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NOMENCLATURE

SYMBOL DESCRIPTION

Phase angle of the drag wrt the displacement (drag freq. = 2fe, therefore

fop Phase angle of the lift wrt the displacement (lift freq. =/e)

§Hfi *,»& Phase angle of the vortex lift wrt the displacement

O r * « • _ * • • * . d v d uz component of vorticity, coz =
8y dx

Co Drag coefficient - Drag / Vi p lffreeLD

CL Total Lift coefficient - Total Lift / Vi

CL,»«« Vortex Lift coefficient - Vortex Lift / Vi

-CPB Base suction coefficient

D Diameter of cylinder

E Energy transfer from fluid to cylinder

/ Frequency of free oscillations

fe Frequency of forced oscillation

fN Natural structural frequency (elasticaliy mounted cylinder)

fnos Natural frequency of oscillating wake

fo Natural (Karman) frequency of stationary wake

fsmic Structural frequency

L Length of the cylinder

Lcpv Streamwise position of the centre of the attached positive vorticity at the top of the

oscillation

ma Added mass per unit length
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Displaced mass per unit length, for a cylinder md=—=——
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St

U

U*

Reynolds number, Re=

Strouhal number, St = —

Free stream velocity

Reduced Velocity,

) ^
JN

Normalised Reduced velocity
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Cylinder displacement, y(t) = A si
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ABSTRACT

The wake states of a circular cylinder undergoing controlled sinusoidal oscillations transverse to a

free-stream are examined for a range of flow and oscillation parameters. As the frequency of

oscillation passes through the natural Karman frequency there is a transition between two distinctly

different wake states: the low- and high-frequency states. The transition corresponds to a change in

the structure of the near wake and is also characterised by a jump in the phase and amplitude of

both the total and vortex lift. Examination of the instantaneous force loadings and flow fields

within the transition region allow discrimination between the actual wake states and their

conventional time-averaged representations. At the largest oscillation amplitudes considered, a

third wake state occurs at oscillation frequencies between low- and high-frequency states. This

"intermediate wake state" is revealed by instantaneous measurements of the total and vortex lift

phases, and the phase-referenced quantitative wake structure. Over the range of flow and

oscillation parameters studied the wake states exhibit a number of universal features. The phases

of the vortex lift and drag forces have characteristic values for the low- and high-frequency states,

which appear to be directly related to the phase of vortex shedding. The transitions between the

intermediate state and either the low- or high-frequency states demonstrate a link between changes

in the vortex shedding phase and the phase of the vortex lift force. It is also apparent that changes

in the phase of the total lift and the phase of vortex shedding are not necessarily linked. The low-

frequency, intermediate and high-frequency states show some remarkable similarities to the

response branches of elastically mounted cylinders. The equivalence between forced and self-

excited oscillations is addressed, and the prediction of flow-induced motion using the results of

controlled oscillations is discussed using concepts of energy transfer.

The modification of the Karman wake of a stationary cylinder by the presence of a free-surface was

also considered. The wake displays a number of different modes, depending primarily on the depth

of the cylinder and the non-dimensional Froude number. At Fr = 0.166 three modes were

observed, where in all cases the presence of the free-surface caused the wake to become non-

symmetric and there was a net negative lift force on the cylinder. Closer to the surface periodic

vortex shedding did not occur and the two wake modes differed significantly from the fully

submerged Kdrm&n wake, while for the third mode at deeper submergence depths the response of

the wake to the Karman instability appeared to be amplified.
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1 LITERATURE REVIEW AND PRELIMINARY DISCUSSION

1.1 INTRODUCTION

The periodic shedding of vortex structures from a circular cylinder is one of the most fundamental

problems in fluid dynamics. For a wide range of flow conditions vortex structures are shed

periodically from the cylinder, forming a characteristic wake pattern known as the Karman street.

The vortex shedding results in a periodic forcing of the body that can, under certain conditions,

induce large-scale motion of the cylinder. Vortex-induced vibration is experienced by many

natural and engineering structures, the classic example being the Tacoma Narrows bridge. In that

case the natural wind over the bridge deck generated forces that resulted in large-scale motion of

the bridge, and ultimately its destruction. The interaction between a vibrating body and the

structure of the near wake has been extensively studied and remains th? subject of ongoing

research.

1.1.1 Vorticity

The structure of a wake or flow field is often described in terms of its vorticity field. Vorticity is

defined as the curl of the velocity vector:

(l-l)

The characteristic flow over a circular cylinder is most commonly described in terms of the

spanwise vorticity:

dv du
z 5x dy

where, as defined in Chapter 2, the cylinder's axis is aligned in the z direction and the free-stream

flow is in the x direction.

The streamwise and transverse components of vorticity are given by:

dw dv

dy dz y d z dx.
cox = and a>y =— — respectively.

Vorticity is defined as the non-symmetric gradient of the velocity fields and can be interpreted as

the rate of rotation of a small fluid element about its own axis. Vorticity is Galilean invariant and

is therefore not altered by subtracting or adding a mean velocity in any direction. In a

homogeneous fluid vorticity is generated only at boundaries by the relative acceleration of flow

past the boundary. Vorticity can be generated by flow through a porous boundary, however in this

discussion only non-porous boundaries will be considered. Therefore, the generation of vorticity
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can be expressed either in terms of the acceleration of fluid past a boundary or a pressure gradient

along the boundary, as described by a number of authors including Morton (1983), Reynolds &

Carr (1985) and Green (1995). The boundary between water and air is often referred to as a "free

surface". As the viscosity of air is small compared to water, when the free surface is not

contaminated there is minimal shear stress at the boundary. Therefore the boundary conditions

along a flat, clean free surface are zero shear stress and constant pressure: p(surface) =

p(atmosphere) « constant. When the free surface is curved, generally due to large pressure

gradients under the free surface, there is a relative acceleration of the flow along the surface and a

corresponding generation of vorticity. However, when the free surface is contaminated with

surfactants a non-zero shear stress at the surface is possible. Thus a contaminated free surface can

sustain a pressure gradient underneath the free surface, and vorticity can be generated along a

contaminated free surface without surface deformation. When the surface of a free stream flow is

contaminated the start of the contamination forms a distinct line known as the Reynolds Ridge, as

described by Scott (1982). The Reynolds Ridge is effectively the start of a boundary layer flow

underneath a "quasi-free" surface. The boundary layer is often typically thin and therefore difficult

to detect.

As discussed by Morton (1983), the generation of vorticity is instantaneous, inviscid and does not

require a no-slip boundary condition. The diffusion of vorticity outwards from the boundary into

the flow is however a viscous process. In the flow the only mechanism for the decay of vorticity is

by cross annihilation during diffusive interaction with vorticity of the opposite sign.

The circulation, F, is a scalar measure of the total rotation of the fluid contained within a boundary

and can be expressed in terms of eirher the velocity or vorticity field:

r = qVdT= jos.ndS (1-2)
c S

where S is the surface bound by the closed contour C. The conservation of circulation within a

material element, Kelvin's theorem, requires that the net generation of vorticity for unbounded

uniform flow past a cylinder is zero. Thus, equal quantities of positive and negative vorticity are

generated at the cylinder's surface. However, at a given instant the rate of diffusion of positive and

negative vorticity will be different. The vorticity in the wake is a measure of the changes in the

flow as it accelerates past the cylinder.

1.2 STATIONARY CYLINDER

The circular cylinder and other similar geometries are common both in nature and in engineering

structures and the study of flow over a circular cylinder is of obvious practical significance. The

simple nature of the circular geometry means that the physical properties of the cylinder can



generally be non-dimensionalised using only the diameter of the cylinder. Additionally, the flow

over a circular cylinder has often been used as a canonical flow, which forms the basis for studies

of more complicated geometries.

To some extent, the large body of literature on the circular cylinder can be attributed to the many

and varied features of the flow over this simple geometry. The circular geometry provides no sharp

edges to promote, or force the separation of the flow; therefore the point at which the flow

separates is a function of the flow itself. The symmetrical nature of the circle means that the

circular cylinder has no angle of attack and the two-dimensional geometry is independent of the

direction of the flow. This point is particularly relevant to an oscillating bluff body, as for a non-

circular body the effective angle of attack changes during the oscillations.

Although this study is primarily focused on an oscillating circular cylinder, the properties of the

stationary cylinder are relevant. In many cases the wakes observed for an oscillating cylinder are

similar to the wakes from a stationary cylinder and in some cases the mode of vortex shedding is

the same. In particular, the mechanism or instability that causes vortex shedding in a stationary

cylinder are relevant to the wake of an oscillating cylinder.

1.2.1 Wake Regimes: Variation with Reynolds Number

The regimes of the wake of a circular cylinder are typically described in terms of the Reynolds

number and have been comprehensively reviewed by a number of authors, including Williamson

(1996a) and Zdravkovich (1997). The regimes describe the transition of the wake from laminar

flow through to the development of a fully turbulent wake. As Reynolds number increases there is

a systematic upstream movement of the point at which the transition to turbulence occurs. Thus the

different regimes that develop as Reynolds number increases can be described in terms of the point

at which the flow becomes turbulent. The various flow regimes, n:d in particular the transition

between the regimes, are also affected by the level of free-stream turbulence, surface roughness,

cylinder aspect ratio, end conditions and blockage. However, in general the regimes of the wakes

are adequately described by their dependence on Reynolds number.

Zdravkovich (1997) used the general location of the transition to turbulent flow to describe the

wake state or regime. The regimes are split into sub-regime that describe the wake in more detail.

The regimes and sub-regimes covering a Reynolds number range from zero through to very large

are outlined in table 1-1. Williamson (1996a) used a plot of the base suction coefficient (-CPB)

versus Reynolds number, as shown in Figure 1-1, to demonstrate the effect of the different Re

regimes on the cylinder. A brief summary of the flow regimes for Re = 10° - 106 is provided

below:



For very low Reynolds numbers within the laminar regime, the wake remains attached around the

entire surface of the cylinder (LI). As Re increases the flow separates from the upper and lower

surfaces of the cylinder forming a steady, symmetric and closed near-wake (L2). The wake

becomes progressively longer with increasing Re, until at Re = 30-48 the downstream wake

becomes unsteady (L3). As Re increases further within the periodic laminar regime, the wake

shortens and the onset of periodic vortex shedding occurs at Re = 45-65. The vortex shedding is

initiated by the growth of the two-dimensional (transverse) Karman instability and over a wide

range of Reynolds numbers the shedding is strongly periodic. The frequency of vortex shedding is

called the Karman frequency or, in its non-dimensional form, the Strouhal frequency. The vortices

are shed alternately from the upper and lower surfaces of the cylinder, resulting in a distinct pattern

of oppositely signed vortices, known as the Karman street The transverse structure of the Karman

street is very robust and is observed over a wide range of Reynolds numbers.

Table 1-1 Detailed description wake regimes Zdravkovich (1997)

State / Regime

Laminar

Transition in Wake

Transition in Shear
Layers

Transition in
Boundary Layers

Fully Turbulent

Sub-Regime

LI

L2

L3

TrWl

TrW2

TrSLl

TrSL2

TrSL3

TrBLO

TrBLl

TrBL2

TrBL3

TrBL4

Tl

T2

No Separation

Closed Wake

Periodic Wake

Far Wake

Near Wake

Lower

Intermediate

Upper

Pre-critical

Single Bubble

Two Bubble

Super-critical

Post-critical

Invariable

Ultimate

Reynolds Number Range

0 to 4-5

4-5 to 30-48

30-48 to 180-200

180-200 to 220-260

220-260 to 350-400

350-400 to Kk-2k

Ik-2kto20k-40k

20k-40ktol00k-200k

100k-200kto300k-340k

300k-340k to 380k-400k

380k-400kto500k-lM

500k-lMto3.5M-6M

3.5M-6M to (?)

(?) to oo
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7.0

FIGLRE 1-1 Plot of base suction coefficient over a large range of Reynolds numbers from
Williamson (1996a), for use in the discussion of vortex shedding regimes. The shedding regimes
described by Zdravkovich are also shown.

070
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Parallel shedding

•A"/, v ««..••

• 60 220 260

FIGURE 1-2 Strouhal-Reynolds number relationship over the laminar (L) and wake transition
(TrW) regimes. The wake transition is characterised by two distinct discontinuities indicating the
onset of the mode A and mode B instabilities. Reproduced from Williamson (1996b)

The beginning of the wake transition regime at Re= 180-200 corresponds to a sudden drop in both

the base suction coefficient and Strouhal number, shown in Figures 1-1 and 1-2 respectively. The

changes in -CPB and St are primarily associated with the growth of spanwise instabilities, resulting

in a three-dimensional wake structure. This regime consists of two sub-sections that were

characterised by Zdravkovich (1997) in terms of the position of the transition to turbulence. For
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the first regime (TrWl) the turbulent transition is observed in the near wake but in the TrW2

regime at slightly higher Re the transition has progressed into the near wake. The spanwise

structures associated with TrWl and TrW2 have become widely known as mode A and mode B

respectively. The development of the mode A and B wakes from different instabilities and the

resulting characteristic wake structures are discussed in detail by Williamson (1996b). The

spanwise structures in the mode A and B wakes have distinctly different symmetries and scales.

The transition between modes A and B is hysteretic and is characterised by the overlapping

discontinuity of the Strouhal number shown in Figure 1-2.

a)

Braid ibetrbya'B

iiy ihrririnj vonnr HI

C W K pectunKtiouf n Mud B

FIGURE 1-3 Physical mechanisms leading to the production of a) out-of-phase mode A vortex
loops by deformation of the primary structure by downstream induction, b) in phase mode B loops due
to induction from the previous braid. Reproduced from Williamson (1996b)

As discussed by Williamson (1996b) the mode A instability occurs due to the deformation of the

primary vortex core. At a given spanwise location, successive primary spanwise vortices of

opposite sign are deformed in the same direction by downstream induction as shown in Figure 1-

3a. Thus, streamwise vorticies from one braid to the next are of opposite sign and their symmetry

is considered to be out-of-phase. The mode B wake is generated by an instability of the braid shear

layer region, where the instability is generated by the interaction between the forming shear layer
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and the existing streamwise vorticity in the opposite shear layer. As shown in Figure l-3b the

streamwise pattern of the mode B is in phase across successive braids. The spanwise structures of

the two modes are distinctly different: the wavelength of the mode A instability scales on the

primary vortex core, while the much smaller wavelength of the mode B instability, scales on the

thickness of the braid shear layer. The mechanisms described by Williamson (1996b) are

consistent with the observations of Zdravkovich (1997) who associated the TrWl sub-regime

(mode A) with the transition of the far wake and the TrW2 sub-regime (mode B) with the transition

of the near wake.

As Re increases further the wake moves to the TrSL regime where the transition to turbulence

occurs within the shear layer. The beginning of the TrSL regime corresponds to the peak in the

base suction at Re = 220-260 and, as discussed by Williamson (1996a), at this point the three-

dimensional streamwise vortex structures in the near wake are particularly ordered. As Re

increases within TrSLl, the three-dimensionality becomes increasingly disordered and there is an

accompanying increase in the length of the wake. The transition between the TrSLl and TrSL2

regimes, at Re just above 1000, is characterised by a local minima in the base suction as shown in

Figure 1-1. The data compiled by Norberg (1998) in Figure 1-4 shows that this point also

corresponds to an exceptionally long wake formation length. Additionally, the onset of small-scale

vortex structures within the free shear layers also occurs at Reynolds numbers of just above 1000.

Prasad & Williamson (1997) showed that the onset of these shear-layer vortices is intermittent. As

Re increases further through the TrSL2 and TrSL3 sub-regimes, the transition to turbulence

continues to move upstream, until at Re = 1-2 x 105 transition occurs in the shear-layer

immediately after separation.

2.5

2.0

1.0

+ Cerrard '78
O P e l t i e r '80
DYoo '81
0 Korberf '87
A Szepesiy '92
9 Beaudan '94
8 I. I f l t tal '96/ '97
• i i"Pre;ent

V t, Noca e l al '98

(me)

1000 10O00 £+5
Re

Variation of vortex formation length with Reynolds number. Reproduced fromFIGURE 1-4
Norberg (1998).

The transition to turbulence within the boundary layers on the surface of the cylinder, or the TrBL

regime, has long been associated with a "crisis" in the drag force. The drag "crisis" refers to a
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sudden drop in the value of the mean drag and a corresponding drop in the base suction coefficient

shown in Figure 1-1. During the pre-critical (TrBLO) regime, corresponding to the initial decrease

in the drag force, the transition to turbulence occurs at the very end of the boundary layer along the

spanwise separation line. The abrupt fall in the drag force at the transition between the TrBLO and

the TrBLl regimes corresponds to the formation of a separation-reattachment bubble on one side fo

the cylinder. If the Reynolds number is increased slightly, or if the flow is disturbed slightly, there

is a second discontinuous drop in the drag force as a second reattachment bubble forms on the other

side of the cylinder (TrBL2). After the reattachment bubbles the flow re-separates at separation

angles of much greater than 90° resulting in the formation of a very narrow wake and a

corresponding minimum value of the drag force. As Reynolds number increases further, or the

flow is perturbed, the separation bubbles begin to break down and the drag begins to "recover"

(super-critical regime). The post-critical regime, not shown in Figure 1-1, corresponds to a

levelling out of the drag force and base suction coefficient.

1.2.2 Wake Instabilities

A stability gjKdysis seeks to determine if a particular flow will become unstable and the nature of

this instability. An impulsive infinitesimal perturbation, generally a delta function, is applied to the

base flow of interest and the stability of the flow is determined by the development of a disturbance

stream-function. A two-dimensional disturbance stream-function has the general form

\|/(x, y) = <(»(x, y)exp{i(kx-a>t)} and the governing equation is based on the linearised Navier-Stokes

equation. The analysis generally seeks to determine the frequency or wavelength of the

disturbance (real components of co and k) at which the maximum temporal or spatial growth rate

occurs (imaginary components of co and k).

The way in which an instability develops is important in predicting the response of the flow to an

applied perturbation and the regions of the flow that will be affected. The growth and control of

instabilities within wakes has been discussed by a number of authors including, Monkewitz (1988),

Huerre & Monkewitz (1990) and Rockwell (1990). These authors describe a number of different

types of instabilities in terms of the response of the flow to the instability. Firstly, a flow in which

an impulsively generated, small-amplitude disturbance grows can be defined as either absolutely or

convectively unstable. The flow is absolutely unstable if the disturbance grows exponentially at

the location of its generation. The flow is convectively unstable if the disturbance grows but is

convected away from the source, ultimately resulting in the disturbance dying out at its original

source. The term local instability indicates that only the "local" velocity profile is unstable with

respect to the perturbation. If the whole flow field is contaminated by the response of the local

flow field then, as described by Huerre & Monkewitz (1990), the flow field is locally absolutely

unstable. A flow is globally unstable when the instability is present throughout the entire flow



field. The existence of a global instability implies the existence of an absolute instability, however

the reverse is not true.

An absolutely unstable flow exhibits self-excited oscillations. An example of these self-excited

oscillations is the periodic vortex shedding in the wake of a circular cylinder. An absolute

instability does not tend to respond to external forcing, although large amplitude forcing may

generate mode competition. Conversely, a convective instability is receptive to external forcing

and will often lock-on to an applied perturbation.

1.2.3 Spanwise Coherence - Oblique / Parallel Shedding

It i» generally assumed that the primary spanwise vortex core is parallel to the axis of the cylinder.

However, as discussed in the review of Williamson (1996a), under certain conditions th5 vortex

structures can form an oblique angle to the cylinder's axis. The occurrence of oblique shedding, as

opposed to parallel shedding, can have a significant effect on the properties of the wake and the

forces on the cylinder. Williamson (1988) found that oblique shedding altered the frequency of

large-scale vortex shedding, while Prasad & Williamson (1997) found that oblique shedding caused

a delay in the onset of the shear layer instability. Oblique shedding appears to be linked to

discontinuities in the flow conditions at the ends of the cylinder. Consequently, in many

experiments end plates are fitted to the cylinder to promote parallel shedding.

The wake properties also depend on the aspect ratio (L/D) of the cylinder. Norberg (1994) showed

that at low aspect ratios the vortex shedding frequency, the onset of vortex shedding and the base

suction coefficient all vary significantly with L/D. Additionally, he found that the effect of aspect

ratio varied with Reynolds number and that the flow was particularly sensitive to reduced aspect

ratios in the range Re * 4 x 103 - 104, where aspect ratios as large as L/D = 60-70 are needed to

approximate an infinite cylinder. However, in general for L/D > 7 when end plates are fitted the

effect of aspect ratio becomes relatively small.

1.3 OSCILLATING CYLINDER: INTRODUCTION

Regular shedding of vortex structures from a bluff body results in the body experiencing a periodic

force. This periodic forcing can excite the natural structural frequency of the body, resulting in

vortex- or flow-induced motion. Vortex-induced vibrations (VIV) typically occur when the natural

frequency of the wake approaches the natural structural frequency of the body. When a cylinder is

oscillating in response to the flow-induced forcing the total forces on the cylinder differ

significantly from those on a stationary cylinder. Examples of vortex-induced vibration are found

both in natural and engineering structures and, in many cases, knowledge of the vibration of these

structures is a critical design consideration. The vortex-induced motion of deep-sea riser tubes in a

current is of significant interest to the off shore petroleum industry. Other cases where VIV is

9



important include flow over heat exchanges, the motion of bridges, overhead powerlines and

chimneys due to wind, as well as marine structures such as tension leg platforms, which are subject

to significant currents. VIV of natural structures such as tree branches, with and without leaves,

grasses and seaweed is also common.

The force on a stationary cylinder is typically decomposed into the transverse lift force and the in-

line drag force. Although the drag force on a stationary cylinder has a large mean component the

amplitude of the fluctuating component of the drag force is significantly smaller than the amplitude

of the fluctuating lift force on a stationary cylinder. Although the fluctuating component of the

drag force on an oscillating cylinder can be significant, the study of vortex-induced motion is often

simplified by considering only the transverse motion of the cylinder due to the fluctuating lift force.

The relationship between the vortex-induced motion and the wake of the oscillating body is

complicated as these two factors are intrinsically inter-dependent; the flow depends on the motion

of the cylinder and the motion of the cylinder depends on the flow. A common approach to

simplifying this problem is to control, or force the oscillation of the body and examine the response

of the wake to the defined motion. In general the vortex-induced motion of a cylinder is relatively

sinusoidal and can be approximated by forcing a cylinder to oscillate with a pure sinusoidu motion

at a constant amplitude and frequency. Typically, the effect of changin. the frequency of

oscillation is studied while the amplitude of oscillation and Reynolds number are held constant.

1.3.1 Lock-in

The terms "lock-in" or "lock-on" are used to describe the wake when the periodic shedding of

vortex structures and the resulting fluctuating forces are synchronised with the motion of the body.

The frequency of vortex shedding can be quantified by measuring the velocity within the wake or

the lift force on the body. The periodic motion of the cylinder is described in terms of its

normalised amplitude, AID and frequency fjfo, where D is the diameter of the cylinder and the

excitation frequency f. is normalised byfo, the Karman frequency of the stationary cylinder. The

bounds of lock-in are generally defined to include all cases where the most energetic wake

frequency coincides with the frequency of oscillation, see for example Stansby (1976), Karniadakis

& Triantafyiiou (1989) and Hall & Griffin (1993). When the vortex shedding, or wake frequency

has a strong spectral peak, lock-in can easily be identified. However, the definition of lock-in is

somewhat subjective as it depends on how and where the wake frequency is measured, therefore

the exact boundaries of lock-in are not rigorously defined. Lock-in can be demonstrated

schematically using a phase plot of the displacement of the body versus lift or wake velocity. In

cases where the flow is not locked-on, the most energetic shedding frequency is often close, or

equal to the Strouhal frequency of the stationary body.
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Vortex-induced motion (V1V) is linked to a strong resonance between the flow and the structure.

In general, VIV will not be sustained unless the motion of the body and the fluid forces are

synchronised or locked-on. When the body is forced to oscillate, the wake is not necessarily

locked-on to the oscillations, however lock-in is most likely to occur when the oscillation

frequency is close to the natural Strouhal frequency. Secondary or tertiary lock-in can also occur

when the cylinders motion is close to a harmonic of the Strouhal frequency, for example see the

work of Stansby (1976). As discussed in the review paper of Griffin & Hall (1991), lock-in can

occur in response to a variety of motions including transverse and in-line oscillations of a cylinder

or the flow, as well as rotation of a cylinder. This investigation focuses on the interaction between

the flow field and a circular cylinder, however many of the features associated with lock-in are

observed over a wide range of bluff body geometries.

The range of lock-in for forced oscillations is generally shown as a function oscillation amplitude

and frequency. As shown in Figure 1-5 from Kaniiadakis & Triantafyllou (1989), the range of

frequencies over which lock-in is observed increases with the amplitude of oscillation. The general

shape of the lock-in boundary shown in Figure 1-5 is consistent with a large body of experimental

results, as discussed in the reviews of Pantazopoulos (1994) & Griffin & Hall (1991). Just outside

the lock-in boundary there is a region where the flow is still receptive to the oscillation of the body

and the frequency of oscillation is still present in the wake spectra.

For a freely oscillating body lock-in is defined as the range of reduced velocity over which the

body responds to the flow and VIV occurs, where this range appears to depend on the structural

frequency and damping of the body. Although the range of lock-in for both the forced and vortex-

induced oscillations also varies with Reynolds number this effect has not been fully investigated.

Lcck-ia beoadaiy.

*****
FIGURE 1-5 Schematic demonstrating bounds of lock-in. Reproduced from Karniadakis &
Triantafyllou (1989)

When the wake becomes locked-on there is a shift in the frequency of vortex shedding away from

the Karman frequency. There is also significant modification of the wake, and within the

receptivity region, the mode of vortex shedding may depart significantly from the Kdrman street of
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the stationary cylinder. The spanwise correlation of the wake, and therefore also the forces on the

cylinder, are significantly affected by the motion of the cylinder. The compilation of results in

Figure 1-6, reproduced from Pantazopoulos (1994), shows that for both forced and vortex-induced

oscillations the spanwise correlation of shedding increases as the amplitude of oscillation increases.

The variation of the spanwise correlation also depends upon the frequency of oscillation. The

results of Toebes (1969), Figure 1-7 show significant increase in the spanwise correlation within

the lock-in region a t / ' ( =fe/fo) = 1-00, while outside the expected lock-in range a t / / = 1.25 there

is only a very small increase in the correlation length. It seems reasonable to expect that the

spanwise correlation of the wake will vary within the lock-in region, and in particular may be a

function of the mode of vortex shedding, however the extent of this variation is not known.
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SPAN/DIAMETER RATIO (H/D)
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1. Howell-Novak
2. Howell-Novak
3. Howell-Novak
4. Toebes, (Wootton/Scruton paper)
5. Toebes
6. Toebes
7. Toebes, (Wootton/Scruton paper)
8. Howell-Novak
9. Howell-Novak
10. Toebes, (Wootton/Scruton paper)
11. Toebes
12. Howell-Novak
13. Toebes, (Wootton/Scruton paper)
14. Toebes

elastically-mounted, Re = 75,000, A/D = 0.0
elastically-mounted, Re = 75,000, A/D = 0.025
elastically-mounted, Re = 75,000, A/D = 0.0375
pressure transducer & hotwire, uniform flow A/D = 0.0
oscillating cylinder A/D = 0.0
oscillating cylinder A/D = 0.4
oscillating cylinder A/D = 0.4
elastically-mounted, Re = 75,000, A/D = 0.05
elastically-mounted, Re = 75,000, A/D = 0.075
oscillating cylinder A/D = 0.8
oscillating cylinder A/D = 0.8
elastically-mounted, Re = 75,000, A/D = 0.125
oscillating cylinder A/D = 0.12
oscillating cylinder A/D = 0.125

FIGURE 1-6 Correlation along the span of an oscillation cylinder for a range of oscillation
amplitudes. Reproduced from Pantazopoulos (1994).
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FIGURE 1-7 Variation of the correlation along the span of an oscillating cylinder with the amplitude
of oscillation, a) Outside the lock-in range, fr = 1.25 (equivalent to fjto) and b) at the centre of the lock-in
range, fr = 1.00. Reproduced from Toebes (1969)

1.3.2 Forces and Energy Transfer

When the wake is locked-on to the motion of the cylinder the dominant frequency in the lift force isf,

and the lift force is generally sinusoidal in nature. Thus, the lift force can be approximated by a

sinusoidal function:

LifHf) «{VzplfDL) (1-3)

where CL is the amplitude of the fluctuating lift coefficient and fa is the phase of the lift with respect

to the displacement of the cylinder y(t). The correlation of the lift force with a sinusoidal signal

(s\vHnfct) is a measure of the accuracy of the approximation in equation 1-3.

When a body moves relative to the fluid there is an exchange of energy between the fluid and the

body. The energy transfer is a time dependent variable

E{t)At) -F{t)
at

where energy transfer from the fluid to the body is defined as positive.

For a cylinder oscillating transverse to the free-stream it is convenient to define the total energy

transfer per oscillation:

where, V{t) = 2nfcA cos(2nfet), is the velocity of the cylinder and T= l/fe.

Therefore if we write the lift coefficient as: CL(t) * CL sm(2nfct + f//,) the normalised Energy transfer,

CE is approximated by
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If the lift co-efficient is re-written in terms of the components which are in-phase and out-of-phase

with the cylinders displacement, it is clear that the energy transfer is proportional to the out-of-

phase component of the lift force:

(1-5)

where (?„,. is the in-phase component of the lift force and Cjy is the out-of-phase component of the

lift force. Cmy is also commonly called the inertia co-efficient while Cjy is sometime referred to in

the literature as the "drag coefficient". The out-of-phase component, Cjy should not be confused

with the traditional definition of the drag force, which is the total force on the cylinder in-line with

the free-stream. Consequently we will not refer to Cjy as the drag coefficient. C ,̂, and Cjy, or

equivalent coefficients, have been used in the literature to describe the lift force, however instead

of evaluating Cjy we will consider the more physical quantity Cf.

The sign of the energy transfer can also be implied from the value of fa/, the energy transfer from

the fluid to the cylinder is positive when 0o<^<180°, otherwise the energy transfer is negative, i.e.

from the cylinder to the fluid. The oscillation of an elastically mounted cylinder requires positive

energy transfer. However, when the cylinder is forced to oscillate it is not subject to this constraint

and all values of ## are physically possible.

1.3.3 Relating Force and Vorticiry

The analyses of Wu (1981), Noca (1997) and Leonard & Roshko (2001) demonstrated that the total

fluid force on a body can be expressed as follows. Using the terminology of Leonard & Roshko

(2001),

fluid at
(1-6)

where the volume integral is taken over the entire flow field and AB is the surface bounding the

solid body, in our case the cylinder. Without making the assumptions of potential flow, it is

possible to demonstrate, via equation 1-6, that the "apparent mass" force on a circular cylinder is

pxD2 dU
4—~jf^9S demonstrated by Leonard & Roshko (2001). This expression, which includes the

force due to the inertia of the fluid displaced by the cylinder and the force due to the "new"

vorticity (sometimes also called the bound vorticiry) generated by the acceleration of the cylinder,

is valid in the presence of highly separated flow past the cylinder. Govardhan & Williamson
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(2000) were the first to describe the consequences offeree decomposition, into vortex and apparent

mass components, in the interpretation of the phase and amplitude of the lift forces on a freely-

vibrating cylinder. Using the present terminology, in essence, their decomposition is,

(0 (1-7)

in which the apparent mass force is given by:

4 dt2

where yif) is the displacement of the cylinder.

Therefore by subtracting Fam the apparent mass force from F,olai, the total fluid force the force due

to the movement of vortex structures in the wake Fmrla, can be determined. Although Fvonoc relates

the force on a body to the vorticity field it is common to consider only Ftoui. The lift force

coefficients can be written in the same fashion as equation 1-7:

C (() = C (/) + C (t) (1-8)

where CL{t) is the total lift force coefficient, Q, wrtcv(') is the component of the lift coefficient due to

the vorticity field and Ctom(/) is the apparent mass lift force coefficient. Govardhan & Williamson

(2000) demonstrated that changes in the p 'sss of the total lift force do not necessarily correspond

to the changes in the phase of vortex shedding. They calculated the vortex lift force by subtracting

the "potential added mass force", which for a circular cylinder is equivalent to CL a«(0> from the

total lift force. For an elastically mounted cylinder, they found that the jump in the phase of the

vortex lift force did not occur at the same reduced velocity as the phase jump in the total lift force.

The jump in the phase of the vortex lift force corresponded to a change in the phase of vortex

shedding. However, the jump in the phase of the total lift force did not necessarily correspond to a

significant change in the phase of vortex shedding.

The idea of identifying the force component due to wake was also examined by Lighthill (1986).

Lighthill considered two force components: a) a force due to the potential flow, which varies

linearly with the velocity field and includes the potential added mass force, and b) a non-linear,

vortex force. In essence these two terms are Fam and Fmrlex respectively, which have been evaluated

above for the case of a circular cylinder.

For an oscillating cylinder it is common to consider only the properties of total lift force on the

cylinder, CL(t). However, to relate the changes in the structure of the wake to the forces

experienced by the cylinder the properties of the vortex lift force, CL vonJJ) must also be

considered. The vortex lift force is calculated by subtracting the apparent mass force, CLam(t) from

CL{t), as described by equation 1-8. The vortex lift is now expressed in the same way as the total

lift in equation 1-3:
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I a CL voncx sin(2jr/, / + fa mncx) 0 "9)

where CL .»«« is the amplitude of the vortex lift coefficient and fa ,„,„ is the phase of the vortex

lift force with respxsct to the cylinders displacement By definition CLam(t) is in-phase with the

oscillation of the cylinrtsr. Therefore the out-of-phase components of CL(f) and Chvonait) are equal

and the energy transfer (equation 1-4) can be written in terms of either the total or vortex lift force:

CE a JC Ch {At'Q} Sin {fa) = 71 CLvarKX {A/D) SXTi {fayorux) ( M 0)

Thus, the energy trat-fer is positive when 0°< fa < 180° and 0°< favoncx < 180°.

Equation 1-6 provides a useful tool for interpreting the flow field. However, using equation 1-6 to

calculate the force on the body requires evaluation of the entire vorticity field. As outlined by

Noca et al (1997,1999), Noca (1997) and the extensive review of Wu & Wu (1996), methods have

recently been developed to evaluate the force on a body using finite and arbitrarily chosen regions

of the flow field. The work of Noca et al (1997, 1999) reformulates equation 1-6 into three

different forms described as the impulse, momentum and flux equations. Each of these equations

allows the fores on a body can be calculated using only the velocity field within a finite domain

containing that body. These formulations were then applied to the problem of an oscillating

cylinder st Re - 392, where the velocity field was calculated numerically using a two-dimensional

simulation, AS shown in Figure 1-8 all three methods were reasonably successful in replicating the

lift force on the body, with the relative performance of the methods depending on the resolution of

the grid and the velocity field. FIGURE ll
force on tl
calculated |
from Noca

FIGUf
field
al (1997
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FIGURE 1-8 a) The 2D vorticity fields within the bounding box were used to compute b) the lift
force on the cylinder, Re = 392. The three different methods used were compared with the force
calculated from the pressure and shear stress on the body: represented by the solid line. Reproduced
from Noca et al (1997).
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FIGURE 1-9 Comparison of the lift force calculated from an experimentally measured vorticity
field —• with the lift force measured by a force balance , Re = 19,000. Reproduced from Noca e*
al (1997).
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However, these methods are less successful when applied to a two-dimensional slice of a fully

three-dimensional flow. In Noca et al (1997) the "impulse equation" was used to calculate the

force on an oscillating cylinder at Re = 19,000, using a two-dimensional slice of the velocity field

measured experimentally using DPIV. The forces calculated from the velocity field were then

compared with the span-averaged forces on the cylinder measured by a force balance. Although, as

shown in Figure 1-9, the calculations were able to capture the average period of the measured lift

force, they did replicate the amplitude of the lift force or small variations in phase. The inaccuracy

of the calculations was attributed to the three-dimensional nature of the velocity field. Noca et al

(1999) applied the same method to an oscillating cylinder at a reduced Reynolds number of 100,

where the velocity field becomes approximately two-dimensional. The drag force calculated from

the velocity fields measured using DPIV was found to compare well with the drag force measured

experimentally with a force balance. Presumably measurements and calculations of the lift force

for the quasi two-dimensional field would be similarly successful.

These investigations indicate that when the flow conditions are favourable the velocity field can be

used to accurately predict the force on a body. In particular, if the lift and drag forces are to be

calculated from a two-dimensional slice of a velocity field, this slice must fully represent the entire

field, i.e. the velocity field must be two-dimensional. The theoretical equations for calculating the

forces can easily be expanded to incorporate a three-dimensional velocity field. However, this path

is best pursued numerically, as obtaining the necessary three-dimensional velocity fields

experimentally is, at this stage, prohibitively difficult.
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1.4 FORCED CYLINDER OSCILLATIONS

When a cylinder is forced to oscillate relative to a free-stream the wake responds to the large-scale

motion of the structure. In most cases the cylinder is forced to osciilate relative to the free-stream,

however the wake can also be forced by oscillating the free-stream relative to a stationary cylinder.

Examples of this type of interaction include: the acoustic perturbation of flow by an external noise

source, see Blevins (1985), the feedback generated when the flow structures shed from a body

interact with a large downstream body, as discussed by Unal & Rockwell (1987), or marine

structures that are subject to periodic wave motion.

The "free-stream" component of the velocity is most commonly generated by continuous flow past

a body whose mean position does not vary. Alternatively, the "free-stream" can be generated by

towing the body at a constant velocity though a tank of stationary fluid. In terms of relative flow

past a body these methods are equivalent, however each method has particular benefits and

limitations. The careful use of a towing tank reduces the free-stream turbulence to negligible

levels, but the length of the towing tank limits the number of oscillations per experiment. When

the flow is generated by external means, such as in a recirculating water channel or wind tunnel,

there is effectively no limit on the number of oscillations per experiment, but it is difficult to

achieve low turbulence levels.

The oscillation of a body relative to a mean velocity can be achieved in 3 ways:

1. The body oscillates relative to a constant external velocity.

2. The body is held stationary and is subject to an external flow with both mean and oscillatory

components.

3. The body moves with variable velocity (consisting of mean and oscillatory components)

through a stationary fluid.

As discussed by Lighthill (1954), these three cases can be evaluated in a common reference frame

and are equivalent if the flow field is uniform. The displacement of the fluid as the body oscillates

relative to the flow causes an inertial force that generates an opposing fluctuating pressure gradient

around the body, and corresponding changes in the flow. The fluctuating pressure force is

transmitted to the body via pressure waves at the speed of sound. When the wavelength of the

acoustic waves is long relative to the length scale of the body, as is generally the case, the

transmission of the pressure fluctuations is approximately instantaneous and effectively cancels out

the inertia force. Thus, oscillating the body is equivalent to oscillating the flow around the body.

A number of studies have considered the case of a stationary cylinder in a fluctuating free-stream.

Barbi et al (19o5) and Armstrong & Barnes (1986) found that the stationary cylinder wake locks-on

to the fluctuations of the free-stream in a similar fashion to the lock-in observed for an oscillating

cylinder.
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Vortex-induced motion of a body will generally have both transverse and in-line components.

However, the flow-induced motion of a cylinder is often simplified by considering only one

component of this motion. In these experiments, as in many previous studies, we will consider a

cylinder oscillating transverse to the free-stream. As the frequency of forced oscillation,^ is varied

relative to the natural frequency of the stationary cylinder f0, there are significant changes in both

the structure of the near wake and the forces on the cylinder.

1.4.1 Characteristic Features of Forces

A simultaneous jump in the amplitude and phase of the lift force &\.fjfo ~ I, was first identified by

Bishop & Hassan (1963) and has subsequently been observed both experimentally and numerically

by a number of investigators, including Moe & Wu (1990), Gopalkrishnan (1993), Staubli (1993a

& b), Sarpkaya (1995), Zderi et al (1995), Dalheim (1997), Hover et al (1998) Blackburn &

Henderson (1999) and Carberry et al (2001). The jump in the phase and amplitude of the lift force

has been observed over a wide range of flow conditions: Reynolds numbers ranging from 500 to

60,800, amplitudes of oscillation varying from A/D = 0.11 to 7.0 and for both experimental results

and two-dimensional numerical simulations. A smaller jump in the phase of the lift force was also

observed at supercritical Reynolds numbers, Re = 0.8-3.0x106 and A/D = 0.012, by Szechenyi &

Loiseau (1975). In many cases the results have been plotted in terms of Cmy and Cdy, as defined in

equation 1-5, rather than the phase and amplitude of the lift force. However, these two sets of

variables are equivalent and CL and ^ can easily be calculated from Cmy and dr

a) Lift Phase b) Lift Amplitude
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FIGURE 1-10 Compilation of previous data showing the variation of a) the phase of the lift force
and b) the amplitude of the lift force with the frequency of oscillation. In all cases the amplitude of
oscillation was A/D - 0.5.
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A selection of the previous results at A/D = 0.5 is shown in Figure 1-10 (a & b), where iif,lfi and CL

respectively are plotted aga ins t / ^ for a range of Reynolds numbers between 5000 and 60,000.

Each individual set of data shows and abrupt change, or jump in <j>/̂  and a corresponding jump in

CL at the same frequency of oscillation. However, between the different data sets there is some

variation in the frequency at which the jump occurs. The source of this variation is not well

understood, however it may be attributable to changes in the Reynolds number and the level of

free-stream turbulence. The simultaneous jump in the both phase and amplitude of the lift force

suggests that around fjfo « 1 there is a significant change in the structure of the wake. Moreover,

the large jump in the properties of the lift force suggests that either side of the jump there are at

least two distinctly different wake states. One of the aims of this work is to confirm this

hypothesis.

The data sets shown in Figure 1-10 show a relatively smooth variation in the phase and amplitude

of the lift properties, with a number of data point exhibiting intermediate values between those

exhibited either side of the jump. The existence of these intermediate values raises some

interesting questions about the nature of the transition between the states observed either side of the

jump. For example it is not known if these intermediate values represent a smooth change in the

force properties wifti fjfo or an intermittent transition. The nature of the transition corresponding to

the jump in the lift force is an unresolved issue that will be examined further in this work.

oos aio OJO 135

FIGURE 1-11 a) The amplitude of the lift coefficient, CLO and b) the phase of the lift force, <p versus
both the oscillation Strouhal frequency, So and amplitude of oscillation, % (equivalent to A/D).
Reproduced from Staubli (1983a).

21



Similar variations in $nfi and CL as the frequency of oscillation is varied have been reported at both

lower and higher amplitudes of oscillation. The carpet plots of Staubli (1983a), shown in Figure 1-

11, demonstrate that the jump in ifn/i and CL occurs for a wide range of oscillation amplitudes.

50
Frequence Hz

FIGURE 1-12 Variation of the spectral energy of the lift force GCL with the frequency of oscillation
fc for an amplitude of the oscillation of A/D = 0.012 at Re = 2x10*. There are two peaks in the spectral
energy one at fc and one close to the Karman frequency of the stationary cylinder fm (equivalent to fnot).
Reproduced from Szechenyi & Loiseau (1975).

The frequencies present in the wake are generally determined by measuring either the time

variations of the velocities within the near wake or the lift force. Examination of equations 1-6 and

1-7 show that the vortex lift force can be expressed in terms of the rate of change of the horizontal

vortex moment integrated over the entire vorticity field. Thus, there is a strong correlation between

the fluctuations in the wake due to large scale vortex shedding and the variations in the vortex lift

force. A local maximum in the vortex lift force represents a peak in the rate of change of the

horizontal vortex moment, which is generated by the movement of positive vorticity in the

downstream direction (or negative vorticity upstream). Similarly, a local minimum in the vortex

lift force corresponds to the maximisation of the rate of change of the negative vortex moment due

to the movement of negative vorticity downstream. Although, there is generally a strong

correlation between the peaks in the vortex lift force and large-scale vortex shedding these two

events do not necessarily occur at the same point in time. Moreover, when the variation of the total

lift force on the body is considered there is a second component, the additional mass term described

in section 1.3.3 that is in-phase with the acceleration of the body relative to the flow.
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FIGURE 1-13 Variation with the Strouhal frequency of oscillation of a) the component of the lift
force at the frequency of oscillation, b) the component of the lift force at SK (equivalent to the Stroubal
number of fBM) and c) the frequency of the spectral peaks at SK. Reproduced from Staubli (1983a).

