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ERRATA

1. p.14, line 22. Insert after "y = Xfl+it" "where y is n x l , X is an nxk non-
stochastic matrix of rank k < n, /? is a k x 1 vector of parameters and u is
/? x 1 disturbance vector".

2. p. 15, line 1. Replace "(this is discussed in detail in Section 3.3)" with "where 7/0
is a positive scalar, rj is a k x 1 vector, z is the ordinary least squares residual

vector and P is any p x n matrix such that P'P = /„ - X{X'X)~ X' and

Pi" = lp in which p = n-k".

3. p. 16, line 5. Insert the following paragraph after line 5.
"Marginal likelihood is one of the likelihood based methods designed to
overcome the nuisance parameter problem. It involves transforming the
observed data such that the likelihood of the transformed data can be factored
into two parts, one being uninformative about the parameter(s) of interest in
the absence of knowledge of the value of the nuisance parameter(s) and the
other part containing the parameter(s) of interest as the only unknown
parameter(s). This second factor is the marginal likelihood as introduced by
Fraser (1967) and further developed by Kalbfleisch and Sprott (1970). In the
context in which it is used in this thesis, Ara and King (1993) and Ara (1995)
have shown it is equivalent to the likelihood function of the standard maximal
invariant under transformations of the form T(y). In this form, it therefore has
all the properties of a full likelihood. Given how the marginal likelihood is
constructed, there is no loss of information in using it in place of the full
likelihood."

4. p.33. Replace the last paragraph of Section 2 5 with the following.
"Andrews and Ploberger (1994) derived asymptotically optimal tests for
testing problems when a nuisance parameter is present under the alternative
hypothesis but not under the null hypothesis. This is a nonstandard testing
problem for which likelihood based asymptotic tests such as the LR, LM and
Wald tests are difficult to apply because of problems in determining their
distributions. Also, as Andrews and Ploberger point out, the asymptotic
optimality properties of these tests no longer apply. They used a weighted
average power criterion to generate asymptotically optimal tests similar to
such a criterion used by Wald (1943). The weighting function is defined over
the space of the nuisance parameter that is present under the alternative
hypothesis but not under the null. They constructed general tests that are
asymptotically optimal in the sense that they maximize weighted power
asymptotically under a sequence of local alternatives. Their new tests are of an
average exponential form and are called the exponential Wald, exponential
LM and exponential LR tests.

In special cases where through invariance and/or similarity, the testing
problem essentially boils down to one in which the null hypothesis is simple
and the alternative hypothesis is composite, finite-sample optimal tests can be
constructed through the use of the Neyman-Pcarson (NP) lemma. This
involves applying the lemma to a weighted average of likelihoods under the
alternative hypothesis and results in invariant or similar tests that maximize
weighted power. Andrews et al. (1996) outlined this approach in the case of



testing for one or more changepoints at unknown times in a multiple linear
regression model. Here the timing of the changepoint is an unknown parameter
which is present only under the alternative hypothesis. In a further paper,
Andrews and Ploberger (1996) applied this approach to testing for white noise
against an autoregressive moving average (ARMA( 1,1)) model.

In this thesis, we propose a new test procedure for the problem of testing a
composite null against a composite alternative hypothesis by applying the
generalized NP lemma. This allows us to extend the work of Andrews and
Ploberger to the construction of tests that are optimal in small samples in that
they maximize weighted power subject to controlling the level of average size
over each of a number of subspaces of the null hypothesis parameter space.
The test is general and does not require there to be a nuisance parameter that
appeals only under the alternative hypothesis."

5. p.42, line 10. Insert the following lines after "composite hypotheses."
"Andrews et al. (1996) and Andrews and Ploberger (1996) constructed tests
that maximize weighted power for testing problems in which the null
hypothesis is simple after suitable reduction via invariance or similarity. Their
results are based on the NP lemma. Our work involves null hypotheses which
are still complex after suitable reduction and is based on the generalized NP
lemma."

6. p.46, line 17. Replace "prior distribution" with "weighting distribution".

7. p.47, line 9. Replace "prior distribution" with "weighting distribution".

8. p.48. Insert the following paragraph after the equation (3.6).
"Clearly, the ct 's are one's preferred level of significrjice and chosen by the
user. An obvious approach is to make them equal c, =c2 =----cm and then
equal to the desired significance level. We believe this is the best approach.
However, the generalized NP lemma does allow flexibility in this area when
testing composite hypotheses."

8. p.50. Insert the following paragraph before Section 3.3.
"It may be tempting to use the data to help decide on the weighting function
given the data has information regarding the true values of the parameters.
This is not recommended because it is likely to result in a loss of power. This
is because the generalized NP lemma would no longer apply. Also it is similar
to a jump from a point optimal test to a LR test. In the former, the point at
which power is to be optimized is chosen in advance with good results. In the
latter, parameters under the alternative are replaced with estimates. As pointed
out in a survey article on testing for autocorrelation in linear models by King
(1987b, p.59), 'It would seem that the LR test is a particularly umeliable test
for serial correlation. Dent (1973) found it to have poor power against AR(1)
disturbances, while Brandsma and Ketellapper (1979) reported a similar
finding for the LR test against first-order spatial autoregression. Maddala and
Rao (1973) were so puzzled by the poor power of the LR test against AR(1)
disturbances in the lagged dependent variable model, they repeated their
calculations using a different algorithm for computing the MLE's'."

9. p.72, line 14. Insert after "control average size." "The use of the uniform
distribution means that average sizes, and average powers are unweighted
averages."



10. p.74, line 9. Replace "The sizes can be undesirably large in some parts of the
null hypothesis parameter space while being smaller than the desired size in
other parts of the null hypothesis parameter space" with "The sizes may be
undesirably large in some parts of the null hypothesis parameter sub-spaces
(0, ) while being smaller than the desired size in other parts of the null
hypothesis parameter sub-spaces".

'z,, and w,,"to lz2l andIl.p.l45,line9. Change

12. p.201, line 17. Insert the following paragraph after line 17,
"In this thesis, we have paid very little attention to computational efficiency.
We have constructed computer programs to do the task but without worrying
about how long the task takes. Clearly, future researcli is needed on reducing
computation time by the use of more efficient algorithms and programming.
We conjecture that a greater attention to this issue might reduce computational
time by up to 90%."

Additional references
Brandsma, A.S. and Ketellapper, R.H. (1979), Further evidence on alternative

procedures for testing of spatial autocorrelation among regression
disturbances, in: C.P.A. Bartels and R.H. Ketellapper, eds., Exploratory and
Explanatory Statistical Analysis of Spatial Data, Boston: Martinus Nijhoff,
113-136.

Dent, W.T. (1973), A power study of several tests for autocorrelation, New Zealand
Economic Papers, 7, 109-120.

Maddala, G.S. and Rao, A.S. (1973), Tests for serial correlation in regression models
with lagged dependent variables and serially correlated errors, Econometrica,
41, 761-774.
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Abstract

This thesis is concerned with hypothesis testing in econometrics and proposes a new

optimal approach for testing composite hypotheses.

Hypothesis testing is a fundamental tool for evaluating econometric models. It can be

used to test aspects of econometric theory or to check model specification. It is

therefore essential to have reliable test procedures for the small samples

econometricians sometimes have to deal with, particularly, when nuisance parameters

are present. In the absence of uniformly most powerful (UMP) tests, King (1987a)

suggested the use of point optimal (PO) tests which are most powerful at a chosen

point under the alternative hypothesis. For situations where PO tests cannot be

constmcted, King suggested an approximate point optimal (APO) test.

The existing literature shows that King's PO tests are not suitable for all testing

problems. For example, Silvapulle and King (1991) could not find a point optimal

invariant (POI) test for testing first-order moving average (MA(1)) disturbances

against first-order autoregressive (AR(1)) disturbances in the linear regression model.

They recommended the use of an approximate point optimal invariant (APOI) test.

This motivated us to construct a general test procedure, called the average power test,

based on the generalized Neyman Pearson lemma. The test maximizes average power

function subject to average size being controlled over subspaces of the null parameter

space for testing a composite null hypothesis against a composite alternative.
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In this thesis, we apply this new testing approach to the testing problem considered by

Silvapulle and King (1991), to testing the form of heteroscedastic disturbances and to

testing joint MA(1)-MA(4) against joint AR(1)-AR(4) disturbances in the linear

regression model. For the first testing problem, the null and alternative hypothesis

parameter spaces are restricted to unit intervals. We compare the small sample size and

power properties of the test with those of Silvapulle and King's APOI tests, with

encouraging results. The new test is found to have good small sample size and power

properties. For the second and third testing problems, both the null and alternative

hypotheses parameter spaces are one-sided infinite intervals and two-dimensional

squares, respectively. Results of size and power calculations indicate that our new test

has fairly good small sample size and power properties. For the third testing problem,

we find it extremely time consuming to obtain the critical values for which the average

size conditions are simultaneously satisfied. This is because the test procedure is

extremely computer intensive when the hypotheses are multidimensional. Our study

clearly indicates that the new optimal test procedure performs well at least for the

testing problems we considered, especially when the sample size is small.

The overall recommendation of this thesis is that the new test procedure has

considerable potential, particularly for problems in which the effective null hypothesis

parameter space can be kept small. The new test procedure can be favourably

considered in situations where PO and APOI tests cannot be constructed or appear to

perform poorly.

Chapter 1

Introduction

1.1 Background

It is well recognised that Ragnar Frisch first introduced the term 'econometrics' in the

early 20th century (see for example, Darnell (1984, 1S94), Bjerkholt (1995, 1998) and

Strom (1998)). This term appeared in his very first paper in economics which was

written in French and was published in 1926 (Frisch (1926)).

Econometrics, in its early stages was very much concerned with the application of

statistical methods. As Hillier and King (1991, p. 1) remarked,

These methods had originally been developed for the natural sciences

where careful attention to the experimental design can often justify the

confident use of relatively simple stochastic models. ... In particular, there

is usually greater uncertainty about the stochastic mechanism that

generated the data, making it essential to have available reliable diagnostic

procedures that allow one to at least check the adequacy of the model

used, and ideally would indicate the direction or directions in which

revision of the model might prove fruitful.

Some applied researchers (Klein (1947) and Stone (1954)) quickly appreciated these

needs. In this regard, Hillier and King (1991, p. 1) further noted:

xu



Chapter I

However, the modern applied econometrician uses more complicated

models (nonlinear, dynamic, censored, etc.), and wishes to entertain the

possibility of departures from the basic model in a number of directions.

Research on diagnostic testing has, according, expanded greatly in its

attempt to meet these needs.

Clearly hypothesis testing has an important role to play in econometric practice. It too

has a long history. After the publication of Karl Pearson's (1900) goodness of fit test, the

systematic development of hypothesis testing began (see Bera and Premaratne (2001,

p.38)). Neyman and Pearson (1933) laid the foundation of the theory of hypothesis

testing and the concept of an optimal test was introduced through the analysis of the

power function. An important building block for test construction is the Neyman-

Pearson (NP) lemma which provides a way to find the most powerful (MP) and

uniformly most powerful (UMP) tests. Neyman and Pearson (1936) generalized the

fundamental NP lemma but compared to the number of applications of the NP lemma,

the generalized NP lemma has been very much under utilized.

During the last four decades the likelihood ratio (LR) test, Wald and Lagrange multiplier

(LM) tests have emerged as three important classical test principles based on likelihood

theory. They have been popular with econometricians but are not totally ideal, particular

with respect to power in the case of one-sided testing problems or in applications with

large numbers of parameters and a small number of observations. However,

^ mometricians have produced a large number of general test procedures such as those

proposed by Hausman (1978), White (1982), Tauchen (1985), Nevvey (1985) and King

(1987a).

Introduction

A new development in econometric theory during the last two to three decades is the

shift of focus from asymptotic theory to finite sample properties. Prior to this, there was

little econometricians could do about the exact finite sample distributions of estimators

and test statistics (see Chen (2001, p.3)). Therefore most inferencial procedures relied on

first-order asymptotics. Monte Carlo results provided frequent embarrassing evidence

against this approach. Many studies in different settings showed that first-order

asymptotic theory provides poor approximations to finite sample distributions and can

provide poor inferences in practical applications, see for example Bewley (1986, Section

3.3), Cox and Reid (1987), King (1987b), King and McAleer (1987), Moulton and

Randolph (1989), Chesher and Austin (1991) and McAleer (1995).

This shift towards more accurate and more reliable small sample inference is largely

facilitated by rapid increases in computing capacity. That is, as in many disciplines,

computers have played an essential role in making finite sample econometrics

operational. There is software for data management, modelling, estimation, inference,

simulation and graphics which make things easier (see for details, Hendry (2001)). The

typical building blocks for econometric analysis are model specification, model

selection, model estimation, hypothesis testing and forecasting/prediction. The aim of

the thesis is to make a contribution in the area of testing a composite null hypothesis

against a composite alternative hypothesis.

1.2 Motivation and direction of the thesis

Many applied econometric studies involve testing hypotheses about the parameters of

econometric models. The first aim of hypothesis testing is to control the probability of

Type I error, that is, the critical value of the test should be chosen so that the test rejects



Chapter 1 Introduction

a correct null hypothesis with a probability a (specified level of significance). The

second aim is to make the probability of correctly rejecting the null hypothesis (the

power of the test) as high as possible. Most hypotheses in econometrics are composite,

the null hypothesis does not completely specify the data generation process in the sense

that there are parameters with unknown values involved. Consequently, the sampling

distribution of the test statistic is unknown except in special cases. Ir these

circumstances it is highly likely that the sampling distribution of the test statistic

depends on one or more unknown population parameters. As a result, the proba aility of

Type I error can vary with different values of the parameters and we cannot fix this error

at a desired level. Alternatively, a test statistic is pivotal if its ilnite-sample distribution

under the null does not depend on unknown population parameters. However, pivotal

test statistics are not available in many econometric applications unless strong

distributional assumptions are made. When the test statistic is not pivotal, its Type I

critical value can be very different at different points under the null hypothesis (see for

details, Horowitz (2001), and Horowitz and Savin (2000) for a numerical example).

King (1987a) introduced the class of point optimal invariant (POI) tests for testing both

simple and composite hypotheses, which are most powerful invariant tests at a chosen

point under the alternative hypothesis. POI tests have excellent power properties for a

number of testing problems in econometrics. They can have good power properties even

at parameter points away from the point of the alternative hypothesis at which power is

optimized but are not suitable for all testing problems. There are some situations where

the test docs not work at all. For example, Silvapulle and King (1991) could not find a

POI test for testing MA(1) against AR(1) disturbances in the linear regression model and

they recommended the use of an approximately POI (APOI) test. Rahman and King

i

(1994) considered testing random regression coefficients in the presence of AR(1) errors

using APOI tests and they concluded that the extra computation required for the APOI

tests hardly seems worthwhile. POI tests are based on the fundamental NP lemma. A

starting point of this thesis is that almost no test procedures have been developed to

exploit the generalized NP lemma, one exception being the work of Sriananthakumar

(2000). She constructed the g test, an APOI test for testing composite hypotheses by

using the generalized NP lemma which depends on a choice of representative densities.

Unfortunately the particular choice of representative densities determines the form of the

test. This motivated us to construct a new test procedure for testing composite

hypotheses by using the generalized NP lemma which is introduced in Chapter 3.

Two decades ago, it was not possib. e to implement some test procedures due to the lack

of computer power. Recently there has been a dramatic change in the computing power

available to researchers and it is much easier to implement almost all types of test

procedure through Monte Carlo simulations. We fully expect these increases in

computer power to continue over the next two decades.

The overall objectives of this thesis are:

i) to design a new test procedure for the problem of testing a composite null

against a composite alternative based on the generalized NP lemma;

ii) to implement the new test procedure, which involves solving a number of

practical issues with respect to controlling average size over a number of

subregions under the null hypothesis; and
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iii) to investigate the small sample performance of the new testing approach

with respect to the following individual hypothesis testing problems in the

context of the linear regression model:

a) testing for MA(1) disturbances against AR(1) disturbances;

b) testing for different forms of heteroscedastic disturbances (based on

Hildreth-Houck random coefficient models); and

c) testing joint MA(1)-MA(4) against joint AR(1)-AR(4) disturbances.

1.3 Outline of the thesis

This thesis is organized into eight chapters. Following this introductory chapter, Chapter

2 reviews the literature related to hypothesis testing. It surveys the literature involving

optimal, PO and approximately PO (APO) tests in the context of the linear regression

model for composite hypotheses testing problems. Because all the applications

considered in this thesis are non-nested, the review also focuses on contributions to tests

of non-nested hypotheses and some popular non-nested tests are discussed briefly and

their limitations noted. Other topics briefly discussed include nuisance parameters,

invariance arguments and marginal likelihood methods.

This literature review reveals the importance of developing optimal tests which have

excellent finite-sample properties, such as, PO tests, rather than large-sample based tests.

Studies involving APO tests indicate that they are not always suitable for all composite

hypotheses testing problems and in some cases they do not work well at all. Almost all

existing tests in the context of non-nested testing are large-sample based tests and many

of them perform poorly in linite samples. These problems are the key issues of this

thesis.

Chapter 3 explores a general solution to testing a composite null against a composite

alternative. V'e discuss the theory behind our new approach and how the test procedure

can be applied to the problem of testing the structure of he disturbances in the linear

regression model. We refer to this new approach as the 'average power test', ft involves

maximizing the average power function of the test subject to average size being

controlled over different subregions of the null hypothesis parameter space. Wt noto that

controlling average size over the entire null parameter space, namely 0 , may result in

undesirably large sizes in some parts of 8 with smaller sizes in other part0 of 0 . In

order to minimize this possibility, we allow for 0 to be partitioned into m disjoint

subregions, namely, 0 , , 0 2 0,,, so that 0 = 0 , u 0 2 u . . . u 0 ( l l . This appioach

involves finding several critical values for which the average size conditions are fulfilled

simultaneously. We discuss the standard invariants: technique which van be used to

simplify the testing problem by eliminating some n-iisance parameters. We outline the

steps involved in calculating the critical values by using Monte Carlo simulation.

Chapter 4 illustrates the new test procedure by applying it to the problem of testing for

MA(1) disturbances against AR:'i.' disturbances in the linear regression model where

Silvapulle and King (1991) could not find a POI test and were forced to use an APOI

test. This chapter explores a number practical issues with the aim of finding answers. An

important question is whether controlling average size does a good job in controlling

size overall. A number of subregions can be chosen to help control size. This chapter

compare? the performance of our new approach with various versions of Silvapulle and

King's (1991) APOI tests.
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Chapter 5 investigates the choice of boundary points of the subregions under the null

hypothesis parameter space. In Chapter 4, we use what we call the high size/low size

technique to determine the boundary points of the subregions under the null hypothesis

parameter space. This chapter constructs a pseudo power envelope to trace out the

maximum attainable power for a given problem in order to provide a benchmark against

which the new test procedure can be evaluated.

Chapter 6 investigates the performance of the new test procedure by applying it to

testing for alternative forms of heteroscedastic disturbances in the linear regression

model. In this case, we concentrate on the form of hetevoscedasticity that results from

the Hildreth-Houck random coefficient model. The application investigated in Chapter 4

involved parameter spaces under both hypotheses being restricted to the unit interval.

