reflection must still

140

have their setaccessible!) method called before all access checks are
suppressed. It is unlikely that any student will inadeerzenty encounter this difference

between the Blue] virtual machine and a standard virtwal machine.

6.6 Implcmenting the Runner

‘ihe JUnit framework includes two user interfaces that allow tests to be run. The
TextRunner exccutes a test case and displays the result to standard output. The
SwingRunner interfaces displays the result of the test in a GUL The basic
SwingRunner interface had to be modified to work with Bluc)’s dual vicmual
machine architecture. The simplest implementation would have been to run test
cases on the logal virtual machine, thereby using an almost unchanged
SwingRunner interface. However, all the other method execution and object
construction performed in Blue] is done on the debug virtual machine, Executdng
the code on the local machine would potentially result in differing behaviour
between test creation (when the code would run on the debug machine) and test

exccution {when the code would run on the local machine).

Another possibility is for the entite SwingRunnex interface to be loaded intwo the
debug virtnal machine, thereby allowing it to run tests on the desired virwual
machine. Unfortunately, the threads running in the debug virtual machine are
started and stopped numerous iimes in order to perform some of the method
interactions. If the user intetface codc were ruoning on this machine it would

become untesponsive whilst its graphics helper thread was stopped.

‘The acral implementation splits the SwingRunrer code into two parts. One patt
that deals with the actual cxccution of tests resides on the debug virtual machine.
The other part of the code is passed the test class, and after executing the test case,
returns A PestResult object The muaner user interface on the local virtual machine

accesses the TestResult object and displays the results.

141

6.7 Summary

The integtation of testing support in Bluc] posed numerous implementation
challenges, Foremost was the challenge of determining a method for serializing
objects on Blue]’s object bench into test fixrures, The final method selected was to
have the fixtore creation code “replay” all the Blue] interaction cvents used to crcate
objects on an object bench. A similar technique is used to create the unit rest
methods. Other implementation changes were mandated by the Biue] architecture

of having two separate virtual machines.

142

7.1

7 Chapter 7

STATUS AND F'UTURE WORK

n this chapter the status of the work presented in this thesis is discussed along

with discussion of ideas for the future direcdon of work telating to Blue].

Status

Although the design of the refactoring funciionality descrbed in chaprer 3 has been

completed, only the basic back-end of the functionality has been implemented.

Other than prototype mock interfaces, no implementation has been made of the

interface. A prototype implementation is planned for the future.

A wotking version of the unit testing funcdonality descrbed in chaptes S has been

developed and is currently undergoing tesi:ing. Release of the production version is

awaiting the completion of several tasks:

Development of user mannal,

Whilst the aim of adding unit tesling to Blue] was to inregrate functiopality
as simply as possible, it 15 evident that the functiomality requires an
explanation for students to be able to use it to full effect. The development
of a simple tutonal document (cither as an exteénsion to the current Blue]
tutorial or as a separate document) will greatly assist tcachets introducing the

functionality to students,

Internadonalizadon of user interface strings.

Because Blue] is used in many different countdes it suppotts the
internationalization of all user interface text. For the unit westiog extension,
adding the new text translations will not be possible for all currently
supported languages, but Is necessary fot the major languages that we

support such as (German and Chinese.

143

¢ Integradon with the latest Blue] release.
Whilst the unit testing extension was under development, other work on
Blue] did not ceasc. Two versions of Blue], including the major release 1.2.0,
have been completed in the interim and work is zequired to integrate the vniv

tesling functionality into the main source tree.

It should be noted that Blue] is a being used in production environments in
universifties around the world and kence stability and robusiness are key criteria for
the inclusicn of new featares. Becausc of this, the unir testing extension bas been
released o the public firstly in the form of a beta version, and this has lead to some

valuable feedback being received about the extension.

7.2 Usability Study of the Unit Testing Extension

An initial wsability study was conducicd to determine the cffectiveness of the
interface at performing some representative student tasks [Kantner1994]. The
usability study used four participants {Nielscn1994), two first year undergraduates,
one latter year: undergraduate and one postgraduare, Because the aim of the study
was to identify usability fawlts with the program, it was considered useful to obtain
usability feedback from a wider variety of partcipants than just introductory

software cogineeting stadents.

7.2.1 Esxperimental Procedure

Participants were invited to take part in the study through the posting of notices in
computing laboratories, The invitation was made to students who were already
familiar with the Blue] development environment as we wished to concentrate on

the vsability aspects of just the unit testing cxiension.

Participants in the test were given a consent form and a leafler describing the
project and the aims of the usability test. At the start of the allotted testing petiod
(one hour was nominally set aside for each patticipant), the participants weee given
a priated tutosial on the unit testing extension in Elue]. They were allowed to refer

to this during the testing, although most of them chose not to.