When the wake is Iocked-on to the oscillation of the cylinder the dominant frequency in the wake is

the frequency of oscillation^. However, in many cases there is an additional frequency, designated

fnos, which is present in the wake, wherefnos is not a harmonic or sub-harmonic o f£ . The value of

fnos is close to, but not necessarily equal to, the natural Karman frequency of the stationary cylinder

wake and it appears that./™ is linked to the natural frequency of the oscillating wake. The spectral

peak at fnos has been observed by a number of authors including Staubli (1983a) and Szechenyi &

Loiseau (1975). As shown in Figure 1-12, the value of/,av and the relative strengths of the spectral
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peaks at/™ and/; are a function of the oscillation frequency. The frequencies/™ and/, converge

and then diverge asfjfo increases through unity. Additionally, the amplitude of the peak at/*,.,

decreases a s / approaches/, and very close to fjfo = 1 the/™ peak is not detectable. In Figures 1-

13 (a & b) the variation of the amplitude of the peaks a t / (Cw) andfnas (CLO) are plotted as a

function of oscillation frequency (So = faD/U). As the frequency of oscillation approaches the

Karman frequency (So = 0.175) from either above or below, there is a transfer of the energy in the

wake from/^tCCLK) to^(CLo). This is consistent with the variation of the lift spectra in Figure 1-

12. The natural frequency of the oscillating cylinder/,,„ is close to the Karman frequency,/,

however, as shown in Figure l-Oc/,™ varies with the frequency of oscillation, particularly a s ^

approaches/,.

The amplitude of oscillation strongly influences the susceptibility of the wake to the forced

oscillations, and at larger values of AID the wake is much more likely to become locked-on to the

oscillations. Additionally, the results of Staubli (1983a) indicate that when the wake is locked-on

the forces on the cylinder vary systematically with the amplitude of oscillation, as shown by the

variation of fa and Q with AID (£) and fjfo (So) in Figure 1-11. As AID increases there is an

increase in the magnitude of the change in both fa and CL (i.e. ACL and Ac^,) during the jump. At

low AID the variation of Q, wi th /# i in Figure 1-11 takes on the character of a resonance peak

around/i =/ , , similar to that observed by Blackburn & Melbourne (1997) at very low amplitudes of

oscillation (A/D - 0.027 - 0.098). As discussed in section 1.3.3 the lift force is made up of two

components: the lift due to the vorticity field, CLvortex(t) and Ciom(t), apparent mass force due to the

relative acceleration of the cylinder. The amplitude of the fluid inertia force, CLam varies linearly

with the amplitude of oscillation. However, due to variations in the phase and amplitude of the

vortex lift force the amplitude of the total lift force does not necessarily increase with increasing

A/D.

Figure 1-11 shows that at low oscillation frequencies before the jump (fc <fo) the values of fa

appear to increase through 180° as AID increases. Whilst for frequencies above the jump (fe >/„),

as AID increases there is a decrease in the total lift phase and fa moves towards, and possibly

through, 0°. When the total lift phase moves out of the region 0°<(|>///,<180o the energy transferred

to the cylinder changes from positive to negative. Thus, the variation of fa with AID, shown in

Figure 1-11, indicates that changing the amplitude of oscillation can alter the direction of energy

transfer.
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component of the lift force at the oscillation frequency. Reproduced from Staubli (1983a).

The jump in the iift force is generally considered as depending upon the frequency of oscillation.

However, the variation of <()/,/, and CL with AID shown in Figure 1-14 at a constant value of fe

indicates that the point at which the jump in the i;.ft force occurs is also a function of AID. At

smaller values of A/D the amplitude and phase of the lift force in Figure 1-14 are consistent with

values at much lower frequencies of oscillation, but as A/D is increased there is a jump in both fa

and CL and the values are now consistent with those at much higher frequencies of oscillation. The

effect of the amplitude of oscillation on the point at which the jump occurs has not been

extensively studied and compared with the effect of varying/^ , the variation of AID appears to

have a second order effect.

The work of Sarpkaya (1978), shown in Figure 1-15, indicates that the mean drag on the cylinder,

CDmCan depends on both/^ 0 and A/D. As AID in creases from 0.25 to 0.84 in Figure 1-15 there is a

systematic increase in the value of CDmcan at a given oscillation frequency. While for a constant

amplitude of oscillation the value of CDmean snows a strong peak around fe = fo. The peak in CDmMn

occurs at the same point as the jump in the phase and amplitude of the lift force. The peak in

CDmean around fjfo « 1 is consistent with the findings of a number of authors including Mercier

(1973), Gopalkrishnan (1993), Anagnostopoulos (2000).
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1.4.2 Characteristic Features of Wake Modes

The general form of the fluid structures shed into the near wake is often described in terms of the

mode of vortex shedding. An oscillating cylinder exhibits a number of different shedding modes as

described by the extensive mapping of Williamson & Roshko (1988). The Williamson & Roshko

map, shown in Figure 1-16, was obtained over a range of Reynolds numbers, 300<Re<1000, but

the shedding regimes are generally expected to persist over a wider range of Reynolds numbers.

The map in Figure 1-16 indicates that for our investigation ac oscillation amplitudes of 0.6 and

below, at frequencies around X =fo, we would expect to observe the 2S and 2P shedding modes.

The 2S and 2P shedding modes are shown schematically in Figure 1-17. For the 2S mode two

single vortices of opposite sign are shed per oscillation, resulting in the formation of the classical

Karmdn street. The 2P mode corresponds to the shedding of two counter-rotating pairs, or a total

of four vortex structures, per oscillation.

1-6

0-2

Coolescance of
voiiicciin
MOT waka

10

FIGURE 1-16 Map of vortex synchronisation patterns near the fundamental lock-in region.
Reproduced from Williamson & Roshko (1988)

2S

2P

$ s

FIGURE i-17 Schematic showing the 2S and 2P modes of vortex shedding. Reproduced from
Williamson & Roshko (1988).
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fo increased though unity Williamson & Roshko (1988) observed a change in the mode of

vortex shedding from 2P to 2S. The investigations of Ongoren & Rockwell (1988a) and Gu et al.

(1994) also considered the variation of the wake asfjf,, increase1, through unity, focusing on the

changes in the phase referenced structure of the near wake. In both these investigations the phase

point st which the flow fields were compared corresponded to the maximum displacement of the

cylinder. The phase referenced flow fields in Figures 1-18 and 1-19 show that at approximately

fjfo = 1 there is a "switch" in the sign of the vortex closest to the cylinder, known as the initial

vortex. The change in the sign of the initial vortex implies a significant change in the phase of

vortex shedding. Whilst the terminology "the switch" was originally applied to a change in the

sign of the initial vortex, it is now more widely applied to a large change, or "switch", in the phase

of vortex shedding. In Figure 1-18 the switch occurs between f/f,, - 1.00 and 1.05, while in Figure

1-19, at a slightly different AJD and Re, the switch occurs between fjfo =1.10 and 1.12. Ongoren

& Rockwell (1988a) observed that as the frequency of oscillation increases towards the switch,

there is a "substantial decrease in vortex formation length" and that "a necessary condition for the

switch to occur is attainment of a minimum of the vortex formation length". This statement

implies that there is an increase in the formation length after the switch. However, as will be

discussed in section 3.3.1, this point is open to interpretation.

FIGURE 1-18 Effect of forced excitation frequency fc to natural shedding frequency fo on the near
wake structure, for A/D = 0.13 at Re = 855. All photos taken at maximum negative displacement of the
cylinder. Reproduced from Ongoren & Rockwell (1988a).
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Figure 1-19 Figure 3 Gu etal (1994), A/D = 0.2 and Re = 185

The images from Ongoren & Rockwell (1988a) in Figure 1-18 show that f o r / ^ below the switch

the initial vortex contained within the (black) formation region comes from the upper surface of the

cylinder. Asfjfo increases the phase referenced position of the initial vortex contracts towards the

back of the cylinder. After the switch the phase-referenced initial vortex is formed from the lower

surface of the cylinder. The vorticity fields of Gu et al. (1994), showi. in Figure 1-19, reveal more

clearly the nature of the vortex structures. Note: the images in Figure 1-19 were acquired at the

extreme left hand side of the oscillation and, compared to the images in Figure 1-18, are at the

opposite extreme point of the oscillation cycle. Before the switch the right hand positive vortex is

the initial vortex and as/J/0 increases there is a decrease of the formation, or wake length, until a

"limiting position is reached". After the switch between fjfo =1.10 and 1.12 the phase-referenced

structure of the near wake is clearly different and the initial vortex is now the negative left hand

vortex. The switch in the initial vortex indicates that between fjfo = 1.10 and 1.12 there is a

significant shift in the phase of vortex shedding, however the magnitude of the phase shift can not

be determined from these images as they were acquired at a single phase point.

The evaluation of the wake formation length using flow visualisation also requires careful

definitions. The hydrogen bubble visualisation of Ongoren & Rockwell (1988a) does not show the

finer structures in the near wake and it appears that the formation length increases after the switch.

The more detailed PIV images of Gu et al. (1994) suggest there is an increase in the attached wake
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length, as the vortices that are about to be shed into the wake remain attached to the cylinder.

However, the phase referenced position of the concentration of vorticity immediately behind the

cylinder contracts as frequency increases both above and below the switch. The single phase-

referenced images in Figures 1-18 and 1-19 are not able to resolve more subtle changes in the

phase of vortex shedding. For example, it is not possible to tell whether or not the gradual changes

in '!ie wake length are linked to changes in the phase of vortex shedding.

Interestingly, at the relatively low values of AJD and Re investigated by Ongoren & Rockwell

(1988a) and Gu et al. (1994), the change in the phase of vortex shedding does not correspond to a

change in the mode of vortex shedding and the 2P mode of shedding is not evident at lower fjfo.

Although the mode of vortex shedding either side of the switch appears to be 2S there are subtle

changes in the structure of the near wake. In particular, after the switch, the upper shear layer does

not extend across the back of the cylinder and the lower wake tends to angle further away from the

centre-line. When the cylinder is forced at frequencies much lower or higher ftanfjfo = 1 Ongoren

& Rockwell (1988a) found that the vortex shedding can lock-on to a harmonic or sub-harmonic of

f0. In these cases the mode of vortex shedding can depart significantly from the modes observed

around fjfo = 1.

1.4.3 Link Between Forces and Wake Modes

The investigations considered in sections 1.4.1 and 1.4.2 all suggest that around/#, « 1 there are

significant changes in the flow over an oscillating cylinder. A number of events have been

independently observed dXfJfo « 1: a change in the sign of the initial vortex, or a large change in

the phase of vortex shedding, a change in the mode of vortex shedding, a peak in the mean drag

force as well as a jump in both the phase and amplitude of the lift force.

The two-dimensional numerical investigation by Blackburn & Henderson (1999) at Re = 500 and

AID = 0.25, detected many of the features observed experimentally. At a frequency ratio of just

below one they found a simultaneous jump in the phase and amplitude of the lift force. The

classical 2S modes of shedding were observed either side of the jump. Although the general mode

of vortex shedding for these two cases was 2S, there were subtle differences in the structure of the

near wake and in particular the phase of vortex shedding. In addition to the 2S modes, at

frequencies just below the jump they observed additional mode branches with unusual asymmetric

modes of vortex shedding. Importantly they were able to establish a link between the jump in the

lift force and a change in the "phase relationship between vortex formation and cylinder motion".

A link between the jump in the phase and amplitude of the lift force and the changes in the mode

and phase of vortex shedding, &\fjfo « 1, is yet to be conclusively demonstrated for a fully three-

dimensional wake.
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1.4.4 Non-Transverse Forced Oscillations

This investigation focuses on a transversely oscillating cylinder, however a number of insightful

investigations have considered other displacement profiles. To relate the forced oscillations to a

structure that is free to oscillate in 2-dimensions, such as a cable, the most obvious profile involves

motion in both the transverse and streamwise directions. However, the relative phase and

amplitudes of the streamwise and transverse components of the motion means that there are a large

number of motion profiles available to the body. The forced oscillation of a cylinder in both the

streamwise and transverse directions has not been extensively investigated. Preliminary

investigations of this problem by Jeon & Gharib (2000), found that for a transverse oscillation of

AID = 0.5 a Figure-8 motion with an in-line component of AID = 0.1, had a significant effect on the

phase of vortex shedding.

A number of investigations have also considered non-transverse, single degree of freedom

oscillations, which are in-line with, or angled across the free-stream. Ongoren & Rockwell (1988b)

observed that depending on the frequency of oscillation the in-line oscillation of the cylinder

produced both symmetric and anti-symmetric modes of vortex shedding. The symmetric shedding

involves in-phase shedding of vortices from either side of the cylinder, while the anti-symmetric

shedding is characterised by alternate, out-of phase shedding of vortices from either side of the

cylinder. An example of anti-symmetric shedding is the classical Karman mode. In general these

modes were unlike those observed for a stationary or transversely oscillating cylinder. Also, at

many frequencies of oscillation mode competition and switching between symmetric and ant-

symmetric modes of shedding were observed. A number of these modes demonstrated period

doubling relative to the classical Karman mode, thus the frequency of vortex shedding is

synchronised with the frequency of the fluctuating in-line drag force. This is consistent with the

results of Barbi et al (1986), who found that that for in-line flow oscillations with fjfo > -1, the

frequency of vortex shedding was locked-on to approximately twice the stationary Karman

frequency.

Ongoren & Rockwell (1988b) also considered oscillations at four different angles to the free-

stream flow: 0°(in-line), 45°, 60° and 90°(transverse). As the oscillation angle moved from 90°

towards 0° the tendency of the wake to switch from an anti-symmetric mode to a symmetric mode

increased. When the wake was oscillating at angle of 45° or 60° the general structure of the wake

tended to be parallel with the free-stream. This suggests that when the motion of the cylinder is

neither in-line nor transverse it may still be appropriate to define the axes of the lift and drag forces

relative to the free-stream direction, rather than the motion of the cylinder. The question of how to

define the lift and drag axes is particularly relevant to the problem of a tethered body.
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1.4.5 Non-Circular Bluff Bodies

The point at which flow separates from a cylinder is determined by the pressure gradient along the

surface. When the geometry of the surface has a sharp edge the flow tends to separate at a fixed

location. However, for a cylindrical shape the point at which the flow separates varies not only

with free-stream conditions but also during the shedding cycle. The oscillation of the cylinder

tends to increases the variation in the flow separation point

The oscillation of bodies with well-defined separation points has been studied by a number of

authors including Ongoren & Rockwell (1988a), Staubli & Rockwell (1989), Lotfy & Rockwell

(1993) and Deniz & Staubli (1997, 1998). Ongoren & Rockwell (1988a) found that bodies with

triangular, square and circular cross sections all have a threshold value of oscillation frequency at

which the "near wake structure breaks into a new mode". For the circular and triangular cross-

sections Ongoren & Rockwell observed a switch in l;he sign of the initial vortex and a

corresponding change in the phase of the "vortex arrival" of approximately n dXfJfo « 1. Both the

circular and triangular cross-sections had a relatively short "after body" length. However, the

square cross-section had a longer after body length and d&fjfo increased the flow reattached to the

side of the body. !n this case there was not a clear switch in the timing of vortex shedding. From

this work is not clear if the longer after body length precludes the switch in all cases or if in this

particular case the reattachment of the wake interfered with the switch.

A switch in the sign of the initially shed vortex from an oscillating trailing edge, asfc/f, passes

through unity, has been observed by a number of investigators, including Staubli & Rockwell

(1989) and Lotfy & Rockwell (1993). The work of Staubli & Rockwell (1989) showed that the

switch in the phase-referenced initially shed vortex from one corner of the trailing edge to the

other, corresponded to a jump of order n in the phase of the pressure fluctuations at the trailing

edge corner of the plate. Staubli & Rockwell (1989) show that corresponding to the switch there is

a jump of approximately 2rc in the phase of the pressure fluctuations some diameters upstream of

the corner, as depicted in Figure l-20(b). It is not clear why they define this as a large phase jump

rather than an approximately constant phase of close to zero. The pressure fluctuations upstream of

the corner are some distance from the vortex shedding. Therefore, it is expected that the relative

acceleration of the flow will dominate the pressure fluctuations and the pressure phase will be close

to zero either side of the switch. Irrespective of how the upstream pressure phase is defined, the

jump in the pressure phase at the corner corresponds to a change in the gradient of the pressure

force along the trailing edge.

32



(fl) 1.5

d

y

)f

11

h

it

0.5

(*)
2it

JI -

0 ~

Tap 10

i

^ Tap 2

r—•
y * • • I H

1 !

Tap 10

• i i

i

ill

1.5

n

0.5

FIGURE 1-20 Typical response characteristics of the pressure fluctuations at amplitude r\t = 0.02
showing: (a) amplitude of pressure fluctuations; (b) phase ample between the pressure fluctuations and
the edge displacement; and (c) the amplitude of the self-sustained pressure fluctuations and the
associated frequency of the self-sustained vortex shedding. Reproduced from Staubli & Rockwell
(1989).

n

m

33



The variation of the amplitude and phase of the pressure fluctuations withX#> (labelled /,//*<,) is

shown in Figure 1-20 (a & b) respectively. The pressures are shown at two locations on the trailing

edge: tap 10 at the corner of the plate and tap 2, located three plate thicknesses upstream of the

corner. The amplitude of the pressure fluctuations for oscillations in a stationary fluid are plotted

along the values obtained with a free-stream flow in Figure 1 -20(a).

When a body oscillates in a quiescent fluid, in the absence of large scale vortex shedding, the

relative acceleration of the fluid will dominate the pressure forces on the surface of the body.

When the trailing edge described above was oscillated with no free-stream flow, the phase of the

pressure fluctuations along the trailing edge were close to zero and the amplitude of the pressure

fluctuations varied withfe
2. This indicates that along the trailing edge the apparent mass force,

described in section 1.3.3, dominates the pressure force with only a small contribution from the

vortex force. However, close to the mid-position of the vertical trailing end there was significant

shift in the pressure phase. The authors associated this with the "onset of substantial viscous

effects and secondary flows at the midsection", indicating that at this location there was a

contribution from Fmrlcx. With the exception of the points around the midsection, the difference

between the pressure fluctuations for the free-stream and no free-stream cases is an approximate

measure of the contribution of the vortex force. This is illustrated for two tap positions by the

dashed (no flow) and solid (free-stream flow) lines in Figure l-20(a). The pressure at a given

location is a function of the relative phases and amplitudes of the vortex and apparent mass

components. Therefore, when the trailing edge is oscillating in the presence of a free-stream and

the contribution from the vortex force is out-of-phase with the motion of the body, the amplitude of

the pressure fluctuations will actually be less than the value when there is no flow.

At the corner of the trailing edge (tap 10 in Figure l-20a) there is a sharp jump in the amplitude of

the pressure co-efficient at fjfo » 1, and both the phase and amplitude of the pressure fluctuations

depart significantly from those generated by the oscillation of the body in stationary fluid.

However, the amplitude and phase of the pressure fluctuations at tap 2, upstream of the trailing

edge, are similar to the stationary flow values. This suggests that close to fjfo & 1 the pressure

force at the corner of the trailing edge there is a significant contribution from the vortex force,

where as further upstream the pressure on the plate is dominated by the apparent mass force.

Interestingly, the jump in the amplitude and phase of the pressure fluctuations at the corner of the

plate when fjfo » 1 are very similar to the behaviour of the lift force on an oscillating cylinder.

The variation of the pressure along the surface of an oscillating cylinder is not well understood.

However, it is reasonable to expect that many of the features observed by Staubli & Rockwell

(1989) for an oscillating trailing edge will also be observed for a cylinder. In particular, the jump

in the lift force on the cylinder ?AfJfo » 1 is expected to correspond to a jump in the phase of the
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fluctuating pressures near the separation points, similar to that observed by Staubli & Rockwell for

the trailing edge. Also, near the front stagnation point the pressures on the cylinder should be

dominated by the additional mass force and therefore the corresponding pressure phase would be

very close to 0° for all oscillation frequencies.
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FIGURE 1-21 Response characteristics of the resultant loading upon an oscillating trailing edge at
amplitude i\t = 0.02 showing: (a) the amplitude of the force component F. at the excitation frequency
f,; (b) phase angle of F. relative to the displacement; (c) energy transfer between the fluid and the
body; (d) amplitude of the force component at the self-excited frequency f0 (equivalent to fnol).
Reproduced from Staubli & Rockwell (1989).

When variation of the total loading on the trailing edge with .£/£,, shown in Figure 1-21 (a & b), is

very similar to the variation of the lift force on an oscillating cylinder. The energy transfer was

calculated from the amplitude and phase of the force and is shown Figure l-21c. For all but a small

region around fjfo = 1 the energy transfer is negative, indicating that these forced oscillations could

not occur due to flow-induced forces. The "self-excited" force component on the trailing edge is

equivalent to the lift force at the natural frequency of the oscillating body, fnos described in section

1.4.1. The variations of both the amplitude and frequency of the "self-excited" force on the

oscillating trailing edge, shown in Figure l-21d, are almost identical to those observed for the

forced oscillation of a cylinder in Figure 1-13 (b & c). Staubli & Rockwell (1989) also found that

the jump in the phase and amplitude of the lift force on the oscillating trailing edge &tfjfo « 1

corresponded to substantial changes in the phase of vortex shedding. Despite the physical

differences in the trailing edge and cylindrical geometries, when the bodies are forced to oscillate

there are a number of surprisingly similar features asfjfo passes through unity.
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The forces and wake modes for oscillating rectangular and octagonal profiles were investigated by

Deniz & Staubli (1997) at Re = 105 and a range of oscillation amplitudes: AID = 0.05 - 0.30. For a

rectangular cylinder with a streamwise length to diameter ratio of L/D - 2 a jump in the phase of

the lift force, as shown in Figure 1-22, was observed for a range of oscillation amplitudes.

However, this jump occurred not a t / / / * 1 but when the forcing frequency coincided with/", the

frequency of the impinging vortices shed from the leading edge. At / » f* there was not a

corresponding jump in the amplitude of the lift force, however as shown in Figure 1-22 a t / / / * 1

there was a local maxima in the amplitude of the lift force. For this geometry, the interaction

between the leading edge instability (1LEV) and the Karman or tailing edge vortex shedding

appears to result in a scenario that is more complicated than for the trailing edge and circular

cylinder geometries discussed above.

When the angle of the rectangle was rotated such that the centre-line of the rectangle forms an

angle of a = 10° with the free-stream the wake of the stationary rectangle moved to an alternate-

edge vortex shedding mode: one vortex separated at the leading edge and on the opposite surface a

second vortex separated at the trailing-edge resulting in a Karman type mode. The vortex

separating at the leading edge does not appear to impinge on the trailing edge. When the rectangle

was oscillated transversely across it's centre-line a jump in both the phase and amplitude of the lift

force occurred close t o / = / .

Flow visualisation of the oscillating rectangular body at a = 0° showed that the mode of vortex

shedding varies strongly with the excitation frequency, as can be seen in Figure 1-22. The

variation in the vortex shedding corresponding to the amplification of the lift amplitude a s / passes

though/, is shown by comparing images d) and ©. As the wake goes from CD to © the motion of

the rectangle becomes increasingly synchronised with the formation of trailing edge vorticity,

resulting in a contraction of the wake and a change in the distribution of the flow structures

throughout the wake. However, there does not appear to be a large change in the phase of vortex

shedding. As the excitation frequency passes though/ images © and ® show a clear change in

the phase of vortex shedding, where these changes correspond to a jump in the phase of the lift

force. Interestingly, immediately before the jump in the phase of vortex shedding the vortex

shedding in ® results in the formation of counter rotating pairs, which initially appear similar to

the 2P mode observed for an oscillating cylinder. However, the mechanisms resulting in the

counter rotating pairs in © appear to be quite different. Each large vortex structure contains vortex

structures formed at both the leading and trailing edges, which have coalesced behind the trailing

edge. The relative timing of the leading and trailing edge vorticity results in the large vortex

structures, of opposite sense, forming in close proximity in the near wake, resulting in the

formation of a counter rotating pair. As the excitation frequency increases t o / « / * . shown in ©,
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the vortex structures formed at the leading-edge are enhanced and there is a change in the timing of

the large wake vortices, resulting in a change in both the mode and phase of vortex shedding.

ExctUi'm fivpunqr, St

FIGURE 1-22 Overview of typical flow structures observed around the rectangular profile in
relation to amplitude and phase of the measured lift forces; a = 0"; A/D = 0.10; Reybuife 104, ReforcM »
10s, reproduced from Deniz & Staubli (1997).

Deniz & Staubli (1997) also tested an octagonal sligntly "tapered" profile, with a slightly longer

L/D = 3.33. At both a = 0° and 10°, there was no jump in the lift phase, which increased slowly

from -90° towards 0°.

For the rectangular profile the jump in the lift phase was observed at either the frequency of the

impinging vortices or the frequency of the Karman vortices, depending on the orientation of the

rectangle. This underlines the robustness of the jump in the phase of the lift force, which has been

observed in oscillating circular cylinders, triangles, rectangles and trailing edges. However, the

mechanisms which dictate the oscillation frequency at which this jump occurs for a given body

shape are not yet well understood. Additionally, it is not known why the jump in the lift phase

occurs for some long bodies, such as the oscillating trailing edge of Staubli & Rockwell (1989) and

not in others, such as the octagonal cylinder of Deniz & Staubli (1997).
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1.5 VORTEX-INDUCED VIBRATIONS OF A CYLINDER

Regular vortex shedding from a body induces periodic force on the body. When a periodic force is

applied to a body that has elasticity, either in its mounting or in the body itself, then it is free to

vibrate. The response of the body to the flow-induced forces depends on the magnitude and

frequency of the forces and the properties, particularly the natural frequency, of the body.

Depending on these properties the motion of the body can become extreme, resulting in

catastrophic structural failure or excessive noise.

When flow-induced vibrations occur the structure is responding to forcing that is generated by the

instability of the wake, however when the oscillations are forced a locked-on wake is responding to

the forced motion of the structure. This is the fundamental difference between a forced and freely

oscillating system. If however, the forced motion is identical to the flow-induced motion then the

wakes, including the flow instabilities within the wakes, will be the same. Typically the flow-

induced motions are studied by varying the relationship between the natural frequency of the wake

for a stationary body and the natural structural frequency of the body. Varying the velocity of the

flow past the body has the effect of changing the natural wake frequency, known as the Karman

frequency, but it also changes the Reynolds number. However, for the Reynolds number regimes

most commonly considered (Re < 2-3x105) the flow regimes are very robust and typically do not

vary significantly with Reynolds number.

The transverse oscillation of a one-degree-of-freedom (1-dof) elastically mounted rigid cylinder

relates directly to our work on the forced transverse oscillation of a cylinder. However, there are a

number of closely related structures which are also of interest, these include cables, cantilevered or

leaf beams, tethered cylinder and a 2-dof elastically mounted rigid cylinder.

1.5.1 Characteristic Amplitude Response

The work of Feng (1968) is the classical experiment on vortex-induced vibration of an elastically

mounted cylinder. The amplitude response of the cylinder as the flow velocity is changed is shown

in Figure l-23b. Brika & Laneville (1993) observed a similar amplitude response for a long

slender cable, as shown in Figure l-23a. The structural damping values, C, for these two

experiments differ by an order of magnitude, however the mass damping parameters, m% = 0.41

for the cable and 0.36 for the elastically mounted cylinder, are similar.
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FIGURE 1-23 Comparison of the amplitude response of (a) a cable after Brika & Laneville (1993)
and (b) an elastically mounted cylinder after Feng (1968). Reproduced from Brika & Laneville (1993)

The amplitude responses for both the elastically mounted cylinder and the long cable in Figure 1-

23 demonstrate at least 2 different branches. As the free-stream velocity is increased from zero the

onset of synchronisation is defined as the point at which the cylinder begins to oscillate in response

to the forces generated by periodic vortex shedding. At the edges of the response region the motion

of the cylinder is quasi-periodic, however within the core of the response region the oscillations are

synchronised with, or locked-on to, the vortex shedding. The amplitude of the oscillation increases

with increasing reduced (non-dimensionalised) velocity, £/*, until at a certain point there is a

transition to another response branch indicated by the sharp jump in the amplitude of oscillation.

Brika and Laneville (1968) also measured the phase of vortex shedding with respect to the motion

of the cylinder using a hot-wire located in the wake. They found that the abrupt change in the

amplitude of oscillation as the wake moved between the different response branches corresponded

to a jump in the phase of vortex shedding, as shown in Figure 1-24. They also used low-resolution

flow visualisation to show, for the first time, a direct link between the transition between the
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different response branches and a change in the mode of vortex shedding. For the response branch

at lower U* the wake exhibited the 2S mode of shedding, while for the higher U* response branch

the mode of shedding was 2P.
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FIGURE 1-24 (a) The phase of vortex shedding (measured using a hot-wire in the wake) and (b) the
relative vibration amplitude versus the relative flow velocity. The velocity is changed progressively: O
increasing velocity, * decreasing velocity, O increasing velocity with large steps. Reproduced from
Brika & Laneville (1993)

1.5.2 Detailed Investigations of Characteristic Wake Modes and Forces

Detailed investigations of the wake modes and forces on elastically mounted cylinders have been

undertaken by a number of investigators, notably Khalak & Williamson (1996, 1997 and 1999),

Gharib (1999) and Govardhan & Williamson (2000). As the free-stream velocity varies the

cylinder exhibits two or three different response branches. The number of branches depends upon
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the non-dimensionalised mass-damping parameter, m*t,, of the cylinder and its supporting

structure. Historically there has been some inconsistency in the naming of the different branches

but the definitions of Khalak & Williamson (1999) are now becoming well accepted. The response

branches are most commonly defined in terms of the amplitude response, as shown in Figure 1-25,

for both low and high values of m%. At relatively high values of m*£, such as in the Feng (1963)

experiments, the wake response generates two branches: the initial excitation branch at low TJ* and

the lower branch at higher U*. At lower values of m% there is an addition.;1! issponse branch

between the initial and lower branch. The additional branch has a high amplitude response and is

appropriately called the upper branch. The transition between the initial and lower branches at high

values o f m*C, is hysteretic. At low m% the transition between the initial and upper branches is

hysteretic and the transition between the upper and lower branches is intermittent.

LOWKtXUfa

Upper btt tu

V reglne dcMmbed ty «•
(vkea ••*(•• coutnO

FIGURE 1-25 The two distinct types of amplitude response are shown schematically, (a) the high
(m*Q response exhibits two branches (initial and lower) while (b) the low (m*Q response exhibits
three branches (initial, upper and lower). The transition between modes are either hysteretic (H) or
intermittent (I). Reproduced from Khalak & Williamson (1999).

The link between the different response branches and the change in the mode of vortex shedding

was made by Brika & Laneville (1993) and Williamson & Roshko (1988). Subsequently, the

nature of the transition, the forces on the cylinder and the mode of vortex shedding have been

studied in much greater detail by a number of investigators, including Khalak & Williamson (1996,

1997, 1999) and Govardhan & Williamson (2000). Each of the response branches displays a
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characteristic near wake structure that can be broadly described in terms of the modes of vortex

shedding defined by Williamson & Roshko (1988). The vortex formation modes of the response

branches have been studied in detail by Govardhan & Williamson (2000) using DPIV and are

shown in Figure 1-26 for low values of m*C, where all three branches exist. At higher values of

mass damping only the initial and lower branches are observed, and typically the amplitude of

oscillation for these branches is diminished. However, at higher m% the general structure of the

near wake for these two branches is essentially the same as for the low m% cases shown in Figure

1-26.

As indicated by Brilca & Laneville (1993) the mode of vortex shedding for the initial branch,

shown in Figure l-26a, is 2S and two single vortex structures of opposite sign are shed into the

wake per oscillation. For both the upper and lower branches two counter rotating vortex pairs are

shed per oscillation and the mode of vortex shedding is 2P. However, for the initial branch, shown

in Figure l-26b, the second vortex structure within each pairing is considerably weaker than the

first and the shedding mode is described as weakly 2P. The lower branch 2P mode, shown in

Figure l-26c, has vortex pairs of more equal strength and the counter rotating pairs persist further

downstream.

FIGURE 1-26 Characteristic wake modes for different wake branches, all images are at the top of
the cylinders oscillation. The modes of vortex shedding are for (a) the initial branch the 2S-mode, (b)
the upper branch the 2P-mode with uneven pair strength and (c) the lower branch 2P-mode with pairs
of comparable strength. Reproduced from Govardhan & Williamson (2000).

As indicated by Figure l-27a, the range of U* over which the elastically mounted cylinder

oscillates is a function of mass ratio. As m* decreases there is a significant increase in the range of

U* over which the synchronisation region extends. In particular, there is a large increase in

response range of the upper and lower branches. For low values of m% Khalak & Williamson

(1999) demonstrated that when the response branches are plotted against (U*/f*)Sto, instead of U*,

there is a good collapse of the synchronisation range, as well as the amplitude response of the

initial and lower branches. The collapse of the amplitude response for the initial and lower

branches is shown in Figure l-27(b) for two different values of m*. The amplitude of the upper

branch does not collapse and the amplitude of oscillation for the upper branch tends to increase

with decreasing m*. At higher m% the amplitude of the lower branches decreases with increasing
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m% and, as shown in Figure 1-28, the amplitude response does not collapse when plotted against

A*
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FIGURE 1-27 (a) amplitude response for two different mass ratios at low m% from Goverdhan &
Williamson (2000): O (m* + CJC, = 0.0110, A (m* + CA)£ = 0.0145. In (b) the initial and lower branch
regimes shown in (a) collapse when plotted against (U*/f*).St,,. Reproduced from Govardhan &
Williamson (2000)

The "Griffin plot" Figure 1-29 shows that for low values of m% (i.e. low values (m*+CA)Q, the

maximum oscillation amplitude for the lower branch has an approximately constant value of A*maX

= 0.6, where A*^ is the maximum amplitude for the specified response branch. The fact that

A*mllx is approximately constant indicates that a collapse of the amplitude response data is possible,

although it may not necessarily occur. Of particular interest is the fact that, as shown in Figure 1-

27, the lower branch maintains the maximum amplitude of oscillation over a wide range of reduced

velocities, essentially to the edge of the synchronisation region.
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FIGURE 1-28 The amplitude response for the initial and lower branches at higher m%. • Feng
0968), (m* + CA)C = 0251, • Govardhan & Williamson (2000). Reproduced from Govardhan &
Williamson (2000).

io-J

FIGURE 1-29 Modified "Griffin" plot showing the peak amplitude A*m.x for the different response
branches. + Feng (1968); 0 Hover et al (1988); O Khalak & Williamson (1999); Skop &
Baiasubramanian (1997). Reproduced from Govardhan & Williamson (2000).

The maximum amplitude for the upper branch in Figure 1-29 varies with the mass-damping

parameter (m* + CA)C,. This indicates that the response amplitude for the upper branch will not

collapse unless it is plotted against a parameter that includes a mass-damping term and explains

why there was not a full collapse of all the response branches in Figure l-27(b). At higher values

of mass-damping the maximum response amplitude varies strongly with (m* + CA)t, and, as

expected, at large values of mass-damping the amplitude response of the cylinder tends to zero.

The variation of the peak response amplitude at high m*C, again indicates that when the amplitude
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response is plotted against a parameter that does not include a mass-damping term a collapse of all

the data is not possible.

The collapse of the initial and lower branch response curves onto the (U*//*)Sto curve, indicates

that for lower values of m%, the parameter (U*/f*)Sta is the dominant parameter governing the

amplitude response of these branches. The amplitude response of the upper branch varies with

both m% and (U*/j*)Sto, however Govardhan & Williamson (2000) found that the point at which

the wake transitions from the upper branch to the lower branch occurred at an approximately

constant value of U*/f* « 5.75, as indicated by the dashed line in Figure 1-30. Additionally, after

the transition, the frequency of oscillation in the lower branch J*U)WER is not a function of U*, but

increases with decreasing m* according to the relationship:

m*+CA

2.5

2.0

1.5

1.0

0.5

I « • • • • I • I I . . . I

10 IS 20

FIGURE 1-30 Lower branch frequency response for different mass ratios at low m*£. Reproduced
from Govardhan & Williamson (2000).
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FIGURE 1-31 Amplitude and frequency response of an oscillating cylinder as m* is reduced below
m*CRiT - 0.54. Reproduced from Govardhan & Williamson (2000).
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After the transition to the lower branch the frequency of oscillation does not vary significantly,

therefore /"LOWER is approximately constant and is equal to the value of/* at which the transition

from the upper to lower branches occurs. Govardhan & Williamson used this fact to predict a

critical mass ratio, m*aur = 0.54 below which the transition from the upper to the lower branch no

longer occurs. Their results suggest the when m*<m*CRiT, the wake does not transition to the

lower branch and the upper branch response can, in theory, persist as U* increases to infinity. This

remarkable finding relies on the physical result that at low m* values the cylinder can oscillate at

frequencies well above the natural structural frequency. The amplitude and frequency response of

the cylinder at low values of m*, including m*<m*CRrr, are shown in Figure 1-31. For

m*>m*aiiT the range of U* over which the upper branch extends increases with decreasing m*,

but remains finite. However, for m* below m*CRir the upper branch persists up to the maximum

values of U* possible in the experimental facility and would theoretically extend to U* = oo. In

practise, it is unlikely that the upper branch will extend to U* = oo, as the flow will move into

different Reynolds number and Mach number regimes.

Govardhan & Williamson (2000) considered both the total lift force on the cylinder, CL(j), and the

vortex component of the total lift force, CL vondj), see section 1.3.3 for a discussion of these

parameters. The variations of the phase and amplitude of the total lift force with U* are shown in

Figures l-32(a) and (b) respectively. The phase of the potential added mass force (which is equal

to the apparent mass force) is constant, but its amplitude varies with {Af^yu*1. When the wake

moves between the different response branches the amplitude of the potential added mass, Ciam,

varies with the amplitude and frequency of the response. At the transition points there are also

generally changes in the phase and amplitude of the total lift force and thus the transitions

correspond to a significant change in the relationship, both phase and amplitude, between the total

and potential mass forces. The vortex force is calculated by vectorially subtracting CLam{t) from

CL(t). As the wake moves between the different branches the change in the relationship between

CLam{i) and CL(f) causes a corresponding change in the relationship between the total and vortex lift

forces. Thus, the nature of the variation of CL with U*, shown in Figure l-32(a), is very different

in shape from that of CLmrlex, shown in Figure l-32(c). More significantly, when Ciom(0 is

subtracted from the total lift force the phase of the upper branch switches from just above 0° to just

below 180°. Therefore for values of m% where the wake response has three branches, the jump in

<t>/.// vortex occurs at a different value of U* to the jump in $/,/,. The jump in <))///,«,«« corresponds to a

large change in both the phase and mode of vortex shedding. The jump in <)>/// between the upper

and lower branches does not correspond to a significant change in the phase of vortex shedding

and, although there are changes in the distribution of vorticity, the general mode of shedding

remains 2P. When the lift forces and motion of the cylinder are sinusoidal equation 1-10,
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reproduced below, describes a simple relationship between the phase and amplitude of the total lift

force, shown in Figure l-32(a & b) and the vortex lift force, shown in Figure 1-32 (c & d).

CE « JI CL (AID) sin (<t>,̂ ) = n CLwrlcx (A/D) sin $,#„,„„) (1-10, reproduced)
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FIGURE 1-32 Variation of the phase and amplitude of a) the total and b) vortex lift force for low
m*^. The jump in the phase of the total lift force fan, occurs between the upper and lower branches
while the jump in the phase of the vortex lift force ^ vortn occurs between the initial and upper
branches. Reproduced from Govardhan & Williamson (2000).

Govardhan and Williamson (2000) found that the transition from the initial to the upper branch,

and the corresponding jump in §iif,mrlex, occurs when the frequency of oscillation passes through the
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natural frequency of the structure in the fluid, i.e. / passes through fNKaler, if = 1). They also

showed that when the lift force and motion of the cylinder are accurately represented by sinusoidal

functions, as the frequency of oscillation passes through/" = 1 the equations of motion predict a

jump in §iift- The development of the equations below follows essentially the same logic as

Govardhan & Williamson but the manipulation of the terms is slightly different.

In equation 1-12, the equation of motion of an elastically mounted cylinder is written in terms of

the vortex force, where the apparent mass force term is contained on the left hand side as (ma y)

where the added mass per unit length, ma = -(p7iD2)/4 = -mj.

(.m + mJy + cy + ky^F^Jt) (1-12)

By assuming that the motion and the vortex lift force can be represented by a pure sinusoidal

signal:

^vortex ( 0 a CL vortex Sin((0/ + tyifi vortex), y(t) * A sin(©t)

and solving for the frequency of oscillation, it follows that:

= f* = Jl ~CLytrm cos((t.////vora) (1-13)
JN wa

Careful examination of equation 1-13, shows that as ^nfivona goes from the first quadrant

(O°<<|>/0Kwer<9Oo) to the second quadrant (900<<t»/^»wto
<1800) during the transition from the initial

to the upper branch, the second term under the square root passes through zero. Therefore,

equation 1-13 shows that at the transition between the initial branch and upper branch the

frequency of oscillation must pass through/* = 1. Although the frequency of oscillation in

equation 1-13 is written in terms of the in-phase component of the lift force, />„>«« cos(<t>///?TOr,«),

it can also be written in terms of the out-of-phase component of the lift force. Therefore, unlike the

energy transfer, the frequency of oscillation varies with both the in-phase and out-of-phase

components of the lift force.

Re-writing the equation of motion in terms of the total lift force allows us to examine the effect of

the jump in <)>/,/, at the transition between the upper and lower branches:

' = F,o,At), d-14)

where F,olai is the total lift force. For a sinusoidal lift force and cylinder motion the frequency of

oscillation expressed in terms of the total lift force is:

/NV
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Following the same argument as presented above for the jump in the vortex lift phase, Equation 1-

15 shows that/passes through fN ,«„„« as c o s ( ^ ) passes through zero during the transition from

the upper branch to the lower branch.

For all the values of m* and m% considered by Govardhan & Williamson (2000) the transition

between the initial and upper branches occurred at approximately/* = 1. These results are

consistent with the argument associated with equation 1-13 presented above. This transition

corresponds to the jump in (foiavnta and a change in both the mode and phase of vortex shedding. A

characterisation of both this transition and the transition between the upper and lower branches is

shown schematically in Figure 1-33. Figure 1-33 indicates that the transition between the upper

and lower branches occurs a.tf=fNvaamm, as predicted by equation 1-15. This is consistent with the

experimental results of Govardhan & Williamson (2000) for m* substantially greater than m*CRiT.

e.g. m* = 8.63. However, as m* approaches m*aur the transition between the upper and lower

branches appears to occur well above the natural frequency of the structure in a vacuum. An

example of this is shown in Figure 1-31: at m* = 1.2 the transition between the upper and lower

branches occurs at/* « 1.9, howeverf*NVoClmm( =./*,.„„„„„//«) is equal to 1.35. This result suggests

that the transition frequency predicted by the idealised approximation of the lift force and motion

of the cylinder in equation 1-15 does not hold at lower values of m*. This implies that at very low

values of m* the lift force and cylinder motion are not accurately represented by sinusoidal

functions.
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FIGURE 1-33 Schematic diagram of the low m*C, type of response showing the three principal
branches and the two jump phenomena. Reproduced from Govardhan & Williamson (2000).