Chapter 6 examines the performance of the test procedure when both the null and

alternative hypothesis parameter spaces are extending to an infinite interval (one-sided

infinite interval) with suitable choices of subregions under the null parameter space.

Chapter 7 explores the problem of testing joint MA(1)-MA(4) against joint AR(1)-

AR(4) disturbances in the linear regression model. This chapter investigates the

performance of the test in a situation which involves testing two-dimensional parameter

spaces under the null and alternative.

This thesis closes in Chapter 8 with a summary and seme concluding remarks.

1.4 Computations

All the calculations reported in this thesis were performed using the GAUSS

programming language, Version 3.2.35, Aptech Systems, Inc. (GAUSS (1998)) on IBM-

compatible (Pentium III, 600E with 256 Mb Sdram) computers. The built-in random

number generators (functions RNDS and/or RNDUS) were used to generate all random

numbers for the Monte Carlo simulation experiments discussed in this thesis.
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Chapter 2

Literature Survey

2.1 Introduction

For econometricians, hypothesis tests are a fundamental tool for evaluating econometric

models and a meaningful evaluation of an econometric model depends on the use of

accurate statistical test procedures. During last three decades, numerous test statistics

have been developed for testing both nested and non-nested models in econometrics.

Substantial advances have been made in developing diagnostic tests for the validity of

various model specifications. There exist many diagnostic tests such as the DW test for

serial correlation, LM tests for various forms of heteroscedasticity and autocorrelation,

tests for multiple time series models, tests of distributional shape, tests for functional

form, structural stability, structural change, spatial error autocorrelation, non-normality

and so on; see for example Poskitt and Tremayne (1981, 1982), Spiegelhalter (1983),

Tauchen (1985), Ljung (1986), Andrews (1988), Beggs (1988), Pagan and Vella (1989),

Hillier (1991), Ai and Cassou (1993), Anselin et al. (1996), Kang and Inder (1996),

Wooldridge (2001) and Mao and Lindsay (2002). Also, there is a special issue of the

Journal of Econometrics on diagnostic testing edited by Hillier and King (1991). In

many econometric applications, there often exist non-nested specifications that can

characterize the same variable of interest. When alternative non-nested models are

available, it is particularly important to test which model is correctly specified because

correct model specification is essential for inference, forecasting and policy making.

The purpose of this chapter is to survey the literature on optimal tests for testing models

in econometrics and other related issues. There is an extensive literature on different

approaches to statistical inference from the viewpoints of parametric, non-parametric,

semi-parametric, Bayesian and decision theoretic approaches. We will focus our

discussion on parametric problems in the context of linear regression models and simple

non-linear regression models. The classical tests, namely, the LR, Wald and LM tests

can be used both for simple and composite hypotheses testing problems. But problems

arise in dealing with likelihood functions when there are nuisance parameters present,

particularly with the accuracy of estimates and tests in small samples. Finite sample

properties of the test procedures are therefore very important. It is hard to derive the

finite sample distributions of test statistics in the presence of nuisance parameters,

econometricians often use large sample based distributions as approximations. There are

a number of techniques that exist to eliminate the nuisance parameters from the testing

problem, an important one being the use of invariance arguments. In the following

section we discuss nuisance parameters and invariance arguments in more detail.

The majority of the tests proposed for non-nested problems are large sample based and

large sample based tests sometimes perform poorly in terms of size properties in small

samples (see McAleer and Pesaran (1986), McAleer (1987, 1995), King and McAleer

(1987) and Godfrey (1998)). It is well known that the estimates based on maximum

likelihood can be biased in finite samples and the tests based on maximum likelihood
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can sometimes perform poorly in finite samples (see McAleer and Pesaran (1986)). Ara

(1995), Grose (1998) and Rahman and King (1998) have demonstrated that marginal

likelihood based tests can perform better than conventional likelihood based tests in

small samples. This indicates that better handling of nuisance parameters may improve

finite sample properties of large sample based approaches. King's (1987a) point optimal

(PO) and approximately PO (APO) testing approaches are particularly aimed at small

sample testing problems and have been applied successfully to a number of testing

problems. This chapter also ainia to survey the contributions on PO testing of non-nested

hypotheses. In this thesis, our interest is in composite hypothesis testing of the

regression model in which two forms of disturbance processes i.e., autoregressive and

moving average processes, or autocorrelation and heteroscedasticity, or joint

autoregressive and moving average processes are possible.

The plan of this chapter is as follows. We briefly discuss nuisance parameters,

invariance arguments and the marginal likelihood in Section 2.2. In Section 2.3, the

general ideas of optimal test procedures as covered in the literature are outlined. Sections

2.4 and 2.5 introduce PO and APO tests, respectively, and compare PO and APO tests

with other existing tests of composite hypotheses. Section 2.6 briefly surveys some non-

nested testing problems and discusses the performances of Cox's test, the J, P, JA,

F, Cox-type N and adjusted Cox-type N tests. Finally, concluding remarks are made

in Section 2.7.

1

2.2 Nuisance parameters, invariance arguments and the marginal
likelihood

In econometrics, almost all hypothesis testing problems of interest involves nuisance

parameters. If the testing problem is a parametric one, it may involve a large, perhaps a

very large number of unknown parameters. Almost certainly, at least some of these

parameters will not be of any particular interest to the researcher. The term 'nuisance

parameter' refers to the parameter or set of parameters which do not have any interest to

the researcher.

For hypothesis testing problems that involve nuisance parameters, the true size of the

test can differ substantially from its nominal size, particularly when many nuisance

parameters are present. It is therefore of interest to differentiate the class of tests for a

particular testing problem whose size does not depend on nuisance parameters. A critical

region whose size is independent of nuisance parameters is known as a similar region

(for details, see Hillier (1987)).

Suppose y is an observed data vector which we wish to use to test a hypothesis.

Commonly, in a non-experimental discipline such as econometrics, y is assumed to be a

variable of interest, which is modelled by a distribution function, assumed known except

for its parameter values. Precise and consistent estimation of the model itself is our next

concern and it is assumed that at least some of the model parameters will be of interest.

Suppose we can write the joint density of y = (y,, y2,..., yn)' as / ( y ; / / , 0\ where //

is a vector of nuisance parameters and 6 is our parameter (vector) of interest.
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For the problem of testing Ho: 9- 0O, where 00 is a specific value of 0, the size of any

critical region co (also known as rejection region, i.e., we reject //„ if y falls in this

region) for testing Ho, namely f f(y; //, 00)dy = «(//), will typically be a function of

the nuisance parameter vector /.t. A critical region co is a similar region of size a, if

and only if, co has size a in the conditional distribution of y given / (the test statistic)

for almost all t. Then one might seek a test that is best within the class of similar critical

regions.

The problem of testing HQ: 9=90i against the specific value of //„: 9- 9X is invariant

in the sense of Lehmann (1959) under a group G of transformations acting on the

sample y if for any transformation T(y) e G, the probability distribution of T(y)

belongs to the same set (Ho or Ha) as y. That is, a test with critical region co is an

invariant test if y eco implies T(y) eco for all T(y) eG and y eco implies T(y) &co.

With respect to these transformations, the vector v = g(y) is a maximal invariant

statistic (see Lehmann (1959)) if it is a statistic which takes the same value for>> vectors

that are connected by transformations and different values for y's not connected by

transformations. Now if we wish to restrict our attention to tests that are invariant under

the transformations T(y), then we can treat the maximal invariant as though it is the

observed data. This i> because all invariant test statistics can be written as a function of

the maximal invariant. A test is invariant under a group of transformations on y, if and

only if, the critical region for the test is defined in terms of the maximal invariant. For

example, in the case of testing the disturbance structure in the linear regression model,

y=X/3+u, the testing problem is invariant to transformations of the form

1
Literature Survey 15

T(y) = rjQy+XT] and v = Pz/(z'z)1/2 is a maximal invariant (this is discussed in detail in

Section 3.3).

A number of researchers have used invariance arguments to eliminate nuisance

parameters from their testing problems (sec for example, Durbin and Watson (1971),

Kariya and Eaton (1977), King (1980, 1981a, 1981b, 1982a, 1983a), Franzini und

Harvey (1983), Sargan and Bhargava (1983), Lehmann (1986), King and Inder (1986),

King and Smith (1986), Honda (1988), Ara and King (1993, 1995) and Ara (1995)). In

addition King and Hillier (1985) constructed a locally best invariant (LBI) test for the

case of testing a single parameter when the alternative is one-sided, i.e., for the wider

problem of testing the null hypothesis //0: 9 = 0 against HQ: 0>O, when the covariance

matrix of the regression disturbance vector u is of the form <T2Q(9). Also, they

constructed a locally best unbiased invariant (LBU1) test when the alternative is two-

sided, that is, for testing HQ: 9-0 against H'a: 0 * 0 .

The most popular basis for inference in econometrics is that based on the likelihood

function. It is sometimes described as the likelihood principle. Its strength is that is

easily applied to problems of inference in multiparameter models. A large part of the

literature has generally concentrated on the idea of removing, in some sense., at least

some of the parameters from the likelihood in order to improve inference on the others.

An extended list of 'modified' likelihoods has resulted; ranging from the now

conventional concentrated, or profile, likelihood, in which some parameters are replaced

by "estimators" that solve the first-order equations but are a function of other

parameters, through to conditional, marginal and integrated likelihoods (Kalbfleisch and

Sprott (1970)), various conditional, adjusted and modified profile likelihoods (Cox and
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Reid (1987, 1993), Barndorff-Nielsen (1983), McCullagh and Tibshirani (1990), Laskar

(1998), Laskar and King (1998)), to canonical and expected likelihoods (Hinde and

Aitkin (1987), Conniffe (1987)). All of these are intended to allow inference on the

parameter or parameters of interest, along with minimising interference from nuisance

parameters.

The concept of marginal likelihood was first introduced by Fraser (1967) in the context

of structural inference. Since then this approach has been applied to the problem of

testing the parameters of the linear regression model, their marginal likelihood is easily

obtained and well known. The properties of marginal likelihood based tests have been

considered in the context of testing for autocorrelation (Corduas (1986), Ara (1995), Ara

and King (1993)); testing for heteroscedasticity (Levenbach (1973)) and testing for

random coefficients (Ara and King (1993)). In all cases use of the marginal likelihood

has resulted in an improvement in the finite sample properties of inferential procedures.

Laskar and King (1995) considered LR, LM and Wald tests of the MA(1) error model

and reported improved size and power for marginal likelihood based tests. Rahman and

King (1998) observed that the LM test based on the marginal likelihood tends to be more

powerful than its conventional counterparts. The general theme of this literature is that

procedures based on the marginal likelihood show a distinct improvement over

equivalent procedures based on the conventional concentrated likelihood.

2.3 Optimal tests

In this section we survey important ideas related to statistical inference, with respect to

hypothesis testing in econometrics. We start the discussion of particular methods of

inference by looking at problems with a very simple structure. Suppose that we have the
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data vector y and a hypothesis //„ concerning its density /„(>')• The purpose of a

hypothesis test is to examine the consistency of the data with / /„ . In order to do this we

need to have some idea of the type of departure from the null hypothesis that we wish to

be looking out for. We now assume that, in addition to Ho, we have one or more

alternative hypotheses representing the directions of the departures from Fxt. Let H(l

(0- #,) be a particular simple (a hypothesis is simple when it completely specifies the

distribution of v) alternative hypothesis. The problem is basically one of deciding

whether //„ or Htl is more appropriate.

The main tool we have for choosing a test statistic in order to maximize power is the NP

lemma which suggests the use of the LR

>0') = ^

the LR critical region,

(2.1)

when just those two distributions are under consideration. Clearly, the larger the value of

/(>>), the worse the fit under Ho, so we reject //„ for large values of /(v).

We suppose that f(v), under Ho, is a continuous random variable such that for all a,

0 < a < 1, there exists a unique critical value, ca, which is defined by

. |^ j = a t (2.2)

for ca when a significance level a is chosen. The NP lemma states that for any size a,

(2.3)
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is the most powerful (MP) test. The NP lemma is the foundation of tests with good

power properties.

Suppose now that under Ha we have just one distribution but under Hu we have a

collection of distributions, f(y, 0), one for each different value of 0 such that 0 > 0.

Cox and Hinkley (1974, p. 101) state that two cases may now arise'

i) we get the same size a best (or MP) critical region (via the NP lemma) for

all distributions of y under H:l;

ii) the best (or MP) critical region depends on the particular distribution of y

under Hu .

In order to find out which of these two possibilities is true, we would first select a

particular distribution of y under Htl (say, 6 - 0x > 0) and then treat this choice as a

simple alternative hypothesis. With respect to testing a simple null hypothesis against

this simple alternative, the NP lemma gives us the MP critical region. If after taking

various monotonic transformations (quite often useful in numerical work) to simplify the

form of the test statistic, we find it does not depend on the choice of Bx under Ha, then

we have case (i). Otherwise, the test depends on the choice of 9X and will change as 9X

changes, so case (ii) is the outcome.

The performance of a test is typically assessed by its size and power properties.

Econometricians are always concerned with optimality of power. Neyman and Pearson

(1933) laid down the foundation for the theory of optimal test procedures by introducing

the uniformly most powerful (UMP) test. A test is said to be UMP when it is MP for

i
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every alternative distribution. For a parametric hypothesis testing problem, we would

always prefer to use an UMP test, which maximizes the power curve over the entire

parameter space.

King (1996) pointed out that statistical theory is good at suggesting optimal test

procedures for situations involving only a few parameters, but beyond this is rather less

helpful. Later, Grose (1998, p.ll) commented that this point might be extended by

noting that only for a single parameter system can the estimation/inference problem be

said to be solved in any general sense and cases involving more than one parameter must

be handled according to their own nature.

In our case (i) above, where the test does not depend on Ox, we have a test that is MP for

every value of 0 under //„. This is an ideal test and is UMP. Its power functions always

dominate the power curves of any other test of the same significance level.

A UMP test may not always exist. Unfortunately, it is rarely possible to find a UMP test

when the alternative hypothesis is composite (a hypothesis is composite when it does not

completely specify the distribution of the data vector) and/or in the presence of nuisance

parameters. A more realistic situation is case (ii), in which case we need to decide how

to make a choice of test.

There are a number of possible approaches. We consider here the situation when the

distributions under Ha are indexed by a single parameter 0. Cox and Hinkley (1974,

p. 102) consider various techniques for constructing tests of a simple hypothesis against a

composite alternative when no UMP test exists. They suggest three different approaches

to choose the point at which the power optimised:



20 Chapter 2

i) to pick, somewhat arbitrarily, a "typical" point 0, in the nlternntive

parameter space and use it in the test in order to find a test that is MP for

that particular chosen point under the alternative;

ii) to take 0x, a chosen point from the alternative parameter space which is

very close to its 77O value, i.e.. to maximize the power locally near the null

hypothesis;

iii) to maximize some weighted average of power over the alternative

parameter space,

Thus if uniform optimization is impossible, other approaches of test constmction such as

the principles of unbiased tests, consistent tests, locally most powerful (LMP) tests,

invariant tests, similar tests that may ensure certain known but lesser optimal power

properties, can be claimed. Davies (1969) defined a PO test to be '/? optimal' if its

power function is always a monotonic decreasing function of the parameter under test

and its power reaches a predetermined value most quickly. Bhatti and King (1990) have

given an example of a /? optimal test.

The locally best (LB) test is optimal in the sense that its power curve has the steepest

slope of all power curves with the same size under the null hypothesis. For a single

parameter, Neyman and Pearson (1936) proposed a test which they called a type A test

and which is a locally best unbiased (LBU) or locally most powerful unbiased (LMPU)

test. They also introduced the A, type test which is a uniformly most powerful unbiased

(UMPU) test. In the case of a composite hypothesis, Neyman (1935) constructed type B

and type Bt tests in the presence of a nuisance parameter, that are LBU and UPMU,
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respectively. For two unknown parameters, Neyman and Pearson (1938) constructed a

type C test. Isaacson (1951) introduced a type D test, but unfortunately in practice, type

D tests are very difficult to apply. Later, Lchmann (1986, p.529) proposed a modified

version of the type D test and named it a type li test which admits a nuisance parameter.

Following Neyman and Pearson (1936); Ferguson (1967), Efron (1975), King and Miller

(1985), Sen Gupta (1987), and Wu and King (1994) reviewed the LB test. For testing a

single parameter against a one-sided alternative, the LB test is a well defined and

accepted test. King and Miller (1985) and Wu and King (1994) noted that the LB test is

equivalent to the LM test based on the square root of the standard LM test statistic. King

and Wu (1997) recommended a one-sided LM-type test which is locally mean most

powerful (LMMP), a generalisation of a single parameter LB test. Majumder (1999)

proposed a distance-based approach to a single parameter or scalar case to one-sided or

partially one-sided testing problems. He developed a modification of King and Wu's

LMMP tes' and other LM-type tests. As this LMMP test is not suitable for testing

partially one-sided alternatives, he suggested that the generalization would solve the

problem.

Neyman and Pearson (1936) first introduced and proved the generalized Neyman-

Pearson lemma is basic in the theory of statistical hypotheses testing. Here we present

the lemma only, for full mathematical details see Dantzig and Wald (1951). We quote

the generalization of the fundamental NP lemma from Lchmann (1986, p.96):

Theorem: Let /,,..., /n,+1 be real-valued functions defined on a Euclidean

space A and integrable / / , and suppose that for given constants c,,..., cm

there exists a critical function (j> satisfying
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(2.4)

Let £ be the class of critical functions <j> for which (2.4) holds,

(i) Among all members of C, there exists one that maximize*

. ^ . (2.5)

(ii) A sufficient condition for a member £ to maxinv^ (2.5) is the

existence of constants A:,,..., km sujhthat

(2.6)

fm+l(y)>fjkjl{y),

= 0 when/m+1(v)<^A-,y;.O0.

(iii) If a member of £ satisfies (2.6) with A-,,..., A-,(l >0 , then it maximize

(2.5) among all critical functions satisfying

<c,., / = l , . . . , / / { . (2.7)

(iv) The set M of points in ///-dimensional space whose coordinates are

(j0/V/U>---> J $fm
chl) f°r some critical function <p is convex and

closed. If (c,,..., cm) is an inner point of M, then there exist constants

A',,...,A'rtl and a tost (f> satisfying (2.4) and (2.6), and a necessary

condfrbn for a member of £" to maximize (2.5) is that (2.6) holds.

Suppose /,(.y), f:(y),•••»/„,(>') are m separate density functions under Ho and

/m.,(v) is the density under H(l. Also suppose for given probability constants

c p c , , . . . , cm there exists a critical region (o of the form that //0 is rejected if v GCO

satisfying

(2.8)

hen the generalized NP lemma tells us that the critical region to maximize power, i.e.,
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(2.9)

evolves rejecting Ho when

(2.10)

where A-,, A:,,..., A'm are "critical values" chosen to satisfy (2.8).

If any member of the class of critical regions, (o, satisfies (2.10) with A-,, k2 km > 0 ,

then it maximize (2.9) among all critical functions satisfying

(2.11)

This is one example of an application of the generalized NP lemma. Note also that

/i(v)» f2iy)> •••>/„,+,(>') do not need to be likelihood functions or density functions. In

fact, in our application in Chapter 3, we will be using integrated likelihood functions.

