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ABSTRACT

The wake states of a circular cylinder undergoing controlled sinusoidal oscillations transverse 1o a
free-stream are examined for a range of flow and oscillation parameters. As the frequency of
oscillation passes through the natural Karméan frequency there is a transition between two distinctly
different wake states: the low- and high-frequency states. The transition corresponds to a change in
the structure of the near wake and is also characterised by a jump in the phase and amplitude of
both the total and vortex lift. Examination of the instantaneous force ioadings and flow fields
within the transition region allow discrimination between the actual wake states and their
conventional time-averaged representations. At the largest oscillation amplitudes considered, a
third wake state occurs at oscillation frequencies between low- and high-frequency states. This
“intermediate wake state” is revealed by instantaneous measurements of the total and vortex lift
phases, and the phase-referenced quantitative wake structure, Over the range of flow and
oscillation parameters studied the wake states exhibit 2 number of universal features. The phases
of the vortex lift and drag forces have characteristic values for the low- and high-frequency states,
which appear to be directly related to the phase of vortex shedding. The iransitions between the
intermediate state and either the low- or high-frequency states demonstrate a link between changes
in the vortex shedding phase and the phase of the vortex lift force. 1t is also apparent that changes
in the phase of the total lift and the phase of vortex shedding are not necessarily linked. The low-
frequency, intermediate and high-frequency states show some remarkable similarities to the
response branches of elastically mounted cylinders. The equivalence between forced and self-
excited oscillations is addressed, and the prediction of flow-induced motion using the results of
controlled oscillations is discussed using concepts of energy transfer.

The modification of the Kirméan wake of a stationary cylinder by the presence of a free-surface was
also considered. The wake displays a number of different modes, depending primarily on the depth
of the cylinder and the non-dimensional Froude number. At Fr = 0.166 three modes were
observed, where in all cases the presence of the free-surface caused the wake to become non-
symmetric and there was a net negative lift force on the cylinéer. Closer to the surface periodic
vortex shedding did not occur and the two wake modes differed significantly from the fully
submerged Karman wake, while for the third mode at deeper submergence depths the response of
the wake to the Kérmén instability appeared to be amplified.
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1 LITERATURE REVIEW AND PRELIMINARY DISCUSSION

1.1 INTRODUCTION

The periodic shedding of vortex structures from a circular cylinder is one of the most fundamental
probiems in fluid dynamics. For a wide range of flow conditions vortex structures are shed
periodically from the cylinder, forming a characteristic wake pattern known as the Kérman street,
The vortex shedding resuits in a periodic forcing of the body that can, under certain conditions,
induce large-scale motion of the cylinder. Vortex-induced vibration is experienced by many
natural and engineering structures, the classic example being the Tacoma Narrows bridge. In that
case the natural wind over the bridge deck generated forces that resulted in large-scale motion of
the bridge, and ultimately its destruction. The interaction hetween s vibrating body and the
structure of the near wake has been extensively studied and remains the subject of ongoing
research.

144 Vorticity

The structure of a wake or flow field is often described in terms of its vorticity field. Vorticity is
defined as the curl of the velocity vector:

D=VxV {1-1)

The characteristic flow over a circular cylinder is most commonly described in terms of the

spanwise vorticity:
X A
z ax 6}'

where, as defined in Chapter 2, the cylinder's axis is aligned in the z direction and the free-stream

flow is in the x direction.

The streamwise and transverse components of vorticity are given by:

®, =%‘;——--gzl and ®, =%-%:- respectively,
Vorticity is defined as the non-symmetric gradient of the velocity fields and can be interpreted as
the rate of rotation of a small fluid element about its own axis. Vorlicity is Galilean invariant and
is therefore not altered by subtracling or adding a mean velocity in any direction. In a
homogeneous fluid vorticity is generated only at boundaries by the relative acceleration of flow
past the boundary. Vorticity can be generated by flow through a porous boundary, however in this

discussion only non-porous boundaries will be considered. Therefore, the generation of vorticity




can be expressed either in terms of the acceleration of fluid past a boundary or a pressure gradient
along the boundary, as described by a number of authors including Morton (3983), Reynoids &
Carr (1985) and Green (1995). The boundary between water and air is often referred to as a “free
surface”, As the viscosity of air is small compared to water, when the free surface is not
contaminated there is minimal shear stress at the boundary. Therefore the boundary conditions
along a flat, clean free surface are zero shear stress and constant pressure: p(surface) =
platmosphere} =~ constant. When the free surface is curved, generally due to large pressure
gradients under the free surface, there is a relative acceleration of the flow along the surface and a
corresponding generation of vorticity. However, when the free surface is contaminated with
surfactanis a non-zero shear stress at the surface is possible. Thus a contaminated free surface can
sustain a pressure gradient underneath the free surface, and vorticity can be generated along a
contaminated free surface without surface deformation. When the surface of a free stream flow is
contaminated the start of the contamination forms a distinct line known as the Reynolds Ridge, as
described by Scott (1982). The Reynolds Ridge is effectively the start of a boundary layer flow
underneath a “quasi-free™ surface. The boundary layer is often typically thin and therefore difficult
to detect.

As discussed by Morton (1983), the generation of vorticity is instantaneous, inviscid and does not
require a ne-slip boundary condition. The diffusion of vorticity outwards from the boundary into
the flow is however a viscous process, In the flow the only mechanism for the decay of vorticity is
by cross annihilation during diffusive interaction with vorticity of the opposite sign.

The circulation, T, is a scalar measure of the total rotation of the fluid contained within a boundary
and can be expressed in terms of either the velocity or vorticity field:
r={i.dl= [a.5ds (1-2)
c s
where S is the surface bound by the closed contour C. The conservation of circulation within a
material element, Kelvin’s theorem, requires that the net generation of vorticity for unbounded
uniform flow past a cylinder is zero. Thus, equal quantities of positive and negative vorticity are
generated at the cylinder’s surface. However, at a given instant the rate of diffusion of positive and

negative vorticity will be different. The vorticity in the wake is a measure of the changes in the
flow as it accelerates past the cylinder.

1.2 STATIONARY CYLINDER

The circular cylinder and other similar geometries are common both in nature and in engineering
structures and the study of flow over a circular cylinder is of obvious practical significance. The
simple nature of the circular geometry means that the physical properties of the cylinder can
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generally be non-dimensionalised using only the diameter of the cylinder. Additionally, the flow
over a circular cylinder has often been used as a canonical flow, which forms the basis for studies
of more complicated geometries.

To some extent, the large body of literature on the circular cylinder can be attributed (o the many
and varied features of the flow over this simple geometry. The circular geometry provides no sharp
edges to promote, or force the separation of the flow; therefore the point at which the flow
separates is a function of the flow itself. The symmetrical pature of the circle means that the
circular cylinder has no angle of attack and the two-dimensional geometry is independent of the
direction of the flow. This point is particularly relevant to an oscillating bluff body, as for a non-
circular body the effective angle of attack changes during the oscillations.

Although this study is primarily focused on an oscillating circular cylinder, the properties of the
stationary cylinder are relevant. In many cases the wakes observed for an oscillating cylinder are
similar to the wakes from a stationary cylinder and in some cases the mode of vortex shedding is
the same. In particular, the mechanism or instability that causes vortex shedding in a stationary
cylinder are relevant to the wake of an oscillating cylinder,

1.2.1 Wake Regimes: Variation with Reynolds Number
The regimes of the wake of a circular cylinder are typically described in terms of the Reynolds

number and have been comprehensively reviewed by a number of authors, including Williamson
(19962) and Zdravkovich (1997). The regimes describe the transition of the wake from Jaminar
flow through to the developrnent of a fully turbulent wake., As Reynolds number increases there is
a systematic upstream movement of the point at which the transition to turbulence occurs. Thus the
different regimes that develop as Reynolds number increases can be described in terms of the point
at which the flow becomes turbulent. The various flow regimes, a:d in particular the transition
between the regimes, are also affected by the level of free-stream turbulence, surface roughness,
cylinder aspect ratio, end conditions and blockage. However, in general the regimes of the wakes
are adequately described by their dependence on Reynolds number.

Zdravkovich {1997) used the general location of the transition to turbulent flow to describe the
wake state or regime. The regimes are split into sub-regime that describe the wake in more detail.
The regimes and sub-regimes covering a Reynolds number range from zero through to very large
are outlined in table 1-1. Williamson (1996a) used a plot of the base suction coefficient (-Cpp)
versus Reynolds number, as shown in Figure 1-1, to demonstrate the effect of the different Re
regimes on the cylinder. A brief summary of the flow regimes for Re = 10° — 10° is provided

below:




For very low Reynolds numbers within the laminar regime, the wake remains attached around the
eatire surface of the cylinder (L1). As Re increases the flow separates from the upper and lower
surfaces of the cylinder forming a steady, symmetric and closed near-wake (L2). The wake
becomes progressively longer with increasing Re, until at Re = 30-48 the downstream wake
becomes unsteady (L3). As Re increases further within the periodic laminar regime, the wake
shortens and the onset of periodic vortex shedding occurs at Re = 45-65. The vortex shedding is
initiated by the growth of the two-dimensional (transverse) Kérmdn instability and over a wide
range of Reynolds numbers the shedding is strongly periodic. The frequency of vortex shedding is
~ called the Kérmén frequency cr, in its non-dimensional form, the Stroshal frequency. The vortices
are shed aitemately from the upper and Jower surfaces of the cylinder, resulting in a distinct pattern
of oppositely signed vortices, known as the Karmén street. The transverse structure of the Karman

street is very robust and is observed over a wide range of Reynolds numbers.

Table 1-1 Detailed dmrigtion wake :gimes ZAravkovich (1997)

State / Regime Sub-Regime Reynolds Nuember Range
L1 No Separation 0to4-5
Laminar L2 Closed Wake 4-510 3048
L3 Periodic Wake 30-48 to 180-200
- TIW1 Far Wake 180-200 to 220-260
Transition in Wake
W2 Near Wake 220-260 to 350-400
o TiSL1 Lower 350-400 to 1k-2k
Tms‘f;;'e‘l‘; Sheal  1ySL2  Intermediate 1k-2k to 20k-40k
TiSL3 Upper 20k-40k to 100k-200k
TIBLO Pre-critical 100k-200k to 300k-340k
TiBL1  Single Bubble 300k-340k to 380k-400k
Transition in
Boundary Layers TiBL2 Two Bubble 380k-400k to S00k-1M
TrBL3  Super-critical 500k-1M to 3.5M-6M
TrBL4 Post-critical 35M-6Mto ()
Tl Invariable
Fully Turbulent (NDtowo
T2 Ultimate
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FIGURE 1-1 Plot of base suction coefficient over a large range of Reynolds numbers from
Williamson (1996a), for use in the discussion of vortex shedding regimes. The shedding regimes
described by Zdravkovich are also shown.
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FIGUREI-2  Sirouhal-Reynolds number relstionship over the laminar (L) and wake transition
{TrW) regimes. The wake transition is characterised by two distinct discontinuities indicating the
onset of the mode A and mode B instabilifirs. Reprodaced frem Williamson (1996b)

The beginning of the wake transition regime at Re= 180-200 corresponds to a sudden drop in both
the base suction coefficient and Strouhal number, shown in Figures 1-1 and 1-2 respectively. The
changes in -Cpg and St are primarily associated with the growth of spanwise instabilities, resulting
in a three-dimensional wake structure. This regime consists of two sub-sections that were
characterised by Zdravkovich (1997) in terms of the position of the transition to turbulence. For
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the first regime (TrW1) the turbulent transition is observed in the near wake but in the TrW2
regime at slightly higher Re the transition has progressed into the near wake. The spanwise
structares associated with TrW1 and Trw2 have become widely known as mode A and mode B
respectively. The development of the mode A and B wakes from different instabilities and the
resulting characteristic wake structures are discussed in detail by Williamson (1996b). The
spanwise structures in the mode A and B wakes have distinctly different symmetries and scales.
The transition between modes A and B is hysterctic and is characterised by the overlapping
discontinuity of the Strouhal number shown in Figure 1-2.

a)

)

FIGURE 1-3  Physical mechanisms leading to the pmducﬁorof a) out-of-phase mode A vortex
loops by deformatior of the primary structure by downstregam induction, b) in pbase mode B loops due
to induction from the previous braid, Reproduced from Williamson (1996b)

As discussed by Williamson (1996b) the mode A instability occurs due to the deformation of the
primary vortex core. At 2 given spanwise location, successive primary spanwise vortices of
opposite sign are deformed in the same direction by downstream induction as shown in Figure 1-
3a. Thus, streamwise vorticies from one braid to the next are of opposite sign and their symmetry
is considered to be out-of-phase. The mode B wake is generated by an instability of the braid shear

layer region, where the instability is generated by the interaction between the forming shear layer
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and the existing streamwise vorticity in the opposite shear layer. As shown in Figure 1-3b the
streamwise pattern of the mode B is in phase across successive braids. The spanwise structures of
the two modes are distinctly different: the wavelength of the mode A instability scales on the
primary vortex core, while the much smaller wavelength of the mode B instability, scales on the
thickness of the braid shear layer. The mechanisms described by Wiliiamson (1996b) are
consistent with the observations of Zdravkovich (1997) who associated the TrW1 sub-regime
(mode A) with the transition of the far wake and the TrW2 sub-regime (mode B) with the transition
of the near wake.

As Re increases further the wake moves to the TrSL regime where the transition to turbufence
occurs within the shear layer. The beginning of the TrSL regime corresponds to the peak in the
base suction at Re = 220.260 and, as discussed by Williamson (1996a), at this point the three-
dimensional streamwise vortex structures in the near wake are particularly ordered. As Re
increases within TrSL1, the three~dimensionality becomes increasingly disordered and there is an
accompanying increase in the length of the wake. The transition between the TrSL1 and TrSE2
regimes, at Re just above 1000, is characterised by a local minima in the base suction as shown in
Figure 1-1. The data compiled by Norberg (1998) in Figure 1-4 shows that this point also
corresponds to an exceptionally long wake formation length. Additionally, the onset of small-scale
vortex structures within the free shear layers also occurs at Reynolds numbers of just above 1000.
Prasad & Williamson (1997) showed that the onset of these shear-layer vortices is intermittent. As
Re increases further through the TrSL2 and TrSL3 sub-regimes, the transition to turbulence
continues to move upstream, until at Re = 1-2 x 10 transition occurs in the shear-layer

immediately afler separation.
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FIGURE 14 Variation of vortex formation length with Reynolds number. Reproduced from
Norberg (1998).

The transition to turbulence within the boundary layers on the surface of the cylinder, or the TiBL

regime, has long been associated with a “crisis” in the drag force. The drag “crisis” refers to a
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sudden drop in the value of the mean drag and a corresponding drop in the base suction coefficient
shown in Figure 1-1. During the pre-critical (TrBLO) regime, corresponding to the initial decrease
in the drag force, the transition to turbulence occurs at the very end of the boundary layer along the
spanwise separation line. The abrupt fall in the drag force at the transition between the TrBLO and
the TrBL regimes corresponds to the formation of a separation-reattachment bubble on one side fo
the cylinder. If the Reynolds number is increased slightly, or if the flow is disturbed slightly, there
is a second discontinuous drop in the drag force as a second reattachment bubble forms on the other
side of the cylinder (TrBL2). Afier the reattachment bubbles the flow re-separates at separation
angles of much greater than 90° resulting in the formation of a very narrow wake and a
corresponding minimum value of the drag force. As Reynolds number increases further, or the
flow is perturbed, the separation bubbles begin to break down and the drag begins to “recover”
(super-critical regime). The post-critical regime, not shown in Figure 1-1, corresponds to a
Jevelling out of the drag force and base suction coefficient.

1.2,2 Wake Instabilities

A stability zn:iysis seeks to determine if a pasticular flow will become unstable and the nature of
this instability. An impulsive infinitesimal perturbation, generally a delta function, is applied to the
base flow of interest and the stability of the flow is determined by the development of a disturbance
stream-function. A two-dimensional disturbance stream-function has the general form
Wix, ¥) = §(x, yyexpfi(kx-ot)} and the govemning equation is based on the linearised Navier-Stokes
equation. The analysis generally seeks to determine the frequency or wavelength of the
disturbance (real components of w and k) at which the maximum temporal or spatial growth rate

occurs (imaginary components of o and k).

The way in which an instability develops is important in predicting the response of the flow to an
applied perturbation and the regions of the flow that will be affected. The growth and control of
instabilities within wakes has been discussed by a number of authors including, Monkewitz (1988),
Huerre & Monkewitz {1990) and Rockwell (1990). These authors describe a number of different
types of instabilities in terms of the response of the flow to the instability. Firstly, a flow in which
an impulsively generated, small-amplitude disturbance grows can be defined as either absolutely or
convectively unstable. The flow is absofutely unstable if the disturbance grows exponentially at
the location of its generation. The flow is convectively unstable if the disturbance grows but is
convected away from the source, ultimately resulting in the disturbance dying out at its original
source. The term local instability indicates that only the *local” velocity profile is unstable with
respect to the perturbation. If the whole flow field is contaminated by the response of the local
flow field then, as described by Huerre & Monkewitz (1990), the flow field is locally absolutely
unstable. A flow is globally unstable when the instability is present throughout the entire flow
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ficient field. The existence of a global instability implies the existence of an absolute instability, however
decrease the reverse is not true.
along the o
An absolutely unstabie flow exhibits self-excited oscillations. An example of these self-excited
rBLf)a.nd oscillations is the periodic vortex shedding in the wake of a circular cylinder. An absolute
¢ side fo instability does not tend to respond to extemal forcing, although large amplitude forcing may
ty, there generate mode competition. Conversely, a convective instability is receptive to external forcing
the other and will often fock-on to an applied perturbation.
paration
¢ and 2 123 Spanwise Coherence - Oblique / Parallel Shedding
“r;coc:v;h: It 1 generally assumed that the primary spanwise vortex core is parallel to the axis of the cylinder.
bods 1o & However, as discussed in the review of Williamson (1996a), under certain conditions the vortex
structures can form an oblique angle to the cylinder’s axis. The occutrence of oblique shedding, as
| opposed to parallel shedding, can have a significant effect on the properties of the wake and the
forces on the cylinder. Williamson (1988) found that oblique shedding altered the frequency of
' large-scale vortex shedding, while Prasad & Williamson (1997) found that oblique shedding caused
nature of a delay in the onset of the shear layer instability. Oblique shedding appears to be linked to
ied to hic discontinuities in the flow conditions at the ends of the cylinder. Consequently, in many
turbance experiments end plates are fitted to the cylinder to promote paraliel shedding.
F{Stt:l:Z The wake properties also depend on the aspect ratio (L/D) of the cylinder, Norberg (1994) showed

£ th that at low aspect ratios the vortex shedding frequency, the onset of vortex shedding and the base -
of the i
suction coefTicient all vary significantly with L/D. Additionally, he found that the effect of aspect

rate tatio varied with Reynolds number and that the flow was particuiarly sensitive to reduced aspect
ratios in the range Re = 4 x 10° — 10*, where aspect ratios as large as L/D = 60-70 are needed to
oW to an approximate an infinite cylinder. However, in general for L/D > 7 when end plates are fitted the
ontro! of effect of aspect ratio becomes relatively smatl, )
z (1988),
different 1.3 OSCILLATING CYLINDER: INTRODUCTION &
in which Regular shedding of vortex structures from a bluff body results in the body experiencing a periodic

force. This periodic forcing can excite the natural structural frequency of the body, resulting in
vortex- or flow-induced motion. Vortex-induced vibrations (VIV) typically occur when the natural
frequency of the wake approaches the natural structural frequency of the body. When a cylinder is
oscillating in response to the flow-induced forcing the total forces on the cylinder differ
significantly from those on a stationary cylinder. Examples of vortex-induced vibration are found
both in natural and engineering structures and, in many cases, knowledge of the vibration of these
structures is a critical design consideration, The vortex-induced motion of deep-sea riser tubes in
current is of significant interest to the off shore petroleum industry. Other cases where VIV is
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important include flow over heat exchanges, the motion of bridges, overhead powerlines and Voq
S chimneys due to wind, as well as marine structures such as tension leg platforms, which are subject In dl
to significant currents. VIV of natural structures such as tree branches, with and without leaves, s.),'l'iE
grasses and seaweed is also common. '0‘:'1
The force on a stationary cylinder is typically decomposed into the transverse lift force and the in- ::
line drag force. Although the drag force on a stationary cylinder has a large mean component the woi
amplitude of the fluctuating component of the drag force is significantly smaller than the amplitude occ;
of the fluctuating lift force on a stationary cylinder. Although the fluctuating component of the orqz
drag force on an oscillating cylinder can be significant, the study of vortex-induced motion is often theg
simplified by considering only the transverse motion of the cylinder due 1o the fluctuating lift force. obs=
The relationship between the vortex-induced motion and the wake of the oscillating body is Thtz
complicated as these two factors are intrinsically inter-dependent; the flow depends on the motion
of the cylinder and the motion of the cylinder depends on the flow. A common approach to andl
simplifying this problem is to contro!, or force the osciliation of the body and examine the response fm;
of the wake to the defined motion. In general the vortex-induced motion of a cylinder is relatively she
sinusoidal and can be approximated by forcing a cylinder to oscillate with a pure sinusoid: i motion e
at a constant amplitude and frequency. Typically, the effect of changin. the frequency of thég
oscillation is studied while the amplitude of oscillation and Reynolds number are held constant, andi
Fo

1.3.1 Lock-in bd
The terms “Jock-in" or “lock-on™ are used to describe the wake when the periodic shedding of fm
vortex structures and the resulting fluctuating forces are synchronised with the motion of the body. i“‘_

The frequency of vortex shedding can be quantified by measuring the velocity within the wake or |
the lifi force on the body. The periodic motion of the cylinder is described in terms of its i
normalised amplitude, A4/D and frequency £/f,, where D is the diameter of the cylinder and the |
excitation frequency f; is normalised by £, the Kdrmén frequency of the stationary cylinder. The i
bounds of lock-in are generally defined to include all cases where the most energetic wake |
frequency coincides with the frequency of oscillation, see for example Stansby (1976), Karniadakis |
& Triantafyiiou {1989) and Hall & Griffin (1993}. When the vortex shedding, or wake frequency ‘
has a strong spectral peak, lock-in can easily be identified. However, the definition of lock-in is

somewhat subjective as it depends on how and where the wake frequency is measured, therefore :

the exact boundaries of lock-in are not rigorously defined. Lock-in can be demonstrated F
schematically using 2 phase plot of the displacement of the body versus lift or wake velocity, In 11|
cases where the flow is not Jocked-on, the most energetic shedding frequency is often close, or v
equal to the Strouhal frequency of the stationary bouly.




Vortex-induced motion (VIV) is linked to a strong resonance between the flow and the structure.
In general, VIV will not be sustained unless the motion of the body and the fluid forces are
synchronised or locked-on. When the body is forced to oscillate, the wake is not necessarily
locked-on to the osciilations, however lock-in is most likely to occur when the oscillation
frequency is close to the natural Strouhal frequency. Secondary or tertiary lock-in can also occur
when the cylinders motion is close to a harmonic of the Strouhal frequency, for example see the
work of Stansby (1976). As discussed in the review paper of Griffin & Hall (1991), lock-in can
occur in response to a variety of motions including transverse and in-line oscillations of a cylinder
or the flow, as well as rotation of a cylinder. This investigation focuses on the interaction between
the flow field and a circular cylinder, however many of the features associated with lock-in are

observed over a wide range of biuff body geometries.

The range of lock-in for forced oscillations is generaily shown as a function oscillation amplitude
and frequency. As shown in Figure 1-5 from Kamiadakis & Triantafyilou (1989), the range of
frequencies over which lock-in is observed increases with the amplitude of oscitlation. The general
shape of the lock-in boundary shown in Figure 1-5 is consistent with a large body of experimental
results, as discussed in the reviews of Pantazopoulos (1994) & Griffin & Hall (1991). Just outside
the lock-in boundary there is a region where the flow is stili receptive to the oscillation of the body
and the frequency of oscillation is still present in the wake spectra.

For a freely oscillating body lock-in is defined as the range of reduced velocity over which the
body responds to the flow and VIV occurs, where this range appears to depend on the structural
frequency and damping of the body. Although the range of lock-in for both the forced and vortex-
induced oscillations also varies with Reynolds number this effect has not been fully investigated.

1 Lock-in boundary.

e o o e e A e

1a
§ 44
FIGURE 1-5 Schematic demonstrating bounds of lock-in. Repreduced from Karniadakis &

Triantafyllou (1989)

When the wake becomes Jocked-on there is a shift in the frequency of vortex shedding away from
the Kérmén frequency. There is also significant modification of the wake, and within the
receptivity region, the mode of vortex shedding may depart significantly from the Kdrmén street of




the stationary cylinder, The spanwise correlation of the wake, and therefore also the forces on the
cylinder, are significantly affected by the motion of the cylinder. The compilation of results in
Figure 1-6, reproduced from Pantazopoulos (1994), shows that for both forced and vortex-induced
osciliations the spanwise correlatior: of shedding increases as the amplitude of oscillation increases.
The variation of the spanwise correlation also depends upon the frequency of oscillation. The

results of Toebes (1969), Figure 1-7 show significant increase in the spanwise correlation within
the lock-in region at £’ ( = f/) = 1.00, while outside the expected lock-in range at f-'= 1.25 there
is only a very small increase in the correlation length. 1t seems reasonable to expect that the

spanwise correlation of the wake will vary within the Jock-in region, and in particular may be a

function of the mode of vortex shedding, however the extent of this variation is not known.

CORRELATION COEFFICIENT
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o8 -
.o . 10 29 40 5.0 60 1.0 (X}
SPAN/DIAMETER RATIO (H/D)
Carve no & Author Comments
1. Howell-Novak elastically-mounted, Re = 75,000, A/D = 0.0
2. Howell-Novak clastically-mounted, Re = 75,000, A/D =0.025
3.  Howell-Novak elastically-mounted, Re = 75,000, A/D = 0.0375
4. Toebes, {Wootton/Scruton paper) pressure transducer & hotwire, uniform Nlow A/D=0.0
5. Toehes oscillating cylinder A/D = 0.0
6. Toebes osciltating cylinder AD =04
7. Tocbes, (Wootton/Scruton paper) oscillating cylinder A/D = 0.4
8. Howell-Novak elastically-mountad, Re = 75,000, A/D =0.05
9. Howell-Novak elastically-mounted, Re = 75,000, A/D = 0.075
10. Toebes, (Wootton/Scruton paper) oscillating cylinder A/D = 0.8
L1, Toehes oscillating cylinder A/D =08
12, Howell-Novak elastically-mounted, Re = 75,000, A/D =0.125
13. Toebes, {Wootion/Scruton paper) oscillating cylinder A/D =0.12
14, Toebes oscillating eylinder A/D = 0.125
FIGURE 1+

Correlation along the span of an oscillation cylinder for a range of oscillation

amplitudes. Reproduced from Pantazopoulos 1994).
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FIGURE 1.7 Variation of the correlation along the span of an oscillating cylinder with the amplitude
of oscillation. a) Outside the lock-In range, f, = 1.25 (equivalent to £,/,) and b) at the centre of the lock-in
range, f, = 1.00, Reproduced from Toebes (1969)

132  Forces and Energy Transfer

When the wake is locked-on to the motion of the cylinder the dominant frequency in the lift force is £,
and the lift force is generally sinusoidal in nature. Thus, the lift force can be approximated by a
sinusoidal function:

Lift(e) = (2pU’DL) CoSinQ2rfet + dya) (1-3)

where C; is the amplitude of the fluctuating lift coefficient and @ys is the phase of the lift with respect
to the displacement of the cylinder y(r). The cormelation of the lift force with a sinusoidal signal

(sin2nf; 1) is a measure of the accuracy of the approximation in equation 1-3.

When a body moves relative to the fluid there is an exchange of energy between the fluid and the
body. The energy transfer is a time dependent variable

. F
E@=—-0)-F ()

where energy trensfer from the fluid to the body is defined as positive.

For a cylinder oscillating transverse to the free-siream it is convenient to define the total energy

transfer per oscillation:
-l - —
E= LO C,(0)-P()dt

where, V(1) = 27f, Acos(27f.r), is the velocity of the cylinder and 7= 1.

Therefore if we write the lift coefficient as: Cy(f) = Cpsin{271/. + ¢y} the normalised Energy transfer,

Cg is approximated by

13




Ce= 2 Cp (A/D) sin (deh) (14
If the lift co-efficient is re-written in terms of the components which are in-phase and out-of-phase
with the cylinders displacement, it is clear that the energy transfer is proportional to the out-of-
phase component of the lift force:

C(6) = Cysin2nfe s + dyr)
= {Cpcos(gha)] sin(2nfe?) + [Cysin(dup)] cos(2nfe?)
= Cp, SN2 1) - Copcos(2nfed) (1-5)

where C,, is the in-phase component of the lift force and C,, is the out-of-phase component of the
lift force. Cpy is also commonly called the inertia co-efficient while Cy, is sometime referred to in
the literature as the “drag coefficient”. The out-of-phase component, Cy, should not be confused
with the traditional definition of the drag force, which is the iotal force on the cylinder in-line with
the free-stream. Consequently we will not rcfer to C,, as the drag coefficient. C,, and Cy, or
equivalent coefficients, have been used in the literature to describe the lift force, however instead
of evaluating C.s5, we will consider the more physical quantity C.

The sign of the energy transfer can also be implied from the value of ¢y, the energy transfer from
the fluid to the cylinder is positive when 0°<gy;<180°, otherwise the energy transfer is negative, i.e,
from the cylinder to the fluid. The oscillation of an elastically mounted cylinder requires positive
energy transfer. However, when the cylinder is forced to oscillate it is not subject to this constraint
and all values of ¢, are physically possible,

1.3.3 Relating Force and Vorticity

The analyses of Wu (1981), Noca (1997) and Leonard & Roshko (2001) demonstrated that the total

fluid force on a body can be expressed as follows. Using the terminology of Leonard & Roshko
(2001),

Y il

Fw—pdfﬁgij)xrdl’-i—p.‘!s—&’- (1-6)
where the volume integral is taken over the entire flow field and 4, is the surface bounding the
solid body, in our case the cylinder. Without making the assumptions of potential flow, it is
possible to demonstrate, via equation 1-6, that the “apparent mass™ force on a circular eylinder is

prD? dU . . .
R as demonstrated by Leonard & Roshko (2001). This expression, which includes the

force due to the inertia of the fluid displaced by the cylinder and the force due o the “new”
vorticity (sometimes also called the bound vorticity) generated by the acceleration of the cylinder,
ts valid in the presence of highly separated flow past the cylinder. Govardhan & Williamson
14
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(2000) were the first to describe the consequences of force decomposition, into vortex and apparent
mass components, in the interpretation of the phase and amplitude of the lift forces on a freely-
vibrating cylinder. Using the present terminology, in essence, their decomposition is,

Fou®=F, O+F, @0 (1-7)

in which the apparent mass force is given by:

where )(¢) is the displacement of the cylinder.

Therefore by subtracting F,n, the apparent mass force from F,,., the total fluid force the force due
to the movement of vostex structures in the wake Fom, can be detcrmined. Although Fyen relates
the force on a body to the vorticity field it is common to consider only Fou The lift force
coefficients can be written in the same fashion as equation 1-7:

Co=Croma+Cpom(t) (1-8)

where (1) is the total lift force coefficient, C; yar(7) is the component of the lift coefficient due to
the vorticity field and C; (/) is the apparent mass lift force coefficient. Govardhan & Williamson
{2600) demonstrated that changes in the p*3se of the total lifi force do not necessarily correspond
to the changes in the phase of vortex shedding. They calculated the voriex lift force by subtracting
the “potential added mass force™, which for a circular cylinder is equivalent to Cy .(f), from the
total lift force. For an elastically mounted cylinder, they found that the jump in the phase of the
vortex lift force did not occur at the same reduced velocity as the phase jump in the total lift force.
The jump in the phase of the vortex lift force corresponded to a change in the phase of vortex
shedding. However, the juxip in the phase of the total lift force did not necessarily correspond to a
significant change in the phase of vortex shedding.

The idea of identifying the force component due to wake was also examined by Lighthill (1986).
Lighthill considered two force components: a) a force due to the potential flow, which varies
linearly with the velocity field and includes the potential added mass force, and b) a non-linear,
voriex foree, In essence these two terms are F.., and Fron. respectively, which have been evaluated

above for the case of a circular cylinder.

For an oscillating cylinder it is commen to consider only the properties of total lift force on the
cylinder, Cy(r). However, to reiate the changes in the structure of the wake to the forces
experienced by the cylinder the properties of the vortex lift force, Ci womedf) must also be
considered. The vortex lift force is calculated by subtracting the apparent mass force, Cy ..(?) from
Ci(f), as described by equation 1-8. The vortex lift is now expressed in the same way as the total
lift in equation 1-3:

15
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Crromed £} = Cvorex SI2TSe L + hifr vorscs) (1-9)

B where €y wre is the amplitude of the vortex lift coefficient and ¢ys une: is the phase of the vortex
lifi force with respect to the cylinders displacement. By definition Cp..{f) is in-phase with the
oscillation of the cylindsr. Therefore the out-of-phase components of Cy(7) and Cp vone{r) are equal
and the energy transfer \equation 1-4) can be written in terms of either the total or vortex lift force:

Cs =% Cp (435 5in () = 7 Cp vz (/D) 510 ($115 10mex) (1-10)

Thus, the energy trasisfer is positive when 0°< ¢y < 180° and 0°S ¢hys o < 180°.

Equation 1-6 provides a useful tool for interpreting the flow field. However, using equation 1-6 to
calculate the force on the body requires evaluation of the entire vorticity field. As outlined by
Noca et af (1997, 1999), Noca (1997) and the extensive review of Wu & Wu (1996), methods have
recently been developed to evaluate the force on 2 body using finite and arbitrarily chosen regions
of the fiow field. The work of Noca et al (1997, 1999) refermulates equation 1-6 into three
different forms described as the impulse, momentum and flux equations. Each of these equations

allows the fosue on a body can be calculated wsing only the velocity field within a finite domain
containing that body. These formulations were then applied to the problem of an oscillating
cylinues st Ke = 392, where the velocity field was calculated numerically using a two-dimensional
simuiation. +.s shown in Figure 1-8 all three methods were reasonably successful in replicating the
lift force on the body, with the relative performance of the methods depending on the resoiution of
the grid and the velocity field.

force on
calculated
from Noc
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from Noca ct al (1997).
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However, these methods are less successful when applied to a two-dimensional slice of a fully

three-dimensional flow. In Noca ef al (1997) the “impulse equation™ was used to calculate the 14 F
force on an oscillating cylinder at Re = 19,000, using a two-dimensional slice of the velocity field When a
measured experimentally using DPIV. The forces calculated from the velocity field were then motion
compared with the span-averaged forces on the cylinder measured by a force balance. Although, as howev
shown in Figure 1-9, the calculations were able to capture the average period of the measured [ift Examp!
force, they did replicate the amplitude of the lift force or small variations in phase. The inaccuracy source,
of the calculations was attributed to the three-dimensional nature of the velocity field, Noca ef ol interac
(1999) applied the same method to an oscillating cylinder at a reduced Reynolds number of 100, structu
where the velocity field becomes approximately two-dimensional. The drag force calculated from The
the velocity fields measured using DPIV was found to compare well with the drag force measured a body
experimentally with a force balance. Presumably measurements and calculations of the lift force towing
for the quasi two-dimensional field would be similasly successful. past a
These investigations indicate that when the flow conditions are favourable the velocity field can be fimita
used to accurately predict the force on a body. In particular, if the lift and drag forces are to be levels,
calculated from a two-dimensional slice of a velocity field, this slice must fizlly represent the entire the fi
field, i.e. the velocity field must be two-dimensional. The theoretical equations for calcutating the there i
forces can easily be expanded to incorporate a three-dimensionat velocity field. However, this path achiev
is best pursued numerically, as obtaining the necessary three-dimensional velocity fields The
experimentally is, at this stage, prohibitively difficult. 1.
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1.4 FORCED CYLINDER OSCILLATIONS

When a cylinder is foreed to osciliate relative to a free-stream the wake responds to the large-scale
motion of the structure. In most cases the cylinder is forced {o osciflate relative to the free-stream,
however the wake can also be forced by oscillating the free-stream relative to a stationary cylinder.
Examples of this type of interaction include: the acoustic perturbation of flow by 2n external noise
source, see Blevins (1985), the feedback generated when the flow structures shed from a body
interact with a large downstream body, as discussed by Unal & Rockwell (1987), or marine
structures that are subject to periodic wave motion.

The “free-stream” component of the velocity is most commonly generated by continuous flow past
a body whose mean position does not vary. Aliernatively, the “free-stream”™ can be generated by
towing the body at a constant velocity though a tank of stationary fluid. In terms of relative flow
past a body these methods are equivalent, however each method has particular beaefits and
limitations. The careful use of a towing tank reduces the free-stream turbulence to negligible
levels, but the length of the fowing tank limits the number of oscillations per experiment. When
the flow is generated by external means, such as in a recirculating water channel or wind tunnel,
there is effectively no limit on the number of oscillations per experiment, but it is difficult to
achieve low turbulence levels,

The oscillation of a body relative to a mean velocity can be achieved in 3 ways:

1. The body oscillates relative to a constant external velocity.

2. The body is held stationary and is subject to an external flow with both mean and oscillatory
components.

3. The body moves with variable velocity (consisting of mean and oscillatory components)
through a stationary fluid.

As discussed by Lighthill (1954), these three cases can be evaluated in a common reference frame
and are equivalent if the flow field is uniform. The displacement of the fluid as the body osciliates
relative to the flow causes an inertial force that generates an opposing fluctuating pressure gradient
around the body, and corresponding changes in the flow. The fluctuating pressure force is
transmitted to the bedy via pressure waves at the speed of sound. When the wavelength of the
acoustic waves is fong refative to the length scale of the body, as is generally the case, the
transmission of the pressure fluctuations is approximately instantaneous and effectively cancels out
the inertia force. Thus, oscillating the body is equivalent to oscillating the flow around the body.
A number of studies have considered the case of a stationary cylinder in a fluctuating free-stream.
Barbi et al (195 3) and Amnstrong & Barnes (1986) found that the stationary cylinder wake locks-on
to the fluctuations of the free-stream in a similar fashion to the lock-in observed for an oscillating

cylinder,

9




Vortex-induced motion of a body will generally have both transverse and in-line components.
However, the flow-induced motion of a cylinder is ofien simplified by considering only one
component of this motion. In these experiments, as in many previous studies, we will consider a
cylinder oscillating transverse to the free-stream. As the frequency of forced oscillation, /; is varied
relative to the natural frequency of the stationary cylinder f,, there are significant changes in both
the structure of the near wake and the forces on the cylinder.

1.4.1 Characteristic Features of Forces

A simultaneous jump in the amplitude and phase of the lift force at ./ = 1, was first identified by
Bishop & Hassan (1963) and has subsequently been observed both experimentally and numerically
by a number of investigators, inciuding Moe & Wu (1990), Gopalkrishnan (1993), Staubli (1993a
& b), Sarpkaya (1995), Zderi er al (1995), Dalheim (1997), Hover et al (1998) Blackbum &
Henderson (1999) and Carberry e al (2001). The jump in the phase and amplitude of the lift force
has been observed over a wide range of flow conditions: Reynolds numbers ranging from 500 to
60,800, amplitudes of oscillation varying from 4/D = 0.11 to 7.0 and for both experimental results
and two-dimensional numerical simulations. A smaller jump in the phase of the lift force was also
observed. at supercritical Reynoids numbers, Re = 0.8-3.0x10° and 4/D = 0.012, by Szechenyi &
Loiseau (1975). In many cases the results have been plotied in terms of C,,y and Cyy, as defined in
equation 1.5, rather than the phase and amplitude of the lift force. However, these two sets of
variables are equivalent and ), and ¢y, can easily be caleulated from C,,,y and Cy,.
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FIGURE 1-10  Compilation of previons dats showing the variation of 2) the phase of the lift force

and b) the amplitude of the lift Force with the frequency of oscillation. In all cases the amplitude of
oscillation was A/D = 0.5.
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A selection of the previous results at 4/D = 0.5 is shown in Figure 1-10 (a & b), where b1 and C;,
respectively are plotted against £/, for a range of Reynolds numbers between 5000 and 60,000.
Each individual set of data shows and abrupt change, or jump in ¢y and a corresponding jump in
C: at the same frequency of osciilation, However, between the different data sets there is some
variation in the frequency at which the jump occurs. The source of this variation is not well
understood, however it may be attributable to changes in the Reynolds number and the level of
free-stream turbulence. The simultaneous jump in the both phase and amplitude of the lift force
suggests that around f/f, ~ 1 there is a significant change in the structure of the wake. Moreover,
the large jump in the properties of the lift force suggests that either side of the jump there are at
least two distinctly different wake states. One of the aims of this work is to confirm this
hypothesis.

The data sets shown in Figure 1-10 show a relatively smooth variation in the phase and amplitude
of the liRt propertics, with a number of data point exhibiting intermediate values between those
exhibited either side of the jump. The existence of these intermediate values raises some
interesting questions about the nature of the transition between the states observed either side of the
jump. For example it is not known if these intermediate values represent a smooth change in the
force properties with £/f; or an intermittent transition. The nature of the transition comresponding to
the jump in the lifi force is an unresolved issue that will be examined further in this work.

a) “E:;

FIGURE 1-11  a) The amplitude of the lift coeflicient, Cro and b) the phase of the li!’t force, @ versus
both the oscillation Strouhal frequency, S, and amplitude of oscillation, E (equivalent to A/D).
Reproduced from Staubli (1983a).
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Siruilar variations in ¢y and Cy, as the frequency of oscillation is varied have been reported at both
lower and higher amplitudes of oscillation. The caspet plots of Staubli (1983a), shown in Figure -

11, demonstrate that the jump in ¢ and C;, occurs for a wide range of oscillation amplitudes,
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FIGURE 1-12  Variation of the spectral energy of the lift force Ga with the frequency of oscillation
f, for an amplitude of the oscillation of A/D = 0.012 at Re = 2x10°. There are two peaks in the spectral
energy one at f, and one close to the Kdrmén frequency of the staticnary cylinder f, (equivalent to f,..).
Reproduced from Szechenyi & Loiseau (1975).

The frequencies present in the wake are generzlly determined by measuring either the time
variations of the velocities within the near wake or the lift force. Examination of equations 1-6 and
1-7 show that the vortex lift force can be expressed in terms of the rate of change of the horizontal
vortex moment integrated over the entire vorticity field. Thus, there is a strong correlation between
the fluctuations in the wake due to large scale vortex shedding and the variations in the vortex lift
force. A local maximum in the vortex lift force represents a peak in the rate of change of the
herizontal vortex moment, which is penerated by the movement of positive vorticity in the
downstream direction (or negative vorticity upstreani). Similarly, a local minimum in the vortex
lift force corresponds to the maximisation of the rate of change of the negative vortex moment due
to the movement of negative vorticity downstream. Although, there is generally a strong
correlation between the peaks in the vortex lift force and large-scale vortex shedding these two
events do not necessarily occur at the same point in time. Moreover, when the variation of the total
lift force on the body is considered there is a second component, the additional mass term described
in section 1.3.3 that is in-phase with the acceleration of the body relative to the flow.
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Ln : number of {,..) and ¢) the frequency of the spectral peaks at Si. Reproduced from Staubli (1983a).

t due : ;
strong When the wake is locked-on to the oscillation of the cylinder the dominant frequency in the wake is '
two the frequency of oscillation .. However, in many cases there is an additional frequency, designated
e total Jras, which is present in the wake, where f,. is not a harmonic or subt~-harmonic of f;,. The value of
cribed '5 Jros 18 Close to, but not necessarily equal to, the natural Kdrmén frequency of the stationary cylinder

wake and it appears that £, is linked to the natural frequency of the oscillating wake. The spectral
peak at fy.s has been observed by a number of authors including Staubli (1983a) and Szechenyi &
Loiseau (1975). As shown in Figure 1-12, the value of f., and the relative strengths of the spectral
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peaks at ;. and £; are a function of the oscillation frequency, The frequencies /... and /. converge
and then diverge as f/f; increases through unity. Additionally, the amplitude of the peak at foos
decreases as f; approaches £, and very close to £/f, = ! the f... peak is not detectable. In Figures -

13 (a & b) the variation of the amplitude of the peaks at £ (Cy,) and fo (o) are plotted as a

function of oscillation frequency (S, = LD/U). As the frequency of oscillation approaches the
Karmin frequency (5, = 0.175) from either above or below, there is a transfer of the energy in the

wake from £,,,( C oy ) 10./: (€0). This is consistent with the variation of the 1ift spectra in Figure 1-
12. The natural frequency of the oscillating cylinder f, is close to the Kdrmdn frequency, /,
however, as shown in Figure 1-13c f,. varies with the frequency of oscillation, particularly as f
approaches f,.