Further evidence that equation 1-15 does not describe the frequency of oscillation at the transition

between the upper and lower branches at lower branches of m* can be found in the experimental

results of Govardhan & Williamson (2000). They found that the frequency of oscillation for the

lower branch, fLOWER, is given by equation 1-11. As shown in Figure 1-31 the frequency of

oscillation is constant after the transition from the upper to the lower branch. Therefore, the

frequency at which the transition between the upper and lower branches occurs is approximately

equal to/LOWER- Re-stating the pertinent equations from Govardhan & Williamson (2000) and their

derivations we have:

Transition frequency, f* UPPER -* LOWER

/LOWER = -il"

lm*+C A _

I m* -0.54

7«*+C\

cm

~, _ /Nvacuum _ | f l»*+(
J Nvacuum - -tl A

Experimental result:

Govardhan & Williamson (2000)

Theoretical results derived by

assuming

* Fllftvllftvorux

and y(i)~ A sin(©/)

!!$;

l l
III
III1
|
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Comparing the two equations for ,J*urrsR -* LOWER we see that at larger values of m*, where

m* » Tn*auT,J*LOWER is very close to the theoretical value/%„,„„,,„.

Further examination offNvaamm for mass ratios approaching and below m*Cwr also indicates that

equation 1-15 does not correctly predict the frequency of oscillation at the transition between the

upper branches. The experimental results of Govardhan & Williamson (2000) indicate that for m*

^ m*auT the transition from the upper branch to the lower branch does not occur and/* increases

linearly with U*. This implies that the frequency of oscillation can increase towards/* = oo without

a transition from the upper branch to the lower branch. If, as predicted by equation 1-15, the

transition between the upper and lower branches were to occur atf—fNmeuum then for m*» m*cRir

the natural frequency of the structure in a vacuum would need to be equal to infinity. However,

this is not physically reasonable as while the mass of the cylinder remains finite fifnamm («(k/nif1)

also remains finite.

As shown in Figure 1-31, the variation off* with U* is different for each of the different response

branches. For the initial branch the frequency of oscillation increases linearly with U* until at

/ * » 1, the wake moves to the upper branch. Within the upper branch/11 continues to increase

linearly with U*, however the gradient is slightly reduced. Following the transition to the lower

branch/* is approximately constant indicating that a limiting value has been reached. As discussed

above, at low values of m* the frequency of oscillation for the upper branch can increase above

fvvaamm and the value off* at which the transition from the upper to lower branch occurs is best

described by equation 1-11. For low values of m*, close to and below m*auT, the cylinder

oscillates at frequencies well above the natural structural frequency at high U*. The experimental

results for m* = 0.52in Figure 1-31 show the somewhat surprising result that the structure can

undergo vortex-induced vibrations at frequencies that are at least four times/v „.„,„.

A simple manipulation of equation 1-11 shows at higher values of m* the frequency at which the

transition from the upper to lower branches occurs, J* UPPER -> LOWER ( ~f* LOWER), tends towards

JN vacuum *

m*+CA

cm

m CRIT
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defining fNctUT = NC"T

' N water

/ * .N LOWER

, f*N\a J* NCRIT

Thus, when m* is significantly greater than m*cRir, — is much greater than — and
/ Nvxtmm J NCRIT

J* LOWER tends t o / * N vacuum-

ili
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1.6 FORCED AND FREELY OSCILLATING CYLINDERS

1.6.1 The Nature of Transition

Previous results indicate that the jump in the lift force on a cylinder undergoing forced oscillations

corresponds to a transition between two different wake states. A number of aspects of this

transition are similar to those for the elasticaliy mounted cylinder at the transitions between the

initial wake branch and either the upper or lower branches. For both the forced and free

oscillations, the transitions are characterised by a number of events including a change in the phase

of vortex shedding, a change in the mode of vortex shedding or an abrupt changes in the phase and

amplitude of the lift force. For an elasticaliy mounted cylinder Govardhan & Williamson (2000)

showed that the transition between the initial branch and either the upper or lower branches

corresponds to a change in both the mode of vortex shedding and a jump in the vortex lift phase.

Previous investigations on the forced oscillation of a cylinder indicate that similar changes may

also occur simultaneously around fjfo = 1, moreover these changes would correspond to a

transition between two different wake states. However, the changes in the structure of the near

wake and the forces on the cylinder around fjfo = 1 have not been conclusively linked.

Additionally, the mechanisms that cause the transitions observed for both the forced and free

oscillations of a cylinder are not well understood.

Many different physical systems exhibit a number of different states. The nature and properties of

a transition between different states have been studied in numerous fields of science. A transition

is said to be hysteretic if the position in parameter space at which the transition occurs depends

upon whether the independent variable is being decreased or increased. When a transition is

hysteretic the established state tends to persist slightly longer before the system makes the

transition to the other state. Hysteresis indicates that the flow has a "memory" and that the

previous flow conditions influence the point at which transition occurs. For an oscillating cylinder

transition is characterised by a sharp change in the lift force as the frequency of oscillation passes

through fjfo ~ 1. Typically hysteresis is observed when a controlling variable, such as the flow

velocity or the frequency of oscillation, is varied continuously or in small discrete steps. The

controlling variable can be "reset" between each different experimental value if the experiment is

restarted from a third reference state. An example of this is an experiment where the flow velocity

is varied but between each value the flow is brought to rest and the disturbances allowed to die out

before testing at a different flow velocity. In this case, depending on the rate at which the flow

velocity is ramped up, hysteresis is much less likely to be evident.

The relative stability of different states and hysteretic transition between states has been

investigated in many areas of science. As discussed by Visintin (1991) a system will always seek
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to attain the most stable state, or in other words the state where the energy potential is minimised.

An example of a system occupying a stable state is a simple harmonic oscillator, where the

potential energy of the system, plotted against the position of the mass, is a deep symmetric well

and the potential energy of the mass is minimised at the bottom of the well. The positions available

to the mass vary with its kinetic energy and, as the kinetic energy is dissipated by friction, a mass

with limited kincic energy will be found towards the bottom of the well. Thus, the mean position

of the mass is the bottom of the well and it will oscillate about that position with a displacement

distribution that depends on the kinetic energy of the mass. The same concept can be applied to

more complicated systems and the potential energy of the system can be plotted in phase space in a

similar fashion.

Consider a system that can be characterised by two variables q(t) and p(t), where q is the

independent variable (analogous to fjfo and/? is the dependent variable (analogous to ^ or CL).

Over the range of q to be considered, there is a transition between two distinctly different states.

The potential energy of this system, for a fixed value of the independent variable q, can be plotted

as a function of/7 as shown in Figure l-34a. The shape of the potential energy tp(p) curve will

change smoothly with the independent variable q. The system tends to minimise, either globally or ,

locally, the potential <p and the stable states available to the system in Figure l-34a are labelled

"State I" and "State II". The most stable state is where the potential is absolutely minimised, state ,
I

II in Figure l-34a. The local minima of state I is also stable and is described as a metastable state. ,

The system will persist in the metastable state until the fluctuations within the system allow it to

overcome the potential barrier A(p. The time taken for the system to obtain the most stable j

equilibrium state depends on the energy of the fluctuations. If the potential barrier Aq> is very i

large, the system can maintain a meta-stable state for periods of time that are much longer than the

time scale of an experiment and the most stable state is not observed. A schematic of a hysteretic

transition is shown in Figure l-34b, where the change in states corresponds to a sharp jump in the |

value of the dependent variable p. Hysteresis occurs when the independent variable, q, is varied

smoothly through a transition region, qLj<q<qur- When q<qLr state I is the only stable state (

available to the system, as q increases through qLT state II becomes a metastable state. As q }

increases further towards qur, state II becomes more stable than state I. However, as the system is '

already in state I, it will not transition to state II until it is able to overcome the potential barrier t

and, as discussed above, the meta-stable state may persist for some time. In a noisy system j

transition will occur well before q = qur- When q is decreased from values of q>qur the same

process occurs resulting in a hysteretic overlap of states. \
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FIGURE 1-34 a) The double well potential of a system with two stable states, where w is the
dependent variable and <p is the potential energy for a fixed value of u, the independent variable, b)
Schematic showing a hysteretic transition from state I to state II where the inserts show the variation
of the potential energy at points throughout the transition.

Bishop & Hassan (1963) investigated the phase and amplitude of the lift force on a cylinder over a

range of oscillation frequencies by varying fjfo in a continuous fashion, with out allowing the
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cylinder to come to rest in between data runs. When the frequency was increased the value offjfa

at which the transition occurred was higher than when the frequency w&s decreased, hence the

transition is described as hysteretic. Gopalkrishnan (1983) conducted similar experiments in a

towing tank, where between experimental runs at different values oifjfo the oscillations cease and

the flow is allowed to settle. Bringing the flow to rest between experimental runs has the effect of

removing the "memory" of the flow and in this case hysteresis was not observed.

Ingenious experiments by Brika & Laneville (1993) examined a freely oscillating long cable using

different methods to vary the reduced velocity. (Note: to avoid confusion, when we are discussing

the results of Brika & Laneville the terminology of Khalak & Williamson (1999) will be used to

describe the different response branches.) As well as incrementally increasing and decreasing the

reduced velocity, they also considered the effect of changing the size of the increments. When the

velocity was increased or decreased with small steps (Af/* « 0.02), indicated in Figure 1-24 by the

symbols o and * respectively, there was a clear hysteresis. However, when the velocity was

increased with large steps (At/* * 0.04), represented in Figure 1-24 by the symbol O , the transition

from the initial the lower branch occurred at a much lower velocity. Irrespective of the size of the

velocity increments, the response either side of transition was consistent with either the initial or

lower branches.

D.6 0.7

FIGURE 1-35 The amplitude responses of the impulsive regimes as a function of U* (labelled U in
figure) compared to the results of the progressive regimes: -^initial state from rest, O initial state from
a pre-excited amplitude: — progressive regimes. Reproduced from Brika & Laneville (1993)

Brika & Laneville described the method of changing the flow velocity in an incremental fashion as

a "progressive" regime. They also considered a second method, described as an "impulse regime",

where for each different flow velocity the cable was in a constant initial state before the cable was
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released and allowed to move to a final state. Two different initial conditions were considered; a

stationary cable or a cable undergoing forced large amplitude oscillations. The amplitude

responses from the controlled initial states or "impulsive" regimes were then compared with those

of the "progressive" regimes. For the "progressive" regimes the velocity is changed incrementally

and therefore the initial state depends on the state for the previous velocity. As shown in Figure 1-

35, the initial state of the system affects the velocity at which transition occurs. The amplitude

response of the cable released from rest falls on either the initial (U* < 0.87) or the lower

([/• > 0.88) response branches. However, within the small region, 0.87 <U* <0.88 the amplitude

response of the cable released from rest tends first towards a state which is consistent with the

lower branch but after a period of time there is a transition or "break" of the amplitude response to

a lower level. The "break" in the amplitude of oscillation is accompanied by an abrupt change in

the phase of vortex shedding, as shown Figure 1-36, and the final state is fully consistent with the

initial branch. Thus, within this transition region both the initial and lower branches are observed.

Interestingly, the transition region lies at the lower end of the hysteretic transition region defined by

the progressive regimes and the system tends to remain in the initial branch down to relatively low

values of U*.

V—t—(—i—t—1—• •-< ! - l i < - j - * - - ; - - i - i - t - i - ) • •< i I '• i I • • » - • — - i — j - 1 — : — I — I — ( • - • • - : - • » • > -

FIGURE 1-36 The amplitude response (upper plot) and vortex phase (lower plot) for a cable
starting from rest at U* = 0.87. Each major division on the time axis represents approximately 90
oscillations at the natural frequency of the cable. Reproduced from Brika & Laneville (1993)

The response of the cable released after initial forced large oscillations is also shown in Figure 1-

35. In this case the transition also begins at the lower end of the hysteretic transition region, but

there were a relatively wide range of velocities, 0.88< U* <0.95, where the response of the system

was not unique and both the initial and lower branch responses were observed. Additionally, as

shown in Figure 1-37, at U* = 0.92 a self-excited transition from the lower branch to the initial

branch was observed. This transition occurred approximately 60 seconds, or over 1000 oscillation

cycles, after the system first became established in the lower branch.
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FIGURE 1-37 Response trace showing a self-excited transition from the lower branch to the upper
branch at U* = 0.92, for a initial state with large amplitude oscillations, (note the change in scale).
Reproduced from Brika & Laneville (1993).

In summary, the experiments by Brika & Laneville (1993) show that the selection of a particular

state within a transition region, where a system is able to exhibit more than one state, is effected by

the initial state of the system and the nature or size of changes in the governing parameters.

However, outside the transition region the final wake state depends only on the values of the

governing parameters. There are other factors not discussed by Brika & Laneville that may also

influence the state section for an oscillating cylinder, these include the level of free-stream

turbulence and Reynolds number.

The numerical investigation of Blackburn & Henderson (1999) considered the forced oscillation of

a cylinder using a two-dimensional approach at low Reynolds numbers. They found that there was

a band of oscillation frequencies, centred on the value of fjfo where the jump in the lift force was

observed, where no single periodic mode of vortex shedding was observed. They attributed this

result to an "almost-periodic switching between wake states". This result contrasts with the

hysteretic transition observed by Bishop & Hassan (1963). It is not known if the contrasting nature

of the transition observed by Blackburn & Henderson (1999) is due to the low value of Reynolds

number, the zero level of free-stream turbulence, or if transition was altered by the two-

dimensional nature of the wake.

For an elastically mounted cylinder with higher values of m%, Khalak & Williamson (1997) found

a hysteretic transition between the initial branch and the lower branch. This result is consistent

with the transition observed by Brika & Laneville (1993) for an oscillating cable. However at low

values of m*£, where there are three response branches, Khalak & Williamson (1997) found that

the transition between the initial branch and the upper branch was hysteretic, but the transition

between the upper branch and lower branch was intermittent. For velocities within the intermittent

transition region, the phase and amplitude of the cylinders response switched in a non-periodic

fashion between values that were consistent with either the upper or lower branches. As the

velocity increased within the transition region, the system tended to spend a greater proportion of

its time in the lower branch.

The hysteretic transition between the initial and upper branches indicates that the system has a

tendency to remain in the established state and the system does not switch repeatedly between

states. This suggests that a significant perturbation is required to move between the initial and

upper branches. In contrast, during the intermittent transition the system repeatedly switches
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between the upper and lower branches, suggesting that only a small perturbation is required for this

transition to occur. Intuitively, this is consistent with the magnitude of the changes corresponding

to the two different transitions. The transition between the initial and upper branches corresponds

to a change in both the mode and phase of shedding, but the upper to lower branch transition

corresponds to a change only in the distribution of vorticity, while the phase and general mode of

vortex shedding remain the same.

Within a transition region there are two or more stable states in which a system can exist, but

typically there will be a state that is the most stable state. The state that the system selects depends

upon the initial state of the system and the relative level of perturbation within the system and

depending on these factors a system may not necessarily be in the most stable state for the

prevailing flow conditions. It is difficult to determine an initial state that guarantees the system

will select the most stable wake state. Therefore, when the behaviour of a system within a

transition region is investigated the initial state of the system must also be considered. In theory, a

transition is typically associated with the point where there is a change in the most stable state.

However, in practise, it is not possible to define a transition point without also rigorously defining

the initial conditions and for different experimental techniques and conditions some variation in the

point at which transition occurs should be expected.

1.6.2 Spanwise Correlation and Wake Structure

The investigation of Hover et ah (1998) considered the spanwise correlation of the lift force along

a cylinder undergoing free and forced oscillations. The forces were measured using force balances

located at either end of the cylinder and a correlation coefficient was calculated from these two

force signals. For the forced oscillations, over a range of oscillation amplitudes, AID = 0.2-0.9, and

reduced velocities, U* = 4.5 - 6.75, the spanwise correlation co-efficient was always greater than

0.84. For the free oscillations the cylinder was not elastically mounted but the free oscillations

were instead generated using a novel real-time force-feedback control system. The average value

of the instantaneous forces measured at each end of the cylinder were used to drive a numerical

simulation of a mass-dashpot-spring system and the cylinder was then forced to move with the

appropriate motion using a servomotor. The response of the cylinder produced using this method,

shown in Figure l-38a, agrees well with the results from the elastically mounted cylinder of Khalak

& Williamson (1999). Within the response region the lift forces measured at either end of the

cylinder were very well correlated with the exception of the region between U* = 5.0 - 6.25

corresponding to the distinct dip in the correlation co-efficient in region III of Figure l-38b. Figure

l-38c shows that the dip in spanwise correlation corresponds to a jump of approximately 180° in

the phase of the lift force which, when combined with the change in the amplitude response, is

consistent with the transition between the initial and lower response branches. In region III of
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Figure 1-38 the lift phase exhibits a number of intermediate values which are not consistent with

either the initial or lower response branches and which were not observed by either Khalak &

Williamson (1999) or Govardhan & Williamson (2000). One possible explanation for the

intermediate values of §iifi (or <(i) is that during the time over which each data point was acquired the

system occupied both response branches.
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FIGURE 1-38 Response of a freely oscillating cylinder as a function of reduced velocity: a)
amplitude of response: b) correlation coefficient F c and standard deviation |i between the forces
measured at the ends: c) phase angle <j> between the force and displacement. In a) and c) points form
both ends of the cylinder are plotted. Reproduced from Hover et al (1998).

The dip in the spanwise correlation appears to be linked to the transition between the initial and

lower branches. However, it is not clear if the low spanwise correlation is a result of changes in the

phase of vortex shedding along the cylinder or if there are changes in the spanwise structure of the

wake close to transition. It is generally assumed that transition occurs uniformly along the span of

the cylinder, however the spanwise nature of transition, and indeed the spanwise structure of the

wakes for the different response branches, are not well understood.

For the forced oscillation of a tapered cylinder, Techet (1998) and Techet et al (1998) showed the

wake can exhibit "hybrid" modes, where the wake forms one mode along part of the cylinders span

and another mode along the rest of the span. A schematic of a "hybrid" mode with a spanwise

transition between the 2S and 2P wake modes is shown in Figure 1-39. The tapered cylinder

encourages transition between wake modes along the span of the cylinder because the effective

values of Re and AID vary with spanwise location. In separate experiments, Techet (1998) showed

that at reduced velocities close to where the hybrid modes start to occur, there is a sharp decrease in
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the spanwise correlation of the force along the tapered cylinder. However, neither Hover et al

(1998) nor Techet (1998) directly linked the variation in the spanwise correlation to changes in the

vortex structures along the span of the cylinder.

u

•2P

FIGURE 1-39 Suggested topology of the vortex reconnection between the 2P and 2S modes along a
tapered cylinder. Reproduced from Techet (1998)

The spanwise structure of a stationary cylinder has been extensively studied, however little is

known about the three-dimensional structure of an oscillating cylinder. Cetiner (1998) measured

the streamwise vorticity along the span of an oscillating cylinder for a variety of forced oscillation

profiles. She found that for transverse cylinder oscillations the level of streamwise vorticity (to*)

could be as high as 1/3 of the spanwise vorticity (©*). The instantaneous spanwise and streamwise

vorticity fields in Figure l-40(a & b) respectively show the structure of the near wake for

transverse oscillations at a given amplitude and frequency. The spanwise vorticity structures

proved to be highly repeatable and the structure of the wake in Figure l-40c, phase-averaged over

32 images, is very similar to the instantaneous wake structure. In contrast, despite the relatively

high level of streamwise vorticity the location of these structures was not repeatable and the phase-

averaged streamwise vorticity field in Figure l-40d tends to zero. The levels of streamwise

vorticity are obviously significant but their influence on the forces experienced by the cylinder and

the transition between different wake states is not well understood. Interestingly the two-

dimensional simulations of the forced cylinder oscillations by Blackburn & Henderson (1999),
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which model only the spanwise vorticity, were able to capture the jump in the phase and amplitude

of the lift force.
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FIGURE 1-40 Instantaneous images of (a) spanwise coz and (b) streamwise, co, vorticity acquired at
the maximum vertical displacement of the cylinder, iJU = 1.0, A/D = 0.95. The spanwise and
streamwise positions of images (a) and (b) respectively are indicated by the vertical lines in the other
image. The corresponding phase-averaged images are shown in (c) and (d). Reproduced from Cetiner
(1998).

A complementary numerical and experimental study on the vortex-induced vibration of a cylinder,

Blackburn et al (2001), found that "three-dimensional simulations are required to reproduce the

response envelope observed experimentally". They also found that for the 2P mode of shedding

there are significant spanwise structures in the wake as shown in Figure 1-41.

FIGURE 1-41 Instantaneous isosurfaces of pressure (predominantly spanwise) and streamwise
vorticity from three-dimensional simulations of the vortex-induced vibrations of a cylinder at StU* =
133 (2P mode of shedding). Reproduced from Blackburn et al (2001)
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1.6.3 Relating Forced and Free Oscillations

As discussed in section 1.3, the structure of the near wake and the forces on a structure oscillating

due to vortex-induced forces have often been studied using forced sinusoidal oscillations. The

reviews of the forced and freely oscillating cylinders in sections 1.4 and 1.5, demonstrate that these

two cases do in fact have much in common; both the forced and freely oscillating cylinders appear

to display two or more distinctly different states as the frequency of oscillation varies relative to the

Karman frequency. These states are typically characterised by the mode of vortex shedding and the

phase of the lift force and the values oiifjf0 or (U*lf)St0 at which they occur are very similar.

At this point it is important to consider the parameters that are used to describe the forced and

freely oscillating cases. When the cylinder is forced to oscillate the properties of the system are

generally considered as a function of fjfo where as discussed previously fe is the frequency of

oscillation which is physically varied during the experiment and/, is the Karman frequency of the

stationary cylinder. Using the fact that Strouhal number is essentially constant over the Re range

considered, fjfo can also be expressed in terms of a reduced velocity U* = U/feD. In some

experiments the flow velocity U is varied instead offe. Except for small variations in the Reynolds

number these cases are equivalent. For the freely oscillating cylinder the frequency of oscillation is

not an independent variable and the properties of the system are always considered as a function of

the flow velocity. Additionally, the frequency of oscillation is generally normalised using the

natural frequency of the structure fN instead of the Karman frequency, therefore U* = UlfND. This

choice of a different definition of U* is quite fundamental and illustrates the difference between the

forced and freely oscillating cases.

Interestingly Khalak & Williamson (1999) found that when the response of the elastically mounted

cylinder was plotted against (U*/J*)St0, rather than U* much of the data collapsed onto a single

curve as described in section 1.5.2. Evaluating the components of {JJ*/f*)St0:

UlSt = U f»f°D

I* ° fND f U

Therefore, plotting the data in terms of (U*/J*) Sto is effectively plotting the response of the system

as the frequency of oscillation varies relative to the Karman frequency, which is to very similar to

the way the results of the forced oscillations are plotted. Comparing the parameters,^ for a freely

oscillating cylinder and fjfo for the forced oscillations, it is apparent that in both cases the

frequency being normalised by/o is the frequency at which the cylinder is oscillating. However,/

is the frequency at which the freely oscillating system responds to the natural instability of the
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wake, whereas for the forced oscillations fc is the frequency at which the natural instability is

forced.

The apparent similarities in the modes of vortex shedding and variation of <j>;̂  for the forced and

freely oscillating cylinders indicates that the forced oscillations are modelling many of the

important aspects of the vortex-induced motion. However, the crucial question remains: can we

use the forced oscillation of a body to predict the vortex-induced motion of an elastically mounted

body? It has generally been assumed that the results of forced oscillations can be used to

understand the freely oscillating cylinder, however very few efforts have been made to predict the

vortex-induced motion using the forced oscillation results. In part this is due to the extensive force

mapping required to undertake such an exercise, as the force on the cylinder must be known as a

function of both the frequency and amplitude of oscillation.

Staubli (1983) attempted to predict the vortex-induced motion of a cylinder using the force data

shown in Figure 1-11 and the equation of motion for an elastically mounted body. Inherent in this

calculation was the assumption that the motion of the freely oscillating cylinder is either sinusoidal

or can be predicted using a sinusoidal motion. Staubli (1983b) also pointed out that as a freely

oscillating cylinder requires positive energy transfer from the fluid to the cylinder, the forced

oscillations must result in positive energy transfer, i.e. 0°<<j)/^<180o, before they can be used to

predict flow-induced motion. The majority of Staubli's data in Figure 1-11 shows values of ^

that indicate negative energy transfer. However, Staubli (1983b) interpreted the relative small band

of oscillation frequencies (5O = 0.14-0.17) where 0°<<|)/9}<180o as the "range of fluid-excited

vibrations of the freely oscillating cylinder". It should be noted that much of this data corresponds

to the region where the hv' phase is changing rapidly, taking on "intermediate" values that are not

consistent with the values of ^ either side of the jump. As shown in Figure 1-42, his calculations

were relatively successful in predicting the initial response branch of the freely oscillating cylinder

for small positive values off,/, close to 0°. However, for (|>/,y,« 100° the calculations did not predict

the response of the cylinder. Examination of Figure 1-11 reveals that the values of <)>///, close to

100° are in fact intermediate values that are not consistent with the values of $///, either side of the

jump. It is not known if these intermediate values of (j>/;/, correspond to a third wake state or if the

intermediate values are the result of averaging data containing two different wake states.

Interestingly, the data of Khalak and Williamson (1999) and Govardhan & Williamson (2000) for

an elastically mounted cylinder does not show these intermediate values of
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FIGURE 1-42 a) Prediction of the response of an elastically mounted cylinder using forced
oscillation and comparison with experimental results of Feng: b) phase angle of the lift force, 4>un
within the lock-in range. Reproduced from Staubli (1983b).

Many cf the previous investigations of forced cylinder oscillations obtained values of §HJ< that

correspond to negative energy transfer and therefore predict that vortex-induced motion will not

occur. The extent of these regions of negative energy transfer and the ramifications for the

relationship between the forced and freely oscillating cylinder, will be considered further in this

work.
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1.7 STATIONARY CYLINDER NEAR A SURFACE

1.7.1 Boundary Conditions at a Solid or Free-Surface

Unbounded flow past a stationary cylinder results in periodic shedding of vortex structures from

the cylinder and the formation of the characteristic Karman street When the flow is bounded by a

surface the structure of the wake and the forces on the cylinder can be significantly altered as

shown by Bearman & Zdravkovich (1978) and Miyata et ah (1990). The surface interface between

a liquid and a gas, for example water and air, is typically described as a free-surface and, as

discussed by Rood (1995) and Gharib & Weigand (1996), the boundary conditions at a free-surface

are significantly different from those at a solid boundary. The tangential pressure gradient along a

solid surface results in the generation of vorticity and at a no-slip boundary all the vorticity is

parallel to the surface. A clean free-surface is not a no-slip boundary, but instead has a zero-shear-

stress boundary condition. Along a flat clean free-surface orientated along the x-y plane T},= rn =

0, dv/dz = dv/dx = dwldy = duldy - 0 and both surface-parallel vorticity and surface-parallel

vorticity flux are zero. Thus, as described by Batchelor (1967) in contrast to a solid boundary the

zero-shear condition along a clean flat free-surface permits only surface-normal vorticity, forcing

vortex lines to terminate normal to the free-surface.

When a free-surface is deformed the viscous flow beneath the curved surface generates a shear on

the boundary which, in order to preserve the zero-shear boundary condition, must be counteracted

by the generation of vorticity. If the flow is inviscid then by definition the shear is zero and the

zero shear stress boundary condition is trivial. The surface-parallel vorticity at the curved viscous

free-surface can be described using curvilinear co-ordinates along the curved surface and writing

the vorticity in terms of the surface shear stress. The surface-tangent vorticity <£>* is given by:

a^IJL^-Ifkt. (1-16)

and the shear stress due to the fluid beneath the free-surface is:

*rf=i

therefore

1 n Rs Rs dO

where Rs is the local radius of curvature of the surface. Equation 1-18 is the boundary condition

for a free-surface, where the three terms on the right hand side represent the sources of vorticity

due to:
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(i) The shear stress at the interface with the adjoining fluid which is negligible for a clean

water-air interface, but becomes significant when the water surface is contaminated by

surfactants;

(ii) Flow under a curved surface or the generation of vorticity due to deformation of the

surface;

(iii) Changes in the velocity along the surface. This is effectively an unsteady term

representing generation of vorticiry due to movement of the surface.

When the free-surface is flat the second and third terms on the right hand side of equation 1-18

tend to zero and vorticity is only generated when the free-surface is contaminated. Gharib &

Weigand (1996) showed that the flux of surface-parallel vorticity at a deformed contaminated

surface is given by:

5c?,. dus d(uj+v?) 1 dp
A- dt 2 ds pds

(1-19)

where s is a local surface co-ordinate parallel to #and a is the local angle of the free-surface to the

gravitational vector.

The Froude number, Fr = U/(gL)m is the non-dimensional parameter used to describe the

behaviour of free-surface flows, where U'm the free-stream velocity and L is a characteristic length

scale. In many cases the flows depend both on Fr and Re. In open channel flows the Froude

number describes the ratio of the wave speed of the free-surface disturbances, which vary with

(gL)m, to the free-stream velocity, U. When used in this way Fr describes the ability of a

disturbance to travel upstream and is analogous to the dimensionless Mach number for

compressible flows.

For a body close to a free-surface in deep flow the Froude number is applied differently. In this

case Fr represents the ratio of the fluid inertia force to the gravitational force, where Fr is actually

the square root of this ratio. In these cases the Froude number describes the propensity of a free-

surface to deform and generate free-surface waves in response to forcing from the flow structures

beneath the surface. Typically the Froude number used for flow over a cylinder is Fr = UI(gD)m

where the length scale for both the inertial and gravitational forces is the diameter of the cylinder.

Sheridan et al. (1997) considered using the depth of the cylinder below the free-surface as the

length scale for both the inertial and gravitational forces, i.e. Fr = U/(g h)m. However, neither

U/(gD)m or U/(g h)m identified a critical Froude number at which the wake transitioned between

different states. Irrespective of whether D, the diameter of the cylinder or h, the depth of the

cylinder, was used as the characteristic length scale in Fr, Sheridan et al. (1997) found that
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increasing Fr caused similar systematic changes in the wake. Unless specifically stated the Froude

number used in this text will be based on the diameter of the cylinder.

1.7.2 Flow Over a Cylinder Close to a Solid Boundary

The boundary conditions at a solid wall are different from those at a free-surface. However, in

both cases the flow is constrained by the boundary and these two different flows exhibit a number

of similar features. Bearman & Zdravkovich (1978) measured the mean pressure distribution on a

cylinder close to a solid wall, as well as the mean pressure distribution along the wall. The mean

pressure distribution on a cylinder in unbounded flow is symmetric about the centre-line of the

cylinder, however as the gap between the cylinder and the wall decreases the pressure distribution

on the cylinder becomes non-symmetric. As shown in Figure 1-43, for gap ratios of GID = 0.4 and

0.1, the asymmetry of the pressure distributions increases as the cylinder approaches the wall,

where G is the distance between the wall and the cylinder. As GID decreases the front stagnation

point rotates towards the surface as does the separation point furthest from the wall, but there is

only a relatively small change in the position of the separation point adjacent to the wall.

Additionally, as GID decreases there are also changes in the pressure distribution along the wall.

As the flow approaches the gap between the wall and the cylinder there is an initial increase in the

pressure on the wall, but further downstream there pressure decreases rapidly as the flow

accelerates between the cylinder and the wall. The peak negative pressure occurs just downstream

of the cylinder's centre and the magnitude of peak wall pressure increases as GID decreases. The

non-symmetric pressure distribution on the cylinder results in a net force that pushes the cylinder

away from the solid surface and, unlike a cylinder in unbounded flow, the net lift force on the

cylinder is not zero.

Despite the obviously asymmetric pressure distribution in Figure 1-43 at GID = 0.4, measurements

of the velocity fluctuations behind the cylinder indicated that for this gap ratio periodic vortex

shedding is still occurring. Moreover, the Strouhal frequency of this vortex shedding is only

slightly higher than for unbounded flow. Bearman & Zdravkovich measured the velocity

fluctuations in both shear layers; finding in both cases a strong spectral peak at the shedding

frequency. However, the peak obtained in the shear layer closest to the wall was less energetic

than the peak for the shear layer further away from the wall. As the gap ratio decreased the relative

difference in the energy of these two peaks increased. The velocity spectra in the near wake

indicate that periodic vortex shedding persisted for gap ratios down to GID = 0.3. For GID < 0.2

relatively weak high frequency fluctuations occurred in the shear layer furthest from the wall and

periodic fluctuations were not observed in the shear layer closest to the wall, indicating that regular

Kantian shedding is suppressed. The asymmetry of the pressure distributions at GID = 0.1 in

Figure l-43(b), where regular vortex shedding is suppressed, is much more accentuated than for the
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case shown in Figure l-43(a), at GID = 0.4, where periodic shedding occurs. In both cases the

front stagnation point and the separation point closest to the wall have rotated towards the wall and

there is a sharp peak in the negative pressure on the wall as the fluid passes through the gap. The

most notable difference between the two cases is that at GID = 0.1 the pressure distribution on the

portion of the cylinder adjacent to the wall has rotated in the same direction as the front stagnation

point, so that the peak negative pressure occurs further downstream than at GID = 0.4.

Additionally, at GID = 0.1 the mean pressure distribution on the surface of the cylinder next to the

wall does not exhibit a significant adverse pressure gradient suggesting that there may have been a

change in the nature of flow separation.

Figure 1-43 Average pressure distribution on a cylinder and solid wall for flow over a cylinder
near a wall, for a) a cylinder to wall gap of G/D = 0.4 and b) G/D = 0.1. Reproduced from Bearman &
Zdravkovich (1978).

Flow visualisation, PIV and hot film measurements by Price et al. (2000) found that the apparent

suppression of vortex shedding at small GID corresponded to the formation of long attached shear
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layers that did not interact with each other in an organised periodic fashion. For small gaps they

found that the wall boundary layer separated upstream of the cylinder, where the size of the

separation bubble decreased and the separation point moved downstream as GID increased. They

predicted that the formation and position of the separation bubble would vary both with the GID

and a Reynolds number based on the distance of the cylinder from the leading edge of the plate.

For gap ratios at which periodic shedding is observed a number of investigations, including

Bearman & Zdravkovich (1978), Angrilli et al. (1982) and Price et al (2000), have observed an

increase in the shedding frequency as the gap between the cylinder and the wall decreases. The

frequency of vortex shedding increases smoothly with a peak value occurring just prior to the

suppression of vortex shedding. However, there is some disagreement in the magnitude of the

increase in shedding frequency. For relatively high Reynolds numbers of 2.5-4.5x104 Bearman and

Zdravkovich (1978) observed only a very small increase in Strouhal frequency of between 2-3%.

However, for Re = 2860-7640 Angrilli et al. (1982) observed an increase of up to 10% and at Re =

1200-1900 Price et al. (2000) observed a much larger increase in the shedding frequency of up to

40%. None of the investigators reported significant variation of the shedding frequency within the

Reynolds numbers ranges of their investigations.
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1.7.3 Forces on a Cylinder Underneath a Free-Surface

h/D = 0.25 h/D = 1.0 submerged
Cantwell& Coles (1983)

Figure 1-44 Plot of time-averaged pressure distributions on a cylinder underneath a free-surface
for a) h/D = 0.25, b) h/D = 1.0 and c) a fully submerged cylinder. Reproduced from Miyata et al
(1990).

Miyata et al (1990) conducted experiments on a cylinder beneath a free-surface at Re = 4.96 x 104

and Fr = 0.34. In Figure 1-44 the pressure distribution around a cylinder beneath a free-surface,

measured by Miyata et al. (1980), are compared with the symmetric pressure distribution measured

by Cantwell & Coles for a fully submerged cylinder, where h is the depth of the top of the cylinder

below the surface. As the cylinder moves towards the free-surface there is a clockwise rotation of

the front stagnation and separation points and, as shown in Figure l-44(a & b), the front stagnation

point moves closer to the free-surface. The pressure distribution on a cylinder beneath a free-

surface exhibit many of the characteristics described by Bearman & Zdravkovich (1978) for a

cylinder close to a solid surface. (Note; the configuration of the cylinder near the solid surface in

Figure 1-43 has the cylinder above the surface, therefore when a cylinder is underneath a free-

surface the geometry of the system is flipped.)

Miyata et al (1990) found that for 0.35<A/£><1.75 the fluctuating lift force on the cylinder was

strongly periodic, with an approximately constant Strouhal number of 0.19. These results are

similar to those observed for a fully submerged cylinder and indicate that periodic vortex shedding

is occurring. As h/D decreased below 0.35 there was a sudden drop in the spectral energy of the

lift force at St » 0.19, indicating that the close proximity of the free-surface was causing a partial

suppression of vortex shedding. At the smallest cylinder depths, h/D < 0.335, the peak at St« 0.19

was no longer present and there was a small peak at St« 0.3 in both the lift spectra and the pressure

spectra close to the upper and lower separation points. Miyata et al (1990) found that for these

very small h/D the pressure fluctuations were strongest in the upper shear layer adjacent to the free-

surface. These results are in contrast to the findings of Bearman & Zdravkovich (1978) for flow

over a cylinder near a wall. Miyata et al (1990) attributed the relative strength of the pressure
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fluctuations in the upper shear layer to an interaction between the vortex shedding and the free-

surface.

Figure 1-45 shows the variation of the mean lift and drag forces, measured by Miyata et al. (1990),

as the cylinder approaches the free-surface. For hID > 0.35 the mean drag is approximately

constant, however as hID decreases below 0.35 the suppression of strongly periodic vortex

shedding corresponds to a sharp drop in the mean drag. The mean negative lift force on the

cylinder increases steadily as the cylinder approaches the surface. Interestingly, for

0.35<A/D<1.75 the frequency of vortex shedding remained approximately constant despite the

changes in the mean lift force on the cylinder and the asymmetry in the pressure distribution.

D/B
Figure 1-45 Variation of mean drag (F,) and negative mean lift (F.) with cylinder depth DJB,
where H)JB = 2h/D +1. Reproduced from Miyata et aL (1990).

Miyata et al. (1990) also presented the time varying pressure distributions at cylinder depths of hID

= 0.25 and 1.0, which are either side of the sharp drop in the spectral energy at the Strouhal

shedding frequency. At the smaller cylinder depth of hID = 0.25 the wake is only weakly periodic

and the variations in the time dependent pressure distribution are relatively small. However,

further away from the free-surface at hID = 1.0 there is a significant level of variation in the time

dependent pressure distributions which is consistent with periodic vortex shedding.
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1.7.4 Wake Structure for a Cylinder Underneath a Free-Surface

The potential flow solution for bounded flow over a body clearly shows that the structure of the

flow is altered by the presence of the boundary and depends also upon the nature and proximity of

the boundary. The experimental results of Miyata et al. (1990) and Sheridan et al. (1997) for a

viscous, turbulent, three-dimensional flow over a cylinder beneath a nominally clean water-air

interface show that the wake structure depends not only on hID but also on Re and Fr.

Additionally, it is also expected that a number of secondary factors, including the level of free-

stream turbulence and the aspect ratio of the cylinder, can also effect the structure of the wake.

Flow visualisation of relatively large diameter polystyrene beads by Miyata et al. (1990) indicated

that the structure of the near wake varies significantly with hID. At hID = 1.0 the flow

visualisation in Figure l-46(a) shows the formation of a strong vortex structure very close to the

back of the cylinder, and it was reported that the time varying wake structure resembled Karman

shedding from a fully submerged cylinder. However, the length of the attached wake in Figure

l-46(a) appears to be significantly shorter than for a fully submerged cylinder at similar values of

Re. When the depth of the cylinder is reduced to hiD = 0.25 there is a distinct change in the wake

structure, as shown in Figure l-46(b). The wake is clearly angled downwards and the length of the

wake is much longer than both the wake at hID = 1.0 and also the wake of a fully submerged

cylinder. A large vortex structure forms in the lower wake while the upper wake is relatively

disorganised and does not have a clear structure. Additionally, the flow visualisation suggests that

the free-surface is not flat, with the appearance of free-surface waves downstream of the cylinder.

At the smallest cylinder depth of hID = 0.063 the wake is similar to the wake at hID = 0.25: the

lower shear layer has a distinct downward angle, there is a large vortex structure in the lower wake

and free-surface deformation is apparent immediately behind the cylinder. As hID decreases from

1.0 to 0.063 the flow visualisation shows a rotation of the front stagnation point towards the free-

surface that is consistent with the changes in the pressure distribution discussed above.

The flow visualisation in Figure 1-46 shows that the structure of the wake varies with hID but the

different wake modes are not clearly defined. Additionally, the relatively large polystyrene beads,

which were lmm in diameter or 0.6 % of the cylinder diameter, may have altered the flow,

particularly at small values of hIDI.

Fig
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Finure 1-46 Flow visualisation of flow around a cylinder underneath a 'resurface at a) hID = 1.0,
bj 0 25, c) 0.063 for Re = 4.96 x 10* and Fr = 0.34. Reproduced from Miyata et aL (1990).
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Qualitative P1V measurements by Sheridan et al (1995, 1997) at 0.22<Fr<0.97 showed that the

wake of a cylinder underneath a free-surface exhibits a number of different states. The wake states

depend both on Fr and h/D and, as discussed in section 1.7.1, the variation of the wake with h/D

can also be impressed in terms an alternative Froude number, U/(gh)112. As the cylinder

approaches the free-surface Sheridan et al. (1997) observed a number of wake states that were

distinctly different from the Karman wake of a fully submerged cylinder. These states were

divided into two basic classes depending upon the behaviour of the jet of high velocity fluid

moving over the top of the cylinder. For cylinder positions further from the free-surface and at

lower Froude numbers the jet tended to remain attached to the free-surface, but at smaller

submergence depths and higher Fr the jet separated from the free-surface.

(a) (b)

Figure 1-47 Instantaneous velocity and vortitity fields for h/D = 0.40 at a) Fr = 0.22, b) Fr = 0.60.
Reproduced from Sheridan et al. (1997).

The velocity and vorticity fields for two cases where the flow over the top of the cylinder remains

attached to the free-surface are shown in Figure 1-46, for a cylinder depth of h/D = 0.4 and two

different Froude numbers, Fr = 0.22 and 0.60. In both cases the wake length is much longer than

for a fully submerged cylinder and the lower shear layer has a downward angle. At the lower

Froude number of 0.22 the free-surface behind the cylinder is relatively flat and vorticity is not

generated due to free-surface curvature. At the higher Froude number of 0.60, the flow over the

cylinder causes significant deformation of the free-surface resulting in the formation of free-surface

waves and the generation of vorticity at the free-surface. The velocity fields in Figure 1-47 clearly

show that in both cases the high-speed fluid remains attached to the free-surface, although the free-

surface waves at Fr = 0.60 cause local separation and subsequent re-attachment of the flow.
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( 3 ) (b)

Figure 1-48 Instantaneous velocity and vorticity fields at two different times illustrating the
variability in the wake state at Fr = 0.6 an h/D = 031. The high velocity fluid above the cylinder forms
a) a free-jet and b) a jet which is attached to the back of the cylinder. Reproduced from Sheridan etaL
(1997).

Sheridan et ah (1997) found that the transition from a wake with high-speed flow attached to the

free-surface to a flow that separates from the free-surface is associated with either an increase in Fr

or a decrease in h/D. In Figure l-48(a) the high-speed fluid separates from both the free-surface

and the cylinder immediately after passing through the relative narrow gap above the cylinder. The

separated free-jet forms a downward angle across the rear of the cylinder. As shown in Figure

1 -48(b), for the same flow conditions the jet can also separate from the free-surface but remain

attached to the rear surface of the cylinder. The two wake states shown in Figure 1-48, at Fr = 0.6

and h/D = 0.31 indicate that for these flow conditions the wake was metastable alternating between

the formation of a free-jet and a jet which is attached to the rear of the cylinder. Sheridan et ah

(1997) also observed a similar metastable wake at Fr = 0.6 and h/D = 0.45. These wake modes

were also visualised by Hoyt & Sellin (2000) using a tracer liquid. Typically, the formation of the

free-jet occurs at lower values of Fr or cylinder positions that are further away from the surface.

The attachment of flow to the rear of the cylinder occurs when the modification of the wake by the

free-surface is greatest, i.e. at the smallest values of hID and large Fr. It is not immediately

apparent from the flow visualisations of Miyata et ah (1990) close to the free-surface if the upper

shear layer separates from, or is attached to, the free-surface. However, Figure l-46(b & c) does

show that, as for the wake states observed by Sheridan eta]. (1997), the attached wake is relatively

long and the lower shear layer is angled downwards.