The generalized NP lemma states that if one finds appropriate critical values

A',, A-,,..., A'm such that the m size conditions (2.8) hold simultaneously, for those

critical values the test will be the most powerful. We note that there are not a lot of

examples of applications of the generalized NP lemma, although Sriananthakumar

(2000) used this lemma to construct an APOI test.

There seems to be a range of tests, each optimal in one sense but no obvious choice of

which is best. If this is the case, according to Lehmann (1947) the choice has to be based

on information not contained in the general formulation of the testing problem. If no
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such additional information is available, the choice must of necessity be somewhat

arbitrary.

2.4 Point optimal tests

The origin of the key idea behind the PO test goes back to Lehmann and Stein (1948).

Other references are Lehmann (1959), Davies (1969), Kadiyala (1970) and Berenblut

and Webb (1973). It was King (1985a, 1985b) who used the term "point optimal" and

sparked a revival of interest in the tradition of optimal test procedures. King (1983a)

provides a discussion of the theoretical foundations of PO tests and King (1987a)

presented a clear and thorough explanation of PO testing by simplifying the method of

test construction and by introducing computational checks for accuracy.

We start by describing a PO test in the context of testing

i) a simple null against a simple alternative hypothesis;

ii) a simple null against a composite alternative hypothesis; and

iii) a composite null against a composite alternative.

When a test achieves optimum power at a particular parameter point it is then referred to

as a PO test. For a testing problem that involves a simple null against a simple

alternative, is well known that the NP lemma provides us with an MP test. That is, the

LR test (see equations (2.1) and (2.3)) is the MP test and hence it is the PO test.

For a testing problem that involves a simple null against a composite alternative, then

for a chosen point in the alternative parameter space, the LR test of this fixed point

under the alternative is a test that is MP in the neighbourhood of the chosen point; hence
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it is a PO test. When the testing problem involves both composite null and alternative

hypotheses, one might use the LR test that corresponds to a fixed point under the null

and a fixed point under the alternative. This does not necessarily result in a test which is

MP in the neighbourhood of the chosen point in the alternative parameter space. The

reason for this is that since the null hypothesis is composite, the probability of a Type I

error, that is, the size of the test, may be a function of the null hypothesis parameters;

consequently the maximum size of the test may exceed the nominal level. The standard

approach in this case (see, for example, Lehmann and Stein (1948)), is to control the

maximum size to be less than or equal to some desired level of significance.

Unfortunately, there are many circumstances in which size will vary across the null

hypothesis parameter space. If such a critical value is chosen so that the global

maximum of the size function of the LR test is attained at some point in the null

parameter space, then King (1987a) called the test a Pseudo PO (PPO) test. If such a

critical value is chosen so that the maximum size is attained precisely at the chosen point

in the null hypothesis parameter space, then it is a MP test in the neighbourhood of the

chosen point in the alternative parameter space and therefore a PO test.

In the absence of UMP tests, King (1987a) constructed the PO test for a very general

framework and applied this to the problem of testing AR(1) errors against MA(1) errors

in the linear regression model. King proposed the PO test for the general problem of

testing (not in all cases) which includes both nested and non-nested problems as special

cases and involves testing

Ho: y has density f(y, 6) (2.12)

against
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Ha: v has density gO', <f>). (2.13)

where y is the observed sample, 0 is a /; x 1 vector of parameters restricted to the set

Q. and <f> is a q x 1 vector of parameters restricted to the set O. It is assumed that the

possible range of parameter sets, Q and <1>, are as small as possible.

As mentioned in Section 2.2, for the simpler problem of testing

H'Q: y has density/(>\ 9X) (2.14)

against

H'a: y has density gO\ <j>x), (2.15)

where Gx eQ. and ^ e O are fixed and known, we have simple null and simple

alternative hypotheses. Therefore the NP lemma implies that rejecting H'o for large

values of

is a MP test. If /(#,, <px) is used as a test statistic for the wider problem of testing the

simple null hypothesis, H'a, against the composite alternative, Htl, then this test serves

as the MP test in the neighbourhood of (j> = <f>x. However, as already noted the same test

does not necessarily result in a MP test in the neighbourhood of <f> - (j)x, when testing the

composite null, Ho, against the composite alternative, / / , . For the test, when Ho is

composite, the distribution of / under HQ and hence the probability of Type I error is

hi

likely to be a function of 0. Hence, for this case, the critical value, cn, is found by

solving

Pr[t{0x, </>{) > ca\y has density / ( v , 0)} < a, for all 0 e Q , for <•„, (2.16)

with equality for at least one value of 0. That is, we have to choose 0x such that the

maximum size of the test occurs at this point. Then testing Ho against Ha, the test is

MP in the neighbourhood of <f> = <px, and we have the PO test.

Since King (1980), PO testing has been an active field of research. The most successful

applications of PO testing have been in the context of the linear regression model. Some

specific examples of PO test are: testing for AR(1) disturbances (Berenblut and Webb

(1973), King (1985a), Dufour and King (1991)); testing for fourth-order autocorrelation

in presence of first-order autocorrelation (King (1989)); testing for MA(1) disturbances

(King (1985b)); testing for AR(1) against MA(1) disturbances (King and McAleer

(1987)); testing for heteroscedasticity (Evans and King (1985b, 1988)); testing for serial

correlation and heteroscedasticity (King (1986), King and Evans (1984)); testing for

random walk disturbances (Sargan and Bhargava (1983)); testing for random

coefficients (Franzini and Harvey (1983), Shively (1986, 1988a, 1988b), Brooks (1993,

1995), Brooks and King (1994a, 1994b)); testing for unit roots in observed time series

(Bhargava (1986), Jaeyoun and Schmidt (1996)); testing for moving average unit roots

in ARIMA models (Saikkonen and Luukkonen (1993)); testing for autoregressive

disturbances in a time series regression with missing observations (Shively (1993));

testing for block effects in regression disturbances (King and Evans (1986), Bhatti

(1992a), Bhatti and King (1993, H94)); testing for serial correlation in a large number
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of small samples (Bhatti (1992b)); tests of linear regression disturbances (Evans and

King (1985a)); testing for trend stationarily (Hwang and Schmidt (1993)); tests of the

error covariance matrix (Honda (1989)); point-optimal Cox tests (Dastoor and Fisher

(1988a)); tests of non-nested error processes (King (1983a, 1987a), Silvapulle (1991,

1994a, 1994b), Silvapulle and King (1991, 1993)), inference in integrated autoregressive

models (Rothenberg and Stock (1997)) and inference in nearly integrated non Gaussian

models (Thompson (2002)).

Regardless of its excellent performance in many instances, King's (1987a) PO test has

-had its opponents (see, Dastoor and Fisher (1988b), Bierens (1988) and Potscher

(1988)). The main criticisms King's PO test have received are mentioned briefly in

Sriananthakumar (2000, p.13). One important criticism is that if the null hypothesis is

simple (possibly after reduction by invariance), PO tests are easily constructed using the

NP lemma. But in practice, there are many existing testing problems that cannot be

simplified by using invariance arguments or by any other means. In other words, if the

null hypothesis is not simple (or cannot be reduced to a simple hypothesis by invariance

arguments), the construction of the PO test poses unresolved problems. Thus, in the case

where the null hypothesis is composite, under what conditions do PO tests, exist? How

can PO tests be found in this case?

As the complete knowledge of the distribution is a prerequisite for the application of PO

tests to regression problems, some researchers have ignored the PO test (even for

situations where it can be easily constructed). They have developed or used tests, which

have known asymptotic distributions (see, Burke et al. (1990) and Smith, and Tremayne

(1990)). Some researchers find it very straightforward to apply asymptotic tests because
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of their known asymptotic null distribution. However, computational simplicity is not

the only criterion for making a choice of testing procedure. In the following section we

review approximate PO (APO) tests.

2.5 Approximate point optimal tests

In the previous section, we mentioned that King (1987a) reviewed the tMeory of PO test

construction for a very general framework and applied it to the problem of testing AR(1)

disturbances against MA(1) disturbances in the linear regression model. In casts where

the null hypothesis cannot be reduced to a simple hypothesis, there is no clear approach

for constructing a test with optimal power properties. King observed that his approach

does not suit all testing problems and does not work in a number of cases. One example

of a situation in which King's test does not work involves testing MA(1) disturbances

against AR(1) disturbances in the linear regression model. Silvapulle and King (1991)

could not find a PO invariant (POI) test (if a test achieves optimum power at a particular

point within the class of invariant tests then it is called a POI test) for this testing

problem. Unfortunately, sometimes the presence of nuisance parameters that cunnct be

eliminated through invariance arguments considerably complicates the construction of

PO tests. In fact, there is no guarantee that the method of construction outlined by iling

(1987a) will work in all situations.

King (1989) applied the APOI test to the problem of testing for fourth-order

autocorrelation disturbances in the presence of first-order autocorrelation in the linear

regression model. He found that it works well. For the problem of testing MA(1)

disturbances against AR(1) disturbances in the linear regression model, Silvapulle and

King (1991) could not find a POI test, they recommended the use of an APOI lest. For
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this testing problem following King (1987a), the critical regions of a POI test with

optimal power at p — p0 > 0 can be written as

)-1»<c, (2.1)

where u and /7 are the generalized least squares (GLS) residual vectors of the general

linear regression model y = XJ3+u, assuming the covariance matrices S(p0) and

Q(T'o), respectively. We assume that u is normally distributed, although this can be

extended to elliptical symmetry without changing any of what follows.

Now the test statistic given in (2.17), requires the critical value c and the parameter y0

to be chosen in such a way that

?r[s(po,yo)<c\u~N{0,n(yo))] = a
(2.18)

and

< a, for all y , (2.19)

where « is the desired level of significance. King mentioned that Imhofs (1961)

algorithm could be used to solve (2.19) and this may be achieved using Koerts and

Abrahamse's (1969) FQUAD subroutine or Imhofs algorithm coded by Davies (1980).

For more detail see King (1987a).

To obtain appropriate y0 and c values to construct an APOI test, King (1987a)

suggested an iterative procedure (see for details Silvapulle and King (1991)). He also

suggested that the APOI test might work well if it is nearly a PO tesf, otherwise it may

not always be reliable.
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Sriananthakumar (2000) constructed the g test: an APOI test based on the generalized

NP lemma. For the g test, if the observed sample is generated from one of a finite

number of densities under the null, then the generalized NP lemma provides a PO test

for the problem of testing for a finite number of observable density functions against a

single alternative density function. Suppose, one wishes to test composite hypotheses of

the form given by equations (2.12) and (2.13) and </>' eO is the point under the

alternative hypothesis at which the power is to be optimized. Then the testing problem

can be written as

Ha: v has density f(y, 0) (2.20)

against

Ha: y has density (2.21)

The g test involves approximating f(y, 6), 6 e Q, by a finite number (say, r) of

densities by the selection of r separate 6 points in Q, namely, #,, 02, ..., 6r. The

corresponding densities,

a\ ir,\ i ,-. (2.22)

are regarded as representative densities of f(y, 6). The generalized NP lemma is used

to obtain a PO solution for this type of approximation.

In construction of the g test, for the selected chosen points under the null, a

corresponding number of representative densities are needed for which the size
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conditions hold simultaneously. That is, for the existence of the g test, the following r

size conditions,

(2.23)

where a. is the desired level of significance, need to be solved simultaneously by

appropriate choices of values for fc,, k2, ..., kr.

If this does not work in terms of giving acceptable size properties across the entire null

hypothesis parameter space, Sriananthakumar suggested adding another representative

density under the null and solving for an extra size condition. The process of increasing

the number of representative densities is followed until the desired outcome is achieved.

The g test is applied with a minimum number of representative densities under the null,

because as the number of representative densities increases, the required computing time

increases exponentially. She applied the g test to two testing problems, namely, testing

for MA(1) disturbances against AR(1) disturbances and testing for AR(1) disturbances

against IMA(1,1) disturbances in the linear regression model. She compared its size and

power properties in small samples with those of King's APOI tests and the asymptotic

tests of Silvapulle and King (1991) and Silvapulle (1994a). She found that the g test

performed well for both testing problems, while King's APOI tests performed extremely

well for the former problem but performed poorly for the latter, in terms of size and

power properties.

The existing literature shows that the traditional asymptotic tests based on the marginal

likelihood sometimes performs better than those based on the standard likelihood in

u
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finite samples. Also, POI tests can have excellent finite sample properties and APOI

tests perform well in a few cases. Rahman and King (1994) compared testing for random

regression coefficients in the presence of autocorrelation, using marginal likelihood

based LM tests, King and Wifs (1997) asymptotic LMMP (ALMMP) tests and APOI

tests. They calculated small sample sizes and powers and found that marginal likelihood

based tests are very competitive in terms of power with APOI tests. ALMMP and

marginal likelihood based LM tests also appeared to have more desirable sizes than

APOI tests. Rahman and King further concluded that the extra computation required to

apply APOI tests hardly seems worthwhile. Particularly for large sample sizes, APOI

tests do not seem to result in clear-cut improvements in either size or power. On the

other hand, the marginal likelihood based LM test is reasonably reliable for large sample

sizes. Rahman and King also noted that the marginal likelihood based ALMMP test is

best in terms of average power but for data sets in which the component scores used in

the test statistic are negatively correlated, the test performs poorly. In their test, it

appeared that the lower than nominal sizes for middle values of the nuisance parameter,

is a cause of the APOI tests not performing better than the other tests. This means that

the APOI test may not be optimizing power at the chosen point under the alternative

hypothesis. Thus, a more appropriate choice of APOI test could have changed Rahman

and King's conclusion.

Andrews and Ploberger (1994) derived asymptotically optimal tests for testing problem

when a nuisance parameter is present under the alternative hypothesis but not under the

null hypothesis. They considered a nonstandard testing problem which was of interest

because the classical asymptotic optimality properties of LM, Wald, and LR tests do not

hold for nonstandard testing problems. They used the weighted average power criterion
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(prior) to generate the optimal tests similar to that used by Wald (1943). Their study

indicates that the LR test is not an optimal test using the weighting functions. However,

it is asymptotically admissible (see Andrews and Ploberger (1995)). Andrews and

Ploberger (1994) also introduced the average exponential tests. These tests are

asymptotically optimal in the sense that they minimize the weighted average power for

specific weight functions. Subsequently, Andrews et al. (1996) derived a class of finite-

sample optimal tests for one or more changepoints at unknown times in a multiple linear

regression model. They considered a weighted average power by replacing a weight

function over the number of changepoints. Andrews and Ploberger (1996) commented

that the standard LR and sup LM tests beat any given test in terms of weighted average

power against alternatives that are local to, but sufficiently distant from, the null. In this

thesis, we propose a new test procedure for the problem of testing a composite null

against a composite alternative hypothesis where we optimize a weighted average power

function. This extends the of Andrews, Ploberger and others along with the third option

(see p.19) suggested by Cox and Hinkley (1974, p.102).

2.6 Brief survey of non-nested testing

As Pesaran and Weeks (2001, p.289) noted,

From a statistical view point the main difference between the nested and

nonnested hypothesis testing lies in the fact that the usual loglikelihood

ratio or Wald statistics used in the conventional hypothesis testing are

automatically centred at zero under the null when the hypotheses under

consideration are nested while this is not true in the case of nonnested

hypotheses. However, once the conventional test statistics are

approximately centred (at least asymptotically) the same classical

techniques can be applied to testing of non-nested hypotheses.

i

1

i

i
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In this section we briefly survey the literature on non-nested hypotheses testing in

econometrics and statistics. The seminal papers of Cox (1961, 1962) were the pioneering

contribution to non-nested hypotheses testing in statistics. In these papers, three general

approaches to non-nested testing problems are discussed. The modified (centred) lop-

likelihood ratio principle, hereafter known as the Cox-test was subsequently applied in

linear econometric models by Pesaran (1974) and in simple non-linear equations by

Pesaran and Deaton (1978), Evans and Deaton (1980) and Fisher and McAleer (1981).

Unfortunately, some confusion has arisen in respect to the interpretation of these tests.

There would appear to be several reasons for this, the distinction to be drawn between

discrimination and significance testing. It is not clear which of these is being considered

because the Cox-test may be used for either. Therefore, it is essential to have a clear

understanding of the inferences that might be drawn from the Cox-test (for details, see

Fisher and McAleer (1979)). Dastoor (1981) in commenting on Fisher and McAleer's

(1979) paper, observed that the Cox procedure in general, certainly yields four possible

conclusions and to suggest that nine conclusions might be possible could mislead the

researcher.

The Cox-test has mainly been applied to linear and simple non-linear regression models.

The reasons may be due to the complex computation of the numerator of the Cox

statistic in non-regression circumstances. To overcome this problem, Pesaran and

Pesaran (1993) proposed a new procedure for computing the Cox statistic for tests of

non-nested hypotheses based on stochastic simulation which have been found works

reasonably well even for a moderate number of replications.
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Atkinson (1970) advocated the comprehensive model approach, whereby non-nested

models are tested against an artificially constructed general model that includes the non-

nested models as special cases. This approach is based on exponential weighting of the

probability, density functions underlying the respective hypotheses, see also Quandt

(1974) and Davidson and MacKinnon (1981). But this approach has some important

limitations because the testing framework is nested, the test under the null is non-

standard due to the fact that under the null, the parameters of the alternative hypothesis

disappear (see Pesaran and Weeks (2001)). This problem is known as Davies's problem

(see Davies (1977)).

From the existing literature on non-nested hypothesis testing, it is evident that there are

many other tests that under certain conditions are asymptotically equivalent to the Cox

test. These asymptotic tests have been proposed and investigated by several authors in

the context of non-nested, non-linear and multivariate regression models. Among these,

the J and P tests proposed by Davidson and MacKinnon (1981, 1982) setm to be very

popular because they are conceptually simpler and are very easy to implement using

existing computer software. Moreover, the J test can be generalized relatively easily to

cases where the regression function under the alternative hypothesis is non-parametric,

see Delgado and Stengos (1994). Also, the J and P tests can be regarded as a way of

implementing the artificial nesting (AN) procedure of Atkinson (1970) which solved the

identification problem normally associated with such procedures. The JA test proposed

by Fisher and McAleer (1981), the Cox-type N test proposed by Pesaran (1974) and

adjusted Cox-type tests derived by Godfrey and Pesaran (1983) also seem to be popular

in contrast to Deaton's (1982) F test which is less frequently used than either the J or

\
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JA tests. This may be due to its poor power performances (see McAleer and Pesaran

(1986)).

Michelis (1999) investigated the asymptotic null distributions of the J and Cox non-

nested tests under a specific assumption of model orthogonality. He concluded that the

J and Cox tests are no longer asymptotically equivalent as they are in the standard case

of non-orthogonal models. The J and Cox tests tend to over-reject more severely when

the correlation among the non-nested regressors is weakened (Godfrey and Pesaran,

1983). Also, Michelis's simulation results indicate that, with nearly orthogonal models,

the J and Cox tests have excessive size distortion that increases with the number of

non-nested regressors in the alternative model, and the size of the Cox test becomes

substantially larger than the size of the J test. To overcome the poor performance of the

Cox test, Godfrey and Pesaran proposed some small sample corrections and in particular

the adjusted Cox-type JV test which results in substantial improvement in its finite

sample performance. Then the estimated sizes of the adjusted Cox-type N test are very

close to the nominal size and powers are typically higher than those of the F test.