The amplitude of oscillation strongly influences the susceptibility of the wake to the forced
oscillations, and at larger values of 4/D the wake is much more likely to become locked-on to the
oscillations. Additionally, the results of Staubli (1983a) indicate that when the wake is locked-on
the forces on the cylinder vary systematically with the amplitude of oscillation, as shown by the
variation of ¢us and C, with A/D (§) and f/f, (8,) in Figure 1-11. As 4/D increases there is an
increase in the magnitude of the change in both ¢y and C; (i.e. AC; and Adyy,) during the jump. At
low A/D the variation of Cp with £/, in Figure 1-11 takes on the character of a resonance peak
around 1. = f;, similar to that observed by Blackburn & Melbourne (1997) at very low amplitudes of
oscillation (4/D = 0.027 - 0.098). As discussed in section 1,3.3 the lift force is made up of two
components: the lift due to the vorticity field, Cy, vones(1) and C; .(t), apparent mass force due to the
relative acceleration of the cylinder. The amplitude of the fluid inertia force, Cy ., varies linearly
with the amplitude of oscillation. However, due to variations in the phase and amplitude of the

vortex lift force the amplitude of the total §ift force does not necessarily increase with increasing
AD.

Figure 1-11 shows that at low oscillation frequencies before the jump (f; < £} the values of ¢y,
appear to increase through 180° as 4/D increases. Whilst for frequencies above the jump (7, > £,),
as A/D increases there is a decrease in the total {ift phase and ¢y moves towards, and possibly
through, 0°. When the total lift phase moves out of the region 0°<dy;<180° the energy transferred
to the cylinder changes from positive to negative. Thus, the variation of ¢y, with 4/D, shown in

Figure 1-11, indicates that changing the amplitude of oscillation can alter the direction of energy
transfer.
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The jump in the lift force is generally considered as depending upon the frequency of osciilation.
However, the variation of §us and C, with 4/D shown in Figure 1-14 at a constant value of f
indicates that the point at which the jump in the %ft force occurs is also a function of 4/D. At
smaller values of 4/D the amplitude and phase of the lift force in Figure 1-14 are consistent with
values at much lower frequencies of oscillation, but as A/D is increased there is a jump in both ¢y
and C, and the values are now consistent with those at much higher frequencies of oscillation, The
effect of the amplitude of oscillation on the point at which the jump occurs has not been
extensively studied and compared with the effect of varying f/f;, the variation of AID appears tp
have a second order effect.

The work of Sarpkaya (1978), shown in Figure 1-15, indicates that the mean drag on the cylinder,
Cb mean depends on both £/f; and 4/D. As A/D in creases from 0.25 to 0.84 in Figure 1-15 there isa
systematic increase in the value of Cpaen at @ given oscillation frequency, While for a constant
amplitude of oscillation the value of Cp nean S10WS a strong peak around £ = f,. The peak in Cp mem
occurs at the same point as the jump in the phase and amplitude of the lift force. The peak in
Comean around fi/f; = 1 is consistent with the findings of a number of authoss including Mercier

(1973), Gopalkrishnan (1993), Anagnostopoulos (2000).
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FIGURE 1-15  Variation of the mean drag coefficient C,, (equivalent to Cp ...} with the Strouhal
frequency of oscillation, for a range of oscillation amplitudes. Reproduced from Sarpkaya (i 978).
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1.4.2 Characteristic Features of Walie Modes

The general form of the fluid structures shed into the near wake is often described in terms of the
mode of vortex shedding. An oscillating cylinder exhibits a number of different shedding modes as
described by the extensive mapping of Williamson & Roshko (1988). The Williamson & Roshko
map, shown in Figure 1-16, was obtained over a range of Reynolds numbers, 300<Re<1000, but
the shedding regimes are generally expected 1o pessist over a wider range of Reynolds numbers.
The map in Figure 1-16 indicates that for our investigation a¢ oscillation amplitudes of 0.6 and
below, at frequencies around f, = f,, we would expect to observe the 28 and 2P shedding modes.
The 28 and 2P shedding modes are shown schematically in Figure 1-17. For the 2S mode two
single vortices of opposite sign are shed per oscillation, resulting in the formation of the classical
Kérman street. The 2P mode corresponds to the shedding of two counter-rotating pairs, or a total
of four vortex structures, per oscillation.

1.8 F

AD

Y

. D
FIGURE 1-16 Map of vortex synchrenisation patterns mear the fundamenial lock-in region.
Reproduced from Williamson & Roshke (1938)
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FIGURE i-17 Schematic showing the 25 and 2P modes of vortex shedding. Reproduced from
Williamson & Roshke (1988).
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As f/f, increased though unity Williamson & Roshko (1988) observed a change in the mode of
vortex shedding from 2P to 28. The investigations of Ongoren & Rockweli (1988a) and Gu er ol.
(1994) also considered the variation of the wake as f/f, increasad hrough unity, focusing on the
changes in the phase referenced structure of the near wake. [n both these investigations the phase
point <t which the flow fields were compared corresponded to the maximum displacement of the
cylinder. The phase referenced flow fields in Figures 1-18 and 1-19 show that at approximately
Jdfe = 1 there is a “switch”™ in the sign of the vortex closest to the cylinder, known as the initial
vortex. The change in the sign of the initial vortex implies a significant change in the phase of
vortex shedding. Whilst the terminology “the switch™ was originally applied to a change in the
sign of the initial vortex, it is now more widely applied to a large change, or “switch”, in the phase
of voriex shedding. In Figure 1-18 the switch occurs between £/, = 1,00 and 1.05, while in Figure
1-19, at a slightly different 4/D and Re, the switch occurs between £/, = 1.10 and 1.12. Ongoren

& Rockowell (1988a) observed that as the frequency of oscillation increases towards the switch,

there is a “substantial decrease in vortex formation length” and that “a necessary condition for the
switch to occur is attainment of & minimum of the vortex formation Iength®, This statement
implies that there is an increase in the formation length afler the switch. However, as will be

discussed in section 3.3.1, this point is open to interpretation.

FIGURE 1-18  Effect of forced cxcitation frequency f, to natural shedding frequency f, on the near
wake structure, for A/D = 0.13 at Re =B855. All photos taken at maximum negative displacement of the
cylinder. Reproduced from Ongoren & Rochwell (1988a).
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Figure 1-19 Figure 3 Gu eral. (1994), A/D = 0.2 and Re = 185

The images from Ongoren & Rockwell (1988a) in Figure 1-18 show that for £/, below the switch
the initial vortex contained within the (black) formation region comes from the uﬁper surface of the
cylinder. As £/, increases the phase referenced position of the initial vortex contracts towards the
back of the cylinder. Afier the switch the phase-referenced initial vortex is formed from the lower
surface of the cylinder. The vorticity fields of Gu e7 of. (1994), show1. in Figure 1-19, reveal more
clearly the nature of the vortex structures. Note: the images in Figure 1-19 were acquired at the
extreme left hand side of the oscillation and, compared to the images in Figure 1-18, are at the
opposite exireme point of the escillation cycle. Before the switch the right hand positive vortex is
the initial vortex and as ff, increases there is a decrease of the formation, or wake Jength, until a
“limiting position is reached”, After the switch between £/f, = 1.10 and 1.12 the phase-referenced
structure of the near wake is clearly different and the initial vortex is now the negative left hand
vortex. The switch in the initial vortex indicates that between f£/f, = 1.10 and 1.12 there is a
significant shift in the phase of vortex shedding, however the magnitude of the phase shift can not
be determined from these images as they were acquired at a single phase point.

The evaluation of the wake formation length using flow visualisation also requires careful
definitions. The hydrogen bubble visualisation of Ongoren & Rockwell (19882) does not show the
finer structures in the near wake and it appears that the formation length increases after the switch.

The more detailed PIV images of Gu ef ol. (1994) suggest there is an increase in the attached wake
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length, as the vortices that are about to be shed into the wake remain atlached to the cylinder.
However, the phase referenced position of the concentration of vorticity immediately behind the
cylinder contyacts as frequency increases both above and below the switch. The single phase-
referenced images in Figures 1-18 and 1-19 are not able to resolve more subtie changes in the
phase of vortex shedding. For example, it is not possible to tell whether or not the gradual changes
in tie wake length are linked to changes in the phase of vertex shedding,

Interestingly, at the relatively low values of 4/D and Re investigated by Ongoren & Rockwell
(1988a) and Gu er al. (1994), the change in the phase of vortex shedding does not correspond to a
change in the mode of vortex shedding and the 2P mode of shedding is not evident at lower f£/f..
Although the mode of vortex shedding either side of the switch appears to be 2S there are subtle
changes in the structure of the near wake. In particular, afier the switch, the upper shear layer does
not extend across the back of the cylinder and the lower wake tends to angle further away from the
cenire-line. When the cylinder is forced at frequencies much fower or kigher than £/f, = | Ongoren
& Rockwell (1988a) found that the vortex shedding can lock-on to a hanmonic or sub-harmonic of
Jo In these cases the mode of vortex shedding can depart significantly from the modes observed

around £/, = 1.

1.4.3 Link Between Forces and Wake Modas

The investigations considered in sections 1.4.1 and 1.4.2 all suggest that around £/, = | there are
significant changes in the flow over an osciliating cylinder. A number of events have been
independently observed at £/, = 1: a change in the sign of the initial vortex, or a large change in
the phase of vortex shedding, a change in the mode of vortex shedding, a peak in the mean drag
force as well as a jump in both the phase and amplitude of the lift force.

The two-dimensional numerical investigation by Blackburn & Henderson (1999) at Re = 500 and
A/D = 0.25, detected many of the features observed experimentally, At a frequency ratic of just
below one they found a simultaneous jump in the phase and amplitude of the lift force. The
classical 2S modes of shedding were observed either side of the jump. Although the general mode
of vortex shedding for these two cases was 28, there were subtle differences in the structure of the
near wake and in particular the phase of vortex shedding. In addition to the 28 modes, at
frequencies just below the jump they observed additional mode branches with unusual asymmetric
modes of vortex shedding. Importantly they were able to establish a link between the jump in the
lift force and a change in the “phase relationship between vortex formation and cylinder motion™.
A link between the jump in the phase and amplitude of the lift force and the changes in the mode
and phase of vortex shedding, at £/f, = 1, is yet to be conclusively demonstrated for a fully three-

dimensional wake.
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1.4.4 Non-Transverse Forced Oscillations

This investigation focuses on a transversely oscillating cylinder, however a number of insightful
investigations have considered other displacement profiles. To relate the forced oscillations to a
structure that is free to oscillate in 2-dimensions, such as a cable, the most obvious profile involves
motion in both the transverse and streamwise disections. However, the relative phase and
amplitudes of the streamwise and transverse components of the motion means that there are a large
number of motion profiles available to the body. The forced oscillation of a cylinder in both the
streamwise and transverse directions has not been extensively investigated. Preliminary
investiga‘iwns of this problem by Jeon & Gharib (2000), found that for a transverse oscillation of
A/D = 0.5 a Figure-8 motion with an in-line component of A/D = 0.1, had a significant effect on the
phase of voriex shedding.

A number of investigations have also considered non-transverse, single degree of freedom
oscillations, which are in-line with, or angled across the free-stream. Ongoren & Rockwell (1988b)
observed that depending on the frequency of oscillation the in-line oscillation of the cylinder
produced both symmetric and anti-symmetric modes of vortex shedding. The symmetric shedding
involves in-phase shedding of vortices from either side of the cylinder, while the anti-symmetric
shedding is characterised by alternate, out-of phase shedding of vortices from either side of the
cylinder. An example of anti-symmetric shedding is the classical Kérman mode. In general these
modes were unlike those observed for a stationary or transversely oscillating cylinder. Also, at
many frequencies of oscillation mode competition and switching between symmetric and ant-
symmetric modes of shedding were observed. A number of these modes demonstrated period
doubling relative to the classical Kdrmin mode, thus the frequency of vortex shedding is
synchronised with the frequency of the fluctuating in-line drag force. This is consistent with the
resulis of Barbi et al (1986), who found that that for in-line flow oscillations with £/f, > -, the
frequency of vortex shedding was locked-on fo approximately twice the stationary Kérman .
frequency.

Ongoren & Rockwell {1988b} also considered oscillations at four different angles to the free-
stream flow: 0°(in-line), 45°, 60° and 90%transverse). As the oscillation angle moved from 90°
towards 0° the tendency of the wake to switch from an anti-symmetric mode to a symmetric mode
increased. When the wake was oscillating at angle of 45° or 60° the general structure of the wake
tended to be parallel with the free-stream. This suggests that when the motion of the ¢ylinder is
neither in-line nor transverse it may still be appropriate to define the axes of the lift and drag forces
relative to the free-stream direction, rather than the motion of the cylinder. The question of how to
define the Iift and drag axes is particularly relevant to the problem of a tethered body.
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1.4.5 Non-Circular Bluff Bodies

The point at which flow separates from a cylinder is determined by the pressure gradient along the
surface. When the geometry of the surface has a sharp edge the flow tends to separate at a fixed
location. However, for a cylindrical shape the point at which the flow separates varies not oniy
with free-stream conditions but also during the shedding cycle. The oscillation of the cylinder
tends to increases the variation in the flow separation point.

The oscillation of bodies with well-defined separation points has been studied by a number of
authors including Ongoren & Rockwell (1988a), Staubli & Rockwel! (1989), Lotfy & Rockwell
(1993) and Deniz & Staubli (1997, 1998). Ongoren & Rockwell (1988a) found that bodies with
triangular, square and circular cross sections all have a threshold value of oscillation frequency at
which the “near wake structure breaks into a new mode”, For the circular and triangular cross-
sections Ongoren & Rockwell observed a switch in the sign of the initial vortex and a
corresponding change in the phase of the “vortex arrival” of approximately n at f/f, = 1. Both the
circular and triangular cross-sections had a relatively short “after body” length. However, the
square cross-section had a longer after body length and as //f; increased the flow reattached to the
side of the body. In this case there was not a clear switch in the timing of vortex shedding. From
this work is not clear if the longer afier body length precludes the switch in all cases or if in this
particular case the reattachment of the wake interfered with the switch.

A switch in the sign of the initially shed vortex from an oscillating trailing edge, as f./f, passes
through unity, has been observed by a number of investigators, including Staubli & Rockwell
(1989) and Lotfy & Rockwell (1993). The work of Staubli & Rockwell (1989) showed that the
switch in the phase-referenced initially shed vortex from one comer of the trailing edge to the
other, corresponded to a jump of order x in the phase of the pressure fluctuations at the railing
edge comer of the plate. Staubli & Rockwell {1989) show that corresponding to the switch there is
a jump of approximately 2 in the phase of the pressure fluctuations some diameters upstream of
ihe corner, as depicted in Figure 1-20(b). It is not clear why they define this as a large phase jump
rather than an approximately constant phase of close to zero. The pressure fluctuations upstream of
the corner are some distance from the voriex shedding. Therefore, it is expected that the relative
acceleration of the flow will dominate the pressure fluctuations and the pressure phase will be close
to zero either side of the swiich. Irrespective of how the upstream pressure phase is defined, the
jump in the pressure phase at the corner corresponds to a change in the gradient of the pressure
force along the irailing edge.
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FIGURE 1-20  Typical response characteristics of the pressure fluctuations at amplitude 1, = 0.02
showing: (2) amplitude of pressure fluctuations; (b) phase ample between the pressure fluctuations and
. the edge displacement; and (¢} the amplitude of the self-sustalned pressure fluctustions and the
: associated frequency of the self-sustained vortex shedding. Reproduced from Staubli & Rockwell
(1989).




The variation of the amplitude and phase of the pressure fluctuations with £/, (labelled £./%.) is
shown in Figure 1-20 (a & b} respectively. The pressures are shown at two locations on the trailing
edge: tap 10 at the comer of the plate and tap 2, located three plate thicknesses upstream of the
commer. The amplitude of the pressure fluctuations for oscillations in a stationary fluid are plotied
along the values obtained with a free-stream flow in Figure 1-20(a).

When a body oscillates in a quiescent fluid, in the absence of large scale vortex shedding, the
relative acceleration of the fluid will dominate the pressure forces on the surface of the body.
When the trailing edge described above was oscillated with no free-stream flow, the phase of the
pressure fluctuations along the trailing edge were close to zero and the amplitude of the pressure
fluctuations varied with £;°. This indicates that along the trailing edge the apparent mass force,
described in section 1.3.3, dominates the pressure force with only a smail contribution from the
vortex force. However, close to the mid-position of the vertical trailing end there was significant
shift in the pressure phase. The authors associated this with the “onset of substantial viscous
effects and secondary flows at the midsection”, indicating that at this location there was a
contribution from F,ne. With the exception of the points around the midsection, the difference
between the pressure fluctuations for the free-stream and no free-stream cases is an approximate
measure of the contribution of the vortex force. This is iilustrated for two tap positions by the
dashed (no flow) and solid (fres-stream flow) lines in Figure 1-20(a). The pressure at a given
location is a function of the relative phases and amplitudes of the vortex and apparent mass
components. Therefore, when the trailing edge is oscillating in the presence of a free-siream and
the contribution from the vortex force is out-of-phase with the motion of the body, the amplitude of
the pressure fluctuations will actually be less than the value when there is no flow.

At the comer of the trailing edge (tap 10 in Figure 1-20a) there is a sharp jump in the amplitude of
the pressure co-efficient al £/f, =~ 1, and both the phase and amplitude of the pressure fluctuations
depart significantly from those generated by the oscillation of the body in stationary fluid.
However, the amplitude and phase of the pressure fluctuations at tap 2, upstream of the trailing
edge, are similar to the stationary flow values. This suggests that close to f/f, = | the pressure
force at the comner of the trailing edge there is a significant contribution from the vortex force,
where as further upstream the pressure on the plate is dominated by the apparent mass force.
Interestingly, the jump in the amplitude and phase of the pressure fluctuations at the corner of the

plate when fJf, = 1 are very similar to the behaviour of the 1ift force on an oscillating cylinder.

The variation of the pressure along the surface of an oscillating cylinder is not welt understood.
Heowever, it is reasonable to expect that many of the features cbserved by Staubli & Rockwell
(1989) for an oscillating trailing edge will also be observed for a cylinder. In particular, the jump
in the lift force on the cylinder at £/f, = ] is expected to correspond to a jump in the phase of the
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fluctuating pressures near the separation points, similar to that observed by Staubli & Rockwell for
the trailing edge. Also, near the front stagnation point the pressures on the cylinder should be
dominated by the additional mass force and therefore the corresponding pressue phase would be

very close to (° for all oscillation frequencies.
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FIGURE 121  Response characteristics of the resultant loading upon an oscillating trailing edge at
amplitude 1, = 0.02 showing: (a) the amplitude of the force component F, at the excitation frequency
f; (b) phase angle of F, relative to the displacement; (c) energy transfer between the fluid and the
body; (d) amplitude of the force component at the self-excited frequency f, (equivalent ie f..).
Reproduced from Staubli & Rockwell (1989).

When varjation of the total loading on the trailing edge with £/f,, shown in Figure 1-21 (a & b), is
very similar to the variation of the lift force on an oscillating cylinder. The energy transfer was
calculated from the amplitude and phase of the force and is shown Figure 1-21c. For all but a small
region around £/f, = | the energy transfer is negative, indicating that these forced oscillations could
not occur due to flow-induced forces. The “self-excited” force component on the trailing edge is
equivalent to the lift force at the natural frequency of the oscillating body, f... described in section
1.4.1. The variations of both the amplitude and frequency of the “self-excited” force on the
oscillating trailing edgz, shown in Figure 1-21d, are almost identical to those observed for the
forced oscillation of a cylinder in Figure 1-13 (b & c). Staubli & Rockwell (1989) aiso found that
the jump in the phase and amplitude of the lifi force on the oscillating trailing edge at Jdfs = 1
comesponded to substantial changes in the phase of vortex shedding, Despite the physical
differences in the trailing edge and cylindrical geometries, when the bodies are forced to oscillate

there are a number of surprisingly similar features as f,/f, passes through unity.
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The forces and wake modes for oscillating rectanguiar and octagonal profiles were investigated by
Deniz & Staubli (1997) at Re = 10° and a range of oscillation amplitudes: A/D = 0.05 - 0.30. Fora
rectangular cylinder with a streamwise length to diameter ratio of L/D = 2 a jump in the phase of
the lift force, as shown in Figure 1-22, was observed for a range of oscillation amplitudes.
However, this jump occurred not at £/f, = | but when the forcing frequency coincided with f*, the
frequency of the impinging vortices shed from the leading edge. At f; = f* there was not 2
corresponding jump in the amplitude of the lift force, however as shown in Figure 1-22 at fiff = |
there was a local maxima in the amplitude of the lift force. For this geometry, the interaction
between the leading edge instability (ILEV) and the Kdrmén or tailing edge vortex shedding
appears to result in a scenario that is more complicated than for the trailing edge and circular

cylinder geometries discussed above.

When the angle of the rectangle was rotated such that the centre-line of the rectangle forms an
angle of o = 10° with the free-stream the wake of the stationary rectangle moved to an alternate-
edge vortex shedding mode: one voriex separated at the leading edge and on the opposite surface a
second vortex separated at the trailing-edge resulting in 2 Kéimién type mode. The vortex
separating at the leading edge does not appear to impinge on the trailirg edge. When the rectangle
was oscillated transversely across it’s centre-line a jump in both the phase and amplitude of the lift
force occurred close to £, = /.

Flow visualisation of the oscillating rectangular body at a = §° showed that the mode of vortex
shedding varies strongly with the excitation frequency, as can be scen in Figure 1-22. The
variation in the vortex shedding corresponding to the amplification of the lift amplitude as /; passes
though £, is shown by comparing images @ and @, As the wake goes from @ to @ the motion of
the rectangle becomes increasingly synchronised with the formation of trailing edge vorticity,
resulting in a contraction of the wake and a change in the distribution of the flow structures
throughout the wake. However, there does not appear to be a large change in the phase of vortex
shedding. As the excitation frequency passes though /* images ® and ® show a clear change in
the phase of vortex shedding, where these changes correspond to a jump in the phase of the lift
force. Interestingly, immediately before the jump in the phase of vortex shedding the vortex
shedding in @ results in the formation of counter rotating pairs, which initially appear similar to
the 2P mode observed for an oscillating cylinder. However, the mechanisms resulting in the
counter rotating pairs in @ appear to be quite different, Each large vortex structure contains vortex
structures formed at both the leading and trailing edges, which have coalesced behind the trailing
edge. The relative timing of the leading and trailing edge vorticity results in the large vortex
structures, of opposite sense, forming in close proximity in the near wake, resulting in the

formation of a counter rotating pair. As the excitation frequency increases to f, = f* . shown in @,
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the vortex structures formed at the leading-edge are enhanced and there is a change in the timing of
the large wake vortices, resulting in a change in both the mode and phase of vortex shedding.
B

® ®
- Wl o
3 & o

8= 044

\ sl
L= j Ly
G)/ 5; c,.a)
C_ Bt i
AN %
| iy 3..,-‘
gmli l@
§ o %
] _'—&3.

Excitat've fmpuancy, 8,
FIGURE 1-22 Ovwerview of typical flow structures observed around the rectangular pmﬂle in
relation to amplitude and phase of the measured lift forces; o = 0% A/D = 0.10; Reyyoq < 10 Reforces =
10"‘ reproduced from Deniz & Staubli (1997).

Deniz & Staubli (1997) also tested an octagonal sligatly “tapered” profile, witt a slightly longer
L/D =3.33. At both o = 0° and 10° there was no jump in the lift phase, which increased slowly
from -90° towards 0°,

For the rectangular profile the jump in the ift phase was observed at either the frequency of the
impinging vortices or the frequency of the Karmdn vortices, depending on the orientation of the
rectangle. This underlines the robustness of the jump in the phase of the lift force, which has been
observed in oscillating circular cylinders, triangles, rectangles and trailing edges. However, the
mechanisms which dictate the osciliation frequency at which this jump occurs for a given body
shape are not yet well understood. Additionatly, it is not known why the jump in the lift phase
occurs for some long bodies, such as the oscillaiing trailing edge of Staubli & Rockwell (1989) and
not in others, such as the octagonal cylinder of Deniz & Staubli (1997).
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1.5 VORTEX-INDUCED VIBRATIONS OF A CYLINDER

Regular vortex shedding from a body induces periodic force on the body. When a periodic force is
applied to 2 body that has elasticity, either in its mounting or in the body itself, then it is free to
vibrate. The response of the body to the flow-induced forces depends on the magnitude and
frequency of the forces and the properties, particularly the natural frequency, of the body.
Depending on these properties the motion of the body can become extreme, resulting in

catastrophic structural failure or excessive noise.

When flow-induced vibrations occur the structure is responding to forcing that is generated by the
instability of the wake, however when the oscillations are forced a locked-on wake is responding to
the forced motion of the structure. This is the fundamental difference between a forced and frzely
oscitlating system. If however, the forced motion is identical to the flow-induced motion then the
wakes, including the flow instabilities within the wakes, will be the same. Typically the flow-
induced motions are studied by varying the relationship between the natural frequency of the wake
for a stationary body and the natural structural frequency of the body. Varying the velocity of the
flow past the body has the effect of changing the natural wake frequency, known as the Kdrmdn
frequency, but it also changes the Reynolds number. However, for the Reynolds number regimes
most commonly considered (Re < 2-3x10°) the flow regimes are very robust and typically do not
vary significantly with Reynolds number.

The transverse oscillation of a one-degree-of-freedom (1-dof) elastically mounted rigid cylinder
relates directly to our work on the forcad transverse oscillation of a cylinder. However, there are a
riumber of closely related structures which are also of interest, these inciude cables, cantilevered or
leaf beams, tethered cylinder and a 2-dof elastically mounted rigid cylinder.

1.5.1 Characteristic Amplitude Response

The work of Feng (1968) is the classical experiment on vortex-induced vibration of an elastically
mounted cylinder. The amplitude response of the cylinder as the flow velocity is changed is shown
in Figore 1-23b. Brika & Laneville (1993) observed a similar amplitude response for 2 long
slender cable, as shown in Figure 1-23a. The structural damping values, { for these two
experiments differ by an order of magnitude, however the mass damping parameters, m* = 0.41

for the cable and 0.36 for the elastically mounted cylinder, are similar.
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FIGURE 1-23  Comparison of the amplitude response of (a) a cable afiter Briks & Laneville (1993)
and (b) an elastically mounted cylinder afizz Feng (1968). Repreduced from Briks & Laneville (1993)

The amplitude responses for both the elastically mounted cylinder and the long cable in Figure 1-
23 demonstrate at least 2 different branches. As the free-stream velocity is increased from zero the
onset of synchronisation is defined as the point at which the cylinder begins to oscillate in response
to the forces generated by periodic vortex shedding. At the edges of the response region the motion
of the cylinder is quasi-periodic, however within the core of the response region the oscillations are
synchronised with, or locked-on to, the vortex shedding. The amplitude of the oscillation increases
with increasing reduced (non-dimensionalised) velocity, U*, until at a certain point there is a
transition to another response branch indicated by the sharp jump in the amplitude of oscillation.
Brika and Laneville (1968) also measured the phase of vortex shedding with respect to the motion
of the cylinder using a hot-wire located in the wake. They found that the abrupt change in the
amplitude of oscillation as the wake moved between the different responsc branches corresponded
to a jump in the phase of vortex shedding, as shown in Figure 1-24. They also used low-resolution
flow visualisation to show, for the first time, a direct link between the transition between the
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different response branches and a change in the mode of voriex shedding. For the response branch
at lower U* the wake exhibited the 25 mode of shedding, while for the higher U* response branch

the mode of shedding was 2P.
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FIGURE 1-24  (2) The phase of ortex shedding (measured using a hot-wire in the wake) and (b) the
relative vibration amplitude versus the relative flow velocity. The velocity is changed progressively: O

increasing velocity, % decreasing velocity, ¢ increasing velocity with large steps. Reproduced from
Brika & Laneville (1993)

1.52 Detailed Investigations of Characteristic Wake Modes and Forces

Detailed investigations of the wake modes and forces on ¢lastically mounted cylinders have been
undertaken by a number of investigators, notably Khalak & Williamson (1996, 1997 and 1999),
Gharib {1999) and Govardhan & Williamson {2000). As the free-stream velocity varies the
cylinder exhibits two or three different response branches. The number of branches depends upon
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the non-dimensionalised mass-damping parameter, m*;, of the cylinder and its supporting
structure. Historically there has been some inconsistency in the naming of the different branches
but the definitions of Khalak & Williamson (1999) are now becoming well accepted. The response
branches are most commonly defined in terms of the amplitude response, as shown in Figure 1-25,
for both low and high values of m*(. At relatively high values of m*{, such as in the Feng (1963)
experiments, the wake response generates two branches: the initial excitation branch at low U* and
the lower branch at higher U™ At lower values of m*(, there is an additi.or! v2sponse branch
between the initial and lower branch. The additional branch has a high ampliude response and is
appropriately called the upper branch. The transition between the initial and lower branches at high
values of m*¢ is hysteretic, At low m*{ the transition between the initial and upper branches is
hysteretic and the transition between the upper and lower branches is intermittent.
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FIGURE 1-25 The two distinct types of amplitude response are shown schematically, (a) the high
(m*Z) response exhibits twe branches (initial and lower) while (b} the low (m*{) response.exhibits
three branches (initial, upper and lower). The transition betwcen mnodes are either hysteretic ) or
intermittent (). Reproduced from Khalak & Williamson (1999).

The link between the different response branches and the change in the mode of vortex shedding
was made by Brika & Laneville (1993) and Williamson & Roshko (1988). Subsequently, the
nature of the transition, the forces on the cylinder and the mode of vortex shedding have been
studied in much greater detail by a number of investigators, including Khalak & Williamson (1996,
1997, 1999) and Govardhan & Williamson (2000). Each of the response branches displays a
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characteristic near wake structure that can be broadly described in terms of the modes of vortex
shedding defined by Williamson & Roshke (1988). The vortex formation modes of the response
branches have been studied in detail by Govardhan & Williamson (2000) using DPIV and are
shown in Figure 1-26 for low values of m*Z where all three branches exist. At higher values of
mass damping only the initial and lower branches are observed, and typically the amplitude of
oscillation for these branches is diminished. However, at higher m* the general structure of the
near wake for these two branches is essentially the same as for the low m*;; cases shown in Figure

1-26.

As indicated by Brika & Laneville (1993) the mode of vortex shedding for the initial branch,
shown in Figure 1-26a, is 2§ and two single vortex structures of opposite sign are shed into the
wake per oscillation, For both the upper and lower branches two counter rofating vortex pairs are
shed per oscillation and the mode of vortex shedding is 2P. However, for the initial branch, shown
in Figure 1-26b, the second vortex structure within each pairing is considerably weaker than the
first and the shedding mode is described as weakly 2P. The lower branch 2P mode, shown in
Figure 1-26¢, has vortex pairs of more equal strength and the counter rotating pairs persist further
downstream.

a) Lower, AJD =0.60 ).L ¢)intial, A/D = 0.33

FIGURE 1-26  Characteristic wake modes for different wake branches, all images are at the top of
the cylinders oscillation. The modes of vortex shedding are for (a) the inktial branch the 2S-mode, (b)

the upper branch the 2P-mode with aneven pair strength and {c) the lower branch 2P-mode with pairs
of comparable strength. Reproduced from Govardhan & Williamson (2000).

As indicated by Figure 1-27a, the range of U* over which the elastically mounted cylinder
oscillates is a function of mass ratio. As m* decreases there is a significant increase in the range of
U* aver which the synchronisation region extends. In particular, there is a large increase in
response range of the upper and lower branches. For low values of m*; Khalak & Williamson
(1999) demonstrated that when the response branches are plotted against (L/*//*)St,, instead of U™,
there is a good collapse of the synchronisation range, as well as the amplitude response of the
initial and lower branches. The collapse of the amplitude response for the initial and lower
branches is shown in Figure 1-27(b) for two different values of m* The amplitude of the upper
branch does not collapse and the amplitude of oscillation for the upper branch tends to increase

with decreasing m*. At higher m*{ the amplitude of the lower branches decreases with increasing
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m*C and, as shown in Figure 1-28, the amplitude response does not collapse when plotted against

(U*{f*)st,.
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FIGURE 1-27 (a) amplitude response for two different mass ratios at low m* from Govardhan &
Willlamson (2000): O (m* + C)4 = 00110, A (m* + C,);=0.0145. In (b) the initial and lower branch
regimes shown in (a) collapse when plotted against (U*/f*).St,. Reproduced from Govardhan &
Williamson (2000)

The “Griffin plot” Figure 1-29 shows that for low values of m*{ (i.e. low values (m*+C,)C), the
maximum oscillation amplitude for the Iower branch has an approximately constant value of 4%y
= 0.6, where A%, is the maximum amplitude for the specified response branch. The fact that
A*uy is approximately constant indicates that a collapse of the amplitude response data is possible,
although it may not necessarily occur. Of particular interest is the fact that, as shown in Figure 1-
27, the iower branch maintains the maximum amplitude of osciliation over a wide range of reduced

velocities, essentially to the edge of the synchronisation region.
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FIGURE1-28 The amplitude response for the initial and Jower branches at higher m*Z, 3 Feng
(1968), (m* + C,) = 0.251, ® Govardkan & Williamson (2000). Reproduced from Govardhan &
“filliamson (2000).
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FIGURE 1-2¢  Modified “Grifflin” plot showing the peak amplitude A*,,,, for the different response
branches, + Feng (1968); [ Hover et al (1988); O Khalak & Williamson (1999); —— Skop &

Balasubramanian (1997). Reproduced from Govardhan & Williamson (2000).

The maximum amplitede for the upper branch in Figure 1-29 varies with the mass-damping
parameter (m* + Cy)L. This indicates that the response amplitude for the upper branch will not
collapse unless it is plotied against a parameter that includes a mass-damping term and explains
why there was not a full collapse of all the response branches in Figure 1-27(b). At higher values
of mass-damping the maximum response amplitude varies strongly with (m* + C,)¢ and, as
expected, at large values of mass-damping the amplitude response of the cylinder tends to zero.
The variation of the peak response amplitude at high »*C again indicates that when the amplitude
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response is plotted against a parameter that does not include a mass-damping term a collapse of all
the data is not possible,

The collapse of the initial and lower branch response curves onto the (U*//*)St, curve, indicates
that for lower values of m*{, the parameter (U/*/f*)St, is the dominant parameter governing the
amplitude response of these bsanches. The amplitude response of the upper branch varies with
both m*{ and (L*/f*)St,, however Govardhan & Williamson (2000} found that the point at which
the wake transitions from the upper branch to the lower branch accurred at an approximately
constant value of L/*/f* ~ 5.75, as indicated by the dashed line in Figure 1-30. Additionally, after
the transition, the frequency of oscillation in the lower branch f*oszz is not a function of U*, but
increases with decreasing m* according to the relationship:

. m*+C
fwurz-:x:"‘—'_—_"'m,_o';“ (1-11)

235 s
i s
I i
I /e
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FIGURE 1-30  Lover branch frequency response for different mass ratios at low m*C, Reproduced
from Govardhan & Williamson (2000).
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FIGURE 1-31  Amplitude and frequency response of an oscillating cylinder as m* is reduced below
m*cpr = 0.54. Reproduced from Govardhan & Williainson (2000),
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After the transition to the lower branch the frequency of oscillation does not vary significantly,
therefore /*1omes is approximately constant and is equal to the value of /* at which the transition
from the upper to lower branches occurs. Govardhan & Williamson used this fact to predict a
critical mass ratio, m*cp;r = 0.54 below which the transition from the upper to the lower branci no
longer occurs. Their results suggest the when m* < m*qy, the wake does not transition to the
lower branch and the upper branch response can, in theory, persist as I/* increases to infinity. This
remarkable finding relies on the physical result that at low m* values the cylinder can osciltate at
frequencies well above the natural structural frequency. The amplitude and frequency response of
the cylinder at low values of m*, including m* <m®*cr, are shown in Figure 1-31. For
m* > m*cpy the range of U* over which the upper branch extends increases with decreasing m*,
but remains finite. However, for m* below m*cyr the upper branch persists up to the maximum
values of U/* possible in the experimental facility and would theoretically extend to L/* =0, In
practise, it is unlikely that the upper branch will extend to U* = w, as the flow will move into

different Reynolds number and Mach number regimes,

Govardban & Williamson (2000) considered both the total lift force on the cylinter, Ci(¢}, and the
vortex component of the total lift force, Cp onaff), 5e€ section 1.3.3 for a discussion of these
parameters. The variations of the phase and amplitude of the total lift force with U* are shown in
Figures 1-32(a) and (b) respectively. The phase of the potential added mass force (which is equal
to the apparent mass force) is constant, but its amplitude varies with (4 /¥)U%. When the wake
moves between the different response branches the amplitude of the potentiai added mass, Cy .,
varies with the amplitude and frequency of the response. At the transition points there ar€ also
generally changes in the phase and amplitude of the total lift force and thus the transitions
correspond to a significant change in the relationship, both phase and amplitude, between the total
and potential mass forces. The vortex force is calculated by vectorially subtracting C; .m(f) from
Cu(f). As the wake moves between the different branches the change in the relationship between
Ci ot} and Ci(f) causes a corresponding change in the relationship between the total and vortex lift
forces. Thus, the nature of the variation of C; with U/*, shown in Figure 1-32(a), is very different
in shape from that of Cpyumer, shown in Figure 1.32(c). More significantly, when Cp..(f) is
subtracted from the total lift force the phase of the upper branch switches from just above 0° to just
below 180°. Therefore for values of m*C, where the wake response has three branches, the jump in
G135 vores OCCULS at a different value of U* to the jump in ¢ys. The jump in 1y vorex corresponds to a
large change in both the phase and mode of vortex shedding. The jump in ¢us between the upper
and lower branches does not correspond to a significant change in the phase of vortex shedding
and, although there are changes in the distribution of vorticity, the general mode of shedding

remains 2P. When the lift forces and motion of the cylinder are sinusoidal equation 1-10,
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reproduced below, describes a simple relationship between the phase and amplitude of the total lift
force, shown in Figure 1-32(a & b) and the vortex lift force, shown in Figure 1-32 {c & d).

Cp =7 Cy (A/D) 5its (1) = T Ci vorrex (/D) sint (@1 vorser) (1-10, reproduced)
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FIGURE 1.32  Variation of the phase and amplitude of a) the tots) and b) vortex lift force for low
m*C. The jump in the phase of the total lift force ¢uns occurs between the upper and lower branches

while the jump in the phase of the vortex Hft foree dun vone OCCUrS between the initial and upper
branches, Reproduced from Govardhan & Williamson (2000).

Govardhan and Williamson (2000) found that the transition from the initial to the upper branch,

and the corresponding jump in ¢y vores, 0CCUrs When the frequency of oscillation passes through the
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natural frequency of the structure in the fluid, i.c. / passes through fyween, (*=1). They also
showed that when the lift force and motion of the cylinder are accurately represented by sinusoidal
functions, as the frequency of oscillation passes through f* = 1 the equations of motion predict a

jump in dyp.  The development of the equations below follows essentially the same logic as
Govardhan & Williamson but the manipulation of the terms is slightly different.

In equation 1-12, the equation of motion of an elastically mounted cylinder is written in terms of

the vortex force, where the apparent mass force term is contained on the left hand side as (m_ )

where the added mass per unit length, m, =-(prD >4 =-m,.

(m+m,)j+cy+hy=F,, (¢ (1-12)

By assuming that the motion and the vortex lift force can be represented by a pure sinusoidal
signal:

F v (0= Ct voriee SIR(O! + §1f vomer), ¥() = A sin(wf)

and solving for the frequency of oscillation, it follows that:

y f =f*=Jl—7c%C‘,_m¢, OS5 vrer) (1-13)
N warer

Careful examination of equation 1-13, shows that as §uswme. goes from the first quadrant
(0°<iypvonex<90°) to the second quadrant (90° <dysvume<180°) during the transition from the initial
to the upper branch, the second term under the square root passes through zero. Therefore,
equation 1-13 shows that at the transition between the initial branch and upper branch the
frequency of oscillation must pass through y* = 1. Although the frequency of oscillation in
equation 1-13 is written in terms of the in-phase component of the lift force, Fiys wrex €08(dus varrer)s
it can also be written in terms of the out-of-phase component of the lift force. Therefore, unlike the
energy transfer, the frequency of oscillation varies with both the in-phase and out-of-phase
components of the lift force.

Re-writing the equation of motion in terms of the total lift force allows us to examine the effect of

the jump in ;s at the transition between the upper and lower branches:

mp+cp+ky = Fo (1), (1-14)

where F..s is the total Lift force. For a sinusoidal lift force and cylinder motion the frequency of

oscillation expressed in terms of the total lift force is:

[ _ \I' - szq cos(hyy) (1-15)

wan-mm
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Following the same argument as presented above for the jump in the vortex [ift phase, Equation i-
15 shows that f passes throngh f vecwn 85 €0S(¢yz) passes through zero during the transition from
the upper branch to the lower branch,

For all the values of m* and m*(, considered by Govardhan & Williamson (2000} the transition
between the initial and upper branches occurred at approximately f* = 1. These results are
consistent with the argument associated with equation 1-13 presented above. This transition
corresponds to the jump in ¢u;; vonex and a change in both the mode and phase of vortex shedding. A
characterisation of both this transition and the tramsition between the upper and lower branches is
shown schematically in Figure 1-33. Figure 1-33 indicates that the transition between the upper
and lower branches occurs at f'= fy uomm, as predicted by equation 1-15. This is consistent with the
experimental results of Govardhan & Williamson (2000) for m* substantially greater than m™*cerr,
e.g. m* = 8.63. However, as m* approaches m¥cxyr the transition beiween the upper and Jower
branches appears to occur well above the natural frequency of the structure in a vacuum. An
example of this is shown in Figure 1-31: at m* = 1.2 the transition between the upper and lower
branches occurs at f* = 1.9, however /v voann{ = i veeunlfiy) 15 equal to 1.35. This result suggests
that the transition frequency predicted by the idealised approximation of the lift force and motion
of the cylinder in equation 1-15 does not hold at lower values of m*. This implies that at very low
values of m* the lift force and cylinder motion are not accurately represented by sinusoidal
functions.
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FIGURE 1-33  Schematic diagratn of the low m*{ type of response showing the three principal
branches and the two jump phenomena. Reproduced from Govardhan & Wiiliamson (2000).

Further evidence that equation 1-15 does not describe the frequency of oscillation at the transition
between the vpper and lower branches at Jower branches of m* can be found in the experimental
results of Govardhan & Williamson (2000). They found that the frequency of oscillation for the
lower branch, fionze, is given by equation 1-11. As shown in Figure 1-31 the frequency of
oscillation is constant afier the transition from the vpper to the lower branch. Therefore, the
frequency at which the transition between the upper and lower branches occurs is approximately
equal to f1owsr. Re-stating the pertinent equations from Govardhan & Williamson (2000) and their

derivations we have:

Transition frequency, * yyper — LOWER

. m*iC, [ m*+C, Experimental resuit:
Siowex = J’"’ 054 V m*—m*cy; Govardhan & Williamson (2000)
_— S vocuum _ [m*+C, Theor?tlcal results derived by
Srvor 1 m* assuming
Fgvorex() ® Fi ories SO + Q1 sarier)
and p(1) = A sin{o 1)




Comparing the two equations for , f* yrrex — rower We see that at larger values of m*, where

m* >> m* o, f* 10wer iS very close to the theoretical value f* ocam-

Further examination of fy,.aae for mass ratios approaching and below m*cwr also indicates that
equation 1-15 does not correctly predict the frequency of oscillation at the transition beiween the
upper branches. The experimental results of Govardhan & Williamson (2000) indicate that for m*
< m*cpyr the transition from the upper branch to the lower branch does not occur and f* increases
linearly with U*. This implies that the frequency of oscillation can increase towards /* = o without
a transition from the upper branch to the lower branch. 1f, as predicted by equation 1-15, the
transition between the upper and lower branches were to occur at /= fiyyocumm then for m* >> m¥cqr
the natural frequency of the structure in a vacuum would need to be equal to infinity. However,
this is not physically reasonable as while the mass of the cylinder remains finite fyyoeom (= (Kmy*)

also remains fizite.