The wake states depend on the influence of the free-surface, which increased either by moving the

cylinder closer to the free-surface or by increasing Fr. Thus, the value of Fr affects the range of

h/D over which a wake state occurs. However, neither the Froude number based on the cylinder's
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diameter, or an alternative Froude number based on the cylinder's depth, allowed the identification

of a critical value at which the wake transitioned between the two states. At a given Fr in a deep

flow the full extent of the free-surface region can be traversed by varying hID. However, for a

cylinder which is immediately adjacent to the free-surface the wake cannot tend towards the fully

submerged case without reducing the free-stream velocity to zero. Therefore, within a given

Reynolds number regime, it is most logical to classify the wake states in terms of their dependence

on hID at a given Froude number.

Furthest away from the influence of the free-surface the flow visualisation and pressure

distributions of Miyata et al (1990) indicate that the wake exhibits periodic vortex shedding and is

similar to the wake of a fully submerged cylinder, however the properties of this wake state are not

well known. As the cylinder moves closer to the free-surface there is a large increase in the wake

length, as shown in Figure 1-47, and the high-speed flow over the top of the cylinder is attached to

the free-surface. As h/D is decreased further the jet of high-speed flow separates from the free-

surface forming a separated free-jet, as shown Figure l-48(a). Finally, as shown Figure l-48(b),

when the cylinder is closest to the free-surface the jet of fluid remains attached to the cylinder. In

all cases the close proximity of the frea-surface causes the lower shear layer to have a distinct

downward angle.

1.7.5 Effect of Free-Surface Contamination

A free-surface is an interface between two different fluids, typically air and water. The large

difference in the relative densities of water and air results in a free-surface stress that is effectively

zero for a clean free-surface. However, as discussed by Scott (1982), if a surface-active

contaminant, or surfactant accumulates on the surface the shear stress and surface tension at the

boundary change accordingly. In general, surfactants act to reduce the surface tension, producing a

non-zero shear stress boundary condition. If we consider the first term on the right hand side of

equation 1-18 it is evident that a non-zero shear at the boundary can result in the generation of free-

surface vorticity, as discussed by Warncke et al (1996).

The presence of an obstruction or blockage at or immediately underneath the surface of a free-

stream promotes the accumulation of surfactant, generating local boundary conditions that are quite

different from the regions where the surface is relatively uncontaminated. Such situations are

found commonly in nature, for example a semi-submerged tree branch in a natural stream or the

diversion of flow around a rock. A similar effect is generated in a water channel when the flow is

obstructed by the presence of an experimental model near the free-surface, or the diversion of the

flow at the end of the working section. Thus, unless extreme care is taken to maintain a clean

surface a build up of surfactant may occur. The surfactant that accumulates behind an obstruction

moves at a reduced velocity relative to the free-stream flow, resulting in the formation of a
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boundary layer underneath the non-zero shear boundary. The accumulation of surfactant at the

surface of a free-stream flow also results in the formation of a phenomenon known as the Reynolds

Ridge at the leading edge of the surface contamination. A schematic detailing the general features

of the flow near a Reynolds ridge is shown in Figure 1-49. As discussed by Scott (1982) the

elevated ridge of fluid immediately upstream of the surfactant is attributed to the retardation of

flow approaching the non-zero shear stress boundary and the corresponding surface tension

gradient. The curvature of the free-surface at the ridge results in additional generation of free-

surface vorticity. Detailed measurements of the Reynolds ridge by Scott (1982) and Warncke et al.

(1996) have shown that the curvature of the free-surface increases with the free-stream velocity.

The presence of a Reynolds ridge is a clear indication of surface contamination and, as shown by

Scott (1982), the Reynolds ridge can occur at relatively iow levels of surface contamination.

dean surface surfactant monolaycr

7̂ /

free stream flow

„ x laminar boundary layer

Figure 1-49 Schematic of flow near a Reynolds ridge. Reproduced from Warncke etal (1996)

When the shear stress is zero at the surface vortex filaments must connect normally to the free-

surface, however the non-zero shear generated by free-surface contamination alters the way in

which vorticity interacts with the free-surface. In their study of the interaction between spatially

modulated vortex pairs and a free-surface Willert & Gharib (1994,1997) found that the for both the

contaminated and clean free-surface the surface normal vorticity of the vortex tube formed local

regions of connection with the free-surface. However, the shear forces caused by a relatively small

amount of surface contamination appeared to inhibit the connection process and resulted in an

increase in the formation of secondary vorticity. The study of flow around a surface-piercing

cylinder by Warncke-Lang & Gharib (1998) also found that the structure of the flow immediately

under the free-surface was significantly altered by the presence of free-surface contamination. The

main factor contributing to these changes was an increase in the redirection of surface-normal

vorticity to surface-parallel vorticity due to a non-zero surface tension gradient.
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1.8 SCOPE OF THESIS

The literature reviewed in the previous sections raises a number of important questions related to

the current investigation of the wake states of an oscillating cylinder. However, some of the

questions raised by the literature are difficult issues that extended well beyond the case of an

oscillating cylinder. One of the aspects considered in the current investigation is the nature of the

transition between different wake states of an oscillating cylinder. The question that underlies this

work, and the large number of studies preceding it, is; why does a transition between two different

wake states occur at a particular point in time and parameter space. An analogous and similarly

difficult question is; for given flow conditions, what determines the stability of a particular wake

state. A transition between two different states is not unique to the case of an oscillating cylinder

and in fact transitions are observed in many different fields of science. For example, a particle may

undergo a transition between different energy levels, or the flow along a wall may undergo a

transition from laminar to turbulent flow. This investigation does not seek to answer the ultimate

question as to why a transition between different wake states occurs, rather it seeks to determine

the nature of the transitions and the properties of the wake states either side of the transition. In the

remainder of this section the specific questions arising from the literature review that form the basis

for this research program will be discussed.

As the forcing frequency of the oscillating cylinder passes through fjfo ~ I a number of

investigations have independently observed changes in the lift force on the cylinder or changes in

the phase-referenced structure of the near wake, as discussed in section 1.4. A link between the

wake mode and forces on the cylinder was established numerically by Blackburn & Henderson

(1999). However, there were some differences in the modes of vortex shedding observed by

Blackburn & Henderson and the shedding modes observed experimentally. These differences may

be attributably to their simulation being 2-dimensional, and also at low Reynolds number and

oscillation amplitude. Using simultaneous force and flow field measurements the present

investigation aims to establish a conclusive experimental link between the jump in the lift force and

the changes in the phase-reference structure of the near wake. The establishment of this link will

allow the identification of at least two wake states, where changes in the lift force and wake

structure correspond to a transition between different wake states. A major component of this

investigation is to determine the properties of these wake states, for example the values of the

phase and amplitude of the vortex lift and drag forces and their variation with fjfo is currently

unknown. An interesting aspect of the vortex forces, discussed in section 1.3.3, is their direct

relationship with the structure of the wake, in particular the rate of change of the vorticity field.

This investigation will seek to qualitatively link the changes in the vortex lift and drag forces to

changes in the mode and phase of vortex shedding.
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As discussed in section 1.4.1 the jump in the lift forces is observed over a wide range of flow

conditions, notably a range of Re and AID. However, the occurrence and nature of systematic

changes in the total and vortex lift and drag forces as Re and AID are varied are not known.

Additionally, it is not known how changes in Re and AID affect the structure of the near wake.

Intuitively, it is expected that increasing the oscillation amplitude will increase the length of the

attached wake, but it is not known if this causes changes in the mode of vortex shedding.

Specifically, it is not clear if changes in AID and Re result in the 2P mode of shedding being

observed in some cases but not in others.

An important aspect of this investigation is the relationship between the forced and freely

oscillating cylinders discussed in section 1.6. The methodology of forced oscillation experiments

is typically to use forced oscillations to simply the study of flow-induced motion. However, a link

between the forced oscillation wake states and the free response branches is yet to be established.

Moreover, it is not known how well the forced oscillations model the motion of the freely

oscillating cylinder or if the results of the forced oscillations can be used to predict flow-induced

motion. The properties of the forced wake states, determined in the current investigation, will be

compared with the experimental results for an elastically mounted cylinder, in particular those of

Govardhan & Williamson (2000).

The relationship between the forces on the cylinder and the structure of the near wake will also be

considered for a stationary cylinder beneath a free-surface. As discussed in section 1.7 a number of

previous investigations have observed a suppression of vortex shedding as the cylinder position

approaches the free-surface. Sheridan et al. (1997) found that the wake exhibits a number of

different modes, depending primarily on Fr and hID and Miyata et al. (1990) measured changes in

the forces on the cylinder as hID decreased. However, the nature of the relationship between the

structure of the near wake and the forces on the cylinder has not been established. The current

investigation will seek to determine this relationship using simultaneous force and flow field

measurements. There are a number of additional issues that will also be considered in this work.

The investigation by Sheridan et al. (1997) was performed at high Froude numbers where

significant surface deformation occurred. It is not known if the same or similar wake states exist at

lower Fr where free-surface deformation is effectively eliminated. Additionally, very little is

known about the structure of the wake for cylinder positions where periodic vortex shedding occurs

but the forces on the cylinder are modified by presence of the surface.

81



2 EXPERIMENTAL METHOD

In this section the experimental facilities and techniques used to obtain the results will be

described. Additionally the post processing techniques and calculations that were used to evaluate

the data will also be outlined.

2.1 FLOW SYSTEM

The experiments were performed in a free surface recirculating water channel at the Lehigh

University fluid mechanics laboratories. The plexiglass working section had a width of 914 mm,

depth 609 mm and was 4928 mm long. Upstream of the working section the flow passed through a

2:1 contraction followed by a Nomex® honeycomb and a fine wire screen, in combination these (

components act to straighten the flow and reduce the free-stream turbulence level to less than 1%. <

An axial flow pump, with an electronic controller was used to obtain flow velocities in the working '

section of between 0.056 and 0.180 m/s. |

The free-stream velocity, U e« was evaluated using two different methods: the average velocity of a I

mutually buoyant body through the working section and measurements of the Strouhal shedding i

: frequency from a circular cylinder. The first method, employing the mutually buoyant body had • i

previously been used in this water channel to measure Ufi« at lower flow velocities. However, for F

the flow velocities used in these experiments this method proved unreliable and for the majority of

' experiments UfTO was determined by measuring the fluctuating lift force on the cylinder and j

calculating the Strouhal frequency. The free-stream velocity was then evaluated by utilising the |.

relationship between the Strouhal number and the Reynolds number which is supported by a large

body of experimental data, in particular the careful experiments of Norberg (1994). Over the range i

of Reynolds numbers studied, the Strouhal number has been found to vary only slightly with Re,

between St = 0.200 to 0.211, and U/ree was calculated after only a small number of iterations of Re

[ and Ufiee. The aspect ratio of the cylinder and the dimensions of the end plates were also

considered in this calculation. The uncertainty in the values of Ufree is of particular interest as it

systematically affects the force and energy coefficients as UfrJ was used in the normalisation of

these properties. The frequency resolution of the lift spectra causes an uncertainty in UfKe of less

than 1%, however there was an additional uncertainty due to the nature of the Strouhal peak. At

Reynolds numbers of around 2000 the long formation length of the wake resulted in a Strouhal

peak that was relatively broad banded, increasing the uncertainty in U/m to 3%. However, at

higher Reynolds numbers above 4000, the Strouhal peak was well defined and the uncertainty in

was around 1%.
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2.2 CYUNDER PROPERTIES

PLAN VIEW

Rotating Mirror

Camera.

SIDE VIEW

| LASER } -

End Pla'

Support Arm
(Oscillating) .Free Surface

.Laser Sheet

Figure 2-1 Schematic showing cylinder and oscillation system in working section.

The cylinder is mounted horizontally such that its spanwise axis is parallel to the free-surface and

perpendicular to the free-stream as shown in the schematic of the experimental set-up in Figure 2-1.

Two different cylinders, 25.4 mm and 50.8 mm in diameter were used to obtain a Reynolds number
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range of 2300 - 9100. The smaller 25.4 mm cylinder was used at Re = 2100-2400, while the 50.8

mm cylinder was used primarily for experiments at Re = 4400 and 9100. The 50.8 mm cylinder

was also used for a set of "overlap" experiments at Re = 2850, giving results which were very

similar to those obtained at Re = 2100-2400 with the 25.4 mm cylinder. The 25.4 mm cylinder,

shown in Figure 2-2(a), was 317.5 mm long, giving an aspect ratio of 12.5. A transparent laser

window was incorporated into the cylinder to allow the laser sheet to illuminated the flow bind the

cylinder, while the remainder of the cylinder was filled with air and the outer surface was matt

black. To minimise the deflection of the laser sheet at the cylinder, the laser window was filled

with distilled water and the clear plexiglass wall were very thin. After passing through the laser

window the laser widow the intensity of the laser sheet was reduced and while the PIV particles

were still illuminated, the percentage of bad vectors increased.

Later Window

a)

b)

Strain gauge

C)

Figure 2-2 Detailed schematic of a) the 25.4 mm cylinder, b) the 50.8 mm cylinder shell which
was designed to fit o~ er the 25.4 mm cylinder and c) the assembled 50.8 mm cylinder.

The larger 50.8 mm cylinder, shown in Figure 2-2(b), was designed to fit over the smaller 25,4 mm

cylinder, shown in Figure 2-2(a), allowing easy installation without the need to re-instrument the

strain gauge system. The assembled 50.8 mm cylinder, shown in Figure 2-2(c) had a length of

384.5mm, an aspect ratio of 7.6 and was also fitted with a water-filled laser window. To reduce

end effects, both cylinders were fitted with end plates that oscillated with the cylinder. The end

plates were 368 mm in diameter and 6.4 mm thick with a 30° outward bevel. There was a small
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gap of 1-2 mm between the free end of the cylinder its end plate, while adjacent to the strain gauges

the cylinder fits through the end plate.

The natural structural resonance frequencies of both cylinders was significantly higher then the

maximum frequency of forced oscillation. The 25.4 mm cylinder had a mass of 90.2 g and a

resonance frequency of 20.0 Hz, which was well above the maximum frequency of forced

oscillation of 1.2 Hz. The 50.8 mm cylinder was much heavier, weighing 581.9 g, resulting in a

structural resonance frequency of 6.3 Hz that is almost six times the maximum forcing frequency of

1.1 Hz. However, when the 50.8 mm cylinder was forced at frequencies close to 1.1 Hz,

corresponding to the flow conditions at Re = 9100, small levels of additional vibrations at the

frequency of oscillation were observed. At the lower Reynolds number of 4^00 the frequency of

oscillation was Iov/er and the motion of the cylinder appeared to be purely sinusoidal.

2.3 OSCILLATION PROPERTIES

The cylinder was oscillated transverse to the free stream such that its vertical motion was given by

(2-1)

where A andfe are the amplitude and frequency of oscillation respectively. To minimise the initial

impulsive forces on the system, the oscillations were always started from the lowest point in the

cylinder's displacement cycle where the instantaneous velocity is zero. The standard experimental

procedure was to vary the frequency of oscillation about fjfo « 1 (within the range O.S<fJf^<\.9Q)

while maintaining a constant oscillation amplitude and free-stream velocity. A detailed

investigation of the frequency dependence of the wake was undertaken &iA/D = 0.5 and a Reynolds

number of approximately 2300. The investigation was then expanded to consider the frequency

dependence of the wake at a range of amplitudes (A/D = 0.25 - 0.6) and Reynolds numbers (Re =

2100-9100).

The motion of the cylinder was driven by a high resolution stepper motor, Parker AX57-102

controlled by a Parker PC-23 indexer. The motion profiles were generated by a Lehigh program,

SFG, Magness (1990) which defines the motor displacement at discrete time intervals. These

profiles were edited to incorporate TTL triggering signals to the camera and bias mirror. In this

way the PIV images were captured at prescribed points in the oscillation cycle. The motion

profiles was executed by another Lehigh program ALT, Magness & Troiano (1991). The number

of signals in the profile, including the TTL commands was limited to 475 by the ALT program and

the minium time interval between stepper motor commands was 0.006 seconds. These two !

restrictions are the limiting factors determining the resolution of the cylinders motion. L
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2.4 FORCE MEASUREMENT SYSTEM

The forces on the cylinder were measured using a strain gauge system, Tomlinson (1996). The

strain gauges were mounted on a V" sting, shown in Figure 2-3, was machined out of a brass rod

with strain gauges located on the surfaces of the square mid-section. One end of the strain gauge

sting was inserted into the cylinder with an interference fit, while the other end was clamped into

the external support system Figure 2-4,

Figure 2-3 Isometric drawing of the strain gauge sting.
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amplifiers
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• 10.0 mm

Figure 2-4 Drawing of the strain gauge sting, the sting holder and the attachment of the sting to
the cylinder.

The strain gauges were configured into two full Wheatstone bridges, i.e. two strain gauges on each

of the four faces, and underwent an extensive water proofing procedure prior to installation. The
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average strain on the horizontal and vertical faces is directly related to the total moment generated

by the lift and drag forces respectively and the strain gauges measure the span averaged forces on

the cylinder. The signals from the strain gauges were amplified (Hottinger Baldwin Messtechnik

GMBH; CLIP Electronic AE-301-S6) and filtered (Kronhn-Hin» 3750) using a Jow-pass filter at a

cut off frequency of 8 Hz and a gain of 20 dB. The signals were acquired u-sing an A/D board and

recorded using the ALT program, Magness & Troiano (1991). The majority of the force data

presented was calculated using 4096 data points (from a total of 5000) acquired at a sampling

period of 0.08 seconds, giving a Nyquist frequency of 6.25 Hz.

The experimental set-up had two different time based systems: the computer controlling the stepper

motor, which sends signals at discrete time intervals to the stepper motor and the image acquisition

system and the A-D board which acquires force measurements at discrete time intervals. Our

interest in the phase of the lift and drag forces with respect to the cylinders displacement requires

that these two times systems remains synchronised to a tiny percentage of an oscillation period,

over at least 400 oscillations. However, for an A-D board sampling period of 0.08 seconds there

was an error in the sacking r*i- of ± 0.00002 seconds. While his is appears to be a very smr.ll

error, over 5000 acquisitions the error accumulates to a unacceptable percentage of an oscillation

cycle (up to 10%) and results in a phase difference between the motion of the cylinder controlled

by the stepper motor computer and the corresponding forces on the cylinder acquired through the

A-D board. This error does not affect the phase accuracy of the image acquisition, however it

means that we are unable to use the input to the stepper motor to relate the lift and drag forces to

the displacement of the cylinder. This problem was overcome by directly measuring the

displacement of the cylinder using a linear transducer. The displacement signal was conditioned

and acquired through the A-D board in exactly the same way as the lift and drag force signals, thus

eliminating any relative phase shift imparted by the filters.

The output of the strain gauges was calibrated in air by hanging static weights on the cylinder to

generate a knewn moment at the centre of the strain gauges. The voltage produced by the moment

of the point force is then related to the moment generated by a evenly distributed vertical force

acting along the length of the cylinder producing a relationship between the voltage outputs of the

lift strain gauges and a span averaged lift fluid force. The horizontal drag axis was calibrated by

rotating the cylinder 90° anti-clockwise. As expected the relationship between the span-averaged

forces on the cylinder and the output voltages were highly linear. The calibration also allowed us

to align the axis to within ±5°. The non-zero vertical buoyancy force on the cylinder was

eliminated by offsetting or zeroing the vertical force. As a p^rt of the experimental procedure both

the lift and drag forces on the cylinder under zero flow conditions were offset to zero at the

beginning of, and at regular intervals during, each set of experiments. The regular offsetting of the

strain gauge voltages was required as the mean output of the gauges were subject to significant
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drift, possibly due to temperature effects. The amplitude of fluctuating forces on a cylinder

oscillating in stationary fluid were always consistent with the results of Bearman et al. (1985) and

were not effected by the drift in the mean values.

2.£ IMAGE MEASUREMENT SYSTEM

A two-dimensional cross-section of the velocity field around the cylinder was measured using a

laser-scanning version of high-image density PIV, Rockwell et al (1993). Extensive reviews of the

P1V techniques used in these experiments are given by Adrian (1986,1991), Rockwell et al (1992,

1993) and Rockwell & Lin (1993). The flow field was illuminated using a continuous Argon-ion

laser (Coherent Innova Series) with a maximum power output 30 W. However, the camera settings

were optimised for a power output of 6-10 W, which was the maximum laser power that could be

maintained throughout the duration of an experiment. As shown in Figure 2-1, the laser beam was

directed along the length of the channel into a flat surface steering mirror, passing through a

collimating lens pair before turning 90° onto a rotating mirror. The rotating mirror (Lincoln Laser

Co.) had 48 facets and was driven by a variable frequency motor (Lincoln Laser Co. VFC-2) where

the motors frequency was measured using a high-resolution frequency counter (Philips PM6672).

The rotating mirror produced a scanning laser beam that sweeps across the flow field at a scanning

frequency that is equal to the number of facets multiplied by the rotational frequency of the mirror.

The collimating optics generated a laser sheet thickness of between 1-2 mm and for PIV

measurements laser scanning frequencies of between 290 and 620 Hz were used. The high

frequency of the laser sheet means that the structure of the near wake and the mode of vortex

shedding can be observed in real time during the experiment. The PIV images were recorded on

high resolution Kodak TMAX 400 35 mm film using a Canon EOS-1 N RS camera fitted with a

100 mm Canon macro lens. The flow was seeded with 14um silver-coated particles (Conduct-O-

Fil particles, Potters Industries Inc.) which have a specific gravity of slightly less than 1 and for the

free-stream velocities used, the particle "drop out rate" was low enough to obtain over an hour of

high quality PIV data.

Prior to each set of experiments the image-based parameters were determined by running a set of

test experiments to determine the extreme flow conditions. Based on these experiments the laser

scanning frequency, camera shutter speed, camera aperture and bias velocity were selected to

optimise the PIV images over the range of expected flow conditions.

The scanning laser illuminates the flow field a number of times during each film exposure,

resulting in multiply exposed images. In order to measure the flow velocity the separation of the

particle in each exposure must be large enough to be resolved, however if the separation is too

large the motion of the particle during the exposure can not be accurately represented by a single

velocity vector. The optimum particle spacing depends upon the resolution of the film and
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resolution at which the image is digitised and was found to be approximately 0.2 mm of film. The

laser scanning frequency was set so that where possible the optimum particle spacing was obtained

in the flow regions of greatest interest, while maintaining a maximum particle spacing of less then

1-1.2 mm of film. Once the scanning frequency was optimised the shutter speed of the camera was

selected to allow 4-6 particle exposures per image. For a given shutter speed the intensity of each

image was a function of the laser power, the camera aperture and the seeding density of the

particles in the flow. Shutter speeds of between 1/30 and 1/100, with lens apertures of between/=

4.0 and 7.1 were used to acquire the PIV data.

To resolve the ambiguity of the flow direction in the recirculation regions the images were shot

through a rotating bias minor. The bias mirror imparts an additional constant velocity to the flow

field that is then subtracted from the velocity fields during post-processing. The bias mirror rotates

at a constant velocity during the exposure and the center of the image exposure coincides with

point at which the surface of the mirror is at 45° to the camera. As discussed by Raffel and

Kompenhans (1995) the rotation of the mirror during the exposure generates distortion-induced

errors, however as the movement of the mirror was less then 1° these errors were considered

negligible and were not corrected for. The motion of the bias mirror was driven by a galvanometric

scanner (General Scanning Inc. CX-660) and the bias velocity was generated using a triangular

ramp displacement function of known period. The bias velocity was constant for each set of

experiments and was evaluated using biased images of stationary fluid. The bias velocity was

selected to be greater then the highest reverse flow velocity and for the flow conditions studied,

bias velocities of between 0.085 and 0.155 m/s were required.

The number of flow field images per oscillation was limited by the framing rate of the camera. In

general, it was possible to obtain 8 images per oscillation although in some cases the image

acquisition was limited to 6 images per oscillation. Additionally in some situations only one image

was taken per cycle to maximise the time span of the data set which was limited by the number of

shots per roll of film. In all cases, the timing of image acquisition was based on the cylinder

position within the displacement cycle.

2.6 EXPERIMENTAL PROCEDURE

Two different types of experiments were undertaken. The majority of the experiments were on a

fully submerged cylinder oscillating transverse to the flow however an investigation of the flow

over a stationary cylinder immediately under a free-surface was also undertaken.

2.6.1 Submerged Oscillating Cylinder

Each set of experiments on an oscillating cylinder involved the oscillation of the cylinder over a

range of frequencies at fixed values of A/D and Re, although in some cases a number of values of
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A/D were considered. At the start of each set of experiments the flow was "seeded" with particles

and the channel was run at high velocity to promote the distribution of the particles. When the

particles were evenly distributed the channel flow was turned off. Following a settling period the

output voltages of the strain gauges were offset to zero and the bias velocity was measured using

the stationary flow conditions. Unbiased images of a ruler next to the cylinder were also taken to

confirm the spatial calibration of the PIV images. The length of time that the flow was stationary

was minimised to reduce the "drop out" of the PIV seeding particles. When the channel flow was

restarted the pump frequency was adjusted to obtain a free-stream velocity within the Reynolds

number regime of interest and the velocity remained constant for the duration of the experiment.

The frequency of the pump was not used to calibrate the free-stream velocity as the volume of

water in the channel, and therefore the volume flow rate varied due to evaporation and other

factors. Prior co the start of the experiments force data from a fully submerged stationary cylinder

was acquired to determine the Strouhal shedding frequency that was subsequently used in

conjunction with the data of Norberg (1994) to accurately determine the free-stream velocity. The

lift and drag on a submerged stationary cylinder were also measured during and at the conclusion

of the experiments. As well as increasing the accuracy of the Strouhal frequency calculations,

these additional measurements were also used to determine if there was significant drift in the

mean values of the lift and drag forces.

For each value of fe/f0 the cylinder started oscillating from rest at t = 0, corresponding to the start of

the force measurements. Initial transients were recorded in the force data and for most frequencies

a steady state was reached after only 3-4 oscillations. Once the cylinder was set oscillating at a

certain frequency and amplitude, these parameters were fixed. Following each experiment the

cylinder remained stationary in the free stream for a time equivalent to more then 500 Karman

cycles. This procedure is in contrast with a number of other experiments, where the frequency was

varied in a continuous fashion while the cylinder continued to oscillate.

2.6.2 Stationary Cylinder Underneath a Free-Surface

The set-up and calibration procedures for the experiments on the stationary cylinder in close

proximity to a free-surface were similar to those described in sec•) ion 2.6.1 for the fully submerged

oscillating cylinder experiments. During the set-up procedures thy cylinder is a long way below the

free-surface and is effectively fully submerged. At the beginning of the experiments the cylinder is

raised to the free-surface such that for low free-stream velocities, and therefore low Froude

numbers, the top of the cylinder just intersects with the free-surface. This vertical position of the

cylinder is then set as a cylinder depth, h = 0. The cylinder depth was then varied systematically to

determine the effect of varying h/D on the structure of the near wake and the forces on the cylinder.

After the cylinder was moved to a new position there was a delay of approximately 5 minutes
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before measurements were taken to allow the disturbance to die out and for the raw wake mode to

become established. As the cylinder was stationary it was not possible to acquire the PIV images at

predetermined phase referenced positions and the images were acquired at a constant framing rate.

2.7 FORCE POST-PROCESSING

After the force and displacement data were acquired they required extensive processing. The

procedures used are described below.

The oscillation of the cylinder results in an additional force which is due to the inertia of the

cylinders mass and which must be subtracted before the forces on the cylinder can be compared

with the results of previous experiments. The moment generated at the strain gauges by the

oscillation of the cylinder's mass depends upon the distribution of mass along the cylinder and is

given by:

L

\ z (2-2)

L

) jm,(z).z.cb (2-3)
o

where L is the spanwise distance from the strain gauges to the end of the cylinder and m{z) is the

mass per unit length as a function of spanwise position.

The mass inertia force acts in-line and in-phase with the acceleration of the cylinder and therefore

for transverse cylinder oscillations acts purely in the lift direction making no contribution to the

drag force. The voltages from the strain gauges were converted first to a total moment using the

calibration factor obtain from a point load. The moment due to the inertia of the cylinder's mass

was then subtracted from the lift moment and the span averaged lift and drag forces were then

calculated from the remaining total moments.

The lift and drag forces contained significant levels of high frequency noise and were bandpass

filtered in the frequency domain. The lower limit of the band filter was centred at 0.05 Hz to

eliminate a very low frequency wave that contaminated the signal. The upper limit for the band

filter was typically 2-3 times the frequencies of interest and the bandwidth of the smoothing

function was 0.01 Hz wide. The linear transducer that was used to measure the displacement of the

cylinder was not designed for accurate high repetition displacement measurements and the quality

of the signal was such that it could not be used directly in correlation calculations. The

displacement function of the cylinder was already known from the input to the stepper motor, and

as discussed in section 2.4 the reason the displacement was measured directly is the discrepancy in

the sampling period of the A-D board. Therefore the primary reason for measuring the
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displacement signal directly was to determine an accurate value for the frequency of oscillation,

which is consistent with the sampling period of the A-D board, in order to relate the lift and drag

forces to the cylinders motion. Despite the fact that the displacement signal was relatively noisy,

the frequency of oscillation was calculated to within 0.0001% by performing an iterative

correlation of the displacement signal with a sinusoidal signal of variable period. Once the

frequency of oscillation was known the displacement of the cylinder as a funi tion of time was

calculated using equation 2-1 and the position of the cylinder at t = 0.

As the cylinder is installed into the rig the strain gauges axes were aligned to within ±5°. However,

a misalignment of up to 5° results in significant leakage of the larger amplitude lift force into the

drag force and the drag becomes clearly non-symmetric. By checking that the PIV flow fields were

highly symmetric we were able to confirm that the non-symmetry of the drag was due to the

misalignment of the axes. The misalignment of the axes was calculated by maximising the

correlation coefficients for lift correlated with sin(27i£ /) and drag correlated with sin(47t£ /). The

misalignment of the 25.4 mm cylinder was -4.2°, while the 50.8 mm cylinder was misaligned by

2.2°. The lift and drag forces were subsequently corrected for the misalignment of the cylinder

resulting in a significant improvement in the symmetry of the smaller amplitude drag force.

2.8 IMAGE POST-PROCESSING

The primary output from PIV measurements is the velocity field. The majority of our flow fields

are presented in terms of vorticity: a^ = , which was calculated directly from the discrete
etc dy

velocity field using a 9 point weighted average. The flow diagram in Figure 2-5 gives an overview

of the steps required to generate a final vorticity field from a film based PIV image of the flow

field. A number of the steps shown in Figure 2-5 are discussed in more detail below.

The TMAX film negatives containing the flow field images were developed using standard black

and white film processing techniques. The resolution of the TMAX film is very high, 300

lines/mm, however the image was digitised prior to processing and the final resolution of the image

was limited by the film-scanning device. The images were digitised using two different Nikon

scanners: at Lehigh a Nikon LS-3510 with a resolution of 125 pixels/mm was used, while at

Monash the films were scanned at 106 pixels/mm using a Nikon CoolScan II.
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Figure 2-5 Flow diagram showing the standard processing procedure to produce a vorticity field from
a PIV film image.

The velocity fields were calculated using a Lehigh program, PIV3, Seke (1993), which employed a

single-frame cross correlation technique. In all cases an initial interrogation window of 90x90

pixels was used which was then converted within PIV3 to an FFT window size of 128 (i.e. 27). A

cross-correction was performed between this window and another window displaced 10 pixels in
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the free-stream, or x direction. In order to satisfy the Nyquist sampling criterion an overlap ratio of

0.5 was used. Additionally, a centroid method of peak detection was employed with a peak

validation factor of 0.3. The resulting velocity fields contained 3500-5220 vectors and generally

there were only a small number of bad vectors (< 20) in the regions of flow away from the

reflections generated by cylinder's body or the free-surface. The spatial resolution was between Ax

= Ay = 1.065 - 2.318 mm for the 25.4 mm cylinder, while for the 50.4 mm cylinder the resolution

was Ax = Ay = 3.090 mm.

The phase averaged velocity and vorticity fields were calculated to examine the repeatable features

of the flow field. When the cylinder was fully submerged the phase reference wake was symmetric

about the horizontal axis, i.e. the wake at the top of the oscillation is the mirror image of the wake

at the bottom of the oscillation. Therefore, by inverting the images 180° from the phase point of

interest we obtained two images per oscillation for phase averaging. The non-phase-averaged or

mean velocity and vorticity fields were also calculated for both the oscillating and stationary

cylinders. The mean fields for the oscillating cylinder were calculated in the same way as for the

stationary cylinder, with the instantaneous position of the cylinder changing relative to the fixed

reference frame of the mean field. As the PIV data was recorded on film, care must be taken to

align the velocity fields before averaging which was done using the centre of the cylinder as the

reference point. The displacement of the oscillating cylinder from the centre-line of the wake was

also needed to align each image. In all cases where the wake was periodic the average fields were

calculated using images representing one or more complete cycles.

2.9 CALCULATION OF FORCE PROPERTIES

The mean and fluctuating lift and drag forces were calculated from the filtered time signals. In

general these properties were calculated from 4096 data points or 160-320 cylinder oscillations.

When the lift and drag signals are relatively sinusoidal the average peak amplitude of the

fluctuating forces was calculated by multiplying the standard deviation by V2, and unless stated the

amplitude of the fluctuating forces are the average peak value, not the standard deviation.

When the cylinder was forced to oscillate transverse to the flow, for all cases studied the wake was

"locked on" to the cylinder's motion and the most energetic frequency in the lift force was t'e and

the correlation of the lift signal with a sinusoid was greater then 0.6. Thus, the lift force can be

approximated by a sinusoidal function of the form,

Lift(/)» (KplfDL) CL sin(27i/c/ + fo) (2-4)

where CL is the amplitude of the fluctuating lift coefficient and tylfi is the phase with respect to the

cylinder's displacement^/)- Both CL and <(>/,/, were calculated in the time domain using data points

from over 400 cylinder oscillations. The lift phase, <(>/,/„ was calculated using the cross correlation
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of the cylinder's lift and displacement, where §,lfi is represented by the location of the first maxima

in the correlation function. The cross correlation function of the lift and displacement signals is

essentially sinusoidal, and the resolution of typ was increased by fitting the correlation function in

the vicinity of the first maxima with a sinusoidal function. The phase lag of the sinusoid fitted to

the correlation function was iterated to within 0.001 seconds, which for 0.7 Hz lift signal is

equivalent to an uncertainty in §nj> of ±0.5°.

The dominant frequency of the drag force is 2£, therefore to relate the phase of the drag to the

displacement of the cylinder we approximate the general form of the drag force as:

Drag(0 * (VzplfDL) CD sin[2(2nfe / + ^Jrog)] + CDmean (2-5)

where CD is the amplitude of the fluctuating drag coefficient, CDmcan is the mean value of the drag

coefficient and §*<# is the phase of the drag with respect to the cylinder's displacement y(t). The

drag phase was determined by first calculating the cross correlation of the drag signal with the

square of the displacement signal. The phase of the drag force with respect to the cylinder's

displacement was calculated by finding the time lag of the first maxima in the correlation function

and relating this to the displacement period (\lfe not l/2£). Using this definition (j»̂ ag only has

physical significance over a range of 180°. The drag force tends to be less sinusoidal than the lift

force, however in all cases the values of fydrag presented were calculated from drag traces whose

correlation coefficient with a sinusoidal signal is greater then 0.6. This approach allowed us to

calculate values of ^ ^ for all cases except A/D = 0.25 at Re = 4400.

The cylinders vertical motion results in the transfer of energy between the cylinder and the fluid.

The energy transferred between the fluid and the cylinder per cycle is defined as:

T

E=\yLift{t)dt (2-6)

where y-2nfeAcos(2nfei)

and the lift force can be represented by equation 2-4: Lift(r)«('AplPDL) CL sin(2ic£ t + $/,/,)

Therefore when the lift force is sinusoidal the normalised Energy transfer, CE is approximated by

The energy transfer from the fluid to the cylinder is positive when 0°<<|>//;?<180o, otherwise the

energy transfer is negative, i.e. from the cylinder to the fluid. The oscillation of an elastically

mounted cylinder requires positive energy transfer. However, a cylinder forced to oscillate is not

subject to this constraint and all values of $nj) are physically possible.
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If the lift co-efficient is re-written in terms of its in-phase and out-of-phase components, we see

that the energy transfer, equation 2-7 is proportional to the out-of-phase component of the lift force:

sm(2nfcf) + [ Q s i n ^ ) ] COS(2TI/C0

As discussed in section 1.3.3 the total lift force, CL(t) can be expressed in terms of CLmneXt), the

lift force due to the vorticity field and Ciom(/), the contribution to the lift force from the apparent

mass. For convenience we reproduce equation 1-8:

In a significant proportion of the previous literature the vortex lift force has not been considered

and the total lift force is referred to simply as the "lift force". In this document the term "total lift

force" rather than "lift force'" will be used in cases where the vortex lift force has been evaluated

and discussed. When the cylinder oscillates transverse to the flow CLam is in-phase with the

oscillation of the cylinder and is given by:

(2-8)

where Sto is the Strouhal number of the stationary cylinder. The normalized vortex lift force

CLvott«(t), was calculated by subtracting CLam(t) from CL(t), the total lift force co-efficient and as

discussed in section 1.3.3, the vortex lift force can be expressed in the same way as the total lift

force in (2-4):

~ CLwrfas\n(2nfeH- <)>///'«>/**) (2"9)
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Figure 2-6 Vector diagram showing the relationship between CLif) and

The vectorial relationship between the total lift force and the vortex lift force is shown in

Figure 2-6.
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When the forces and the cylinder's displacement were plotted on the same axis it was obvious that

for some frequencies of oscillation there were significant variations in the phase and amplitude of

the forces on the cylinder. These changes were quantified by calculating the instantaneous phase

and amplitude of both the lift and drag forces as a function of time. The instantaneous phase of the

lift force was calculated by correlating a small segment of the lift trace with the sinusoidal

displacement function. Similarly to find the instantaneous phase of the drag force a small segment

of the drag force was correlated with the sqnare of the displacement function. Typically the length

of the force segments corresponded to three cylinder oscillations and the resulting instantaneous

phase v/as taken at the centre of the segment The instantaneous amplitude of the fluctuating forces

was calculated using the peak values over a small segment of the force traces, where the segment

length used was generally shorter than two oscillation cycles.

2.10 COMPUTER PROGRAMS

A number of programs were written to supplement commercial packages and existing Lehigh

software. A brief summary of the programs is ou*!:ned below.

Table 2-1 Summary of computer programs

PROGRAM FUNCTION

Experimental and initial Processing

ModPro.y^s

Bln-nfil.pas

Bln-sur.pas

Given: number of images, delay times and stepper motor displacement

profile

Calculates and inserts bias mirror and camera TTL commands in the

stepper motor displacement profile.

Given: access to a coordinate file containing 2 points on the cylinder,

the cylinders radius, magnification, velocity scale, bias velocity and

smoothing factor.

Calculates boundary line file and writes the input file for the Lehigh

program nfilvb.

Similar program to Bln-nfil but is for free surface flows. Requires a

point on the free surface in tlie coordinate file.

Force Processing

ForceDatcpp Given: raw lift, drag and displacement files.

Given: calibration factors for lift, drag and cylinder mass distribution.
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SplitDatcpp

AxisAngle.cpp

SegPhaseAmp.cpp

Given: A, Uf«, cylinder dimensions, axis angle, approximate

oscillation periods, filter specifications.

This is the main force-processing file; it performs the following

procedures on multiple sets of data. Results are output for each data set

as well as a summary file.

• Corrects for axis angle.

• Calculates accurate axis angle

• Calibrates lift and drag

• Subtracts in-phase force components (generally inertia) from lift

• Normalises forces -> CL, CD

• Calculates lift and drag spectra

• Filters lift and drag

• Calculates lift and drag phase

• Calculates Cmy and Cdy

• Calculates correlated / non-correlated lift

• Calculates displacement

Given: force files output from ForceDat and 2 time segments

Calculates the force properties for the 2 individual time segments.

Given: force files output from ForceDat

Calculates the relative angle of the strain gauge axis to the global axis.

Iterate program with ForceDat to calculate axis angle.

Given: force files output from ForceDat

Calculates instantaneous lift phase and amplitude for each oscillation

using a correlation of segments of the force traces. The length of the

segments for both the phase and amplitude calculations can be

specified.

Flow Field Processing

YFlip.cpp Given: velocity field (ASCII) and cylinder boundary file (ASCII)

Flips a velocity field in the y direction (change position of vectors and
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AveFieldsAny.cpp

WakeLength:cpp

sign of v component). For a symmetric wake this double the number of

images available for phase averaging

Given: multiple velocity fields (ASCII) and their associated cylinder

boundary files (ASCII), for either fully submerged or free-surface cases

• Changes the origin of the coordinate system to the cylinder center

• Calculates vorticity for each case - boundary condition ignores all

co-ordinates within cylinder.

• Calculates average velocity and vorticity over multiple cases

Given: velocity field (ASCII) and cylinder boundary file (ASCII)

Measure of wake length using attached positive vorticity

• Changes the origin of the coordinate system to the cylinder center

• Calculates vorticity for each case

• Calculates vertical location of maximum positive vorticity for each

streamwise location i.e. locus of positive maximum vorticity

• Calculates total attached positive vorticity (attached vorticity:

upstream of cut off point below minium vorticity threshold)

• Calculates vorticity moment due to attached vorticity

• Calculates effective center of maximum positive vorticity
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3 SUBMERGED OSCILLATING CYLINDER

In this chapter the frequency dependence of the wake of a cylinder undergoing forced oscillations

transverse to the free-stream is investigated for a range of oscillation amplitudes and Reynolds

numbers. As discussed in sections 1.4 and 1.5, both the wake structure and the forces on a

cylinder, are known to exhibit abrupt changes as the frequency of oscillation passes through the

natural Karman frequency of the stationary cylinder wake. Asfjfa passes through unity the lift

force shows a sharp increase in amplitude and a phase "jump" of close to 180°. Separate studies

have shown that around fjfo = 1 there also are significant changes in the timing and structure of the

near wake. The questions raised by these two sets of observations provide the primary motivation

for this research. In the initial sections of this chapter we show conclusive evidence that the

changes in the lift force and wake structure are intrinsically linked to a transition between different

wake states. The remaining sections consider the nature of the transition between wake states, the

universality of the wake states and the relationship between the wake states for a cylinder that is

forced to oscillate and the response branches of a freely oscillating cylinder. The initial detailed

investigation of the wake states focuses on a single set of flow conditions: Re = 2300 and AID -

0.5. The range of parameters are subsequently expanded to consider a range of Reynolds numbers,

Re = 2300 to 9100, and oscillation amplitudes, AID = 0.25 to 0.6.

For all but the lowest oscillation frequencies at AID = 0.25 the wake was "locked on" to the

cylinder oscillation and the dominant frequency in the lift forces was^ and the correlation of the

synchronised lift signal with a sinusoid was greater than 0.6. Thus, as discussed in section 2-9 the

lift force can be approximated by a sinusoidal function:

Lift(0 « QAplfDL) CL sin(2rc/c / + <)>/,/,) (2-4 reproduced)

where CL is the amplitude of the fluctuating lift coefficient and <t»nft is the phase with respect to the

cylinder's displacement y(i).

3.1 COMPARISON WITH PREVIOUS WORK

In Figure 3-1 (a & b) results from the current investigation showing the variation of c ^ and CL,

respectively witi\f,Jfo are compared with results from a number of previous studies. The data in

Figure 3-1 were obtained over a Reynolds number range of 2 300 to 60,800 and in all cases the

amplitude of oscillation was AID = 0.5. These plots demonstrate generic features that are evident

both in the previous work of Sarpkaya (1995), Gopalkrishnan (1993) and Staubli (1983b) and in the

present study. At low values of fjfo below the jump, the lift force has a small amplitude and is

approximately out-of-phase with the cylinder displacement, y(t). As fjfo increases the lift

properties do not vary significantly until, at a particular value of///o, there is simultaneously an
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abrupt increase in CL and a shift in ^ of the order of 180°. Asfjfo increases further the lift

properties change gradually: CL increases and faf, decreases. Thus, at higher values offjfo the lift

force is large in amplitude and is approximately in phase with the oscillation of the cylinder.
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Sarpkaya (1995),
Gopalkrishnan(1993),
Meioier (1973),
Staubli (1983),

Re = 5,000-25,000
Re = 10,000
Re = 13,000
Re = 60,000

T

•
•

Current,
Current,
Current,

Re = 9,100
Re = 4,400
Re = 2,300

Figure 3-1 Data from previous experiments: <J)Iift and CL as a function of fe/fo, A/D = 0.5.