From the literature, it is evident that the Cox and Cox-type N tests of non-nested

regression models have significantly higher than nominal sizes, particularly in finite

samples. The JA and F tests have accurate sizes, however the JA test may be less

powerful than the J test in certain situations, especially when two sets of regressors are

nearly orthogonal (Davidson and MacKinnon, 1982, p. 563). There is a need for a better

approximation to the finite sample distribution of the J test statistic to overcome the

size distortion clue to near orthogonality and to improve on the normal approximation

based on asymptotic theory in small samples. Fan and Li (1995) proposed a bootstrap
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version of the J and JA tests to improve on the normal approximation to the finite

sample distributions. It is evident that the empirical sizes for both the bootstrap J and

JA tests are very close to the nominal size and their power properties are good.

McAleer (1995) pointed out that there is a considerable body of evidence that the J and

P tests and Cox-type Ft test can perform badly in small samples, particularly in the

context of testing two non-nested linear regression models. Godfrey (1998, p. 60) noted

that the J test has several useful features: it is easily generalized to allow for several

non-nested alternative regression models; and it has considerable intuitive appeal. He

argued that after adjustment of critical values, the J test might be more powerful than

other procedures. He applied the bootstrapping method considered by Horowitz (1994)

to the J test to reduce the problem of over rejection of true models. He also applied the

same technique to the Cox-type test, JA test, F test and adjusted Cox-type Ft test of

Godfrey and Pesaran and observed a substantial improvement in finite sample sizes

when the errors are normally and independently distributed. His power results indicate

that the J and adjusted Cox-type N tests are equally powerful, whereas the JA and F

tests are less powerful. He considered applying the bootstrap method to non-nested

multiple alternatives based upon an appropriate joint J test and recommended that

bootstrap samples could be used to make more reliable inferences from diagnostic

checks as well. Davidson and MacKinnon (1996) also successfully applied the bootstrap

J-type test and Davidson and MacKinnon (2002) investigated its properties in the

context of non-nested linear regression models. Their analysis implied that the J test

performed very well when bootstrapped, except in certain extreme cases.
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The encompassing principle of Hendry and Richard (1982), Mizon (1984), and Mizon

and Richard (1986) is a leading approach to a non-nested testing framework; see also

Gourieroux et al. (1983). Mizon and Richard (1986) proposed two encompassing testing

procedures: the Wald encompassing test and the score encompassing test; for a

definition of encompassing, see Gourieroux and Monfort (1995). Their analysis

indicated that the conventional F test, as well as the one degree of freedom non-nested

tests, has an encompassing interpretation and that the F test is a complete parametric

encompassing test. They introduced the concept of implicit null hypotheses which

enables alternative test statistics to be compared. They also mentioned that a complete

parametric encompassing test is powerful for a wider range of alternatives than

incomplete parametric encompassing tests. McAleer and Pesaran (1986) noted that

encompassing tests are simple applications of Cox's principle. Encompassing tests are

harder to implement because the test statistics are not always easy to evaluate. Chen and

Kuan (2002) proposed a more operational encompassing test that is asymptotically

equivalent to the Wald and score encompassing tests. Their proposed pseudo-true score

encompassing test is relatively easy to evaluate. Their simulations indicated that this test

has better finite sample performance than the J , JA and Cox tests. This test is not

restricted to testing conditional mean specifications and hence extends the applicability

of the conditional mean encompassing test of Wooldridge(1990) and the proposed test

serves as a useful complement to existing non-nested tests. Recently, Ramalho and

Smith (2002) investigated non-nested tests for competing moment condition models

using a semi-parametric generalized empirical likelihood framework. They proposed

Cox-type, moment encompassing and parametric encompassing non-nested tests. It is

evident that some tests are most powerful, their empirical size characteristics oppose
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their practical use. Also, their parametric encompassing statistics represent an important

method for the assessment of models against specific non-nested alternatives.

Based on Cox's principle, Walker (1967) first introduced a test for testing non-nested

time .series models, specifically AR(p) against MA(<jr) processes, but his test was not

popular because of its high computational cost particularly, when both p and q exceed

one. Godfrey and Tremayne (1988), Smith and Tremayne (1990) and Burke et al.

(1990) proposed and implemented pure significance (PS) tests for testing AR(1) against

MA(1) errors in the linear regression model. King (1983ci, 1987b), King and McAleer

(1987) and Kanses (1992) considered the problem of testing between AR and MA

disturbance models for the linear regression model. McAleer et al. (1988), Hall and

McAleer (1989), Godfrey and Tremayne (1992) studied the problem of testing between

AR and MA time series models. McAleer et al. (1990) presented several straightforward

procedures regarding the disturbances in a linear regression model for testing non-nested

models of first or higher order autocorrelation processes which are alternative

approaches to testing non-nested models with autocOrrelated disturbances. They

illustrated the test procedures with an application to US unemployment using annual

time series data.

Silvapulle and King (1993) constructed a non-nested test of joint AR(1)-AR(4)

disturbances against joint MA(1)-MA(4) disturbances in the linear regression model and

illustrated the test with an application to quarterly time series data. They concbded with

some discussion of the problem of testing general AR(p) disturbances against MA(q)

disturbances. Baltagi and Li (1995) derived two extensions of the PS test proposed by

Burke et al. (1990) and applied the first test to the problem of testing for AR(1)

r\
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disturbances against MA(1) disturbances, and the second test for MA(1) disturbances

against AR(1) disturbances in an error component model. It is evident from their Monte

Carlo results that for testing AR(1) disturbances against MA(1) disturbances, the PS test

performs well when the sample size, // > 60 and they do not recommend the test when

the sample size is small or moderate and the number of individuals is large. However,

the PS test performs well for testing MA(1) disturbances against AR(1) disturbances

when the number of individuals is large and does not rely on sample size (;/) to achieve

its asymptotic distribution. McKenzie et al. (1999) developed some simple prediction

tests for testing AK(p) against MA(q) errors and vice versa in the linear regression

model. For the simpler case, testing for AR(1) against MA(1) errors, they compared the

finite sample properties of their tests with those of Burke et al. 's PS test and the LM

tests of AR(1) against ARMA(1,1) errors. The Monte Carlo results supported their

prediction tests, the LM and PS tests perform worst.

2.7 Concluding remarks

This chapter reviewed the literature on optimal, PO and APO tests for composite

hypothesis testing problems in the context of linear regression model and several

potential problems were highlighted. We also focused on contributions to tests of non-

nested hypotheses and discussed some popular non-nested tests. We briefly discussed

nuisance parameters, invariance arguments and the marginal likelihood. In the literature,

the solution for testing simple hypotheses is well established, therefore we focus our

attention on composite hypothesis testing problems.

The literature surveyed in this chapter indicates that there are many asymptotic tests for

composite non-nested testing but all of them are not equally efficient for diagnostic
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testing in econometrics. Some limitations of these tests were also surveyed. Among the

optimal tests, King's (1987a) PO tests seem to be popular for composite hypotheses

testing problems involving regression disturbances. His PO tests can have excellent

finite sample properties compared to existing popular non-nested tests. Unfortunately,

the PO test cannot be constructed for all testing problems. For example, in one case

Silvapulle and King (1991) could not find a PO test, so they recommended the use of an

APO test. The APO test does not always seem to be reliable. Thus, it is important to find

a general solution for testing a composite null against a composite alternative.

In this thesis, we propose a new approach, called the average power test which is based

on the generalized NP lemma for testing composite hypotheses. Sriananthakumar (2000)

proposed the g test: an APOI test for testing a composite null hypothesis. The

generalized NP lemma provides a PO test for the problem of testing a finite number of

representative densities against a single alternative. For the g test, if the number of

representative densities is high then it is hard to find the critical values for which the size

condition hoids simultaneously. The new approach that we propose does not rely on the

choice of representative densities but rather constructs the test with maximum average

power while controlling average size over different subsets of the null hypothesis

parameter space.

Chapter 3

A New Approach to Testing a Composite Null against a
Composite Alternative

3.1 Introduction

As noted in Chapter 2, the theory of hypothesis testing is well developed in the case of

testing a simple null hypothesis against a simple alternative hypothesis and a simple null

hypothesis against a composite alternative hypothesis. We know in the former case that

the NP lemma provides the most powerful test while in the latter case, the same lemma

can be used to construct a test that is optimal (most powerful) at a chosen point under the

alternative hypothesis parameter space. This test is known as a point optimal (PO) test.

In hypothesis testing, much less developed is the problem of testing a composite null

hypothesis against a composite alternative. There are a number of procedures that

involve techniques for reducing the dimension of a composite null hypothesis, which in

some cases can reduce a composite null hypothesis to a simple hypothesis. These include

invariance arguments, which can be used to simplify the testing problem and eliminate

some or all the nuisance parameters in the model under the null hypothesis. For example,

see King and Hillier (1985). The theory of sufficient statistics and similar critical

regions can also be used to reduce the complexity of the testing problem, see for

example Cox and Hinkley (1974, p. 135).
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However, in cases where the null hypothesis cannot be reduced to a simple hypothesis,

there is no clear approach for constructing a test with optimal small-sample power

properties. King (1987a) reviewed the theory of point optimal invariant (POI) tests,

which have been found to work well for some composite hypothesis testing problems in

finite samples but he observed that his approach does not suit all testing problems and

does not work in a number of cases. One example of a situation in which it does not

work involves testing for first-order moving average (MA(1)) disturbances against first-

order autoregressive (AR(1)) disturbances. Silvapulle and King (1991) could not find a

POI test for this testing problem so they recommended the use of an approximately POI

(APOI) test. In this regard, we can say that when testing a composite null against a

composite alternative, the NP lemma does not provide a test which is PO. However, itis

not clear that the APOI test is necessarily the best test in this case.

POI and APOI tests are based purely on the NP lemma, which requires a simple null

hypothesis and a simple alternative. The generalized NP lemma allows for a composite

null hypothesis that has a finite number of possible distributions under the null

hypothesis. This does not suit composite hypotheses which involve nuisance parameters,

because such parameters typically can take an infinite (uncountable) number of values.

The aim of this chapter is to explore a general solution to testing a composite null

hypothesis against a composite alternative. It involves maximizing the average power of

the test subject to average size being controlled over different subsets of the null

hypothesis parameter space. The choice of maximizing average power comes from Cox

and Hinkley's (1974, p.102) suggestion discussed in Chapter 2 and the recent work by

Andrews and Ploberger (1994, 1995, 1996) in a different context. Working with average
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sizes over a countable number of subsets of the null hypothesis parameter space allows

us to use the generalized NP lemma to construct the optimal test. A composite null

hypothesis brings with it the possibility that a test's size will vary with different

parameter values under the null hypothesis. In such cases, the standard approach to test

construction (see, for example, Lehmann and Stein (1948)) is to control the maximum

size to be less than or equal to some desired level of significance. Typically this is

extremely difficult and time consuming. One may not always be certain that a critical

value, which controls size locally, also controls it globally. Controlling average size over

subregions selected to reduce variability in size over the entire parameter space does

seem to be an alternative worthy of investigation.

In this chapter we illustrate the new test procedure by showing how it can be applied to

the problem of testing disturbances in the linear regression model.

The plan of this chapter is as follows. The theory and general testing procedure is

discussed and outlined in Section 3.2. Section 3.3 covers the application of the test

procedure to the problem of testing the disturbances in the linear regression model and

provides solutions to a number of practical problems that arise when applying the test.

Some concluding remarks are made in the final section.

3.2 Theory and the testing procedure

Let y be an observable n x 1 vector and suppose we wish to test

HQ:y has density f(y, 6)

against
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Ha:y has density g( ; ; >

where Q is a / x 1 vector of unknown parameters restricted to the set © and ^ is a

£ x i vecior of parameters restricted to the set q> • This is a very general form of testing

problem and it is assumed that any knowledge about the possible range of parameter

values has been used to keep the parameter sets, 0 and q>, as small as possible.

Our aim is to find the critical region ^ c Rn for which we reject //o when y

which maximizes average power subject to controlling the average size (probability of a

Type I error) of the test. We note that controlling average size over the entire parameter

space under / / , namely @, may result in undesirably large sizes in some parts of ©

while smaller in other parts of © . In order to minimize this possibility, we allow for ©

to be partitioned into ,„ disjoint subregions, namely ®itQ2,...1@m so that

,u02u...u0m

and we aim to control the average size over each of these subregions under //o .

Because HO
 i s rejected when y e a , f f[y^ (fydy is the size of the test for a given Q

value under w . In order to define the average size over the subregion © , we need a

weighting function, po.(6>), defined for # e Q . , /=--1, 2, ...,/»• T h i s function is rather

like the density function of a prior distribution for Q defined over ©.. Then the average

size of the test over the subregion © under // is
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, 1 = 1,2,

where

(3.1)

is the weighted average over 0, of the density functions of y. It can also be thought of

as an integrated likelihood function for 0 e©j.

The power of the test for a given parameter vector <j> under//, is [ g(y, (f)dy. In order

to define the average power over O, we need a weighting function pa{(f>) defined over

<f>e<t>. Again this can be the density function of a prior distribution for <f>, although

given its role in weighting powers, it is much better thought of as the density function of

a weighting distribution. The average power function of the test is

Hs(y*

where

(3.2)
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is the weighted average over <$ of the density functions of y under //^. It can also be

thought of as an integrated likelihood function for / / .

Given r(y\ ,i#> f (y\, ft (y\ defined by (3.1) and (3.2), our aim is to find the critical

region co which maximizes average power, namely

(3.3)

subject to controlling average size over the subregions © / = 1, 2,...,/»» which can be

written mathematically as

if,(y)dy<c,, / = !, 2, . . . , ,„ (3-4)

where r is the desired maximum average size over the subregion ©. under//„• The

solution to this problem is given by the generalized NP lemma (introduced in Section

2.3, also see Lehmann, 1986, p.96). The critical region defined by

(3.5)

provided that the constants fc jfc ..,jfcw exist such that the inequalities (3.4) hold,

maximizes average power. Therefore, under / / , we have „, size conditions in order to

solve for the ,„ constants kvk1,...,km- N o t e t h a t t h e generalized NP lemma requires

the constants, k z- i- , to all be positive real numbers. If one or more of the &. is

negative, then the test is optimal in the class of tests such that

/ = 1,2, ..., (3.6)
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In summary, the maximum average power test proposed in this chapter for testing a

composite null hypothesis against a composite alternative is based on rejecting HQ for

observed y such that

(3.7)

where kf, k2,..., km are constants (critical values) chosen such that the size conditions

given by (3.4) or (3.6) are satisfied.

There are two special cases worthy of mention. Observe that when /«=! , then (3.7)

reduces to

which is equivalent to

W) >k

in which the left-hand expression is a ratio of integrated likelihoods and kx is the critical

value calculated to control the average size of the test. In the case of the null hypothesis

being the simple hypothesis that y has density f(y), then m-\t fx(y) =

fm+\(y) = fi{y) which is still defined by (3.2), and (3.4) becomes

(3.8)

In addition, (3.7) becomes

m



50 Chapter 3

(3.9)

where £ is such that (3.8) holds. The test is defined by (3.9) and can be thought of as

being based on a weighted average of the likelihood ratios g(y^ (fi\l f(y, 6) •

3.3 Application to testing disturbances in the linear regression model

In order to apply the test given by (3.7), there are a number of practical issues that have

to be considered such as the choice of m, construction of the integrated likelihoods

f{y\ ••••>/, (y)' f, Ay)and t h e c a l c u l a t i o n o f t l i e c r i t i c a l values A-I? A-2, ..., km- S o m e

of these have specific solutions, which will best be left to the next chapter. In this

section, we discuss some solutions in the context of testing disturbances in the linear

regression model.

Consider the linear regression model

(3.10)

where v is „ x 1 > X i s a n n x k non-stochastic matrix of rank /c<ll and p is a k x 1

vector of parameters. Let the „ x i disturbance vector „ be distributed as /y(o, a2Q.(0))

under HO
 a n d N(0, cr2Z(</>)) u n d e r //„» w h e r e O(0) and 1(0) a r e nxn matrix

functions of the scalars Q and ^, respectively.

Our interest is in testing

Ho:u~N(O,a2n{0)), 1X<6<12
(3.11)

u
r 3

1
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against

(3.12)

in the context of the linear regression model (3.10), where /, could be -co, and /2 could

be +oo. Similarly, /•, could be -QO, and /4 could be +°o.

For this testing problem, ft and a2 are nuisance parameters. Their influence can be

removed through standard invariance arguments because the testing problem defined by

(3.10), (3.11) and (3.12) is invariant to transformations of the form

(3.13)

where //„ is a positive scalar and ;; is a k x 1 vector. Clearly we wish to consider only

tests which are invariant to transformations of y of the form of (3.13). With respect to

these transformations, the p x 1 vector

Pz
v =

(z'z)'

is a maximal invariant, where p = n-k, z= My is the OLS residual vector from (3.10),

M = I H - X ( X ' X ) ~ X' a n d P is a n y p x n m a t r i x s u c h t h a t P'P = M a n d PP' = It.

Because all statistics invariant to transformations of the form of (3.13) can be written as

functions of v, for the purpose of our testing problem, we can treat v as the observed

data.
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The joint density function of v when „ ~ #(0, a2h(X)) where A(A) is an „ x n m a t r i x

function of %>lias b e e n f o u n d b v K m S 0 9 7 9 ) t 0 b e

-pi 2
(3.14)

with respect to the uniform measure on | v : v e # " , v'v = l}- lt i s possible to show, as

pointed out by Verbyla (1990), that

\PA{A)P'\ = \X'

and from lemma 2 in King (1980) that

X

v= z'z

where %(X) is t h e 0 L S residual vector from the regression

(3.15)

in which A(A)""2 i s t h e i n v e r s e o f A(A)1/2 w h i c h i s d e f m e d h?

A(I ) I / 2 (AW 1 / 2 ) '=A(4

Using these results, our problem of testing (3.11) against (3.12) in the context of (3.10),

becomes one of testing

1
If
i
1

I

I

1
I
§
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-1/2 z(0)'z(9)

z'z

-PI2

(3.16)

against

-1/2
\ ~ f

z'z

(3.17)

where z(0) denotes z(A.) with A(^) = Q((9) and r(^) denotes z(A) with A(X) =

Observe that through invariance arguments, we have the respective parameter spaces as

and O =

First let us consider the test for which we control average size over the whole of 0 , i.e.,

m = I. Denote the weighting functions for each hypothesis under consideration as

pm(0) and pa{4>), respectively. The test which maximizes average power subject to

controlling average size over 0 , involves rejecting Ho for

- i / :

z'z

-pll

-1/2

z z
\ J

-PI2

pol(0)d6.

After cancellation of some constants, this is equivalent to
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-1/2
\-7>''

z'z

-1/2

-,,12

(3.18)

z'z
pol(0)dO

where / , / , / and / all are appropriate boundaries of the parameter space which may

be infinite and c is the critical value calculated to control average size.