As shown in Figure 1-31, the variation of /* with U* is different for each of the different response
branches. For the initial branch the frequency of oscillation increases linearly with U* until at
f*=1, the wake moves to the upper branch. Within the upper branch /* continues to increase
linearly with U*, however the gradient is slightly reduced. Following the transition to the lower
branch f* is approximately constant indicating that a limiting value has been reached. As discussed
above, at low values of m* the frequency of oscillation for the upper branch can increase above
JNvocwun and the value of f* at which the transition from the upper to lower branch occurs is best
described by equation 1-11. For low values of m*, close to and below m*cyr, the cylinder
oscillates at frequencies well above the natural structural frequency at high U*. The experimental
results for m* = 0.52in Figure 1-31 show the somewhat surprising result that the structure can

undergo vortex-induced vibrations at frequencies that are at least four times fy warer-

A simple manipulation of equation 1-11 shows at higher values of m* the frequency at which the

transition from the upper to lower branches occurs, f* yperr o ronex { = J* cowgr), tends towards
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1.6 FORCED AND FREELY OSCILLATING CYLINDERS

1.6.1 The Nature of Transition

Previous results indicate that the jump in the Yift force on a cylinder undergoing forced oscillations "
corresponds to a transition between two different wake states. A number of aspects of this

transition are similar {o those for the elastically mounted cylinder at the transitions between the

initial wake branch and either the upper or lower branches. For both the forced and free

oscillations, the transitions are characterised by a number of events including a change in the phase

of vortex shedding, a change in the mode of vortex shedding or an abrupt changes in the phase and

amplitude of the lifi force. For an elastically mounted cylinder Govardhan & Williamson (2000)

showed that the transition between the initial branch and either the upper or lower branches

comresponds to a change in both the mode of vortex shedding and a jump in the vortex lift phase.
Previous investigations on the forced oscillation of a cylinder indicate that similar changes may
also occur simultaneously around £/, = 1, moreover these changes would comrespond to a
transition between two different wake states. However, the changes in the structure of the near
wake and the forces on the cylinder around £/, = 1 have not been conclusively linked.
Additionally, the mechanisms that cause the fransitions observed for both the forced and free
oscillations of a cylinder are not well anderstood,

Many different physical systems exhibit a number of different states. The nature and properties of
a transition between different states have been studied in numerous fields of science. A transition
is said to be hysteretic if the position in parameter space at which she transition occurs depends
upon whether the independent variable is being decreased or increased. When a transition is
hysteretic the established state tends to persist slightly longer before the system makes the
transition to the other state. Hysteresis indicates that the flow has a “memory” and that the
previous flow conditions influence the point at which transition occurs. For an osciflating cylinder
transition is characterised by a sharp change in the lift force as the frequency of oscillation passes
through f/f; = 1. Typically hysteresis is observed when a controlling variable, such as the flow
velocity or the frequency of oscillation, is varied continuously or in small discrete steps. The
conirolling variable can be “reset” between each different experimental value if the experiment is
restarted from a third reference state. An example of this is an experiment where the flow velocity
is varied but between each value the flow is brought to rest and the disturbances allowed to die out
before testing at a different flow velocity. In this case, depending on the rate at which the flow
velocity is ramped up, hysteresis is much less likely to be evident.

The relative stability of different states and hysteretic transition between states has been
investigated in many areas of science. As discussed by Visintin (1991) a system will always seek
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to attain the most stable state, or in other words the state where the energy potential is minimised.
An example of a system occupying a stable state is a simple harmonic oscillator, where the
potential energy of the sysiem, plotied against the position of the mass, is a deep symmetric well
and the potential energy of the mass is minimised at the bottom of the well. The positions available
to the mass vary with its kinetic energy and, as the kinetic energy is dissipated by friction, a mass
with limited kinc ‘ic energy will be found towards the bottorn of the well. Thus, the mean position
of the mass is the bottom of the well and it will oscillate about that position with a displacement
distribution that depends on the kinetic energy of the mass, The same concept can be applied to
more complicated systems and the potential energy of the system can be plotted in phase space in a
similar fashion.

Consider a system that can be characterised by two variables g(f) and p(s), where g is the
independent variable (analogous to £/} and p is the dependent variable (analogous t0 ¢ys or Cp).
Over the range of g to be considered, there is a transition between two distinctly different states.
The potential energy of this system, for a fixed value of the independent variable ¢, can be plotted
as a function of p as shown in Figure 1-34a. The shape of the potential energy @{p) curve will
change smoothly with the independent variable g. The system tends to minimise, either globally or
locally, the potential ¢ and the stable states available to the system in Figure 1-34a are labelled
“State " and “State II”, The most stable state is where the potential is absolutely minimised, state
11 in Figure 1-34a. The local minima of state | is also stable aud is described as a metastable state.
The sysiem will persist in the metastable state until the fluctuations within the system allow it to
overcome the potential barrier Agp. The time taken for the system to obtain the most stable
equilibrium state depends on the energy of the fluctuations. If the potential barrier Ag is very
large, the system can maintain a meta-stable state for periods of time that are much longer than the
time scale of an experiment and the most stable state is not observed. A schematic of a hysteretic
transition is shown in Figure 1-34b, where the change in states corresponds to a sharp jump in the
value of the dependent variable p. Hysteresis occurs when the independent variable, g, is varied
smoothly through a transition region, g.7<g<qur. When ¢<gcr state 1 is the only stable state
available to the system, as g increases through g7 state Il becomes a metastable state. As ¢
increases further towards gyr, state Il becomes more stable than state I. However, as the system is
already in state I, it will not transition to state 1l until it is able to overcome the poiential barrier
and, as discussed above, the meta-stable state may persist for some time. In 2 noisy system
transition will occur well before ¢ = gur. When g is decreased from values of g>gyr the same

process accurs resulting in a hysteretic overlap of states.
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FIGURE 1-34  a) The double well potential of a system with two stable states, where w is the
dependent variable and ¢ is the potential energy for a fixed value of u, the independent variable. b)
Schematic showing a hysteretic transition from state 1 to state II where the inserts show the variation
of the potential energy at peints throughout the transition,

Bishop & Hassan (1963) investigated the phase and amplitude of the lift force on a cylinder over a

range of oscillation frequencies by varying £./f, in a continuous fashion, with out allowing the
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cylinder to come to rest in between data runs, When the frequency was increased the value of FoA
at which the transition occurred was higher than when the frequency was decreased, hence the
transition is described as hysteretic. Gopalkrishnan (1983) conducted similar experiments in a
towing tank, where between experimental runs at different values of f/f: the oscillations cease and
the flow is allowed to settle. Bringing the fiow to rest between experimental runs has the effect of
removing the “memory” of the flow and in this case hysteresis was not observed.

Ingenious experiments by Brika & Laneville (1993) examined a freely oscitlating long cable using
different methods to vary the reduced velocity. (Note: to avoid confusion, when we are discussing
the results of Brika & Laneville the terminology of Khalak & Williamson (1999) will be used to
describe the different response branches.) As well as incrementally increasing and decreasing the
reduced velocity, they also considered the effect of changing the size of the increments. When the
velocity was increased or decreased with small steps (AU* = 0.02), indicated in Figure 1-24 by the
symbols ¢ and * respectively, there was a clear hysteresis, However, when the velocity was
increased with large steps (AU* » 0.04), represented in Figure 1.24 by the symbol <, the transition
from the initial the lower branch occurred at 2 much lower velocity. Irrespective of the size of the
velocity increments, the response either side of transition was consistent with either the initial or

tower branches.
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FIGURE 1-35 The amplitude responses of the impulsive regimes as a function of U*. (Izbelled U in
figure) compared (o the results of the progressive regimes: ¥initial state from rest, O initial state from
a pre-excited amplitude: —— progressive regimes. Reproduced from Brika & Laneville (1993)

Brika & Laneville described the method of changing the flow velocity in an incrementai fashion as
a “progressive” regime. They aiso considered a second method, described as an “impulse regime”,
where for each different flow velocity the cable was in a constant initial state before the cable was
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released and allowed to move 1o a final state. Two different initial conditions were considered; a
stationary cable or a cable undergoing forced large amplitude oscillations. The amplitude
responses from the controlled initial states or “impulsive” regimes were then compared with those
of the “progressive” regimes. For the “progressive” regimes the velocity is changed incrementaily
and therefore the initial state depends on the state for the previous velocity. As shown in Figure 1-
35, the initial state of the system affects the velocity at which transition occurs. The amplitude
response of the cable released from rest falls on either the initial (U* < 0.87) or the lower
(U* 2 0.88) response branches. However, within the small region, .87 <U* <0.88 the amplitude
response of the cable released from rest tends first towards a state which is consistent with the
lower branch but after a period of time there is a transition or “break” of the amplitude response to
a lower level. The “break” in the amplitude of oscillation is accompanied by an abrupt change in
the phase of vortex shedding, as shown Figure 1-36, and the final state is fully consistent with the
initial branch. Thus, within this transition region both the initia! and lower branches are observed.
Interestingly, the transition region lies at the lower end of the hysteretic transition region defined by
the progressive regimes and the system tends to remain in the initial branch down to relatively low
values of U,
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FIGURE 1-36  The amplitude response (upper vlot) and vortex phase (lower plot) for a cable
starting from rest at U* = 0.87. Each major division on the time axis represents approximately 90
oscillations at the natural frequency of the cable. Reproduced from Brika & Laneville (1993)

The response of the cable released after initial forced large oscillations is also shown in Figure I-
35. In this case the transition also begins at the lower end of the hysteretic transition region, but
there were a relatively wide range of velocities, 0.88< U* <0.95, where the response of the system
was not unique and both the initial and lower branch responses were observed. Additionally, as
shown in Figure 1-37, at I* = 0.92 a self-excited transition from the lower branch to the initial
branch was observed. This transition occurred approximately 60 secaonds, or over 1000 oscillation
cycles, after the system first became established in the lower branch.
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FIGURE 1-37 Response trace showing a seif-excited transition from the lov‘ver‘bnch the upper
branch at U'* = 0.92, for a initial state with large amplitude oscillations, (note the change in scale).
Reproduced from Brika & Laneville (1993).

In summary, the expetiments by Brika & Laneville (1993) show that the selection of a particular
state within a transition region, where a system is able to exhibit more than one state, is effected by
the initial state of the system and the nature or size of changes in the goveming parameters.
However, outside the transition region the final wake state depends only on the values of the
governing parameters. There are other factors not discussed by Brika & Laneville that may also
influence the state section for an oscillating cylinder, these include the level of free-stream
turbulence and Reynolds number.

The nusmerical investigation of Blackbum & Henderson (1999) considered the forced oscillation of
a cylinder using a two-dimensional approach at low Reynolds numbers. They found that there was
a band of oscillation frequencies, centred on the value of £/, where the jump in the lift force was
observed, where no single periodic mode of vortex shedding was observed. They attributed this
result to an “almost-periodic switching between wake states”. This result contrasts with the
hysleretic transition observed by Bishop & Hassan (1963). Itis not known if the contrasting nature
of the transition observed by Blackburn & Henderson (1999} is due to the low value of Reynoids
number, the zero level of free-stream turbulence, or if transition was altered by the two-

dimensional nature of the wake.

For an elastically mounted cylinder with higher values of m*{, Khalak & Williamson (1997) found
a hysteretic transition between the initial branch and the lower branch. This result is consistent
with the transition observed by Brika & Laneville (1993) for an oscillating cable. However at low
values of m*C, where there are three response branches, Khalak & Williamson (1997) found that
the transition between the initial branch and the upper branch was hysteretic, but the transition
between the upper branch and lower branch was intermittent. For velocities within the intermittent
transition region, the phase and amplitude of the cylinders response switched in a non-periodic
fashion between values that were consistent with either the upper or lower branches. As the
velocity increased within the transition region, the system tended to spend a greater proportion of
its time in the lower branch.

The hysteretic transition between the initial and upper branches indicates that the system has a
tendency to remain in the established state and the system does not switch repeatedly between

states. This suggests that a significant perturbation is required to move between the initial and
upper branches. In contrast, during the intermittent transition the system repeatedly switches
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between the upper and lower branches, suggesting that only a smail perturbation is required for this
transition to occur. Intuitively, this is consistent with the magnitude of the changes corresponding
to the two different transitions. The transition between the initial and upper branches corresponds
to a change in both the mode and phase of shedding, but the upper to lower branch transition
corresponds 1o a change only in the distribution of vorticity, while the phase and general mode of
vortex shedding remain the same,

Within a transition region there are two ot more stable states in which a system can exist, but
typically there will be a state that is the most stable state. The state that the system selects depends
upon the initial state of the system and the relative level of perturbation within the system and
depending on these factors a system may not necessarily be in the most stable siate for the
prevailing flow conditions. R is difficult to determine an initial state that guarantees the system
will seleci the most stable wake state. Therefore, when the behaviour of a system within a
transition region is investigated the initial state of the system must also be considered. In theory, a
transition is typically associated with the point where there is a change in the most stable state.
However, in practise, it is not possible to define a transition point without also rigorously defining
the initial conditions and for different experimental techniques and conditions some variation in the

point at which transition occurs should be expected.

1.6.2 Spanwise Correlation and Wake Structure

The investigation of Hover et al. (1998) considered the spanwise comrelation of the lift force along

a cylinder undergeing free and forced oscillations. The forces were measured using force balances

located at either end of the cylinder and a correlation coefficient was calculated from these two

force signals. For the forced oscillations, over a range of oscillation amplitudes, 4/D = 0.2-0.9, and

reduced velocities, U* = 4.5 - 6.75, the spanwise cormelation co-efficient was always greater than

0.84. For the free oscillations the cylinder was not elastically mounted but the free oscillations

were instead generated using a novel real-time force-feedback control system. The average value

of the instantaneous forces measured at each end of the cylinder were used to drive a numerical

simulation of a mass-dashpot-spring system and the cylinder was then forced to move with the
appropriate motion using a servomotor. The response of the cylinder produced using this method,
shown in Figure 1-38a, agrees well with the results from the elastically mounied cylinder of Khalak
& Williamson (1999). Within the response region the lift forces measured at either end of the
cylinder were very well correlated with the exception of the region between U* = 5.0 ~ 6,25
corresponding to the distinct dip in the correlation co-efficient in region 11l of Figure 1-38b. Figure
1-38c shows that the dip in spanwise correlation corresponds to a jump of approximately 180° in
the phase of the lift force which, when combined with the change in the amplitude response, is
consistent with the transition between the initial and fower response branches. In region IIT of
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Figure 1-38 the lift phase exhibits a number of intermediate values which are not consistent with
either the initial or Jower response branches and which were not observed by either Khalak &
Williamson (1999} or Govardhan & Williamson (2000). One possible explanation for the
intermediate values of ¢y, (or ¢) is that during the time over which each data point was acquired the

system occupied both response branches.
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FIGURE 1-38 Response of a freely oscillating cylinder as a function of reduced velocity: a)
amplitude of response;: b) correlation coefficient Fc and standard deviation p between the forces

measured at the ends: ¢) phase angle ¢ between the force and displacement, In a) 2nd ¢) points form
beth ends of the cylinder are plotted. Reproduced from Hover ef af (1998).

The dip in the spanwise correlation appears to be linked to the transition between the initial and
lower branches. However, it is not clear if the low spanwise correlation is a result of changes in the
phase of vortex shedding along the cylinder or if there are changes in the spanwise structure of the
wake close to transition. It is generally assumed that transition occurs uniformly along the span of
the cylinder, however the spanwise nature of transition, and indeed the spanwise structure of the
wakes for the different response branches, are not well understood.

For the forced oscillation of a tapered cylinder, Techet (1998) and Techet ef al. (1998) showed the
wake can exhibit “hybrid” modes, where the wake forms one mode along part of the cylinders span
and another mode along the rest of the span. A schematic of a “hybrid” mode with a spanwise
transition between the 25 and 2P wake modes is shown in Figure 1-39. The tapered cylinder
encourages transition between wake modes along the span of the cylinder because the effective
values of Re and A/D vary with spanwise location. In separate experiments, Techet (1998) showed
that at reduced velocities close to where the hybrid modes start to occur, there is a sharp decrease in
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the spanwise correlation of the force along the tapered cylinder. However, neither Hover er al
(1998) nor Techet (1998) directly linked the variation in the spanwise correlation to changes in the
vortex structures along the span of the cylinder.

U—> 4,

FIGURE 1-39  Suggested topology of (he vortex reconnection between the 2P and 25 modes along a
tapered cylinder. Reproduced from Techet (1998)

The spanwise structure of a stationary cylinder has been extensively studied, however little is
known about the three-dimensional structure of an oscilfating cylinder. Cetiner (1998) measured
the streamwise vorticity along the span of an osciliating cylinder for a variety of forced oscillation
profiles, She found that for transverse cylinder oscillations the level of streamwise vorticity (&)
could be as high as 1/3 of the spanwise vorticity {w;). The instantaneous spanwise and streamwise
vorticity fields in Figure 1-40(a & b) respectively show the structure of the near wake for
transverse oscillations at a given amplitude and frequency. The spanwise vorticity structures
proved to be highly repeatable and the structure of the wake in Figure 1-40c, phase-averaged over
32 images, is very similar to the instantaneous wake structure. In contrast, despite the relatively
high level of streamwise vorticity the location of these structures was not repeatable and the phase-
averaged streamwise vorticity field in Figure 1-40d tends to zero. The levels of streamwise
vorticity are obviously significant but their influence on the forces experienced by the cylinder and
the transition between different wake states is not well understood. Interestingly the two-
dimensional simulations of the forced cylinder oscillations by Blackburn & Henderson (1999),
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which model only the spanwise vorticity, were able to capture the jurnp in the phase and amplitude
of the lift force,

FIGURE 140 Instantaneous img&s of (a) spanwise @, and (b) stremnise, W, vorticity acquied at
the maximom vertieal displacement of the cylinder, f./f, = 1.0, A/D = 0.95. The spanwise and
streamwise paositions of images (a) and (b) respectively are indicated by the vertical lines in the other
image. The corresponding phase-averaged images are shown in (c) and (d). Reproduced from Cetiner
(1998).

A complementary numerical and experimental study on the vortex-induced vibration of a cylinder,
Blackbum et al (2001), found that “three-dimensional simulations are required to reproduce the
response envelope observed experimentally”. They also found that for the 2P mode of shedding

there are significant spanwise structures in the wake as shown in Figure 1-41.

FIGURE 141 Instantaneous isosurfaces of pressere (predominantly spanwise) and streamwise
vorticity from three-dimensional simulations of the voriex-induced vibrations of a cylinder at S5t U* =
1.33 (2P mode of shedding). Reproduced from Blackburn ¢f ai (2001)
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1.6.3 Relating Forced and Free Oscillations

As discussed in section 1.3, the structure of the near wake and the forces on a structure oscillating
Jue to vortex-induced forces have ofien been studied using forced sinusoidal oscillations. The
reviews of the forced and freely oscillating cylinders in sections 1.4 and 1.5, demonstrate that these
two cases do in fact have much in common; both the forced and freely oscillating cylinders appear
to display two or more distinctly different states as the frequency of oscillation varies relative to the
Kérman frequency. These states are typically characterised by the mode of vortex shedding and the
phase of the lift force and the values of £./f, or (U*//*)S¢, at which they occur are very similar.

At this point it is important to consider the parameters that are used to describe the forced and
freely oscillating cases. When the cylinder is forced to oscillate the properties of the system are
generally considered as a function of £J/f, where as discussed previously £ is the frequency of
oscillation which is physically varied during the experiment and f; is the Karmén frequency of the
stationary cylinder. Using the fact that Strovhal number is essentially constant over the Re range
considered, f./f, can also be expressed in terms of a reduced velocity U* = U/.D. In some
experiments the flow velocity U is varied instead of f;. Except for small variations in the Reynolds
number these cases are equivalent. For the freely oscillating cylinder the frequency of oscillation is
not an independent variable and the properties of the system are always considered as a function of
the flow velocity. Additionally, the frequency of oscillation is generally normalised using the
natural frequency of the structure fy instead of the Kdrmdn frequency, therefore U* = UlfyD. This
choice of a different definition of L/* is quite fundamental and illustrates the difference between the
forced and frecly oscillating cases.

Interestingly Khalak & Williamson (1999) found that when the response of the elastically mounted
cylinder was plotted against (U*/*)St,, rather than U* much of the data collapsed onto a single
curve as described in section [.5.2. Evaluating the components of (L*/*)St,:

Uil =Y InfD
TR ¥ BT
L
f

Therefore, plotting the data in terms of (U*/f*) St, is effectively plotting the response of the system
as the frequency of oscillation varies relative to the Karman frequency, which is to very similar to
the way the resulls of the forced oscillations are plotted. Comparing the parameters, fif; for a freely
oscillating cylinder and £/, for the forced oscillations, it is apparent that in both cases the
frequency being normalised by £; is the frequency at which the cylinder is oscillating. Howzver,
is the frequency at which the freely oscillating system responds to the natural instability of the
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wake, whereas for the forced oscilfations f, is the frequency at which the natural instability is
forced.

The apparent similarities in the modes of vortex shedding and variation of $yp for the forced and
freely osciliating cylinders indicates that the forced oscillations are modelling many of the
imporiant aspects of the vortex-induced motion. However, the crucial question remains: can we
use the forced oscillation of a body to predict the voriex-induced motion of an elastically mounted
body? It has generally been assumed that the results of forced oscillations can be used to
understand the freely oscillating cylinder, however very few efforts have been made to predict the
vortex-induced motion using the forced oscillation results. In part this is due to the extensive force
mapping required to undertake such an exercise, as the force on the cylinder must be known as a
function of both the frequency and amplitude of oscillation.

Staubli (1983) attempted to predict the voriex-induced motion of a cylinder using the force data
shown in Figure 1-11 and the equation of motion for an elastically mounted body. Inherent in this

calculation was the assumption that the motion of the freely oscillating cylinder is either sinusoidal
or can be predicted using a sinusoidal motion. Staubli (1983b) also pointed out that as a freely
oscillating cylinder requires positive energy transfer from the fluid to the cylinder, the forced

oscillations must result in positive energy transfer, i.e. 0°< ¢y <180°, before they can be used to
predict flow-induced motion. The majority of Staubli’s data in Figure 1-11 shows values of ¢4
that indicate negative energy transfer. However, Staubli (1983b) interpreted the refative small band
of oscillation frequencies (S, = 0.14-0.17) where 0°< ¢y, <180° as the “range of fluid-excited
vibrations of the freely oscillating cylinder™. It should be noted that much of this data corresponds
to the region where the ;3. phase is changing rapidly, taking on “intermediate™ values that are not
consistent with the values of ¢y either side of the jump. As shown in Figure 1-42, his calculations
were relatively successful in predicting the initial response branch of the freely oscillating cylinder
for smal) positive values of ¢y close to 0°. However, for ¢y = 100° the calculations did not predict
the response of the cylinder. Examination of Figure 1-11 reveals that the values of ¢y close to
100° are in fact intermediate values that are not consistent with the values of ¢y either side of the
jump. It is not known if these intermediate values of ¢y correspond to a third wake state or if the
intermediate values are the result of averaging data containing two different wake states,
Interestingly, the data of Khalak and Williamson (1999) and Govardhan & Williamson (2000} for

an elastically mounted cylinder does not show these intermediate values of ¢y.
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FIGURE 1442 1a) Prediction of the response of an elastically mounted cylinder using forced

oscillation and comparison with experimental results of Feng: b) phase angle of the lift force, dyp
within the lock-in range. Reproduced from Staubli (1983b).

Many of the previous investigations of forced cylinder oscillations obtained values of ¢y that
corTespond to negative energy transfer and therefore predict that vortex-induced motion will not
occur. The extent of these regions of negative energy transfer and the ramifications for the

relationship between the forced and freely osciliating cylinder, will be considered further in this
work




1.7 STATIONARY CYLINDER NEAR A SURFACE

1.7.1 Boundary Conditions at a Solid or Free-Surface

Unbounded flow past a stationary cylinder results in periodic shedding of vortex structures from
the cylinder and the formation of the characteristic Kérmén street. When the flow is bounded by a
surface the structure of the wake and the forces on the cylinder can be significantly altered as
shown by Bearman & Zdravkovich (1978) and Miyata ef of. (1990). The surface intesface between
a liquid and a gas, for example water and air, is typically described as a free-surface and, as
discussed by Rood (1995) and Gharib & Weigand {1996), the boundary conditions at a free-surface
are significantly different from those at a solid boundary. The tangential pressure gradient along a
solid surface results in the generation of verticity and at a no-slip boundary all the vorticity is
parallel to the surface. A clean free-surface is not a no-slip boundary, but instead has a zero-shear-
stress boundary condition. Along a flat clean free-surface orientated along the x-y plane 7,,= 7, =
0, ev/gz = dviox = Ow/dy = On/dy = 0 and both surface-parallel vorticity and surface-parallel
vorticity flux are zero. Thus, as described by Batchelor (1967} in contrast 1o a solid boundary the
zero-shear condition along a clean flat free-surface permits only surface-normal vorticity, forcing

vortex lines to terminate nonnat to the free-surface.

When a free-surface is deformed the viscous flow beneath the curved surface generates a shear on
the boundary which, in order to preserve the zero-shear boundary condition, must be counteracted .
by the generation of vorticity. If the flow is inviscid then by definition the shear is zero and the
zero shear stress boundary condition is trivial. The surface-paralle!l vorticity at the curved viscous
free-surface can be described using curvilinear co-ordinates along the curved surface and writing

the vorticity in terms of the surface shear stress. The surface-tangent vorticity o, is given by:

12 1 ou,
@, =——{rg)-—= a-16)
and the shear stress due to the fluid beneath the free-surface is:
dfugy 1om
=yl p—] L | e—t. 1-17
Fro ‘”["ar(r] rao] a7
therefore
o, =T0y B 100 (1-18)

g R, R 00
where R, is the locat radius of curvature of the surface. Equation 1-18 is the boundary condition

for a free-surface, where the three terms on the right hand side represent the sources of vorticity

due to: )
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() The shear stress at the interface with the adjoining fluid which is negligible for a clean
water-air interface, but becomes significant when the water surface is contaminated by
surfactants;

(ii) Flow under a curved surface or the generation of vorticity due to deformation of the

surface;

(iii))  Changes in the velocity along the surface. This is effectively an unsteady term

representing generation of vorticity due to movement of the surface.

‘When the free-surface is flat the second and third terms on the right hand side of equation 1-18
tend to zero and vorticity is only generated when the free-surface is contaminated. Gharib &
Weigand (1996) showed that the flux of surface-parallel vorticity at a deformed contaminated
surface is given by:

2 4
de &-‘_l Nu; +u,.)+ 18

..]!—,.3.‘..8-.=

+gcosa—u, 1-19
v o2 o pas v (1-19)

where s is a local surface co-ordinate parallel to #and « is the local angle of the free-surface to the
gravitational vector.

The Froude number, Fr = Ui(g L)'? is the non-dimensional parameter used to describe the
behaviour of free-surface flows, where L/ is the free-stream velocity and L is a characteristic length
scale. In many cases the flows depend both on Fr and Re. In open chammel flows the Froude
number describes the ratio of the wave speed of the free-surface disturbances, which vary with
(gL)m, to the free-stream velocity, /. When used in this way Fr describes the ability of a
disturbance to travel upstream and is analogous to the dimensionless Mach pumber for
compressible flows,

For a body close to a free-surface in deep flow the Froude number is applied differently. In this
case Fr represents the ratio of the fluid inertia force to the gravitational force, where Fr is actually
the square root of this ratic. In these cases the Froude number describes the propensity of a free-
surface to deform and generate free-surface waves in response to forcing from the flow structures
beneath the surface. Typically the Froude number used for flow over a cylinder is Fr = Ug D)'?
where the length scale for both the inertial and gravitational forces is the diameter of the cylinder.
Sheridan et al. (1997) considered using the depth of the cylinder below the free-surface as the
length scale for both the inertial and gravitational forces, i.e. Fr = Ug h)**. However, neither
Ulg D)™ or Ul(g H)'* identified a critical Froude number at which the wake transitioned between
different states. lrrespective of whether D, the diameter of the cylinder or A, the depth of the
cylinder, was used as the characteristic length scale in Fr, Sheridan er al. (1997) found that
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increasing Fr caused simifar systematic changes in the wake. Unless specifically stated the Froude
number used in this text will be based on the diameter of the cylinder,

1.7.2 Flow Over a Cylinder Close to a Solid Boundary

The boundary conditions at a solid wall are different from those at a free-surface. However, in
both cases the flow is constrained by the boundary and these two different flows exhibit a number
of similar features. Bearman & Zdravkovich (1978) measured the mean pressure distribution on a
cylinder close to a solid wall, as weli as the mean pressure distribution along the wall. The mean
pressure distribution on a cylinder in unbounded flow is symmetric about the centre-line of the
cylinder, however as the gap between the cylinder and the wall decreases the pressure distribution
on the cylinder becomes non-symmetric. As shown in Figure §-43, for gap ratios of G/D = 0.4 and
0.1, the asymmetry of the pressure distributions increases as the cylinder approaches the wall,
where G is the distance between the wall and the cylinder. As G/D decreases the front stagnation
point rotates towards the surface as does the separation point furthest from the wall, but there is
only a relatively small change in the position of the separation point adjacent to the wall,
Additionally, as G/D decreases there are also changes in the pressure distribution along the wall.
As the flow approaches the gap between the wall and the ¢ylinder there is an initial increase in the
pressure on the wall, but further downstream there pressure decreases rapidly as the flow
accelerates between the cylinder and the wall. The peak negative pressure occurs just downstream
of the cylinder’s centre and the magnitude of peak wall pressure increases as G/D decreases. The
non-symmetric pressure distribution on the cylinder results in a net force that pushes the cylinder
away from the solid surface and, unlike a cylinder in unbounded flow, the net lift force on the

cylinder is not zero.

Despite the obviously asymmetric pressure distribution in Figure 1-43 at G/D = 0.4, measyrements
of the velocity fluctuations behind the cylinder indicated that for this gap ratio periodic vortex
shedding is still occurring. Morcover, the Strouhal frequency of this vortex shedding is only
slightly higher than for unbounded flow. Bearman & Zdravkovich measured the velocity
fluctuations in both shear layers; finding in both cases a strong spectral peak at the shedding
frequency. However, the peak obtained in the shear layer closest to the wall was less energetic
than the peak for the shear layer further away from the wall. As the gap ratio decreased the relative
difference in the energy of these two peaks increased. The velocity spectra in the near wake
indicate that periodic vortex shedding persisted for gap raties down to G/D = 0.3. For G/D £0.2
relatively weak high frequency fluctuations occurred in the shear layer furthest from the wall and
periodic fluctuations were not observed in the shear layer closest to the wall, indicating that regular
Kérman shedding is suppressed. The asymmeiry of the pressure distributions at G/D = 0.1 in
Figure 1-43(b), where regular vortex shedding is suppressed, is much more accentuated than for the -
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case shown in Figure 1-43(a), at G/D = 0.4, where periodic shedding occurs. In both cases the
front stagnation point and the separation point closest to the wall have rotated towards the wall and
there is a sharp peak in the negative pressure on the wall as the fluid passes through the gap. The
most notable difference between the two cases is that at G/D = 0.1 the pressure distribution on the
portion of the cylinder adjacent to the wall has rotated in the same direction as the front stagnation
point, so that the peak negative pressure occurs further downstream than at G/D = 04,
Additionally, at G/D = 0.1 the mean pressure distribution on the surface of the cylinder next to the
wall does not exhibit a significant adverse pressure gradient suggesting that there may have been a

change in the nature of flow separation.

@

{b) Co

- cp
Figure 1-43 Average pressure distributisn on a cylinder and solid wall for flow over a cylinder

near a wall, for a) a cylinder to wall gap of G/D=0.4 and b) G/D = 0.1.
Zdravkovich (1978). P ) Reproduced from Bearman &

Flow visualisation, PIV and hot film measurements by Price ef o/. (2000) found that the apparent
suppression of vortex shedding at small G/D corresponded to the formation of long attached shear
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layers that did not interact with each other in an organised periodic fashion. For small gaps they
found that the wall boundary layer separated upstream of the cylinder, where the size of the
separation bubble decreased and the separation point moved downstream as G/D increased. They
predicted that the formation and position of the separation bubbie would vary both with the G/D
and a Reynolds number based on the distance of the cylinder from the leading edge of the plate.

For gap ratios at which periodic shedding is cbserved a number of investigations, including
Bearman & Zdravkovich (1978), Angrilli et of. (1982) and Price ef of. (2000), have observed an
increase in the shedding frequency as the gap between the cylinder and the wall decreases. The
frequency of vortex shedding increases smoothly with a peak value occurring just prior to the
suppression of vortex shedding. However, there is some disagreement in the magnitude of the
increase in shedding frequency. For relatively high Reynolds numbers of 2.5-4.5x§0" Bearman and
Zdravkovich (1978) observed only a very small increase in Strouhal frequency of between 2-3%.
However, for Re = 2860-7640 Angrilli ef ol. (1982) observed an increase of up to 10% and at Re =
1200-1900 Price er ol. (2000) observed a much larger increase in the shedding frequency of up to
40%. None of the investigators reported significant variation of the shedding frequency within the
Reynolds numbers ranges of their investigations.
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17.3 Forces on a Cylinder Underneath a Free-Surface

P NI W

submerged
Cantwell & Coles (1983)

Figure 1-44 Plot of time-averaged pressure distributions on a eylinder underneath a free-surface
for 8) #/D = 0,25, b) /D = 1.0 and ¢) a fully submerged cylinder. Reproduced from Miyata &f al
(1990).

Miyata et al. (1990) conducted experiments on a cylinder beneath a free-surface at Re = 4.96 x 10*
and Fr=034. In Figure 1-44 the pressure distribution around a cylinder beneath a free-surface,
measured by Miyata er of. (1980), are comi:mred with the symmetric pressure distribution measured
by Cantwell & Coles for a fully submerged cylinder, where 4 is the depth of the top of the cylinder
below the surface. As the cylinder moves towards the free-surface there is a clockwise rotation of
the front stagnation and separation points and, as shown in Figure 1-44(a & b), the front stagnation
point moves closer to the free-surface. The pressure distribution on a cylinder beaeath a free-
surface exhibit many of the characteristics described by Bearman & Zdravkovich (1978) for a
cylinder close to a solid surface. (Note; the configuration of the cylinder near the solid surface in
Figure 1-43 has the cylinder above the surface, therefore when a cylinder is underneath a free-
surface the geometry of the system is flipped.)

Miyata et al. (1990) found that for 0.35<A/D<1.75 the fluctuating lift force on the cylinder was
strongly periodic, with an approximately constant Sirouhal number of 0.19. These resuits are
similar to those observed for a fully submerged cylinder and indicate that periodic vortex shedding
is occurring, As A/D decreased below 0,35 there was a sudden drop in the spectral energy of the
lift force at St = 0.19, indicating that the close proximity of the free-surface was causing a partial
suppression of vortex shedding. At the smallest cylinder depths, #/D < 0.335, the peak at Sf = 0,19
was no longer present and there was a small pezk at St = 0.3 in both the lift spectra and the pressure
spectra ¢close to the upper and lower separation points. Miyata et al. (1990) found that for these
very small /D the pressuse fluctuations were strongest in the upper shear layer adjacent o the free-
surface. These results are in contrast to the findings of Bearman & Zdravkovich (1978) for flow
over a cylinder near a wall. Miyata et al. (1990) attributed the relative strength of the pressute
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fluctuations in the upper shear layer to an interaction between the vortex shedding and the free-
surface.

Figure 1-45 shows the variation of the mean lift and drag forces, measured by Miyata et al. (1990),
as the cylinder approaches the free-surface. For A/D > 0.35 the mean drag is approximately
constant, however as h/D decreases below 0.35 the suppression of strongly periodic vortex
shedding corresponds to a sharp drop in the mean drag. The mean negative lift force on the
cylinder increases steadily as the cylinder approaches the surface.  Interestingly, for
0.35<h/D <1.75 the frequency of vortex shedding remained approximately constant despite the
changes in the mean lift force on the cylinder and the asymmetry in the pressure distribution,
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Figure 145 Varistion of mean drag (F,) and negative mean lift (F;) with cylinder depth D/B,
where DJ/B = 2W/D +1. Repreduced from Miyata ef al (1990).

Miyata ef al. (1990) also presented the time varying pressure distributions at cylinder depths of /D
= 0.25 and 1.0, which are either side of the sharp drop in the spectral energy at the Strouhal
shedding frequency. At the smaller cylinder depth of A/D = 0.25 the wake is only weakly periodic
and the variations in the time dependent pressuze distribution are relatively smali. However,
further away from the free-surface at /D = 1.0 there is a significant level of variation in the time
dependent pressure distributions which is consistent with periodic vortex shedding.
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1.7.4 Wake Structure for a Cylinder Underneath a Free-Surface

The potential flow solution for bounded flow over a body clearly shows that the structure of the
flow is altered by the presence of the boundary and depends also upon the nature and proximity of
the boundary. The experimental results of Miyata ef al. (1990) and Sheridan ef al. (1997) for a
viscous, turbulent, three-dimensional flow over a cylinder beneath a nominally clean water-air
interface show that the wake structure depends not only on A/D but also on Re and Fr.
Additionally, it is also expected that a number of secondary factors, including the level of free-
stream turbulence and the aspect ratio of the cylindsr, can alse effect the structure of the wake.

Flow visualisation of relatively large diameter polystyrene beads by Miyata ef al. (1990) indicated
that the structure of the near wake varies significantly with A/D. At /D = 1.0 the flow
visualisation in Figure 1-46(a) shows the formation of a strong vortex structure very close to the
back of the cylinder, and it was reported that the time varying wake structure resembled Karmidn
shedding from a fully submerged cylinder. However, the length of the attached wake in Figure
1-46(a) appears to be significantly shorter than for a fully submerged cylinder at similar values of
Re. When the depth of the cylinder is reduced to A/} = 0.25 there is a distinct change in the wake
structure, as shown in Figure 1-46(b). The wake is cleatly angled downwards and the length of the
wake is much fonger than both the wake at /D = 1.0 and also the wake of a fully submerged
cylinder, A large vortex structure forms in the lower wake while the upper wake is refatively
disorganised and does not have a clear structure, Additionally, the flow visualisation suggests that
the free-surface is not flat, with the appearance of free-surface waves downstream of the cylinder.
At the simallest cyliader depth of 4#/D = 0.063 the wake is similar to the wake at /D = 0.25: the
lower shear layer has a distinct downward angle, there is a large vortex structure in the lower wake
and free-surface deformation is apparent immediately behind the cylinder. As A/D decreases from
1.0 to 0.063 the flow visualisation shows a rotation of the front stagnation point towards the free-

surface that is consistent with the changes in the pressure distribution discussed above.

The flow visualisation in Figure 1-46 shows that the structure of the wake varies with /D but the
different wake modes are not clearly defined. Additionally, the relatively large polystyrene beads,
which were 1mm in diameter or 0.6 % of the cylinder diameter, may have altered the flos.,
particularly at srnall values of A/D/,
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Figure 1-46 Flow visualisation of flow around a cylinder ungerncath a free-surface at a) /D = 1.0,
b) 0.15, ¢) 0.063 for Re =4.96 x 10° and Fr=0.34. Reproduced from Miyata e al. (1990).
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Qualitative PIV measurements by Sheridan ef al. (1995, 1997) at 0.22<Fr<0.97 showed that the
wake of a cylinder undemeath a free-surface exbibits a number of different states. The wake states
depend both on Fr and A/D and, as discussed in section 1.7.1, the variation of the wake with #/D
can also be cxpressed in terms an alternative Froude number, UXgh)'?. As the cylinder
approaches the: [ee-surface Sheridan ef al. (1997) observed a number of wake states that were
distinctly differsnt from the Karmén wake of a fully submerged cylinder. These states were
divided into twro basic classes depending upon the behaviour of the jet of high velocity fluid
moving over the top of the cylinder. For cylinder positions further from the free-surface and at
lower Froude numbers the jet tended 1o remain attached to the free-surface, but at smaller

submerge:se depths and higher Fr the jet separated from the free-surface.

(b)

Figure §-47 Instantaneous velocity and vorticity fietds for h/D =
Reproduced from Sheridan ef af. (1997).

(i ol e

0.40 at a) Fr =0.22, b) Fr=0.60.

The velocity and vorticity fields for two cases where the flow over the top of the cylinder remains
attached to the free-surface are shown in Figure 1-46, for a cylinder depth of #/D = 0.4 and two
different Froude numbers, Fr = 0.22 and 0.60. In both cases the wake fength is much fonger than
for a fully submerged cylinder and the lower shear layer has a downward angle. At the lower
Froude number of 0.22 the free-surface behind the cylinder is relatively flat and vorticity is not
generated due to free-surface curvature, At the higher Froude number of (.60, the flow over the
cylinder causes significant deformation of the free-surface resulting in the formation of free-surface
waves and the generation of vorticity at the free-surface. The velocity fields in Figure 1-47 clearly
show that in both cases the high-speed fluid remains attached to the free-surface, although the free-

surface waves at Fr= 0.60 cause local separation and subsequent re-attachment of the flow.
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Figure §-48 lnstantaneous velocity and ;oﬂicity fields at two different ‘t: Jiilustrating the
variability in the wake state at Fr = 0.6 an h/D = 0.31. The high velocity fluid above the cylinder forms
l(ll) 9:19 ;;-e&jet and b) a jet which is attached to the back of the cylinder. Reproduced from Sheridan ef al
Sheridan er al. (1997) found that the transition from a wake with high-speed flow attached to the
free-surface to a flow that separates from the free-surface is associated with either an increase in Fr
or & decrease in A/D. In Figure 1-48(a} the high-speed fluid separates from both the free-surface
and the cylinder immediately after passing through the relative narrow gap above the cylinder. The
separated free-jet forms a downward angle across the rear of the cylinder. As shown in Figure
1-48(b), for the same flow conditions the jet can also separate from the free-surface but remain
attached to the rear surface of the cylinder. The two wake states shown in Figure 1-48, at Fr = 0.6
and A/D = (.31 indicate that for these flow conditions the wake was metastable alternating between
the formation of a free-jet and a jet which is attached to the rear of the cylinder. Sheridan et al.
(1997) also observed a similar metastable wake at Fr = 0.6 and /D = 0.45. These wake modes
were also visualised by Hoyt & Sellin (2000) using a tracer liquid. Typically, the formation of the
free-jet occurs at lower values of Fr or cylinder positions that are further away from the surface.
The attachment of flow to the rear of the cylinder occurs when the modification of the wake by the
free-surface is greatest, ie. at the smallest values of A/D and large Fr. It is not immediately
apparent from the flow visualisations of Miyata ef of. (1990) close to the free-surface if the upper
shear layer separates from, or is attached to, the free-surface. However, Figure 1-46(b & ¢) does
show that, as for the wake states observed by Sheridan er al, (1997), the attached wake is relatively

long and the lower shear layer is angled downwards.

The wake states depend on the influence of the free-surface, which increased either by moving the
cylinder closer to the free-surface or by increasing Fr. Thus, the value of Fr affects the range of

WD over which a wake state occurs. However, neither the Froude number based on the cylinder’s
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diameter, or an alternative Froude number based on the cylinder’s depth, allowed the identification
of a critical value at which the wake transitioned between the two states. At a given Fr in a deep
flow the full extent of the free-surface region can be traversed by varying #/D. However, for a
cylinder which is immediately adjacent to the free-surface the wake cannot tend fowards the fully
submerged case without reducing the free-stream velocity to zero. Therefore, within a given
Reynolds number regime, it is most logical to classify the wake states in terms of their dependence
on A/D at a given Froude number.

Furthest away from the influence of the free-surface the flow visualisation and pressure
distributions of Miyata et ol. (1990) indicate that the wake exhibits periodic vortex shedding and is
similar to the wake of a fully submerged cylinder, however the properties of this wake state are not
well known. As the cylinder moves closer o the free-surface there is a large increase in the wake
length, as shown in Figure 1-47, and the high-speed flow over the top of the cylinder is attached to
the free-surface. As h/D is decreased further the jet of high-speed flow separates from the free-
surface forming a separated free-jet, as shown Figure 1-48(a). Finally, as shown Figure 1-48(b),
when the cylinder is closest to the free-surface the jet of fluid remains attached to the cylinder, In
all cases the close proximity of the frea-surface causes the lower shear fayer to have a distinct
downward angle.

1.7.5 Effect of Free-Surface Contamination

A free-surface is an interface between two different fluids, typically air and water, The large
difference in the relative densities of water and air results in a free-surface stress that is effectively
zero for a clean free-surface. However, as discussed by Scott (1982), if a surface-active
contaminant, or surfactant accumulates on the surface the shear stress and surface tension at the
boundary change accordingly. In general, surfactants act to reduce the surface tension, producing a
non-zero shear stress boundary condition. 1f we consider the first term on the right hand side of
equation §-18 it is evident that a non-zero shear at the boundary can result in the generation of free-
surface vorticity, as discussed by Warncke et ol. (1996).