The sharp changes in the phase and amplitude of the lift force represent a transition from a low-

frequency lift force to a high-frequency lift force. The properties of the lift force are associated

with either low oscillation frequencies before transition, or high frequencies after transition.

Before transition CL is small and ^ is large, while after transition CL is large and <(>/,/, is small, and

generally negative. The frequency at which this change occurs is defined as the transition

frequency/. For the different data sets in Figure 3-1 (a & b) there is some variation in the transition
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frequency. While the reason for this variation is not well understood, Staubli (1983b) observed

similar variations over a Reynolds number range of 25,300 - 271,000. When the oscillation

frequency is normalised by the transition frequency, as shown in the plots of CL and tytf, versus_£#

in Figure 3-1 (c & d), the universal nature of the jump in the phase and amplitude of the lift force

are clearly evident

o°

0.50 1.50 0.50 1.50

O Gorpalkrishnan (Art) = 0.3,10,000)
O Mercier (A/D = 0.25,13,000)
T Present (A/D = 0.25. Re = 9100)
• Present (A/D = 0.25. Re = 4400)

O Gorpalkrishnan (A/D = 0.75, Re = 10,000)
O Mercier (A/D = 0.5, Re = 13,000)
V Mercier (A/D = 0.75, Re = 13,000)
• Present (A/D = 0.5, Re = 9.100)
• Present (A/D = 0.5, Re = 4,100)
• Present (A/D = 0.5, Re = 2,300)

Figure 3-2 Data from previous experiments: CD „,„, as a function of f«/fo.

A compilation of results demonstrating the variation of the mean drag with/e//J is shown in Figure

3-2. The results are for a range of AID and Re values and include data from the current

experiments. There is a broad peak in CDmean at the point corresponding to the transition in the lift

force, but otherwise CDmcan does not vary strongly with/*//„. Thus, despite the jump in the phase

and amplitude of the lift force at transition, the values of CDmean either side of this transition are

very similar. The general shape of CBm(Mn vs.fjf, does not show a show dependence on either Re or

AID, however as AID increases there is an upward shift in the value of CD mcan.
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3.2 WAKE MODES AND FORCES

3.2.1 Stable Wake States

m 200

<t>lift
(degrees)

- 0 - Lift Phase, §m

- • - Lift Amplitude,

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Figure 3-3 a) Lift phase $ii/h and amplitude of the lift coefficient CL as a function of frequency ratio
fjfo at A/D = 0.5, Re = 2300. Instantaneous vorticity fields are shown in b) and c). The time trace
inserts show the instantaneous lift and displacement, where the timing of the image acquisition is
indicated by a small circle.

The variation of the phase and amplitude of the lift coefficient with fjfo at AID = 0.5 and Re = 2300

is shown in Figure 3-3(a). At lower values of fjfo, below fjfo = 0.81 the lift properties are

consistent with those found by previous investigations alfjfo below the sharp jump in the lift force.

Similarly, the lift properties for fjfo > 0.81 are consistent wilh those found by previous

investigations at fjfo above the jump. The instantaneous vorticity fields in Figure 3-3(b & c) show

the wake structure for values offjfo either side of the transition. The images, both acquired at the

top of the cylinder's oscillation cycle, show two distinctly different wakes. Figure 3-3(b) is

representative of the wake structure at lower fjfo before transition, while Figure 3-3(c) is

representative of the structure of the wake after the transition. Comparison of the two cases shows
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that the phase-referenced vortex structure about to be shed into the near wake are of opposite sign.

In Figure 3-3(b), at fjfo = 0.806, a negative vortex structure is about to be shed from the attached

shear layer while a positive initial vortex forms close to the cylinder. After the transition, a t / ^ =

0.869, the structure that is shed into the wake at the same phase point in the oscillation is positive

and the initial vortex is negative. The change in sign of the phase referenced vortex structures is

consistent with the shift of approximately 180° in the lift phase. Over the range oifjfa studied (fjfo

= 0.5 - 2.0), for frequencies of oscillation below the transition the basic characteristics of the low-

frequency wakes were always consistent with the wake in Figure 3-3(b), while ioxfjfa above the

transition, the high-frequency wakes were consistent with the wake in Figure 3-3(c). In this section

the general features of these two wakes and the forces on the cylinder are discussed for a specific

set of flow parameters (A/D = 0.5 and Re = 2300). Subsequently, it will be shown that many of

these features are very robust and can be used to describe the wakes for a wide range of A/D and

Re.

The wake modes either side of the transition are now considered in more detail. The time evolution

of the near wake vortex structures for the low- and high-frequency wakes are shown by the phase

averaged vorticity fields in Figure 3-4 and Figure 3-5 respectively, where each phase averaged

image corresponds to 9 instantaneous images. The phase averaged images at the top of the

oscillation, Figure 3-4(a) and Figure 3-5(a), have the same general form as the corresponding

instantaneous images in Figure 3-3. This indicates that the repeatability of large scale features in

the coz field is very high. At the top of the oscillation, the low-frequency wake in Figure 3-4(a) has

a long negative vortex structure extending across the base of the cylinder and into the lower half of

the wake. However, at the same pha.:c of the oscillation cycle the attached negative vorticity in the

high-frequency wake, shown in Figure 3-5(a), takes the form of a small concentrated structure at

the base of the cylinder. As the cylinder moves downwards, the negative vorticity in the low-

frequency wake is shed as two separate structures, as shown in Figure 3-4(b - d). The negative

vorticity from the end of the attached shear layer is shed into the lower half of the wake and forms

a counter-rotating pair with previously shed positive vorticity. The negative vorticity closer to the

cylinder is shed into the upper wake, and eventually forms a second counter-rotating pair with a

portion of the positive vorticity shed as the cylinder moves upwards in Figure 3-5(f - h). Thus, the

voracity forms two counter rotating pairs per cycle and, following the terminology of Williamson

& Roshko (1988), the shedding mode is described as 2P. The mode of vortex shedding for the

high-frequency wake is clearly different. As the cylinder begins to move downwards in Figure

3-5(a & b) a single positive vortex is shed into the near wake and the lower shear layer tends to

have a distinct angle away from the centre-line of the wake. A second shedding event occurs half a

cycle later, when a single negative vortex is shed just after the bottom of the displacement cycle,

resulting in the classical Karman, or 2S, mode of shedding. The evolution of the low- and high-
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frequency wake modes is similar to the modes observed by Govardhan & Williamson (2000) for an

elastically mounted cylinder. The relationship between the wakes of the forced and freely

oscillating cylinders will be discussed in more detail in section 3.7.

In Figure 3-4 the low-frequency wake there are very low levels of vorticity and velocity in the

region immediate behind the base of the cylinder. The streamwise extent of this region is a

measure of wake length and is analogous to the formation length of a stationary cylinder. The

variation of the size of this region will be discussed further in section 3.3.1. In contrast to the low-

frequency mode, the high-frequency wake has virtually no region of low vorticity immediately

behind the cylinder, and the vortex structures form very close to the cylinder. The vorticity fields

in Figure 3-4 and Figure 3-5 indicate that the transition from the low- to the high-frequency wake

corresponds to a change in the timing of the vortex shedding and also a change in the mode of

vortex shedding. The two modes of vortex shedding generate significantly different distributions

of vorticity downstream of the cylinder. In the high-frequency wake, negative vorticity is found

predominantly in the upper half of the wake, while the lower wake is dominated by positive

vorticity. However, for the low-frequency wake, vorticity of both signs is found throughout the

vertical extent of the wake.

The low- and high-frequency wake states, described above, have characteristic lift properties and

phase reference distributions of vorticity. The low-frequency wake in Figure 3-4 corresponds to

small values of CL and large values of ^jrag, the phase referenced initial vortex at the top of the

oscillation cycle is positive and the mode of vortex shedding is 2P. The properties of the high-

frequency state, shown in Figufc 3-5, are distinctly different; CL is large, fa/, is small and the 2S

wake has a positive initial vortex at the top of the oscillation cycle.
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Figure 3-4 Phase averaged images showing the evolution of the vortex structures during the
cylinder's oscillation cycle for the low-frequency wake mode: fjf,, = 0.806, AID = 0.5, Re = 2300. The
images were acquired at evenly space intervals such that a) and e) are at the extreme maximum and
minimum points of the displacement cycle respectively and c) and g) are at the mid-points.
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Figure 3-5 Phase averaged images showing the evolution of the vortex structures during the
cylinder's oscillation cycle for the high-frequency wake mode: fjfu = 0.869, AID = 0.5, Re = 2300. The
displacement phase of the images is as for Figure 3-4.
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3.2.2 Transition Between Wake States

The wake and force properties for oscillation frequencies immediately surrounding the transition

between wake states were examined in detail in order to understand the nature of the transition

between wake states. At each value of fjfo, the wake state at t = 0 is that of a stationary cylinder in

a free stream. For / > 0 the cylinder oscillates at a constant frequency and the oscillating wake

appears to be fully established less than 10 oscillations after t = 0. Tor a narrow band of

frequencies close to transition, after a number of oscillations self-excited changes were observed in

the lift properties. The band of frequencies over which self-excited transitions are observed is

called the transition region. It will be shown, by comparing the force and wake properties on either

side of these self-excited changes that these changes correspond to a transition from the low-

frequency state to the high-frequency state.

A typical example of these self-excited changes is shown in Figure 3-6, where the changes begin

after more than 150 oscillation cycles. The lift trace and corresponding instantaneous values of Q

and <j)/,yj are shown in Figure 3-6(a & b) respectively. For time less than 97 seconds the lift forces

are consistent with the low-frequency state described previously: the lift coefficient is small in

amplitude and is approximately out-of-phase with the cylinder's displacement. Conversely, for

times after 128 s the lift force is consistent with the high-frequency wake state. In between these

two states (97 < t < 128) there is a region where the lift force is not consistent with either the low-

or high-frequency states. The expanded time trace in Figure 3-6(c) shows the changing

relationship between the lift and displacement as the wake moves from the low- to high-frequency

wake state. The wake patterns in Figure 3-6(d) and Figure 3-6(e) were acquired at the top of the

oscillation cycle, at the times indicated on the lift trace. These images are representative of the

wake structures either side of the self-excited transition. The evolution of the vorticity fields before

and after the self-excited transition is represented by the phase averaged images in Figure 3-7 and

Figure 3-8 respectively. The phase averaged images were calculated using 9 instantaneous images

and the general structure of the phase averaged wakes at the top of the oscillation, in Figure 3-7(a)

and Figure 3-8(a), correlate well with the instantaneous images in Figure 3-6(d & e) respectively.

Despite the fact that the oscillation frequency is constant, the wake states either side of the self-

excited transition are clearly different. Before the transition the values of CL and (j»w are consistent

with the low-frequency state. Moreover, the wake is shedding in the 2? mode and is clearly

consistent with the steady-state low frequency state, described in conjunction with Figure 3-4.

After the self-excited transition the wake structure is consistent with the high-frequency wake in

Figure 3-5 and the force properties are also consistent with the high-frequency state. Thus, the

wake states either side of the self-excited transition are consistent with the wake states at much

lower and higher frequencies.

109



150
Time (s)

b)
__ | Low Frequency State [Transition

| 1 6 0

2.120

S 80
a

a 40

£ 0

High Frequency State
• Lift Phase - Lift Amplitude

» a," a,» d>

» O ' O • ! " ' ° .HO "ifo

1.5

1.0

0.S

50 _..--•••' 100 150 - 200

Time(s)
250 300

Figure 3-6 The lift time trace a) shows a self-excited transition occurring after more than 150
oscillation cycles at a constant excitation frequency of///, = 0.815. The corresponding variation in the
instantaneous values of the phase and amplitude of the lift coefficient are shown in b). The lift and
displacement traces during the transition are shown in more detail in c). The wake modes either side
of the self-excited transition are shown at time = 60 s, corresponding to image d) and time - 270 s
representing image e), where both images were acquired at the top of the oscillation cycle.
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Figure 3-7 Phase averaged images showing the evolution of the vortex structures before a self-excited
transition at/Jf,, = 0.815, A/D = 0.5 and Re = 2300, where the wake structure is consistent with the low-
frequency wake state. The phase of the images is as for Figure 3-4

n:



Figure 3-8 Phase averaged images showing the evolution of the vortex structures after a self-excited
transition at fjfu = 0.815, A/D = 0.5 and Re = 2300, where the wake structure is consistent with the
high-frequency state. The phase of the images is as for Figure 3-4
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For AID = 0.5 and Re = 2300, the self-excited transition always followed the sequence described

above and, once the high-frequency wake state was established, a return to the low-frequency state

was never observed. After the transition to the high-frequency state there is some variation in CL

and fay), which was not observed at higher values offjfo. During this variation, there appears to be

an inverse relationship between the instantaneous values of Q. and §),/!• The nature of this variation

and the behaviour of the wake within the transition region will be discussed in more detail in

section 3.6.

3.2.3 Split Forces

At a given time the values of CL and tyifi can be used to differentiate between the low- and high-

frequency wake states. For example, either side of the self-excited transition in Figure 3-6(b) the

instantaneous values of CL and fyujt were used to identify the segments during which the wake was

in either the low- or high-frequency state, as indicated by the boxes above the graph. When

segments, each containing only a single wake state, are analysed separately the difference in the

force properties for the two states is evident. In Figure 3-9 the properties within the transition

region have three separate data points for each oscillation frequency: the light coloured triangular

points were calculated from data containing the low-frequency state only, while the darker

triangular points represent the high-frequency state data. When the data was not split into segments

containing a single wake state the value, represented by the open circular points, is a weighted

average of the two wake states.

In Figure 3-9 the properties of the lift force, drag force and energy transfer are presented as

functions of fjfm for AID = 0.5 and Re = 2300. Within the transition region the time traces have

been split into segments containing either the low- or high-frequency wake state. The variation of

the force properties over the full range offjfo is shown in Figure 3-9(a), while in Figure 3-9(b) the

transition region has been enlarged to show clearly the variation of selected properties. The split

forces from the low-frequency wake state continue the trends shown by the single state data at

lower frequencies. Similarly, the split forces from the high-frequency wake state are consistent

with the data at higher oscillation frequencies. Presenting the data so that each data point contains

data corresponding to a single wake state illustrates that the change in the wake state corresponds to

the discontinuous change in the phase and amplitude of the lift force.

Lift Force

The variation of the phase and amplitude of the lift force in Figure 3-9(a)(/ & if) respectively is

consistent with the results of previous experiments, as shown in Figure 3-1. Within the transition

region the averaged values of <!»/,/, are weighted strongly towards the high-frequency state, not only

because this state occurred for longer, but also because of the relatively high amplitude and
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coherence of high-frequency state lift force. It is possible that in this transition region results of

previous studies have calculated data points using force traces containing a mixture of low- and

high-frequency states. This could explain why intermediate values of ^ have been reported in

previous investigations, but in our data the intermediate values occur only for data points

representing more than one wake state. Additionally, as the intermediate values of ^ appear to be

linked to the averaging of data from two different wake states this may explain the change in the

direction in which §/# rotated during the transition reported by Gopalkrishnan (1993) for increasing

oscillation amplitudes.

Energy Transfer

As discussed in section 1.3.2 the energy transfer from the fluid to the cylinder per oscillation is

simply the time integral of the product of the lift force and the cylinder's velocity. Thus, for an

approximately sinusoidal lift force the energy transfer can be represented by:

CE ~ 7t CL (AID) sin((t>/j0) (1-4 reproduced)

The variation of the energy transfer between the fluid and the cylinder is shown in Figure

3-9(a)(in)- For the low-frequency state the energy transfer is small, positive and relatively

constant. The direction of the energy transfer can always be gauged from <)>///, and the positive

values of Ce for the low-frequency state correspond to values of <))«/, that are just below 180°. At

the transition from the low- to high-frequency state there is a large increase in CL, but ^ jumps

downward towards 0° and sin(<t>/,j?) is very small, resulting in small values of CE. The first split

high-frequency state value of CE atfe/fo = 0.840 is positive, corresponding to a value of fa which is

just above 0°. However, at fjfo = 0.846 §m is below 0° and C£ is small and negative. hsfjfo

increases further, CE becomes increasingly negative.
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Figure 3-9a) Variation of the lift, drag and energy transfer with/,//„: /) $Bfi, ii) CL, Hi) CE, iv) ^dng, v)
CB, vi) CDmtan. The circular data points are the values calculated using the entire data trace: *
representing a single wake state outside the transition region, O representing a weighted average of
more than one wake state inside transition region. The triangular data points within the transition
region represent data segments containing a single wake state only: A low-frequency wake state
segment, V high-frequency wake state segment.
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Figure 3-9b) Enlarged plots showing in detail the transition region for selected plots in part a) : /) ^Bfi,
ii) CL, Hi) CE, iv) ^Jrag, v) Co, vi) CDmeon. For comparison in v) the results of Bishop & Hassan (1963) are
reproduced showing a hysteretic variation of CD through transition as fjfo is varied in a continuous
fashion.
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Drag Force

The magnitudes of the fluctuating and mean drag force are of obvious physical importance, but

until now the phase of the drag force has received little attention. The dominant frequency of the

drag force is two times the frequency of oscillation (2/c), therefore to relate the phase of the drag to

the displacement of the cylinder the general form of the drag force was approximated as:

Drag(r) e MplfDL) CDsm[2(2nfet + c ^ ) ] + CDmcan (3-1)

where CD is the amplitude of the fluctuating drag coefficient, CDmean is the mean value of the drag

coefficient and ^ ^ is the phase of the drag with respect to the cylinder's displacement X0- Using

this definition $drag only has physical significance over a range of 180°, i.e. §<iras = (jvrag ± 180°, as

fydrag is the phase of the drag signal with respect to a signal whose period is twice that of the drag.

Therefore, shifting (ju^ by 180° does not change the relationship between the drag and the

displacement and is in fact analogous to shifting the lift phase by 360°. The drag force tends to be

less sinusoidal than the lift force, however in all cases the values of ^jrag presented were calculated

from drag traces whose correlation coefficient with a sinusoidal signal is greater than 0.6. This

approach allowed us to calculate §drag over the full range offjfo for all cases except AJD = 0.25 at

In Figure 3-9(a)(fv) (j^g is plotted as a function offjf0. At the transition from the low- to high-

frequency state, Figure 3-9(a)(iv) shows that there is a jump in the drag phase of approximately

240° as ifjrag drops from 225° to -15°. The vortex lift force (not shown in Figure 3-9) and the drag

force represent the forces on the cylinder due to changes in the vorticity fields. Thus the drag

phase is plotted such that the jump in §jrag at transition is in the same direction and of a similar

magnitude to the jump in ((>/,/, „>««• The vortex forces on the cylinder will be discussed further in

section 3.4.3. According to the definition of the drag phase in equation 3-1 any value of §jrag is

equivalent to <jw,g ± 180°, therefore the jump in $jrag can also be correctly described as a downward

jump of approximately 60° from 45° to -15° The established convention is to present by, such that

the transition from the low-to high-frequency state corresponds to a downward jump in §nfi, but the

lift and drag phases can also be presented such that at the transition there upwards jump in the

phase. Although it may appear unnecessary to present a large downward phase shift of say 270°,

rather than a smaller 90° phase shift in the opposite direction, this consideration does not have

enough merit to break with the established convention.

The overall trend of the drag amplitude in Figure 3-9(b)(/V) is to increase with increasing^,, with

a small peak around transition. This result is broadly consistent with the observations of Bishop &

Hassan (1963), however the results of Bishop and Hassan (1963) were presented in arbitrary units

precluding direct comparison of the two data sets. As shown in Figure 3-9(b)(v), by varying/^ in
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a continuous fashion Bishop and Hassan (1963) obtained a pronounced cross-over in the values of

CD over a wide hysteretic transition region. The higher values of CD appear to occur at the highest

attainable frequencies for the low-frequency state and the lowest attainable frequencies for the

high-frequency state. In our case, ,£//"„ was varied in a stepwise fashion with the wake returning to

the stationary cylinder state between each value of fjfo. Interestingly, closer examination of the

transition region in Figure 3-9(b)(iv) shows that the values of CD for the low- and high-frequency

states "cross-over" between the 2nd and 3rd transition point The crossover region in Figure

3-9(b)(iv) is confined to values offjfo where a self-excited transition occurs but the general nature

of the crossover is similar to that observed by Bishop & Hassan (1963) in the hysteretic transition

region.

The mean drag in Figure 3-9(a)(vi) increases only slightly with increasing fjfo with a very small

peak around the transition between the low- and high-frequency states. These results are generally

consistent with the results of previous experiments shown in Figure 3-2. However, it appears that

the magnitude of the peak in CDtncan near transition may vary with flow parameters such as Re and

AID.

While there is an abrupt change in §jrag as the wake moves from the low to high-frequency state,

the changes in CD and Comwn are relatively minor. hsfjfo increases or decreases towards the

transition the values of both CD and Co men increase and the transition between wake states is

associated with a small peak in Co and Co mean rather than an abrupt jump. Thus, despite the

distinct change in the structure of the near wake at transition, the changes in the overall vertical

movement of vorticity results in relatively small changes in Co and CDmean. The increase in CD and

CD mean as the wake approaches transition indicates that there are some systematic changes in the

vertical distribution of vorticity as the wake approaches transition. At other values of A/D and Re

the peaks in Co and CD mCan are more exaggerated and in some cases there is a small jump in CD at

transition.

3.2.4 Idealised Variation of Vortex Force with f/f0

A thought experiment will now be outlined which relates the lift and drag forces on the cylinder to

the vorticity field and attempts to predict the general dependence of the vortex forces on fjfo for a

given idealised mode of vortex shedding.

The vortex force on a body can be written according to equation 1-6 as

V (3-2a)

Considering only the contribution from the spanwise vorticity component coz, the drag force (which

is equal to the vortex drag force) on the cylinder varies with
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IV (3-2b)
Vc

Therefore a positive drag force occurs when positive vorticity (coz), typically generated on the

lower surface of the cylinder moves downwards and when negative vorticity, from the upper

surface of the cylinder, moves upwards. Similarly the vortex lift force varies with

dV (3-2c)
— Pc

Thus a positive vortex lift force is generated by the downstream movement of positive vorticity and

by the upstream movement of negative vorticity. The time derivative in equations 3-2 indicates

that force is generated by the change in the position of the vorticity, rather than the fact that the

vorticity has a position that is a certain distance from the cylinder. Examination of equation 1-6,

which relates the vorticity field to the force on the cylinder, allows interpretation of the vortex lift

and drag forces in terms of the time dependent spanwise vorticity field.

A simplified view of vortex shedding is that it involves the movement of vorticity in both the

vertical and streamwise directions. In a symmetric wake the shedding of both positive and negative

vorticity results in a net downstream movement of both signs of vorticity and, on average, the

positive and negative vorticity are displaced by an equal and opposite amount in the vertical

direction. The drag force does not differentiate between the vertical downward movement of

positive vorticity and the movement of negative vorticity upwards, as both instances result in a

positive contribution to the drag force. The vortex lift force however does differentiate between the

streamwise movement of vorticity of the opposite sign, with the downstream movement of positive

vorticity resulting in a positive contribution to the lift force and the movement of negative vorticity

downstream causing a negative contribution to the lift force. When the wake is symmetric and

phase locked the peaks in the lift force occur once per oscillation and the structure of the wake

corresponding to consecutive peaks will be essentially the same. However, there are two peaks in

the drag force per oscillation and at consecutive peaks the wake will be a mirror image of itself.

Although consecutive peaks in the drag force correspond to two different wake structures the drag

force cannot be used to differentiate between the two wakes. This is the physical reason underlying

the statement in section 3.2.3 that §jrag = §jrog ± 180°.

The variation of the forces on the cylinder ssfjfo increases will now be considered for the case of

an idealised mode of shedding where the phase-referenced vorticity distribution does not vary with

fjfo. During the oscillation cycle the drag force on the cylinder varies with time according to the

rate of change in the vertical distribution of vorticity. The magnitude of the mean drag force

CDmcan depends on the net movement of vorticity during the oscillation cycle. Typically, during an

oscillation cycle there is a net displacement of positive vorticity downwards, and an equivalent net
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displacement of negative vorticity upwards, resulting in a positive mean drag force. Thus, it can be

argued that CDmean is associated with the mean vertical width of the wake. During the oscillation

the fluctuating component of the drag force, and also the lift force, depends the mode of vortex

shedding. Assuming that the vortex shedding mode, or in other words the distribution of the

vorticity during the oscillation cycle, does not vary wi\hfjfo then, for this idealised case, the mean

drag force will not vary with .£//„. hsfjfo increases the period of the oscillation cycle becomes

shorter and to generate the same distribution of vorticity throughout the cycle the rate of change of

j dV must increase. Therefore, for the idealised case the amplitude of the fluctuating drag
Vc

force Co will increase linearly v/ithfjfo.

The same argument can be applied to the vertex lift force. For a fully submerged cylinder, equal

amount of positive and negative vorticity are convected downstream during an oscillation cycle

resulting in a zero mean vortex lift force. The fluctuating vortex lift force is generated by the

variation of the streamwise vorticity distribution during the oscillation cycle. Therefore, as for the

drag force, for an idealised constant mode of vortex shedding the amplitude of the vortex lift force

increases linearly •withfjfo.

The total lift force on the transversely oscillating cylinder has two components: the vortex lift force

and the apparent mass force. The mean apparent mass force over an oscillation cycle is zero

however the amplitude of the apparent mass force increases with fjfo squared. The argument above

indicates that for a constant mode of vortex shedding the amplitude of the vortex lift force increases

linearly with fjfo. However, as the vortex and apparent mass components of the lift force are

generally not in-phase with each other the variation of the total lift force v/YihfJfo is complicated.

The experimental results in Figure 3-2 and Figure 3-9 show that away from the transition region

CDmean increases only slightly with increasing fjfo and in some cases outside the transition region

CDme<,n is essentially constant. Additionally, the experimental results in Figure 3-9 show that

outside the transition region CD increases almost linearly with increasing fjfo. The peaks in both

Comcon and CD asfjfo approaches the transition region indicate that the vertical distribution of

vorticity is modified prior to the transition occurring. The experimental results, showing the

variation of the vortex lift force with fjfo, will be discussed in section 3.4.
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3.3 TRANSITION

The transition between the low- and high-frequency states results in significant changes in both

forces Gn the cylinder and the structure of the near wake. Therefore, it is important to have an

understanding of how and why this transition occurs. A transition between two states occurs in a

large number of flows, for example the transition between a laminar flow and a turbulent flow.

However, determining the exact origin of a transition between two different states is a very difficult

problem. Using stability theory it is often possible to determine how the stability of a system

changes leading up to and during a transition, but such analyses do not necessarily explain why the

system is changing. Generally speaking, transitions occur when the controlling parameter, in our

casefJf,, reaches a critical value. Further changes in the controlling parameter cause the original

state to become unstable and the system moves to a new state. The variation of the forces on the

cylinder as fjfo approaches transition, in particular the almost constant values of ̂  and <j></rog

shown in Figure 3-9(a)(/ & iv) give very little indication that transition is about to occur. In this

section we examine the systematic changes in the structure of the near wake as fjfo increases

toward transition, as well as the changes in the nature of the self-excited transition as fjfo increases

within the transition region.

3.3.1 Wake Length

The vorticity fields in Figure 3-10 show the changes in the structure of the near wake as fjf,

increases from 0.695 to 0.869. The vorticity fields were calculated by phase averaging 9

consecutive images at the extreme displacement of the cylinder, with the exception of the image at

fjfo = 0.781, where only 7 images were available. These images represent a "short term" average

wake structure and demonstrate subtle changes in the two wake modes with changing oscillation

frequency. The decrease in the peak vorticity due to the averaging of instantaneous vorticity fields

did not vary with eitherfe/f, or wake state.

Figure 3-10(a) shows the low-frequency wakes as fjf, increases from 0.695 to 0.815. As fjf,

increases the general mode of shedding is unchanged but there is a decrease in the streamwise

length of the attached vortex structures. Over this range of frequencies (fy//, and fang are

approximately constant (in section 3.4 it will be shown that $nftmria is also essentially constant).

Therefore, the changes in the position of the vortex structures in Figure 3-10(a) are not phase

related but are due to a contraction of the wake. These observations are consistent with those of

Ongoren and Rockwell (1988), and Gu et al (1994).
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Figure 3-10(a) Phase averaged vorticity fields showing the variation of wake length with/ / / , for the
low-frequency state. All images are at the top of the cylinder's oscillation.
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Figure 3-10(b) Variation of the phase related streamwise position of the centre of attached positive
vorticity, L^,, with fjfo and wake state. The schematic on the right hand side demonstrates the
definition of Z.̂ ,. at the top of the cylinder's oscillation.

Figure 3-10(c) Phase averaged vorticity fields at higher values off/fa- In images i) and ;7) the wake
appears to be in an intermediate state, while in Hi) and iv) the wake is in the high-frequency state.

At fjf,, = 0.815 and 0.825 a self-excited transition from the low- to the high-frequency state was

observed. For fjfo = 0.815 the low- and high-frequency modes are shown in Figure 3-10(a)(v) and

Figure 3-10(c)(//7) respectively where for the high-frequency mode the vorticity is wrapped tightly

around the cylinder and the wake length is clearly shorter. The vorticity fields in Figure

3-l0(c)(/ & /;) atfjf, = 0.825 were acquired at two separate time periods when the wake appeared

to be in between the low- and high-frequency wake states. During these periods the values of CL

and <!>,/, were not fully consistent with either the low- or high-frequency states and the
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corresponding structure of the near wake is also not fully consistent with either the low-frequency

wake in Figure 3-10(a) or the high-frequency wakes shown in Figure 3-10(c)(/« & iv). This wake

can be described as an intermediate wake, where properties of the intermediate wake state will be

discussed further in section 3.6.

Although visual inspection of Figure 3-10 reveals a contraction of the wake a&fjfo increases, there

is no single universally accepted method to calculate the length of the wake. Historically, the wake

formation length has been defined in a number of ways, generally using a series of point

measurements with high temporal resolution. Our P1V data has limited temporal resolution but

high spatial resolution and a different method to represent the wake length is chosen. Given the

nature of the problem we are investigating it is logical to calculate the wake length either at a fixed

phase point, or over a very large number of phase points. The variation of the wake length at the

top of the cylinder's oscillation can be quantified by calculating Lcpv, the streamwise distance from

the base of the cylinder to the centroid of the attached positive vorticity. The region of attached

vorticity was defined by applying a threshold minimum vorticity level to determine the boundary.

Due to the experimental difficulties in resolving the boundary layer around the front of the

cylinder, Lcpf was calculated by taking moments of the attached positive vorticity downstream of

the centre of the cylinder. A schematic demonstrating the definition of Lcpv is shown in Figure

3-10(b). Lcpv is not a direct measure of wake length, but is a property that appears to vary directly

with the wake length and is also easily quantified at a particular phase point. Moreover, for the

case of an oscillating cylinder the phase referenced length of the attached positive vorticity appears

to be related to the transition between the low- and high-frequency wake states.

Figure 3-10(b) shows that asfjfo increases from 0.695 towards transition the wake remains in the

low frequency state but Lcpv decreases. However, as fjfo increases further the low-frequency state

is no longer stable and there is a transition from the low- to the high-frequency state. The variation

of Lcpv with fjfo shows that the transition to the high-frequency wake corresponds to a contraction

of the wake below a certain critical length. For frequencies within the transition region, after

startup the wake moves first to the low-frequency wake state and the wake length is very close to

the critical value. From cycle to cycle there is some variation in the wake length but after the

transition to the high-frequency state the wake length is significantly shorter. Interestingly, at

transition Lcpv becomes negative i.e. the centre of the positive vorticity moves back behind the rear

of the cylinder. However, the fact that there is a of change in sign of Lcpv at transition is not

necessarily physically significant as the calculation of Lcpx, does not include all attached positive

vorticity, and is related to a particular phase point in the cylinder's oscillation.
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In light of the changes in the length of the near wake preceding transition, observed in both this and

the previous work of Ongoren & Rockwell (1988a) and Gu et al (1994), it is reasonable to suggest

that the wake length plays a role the low- to high-frequency state transition. The most robust

feature of the transition is the large shift in the phase of vortex shedding. Vortex shedding depends

on interaction between the two shear layers and as the wake contracts this interaction is altered.

The contraction of the wake as fjfo increases towards transition does not result in significant

changes in the mode or phase of vortex shedding. However, the contraction of the wake below a

critical length coincides with the transition and a change in the way the shear layers interact. If the

interaction, which originally resulted in vortex shedding at a particular phase point, is significantly

altered by the contraction of the wake below a critical length then this contraction may be the

reason for the transition to the different stable wake state. For the case of the oscillating cylinder,

after the transition to the new wake state the vortex shedding occurs at a very different phase point

and at AJD = 0.5 there is a change in the mode of vortex shedding from 2P to 2S.

As fjfo increases towards transition there is an increased disparity in the relative strength of the

vortices in the "2P pairing". This is demonstrated in Figure 3-10(a), where for increasing./^, there

is a decrease in the strength of the positive vortex structure that has been shed into the upper wake.

Although this field of view does not show the pairing of the positive and negative vorticity the

symmetry of vortex shedding means that the relative strength of the upper and lower positive

vortex structures are indicative of the relative strength of the vortices within the counter rotating

pairs: i.e. the weaker positive vortex in the upper wake forms a counter rotating pair with a stronger

negative vortex. The formation of the 2P mode depends on each of the shear layers shedding two

separate structures. In Figure 3-10(a- e) the long negative vortex structure deforms into two

structures as it interacts with the positive vorticity in the lower shear layer. Asfjfo increases, the

wake contracts causing the long negative vortex structure to be located further around the base of

the cylinder. Additionally v&fjfo increases the vortex structure that is about to be shed from the

end of the shear layer becomes progressively weaker, resulting in vortex pairs of unequal strength.

Interestingly, despite the changes in the length of the attached wake and the relative strength within

the vortex pairing, prior to the transition both the lift and drag phase remain relatively constant.

3.3.2 State Selection Within the Transition Region

Within the transition region atA/D = 0.5 the system tends to be in one of two stable states: the low-

or high-frequency states. At A/D = 0.5 and Re = 2300, the self-excited transition was irreversible

and transition always occurred from the low-frequency state to the high-frequency state.

Therefore, for frequencies of oscillation within the transition region when the cylinder starts

oscillating the wake state changes first from the stationary cylinder state to the low-frequency state,

then, after a period of time, the wake undergoes a self-excited transition to the high-frequency state.
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The range of frequencies over which the self-excited transition was observed is quite narrow and at

A/D = 0.5 and Re = 2300 the self-excited transition was observed for 0.806 </*/£< 0.821. In

Figure 3-11 (a) the average time from startup to transition is plotted as a function of fjfo, where

each value was calculated from 4-6 separate experiments and the vertical bars represent one

standard deviation. Asfjfo increases within the transition region both the average time to transition

and the variation in the time to transition decrease.
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Figure 3-11 a) The variation of the time from startup to the self-excited transition to the high-
frequency state, at A/D = 0.5 and Re = 2300. b) Schematic showing an idealised variation of the
stability of the meta-stable system, represented by an idealised system potential energy cp, as fjfo

increases through the transition region.
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Within the transition region atA/D = 0.5 and Re = 2300, the wake moves to the low-frequency state

immediately after start up but after the self-excited transition the wake remains in the high-

frequency state and the high-frequency state appears to be the most stable state. Thus, within the

transition region the low-frequency state can be interpreted as a metastable state; which may persist

for a period of time but eventually the wake will move to the more stable high-frequency state. For

the wake to transition from the metastable low-frequency state a certain level of perturbation is

required. As the low-frequency state becomes less stable the level of perturbation required for the

transition will decrease and at any given instant the probability that transition will occur is

increased. Therefore, the average time from start-up to the self-excited transition is a measure of

the stability of the low-frequency state. The decrease in the average time to transition, shown in

Figure 3-11 (a), indicates that asfjfo increases the metastable low-frequency state becomes less

stable.

Figure 3-1 l(b) is a graphical representation of the variation of the relative stability of the low- and

high-frequency states as fjf, increases within the transition region. The potential energy of the

system 9 is not a quantity that we are able to measure and is used somewhat loosely to represent a

variable that is minimised by a stable system. As described in section 1.6.1, a metastable state

occurs when the potential is locally minimised but there is another more stable state where the

potential is absolutely minimised. Within the transition region aXA/D ~ 0.5 and Re = 2300 the low-

frequency state is a metastable state. As fJf, increases the stability of the low-frequency state,

represented by the depth of the well in Figure 3-1 l(b), decreases until the low-frequency state is

unstable and the wake is exclusively in the high-frequency state.

During the experiments it was observed that transition could be "forced" by disturbing the flow

upstream of the cylinder. These large and unqualified perturbations were generated using an

oscillating rod located several meters upstream of the cylinder. For values of fjfo just below the

transition region the perturbations caused a transition to the high-frequency state, but after a

number of oscillations the wake returned to the low-frequency state. This suggests that for these

values offJ/o the high-frequency state can exist as a metastable state but that the low-frequency

state is more stable.

When the cylinder starts oscillating at t = 0 the initial stationary cylinder becomes unstable and the

wake must move to a state which is stable or metastable. For oscillation frequencies within the

transition region at A/D = 0.5 and Re = 2300 the wake always moved from the stationary cylinder

state to a metastable low-frequency state. The fact that the wake has an initial preference for the

low-frequency state is represented schematically in Figure 3-1 l(b) by placing the metastable low-

frequency state between the unstable stationary cylinder state and the stable high-frequency state.

The relationship between the initial unstable stationary cylinder state and the low- and high-

frequency states is expected to depend on the flow and oscillation parameters. If, for an amplitude
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of A/D = 0.5, the Reynolds number is increased from 2300 to 9100 a change in the nature of the

self-excited transition is observed. Within the transition region at Re = 9100 the wake moves first

to the high-frequency state and after a period of time there is a self-excited transition to the low-

frequency state. The self-excited transition, from the high- to low-frequency state is shown in

Figure 3-12 in terms of the total lift phase. Immediately after startup ^ is close to -45° and

therefore consistent with the high-frequency state, however after / * 200 s there is a self-excited

transition and §,,fi moves to a value of just over 180°, which is consistent with the low-frequency

state. The reversed direction of the self-excited transition at Re = 9100 compared to Re - 2300

indicates that in this case the wake prefers to move from the stationary cylinder state to a meta-

stable high-frequency state. At other values of A/D or Re a self-excited transition was not always

observed, indicating that the transition region is either very narrow or does not exist. Changing the

relationship between the initial stationary cylinder state, at t = 0, and the low- and high-frequency

states by changing AID or Re may alter the value, or values, of fjfo at which the transition between

the two states occurs. Additionally, the change in the relative stability of the initial stationary

cylinder state and the low and high-frequency states may also affect the nature of the self-excited

transition and the width of the transition region.
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Figure 3-12 Variation of fyn/t during a "reverse" self-excited transition from the high-frequency state
to the low-frequency state at A/D = 0.5, Re = 9100 nndfjfo = 0.992.
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3.4 UNIVERSALITY OF THE LOW- AND HIGH-FREQUENCY STATES:

VARIATION WITH A/D AND Re

Until now the focus has been on the frequency dependence of the wake for constant values of

Reynolds number and oscillation amplitude. The investigation is now extended to look at three

Reynolds numbers, Re = 2300, 4400 and 9100, and a range of oscillation amplitudes, A/D = 0.25,

0.4,0.5 and 0.6. Rather than consider the forces on the cylinder as a function of A/D and Re for a

fixed frequency of oscillation, the frequency dependence of the forces at different values of AID

and Re is examined. The compiled data from previous experiments, presented in Figure 3-1, shows

that the simultaneous jump in fy,,fi and Q , occurs for a wide range of Reynolds numbers (Re = 2300

to 60,000). Additionally, Staubli's (1983a & b) data shows a similar jump in fyyi and CL for a wide

range of oscillation amplitudes (AID » 0.02 - 1.0). Therefore, the transition at fjfo * 1 appears to

be a universal feature of these flows for a wide range of AID and Re.

It die following section the frequency dependence of the phase and amplitude of the lift force is

considered for a range of oscillation amplitudes. As discussed in section 1.3.3, the total force

consists of two components: a vortex component due to the vorticity in the cylinder's wake and an

apparent mass component that is directly related to the cylinder's acceleration. Traditionally the

total lift force has been referred to as the "lift force" and up to this point this convention has been

followed. However, in this section the vortex force component of the lift force is also examined

and the results will be discussed in terms of the "total lift" and "vortex lift" to clearly differentiate

between the two. For consistency we will continue to use 4>///, and CL, rather than §iy>totai and CLu>lai

to represent the phase and amplitude of the total lift force. The variation of the vortex forces with

fjfo and A/D are then considered in terms of §uf, wnex, CL, CE, <t»jrog, Q> and Co mean- Finally the

universality of the forces on the cylinder and the mode and phase of vortex shedding are considered

for a range of oscillation amplitudes and Reynolds numbers.

3.4.1 Variation of Total and Vortex Forces with A/D

In Figure 3-13 the phase and amplitude of the total lift force on the cylinder are plotted as a

function of fjfo for A/D = 0.4,0.5 and 0.6, at Re = 2300. These experiments focused on a narrow

range of fjfo close to transition, but the frequency range incorporates both the low- and high-

frequency wake states. As AID increases form 0.4 to 0.6 Figure 3-13(a) shows that there is a

significant increase in the value of <j>w// associated with the low-frequency state: at AID = 0.4, the

average values of <(>/,/, before transition is approximately 102°, whereas at A/D equal to 0.5 and 0.6

the average values of $Uft before transition are 154° and 193° respectively. The fact that the value of

tylfi for the low-frequency state passes through 180° as AID increases from 0.5 to 0.6 is significant

because it means there is a change in the direction of the energy transfer between the fluid and the
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cylinder. For A/D = 0.4 and 0.5 §,ifi is less than 180°, thus positive energy is delivered to the

cylinder from fluid, indicating that vortex-induced vibrations would occur. However, at higher

A/D the energy transfer is negative. Intuitively this makes sense, as the oscillations of an elastically

mounted cylinder do not oscillation amplitudes above a certain value, i.e. above a certain amplitude

the net energy transfer to the cylinder is no longer positive. The value of $/# for the high-frequency

state does not vary significantly with AID. Therefore as A/D increases from 0.4 to 0.6 there is a

significant increase in the downward jump in fop at transition. At higher Reynolds numbers Staubli

(1983b) also found that Afynfi at transition increases with A/D. For frequencies of oscillation close

to transition Figure 3-13(b) shows that for both wake states there was only a smail change in the

values of Ct as AID increased from 0.4 to 0.6. However, our data at higher Re and Staubli's

previous results suggest that CL increases with A/D and that this effect is most obvious at higher

frequencies well above transition.

a)
180

90

45

0

: • A • A A "

• • •

* * •

-

- a6
A O

i . ,

• A/D = 0.4
• A/D = 0.5
A A/D = 0.6

-

-

a ;

b) z o

1.5

S.0

0.5

n n

-

-

-
A
•

• i

t
9

A

A
A 6s •

s

. . , . .
a

*

• A/D
• A/D
A A/D

-

-

= 0.4
= 0.5
= 0.6

0.75 0.60 0.85 0.90 0.95 0.75 0.80 0.85 0.90 0.95

Figure 3-13 Frequency dependence of a) §,ift and b) Q for AID = 0.4,0.5 & 0.6 at Re = 2300.

At the higher Reynolds number of 4410, shown in Figure 3-14, similar trends in the behaviour of

the total lift force are observed. In Figure 3-14(a) as AID changes from 0.25 to 0.5 there is a large

change in the value of ^ for the low-frequency state and a corresponding change in the direction

of energy transfer, but for the high-frequency state §i,ft does not vary significantly with AID. In

Figure 3-14(b) the amplitude of the total lift force at .Re = 4100 increases with A/D and, particularly

for the high-frequency state, the increase in CL is more obvious than at Re = 2300.