If we denote the critical region given by (3.18) as (0(c ) , then finding c involves

solving

f f" /,0(v, 0)d0dv = f" j A(v, O)dvd0= a (3.19)

for c , where a is the desired average size or "significance level".

If one or more of / (/ - 1, 2, 3 and 4) are infinite, there is an issue of truncation error to

find the solution of (3.18) and (3.19). First consider the denominator of (3.18). Four

cases then may arise. These are as follows.

Case I. If / (/ = i? 2) are all finite, then there is no issue of truncation error.

Case II. If /_ = _oo and /, is finite, then the denominator of (3.18) is

-1/2

N-/-/2

z'z

(3.20)

which is equivalent to
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-1/2 \"/

z z
Pl)l(0)d0

-1/2 z(e)'z(o)
-P/2

z'z
(3.21)

for which A/,, the truncation point, is chosen so that

-1/2

z'z

-p!2

where s is a small value known as the truncation error. Therefore (3.20) can

be approximated by the second term of (3.21) and this approximation will

result in a truncation error of less than s.

Case III. If /, is finite and /, = oo, then the denominator of (3.18) is

-1/2

-p/2

(3.22)

which is equivalent to

-1/2 \-/"-

z'z
Pot

-1/2

X-/./2

z'z
(3.23)
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for which ^/7 , the truncation point, is chosen so that

-1/2
V

z'z
Pox(9)<19<£,

where £• is a small value being the maximum allowable truncation error.

Therefore (3.22) can be approximated by the first term of (3.23) and this

approximation will result in a truncation error of less than £.

Case IV. If / = _oo and /, = oo. l» ien the denominator of (3.18) is

-1/2

z'z
\ J

P(n(9)cl9, (3.24)

which is equivalent to

,-,,12

-1/2

z'z
Pol(9)cIO

-1/2 z(e)'z(o)
z'z

-1/2

z'z

(3.25)

for which JV/, and M2 are the tnmcation points chosen so that
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-1/2 2 ~
pol(ff)cW

-1/2

-Im

-,.12

<£,

where s is a small value being the maximum allowable truncation error.

Therefore (3.24) can be approximated by the middle term of (3.25) and this

approximation will result in a truncation error of less than e.

Now if we consider the numerator of (3.18), similar cases will happen for /3 and /4.

The consequence of this is that for the purpose of evaluating (3.18) and (3.19), /,, l2, l3

and /4 can be regarded as finite without any loss of generality.

Unfortunately, (3.18), and (3.19) both involve integrals, which do not have any

analytical solutions. We therefore have to resort to numerical approximation methods.

We can approximate the integrals in (3.18) by summing the areas under a large number,

say (7, of rectangles of width ((,-(,)/</ for the numerator and (/2~^i)/<7 f° r

denominator whose height is equal to the value of the function being integrated at the

midpoint of the base of the rectangle (for both integration with respect to 6 and (f>). The

bases of the rectangles combined cover the interval of integration. This involves

replacing 9 and <j> in the integrands by /, +(2j-l)(/2 -lx)/{2q) and

'3 +(2y-1)(/4 -/3)/(2*7), where./ = 1,2, ...,</, multiplying by (/2 -/,)/</and (iA-l3)/q

respectively and summing the areas of the rectangles.
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Thus (3.18) can be approximated by (see Conte, 1965, p. 120)

y=i

-1/2

z'z

-p/2

-1/2

.-,,12
>c 0-26)

z'z

where G. = / ( +(2. / - l ) ( / 2 - / , ) / (2?) and </,j=lj+(2j-\)(l,-l))/(2q), 7 = 1, 2, ...,<?•

Observe that we can cancel z'z from the numerator and denominator of the left-hand

side (LHS) of (3.26). We retain these z>z terms because they help with the numerical

stability of the functions we are dealing with, particularly since they involve powers of

the order p / 2.

The LHS of (3.19) can be approximated using Monte Carlo integration in the following

way. First draw a Q value from pm(0) • Then generate an n x \ y vector via (3.10) and

(3.11). Because of invariance, we can set p- 0 and a
2 = \. For the given value of CQ

(the LHS of (3.19) is a function of c ) , conduct the test using (3.26). Repeat this a large

number of times. The proportion of times / / is rejected in these simulations provides an

estimate of the LHS of (3.19). This allows us to solve (3.19) forCu via trial and error.

As discussed in Section 3.2, a potential problem with controlling the average size of our

test is that sizes can be undesirably large in some parts of© while being smaller than

desired in other parts of © . For example, if we divided Q into three subregions

(»i = 3 ) ' t n e critical region (3.26) now becomes
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7=1

-1/2

z'z

-P/2

z'z

-Pn

/=(,, + 1

-1/2

-1/2

z'z

z'z

-p/2

(3.27)

where k,, k2 and k3 are critical values calculated to control average size over the three

subregions of 0 and the values of qx and q2 are determined by the boundaries of these

subregions. The terms (l4-l3)/q and (/2-/ ,) /(/ are absorbed into the constants kx, k2

and k3.

Similarly, if we divided 0 into m subregions with inner boundary points <9,, 6>2, ...,

#„,_,, the boundary points for the purpose of summation, qv q2,..., qm_x, are determined

by rounding ((0, - / , ) ? / ( / , - / , ) + (l/2)), ((02 - / , ) ? / ( / , - / , ) + (l/2)), •••,

((#„,-, -li)q/(l2 - / , ) + (1/2)), respectively, down to the nearest integer, then the critical

region becomes
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y=i

-1/2

-,,12

./=</,+1

-1/2

-1/2

z'z

z'z

-,,12

\-/>'2

•+/c..
-1/2

N"/

(«>)'*K (3.28)

where k , k ,..., k a r e critical values calculated to control average size over the „,

subregions of Q .

Returning to the case of m = 3 for illustration, if we denote the critical region given by

(3.27) as if 02 = {ft Qx <0<62]

0 3 = {9:62 < 6 < 03}
 w h e r e ^o = /(, 03 = /2 and QX and 02 are the chosen boundaries of

the subregions of 0 , then finding k > k an& k involves solving

f f h(v,d)dvde = cc, i =
J0, Jro(«r,,it;.t,)

 V ;

(3.29)

jointly for k . k, a n d k • N o t e t h a t g, and q2
 i n (3-27) a r e determined by rounding

a n d
i v e ly' d o w n t 0 t h e
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nearest integer. Again the LHS of (3.29), for / — 1, 2, 3, can be approximated using

Monte Carlo integration as follows. For the given value of /, first draw a 6 value

from pOi(0), then generate y via (3.10) and (3.11) with /?= 0 and a1 = 1. For the given

values of kx, k2 and k3, conduct the test for this y vector using (3.27). Repeat this a

large number of times. The proportion of times Ho is rejected provides an estimate of

the LHS of (3.29).

Solving the three equations given by (3.29) for kx, k2, k^ can be difficult and time

consuming. In the experiments reported in the next chapter, we used the following steps

to solve for kx, k2 and /r3.

Step 1. Fix the values of k2 and k? to some reasonable initial values. Solve (3.29)

with / = 1 for kx. This can be done by rewriting (3.27) as

f\tit V'2
Air\rj)\

Y'Y.(d> )~l X
-1/2

f

i
>=</,+1

\-l

-1/2 *(',)' w
z'z

-p/2

•/=</!+1

-1/2

zz
\ J
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-1/2

\ - /

z'z
(3-30)

repeatedly drawing Q values to generate y from n .(#) > calculating the LHS

of (3.30) and then sorting these values in ascending order so as to find the

100(1 -a) percentile value which is £ .

Step 2. Taking these values of fc j ̂  and £ , calculate the LHS of (3.29) for / = 2-

Let this value be denoted by ^ . If 5 i = a , go to step 3. If s > a, make ^

bigger otherwise make # smaller with the aim of getting ^ close to a and

repeat steps 1 and 2.

Step 3. Taking the values of £ } ̂  an(j £ used in step 2, calculate the LHS of (3.29)

for / = 3. Denote this value by s . If ̂  = a, we have foun.l the required

values of £ ^ £ an(j £ . If s >a, make ^ bigger otherwise make £ smaller

with the aim of getting ^ close to a and repeat steps 1, 2 and 3.

The above algorithm applies for the case of m - 3( it can easily be generalized for

general „,. If we denote the critical region given by (3.28) as (0{k , A%,..., k ) anc* if

are0 , . = { £ 0 M < 0 < 0 , } , ,- = l ,2, . . . ,»i . where ^o = /,, ^.,,=/2 and e,, 62, ...,0m_

our chosen boundaries of our subregions of Q, then finding £,, it,,.... A involves

solving

f f li(v,0)dvd6=a, i = l 2, (3.31)
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jointly for £,, k2,..., km. The integers qx, q2,..., qm_l given in (3.28) are defined above.

Again the LHS of (3.31), for /= 1, 2,..., m, can be approximated using Monte Carlo

integration as follows. For the given value of /, first draw a 9 value from pol(G),

generate y via (3.10) and (3.11) with /?=0 and a2 = 1. For the given values of

kv k2,..., km, conduct the test for this y vector using (3.28). Repeat this a large number

of times. The proportion of times Ho is rejected provides an estimate of the LHS of

(3.31).

Solving the /;/ equations given by (3.31) for £,, k2,..., km is really difficult and time

consuming. We can use the following m steps to solve for £,, k2,..., km.

Step 1. Fix the values of k2, k3,..., km to some reasonable initial values. Solve (3.31)

with / = 1 for kx. This can be done by rewriting (3.28) as

-P/2

ylsfo V'2X'lid) ) ' X
-1/2

r

*(*j)'z(*j)

z'z

'I:

./='/,+•

-1/2
\-l

-1/2

z'z

-pll
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-1/2

z'z

-,,12

(3-32)

repeatedly drawing Q values to generate y vectors from „ m\, calculating

the LHS of (3.32) and then sorting these values in ascending order so as to

find the 100(1-a) percentile value which is £ .

Step 2. Taking these values of £ ) £,,..., k > calculate the LHS of (3.31) for / = 2-

Let this value be denoted by s . If 5i = a, go to step 3. If ^ > a, make £

bigger otherwise make £ smaller in an attempt to get Si close to a and

repeat steps 1 and 2.

Step 3. Taking the values of k k ., £ used in step 2, calculate the LHS of (3.31)

for / = 3. Denote this value by ^ . If 5. = a , go to step 4. If A. > a , make k

bigger otherwise make £ smaller with the aim of getting s close to a and

repeat steps 1, 2 and 3.

Step 4. Taking the values of k , k ,..., k u s e ^ in step 3, calculate the LHS of (3.31)

for / = 4. Denote this value by ^ . If ^ = a, go to step 5. If ^ > a, make £4

bigger otherwise make £ smaller and repeat steps 1, 2, 3 and 4.

Step ,-. Taking the values of k , k ,..., k u s e ^ ' n s teP O'-l)> c^ c u late the LHS of

(3.31) for / = / • Denote this value by s . If s = a , go to step (j + ]). If

sf > a, make kt bigger otherwise make k} smaller and repeat steps

1,2 j .

Step m. Taking the values of &,, k2,..., km used in step (//;-1), calculate the LHS of

(3.31) for / = /«. Denote this value by sm. If sm = a, we have found the

required values of kx, k2,..., km. If *m > a, make km bigger otherwise make

km smaller and repeat steps 1,2, ..., m.

Here we see that the amount of computation involved does increase exponentially with

/;/. It is best, therefore, that /;; be kept as small as possible.

3.4 Concluding remarks

In this chapter we have presented a new approach to test construction when testing a

composite null hypothesis against a composite alternative based on using the generalized

NP lemma to maximize average power subject to controlling average size over different

subsets of the null hypothesis parameter space. We discussed the new test procedure by

applying it to the problem of testing disturbance errors in the linear regression model.

This problem was deliberately chosen because, through invariance arguments, it reduces

to composite null and alternative hypotheses involving scalar parameters. It is also a

testing problem for which in some cases it has been difficult to find a satisfactory test.

The new test procedure has considerable potential, particularly for problems in which

the effective null hypothesis parameter space can be kept small.
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In the next chapter we illustrate the new test procedure by applying it to the problem

Silvapulle and King (1991) could not find a POI test for and were forced to recommend

the use of an APOI test for. This problem is testing for MA(1) disturbances against

AR(1) disturbances in the linear regression model. A small sample power comparison

reveals that the new test can be substantially more powerful than various versions of the

APOI test recommended by Silvapulle and King. Following the next two chapters, we

will investigate how well the procedure works for other types of parameter spaces under

the null hypothesis.

Chapter 4

Application of the New Approach to a Single Parameter
Problem

4.1 Introduction

In the previous chapter, we introduced a new approach to testing a composite null

hypothesis against a composite alternative. We outlined the theory behind this approach

with particular emphasis on testing the disturbances in the linear regression model. In

this testing problem, we are interested in a particular parameter or a set of parameters.

Clearly the remaining parameters are nuisance parameters which it would be nice to be

able to eliminate. We discussed in Section 3.3 the standard invariance technique that can ,

be used to simplify the testing problem and eliminate the nuisance parameters involved

in the regression model under consideration.

There are a number of practical issues that were not explored in Chapter 3. These

include: (a) Does controlling average size do a good job in controlling size overall? (b)

How should m be chosen? (c) How easy is it to apply this test procedure? (d) Does this

test procedure perform well? (e) If so, how well will it perform in comparison with other

tests? These are some of the questions this chapter seeks to answer.
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We will address these questions by considering the application of the new test procedure

to testing for MA(1) disturbances against AR(1) disturbances in the linear regression

model.

Nicholls, Pagan, and Terrel (1975) ascribed the general lack of interest in models with

MA disturbances to the computational difficulty involved in estimating its regression

parameters. This problem has now been overcome by the arrival of powerful personal

computers. King (1983b) considered a point optimal procedure for testing MA(1)

disturbances in the linear regression model. The reverse problem of testing AR(1)

against MA(1) disturbances has been extensively studied in the time series framework,

see for example, Walker (1967), King (1983a), King (1987a), King and McAleer (1987),

Burke et al. (1990) and Baltagi and Li (1995).

King (1983a) constructed and investigated the properties of a test for testing AR(1)

against MA(1) disturbances, called a pseudo POI (PPOI) test, by applying the NP lemma

to a maximal invariant statistic. In his paper, King mentioned that wrongly correcting for

AR(1) disturbances in a model with MA(1) errors can lead to inefficient parameter

estimates and, more importantly, misleading inferences. Also, he pointed out that the

confirmation or rejection of a particular economic theory could plausibly depend upon

whether a certain set of regression disturbances are AR(1) orMA(l), see for example,

Rowley and Wilton (1973). King and McAleer (1987) further compared the small

sample properties of the Cox test, some linearized Cox tests, and an APOI test, as well as

the LM test of AR(1) against ARMA(1,1) disturbances in the linear regression model.

Their comparison showed King's test to have the best power properties. King (1987a)

discussed an application to the non-nested problem of testing for AR(1) disturbances

against MA(1) disturbances in the linear regression model and calculated powers for a

POI test procedure. Unfortunately the POI test cannot be constructed for all testing

problems. For example, Silvapulle and King (1991) could not find a POI test for testing

MA(1) against AR(1) disturbances in the linear regression model, so t;ley recommended

the use of an APOI test. In this chapter we will evaluate the small sa: nple properties of

our new Xer-l procedure in the context of the problem of testing MA(1) against AR(1)

disturbances in the linear regression model, and compare tliese propert es with those of

Silvapulle and King's test.

The plan of this chapter is as follows. The model, testing problem and the tost procedure

are discussed and outlined in Section 4.2 which covers the application of the test to the

problem of testing for MA(1) disturbances against AR(1) disturbances in th<j linear

regression model. A Monte Carlo experiment for exploring the properties of the new test

procedure is outlined in Section 4.3. Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4 cover the

experimental design and the size properties of the new test when m -1, m - 2 and

;;; = 3, respectively. A comparison of the small sample size and power properties of the

new test and various versions of the APOI test recommended by Silvapulle and King

(1991) is reported in Section 4.4. It demonstrates the potential of the new test procedure.

Some concluding remarks are made in the final section.

4.2 The model, testing problem and the test procedure

Consider the linear regression model (3.10)
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y=Xfi+u.

If the components of the n x 1 disturbance vector u are generated by the MA(1) process

u,=e,+)e,_v = 1, 2 , . . . ,« , (4.1)

where e* = (e0, ep ..., en)' ~ N(0, cr2/n+1), then H ~ tf(0, <72S(y)), where 2(y) is the

tridiagonal matrix with \ + y2 as the main diagonal elements and y as the non-zero off-

diagonal elements. If the components of u are generated by the stationary AR(1) process

u, =pw,_,+e, , \p\<\, f = 1,2,...,«, (4.2)

where uo~ N(O, a2/(\-p2)) and e = (ep e2,..., en)' ~ N(0, a2ln), then

. .\th
« ~ N(0, <72Q(p)) in which Q(/?) is an nxn matrix whose (1,7) element is

Our interest is in testing

(4.3)

against

Ha:u~N(0,er2Q(p)), 0<p<\, (4.4)

in the context of the linear regression model (3.10). Observe that we are assuming non-

negative autocorrelation in the disturbances. The discussion below can easily be

generalized to the case of negative autocorrelation. Typically when one is considering

Application of the New Approach to a Single Parameter Problem 71

an
disturbance models of the form of (4.1) and (4.2), one is also willing to make

assumption about whether consecutive disturbances are positively or negatively

correlated. As noted by Silvapulle and King (1991), if available, this knowledge should

be incorporated into the test in order to improve power.

As we mentioned in the previous chapter, the parameters J3 and a2 are nuisance

parameters for our testing problem. Their influence can be removed through standard

invariance arguments because the testing problem defined by (3.10), (4.3) and (4.4) is

invariant to transformations of the form (3.13).

Now using the results of (3.16) and (3.17), our problem of testing (4.3) against (4.4) in

the context of (3.10), becomes one of testing

-1/2
\-pi2

zz

0<y<\, (4.5)

against

-1/2

z'z
\ J

-,,12

0<p<\, (4.6)

where z(y) is the OLS residual vector from the regression defined in (3.15), z
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denotes z{X) with A(A) = E(^) and also, z{p) denotes z{X) with \{X) =

Observe that through invariant arguments and our assumption of positive

autocorrelation, we have restricted the respective parameter spaces to 0 = {y: 0 < y < 1}

and <t> = {p: 0 < p < 1}.

First let us consider the test for which we control average size c\ ex the entire parameter

space of 0 , i.e., m = 1. Now the fundamental NP lemma implies that the test which

maximizes average power subject to controlling average size over the entire null

hypothesis parameter space, can be based on the critical region of the form (after

cancellation of some constants)

-1/2 z(p)z(p)

z'z

-pa

p{p)dp

-1/2

z'z

-,,12

p{y)dy

-1/2

s-,,/2

z'z

or, ~ C (4.7)

-1/2

z'z
dy

where p(p) and p(y) are the weighting functions of p and y respectively, and ca is

the critical value calculated to control average size. The uniform distribution would

appear to be a good choice of weighting function for p and y because both p and y
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are restricted to lie in an interval. In equation (4.7), p(p) and p{y) have been replaced

by uniform density functions which cancel.

If we denote the critical region given by (4.7) as o)(ca), then using equation (3.19),

finding ca involves solving

= a ( 4-8 )

for ca, where a is the desired average size of the test.