144

The usability test undertaken was a think-aloud test. In this form of testing, the
participant is asked to perform a set of tasks whilst articuadng the thought
processes that they ate going through to achieve each task. For instance, whilst
performing the task “open a project X7, they first might go (o the menu bar and
click 1n the “File” menu, whilst saying aloud “I am going to the File menu to see if
there is 2 menu item to open a project”. The usability sessions are audio taped and
the session is analysed to find places where the mental model that a participant had

for a particular task did not match the actual interface of the program.

A number of sample projects were created {at various stages of compledon) and
some representative tasks on the projects were developed. As the participant

stepped through the tasks, the usability problems that they identified were recorded.

The summary of the 11 task that the users were asked to perform is presenred in
the following table. Obviously, the task sheet that was piven to the participant was
more detailed than this {containing details of each task such as where the project is
located on disk and what the task involved) but these details have been stripped out
of the table prescnted here.

Task No. { Task

t Recognising existing unit tests

2 Running 2 single test method on an existing unit tesc class
> Ruaning all the tests on an exdsting unit test class

4 Running all the existing unit tests i a project

5 Laterpreting the result of 2 unit test execution

6 Using test results to fix some failing Java source

7 Using object interaction on the object bench

3 Constructing a unit test for an existing class

9 Constructing a uair test method using object interacton
10 Conscructing a fixture

n Using a fixture in the constructon of a unit test method

143

72.2 Reulis

A usability f)roblcm was noted if any of the participants failed to complete the task
cotrectly or could not see how to proceed towards the completion of the task.
Other problems were noted where the participant suggested that they would have
cipected a different wser interfice ar 4 particular point, even if they then
successfully completed the task A final class of usability problem occurred when
the participant discovered a bug in the software that put them in a state fremy which
they could then not complete the task. Most of thesc bugs have since been dealt

with but we have noted the problems here for completeness.

We have put the usability problt:ms into 5 categoties

* STATE
The user is confused as to the state that the program is in. Additional visual
indicarors or dialogs may be needed to remind the user what stotc they arc
in. Altematively, a tedesign of th~ interface to remove stateful operadons

may be required;

« TEXT
The terminology used in the user inicrface has confused the user. These
problems can be addressed by reconsidering the wotding vsed in menu items

and dialogs;

s VISTCAL
‘The appearance of a vser interface elerment was not clear. A redesign of the

particular user interface elemen: may be required;

¢ GPRINERAL
There is some gencral usability faw in the program. These aced to be fixed

on a case-by~case basis; and

¢« BUG

The user has uncovered a bug in the uait testing extension,

146

Problesn

No.

Usabi]ity Probletn

Category

1

User not clear that they are in a “recording” state.

STATE

Problems with use of “fixrure” werminology. The
user was unclear as to what constitured a “fixtace”,

despite having some proficiency with JUnit.

TEXT

Construction of objects before using “create test
method” menu item leaves objects on the bench

but not recorded in the test.

BUG

Artempted to “run test” before ending the

recording of a test.

STATE

Used “hxture to bench? before “create rest
method” because that's what the user wanted. Was
unaware that “create test method” will do Lhis

automatically.

GENERAL

Did not realise object interaction could be used to
construct tests and wanted to constnict tests by
hand.

GENERAL

~

Usc of a string in the asserdon panel without quotes
causes an crror in the resultng test method. The
resultng test class docs not compile but no etror
message is shown to the user. Instead, the test class

remains “striped”.

GENERAL

User was unaware that clicking cbjects on the
object-hench can be used to insert their name into

method parameters.

GENERAL

Created a test named “balanceTest™ as opposed ro
the JUnit naming standard “testBalance™, This

results in a test called “testBalanceTest”,

GENERAL

147

Test faikure dialog allows uset to go to the line of
the “test” class that fails, User was confused as to
10 GENERAL

. howw 1o find out how this then relates back to the

method that s being tested.

JUnit error output {fotrnatwas confusing when
showing two strings that had been used in an
11 asserfion (the actual result and the desired results VISUAL
are displayed surrounded by <> rather than normal
striag quotes).

Running an individual test that succeeds results in
12 oniy a message being displayed in the status bar. VISUAL

Lhis was not noticed by the user.

After running a single class test and then ruoning all
13 tests, the user did not notice the new test results VISUAL

displayed in the rest window.

User did not understand the significance of the
14 : GENERAL
JUnit green bar.