For the same values oifjfo and AID as in Figure 3-13 the vortex forces on the cylinder are plotted

in Figure 3-15. To recap, the vortex force is the force due to the movement of vorticity, i.e. the

force component that is directly related to the wake. The vortex force is calculated by subtracting

the apparent mass force from the total force, where the apparent mass force, Fam, is in-line and in-

phase with the oscillation of the cylinder. The drag force on the cylinder is generally not

specifically designated as a vortex force but as the apparent mass component of the drag force is
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zero the total drag force is by definition a vortex force. The energy transfer between the cylinder

and the fluid can be expressed in terms of either the vortex or total lift force, see equation 1-10.

The apparent mass component of the total force makes no net contribution to the energy transfer,

therefore CE can be associated with the vortex lift force.

a) 2 7 0

Figure 3-14 Frequency dependence of a) fa and b) CL for AID - 0.25 & 0.5 at Re = 4410.

Figure 3-15(a) shows that for both the low- and high-frequency states as AID increases from 0.4 to

0.6 there is very little variation in the phase of the vortex lift force. The collapse of <t>imvortex in

Figure 3-15(a) contrasts with the variation of ^ in Figure 3-13(a), where for the low-frequency

state as AID increases from 0.4 to 0.6 there is a shift in V of approximately 90° or V* of an

oscillation cycle. The phase of the drag force, shown in Figure 3-15(b), also collapses for AID =

0.4 to 0.6. The fact that the phase of both the vortex lift and drag forces collapse suggests that the

phase of vortex shedding depends primarily on wake state and is approximately independent of the

amplitude of oscillation. The relationship between the phase of the vortex forces and the phase of

vortex shedding will be considered further in the remainder of section 3.5 as well as in section 3.6.
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c) CE, d) CLrortm e) d, f) CDmam for AID

Unlike the amplitude of the total lift force, the amplitude of the vortex lift force, shown in Figure

3-15(d), varies strongly with AID. For the low-frequency state as AID increases from 0.4 to 0.6 the

value of Civarta increases by more than 50%. However after the transition to the high-frequency

state CLvorta does not vary strongly with AID, and appears to decrease slightly with increasing AID.
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At the transition from the low- to high-frequency state CL jumps upwards however at the same

point in Figure 3-15(d) there a downward jump in CLmrta, where the magnitude of this jump gets

smaller as AID decreases. If this trend continued then for even smaller oscillation amplitudes

Civona would actually jump upwards at transition. Figure 3-15(d) shows that for both the low- and

high-frequency states CLwrta increases with increasing.^//,. The approximately linear increase of

Qvor/er with fjfo is consistent with the discussion in section 3.2.4 relating the vortex forces to an

idealised wake. As shown in Figure 3-15(e &f) both the amplitude of the fluctuating drag force

and the mean drag force increase with increasing AID. However, the general form of the variation

of both CD and CDmem v/iihfJf,, does not change significantly as AID increases from 0.4 to 0.6.

Unlike the phases of the vortex forces, which showed a relatively good collapse over the range of

A/D studied, the amplitudes of the vortex forces do not collapse but vary systematically with AID.

For a given wake mode, it is expected that the displacement of vorticity will vary with AID as for

higher oscillation amplitudes the cylinder moves further during the oscillation cycle. Therefore, at

a constant value of fjfo> as AID increases there is an increase in the rate at which vorticity is

displaced. Thus, according to equation 3-2b both the mean and fluctuating components of the drag

force would be expected to increase with AID.

The energy transfer between the cylinder and the fluid is plotted in Figure 3-15(c), where, as

described in equation 1-10, the magnitude of the energy transfer is directly related to AID but the

direction, or sign, of the energy transfer depends on the value of the lift phase. For the low-

frequency state the energy transfer increases with decreasing AID, passing through zero between

AID = 0.5 and 0.6. The corresponding lift phases, (j>w/? and <t>/,y,vom* shown in Figure 3-13(a) and

Figure 3-15(a) respectively, indicate that the negative energy transfer for the low-frequency state at

A/D = 0.6 corresponds to a lift phase that is in the 3rd quadrant i.e. above 180°. At AID = 0.4 and

0.5 the low-frequency state lift phases are in the 2nd quadrant and there is positive energy transfer

from the fluid to the cylinder. The energy for the high-frequency state is negative for all cases

except one point immediately following transition at AID = 0.5. Outside the transition region the

energy transfer for the high-frequency state becomes more negative as AID increases.

Over the range of AID studied, the frequency at which transition occurred did not change

significantly. However, there were changes in the nature of the self-excited transition. At AID =

0.4 and 0.5 there was a non-reversible self-excited transition from the low-frequency state to the

high-frequency state that was consistent with the self-excited transition discussed previously. At

AID = 0.5 the self-excited transition from the low- to the high-frequency state occurred over a

number of oscillation cycles. Moreover, after the self-excited transition the lift properties,

particularly CL and (jiimvoiM, demonstrated significant unsteadiness. At A/D = 0.6 a self-excited

transition was also initiated from the low-frequency state, but at fjfo = 0.841 the combined

properties of the total and vortex lift forces after the transition were not consistent with the high-
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frequency wake state. Further investigations of these phenomena lead to the discovery of a third

stable intermediate wake state, which will be discussed in detail in section 3.6.
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0.25 & 0.5 at fle = 4410.

In Figure 3-16 the same properties are plotted as in Figure 3-15, but for the higher Reynolds

number of 4410 and oscillation amplitudes of AID = 0.25 and 0.5. As AID increases the trends
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observed in Figure 3-16 are essentially the same as those at the lower Reynolds number and in both

cases it appears that ^iifiwriex and §jrag do not vary significantly with AID, but depend primarily on

wake stats These trends are also consistent with those observed at Re = 9100 as AID was

increased from, 0.25 to 0.5.

3.4.2 Variation of Total and Vortex Forces with Re
225
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Figure 3-17 Variation of the total lift force at AID = 0.5 for Reynolds numbers of 2300,4410 and 9100.
In a) and b) the phase and amplitude of the total lift force respectively are plotted against fjfm while in
c) and d) ^ and CL are plotted against/,//,.

The frequency dependence of the total lift force shown in Figure 3-1 for Reynolds numbers ranging

from 2300 to 60,000 indicates that the jump in §,,fi and CL are universal features that occur over a

wide range or Reynolds numbers. The effect of Reynolds number on an oscillating cylinder is

however, complex. In Figure 3-1, and also in the work of Staubli (1983b), it is evident that the

non-dimensional frequency, ///„, at which the transition from the low- to high-frequency state

occurs, is generally not equal to unity. The transition frequency flfo varies in an apparently non-
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systematic fashion with Reynolds number and the reasons for this variation are, at this stage, not

well understood. It has already been observed that for AID = 0.5 and Re = 2300 the self-excited

transition occurs from the low- to the high-frequency state, while at Re = 9100 the direction of the

transition is reversed. Although this observation does not explain why fjfo varies with Re it does

indicate that the relative stability of the low- and high-frequency states relative to the initial

stationary cylinder state can vary with Reynolds number. It is therefore not unexpected that f/f0

also varies with Re. The variation of the forces with Reynolds number is often more clearly

illustrated by plotting them against fjf, rather ihznfjfo. Although there may appear to be a stronger

case for normalising the oscillation frequency with^, rather than/, it is important to remember that

fo describes the natural Karman frequency of a stationary cylinder. When the cylinder is oscillating

it is expected that changes in the generation and distribution of vorticity will alter the natural

instability of the wake.

In the next section the variation of the forces on the cylinder with Reynolds number will be

examined for two different oscillation amplitudes: AID = 0.25 and 0.5. In Figure 3-17 the pha«e

and amplitude of the total lift force sAA/D = 0.5 is plotted against both/elf, and fjf,. The apparently

non-systematic nature of the variation of the transition frequency,/, is evident in Figure 3-17(a &

b); where the transition occurs well below fjfo - 1 at Re = 2300, shifts to just above fJJo = 1 at Re =

4410, while at the highest Reynolds number of 9100 the h.jisition occurs almost exactly a\.fjfo = 1.

As Re increases from 2300 to 4410 there is a large increase in the value of <)>///} for the low-

frequency wake state, however as Re increases further to 9100 tipnft shows very small increase and

remains essentially constant. For the high-frequency state when fyn/i is plotted against///^,, in

Figure 3-17(a), the shift in the transition frequency makes it difficult to interpret the variation of (j>///,

with Re. If the normalisation frequency,/, relates directly to the natural instability of the wake of

the oscillating cylinder, then the results in Figure 3-17(a) suggest that for the high-frequency state

fyiiji varies with fjfo irregardless of the frequency at which transition occurs. However, it is not

clear if the results can be interpreted in this way a s / , relates to the wake of a stationary cylinder.

When the frequency of oscillation is normalised by the transition frequency in Figure 3-17(b), it

appears that for the high-frequency state <)>/,/, becomes more negative as Re increases. When, as in

Figure 3-17(a & b), the transition is plotted as a phase jump in the clockwise direction the

magnitude of the jump in ̂ nj> appears to increase as Re increases. If however the transition were

plotted as a phase jump in the anti-clockwise direction, i.e. the high-frequency state was plotted in

the 4th quadrant, ^ would increase with increasing Re for both the low- and high-frequency states

and the phase jump at transition would be relatively similar for all Re.

The large shift in the value offjf0 at which the transition occurs also makes is difficult to determine

the variation of CL with Re in Figure 3-17(c). However, in Figure 3-17(d), where CL is plotted
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agains t /^ , it is appears that for the low-frequency state the amplitude of the total lift force

increases as Re increases from 2300 to 9100. For both Re = 2300 and 4410 the transition between

the low- and high-frequency states corresponds to a distinct jump in Q . At Re = 9100 the

tramsttion corresponds to a relatively small jump in CL, but following the transition to the high-

frequency state CL increases rapidly. Thus, for higher values of fjf, it appears that that amplitude of

tht total lift force will increase with increasing Re, although closer to the transition region CL is

Saiger at Re = 4410 than at Re = 9100.
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Figure 3-18 Variation of the total lift force at A/D = 0.25 for Reynolds numbers of 2300, 4410 and
9100. In a) and b) the phase and amplitude of the total lift force respectively are plotted against fjfn

while in c) and d) 4>;,y> and CL are plotted against^//.

In Figure 3-18 the phase and amplitude of the total lift force at AID = 0.25 are plotted for Reynolds

numbers of 4410 and 9100. As for AID = 0.5, the value of fjfo at transition does not change by a

large amount as Re increases from 4410 to 9100, however for completeness in Figure 3-18 the

results have been plotted against both/y/o and fjf,. At the smaller amplitude of AID = 0.25 Figure

3-18 shows similar trends to those observed at AID = 0.5. At AID = 0.25 as fle increases from 4410
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to 9100 there is a relatively large increase in the value of <)>/# for the low-frequency state close to

the transition region. At Re = 4410 the larger values of fas for oscillation frequencies below

fjfo« 0.85 may be associated with the fact that the wake is approaching the lower bounds of lock-

in. For the high-frequency state Figure 3-18(b) shows that <|>/,y, becomes more negative as Re

increases from 4410 to 9100 and, in general, the changes in CL as Re increases from 4410 to 9100

at AID = 0.25 are quite similar to those observed at AID = 0.5. In both cases the transition

corresponds to an abrupt jump in Q at Re = 4410 while at Re = 9100 the initial jump in CL is much

smaller.

The variation with Reynolds number of the vortex forces: <)>/,/,*,«<*, CLvorta, fyjrag, CD and CDmeon, as

well as the energy transfer are shown in Figure 3-19 and Figure 3-20 for AID = 0.5 and 0.25

respectively. The phase of the drag force was not plotted for the lower amplitude of AID = 0.25 as

for many points the correlation coefficient of the drag force with a sinusoidal signal was less than

0.5. For both oscillation amplitudes fyufivorta and, where shown, §&<% do not vary significantly over

the range of Reynolds numbers examined, however the magnitude of the vortex forces: Q, „»•»«, Co

and CD mean and CE all vary with Reynolds number.

For the low-frequency state the energy transfer tends to become more positive as Reynolds number

decreases from 9100 to 2300. In Figure 3-15(c) we saw that decreasing the amplitude of oscillation

can reverse the direction of energy transfer for the low-frequency state from negative to positive.

A reversal in the direction of energy transfer is also shown in Figure 3-19(c) as Re decreases from

4410 to 2300. In Figure 3-20(b), at the smaller oscillation amplitude, the low-frequency state

energy transfer is positive for both Re = 4410 and 9100, except for the very low oscillation

frequencies at the edge of the lock-in region. For the high-frequency state at both oscillation

amplitudes the energy transfer becomes more negative with increasing Re. At AID = 0.5 there is a

relatively small downwards jump in CE as the wake transitions from the low- to the high-frequency

state, while at A/D = 0.25 there is a relatively large jump in CE-

At AID = 0.25 and 0.5 both CLvurlex and CDmean appear to increase with increasing Reynolds

numbers. At AID = 0.25 there is an interesting change in the direction of the jump in CLvortex at

transition. In the previous section the size of the downward jump in CLmrlcx at transition, shown in

Figure 3-15(d), decreased as AID decreased from 0.6 to 0.4. When, as shown in Figure 3-2O(c),

AID decreases further to 0.25 the direction of the jump is reversed and at the transition between the

low- and high-frequency states CLmrla jumps upwards. An interesting feature of both Figure

3-19(e) and Figure 3-20(d) is that at Re = 4410 the transition from the low- to the high-frequency

state corresponds to a distinct drop in CD while at the other Reynolds numbers the changes in CD at

the transition are smaller.
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The changes in the total and vortex lift forces as Reynolds number varies reveals that the

apparently simple vecto "ial relationship between /%,„.,„ and Flola, in equation 1-7 is not always easy

to interpret. For a given non-dimensionalised amplitude and frequency of oscillation the phase and

amplitude of the apparent mass force does not vary with Reynolds number and the total lift force is

equal to the vortex lift force plus a constant vectorial apparent mass force. However, as the vortex
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lift force is generally not in-phase with the apparent mass force, the relationship between the phase

and amplitude of the total and vortex lift forces remains complex. For example, in most cases the

phase of the total lift force varies strongly with Re, however when the apparent mass force of

constant phase and amplitude is subtracted from the various total lift forces the phase of the

resulting vortex lift force is apparently independent of Re.

The most striking feature of this series of plots (Figure 3-13 to Figure 3-20) is that while the

magnitude of the vortex forces: C i lwter, CD and CDmcan as well as the energy transfer and the total

lift forces all show significant variation with Re ox AID, the phase of the vortex forces §iiftmr,a and

fydrag do not vary significantly. It is expected that both Reynolds number and the amplitude of

oscillation can change the relationship between the wake's natural instability and the large scale

forced perturbation. However, without further extensive investigation it is not possible to quantify

the nature and effect of these changes. In addition, it is likely that other factors such as end

conditions, turbulence intensity and length scale also influence the forces on the cylinder and the

direction of energy transfer. Given the complicated nature of this problem it is significant that the

jump in the phase and amplitude of the lift force persist over a wide range of oscillation amplitudes

and Reynolds numbers.

3.4.3 Vortex Force: Collapse of Vortex Phase

In Figure 3-15, Figure 3-19 and Figure 3-21 the phase of the vortex lift and drag forces are plotted

for cases where either the amplitude of oscillation or the Reynolds number is varied. In all cases it

was shown that (t»/,/,,«ncx and §jrag did not change significantly as either AID or Re was changed. In

Figure 3-21 the values of §ufi™nex and <jwg resulting from all our experiments are plotted as a

function offjf, on a single axis. The parameter set for these experiments is as follows {{AID, Re) =

(0.25,4410), (0.25,9100), (0.4,2300), (0.5,2300), (0.5,4410), (0.5,9100), (0.6,2300)}. Over this

parameter set Figure 3-21 demonstrates a striking collapse of both <)>/,//««« and ^drag towards

constant values for a given wake state. While there is a small degree of scatter, for the low-

frequency state ifiifl mna appears to collapse towards 180° for a wide range of oscillation

frequencies. Immediately following the transition to the high-frequency state there is an increase in

the scatter of <(>/,/, „,*„. The source of the scatter is that for AID = 0.4 and 0.5 immediately following

transition <t>/,/,ror/cr tends to be close to 0°, decreasing smoothly towards -90° a s / ^ increases

further. At AID = 0.25 and 0.6 <t»im von« tended to jump straight, down to -90° at the transition to the

high-frequency state. There is in fact only one recorded point at AID = 0.5 and Re = 2300 where

the value of «))///,„,«« for the high-frequency state was above 0°. The existence of this point is

important as it is the only case where positive energy transfer is observed for the high-frequency

state. Further away from the transition region the value of <!>///,«,«<* for all AID and Re collapses
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towards -90°. Thus, excluding the region just above fjf, = 1, the transition corresponds to a

clockwise (negative) vortex phase shift of approximately 270° as shown in Figure 3-21 or a

counter-clockwise (positive) vortex phase shift of approximately 90°.

270

-180

Figure 3-21 Phase of the vortex lift and drag forces, <j>nn VOH« and $dnt for all experiments with A/D
ranging from 0.2S to 0.6 and Re ranging from 2300 to 9100.

The drag phase plotted in Figure 3-21 shows a very similar collapse to the vortex lift phase for the

same range of AID and Re. (Note: fewer points were plotted for the drag phase as at AID = 0.25

and Re = 4410 the correlation of the drag force with a sinusoidal signal was less than 0.5 and could

net used to calculate a value of farag). As discussed in section 3.2.3 there are a number of valid

ways to define and present the phase relationship between the drag force and the cylinder's

displacement. In this section the drag phase has been defined using equation 3-1 and presented

such that the jump in §*<% at transition is of comparable magnitude, and in the same direction, as

the jump in Civorto- For the low-frequency state the drag phase collapse towards §drag «225° and

the phase of both the vortex lift and drag forces are remarkably constant. There is a phase

difference between (ĵ wmer and $Jrag of approximately 45°, which means that each local minimum

in the vortex lift force coincides with a local minimum of the drag force. After the transition to the

high-frequency state the drag phase is just under 0° and the scatter in 4/Jrag immediately following

the transition is less that the scatter in ^iifivorlex. Further away from the transition region the relative

phase difference between the vortex lift and drag forces for the high-frequency state is

approximately 75°, which is slightly larger than for the low-frequency state.
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Together ^ „,„„ and (j)^ represent the timing of the movement of vorticity wake. However, as

the frequency of the drag signal is twice that of the vortex lift it is difficult to assign a physical

significance to the differences in (j)/^TOrter and §&„,,. Closer consideration of equation 3-2 shows that

the phase relationship between the vortex lift force and the drag force depends upon the relative

phase of the movement of vorticity in the horizontal and vertical directions. Therefore, both the

values of fa/ivorta and ( j ^ and relative phase between the vortex lift and drag forces (§uftmr,a -

fyjrag) depend on the way in which vorticity is distributed during the shedding cycle, and therefore

on the mode of vortex shedding. As the wake state changes from the low- to high-frequency state

there is a change in the distribution of vorticity but there are only relatively small changes in the

relative phase between vortex lift and drag forces.

The collapse of the phases in Figure 3-21 indicates that the timing of the movement of vorticity

within the oscillation cycle, and therefore the phase of vortex shedding, depends primarily on wake

state and is relatively independent of AID and Re. In the next section the phase-referenced vorticity

fields are examined to determine if indeed the phase of vortex shedding is independent of AID and

Re. As shown in Figure 3-15, Figure 3-19 and Figure 3-20 CD and CLvorta do not collapse towards

a single value for a given wake state, indicating that, while the timing of vortex shedding is

approximately constant, the level and distribution of vorticity depends on both Re and AID. Unlike

the phase of the vortex forces, which are in general approximately constant for a given wake state,

the amplitude of the vortex lift forces also vary with the frequency of oscillation.

143



3.4.4 Vorticity Fields

Phase averaged vorticity fields at AID = 0.25,0.4,0.5 and 0.6, are shown in Figure 3-22 and Figure

3-23, for the low- and high-frequency wake states respectively. The Reynolds number is 9100 for

AID = 0.25, while at the larger amplitudes {AID = 0.4, 0.5 & 0.6) Re = 2300. The low-frequency

wake modes, in Figure 3-22, are shown as the cylinder moves from the top of its oscillation,

column i), through its downwards stroke, columns ii) to iv). Looking down the columns, at the

same phase point in the oscillation, allows comparison of the wakes at different AID, whereas

looking along the rows shows the wake development as the cylinder moves through its downward

stroke.

At the top of the cylinder's oscillation the low-frequency wake, shown in Figure 3-22 column 0,

has an attached negative shear layer which extends across the base of the cylinder into the lower

half of the wake. The length of this shear layer increases with the amplitude of oscillation and is

significantly longer in Figure 3-22(d)(0 at AID = 0.6 than at AID = 0.25in Figure 3-22(a)(i). In

column (Ji), V* of the way through the downward stroke, a portion of negative vorticity starts to

separate from the end of the longer shear layers. The break in the shear layers is observed at AID =

0.4,0.5 and 0.6 and in column ii) the break is approximately adjacent to the bottom of the cylinder.

At AID = 0.25 the attached shear layer is much shorter, only just extending past the bottom of the

cylinder, and a portion of vorticity does not separate from the end of the shear layer. As the

cylinder approaches the mid-point of the downward stroke the lower positive shear layers swings

upwards towards the negative shear layer. At AID = 0.6 the upward angle of the lower shear layer

is very pronounced and as expected this angle decreases with decreasing AID. For all amplitudes

of oscillation the interaction of the two shear layers causes the main section of the negative shear

layer to separate from the cylinder. At the higher oscillation amplitudes the separation of the

negative vorticity occurs closer to the cylinder, probably due to the increased angle of the lower

shear layer. In column (iv) where the cylinder is V* through the downward stroke, for all

amplitudes of oscillation the separation of the negative vorticity is essentially complete.

As AID varies from 0.25 to 0.6 the general structure of the low-frequency wakes in Figure 3-22 is

very similar. However, there are systematic changes in the location and size of the vortex

structures in the near wake as the oscillation amplitude increases. Importantly, at each point in the

cylinder's displacement cycle the low-frequency wakes in Figure 3-22 are essentially at the same

point in their shedding cycle and the timing of vortex shedding is effectively independent of AID

and Re.
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While the timing and general structure of vortex shedding appear to be independent of AID and Re,

Figure 3-22 shows that there are systematic variations in the distribution of vorticity in the near

wake. At AID = 0.5 and 0.6 the negative vorticity has been shed as two distinctly separate

structures, while at A/D = 0.4 the negative vorticity is shed as a single vertical band which shows a

propensity to break into two separate structures. At AID = 0.25 a single negative vortex structure,

elongated in the vertical direction, is shed into the near wake. The splitting of the shear layer into

two separate structures is a key step in the formation of a 2P wake. At higher values of AID (0.5 &

0.6, the splitting of the extended shear layer into two separate structures and the resulting 2P mode

of shedding is quite pronounced. However, at the smaller values of AID (0.25 & 0.4) the shear

layer is shorter and the splitting of the shear layer either does not occur or is unclear. Therefore,

while the other features of the low-frequency wake state persist at small amplitudes of oscillation,

there appears to be a limiting amplitude, below which the shear layer is not long enough generate

the 2P mode of shedding.

Figure 3-23 shows the high-frequency wake states at the top of the oscillation cycle. As for the

low-frequency wake state, the timing of vortex shedding and the general structure of the wake is

essentially unchanged as AID increases from 0.25 to 0.6, at Re = 2300 and 9100. As AID and Re

change the differences in the distribution of the vorticity for the high-frequency wakes, shown in

Figure 3-23, are quite subtle as the general structure of the wakes is quite condensed. Figure 3-15

shows that the phase and amplitude of the vortex lift force corresponding to the three images at AID

= 0.4, 0.5 and 0.6 are relatively constant and the only variation in the vortex forces for these three

images as AID increases is an increase in the mean and amplitude of the drag force. As AID is

increased the vorticity tends to break up more quickly as it moves downstream and additional

images at higher Reynolds numbers indicate that as Re increases there is a similar increase in the

break up of vorticity.

The robustness of the phase of vortex shedding for a particular wake state indicates that the vortex

shedding is phase locked to the displacement of the cylinder. The relatively constant values of

<t)/̂ vo»rr and ifdrag for each wake state, shown in Figure 3-21 for a range oscillation amplitudes and

Reynolds numbers, are consistent with the constant phase and structure of vortex shedding

illustrated in Figure 3-22 and Figure 3-23.
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3.5 SPECTRAL ENERGY AS A FUNCTION OF f^0

An elastically mounted cylinder vibrates at a frequency that depends on the reduced velocity, wake

state and the properties of the cylinder and its supporting structure, including the structural spring

constant, structural damping and mass. However, once a particular structure has been selected the

natural frequency of the structure is constant during the experiment. When the oscillations are

forced the situation is reversed: the forcing controls the frequency of oscillation but the frequency

of the wake's natural instability varies v/\thfe and wake state.

0.4 0.6 1.0 1.2 1.4 1.6 1.8 2.0

Figure 3-24 Variation of Lift spectra with oscillation frequency fjfft at AID = 0.25 and Re = 4410. The
spectral frequencies f are normalised by fo and the frequency of oscillation fe is normalised by the
transition frequency/, where///", = 1.10.

In Figure 3-24 the lift spectra for a range of oscillation frequencies, at AID = 0.25 and Re = 4410,

are plotted on a single three-dimensional axis. Typically, the lift spectra have a strong peak at

f=fe, the frequency of oscillation, with a second smaller peak at a frequency fm,, which as

discussed in section 1.4.1, can be associated with the natural frequency of the oscillating cylinder

wake. In general,/™ is close to/o , the natural frequency of the stationary cylinder wake. The
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distribution of spectral energy between the peaks a t / and/OT depends on the response of the wake

to the cylinder's oscillation. As discussed in section 1.3.1 the relative energy of the peak at/ e is

often used to define when the cylinder's wake is locked-on to the imposed oscillation. As the wake

moves beyond the lock-in region Jnos becomes the dominant, or most energetic frequency in the

wake.

As shown in Figure 3-24 for///; > 0.8 the wake is clearly locked-on to the cylinder and the most

energetic frequency in the lift spectra corresponds to the oscillation frequency of the cylinder. For

the lower frequencies of oscillation, however, the peaks at/,M and/, are small and of comparable

energy levels. As fjf, increases the energy at/™ decreases and there is a gradual increase in the

energy a t / , until at transition, there is sharp jump in the energy a t / . The jump in the energy at the

oscillation frequency corresponds to the jump in the amplitude of the total lift force shown in

Figure 3-18. At frequencies just above transition the second peak at/a* could not be resolved.

However, a s / / / increases further the second peak at/a, reappears.
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1.50 -
o
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TO

o
2
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0.00
O.OO 0.25 1.75 2.00

Figure 3-2S Variation of the most energetic frequencies with the frequency of oscillation for the lift
spectra shown in Figure 3-24 at AID = 0.2S and Re = 4410. In all cases the peak a t / , is more energetic
than the peak at/nM.

In Figure 3-25 the frequencies of the spectral peaks in Figure 2i-2^,fnJJo,fJfo andfjfms are plotted

against the normalised oscillation frequency. For all frequencies of oscillation the natural

frequency of the oscillating wake is greater than the natural frequency of the stationary wake, i.e.

fnJfo > 1 or equivalently / / /> / / / "„„ . As the frequency of oscillation increases towards transition

tfe/f, -» 1) b o t h / and/OT increase, however the relative rates of increase are such that the peaks

move closer together. Prior to transition fnm is greater than/ and transition occurs before the peaks
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intersect Immediately following transition/„, could not be resolved, however, for fjf, > 1.2,/,M is

slightly greater than/, and does not vary significantly with///;. Therefore, after transition/,„ is

less than_£ and the peaks move apart as the frequency of oscillation increases.

At transition there is a downward jump in /a , , the natural frequency of the oscillating wake. As

transition corresponds to a change in the mode and phase of vortex shedding, it is reasonable to

expect that there could be a corresponding change in the natural frequency of the oscillating wake.

Additionally, the transition between the two wake states corresponds to a change in the relationship

between f^ the natural frequency of the oscillating wake and the forcing frequency/, where for

our locked-in wake / corresponds to the frequency of vortex shedding. At low frequencies, prior to

transition,/,„ is greater than/ , indicating that shedding controlled by the natural instability would

occur faster than "allowed" by the forced oscillation. The resulting wake mode forms long

extended shear layers. As fjfo increases the peaks at fnm and / move together and the wake

contracts. After transition the natural frequency is less than the forcing frequency (£,<„ < / ) and as

fjfo increases the peaks move further apart. Thus, the forced vortex shedding occurs faster than it

would if shedding were controlled by the wake's natural instability. In this case the wake is

significantly shorter and the mode of vortex shedding is different.
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3.6 INTERMEDIATE WAKE STATE

In the previous sections a cylinder undergoing forced oscillations has been shown to exhibit at least

two distinctly different wake states: the low- and high-frequency states. However, at certain

amplitudes of oscillation there is a third wake state,, located between the low- and high-frequency

states, which we will call the intermediate state. In the following section the properties of the

intermediate state are described in terms of the forces on the cylinder and the phase referenced

structure of the near wake. The properties of the intermediate wake state will be discussed using

results from sets of experiments at two different oscillation amplitudes, A/D = 0.5 and 0.6, where

for both cases Re = 2300. The intermediate state is a new, independent wake state whose

properties are distinctly different from either the low- or high-frequency wake state.

3.6.1 Force properties

The low-frequency, intermediate and high-frequency wake states can be characterised in terms of

the forces on the cylinder, as shown in Figure 3-26 and summarised in Table 3-1. In Figure 3-26

the phase and amplitude of the total lift, vortex lift and drag forces are plotted as a function of '/,//„

for an oscillation amplitude of A/D = 0.6. At frequencies of oscillation where the wake undergoes

a self-excited transition between wake states the data has been split into segments encompassing a

single state only. The two intermediate state data points, &tfjfo = 0.84 and 0.85 in each graph of

Figure 3-26, have been calculated from continuous time segments containing 57 and 13 cylinder

oscillations respectively.

A distinguishing feature of the intermediate wake state is the large difference in the phases of the

total and vortex lift forces. In section 3.4 we observed that the transition between the low- and

high-frequency states corresponds to large changes in both (]>///, and ^nflvor1ex, where these changes

are of a similar magnitude. However, as the wake moves to the intermediate state from either the

low- or high-frequency states $nfi and §»/<«,«« behave quite differently. When the wake moves

from the low-frequency state to the intermediate there is a large downward jump in <t>uft while the

value of tyiiftvona remains relatively unchanged, as shown in Figure 3-26(a & c) respectively.

Conversely, at the transition from the intermediate state to the high-frequency state there is a large

downward jump in fa/, „,«« while §iif, does not change significantly. Thus, for the intermediate

wake state the values of §i,f, are essentially consistent with the values typically observed for the

high-frequency state, while the values of ()>/,/,„„•/<* are similar to those observed for the low-

frequency state. The drag phase, shown in Figure 3-26e, has been plotted so that the variation in

V*g over the three wake states is less than 180°, where, due to the way the drag phase is defined in

equation (3-1), §drag = §Jrog ± 180°. The drag phase for the high-frequency state has been plotted in

the 2nd quadrant to emphasise the fact that the value of §Jrag for the intermediate state falls between
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the values for the low- and high-frequency states. Thus, unlike the phases of the total and vortex

lift forces, the values of ^jrag for the intermediate state are clearly different from those observed for

both the low- or high-frequency states.
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Figure 3-26 Phase and amplitude of the total lift force, the vortex lift force and the drag force on the
cylinder as a function of fe/fo, A/D = 0.6 for the low-frequency, intermediate and high-frequency wake
states.

As shown in Figure 3-26(b & d) the amplitudes of both the total and vortex lift forces for the

intermediate state fall in between the corresponding amplitudes for the low- and high-frequency

states. The transition from the intermediate to the high-frequency state corresponds to a drop in the
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amplitude of the vortex lift force, and immediately after the transition CLmrtcx is very small. Asfjfo

increases after the transition to the high-frequency state CLmr,a grows quickly, and at higher

oscillation frequencies Cimrla is greater than for the intermediate state. As discussed in section

3.4, the direction and magnitude of the jump in CLmrtex at the transition between the low- and high-

frequency states varies with both AID and Re. The intermediate state was only observed at the two

highest oscillation amplitudes considered in these experiments: AID = 0.5 and 0.6. For the range of

fjfo considered, at both AID = 0.5 and 0.6 the values of CLvona for the high-frequency state are

significantly smaller than for the low-frequency case. In contrast to the amplitudes of the total and

vortex lift forces the amplitude of the drag force, shown in Figure 3-26(f), does not vary

significantly as the wake moves between the low-frequency, intermediate and high-frequency

states. In summary, the force properties shown in Figure 3-26 fall into three distinct categories

representing the three wake states. The properties of the three wake states are catalogued in Table

3-1 and the changes that occur at the transitions between the wake states are listed in Table 3-2.

Table 3-1 Summary of the force and wake properties for the low-frequency, intermediate and high-
frequency wake states.

STATE

Wake
Mode

<t>urt

c.

<t>iifl vortex

c.
*^L vortex

<l>dr«g

CD

LOW FREQUENCY

2P

(at mid to high A/D)

„ H J g h
(2nd or 3rd quadrant)

Low
(relatively constant)

High
(«180°)

High
(relative value depends

on A/D & Re)

High («180°)

Does not

INTERMEDIATE

2S

(at A/D = 0.5 & 0.6)

Low
(near zero)

Medium

High
(=180°, less steady)

Medium

Medium

vary significantly with

HIGH FREQUENCY

2S

Low
(near zero)

High
(increasing with fe/fo)

Low
(moves towards -90° at

higher f A )
Low

(relative value depends
on A/D & Re)

Low

wake state
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Table 3-2 Summary of changes occurring at the transitions between the low-frequency, intermediate
and high-frequency wake states.

Low Freq. -> Intermediate

jump in ^m

c o n s t a n t (j>Hft voiiex

jumpinCLvort«

small jump in (Jjdrag

Intermediate —> High Freq.

constant (j>im

j u m p in >̂lifl vortex

small jump in C^onex

small jump in (̂ drag

For both AID = 0.5 and 0.6, at oscillation frequencies were the intermediate state was observed the

wake did not move to the intermediate state immediately after the cylinder started oscillating.

Rather, the intermediate state was observed after a self-exciter* transition from either the low- or

high-frequency wake states. In Figure 3-27 a self-excited transition from the low-frequency state

to a stable intermediate state is shown atA/D = 0.6 and fjfo = 0.84. Immediately after startup the

wake is in the low-frequency state and both <(>///> and (|>///j lWr« are close to 180°, while <t»</rag is close to

225°. During the first 200 s of the experiment there are a number of transient self-excited

transitions to the intermediate state. The transitions are characterised by a sharp, short-lived drop

in <t»/;yi from approximately 180° to 0°, and much smaller variations in ()>/,/, „,*« and tydrag. However,

the transitions in the first 200 s appear to be unstable, as the wake is in the intermediate state for

only a small number of oscillations before returning to the low-frequency state. Interestingly, as

the wake returns to the low-frequency state from the unsteady intermediate state the changes in §iifi

are more gradual, occurring over a number of oscillations.

At / ~ 223 s there is a stable self-excited transition from the low-frequency state to the intermediate

state and, from this point until the end of the experiments at t « 320 s, the wake remains in the

intermediate state. The most notable aspect of the transitions from the low-frequency state to the

intermediate state is the large jump in <)>„„ while i},,/,^ remains relatively unchanged. Although

the mean value of <9nfivor,a for the intermediate state is similar to the low-frequency state value there

is a noticeable increase in the variance of fe^. Careful examination of Figure 3-27 shows that

for / < 233 s bifimr,a is remarkably constant except for the periods corresponding to the transient

transitions to the intermediate state. At the transition between the low-frequency state and the

intermediate state there is a noticeable decrease in the cjwg; this decrease occurs at both at the final

transition and at the earlier transient transitions.

155



i Intermediate State

Figure 3-27 Variation of the instantaneous values of (font, 4>iifi vort« and <j>drag showing a self-excited
transition from the low-frequency state to the intermediate state at A/D = 0.6, fJTo = 0.84 and Re =
2300. The instantaneous phases were calculated using a correlation width of 3 oscillation cycles.

At the slightly higher oscillation frequency of£/£ = 0.85, the properties of the total and vortex lift

forces indicate that the wake exhibits all three wake states. However, the wake appears to be

unstable and, as shown in Figure 3-28, the wake does not persist in any of these wake states for

extended periods of time. After the cylinder starts oscillating a.t fjfo = 0.85 the first wake state is

the low-frequency state and both ^ and tyy, mrlex are close to 180°. After only a small number of

oscillations at t » 25 s <jv,y> drops down to close to 0° while the value of fyujtmncx remains high, thus

the force properties are consistent with the intermediate state. The force properties remain

consistent with the intermediate state for a relatively short period of time and at t ~ 40 s <)>///, „>«<*

drops towards values of between -45° and -90°, which are consistent with the high-frequency state.

For the remainder of experiment ^nftvona alternates between high and low values, indicating that the

wake is moving between the intermediate and high-frequency states.

Intermediate and High Freq. States

Figure 3-28 Variation of the instantaneous values of §un and <j>,m v.rte, at A/D = 0.6, tjf, = 0.85 and Re =
2300. The instantaneous phases were calculated using a correlation width of 3 oscillation cycles.

At AID = 0.6 the intermediate state was observed both as a stable wake state, ?&fjfo = 0.84, and as a

relatively unstable state stfjfo = 0.85. For all cases examined at AID = 0.5 the intermediate state

was observed either as a transitional state during a self-excited transition from the low- to the high-
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frequency state, or for relatively short periods of time as a transient state after a transition from the

high-frequency state. In Figure 3-29(a) the phase and amplitude of the total lift force are shown

together as a function of time for AID = 0.5 and fjfo = 0.825. The corresponding phase and

amplitude of the vortex lift force are plotted in Figure 3-29(b). Immediately after start-up the wake

is in the low-frequency state. After approximately 46 s the wake begins to change state and after a

number of oscillations, including a period of time when the properties of the wake are consistent

with the intermediate state, the wake completes the transition to the high-frequency state. In this

situation the intermediate state is observed as a transitional wake state, occurring as part of the

transition between the low- and high-frequency states. Nevertheless, the properties of the

transitional intermediate wake state, indicated by the left hand shaded region in Figure 3-29, are

fully consistent with the stable intermediate wake state observed aiA/D = 0.6.

a)

Figure 3-29 Variation of the phase and amplitude of a) the total lift force and b) the total lift force
during self-excited transitions at A/D = 0.5, fA = 0.825 and Re = 2300. The instantaneous phases and
amplitudes were calculated using a correlation widths of 3.0 and 1.2 oscillation cycles respectively.

As the wake begins the transition from the low-frequency state the initial changes in i/u/,, shown in

Figure 3-29(a), occur over approximately 16 oscillations, from t ~ 46 - 70 s. During this time there

are only relatively small changes in faftvonex, CL and CLmrlex, although as tfUfi drops sharply just

before the end of this period there is a corresponding drop in CLvor)ex. From / » 70 to 85 s the

properties of the lift force are consistent with the intermediate state; ^n/ivoncx remains close to 180°

(3.14 radians), $/,/, is close to 0° and both CL and CL „,„„ are in between the low- and high-

frequency state values. After the first transition to the high-frequency state at / « 85 s there are a

number of transient transitions to the intermediate state. In Figure 3-29 these transitions
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correspond to an upward jump in ()>///;,»««towards 180°, a small dip in Q. and a small rise in <)>///,.

The clearest of these transient transitions, at around t = 150 s, is highlighted by the right hand

shaded region. The transient transitions from the high-frequency to the intermediate state are

clearly discernable when we look at the phase of the vortex lift force. However, looking only at the

total lift force it is not clear that the small changes in typ and CL within the second shaded region

correspond to a transition to a different wake state. Figure 3-29 also demonstrates that during the

transition between wake states the changes CL and C/.w,r;cr are not necessarily of similar magnitude.

From the force properties in Figure 3-26 and the instantaneous properties in Figure 3-29 it is clear

that the transition between the low-frequency and intermediate states is most clearly identified by

the large changes in <!>/# and CLvorla. Conversely, at the intermediate to high-frequency state

transition the most significant changes are in the values of ^ujivorta a>»̂  Q,.

The reasons for the apparently complicated relationships between <j>/,/,, <(>/,//„,,*«, CL and CLmrlcx

become apparent when we consider the vectorial relationship between the vortex and apparent

mass lift forces. As discussed in section 1.3.3 CLvor1lJS) and Ctam(t) are th3 components which

make up the total lift force CL(t). The schematic in Figure 3-30 shows phase plots for all three

wake sates using typical vectorial values of CLmrtoHi), daJj) and CL{t). The apparent mass force

is always in-phase with the displacement of the cylinder and, although its magnitude depends on

the amplitude and frequency of oscillation, within the transition region dam is approximately

constant.

a) Low-Frequency State C L

• • • • < • • " " "

vortex 'Lam

b) Intermediate State cL vortex 'Lam

cL

c) High-Frequency State Lam

*-*/. vorlex X—

Figure 3-3C Phase plots showing typical vectorial relationships between CLvort«(t) and CL™ and the
resulting direction and magnitude of the total lift force for a) the low-frequency, b) intermediate and c)
high-frequency v<ako states.

As the wake moves from the low-frequency state to the intermediate state the change in the phase

of the vortex lirt force, indicated by the direction of the CLvorla(t) vector, is relatively small.

However, the magnitude of the vortex lift force decreases such that it is now smaller than the

apparent mass force. This change in relative magnitude results in a large change in the phase of the
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total lift force. Thus, as shown in Figure 3-27, the transition between the low-frequency and

intermediate wake states corresponds to a large change in fa but fa^a remains relatively

unchanged. Furthermore, the change in the phase of the total lift force is clearly linked to the

change in the magnitude of the vortex lift force. It is important to remember that the variation of

the vortex lift force is directly related to changes in the vorticity field. Therefore, the changes in

the total lift force effectively are linked to the vorticity field via the relationship between the vortex

and apparent mass forces. At the transition between the intermediate and the high-frequency states

Figure 3-29(b) and Figure 3-30 show that CLvonex is approximately constant, but there is a

clockwise shift of around V* % (135°) (i.e. an anti-clockw'se shift of 1 Vi n (225°)) in fa wr1a. The

change in the phase of the vortex lift force causes only a small change in fa but there is a

significant change in CL.

Another way to consider the relationship between the vortex and total lift forces is to consider the

energy transfer. When the lift forces on the cylinder are accurately represented by a purely

sinusoidal function the energy transfer can be approximated by equation 1-10, which is reproduced

below for convenience:

CE « n Ci (AID) sin (fa) = nCL vona (AID) sin (fa mriat) (1-10 reproduced)

Near the transition regions, and in particular for the intermediate wake states observed at AID = 0.5

and 0.6, the lift forces are not always well represented by a purely sinusoidal function. In these

cases the equation for energy transfer must be written in integral form. As in equation 1-10 the in-

phase apparent mass force makes no contribution to the energy transfer and the integral can be

expressed in terms of either the total or vortex lift force.

(3-3)

This equation also illustrates that the apparent mass component of the lift force makes no

contribution to the energy transfer between the fluid and the cylinder. Thus, in terms of the

relationship between the energy transfer and the forces on the cylinder, the only contribution to the

energy transfer is from the out-of-phase component of the vortex lift force, where the out-of-phase

components of^nf,mr,Jj) and CL(t) are equal.
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3.6.2 Wake structure and corresponding lift forces

The force properties for the intermediate state, discussed in section 3.6.1, suggest that the structure

of the intermediate wake is not consistent with the wakes structures for either the low- or high-

frequency states. In this section the structure of the near wake, the mode of vortex shedding and

the phase of vortex shedding for the three different wake states are considered. Finally, the nature

of the total and vortex lift traces corresponding to the different wake structures are discussed.