The presence of an obstruction or blockage at or immediately undemeath the surface of a free-
stream promotes the accumulation of surfactant, generating local boundary conditions that are quite
different from the regions where the surface is relatively uncontaminated, Such situations are
found commonly in nature, for example a semi-submerged tree branch in a natural stream or the
diversion of flow around a rock. A similar effect is generated in a water channel when the flow is
obstructed by the presence of an experimental model near the free-surface, or the diversion of the
flow at the end of the working section. Thus, unless extreme care is taken to maintain a clean
surface a build up of surfactant may occur. The surfactant that accumulates behind an obstruction
moves at a reduced velocity relative to the free-stream flow, resulting in the formation of a
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':;:: boundary layer underneath the non-zero shear boundary. The accumulation of surfactant at the

surface of a free-stream flow also results in the formation of a phenomenon known as the Reynolds

[:r a Ridge at the leading edge of the surface contamination. A schematic detailing the general features

) Ity of the flow near a Reynolds ridge is shown in Figure 1-49. As discussed by Scott {1982) the

i"e“ elevated ridge of fluid immediately upstream of the surfactant is attributed to the retardation of
nce

flow approaching the non-zero shear stress boundary and the corresponding surface tension
gradient. The curvature of the free-surface at the ridge results in additional generation of free-
surface vorticity. Detailed measurements of the Reynolds ridge by Scoit (1982) and Wamcke et al.
(1996) have shown that the curvature of the free-surface increases with the free-stream velocity.
The presence of a Reynolds ridge is a clear indication of surface contamination and, as shawn by
Scott {1982}, the Reynolds ridge can occur at relatively iow levels of surface contamination.

clean surface surfactant monolayer
\YJ
y = 9 “‘o..
m smﬂow 8 ...../-.-.“--vvcn
x laminar boundary layer

Fipure 1-49 Schematic of flow near a Reynolds ridge. Reproduced from Warncke ef el (1296)

When the shear stress is zero at the surface vortex filaments must connect normally to the free-
surface, however the non-zero shear generated by free-surface contamination alters the way in
which vorticity interacts with the free-surface. In their study of the interaction between spatiaily
modulated vortex pairs and a free-surface Willert & Gharib (1994, 1997) found that the for both the
contaminated and clean free-surface the surface normal vorticity of the vortex tube formed local
regions of connection with the free-surface. However, the shear forces cavsed by a relatively small
amount of surface contamination appeared to inhibit the connection process and resulted in an
increase in the formation of secondary vorticity. The study of flow around a surface-piercing
cylinder by Warncke-Lang & Gharib (1998) also found that the siructure of the flow immediately
under the free-surface was significantly altered by the presence of free-surface contamination. The

main factor contributing to these changes was an increase in the redirection of surface-normal
vorticity to surface-paralle] vorticity due to a non-zero surface tension gradient.
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1.8 SCOPE OF THESIS

The literature reviewed in the previous sections raises a number of important questions related to
the current investigation of the wake states of an oscillating cylinder. However, some of the
questions raised by the literature are difficult issues that extended well beyond the case of an
oscillating cylinder. One of the aspects considered in the current investigation is the nature of the
transition between different wake states of an oscillating cylinder. The question that underlies this
work, and the large number of studies preceding it, is; why does a transition between two different
wake states oceur at a particular peint in time and parameter space. An analogous and similarly
difficult question is; for given flow conditions, what determines the stability of a particular wake
state. A transition between two different states is not unique to the case of an osciliating cylinder
and in fact transitions are observed in many different fields of science. For example, a particle may
undergo a transition between different energy levels, or the flow along a wall may undergo a
transition from laminar to turbulent flow. This investigation does rot seek to answer the ultimate
question as to why a transition between different wake states ocours, rather it seeks to determine
the nature of the transitions and the properties of the wake states either side of the transition. In the
remainder of this section the specific questions arising from the literature review that form the basis
for this research program will be discussed.

As the forcing frequency of the oscillating cylinder passes through f/f, = 1 a2 number of
investigations have independently observed changes in the lift force on the cylinder or changes in
the phase-referenced structure of the near wake, as discussed in section 1.4. A link between the
wake mode and forces on the cylinder was established numerically by Blackburn & Henderson
{1999), However, there were some differences in the medes of vortex shedding observed by
Blackburn & Henderson and the shedding modes observed experimentatly. These differences may
_ be attributably to their simulation being 2-dimensiona!, and also at low Reynolds number and
oscillation amplitude. Using simultaneous force and flow field measurements the present
investigation aims to establish a conclusive experimental link between the jump in the lift force and
the changes in the phase-reference structure of the near wake. The establishment of this link will
allow the identification of at least two wake states, where changes in the lift force and wake
structure correspond to a transition between different wake states. A major component of this
investigation is to determine the properties of these wake states, for example the values of the
phase and amplitude of the vortex lift and drag forces and their variation with fJ/f, is currently
unknown. An interesting aspect of the vortex forces, discussed in section 1.3.3, is their direct
relationship with the structure of the wake, in particular the rate of change of the vorticity field.

This investigation will seek io qualitatively link the changes in the vortex lift and drag forces to
changes in the mode and phase of vortex shedding.
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As discussed in section 1.4.] the jump in the lift forces is observed over a wide range of flow
conditions, notably a range of Re and 4/D. However, the occurrence and nature of systematic
changes in the total and vortex lift and drag forces as Re and A/D are varied are not known.
Additionally, it is not known how changes in Re and 4/D affect the structure of the near wake.
Intuitively, it is expected that increasing the oscillation amplitude will increase the length of the
attached wake, but it is not known if this causes changes in the mode of vortex shedding
Specifically, it is not clear if changes in 4/D and Re result in the 2P mode of shedding being

observed in some cases but not in others.

An important aspect of this investigation is the relationship between the forced and freely
oscillating cylinders discussed in section 1.6. The methodology of forced oscillation experiments
is typically to use forced oscillations to simply the study of flow-induced motion. However, a link
between the forced oscillation wake states and the free response branches is yet to be established.
Moreover, it is not known how well the forced oscillations model the motion of the freely
oscillating cylinder or if the results of the forced oscillations ¢an be used to predict flow-induced
motion. The properties of the forced wake states, determined in the current investigation, will be
compared with the experimental results for an elastically mounted cylinder, in particular those of
Govardhan & Williamson (2000).

The relationship betwesn the forces on the cylinder and the structure of the near wake will also be
considered for a stationary cylinder beneath a free-surface, As discussed in section 1.7 a number of
previous investigations have observed a suppression of vortex shedding as the cylinder position
approaches the free-surface. Sheridan et al. (1997) found that the wake exhibits a number of
different modes, depending primarily on Fr and A/D and Miyata ef al. (1990) measured changes in
the forces on the cylinder as A/D decreased. However, the nature of the relationship between the
structure of the near wake and the forces on the cylinder has not been established. The current
investigation will seek to determine this relationship using simultaneous force and flow field
measurements. There are a number of additional issues that will also be considered in this work.
The investigation by Sheridan ef ol (1997) was performed at high Froude numbers where
significant surface deformation occurred. It is not known if the same or similar wake states exist at
lower Fr where free-surface deformation is effectively eliminated. Additionally, very little is
known about the structure of the wake for cylinder positions where periodic vortex shedding occurs
but the forces on the cylinder are modified by presence of the surface.
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2 EXPERIMENTAL METHOD

In this section the experimental facilities and techniques used to obtain the results will be
described. Additionally the post processing techniques and calculations that were used to evaluate
the data will also be cutlined.

2.1 FLOW SYSTEM

The experiments were performed in a free surface recirculating water channel at the Lehigh
University fluid mechanics laboratories. The plexiglass working section had a width of 914 mm,
depth 609 mm and was 4928 mm long. Upstream of the working section the flow passed through a
2:1 contraction followed by a Nomex® honeycomb and a fine wire screen, in combination these
components act to straighten the flow and reduce the free-stream turbulence level to less than 1%.
An axial flow pump, with an electronic controller was used to obtain flow velocities in the working
section of between 0.056 and 0.180 m/s.

The free-stream velocity,, U s.. was evaluated using two different methods: the average velocity of a
mutually buoyant body through the working section and measurements of the Strouhal shedding
frequency from a circular cylinder. The fisst method, employing the mutually buoyant body had
previously been used in this water channel to measure U g at lower flow velocities. However, for
the flow velocities used in these experiments this method proved unreliable and for the majority of
experiments U, was determined by measuring the fluctuating lift force on the cylinder and
calculating the Sirouhal frequency. The free-stream velocity was then evaluated by utilising the
relationship between the Strouhal number and the Reynolds number which is supported by a large
body of experimenta) data, in particular the careful experiments of Norberg (1994). Over the range
of Reynolds numbers studied, the Strouhal number has been found to vary only slightly with Re,
between St = 0.200 to 0.211, and Up.. was calculated afler only a small number of iterations of Re
and U, The aspect ratio of the cylinder and the dimensions of the end plates were also
considered in this calculation. The uncertainty in the values of Ug. is of particular interest as it
systematically affects the force and energy coefficients as Upe® was used in the normalisation of
these properties. The frequency resolution of the lift specira causes an uncertainty in Ug,, of less
than 1%, however there was an additional uncertainty due to the nature of the Strouhal peak. At
Reynolds numbers of around 2000 the long formation length of the wake resulted in a Strouhal
peak that was relatively broad banded, increasing the uncertainty in Us. to 3%. However, at
higher Reynolds numbers above 4000, the Strouhal peak was well defined and the uncertainty in
Ufe was around 1%.

L
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2.2 CYLINDER PROPERTIES
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Figure 2-1 Schematic showing cylinder and oscillation system in working section.

The cylinder is mounted horizontally such that its spanwise axis is parallel to the free-surface and
perpendicular to the free-stream as shown in the schematic of the experimental set-up in Figure 2-1.
Two different cylinders, 25.4 mm and 50.8 mm in diameter were used to obtain 2 Reynolds number
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range of 2300 - 9100. The smaller 25.4 mm cylinder was used at Re = 2100-2400, while the 50.8
mm cylinder was used primarily for experiments at Re = 4400 and 9100. The 50.8 mm cylinder
was also used for a set of “overlap” experiments at Re = 2850, giving results which were very
similar to thrse obtained at Re = 2100-2400 with the 25.4 mm cylinder. The 25.4 mm cylinder,
shown in Figure 2-2(a), was 317.5 ram long, giving an aspect ratio of 12.5. A transparent laser
window was incorporated into the cylinder to allow the laser sheet to iliuminated the flow bind the
cylinder, while the remainder of the cylinder was filled with air and the outer surface was matt
black. To minimise the deflection of the laser sheet at the cylinder, the laser window was filled
with distilled water and the clear plexiglass wall were very thin. After passing through the laser
window the laser widow the intensity of the laser sheet was reduced and while the PIV particles

were still illuminated, the percentage of bad veciors increased,

Figure 2-2 Detailed schematic of a) the 25.4 mm cylinder, b) the 50.8 mm cylinder shell which
was designed to fii o~ er the 25.4 mm cylinder and ¢} the assembled 50.8 mm cylinder.

The larger 50.8 mm cylinder, shown in Figure 2-2(b), was designed to fit over the smaller 25.4 mm
cylinder, shown in Figure 2-2(a), allowing easy installation without the need to re-instrument the
strain gauge system. The assembled 50.8 mm cylinder, shown in Figure 2-2(c) had a length of
384.5mm, an aspect ratio of 7.6 and was also fitted with a water-filled laser window. To reduce
end effects, both cylinders were fitted with end piates that osciliated with the cylinder. The end
plates were 368 mm in diameter and 6.4 mm thick with a 30° outward bevel. There was a small
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gap of 1-2 mm between the free end of the cylinder its end plate, while adjacent to the strain gauges
the cylinder fits through the end plate.

The natusal structural resonance frequencies of both cylinders was significantly higher then the
maximum frequency of forced oscillation. The 25.4 mm cylinder had a mass of 90.2 g and a
resonance frequency of 20.0 Hz, which was well above the maximum frequency of forced
oscillation of 1.2 Hz. The 50.8 mm cylinder was much heavier, weighing 581.9 g, resulting in a
structural resonance frequency of 6.3 Hz that is almast six times the maximum forcing frequency of
1.1 Hz. However, when the 50.8 mm cylinder was forced at frequencies close to 1.1 Hz,
cotresponding to the flow conditions at Re = 9100, small levels of additional vibrations at the
frequency of oscillation were observed. At the lower Reynolds nomber of 4400 the frequency of
oscillation was lower and the motion of the cylinder appeared to be purely sinusoidal.

2.3 OSCILLATION PROPERTIES

The cylinder was oscillated transverse to the free stream such that its vertical motion was given by
KO =4 sin2nfed) Zn

where 4 and f; are the amplitude and frequency of oscillation respectively. To minimise the initial
impulsive forces on the system, the oscillations were always started from the lowest point in the
cylinder’s displacement cycle where the instantaneous velocity is zero. The standard experimental
procedure was to vary the frequency of oscillation about £/, = 1 (within the range 0.5<///,<1.90)
while maintaining a constant oscillation amplitude and free-stream velocity. A detailed
investigation of the frequency dependence of the wake was undertaken at 4/D = 0.5 and a Reynolds
number of approximately 2300. The investigation was then expanded to consider the frequency

dependence of the wake at a range of amplitudes (4/D = 0.25 - 0.6) and Reynolds numbers (Re =
2100 - 9100).

The motion of the cylinder was driven by a high resolution stepper motor, Parker AX57-102
controlled by a Parker PC-23 indexer, The motion profiles were generated by a Lehigh program,
SFG, Magness (1990) which defines the motor displacement at discrete time intervals. These
profiles were edited to incorporate TTL triggering signals to the camera and bias mirror, In this
way the PIV images were captured at prescribed points in the oscillation cycle. The motien
profiles was executed by another Lehigh program ALT, Magness & Troiano (19%1). The number
of signals in the profile, including the TTL commands was limited to 475 by the ALT program and
the minium time interval between stepper motor commands was 0.006 seconds. These two

restrictions are the limiting factors determining the resolution of the cylinders motion,
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24 FORCE MEASUREMENT SYSTEM

The forces on the cylinder were measured using a strain gauge system, Tomlinson (1996). The
strain gauges were mounted on a '%4” sting, shown in Figure 23, was machined out of a brass rod
with strain gauges located on the surfaces of the square mid-section. One end of the strain gauge

sting was inserted into the cylinder with an interference fit, while the other end was clamped into

the external support system Figure 2-4.

]
e
Figure 2-3 Isometric drawing of the strain gauge sting.
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Figure 2-4 Drawing of the strain gauge sting, the sting holder and the attachment of the sting to
the cylinder.

The strain gauges were configured into twe full Wheatstone bridges, i.e. two steain gauges on each

of the four faces, and underwent an extensive water preofing procedure prior to installation. The
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average strain on the horizontal and vertical faces is directly related to the total moment generated
by the lift and drag forces respectively and the strain gauges measure the span averaged forces on
the cylinder. The signals from the strain gauges were amplified (Hottinger Baldwin Messtechnik
GMBH; CLIP Electronic AE-301-56) and filtered (Kronhn-Hite 3750) using 4 Yow-pass filter at a
cut off frequency of 8 Hz and a gain of 20 dB. The signals were acquired ysing an A/D board and
recorded using the ALT program, Magness & Troiano (1991). The majority of the force data
presented was calculated using 4096 data points (from a total of 5000) acquired at a sampling
period of 0,08 seconds, giving a Nyquist frequency of 6.25 Hz.

The experimental set-up had two different time based systems: the computer controiling the stepper
motor, which sends signals at discrete time intervais to the stepper motor and the image acquisition
system and the A-D board which acquires force measurements at discrete time intervals. Our
interest in the phase ol the Jift and drag forces with respect to the cylinders displacement requires
that these two times sysiems remains synchrenised to a tiny percentage of ar oscillation period,
over at least 400 oscillations. However, for an A-D board sampling period of 0.08 seconds there
was an error in the sarpling rew of £ 0.00002 seconds. While his is appears {0 be a very small
error, over 5000 acquisitics the error accumulates to a unacceptable percentage of an oscillation
cycle (up to 10%) and resuits in a phase difference between the motion of the cylinder controlled
by the stepper motor computer and the corresponding forces on the cylinder acquired through the
A-D board. This error does not affect the phase accuracy of the image acquisition, however it
means that we are unable to use the input to the stepper motor to relate the ift and drag forces to
the displacemcot of the cylinder. This problem was overcome by directly measuring the
displacement of the cylinder using a linear transducer, The displacement signal was conditioned
and acquired through the A-D board in exacily the same way as the lift and drag force signals, thus
eliminating any relative phase shift imparted by the filters.

The output of the strain gauges was calibrated in air by hanging static weights on ine cylinder to
generate a kncwn moment at the centre of the strain gauges. The voltage produced by the moment
of the point force is then related to the moment generated by a evenly distributed vertical force
acting along the length of the cylinder producing a relationship between the voltage outputs of the
lift strain gauges and a span averaged lift fluid force. The horizontal drag axis was calibrated by
rotating the cylinder 90° anti-clockwise. As expected the relationship between the span-averaged
forces on the cylinder and the output voltages were highly linear. The calibration also aliowed us
to align the axis to within £5°. The non-zero vertical buoyancy force on the cylinder was
eliminated by off setting or zeroing the vertical force. A: » part of the experimental procedure both
the 1ift and drag forces on the cylinder under zero flow conditions were offset to zern at the
beginning of, and at regular intervals during, each set of experiments. The regular offsetting of the

strain gauge voltages was required as the mean output of the gauges were subject to significant
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drift, possibly due to temperature effects. The amplitude of fluctuating forces on a cylinder

oscillating in stationary fluid were always consisten: with the results of Bearman ef ol. (1985) and
were not effected by the drift in the mean values.

2.¥ IMAGE MEASUREMENT SYSTEM

A two-dimensional cross-section of the velocity field around the cylinder was measvred using a
laser-scanning version of high-image density PIV, Rockwell e af (193). Extensive reviews of the
P1V techniques used in these experiments are given by Adrian (1986, 1991), Rockwell ef af (1992,
1993) and Rockwell & Lin (1993). The flow field was illuminated using a continuous Argon-ion
laser (Coherent Innova Series) with a maximum power output 30 W. However, the camera settings
were optimised for a power output of 6-10 W, which was the maximum laser power that could be
mainiained throughout the duration of an experiment. As shown in Figure 2-1, the laser beam was
directed along the length of the channel into a flat surface steering mirror, passing through a
collimating lens pair befor: tuming 90° onto a rotating mirror. The rotating inircor (Lincoln Laser
Co.) had 48 facets and was driven by a variable frequency motor (Lincoln Laser Co. VFC-2) where
the motors frequency was measured using a high-resolution frequency count=r (Philips PM6672).
The rotating mitror produced a scanning laser beam that sweeps across the flow field at a scanning
frequency that is equal to the number of facets muitiplied by the rotational frequency of the mirror,
The collimating optics generated a laser sheet thickness of between 1-2 mm and for PIV
measurements laser scanning frequencies of between 290 and 620 Hz were used. The high
frequency of the laser sheet means that the structure of the near wake and the mode of vortex
shedding can be ebserved in real time during the experiment. The PIV images were recorded on
high resolution Kodak TMAX 400 35 mm film using a Canon EOS-1 N RS camera fitted with a
100 mm Canon macro lens. The flow was seeded with 14pm silver-coated particles {Conduet-O-
Fil particles, Potters Industries Inc.) which have a specific gravity of slightly less than 1 and for the
free-stream velocities used, the particle “drop out rate” was low enough to obtain over an hour of
high quality PIV data.

Prior to eacn set of experiments the image-bascd parameters were determined by running a set of
test experiments to determine the extreme flow conditions. Based on these experiments the laser
scaaning frequency, camera shutter speed, camera aperture and bias velocity were selected to
optimise the PIV images over the range of expected flow conditions.

The scanning laser illuminates the flow field a number of times during each film exposure,
resulting in multiply exposed images. In order to measure the flow velocity the separation of the
particle in each exposure must be large enough to be resolved, however if the separation is too
large the motion of the particle during the exposure can not be accurately represented by a single

velocity vector. The optimum particle spacing depends upon the resolution of the film and
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resolution at which the image is digitised and was found to be approximately 0.2 mm of film. The
laser scanning frequency was set so that where possible the optimum particle spacing was obtained
in the flow regions of greatest intcrest, while maintairing 2 maximum particle spacing of less then
1-1.2 mm of film. Once the scanning frequency was optimised the shutter speed of the camera was
selected to al.low 4-6 particle exposures per image. For a given shutter speed the intensity of each
image was a function of the laser power, the camera aperture and the seeding density of the
particles in the flow. Shutter speeds of between 1/30 and 1/100, with lens apertures of between f =
4.0 and 7.1 were used to acquire the PIV data,

To resolve the ambiguity of the flow direction in the recirculation regions the images were shot
through a rotating bias mirror. The bias mirror imparts an additional constant velocity to the flow
field that is then subtracted from the velocity fields during post-processing. The bias mirror rotates
at a constant velocity during the exposure and the center of the image exposure coincides with
point at which the surface of the mirror is at 45° to the camera. As discussed by Raffel and
Kompeanhans (1995) the rotation of the mirror during the exposure generates distartion-induced
errors, however as the movement of the mirror was less then 1° these errors were considered
negligible and were not corrected for. The motion of the bias mirror was driven by a galvancmetric
scanner (General Scanning Inc. CX-660) and the bias velocity was generated using a triangular
ramp displacement function of known period. The bias velocity was constant for each set of
experiments and was evaluated using biased images of stationary fluid. The bias velocity was
selected to be greater then the highest reverse flow velocity and for the flow conditions studied.
bias velocities of between 0.085 and 0.155 m/s were required.

The number of flow field images per oscillation was limited by the framing rate of the camera. In
general, it was possible to obtain 8 images per oscillation although in some cases the image
acquisition was limited to 6 images per oscillation. Additionally in some situations only one image
was taken per cycle to maximise the time span of the data set which was limited by the number of
shots per roll of film. In all cases, the timing of image acquisition was based on the cylinder
position within the displacement cycle,

2.6 EXPERIMENTAL PROCEDURE

Two different types of experiments were undertaken. The majority of the experiments were on a
fully submerged cylinder oscillating transverse to the flow however an investigation of the flow
over a stationary cylinder immediately under a free-surface was also undertaken,

2.6.1 Submerged Oscillating Cylinder

Each set of expeciments on an oscillating cylinder involved the oscillation of the cylinder over a
range of frequencies at fixed values of A/D and Re, although in some cases a2 number of values of
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A/D were considered. At the start of each set of experiments the flow was “seeded” with particles
and the channel was run at high velocity to promote the distribution of the particies. When the
particles were evenly distributed the channel flow was turmed off. Following a settling period the
output voliages of the strain gauges were offset to zero and the bias velocity was measured using
the stationary flow conditions. Unbiased images of a ruler next to the cylinder were also taken to
confirm the spatial calibration of the PIV images. The length of time that the flow was stationary
was minimised to reduce the “drop out™ of the PIV seeding particles. When the ci:znnel flow was
restarted the pump frequency was adjusted to obtain a free-stream velocity witliin the Reynolds
number regime of interest and the velocity remained constant for the duration of the experiment,
The frequency of the pump was not used to calibrate the free-stream velocity as the volume of
water in the channel, and therefore the volume flow raie varied due to evapération and other
factors. Prior ¢o the start of the experiments force data from a fully submerged stationary cylinder
was acquired to determine the Strouhal shedding frequency that was subsequently used in
conjunction with the data of Norberg (1994) to accurately determine the free-stream velocity. The
lift and drag on a submerged stationary cylinder were also measured during and at the conclusion
of the experimenis. As well as increasing the accuracy of the Strouhal frequency calculations,
these additional measurements were also used to determine if there was significant drift in the

mean values of the lift and drag forces.

For each value of [/f, the cylinder started oscillating from rest at t = 0, corresponding to the start of
the force measurements. lnitial transients were recorded in the force data and for most frequencies
a steady state was reached after only 3-4 oscillations, Once the cylinder was set oscillating at a
certain frequency and amplitude, these parameters were fixed. Following each experiment the
cylinder remained stationary in the free stream for a time equivalent to more then 500 Karman
cycles. This procedure i3 in contrast with a number of other experiments, where the frequency was

varied in a continuous fashion while the cylinder continued to oscillate.

2.6.2 Stationary Cytinder Underneath a Free-Surface

The set-up and calibration procedures for the experiments on the stationary cylinder in close
proximity to a free-surface were similar to those described in seciion 2.6.1 for the fully submerged
osciliating cylinder experiments. During the set-up procedures the cylinder is a lorg way below the
free-surface and is effectively fully submerged. At the beginuing of the experiments the cylinder is
raised to the free-surface such that for low free-stream velocities, and therefore low Froude
numbers, the top of the cylinder just intersects with the free-surface. This vertical position of the
cylinder is then set as a cylinder depth, 4 = 0. The cylinder depth was then varied systematically te
determine the effect of varying /D on the structure of the near wake and the forces on the cylinder.
After the cylinder was moved to a new position there was a delay of approximately 5 minutes
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before measurements were taken 1o allow the disturbance to die out and for ihe 52w wake mode to
become established. As the cylinder was stationary it was not possible to acquire the PIV images at
predeaerminéd phase referenced positions and the images were acquired at a constant framing rate.

2.7 FORCE POST-PROCESSING

After the force and displacement data were acquired they required extensive processing. The
procedures used are described below.

The oscillation of the cylinder results in an additional force which is due to the inertia of the
cylinders mass and which must be subtracted before the forces on the cylinder can be compared
with the results of previous experiments. The moment generated at the strain gauges by the
oscillation of the cylinder’s mass depends upon the distribution of mass along the cylinder and is

given by:
1A
My (O=alt). fm(2).2. &z 2-2)
¢
L
M e (1) = A0 sin(01 + ) Im,(z) z.de (2-3)
0

where L is the spanwise distance from the strain gauges to the end of the cylinder and m{2) is the
mass per unit fength as a function of spanwise position.

The mass inertia force acts in-line and in-phase with the acceleration of the ¢ylinder and therefore
for transverse cylinder oscillations acts purely in the lift direction making no contribution to the
drag force. The voltages from the strain gauges were converted first to a total moment using the
calibration facter obtain from a point foad. The moment due to the inertia of the cylinder’s mass
was then subtracted from the lift moment and the span averaged lift and drag forces were then
calculated from the remaining total moments.

The lift and drag forces contained significant levels of high frequency noise and were bandpass
filtered in the frequency domain. The lower limit of the band filter was centred at 0.05 Hz to
eliminate a very low frequency wave that contaminated the signal. The upper limit for the band
filter was typically 2-3 times the frequencies of interest and the bandwidth of the smoothing
function was 0.01 Hz wide. The linear transducer that was used to measure the displacement of the
cylinder was not designed for accurate high repetition displacement measurements and the quality
of the signal was such that it could not be used directly in correlation calculations. The
displacement function of the cylinder was already known from the input to the stepper motor, and
as discassed in section 2.4 the reason the displacement was measured directly is the discrepancy in
the sampling period of the A-D board. Therefore the primary reason for measuring the
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displacement signal directly was to determine an accorate value for the frequency of oscillation,
which is consistent with the sampling period of the A-D board, in order to relate the jift and drag
forces to the cylinders motion. Despite the fact that the displacement signal was relatively noisy,
the frequency of oscillation was calculated to within 0.0001% by performing an iterative
correlation of the displacement signal with a sinusoidal signal of variable period. Once the
frequency of oscillation was known the displacement of the cylinder as a function of time was

calculated using equation 2-1 and the position of the cylinderats =0,

As the cylinder is installed into the rig the strain gauges axes were aligned to within +5°. However,
a misalignment of up to 5° results in significant leakage of the larger amplitude lift force into the
drag force and the drag becomes clearly non-symmetric. By checking that the PIV flow fields were
highly symmetric we were able to confirm that the non-symmetry of the drag was due to the
misalignment of the axes. The misalignment of the axes was calculated by maximising the
correlation coefficients for lift correlated with sin(2nf; /) and drag correlated with sin(dnf, /). The
misalignment of the 25.4 mm cylinder was —4.2°, while the 50.8 mm cylinder was misaligned by
2.2°. The lift and drag forces were subsequently corrected for the misalignment of the cylinder

resulting in a significant improvement in the symmetry of the smaller amplitude drag force.

2.8 IMAGE POST-PROCESSING

The primary output from PIV measurements is the velocity field. The majority of our flow fields

are presented in terms of vorticity: w. = % -% . which was calculated directly from the discrete

velocity field using a 9 point weighted average. The flow diagram in Figure 2-5 gives an overview
of the steps required to generate a final vorticity field from a film based PIV image of the flow
field. A number of the steps shown in Figure 2-5 are discussed in more detail below.

The TMAX film negatives containing the flow field images were developed using standard black
and white film processing techniques. The resolution of the TMAX film is very high, 300
lines/mm, however the image was digitised prior to processing and the final resolution of the image
was limited by the film-scanning device. The images were digitised using two different Nikon
scanners: at Lehigh a Nikon LS-3510 with a resolution of 125 pixels/mm was used, while at

Monash the films were scanned at 106 pixels/mm using a Nikon CoolScan I1.
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Figure 2-5 Flow diagram showing the standard processing procedure to produce a vorticity field from
a PIV film image.

The velocity fields were calculated using a Lehigh program, PIV3, Seke (1993), which employed a
single-frame cross correlation technique. In all cases an initial interrogation window of 90x90
pixels was used which was then converted within PIV3 to an FFT window size of 128 (i.e. 27). A

cross-correction was performed between this window and av.other window displaced 10 pixels in
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the free-stream, or x direction. In order to satisfy the Nyquist sampling criterion an overlap ratio of
0.5 was used. Additionally, a centroid method of peak detection was employed with a peak
validation factor of 0.3. The resulting velocity fields contained 3500-5220 vectors and generally
there were only a small number of bad vectors (< 20) in the regions of flow away from the
reflections generated by cylinder’s body or the free-surface. The spatial resolution was between Ax
= Ay = 1.065 - 2.318 mm for the 25.4 mm cylinder, while for the 50.4 mm cylinder the resolution
was Ar = Ay = 3.090 mm,

The phase averaged velocity and vorticity fields were catsulated to examine the repeatable features
of the flow field. When the cylinder was fully submerged the phase reference wake was symmetric
about the horizontal axis, i.e. the wake at the top of the oscillation is the mirror image of the wake
at the bottom of the oscillation. Therefore, by inverting the images 180° from the phase point of
interest we obtained two images per oscitlation for phase averaging. The non-phase-averaged or
mean velocity and vorticity fields were also calculated for both the oscillating and stationary
cylinders. The mean fields for the oscillating cylinder were calculated in the same way as for the
stationary cylinder, with the instantaneous position of the cylinder changing relative to the fixed
reference frame of the mean field. As the PIV data was recorded on film, care must be taken to
align the velocity fields before averaging which was done using the centre of the cylinder as the
reference point. The displacement of the osciliating cylinder from the centre-line of the wake was
also needed to align each image. Ir all cases where the wake was periodic the average fields were

calculated using images representing one or more complete cycles.

2.9 CALCULATION OF FORCE PROPERTIES

The mean and fluctuating lift and drag forces were calculated from the filtered time signals. In
general these propetties were calculated from 4096 data points or 160-320 cylinder oscillations.
When the lift and drag signals are relatively sinusoidal the average peak amplitude of the
fluctuating forces was calculated by multiplying the standard deviation by V2, and unless stated the
amplitude of the fluctuating forces are the average peak value, not the standard deviation.

When the cylinder was forced to oscillate transverse to the flow, for all cases studied the wake was
“Jocked on” 1o the cylinder's motion and the most energetic frequency in the lift force was f; and
the comelation of the lift signal with a sinusoid was greater then 0.6. Thus, the lift force can be

approximated by a sinusoidal function of the form,
Lifi(7) = (BplPDL) Cosin(2nf. £ + ) (2-49)

where C; is the amplitude of the fluctuating lift coefficient and ¢y, is the phase with respect to the
cylinder’s displacement 3(r). Both C; and ¢, were calculated in the time domain vsing data points

from over 400 cylinder oscillations. The Jift phase, ¢y, was calculated using the cross correlation
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of the cylinder’s lift and displacement, where ¢y is represented by the location of the first maxima
in the correlation function. The cross correlation function of the lift and displacement signals is
essentially sinusoidal, and the resolution of ¢y was increased by fitting the correlation function in
the vicinity of the first maxima with a sinusoidal function. The phase lag of the sinusoid fitted to
the comelation function was iterated to within 0.00{ seconds, which for 0.7 Hz lift signal is
equivalent to an uncertainty in ¢ of £0.5%

The dominant frequency of the drag force is 2f,, therefore to relate the phase of the drag to the
displacement of the cylinder we approximate the general form of the drag force as:

Drag(f) = (YspU'DL) Co sin[2Q2nfe £ + Yol + Comeen 2-3)

where Cp is the amplitude of the fluctuating drag coefficient, Cp me.n is the mean value of the drag
coefficient and ¢, is the phase of the drag with respect to the cylinder’s displacement y{r). The
drag phase was determined by first calculating the cross comelation of the drag signal with the
square of the displacement signal. The phase of the drag force with respect to the cylinder’s
displacement was calculated by finding the time lag of the first maxima in the correlation function
and relating this to the displacement period (1// not 1/2f)). Using this definition ¢4, only has
phiysical significance over a range of 180°. The drag force tends to be less sinusoidal than the lift
force, however in all cases the values of .., presented were calculated from drag traces whose
correlation coefficient with a sinusoidal signal is greater then 0.6. This approach allowed us to
calculate values of dur., for all cases except A/D = 0.25 at Re = 4400.

The cylinders vertical motion results in the transfer of energy between the cylinder and the fluid.
The energy transferred between the fluid and the cylinder per cycle is defined as:

T
E= jja Liftt)) 4t (2-6)
]

where  y=2nf, Acos(2rf 1)
and the Iift force can be represented by equation 2-4: Lift(r) = (VspUPDL) Cysin(2nf,t + i}
Therefore when the lift force is sinusoidal the normalised Energy transfer, C is approximated by
Cy =nC, £sinldy,) 2-1
The energy transfer from the fluid to the cylinder is positive when 0°<d;;<180°, otherwise the
energy transfer is negative, i.e. from the cylinder to the fluid. The oscillation of an elastically

mounted cylinder requires positive energy transfer. However, a cylinder forced to oscillate is not

subject to this constraint and al! values of ¢y; are physically possible,




- ——

If the lift co-efficient is re-written in terms of its in-phase and out-of-phase components, we see

that the enesgy transfer, equation 2-7 is proportional to the out-of-phase component of the lift force:
Cy(f) = C,sin(2nfor + dun)

= [Creos(Pup)) sin@afs) + [C,sinfys)] cos(2nfer)
As discussed in section 1.3.3 the total Iift force, Cy(f) can be expressed in terms of Cpyomedd), the

lift force due to the vorticity field and C. .(#), the contribution to the lift force from the apparent

mass. For convenience we reproduce equation 1-8;
él. (t) = C-'Lvorru (t) + ém (’)

In a significant proportion of the previcus literature the vortex lift force has not been considered
and the total lift force is referred to simply as the “lift force”, In this document the term *“total lift
force™ rather than “Jift force™ will be used in cases where the vortex lift force has been evaluated
and discussed. When the cylinder oscillates transverse to the flow C .. is in-phase with the
oscillation of the cylinder and is given by:

Fo()
Lan(?) 1pl’LD

(2’8)
= 21t33f 2[—-—'{ ]2 -—Sil'l(ﬁ)f)
@ f D

(]

where St, is the Strouhal number of the stationary cylinder. The normalized vortex lift force
CL vorex(t), Was calculated by subtracting Cpam(t) from Cy(t), the total lift force co-efficient and as
discussed in section 1.3.3, the vortex lift force can be expressed in the same way as the total lift
force in (2-4):

Ct vorrad(1) = Cr vorrex SIN2TL 8+ Gt vorser) 2-9
— Chruone
¥ . h CL 4’1“
G (oul-g‘l—phase) i
C L wnelout-cl-phase} } ~

| o
e Gy g4 Cy (inphase) —»! \cm
——— Gy o (IN-phase)————

Figure 2-6 Vector diagram showing the relationship between Cy(f) and C yoree(9)

The vectorial relationship between the total lift force and the vortex lift force is shown in

Figure 2.6.
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When the forces and the cylinder’s displaczment were plotted on the same axis it was obvious that
for some frequencies of oscillation there were significant variations in the phase and amplitude of
the forces on the cylinder. These changes were quantified by calculating the instantaneous phase
and amplitude of both the lift and drag forces as a function of time. The insiantaneous phaze of the
lift force was calculated by correlating a small segment of the lift trace with the sinusoidal
displacement function. Similarly to find the instantaneous phase of the drag force a smail segment
of the drag force was correlated with the squere of the displacement function. Typically the lengtk
of the force segments corresponded to three cylinder oscillations and the resulting instantaneous
phase vsas taken at the centre of the segment. The instantaneous amplitude of the fluctuating forces
was calculated using the peak vaiues over a small segment of the force traces, where the segment
length used was generally shorter than two oscillation cycles.

2.10 COMPUTER PROGRAMS

A number of programs were writien to supplement commercial packages and existing Lehigh
software, A brief summary of the programs is out!ined below.

Table 2-1 Summary of computer programs

[ TROGRAM FUNCTION

Experimental and initial Processing

ModPro.as Given: number of images, delay times and stepper motor displacement
profile

Calculates and inserts bias mitror and camera TTL commands in ihe

stepper motor displacement profile.

Bin-nfil.pas Given: access 1o a coordinate fils containing 2 points on the cylinder,
the cylinders radius, magnification, velocity scale, bias velocity and
smoothing factor,

Calculates bourdary line file and writes the input file for the Lehigh
program nfilvh.

Bln-sur.pas Similar program to Bln-nfil but is for free surface flows, Requires a
point on the free surface in tiie coordinate file.

Force Processing

ForceDat.cpp Given: raw lift, drag and displacement files.

Given: calibration factors for lift, drag and cylinder mass distribution,
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Given: A, Ug,, cylinder dimensions, axis angle, approximate
oscillation periods, filter specifications.

This is the main force-processing file; it performs the following
procedures on multiple sets of data. Results are output for each data set
as well as a summary file.

« Corrects for axis angle.

¢ Calculates accurate axis angle

e Calibrates lift and drag

¢ Subtracts in-phase foree components (generally inertia) from lift
* Nommalises forces = C,, Cp

¢ Caicuiates lift and drag spectra

¢ Filters lift and drag

s Calcuiates lift and drag phase

» Calculates Cpy and Cay

o (Calculates correlated / non-corretated lift

» Calculates displacement

SplitDat.cpp

Given. force files output from ForceDat and 2 time segments

Calculates the force properties for the 2 individual time segments.

AxisAngle.cpp

Given: force files output from Forcelat

Calcnlates the refative angle of the strain gauge axis to the global axis.
lterate program with ForceDat to calculate axis angle.

SegPhaseAmp.cpp

Given: force files output from ForceDat

Calculates instantaneous lift phase and amplitude for rach oscillation
using a correlation of segments of the force traces. Tie length of the
segments for both the phase and amplitude calculations can be

specified.

Flow Field Processing

YFlip.cpp

Given: velocity field {ASCII) and cylinder boundary file (ASCII)

Flips a velocity field in the y direction (change position of vectors and

Abbarprom Bl Hateh & Faryd TrudhEafnes eI




sign of v component). For a symmetric wake this double the number of
images available for phase averaging

AveFieldsAny.cpp

Given: multipie velocity fields (ASTI) and their associated cylinder
boundary files {ASCII), for either fully submerged or free-surface cases

» Changes the origin of the coordinate system to the cylinder center

¢ Calculates vorticity for each case — boundary condition ignores all
co-ordinates within cylinder.

« Calculates average velocity and vorticity over multiple cases

Wakelengthicpp

Given: velocity field (ASCII) and cylinder boundasy file (ASCII)
Measure of wake length using attached positive vorticity

e Changes the origin of the coordinate system to the cylinder center
o Calculates vorticity for each case

s {alculates vertical location of maximum positive vorticity for each

streamwise location i.e. locus of positive maximum vorticity

» Calculates total attached positive vorticity (attached vorticity:

upstream of cut off point below minium vorticity threshold)
e Calculates vorticity moment due to attached vorticity

¢ Calculates effective center of maximum positive vorticity
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3 SUBMERGED OSCILLATING CYLINDER

In this chapter the frequency dependence of the wake of a cylinder undergoing forced oscillations
transverse to the free-stream is investigated for a range of oscillation amplitudes and Reynolds
mumbers, As discussed in sections 1.4 and 1.5, both the wake structure and the forces on a
cylinder, are known to exhibit abrupt changes as the frequency of oscillation passes through the
natural Kiarmén frequency of the stationary cylinder wake. As f/f, passes through unity the lift
force shows a sharp increase in amplitude and a phase “jump” of close to 180°. Separate studies
have shown that around //f, = 1 there also are significant changes in the timing and structure of the
near wake. The questions raised by these two sets of observations provide the primary motivation
for this research. In the initial sections of this chapter we show conclusive evidence that the
changes in the lift force and wake structure are intrinsically linked to a transition between different
wake states. The remaining sections consider the nature of the transition between wake states, the
universality of the wake states and the relationship between the wake states for a cylinder that is
forced to oscillate and the response branches of a freely oscillating cylinder. The initial detailed
investigation of the wake states focuses on a single set of flow conditions: Re = 2300 and 4/D =
0.5. The range of parameters are subsequently expanded to consider a range of Reynolds numbers,
Re = 2300 to 9100, and osciliation amplitudes, 47D = (.25 to 0.6.

For ali but the lowest oscillation frequencies at 4/D = 0.25 the wake was “locked on” to the
cylinder oscillation and the dominant frequency in the lift forces was f; and the correlation of the
synchronised lift signa} with a sinusoid was greater than 0.6. Thus, as discussed in section 2-9 the
lift force can be approximated by a sinusoidal function:

Lifi() = (%pUPDL)Y Cosin(2nfe £ + bup) (2-4 reproduced)

where C; is the amplitude of the fluctuating lift coefficient and ¢ua is the phase with respect to the

cylinder’s displacement y(f).

3.1 COMPARISON WITH PREVIOUS WORK

In Figure 3-1(a & b) results from the current investigation showing the variation of ¢, and C,
respectively with £,/f, are compared with results from a number of previous studies. The data in
Figure 3-1 were obtained over a Reynolds number range of 2 300 to 60,800 and in all cases the
amplitude of oscillation was 4/D = 0.5. These plots demonstrate generic features that are evident
both in the previous work of Satpkaya (1995), Gopalkrishnan (1993) and Staubli (1983b) and in the
present study. At low values of fif, below the jump, the lift force has a small amplitude and is
approximately out-of-phase with the cylinder displacement, (. As flfy increases the lift
properties do not vary significantly until, at 2 particular value of f/f;, there is simultaneously an
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abrupt increase in C; and a shift in dy of the order of 180°. As f/f, increases further the lift
properties change gradually: C, increases and ¢y decreases. Thus, at higher values of £/f, the lift

force is large in amplitude and is approximately in phase with the oscillation of the cylinder.
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t i Figure 3-1 Data from previous experiments: $life and CL as a function of fe/So, A/D =0.5.

The sharp changes in the phase and amplitude of the lift force represent a transition from a low-
frequency lift force to a high-frequency lift force. The properties of the lift force are associated
with either low oscillation frequencies before transition, or high frequencies afier transition.
: Before transition C; is small and ¢y, is large, while after transition Cy is large and ¢y is small, and
: generally negative. The frequency at which this change occurs is defined as the transition
, frequency f.. For the different data sets in Figure 3-1(a & b) there is some variation in the transition
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frequency. While the reason for this variation is not well understood, Staubli {1983b) observed
similar variations over a Reynolds number range of 25,300 — 271,000, When the oscillation
frequency is normalised by the transition frequency, as shown in the plots of C; and by versus £//,
in Figure 3-1(c & d), the universal nature of the jump in the phase and amplitude of the lift force

are clearly evident.
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Figure 3-2 Data from previous experiments: Cp e 85 2 function of £./1,.

A compilation of results demonstrating the variation of the mean drag with £/ is shown in Figure
3-2. The results are for a range of A/D and Re values and include data from the current
experiments. There is a broad peak in Cp e at the point corresponding to the transition in the iift
force, but otheswise Cp man does not vary strongly with £/, Thus, despite the jurnp in the phase
and amplitude of the lift force at transition, the values of Cpan either side of this transition are
very similar. The general shape of Cp e v5. fulf; does not show a show dependence on either Re or

AID, however as A/D increases there is an upward shift in the value of Cp mean-
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3.2 WAKE MODES AND FORCES

3.2.1 Stable Wake States

@ 200 - - . et 25
150 ¢ {20
fin 100} 15
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50 | 110
o ' 195 | o- Lift Phase, i
-8- Lift Amplitude, C,
-50 T —— ' ' 0.0
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£1f,

—a? Ny
: Displacement

Figure 3-3 a} Lift phase 4y, and amplitude of the lift coefficient O, as a function of frequency ratio
S at AD = 0.5, Re = 2300. Instantaneous vorticity fields are shown in b) and ¢). The time trace

inserts show the instantaneous lift and displacement, where the timing of the image acquisition is
indicated by a small circle.