A usability success was nofed when none of the participants had any difficulty
accomplishing a task (or part of a task). The usability success table is not
comprehensive (L.e, most of the tasks were completed suceessfully but are not listed
here), instead it is a list of the ateas that we had idendified as potendally problematic,

but which turned out not to cause any concesns.

| Success -
Usabiluy Success
! No.
1 Recognised test classes by distinet colowr and UML stereotype.
2 ‘Technique for creating new Lest classes was clear.
3 Purpose of assertion panel was clear.
4 Autotnatic insertion of correct result into assertion panel was clear.

148

7.2.3 Disxssion
The usability testing has uncovered some usability flaws in the unit testing
extension, though nope that we would consider serious ecnough to prevent the

release of the unit testng extension to the public.

The main problem encountered was that the users did not realise that they were ina
special “recording” state once they had selected “create test method”. This is a
problem because it could lead the user to fail to realise that some of the feanires of
the unit testing extension &ven cxist. We are cvaluating methods that we can

implement that make this change of state mare evident to the user.

As part of the regular review cycle that all components of Blue] undergo, along with
feedback from usets in the field, the usability study will help us identify and

prioritize our work on improving the Blue] unir testing exlension.

7.3 Extended functionality
Some additional fimcdonality considered in the inidal design has not been
mplemented due to time constraints but may be incuded in the upcoming public

release, Some of this functionality is described in the following sections.

7.3.1 Boclending test methods

Whilst the test fixture of a test case can be extended by Blue], it is currently not
possible to record a test method, use itin Blue] and then contioue the recording of
the method. This functionality was not considered a priordty due to the aature of
test methods. Test methods are normally quire short and do not often require
extending. DDespite chis, there are some situations where it may be useful and as the
implementation is similar to the exteasion of a test fixture it should be easy to

implement.

7.3.2 Swpport multiple test cases asseciated with a single target class
Cutrently, only one test case can be associated with each dass in the Blue] system.

Whilst adequate for the majodty of student use, some classes require multiple test

149

cases to help otganise tests logically. Multple test cases could be attached to a single
class and stacked behind one another in the Plue} class diagram.

7.3.3 Test coverqge analysis

Test coverage tools provide menics to understand the usefulness of test methods
by analysing what proportion of the coede in an application is reached by test code.
Whilst. full-scale test coverage analysis is beyond the scope of introductory students,
a simple facility to highlight source code in a class that is not reached by test code
would be vseful.

7.4 Further tool support for introductory software engineering education

The analysis of the S\WE-BOK in chapter 2 helped us identify two ateas that we
considered patticulardy deficient in tool support for introductory students, testing
and refactoring, It also enabled us to review other areas of software engineering to
gain an undetstanding of the current state of introductory tool support in those
areas. Whilst an cxcellent basis for categorising and identifying areas of software
engineering that may need tool support, the SWH-BOK is by no means a complete
listing of all things that a sofiware engineer may need to know. In particular, as the
SWE-BOK is a document intending to capture the current mainstream ateas of
softwate engineering, there is the potential for other areas not mentioned to also
make use of introductory tool suppott. Some of these areas that we see potential for

adding introductory tool support are:

e Web services — the increasing integest in web based programming, and in
particular the coostruction of web services mmeans that these server
covironmeats may be considered for introductory software cngineering
courses. A tool that helps with seever side deployment and deals with the

issues of debugging and configuring server side programs may be useful.

* Version management — the change 1o objecr-orented Janguages means that it
is much more feasible that students will work on group projects, even in

introductory cowrses. A tool that facilitates this geoup work through an

150

introductory version management system would also be useful for teaching

the concepts of version conwol (branching, merging, conflicis, Jocking etc).

Tools to support agile methodologies — unir testing is but ons part of the

agile methodologies that arc becoring populat, even at an introductory level.

Thete may be some benefit to tool support for some of these agile

ProCesses.

151

8 Chapter 8

CONCLUSION

his thesis has looked at the level of tool support for teaching introductory
T software engineering. The area of software engineering that we have
examined in depth is the area of software product engineedng. This area involves
the design, coding, testing and maintenance of computer programs. In particular,
we are inrerested in computer programs that are wrtten in object-ordented
langnages and designed with object-orented design techaiques. Object-otiented
languages arc increasingly being used as a first language and we contend that maay
of the changes that object-orientadon brings requite more tool support than with

pracedural languages.

From the Software Engineering Body of Knowledge document, which desceibes
coneepts within software product enginecring, we have composed a st of tasks that
cover a large proportion of the practical skills that a first year smdent may be
expected to develop frorm introductory courses. These skills represent such activities
as entering code, building programs, designing programs and testing. [t was our

contention that some of these tasks are not well supported by software tools.