The phase averaged vorticity fields in Figure 3-31 show the evolution of the near wake for each of

the three wake states as the cylinder moves through its downward stroke at AID = 0.5. The position

of the cylinder in Figure 3-31 is indicated by the small insert and is the same for each vertical

column, where the first column corresponds to the top of the cylinder's oscillation. Each image is

the result of phase averaging 9 consecutive images representing 414 cylinder oscillations. The

images for the low- and high-frequency states, shown in Figure 3-31 (a & c) respectively, were

acquired atfjfo = 0.815. The images in Figure 3-3 l(b), showing the intermediate state, were

acquired at fjfo = 0.825 and correspond to the 4'/2 cycles after / = 150 s in Figure 3-30.

T ie three wake states can be broadly described in terms of the mode of vortex shedding. However,

it is also important to consider the timing of vortex shedding and other changes in the structure of

the near wake. The low-frequency wake, shown in Figure 3-31 (a), is characterised by the

production of long attached shear layers and a relatively wide wake. At AID = 0.5 the mode of

vortex shedding for the low-frequency wake is weakly 2P and, as shown in Figure 3-31(a)(j//), the

second vortex of each pairing is significantly weaker than the first. The high-frequency wake is

shown at the same points in the oscillation cycle in Figure 3-3 l(c); the mode of vortex shedding is

2S and the wake is significantly narrower than the low-frequency wake. The evolution of the near

wake for the intermediate state is shown in Figure 3-3 l(b). It is clear that the vortex shedding

cycle for the intermediate wake is different from that of both the low- and high-frequency wakes.

As the cylinder moves through the downward half of its oscillation cycle the intermediate wake

sheds a single tightly formed positive vortex from the upper surface of the cylinder and the mode of

vortex shedding can be described as 2S. At AID = 0.5 the intermediate state has a 2S shedding

mode, however the very small portion of separated positive vorticity at the end of the attached

shear layer, shown in Figure 3-31 (b)(/), indicates that at higher oscillation amplitudes the mode of

vortex shedding for the intermediate wake may become weakly 2P.
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Fi...re 3 31 Wake patterns for the a) low-frequency, b) intermediate and c) high-frequency wake
states at A/D - W f j C IS 5 - 0.825 and Re = 2300. The position of the cylinder .n each column (, to
iv) is indicated by the insert.

The low-frequency and intermediate wakes, shown in Figure 3-3.(a & b) respectively, share a

number of common features; the major separation of negative vorticity from the shear layer occurs

just after the mid-point of the downwards stroke, between columns (/,/) and (Iv). and the vert.cal
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width of the wakes are similar. However, the mode of vortex shedding of the intermediate wake is

clearly different from that of the low-frequency state. In fact, the intermediate wake has the same

2S mode of shedding as the high-frequency wake. Therefore, although the phase of vortex

shedding appears to be the same for the intermediate and low-frequency wakes, the number and

form of the vortex structure shed per oscillation are different. The different mode of vortex

shedding for the low-frequency and intermediate wakes can be related back to differences in the

structure of the attached shear layers prior to separation. Examination of the images in Figure

3-31 (a & b) at the same phase point in the cylinder's oscillation shows that, compared to the low-

frequency wake, both the attached and previously shed vortex structures in the intermediate wake

are located further upstream. The low-frequency wake forms long elongated shear layers allowing

a portion of the shear layer to separate independently and form the counter rotating pair. The

corresponding vortex structures in the intermediate wake are tightly formed and are almost circular

in shape, resulting in only a single vortex structure being shed from each shear layer per oscillation.

As the cylinder reaches its maximum downwards velocity in Figure 3-31(/«), the lower positive

shear layer in the intermediate wake is closer to the base of the cylinder and the upper and lower

shear layers have a greater upwards angle compared to the corresponding low-frequency wake.

However, the interaction between the opposite shear layers in the two wakes still results in vortex

shedding occurring at approximately the same phase point. The increased upward angle of the

shorter shear layers of the intermediate wake results in a wake width which is very comparable to

that of the low-frequency wake, despite the fact that the low-frequency wake formed much longer

shear layers. As discussed in section 3.3.1, for increasing fjfo the low-frequency wake contracts

while the phase of vortex shedding remains essentially constant. However, in Figure 3-31 (a & b)

the contraction of the wake is associated with a transition between two different wake states. The

difference in the length, angle and shape of the intermediate and low-frequency wakes results in

different modes of vortex shedding, but the phase at which the major separation of vorticity occurs

is approximately the same.

The phase of vortex shedding for the high-frequency wake, shown in Figure 3-3 l(c), is distinctly

different from the shedding phase for both the low-frequency and intermediate wakes. As the

cylinder moves through the downward stroke a positive vortex structure is shed from the high-

frequency wake soon after the top of the oscillation, corresponding to column (/). However, during

the same half cycle negative vortex structures are shed from the low-frequency and intermediate

wakes soon after the mid-point of the downward stroke, corresponding to column (Hi). The

position, or phase, of the cylinder when vortex shedding occurs has a significant influence on the

vertical width of the wake. The phase of vortex shedding from the high-frequency wake is such

that the vorticity from the lower surface of the cylinder is shed just after the cylinder reaches its

upper vertical displacement. Negative vorticity is shed from the upper surface of the cylinder half
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a cycle later, when the cylinder is close to its lowest vertical position. The location of the cylinder

when the vorticity is shed from it results in a wake that is much narrower than either the low-

frequency or intermediate wakes. The difference in the widths of these wakes appears to be largely

attributable to the phase, rather than the mode, of vortex shedding.

The total and vortex lift traces, corresponding to the 4Vi cycles during which the images in Figure

3-31 were acquired, are shown in Figure 3-32 for each of the three wake states. The values oifjf0

for the three sets offeree traces are very similar and therefore the amplitude of the apparent mass

force is effectively constant. This means that the changes in the phase and amplitude of the total

lift force are directly related to changes in the phase and amplitude of the vortex lift force. An

important property of the lift forces, which will be considered qualitatively, is their sinusoidal

nature. The total and vortex lift forces on a cylinder oscillating with a sinusoidal motion tend to be

sinusoidal, and our definitions of the phase and amplitude of these forces in equations 2-4 and 2-9

utilise this property. The sinusoidal nature of the force traces is indicated by the relative amplitude

of the spectral components within the traces, where a very sinusoidal trace is similar to a pure

sinusoid and is dominated by energy at a single frequency.

For all parameters considered in this investigation the forces are locked-on to the motion of the

cylinder and the dominant frequency within the lift traces is the forcing frequency,/e. The apparent

mass component of the total lift force is directly related to the motion of the cylinder and Fam(f) is a

purely sinusoidal signal with frequency.£. Therefore, the vortex lift force is the only component of

the total lift force containing frequencies other thanfe, and the magnitude of the non-fe components

must be exactly the same in the vortex and total lift forces. The out-of-phase components of the

total and vortex lift forces are also equal. The lift traces for the three wake states shown in Figure

3-32 demonstrate that although the relationship between the total and vortex lift forces appears

relatively simple, the total and vortex lift forces can differ significantly in their sinusoidal nature,

phase and amplitude. The changes in the properties of the total and vortex lift forces shown in

Figure 3-32 at AID = 0.5 are consistent with the force properties shown in Figure 3-26 at the higher

amplitude of AID = 0.6.

For the low-frequency state both the total and vortex lift forces, shown in Figure 3-32(a), are

approximately out-of-phase with the displacement of the cylinder. The total and vortex lift forces

contain the same non-/. components. However, because the magnitude of the/c component is much

larger in the vortex lift force, the vortex lift trace is relatively speaking more sinusoidal than the

total lift trace.
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Figure 3-32 Total and vortex lift traces for a) low-frequency, b) intermediate and c) high-frequency
wake states at A/D = 0.5 tjt. = 0.815 - 0.825 and Re = 2300. The time segments correspond to the 454
cycles over which the phase averaged images in Figure 3-31 were acquired.

As the wake moves from the low-frequency state to the intermediate state there is a large change in

the relative phases of the total and vortex lift forces. The vortex lift force remains approximately

out-of-phase with the displacement of the cylinder, while the total lift force and cylinder

displacement are now almost in-phase. Equation 3.2(a) tells us that the phase of the vortex forces

is related to the points in the oscillation cycle where the rate of change of the vortex moments are

maximised. For similar distributions of vorticity, the phase of the vortex lift and drag forces is

linked to the maximum rate of change of the vortex moment and generally, therefore, to the phase

of vortex shedding. Changes in the distribution of vorticity within the shedding cycle can alter the

164



icy

in

sly

der

es

re

is

se

he

phase point at which the maximum change in the vortex moment occurs. However, unless these

changes significantly alter the relationship between the phase of vortex shedding and the movement

of vorticity within the shedding cycle, the phase of vortex shedding is the dominant factor that

determines the phase of the vortex forces on the cylinder. The vorticity fields in Figure 3-31 (a &

b) show that the phase of vortex shedding is approximately the same for the low-frequency and

intermediate wakes. As this transition occurs the changes in the vortex lift and drag phases are

relatively small, of the order of 20°. The relatively small changes in the phases of the vortex lift

traces, shown in Figure 3-32(a & b), are consistent with the fact that for the corresponding wakes in

Figure 3-31 (a & b) the phase of vortex shedding is very similar.

The vector diagram in Figure 3-30 demonstrates that the large change in fa at the transition from

the low-frequency to the intermediate state occurs as the magnitude of the vortex lift force becomes

smaller than that of the apparent mass force. For the intermediate wake state the vortex lift force is

both smaller in magnitude and considerably less sinusoidal that the total lift force. The decrease in

the magnitude of the vortex lift is clearly shown in the force traces of Figure 3-32(a & b). The

changes in CLmna are consistent with the fact that there is a change in the structure of the

corresponding wakes, shown in Figure 3-31 (a & b).

At the transition between the intermediate and high-frequency states there is a large phase shift in

the vortex lift force. For values of fjfo close to the transition region, at A/D = 0.5 the high-

frequency state total and vortex lift forces are approximately in-phase with the displacement of the

cylinder (<t>|ift ~ (fon vortex « 0°). The vortex lift force, shown in Figure 3-32(c), is very small in

amplitude and the trace is quite irregular. The total lift force is much larger in amplitude than the

vortex lift force, and the large difference in amplitude belies the fact that the non-fe components are

present in both the total and vortex lift signals. Despite the irregulai nature of the vortex lift signal

in Figure 3-32(c) the values of <hiftvortex, calculated using the segmented correlation method with a

correlation period of three oscillation cycles, do not vary significantly with time unless the wake

state is changing.

At A/D = 0.5 immediately following the transition to the high-frequency state both famrtex and

CLmrlex vary with/*//;, as shown in Figure 3-15(a & d). A s / / / increases favorla moves rapidly

from close to 0°, immediately after the transition to the high-frequency state at///"D = 0.815,

towards -90° a t / / / « 0.9 - 1.0. As discussed in 3.4.3, the variation of fawnex w i t h / / /

immediately following the transition to the high-frequency state does not occur for all flow and

oscillation parameters. In many cases at the transition to the high-frequency state famr,ex jumps

straight down to values close to -90°. The amplitude of the vortex force varies systematically with

increasing oscillation frequency, and at higher values of / / / the high-frequency state vortex lift

trace is larger in amplitude and more sinusoidal.
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Figure 3-33 Drag traces for a) low-frequency, b) intermediate and c) high-frequency wake states at
A/D = 0.5 fjfo = 0.815 - 0.825 and Re = 2300. The time segments correspond to the 4Vi cycles over
which the phase averaged images in Figure 3-31 were acquired.

The vortex lift traces for both intermediate and the high-frequency states in Figure 3-32(a & b)

appear to be slightly "double peaked" with a small dip in the middle of the peaks. Intuitively we

associate these dips with an event that coincides with the peaks in the vortex lift force. However,

as these dips correspond to a decrease in CLvorlJit) during the positive peak and an increase in

CLvortM) during the negative peaks the "double peaked" nature of the vortex lift correspond

mathematically to an increase in the energy of the third harmonic, 3fe.
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The drag traces corresponding to the 4'/2 cycles during which the images in Figure 3-31 were

acquired are shown for each of the three wake states in Figure 3-33. Despite the fact that the three

wake states have different wake structures the drag traces are remarkably similar. This is

consistent with the approximately constant value of CD within the transition region, shown in

Figure 3-26(f). Figure 3-33 also shows that CDmcan and the general form of the drag traces do not

change significantly at the transitions between the three wake states, although there is a small shift

in phase. The constant amplitude and sinusoidal nature of the drag traces in Figure 3-33 is in

contrast to the corresponding vortex lift traces, which vary significantly as the wake moves

between the three states.

The previous paragraphs have considered the properties of the three wake states for an oscillation

amplitude of AID = 0.5, the same properties are now examined at the higher amplitude of AID =

0.6. This 20 % increase in oscillation amplitude results in some changes in the structure of the near

wake, the most obvious of these being an increase in the vertical width of the wake. However, the

major features of these wake states are unchanged and the general properties of the low-frequency,

intermediate and high-frequency wakes are consistent with the previous descriptions.

The phase averaged vorticity fields in Figure 3-34 show the evolution of the near wake for each of

the three wake states at AID = 0.6. Each phase averaged image has been calculated using 4 or 5

instantaneous fields corresponding to 2-2Vi cylinder oscillations. The field of view for the vorticity

fields in Figure 3-34 is smaller than the corresponding images at AID = 0.5, however the different

wake modes are clearly evident and the smaller wake structures, particularly in the shear layers, are

well resolved. Compared to the vorticity fields at AID = 0.5, the vortex structures for all three

wake states in Figure 3-34 at AID = 0.6 are more disorganised and are less clearly defined.

Although the images in Figure 3-34 are averaged over a smaller number of fields than for the

corresponding images at AID = 0.5 this trend is also evident when the instantaneous images at the

two oscillation amplitudes are compared. At AID = 0.6 the low-frequency wake, shown in Figure

3_34(a), forms very long shear layers. The increase in AID, and the corresponding increase in the

length of the attached shear-layers, results in an increase in the relative strength of the second

vortex shed into each counter rotating pair. Thus at AID = 0.6 the mode of shedding for the low-

frequency wake is clearly 2P. The vortex structures for the intermediate wake, shown in Figure

3-34(b), are less regular in shape than for the intermediate wake at AID = 0.5, however in both

cases the mode of shedding is 2S. The phase of vortex shedding for both the low-frequency and

intermediate wakes at AID - 0.6 is approximately the same as for the corresponding wakes at

AID = 0.5. This is consistent with the collapse of the vortex lift and drag phases over a range of

AID and Re shown in Figure 3-21.
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Figure 3-34 Wake patterns at A/D = 0.6 and Re = 2300 for a) the low-frequency state; f«/ro = 0.82, b)
the intermediate state; tjfo = 0.85 and c) the high-frequency state; fJU = 0.87. The position of the
cylinder in each column (/' to iv) is the same as in Figure 3-31.

The high-frequency wakes at both AID = 0.6 and AID = 0.5 are 2S and the distribution of vorticity

within the wakes is very similar. However, at AID = 0.6 the vortex shedding appears to happen

earlier in the oscillation cycle. The difference in the phase of vortex shedding is most obvious at

the points in the oscillation cycle where the positive and negative vortex structures separate from

the attached shear layer. At the top of the oscillation in Figure 3-34(c)(7) at AID = 0.6 the positive

vorticity is already well separated from the cylinder, while at AID = 0.5 in Figure 3-3 l(c)(/) the
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positive vorticity has not yet completed the separation process. Similarly, just before the bottom of

the oscillation in Figure 3-34(c)(/v) the negative vorticity has separated from the cylinder, while at

the same phase point in Figure 3-31(c)(iv) the corresponding vortex structure is still cttached to the

cylinder. This difference in the phase of vortex shedding and the corresponding phase of the vortex

lift force will be discussed further later in this section.

a)
Low Frequency State

128 129 130
time

Intermediate State

131

124

c)

125 126
time

High Frequency State

displacement

— • - total lift
—A— vortex lift

time

Figure 3-35 Total and vortex lift traces at AID = 0.6 and Re = 2300 for a) the low-frequency state; f«/f.
= 0.82, b) the intermediate state; f«/fo = 0.85 and c) the high-frequency state; f«/f. = 0.87. The time
segments correspond to the 2'A cycles over which the phase averaged images in Figure 3-34 were
acquired.

The force traces in Figure 3-35 show the total and vortex lift forces corresponding to the vorticity

fields in Figure 3-34, where the traces correspond to the same time periods over which the flow
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fields were phase averaged. As the force traces in Figure 3-35 were acquired over a narrow range

of oscillation frequencies there is a small variation in the amplitude of the apparent mass force as

fjfo increases from 0.82 to 0.87, and the relationship between the total and vortex lift forces

changes accordingly. The total and vortex force traces fur the three wake states at AID = 0.6 are

generally consistent with the corresponding traces at AID = 0.5. The two most notable differences

are the phase of the total lift force for the low-frequency state and the phase of the vortex lift force

for the high-frequency state. Without knowledge of the vortex lift force the shift in the phase of the

total lift force as AID increased from 0.5 to 0.6 may be incorrectly interpreted as a change in the

phase of vortex shedding. However, careful consideration of the vector diagram in Figure 3-30

indicates that the shift in ()>/,/„ while fynjtvortex remains approximately constant, is due to a change in

the relative amplitudes of the vortex and apparent mass forces. The shift in the phase of the vortex

lift force for the high-frequency state appears to be linked to a change in the phase of vortex

shedding. As shown in Figure 3-15(a), at AID = 0.6 the phase of the lift force drops to just above -

90° immediately following the transition to the high-frequency state, whereas for AID = 0.5

immediately following the transition ^nfimrtex is close 0°. The difference between the values of

fyiijtvorta for A/D = 0.5 and 0.6, soon after the transition to the high-frequency state, is demonstrated

by the vortex lift traces in Figure 3-32(c) and Figure 3-35(c). Examination of the vortex shedding

cycle for the corresponding wakes, shown in Figure 3-3 l(c) and Figure 3-34(c), indicates that the

difference in the phase of the vortex lift force is directly related to a shift in the phase of vortex

shedding.
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i as 3.6.3 Variation of lift and drag phases

The temporal variations of the instantaneous values of fafi, if,,flvoncx and §drag at AID = 0.5 are

plotted in Figure 3-36 for a range of oscillation frequencies that incorporate all three wake states.

At / / / ; = 0.739 and 0.781 the phases of the lift and drag forces indicate that the wake is in the low-

frequency state, while at the two highest frequencies,/,//, = 0.869 and 0.914, the wake is in the

high-frequency state. At both///, = 0.815 and 0.825 the first wake state after the oscillations begin

at t = 0 is the low-frequency state; however, after a number of oscillation cycles the wake begins a

self-excited transition, moving first to a transient intermediate state and then to the high-frequency

state. In Figure 3-36 the intermediate state corresponds to the points when the values of ^ have

jumped downwards, and are typically slightly above the values for the high-frequency state, but the

values of $iiftWrta remain high and are similar to low-frequency state values. In other words, the

values of §nf, and ^n/i vortex for the intermediate state are consistent with neither the low- or high-

frequency states. Figure 3-36 also shows that, for bothfjfo = 0.815 and 0.825, after the initial self-

excited transition there are further self-excited transitions between the high-frequency and

intermediate states. However, in these cases the intermediate state does not appear to be very

stable and after a number of oscillations the wake returns to the high-frequency state. Figure

3-36(a & b) shows that for vaiuss of / / , above the transition region both ^ujt and §nftWrtex decrease

with increasing//^,.

Perhaps the most interesting aspect of Figure 3-36 is the variation of the drag phase as the wake

moves between the three wake states. The values of §jng for the low- and high-frequency states are

clearly separated as shown in Figure 3-36(c). The self-excited transitions to the intermediate state

are characterised by a large change in either <|>/,/, or ^,,fl TOrtet, while the other lift phase remains

approximately constant, or changes by only a small amount. However, the values of the drag phase

for the intermediate are between the values that characterise the low- and high-frequency states.

Therefore, when the wake moves to the intermediate state from either the low- or high-frequency

states there is a change in the value of ^g- The definition of the drag phase, and the subsequent

fact that any value of §u,ag is equivalent to (j></rog± 180°, means that the drag phase can be plotted in

a number of ways. Consequently, care must be taken when interpreting the magnitude of the

changes in ^jrog- The physical reason for the multi-valued and somewhat ambiguous nature offareg

is that the drag phase does not include the same information as the lift phase. As discussed in

section 3.2.4, vortex shedding from a bluff body typically involves the net vertical displacement of

positive vorticity downwards and negative vorticity upwards, as well as the net downstream

movement of both signs of vorticity. Examination of equation 3-2 reveals that a local maximum in

the drag force can be generated by either the net movement of positive vorticity downwards or

negative vorticity upwards, and as long as the wake is symmetric, the drag force does not
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differentiate between these two cases. However, the vortex lift force does differentiate between the

streamwise movements of different signed vorticity; downstream movement of positive vorticity

generates positive lift while the equivalent movement of negative vorticity generates negative lift.

Therefore, the lift force has one local maximum per oscillation but the drag force has two.

c)

••drag

135
300

• yfo = 0.739
© f/o = 0.782

O
O

= 0.815
= 0.825

Vf0 = 0.869
yfo = 0.914

Figure 3-36 Variation of a) total lift phase, b) vortex lift phase and c) drag phase after the cylinder
begins oscillating at t = 0 for a range of oscillation frequencies at AID = 0.5 and Re = 2300. In ail cases
the instantaneous phases were calculated using a correlation width of 3 oscillation cycles.

The lift and drag phases are calculated by taking the peaks in the force traces and correlating them

with the peaks in the cylinder's displacement. A local maximum in the lift force is generally
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associated with the net movement of positive vorticity downstream. However, when the drag phase

is calculated, one of the two peaks in the drag peaks per oscillation cycle is selected for the

correlation. If the other peak were selected the drag phase would be shifted by 180°, assuming the

drag force is periodic and synchronised. Thus, using this method any value of farag is equivalent to

§drag± 180°. This is why the drag phase contains less information than the lift phase. Moreover,

when there is a change in the phase of vortex shedding it is not possible to differentiate between the

two peaks in the drag force either before or after the transition, and the change in the drag phase at

the transition, A ^ is also equal to A ^ ± 180°.

Without detailed examination of the temporal movement of vorticity throughout the wake allowing

the application of equation 3-2, it is not possible to associate a peak in the drag force with the

movement of a particular vortex structure. The limited time resolution of the vorticity fields in the

current investigation precluded the application of equation 3-2. Consequently the finer details of

the relationships between the vorticity fields and the vortex forces for the three wake states remain

a question for future investigation.

In both Figure 3-26 and Figure 3-36 the drag phase has been plotted in a way that minimises the

magnitude of the jumps in <)ws. The drag phases can also be plotted so that the variation in §dri,g is

most similar to the corresponding changes in the vortex lift phases, as shown in Figure 3-37(b). In

this case the transition between the low-frequency and intermediate states corresponds to a

relatively small change in §jrag, while the transition between the intermediate and high-frequency

states corresponds to a large change in (j></rag. The vorticity fields indicate that this is perhaps the

most physically meaningful way of plotting §*<%, as the phase of vortex shedding is essentially

constant at the transition between the low-frequency and intermediate states. In Figure 3-3 7(b)

there is also a relatively large jump in ^jrog at the transition between the intermediate and high-

frequency states, which corresponds to a large change in the phase of vortex shedding. For the

transverse oscillations the drag force is a purely vortex force and, in that respect, is analogous to

the vortex lift force. The fact that the phases of these forces show similar behaviour, particularly in

the collapse of (jv̂ vom* and fydng, strengthens our interpretation of the relationship between the

vortex forces and the structure of the wake. Thus, despite the limitations in interpreting of the drag

phase, discussed above, it has still has provided valuable insight.
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Figure 3-37 Two different methods of plotting the variation of §dra/, for the three different wake states:
AID = 0.6, Re = 2300.

The instantaneous values of fay), ̂ njtvona and fyjrag at the higher amplitude of AID = 0.6 are plotted

in Figure 3-38 where, for the range of oscillation frequencies considered, the wake demonstrates all

three wake states. The vortex lift phase is plotted twice to demonstrate the effect of plotting all the

phase values between 0° and 360°, rather than using the traditional method of plotting most of the

3rd and 4* quadrant phases as negative values. For fjfo = 0.78, 0.82 and 0.91 in Figure 3-38 there

are no self-excited transitions and the wake is in either the low- or high-frequency states. The

variation of the forces for two values of fjfo where self-excited transitions occur, fjfo = 0.84 and

0.85, were discussed in detail in section 3.6.1. The force trace indicates that z\.fjfo — 0.84 there is a

self-excited transition from the low-frequency state to a stable intermediate state. At both fjfo =

0.85 and 0.87, after an initial transition from the low-frequency state through to the high-frequency

state, the wake alternates between the high-frequency and intermediate states. The force traces

show that at fjfo = 0.85 the wake is predominantly in the intermediate wake state, while at the

higher frequency of fjfo = 0.87 the wake spends most time in the high-frequency state. The wake

exhibits all three sates within the transition region, fjfo ~ 0.84 - 0.87, but as fjfo increases the

percentage of time that the wake spends in a given wake state changes and there is a clear shift in

the relative stability of the different states. Within the transition region, at both A/D = 0.5 and 0.6

the low-frequency state appears to be a meta-stable state, which the wake tends to move to

immediately after the cylinder starts oscillating. As fjfo increases within the transition region there

is a decrease in the time after start up at which the transition from the initial low-frequency state to

a more stable state occurs, as discussed in section 3.3.2. This phenomenon is also illustrated in

Figure 3-36 and Figure 3-38 and appears to occur irrespective of the final state or the nature of the

transition.
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Figure 3-38 Variation of a) total lift phase, b) vortex lift phase and c) drag phase after the cylinder
begins oscillating at t = 0 for a range of oscillation frequencies at A/D = 0.5 and Re = 2300. In all cases
the instantaneous phases were calculated using a correlation width of 3 oscillation cycles.

The traditional method of plotting <!>/,/,„,„« in Figure 3-38(b) shows the transition between the

intermediate and high-frequency states as a large change in <t>/,j>w>™* of the order of 240°. However,

when <W,,W«* is replotted in Figure 3-38(c) the change in ^ ^ a is of the order of 120°. The two
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different methods of plotting <}>/,>» ,«** demonstrate a very interesting point about the transition

between the intermediate and high-frequency states. The direction of the phase shift can be

inferred from the phase values that occur as the wake state changes. Using this methodology,

Figures 3-36 and 3.38 show that the low-frequency to intermediate state transition, at both AID =

0.5 and 0.6, corresponds to a anti-clockwise shift in the total lift phase. The direction of this phase

shift does not represent a shift in the phase of vortex shedding but instead a change in the relative

amplitudes of the vortex and apparent mass forces. During the transition from the intermediate

state to the high-frequency state at AID = 0.5 the values of §nj, „,„« move through the 2nd and 1st

quadrants, indicating that the transition corresponds to a clockwise shift in the phase of vortex

shedding. However, at A/D = 0.6 Figure 3-3 8(c) clearly shows that during the transition between

the same states the values of <(•/,//«,«<* move in the opposite direction, through the 4th quadrant, thus

the transition corresponds to an anti-clockwise shift in the phase of vortex shedding. As AID

increases from 0.5 to 0.6 we have also observed a change in the behaviour of ^ and §ujtwna zsfJfo

increases immediately following the transition to the high-frequency state, as discussed in sections

3.4.1 and 3.6.2. However, it is not known if this difference is related to the apparent change in the

direction of the phase shift. Gopalkrishnan (1993) also found a similar change in the direction of

the phase shift at transition as the oscillation amplitude increased from AID = 0.5 to 0.75.

However, his observations were made for the total lift phase, and without evaluation of the vortex

lift force it is difficult to compare the two cases, particularly as the oscillation amplitude for the

current investigations do not extend past A/D = 0.6.

The behaviour of the drag phase at AID = 0.6 in Figure 3-38 is similar to that observed at AID =

0.5, and in both case the intermediate state corresponds to values of §drag that are between the

values for the low- and high-frequency states. At AID = 0.6 the intermediate state is observed over

a wider range offjfo, and examination of Figure 3-38(d) shows that asfjfo increases within the

transition region the average value of §jrag for the intermediate state decreases. In fact, as fjfo

increases the drag phase of the intermediate state appears to decrease gradually from values that are

slightly below the low-frequency state values towards values that are observed for the high-

frequency state. However, as discussed earlier, the nature of the variation of §jrag depends on how

this property is plotted.
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3.7 RELATE FORCED AND FREELY OSCILLATING CYLINDERS

One of the important questions arising from the investigations of forced and freely oscillating

cylinders is whether the results from the forced oscillations can be used to predict and interpret the

oscillations of a freely vibrating system. As discussed in section 1.6.3 this question has been

considered by a number of investigators, most notably Staubli (1983) who attempted to use the

results of forced oscillations to predict the motion of an elastically mounted cylinder with limited

success. The flow-induced motion of a cylinder is a complicated problem as the structure of the

wake and the motion of the cylinder are a coupled, interdependent system. This problem can be

simplified by replicating the flow-induced motion using a predefined controlled motion, which

allows the investigation to focus on the response of the wake to the cylinder's motion.

In this section we consider the relationship between a cylinder forced to oscillate with a purely

sinusoidal motion at frequencies close to the natural frequency of the wake and the free oscillations

of an elastically mounted cylinder. Despite the fact that the relationship between these two cases

has proved surprisingly complicated, our results show that many of the fundamental features of the

free and forced cases are in fact strikingly similar.

3.7.1 Link Between Forced Wake States and Free Response Branches

As discussed in section 1.5 the vortex-induced motion of cylinder that is free to oscillate transverse

to the free-stream has been shown to exhibit two or three response branches, depending on the

mass and damping of the structure. The response of an elastically mounted, freely oscillating

cylinder is generally considered as a function of the free-stream velocity and the response

properties are plotted against U* or (£/*//*)Sfo, where both these parameters vary inversely with

fjfo. Both the wake states for the forced oscillations and the response branches of the freely

oscillating cylinder are characterised in terms of the wake structure and the forces on the cylinder.

The variations of CL and CLwrta: with^//"0 have distinctive shapes for both the forced and freely

oscillating cases. However, it is difficult to compare these shapes as for the free motion the

amplitude of oscillation varies with fjfo, while for the forced case AID is held constant. The

parameters that best allow comparison between the forced and freely oscillating cases are <t>«/, and

§uftvortex. In the previous sections the values of ()>«/, and Avanex were used to identify the three

different wake states for the forced oscillations. The same parameters were also used by

Govardhan & Williamson (2000) to identify the different response branches of an elastically

mounted cylinder. The values of«))/,/, and ^y,™** also indicate the direction of the energy transfer,

which in terms of the relationship between the forced and freely oscillating cylinder is a crucial

parameter.
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In the following discussion the properties of the force wake states and free response branches will

be compared and it will be shown that the three wake states are analogous to the three response

branches. At low values of fjfo, corresponding to higher U* and (U*/f)Sto values, the low-

frequency state is observed for the forced oscillations and the freely oscillating cylinder is in the

lower response branch. At higher values of/J/o, corresponding to lower U* and (U*/f)Sto, the

forced and freely oscillating cases exhibit the high-frequency state and the initial response branch

respectively. The intermediate state and the upper branch are only observed for certain conditions

and are generally associated with larger oscillation amplitudes, which for the freely oscillating case

occur at lower mass-damping values. In parameter space, the intermediate state and upper branch

occur in between the other states or branches close to the resonance conditions, where for the

forced case/, ssfo and for the free casef, *fsmK and typically U* « 5.
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Figure 3-39 a) Variation of i) <J>i and ii) (j>Iift vortex with fe/fo, showing the low-frequency (L-F),
intermediate (Int) and high-frequency wake states for forced oscillations at A/D = 0.6 and Re = 2300.
b) Variation of i) <j>lift and ii) (jilift vortex with U*, showing the lower (L), upper (U) and initial (I)
response branches for the freely oscillating cylinder with low m% [m* = 8.63 and C, = 0.00151 J. Note
the decreasing U* axis. Reproduced from Govardhan & Williamson (2000).

In Figure 3-39 the phases of the total and vortex lift forces are shown for both the forced and freely

oscillating cylinders. At AID = 0.6 and Re = 2300, shown in Figure 3-39(a), the forced

intermediate state is observed; correspondingly in Figure 3-39(b) the lift phases are shown for an

elastically mounted cylinder with low mass-damping where the upper response branch is observed.
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The values of the lift phases for the three wake states and three response branches are summarised

in Table 3-3. The values of ^ and ^ ^ for the low-frequency state and lower response branch

are similar, as are the values for the intermediate state and upper response branch. At both the low-

frequency <-> intermediate state transition and the lower <-> upper branch transition the vortex lift

phase shows very little change, but there is a large jump in the total lift phase. The values of

V ~ « - f° r high-frequency state are significantly lower than for the corresponding initial response

branch. However, the behaviour of the lift phases at the intermediate <-> high-frequency state

transition and the upper <+ initial branch transition are essentially the same; fa remains relatively

unchanged while there is a large jump in ferortW- Despite the fact that the behaviour of the lift

phases shown in Figure 3-39(a) for the forced and free cases are very similar all but one data point

for the forced oscillations fall outside the range 0 ° < ( ^ or «t»,,/,^)<180°. Therefore, the energy

transfer for all but one of the forced cases is negative.

Table 3-3 Summary of the lift force phases for the forced wake str.ies and the free response branches.

The and vortex lift M ces

free .sponse

measured by Govardhan * Winiamson (2000) for ft. U U upper

vorte, ^ * . » .
a .

t

v o l m .race fo, .he M M response .ranch shown in Figure

is
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corresponding apparent mass trace. However, the amplitude of the vortex lift for the segment of

the force trace in Figure 3-40 is actually significantly larger than the average value of CLwr,ex over

the duration of the force trace. As discussed in the previous sections, our investigation of the

forced case showed that immediately following the transition to the high-frequency state the vortex

lift force was much smaller than the apparent mass force and, as shown in Figure 3-32(c), the small

amplitude vortex lift force is not very sinusoidal. However, zsfjfo increases the relative amplitude

of the vortex lift force for the high-frequency state increases and the vortex lift trace becomes more

sinusoidal. The initial branch vortex lift trace in Figure 3-40 is similar to the high-frequency vortex

lift trace shown in Figure 3-35(c) at higher values oifjfo above the transition region.
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Figure 3-40 Relationship between the total lift force, potential or apparent mass force and the vortex
lift force in the three response branches of an elastically mounted freely oscillating cylinder. Low m%,
|m* = 8.63, £ = 0.00151]. Reproduced from Govardhan and Williamson (2000).

The results for the forced oscillation of a cylinder presented in section 3.4.3 show that the vortex

lift and drag phases for a given wake state collapse reasonably well over a wide range of AID and

Re. However, the results of Govardhan & Williamson (2000) for a freely oscillating cylinder show

that the value of (j^iwux varies with the mass and damping of the structure. As shown Figure

3-39(b), depending upon the response branch, at low values of mass-damping the vortex lift phase

is close to either 0° or 180° and therefore close to the edges of the positive energy transfer region.

At higher m*£ values only the initial and lower branches are observed and, as shown in Figure

3-41, the values of V and ()>/,/,„,„„ for both branches have moved away from the boundaries of

positive energy transfer. Therefore, for a given free response branch §nflvor,cx does not collapse but
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as /
£ increases the values of ^ m a appear to move away from either 0° or 180° towards 90°.

The variation of the lift phases with m*£\s consistent with the classical response of a mass on a

spring described by numerous textbooks on the subject of vibrations.
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only observed si A/D = 0.4 and 0.5. The shape of the plots for the forced and freely oscillating

cylinders in Figure 3-42 are almost identical, however the values of ^nftrona for the forced case

clearly extend over a wider range than for the freely oscillating cylinder, which is constrained to

regions of positive energy transfer.
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Figure 3-42 Variation of ^ujtwrux with.£/£ for both forced and free oscillations. The free oscillations
at high m*C, have been replotted from the results of Govardhan & Williamson in Figure 3-4lb. Forced
oscillations: A/D = OS, Re = 2300. The shading indicates the region of positive energy transfer.

The variation of the forces, in particular <(>///, and tyiftwrta, for the forced and freely oscillating cases

allows us to conclude that there is a strong link between the following forced wake states and free

response branches:

<-» lower branchlow-frequency state

intermediate state <->

high-frequency state <->

upper branch

initial branch
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3.7.2 Wake Structures

In this section the vorticity fields from the current investigation of forced cylinder oscillations are

compared with the vorticity fields measured by Govardhan & Williamson (2000) for the freely

oscillating case. Where possible the comparisons are made for similar values of AID and Re. In

general, we find that for the corresponding free response branches and forced wake states the phase

of vortex shedding and the distribution of vorticity within the near wake are very similar.

b) FREEa) FORCED

Figure 3-43 Phase averaged vorticity fields for a) forced low-frequency state, A/D = 0.6,f,lfo - 0.82, Re
= 2300 and b) free lower response branch, A/D = 0.6, U* = 6.40, Re ~ 3700, from Govardhan &
Williamson (2000). The fields are shown (0 at the top and (//) the mid-point of the downwards motion
as shown in the displacement curve.

The phase averaged vorticity fields in Figure 3-43 show the wakes for the low-frequency state and

the lower response branch, which occur at lower values of / / / or equivalently at higher U* and

(U*/f*)Sto values. The forced and free cases are shown at similar Reynolds numbers of 2300 and

3700 respectively and at the same oscillation amplitude of A/D = 0.6. At the top of the oscillation

the wakes of both the forced and freely oscillating cylinders in Figure 3-43(a & b)(;) show almost
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identical formations of vorticity. In both cases the upper negative vorticity forms a long attached

shear layer that extends well into the lower half of the wake. The portion of vorticity at the end of

these shear layers is beginning to separate and in both cases will form a counter rotating pair with

previously shed positive vorticity. At the mid-point in the cylinder's oscillation, shown in Figure

3-43(a & b)(»), in both the forced and free cases the lower positive shear layer has a very similar

upwards angle and the upper negative shear layer is about to separate from the cylinder. The

general structure of the near wake, the timing of vortex shedding and the mode of vortex shedding

for the low-frequency and the lower branch wakes in Figure 3-43 are remarkably similar.

The intermediate state and upper response branch are generally observed at values oifjf0 close to 1

or equivalently at reduced velocities close to 5. Characteristic phase averaged vorticity fields for

these two cases are shown in Figure 3-44. The oscillation amplitude of AID = 0.5 for the forced

case is significantly smaller than for the free upper branch which is shown for AID = 0.81, as our

forced experiments did not extend to these large oscillation amplitudes. The "Griffin" plot

reproduced from Govardhan & Williamson (2000) in Figure 1-29 shows that the upper response

branch was observed at peak oscillation amplitudes of between A/D « 0.75 and 1.2. For the forced

oscillations at A/D = 0.5 the intermediate state was observed for relatively short periods of time and

was not observed at lower oscillation amplitudes. Thus, for the forced constant amplitude

oscillations, the lower bounds of AID at which the intermediate state exists appear to lie between

AID = 0.4 and 0.5. The values of A/D at which the intermediate state is observed is also expected

to vary with other parameters such as Re and turbulence levels. The vorticity fields for the

intermediate state in Figure 3-44(a) are shown at AID = 0.5 rather than A/D = 0.6 because of the

larger field of view allows improved comparison with the vorticity fields of the upper branch.

Despite the difference in the values of A/D for the forced and free cases in Figure 3-44 the structure

of the wake and, in particular, the phase point at which large scale vortex shedding occurs are veiy

similar. At the top of the oscillation the formations of attached vorticity for the intermediate wake

and the upper branch wake are similar. However, for the free case at A/D = 0.81 in Figure 3-44b(/)

a small portion of negative vorticity has separated from the end of the upper shear layer and the

subsequent mode of vortex shedding is weakly 2P. The relative strength of the second vortex in

each pairing is such that the first vortex dominates the pairing and, as shown by the evolution of the

wake in Figure 3-44(b), the second vortex quickly dissipates. For the forced wake at the smaller

oscillation amplitude, Figure 3-44(a)(/) shows that at the top of the oscillation a very small portion

of negative vorticity has separated from the attached shear layer. However, this vortex structure is

too small for the mode of vortex shedding to be described as 2P and the intermediate wake is 2S.

At the mid-point of the downward stroke the near wakes for the intermediate wake and the upper

branch wake are very similar and in both cases the large-scale negative vortex is about to be shed
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high into the upper wake. The phase, with respect to the cylinder's displacement, of large-scale

vortex shedding for the intermediate wake is the same as for the lower branch wake.

a) FORCED b) FREE

Figure 3-44 Phase averaged vorticiry fields for a) forced intermediate state, A/D = 0.5, fjfo = 0.825, Re
= 2300 and b) free upper response branch, A/D = 0.81, U* = 539, Re » 3100, from Govardhan &
Williamson (2000). The fields are shown (i) at the top and (//) the mid-point of the downwards motion
as shown in the displacement curve.

Although the mode of vortex shedding for the intermediate state is classified as 2S and the upper

branch wake is considered to be 2P, the general structure of the two wakes are very similar and

they are both characterised by a very wide vertical distribution of shed vorticity. Our investigation

of the 2P mode of vortex shedding for the low-frequency state, discussed in section 3.4, concluded

that the formation of the second pairing in the 2P mode corresponds to the formation of long

extended shear layers and is less likely to occur at lower oscillation amplitudes. Given that at A/D

= 0.81 the wake in Figure 3-44(b) is only weakly 2P at lower values of A/D the wake may tend to

the 2S mode of shedding. Thus, the observation of the 2S mode of shedding for the intermediate
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wake at AJD = 0.5 and 0.6 is not inconsistent with weakly 2P mode of shedding observed for the

upper branch at AID = 0.81.

a) FORCED b) FREE

Figure 3-45 Phase averaged vorticity fields for a) forced high-frequency state, A/D = 0.25, fjfo = 1.145,
Re = 4400 and b) free upper response branch, A/D = 033, U* = 5.18, Re « 3000, from Govardhan &
Williamson (2000). The fields are shown (/) at the top and (//) the mid-point of the downwards motion
as shown in the displacement curve.

Examples of the vorticity fields for the forced and freely oscillating cylinders at higher values of

fjfo are shown in Figure 3-45 and Figure 3-46. These figures allow the comparison of the initial

branch wake at A/D = 0.33 with high-frequency wakes at oscillation amplitudes of AID - 0.25 and

0.4. In all cases the mode of vortex shedding is 2S and relative to the oscillation amplitude both

the high-frequency and initial branch wakes are significantly narrower than the two sets of wakes at

lower values of fjfo (low-frequency, lower branch, intermediate and upper branch wakes). The

phase point at which the positive vorticity is shed into the near wake appears to be similar for the

high-frequency and initial branch wakes, although closer examination indicates that for the forced

cases vortex shedding occurs slightly earlier in the oscillation cycle.
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Figure 3-46 Phase averaged vorticity fields for a) forced high-frequency state, A/D = 0A,fJfo -

0.91, Re = 2300 and b) free upper response branch, A/D = 0.33, U* = 5.18, Re « 3000, from

Govardhan & Williamson (2000). The fields are shown (/) at the top and (it) the mid-point of the

downwards motion as shown in the displacement curve.

In general, the phase point at which separation of the large-scale vortex structures occurs is more

difficult to determine for the high-frequency and initial branch wakes than for the wakes observed

at lower values offjfo. The primary reason for this is that the vertical width of the high-frequency

and initial branch wakes is quite small and, particularly at smaller oscillation amplitudes, the vortex

shedding occurs over a longer portion of the oscillation cycle and is therefore not as clearly

defined. The reduced wake width and less distinct vortex shedding for these wakes may be linked

to the phase point at which vortex shedding occurs and the corresponding angle of the wake. For

both the high-frequency and intermediate wakes, vortex shedding occurs as the acceleration of the

cylinder causes the wake to angle away from the shear layer from which the vortex structure is

about to be shed. For example, in Figure 3-46 the positive vorticity is being shed from the lower
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shear layer, however the shedding occurs as the wake begins to tilt upwards due to the acceleration

of the cylinder. In contrast, the vortex shedding from the low-frequency, lower branch,

intermediate and upper branch wakes occurs as the acceleration of the cylinder causes the wake to

angle towards the shear layer from which the vortex structure is about to be shed. The distinct

upwards angle of these wakes as the negative vorticity is about to be shed from the upper shear

layer is clearly evident in Figure 3-43 and Figure 3-44 and in these cases the phase of vortex

shedding is more clearly defined.