The variation of the phase and amplitude of the lift coefficient with £/f; at 4/D = 0.5 and Re = 2300
15 shown in Figure 3-3(a). At lower values of fJf,, below f/f, = 0.8 the lift properties are
consistent with those found by previous investigations at £/f, below the sharp jump in the lift force.
Similarly, the lift properties for fif, > 0.81 are consistent with those found by previous
investigations at £/f, above the jump. The instantaneous vorticity fields in Figure 3-3(b & c) show
the wake structure for values of £J/f, either side of the transition. The images, both acquired at the
top of the cylinder’s oscillation cycle, show two distinctly different wakes. Figure 3-3(b) is
representative of the wake structure at lower fJf, before transition, while Figure 3-3(c) is

representative of the structure of the wake afier the transition. Comparison of the two cases shows
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that the phase-referenced vortex structure about to be shed into the near wake are of opposite sign.
In Figure 3-3(b), at /.. = 0.806, a negative vortex structure is about to be shed from the attached
shear layer while a positive initial vortex forms ¢lose to the cylinder. After the transition, at Jfe=
0.869, the structure that is shed into the wake at the same phase point in the oscillation is positive
and the initial vortex is negative. The change in sign of the phase referenced vortex structures is
consistent with the shift of approximately 180° in the lift phase. Over the range of (;/f; studied (7/f;
=10.5 - 2.0), for frequencies of oscillation below the transition the basic characteristics of the low-
frequency wakes were always consistent with the wake in Figure 3-3(b), while for £./f, above the
transition, the high-frequency wakes were consistent with the wake in Figure 3-3(c). In this section
the general features of these two wakes and the forces on the cylinder are discussed for a specific
set of flow parameters (4/D = 0.5 and Re = 2300). Subsequently, it will be shown that many of
these features are very robust and can be used to describe the wakes for 2 wide range of 4/D and
Re.

The wake modes either side of the transition are now considered in more detail. The time evolution
of the near wake vortex structures for the low- and high-frequency wakes are shown by the phase
averaged vonticity fields in Figure 3-4 and Figure 3-5 respectively, where each phase averaged
image corresponds to 9 instantaneous images. The phase averaged images at the top of the
oscillation, Figure 3-4(a) and Figure 3-5(a), have the same general form as the comesponding
instantaneous images in Figure 3-3. This indicates that the repeatability of large scale features in
the @, field is very high. At the top of the oscillation, the low-frequency wake in Figure 3-4{a) has
a fong negative vortex structure extending across the base of the cylinder and into the lower half of
the wake. However, at the same pha of the oscillation cycle the attached negative vorticity in the
high-frequency wake, shown in Figure 3-5(a), takes the form of a small concentrated structure at
the base of the cylinder. As the cylinder moves downwards, the negative vorticity in the low-
frequency wake is slwd as two separate structures, as shown in Figure 3-4(b - d). The negative
vorticity from the end of the attached shear layer is shed into the lower half of the wake and forms
a counter-rotating pair with previously shed positive vorticity. The negative vorticity closer to the
cylinder is shed into the upper wake, and eventuaily forms a second counter-rotating pair with a
portion of the positive vorticity shed as the cylinder moves upwards in Figure 3-5(f- h). Thus, the
vorticity forms two counter rotating pairs per cycle and, following the terminology of Williamson
& Roshko (1988), the shedding mode is described as 2P. The mode of vortex shedding for the
high-frequency wake is clearly different. As the cylinder begins to move downwards in Figure
3.5(a & b) a single positive vortex is shed into the near wake and the fower shear layer tends to
have a distinct angle away from the centre-line of the wake. A second shedding event occurs half a
cycle later, when a single negative vortex is shed just after the bottom of the displacement cycle,
resulting in the classical Karm4n, or 28, mode of shedding. The evolution of the low- and high-
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frequency wake modes is similar to the modes observed by Govardhan & Williamson (2000) for an
elastically mounted cylinder, The relationship between the wakes of the forced and freely
osciliating cylinders will be discussed in more detail in section 3.7.

In Figure 34 the low-frequency wake there are very low levels of vorticity and velocity in the
region immediate Dehind the base of the cylinder. The streamwise extent of this region is a
measure of wake length and is analogous to the formation length of a stationary cylinder. The
variation of the size of this region will be discussed further in section 3.3.1. In contrast to the low-
frequency mode, the high-frequency wake has virally no region of fow vorticity immediately
behind the cylinder, and the voriex structeres form very close to the cylinder. The vorticity fields
in Figure 3-4 and Figure 3-5 indicate that the transition from the low- to the high-frequency wake
corresponds to a change in the timing of the vortex shedding and also a change in the mode of
vortex shedding. The two modes of vortex shedding generate significantly different distributions
of vorticity downstream of the cylinder. In the high-frequency wake, negative vorticity is found
predominantly in the upper half of the wake, while the lower wake is dominated by positive
vorticity. However, for the low-frequency wake, vorticity of both signs is found throughout the
vertical extent of the wake.

The low- and high-frequency wake states, described above, have characteristic {ift properties and
phase reference distributions of vorticity. The low-frequency wake in Figure 3-4 cerresponds to
small valves of C; and large values of du., the phase referenced initial vortex at the top of the
oscillation eycle is positive and the mode of vortex shedding is 2P. The properties of the high-
frequency state, shown in Figure 3.5, are distinetly different; C, is large, ¢y is small and the 28
wake has a positive initial vortex at the top of the oscillation cycle.
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Figuse 3-4  Phase averaged images showing the cvolution of the vortex structures during the
cylinder’s oscillation cycle for the lon-frequency wake mode: £/f, = 0.806, A/D = 0,5, Re = 2300. The
images were acquired at evenly space intervals such that a) and ¢) are at the extreme maximum and
minimum points of the displacement cycle respectively and ¢} and g) are at the mid-points.
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Figure 3-5

cylinder’s oscillation cycle Tor the high-frequency wake mode: £/f, = 0.869, A/D = 0.5, Re = 2300. The
displacement phasc of the images is as for Figure 3-4.

Phase averaged images showing (he evolution of the vortex structures during the
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3.2.2 Transition Between Wake States

The wake and force properties for oscillation frequencies immediately surrounding the transition
between wake states were examined in detail in order to understand the nature of the transition
between wake states. At each value of £/f,, the wake state at 7 = 0 is that of a statiopary cylinger in
2 free stream. For ¢ > ¢ the cylinder oscillates at a constant frequency and the oscillating wake
appears 10 be fully established less than 10 oscillations afier ¢+ = 0. Tor a narrow band of
frequencies close to transition, after a number of oscillations self-excited changes were observed in
the lift properties. The band of frequencies over which self-excited transitions are observed is
called the transition region. It will be shown, by cﬁmparing the force and wake properties on either
side of these self-excited changes that these changes comrespond to 2 transition from the low-
frequency state to the high-frequency state.

A typical example of these self-excited changes is shown in Figure 3-6, where the changes begin
after more than 150 oscillation cycles. The lift trace and corresponding instantaneous vatues of C;
and ¢y are shown in Figure 3-6(a & b) respectively. For time less than 97 seconds the lift forces
are consistent with the low-frequency state described previously: the lift coefficient is small in
amplitude and is approximately out-of-phase with the cylinder’s displacement. Conversely, for
times after 128 s the lift force is consistent with the high-frequency wake state. In between these
two states (97 <1< 128) there is a region where the lift force is not consistent with either the low-
or high-frequency states. The expanded time trace in Figure 3-6(c) shows the changing
relationship between the lift and displacement as the wake moves from the low- to high-frequency
wake state. The wake patterns in Figure 3-6{d) and Figure 3-6(¢) were acquired at the top of the
oscillation cycle, at the times indicated on the lift trace. These images are representative of the
wake structures either side of the self-excited transition. The evolution of the vorticity fields before
and afler the self-excited transition is represented by the phase averaged images in Figure 3-7 and
Figure 3-8 respectively. The phase averaged images were calculated using 9 instantaneous images
and the general structure of the phase averaged wakes at the top of the oscillation, in Figure 3-7(2)
and Figure 3-8(a), correlate well with the instantaneous images in Figure 3-6(d & ¢) respectively.
Despite the fact that the oscillation frequency is constant, the wake stutes either side of the self-
excited transition are clearly different. Before the transition the values of C; and ¢y are consistent
with the low-frequency state. Moreover, the wake is shedding in the 2P mode and is clearly
consistent with the steady-state low frequency state, described in corjunction with Figure 3-4.
Afier the self-excited transition the wake structure is consistent with the high-frequency wake in
Figure 3-5 and the force properties are also consistent with the high-frequency state. Thus, the
wake states either side of the self-excited transition are consistent with the wake states at much

lower and higher frequencies,
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Figure 3-6  The lift time trace a) shows a self-excited tramsition occurring after more than 150

oscillation eycles at a constant excitation frequency of f/f, = 0.815. The corresponding variation in the :
instantaneous values of the phase and amplitude of the lift coefficient are shown in b), The lift and

displacement traces during the transition are shown in more detail in ¢). The wake modes cither side

of the self-excited transition are shown at time = 60 s, corresponding to image d) and time - - 270 s

representing image e), where both images were acquired at the top of the oscillation cyele.
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olution of the voriex structures before a seil-excited

Figure 3-7 Phase averaged images showing the ev
o wake structure is consistent with the low-

teansition at £/f, = 0.815, A/D = 0.5 and Re = 2300, where th

frequency wake state. The phase of the images is as for Figore 3-4
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Figure 3-8  Phase averaged images showing the evolution of the vertex structures after a seff-excited
transition at £1f, = 0.815, 4/D = 0.5 and Re = 2300, where the wake structure is consistent with the
high-frequency state. The phase of the images is as for Fipure 34
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For A/D = 0.5 and Re = 2300, the self-excited transition always followed the setfuence described
above and, once the high-ﬁ-eqqency wake state was established, a return to the low-frequency state
was never observed. Afier the transition to the high-frequency state there is some variation in C,
and ¢z, which was not observed at higher values of £/f,. During this variation, there appears to be
an inverse relationship between the instantaneous values of C;, and ¢ The nature of this variation
and the behaviour of the wake within the transition region will be discussed in mose detail in
section 3.6,

3.23 SplitForces

At a given time the values of C; and ¢y, can be used to differentiate between the low- and high-
frequency wake states. For example, either side of the self-excited transition in Figure 3-6(b) the
instantaneous values of C; and ¢y were used to identify the segments during which the wake was
in cither the low- or high-frequency state, as indicated by the boxes above the graph. When
segments, each containing only a single wake state, are analysed separately the difference in the
force properties for the two states is evident. In Figure 3-9 the properties within the transition
region have three separate data points for each oscillation frequency: the light coloured triangular
points were calculated from data containing the fow-frequency state only, while the darker
triangular points represent the high-frequency state data, ‘When the data was not split into segments
containing a single wake state the value, represented by the open circular points, is a weighted
average of the two wake states.

In Figure 3-9 the properties of the lift force, drag force and energy transfer are presented as
functions of £./f,, for A/D = (.5 and Re = 23G0. Within the transition region the time traces have
been split into segments containing either the low- or high-frequency wake state. The variation of
the force properties over the full range of £{f, is shown in Figure 3-9(a), while in Figure 3-9(b) the
transition region has been enlarged to show clearly the variation of selected properties. The split
forces from the low-frequency wake state continue the trends shown by the single state data at
lower frequencies. Similarly, the split forces from the high-frequency wake state are consistent
with the data at higher oscillation frequencies. Presenting the data so that each data point contains
data corresponding fo a single wake state illustrates that the change in the wake state corresponds to
the discontinuous change in the phase and amplitude of the lift force.

Lift Force

The variation of the phase and amplitude of the lift force in Figure 3-9(a)(7 & i) respectively is
consistent with the results of previous experiments, as shown in Figure 3-1. Within the transition
region the averaged values of ¢y are weighted strongly towards the high-frequency state, not only
because this state occurred for longer, but also because of the relatively high amplitude and
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coherence of high-frequency state fift force. it is possible that in this transition region results of

previous studies have calculaied data points using force traces containing a mixture of low- and (
high-frequency states. This could explain why intermediate values of ¢, have been reported in '
previous investigations, but in our data the intermediate values occur only for data points '
representing more than one wake state. Additionally, as the intermediate values of ¢y appear to be |
linked to the averaging of data from two different wake states this may explain the change in the
direction in which ¢y, rotated dusing the transition reported by Gopalkrishnan (1993) for increasing j
oscillation amplitudes. i

Energy Transfcr

As discussed in section 1.3.2 the energy transfer from the fluid to the cylinder per oscillation is
simply the time integral of the product of the lift force and the cylinder’s velocity. Thus, for an
approximately sinusoidai lift force the energy transfer can be represented by:

Ce = 1 Cp (A/D) sin{{yys) (1-4 reproduced)

The variation of the emergy transfer between the fluid and the cylinder is shown in Figure
3-9(a)(jii). For the low-frequency state the energy transfer is small, positive and relatively
constant. The direction of the energy ransfer can always be gauged from 4y, and the positive
values of Cg for the low-frequency state correspond to values of ¢y, that are just below 180°. At
the transition from the low- to high-frequency state there is a large increase in C;, but ¢y, jumps L
downward towards 0° and sin(dyy) is very small, resulting in small values of Cz. The first split
high-frequency state value of Crat £/, = 0.840 is positive, corresponding to a value of ¢y which is
just above 0°. However, at £/f, = 0.846 ¢na is below 0° and C: is small and negative. As £.if, ]
increases further, Cg becomes increasingly negative.
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Drag Foice

The magnitudes of the fluctuating and mean drag force are of obvious physical importance, but
until now the phase of the drag force has received little attention. The dominant frequency of the
drag force is two times the frequency of oscillation (2/,), therefore to relate the phase of the drag to
the displacement of the cylinder the general form of the drag force was spproximated as:

Drag(f) = (YplPDL) Cpsin[2Q21£t + duee)] + Cp mean (3-1)

where C)p is the ampiitude of the fluctuating drag coefficient, Cp mean is the mean value of the drag
coefficient and ¢y is the phase of the drag with respect to the cylinder’s displacement y(). Using
this definition du.e only has physical significance over a range of 180, i.e. daog= huog £ 180°, as
$acq is the phase of the drag signal with respect to a signal whose period is twice that of the drag.
Therefore, shifting ¢4, by 180° does not change the relationship between the drag and the
displacement and is in fact analogous to shifting the 1ift phase by 360°. The drag force tends to be
less sinusoidal than the lift force, however in all cases the values of ., presented were calculated
from drag traces whose correlation coefficient with a sinusoidal signal is greater than 0.6, This
approach allowed us to calculate ¢y, over the full range of £/f, for all cases except A/D = (0,25 at
Re = 4400.

In Figure 3-%(a)}(iv) dun, is piotted as a function of f/f.. At the transition from the low~ to high-
frequency state, Figure 3.-9(a)(iv) shows that there is a jump in the drag phase of approximately
240° 85 e drops from 225° 10 -15°. The vortex lift force (not shown in Figure 3-9) and the drag
force represent the forces on the cylinder due to changes in the vorticity fields. Thus the drag
phase is plotted such that the jump in ¢u., at transition is in the same direction and of a similar
magnitude to the jump in drp.umee The vortex forces on the cylinder will be discussed further in
section 3.4.3. According to the definition of the drag phase in equation 3-1 any value of ¢y is
equivalent to ¢y, + 180°, therefore the jump in d..¢ can also be correctly described as a downward
jump of approximately 60° from 45° to -15°, The established convention is to present ¢y; such that
the transition from the low-to high-frequency state corresponds to a downward jump in ds, but the
lift and drag phases can also be presented such that at the transition there upwards jump in the
phase. Although it may appear unnecessary to present a large downward phase shift of say 270°,
rather than a smaller 90° phase shift in the opposite direction, this consideration does not have

enough merit to break with the established convention.

The overall trend of the drag amplitude in Figure 3-9(b)(iv) is to increase with increasing £/fo, with
a small peak around transition. This result is broadly consistent with the observations of Bishop &
Hassan (1963), however the results of Bishop and Hassan (1963) were presented in arbitrary units
preciuding direct comparison of the two data sets. As shown in Figure 3-9(b)(v), by varying £if; in
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: a continuous fashion Bishop and Hassan (1963) obtained a pronounced cross-over in the values of
o C,, over a wide hysteretic transition region. The higher values of Cp appear to occur at the highest !
attainable frequencies for the low-frequency state and the lowest attainable frequencies for the |
high-frequency state. In our case, f./f, was varied in a stepwise fashion with the wake returning to 1
the stationary cylinder state between each vaiue of f/f,. Interestingfy, closer examination of the "
transition region in Figure 3-9(b)(#v) shows that the values of Cp for the low- and high-frequency
states “cross-over” between the 2™ and 3" transition point. The crossover region in Figure
3-9(b)(#v) is confined to values of £J/f, where a self-excited transition occurs but the general nature t

of the crossover is similar to that observed by Bishop & Hassan {1963) in the hysteretic transition

region.

The mean drag in Figure 3-9(a)(v/) increases only slightly with increasing f/fo with a very sinall '
peak around the transition between the low- and high-frequency states. These sesults are generally

consistent with the results of previous experiments shown in Figure 3.2. However, it appears that

the magnitude of the peak in Cp pe.n near transition may vary with flow parameters such as Re and !
A/D.

While there is an abrupt change in ¢u., as the wake moves from the low to high-frequency state,
the changes in Cp and Cp ... are relatively minor. As fJf, increases or decreases towards the
transition the values of both Cp and Cp e increase and the transition between wake states is
associated with a small peak in Cp and Cp g rather than an abrupt jump. Thus, despite the
distinct change in the structure of the near wake at transition, the changes in the overall vertical
movement of vorticity results in relatively small changes in Cp and Cp pean. The increase in Cp and
Cp mear 88 the wake approaches transition indicates that there are some systematic changes in the
vertical distribution of veorticity as the wake approaches transition. At other values of 4/D and Re
the peaks in Cp and Cp me.» are more exaggerated and in some cases there is a small jump in Cp at
transition.

3.2.4 Idealised Variation of Vortex Force with 77,

A thought experiment will now be outlined which relates the lift and drag forces on the cylinder to
the vorticity field and attempts to predict the general dependence of the vortex forces on fi/f; for a
given idealised mode of vortex shedding.

The vortex force on a body can be written according to equation 1-6 as

FredO=—p g‘- Fx@ dV (3-2a)

Fo

Considering only the contribution from the spanwise vorticity component @, the drag force (which
is equal to the vortex drag force) on the cylinder varies with
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Therefore a positive drag force occurs when positive vorticity (wy), typically generated on the
lower surface of the cylinder moves downwards and when negative vorticity, from the upper
surface of the cylinder, moves upwards. Similarly the vortex lift force varies with

d r. _
= [xa, av G-20)
¥r

Thus a positive vortex [ift force is generated by the downstream movement of positive vorticity and
by the upstream movement of negative vorticity. The time derivative in equations 3-2 indicates
that force is generated by the change in the position of the vorticity, rather than the fact that the
vorticity has a position that is a certain distance from the cylinder. Examination of equation 1-6,
which relates the vorticity field to the force on the cylinder, allows interpretation of the vortex lift
and drag forces in terms of the time dependent spanwise vorticity field.

A simplified view of vortex shedding is that it involves the movement of vorticity in both the
vertical and streamwise directions. In a symmetric wake the shedding of both positive and negative
vorticity results in a net downstream movement of both signs of vorticity and, on average, the
positive and negative vorticity are displaced by an equal and opposite amount in the vertical
direction. The drag force does not differentiate between the vertical downward movement of
positive vorticity and the movement of negative vorticity upwards, as both instances result in a
positive contribution to the drag force. The vortex lift force however does differentiate between the
streamwise movement of vorticity of the opposite sign, with the downstream mevement of positive
vorticity resulting in a positive contribution to the lift force and the movement of negative vorticity
downstream causing a negative contribution to the 1ift force. When the wake is symmetric and
phase locked the peaks in the Iift force occur once per oscillation and the structure of the wake
corresponding to consecutive peaks will be essentially the same. However, there are two peaks in
the drag force per oscillation and at consecutive peaks the wake will be a mirror image of itself.
Although consecutive peaks in the drag force correspond to two different wake structures the drag
force cannot be used to differentiate between the two wakes. This is the physical reason underlying

the statement in section 3.2.3 that Qurag = durae £ 180°.

The variation of the forces on the cylinder as £/f, increases will now be considered for the case of
an idealised mode of shedding where the phase-referenced vorticity distribution does not vary with
Ji/f,. During the osciliation cycle the drag force on the cylinder varies with time according to the
rate of change in the vertical distribution of vosticity. The magnitude of the mean drag force
Ch mean depends on the net movement of vorticity during the oscillation cycle. Typically, during an

oscillation cycle there is a net displacement of positive vorticity downwards, and an equivalent net
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displacement of negative vorticity upwards, resulting in a positive mean drag force. Thus, it can be
argued that Cp s, 15 associated with the mean vertical width of the wake. During the oscillation
the fluctuating component of the drag force, and also the lift force, depends the mode of vortex
shedding. Assuming that the vortex shedding mode, or in other words the distribution of the
vorticity during the oscillation cycle, does not vary with fJf; then, for this idealised case, the mean
drag force will not vary with //f,. As fif, increases the period of the oscillation cycle becomes
shorter and to generate the same distribution of vorticity throughout the cycle the rate of change of

Ij" x@, dV must increase. Therefore, for the idealised case the amplitude of the fluctuating drag
Ve

force Cp will increase linearly with £./f,.

The same argument can be applied to the vertex lift force. For a fulty submerged cylinder, equal
amount of positive and negative vorticity are convected downstream during an oscillation cycle
resulting in & zero mean vortex lift force. The fluctuating vortex lift force is generated by the
variation of the streamwise vorticity distribution during the oscillation cycle. Therefore, as for the
drag force, for an idealised constant mode of vortex shedding the amplitude of the vortex lift force
increases linearly with £/7,.

The total 1ift force on the transversely oscillating cylinder has two components: the vortex fift force
and the apparent mass force. The mean apparent mass force vver an oscillation cycle is zero
however the amplitude of the apparent mass force increases with £/f, squared. The argument above
indicates that for a constant mode of vortex shedding the amplitude of the vortex lift force increases
linearly with £/f,. However, as the vorex and apparent mass components of the lift force are
generally not in-phase with each other the variation of the total lift force with //f, is complicated.

The experimental results in Figure 3-2 and Figure 3-9 show that away from the transition region
Cb mean increases only slightly with increasing £/f, and in some cases cutside the transition region
Cpmear 15 €ssentially constant. Additionaily, the experimental results in Figure 3-9 show that
outside the transition region Cp increases almost linearly with increasing £/f;. The peaks in both
Comean and Cp, as fif, approaches the transition region indicate that the vertical distribution of
vorticity is modifizd prior to the transition occurring. The experimental results, showing the
variation of the vortex lift force with £/£;, will be discussed in section 3.4,
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3.3 TRANSITION

The transition between the low- and high-frequency states results in significant changes in both
forces on the cylinder and the structure of the near wake. Therefore, it is important te have an
understanding of how and why this transition occurs. A transition between two states occurs in a
large number of flows, for example the transition between a laminar flow and 2 turbulent flow.
However, determining the exact origin of a transition between two different states is a very difficult
problem. Using stability theory it is often possible to determine how the stability of a system
changes leading up to and during a transition, but such analyses do not necessarily explain why the
system is changing. Generally speaking, transitions occur when the controlling parameter, in our
case f/fo, reaches a critical value. Further changes in the controlling parameter cause the original
state to become unstable and the system moves to a new state, The variation of the forces on the
cylinder as f/f, approaches transition, in particular the almost constant values of gy; and G
shown in Figure 3-9(a}i & iv) give very little indication that transition is about to occur. In this
section we examine the systematic changes in the stricture of the near wake as £/, increases
toward transition, as well as the changes in tie nature of the self-excited transition as £/, increases

within the transition region.

3.3.1 Wake Length

The vorticity fields in Figure 3-10 show the changes in the structure of the near wake as f:if,
increases from 0.695 to 0.869. The vorticity fields were calculated by phase averaging 9
consecutive images at the extreme displacement of the cylinder, with the exception of the image at
Julfy = 0,781, where only 7 images were available. These images represent a “short term™ average
wake structure and demonstrate subtle changes in the two wake modes with changing oscillation
frequency. The decrease in the peak vorticity due to the averaging of instantaneous vorticity fields
did not vary with either £/ or wake state.

Figure 3-10(a) shows the low-frequency wakes as f/f, increases from 0.695 to 0.815. As f/fs
increases the general mode of shedding is unchanged but there is a decrease in the streamwise
length of the attached vortex structures. Over this range of frequencies dus and $ung are
approximately constant (in section 3.4 it will be shown that ¢y womer is also essentially constant).
Therefore, the changes in the position of the vortex structures in Figure 3-10(a) are not phase
related but are due to a contraction of the wake. These observations are consistent with those of

Ongoren and Rockwell (1988), and Gu ef al (1994).

121




Figure 3-10{a) Phase averaged vorticify fields showing the variniion of wake length with £/f; for the
low-frequency state. Allimages are at the top of the cylinder’s oscillation.
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Figure 3-10(c) Phase averaged vorticity fields at higher values of f/f lu images /) and &) the wake
appears to be in an intermediate state, while in #f) and #v) the wake is in the high-frequency state.

At £/, = 0.815 and 0.825 a self-excited transition from the low- to the high-frequency state was
observed. For f./f, = 0.815 the low- and high-frequency modes are shown in Figure 3-10(a)(v) and
Figure 3-10(c)(iii) respectively where for the high-frequency mode the voricity is wrapped tightly
around the cylinder and the wake length is clearly shorter. The vorlicity fields in Figure
3-10(c)(7 & if} at fi/fo = 0.825 were acquired at two separate time periods when the wake appeared
to be in between the low- and high-frequency wake states. During these periods the values of C;

and ¢y were not fully consistent with either the low- or high-frequency states and the
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corresponding structure of the near wake is also not fully consistent with either the low-frequency
wake in Figure 3-10(a) or the high-frequency wakes shown in Figure 3-10(c)(iif & iv). This wake
can be described as an intermediate wake, where properties of the intermediate wake state will be
discussed further in section 3.6.

Although visual inspection of Figure 3-10 reveals a contraction of the wake as f/f, increases, there
is no single universally accepted method to calculate the length of she wake. Historically, the wake
formation length has been defined in a number of ways, generally using a series of point
measurements with high temporal resolution. Our PIV data has limited temporal resolution but
high spatial resolution and a different method to represent the wake length is chosen. Given the
nature of the problem we are investigating it is logical to calculate the wake length either at a fixed
phase point, or over a very large number of phase points. The variation of the wake length at the
top of the cylinder’s oscillation can be quantified by calculating L., the streamwise distance from
the base of the cylinder to the centroid of the attached positive vorticity. The region of attached
vorticity was defined by applying a threshold minimum vorticity level to determine the boundary.
Due to the experimental difficulties in resolving the boundary layer around the fromt of the
cylinder, L., was calculated by taking moments of the attached positive vorticity downstream of
the centre of the cylinder. A schematic demonstrating the definition of L., is shown in Figure
3-10(b). L., is not a direct measure of wake length, but is a property that appears to vary directly
with the wake length and is also casily quantified a¢ a particular phase point. Moteover, for the
case of an oscillating cylinder the phase referenced length of the attached positive vorticity appears
to be related to the transition between the low- and high-frequency wake states.

Figure 3-10(b) shows that as f./f, increases from 0.695 towards transition the wake remains in the
low frequency state but L, decreases. However, as f/f, increases further the low-frequency state
is no longer stable and there is a transition from the low- to the high-frequency state. The variation
of L, with f./f, shows that the transition to the high-frequency wake cormresponds to a contraction
of the wake below a certain critical length. For frequencies within the transition region, after
startup the wake moves first to the low-frequency wake state and the wake fength is very close to
the critical value. From cycle to cycle there is some variation in the wake length but afler the
transition to the high-frequency state the wake length is significantly shorter, Interestingly, at
transition L, becomies negative i.e. the centre of the positive vorticity moves back behind the rear
of the cylinder. However, the fact that there is a of change in sign of L, at transition is not
necessarily physically significant as the calculation of L, does not include all attached positive

vorticity, and is related to a particular phase point in the cylinder’s oscillation.
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In light of the changes in the length of the near wake preceding transition, observed in both this and
the previous work of Ongoren & Rockwell (1988a) and Gu ef of. {1994), it is reasonable to suggest
that the wake length plays a role the low- to high-frequency state transition. The most robust
feature of the transition is the large shift in the phase of vortex shedding. Vortex shedding depends
on interaction between the two shear layers and as the wake contracts this interaction is altered.
The contraction of the wake as £,/f, increases towards transition does not result in significant
changes in the mode or phase of vortex shedding. However, the contraction of the wake below a
critical length coincides with the transition and a change in the way the shear layers interact. 1f the
interaction, which originally resulted in vortex shedding at a particular phase point, is significantly
altered by the contraction of the wake below a critical length then this contraction may be the
reason for the transition to the different stable wake state. For the case of the oscillating cylinder,
afier the transition to the new wake state the vortex shedding occurs at a very different phase point
and at 4/D = 0.5 there is a change in the mode of vortex shedding from 2P to 28S.

As f./f, increases towards transition there is an increased disparity in the relative strength of the
vortices in the “2P pairing™. This is demonstrated in Figure 3-10(a), where for increasing £./7, there
is a decrease in the strength of the positive vortex structure that has been shed into the upper wake.
Although this field of view does not show the pairing of the positive and negative vorticity the
symmetry of voriex shedding means that the relative strength of the upper and lower positive
vortex structures are indicative of the relative strength of the vortices within the counter rotating
pairs: i.e. the weaker positive vortex in the upper wake forms a counter rotating pair with a stronger
negative vortex. The formation of the 2P mode depends on each of the shear layers shedding two
separate structures. In Figure 3-10(a - ¢) the long negative vortex structure deforms into two
structures as it interacts with the positive vorticity in the lower shear layer. As jiJf, increases, the
wake contracts causing the long negative vortex structure to be jocated further around the base of
the cylinder. Additionally as £/f, increases the vortex structure that is about to be shed from the
end of the shear layer becomes progressively weaker, resulting in vortex pairs of unequal strength,
Interestingly, despite the changes in the length of the attached wake and the relative strength within
the vortex pairing, prior to the transition beoth the lift and drag phase remain relatively constant.

3.3.2 State Selection Within the Transition Region

Within the transition region at 4/D = 0.5 the system tends to be in one of two stable states: the low-
or high-frequency states. At 47D = 0.5 and Re = 2300, the seif-excited transition was irreversible
and transition always occurred from the low-frequency state to the high-frequency state.
Therefore, for frequencies of oscillation within the transition region when the cylinder starts
oscillating the wake state changes first from the stationary cylinder state to the low-fi.quency state,
then, after a period of time, the wake undergoes a self-excited transition to the high-frequency state,
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The range of frequencies over which the self-excited transition was observed is quite narrow and at
A/D = 0.5 and Re = 2300 the self-excited transition was observed for 0.806 </, <0.821. In
Figure 3-11(a) the average time from startup to transition is plotted as a function of f/f,, where
each value was calculated from 4-6 separate experiments and the vertical bars represent one
standard deviation. Asf/f, increases within the transition region both the average time to transition
and the variation in the time to transition decrease.
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Figure 3-11  a) The variation of the time from startup to the self-excited transition to the high-
frequency state, at /D = 0.5 and Re = 2300. b) Schematic showing an idealised variation of the

stability of the meta-stable system, represented by an fidealised system potential energy ¢, as £/f,
increases through the transition region,
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Within the transition region at 4/D = 0.5 and Re = 2300, the wake moves to the low-frequency state
immediately after start up but after the self-excited transition the wake remains in the high-
frequency state and the high-frequency state appears to be the most stable state. Thus, within the
transition region the fow-frequency state can be interpreted as 2 metastable state; which may persist
for a period of time but eventually the wake wif! move to the more stable high-frequency state. For
the wake to transition from the metastable low-frequency state a certain level of perturbation is
required. As the low-frequency state becomes less stable the level of perturbation required for the
transition will decrease and at any given instant the probability that transition will occur is
increased. Therefore, the average time from start-up to the self-excited transition is a measure of
the stability of the low-frequency state. The decrease in the average time to transition, shown in
Figure 3-11(a), indicates that as £/f, increases the metastable low-frequency state becoines less
stable,

Figure 3-11(b) is a graphical representation of the variation of the relative stability of the low- and
high-frequency states as f/f, increases within the transition region. The potential energy of the
|ystem @ is not a quantity that we are able to measure and is used somewhat loosely to represent a
variable that is minimised by a stable system. As described in section 1.6.1, a metastable state
occurs when the potential is locally minimised but there is another more stable state where the
potential is absolutely minimised. Within the transition region at A/D = 0.5 and Re = 2300 the low-
frequency state is a metastable state. As f/f, increases the stability of the low-frequency state,
represented by the depth of the well in Figure 3-11(b), decreases untii the low-frequency state is
unstable and the wake is exclusively in the high-frequency state.

During the experiments it was observed that transition could be “forced” by disturbing the flow
upstream of the cylinder. These large and unquantified perturbations were generated using an
oscillating rod located several meters upstream of the cylinder., For values of £/f; just below the
transition region the perturbations caused a transition to the high-frequency state, but after a
number of oscillations the wake returned to the low-frequency state. This suggests that for these
values of £/f, the high-frequency state can exist as a metastable state but that the low-frequency
state is more stable.

When the cylinder starts oscillating at 7 = 0 the initial stationary cylinder becomes unstable and the
wake must move to a state which is stable or metastable. For oscillation frequencies within the
transition region at 4/D = 0.5 and Re = 2300 the wake always moved from the stationary cylinder
state to a metastable low-frequency state. The fact that the wake has an initial preference for the
low-frequency state is represented schematically in Figure 3-11(b) by placing the metastable low-
frequency state between the unstable stationary cylinder state and the stable high-frequency state,
The relationship between the initial unstable stationary cylinder state and the low- and high-

frequency states is expected to depend on the flow and oscillation parameters. If, for an amplitude
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of A4/D = 0.5, the Reynolds number is increased from 2300 to 9100 a change in the nature of the
seif-excited transition is observed. Within the transition region at Re = 2100 the wake moves first
to the high-frequency state and after a period of time there is a self-excited transition to the low-
frequency state, The self-excited transition, from the high- to low-frequency state is shown in
Figure 3-12 in terms of the total lift phase. Immediately afler startup ¢ is close to -45° and
therefore consistent with the high-frequency state, however afler ¢ = 200 s there is a self-excited
transition and dy;; moves to a value of just over 180°, which is consistent with the low-frequency
state. The reversed direction of the salf-excited transition at Re = 9100 compared to Re = 2300
indicates that in this case the wake prefess to move from the stationary cylinder state to a meta-

e stable high-frequency state. At other values of 4/D or Re a seif-excited transition was not always
observed, indicating that the transition region is either very narrow or does not exist. Changing the
relationship between the initial stationary cylinder state, at 7 = 0, and the low- and high-frequency
states by changing 4/D or Re may alter the value, or values, of £/f; at which the transition between
the two states occurs. Additionally, the change in the relative stability of the initial stationary
cylinder state and the low and high-frequency states may also affect the nature of the self-excited
transition and the width of the transition region,
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Figure 3-12 Variation of ¢y during a “reverse™ self-excited transition from the kigh-frequency state
to the low-frequency state at A/D = 0,5, Re = 9100 and j/f, = 0,992,

128




L= i

Wy

o

R T ——

3.4 UNIVERSALITY OF THE LOW- AND HIGH-FREQUENCY STATES:
VARIATION WITH A/D AND Re

Until now the focus has been on the frequency dependence of the wake for constant values of
Reynolds number and oscillation amplitude. The investigation is now extended to ook at three
Reynolds numbers, Re = 2300, 4400 and 9100, and a range of oscillation amplitudes, 4/D = 0.25,
04, 0.5 and 0.6. Rather than consider the forces on the cylinder as a function of 4/D and Re for a
fixed frequency of oscillation, the frequency dependence of the forces at different values of A/D
and Re is examined. The compiled data from previous experiments, presented in Figure 3-1, shows
that the simultaneous jump in ¢y and C;, occurs for a wide range of Reynolds numbers (Re = 2300
10 60,000). Additionaliy, Staubli’s (1983a & b) data shows a similar jump in ¢,z and C; for a wide
range of oscillation amplitudes (4/D = 0.02 — 1.0). Therefore, the transition at /£, = 1 appears to

be a universal feature of these flows for a wide range of 4/D and Re.

i e following section the frequency dependence of the phase and amplitude of the lift force is
considered for a range of oscillation amplitudes. As discussed in section 1.3.3, the total force
consists of two components: a vortex component due to the vorticity in the cylinder’s wake and an
apparent mass component that is directly related to the gylindet’s acceleration, Traditionally the
total lift force has been referred to as the “lift force™ and up to this point this convention has been
followed. However, in this section the vortex force component of the lifi force is also examined
and the results will be discussed in terms of the “total lift” and “vortex lift” to clearly differentiate
between the two. For consistency we will continue to use gz and C;, rather than ¢z o and Cy rovar
to represent the phase and amplitude of the total lift force. The variation of the vortex forces with
Jfdf, and A/D are then considercd in terms of $ipvomes Co Ci Gdrogs Co @04 Cpmeane  Finally the
universality of the forces on the cylinder and the mode and phase of vortex shedding are considered

for a range of oscillation amplitudes and Reynolds numbers.

3.41 Variation of Total and Vortex Forces with AID

In Figure 3-13 the phase and amplitude of the total lift force on the cylinder are plotted as a
function of £/f, for A/D = 0.4, 0.5 and 0.6, at Re = 2300. These experiments focused on a narrow
range of £,/f, close to transition, but the frequency range incorporates both the low- and high-
frequency wake states. As A/D increases form 0.4 to 0.6 Figure 3-13(a) shows that there is a
significant increase in the value of gy, associated with the low-frequency state: at A/D = (.4, the
average values of by, before transition is approximately 102°, whereas at A/D equal to 0.5 and 0.6
the average values of ¢y, before transition are 154° and 193° respectively. The fact that the value of
dy for the low-frequency state passes through 180° as 4/D increases from 0.5 to 0.6 is significant
because it means there is a change in the direction of the energy transfer between the fluid and the
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cylinder. For A/D = 0.4 and 0.5 ¢y is less than 180° thus positive energy is delivered to the
cylinder from fluid, indicating that vortex-induced vibrations would occur. However, at higher
AJD the energy transfer is negative. Intuitively this makes sense, as the oscillations of an elastically
mounted cylinder do not oscitlation amplitudes above a certain value, i.e. above a certain amplitude
the net energy transfer to the cylinder is no longer positive. The value of ¢y for the high-frequency
state does not vary significantly with 4/D. Therefore as 4/D increases from 0.4 to 0.6 there is a
significant increase in the downward jump in ¢y, at transition. At higher Reynolds numbers Staubli
(1983b) also found that Ay at transition increases with A/D. For frequencies of oscillation close
to transition Figure 3-13(b) shows that for both wake states there was only a smail change in the
values of Cy as A/D increased from 0.4 to 0.6, However, our data at higher Re and Staubli’s
previous results suggest that Cy increases with 4/D and that this effect is most obvious at higher
frequencies well above transition.
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Figure3-13 Frequency dependence of a) ¢yp and b) C; for A/D = 0.4, 0.5 & 0.6 at Re = 2300,

At the higher Reynolds number of 4410, shown in Figure 3-14, similar trends in the behaviour of
the total lift force ar¢ observed. In Figure 3-i4(a) as A/D changes from 0.25 to 0.5 there is a large
change in the value of ¢, for the low-frequency state and a corresponding change in the direction
of energy transfer, but for the high-frequency state ¢us does not vary significantly with 4/D. In
Figure 3-14(b) the amplitude of the total lift force at Re = 4100 increases with 4/D and, particularly
for the high-frequency state, the increase in C, is more obvious than at Re = 2300,

For the same values of £/f; and A/D as in Figure 3-13 the vortex forces on the cylinder are plotted
in Figure 3-15. To recap, the vortex force is the force due to the movement of vorticity, ie. the
force component that is directly related to the wake. The vortex force is calculated by subtracting
the apparent mass force from the total force, where the apparent mass force, F,, is in-line and in-
phase with the oscillation of the cylinder. The drag force on the cylinder is generally not
specifically designated as a vortex force but as the apparent mass component of the drag force is
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zero the total drag force is by definition a vortex force. The energy transfer between the cylinder
and the fluid can be expressed in terms of either the vortex or total lift force, see equation 1-10.
The apparent mass component of the total force makes no net contribution to the energy transfer,
therefore Cr can be associated with the vortex lift force.
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Figure 3-14 Frequency dependence of 2) ¢y and b) C; for 4/D = 0.25 & 0.5 at Re = 4410.

Figure 3-15(a) shows that for both the low- and high-frequency states as 47D increases from 0.4 to
0.6 there is very little variation in the phase of the vortex lift force. The collapse of i vonex in
Figure 3-15(a) contrasts with the variation of ¢y in Figure 3-13(a), where for the low-frequency
state as 4/D increases from 0.4 to 0.6 there is a shift in ¢ye of approximately 90° or % of an
oscillation cycle. The phase of the drag force, shown in Figure 3-15(b), also collapses for 4/D =
0.4 t0 0.6. The fact that the phase of both the vortex lift and drag forces collapse suggests that the
phase of vortex shedding depends primarily on wake state and is approximately independent of the
amplitude of oscillation. The relationship between the phase of the vortex forces and the phase of
vortex shedding will be considered further in the remainder of section 3.5 as well as in section 3.6.
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Unlike the amplitude of the total lift force, the amplitude of the vortex lift force, shown in Figure
3-15(d), varies strongly with A/D. For the low-frequency state as A/D increases from 0.4 to 0.6 the
value of Cy e increases by more than 50%. However afier the fransition to the high-frequency
state Cf womx does not vary strongly with 4/D, and appears to decrease slightly with increasing 4/D.
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At the transition from the low- to high-frequency state C; jumps upwards however at the same
point in Figure 3-15(d) there a downward jump in Cy ore, Where the magnitude of this jump gets
smaller as 4/D decreases. If this trend continued then for even smailer oscillation amplitudes
CLvorrer WOUld actually jump upwards at transition. Figure 3-15(d) shows that for both the low- and
high-frequency states C; e increases with increasing f/f,, The approximately linear increase of
Ci voreex With f/f, is consistent with the discussion in section 3.2.4 relating the vortex forces to an
idealised wake. As shown in Figure 3-15(e &f) both the amplitude of the fluctuating drag force
and the mean drag force increase with increasing A/D. However, the general form of the variation
of both Cp and Cp mean With f/f, does not change significantly as 4/D increases from 0.4 to 0.6,

Unlike the phases of the vortex forces, which showed a relatively good collapse over the range of
A/D studied, the amplitudes of the vortex forces do not collapse but vary systematically with 4/D.
For a given wake mode, it is expected that the displacement of vorticity will vary with 4/D as for
higher oscillation amplitudes the cylinder moves further during the oscillation cyele. Therefore, at
a constant value of fJf,, as A/D increases there is an increase in the rate at which vorticity is
displaced. Thus, according to equation 3-2b both the mean and fluctuating components of the drag
force would be expected to increase with 47D,

The energy transfer between the cylinder and the fluid is plotted in Figure 3-15(c), where, as
described in equation 1-10, the magnitude of the energy transfer is directly related to 4/D but the
direction, or sign, of the energy transfer depends on the value of the lift phase. For the low-
frequency state the energy transfer increases with decreasing 4/D, passing through zero between
A/D = 0.5 and 0.6. The corresponding lift phases, ¢us and $ri4vomer Shown in Figure 3-13(a) and
Figure 3-15(a) respectively, indicate that the negative energy transfer for the low-frequency state at
A/D = 0.6 corresponds to a lift phase that is in the 3™ quadrant Ze. above 180°. At 4/D =04 and
0.5 the low-frequency state 1ift phases are in the 2% quadrant and there is positive energy transfer
from the fluid to the cylinder. The energy for the high-frequency state is negative for all cases
except one point immediateiy filowing transition at 4/D = 0.5, Quiside the transition region the
energy transfer for the high-frequeacy state becomes more negative as A/D increases.