Sofrware wols can play one of two roles in supporting 2 software engineeting task.
They may either be an integral part of the task, in the way that a compiler is an
intepral software too] when building programs. Alternsuvely, they may provide a
level of pedagogical support for concepts, in the way that a development
environment can reinforce important object-otiented notions such as objects and

classes.

153

This thesis has made a number of conuibutions to the task of teaching software

cngineering concepts to introductery students. These include:

e A number of software enginecring concepts that are suitable for inclusion in

an introductory safrware eugineering course have been idendBed.

® A number of software tools have been evaluated against their suitability to

support these software engineering concepts in a teaching situation.

e Two arcas wc believe profit most from enhanced tool support in

inoductory coutses have been identified: refactoring and testing

e A set of concrete refactonngs suitable for inclusion in an Imtroductory

software engineering education has been identified.

o A detailed design for a refactoring tool suitable for use by first year students
has been presented. The desige presented reinforces the level at which
refactonings operate. For instance, refactorings that act oni methods are
accessed through the “method” user interface component. Class level
refactorings are accessed thtough a similar *class” user interface component.
The design for 2 system wide “undo™ stack that cacks large scale operations
on the soutce code was also presented. The refactoring tool design has been
tntegrated into an environment currently in widespread use in introductory
courses to facilitate its implementation and adoption in the fumite. An

implementation of this design has started.

¢ A detailed design of a lesting facility suitable to teach modern testing
activities to first vear students has been presented. This design integrates the
two leading software systems for introductory teaching of object-oriented
programming and uait testing, Blue] and JUnit, creating 1 new user interface
style to approach testing activities. This new interacdon style facilitated by
our sysiem allows techniques of testing (and the teaching of testing) that

were oot previously available to teachers and students,

154

¢ A full implementation of this testing facility has becn developed, which has

reached final testing stage and will be included in 2 full release version of the

Blue] environment.

We arc coovinced that the reaching of software enginecring concepts in
introductory courses has pained in importance over the last few years, and wil
continue the gain importance for the foresceable future. For this development to be
successful, the teaching community needs to develop teaching strategies and
support tools geared towards this subject area. The contributions of this thesis are a

step in that direction.

155

assets
black-box testing

funclional testing

integration testing

structhute! testing

system testing

test cAse

test class

test ixture

test method

unit testing

white-box testing

GLOSSARY

terminology used by TestMentor — sec fst fixture
see_finctional testing

testing that select test methods based solely on the public
external interfaces of the source code being tested

testing that tests the interactions between several smaller

modules of code

testing that selects inpuis based on knowledge of the

internal structure of the source code or its data stmactures

testing that tests the overall funcdonality of a complete

SYstem

a class that holds a set of test methods. Each method with a
name siarting with test goes ro make the set of tests for this

fest case
see fusd case

a commeon sct of test data and collaborating objects shared
by many test methods. (Generally they ate implernented as
instance vadables in a test case and zre. constructed in the

setUp(} method of the test case

an single method containing test asscrtions that exists in a

test case chss

testing that concentrates on a single module of codeina

program

sce strwctwral testing

156

zork

from the zork maoual... “Zotk is a game of advenuure,

danger and low cunning. In it you will explore some of the
most amazing territory ever seen by mortals. No compurer

should be withour anel!"

157

[ACM1968]

(ACM12979]

[ACM1991]

[ACM2001]

{Allen2001]

REFERENCES

W. F. Atchison, S. D. Conte, J. W. Hamblen, T". 5. Hull, T.
A Keenan, W. B. Kehi, F.]. McCluskey, 8. O. Navatro, W.
C. Rheinboldt, E. J. Schweppe, W. Viavant, and D. M.
Young, "Cutticulum 68: Recommendalions for academic
programs in computer science: a report of the ACM
cuericulum committee on computer science,” in

Cormmmications of the ACM, vol. 11(3), 1968, pp. 151-197.

R. H. Austing, B. IL Barnes, D. . Bonnette, G. L. Engel,
and G. Stokes, "Curriculum '78: recommendations for the
undergraduate program in computer science - a report of the
ACM curdecutum commitice on cornputet science,” in

Communications gf the ACM, vol. 22(3), 1979, pp. 147-166.

A. B. Tucker, B. H. Barnes, R. M. Aiken, K. Barker, I<. B.
Bruce, J. T. Cain, 5. E. Conry, G. L. Engel, R. G. Epstein, ID.
K. Lidtke, M. C. Mulder,], B. Rogers, 2. H. Spafford, and A.
J. Turner, Computing Curricwila ‘91: ACM/IEEE-CS, 1991.