In Figure 3-47 the average vorticity fields for the three forced regimes are compared with the

corresponding averaged fields measured by Govardhan & Williamson for the freely oscillating

cylinder. The average fields for each of the regimes are clearly different and there is a strong

similarity between the average fields for the corresponding forced and free regimes. The regions of

positive and negative vorticity in the average vorticity fields indicate that averaged over an

oscillation cycle a region in the wake was dominated by vorticity of a particular sign. For a bluff

body typically the lower half of the average vorticity field is dominated by positive vorticity shed

originating from the lower shear layer, while the upper half of the field is dominated by negative

vorticity. The average vorticity fields for the low-frequency and lower branch wakes correspond to

the 2P mode of shedding. Near the base of the cylinder the 2P wakes have distinct regions of

vorticity that originated from the opposite side of the wake. The regions of average vorticity which

have crossed the centre-line of the wake are indicative of the strength of the vorticity in the long

attached shear layers which, at certain points in the oscillation, extend across the base of the

cylinder into the other half of the wake.

In Figure 3-47 two average wakes are shown for the low-frequency state at AID = 0.5 and one

corresponding lower branch wake is shown at AID = 0.6. Of these three wakes the relative strength

of the second vortex in the 2P pairing is strongest for the lower branch image in Figure 3-47(b)(i).

Additionally, as discussed in 3.3.1, for the forced oscillations at AID = 0.5 the relative strength of

the second vortex decreases as fjfo increases towards transition. In Figure 3-47(b)(i) where the

second vortex in the 2P pairing is strongest the level of average vorticity more than 2 diameters

downstream of the cylinder is very low, indicating that on average in this region there are roughly

equal levels of positive and negative vorticity. As the relative strength of the vortices in the 2P

pairing becomes less equal in Figure 3-47(a)(i & it), there is an increase in the average vorticity

further downstream of the cylinder.
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a) FORCED (A/D = 0.5) b) FREE

Figure 3-47 Average vorticity fields for the three wake regimes for a) forced oscillations at AID ••
and b) the freely oscillation cylinder, from Govardhan & Williamson (2000).

= 0.5
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The average vorticity fields for the intermediate and upper branch wakes are characterised by wide

bands of positive and negative vorticity that angle away from the centreline of the wake. The

region immediately adjacent to the base of the cylinder has very low levels of average vorticity,

with the exception of small portions of positive and negative vorticity that have crossed the wake's

centreline. The average vorticity field adjacent to the base of the cylinder is consistent with the

wake formation in Figure 3-44(a & b)(i7) where the attached shear layers from each side of the

cylinder extend directly across the base of the cylinder. The angle of these shear layer is clearly

greater than for the low-frequency and lower branch wakes in Figure 3-43. The increased angle of

the intermediate and upper branch shear layers means that at different points in the oscillation cycle

the attached positive and negative shear layers tend to occupy the same regions of space

immediately adjacent to the base of the cylinder. Thus, the average levels of average vorticity

adjacent to the base of the cylinder are very low. Further downstream of the cylinder, the shear

layers occupy different regions of space, resulting in higher levels of average vorticity. The

amplitude of oscillation for the averaged intermediate state wake in Figure 3-47(a)(//i) is much

lower than for the corresponding upper branch wake in Figure 3-47(b)(/Q, but despite the obvious

difference in the width of the wakes the characteristics of the average fields are very similar.

The mode of vortex shedding for the high-frequency and initial branch wakes is 2S and the average

vorticity fields in Figure 3-47 are very narrow. The averaged vorticity fields indicate that the

positive and negative vorticity tends to be restricted to the lower and upper half of the wake

respectively. Immediately after the transition to the high-frequency state at fjfo = 0.815 the

averaged high-frequency wake appears to be slightly wider than at the higher oscillation frequency

offjfo = 0.869. This is consistent with our observations from the instantaneous and phase averaged

vorticity fields.

3.7.3 Prediction of VIV Using Fcrced Oscillations

In the previous sections we have shown that forces on the cylinder and the structure of the wake for

the different regimes of the forced and freely oscillating cylinders have many features in common.

The cylinder is forced to oscillate with a purely sinusoidal motion and the key question is whether

this motion adequately represents the motion of a freely oscillating cylinder? A second closely

related question is whether the forced oscillations can predict the flow-induced motion?

For the cylinder to undergo sustained free motion there must be a net positive energy transfer per

oscillation and thus 00«t>/,̂ <1800, or equivalently O 0 - ^ „„,„<! 80°. The constraints of positive

energy transfer for the free oscillations are clearly evident in the phase plots of Figure 3-39 and

Figure 3-42. The results of both the current and previous experiments on the forced purely

sinusoidal oscillation of the cylinder show that the energy transfer per oscillation can be either

negative or positive. If the forced sinusoidal oscillations accurately simulate the vortex-induced
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motion, then the regions where the forced oscillations generate negative energy transfer correspond

to oscillation and flow parameters [(U*/f)Sto,A/D, Re] at which vortex-induced vibrations do not

occur. Similarly, if the above condition holds, the regions of positive energy transfer for the forced

oscillations represent cases where vortex-induced vibrations may occur. If however, the purely

sinusoidal controlled motion does not accurately simulate the vortex-induced motion then, for cases

where free oscillations occur, the corresponding forced oscillations can result in either positive or

negative energy transfer.
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Figure 3-43(a) respectively.
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Results from the current investigation are now compared with the results from Khalak &

Williamson's (1999) investigation of the vortex-induced motion of an elastically mounted cylinder.

For corresponding wake states and response branches and for parameters [(U*/j*)Sto, AID, Re]

where vortex vibration occurs it will be shown that the forced purely sinusoidal oscillations can

generate negative energy transfer. In Figure 3-48(a) the amplitude response of the freely

oscillation cylinder is plotted against (U*/f)Sto, for m* = 1.19 and m* = 8.63. For these cases of

relatively low m % the amplitude response shows a good collapse for the initial and lower

branches. In Figure 3-48(b & c) the energy transfer for the forced oscillations are plotted as a

function of (U*IJ*)Sto at A/D = 0.25 and 0.6 respectively, where the points corresponding to the

vorticity fields in Figure 3-45(a) and Figure 3-43(a) are highlighted. For values of (L/*//*)5r0

between 1.19 and 1.29 the energy transfer for the low-frequency state at AID = 0.6 and Re - 2300

is negative. However, Figure 3-48(a) shows that for values of (U*/J*)Sto between 1.1 and 1.6 lower

branch flow-induced vibrations occur at A/D = 0.6 and at similar Reynolds number of Re « 3700,

where in this case the energy transfer must be positive. The images in Figure 3-43 show that

despite the different directions of energy transfer the vorticity fields corresponding to these

oscillation and flow parameters are very similar. Similarly, the free initial branch in Figure 3-48(a)

shows that free oscillations occur at A/D = 0.25 for values of (U*lf)Sto of just under 1.0.

However, the forced oscillations at AID = 0.25 and similar values of (JJ*lj*}Sto result in negative

energy transfer.

The results in Figure 3-48 show that there are a number of cases where the forced purely sinusoidal

oscillations result in negative energy transfer for flow and oscillation parameters where free

oscillations are known to occur. In these cases, the forced sinusoidal motion does not predict the

flow-induced motion and therefore, the sinusoidal motion does not simulate all the key components

of the flow-induced motion. The failure of the forced motion to adequately model the vortex-

induced motion for a single set of parameters indicates that the forced purely sinusoidal oscillations

can not be used a priori to determine the flow-induced motion.
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4 STATIONARY CYLINDER NEAR A FREE-SURFACE

The close proximity of a boundary is known to affect the flow around a circular cylinder as

discussed by Bearman & Zdravkovich (1978), Miyata et al (1990), Sheridan et al (1997), Hoyt &

Sellin (2000) and Price et al (2000). In this chapter, the modification of the Karman wake as the

cylinder approaches a free-surface is examined at relatively low Froude number. The different

wake states as the cylinder approaches the free-surface are defined in terms of both wake and force

properties. In particular, a link is established between changes in the structure of the near wake and

the lift and drag forces on the cylinder.

As discussed in section 1.7 the boundary conditions generated by a free-surface differ from those of

a solid boundary in at least two key areas: a free-surface is able to deform in response to pressure

variations underneath the surface and along a clean free-surface (no surfactants) the shear stress is

effectively zero. Therefore, in contrast to a solid surface, vorticity is not generated along a flat

clean free-surface. The only circumstances where vorticity is generated at a free-surface are when

free-surface deformation results in a curved boundary or when surface contamination results in

non-zero surface shear. For the relatively low value of Fr used in this study (Fr = 0.166)

disturbances of the free-surface tend to be damped out and large scale deformation of the free-

surface is not observed. Thus, for all but the smallest cylinder depths the free-surface remained flat

and the generation of vorticity due to the surface deformation was not observed.

4.1 FORCES ON A CYLINDER NEAR A FREE-SURFACE

Within the region where the cylinder's wake is affected by the free-surface, or the free-surface

region, three distinctly different wake states were observed, described as modes I, II and III. Mode

I occurs as the cylinder moves from the fully submerged state into the free-surface region, followed

by modes II and III as the cylinder approaches, but does not pierce, the free-surface. In this section

the different modes are described in terms of the lift and drag forces on the cylinder.

4.1.1 Variation of Lift and Drag with h/D

The variation of both the standard deviation and mean of the lift force arc shown as the cylinder

approaches the free-surface in Figure 4-1 (a), while the corresponding values of the standard

deviation and mean drag are shown in Figure 4-l(b). For cylinder depths of h/D > 3.0 the forces on

the cylinder do not change significantly as the cylinder's depth is increased further, therefore for

h/D > 3.0 the cylinder is effectively fully submerged. The net lift force on a fully submerged

cylinder is zero and the mean distribution of vorticity about the centre-line of the wake is

symmetric. The fact that the value of CLmean in Figure 4-l(a) is not exactly equal to zero at h/D =

3.0, is attributed mainly to experimental drift of the strain gauges. Within the free-surface region,
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hID < 3.0, there is a net negative lift force on the cylinder for all three modes, as shown in Figure

4-1 (a). This result is consistent with the findings of Bearman & Zdravkovich (1978), Miyata et al

(1990) and Price et al (2000) for a cylinder near either a solid-surface or free-surface. The net lift

force on the cylinder indicates that the generation and distribution of vorticity is not symmetric

about the centre-line of the cylinder; an analogous case is non-symmetric flow over an aerofoil.

The value of Cim(Vin becomes progressively more negative as the cylinder nears the free-surface,

indicating that the wake becomes increasingly non-symmetric. The value of CimfWI close to the

free-surface is larger than the fluctuating component of the lift force, therefore at all times in the

shedding cycle the forces generated by the flow field act to push the cylinder away from the free-

surface.

In contrast to the relatively smooth variation of CL mean as the cylinder approaches the free-surface,

there is a peak in the mean drag just before the transition from mode I to mode II. The peak value

of CDmain is 14% higher than for a fully submerged cylinder. As hID decreases further CDmean

decreases and at hID - 0.079, when the top of the cylinder is almost adjacent to the free-surface,

the mean drag on the cylinder is slightly less than for a fully submerged cylinder.

The time varying lift and drag forces for mode 1 are sinusoidal, however for mode II and III the

forces are neither sinusoidal nor periodic. Therefore, the standard deviation of the force signal,

rather than the peak value, is used to describe the magnitude of the fluctuating component of the lift

and drag forces. As hID decreases below 3.0 initially there is a marked increase in CLa, the

standard deviation of the lift, while the standard deviation of the drag CDa shows only a slight

increase. However, closer to the free-surface the values of both CLa and CDa for mode II and III

drop below the values for a fully submerged cylinder. Examination of the lift traces and spectra

show that as hID decreases from 3.0 to 0.7 there is a significant increase in the energy at the

Strouhal frequency, f0, and the lift trace is strongly periodic. However, below hID = 0.5 there are

no distinct spectral peaks and the lift force is not periodic. At hID = 0.5 the wake appears to be

switching between mode I and mode II; at times the lift trace is strongly periodic and is consistent

with mode I, while other times the lift force is consistent with mode II as it has only a small and

irregular fluctuating component. The fluctuating component of the drag force for mode I is not as

sinusoidal as the corresponding lift force and, while the transition from the submerged cylinder

wake to mode I at hID » 3.0 corresponds to a significant increase in C i a , CDo is almost unchanged.

At the transition from mode I to mode II there is a sharp decrease in the values of C i o and CDa as

well a decrease in the spectral energy at/,- Thus, as the cylinder approaches the free-surface it

appears that periodic vortex shedding is suppressed.
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Figure 4-1 Variation of the mean and standard deviation of a) the lift force coefficient, and b) the
drag coefficient with cylinder depth, h/D. The standard deviation of the lift and drag forces, CL a and
CD a, respectively, are used to represent the amplitude of the forces, as for h/D < 0.5 the lift and drag
traces are neither sinusoidal or periodic.
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4.2 WAKE MODES NEAR A FREE-SURF A CE

In section 4.1 the three different modes are described in terms of their characteristic force

properties, however they can also be characterised by distinct changes in the structure of the near

wake as the cylinder approaches the free-surface. In this section the instantaneous and mean

vorticity fields for the three modes are presented and related to the forces on the cylinder.

a) b)

h/D = 0.25. Mode II

Figure 4-2 a) Mean vorticity fields, Aco = 3.0, and b) Instantaneous vorticity fields, Aco = 1.0, at ItID =
0 3.0, iV) 1.0, Hi) 0.25 and iv) 0.079. The circle in the inserts represents the timing of each instantaneous
image.
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In Figure 4-2(a & b) the mean and instantaneous vorticity fields are shown for the three free-

surface wake modes at h/D = 1.0, 0.25 and 0.079, as well as at h/D = 3.0 where the cylinder is

effectively fully submerged. For the periodic mode I and fully submerged wakes at h/D = 1.0 and

3.0 the mean vorticity fields in Figure 4-2(i & ii) were calculated over 2 and 1 full Karman cycles

respectively.

4.2.1 Mode i Wake: Modified KSrman Wake

At the Reynolds number used for the current experiments, Re = 2100, the fully submerged cylinder

wake Si as a very long formation length and, as shown by data reviewed in Zdravkovich (1997), the

amplitude of the corresponding fluctuating lift is relatively small. The instantaneous wake of the

fully submerged cylinder, shown in Figure 4-2(b)(j), is characterised by the development of long

attached shear layers and the corresponding mean vorticity field in Figure 4-2(a)(/) shows that the

recirculation region extends well downstream of the cylinder. For cylinder depths between

03<MK3.0 vorticity of alternating sign is shed periodically into the near wake and the mode I

*VSAC is effectively a modified Karman wake. However, comparing Figures 4-2(a)(/) and 4-

-)(»)(«) it is clear that the formation length for the mode I wake is much smaller than for the fully
c<*bmerged cylinder. Additionally, the force insert shows that there is a corresponding increase in

the amplitude of the fluctuating lift force for the mode I wake.

For mode I Figure 4-1 (a) shows that the standard deviation of the lift force increases as h/D

decreases, where the values of C i o are calculated over more than 300 Karman cycles. In Figure

4-3 the instantaneous mode I vorticity fields and corresponding lift traces are shown at three

different submergence depth: h/D = 1.5, 1.0 ??nd 0.7. For comparison the effectively fully

submerged case, at h/D = 3.0, is also shown. The instantaneous images were all acquired at times

corresponding to local minima in the lift force. Thus, the wakes are at approximately the same

point in their shedding cycles allowing direct comparison of the near wake structures as h/D

decreases. As the cylinder moves from the fully submerged state to the mode I wake state there is a

significant shortening in the wake length and a corresponding increase in the amplitude of the

fluctuating lift force. Closer examination of the instantaneous wake lengths in Figure 4-3 reveals

an inverse relationship between the instantaneous wake length and the instantaneous amplitude of

the fluctuating lift force. This relationship is summarised in Figure 4-4(b) where, as shown in

Figure 4-4(a), Lfins, is a qualitative measure of the instantaneous wake length and CLlml is the

instantaneous amplitude of the fluctuating lift force. Lfba, is defined as the downstream distance

from the centre of the cylinder to the topological centre of the attached positive vorticity, where to

allow direct comparison Z,//m,is always measured at a local minimum of the lift force.

7D =
eous
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Figure 4-3 Instantaneous vorticity flelds and lift traces for the mode I wake at a) hID = 3.0, b) h/D =
1.5, c) h/D = 1.0 and d) HID = 0.7. The timing of the images corresponds to local minima in the lift
forces and is represented by the circles in the lift traces.
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Figure 4-4 a) Instantaneous vorticity field showing the definition of instantaneous formation length,
L/un, b) variation of L/iM, and CLixt with hID, where the data points correspond to the instantaneous
images in Figure 4-3.

The wake of a stationary cylinder typically has a strong spectral peak at the Strouhal frequency and

the large-scale features of the wake are essentially periodic. However, as evidenced by the changes

in the amplitude of the fluctuating lift traces in Figure 4-3 there is some variation in the structure of

the wake and the corresponding forces on the cylinder between cycles. The time averaged lift

forces on the cylinder in Figure 4-1 (a) show that for the mode I wake the amplitude of the

fluctuating lift force increases with decreasing h/D. However, at a given instant this trend does not

always hold and in Figures 4-3 and 4-4 the amplitude of the fluctuating lift force at h/D = 0.7 is less

than at h/D - 1.0. The smaller lift amplitude at h/D = 1.0 corresponds to a slightly longer wake

length, and the inverse relationship between Lflns, and CLim, appears to hold at all times. This

suggests that there might be a similar inverse relationship between the mean formation length and

CLa. The wake length was not qualitatively measured over a large number of cycles and therefore

it is not possible to definitively establish a link between C i o and a mean formation length as the

cylinder approaches the free-surface. However, it is clear that as the cylinder moves closer to the

free-surface the initial increase in CLa is associated with a decrease in the wake length.

The Karman wake of a fully submerged cylinder has a symmetric mean distribution of vorticity

about the centre-line of the cylinder and the corresponding mean lift force on the cylinder is zero.

The values of CLmcan for the mode I wake become increasingly negative as the cylinder approaches
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the itee-surface indicating that there is a net generation of positive vorticity and the mode I wake

becomes increasingly non-symmetric about the cylinder's centre-line. However, due to the

periodic nature of the mode I vortex shedding and the limited field of view, it is difficult to

quantify the net circulation of the wake. Interestingly, for h/D > 0.7 the non-symmetry of the wake

appears to amplify the response of the wake to the Karman instability; the vortex shedding occurs

closer to the cylinder and there is a corresponding increase in the amplitude of the fluctuating

forces on the cylinder. Intuitively this suggests that a relatively small imbalance in the level of

vorticity increases the interaction between the shear layers, resulting in vortex shedding occurring

closer to the cylinder. Significant variations in the frequency of the Karman shedding were not

observed. Therefore, despite the fact that the interaction between the shear layers occurs closer to

the cylinder, the duration or period of a shedding cycle is relatively unchanged. As h/D is

decreased further there appears to be a point, h/D » 0.5, where the non-symmetry of the wake

begins to inhibit, rather than enhance, the interaction between the shear layers. Beyond this point

periodic Karman shedding was not observed.

4.2.2 Mode I I Wake: Flow Attached to Free-Surface

As h/D decreases below h/D = 0.5 there is a sharp drop in the amplitude of the fluctuating forces on

the cylinder and, as shown in Figure 4-2(H7), a marked change in the structure of the near wake.

The mode II wake is characterised by the formation of long shear layers and there and there is no

periodic shedding of vorticity. As shown by the force insert in Figure 4-2b(m) the lift trace is no

longer periodic and there are no strong peaks in the corresponding lift spectra. Additionally,

examination of the lift traces indicates that the major contributions to the standard deviation of the

lift force, Q o , are associated with fluctuations in CLmean. For the mode II wake the attached shear

layers of both the instantaneous vorticity field, shown in Figure 4-2b(//) and the mean vorticity

field in Figure 4-2a(ii> are longer than for either the mode I or fully submerged wakes. The upper

negative shear layer is parallel to the free-surface while the positive shear layer has a distinct

downward angle. The flow over the top of the cylinder forms a jet of high-speed fluid that

separates from the cylinder but remains attached to the free-surface, where the width of this jet

appears to depends primarily on h/D. The angle at which the upper shear layer separates from the

cylinder is similar to the corresponding angle for the fully submerged and mode Karman type

wakes. The fluid underneath the cylinder separates earlier than for a Karman wake and the lower

shear layer has a distinct downward angle away from the free-surface. TYM flow visualisation of

the mode II wake at h/D - 0.25 in Figure 4-5, clearly shows the jet of high speed fluid flowing over

the cylinder and the extended region of low speed flow behind the cylinder. The movement of the

lower separation point and the resultant angle of the positive shear layer is consistent with the

rotation of the front stagnation point towards the free-surface observed by Miyata etal. (1990).
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Figure 4-5 Flow visualisation of the mode II wake at h/D = 0.25 using multiply exposed particles with
no bias velocity.

The general structure of the mode II mean vorticity field in Figure 4-2(a)(/;7) is not significantly

different from that of the corresponding instantaneous wake in Figure 4-2(b)(//7). Thus, the

dominant structures in the near wake are non-periodic. Vorticity is shed from the mode II wake but

the final separation of the vorticity from the long shear lays occurs well downstream from the

cylinder and the shear layers interact in a relatively disorganised fashion. The sharp drop in C i o

and Co o as h/D decreases below 0.5 is consistent with the non-periodic nature of the mode II wake

and the cessation of coherent vortex shedding. The marked non-symmetry of the wake is also

consistent with the large net negative lift force on the cylinder.

The mode II wake does not appear to cause deformation of the free-surface and the corresponding

generation of free-surface vorticity, and is essentially the same as the wake state observed by

Sheridan el al. (1997) at Fr = 0.22. Sheridan et al. (1997) found that when they increased the

Froude number to 0.35 and 0.60 the wake state still displayed characteristic features of the mode II

wake, including the characteristic jet of high speed fluid over the cylinder and the angled lower

wake. However, as discussed in section 1.7.4 at higher Fr there was also significant free-surface

deformation and the generation of free-surface vorticity.

201



4.2.3 Mode III Wake: Separated Jet

The mode III wake was observed at the smallest submergence depths of hID < 0.125. At these

depths the separation of the upper shear layer from the cylinder is delayed and the thin jet of fluid

above the cylinder separates from the free-surface. At hID - 0.079 the jet was unsteady and

alternated between remaining attached to the back of the cylinder and separating from the cylinder

to form a thin free j e t For the majority of the time the thin jet of fluid remained attached to the

cylinder and there was a systematic upstream movement of the low speed fluid directly behind the

cylinder. The migration of fluid upstream appeared to result in the attached jet becoming unstable

causing it to separate from the cylinder as a free jet. The free jet persisted for short periods of time

and tended to "flap" at angles of between 45 and 60 degrees 'x> the free-surface. The short periods

of time during which the jet separated from the cylinder coincided with a general downstream

movement of the low speed fluid behind the cylinder.

In Figure 4-2(b)(iv) the high speed fluid between the free-surface and the cylinder separates from

the free-surface but remains attached to the back of the cylinder, forming an attached jet of flow

running downwards into the lower shear layer. The separation of the jet of fluid from the free-

surface indicates that positive free-surface vorticity is generated at the point of separation. The jet

on the back surface of the cylinder clearly contains both positive and negative vorticity and there is

also significant positive vorticity underneath the free-surface, thus the separation of the jet of high

speed fluid coincides with the generation of positive free-surface vorticity. Despite the generation

of free-surface vorticity, a clear deformation of the free-surface above the cylinder was not detected

during the experiments. The fact that free-surface deformation was not observed indicates that

either that the deformation of the free-surface was small, or that the free-surface vorticity was

generated by another mechanism. For the case of a perfectly clean free-surface the effectively zero

shear stress along the free-surface precludes the generation of free-surface vorticity by any

mechanism other than free-surface deformation. However, if the free-surface is contaminated the

shear stress generated by surfactants on the free-surface may result in the generation of free-surface

vorticity.

For the mode III wake the jet of fluid generated by flow over the top of the cylinder is very thin and

the finer structures of the jet were not resolved by the PIV data. When the jet remained attached to

the cylinder it tended to be better resolved than the separated free jet, indicating that the attached jet

may be slightly wider. The mean vorticity field in Figure 4-2a(n>) was calculated over a time

period where the jet remained attached to the cylinder and therefore does not fully represent the

unsteady wake. However, the percentage of time during which the jet was separated from the

cylinder was relatively small, consequently it is expected that a mean vorticity field calculated over

much longer time periods would not differ significantly from the field in Figure 4-2(a)(/v). With

the exception of the relatively short lived formation of the free jet the general structure of the mode
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Ill wake is relatively steady and the instantaneous wake in Figure 4-2(b)(/v) does not differ

significantly from the mean vorticity field in Figure 4-2(a)(/v)-

The flow visualisation in Figure 4-6 shows the formation of the free jet where the fluid moving

over the top of the cylinder separates from both the cylinder and the free-surface. The free jet

angles across the back of the cylinder and in Figure 4-6 the formation of a recirculation region

between the jet and the cylinder as well as the interaction of the jet with the lower shear layer are

clearly visible.

Figure 4-6 Flow visualisation of the mode III wake at h/D = 0.079 using multiply exposed particles
with no bias velocity.

The generation of net positive vorticity is particularly obvious for the mode III wake in Figure

4-2(a)(/v), and the corresponding value of CLmca,, is large and negative. The reason for the small

increase in CLmcan at h/D = 0.079 is not known, although it may be due to the relatively small

sample time for this data point or it may be directly related to changes in the structure of the wake.

As for the mode II wake, the lack of organised vortex shedding from the mode III wake results in

small ncr,-periodic fluctuations of the lift force, and the lower shear layer has a characteristic

downwards angle.

At Fr = 0.16 the mode III wake was only observed at h/D = °-079, however the work of Sheridan et

al. (1997) indicates that at higher Froude number the mode HI wake state persists through to deeper

cylinder depths. Sheridan et al. (1997) found that for the smallest values of h/D considered in their
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experiments the jet of fluid over the top of the cylinder remained attached to the cylinder and the

wake appeared very similar to mode III wake in Figure 4-2(/v). When the cylinder was moved

further away from the free-surface the high speed fluid formed a strong, apparently stable free-jet

and there was a clear depression of the free-surface behind the cylinder. The deformation of the

surface did not result in the formation of large scale free-surface waves and the majority of the

free-surface vorticity separated from the free-surface. Sheridan et ah (1997) also found that by

increasing Froude number there was an increase in the cylinder depths at which the free-jet wake

mode was observed. This trend is consistent with the results of our experiments at much lower Fr,

as in our experiments mode III wake was only observed for very small values of h/D. The

experiments at higher Froude number indicate that the jet separating from the free-surface can

exhibit two stable wake states; the formation of a jet which remains attached to the cylinder and the

formation of a free-jet, where the wake state depends on both h/D and Fr. It is therefore possible

that the mode III wake observed in these experiments at much lower Fr is actually alternating

between two different wake states.
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4.2.4 Angle of Lower Shear-Layer

The lower shear layer for both the mode II and III wakes has a characteristic downward angle. As

shown schematically in Figure 4-7, the angle of the lower shear layer, 9sheari*yer was quantified by

finding the locus of maximum positive vorticity and calculating the average angle over one

cylinder diameter downstream of the cylinder. The four instantaneous vorticity fields in Figure

4-8(a - d) and the corresponding values of Oshuriayer plotted in Figure 4-8(e) clearly show that there

is an increase in the downward angle of the lower shear layer as the cylinder approaches the free-

surface.

Locus of Mefipr.-;m Positive Vorticily

1.76 ZOO

Fieure 4-7 The instantaneous angle of the lower shear layer as defined by the average angle of the
locus of maximum positive vorticity in the first cylinder diameter downstream of the back of the
cylinder The maximum positive vorticity in a) corresponds to the instantaneous mode II wake In b).
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Figure 4-8 Instantaneous vorticity fields for mode Ii and mode III wakes at a) h/D = 0.5, h/D = 0.025,
c) h/D = 0.125 and d) h/D = 0.079.

4.2.5 Contamination of Free-Surface

As discussed in section 1.7.5, in a free-stream flow a surfactant on the free-surface is pushed

downstream and the point at which the free-surface becomes contaminated tends to be clearly

defined, typically by a small ridge known as the Reynolds ridge. Downstream of the ridge the

contamination forms a boundary layer and vorticity can be generated at the surface without free-

surface deformation. The boundary layer underneath a contaminated free-surface is typically thin

and often difficult to detect. The illumination of the free-surface by the laser allows the detection
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of free-surface contamination and in negative PIV and flow visualisation images the contamination

corresponds to a solid white line.

At the deeper cylinder depths, h/D > 0.25, free-surface contamination was not observed in the

vicinity of the cylinder. However, as the cylinder approached the free-surface the restriction of

flow over the cylinder appeared to reduce the velocity of the free-surface flow behind the cylinder,

allowing the accumulation of surfactant. It is not known if the blockage caused by the close

proximity of the cylinder to the free-surface allowed a pre-existing region of free-surface

contamination to move upstream, or if the blockage caused the formation of a separate region of

free-surface contamination. The free-surface contamination appeared to contain a significant

number of PIV particles, indicating that it might be difficult to -s jtain a perfectly clean free-surface

and still use PIV to measure the velocity field.

For the mode II wake at h/D = 0.125 the free-surface contamination began approximately three

cylinder diameters downstream of the cylinder and at this point the high speed fluid separated from

the free-surface. The boundary layer underneath the contaminated free-surface grew rapidly and

there was significant positive surface vorticity downstream of the Reynolds ridge. At the very

smallest cylinder depth of h/D = 0.079. the free-surface contamination, clearly obvious in Figure

4-6, started directly above the cylinder. This was only the cylinder depth where the high speed

fluid over the top of the cylinder separated from the free-surface before separating from the

cylinder. The separation of the jet from the free-surface is not possible without the formation of

positive vorticity at the free-surface and, as discussed above, the only mechanisms that would cause

this are free-surface deformation and surface contamination. Therefore the presence of the surface

contamination may have promoted the separation of the jet from the free-surface. The experiments

of Sheridan et al. (1997) were conducted in a similar experimental facility and the flow was seeded

with identical PIV particles but it is not known to what extent those experiments were affected by

free-surface contamination. However, at the higher Froude numbers used by Sheridan et al. (1997)

it is expected that the accumulation of surfactant behind the cylinder is less likely.

4.3 SUMMARY

For low Froude numbers, three different wake states were observed within the free-surface region

as the depth of the stationary cylinder below a free-surface is decreased. At the deeper

submergence depths the mode I wake is a modified Karman wake, where the presence of the free -

surface results in a shorter foim?tion length and a corresponding increase in the amplitude of the

fluctuating lift force. Thus, it appears that for the mode I wake the effect of the Karman instability

is amplified by the close proximity of the free-surface. However, as the cylinder is moved closer to

the free-surface periodic vortex shedding is suppressed and for the mode II and III wakes the

fluctuating lift force is very small. The mode II wake, which has high velocity fluid moving
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underneath the free-surface, and the mode III wake where a thin jet of fluid separates from the free-

surface are similar to the wakes observed by Sheridan et al. (1997) at higher Fr. However, at lower

Fr the free-surface appears flat and significant levels of free-surface vorticity, possibly

corresponding to free-surface contamination, were detected only at h/D = 0.125 and 0.07^.

The presence of the free-surface appear to either magnify or suppress periodic vortex shedding and

the corresponding fluctuating forces experienced by the cylinder. It is expected that the range of

submergence depths over which the free-surface region and associated wake modes extend is a

function of Fr. Additionally, the nature of the wake modes will also vary with Froude number as

demonstrated by the extensive free-surface deformation and free-surface vorticity observed by

Sheridan et al. (1997) at higher Fr.
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5 CONCLUSIONS

In this work, we describe in detail the wake states of a cylinder forced to oscillate transverse to a

free-stream. The nature of the interaction between the wake's natural instability and the cylinder

oscillations was studied using simultaneous measurements of the vortex structures in the near wake

and the forces on the cylinder. The modification of the wake of a stationary cylinder due to the

close proximity of a free-surface was also studied using simultaneous flow and force field

measurements.

The wake's dependence on the oscillation frequency was examined for a range of oscillation

amplitudes and Reynolds numbers. For the cases examined, the wake spends the majority of its

time in one of either of two stable wake states, however at higher oscillation amplitudes a third

wake state was observed. Primarily, these wake states depend on the normalised frequency of

oscillation, fJfOt and thus we characterise the two most commonly observed states as the low- and

high-frequency wake states. The third wake state was observed at intermediate values offjfo,

between the low- and high-frequency states, and is consequently termed the intermediate wake

state. The structure of the near wake and, in particular, the timing of vortex shedding is distinctly

different for the low- and high-frequency wake states. These differences can be characterised in

terms of a number of universal features, which were observed over the full range of A/D and Re

studied. The phase of vortex shedding relative to the cylinder's motion varies only slightly with

A/D and Re and appears to depend primarily on the wake state. The phases of the vortex lift and

drag forces are directly related to the timing of large scale changes in the vorticity field and, as

shown in Figure 3-21, the low- and high-frequency wake states have characteristic values of

fyiift vortex and fydrag which are observed over a wide range of A/D and Re. The wake states can also be

characterised by the structure of the near wake and typically the mode of vortex shedding. The

low-frequency wake state generates long attached shear layers, which, except for very low values

of A/D, result in the 2P mode of vortex shedding. The high-frequency wake state has a much

shorter wake length and vortices are shed in the 2S or Karman mode. At the oscillation amplitudes

considered in this investigation the intermediate wake is also 2S, however the phase of vortex

shedding and the vertical width of the wake are similar to that of the low-frequency wake.

At the transition between the low-frequency and intermediate states there is a large change in 4>///,,

corresponding to a change in the relative amplitudes of the apparent mass and vortex components

of the total lift force. However, <i>/,y,w,rt« is relatively unchanged and examination of the flow fields

shows that the phase of large-scale vortex shedding is also unchanged. At the intermediate to high-

frequency transition the value of b,/> is relatively constant, but there is a jump in the value of

tyiftmrtc* and a corresponding change in the phase of vortex shedding. At the transitions between the

low-frequency, intermediate and high-frequency states there are jumps in the values of Q and
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CLvona, however, surprisingly, there are only relatively small changes in the values of CD and

Ccmeon. For flow and oscillation parameters where the intermediate state was not observed the

transition between the low- and high-frequency states corresponds to simultaneous jumps in the

phase and amplitude of both the total and vortex lift forces. However, as there are significant

changes in both the structure of the near wake and the phase of vortex shedding, it is difficult to

directly compare the change in timing of vortex shedding with the change in the value of §ilfi mrta.

For a given wake state the magnitude of the vortex forces: CLvortan Q> and CDma,n as well as the

energy transfer and the total lift forces all show significant variations as the oscillation amplitude

and Reynolds number vary. For the low- and high-frequency states the phase of the vortex forces

tyiftvoncx and fydrag do not vary significantly with Re or A/D, and with the exception of the region

immediately following the transition to the high-frequency state, Figure 3-21 shows a remarkable

collapse of$iiftmrla and <j>̂ og. A similar collapse may occur for the intermediate state but additional

data is required to show this. While the jump in the phase of the vortex lift and drag at the

transition between the low- and high-frequency states is relatively independent of A/D and Re, the

jump in the magnitude of both the vortex and total forces depends on both variables.

For certain flow and oscillation parameters there is a self-excited transition between wake states at

a constant frequency of oscillation. Thus, for a small region of parameter space, two or even three

states can exist at different times. Usually, one of these states appears to be metastable; its

existence depending on the start up conditions. During the self-excited transition between the

different states the mode of vortex shedding and the forces on the cylinder vary smoothly in the

time domain. This contrasts with the abrupt jump between the states in the frequency domain.

The relative stability of the wake states, and their susceptibility to transition, varies with fjfo. As

fe/fo changes a number of variables, including the natural frequency of the oscillating wake, respond

in a non-linear fashion and it is not possible to quantify the relationship between the stability of the

wake states and fjfo. However, there are a number of systematic changes that occur as fjfo

increases towards transition region. For the low-frequency wake state, the length of the wake

contracts asf,/f0 increases and there is a greater disparity in the relative strength of the vortices in

the 2? pairing. As the wake approaches transition region from either higher or lower fjfo the

oscillation frequency _£ and the natural frequency of the oscillating wake^o* converge and at the

transition from the low- to the high-frequency state fjfnos jumps through unity. Despite these

systematic changes, for a given wake state the general characteristics of the wake state, in

particular the phase of vortex shedding, remain relatively constant.

An important feature of the study is the extraction of the vortex force from the total force. Use of

this approach allows a direct link between the forces on the cylinder and the cylinder's wake to be

established. When the total lift force, CL(t), and the vortex lift force, CL vur/ct(r), are compared with
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the phase of vortex shedding for a range of flow parameters, it becomes evident that &•-

relationship between the force on the cylinder and the structure of the near wake should be

interpreted using Fwr1ai rather than F,alaI. This is best illustrated by the cases where the intermediate

state is observed; the transitions between the intermediate and either the low- or high-frequency

states demonstrate the qualitative link between <)>///(«,«« and the phase of vortex shedding, as well as

the link between CLmrtex and the distribution of vorticity. However, if these transitions are

considered in terms of the total force on the cylinder the change in the phase of vortex shedding

does not correspond to the jump in typ.

One of the primary motivations for investigating the forced cylinder oscillations is the potential to

understand and predict flow-induced motion. This investigation shows, for the first time, a link

between the wake states of a cylinder forced to oscillate and the response branches of a freely

oscillating cylinder. This link is shown in terms of both the forces on the cylinder and the phase-

reference structure of the near wake. In summary, we find a strong correlation between the wake

states and response branches as listed below:

Low-frequency state <-> Lower branch

Intermediate state <-> Upper branch

High-frequency state <-> Initial branch

The upper response branch for the free-oscillations is only observed for low mass-damping values

and exhibits high oscillation amplitudes. Interestingly, the corresponding forced intermediate state

was only observed at the two highest oscillation amplitudes considered in our investigation.

One of the major unsolved problems for this class of flows is whether the results of forced

oscillation experiments can be used to predict the vortex-induced vibration of a structure that is free

to oscillate. Whilst this investigation did not seek to answer this question a number of interesting

issues have arisen. The forced purely sinusoidal oscillations appear to reproduce the different wake

structures and lift phases observed for a freely oscillating cylinder. This indicates that the forced

oscillations are simulating many of the important features of the flow-induced motion. The

variation of (}>,,/, and <)>/,/, rorter are remarkably similar, however many of the values of ({»;//, and <|)/̂  vortex

for the forced oscillations are outside the region of positive energy transfer,

0°<(<W or <!>/#„,««) <180°, and therefore predict that flow induced motion will in fact not occur.

Thus although the forced oscillations replicate many features of the flow-induced motion there are

still some important aspects that are not resolved.

For the case of a stationary cylinder beneath a free-surface three different wake states, described as

modes I, II and III, are observed as the depth of the cylinder is decreased. The modification of the

Karman wake by the free-surface in the mode I wake results in a shorter formation length and an
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increase in CLO. The mode II wake, with high velocity fluid moving underneath the free-surface,

and the mode HI wake with a thin jet of fluid separating from the free-surface are similar to the

wakes observed by Sheridan et ah (1997) at higher Fr. However, at lower Fr the free-surface

appears flat and, for all but the very smallest submergence depths, significant levels of positive

free-surface vorticity were not detected. Periodic vortex shedding does not occur for the mode II

and mode III wakes and C i o is very small. The presence of the free-surface causes a non-

symmetry of the wake; the lower shear layer has a characteristic downward angle and CLmam is

negative. Thus it appears that the presence of the free-surface can act to either ampliiy or suppress

the periodic vortex shedding associated with the Karman instability.
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5.1 FUTURE WORK /RECOMMENDATIONS

Spanwise Wake Structure

When a cylinder oscillates there is an increase in the spanwise coherence of vortex shedding.

However, the wake is not 2-dimensional and the levels of vorticity across the span of the cylinder

have been shown to be as high as 1/3 of the vorticity in the streamwise plane, Cetiner (1998).

Similarly, for Re > 180 the wake of a stationary cylinder is also 3-dimensional. In this work a

number of different wake states have been observed for both an oscillating cylinder and a cylinder

beneath a free-surface. These wake states have been characterised in terms of the wake structure in

the x-y plane perpendicular the cylinder's axis. However, the spanwise wake structures, in

particular their dependence on wake state and their contribution to the forces experienced by the

cylinder, remain unknown. Additionally, it is not known if the spanwise nature of the wake affects

the transition between wake states and if self-excited transitions occur simultaneously along the

span of the cylinder.

Intermediate State

A strong correlation was shown between the forced oscillation intermediate state and the free upper

response branch. The intermediate state was observed over a small band of oscillation frequencies

at the two highest amplitudes considered in this investigation, AID = 0.5 and 0.6, where these

amplitudes are slightly below the smallest upper branch amplitudes observed by Govardhan &

Williamson (2000). At AID = 0.6 the intermediate state was observed as a stable wake state

following a self-excited transition but at AID = 0.5 the intermediate state was only observed for

short periods of time. In combination with the correlation between the upper branch and

intermediate state these results suggest that the intermediate state will occur as a stable wake state

at higher oscillation amplitudes. Moreover, it is likely that, in-line with the results of the freely

oscillating cylinder, the intermediate state will be observed over a wider range of fjfo at higher

oscillation amplitudes.

Relationship Between Force and Vorticity

It has been known for some time that the forces on a body due to the vorticity field can be

expressed in terms of the time rate of change of the vortex moment, as described by equation 3.2.

However, in practical terms the link between the forces experienced by a body, moving or

stationary, and the time varying vorticity distribution is not well understood. For example, looking

at the time varying vorticity fields for the low-frequency, intermediate and high-frequency wakes it

is not immediately apparent why the vortex lift forces on the cylinder are of different amplitude.

Additionally, for the same fields it is also not clear why the amplitude of the (vortex) drag forces
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do not vary significantly as the wake state changes. Clearly more work is required to understand

this important relationship.

Prediction of Flow-Induced Motion

Our results have shown that the controlled purely sinusoidal motion of a cylinder can replicate

many of the flow structures and force properties of a freely oscillating cylinder. However, in a

number of cases there are fundamental differences between the forced and freely oscillations, as

relatively small changes in the phase of the lift force causes the direction of energy transfer to be

different These results have serious implications for the predication of flow-induced motion using

forced oscillation results as it indicates that the flow-induced motion can not be accurately

predicted using forced purely sinusoidal oscillations. In order to determine if the flow-induced

motion can be predicted using controlled oscillation results we need first to understand how, and

preferably why, the two cases are different. The most obvious difference between the two cases is

the cylinder motion; as if the motions were identical the wakes and therefore the forces on the

cylinder and the energy transfer would also be identical. The flow-induced motion is directly

related to the structure of the wake. Therefore, an understanding of the differences in the wake

structure, including the spanwise component, may be important in determining the differences

between the forced and freely oscillating cases.

Wake States Below a Free-Surface

A number of different mechanisms can be used to perturb or alter the Karman instability. In this

investigation two such mechanisms were considered; the presence of a free-surface and large-scale

cylinder oscillations. In both cases a number of different wake states were observed, where these

wake states display characteristic features that depended primarily on either the depth of the

cylinder below the free-surface or the frequency of oscillation. An obvious extension of this

investigation is to consider the case of a cylinder oscillating beneath a free-surface, where these

two mechanisms are combined. In particular, it would be interesting to determine if, when the two

mechanisms are combined, do the characteristic features observed for the two individual cases

persist. In particular; are the features which characterised the effect of the free-surface on the flow

over a stationary cylinder, i.e. the downwards angle of the wake and the net negative lift force on

the cylinder, present for the oscillating case; and is there a transition between different wake states

asf/f0 passes through unity?
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