Equations (4.7) and (4.8) both involve integrals, which do not have analytical solutions.

Therefore, as discussed in Chapter 3, we can approximate the integrals in (4.7) by

summing the areas under a large number, say q, of rectangles of width \/q . The bases

of the rectangles combined cover the unit interval. This involves replacing p and y in

the integrands by {2j-\)j{2q), where j is a positive integer, namely J = l,2,...,q,

multiplying by \/q and summing the areas of the rectangles. Thus (4.7) can be

approximated by (see Conte, 1965, p. 120)

-1/2

r'r

-p/2

-1/2
x-pl2 ~ Ca

z'z

(4.9)

where p . = y. = {2j-\)/(2q)t j = !, 2, ...,*.
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The LHS of (4.8) can be approximated using Monle Carlo integration by repeatedly

drawing a y value from the uniform distribution on [0,1], then generating an n x 1 y

vector via (3.10) and (4.1). Because of invariance, we set /? = 0 and a2 = 1. To calculate

the critical value ca, again we repeatedly draw y values from the uniform distribution

on [0,1] to generate y vectors, each time calculating the LHS of (4.9) and then sorting

these values in ascending order so as to find the (l-or)lOO percentile value at the a

percent level. This is our estimated value of ca.

As discussed in Section 3.2 of Chapter 3, a potential problem is with controlling the

average size of our test. The sizes can be undesirably large in some parts of the null

hypothesis parameter space while being smaller than the desired size in other parts of the

null hypothesis parameter space. We conducted some simulation experiments, for m = 1,

m-2 and m = 3 for testing (4.3) against (4.4) in the context of (3.10). In this testing

problem when m = 1 and m = 2, we did indeed find regions of larger sizes than a and

regions of lower sizes than a under the null hypothesis. For this testing problem,

finally, we divided the null hypothesis parameter space 0 into three disjoint intervals

(m = 3), determined by boundaries where the size in the case of m = 1 as a function of

y crosses a = 0.05 for the test given by (4.9). When this was done we saw that sizes of

the resultant test are reasonably acceptable.

A detailed discussion of the test procedures and the size properties of the test withm = 1,

m = 2 and m = 3 are given below.

I!
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4.3 Monte Carlo experiments

In order to investigate the small sample size and power properties of our test in the

context of testing MA(1) against AR(1) disturbances in the linear regression model, we

conducted a Monte Carlo experiment. The experiment was also carried out to compare

the small sample size and power properties of our new test and three versions of the

APOI test recommended by Silvapulle and King (1991).

4.3.1 Experimental design

Two thousand replications were used to investigate the size and power properties of our

test. The critical values were calculated at the five percent level. For two thousand

replications, estimated rejection probabilities outside the range [0.037, 0.063] are

significantly different from the five percent level at the 0.01 level.

In order to compare the size and power properties of our test with different versions of

Silvapulle and King's (1991) APOI tests, we used their experimental design matrices

(also see Silvapulle, 1991) which are as follows:

A'l: (n x 3; /; = 20, 60). The first n observations of Durbin and Watson's (1951,

p. 160) consumption of spirits example; that is, a constant, plus annual data on

the price of spirits and household income in the UK.

X2: (// x 3; n = 20, 60). A constant dummy, the quarterly Australian Consumer

Price Index (CPI) commencing 1959(1) and the same index lagged one quarter.
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(n x 5; /; = 20, 60). X2 augmented by adding the CPI lagged two quarters and

three quarters as additional regressors.

XA: (n x 3; n - 20, 30). The regressors are a constant, logarithms of Chow's (1957,

Table 1, p.32) automobile stock per capita and logarithm of personal money

stock per capita variables for the United States 1921-1950.

X5: (JI x 3; n = 20, 60). The regressors are the eigenvectors corresponding to the

three smallest eigenvalues of the nxn Durbin-Watson (DW) differencing

matrix Ax, which is the tridiagonal matrix, whose main diagonal is

(l, 2, 2,..., 2, l) and whose leading diagonals are (-1, - 1 , . . . , - l ) . We note

that the first regressor is a constant.

All the design matrices cover a variety of economic phenomena. The design matrix X\

which includes a constant dummy, was smoothly evolving regressors with no hint of

seasonally, X2 and X3 exhibit practical degrees of multicollinearity. The matrix X5

was included because the DW test is approximately uniformly most powerful invariant

for this matrix. The sample sizes for all the design matrices are 20 and 60 except for XA

where the sample sizes are 20 and 30. The X2> matrix was included to see if the number

of regressors affects results.

For the problem under consideration, the proposed test under Ho and Hu is invariant

with respect to p and a2, and we have chosen, (5 = 0 and a1 = 1 for the simulation

experiment.
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The first step involved deciding on the value of m for which the size of our test is

approximately controlled. We mentioned earlier that we conducted some simulation

experiments to choose the value of /;/ and we tried m = 1, m = 2 and m = 3 . Finally we

saw that the test performs well for /;/ = 3. Detailed discussions follow.

4.3.2 Size properties of the test with m= 1

Using 2000 replications with /;; = 1, we calculated the critical values ca for all the

design matrices based on (4.7). These values are presented in Table 4.1. For these critical

values, using (4.9) we calculated the level (sizes) of the test for different values of/ ,

namely, /=0 .0 , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 underHo. These estimated

sizes are presented in Table 4.2. From this table we see that the estimated sizes are far

from the average size (a — 0.05), some sizes are undesirably larger than the average size

while others are much smaller than the average size. We do not view this as successfully

controlling the probabilities of Type I errors across the null hypothesis parameter space

because most of the estimated sizes are outside the rejection probabilities range [0.037,

0.063] and are therefore significantly different from five percent at the 0.01 level. This

led us to consider m = 2. In the following section we discuss the size properties of the

test for m-2.

4.3.3 Size properties of the test with m = 2

We wish to control the average estimated sizes of our test over suitable regions under

Ho. When we controlled the average estimated size of our test over the whole parameter

space (m = 1) under Ho, naturally we got some sizes that are above average and some
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that are below average. Our suggestion is to split the sample space under HQ into two

regions and control average size over each of these regions. An obvious approach to is

split into those regions for which size was above average when m = 1 and those regions

for which size was below average. In the former region, this should have the desirable

effect of lowering sizes when they are previously above average and for the latter, this

should raise estimated sizes that have previously been below average. With this in mind

and using the calculated sizes for m = 1 presented in Table 4.2, we divided the null

hypothesis parameter space (0</ .<l) into two disjoint intervals, with the boundary

points calculated through simple interpolation. For example, in the case of the X\

design matrix with n - 20, through interpolation we estimated that smaller than average

sizes lie in the ranges 0 < y < 0.24 and 0.64 < y < i , and therefore larger than average

sizes lie in the interval 0.24 < y < 0.64; see Table 4.2. In this case, our aim is to control

average size over these two regions in the hope that this gives a test with better size

properties. Ranges of the two disjoint intervals and the corresponding values of j ,

where Pj = y;. = (2j- l)/(2q), j = 1, 2,..., 50, for all design matrices are presented in

Table 4.3.

Thus for m = 2, equation (3.7) gives the test that maximizes average power subject to

two size conditions and involves a critical region of the form

7=1

-1/2
\-l

z'z

t
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-1/2
\ - /

• /=</ ;

-1/2

X-/./2

1 -1/2

z'z

-,,12

(4.10)

where k{ and k2 are critical values calculated to control average size over the two

subregions of 0 and the values of qx and q2 are determined by the boundaries of the

subregions.

If we denote the critical region given by (4.10) as co(kx, k2) and if

0 1 = {/:;K ( )<r<;'1}u{/:; ', < / < / 3 } and 0 2 = {y\y] <y <y2}, where

y0 =0, y3 = \, yx and y2 are the chosen boundaries of the subregions of 0 , then

finding k{ and k2 involves solving

= or, i = \,2, (4.11)

jointly for kt and k2. Here qx and q2 in (4.10) are determined by rounding (yiq + (\/2))

and {y2q + (1/2)) respectively, down to th-? nearest integer.

The LHS of (4.11) can be approximated using Monte Carlo integration in the following
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way. First, fix the value of k2 to some reasonable initial value. Solve (4.11) with / = 1

for kx. Rewriting (4.10) as

7 = 1

-1/2 -1/2

z'z

.-,,12

7='/i+l

- l I
-1/2

z'z

v

v l ( V2 X'T.( r'v""2

2-1 VJ )\ vj)
'j)

z

z(y

'z
j)

)

-,,12

/=</;+'

-1/2

z'z
J

(4.12)

can help do this. It involves repeatedly drawing y values from the uniform distribution

over [0, 1]. If such a y value belongs to 0 , , then generate the y vectors via (3.10) and

(4.1) with fi = 0 and a2 = 1. Otherwise, again we repeat this step by drawing another y

value from the uniform distribution. The next step involves calculating the LHS of

(4.12), and then sorting these values in ascending order so as to find the ninety-fifth

percentile value at the five percent level, which is £,. For these values of k{ and k2,

calculate the LHS of (4.11) for / = 2. Let this value be denoted by s2. If s2 = a , we

have found the required values of kt and k2. If s2 > a, make k2 bigger, otherwise make
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k2 smaller with the aim of getting s2 closer to a and repeat these steps again. This

allows us to solve (4.11) for £, and k2 via trial and error.

Final critical values of /:, and k2 for all design matrices are given in Table 4.4. From

this table we observe that /:, and k2 are always positive numbers and the k2 values are

always far larger than kt values for all design matrices. From the critical values, we also

observe that there is a decreasing trend for the &, and k2 values as the sample size

increases, the one exception for A', being for X3 and for k2 being lor X4.

Using the critical values kt and k2, we calculated the sizes of the test using (4.10) for

different values of y, namely, y =0.0, O.i, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under

Ho. The estimated sizes are presented in Table 4.5. Again we see that the sizes of the

test obtained were not satisfactory due to the fact that we are controlling average size.

Here the sizes at the end points of the null hypothesis parameter space are the worst.

These sizes are significantly different from our nominal size. This caused us to decide to

divide the null hypothesis parameter spa^e into three disjoint intervals and control

average sizes of these three intervals. The detailed discussions of the size properties of

the test for m = 3 are given below.

4.3.4 Size properties of the test with m = 3

In the previous subsection, we discussed the option of controlling the average estimated

size of our test over two regions of the null hypothesis parameter space (m = 2). The

choice of regions was determined by sizes for the m = 1 case. Unfortunately the resultant
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test sizes were judged tc be less than acceptable. Part of the problem seems be that one

of the regions is made up of two intervals, with one interval having typically higher sizes

balanced on average by lower sizes tor the other interval. This led us to consider three

intervals based on the m = 1 sizes. These are the LHS interval for which sizes are below

average, the middle interval for which sizes are above average and the RHS interval for

which sizes are below average. For example, in the case of the X\ design matrix with

n = 20, these intervals are 0<y <0.24 (0 , ) , 0.24 <y< 0.64 (0 , ) and

0.64 < y < 1 (03), respectively, see Table 4.6. In this case, ranges of he three disjoint

intervals :;nd 'die corresponding values of j , where pJ=yj=(2j-i)/(2q)1

j = 1, 2, . , 50, for all design matrices are presented in Table 4.6.

Thus for w = 3, equation (3.7) gives the resultant test that maximizes average power

subject to three size conditions and involves a critical region of the form

z'z

V V; v \ YA \Y<) A

z(rj)'z(r

z'z
J

-1/2

Z'Z

\ J

./=</;

-1/2

\-l>l2

z'z
(4.13)

where kx, k2 and ks are critical values calculated to control average size over the three

subregions of © and the values of qx and q2 are detemiined by the boundaries of these

subregions.

If we denote the critical region given by (4.13) as co{kx, A'2, k3) and if

^Y2} a n d ®i={r- r3} where / 0 = 0 ,

y} = 1, and 7, and / 2 are our chosen boundaries of our subregions of ©, then finding

A',, k2 and A'3 involves solving

•a, / = i , 2 , 3 , (4.14)

jointly for A',, k2 and k3. Here qx and q2 in (4.13) are determined by rounding

(yxq + (1/2)) and (y2q + (1/2)), respectively, down to the nearest integer.

Again the LHS of (4.14), for / = 1, 2, 3, can be approximated using Monte Carlo

integration. Solving the three equations given by (4.14) for A-,, k2, k3 can be difficult

and time consuming, but it can be solved via trial and error. When solving for the critical

values kt (/--= 1, 2, 3) using (4.14), we used Steps 1 to 3, discussed in Section 3.3 for

m = 3, so the average size conditions are simultaneously satisfied.

Calculated critical values of kx, k2 and A'3 for different design matrices are given in
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Table 4.7. From this table we observe that the /c, values are always far larger than the &,

and k3 values for all design matrices. We also observe that there is a decreasing trend for

the kx, k2 and k3 values when the sample size is increasing, the only exceptions being

for k} for X3 and k2 for X4. From the values presented in Table 4.7, we observe that

ki and k2 are always positive numbers. Moreover, for some cas?s, the fc3 values are

close to zero. In addition to that, &3 takes a very small negative value wheVi the sample

size is increased. Note that Lehmann (1986) required the constants k,, k2,..., km to all

be positive numbers. Arthanari and Dodge (1980,Result 4.5.1, p.196) have been able to

show that the NP lemma and the generalized version of the lemma only require the

existence of real numbers kx, k2,..., km. From the two experiments with m~2 and

m = 3 we observed that the behaviour and the pattern of the critical values kx and k2 are

very similar.

Once we obtained the critical values kt (i = 1, 2, 3), the sizes and powers were

calculated using (4.13) for y =0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 underHo

and for p = 0.1, 0.3, 0.5, 0.7 and 0.9 under Ha. The calculated sizes are presented in

Table 4.8.

Our interest in this table is to see the behaviour of the sizes of our new test given thatwe

are controlling average size. It is pleasing to note that the calculated sizes for all design

matrices with n = 20 fall within the range [0.037, 0.063] making them not significantly

different from five percent at the 0.01 level. Note that we are more anxious when the

estimated sizes are greater than 0.063 rather than below 0.037. With this in mind, there

are a few points (most of them are near to the boundary points, y =0.0 and 0.9) which

I

are significantly different from five percent at the 0.01 level for the farger sample sizes.

Overall we find the sizes of our test to be very acceptable for small sample sizes, when

m = 3, at least for the ten y values we considered.

4.4 Power comparison of the test with m = 3

Table 4.9 presents the calculated sizes and powers of our average power test and the

corresponding sizes and powers of three versions of Silvapulle and King's (1991) APOI

test, namely the s(03,y'o), .v(0.5,/*) and s(OJ5,y'o) tests. Here we note that the size and

power results for the three different versions of APOI tests for X2 design matrix come

from Silvapulle and King (1991), and for all other design matrices, the results come from

Silvapulle1 (1991). The sizes of our test have been estimated via simulation methods

using 2000 replications, sizes within the range [0.037, 0.063] are not significantly

different from 0.05 at the 0.01 level. On the other hand, the sizes and powers for the

APOI tests have been calculated to a much higher level of accuracy using standard

numerical methods based on Imhofs (1961) algorithm as discussed by King (1987a).

The first aspect that we have discussed in the previous section is the behaviour of the

sizes of our new test. Now we want to compare sizes of our test with three different

versions of Silvapulle and King's (1991) APOI test. We observe from Table 4.9 that

sizes for all design matrices with /; = 20 fall within the rejection probability interval

[0.037, 0.063]. Note that when the sample size is small there are a few sizes that are

The author wishes thank Associate Professor Silvapulle for giving her permission to use these results
from her Ph.D. thesis.
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higher than 0.05 while all sizes of three different versions of the APOI test are0.05 or

below. One reason for this difference may be the fact that because the new test seeks to

control average size at 0.05, it should have slightly higher sizes than the APOI tests.

There are a few sizes of our test that are significantly different from five percent at the

0.01 level when the sample size is increased. Overall we find that the sizes of the new

test perform very well for small sample sizes, when m = 3. With respect to the size

condition, we can say that our test compares favourably with each of the three different

versions of Silvapulle and King's (1991) APOI tests when the sample size is small.

The second point of Table 4.9 is to compare the power of our test with that of the APOI

tests. We observe that for all design matrices, when the samplesize is small except when

p = 0.3 for XI and p = 0.l, 0.3 for X?> and X5 the powers of the new test are

typically higher than those of the APOI tests. On the other hand, when the sample size is

larger except when p = 0.1 for all design matrices, p = 0.9 for X3, p = 0.3, 0.5, 0.7 for

X4 and p = 0.3, 0.9 for XS the powers of the new test are even higher than those of the

APOI tests. The new test still has a very clear power advantage, that is, when the sample

size is small, on an average the new test gained 0.7 to 5.7 percentage points for all design

matrices and when the sample size is large, the new test gained 0.8 to 1.9 percentage

points in terms power improvement except for X4. Also, we observe that when the

sample size is small for all design matrices when p- 0.7, 0.9 the powers of the new test

are much higher than those of the APOI tests. The better powers could be due to the

slightly higher sizes of the new test. Considering all these cases, the new test continues

to show its very clear superiority in terms of power when the sample size is small. This

leads us to conclude that, at least for the problem of testing for MA(1) disturbances

i

1
I
I
I
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against AR(1) disturbances in the linear regression model, the new test is a better test

than the APOI test which Silvapulle and King (1991) found out-performed the LM test

and an analogous test to Burke et al.'s (1990) asymptotic test.

4.5 Concluding remarks

In this chapter we have considered the application of the new approach which was

constructed in Chapter 3 for testing a composite null hypothesis against a composite

alternative. We illustrated the new test procedure by applying it to the problem of testing

for MA(1) disturbances against AR(1) disturbances in the linear regression model as a

single parameter testing problem. The problem was deliberately chosen because through

invariance arguments, it reduces to composite null and alternative hypotheses involving

a scalar parameter defined over the unit interval. It is also a testing problem for which it

has been difficult to find a satisfactory test. The main practical difficulty is with the

finding of critical values for which the average size conditions of the test are

simultaneously satisfied. In this approach, we only used the uniform distribution as a

weighting function. It can easily be applied using a non-uniform distribution. Using

Silvapulle and King's (1991) APOI tests as benchmarks, the new test was found to have

good small sample size and power properties. This suggests the new procedure has

considerable potential, particularly for problems in which the effective null hypothesis

parameter space can be kept small. Further research is needed in order to see how well

the test procedure works when the boundary points of the subregions of the null

hypothesis parameter space are chosen without any reference to lower than average size

and higher than average size regions in the m = 1 case, we will call this the high



88 Chapter 4 89

size/low size technique in the remainder of the thesis. Also, we need to see how well the

procedure works for other types of parameter spaces under the null hypothesis. In the

following chapters we will look at these issues.

Table 4.1

Critical values (ca) for X\, X2, X\ X4 and X5 design matrices when m = \ at the
five percent level.

Design matrix

A'l(//x3)

X2(nx3)

X2(nx5)

X4(nx3)

A"5(//x3)

Sample Size (n)

20
60

20
60

20
60

20
30

?0
60

Critical values (co)

2.5521
1.9359

2.5748
2.0125

2.2807
1.9539

2.6958
2.2886

2.8923
2.0428

i

Table 4.2

Calculated sizes of the test when in ~ 1 at the five percent level.