ACM, "The joint Task Force on Computing Curricula:
Computing curricula 2001," Jowrnal of Educational Resonrees in
Compprting (JERIC), vol. 1, 2001,

E. Allen, R Carewright, and B. Stoler, "Dtjava: A lightweight
pedagogic environment for Java," presented at Proceedings
of the 32nd Annual SIGCSE Technical Symposium on

Compnter Science Educaton, Chatlotte, NC, 2001

158

fAllen2003]

[Ani2002]

[Bagert1999]

[Barbeyi994]

[Beck1989)

[Beck1997)

(Beck1999)

[Beck2002]

E. Allen, R. Cartwwaght, and C. Reis, "Producton
Programming in the Classroom," presented at Proceedings
of the 34nd Annual SIGCSI! Technical Symposium on

Computer Science Education, Reno, NV, 2003,

YApache ANT Project,” 2002, hrp:/ /jakarta apache.org/ant
(accessed July 2002)

D. Bagert, T. Hilburn, G. Hislop, M. Lutz, M. McCracken,
and S. Mengel, "Guidelines for Software Engineeting
Educadon Version 1.0," CML, Technical Report CMUSEI-
99-TR-032, October 1999.

S. Barbey and A. Sirohmeier, "The Problemancs of Testing
Object-Oriented Sofiware," preseated at The Second
Conference on Sofrware Quality Managernent, Edinbutgh,
Scotland, 1994.

K. Beck and W. Cunniogham, "A Laboratory for Teaching
Object-Oriented Thinking." presented at Object-Odented
Programming Systems, Languages and Applications
(OOPSLA), New Qudeans, LA, 1989.

K. Beck, "Make it Run, Make it Right: Design “Uhrough
Refactoring," in The Smalltalk Report, vol. 6,1997, pp- 19-24.

K. Beck, eXtrome Programming eXplained: Addison-Wesley,
1999.

K. Beck, Tesz Driven Development: By Exanple: Addison
Wesley, 2002.

159

[Bogps1999]

[Brown1998]

Bruce2001]

[Chang1995)

[Christopher1993]

[Connell1996]

[Cook1992]

[Culwin1999]

. Boggs and M. Boggs, Maszering UM with Rational Rose:
Sybex, 1999.

W. H. Brown, R. C. Malvecav, H. W. McCormick IIT, and T.
). Movwhbray, AntiPatterns: Refactoring Saftwars, Architectrres, and
Projects in Créds.: John Wiley 8& Sens, 1998,

K. B. Bruce, A. P. Danyluk, and T. P. Murtagh, "Event-
driven Progtamumning is Simple Enough for CS1," presented
at ITICSTE, Canterbury, UK, 2001.

B. W. Chang, ID. Ungar, and R. B. Smith, "Getting Close to
Objects: Object-Focused Programming Enviroaments,” in
Viswal Objscr Ordented Programming, M. Burnelt, A. Goldberg,
and T. Lewis, Eds.: Prentice-Hall, 1995, pp. 185-198.

W..A. Chdstopkher, S. |. Procter, aod T. E. Anderson, "The
Nachas Instructional Operating System,” USEENIX ¥z,
pp. 4831-488, 1993,

M. Connell and 1. Menzies, "Quality Metrics: Test Coverage
Analysis for Smualltalk," presented at TOOLS Pacific,
Melbourae, 1996.

W. R. Cook, "Interfaces and Specifications for the Smalltalk-
80 Collection Classes," . ACM SIGPLAN Notives, vol. 27, pp.
1-15, 1992.

F. Cualwin, "Object Imperatives," presented at Proceedings

of the 30th SIGCEE Technical Symposinm on Computer
Science Education, New Odeans, LA, 1999,

160

Pewhurst19874]

[Earon2001]

[Fekere2000]

[Ferret2002)

[Florijn2002]

Hrowler1997]

[Fowler1999)

8. C. Dewhutst, "Object Represeniadon of Scope During
Translation,” presented at Proceedings of the 1st European
Conference on Object-Oriented Programming (ECOOP),

Paris, France, 1V87.

N. }. Eaton, Micresoft Visio Version 2002 Inside Ont: Microsoft
Press, 2001.

A. Fekete, J. Kay,]. Kingston, and K. Wimalaratne,
"Supporting reflection in inroductory computer science,”
presented at Proccedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, Austin, TX,

2000.

L. Ferrett and J. Offuit, "An Empirical Comparison of
Modularity of Procedural and Object-odented Software,”
presented at Thirteeuth Internatonal Conference an
Engincering of Complex Camputer Sofcware, Annapolis,
MDD, 2002.