Over the range of A/D studied, the frequency at which transition occurred did not change
significantly. However, therc were changes in the nature of the self-excited transition. At A/D =
0.4 and 0.5 there was a non-reversible self-excited transition from the low-frequency state to the
high-frequency state that was consistent with the self-excited transition discussed previously, At
A/D = 0.5 the self-excited transition from the low- to the high-frequency state occurred over a
number of oscillation cycles. Moreover, after the self-excited transition the lift properties,
particularly C; and diinvonexs demonstrated significant unsteadiness. At 4/D = 0.6 a self-excited
transition was also initiated from the low-frequency state, but at £/, = 0.841 the combined
properties of the total and vortex lift forces after the transition were not consistent with the high- -
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frequency wake state. Further investigations of these phenomena lead to the discovery of a third
stable intermediate wake state, which will be discussed in detail in section 3.6.
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Figure 3-16 Frequency dependence of 2} dupvonce 1) Gung €} Cr, 4) Ch vornor €) Ty ) Cpsucan fOor AID =
0.25 & 0.5 at Re = 4410,

In Figure 3-16 the same properties are plotted as in Figure 3-15, but for the higher Reynolds
number of 4410 and oscillation amplitudes of 4/D = 0.25 and 0.5, As A/D increases the trends
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observed in Figure 3-16 are essentially the same as those at the lower Reynolds number and in both
cases it appears that $rp vercr aNd Por.0 do not vary significantly with 4/D, but depend primarily on
wake statz  These trends are also consistent with those observed at Re = 9100 as A/D was
increased from, 0.25 to 0.5,

3.4.2 Variation of Total and Vortex Forces with Re
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Figure 3-17 Variation of the total lift force at A/D = 0.5 for Reynolds numbers of 2300, 4410 and 9100,
In a) and b) the phase and amplitude of the total lift force respectively are plotted agsinst £/f;, while in

c) and d) ¢pand C; are plotted against £/

The frequency dependence of the total lift force shown in Figure 3-1 for Reynolds numbers ranging
from 2300 to 60,000 indicates that the jump in ¢y and C; are universal features that occur over a
wide range or Reynolds numbers. The effect of Reynolds number on an oscillating cylinder is
however, complex. In Figure 3-1, and also in the work of Staubli (1983b), it is evident that the
non-dimensional frequency, fifi, at which the transition from the low- to high-frequency state
occurs, is generally not equal to unity. The transition frequency Jfif, varies in an apparently non-
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systematic fashion with Reynolds number and the reasons for this variation are, at this stage, not
well understood. It has already been observed that for 4/D = 0.5 and Re = 2300 the self-excited
transition occurs from the low- to the high-frequency state, while at Re = 9100 the direction of the
transition is reversed. Although this observation does not explain why fif, varies with Re il does
indicate that the relative stability of the low- and high-frequency states relative to the initial
stationary cylinder state can vary with Reynolds number. It is therefore not unexpected that f{f,
also varies with Re. The variation of the forces with Reynolds number is often more clearly
illustrated by plotting them against ///; rather than £/f,. Although there may appear to be a stronger
case for normalising the oscillation frequency with £, rather than £, it is important to remember that
/> describes the natural Karmédn frequency of a stationary cylinder. When the cylinder is oscillating
it is expected that changes in the generation and distribution of vorticity will alter the natural
instability of the wake.

In the next section the variation of the forces on the cylinder with Reynolds number will be
examined for two different oscillation amplitudes: 4/D = .25 and 3.5, in Figure 3-17 the pha<e
and amplitude of the total lift force at 4/D = 0.5 is plotted against both £/, and £/f.. The apparently
non-systematic nature of the variation of the transition frequency, £, is evident in Figure 3-17(a &
b); where the transition occurs well below £/f, = 1 at Re = 2300, shifis to just above f/f,= 1 at Re =
4410, while at the highest Reynolds number of 9100 the t..nsition occurs almost exactly at /f, = 1.
As Re increases from 2300 to 4410 there is a large increase in the value of ¢us for the low-
frequency wake state, however as Re increases further to 9100 §4; shows very small increase and
remains essentially constant. For the high-frequency state when ¢y is plotted against £f, in
Figure 3-17(a), the shifl in the transition frequency makes it difficult to interpret the variation of ¢y
with Re. If the normalisation frequency, %, relates directly to the natural instability of the wake of
the oscillating cylinder, then the results in Figure 3-17(a} suggest that for the high-frequency state
¢np varies with fJf; irregardless of the frequency at which transition occurs. However, it is not
clear if the results can be interpreted in this way as f, relates to the wake of a stationary cylinder.
When the frequency of oscillation is normalised by the transition frequency in Figure 3-17(b), it
appears that for the high-frequency state ¢, becomes more negative as Re increases. When, as in
Figure 3-17(a & b), the transition is plotted as a phase jump in the clockwise direction the
magnitude of the jump in ¢;;; appears to increase as Re increases. If however the transition were
plotted as a phase jump in the anti-clockwise direction, ie. the high-frequency state was plotted in
the 4 quadrant, ¢np would increase with increasing Re for both the low- and high-frequency states
and the phase jump at transition would be relatively similar for all Re.

The large shift in the value of £/f; at which the transition occurs also makes is difficult to determine
the variation of C; with Re in Figure 3-17(c). However, in Figure 3-17(d), where C; is plotted
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against f/f,, it is appears that for the low-frequency state the amplitude of the total lift force
increases as Re increases from 2300 to 9100. For both Re = 2300 and 4410 the transition between
the fow- and high-frequency states comespunds to a distinct jump in Cr. At Re = 9100 the
transition corresponds to a relatively small jump in Cy, but foliowing the transition to the high-
frequency state C; increases rapidly. Thus, for higher values of £/7; it appears that that amplitude of
the: 1otal Jift force will increase with increasing Re, aithough closer to the transition region Cy is
farger at Re = 4410 than at Re = 9100.
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Figure 3-18 Variation of the tota$ lift force at A/D = 0.15 for Reynoids numbers of 2300, 4410 and
9100. In a) and b) the phase and amplitude of the tota) lift force respectively are plotted against £/, !
while in ¢) and d) ;s and C; are plotied against fJf, i
|
| In Figure 3-18 the phase and amplitude of the total lift force at 4/D = 0.25 are plotted for Reynolds i )
numbers of 4410 and 9100, As for 4/D = 0.5, the value of fJf, at transition does not change by a i':_;‘.
large amount as Re increases from 4410 to 9100, however for completeness in Figure 3-18 the i
resuits have been plotted against both £f, and f{f,. At the smaller amplitude of 4/D = 0.25 Figure |[
3-18 shows similar trends to those observed at 4/D = 0.5. At A/D = 0.25 as Re increases from 4410 '
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to 9100 there is a relatively large increase in the value of $yy for the low-frequency state close to
the transition region. At Re = 4410 the larger values of ¢us for oscillation frequencies below
J/f, = 0.85 may be associated with the fact that the wake is approaching the lower bounds of leck-
in. For the high-frequency state Figure 3-18(b) shows that ¢, becomes more negative as Re
increases from 4410 to 9100 and, in general, the changes in C; 2s Re increases from 4410 to 9100
at A/D = 0.25 are quite similar to those observed at A/D = 0.5. In both cases the transition
corresponds to an abrupt jump in C; at Re = 4410 while at Re = 9100 the initial jump in C; is much

smaller.

: The variation with Reynolds number of the vortex forces: Oupwren Cr vorters Purage Cp 3nd Cp meen, 25
- well as the energy transfer are shown in Figure 3-19 and Figure 3-20 for 4/D = 0.5 and 0.25
i respectively. The phase of the drag force was not plotted for the iower amplitude of 4/D = ¢.25 as

for many points the correlation coefficient of the drag force with a sinusoidal signal was less than

0.5. For both oscillation amplitudes ¢y vore and, where shown, ¢y do not vary significantly over
: the range of Reynolds numbers examined, however the magnitude of the vortex forces: Cy vomer, Co
"';_ . and Cp pean and Cg all vary with Reynolds number.

For the low-frequency state the energy transfer tends to become more positive as Reynolds number
decreases fror 9100 to 2300. In Figure 3-15(c) we saw that decreasing the amplitude of oscillation
can reverse the direction of energy transfer for the low-frequency state from negative to positive.
A reversal in the direction of energy transfer is also shown in Figure 3-19(c) as Re decreases from
4410 to 2300. In Figure 3-20(b), at the smaller oscillation amplitude, the low-frequency state
encrgy transfer is positive for both Re = 4410 and 9100, except for the very low oscillation
frequencies at the edge of the lock-in region. For the high-frequency state at both osciliation
amplitudes the energy transfer becomes more negative with increasing Re, At A/D = 0.5 there is a
: relatively small downwards jump in C as the wake transitions from the low- to the high-frequency
state, while at 4/D = 0.25 there is a relatively large jump in Ce.

At A/D = 0,25 and 0.5 both Cy e a0d Comear appear to increase with increasing Reynolds
numbers. At A/D = 0,25 there is an interesting change in the direction of the jump in C; o, at
transition. In the previous section the size of the downward jump in Cp 0. at transition, shown in
Figure 3-15(d), decreased as A/D decreased from 0.6 to 0.4, When, as shown in Figure 3-20(c),
AlD decreases further to 0.25 the direction of the jump is reversed and at the transition between the
B low- and high-frequency states Cjyomn jumps upwards. An interesting feature of both Figure
; f 3-19(e) and Figure 3-20(d) is that at Re = 4410 the transition from the low- to the high-frequency
o state corresponds to a distinct drop in Cjp while at the other Reynolds numbers the changes in Cp at

the transition are smaller,

138




a) L MELEE B T T ] d) 4. T T T LIRS " ]
mle  HoRmag 17 :
X . 3l 3
0 - __ J
%\mﬂﬂ [ » b 3 A { - ] L . :
L cw,f.' adss T L@ g
or . ] ] °
I . . !“! ]
i i ® * -
I n [ e ® |
Ry A:. .'E " e . o ®
- ‘~ [
P B PR PR Y L ad s 0. L Y l.....l-.--]._. | B
07 08 09 1.0 1.1 12 1.3 07 08 09 1.0 i 1.2 1.3
B, i
b)270... T Ty T T ] 9)0’7 T T ¥ T ~T .:
Y 5.5 ] osf LI
180 - . L b
[ | ] ]
I ] 05 a4 .
| L ] .
¢‘dragvu|n 3 C,._. s -MA - s y
A - 04 ]
[ ) F ad g &.‘ ]
1 3 s e * J
] 0.3: - r ® :
or Weowe * o] : . :
: a 02 . 3
| J [ @ j
80 1., i 1 PP EPPETITS IPUP 0‘1'....1. M RPUPEEYPE IR L b ]
07 08 e1:} 1.0 11 1.2 1.3 07 o8 09 1.0 i1 1.2 12
% T
c’ 2_- e e T T -—f) i T T e ¥ ]
[ ] L B, ]
3_. -3
ofle oo @ !f - [ & a ] ,
L QA m. » Py 3 - b
I I A A T ¥
-2 - qil i . F A &. al - L ) 4 i
c : an ] ¢ 2 "R ° ] :
e : Sy e ] "™ .®® eo, &
3 X R ] 5
3 ly T
-6'- A ] [ i
-8"""""" PN SIS TN TP D-‘ T BT bttt ettt I
0.7 08 08 1.0 11 12 13 07 08 09 1.0 1.1 1.2 1.3
U’[ f&”l !
® Re=2300, M Re=4410, A Re=9100 :
Figere 3-19 Frequency dependence of 3) duz wrvers b} $imps €) Cer 8) Cwrers €) Cps ) Cpmeen 3t A/D = 0.5
for Re = 2300, 4410 and 9100, The frequency of oscillation f; is normalised by J, the frequency at
which the transition occurs.
3

139



— g} AT
ZI } [ |
E L f-%
2 I [
4 3k Aﬁ A -
L I | ]
o0 | 3 & .
[ Bverex | N a » E
! 1 cuurtuz ‘ a
(1] 3 - » -
F.8
k%l w Aﬂ““ g
90 "y : :I Seg y [ Eam
_1w 1 L 1 or [ 1 ke, " ]
05 10 15 20 05 1.0 15 2C
£/, /5
b) 10— T T L d] 0s T T T -
[ ] a 4
| B ] 04 ] 7
0 | .
1
H cD 03 N | b
g | )
CE ‘l- " .Cz ™ N
a 0.2+ v, He “ .
FaX B ‘ "‘g‘
2} &, " ' "a® am
I- & & - A ] ‘e
[ n
3 I S S SR 001~ cim vt L bt i ]
(113 10 15 20 05 1.0 15 2c
&/ f/ly
e) 3= T T
L ﬁé%
5 F-y A Aa F
2L al mee -
: amgnm !
&gn
cDmun _. j
L :
B Re=4410, & Re=9100 |
05 1.0 15 2C
: felt,

Figure 3.20 Frequency dependence of a) $igvoren b)Y Cry €) Ci romers 8} Cs €) Cpymenn 2t AID = 0,25 for Re
= 2300, 4410 and 9100. The frequency of oscillation £ is normalised by f, the frequency at which the
transition occurs,

The changes in the total and vortex lift forces as Reynolds number varies reveals that the
apparently simple vect.<ial relationship between F,,...c and F,,, in equation 1-7 is not always casy
1o interpret. For a given non-dimensionalised amplitude and frequency of oscillation the phase and
amplitude of the apparent mass force does not vary with Reynolds number and the total lift force is

equal to the vortex lift force plus a constant vectorial apparent mass force. However, as the vortex
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lift force is generally not in-phase with the apparent mass force, the relationship between the phase
and amplitude of the total and vortex lift forces remains compiex. For example, in most cases the
phase of the total lift force varies strongly with Re, however when the apparent mass force of
constant phase and amplitude is subtracted from the various total lift forces the phase of the
resulting vortex lift force is apparently independent of Re.

The most striking feature of this series of plots (Figure 3-13 to Figure 3-20) is that while the
magnitude of the vortex forces: C; vaexs Cp aNd Cp meqn 85 Well as the energy transfer and the total
lift forces all show significant variation with Re or 4/D, the phase of the vortex forces dys ome: and
dare D NOt vary significantly. It is expected that both Reynolds number and the amplitude of
oscitlation can change the relationship between the wake’s natural instability and the large scale
forced perturbation. However, without further extensive investigation it is not possible to quantify
the nature and effect of these changes. In addition, it is likely that other factors such as end
conditions, turbulence intensity and length scale also influence the forces on the cylinder and the
direction of energy transfer. Given the complicated nature of this problem it is significant that the
jump in the phase and amplitude of the lift force persist over a wide range of oscillation amplitudes
and Reynolds numbers.

3.4.3 Vortex Force: Collapse of Vortex Phase

In Figure 3-15, Figure 3-19 and Figure 3-21 the phase of the vortex lift and drag forces are plotted
for cases where either the amplitude of oscillation or the Reynolds number is varied. In all cases it
was shown that ¢14 vamex A0d g did not change significantly as either A/D or Re was changed. In
Figure 3-21 the values of $usome and dume resulting from all our experiments are plotted as a
function of £/f; on a single axis. The parameter set for thesc experiments is as follows {{(4/D, Re)=
{0.25, 4410), (0.25, 9100), (0.4, 2300), (0.5, 2300}, (0.5, 4410), (6.5, 9100), (0.6, 2300)}. Over this
parameter set Figure 3-21 demonstrates a striking collapse of both ussomer 208 Qury towards
constant values for a given wake state. While there is a small degree of scatter, for the low-
frequency state Qus.ome appears to collapse towards 180° for a wide range of oscillation
frequencies. Immediately following the transition to the high-frequency state there is an increase in
the scatter of drp.rer. The source of the scatter is that for A/D = 0.4 and 0.5 immediately following
transition Quswre tends to be close to 0°, decreasing smoothly towards ~90° as fif; increases
further. At A/D = 0.25 and 0.6 Pigonex tended to jump straight down 1o -90° at the transition to the
high-frequency state. There is in fact only one recorded point at 4/D = 0.5 and Re = 2300 where
the valte of §upwama for the high-frequency state was above 0°. The existence of this point is
important as it is the only case where positive energy transfer is observed for the high-frequency
state. Further away from the transition region the value of dy.one for all 4/ and Re collapses
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towards -90°. Thus, excluding the region just above f/f; = 1, the transition corresponds to a
clockwise (negative) vortex phase shift of approximately 270° as shown in Figure 3-2] or a
counter-clockwise (positive) vortex phase shift of approximately 90°,
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Figure 3-21 Phase of the vortex lift and drag forces, dun vorter 80d Gypg for all experiments with A/D
ranging from 0.25 to 0.6 and Re ranging from 2300 to 9100,

The drag phase plotted in Figure 3-21 shows a very similar collapse to the vortex lift phase for the
same range of A/D and Re. (Note: fewer points were plotted for the drag phase as at 4/D = 0.25
and Re = 4410 the correlation of the drag force with a sinusoidal signal was less than 0.5 and could
nct used to calculate a value of ¢u.g). As discussed in section 3.2.3 there are a number of valid
ways fo define and present the phase relationship between the drag force and the cylinder’s
displacement. In this section the drag phase has been defined using equation 3-1 and presented
such that the jump in dy.g at transition is of comparable magnitude, and in the same direction, as
the jump in C; yner. For the Jow-frequency state the drag phase collapse towards $utrog ©225° and
the phase of both the vortex fift and drag forces are remarkably constant. There is a phase
difference between dup vomer and e of approximately 45°, which means that each local minimum
in the vortex lift force coincides with a local minimum of the drag force. Afier the transition to the
high-frequency state the drag phase is just under 0° and the scatter in $u., immediately following
the transition is less that the scatter in ¢z voma. Further away from the transition region the relative
phase difference between the vortex lift and drag forces for the high-frequency state is
approxirmately 75°, which is slightly larger than for the low-frequency state.
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Together ¢us vone and Gavo represent the timing of the movement of vorticity wake, However, .as
the frequency of the drag signal is twice that of the vortex lift it is difficult to assign a physical
significance to the differences in dug wre and du4- Closer consideration of equation 3-2 shows that
the phase relationship between the vortex lift force and the drag force depends upon the relative
phase of the movement of vorticity in the horizontal and vertical directions. Therefore, both the
values of §sgvane aNd uop and relative phase between the vortex lift and drag forces (dnpone -
$urc) depend on the way in which vorticity is distributed during the shedding cycle, and therefore
on the mode of vortex shedding. As the wake state changes from the low- to high-frequency state
there is a change in the distribution of vorticity but there are only relatively small changes in the
relative phase between vortex Tift and drag forces.

The collapse of the phases in Figure 3.21 indicates that the timing of the movement of vorticity
within the oscillation c¢ycle, and therefore the phase of vortex shedding, depends primarily on wake
state and is relatively independent of A/D and Re. In the next section the phase-referenced vorticity
fields are examined to determine if indeed the phase of vortex shedding is independent of 4/D and
Re. As shown in Figure 3-15, Figure 3-19 and Figure 3-20 Cp and C; voner do not collapse towards
a single value for a given wake state, indicating that, while the timing of vortex shedding is
approximately constant, the level and distribution of vorticity depends on both Re and A/D. Unlike
the phase of the vortex forces, which are in general approximately constant for a given wake state,
the amplitude of the vortex lift forces also vary with the frequency of oscillation.
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3.4.4 Vorticity Fields

Phase averaged vorticity fields at 4/D = 0.25, 0.4, 0.5 and 0.6, are shown in Figure 3-22 and Figure
. 3-23, for the low~ and high-frequency wake states respectively. The Reynolds sumber is 9100 for
' . A/D = 0.25, while at the larger amplitudes (4/D = 0.4, 0.5 & 0.6) Re = 2300. The low-frequency
wake modes, in Figure 3-22, are shown as the cylinder moves from the top of its oscillation,
column ), through its downwards stroke, columns i¥) to #). Looking down the columns, at the
same phase point in the oscillation, allows comparison of the wakes at different 4/D, whereas
looking along the rows shows the wake development as the cylinder moves through its downward
stroke.

: At the top of the cylinder’s oscillation the low-frequency wake, shown in Figure 3-22 column i),
- ' has an attached negative shear layer which extends across the base of the cylinder into the lower
: half of the wake. The length of this shear layer increases with the amplitude of oscillation and is
significantly longer in Figure 3-22(d)() at A/D = 0.6 than at 4/D = 0.25in Figure 3-22(a)(i). In
column (if), Y of the way through the downward stroke, a portion of negative vorticity staris to

separate from the end of the longer shear layers. The break in the shear layers is observed at 4/D =
0.4, 0.5 and 0.6 and in column i) the break is approximately adjacent to the bottomn of the cylinder,
At A/D = 0.25 the attached shear layer is much shoster, only just extending past the bottom of the
cylinder, and a portion of vorticity does not separate from the end of the shear layer. As the
cylinder approaches the mid-point of the downward stroke the lower positive shear layers swings

upwards towards the negative shear layer. At 4/D = 0.6 the upward angle of the lower shear layer
is very pronounced and as expected this angle decreases with decreasing 4/D. For ail amplitudes
of oscillation the interaction of the two shear layers causes the main section of the negative shear )
layer to separate from the cylinder. At the higher oscillation amplifudes the separation of the |
negative vorticity occurs closer to the cylinder, probably due to the increased angle of the lower
shear layer. In column (iv) where the cylinder is % through the downward stroke, for all

amplitudes of osciliation the separation of the negative vorticity is essentially complete.

As 4/D varies from 0.25 to 0.6 the general structure of the low-frequency wakes in Figure 3-22 is

very similar. However, there are systematic changes in the location and size of the vortex
structures in the near wake as the oscillation amplitude increases. Importantly, at each point in the
cylinder’s displacement cycle the low-frequency wakes in Figure 3-22 are essentially at the same
point in their shedding cycle and the timing of vortex shedding is effectively independent of A/D .
and Re,
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Figure 3-22  Phase averaged fow-frequency state vorticity ficlds f
AID = 0.4, ¢} AID = 0.5 and d) AID = 0.6 all at Re=2300. The im
intervals such that §) is at the 1op of the cylinder’s oscillation

downawards stroke.




Figure 3-22 continued...




While the timing and general structure of vortex shedding appear to be independent of A/D} and Re,
Figure 3-22 shows that there are systematic variations in the distribution of vorticity in the near
wake. At A/D = 0.5 and 0.6 the negative vorticity has been shed as two distinctly separate
structures, while at 4/D = 0.4 the negative vorticity is shed as a single vertical band which shows a
propensity to break into two separate structures. At A/D = 0.25 a single negative vortex structure,
elongated in the vertical direction, is shed into the near wake. The splitting of the shzar layer into
two separate structures is a key step in the formation of a 2P wake, At higher vaiues of 4/D (0.5 &
0.6, the splitting of the extended sheas layer into two separate structures and the resulting 2P mode
of shedding is quite pronounced. However, at the smaller values of 4/D (0.25 & 0.4) the shear
layer is shorter and the splitiing of the shear layer either does not occur or is unclear. Therefore,
while the other features of the low-frequency wake state persist at small amplitudes of oscillation,
there appears to be a limiting amplitude, below which the shear layer is not long enough generate
the 2P mode of shedding.

Figure 3-23 shows the high-frequency wake states at the top of the oscillation cycle. As for the
low-frequency wake state, the timing of vortex shedding and the general structure of the wake is
essentially unchangeri as A/D increases from 0.25 to 0.6, at Re = 2300 and 9100. As 4/D and Re
change the differences in the distribution of the vorticity for the high-frequency wakes, shown in
Figuze 3.23, are quite subtle as the general structure of the wakes is quite condensed. Figure 3-15
shows that the ohase and amplitude of the vortex lift force corresponding to the three images at A/D
= .4, 0.5 and 0.6 are relatively constant and the only variation in the vortex forces for these three
images as A/D increases is an increase in the mean and amplitude of the drag force. As 4/D is
increased the vorticity tends to break up more quickly as it moves downstream and additional
images at higher Reynolds numbers indicate that as Re increases there is a similar increase in the

break up of vorticity.

The robustness of the phase ¢f vortex shedding for 2 particular wake state indicates that the vortex
shedding is phase locked to the displacement of the cylinder. The relatively constant values of
P11g voriex A0 Gurae for each wake state, shown in Figure 3-21 for a range oscillation amplitudes and
Reynolds numbers, are consistent with the constant phase and structure of vortex shedding

illustrated in Figure 3-22 and Figure 3-23.




Figure 3-23 Phase averaged high-frequency state vorticity fields for ) {102 - 4.25 at Re = 9100 and b}
A/D=04,c) AlD =105 and d) A/D = 0.6 all at Re = 2300,

148




3.5 SPECTRAL ENERGY AS A FUNCTION OF 1./%,

An elastically mounted cylinder vibrates at a frequency that depends on the reduced velocity, wake
state and the properties of the cylinder and its supporting structure, including the structural spring
constant, structural damping and mass. However, once a particular structure has been selected the
natural freaucncy of the structure is constant during the expertment. When the oscillations are

forced the situation is reversed: the forcing controls the frequency of oscitlation but the frequency
of the wake’s natural instability varies with £, and wake state.
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Figure 3-24 Variation of Lift spectra with oscillation frequency £/f; at A/D = 0.25 and Re = 4410, The
spectral frequencies f are normalised by £ and the frequency of oscillation f, is normalised by the
transition frequency £, where £/, = 1.10.
[n Figure 3-24 the lift spectra for a range of oscillation frequencies, at A/D = 0.25 and Re = 4410,
are plotted on a single three-dimensional axis. Typically, the lift spectra have a sirong peak at
f=/ the frequency of oscillation, with a second smaller peak at a frequency fu, which as
B b)

discussed in section 1.4.1, can be associated with the natural frequency of the oscillating cylinder
wake. In general, f is close io £, the natural frequency of the stationary cylinder wake. The

149




h———:

distribution of speciral energy between the peaks at £, and /.. depends on the response of the wake
to the cylinder’s oscillation. As discussec in section 1.3.1 the relative energy of the peak at /. s
often used 1o define when the cylinder’s wake is locked-on to the imposed osciilation. As the wake
moves beyond the lock-in region /... oecomes the dominant, or most energetic frequency in the
wake.

As shown in Figure 3-24 for £/f, > 0.8 the wake is clearly locked-on to the cylinder and the most
energetic frequency in the {ift spectra corresponds to the osciilation frequency of the cylinder. For
the lower frequencies of oscillation, however, the peaks at £, and /. are small and of comparable
energy levels. As f/f, increases the energy at £, decreases and there is a gradual increase in the
energy at f;, until at transition, there is sharp jump in the energy at .. The jump in the energy at the
oscillation frequency corresponds to the jump in the amplitude of the total lift force shown in
Figure 3-18. At frequencies just above transition the second peak at fic could not be resolved.
However, as f./f, increases further the second peak at £, reappears.

200 r+rr—r——r—r T T T T T T T -
175F| =2 feflo .
| —o— A :
150 | ~— T/l ]
& t 3
=y . 4
g 5 o
3 2s5F ﬁ____ﬂ/’“"'/liA ]
o [ ]
™ g ]
o 1o0f i S W N V. 3
8 : :
® . J
£ 0.75 1
o 3
Z osof ]
025 | -

P SR NP [T T Y i 1 ] PP Y . [

1.00 1.25 1.50 175 2.00

L
- |
Figure 3-25 Variation of the most energetic frequencies with the frequency of oscillation for the lift

spectra shown in Figure 3-24 at 4/D = 0,25 and Re = 4410. In 21l cases the peak at £; Is more energetic
than the peak at f,...
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In Figure 3-25 the frequencies of the spectral peaks in Figure 3-24, f,./%;, £/, and £if,.. are pliotted
against the normalised oscillation frequency. For all frequencies of oscillation the natural
frequency of the oscillating wake is greater than the natural frequency of the stationary wake, i.e.
Joalfo > 1 or equivalently f£If, > f/fues. As the frequency of oscillation increases towards transition
(4, — 1) both f; and /., increase, however the relative rates of increase are such that the peaks
move closer together. Prior to transition f,, is greater than £, and transitiors occurs before the peaks
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intersect. lmmediately following transition f.. could not be resolved, however, for £/ 2 1.2, fi is
slightly greater than £, and does not vary significantly with £/f. Therefore, after transition f,, is
less than £, and the peaks move apart as the frequency of oscillation increases.

At transition there is a downward jump in f,,, the natural frequency of the oscillating wake. As
transition corresponds to a change in the mode and phase of vortex shedding, it is reasonable to
expect that there could be a corresponding change in the natural frequency of the oscillating wake.
Additionally, the transition between the two wake states corresponds to a change in the relaticaship
between f... the natural frequency of the oscillating wake and the forcing frequency 7, where for
our Jocked-in wake f; corresponds to the frequency of vortex shedding. At low frequencies, prior to
transition, fu,s is greater than £, indicating that shedding controlled by the natural instability would
occur faster than “allowed” by the forced oscillation, The resulting wake mode forms long
extended shear layers. As f/f, increases the peaks at f,,. and /. move together and the wake
coniracts. Afier transition the natural frequency is less than the forcing frequency (fu < fo) and as
fulf, increases the peaks move further apart. Thus, the forced vortex shedding occurs faster than it
would if shedding were controlled by the wake’s natural instability. In this case the wake is
significantly shorter and the mode of vortex shedding is different.
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3.6 INTERMEDIATE WAKE STATE

In the previous sections a cylinder undergoing forced oscillations has been shown to exhibit at least
two distinctly different wake states: the low- and high-frequency states. However, at certain
amplitudes of oscillation there is a third wake state, located between the low- and high-frequency
states, which we will call the intermediate state. In the following section the properties of the
intermediate state are described in terms of the forces on the cylinder and the phase referenced
structure of the near wake. The properties of the intermediate wake state will be discussed using
results from sets of experirents at two different oscillation amplitudes, 4/D = 0.5 and 0.6, where
for both cases Re = 2300. The intermediate state is a new, independent wake state whose
properties are distincily different from either the low- or high-frequency wake state.

3.6.1 Force properties

The low-frequency, intermediate and high-frequency wake states can be characterised in terms of
the forces on the cylinder, as shown in Figure 3-26 and summarised in Table 3-1. In Figure 3.26
the phase and amplitude of the total lift, vortex lift and drag forces are plotted as a function of /77,
for an oscillation amplitude of 4/D = 0.6. At frequencies of oscillation where the wake undergoes
a self-excited transition between wake states the data has been split into segments encompassing 2
singie state only. The two intermediate state data points, at £/f, = 0.84 and 0.85 in each graph of
Figure 3-26, have been calculated from continuous time seginents containing 57 and 13 cylinder
oscillations respectively,

A distinguishing feature of the intermediate wake state is the large difference in the phases of the
total and vortex lift forces. In section 3.4 we observed that the transition between the low- and
high-frequency states corresponds to large changes in both ¢us and ¢ys e, where these changes
are of a sitmilar magnitude. However, as the wake moves to the intermediate state from either the
low- or high-frequency states §us and ¢y vomer behave quite differently. When the wake moves
from the low-frequency state to the intermediate there is a large downward jump in ¢yy while the
value Of Gypiworer Temains relatively unchanged, as shown in Figure 3-26(a & c) respectively.
Conversely, at the transition from the intermediate state to the high-frequency state there is a large
downward jump in sy .one While dys does not change significantly. Thus, for the intermediate
wake state the values of ¢y are essentially consistent with the values typically observed for the
high-frequency state, while the values of §upome are similar to those observed for the low-
frequency state, The drag phase, shown in Figure 3-26¢, has been plotted so that the variation in
$urag OVer the three wake states is less than 180°, where, due 10 the way the drag phase is defined in
equation (3-1), Gurg = $ureg + 180°. The drag phase for the high-frequency state has been plotted in
the 2™ quadrant to emphasise the fact that the value of it for the intermediate state falls between
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the values for the low- and high-frequency states. Thus, unlike the phases of the totel and vortex
lift forces, the values of §un for the intermediate state are clearly different from those observed for
both the low- or high-frequeacy states.
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Figure 3.26 Phase and amplitude of the total lift force, the vortex lift force and the drag force on the
cytinder as a function of fe/fo, A/D = 0.6 for the low-frequency, intermediate and high-frequency wake

states.

As shown in Figure 3-26(b & d) the amplitudes of both the total and vortex lift forces for the
intermediate state fall in between the corresponding amplitudes for the low- and high-frequency
states. The ransition from the intermediate to the high-frequency siate corresponds to a drop in the
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amplitude of the voriex lift force, and immediately afier the transition C wee: is very small. As g A A
increases after the tramsition to the high-frequency state Cj.omer grows quickly, and at higher
cscillation frequencies Cp ione i greater than for the intermediate state. As discussed in section
3.4, the direction and magnitude of the jump in Cy wer at the transition between the low- and high-
frequency states varies with both A/D and Re, The intermediate state was only observed at the two
highest oscitlation amplitudes considered in these experiments: 4/D = 0.5 and 0.6. For the range of
Jlf, considered, at both A4/D = 0.5 and 0.6 the values of Cy . fOr the high-frequency state are
significantly smaller than for the low-frequency case. In contrast to the amplitudes of the total and
vortex lift forces the arplitude of the drag force, shown in Figure 3-26(f), does not vary
significantly as the wake moves between the low-frequency, intermediate and high-frequency
states. In summary, the force propesties shown in Figure 3-26 fall into three distinct categories
representing the three wake states. The properties of the three wake states are catalogued in Tabile
3-1 and the changes that occur at the transitions between the wake states are listed in Tabie 3-2.

Table 3-1 Summary of the force and wake properties for the low-frequency, intermediate and high-
frequency wake states.

STATE | LOW FREQUENCY INTERMEDIATE HIGH FREQUENCY
e
Wake 2P 28 28
Mode | .\ mid to high A/'D) (@t A/D = 0.5 & 0.6)
dun High Low Low
(2™ or 3" quadrant) (near zero) (near zero)
C Low Medium High
L (relatively constant) (increasing with f/f)
brin vortex High High Low
(=180") {=180°, less steady) (moves towards -90" at
higher f/f,)
C High Medium Low
Lyonex | (relative value depends (relative value depends
on A/D & Re) on A/D & Re)
arag Righ {=180% Medium Low
Co Does not vary significantly with wake state
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Table 3-2 Summary of changes occurring at the transitions between the low-frequency, intermediate
and high-frequency wake states.

Low Freq. — Intermediate

Intermediate — High Freq.

Jump in duia
constant dhiﬁ vortex

Jump in Cy voex

small jump in $ang

constant ¢up
jump in i vorex
small jump in Cp yonex

small jump in ¢yng

For both A/D = 0.5 and 0.6, at cscillation frequencies were the intermediate state was observed the
wake did not move to the intermediate state immediately after the cylinder started oscillating.
Rather, the intermediate state was observed after a self-exciter! transition from either the low- or
high-frequency wake states. In Figure 3-27 a self-excited transition from the low-frequency state
to 2 stable intermediate state is shown at 4/D = 0.6 and £.f, = 0.84. Immediately afier startup the
wake is in the low-frequency state and both §ss 300 Buys vomex are close to 180°, while ¢u is close to
225°. During the first 200 s of the experiment there are a number of transient self-excited
transitions to the intermexiate state. The transitions ate characterised by a sharp, short-lived drop
in sy from approximately 180° to 0°, and much smaller variations in du vore ANA buog. iioWever,
the transitions in the first 200 s appear to be unstable, as the wake is in the intermediate state for
only a small number of oscillations before returning to the low-frequency state. Interestingly, as
the wake retumns to the low-frequency state from the unsteady intermediate state the changes in dup

are more gradual, occurring sver a number of escillations,

Att = 223 s there is a stable self-excited transition from the low-frequency state to the intermediate
state and, from this point until the end of the experiments at 1 = 320 s, the wake remains in the
intermediate state. The most notable aspect of the transitions from the low-frequency state to the
intermediate state is the Yarge jump in ¢y While g vone: remains relatively unchanged. Although
the mean value of {ug vores fOr the intermediate state is similar to the low-frequency state value there
is a noticeable increase in the variance of dp.one. Careful examination of Figure 3-27 shows that
for £ < 233 s b wee 15 remarkably constant except for the periods corresponding to the transient
transitions to the intermediate state. At the transition between the low-frequency state and the

intermediate state there is a noticeable decrease in the ¢urg this decrease occurs at both at the final

transition and at the earlier transient transitions,
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Figure 3-27 Variation of the instantaneous values of dun, Pun vartes 2N ¢aray Showing a self-excited
transition from the hw-frequency state to the intermediste state at A/D = 0.6, {1, = 0.4 and Re =
2300, The iastantaneous phases were calculated using a correlation width of 3 oscillation cycles.

At the slightly higher oscillation frequency of £/f, = 0.85, the properties of the totzl and vortex lift
forces indicate that the wake exhibits all three wake states. However, the wake appears to be
unstable and, as shown in Figure 3-28, the wake does not persist in any of these wake states for
extended periods of time. Afier the cylinder starts oscillating at £y, = 0.85 the first wake state is
the low-frequency state and both s and dys e are close to 180°, After only a small number of
oscillations at t = 25 s ¢y drops down to close to 0° while the value of §yz 0 remains high, thus
the force properties are consistent with the intermediate state. The force properties remain
consistent with the intermediate state for a relatively short period of time and at t = 40 5 divores
drops towards values of between -45° and -90°, which are consistent with the high-frequency state.
For the remainder of experiment s vune. alternates between high and low values, indicating that the
wake is moving between the intermediate and high-frequency states.
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Figure 3-28 Variation of the instantaneous values of ¢y a0d Gyp voree, 3¢ A/D = 0.6, 1/f, = 035 and Re=
2300. The instantaneous phases were calculoted using a correlation width of 3 oscillation cycles.

At A/D = 0.6 the intermediate state was observed both as a stable wake state, at //f, = 0.84, and as a
relatively unstable state at £/, = 0.85. For all cases examined at A/D = 0.5 the intermediate state
was observed either as a transitional state during a self-excited transition from the low- to the high-
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frequency state, or for relatively shont periods of time as a transient state afier a transition from the
high-frequency state. In Figure 3-29(a) the phase and amplitude of the total it force are shown
together as a function of time for 4/D = 0.5 and Ji/f, = 0.825. The corresponding phase and
amplitude of the vortex lift force are plotted in Figure 3-29(b). Immediately afier start-up the wake
is in the low-frequency state. After approximately 46 s the wake begins to change state and after a
number of oscillations, including a period of time when the properties of the wake are consistent
with the intermediate state, the wake completes the transition to the high-frequency state. In this
situation the intermediate state is observed as a transitional wake state, occurring as part of the
transition between the low- and high-frequency states. Nevertheiess, the properties of the
transitional intermediate wake state, indicated by the left hand shaded region in Figure 3-29, are
fully consistent with the stable intermediate wake state observed at 4/D = 0.6.
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Figure 3-29 Variation of the phase and amplitude of a) the total lift force and b) the total lift force
during self-excited transitions at A/D = 0.5, /1, = 0.825 and Re = 2300. The instantzireous phases and
ampHtudes were calculated using a correlation widths of 3.0 and 1.2 oscillation cycles respectively.

As the wake begins the transition from the low-frequency state the initial changes in ys, shown in
Figure 3-29(a), occur over approximately 16 oscillations, from ¢ 46 - 70 5. During this time there
are only relatively small changes in $usvorer Cr a0d Cpyorvers although as &y drops sharply just
before the end of this period there is a cotresponding drop in Cpiomer. From ¢~ 70 to 85 s the
properties of the lift force are consistent with the intermediate state; drs vorrer remains close to 180°
(3.14 radians), qug is close to 0° and both Cp and Cp voner @re in between the low- and high-
frequency state values. Afler the first transition to the high-frequency state at 1 = 85 s there are a
number of transient transitions to the intermediale state. In Figure 3-29 these transitions
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correspond to an upward jump in $ss v towards 180°, a small dip in C; and a small rise in ¢uy.
The clearest of these transient transitions, at around ¢ = 150 s, is highlighted by the right hand
shaded region. The transient tramsitions from the high-frequency to the intermediate state are
clearfy discemable when we look at the phase of the vortex lift force. However, looking only at tie
total lift force it is not clear that the small changes in ¢y and C, within the second shaded region
correspond to a transition to a different wake state. Figure 3-29 also demonstrates that during the
transition between wake states the changes C; and C;, woner are not necessarily of similar magnitude.
From the force properties in Figure 3-26 and the instantaneous properties in Figure 3-29 it is clear
that the transition between the low-frequency and intermediate states is most clearly identified by
the large changes in ¢ and Cpiome. Conversely, at the intermediate to high-frequency state

transition the most significant changes are in the values of §y vomer @ Cp.

The reasons for the apparently complicated relationships between ¢us, Gupvame, Cr and Cp vopses
become apparent when we consider the vectorial relatioaship between the vortex and apparent
mass Jift forces. As discussed in section 1.3.3 € oval?} and Cp yn{t) are thz components which
make up the total lift force Cy(#). The schematic in Figure 3-30 shows phase plots for all three
wake sates using typical vectorial values of Cpuomed), Crom(?) and Cy(7). The apparsnt mass force
is always in-phase with the displacement of the cylinder and, although its magnitude depends on
the amplituc: and frequency of oscillation, within the transition region C;.. s approximately
conistant.

a) Low-Frequency State C1 vortex CLom
C]_ i
b) Intermediate State Ci vortex Ciran
o - —— — = 3 e
i CL
¢) High-Frequency State | Ciam

Crrmtn | Gy
Culd) = Crorme{t) + Cramlf)

Figure 3-37: Phase plots showing typical vectorial relationships between Cyones(6) and Cy . and the
resuiting sirection and magnitude of the total lift force for a) the low-frequency, b) intermediate and ¢)
high-frequency waks states,

As the wake moves from the low-frequency state to the intermediate state the change in the phase
of the vortex litt force, indicated oy the direction of the Cpuomet) vector, is refatively small.
However, the magnitude of the vortex lift force decreases such that it is now smaller than the

apparent mass force. This change in relative magnitude results in a lafge change in the phase of the
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total lift force. Thus, as shown in Figure 3-27, the transition between the low-frequency and
intermediate wake states corresponds to a large change in dye but D1y vorree TEMRINS Telatively
unchanged. Furthermore, the change in the phase of the total lift force is clearly linked to the
change in the magnitude of the vortex 1ift force. It is important to remember that the variation of
the voriex lifi force is directly related to changes in the vorticity field. Thecefore, the changes in
the total lift force effectively are linked to the vorticity field via the relationship between the vortex
and apparent mass forces. At the transition between the intermediate and the high-frequency states
Figure 3-29(b) and Figure 3-30 show that Cpione is approximately constant, but there is a
clockwise shift of around % = (135°) (i.e. an anti-clockw’se shift of 1% = (225°)) in drpsomer. The
change in the phase of the vortex lift force causes only a small change in ¢us but there is a
significant change in C,.

Another way to consider the relationship between the vortex and total lift forces is to consider the
energy transfer. When the lift forces on the cylinder are accurately represented by a purely
sinusoidal function the energy transfer can be approximated by equation 1-10, which js reproduced
below for convenience:

Ce= 1 Cp (AID) sin ($np) = 7 Crvorsex (A1D) Sit (b5 vorter) (1-10 reproduced)
Near the transition regions, and in particular for the intermediate wake states observed at 4/D = 0.5
and 0.6, the lift forces are not always weli represented by a purely sinusoidal function. In these
cases the equation for energy transfer must be written in integral form, As in equation 1-10 the in-

phase apparent mass force makes no contribution to the energy transfer and the integral can be
expressed in terms of either the total or vortex lift force.

E= [ C.0)-Pyat= (7 o P12 a3

This equation aiso iliustrates that the apparent mass component of the lift force makes no
contribution to the energy transfer between the flnid and the cylinder. Thus, in terms of the
retationship between the energy transfer and the forces on the cylinder, the only contsibution to the
energy transfet is from the out-of-phase compoeneat of the vortex lift force, where the out-of-phase

components of §ya yen(?) and Cy(7) are equal.
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3.6.2 Wake structure and corresponding lift forces

The force properties for the intermediate state, discussed in section 3.6.1, suggest that the structure
of the intermediate wake is not consistent with the wakes structures for either the low- or high-
frequency states. In this section the structure of the near wake, the mode of vortex shedding and
the phase of vortex shedding for the three different wake states are considered. Finally, the nature
of the total and vortex lift traces corresponding to the different wake structures are discussed.

The phase averaped vorticity fields in Figure 3-31 show the evolution of the near wake for each of
the three wake states as the cylinder moves through its downward stroke at 4/D=0.5. The position
of the cylinder in Figure 3-31 is indicated by the small insert and is the same for each vertical
column, where the first column comresponds to the top of the cylinder’s oscillation. Each image is
the result of phase averaging 9 consecutive images representing 4% cylinder oscillations. The
images for the low- and high-frequency states, shown in Figure 3-31{a & c) respectively, were
acquired at £/f, = 0.815. The images in Figure 3-31(b), showing the intermediate state, were
acquired at £/f, = 0.825 and correspond to the 4% cycles after 1= 150 s in Figure 3-30.

T three wake states can be broadly described in ferms of the mode of vortex shedding. However,
it is also important to consider the timing of vortex shedding and other changes in the structure of
the near wake. The low-frequency wake, shown in Figure 3-31(a), is characterised by the
production of long attached shear layers and a relatively wide wake. At A4/D = 0.5 the mode of
vortex shedding for the low-frequency wake is weakly 2P and, as shown in Figure 3-31(a)(/éi), the
second vortex of each pairing is significantly weaker than the first. The high-frequency wake is
shown at the same points in the oscillation cycle in Figure 3-31(c); the mode of vortex shedding is
28 and the wake is significantly narrower than the low-frequency wake. The evolution of the near
wake for the intermediate state is shown in Figure 3-31(b). It is clear that the vortex shedding
cycle for the intermediate wake is different from that of both the low- and high-frequency wakes.
As the cylinder moves through the downward half of its oscillation cycle the intermediate wake
sheds a single tightly formed positive vortex from the upper surface of the cylinder and the mode of
vortex shedding can be described as 2S. At 4/D = 0.5 the intermediate state has a 2S shedding
mode, however the very small portion of separated positive vorticity at the end of the attached
shear layer, shown in Figure 3-31(b)(#), indicates that at higher oscillation amplitudes the mode of
vortex shedding for the intermediate wake may become weakly 2P.
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_Low Frequency State
Intq_rmedia_tg State
| I_-Iigh Frequency State

Figure 3-31 Wake patterns for the a) low-frequency, b) intermediate and ¢) bigh-frequency wake
states at A/D =0.5 £,/f, = 0.815 - 0.825 and Re = 2300. The position of the cylinder in each column (i to

iv) is indicated by the insert.

uency and intermediate wakes, shown in Figure 3-31(a & b) respectively, share a
OCCurs

The low-freq
number of common feat
just after the mid-point of the downwards stroke,

ures; the major separation of negalive vorticity from the shear layer
between columns (i) and (iv), and the vertical
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width of the wakes are similar. However, the mode of voriex shedding of the intermediate wake is
clearly different from that of the low-frequency state. In fact, the intermediate wake has the same
2S mode of shedding as the high-frequency wake, Therefore, although the phase of vortex
shedding appears to be the same for the intermediate and low-frequency wakes, the number and
form of the vortex structure shed per oscillation are different. The different mode of vortex
shedding for the low-frequency and intermediate wakes can be related back to differences in the
structure of the attached shear layers prior to separation. Examination of the images in Figure

3-31(a & b) at the same phase point in the cylinder’s oscillation shows that, compared to the low-
frequency wake, both the attached and previously shed vortex structures in the intermediate wake

are located further upstream. The low-frequency wake forms long elongated shear layers allowing
a portion of the shear layer to separate independently and form the counter rotating pair. The
correr;ponding vortex structures in the intermediate wake are tightly formed and are almost circular
in shape, resulting in only a single vortex structure being shed from each shear layer per oscillation.