Parameter
values

Y

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X\(n

"=20

0.013*
0.025*
0.043
0.060
0.068*
0.068*
0.055
0.041
0.025*
0.017*

x3)

60

0.009*
0.041
0.081*
0.114*
0.123*
0.101*
0.053
0.019*
0.006*
0.000*

A*2(/;

20

0.017*
0.027*
0.046
0.061
0.069*
0.062
0.053
0.044
0.029*
0.021*

x3)

60

0.009*
0035*
0.074*
0.109*
0.113*
0.092*
0.050
0.023*
0.007*
0.001*

Sizes

X3(nx5)

20

0.030*
0.041
0.055
0.068*
0.073*
0.069*
0.062
0.047
0.033*
0.027*

60

0.010*
0.036*
0.080*
0.114*
0.119*
0.096*
0.055
0.024*
0.007*
0.002*

X4(n

20

0.014*
0.025*
0.045
0.061
0.069*
0.061
0.052
0.035*
0.020*
0.015*

x3)

30

0.016*
0.036*
0.064*
0.088*
0.097*
0.089*
0.069*
0.042
0.022*
0.010*

X5{n

20

0.01,3*
0.024*
0.040
0.058
0.068*
0.064*
0.048
0.029*
0.017*
0.011*

x3)

60

0.008*
0.034*
0.068*
0.109*
0.117*
0.091*
0.047
0.017*
0.006*
0.000*

denotes value significantly different from live percent at the 0.01 level.
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Table 4.3

Ranges of the two disjoint intervals and the corresponding values of j , where

Pj=yj=(2j-\)/{2q), j = \,2,...,q,q = 50.

Sample Size Subregions

(smaller than average size for
m = 1)

For design matrix XX (ft x 3)

20

60

0</<0.24U0.64<;K<l

(7=1,2,..., 12 U 7=33,34,

0 < / < 0 . 1 2 U 0 . 6 K / < l

(7=1,2,...,6U7=32,33,..

For design matrix X2 (n x 3)

20

60

0</<0 .23U0.63<X<l

(7=1,2,..., 12 U 7 =33, 34,

0< y <0.14 UO.6O< y < 1

(7=1,2, ...,7U 7=31,32,..

For design matrix X3 (n x 5)

20 0<y

60

(7=1,2, ...,8U 7=35,36, ..

0<7<0.13U0.6K/<l

(7=1,2,...,7U7=32,33

For design matrix X-\ (n x 3)

20 0 < r

30

y y
(7=1,2,..., 12U y=32,33, .

0<y <0.15U0.67<y< 1

(7=1,2,..., SVJ 7=35, 36, ..

For design matrix X5(n x 3)

20 O<X^O.25UO.58<^<1

(7=1,2, . . . ,13U 7=30,31,

60 0 < y <

(7=1,2, . . . ,8U 7=31,32,.

©2
>ize for

..,50)

,50)

..,50)

,50)

,50)

,50)

..,50)

.,50)

..,50)

.,50)

* (larger than
average size for

/;; = 1)

0.24 < / < 0.64

(7=13, 14, ...,32)

0.12< ^ <0.61

(7 =7, 8, ...,31)

0.23</<0.63

(7=13, 14, ...,32)

(7=8,9, ...,30^

0.16<X^0.68

(7=9, 10, ...,34)

0.13< ^ <0.61

(7 =8'9 31)

0.23<X<0.61

(7=13, 14, ...,31)

0.15</ <0.67

(7=9, 10, ...,34)

0.25 < 7 <0.58

(7=14, 15, ...,29)

0.15<^<0.59

(7=9, 10, ...,30)

Table 4.4

Final critical values kx and k2 when m = 2.

Sample size
('0

Critical values

For design matrix XI (// x 3)

20
60

For design matrix X2 (» x 3)

20
60

For design matrix X3(nx5)

20
60

For design matrix X4 (/J X 3)

20
30

For design matrix X5(tl x 3)

20
60

0.3938
0.2000

0.2969
0.2918

0.0420
0.3271

0.5423
0.0911

0.6002
0.3494

1.980
1.710

2.100
1.600

2.100
1.6085

1.690
2.320

1.890
1.800
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Table 4.5

Calculated sizes of the test when m = 2 at the five percent level.

Parameter
values

7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Xl(n

"=20

0.136*
0.092*
0.063
0.052
0.043
0.044
0.043
0.039
0.037
0.032*

x3)

60

0.224*
0.082*
0.047
0.054
0.065*
0.057
0.039
0.022*
0.012*
0.004*

X2(ll

20

0.164*
0.112*
0.075*
0.055
0.046
0.044
0.041
0.038
0.035*
0.033*

x3)

60

0.269*
0.113*
0.054
0.057
0.065*
0.056
0.042
0.023*
0.014*
0.006*

Sizes

X3(n

20

0.074*
0.056
0.046
0.048
0.048
0.044
0.046
0.047
0.043
0.040

x5)

60

0.207*
0.085*
0.048
0.058
0.062
0.057
0.043
0.027*
0.011*
0.006*

X4(n

20

0.097*
0.081*
0.072*
0.068*
0.060
0.057
0.051
0 0 ^
0.029*
0.024*

X3)

30

0.165*
0.089*
0.052
0.043
0.050
0.049
0.046
0.038
0.032*
0.025*

X5(n

20

0.096*
0.071*
0.059
0.052
0.045
0.042
0.039
0.034*
0.027*
0.022*

x3)

60

0.263*
0.108*
0.045
0.046
0.053
0.048
0.032*
0.019*
0.008*
0.004*

denotes value significantly different from five percent at the 0.01 level.
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Table 4.6

Ranges of the tliree disjoint intervals and the corresponding values of j , where

Pj=rj={2J-l)/(2(l)> .7 = 1, 2 , . . . , 0 , ^ = 5 0 .

Sample size Subregions

(smaller than
average size)

(larger than
average size)

(smaller than
average size)

For design matrix X\ (n x 3)

20

60

0</<0.24
(7 =1,2, ...,12)
0</<0.12

For design matrix XI (n x 3)

20

60

0</<0.23

(y=l,2,..., 12)

0<^< 0.14

U=l,2, . . . , 7)

For design matrix X3 (// x 5)

20

60

0</<0.16
(j =K2,. ..,8)
0</<0.13
(7 =1,2,..., 7)

For design matrix X4 {n x 3)

20 0</<0.23

(7=1,2,..., 12)

30 0</<0.15
(7=1, 2,...,8)

For design matrix X5(n x 3)

20

60

0</<0.25

(7=1-2,..., 13)

0.24 < / <0.64

(7=13, 14, ...,32)

0.12</<0.61

(7=7,8, ...,31)

0.23 < y < 0.63

(7=13, 14,...,32)

0.14<^<0.60

(> =8, 9, ...,30)

0.16</ <0.68

(7=9, 10, ...,34)

0.13<y £0.61

(7=8,9,...,31)

0.23 < / <0.6l

(7=13, 14, ...,31)

0.15 < / < 0.67

(7=9, 10, ...,34)

0.25</<0.58

(7=14, 15,...,29)

0.64</<l

(7=33,34 50)

O.6I</<1

(7=32,33, ...,50)

0.63 < y < 1

(7=33,34 50)

0.60</<l

(7=31,32, ...,50)

0 .68</<l

(7=35,36, ...,50)

O.6K/<1

(7=32,33, ...,50)

(7 =1,2,...,8) (7=9, 10, ...,30)

(7 =32, 33, ...,50)

0.67</<l

(7=35,36, ...,50)

0.58</<l

(7=30,31 50)

0.59 < / < l

(7=31,32, ...,50)

Table 4.7
Final critical values kx, k2 and k3 when m = 3 .

Sample size Critical values

For design matrix X\ (/; x 3)

20
60

For design matrix XI (ll x 3)

20
60

For design matrix X3(n x 5)

20
60

For design matrix X4 (n x 3)

20
30

For design matrix X5(n x 3)

20
60

0.2072
0.0861

0.2098
0.1202

0.0448
0.1083

0.2242
0.0689

0.2423
0.1335

1.950
1.610

1.840
1.520

2.014
1.590

1.720
2.350

1.97
1.683

0.0350
-0.0011

0.0550
-0.0012

0.0300
-0.0025

0.1000
-0.0200

0.0200
-0.0006

Table 4.8

Calculated sizes of the test when m = 3 at the five percent level.

Parameter
values

r
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X\(n

n=20

0.061
0.048
0.042
0.040
0.046
0.049
0.047
0.050
0.050
0.048

x3)

60

0.080*
0.030*
0.038
0.060
0.070*
0.064*
0.048
0.031*
0.034*
0.076*

X2(n

20

0.058
0.055
0.049
0.049
0.053
0.052
0.055
0.053
0.050
0.046

x3)

60

0.076*
0.031*
0.041
0.058
0.069*
0.063
0.050
0.045
0.046
0.072*

Sizes

X3(n

20

0.054
0.046
0.045
0.048
0.049
0.046
0.049
0.049
0.045
0.042

x5)

60

0.075*
0.030*
0.035*
0.058
0.064*
0.061
0.052
0.043
0.045
0.076*

X4(n

20

0.056
0.053
0.060
0.063
0.060
0.063
0.061
0.060
0.051
0.043

x3)

30

0.075*
0.043
0.030*
0.038
0.048
0.051
0.050
0.045
0.042
0.042

X5{n

20

0.055
0.044
0.042
0.045
0.048
0.049
0.050
0.048
0.048
0.047

x3)

60

0.091*
0.036*
0.032*
0.047
0.059
0.055
0.038
0.031*
0.033*
0.058

* denotes value significantly different from five percent at the 0.01 level.
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Table 4.9

Calculated sizes and powers of the new test and APOI tests for X\, X2, X3, X4 and
X5, when m = 3 and Ho: u, =e,+ yet_x, 0 < y < 1, is tested against//,,: u, = pu,_x + e,,

0 < p < 1, at the five percent level.

Hypothesis/

parameter
values

y= 0.9

0.7
0.5
0.3
0.1
0.0

/? = 0.1

0.3
0.5
0.7
0.9

y= 0.9
0.7
0.5
0.3
0.1
0.0

p= 0.1
0.3
0.5
0.7
0.9

New

test

XV. i

0.048

0.050
0.049
0.040
0.048
0.061

0.055

0.073
0.177
0.363
0.557

X2:

0.046

0.053
0.052
0.049
0.055
0.058

0.057

0.081
0.171
0.344
0.566

5(0.3, /„)

7 = 20

0.048

0.047
0.046
0.045
0.046
0.050

0.052

0.079
0.116
0.335
0.515

n = 20

0.049

0.049
0.046
0.044
0.048
0.050

0.052

0.076
0.156
0.311
0.504

APOI tests

5(ov;) .

0.049

0.048
0.045
0.043
0.044
0.050

0.051

0.076
0.163
0.337
0.526

0.049

0.048
0.046
0.045
0,047
0.050

0.051

0.077
0.156
0.324
0.529

<0.75,rl)

0.048

0.046
0.044
0.043
0.044
0.050

0.051

0.075
0.159
0.336
0.536

0.049

0.048
0.045
0.044
0.046
0.050

0.050

0.073
0.154
0.324
0.540

New
tact
tesi

0.076

0.031
0.064
0.060
0.030
0.080

0.031

0.138
0.492
0.868
0.984

0.072

0.045
0.063
0.058
0.031
0.076

0.036

0.149
0.528
0.896
0.990

5(0.3,,;)

XWn

0.048

0.046
0.044
0.042
0.047
0.050

0.054

0.131
0.434
0.839
0.975

X2\

0.049

0.048
0.045
0.043
0.046
0.050

0.053

0.136
0.455
0.870
0.990

APOI tests

= 60

0.047

0.044
0.042
0.039
0.044
0.050

0.052

0.122
0.426
0.842
0.979

/j = 60

0.049

0.047
0.043
0.042
0.044
0.050

0.052

0.132
0.453
0.875
0.991

5(0.75,K,)

0.047

0.044
0.042
0.039
0.046
0.050

0.051

0.119
0.419
0.845
0.984

0.049

0.046
0.042
0.041
0.043
0.050

0.051

0.126
0.442
0.872
0.992
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Table 4.9 (contn'd)

Hypothesis/
parameter
values

y - 0.9
0.7
0.5
0.3
0.1
0.0

p= 0.1
0.3
0.5
0.7
0.9

y = 0.9
0.7
0.5
0.3
0.1
0.0

/ ? = 0.1

0.3
0.5
0.7
0.9

New
test

X3:

0.042

0.049
0.046
0.048
0.046
0.054

0.048

0.064
0.138
0.283
0.455

X4:

0.043

0.060
0.063
0.063
0.053
0.056

0.058

0.094
0.185
0.371
0.588

5(0.3, K)

« = 20

0.048

0.046
0.044
0.044
0.045
0.050

0.052

0.070
0.130
0.252
0.418

« = 20

0.048

0.046
0.044
0.044
0.046
0.050

0.054

0.076
0.152
0.293
0.438

APOI tests

0.049

0.047
0.045
0.045
0.046
0.050

0.053

0.071
0.133
0.261
0.435

0.049

0.048
0.045
0.044
0.045
0.050

0.053

0.076
0.155
0.310
0.484

•v(0.75,>O

0.050

0.048
0.045
0.045
0.047
0.050

0.053

0.071
0.132
0.264
0.447

0.048

0.047
0.045
0.045
0.046
0.050

0.053

0.074
0.150
0.317
0.539

New
test

0.076

0.043
0.061
0.058
0.030
0.075

0.033

0.139
0.504
0.880
0.985

0.042

0.045
0.051
0.038
0.043
0.075

0.049

0.074
0.235
0.531
0.799

5(0.3, >O

X3: n

0.049

0.048
0.045
0.043
0.045
0.050

0.058

0.132
0.441
0.859
0.989

X4:

0.049

0.048
0.045
0.043
0.044
0.050

0.052

0.094
0.243
0.543
0.778

APOI tests

5(0.5. /„)

r = 60

0.049

0.047
0.043
0.041
0.044
0.050

0.056

0.127
0.436
0.862
0.989

n = 30

0.049

0.048
0.044
0.043
0.045
0.050'

0.054

0.092
0.244
0.538
0.792

5(0.75,,;,)

0.050

0.047
0.042
0.041
0.044
0.050

0.057

0.123
0.429
0.S62
0.990

0.050

0.048
0.043
0.042
0.044
0.050

0.054

0.090
0.238
0.538
0.803



96

Hypothesis/
parameter
values

Y - 0.9
0.7
0.5
0.3
0.1
0.0

p= 0.1
0.3
0.5
0.7
0.9

New
test

X5:

0.047
0.048
0.049
0.045
0.044
0.055

0.047
0.073
0.146
0.265
0.385

*(0.3.n)

n = 2Q

0.050

0.049
0.046
0.045
0.046
0.050

0.053

0.075
0.141
0.250
0.343

Table 4

APOI tests

si05yo)

0.050
0.048
0.045
0.043
0.045
0.050

0.052
0.073
0.139
0.251
0.348

.9 (conrn'd)

0.049
0.047
0.044
0.043
0.045
0.050

0.053
0.072
0.137
0.249
0.350

New
test

0.058
0.031
0.055
0.047
0.036
0.091

0.042
0.128
0.483
0.857
0.975

0.^49
0.047
0.044
0.043
0.045
0.050

0.058
0.133
0.435
0.840
0.977

APOI tests

«as.r:>

= 60

0.050
0.047
0.043
0.042
0.043
0.050

0.056
0.130
0.434
0.844
0.979

-(0.75.,:)

0.050
0.047
0.042
0.040
0.042
0.050

0.054
0.122
0.423
0.842
0.979

f

Chapter 5

An Investigation of the Choice of Boundary Points under
the Null Hypothesis

5.1 Introduction

A new approach to testing a composite null hypothesis against a composite alternative

using the generalized NP lemma was introduced in Chapter 3. In that chapter we

outlined the theory of this new approach with particular emphasis on testing the

disturbances in the general linear regression model. These testing problems involve

nuisance parameters which in this case can be eliminated through invariance arguments.

In Chapter 4, we applied the new test procedure to the problem of testing for MA(1)

disturbances against AR(1) disturbances in the linear regression model with the aim of

exploring a number of pratical issues.

Our new test involves maximizing the average power subject to controlling the average

size over different regions under the null hypothesis parameter space. A major question

is how many regions should we use. With respect to testing for MA(1) disturbances

against AR(1) disturbances in the linear regression model, we conducted some

simulation experiments for tests constructed based on one region („, = j ^ the entire null

hypothesis parameter space (0 = {r: 0 < / < 1}) > and for m = 2, two subsets of the null
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hypothesis parameter space. After completing these simulation experiments, we decided

we needed to control the average size of the test over the three subsets (/;; = 3) of the

null hypothesis parameter space. When conducting the simulation experiments for m = 2

and m = 3, the boundary points of the subregions of the null hypothesis parameter space

were chosen through the high size/low size technique. We saw that our test for m = 3,

appeared to do a good job of controlling sizes overall, especially when the sample size is

small. In addition, the power of the test appeared to be satisfactory. Overall our test

performed well with respect to sizes and powers for m = 3, when the boundary points

were selected by the high size/low size method. Unfortunately we are not sure that this is

a good method for deciding on the boundary points of these subregions. There may be

another way to choose the boundary points such that sizes are controlled adequately and

the resultant test has better power.

How can we check whether our high size/low size technique is a good one for choosing

the boundary points? One approach we could take to answering this question is to devise

a power envelope. The power envelope is the maximum power that can be obtained at

each particular point under the alternative hypothesis over all tests of a designated size.

We will investigate this by conducting an experiment with many different choices of

boundary points. That is, we systematically will choose different boundary points of the

three subregions (/« = 3) of the null hypothesis parameter space for separate tests and

using the power results of the resultant tests with acceptable sizes, we will trace out a

power envelope of sorts. This is not a true power envelope because we are not

considering all possible tests. However it will provide us with a guide. We will call it a

pseudo power envelope. It will be interesting to see if the new approach introduced in

Chapter 3 and as applied in Chapter 4, leads to useful results compared to this pseudo

power envelope.

In this chapter, our aim is to investigate the performance of our test for different

boundary points of the subregions of the test when ,» = 3. We realise that changing the

middle two boundary points of the three subsets of the null hypothesis parameter space

0 also changes the test, its critical values ( ^ j - \ ^ 2, 3), and hence the calculated

sizes and powers of the test. With this in mind, we chose different boundary points of the

three subregions and then calculated the critical values, sizes and powers of the resultant

test.

The calculation of the pseudo power envelope provides a benchmark against which the

power performance of different tests can be measured. For example we can calculate the

average deviation (AD) of the test's power from the pseudo power envelope.

Alternatively we could calculate the sum of squared deviations (SSD) of the actual

power from the pseudo power envelope. Clearly the best test would be the test with

smallest AD or SSD, so our approach will lead to the construction of the best test within

our class of tests.