G. Flodin, "Rev]ava - Design Critiques and Architecnaral
Confammance Checking for Java Software," 2002,
hitps/ v serc.af /people/ Aordin/papers/Revlava-
evewview-recent.pdf (accessed Seprember 2002)

M. Fowler and K Seot, UML Distitled: Appling the Standard
Olbject Modeiing Language: Addison-Wesley, 1997.

M. Fowler, Refactoring: Duproving the Design of Excisting Cod:
Addison-Wesley, 199,

161

Fowler2002]

[Gamma1995]

{Ginat2001]

[Gold1991]

[Goldwasser2002]

[Gosling1999]

[GPL1991]

[etzel1988]

M. Fowler, "Catalogue of Refactorings,”" 2002,
hrip:/ vwwwrefacioring.com/catalog (accessed August 2002)

E. Gamma, R. IHelm, R Johnson, and]. Viissides, Desyr
Patterss: Blements of Reusable Object-Ordented Softovare: Addisen-
Wesley, 1995,

D. Ginat, "Early Algodthm Fificiency with Design
Yatrerns," Journal of Comgprster Science Education, vol. 11(2), pp.
89-109, 2001.

E. Gold and M. B. Rosson, "Portia: an instance-centered
eawvitonmenl for Smalltalk," presented at Object-Oriented
Programming Systems, Languages and Applications
{OOPSLLA), Pheenix, AZ, 1991.

M. Goldwaszer, "A Gimmick to Intcgrate Software Testing
Throughot the Curriculum,” presented at Proceedings of
the 33rd Annual SIGCSH Technical Symposivm on

Computer Science Educaton, 2002,

J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Langrage
Specification, Second Edition: Addison-Wesley, 1999.

*I'he GNU General Public License," 1991,

hitp: / /www.gnu.ove/ copyleft/ gpt hitml (accessed January
2001)

W. Helzel, The Corplote Guide to Software Testing, 2nd ed.
Wellesley, Mass.: QED Information Sciences, 1988.

162

[Hilburn1997]

Hilburnl999)

Milbura2000)

[Hitchens1994)

[EIughes2000]

[otellij2002]

T. Hilbutn and M. Towhidnejad, "lategrating Personal
Software Process (PSP) Across the Undergraduate
Cutriculum,” presented at Proceedings of the 1997 Fronders

in Education Conference, 1997.

T. B. Hilburn, T. Hirmanpour, 8. Khajenoor, R. Tutnet, and
A. Qasem, "A Sofiwate Engineering Bedy of Knowledge
Vetsion 1.0," CMU, Technical Repore CMUSEI-99-TR-004,
April 1999.

T. Hilburn and M. Towhidoejad, "Software quality: A
curticulum postscript?,” presented at Proceedings of the 31st
Annual SIGCSE Technical Symposium on Computer

Science Education, Austin, TX, 2000.

M. Hitchens, P. English, and F. Maroufi, "Melmoth a class
library management system,” presented at Technology of
Object-Odented Languages and Systerns 15, 1994

L. Fughes, "An Applied Approach to Teaching the
Fundamentals of Operavng Systems," Jowrnal of Computer
Saenie Edveation, vol. 10(1), pp. 1-23, 2000.

Intelli], "Intelli] IDEA 2.6," 2002, http:/ /www.intellij.com

(acces sed

163

{Jacksonl1997]

[Jarc2000)

[avasoft2002]

(Jeftrics2000]

[Jehanssen2001]

[Jones2001}

U. Jackson, B. Manaris, and R. McCauley, "Suaregies for
effective integration of software engineering concepts and
techniques into the undesgraduate computet science
curricnlum,” presented at Proceedings of the 28th Annual
SIGCSE Technical Symposiumn on Computer Science
Bducation, San Jose, CA, 1997.

D. J. Jarc, M. B, Feldman, and R. 8. Hclicr, “Assessing the
Benefits of Interactive Prediction Using Web-bascd
Algorithm Animation Cousseware,” presented at
Proceedings of ithe 31st Annual SIGCSE Technical
Symposium on Computer Science Educadon, Austin, TX,
2000.

Javasoft, "JPDA Atchitecture,” 2002,

hutp:/ fiaya.sun.com/[2se/ 1.4/ docs/guide/jnda /architecture

il (aceessed June 2002)

R, Jeffries, C. Hendrickson, A. Anderson, and K. Beck,
Esctrome Programming Installed Addison-Wesley, 2000.

T. Jobansson and M. Notdstrdm, "Introducing OOConcepts
with CRC-catds and BlueJ - a case study," preseated at
OOPSLAO1L - Workshop on Pedagogies and Tools for
Assimilating Object Oriented Concepts, Tampa Bay, FL,
2001.