As the cylinder reaches its maximum downwards velocity in Figure 3-31(iif), the lower positive
shear layer in the intermediate wake is closer to the base of the cylinder and the upper and lower
shear layers have a greater upwards angle compared to the corresponding low-frequency wake.
However, the interaction between the opposite shear layers in the two wakes stitl results in voriex

shedding occurring at approximately the same phase point. The increased upward angle of the
shorter shear layers of the intermediate wake results in a wake width which is very comparable to
that of the low-frequency wake, despite the fact that the low-frequency wake formed much longer
shear layers. As discussed in section 3.3.1, for increasing £/f, the low-frequency wake contracts
while the phase of vortex shedding remnains essentially constant. However, in Figure 3-31{a & b)
the contraction of the wake is associated with a transition between two different wake states, The
difference in the fength, angle and shape of the intermediate and low-frequency wakes results in
different modes of vortex shedding, but the phase at which the major separation of vorticity occurs

is approximately the same.

The phase of vortex shedding for the high-frequency wake, shown in Figure 3-3i(c), is distinctly
different from the shedding phase for both the low-frequency and intermediate wakes, As the
cylinder moves through the downward stroke a positive vortex structure is shed from the high-
frequency wake soon after the top of the oscillation, corresponding to column (7). However, during
the same half cycle negative vortex structures are shed from the low-frequency and intermediate
wakes soon after the mid-point of the downward stroke, corresponding to column (if). The
position, or phase, of the cylinder when vortex shedding occurs has a significant influence on the
vertical width of the wake. The phase of vortex shedding from the high-frequency wake is such
that the vorticity from the lower surface of the cylinder is shed just after the cylinder reaches its
upper vertical displacement. Negative vorticity is shed from the upper surface of the cylinder half
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a cycle later, when the cylinder is close 1o its lowest vertical position. The location of the cylinder
when the vorticity is shed from it results in a wake that is much narrower than either the low-
frequency or intermediate wakes. The difference in the widths of these wakes appears to be largely
attributable to the phase, rather than the mode, of vortex shedding.

The total and vortex lift traces, corresponding to the 4% cycles during which the images in Figure
3-31 were acquired, are shown in Figure 3-32 for each of the three wake states. The values of 11,
for the three sets of force traces are very similar and therefore the amplitude of the apparent mass
force is effectively constant. This means that the changes in the phase and amplitude of the total
iift force are directly related to changes in the phase and amplitude of the vortex Jift force. An
important property of the lift forces, which will be considered qualitatively, is their sinusoidal
nature. The total and vortex lift forces on a cylinder oscillating with a sinusoidal motion tend to be
sinusoidal, and our definitions of the phase and amplitude of these forces in equations 2-4 and 2-9
utilise this property. The sinusoidal nature of the force traces is indicated by the relative amplitude
of the spectral components within the traces, where a very sinusoidal trace is similar fo a pure
sinusoid and is dominated by energy at a single frequency.

For all parameters considered in this investigation the forces are locked-on to the motion of the
cylinder and the dominant frequency within the lif} traces is the forcing frequency, /.. The apparent
mass component of the total lift force is directly related to the motion of the cylinder and F,.(f} is a
purely sinusoida! signal with frequency £, Therefore, the vortex lift force is the only component of
the total lift force containing frequencies other than f£;, and the magnitude of the non-f, components
must be exactly the same in the vortex and tota! lift forces. The out-of-phase components of the
total and vortex lift forces are also equal. The lift traces for the three wake states shown in Figure
3-32 demonstrate that although the relationship between the total and vortex lift forces appears
relatively simple, the total and vortex lift forces can differ significantly in their sinusoidal nature,
phase and amplitude. The changes in the properties of the total and vortex lift forces shown in
Figure 3-32 at A/D = 0.5 are consistent with the force propetties shown in Figure 3-26 at the higher
amplitude of 4/D = (.6,

For the low-frequency state both the total and vortex lift forces, shown in Figure 3-32(a), are
approximately out-of-phase with the displacement of the cylinder. The total and vortex lift forces
contain the same non-f, componenis. However, because the magnitude of the /e component is much
larger in the vortex Jift force, the vortex lift trace is relatively speaking more sinusoidal than the

total lift trace.
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Figure 3-32 Total and vortex lift traces for a) low-frequency, b) intermediate and ¢) high-frequency
wake states at A/D = 0.5 £/f, = 0.815 - 0.825 and Re = 2309. The time segments correspond to the 4%
cycles over which the phase averaged images in Figure 3-31 were acquired,

As the wake moves from the low-frequency state to the intermediate state there is a large change in
the relative phases of the total and vortex lift forces. The vortex lift force remains approximately
out-of-phase with the displacement of the cylinder, while the total lift force and cylinder
displacement are now almost in-phase. Equation 3.2(a) tells us that the phase of the vortex forces
is related to the points in the oscillation cycle where the rate of change of the vortex moments are
maximised. For similar distributions of vorticity, the phase of the vortex lift and drag forces is
linked to the maximum rate of change of the vortex moment and generally, therefore, to the phase
of vortex shedding. Changes in the distribution of vorticity within the shedding cycle can alter the
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phase point at which the maximum change in the vortex moment occurs. However, unless these
changes significantly alter the relationship between the phase of vortex shedding and the movement
of vorticity within the shedding cycle, the phase of vortex shedding is the dominant factor that
determines the phase of the vortex forces on the cylinder. The vorticity fields in Figure 3-31(a &
b) show that the phase of vortex shedding is approximately the same for the low-frequency and
intermediate wakes. As this transition occurs the changes in the vortex lift and drag phases are
relatively small, of the order of 20°. The relatively small changes in the phases of the vortex lift
traces, shown in Figure 3-32(a & b), are consistent with the fact that for the corresponding wakes in
Figure 3-31(a & b) the phase of vortex shedding is very similar.

The vector diagram in Figure 3-30 demonstrates that the large change in ¢y at the transition from
the low-frequency to the intermediate state occurs as the magnitude of the vortex lift force becomes
smaller than that of the apparent mass force. For the intermediate wake state the vortex lift force is
both smalier in magnitude and considerably less sinusoidal that the total lift force. The decrease in
the magnitude of the vortex lift is clearty shown in the force traces of Figure 3-32(a & b). The
changes in Cp,oner are consistent with the fact that there is a change in the structure of the
cotresponding wakes, shown in Figure 3-31(a & b).

At the transition between the intermediate and high-frequency states there is a large phase shift in
the vortex lift force, For values of f/f, close to the transition region, at A/D = 0.5 the high.
frequency state total and vortex lift forces are approximately in-phase with the displacement of the
cylinder (din = dinvonex = 0°). The vortex lift force, shown in Figure 3-32(c), is very small in
amplitude and the trace is quite irregular. The total lift force is much larger in amplitude than the
vortex lift force, and the large difference in amplitude belies the fact that the non-f, components are
present in both the total and vortex lift signals. Despite the irregula nature of the vortex lift signal
in Figure 3-32(c) the values of drnvames, calculated using the segmented correlation method with a
correlation period of three oscillation cycles, do not vary significantly with time unless the wake

state is changing.

At A/D = 0.5 immediately following the transition to the high-frequency state both dus vorrer a0
Ct vorex vary with fiif;, as shown in Figure 3-15(a & d). As fif; increases g vone: MOVES rapidly
from close to 0°, immediately after the transition to the high-frequency state at £/f, = 0.815,
towards -00° at £if, ~ 09 - 1.0. As discussed in 3.4.3, the variation Of Gufomer With £If
immediately following the transition to the high-frequ.ency state does not occur for all flow and
oscillation parameters, In many cases at the transition to the high-frequency state ¢y omex JBMPS
straight down to values close to -90°. The amplitude of the vortex force varies systematically with
increasing oscillation frequency, and at higher values of L/f, the high-frequency state vortex lift

trace is larger in amplitude and more sinusoidal.
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Figure 3-33 Drag traces for a) low-frequency, b) intermediate and c) high-frequency wake states at
AMD = 0.5 L, = 0.815 - 0.825 and Re = 2300. The time segments correspond to the 4% eyeles over
which the phase averaged images in Figure 3-31 were acquired.

The vortex lift traces for both intermediate and the high-frequency states in Figure 3-32(a & b)
appear to be slightly “double peaked” with a small dip in the middle of the peaks. Intuitively we
associate these dips with an event that coincides with the peaks in the vortex lift force, However,
as these dips correspond to a decrease in Cyyyped?) during the positive peak and an increase in
Civore{f) during the negative peaks the “double pesked™ nature of the vortex lift correspond
mathematically to an increase in the energy of the third harmonic, 3.

166




b at
ig

b)
we

er,

in
Lnd

r

EL .

The drag traces corresponding to the 4% cycles during which the images in Figure 3-31 were
acquired are shown for each of the three wake states in Figure 3-33. Despite the fact that the three
wake states have different wake structures the drag traces are remarkably similar. This is
consistent with the approximately constant value of Cp within the transition region, shown in
Figure 3-26(f). Figure 3-33 also shows that Cp .y and the general form of the drag traces do not
change significantly at the transitions between the three wake states, although there is a small shift
in phase. The constant amplitude and sinusoidal nature of the drag traces in Figure 3-33 is in

contrast to the corresponding vortex lift traces, which vary significantly as the wake moves
between the three states.

The previous paragraphs have considered the properties of the three wake states for an oscillation
amplitude of 4/D = 0.5, the same properties are now exarnined at the higher amplitude of 4/D =
0.6. This 20 % increase in oscillation amplitude results in some changes in the structure of the near
wake, the most obvious of these being an increase in the vertical width of the wake, However, the
major features of these wake states are unchanged and the general properties of the Iow-frequency,
intermediate and high-frequency wakes are consistent with the previous descriptions,

The phase averaged vorticity fields in Figure 3-34 show the evolution of the near wake for each of
the three wake states at 4/D = 0.6. Each phase averaged image has been calculated using 4 or 5
instantaneous fields corresponding to 2-2% cylinder oscillations. The field of view for the vorticity
fields in Figure 3-34 is smaller than the corresponding images at A/D = 0.5, however the different
wake modes are clearly evident and the smaller wake structures, particularly in the shear layers, are
well resolved. Compared to the vorticity fields at 4/D = 0.5, the vortex structures for all three
wake states in Figure 3-34 at A/D = 0.6 are more disorganised and are less clearly defined.
Although the images in Figure 3-34 are averaged over a smaller number of fields than for the
corresponding images at 4/D = 0.5 this trend is also evident when the instantaneous images at the
two oscillation amplitudes are compared. At A/D = 0.6 the low-frequency wake, shown in Figure
3-34(a), forms very long shear layers. The increase in 4/D, and the comresponding isicrease in the
length of the attached shear-layers, results in an increase in the relative strength of the second
vortex shed into each couater rotating pair. Thus at 4/D = 0.6 the mode of shedding for the low-
frequency wake is clearly 2P. The vortex structures for the intermediate wake, shown in Figure
3.34(b), are less regular in shape than for the intermediate wake at A/D = 0.5, however in both
cases the mode of shedding is 28. The phase of vortex shedding for both the low-frequency and
intermediate wakes at 4/D = 0.6 is approximately the same as for the corresponding wakes at
A/D=0.5. This is consistent with the collapse of the vortex lift and drag phases over a range of
A/D and Re shown in Figure 3-21.
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Figure 3-34 Wake patterns at A/D = 0.6 anc Re = 2300 for a) the low-frequency state; £/, = 0.82, 1)
the intermediate state; f/f, = 0.85 and c) the high-frequency state; f/f, = 0.87. The position of the
cylinder in each column i to iv) is the same as in Figure 3-31,

The high-frequency wakes at both 4/D = 0.6 and A/D = 0.5 are 28 and the distribution of vorticity
within the wakes is very similar. However, at 4/D = 0.6 the vortex shedding appears to happen

earlier in the oscillation cycle. The difference in the phase of vortex shedding is most obvious at

the points in the oscillatien cycle where the positive and negalive vortex structures separate from
the attached shear layer. At the top of the oscillation in Figure 3-34(c)i) at A/D = 0.6 the positive
vorticity is already well separated from the cylinder, while at 4/D = 0.5 in Figure 3-31(c)(7) the
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positive vorticity has not yet completed the separation process. Similarly, just before the bottom of
the oscillation in Figure 3-34(c)(iv) the negative vosticity has separated from the cylinder, while at
the same phase point in Figure 3-31(cX#) the corresponding vortex structuse is stil} 2ttached to the
cylinder. This difference in the phase of vortex shedding and the corresponding phase of the vortex
lift force will be discussed further later in this section.

Low Frequency State
a) wsf T -
10
05
C, 00
05
-1.0
4.8

time
intermediate State

124 125 126 127
time

134 135 136 137

—— displacament
~m— total lift
- yarten lift

Figure 3-35 Total and vortex lift traces at A/D = 0.6 and Re = 2300 for 1) the low-frequency state; L1,
= (.82, b) the intermediate state; £/, = 0.85 and <) the high-frequency state; /1, = 0.87. The time
segments correspond to the 2% cycles over which the phase averaged images in Figure 3-34 were

acyuired,
‘The force traces in Figure 3-35 show the total and vortex iift forces corresponding to the vorticity
fields in Figure 3-34, where the traces correspond to the same time periods over which the flow
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fields were phase averaged. As the force traces in Figure 3-35 were acquired over a namow range
of oscillation frequencies there is a small variation in the amplitude of the apparent mass ferce as
f/f; increases from 0.82 to 0.87, and the relationship between the total and vortex lift forces
changes accordingly. The total and vortex force traces for the three wake states at A/D = 0.6 are
generally consistent with the corresponding traces at A/D = (.5, The two most notable differences
are the phase of the total lift force for the low-frequency state and the phase of the vortex lift force
for the high-frequency state, Without knowledge of the vortex lift force the shift in the phase of the
total lift force as A/D increased from 0.5 to 0.6 may be incorrectly interpreted as a change in the
phase of vortex shedding. However, carefu! consideration of the vector diagram in Figure 3-30
indicates that the shift in ¢y, while d1s.ne- remains approximately constant, is due to a change in
the relative amplitudes of the vortex and apparent mass forces. The shift in the phase of the vortex
lift force for the high-frequency state appears to be linked to a change in the phase of vortex
shedding. As shown in Figure 3-15(a), at A/D = 0.6 the phase of the lift force drops to just above -
90° immediately following the transition to the high-frequency state, whereas for 4/D = 0.5
immediately following the transition &g .om. is close 0°. The difference between the -alues of
$tip vorex for A/D = 0.5 and 0.6, soon after the transition to the high-frequency state, is demonstrated
by the vortex lift traces in Figure 3-32(c) and Figure 3-35(c). Examination of the vortex shedding
cycle for the corresponding wakes, shown in Figure 3-31(c) and Figure 3-34{c), indicates that the
difference in the phase of the vortex lift force is directly related to a shift in the phase of vortex
shedding.
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3.6.3 Variation of §ift and drag phases

The temporal variations of the instantaneous values of gy, usivorrer ANA bgop at 4A/D = 0.5 are
piotted in Figure 3-36 for a range of oscillation frequencies that incorporate all three wake states.
Atflfo = 0.739 and 0.78] the phases of the lift and drag forces indicate that the wake is in the low-
frequency state, while at the two highest frequencies, //f, = 0.869 and 0.914, the wake is in the
high-frequency state. At both £/f,=0.815 and 0.825 the first wake state after the oscillations begin
at 1= 0 is the low-frequency state; however, after a number of oscillation cycles the wake begins a
self-excited transition, moving first to a transient intermediate state and then to the high-frequency
state. In Figure 3-36 the intermediate state corresponds to the points when the values of &y have
jumped downwards, and are typically slightly above the values for the high-frequency state, but the
values of dup o Temain high and are similar to low-frequency state values. In other words, the
values of dyp and $usvomer for the intermediate state are consistent with neither the low- or high-
frequency states. Figure 3-36 also shows that, for both £./f, = 0.815 and 0.823, after the initial self-
excited transition there are further self-excited transitions between the high-frequency and
intermediate states, However, in these cases the intermediate state does not appear to be very
stable and afler a number of oscillations the wake returns to the high-frequency state, Figure
3-36(a & b) shows that for vaiuas of £/f; above the transition region both $;; and dus weree decrease
with increasing f./f;.

Perhaps the most interesting aspect of Figure 3-36 is the variation of the drag phase as the wake
moves between the three wake states. The values of ¢y, for the low- and high-frequency states are
clearly separated as shown in Figure 3-36(c). The self-excited transitions to the intermediate state
are characterised by a large change in either dys OF v, while the other lift phase remains
approximately constant, or changes by only a small amount. However, the values of the drag phase
for the intermcdiate are between the values that characterise the low- and high-frequency states.
Thereiore, when titc wake moves to the intermediate state from either the low- or high-frequency
states there is a change in the value of du. The definition of the drag phase, and the subsequent
fact that any value of $,. is equivalent to du. £ 180°, means that the drag phase can be ploited in
a number of ways. Consequently, care must be taken when interpreting the magnitude of the
changes in ¢y, The physical reason for the multi-valued and somewhat ambiguous nature of e
is that the drag phase does not include the same information as the lift phase. As discussed in
section 3.2.4, vortex shedding from a bluff body typically involves the net vertical displacement of
positive vorticity downwards and negative vorticity upwards, as well as the net downstream
movement of both signs of vorticity. Examination of equation 3-2 reveals that a local maximum in
the drag force can be generated by either the net movement of positive vorticity downwards or
negative vorticity upwards, and as long as the wake is symmetric, the drag force does not
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differentiate between these two cases. However, the vortex lifi force does differentiate between the
streamwise movements of different signed vorticity; downstream movement of positive vorticity
generates positive lift while the equivalent movement of negative vorticity generates negative lift.

Therefore, the lift force has one local maximum per oscillation but the drag force has two.

a) 180
135
90

b s . < .
45} ' -

time (s)

® [f,=0739 O {4,=0815 @ fJ =0860
@ fi,=0782 O f{J/,=0825 @ {J/ =0914

Figure 3-36 Variation of a) total lift phase, b) vertex Jift phase and ¢) drag phase after the cylinder
begins oscillating at t = 0 for a range of oscillation frequencies at A/D = 0.5 and Re = 3300. In all cases
the instantaneous phases were calculsted using a correlation width of 3 oscillation cycles.

The lift and drag phases are calculated by taking the peaks in the force traces and correlating them
with the peaks in the cylinder’s displacement. A local maximum in the lift force is generally
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associated with the net movement of positive vorticity downstream. However, when the drag phase
is calculated, one of the two peaks in the drag peaks per oscillation cycle is selected for the
correlation. If the other peak were selected the drag phase would be shified by 180°, assurning the
drag force is periodic and synchronised. Thus, vsing this method any vaiue of buoy is equivalent to
bareg £ 180°. This is why the drag phase contains less information than the Jift phase. Moreover,
when there is a change in the phase of vortex shedding it is not possible to differentiate between the
two peaks in the drag force either before or afier the transition, and the change in the drag phase at
the transition, Ad,. is also equal (o Ay, % 180°,

Without detailed examination of the temporal movement of vorticity throughout the wake altowing
the application of equation 3-2, it is not possible to associate a peak in the drag force with the
movement of a particular vortex structure. The limited time resolution of the vorticity fields in the
current investigation precluded the application of equation 3-2. Consequently the finer details of
the relationships between the vorticity fields and the voriex forces for the three wake states remain
a question for future investigation.

In both Figure 3-26 and Figure 3-36 the drag phase has been ploited in a way that minimises the
magnitude of the jumps in ¢u... The drag phases can also be plotted so that the variation in ¢y, is
most similar to the cotresponding chfmges in the vortex lift phases, as shown in Figure 3-37(b). In
this case the transition between the low-frequency and intermediate states corresponds to a
relatively small change in §., while the transition between the intermediate and high-frequency
states corresponds to a large change in ¢u.;. The vorticity fields indicate that this is perhaps the
most physically meaningful way of plotting du.. as the phase of vortex shedding is essentially
constant at the transition between the low-frequency and intermediate states. In Figure 3-37(b)
there is also a relatively large jump in ¢u-., at the transition between the intermediate and high-
frequency states, which corresponds to a large change in the phase of vortex shedding. For the
transverse oscillations the drag force is a purely vortex force and, in that respect, is analogous to
the vortex lift force. The fact that the phases of these forces show similar behaviour, particularly in
the collapse of §us vomer a0 Qug, Strengthens our interpretation of the relationship between the
vortex forces and the structure of the wake. Thus, despite the limitations in interpreting of the drag
phase, discussed above, it has still has provided valuable insight.

173




a) T L] T 1 L] T T b} T T * T H T T
225 L . 225 0———-0—-—0..0
c_/——o\‘o\o oo
180 |- b
135t r
¢'¢q H ¥ 4’&1
a6 | E
180 | 1
\‘\‘ ast -
3 E oF ‘-ﬂ\‘ ]
. L 1 ] 1 k. S '45 L [l I L L I )
0.76 078 080 0.A2 084 085 083 030 092 076 0.7¢ 0.80 0.B2 0.84 0.36 0B85 0390 092
£, 14,

—0O— Low-Frequency Slale
—&— Intermediate ! atle
-—4— High-Frequency State

Figure 3-37 Two different methods of plotting the variation of ¢, for the three different wake states:
AID = 0.6, Re = 2300.

The instantaneous values of by, G rorer a0 Gy at the higher amplitude of 4/D = 0.6 are plotted
in Figure 3-38 where, for the range of oscillation frequencies considered, the wake demonstrates all
three wake states. The vortex lift phase is plotted twice to demonstrate the effect of plotting all the
phase values between 0° and 360°, rather than using the traditional method of plotting mast of the
3" and 4™ quadrant phases as negative values, For £/, = 0.78, 0.82 and 0.91in Figure 3-38 there
are no self-excited transitions and the wake is in either the low- or high-frequency states, The
variation of the forces for two values of £Jf, where self-excited transitions oecur, £/f, = 0.84 and
0.83, were discussed in detail in section 3.6.1. The force trace indicates that at /./f, = 0.84 there is a
self-excited transition from the low-frequency state to a stable intermediate state. At both f/f, =
0.85 and 0.87, after an initial transition from the low-frequency state through to the high-frequency
state, the wake alternates between the high-frequency and intermediate states. The force traces
show that at £/f, = 0.85 the wake is predominantly in the intermediate wake state, while at the
higher frequency of f/f, = 0.87 the wake spends most time in the high-frequency state. The wake
exhibils all three sates within the transition region, //f, = 0.84 — 0.87, but as f./f, increases the
percentage of time that the wake spends in a given wake state changes and there is a clear shift in
the relative stability of the different states, Within the transition region, at both A/D = 0.5 and 0.6
the low-frequency stale appears to be a meta-stable state, which the wake tends to move to
immediately after the cylinder starts oscillating. As f/f, increases within the transition region there
is a decrease in the time after start up at which the transition from the initial low-frequency state to
a more stable state occurs, as discussed in section 3.3.2. This phenomenon is also illustrated in

Figure 3-36 and Figure 3-38 and appears to oceur irrespective of the final state or the nature of the
transition.
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Figure 3-38 Variation of z) total lift phase, b) vortex lift phase and ¢} drag phase after the cylinder
begins oscillating at ¢ = 0 for » range of osciliation frequencies at A/D = 0.5 and Re = 2300. [n all cases
the instantaneous phases were calculated using a correlation width of 3 oscillation cycles.

The traditional method of plotting dusvener in Figure 3-38(b) shows the transition between the
intermediate and high-frequency states as a large change in dugs wreer of the order of 240°. However,

when 5 omex is replotted in Figure 3-38(c) the change in $rf vorer is of the order of 120°. The two
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different methods of plotting ¢us e demonstrate a very interesting point about the transition
between the intermediate and high-frequency states. The direction of the phase shift can be
inferred from the phase values that occur as the wake state changes. Using this methodology,
Figures 3-36 and 3.38 show that the low-frequency to intermediate state transition, at both 4/D =
0.5 and 0.6, corresponds to a anti-clockwise shift in the total lift phase. The direction of this phase
shift does not represent a shift in the phase of vortex shedding but instead a change in the relative
amplitudes of the vortex and apparent mass forces. During the transition from the intermediate
state to the high-frequency state at /D = 0.5 the values of y.onee move through the 2™ and 1*
quadrants, indicating that the transition cotresponds to a clockwise shift in the phase of vortex
shedding. However, at 4/D = 0.6 Figure 3-38(c) clearly shows that during the transition between
the same states the values of duswrer move in the opposite direction, through the 4% quadrant, thus
the transition corresponds to an anti-clockwise shift in the phase of vortex shedding. As A/D
increases from 0.5 to 0.6 we have also observed a change in the behaviour of $ys and dus vore 85 fffs
increases immediately following the transition to the high-frequency state, as discussed in sections
3.4.1 and 3.6.2. However, it is not known if this difference is related to the apparent change in the
direction of the phase shift. Gopalkrishnan (1993) also found a simitar change in the direction of
the phase shift at transition as the oscillation amplitude increased from 4/D = 0.5 to 0.75.
However, his observations were made for the total lift phase, and without evaluation of the vortex
lift force it is difficult to compare the two cases, particularly as the oscillation amplitude for the
current investigations do not extend past 4/D = 0.6.

The behaviour of the drag phase at 4/D = 0.6 in Figure 3-38 is similar to that ebserved at 4/D =
0.5, and in both case the intermediate state corresponds to values of ¢y.,, that are between the
values for the low- and high-frequency states. At A/D = 0.6 the intermediate state is observed over
a wider range of £J/f, and examination of Figure 3-38(d) shows that as f/f, increases within the
transition region the average value of ., for the intermediate state decreases. In fact, as £/,
increases the drag phase of the intermediate state appears to decrease gradually from values that are
slightly below the low-frequency state values towards values that are observed for the high-
frequency state. However, as discussed earlier, the nature of the variation of ¢u., depends on how

this property is plotted.
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3.7 RELATE FORCED AND FREELY OSCILLATING CYLINDERS

One of the important questions arising from the investigations of forced and freely oscillating
cylinders is whether the results from the forced oscillations can be used to predict and interpret the
oscillations of a freely vibrating system, As discussed in section 1.6.3 this question has been
considered by a number of investigators, most notably Staubli (1983) who attempted to use the
results of forced oscillations to predict the motion of an elastically mounted cylinder with limited
success. The flow-induced motion of a cylinder is a complicated problem as the structure of the
wake and the motion of the cylinder are a coupled, interdependent system. This problem can be
simplified by replicating the flow-induced motion using a predefined controlied motion, which
allows the investigation to focus on the response of the wake to the cylinder’s motion.

In this section we consider the relationship between a cylinder forced to oscillate with a purely
sinysoidal motion at frequencies close to the natural frequency of the wake and the free oscillations
of an elastically mounted cylinder. Despite the fact that the relationship between these two cases
has proved surprisingly complicated, our results show that many of the fundamental features of the

free and forced cases are in fact strikingly similar.

3.7.1 Link Between Forced Wake States and Free Response Branches

As discussed in section 1.5 the vortex-induced motion of cylinder that is free to oscillate transverse
to the free-stream has been shown to exhibit two er three response branches, depending on the
mass and damping of the structure. The response of an elastically mounted, freely oscillating
cylinder is generally considered as a function of the free-stream velocity and the response
propetties are plotted against IP* or (U*/f*)St,, where both these parameters vary inversely with
J/fo. Both the wake states for the forced oscillations and the response branches of the freely
oscillating cylinder are characterised in terms of the wake structure and the forces on the cylinder.
"The variations of C; and Cp .o With f/f, have distinctive shapes for both the forced and freely
oscillating cases, However, it is difficult to compare these shapes as for the free motion the
amplitude of oscillation varies with ff;, while for the forced case 4/D is held constant. The
parameters that best allow comparison between the forced and freely osciilating cases are ¢y and
dnpvore 10 the previous sections the values of drs and Qg vore Were used to identify the three
different wake states for the forced oscillations, The same parameters were also used by
Govardhan & Williamson (2000) to identify the different response branches of an elastically
mounted cylinder. The values of §y5 and ¢us o also indicate the direction of the enesrgy transfer,
which in terms of the relationship between the forced and freely oscillating cylinder is a crucial

parameter.
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In the following discussion the properties of the force wake states and free response branches will
be compared and it will be shown that the three wake states are analogous to the three response
branches. At low values of £Jf;, corresponding to higher U* and (L7*//*)St, values, the low-
frequency state is observed for the forced oscillations and the freely oscillating cylinder is in the
lower response branch. At higher valucs of £/f,, corresponding to lower U* and (U*//*)St,, the
forced and freely oscillating cases exhibit the high-frequency state and the initial response branch
respectively. The intermediate state and the upper branch are only observed for certain conditions
and are generally associated with larger oscillation amplitudes, which for the freely oscillating case
oceur at lower mass-damping values. In parameter space, the intermediate state and upper branch
occur in between the other states or branches close to the resonance conditions, where for the
forced case f. = f, and for the free case /o = f1n. and typically U* = 5.
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Figure 3-3%  g) Variation of i) i and ii) ¢lift vortex with fe/fo, showing the low-frequency (L-F),
intermedizate (Int) and high-frequency wake states for forced oscillations at A/D = 0.6 and Re = 2300,
b} Variation of i) ¢lift and §i) $lift vortex with U*, showing the lower (L), upper (V) and initial (I)
respons¢ branches for the freely oscillating cylinder with low m*, [m* = 8.63 and { = 9.00151). Note
the decreasing U* axis. Reproduced from Govardhan & Williamson (2000),

In Figure 3.39 the phases of the total and vortex lift forces are shown for both the forced and freely
oscillating cylinders. At 4/D = 0.6 and Re = 2300, shown in Figure 3-39(a), the forced
intermediate state is observed; correspondingly in Figure 3-39(b) the lift phases are shown for an

elastically mounted cylinder with low mass-damping where the upper response branch is observed.
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The values of the lift whases for the three wake states and three response branches are summarised
in Table 3-3. The values of ¢y and i o for the low-frequency state and lower response branch
are similar, as are the values for the intermediate state and upper response branch. At both the low-
frequency <> intermediate state transition and the lower <> upper branch transition the vortex lift
phase shows very little change, but there is a large jump in the total lift phase. The values of
i variex fOF high-frequency state are significantly lower than for the corresponding initial response
branch. However, the behaviour of the lift phases at the intermediate <> high-frequency state
transition and the upper & initiz branch transition are essentially the same; dyy; remains relatively
unchanged while there is a large JUNP in dypvormer  DeESPitE the fact that the behaviour of the lift
phases shown in Figure 3-39(a) for the forced and free cases are very similar all but one data point
for the forced oscillations fall outside the range 0°<(pss or uip vore)<180°. Therefore, the energy
wransfer for all but one of the forced cases is negative.

Table 3-3 Summary of the lift force phases for the forced wake stutes and the free response branches.

—

STATE LOW- INTERMEDIATE | HIGH
FREQUENCY FREQUENCY

bun High Low Low

(varies with A/D & Re) {around 180° 2™ or 3" {ncar 0) (near 07
quadrant}

T High High Low

(independent of A/D & Re) {=180" (=180} {(— -90° at higher £/L)

BRANCH LOWER UPPER INITIAL

o

Suine High Low Low

(varies with m*C) (2™ guadrant) (just above ) (above 0°)

uite vortex High High Low

{varies with m*s) (just belowl 20%) (just below] 80% (just above 0%}

The total and vortex lift traces measured by Govardhan & Williamson (2000) for the initial, upper
and lower free response pranches are reproduced in Figure 3.40. The vortex force for the upper

response branch is much smaller in amplitude than the comresponding potential force, where in this

otential force is equivalent to the apparent mass force and is in-phase with the cylinder’s

case the p
the upper branch vortex lift trace has the same characteristic “double

displacement. Interestingly,
s as the intermediate sta’e vortex lift traces shown in Figure 3-32(b) & Figure 3.35(b). The

hump:
3.40 is similar in magnitude t0 the

vortex lift trace for the initial response branch shown in Figure

179




corresponding apparent mass trace. However, the amplitude of the vortex 11ft for the segment of
the force trace in Figure 3-40 is actwally significantly larger than the average value of Cy yomes OVET
the duration of the force trace. As discussed in the previous sections, our investigation of the
forced case showed that immediately following the transition to the high-frequency state the vortex
1ift force was much smalle than the apparent mass force and, as shown in Figure 3-32(c), the small
amplitude vortex iift force is not very sinusoidal. However, as JIf, increases the relative amplitude
of the vortex lift force for the high-frequency state increases and the vortex lift trace becomes more
sinusoidal. The initial branch vortex lift trace in Figure 3-40 is similar to the high-frequency vortex
lift trace shown in Figure 3-35(c) at higher values of /{f; above the transition region,
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Figure 3-40 Relationship between the total lift force, potential or apparent mass force and the vortex
lift force in the three response branches of an elastically mounted freely oscillating cylinder, Low m*G,
|m* = 8.63, { = 0.00151). Reproduced from Govardhan and Williamson (2900).

The results for the forced oscillation of a cylinder presented in section 3.4.3 show that the vortex
lift and drag phases for a given wake state collapse reasonably well over a wide range of A/D and
Re. However, the results of Govardhan & Williamson (2000) for a freely oscillating cylinder show
that the value of e Varies with the mass and damping of the structure. As shown Figure
3-39(b), depending upon the response branch, at low values of mass-damping the vortex lift phase
is close to either 0° or 180° and therefore close to the edges of the positive energy transfer region.
At higher m*{ values only the initial and lower branches are observed and, as shown in Figure
3-41, the values of ¢y and dyy e fOr both branches have moved away from the boundaries of

positive energy transfer. Therefore, for a given free response branch up vores does not collapse but
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as m*{ increases the values of ¢z wner appear 10 Ve away from either 0° or 180° towards 90°.
The variation of the lift phases with m*¢ is consistent with the classical response of a mass on a

spring described by tumerous textbooks on the subject of vibrations.
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Figure 3-41 Variaticn of a) total lift phase and b) vortex lift phase for a freely oscillating cylinder with
high m*s; fm* =320 and &= 0.00078]. Reproduced from Govardhan & Williamsen (2000)

As U* varies for the freely oscillating cylinder both the cylinder’s amplitude response and the
Reynolds number vary. The largest variations in A/D occur at the transitions between the differcnt
response branches and alsp during the initial response branch. For a given free response branch the
values of s vore: appear o be approximately constant, with the exception of the initial response
branch at higher m*gjust before the transition to the lower branch. ‘Therefore, for a given value of
mass-damping the vortex lift phase for a particular response branch generally does not vary
significantly with smaller changes in Re or A/D. The fact that Qg vorme G0€ES NICL VAYY significantly
as A/D or Re changes is consistent with the collapse of iy vorres OVET 3 wide range of A/D and Re for
the forced oscillations. Many of the parameters for the forced and free cases are analogous.
However, it is difficult to relate the mass and damping of the freely oscillating system to the forced
case as the controlled motiort is independent of these structural properties.

Figure 3-42 reveals an interesting feature that is evident in both the initial branch and the high-
frequency state. For the low-frequency state and the tower response branch dusuomec is
appmximawl)' constant, however immediately following the transition to either the high-frequency
state or the initial branch iivornn decreases sharply as f./f, increases. This behaviour is not

observed in the freely oscillating cylinder at lower m*¢ values, and for the forced oscillations was -
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only observed at 4/D = 0.4 and 0.5, The shape of the plots for the forced and freely oscillating
cylinders in Figure 3-42 are almost identical, however the values of ¢yswne for the forced case
clearly extend over a wider range than for the freely oscillating cylinder, which is constrained to
regions of positive epergy transfer.
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The variation of the forces, in particutar ¢z and ¢ys vorerr for the foreed and freely oscillating cases
allows us te conclude that there is a strong link between the following forced wake states and free
respoﬁse branches:

low-frequency state <  lower branch

intermediate state <> upper branch

high-frequency state ¢  initial branch
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3.7.2 Wake Structures

In this section the vorticity fields from the current investigation of forced cylinder oscillations are

compared with the vorticity fields measured by Govardhan & Williamson (2000) for the freely

oscillating case. Where possible the comparisons are made for similar values of 4/D and Re. In
general, we find that for the corresponding free response branches and forced wake states the phase
of voriex shedding and the distribution of vorticity within the near wake are very similar.

a) FORCED b) FREE
, .

| N o
AN

Figure 3-43 Phase averaged vorticity fields for a) forced low-frequency state, A/D = 0.6, fif, = 0.82, Re
= 2300 and b) free Jower response branch, A/D = 0.6, U* = 6.40, Re = 3700, from Govardhan &
Williamson (2000). The fields are shown () at the top and {#) the mid-point of the downwards motion
as shown in the displacement curve.

The phase averaged vorticity fields in Figure 3-43 show the wakes for the low-frequency state and
the lower response branch, which occur at lower values of fdf, or equivalently at higher U™ and
(L*/f*)S1, values. The forced and free cases are shown at similar Reynolds numbers of 2300 and
3700 respectively and at the same oscillation amplitude of 4/D = 0.6. At the top of the oscillation
the wakes of both the forced and freely oscillating cylinders in Figure 3-43(a & b)(/) show almost
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identical formations of vorticity. In both cases the upper negative vorticity forms a long attached
shear layer that extends well into the lower half of the wake. The portion of vorticity at the end of
these shear layers is beginning to separate and in both cases will form a counter rotating pair with
previously shed positive vorticity. At the mid-point in the cylinder’s oscillation, shown in Figure
3-43(a & b)(if), in both the forced and iree cases the lower positive shear layer has a very similar
upwards angle and the upper negative shear layer is about to separate from the cylinder. The
general structure of the near wake, the timing of vostex shedding and the mode of vortex shedding
for the low-frequency and the lower branch wakes in Figure 3-43 are remarkably simnilar.

The intermediate state and upper response brench are generally observed at values of £/f; close to |
or equivalently at reduced velocities close to 5. Characteristic phase averaged vorticity fields for
these two cases are shown in Figure 3-44. The oscillation amplitude of A/D = 0.5 for the forced
case is significantiy smaller than for the free upper branch which is shown for A/D = 0.81, as our
forced experiments did not extend to these large oscillation amplitudes. The “Griffin” plot
reproduced from Govardhan & Williamson (2000) in Figure 1-29 shows that the upper response
branch was observed at peak oscillation amplitudes of between A/D = 0.75 and 1.2, For the forced
oscillations at 4/D = 0.5 the intermediate state was observed for relatively short periods of time and
was not observed at lower oscillation amplitudes. Thus, for the forced constant amplitude
oscillations, the lower bounds of 4A/D at which the intermediate state exists appear to lie between
A/D =04 and 0.5. The values of A/D at which the intermediate state is observed is also expected
to vary with other parameters such 2s Re and turbulence levels. The vorticity fields for the
intermediate state in Figure 3-44(a) are shown at A/D = (.5 rather than 4/D = 0.6 because of the
larger field of view allows improved comparison with the vorticity fields of the upper branch.

Despite the difference in the values of 4/D for the forced and free cases in Figure 3-44 the structure
of the wake and, in particular, the phase point at which farge scale vortex shedding occurs are very
similar. At the top of the osciilation the formations of attached vorticity for the intermediate wake
and the upper branch wake are similar. However, for the free case at 47D = 0.81 in Figure 3-44b(?)
a small portion of negative vorticity has separated from the end of the upper shear layer and the
subsequent mede of vortex shedding is weakly 2P. The relative strength of the second vortex in
each pairing is such that the first vortex dominates the pairing and, as shown by the evolution of the
wake in Figure 3-44(b), the second voriex quickly dissipates. For the forced wake at the smaller
oscillation amplitude, Figure 3-44(a)(i) shows that at the top of the oscillation a very small portion
of negative vorticity has separated from the attached shear layer. However, this vortex structure is
too smatl for the mode of vortex shedding to be described as 2P and the intermediate wake is 28.
At the mid-point of the downward stroke the near wakes for the intermediate wake and the upper
branch wake are very similar and in both cases the large-scale negative vortex is about to be shed
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vortex shedding for the intermediate wake is the same as for the Jower branch wake.

a) FORCED b} FREE

Figure 3-44 Phase averaged vorticity fields for a) forced intermediate state, 4D = 0.5, f/f, = 0.815, Re
= 3300 and b) free upper response branch, A/D = 0.81, U* = 539, Re » 3100, from Govardhan &
Williarason (2000), The fields are shown (§) at the top and (i} the mid-point of the downwards motion

as shown in the displacement curve.
Although the mode of vortex shedding for the intermediate state is classified as 28 and the upper

branch wake is considered to be 2P, the general structure of the two wakes are very similar and
they are both characterised by a very wide vertical distribution of shed vorticity. Our investigation
of the 2P mode of vortex shedding for the low-frequency state, discussed in section 3.4, concluded
that the formation of the second pairing in the 2P mode cotresponds 1o the formation of long
extended shear layers and is less likely to occur at lower oscillation amplitudes. Given that at A/D
= 0.81 the wake in Figure 3-44(b) is only weakly 2P at lower values of 47D the wake may tend to
the 2S mode of shedding. Thus, the observation of the 28 mode of shedding for the intermediate
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wake at A/D = 0.5 and 0.6 is not inconsistent with weakly 2P mode of shedding observed for the
upper branch at 4/D = 0.81,

a) FORCED b) FREE
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Figure 345 Phase averaged vorticity fields for a) forced high-frequency state, 4/D = (.25, f./f, = 1.145,
Re = 4400 and b) frec upper response branch, 4D = 0.33, U* = 518, Re = 3000, from Govardhan &
Williamson (2000). The fields are shown (i) at the top and (i) the mid-point of the downwards motion
as shown in the displacement curve.

Examples of the vorticity fields for the forced and freely oscillating cylinders at higher values of
Jolf, are shown in Figure 3-45 and Figure 3-46. These figures allow the comparison of the initial
branch wake at 4/D = 0.33 with high-frequency wakes at oscillation amplitudes of 4/D = 0.25 and
0.4. In all cases the mode of voriex shedding is 25 and relative to the oscillation amplitude both
the high-frequency and initial branch wakes are significantly narrower than the two sets of wakes at
lower values of f/f, (low-frequency, lower branch, intermediate and upper branch wakes). The
phase point at which the positive vorticity is shed into the near wake appears to be similar for the
high-frequency and initial branch wakes, although closer examination indicates that for the forced

cases vortex shedding occurs slightly earlier in the oscillation cycle.

186




a) FORCED b) FREE

¥

| N
v

N/

Figure 3-46 Phase averaged vorticity fields for a) forced high-frequency state, 4D = 0.4, fffe =
0.91, Re = 2300 and b) free upper response branch, 4/D = 033, U* = 5.18, Re = 3000, from
Govardhan & Williamson (2000). The fields are shown (f) at the top and (/i) the mid-point of the

downwards motion as shows in the displacement curve.

In general, the phase point at which separation of the large-scale voriex structures occurs is more
difficult to determine for the high-frequency and initial branch wakes than for the wakes observed
at lower values of fi/f,. The primary reason for this is that the vertical width of the high-frequency
and initial branch wakes is quite small and, particularly at smaller oscillation amplitudes, the vortex
shedding occurs over a longer portion of the oscillation cycle and is therefore not as clearly
defined. The reduced wake width and less distinct vortex shedding for these wakes may be linked
to the phase point at which vortex shedding occurs and the corresponding angle of the wake. For
both the high-frequency and intermediate wakes, vortex shedding occurs as the acceleration of the
cylinder causes the wake to angle away from the shear layer from which the vortex structure is
about to be shed. For example, in Figure 3-46 the positive vorticity is being shed from the lower
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shear layer, however the shedding occurs as the wake begins to tilt upwards due to the acceleration
of the cylinder. In contrast, the vortex shedding from the low-frequency, lower branch,
intermediate and upper branch wakes occurs as the acceleration of the cylinder causes the wake to
angle towards the shear layer from which the vortex structure is about to be shed. The distinct
upwards angle of these wakes as the negative vorticity is about to be shed from the upper shear
layer is clearly evident in Figure 3-43 and Figure 3-44 and in these cases the phase of vortex
shedding is more clearly defined.