E. Jones, "An Expetitnental Approach to Incotporating
Software Testing Inta The Computer Science Curriculum,”
presented at 31st ASEE/IBHE Frontiers in Educadon
Conference, Reno, NV, 2001.

- 164

JUniz2002]

[Kantner1994]

Kay1994]

{Kernighan1984]

[Khwaja1993]

[Kirby1997]

[Kslling1999]

"The JUnit Testing Framework," 2002, htup:/ /www.junit org
(accessed March 2002)

L. Kanmer, "Techniques for Managing a Usability Test,”
IEEL Transactions on Professional Comsmunication, vol, 37(3), pp.
143-148, 1994,

. Kay, T. Scott, P. Isaacson, and K. Reck, "Automated
grading assistance for studem! programs,” presented at
Proceedings of the 25th Annual SIGSCE Technical
Symposium on Computer Scence Educaton, Phoenix, AZ,
1994,

B. W. Ketnighan and R. Pike, The Unix Progranmming
Linvironment, 1984,

A. Khwaja and). Urban, "Syntax-directed cditing
environments: issucs and features,” presented at Proceedings
of the 1993 ACM/SIGAPP Symposium on Applied
Computing, Indianapolis, IN, 1993,

G. Kirby and R Mortison, "OCB: An Object/Class Browser
fot Java,” presented at 2nd Tnternational Workshop on
Petsistence and Java, Half Moon Bay, CA, 1997.

M. Kélling, "The Design of an Object-Otiented
Environment and Language for Teaching," in PAD: Basser
Department of Computer Science, University of Sydney,
1999.

165

[Kolling2001 aj M. Kélling and J. Roseaberg, "Bluc] - 'The Hitch-Hikers
Guide to Object Otientadon," Journal of Object Oriented

Programming, 2001.

[K8ling20011] M. Kélling and J. Rosenberg, "Guidelines for Teaching
Object Odentation with Java," presented at Proceedings of
the 6th conference on Information Technology in Computer

Science Educaton {ITiCSE 2001), Canterbury, UK, 2001.

Lappo2002] P. Lappo, "No Pain, No XP - Observations on Teaching and
Mentoring Extreme Programming to University Students,"
presented at XP2002, Caligari, Ttaly, 2002.

[Larus997] J- R. Larus, "SPIM $20: A MTPS R2000 Simulator,”
Computer Sciences Depattment, University of Wisconsin,

1997.

Macmillan2002] B. Macmillan, "fava Sezialization to XML (JSX)," 2002,

nash.cduan/~bren/[SX (accessed june

2002)

McCauley1 998] R. McCauley and U. Jachson, "Teaching Sofrware
Engineering Early - Experiences and Results," presented at
Proceedings of the 1998 Fronters in BEducation Conference,
Tempe, AZ, 1998,

[McClelland2002] D. McClelland, Phatoshop 7 Bible: johnn Wiley & Sons, 2002.

McDonald2001) J McDoanald, "Why Is Software Project Management
Diffieult? And What That Implics fot Teaching Software
Project Management,” Journal of Computer Sciencs Education,
val. 11(1), pp. 55-71, 2001.

166

[McKim1996]

[Meyer2001]

[Mutchler1996]

[N2ps2000]

[Netbeans2002)

[Nielsen1994]

[Nilss2n2000)

[Pan2002)

J. McKim and M. L. Maans, "Teaching OT: A Breadth-first
Versus a Depth-first Approach,” presented at Proceedings of
the Educator's Symposium in conjuncton with OOPSLA,
1996.

B. Meyer, "EiffelSmdio: A Guided Tour," ISE Technical
Report TR-EI-68/GT, 2001.

D. Mutchler and C. Laxer, "Using Muldimedia and GUI
Programming in CS1," presented at TTICSE, Barcelona,
Spain, 1996.

T. L. Naps, J. R. Bzgan, and L. L. Norton, *'THAVE -- An
Environment to Actively Engage Students in Web-based
Algotithm Visualizations,” presented at SIGCSE, Austin,

T, 2000.

Netbeans, "Netbeans JUnit Module," 2002,
b/ /junir.netbeans.org (accessed June 2002)

J- Nielsen, "Estimadng the number of subjects needed for a
thinking aloud test," Imesnasional Jowrnal of Fuman-Computer
Studies, vol. 41(3), pp. 385-397, 1994.

1D. R. Nilsson, . M. Jakab, B. Sarantakos, and R A.
Stnchout, Enterprise developmeent with Visnaldge for Java, Verdon
3: John Wiley & Sons, 2000.