In Figure 3-47 the average vorticity fields for the three forced regimes are compared with the
comresponding averaged fields measured by Govardhan & Williamson for the freely oscillating
cylinder. The average fields for each of the regimes are clearly different and there is a strong
similérity between the average fields for the corresponding forced and free regimes. The regions of
positive and negative vorticity in the average vonicity fields indicate that averaged over an
oscillation ¢ycle a region in the wake was dominated by vorticity of a particular sign. For a bluff
body typically the lower half of the average vorticity fieid is dominated by positive vorticity shed
originating from the lower shear layer, while the upper half of the field is dominated by negative
vorticity, The average vorticity fields for the iow-frequency and lower branch wakes correspond to
the 2P mode of shedding., Near the base of the cylinder the 2P wakes have distinct regions of
vorticity that originated from the opposite side of the wake. The regions of average vorticity which
have crossed the centre-line of the wake are indicative of the strength of the vorticity in the long
attached shear layers which, at certain points in the oscillation, extend across the base of the
cylinder into the other half of the wake.

In Figure 3-47 two average wakes are shown for the Jow-frequency state at 4/D = 0.5 and one
corresponding lower branch wake is shown at 4/D = 0.6. Of these three wakes the relative strength
of the second vortex in the 2P pairing is strongest for the lower branch image in Figure 3-47(bX{).
Additionally, as discussed in 3.3.1, for the forced oscillations at A/D = 0.5 the relative strength of
the second vortex decreases as f/f, increases towards transition. In Figure 3-47(b)(i) where the
second vortex in the 2P pairing is strongest the level of average vorticity more than 2 diameters
downstream of the cylinder is very low, indicating that on average in this region there are roughly
equal ievels of positive and negative vorticity. As the relative strength of the vortices in the 2P

pairing becomes less equal in Figure 3-47(a)(i & if), there is an increase in the average vorticity
further downstream of the cylinder,
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Figure 3-47 Average vorticity fields for the three wake regimes for a) forced oscillations at A/D =05
and b} the freely oscillation cylinder, from Govardhan & Williamson (2000).
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The average vorticity fields for the intermediate and upper branch wakes are characterised by wide
bands of positive and negative vorticity that angle away from the centreline of the wake. The
region immediately adjacent to the base of the cylinder has very low levels of average vorticity,
with the exception of small portions of positive and negative vorticity that have crossed the wake’s
centreline. The average vorticity field adjacent o the base of the cylinder is consistent with the
wake formation in Figure 3-44(a & b)) where the attached shear layers from each side of the
cylinder extend directly across the base of the cylinder. The angle of these shear layer is clearly
greater than for the low-frequency and lower branch wakes in Figure 3-43, The increased angle of
the intermediate and upper branch shear layers means that at differeat points in the oscillation cycle
the attached positive and negative shear layers tend to occupy the same regions of space
immediately adjacent to the base of the cylinder. Thus, the average levels of average vorticity
adjacent to the base of the cylinder are very low. Further downstream of the cylinder, the shear
layers occupy different regions of space, resulting in higher levels of average vorticity. The
amplitude of oscillation for the averaged intermediate state wake in Figure 3-47(a)(if) is much
lower than for the corresponding upper branch wake in Figure 3-47(b)(if), but despite the obvious
difference in the width of the wakes the characteristics of the average fields are very similar.

The mode of vortex shedding for the high-frequency and initial branch wakes is 2 and the average
vorticity fields in Figure 3-47 are very narrow. The averaged vorticity fields indicate that the
positive and negative vorticity tends to be restricted to the lower and upper half of the wake
respectively. Immediately after the transition to the high-frequency state at f/f, = 0.815 the
averaged high-frequency wake appears to be slightly wider than at the higher oscillation frequency
of f{f. = 0.869. This is consistent with our observations from the instantaneous and phase averaged
vorticity fields.

3.7.3 Prediction of VIV Using Forced Oscillations

In the previous sections we have shown that forces on the cylinder and the structure of the wake for
the different regimes of the forced and freely oscillating cylinders have many features in common.
The cylinder is forced to oscillate with a purely sinusoidal motion and the key question is whether
this motion adequately represents the motion of a freely oscillating cylinder? A second closely
related question is whether the forced oscillations can predict the flow-induced motion?

For the cylinder to undergo sustained free motion there must be 2 net positive energy transfer per
oscillation and thus 0°<¢y<180° or equivalently 0°<rvore=<180°. The constraints of positive
energy transfer for the free oscillations are clearly evident in the phase plots of Figure 3-39 and
Figure 3-42. The results of both the current and previous experiments on the forced purely
sinusoidal oscillation of the cylinder show that the energy transfer per oscillation can be either

negative or positive. If the forced sinusoidal oscillations accurately simulate the vortex-induced
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motion, then the regions where the forced oscillations generate negative energy transfer correspond
to oscillation and flow parameters [(L*/f*)St,, A/D, Re] at which vortex-induced vibrations do not
occur. Similarly, if the above condition holds, the regions of positive energy transfer for the forced
oscillations represent cases where vortex-induced vibrations may occur. If however, the purely
sinusoidal controlled motion does not aceurately simulate the vortex-induced motion then, for cases

where free oscillations occur, the corresponding forced oscillations can result in either positive or

negative energy transfer.
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Resuits from the cwrrent investigation are now compared with the resuits from Khalak &
Williamson’s (1999) investigation of the vortex-induced motion of an clastically mounted cylinder.
For corresponding wake states and response branches and for parameters [(L*/f*)S1,, A/D, Re)
where vortex vibration occurs it will be shown that the forced purely sinusoidai oscillations can
generate negative energy transfer. In Figure 3-48(a) the amplitude response of the freely
oscillation cylinder is plotted against (L/*/*)S1,, for m* = 1.19 and m* = 8.63. For these cases of
relatively low m*{;, the amplitude response shows a good collapse for the initial and lower
branches. In Figure 3-48(b & c) the energy transfer for the forced osciliations are piotted as a
function of (I*/f*)St, at A/D = 0.25 and 0.6 respectively, where the points corresponding to the
vorticity fields in Figure 3-45(a) and Figure 3-43(a) are highlighted. For values of (U*/f*)St,
between 1.19 and 1.29 the energy transfer for the low-frequency state at A/D = 0.6 and Re = 2300
is negative, However, Figure 3-48(a) shows that for values of (L™*/f*)51, between 1.1 and 1.6 lower
branch flow-induced vibrations cccur at 4/D = 0.6 and at similar Reynolds number of Re = 3700,
where in this case the energy transfer must be positive. The images in Figure 3-43 show that
despite the different divections of energy transfer the vorticity fields corresponding to these
oscillation and flow parameters are very similar. Similarly, the free initial branch in Figure 3-48(a)
shows that free oscillations occur at 4/D = 0.25 for values of (L*/f*)Sr, of just under 1.0.
However, the forced oscillations at 4/D = 0.25 and similar values of (U*/f*)S1, result in negative
energy transfer.

The results in Figure 3-48 show that there are a number of cases where the forced purely sinusoidal
oscillations result in negative energy transfer for flow and oscillation parameters where free
oscillations are known to occur. In these cases, the forced sinusoidal motion does neot predict the
flow-induced motion and therefore, the sinusoidal motion does not simulate al! the key components
of the flow-induced motion. The failure of the forced motion to adequately model the vortex-
induced motion for a single set of parameters indicates that the forced purely sinusoidal oscillations

can not be used a priori to determine the flow-induced motion.
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4 STATIONARY CYLINDER NEAR A FREE-SURFACE

The close proximity of a boundary is known to affect the flow around a circular cylinder as
discussed by Bearman & Zdravkovich (1978), Miyata ef of. (1990), Sheridan ef al. (1997), Hoyt &
Sellin (2000) and Price ef al. (2000). In this chapter, the modification of the Karman wake as the
cylinder approaches a free-surface is examined at relatively low Froude number, The different
wake states as the cylinder approaches the free-surface are defined in terms of both wake and force
properties. In particular, a link is established between changes in the structure of the near wake and
the lift and drag forces on the cylinder.

As discussed in section 1.7 the boundary conditions generated by a free-surface differ frem those of
a solid boundary in at least two key areas: a free-surface is able to deform in response to pressure
variations underneath the surface and along a clean free-surface (no surfactants) the shear stress is
effectively zero. Therefore, in contrast to 2 solid surface, vorticity is not generated along a flat
clean free-surface. The only circumstances where vorticity is generated at a free-surface are when
free-surface deformation results in a curved boundary or when surface contamination results in
non-zero surface shear. For the relatively low value of Fr used in this study (Fr = 0.166)
disturbances of the free-surface tend to be damped out and large scale deformation of the free-
surface is not observed. Thus, for all but the smallest cylinder depths the free-surface remained flat

and the generation of vorticity due to the surface deformation was not observed.

4.1 FORCES ON A CYLINDER NEAR A FREE-SURFACE

Within the region where the cylinder's wake is affected by the free-surface, or the free-surface
region, three distinctiy different wake states were observed, described as modes 1, 1 and Iil. Mode
I oceurs as the cylinder moves from the fully submerged state into the free-surface region, followed
by modes I1 and I11 as the cylinder approaches, but does not pierce, the free-surface. In this section
the different modes are described in terms of the lift and drag forces on the cylinder,

41.1 Variation of Lift and Drag with VD

The variation of both the standard deviation and mean of the lift force arc shown as the cylinder
approaches the free-surface in Figure 4-1(2), while the corresponding values of the standard
deviation and mean drag are shown in Figure 4-1(b). For cylinder depths of #/D 2 3.0 the forces on
the cylinder do not change significantly as the cylinder’s depth is increased further, therefore for
WD = 3.0 the cylinder is effectively fully submerged. The net lift force on a fully submerged
cylinder is zero and the mean distribution of vorticity about the centre-fine of the wake is
symmetric. The fact that the value 0f €y mean in Figure 4-1(a) is not exactly equal to zero at hiD =
3.0, is attributed mainly to experimental drifi of the strain gauges. Within the free-surface region,
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hID < 3.0, there is 2 nct negative lift force on the cylinder for ail three modes, as shown in Figure
4-1(a). This result is consistent with the findings of Bearman & Zdravkovich (1978), Miyata et al.
(1990) and Price ef al. {2000) for a cylinder near either a solid-surface or free-surface. The net lift
force on the cylinder indicates that the generation and distribution of vorticity is not symmetric
about the centre-line of the cylinder; an analogous case is non-symmetric flow over an aerofoil.
The value of Cy m.n Decomes progressively more negative as the cylinder nears the free-surface,
indicating that the wake becomes increasingly non-symmetric, The value of Cy mean close to the
free-surface is larger than the fluctuating component of the lift force, therefore at all times in the
shedding cycle the forces generated by the flow field act to push the cylinder away from the free-

surface.

In contrast to the relatively smooth variation of Cy .., as the cvlinder approaches the free-surface,
there is a peak in the mean drag just before the transition from mode I to mode 1. The peak value
of Cpmen 5 14% higher than for 2 fully submerged cylinder. As A4/D decreases further Cp peun
decreases and at A/D = 0.079, when the top of the cylinder is almost adjacent to the free-surface,
the mean drag on the cylinder is slightly less than for a fully submerged cylinder.

The time varying lift and drag forces for mode I are sinusoidal, however for mode II and III the
forces are neither sinusoidal nor periodic. Therefore, the standard deviation of the force signal,
rather than the peak value, is used to describe the magnitude of the fluctuating component of the Jift
and drag forces. As A/D decreases below 3.0 initially there is a marked increase in Cp,, the
standard deviation of the 1ift, while the standard deviation of the drag Cp, shows only a slight
increase. However, closer to the free-surface the values of both C;, and Cp, for mode I and NI
drop below the values for a fully submerged cylinder, Examination of the lift traces and spectra
show that as #/D decreases from 3.0 to 0.7 there is a significant increase in the energy at the
Strouhal frequency, f,, and the Jift trace is strongly periodic. However, below A/D = 0.5 there are
no distinct spectral peaks and the lift force is not periodic. At #/D = (.5 the wake appears to be
switching between mode I and mode II; at times the lift trace is strongly periodic and is consistent
with mode 1, while other times the lift force is consistent with mode 11 as it has only a small and
irregular fluctvating component. The fluctuating ccmponent of the drag force for mode I is not as
sinusoidal as the corresponding lift force and, while the transition from the submerged cylinder
wake to mode | at A/D = 3.0 corresponds to a significant increase in Ci, Cp o is almost unchanged.
At the transition from mode I to mode 11 there is a sharp decrease in the values of C; o and Cp, a3

well a decrease in the spectral energy at /. Thus, as the cylinder approaches the free-surface it
appears that periodic vortex shedding is suppressed,
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Figure 4-1 Variation of the mean and standard deviation of a) the lift force coefficient, and b) the
drag coefficient with cylinder depth, h/D. The standard deviation of the lift and drag forces, CLoand
CD o, respectively, are used to represent the amplitude of the forces, as for h/D < 8.5 the lift and drag
traces are neither sinusoidal er periodic.
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4.2 WAKE MODES NEAR A FREE-SURFACE

In section 4.1 the three different modes are described in terms of their characteristic force
properties, however they can also be characterised by distinct changes in the structure of the near ;
wake as the cylinder approaches the fiee-surface. in this section the instantaneous and mean

vorticity fields for the three modes are presented and related to the forces on the cylinder.

hD = 0079, Mode Il

i EL [ B T

Figure 4-2 a) Mean vorticity ficlds, Aw = 3.0, and b) Instantaneous vorticity fields, Ao = |0, at 4D = i

iy 3.0, if) 1.0, #ii) 0.25 and iv) 0,079, The circle in the inserts represents the timing of each instantaneous
image.
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In Figure 4-2(a & b) the mean and instantanecous vorticity fields are shown for the three free-
surfacc vrake modes at /D = 1.0, 0.25 and 0.079, as well as at #/D = 3.0 where the cylinder is
effectively fully submerged. For the periodic mode 1 and fully submerged wakes at A/D = 1.0 and

3.0 the mean vorticity fields in Figure 4-2(i & ii) were calculated over 2 and 1 full Karman cycles
respectively.

42,1 Mode 1 Wake: Modified Karman Wake

At the Reynolds number used for the current experiments, Re = 2190, the fully submerged cylinder
wake fias a very long formation length and, as shown by data reviewed in Zdravkovich (1997), the
amplitude of the corresponding fluctuating lift is relatively small. The instantaneous wake of the
fully submerged cylinder, shown in Figure 4-2(b)(#), is characterised by the development of long
attached shear layers and the corresponding mean vorticity field in Figure 4-2(2)(}) shows that the
recirculation region extends well downstream of the cylinder. For cylinder depths between
0.3<h/D<3.0 vorticity of altemating sign is shed periodically into the near wake and the mode I
wac is effectively a modified Kérmén wake. However, comparing Figures 4-2(a)X(i) and 4-
I a)(#) it is clear that the formation length for the mode I wake is much smaller than for the fully
=wbmerged cylinder. Additionally, the force insert shows that there is a corresponding increase in
the amplitude of the fluctuating lift force for the mode I wake.

For mode I Figure 4-i(a} shows that the standard deviation of the lift force increases as #/D
decreases, where the values of (., are calculated over more than 300 Karmdn cycles. In Figure
4-3 the instantaneous mode | vorticity fields and corresponding lift traces are shown at three
different submergence depth: D = 1.5, 1.0 and 0.7. For comparison the effectively fully
submerged case, at #/D = 3.0, is also shown. The instantaneous images were all acquired at times
corresponding to local minima in the lift force. Thus, the wakes are at approximately the same
point in their shedding cycles allowing direct comparison of the near wake structures as A/lD
decreases. As the cylinder moves from the fully submerged state to the mode I wake state there isa
significant shortening in the wake length and a corresponding increase in the amplitude of the
fluctuating lift force. Closer examination of the instantaneous wake lengths in Figure 4-3 reveals
an inverse relationship between the instantaneous wake length and the instantaneous amplitude of
the fluctuating lift force. This relationship is summarised in Figure 4-4(b) where, as shown in
Figure 4-4(a), Ly is a qualitative measure of the instantaneous wake length and Cpi. is the
instantancous amplitude of the fluctuating lift force. Ly is defined as the downstream distance
from the centre of the cylinder to the topological centre of the attached positive vorticity, where to

allow direct comparison Ly, is always measured at a local minimum of the lift force.
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Figure 4-3 [Enstantanequs vorticity fields and lift traces for the mode | wake at a) #/D =30, b) /D =
1.5, ¢) #/D = L0 and d) /D = 0.7, The timing of the images corresponds to local minima in the Jift
forces and is represented by the circles in the lift traces,

198




it

a)

Instantaneous field
al sninimurm Jift
RN RERRRTERE
x= x_attached
b) O Lpiny
-G 150
4 4
- 46 Lﬂnsl
0.0 |- & ] 4
Gt T TN le
005 |- \0-.,_
3 "‘-..__0
1 [ ] [ 1 el
g0 05 10 15 20 25 30
h/iD

Figure 4-4 a)‘ Instantaneous vorticity field showing the definition of instantaneous formation length,
Ljiez b} variation of Ly, and Cp .., with i/D, where the data points correspond to the instantaneous
images in Figure 4-3.

The wake of a stutionary cylinder typicaily has a strong spectral peak at the Strovhal frequency and
the large-scale features of the wake are essentially periodic. However, as evidenced by the changes
in the amplitude of the fluctuating Yift traces in Figure 4-3 there is some variation in the structure of
the wake and the corresponding forces on the cylinder between cycles. The time averaged lift
forces on the cylinder in Figure 4-1(a) show that for the mode I wake the amplitude of the
fluctuating 1ift force increases with decreasing A/D. However, at a given instant this trend does not
always hold and in Figures 4-3 and 4-4 the amplitude of the fluctuating lift force at ifD = 0.7 is less
than at #/D = 1.0. The smaller lift amplitude at /D = 1.0 corresponds to a slightly longer wake
length, and the inverse relationship between Lyiy and Cpm appears to hold at all times. This
suggests that there might be a similar inverse relationship between the mean formatien length and
C:o. The wake length was not qualitatively measured over a large number of cycles and therefore
it is not possible to definitively establish a link between C. . and a mean formation length as the
cytinder approaches the free-surface. However, it is clear that as the cylinder moves closer to the

free-surface the initial increase in Cyo is associated with 2 decrease in the wake length.

The Kérman wake of a fully submerged cylinder has a symmetric mean distribution of vorticity
about the centre-line of the cylinder and the corresponding mean Iift force on the cylinder is zero.

The values of Cj, s, for the mode 1 wake become increasingly negative as the cylinder approaches
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the rree-surface indicating that there is a net generation of positive vorticity and the mode I wake
becomes increasingly non-symmetric about the cylinder’s centre-line. However, due to the
periodic nature of the mode I vortex shedding and the limited field of view, it is difficult to
quantify the net circulation of the wake. Interestingly, for 7/D > 0.7 the non-symmetry of the wake
appears to amplify the response of the wake to the Karmén instability; the vortex shedding occurs
closer to the cylinder and there is a corresponding increase in the amplitude of the fluctvating
forces on the cylinder. Intuitively this suggests that a relatively small imbalance in the level of
vorticity increases the interaction between the shear layers, resulting in vortex shedding occurring
closer o the cylinder. Significant variations in the frequency of the Karman shedding were not
observed. Therefore, despite the fact that the interaction between the shear layers occurs closer to
the cylinder, the duration or period of a shedding cycle is relatively unchanged. As A/D is
decreased further there appears o be a point, A/D = (.5, where the non-symmetry of the wake

" begins to inhibit, rather than enhance, the interaction between the shear layers. Beyond this peint
periodic Kérman shedding was not observed.

4.2.2 Mode 11 Wake: Flow Attached to Free-Surfaze

As hiD decreases below A/D = (.5 there is a sharp drop in the amplitude of the fluctuating forces on
the cylinder and, as shown in Figure 4-2(iii), a marked change in the structure of the near wake,
The mode 11 wake is characterised by the formation of long shear layers and there and there is no
periedic shedding of vorticity. As shown by the force insert in Figure 4-2b(iii) the lift trace is no
longer periodic and there are no strong peaks in the corresponding lift spectra, Additionally,
examination of the Lift traces indicates that the major coniributions to the standard deviation of the
lift force, C; ,, are associated with fluctuations in C; p.. For the mode Il wake the attached shear
layers of both the instantaneous vorticity field, shown in Figure 4-2b(i#) and the mean voriicity
field in Figure 4-2a(ji) are longer than for either the mode 1 or fully submerged wakes. The upper
negative shear layer is parallel to the free-surface while the positive shear layer has a distinct
downward angle. The flow over the top of the cylinder forms a jet of high-speed fluid that
separates from the cylinder but remains attached to the free-surface, where the width of this jet
appears to depends primarily on A/D. The angle at which the upper shear layer separates from the
cylinder is simiiar to the comesponding angle for the fully submerged and mode Karmdn type
wakes, The fluid underncath the cylinder separates earlier than for 5 Karman wake and the lower
shear layer has a distinct downward angle away from the free-surface. The flow visualisation of
the mode 11 wake at h/L> - 0.25 in Figure 4-5, clearly shows the jet of high speed fluid flowing over
the cylinder and the extended region of low speed flow behind the cylinder. The movement of the
lower separation point and the resuitant angle of the positive shear layer is consistent with the
rotation of the front stagnation point towards the free-surface observed by Miyata ef al, (1990},
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Figure 4-5 Flow visualisation of the mode 11 wake at h/D = 0.25 using multiply exposed particles with
no bias velocity.

The general structure of the mode i1 mean vorticity field in Fignre 4-2(a)(#i7) is not significantly
different from that of the corresponding instantanecus wake in Figure 4-2(b)iif). Thus, the
dominant structures in the near wake are non-periodic. Vorticity is shed from the mode !I wake but
the final separation of the vorticity from the long shear lays occurs well downstream from the
cylinder and the shear layers interact in a relatively disorganised fashion. The sharp drop in Cp
and Cp o as #/D decreases below 0.5 is consistent with the non-periodic nature of the mode 11 wake
and the cessation of coherent voriex shedding. The marked non-symmetry of the wake is also

consistent with the large net negative lift force on the cylinder.

The mode Il wake doss not appear to cause deformation of the free-surface and the corresponding
generation of free-surface vorticity, and is essentially the same as the wake state observed by
Sheridan et al. (1997) at Fr = 0.22. Sheridan et al. (1997) found that when they increased the
Froude number to 0.35 and 6.60 the wake state still displayed characteristic features of the made I1
wake, including the characteristic jet of high speed fluid over the cylinder and the angled lower

wake. However, as discussed in section 1.7.4 at higher Fr there was also significant free-surface

deformation and the generation of free-surface vorticity.
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423 Mode III Wake: Separated Jet

The mode III wake was observed at the smallest submergence depths of AID < 0.125, At these
depths the separation of the upper shear layer from the cylinder is delayed and the thin jet of fluid
above the cylinder separates from the free-surface. At #/D = 0.079 the jet was unsteady and
alternated between remaining attached to the back of the cylinder and separating from the cylinder
to form a thin free jet. For the majority of the time the thin jet of fluid remained attached to the
cylinder and there was a systematic upstream movement of the low speed fluid directly behind the
cylinder. The migration of fluid upstream appeared to result in the attached jet becoming unstable
causing it to separate from the cylinder as a free jet. The free jet persisted for short perieds of time
and tended to “flap” at angles of between 45 and 60 degrees ‘o the free-surface. The short periods

of time during which the jet separated from the cylinder coincided with a general downstream
movement of the low speed fluid behind the cylinder.

In Figure 4-2(b}{iv} the high speed fluid between the free-surface and the cylinder separates from
the free-surface but remains attached to the back of the cylinder, forming an attached jet of flow
running downwards into the lower shear layer. The separation of the jet of fluid from the free-
surface indicates that positive free-surface vorticity s generated at the point of separation. The jet
on the back surface of the cylinder clearly contains both positive and negative vorticity and there is
also significant positive verticity underneath the free-surface, thus the separation of the jet of high
speed fluid coincides with the generation of positive free-surface vorticity. Despite the generation
of free-surface vorticity, a clear deformation of the free-surface above the cylinder was not detected
during the experiments. The fact that free-surface deformation was not observed indicates that
either that the deformation of the free-surface was small, or that the free-surface vorticity was
generated by another mechanism. For the case of a perfectly clean free-surface the effectively zero
shear stress along the free-surface precludes the generation of free-surface vorticity by any
mechanism other than free-surface deformation. However, if the free-surface is contaminated the
shear stress penerated by surfactants on the free-surface may result in the generation of fiee-surface
vorticity.

For the mode HI wake the jet of fluid generated by flow aver the top of the cylinder is very thin and
the finer structures of the jet were not resotved by the PIV data. When the jet remained attached to
the cylinder it tended to be better resolved than the separated free jet, indicating that the attached jet
may be slightly wider. The mean vorticity field in Figure 4-2a(iv) was calculated over a time
period where the jet remained attached to the cylinder and therefore does not fully represent the
unsteady wake. However, the percentage of time during which the jet was separated from the
cylinder was relatively small, consequently it is expected that a mean vorticity field calculated over
much longer time pesiods would not differ significantly from the field in Figure 4-2(a)(iv). With
the exception of the retatively short lived formation of the free jet the general structure of the mode
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Il wake is relatively steady and the instantaneous wake in Figure 4-2(b)(/v) does not differ
significantly from the mean vorticity field in Figure 4-2¢a)(iv).

The flow visualisation in Figure 4-6 shows the formation of the free jet where the fluid moving
over the top of the cylinder separates from both the cylinder and the free-surface. The free jet
angles across the back of the cylinder and in Figure 4-6 the formation of a recirculation region
between the jet and the cylinder as well as the interaction of the jet with the lower shear layer are
clearly visible.

TR TR TN

Figure 4-6 Flow visualisation of the mode 1iF wake a¢ /D = 0.079 wsing multiply exposed particles
with 1o bias velocity.

The generation of net positive vorticity is particularly obvious for the mode Il wake in Figure
4-2(a)(iv), and the corresponding value of Cp me.n 15 large and negative, The reason for the small
increase in Cpmean at #/D = 0.079 is not known, although it may be due to the relatively small
sample time for this data point or it may be directly related t0 changes in the structure of the wake.
As for the mode 11 wake, the lack of organised vortex shedding from the mode ITI wake results in
small nen-periodic fluctuations of the lift force, and the lower shear Jayer has a characteristic

downwards angle.

At Fr=0.16 the mode [1] wake was only observed at i/D = 0.079, however the work of Sheridan ez
of, (1997) indicates that at higher Froude number the mode 111 wake state persists through to deeper
cylinder depths. Sheridan er ol (1997) found that for the smallest values of #/D considered in their
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experiments the jet of fluid over the top of the cylinder remained attached to the cylinder and the
wake appeared very similar to mode 111 wake in Figure 4-2(iv). When the cylinder was moved
further away from the free-surface the high speed fiuid formed a strong, apparently stable free-jet
and there was a clear depression of the free-surface behind the cylinder. The deformaticn of the
surface did not result in the formation of large scale free-surface waves and the majority of the
free-surface vorticity separated from the free-surface. Sheridan er al. (1997) also found that by
increasing Froude number there was an increase in the cylinder depths at which the free-jet wake
mode was observed. This trend is consistent with the results of our experiments at much lower Fr,
as in our experiments mode 1[I wake was only observed for very small values of A/D. The
experiments at higher Froude number indicate that the jet separating from the free-surface can
exhibit two stable wake states; the formation of a jet which remains attached to the cylinder and the
formation of a free-jet, where the wake state depends on both /D and Fr. It is therefore possible
that the mode I1I wake observed in these experiments at much lower Fr is actually alternating
between two different wake states.
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424 Angle of Lower Shear-Layer

The lower shear layer for both the mode I1 and IHl wakes has a characteristic downward angle, As

shown schematically in Fijgure 4-7, the angle of the Jower shear layer, 0,5crte Was quantified by
finding the locus of maximum positive vorticity and calculating the average angle over one
cylinder diameter downstream of the cylinder. The four instantaneous vorticity fields in Figure
4-8(a - d) and the cotresponding values of Gueo imer plotted in Figure 4-8(e) clearly show that there

is an increase in the dowpward angle of the lower shear layer as the cylinder approaches the free-
surface.

a) Locus of Me ie~m Posilive Vorticity
-0.50.——--!'!""--—-.-._._. ey —r
1

he average angle of the
Fi 4-7 The instantaneous angle of the lower shear layer as defined by ¢

locg:::::t maximum positive vorticity in the first cylinder diameter downstream of the back of the
cvlinder. The maximum positive vorticity in 3) corresponds to the instantaneous mode K wake in b).
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Figure 4.8 Instantancous vorticity fields for mode [i and mode IT] wakes at a) h/D = 0.5, h/D = 0.025,
<) h/D = ¢,125 and d) /D = 0.079.

4.2.5 Contamination of Free-Surface

As discussed in section 1.7.5, in a free-stream flow a surfactant on the free-surface is pushed
downstream and the point at which the free-surface becomes contaminated tends to be clearly
defined, typically by a small ridge known as the Reynolds ridge. Downstream of the ridge the
contamination forms a boundary layer and vorticity can be generated at the surface without free-
surface deformation. The boundary layer underneath a contaminated free-surface is typically thin

and often difficult to detect. The illumination of the free-surface by the laser allows the detection
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of free-surface contamination and in negative PIV and flow visualisation images the contamination
corresponds to a solid whiie line.

At the deeper cylinder depths, #/D 2 0.25, free-surface contamination was not observed in the
vicinity of the cylinder. However, as the cylinder approached the free-surface the restriction of
flow over the cylinder appeared to reduce the velocity of the free-surface flow behind the cylinder,
atlowing the accumulation of surfactant. It is not known if the blockage caused by the close
proximity of the cylinder to the free-surface allowed a pre-existing region of free-surface
contamination to move upstream, or if the blockage caused the formation of a separate region of
free-surface contamination. The free-surface coniamination appeared to contain a significant
number of PIV particles, indicating that it might be difficult to « stain a perfectly clean free-surface
and still use PIV to measure the velocity field.

For the mode 1 wake at i/D = 0.125 the free-surface contamination began approximately three
cylinder diameters downstream of the cylinder and at this point the high speed fluid separated from
the free-surface. The boundary layer underrieath the contaminated free-surface grew rapidly and
there was significant positive surface vonticity downstream of the Reynolds ridge. At the very
smallest cylinder depth of A/D = 0.079, the free-surface contamination, clearly obvious in Figure
4-6, started directly above the cylinder. This was only the cylirder depth where the high speed
fluid over the top of the cylinder separated from the free-surface before separating from the
cylinder. The separation of the jet from the free-surface is not possible without the formation of
positive vorticity at the free-surface and, as discussed above, the only mechanisms that would cause
this are free-surface deformation and surface contamination, Therefore the presence of the surface
contamination may have promoted the separation of the jet from the free-surface. The experiments
of Sheridan ef al. (1997) were conducted in a similar experimental facility and the flow was seeded
with identical PIV particles but it is not known to what extent those experiments were affected by
free-surface contamination. However, at the higher Froude numbers used by Sheridan et of. (1997}
it is expected that the accumulation of surfactant behind the cylinder is fess likely.

4.3 SUMMARY

For low Froude numbers, three different wake states were observed within the free-surface region
as the depth of the stationary cylinder below a free-surface is decreased. At the deeper
submergence depths the mode 1 wake is a modified Kdrmén wake, where the presence of the frec-
surface results in a shorter formation length and 4 corresponding increase in the amplitude of the
fluctuating lift force. Thus, it appears that for the mode T wake the effect of the Kérmén instability
is amplified by the close proximity of the fres-surface. However, as the eylinder is moved closer lo
the free-surface periodic vortex shedding is suprressed and for the mode II and 111 wakes the
fluctuating lift force is very small. The mode Il wake, which has high velocity fluid moving
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underneath the free-surface, and the mode H1 wake where a thin jet of fluid separates from the free-
surface are similar to the wakes observed by Sheridan er al. (1997) at higher Fr. However, at lower
Fr the free-surface appears flat and significant levels of free-surface vorticity, possibly
corresponding to free-surface contamination, were detected only at /D = §.125 and 0.07¢.

The presence of the free-surface appear to cither magnify or suppress periodic vortex shedding and
the corresponding fluctuating forces experienceé by the cylinder. It is expected that the range of
subimergence depths over which the free-surface region and associated wake modes extend is a
function of Fr. Additionally, the nature of the wake modes will also vary with Froude number a3
demonstrated by the extensive free-surface deformation and free-surface vorticity observed by
Sheridan ef al. (1997) at higher Fr.
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5 CONCLUSIONS

In this work, we describe in detail the wake states of a cylinder forced to osciilate transverse to a
free-stream. The nature of the interaction between the wake’s natural instability and the cylindér
oscillations was studied using simultaneous measurements of the vortex stuctures in the near wake
and the forces on the cylinder. The modification of the wake of a stationary cylinder due to the
close proximity of a free-surface was also studied wsing simultaneous flow and force field
measurements.

The wake's dependence on the oscillation frequency was examined for a range of oscillation
amplitudes and Reynolds numbers. For the cases examined, the wake spends the majority of its
time in one of either of two stable wake states, hawever at higher oscillation amplitudes a third
wake state was observed. Primarily, these wake states depend on the normalised frequency of
oscillation, £/f, and thus we characterise the two most commonly observed states as the low- and
high-frequency wake states. The third wake state was observed at intermediate values of £/f,
between the low- and high-frequency states, and is consequently termed the intermediate wake
state. The structure of the near wake and, in particular, the timing of vortex shedding is distinctly
different for the low- and high-frequency wake states. These differences can be characterised in
terms of a number of universal features, which were observed over the full range of 4/D and Re
studied. The phase of vortex shedding relative to the cylinder’s motion varies only slightly with
A/D and Re and appears to depend primarily on the wake state. The phases of the vortex lift and
drag forces are directly related to the timing of large scale changes in the vorticity field and, as
shown in Figure 3-21, the low- and high-frequency wake states have characteristic values of
Dty vorser ANQ e Which are observed over a wide range of 4/D and Re. The wake states can also be
characterised by the structure of the near wake and typically the mode of voriex shedding. The
low-frequency wake state generates long attached shear layers, which, except for very low values
of A/D, result in the 2P mode of vortex shedding. The high-frequency wake state has a much
shorter wake length and vortices are shed in the 2S or Karman mode. At the oscillation amplitudes
considered in this investigation the intermediate wake is also 28, however the phase of vortex
shedding and the vertical width of the wake are simifar to that of the low-frequency wake,

At the transition between the low-frequency and intermediate states there is a large change in ¢y,
corresponding to a change in the relative amplitudes of the apparent mass and vortex components
of the total lift force. However, d e is relatively urchanged and examination of the flow fields
shows that the phase of large-scale vortex shedding is also unchanged. At the interntediate to high-
frequency transition the value of ¢uy is relatively constant, but there is a jump in the value of
iy vorrer aNd & corresponding change in the phase of vortex shedding. At the transitions between the

low-frequency, intermediate and high-frequency states there are jumps in the values of C; and
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Ct vorier; hOWeVer, surprisingly, there are only relatively small changes in the valuss of Cp and
Cpumear. For flow and oscillation parameters where the intermediate state was not observed the
transition between the low- and high-frequency states corresponds to simultaneous jumps in the
phase and amplitude of both the total and vortex lift forces. However, as there are significant
changes in both the structure of the near wake and the phase of vortex shedding, it is difficult to

directly compare the change in timing of voriex shedding with the change in the value of ¢us wores.

For a given wake state the magnitude of the vortex forces: Cyiumex, Cp aNd Cp meon a5 well as the
energy transfer and the total lift forces ali show significant variations as the oscillation amplitude
and Reynolds number vary. For the low- and high-frequency states the phase of the vortex forces
i vorex aNA Doy d0 Mot vary significantly with Re or 4/D, and with the exception of the region
immediately following the transition to the high-frequency state, Figure 3.21shows a remarkable
collapse of i rerrer 208 Gurap. A similar collapse may occur for the intermediate state but additional
data is required to show this. While the jump in the phase of the vortex lift and drag at the
transition between the low- and high-frequency stales is relatively independent of A/D and Re, the
jump in the magnitude of both the vortex and total forces depends on both variables.

For certain flow and oscillation parameters there is a self-excited transition between wake stites at
a constant frequency of oscillation. Thus, for a small region of parameter space, two or even three
states can exist at different times. Usually, one of these states appears to be metastable; its
existence depending on the start up conditions, During the self-excited transition between the
different states the mode of vortex shedding and the forces on the cylinder vary smoothly in the
time domain, This contrasts with the abrupt jump between the stales in the frequency donain.

The relative stability of the wake states, and their susceptibility to transition, varies with £/,. As
J<f, changes a number of variables, including the natural frequency of the oscillating wake, respond
in a non-linear fashion and it is not possible to quantify the relationship between the stability of the
wake states and f/,. However, there are a number of systeimatic changes that occur as f/;
increases towards transition region. For the low-frequency wake state, the length of the wake
contracts as f./f, increases and there is a greater disparity in the relative strength of the vortices in
the 2P pairing. As the wake approaches transition region from either higher or Jower £/, the
oscitlation frequency £; and the natural frequency of the oscillating wake f,,, converge and at the
transition from the low- to the high-frequency state £/ jumps through unity. Despite these
systematic changes, for a given wake state the general characteristics of the wake state, in

pariicular the phase of vortex shedding, remain relatively constant.

An important feature of the study is the extraction of the vortex force from the total force. Use of
this approach allows a direct link between the forces on the cylinder and the ¢ylinder’s wake to be
established. When the total lift force, Cy(1), and the vortex kift force, Cp yumed(f), are compared with
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the phase of vortex shedding for a range of flow parameters, it becomes evident that i
relationship between the force on the cylinder and the structure of the near wake should be
interpreted using Fope tather than F.. This is best illustrated by the cases where the intermediate
state is observed; the transitions between the intermediate and either the low- or high-frequency
states demonstrate the qualitaiive link between ¢y vome: and the phase of vortex shedding, as well as
the link between Cpome and the distribution of vorticity. However, if these transitions are
considered in terms of the total force on the cylinder the change in the phase of vortex shedding
does not correspond to the jump in ¢y

- One of the primary motivations for investigating the forced cylinder oscillations is the potential to

understand and predict flow-induced motion. This investigation shows, for the first time, a link
between the wake states of a cylinder forced to oscillate and the response branches of a freely
oscillating cylinder. This link is shown in terms of both the forces on the cylinder and the phase-
reference structure of the near wake. In summary, we find a strong correlation between the wake
states and response branches as listed below:

Low-frequency state ¢« Lowerbranch
Intermediate state «  Upperbranch
High-frequency state ¢  Initial branch

The upper response branch for the free-oscilations is only observed for low mass-damping values
and exhibits high oscillation amplitudes. lnterestingly, the corresponding forced intermediate state

was only observed at the two highest oscitlation amplitudes considered in our investigation.

One of the major unsolved problems for this class of flows is whether the results of forced
oscillation experiments can be used to predict the vortex-induced vibration of a structure that is free
to oscillate. Whilst this investigation did not seek to answer this question a number of interesting
issues have arisen. The forced purely sinusoidal oscillations appear to reproduce the different wake
structures and lift phases observed for a freely oscillating cylinder. This indicates that the forced
oscillations are simulating many of the important features of the flow-induced motion. The
variation of Qrs and Qs e are remarkably simitar, however many of the values of éus and ¢y omer
for the forced oscillations are outside the region of positive energy transfer,
0°< (G OF ryg varrex) <180°, and therefore predict that flow induced motion will in fact not occur.
Thus although the forced oscillations replicate many features of the flow-indaced motion there are
still sume important aspects that are not resolved.

For the case of a stationary cylinder beneath a free-surface three different wake states, described as

modes I, i and 11, are observed as the depth of the cylinder is decreased. The modification of the
Kérmén wake by the free-surface in the mode I wake resulls in a shorter formation length and an

2n




increase in Cps. The mode 11 wake, with high velocity fluid moving underneath the free-surface,
and the mode I1I wake with a thin jet of fluid separating from the free-surface are similar io the
wakes observed by Sheridan et al. (1997) at higher Fr. However, at lower Fr the free-surface
appears flat and, for all but the very smallest submergence depths, significant levels of positive
free-surface vorticity were not detected. Periodic vortex shedding does not occur for the mode 11
and mode Il wakes and Cp, is very small. The presence of the free-surface causes a non-
symenetry of the wake; the lower shear layer has a characteristic downward angle and C .. i$
negative, Thus it appears that the presence of the free-surface can act 1o either amplify or suppress
the periodic vortex shedding associated with the Karmadn instability.
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5.1 FUTURE WORK/RECCMMENDATIONS

Spanwise Wake Structure

When a cylinder oscillates there is an increase in the spanwise coherence of vortex shedding.
However, the wake is not 2-dimensional and the levels of vorticity across the span of the cylinder
have been shown to be as high as 1/3 of the vorticity in the streamwise plane, Cetiner (1998).
Similarly, for Re > 180 the wake of a stationary cylinder is also 3-dimensional. In this work a
number of different wake states have been observed for both an oscillating cylinder and a cylinder
beneath a free-surface. These wake states have been characterised in terms of the wake structure in
the x-y plane perpendicular the cylinder's axis. However, the spanwise wake structures, in
particular their dependence on wake state and their contribution to the forces experienced by the
cylinder, remain unknown. Additionally, it is not known if the spanwise nature of the wake affects
the transition between wake states and if self-excited transitions occur simultaneously along the
span of the cylinder,

Intermediate State

A strong correlation was shown between the forced oscillation intermediate state and the free upper
response branch. The intermediate state was observed over a small band of oscillation frequencies
at the two highest amplitudes considered in this investigation, A/D = 0.5 and 0.6, where these
amplitudes are slightly below the smallest wpper branch amplitudes observed by Govardhan &
Williamson (2000). At A/D = 0.6 the intermediate state was observed as a stable wake state
following a self-excited transition but at 4/D = 0.5 the intermediate state was only observed for
short periods of time. In combination with the correlation between the upper branch and
intermediate state these results suggest that the intermediate state will occur as a stable wake state
at higher osciltation amplitudes. Moreover, it is likely that, in-line with the resuits of the freely
oscillating cylinder, the intermediate state will be observed over a wider range of £/f; at higher

oscillation amplitudes.

Relationship Between Force and Vorticity

It has been known for some time that the forces on a body due to the vorticity field can be
expressed in terms of the time rate of change of the vortex moment, as described by equation 3.2,
However, in practical terms the link between the forces experienced by a body, moving or
stationary, and the time varying vorticity distribution is not weil understood. For example, looking
at the fime varying voriicity fields for the low-frequency, intermediate and high-frequency wakes it
is not immediately apparent why the vortex lift forces on the cylinder are of different amplitude.
Additionally, for the same fields it is also not clear why the amplitude of the {vortex) drag forces
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do not vary significantly as the wake state changes. Clearly more work is required to understand
this important relationship.

Prediction of Flow-Induced Moiion

Our resuits have shown that the controlled purely sinusoidal motion of a cylinder can replicate
many of the flow structures and force properties of a freely oscillating cylinder. However, in a
number of cases there are fundamental differences between the forced and freely oscillations, as
refatively small changes in the phase of the iift force causes the direction of energy transfer to be
different. These results have serious implications for the predication of flow-induced motion using
forced oscillation results as it indicates that the flow-induced motion can not be accurately
predicted using forced purely sinusoidal oscillations. In order to determine if the flow-induced
motion can be predicted using controlled oscillation results we need first to understand how, and
preferably why, the two cases are different. The most obvious difference between the two cases is
the cylinder motion; as if the motions were identical the wakes and therefore the forces on the
cylinder and the energy transfer would also be identical. The flow-induced motion is directly
related 1o the structure of the wake. Therefore, an understanding of the differences in the wake
structure, including the spanwise component, may be important in determining the differences
between the forced and freely oscillating cases.

Wake States Below a Free-Surface

A number of different mechanisms can be used to perturb or alter the Kérman instability. In this
investigation two such mechanisms were considered; the presence of a free-surface and large-scale
cylinder oscillations. In both cases a number of different wake states were observed, where these
wake states display characteristic features that depended primarily en either the depth of the
cylinder below the free-surface or the frequency of cscillation. An obvious extension of this
investigation is to consider the case of a cylinder oscillating beneath a free-surface, where these
two mechanisms are combined. In particular, it would be interesting to determine if, when the two
mechanisms are combined, do the characteristic features observed for the two individual cases
persist. In particular; are the features which characterised the effect of the free-surface on the flow
over a stationary cylinder, i.e. the downwards angle of the wake and the net negative lift force on
the cylinder, present for the oscillating case; and is there a transition between different wake states

as /¥, passes through unity?

214




Ete
a
be

o
ely

tes
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