J- Pan, "Software Testing," 1999, hip:/ /wenwv.cmaedn
(accessed Mazch 2002)

167

Parr2002]

[Pintado1990)

Plauger1992]

[Postema2000]

[Powrer2000]

[Ramsey1992]

[Ramsey1994}

[Rasala2000|

T Pare, "TANTLR," 2002, brtp:/ /www.antlr.org (accessed
July 2002)

. Pintado, "Selection and Exploration in an QObject-
Osented Envitonment: The Affinity Browser," Centre

Universitaire d'Infortnatique, University of Geneva, 1990,
P. J. Plauger, The Standard C Library: Prentice Hall, 1992.

M. Postemna, M. Dick, J. Miller, and S. Cuce, "Tool Support
for Teaching the Personal Software Process," Jowrnal of

Comprrter Science Education, vol, 10(2), pp. 179-193, 2000.

J- F. Power and B. A. Malloy, "Symbol table construction
and name loolup in ISO C++," presented at Technology of
Objecr-Oriented Languages and Systems - Pacific, 2000.

N. Ramsey and D, R. Hanson, VA tctargetable debugpet,”
presented at Proceedings of the Conference on

Programming Language Design and Implementation, 1992,

N. Ramsey, "Literate Programming Simplified," IEEE
Software, vol. 11, pp. 97-105, 1994.

R. Rasala, "Toolkits in frst year computer science: 2
pedapogpical imperative,” presented at Proceedings of the
31st SIGCSE Technical Sympesium on Computer Science
Hducation, Austin, "I, 2000.

168

[Rasala2001]

{Reges2002]

{Robetts1997]

{Roberts1999h)]

[Rosenberg1997]

1Schulz2000]

[Seemann1997}

R. Rasala, J. Raab, and V. K. Proulx, "Java power tools:
model software for teaching object-oriented design "
presented at Proceedings of the 32nd STGCSE Technical
Symposium on Computer Science Education, Charlotte, NC,
2Q01.

S. Reges, "Can C# Replace Java in CS51 and CS822," presented
at ITICSE, Aarhus, Denmark, 2002.

. Roberts, J. Brant, and R. Johnson, "A Refactoring T'ool
for Smalltalk,” Theory aud Practice of Object-Systems, vol. 3, 1997.

D. Roberts and J. Brant, "Refactoring Tools," in Refactoring:
Immproving the Design of Iisdisting Code, M. Fowler, Hd; Addison-
Wesley, 1999, pp. 401-407.

J- Rosenberg and M. Kélling, "I/O Consideted Harmful (At
least for the first few weeks)," presented at Proceedings of
the Second Australasian Conference on Computer Science

Education, Melbournc, Australia, 1997,

D. Schulz and F. Mueller, "A ‘Thread-Aware Debugger with
an Open Interface,” presented at Internadonal Symposinm
on Sofrware Testing and Analysis, Portand, OR, 2000.

J- Seemann, "Bxrending the Sugtyama Algorithm for
Drawing UML Class Diagrams: Towatds Automatic Layout
of Object-Oriented Software Diagrams,” presented at
Proceedings of Graph Drawing, Sth International
Symposium, GD'97, Rome, Italy, 1997,

169

[Shaw1991) M. Shaw and J. Tomayko, "Models for undergraduate project
courses i software engincering," presented at Proceedings
of the Fifth Annual SEI Conference on Software
Bogineerng, Pittsburgh, PA, 1991.

[Silvermark2002] Silvermatk, "Test Mentor Java Ediion User Reference 5.4,

2002,
(accessed February 2002)
{Spear1994] P. Speat, Rezurn to Zork - The Qfficial Guide lo the Great

Underground Bopire. Brady Publishing, 1994

[Staska1993] J. Stazhio, A Badre, and C. Lewis, "Do Algorithm
Animations Assist Learning? An Empirical Study and
Analysis,” presented at Proceedings of the INTERCHI '93
Conference on Human Factors in Computer Systems,
Amslerdam, Netherlands, 1993.

Talbott2001 N Talbott, "Testiag in reverse,” 2001
[] . g \ ,

{accessed Masch 2002)

[Transmognfy2001] "Transmogrily - A Java Refactoting T'ool,” 2001,

hup:/ firansmogsify.souscefarge.net (accessed July 2001)

[Whittaker2000] . J. Whittaker, "What is software testing? And why is it so
haed?," IEEE Software, vol. 17, pp. 70-79, 2000.

[Zeller1996) A. Zeller and D, Litkehaus, "IDDD - A Free Graphical
Front-End for UNIX Debuggers," SIGPLAN Notices, vol.
31, pp. 22-27, 1996.

170