We can also use the pseudo power envelope to judge the relative performance of our

test proposed in Chapter 4 that is based on the high size/low size technique. If our

proposed test has power close to the pseudo power envelope, our proposed approach can

be judged to be a reasonable one. A small improvement in AD of the power of the best

test over the proposed test would mean that the huge amount of extra computation in

finding the best test is not well justified.
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The plan of this chapter is as follows. The methodology of the experiment is discussed in

Section 5.2. Details of the Monte Carlo experiment are outlined in Section 5.3. We

report the experimental design, size results and power results for all experiments for the

test with ;?/ = 3 in subsections 5.3.1, 5.3.2 and 5.3.3, respectively. The best test is

identified in subsection 5.3.3. The final section contains some concluding remarks.

5.2 Methodology

As stated in the above section, our aim is to investigate different splits of the null

hypothesis parameter space into three subregions with the aim of maximising the power

of our test. This requires a benchmark for power, an obvious one being the power

envelope as discussed above.

We constructed a pseudo power envelope as follows. For each test, the boundary points

of the three subregions of (© = {/: 0 < y < 1}) are chosen systematically without the use

of a numerical technique. We have to choose only the middle two boundary points for

the three subregions of the null hypothesis parameter space, because the starting

boundary point and the end boundary point are known to us, being zero and one,

respectively. The middle two boundary points were systematically set as a pair from

0.05/, / = 1, 2,..., 19, resulting in 19c2 combinations of choice for these two boundary

points, i.e. the total number of choices for the middle two boundary points was one

hundred and seventy-one. For example, for the first set of systematic choices, we made

eighteen choices of the middle two boundary points in which case the three subregions

under the null hypothesis parameter space were 0 , = {y: 0<y <0.05},

0 2 = {y: 0.05<y <0.05./} and 0 3 = {y: 0.05j<y < 1}, for j = 2, 3,.. . , 19,
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consecutively. For the second set of systematic choices, we made seventeen choices of

the middle two boundary points and in this case the three disjoint intervals under the null

hypothesis parameter space were Qx = {y:0<y<0.1}, @2 = {y: 0.\<y<0.05j] ar»d

©T = {/: 0.05.7 < / < 1}, f° r j = 3, 4,..., 19 > consecutively. Similarly, for the third set of

systematic choices, we made sixteen choices of the middle two boundary points and the

three disjoint intervals under the null hypothesis parameter space were

0, = {/:O<r^O.15}, ©, = {/: 0.15 < / < 0.05./} a n d 0 3 = {/: 0.05/ <y < 1}, for

/ = 4, 5,..., 19 > consecutively and so on. For all combinations of the choice of the two

boundary points of the three subregions of the null hypothesis parameter space, we

conducted a total of one hundred and seventy-one separate tests. Using the size results of

one hundred and seventy-one tests, we calculated the powers of those tests with

acceptable sizes in order to calculate the pseudo power envelope. The pseudo power

envelope was then calculated as the maximum power of all these remaining tests for

each value of p. Detailed descriptions are given in the following section.

5.3 Monte Carlo experiments

In order to investigate the performance of our test for different boundary points of the

three subsets of the null hypothesis parameter space in the context of testing MA(1)

disturbances against AR(1) disturbances in the linear regression model, we conducted a

Monte Carlo experiment. The experiment involved constructing the pseudo power

envelope as outlined above. We calculated the AD and SSD of the power of each of the

tests under the pseudo power envelope. From the calculated AD we can find the overall

best test where AD is least. This will allow us to find the appropriate boundary points of

the three subregions of Q of the test, which maximizes average power. Also we
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compared the AD of the power of the test proposed in previous chapter with the AD of

the power of the best test. From this comparison, if we find that the power of the test

proposed in Chapter 4 is close to the power of the best test as identified against the

pseudo power envelope, then we can say that our proposed test is realistically a good

test. It would indicate that there is little to be gained from the vast amount of extra

computation required to find the best test using the pseudo power envelope.

5.3.1 Experimental design

For the above-mentioned testing problem, two thousand replications were used to

calculate the sizes and powers of our test for different boundary points of the subregions

under the null hypothesis. The critical values were calculated at the five percent level.

To construct a pseudo power envelope of the test, we chose only the X2 (used in

Chapter 4) design matrix with n = 20, because this matrix exhibits practical degrees of

multicollinearity. For this choice of design matrix we have constructed a total of one

hundred and seventy-one different tests. We confined our choice to a single design

matrix, because for each test we have to calculate the critical values kn i - 1, 2, 3, so

that the three size conditions are simultaneously fulfilled, via the trial and error. The

calculation for one trial takes about four minutes. Typically, calculating of a set of

critical values requires 10-50 trials, i.e, 40-200 minutes. Our single design matrix for

sample size n = 20 required approximately 342 hours to calculate the one hundred and

seventy-one sets of critical values. Then follows the calculation of sizes and powers of

the test. Therefore, calculating critical values and the required sizes and powers is

laborious and time consuming. In other words for a single design matrix, there is a huge

amount of calculation required to calculate the pseudo power envelope. So our choice

t

had to be limited to one design matrix. This is a clear drawback of our simulation

experiment.

For two thousand replications, if the calculated size for a test falls outside the estimated

rejection probability range [0.037, 0.063], then it is judged to be significantly different

from five percent at the 0.01 level.

We mentioned in Chapter 4 that for the problem under consideration, our proposed test

under the null hypothesis and alternative hypothesis is invariant with respect to the

nuisance parameters, p and CT
2, and we have chosen p - Q and a

2
 = \ for the

simulation experiment. We already decided that the value of „, is three, and we have

seen that the size of our test is approximately controlled for this value of,,,.

Thus for „; = 3, equation (3.7) gives the resultant test that involves a critical region of

the form (4.9) given in (4.13). In equation (4.13), £., » = 1, 2, 3» a r e t n e critical values

calculated to control average size over the thvee subregions of the null hypothesis

parameter space, and q and « are the outer limits of summation over these subregions.

These two limit integers are determined by rounding ( ^ + 1/2) a nd (j q + \/2)

respectively, down to the nearest integer, where y and y are the systematically chosen

middle two boundary points of the subregions of 0 . Ranges of the three disjoint

intervals and the corresponding values of j together with the test number for a total of

one hundred and seventy-one tests for the design matrix xi w*m // = 20 a r e given in

Table 5.1.

In order to solve for the critical values £., / = 1, 2, 3» u s m 8 equation (4.14), we used

Steps 1 to 3, discussed in Section 3.3 for ,„ = 3 , so that the average size conditions are
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simultaneously satisfied. The calculated critical values k,, / = 1, 2, 3, for different tests

are presented in Table 5.2. From this table we observe that all k2 values are positive

except six values (where q2 is greater than or equal 40), while kx and k3 take both

positive as well as negative values. We observe that k{ takes large positive values when

the interval of the first subregion (0,) is large and k3 takes large positive values when

the third subregion (03) interval is large. We also observe that when qx is less or equal

to 10, then &, takes a negative value and when q2 is greater than 28, then k3 takes a

negative value.

Once we obtain the critical values k,, / = 1, 2, 3, we can calculate the sizes and powers

of our test. In the following sections, we report the size and power results of our tests.

5.3.2 Size results

Using the critical values k,, i = 1, 2, 3, presented in Table 5.2, we calculated the sizes

of our test statistic through equation (4.13) for y =0.0, 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8

and 0.9 under Ho. The calculated sizes are presented in Table 5.3.

From Table 5.3, we observe that out of a total of one hundred and seventy-one tests,

there are sixty-two (36%) tests where the calculated sizes first decrease, then increase

and again decrease as y increases, and for sixty (35%) tests, the sizes increase then

decrease and again increase. For twenty-eight (16%) tests, the sizes first increase and

then decrease and for one test, the sizes are first decreasing and then increasing. There is

also only one test where all sizes decrease and for the other remaining tests, sizes do not

follow any pattern. There are two tests (test numbers 74 and 87) where all calculated

sizes are lower than or equal to 0.05. There are another two tests (test numbers 98 and

109) where all calculated sizes are greater than 0,05. The worst calculated size is 0.096

which occurs for test number 60.

The calculated sizes that fall outside the rejection probability range [0.037, 0.063] are

significantly different from five percent at the 0.01 level, for two thousand replications.

A "star" in Table 5.3 indicates a significantly different calculated size of a test. We

observe that some sizes are significantly different from five percent at the 0.01 level

when the interval of the first subregion (0 ) is very small (i.e., close to the starting

boundary point) and the third subregion (0 ) interval is large under the null hypothesis

parameter space. These significantly different values belong to 0 and most of these

sizes occur at the middle and end boundary points under / / . On the other hand, when

both intervals 0 and 0 are large, some calculated sizes which belong to 0 are

significantly different from five percent. Also we observe that when the interval © is

small, calculated sizes are must likely to be small at the end boundary point under / / .

Similarly, when the interval 0 is large, calculated sizes are likely to be small at the

starting boundary point under / / .

In our testing approach, we are controlling the average size over different subregions

under the null hypothesis parameter space at the five percent level of significance. In this

regard, if the calculated size of the test is less than 0.05 we are not concerned about it but

if it is greater than 0.05 especially when it exceedsO.063, the upper limit of the rejection

probability range, we are much more concerned about it. From this point of view, we

also accepted the test when the only calculated sizes significantly different from 0.05 are

less than 0.037, the lower limit of the rejection probability range. Otherwise, we rejected
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the test in the sense that we did not use it in the construction of the pseudo power

envelope. With respect to these size conditions, we discarded some tests. A total of one

hundred and fifteen (67%) tests were accepted out of one hundred and seventy-one tests,

and these are indicated by a "double star" in Table 5.3. The powers of these one hundred

and fifteen accepted tests were used to calculate a pseudo power envelope.

From the size analysis we observe that in most cases, the size performance of our

accepted test is very good when the intervals 0 , , 02and 0 3 are not large. This

indicates that when the intervals of the three subregions are comparatively small, our test

successfully controls the average size.

On the other hand, according to the size conditions discussed above, a total of fifty-six

(33%) tests were rejected out of one hundred and seventy-one tests. From the length

analysis of the three subsets of 0 of the rejected tests, we observe that for thirty-three

(59%) tests, the largest interval of one subset is greater or equal 0.65 and for other

fifteen (41%) tests, the largest interval of one subset is in between 0.45 and 0.6. As we

mentioned earlier, constructing a pseudo power envelope is time consuming. We can

consider reducing this time by restricted to intervals of 0.65 or less. If we use this

restriction then we can discard sixty-four tests from a total of one hundred and seventy-

one tests, a more than one-third time saving at least for this case.

In the following section we analyse the powers of each of the accepted tests against the

pseudo power envelope.
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5.3.3 Power results

Using the critical values £., / = 1, 2, 3 > presented in Table 5.2, we calculated the powers

of our test statistic through equation (4.13) for ^ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

and 0.9 under / / . The calculated powers of a total of one hundred and seventy-one tests

for design matrix xi f°r n = 20 a r e presented in Table 5.4. From the table we observe

that, under / / , the calculated powers gradually increase as Q increases from 0.1 to 0.9

except for two tests (test numbers 81 and 82), where powers first decrease and then

increase. We also observe that when the interval 0 is large (> o.65) > t n e n calculated

power for p- 0.1 is very small and then powers gradually increase as p increases.

The powers of the accepted tests with respect to the size conditions are indicated by a

"double star" in Table 5.4. The power results of those one hundred and fifteen accepted

tests were used to construct our pseudo power envelope. We calculated the AD and SSD

of the power of each of the accepted tests under the pseudo power envelope and the test

proposed in Chapter 4 (boundary points are chosen by the high size/low size technique).

To calculate the AD and SSD of the power of each of the tests that have acceptable size,

we first found the pseudo power envelope as outlined above (maxp) for / (= 9) different

points of p, namely, p = 0.1/, / = 1,2,...,/, separately under / / . We used the

following two formulae: (i) £= -£(maxpp=0l ). -powerp=01,.), and (ii)

SSD = V (maxp _01/ -power 0 )2, t 0 calculate the AD and SSD of the power of each

/=!

of the acceptable tests, respectively under pseudo power envelope. The calculated AD

and SSD of the power along with the rank of each of the accepted tests from smallest to

the highest order are presented in Table 5.5.
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From Table 5.5 we observe that the smallest AD is 0.005889, which occurs for test 64

for which the three subregions are ©,:0<7<0.2, 02:0.2 <y<0.85 and

03 : 0.85<y<\. We note that this test also has the smallest SSD, which fortunately

means there is no conflict between these two criteria for assessing closeness to the

pseudo power envelope. We can identify this as the best test with respect to closeness of

power to the pseudo power envelope. The second smallest AD is 0.008333 for tests 45

and 74; in these cases the three subregions are 0,: 0<y<0.15, 0 2 : 0.15<y <0.65 and

®3:0.65<y<\, and 0,: 0</<0 .25 , 0 2 : 0.25 < / < 0.65 and 03 : 0.65<y < 1,

respectively. The worst AD is 0.042556 which occurs for test 76 whose three subregions

are 0,:O</<O.25, 0 2 : 0.25 <y< 0.75 and 03 : 0.75< y <1. The results indicate that

for different boundary points, the powers of our test cross and some depart significantly

from this pseudo power envelope. The calculated AD of our test proposed in Chapter 4

is 0.023778 and the three subregions are 0, :O</<O.23, 0 2 : 0.23 <y <0.63 and

03 : 0.63 < y < 1, which are very close to the three subregions of test 74, that has the

second smallest AD. Also, after doing one month's extra work to calculate the pseudo

power envelope, comparing the AD of our proposed test with the best test of the pseudo

power envelope we see that there is only an average 1.8 percentage points increase in

terms of power improvement. This small improvement in terms of power over the

proposed test does not really justify all the extra computation that has gone into finding a

best test through the pseudo power envelope.

Comparing the AD and SSD of the pseudo power envelope with the test proposed in

Chapter 4, we observe that in both circumstances the boundary points of our proposed

test are very similar to the boundary points of the test that has the second smallest AD

••:M
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and SSD. Note that in some cases, the ranks for both AD and SSD are same, but in the

other cases the ranks are different. Overall we claim that our high size/low size

technique is an appropriate one for choosing the boundary points of the subregions under

//o and our proposed test is also not too different from the best test.

5.4 Concluding remarks

In this chapter we have constructed a pseudo power envelope for the new test procedure,

with the aim of investigating the results of choosing different boundary points of the

three subregions under / / We applied one hundred and seventy-one different versions

of the new test procedure for testing MA(1) disturbances against AR(1) disturbances in

the linear regression model to construct the pseudo power envelope. From the pseudo

power envelope we find that .he best test is test 64 which has the least AD and the

second best Jest is 74. We compared the AD and SSD from the power envelope of the

powers of our tejts used to calculate this envelope with the AD and SSD of the power of

the test proposed in Chapter 4. This comparison shows that the boundary points of our

proposed test are very close to the boundary points of test 74. Also, as mentioned in the

previous section, through identifying the best test by reference to the pseudo power

envelope, we gained only 1.8 percentage points in terms of power improvement.

Although we limited our experiment to a single design matrix because of computational

and time constraints, the results are very encouraging. They indicate that without

spending a lot of time for computation to construct the pseudo power envelope we can

get reasonably close to the best test by using the high size/low size technique. Therefore

the large amount of extra computation required finding the best test via a pseudo power

envelope does not appear to be justified. Hence, we can say that for our proposed new
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test procedure we can use the high size/low size technique to choose the boundary points

of the subregions of 0 with some confidence.

111
Table 5.1

Ranges of three disjoint intervals and the corresponding values of / , where

p. = Yj = (27-I)/(2q), j = 1, 2,..., q. q = 50 : X 2 design matrix with „ = 20 •

Test
number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

0<7<0.05
(7=1.2,3)
0<7 <0.05
(7=1.2,3)
0</<0.05
(7=1.2,3)
0 < 7 <0.05
(7=1.2,3)
0 < / <0.05
(7=1.2,3)
0 < / <0.05
(7=1.2,3)
0<7 <0.05
(7=1.2,3)
0</<0.05
(7=1-2,3)
0<v <0.05

(7=1.2,3)
0<7 <0.05
(7=1.2,3)
0 < / <0.05
(7=1,2,3)
0</<0.05
(7=L2,3)
0 < / <0.05
(7=1.2,3)
0<7<0.05
(7=1,2,3)
0<7 <0.05
(7=1,2,3)
0<7<0.05
(7=1.2,3)
0 < 7 < 0.05
(7=1.2,3)
0<7<0.05
(7=1.2,3)

Subregions

2

0.05<7<0.1

(7=4,5)
0.05<7<0.15
(7=4,5,..., 8)
0.05<7<0.2
(7=4,5,..., 10)
0.05<7<0.25
(7=4,5,..., 13)
0.05 < 7 < 0.3
(7=4,5,..., 15)
0.05<7<0.35
(7=4,5, ...,18)
0.05 < 7 < 0.4
(7 =4, 5, ...,20)
0.05 < 7 < 0.45
(y =4, 5, ...,23)
0.05<7<0.5
(7 =4, 5, ...,25)
0.05 < 7 <0.55
(7 =4, 5, ...,28)
0.05 < 7 < 0.6
(7=4,5, ...,30)
0.05 < 7 < 0.65
(y =4, 5, ...,33)
0.05 < 7 < 0.7
(y =4, 5, ...,35)
0.05<7<0.75
(7 =4, 5, ...,38)
0.05<7<0.8
(7 =4, 5, ...,40)
0.05<7<0.S5
(7=4,5, ...,43)
0.05 < 7 < 0.9
(7 =4, 5, ...,45)
0.05 < 7 < 0.95
(7=4,5 48)

0.1<7<l
(7=6,7,...,
0.15<7 <1
(7=9,10,..
0 .2<7<l

(7=11,12,.
0.25 < 7 < 1
(7=14,15,.
0 .3<7<l
(7=16,17,.
0.35 < 7 < 1
(7=19,20,.
0.4 < 7 < 1
(7=21,22,.
0.45 < 7 < 1
(7=24,25,.
0 .5<7<l
(7^=26,27,.
0.55 < 7 < 1
(7=29,30,.
0 .6<7<l
(7=31,32,.
0.65 < 7 < 1
(7=34,35,.
0 .7<7<l
(7=36,37,.
0.75 < 7 < 1
(7=39,40,.
0 .8<7<l
(7=41,42,.
0.85 < 7 < 1
(7=44,45,.
0 .9<7<l
(7=46,47,.
0.95 < 7 < 1
(7=49,50)

50)

.,50)

..,50)

..,50)

..,50)

..,50)

..,50)

-,50)

..,50)

..,50)

..,50)

..,50)

..,50)

..,50)

..,50)

..,50)

..,50)
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Test
number

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

1

0</<0.1

(7=1.2,-
0<^<0.1
(7=1,2,...
0<7<0.1
(7=1.2,...
0</<0.1
(7=1,2,...
o<x<o.i
(7=1,2,...
0</<0.1
(7=1,2,...
0<7<0.1
(7=1,2,...
0</<0.1
(7=1,2,...
0<y <0.1
(7=1,2,...
0<7<0.1
(7=1,2,...
0</<0.1

(7=1,2...
0 < / < 0.1

(7=1 .2 , -
0</<0.1

(7=1.2,-
0</<0.1

(7=1,2...
0<^<0.1

(7=1.2...
0</<0.1

(7=1.2,-.
0<y<0.

(7=1.2,-
0< /<0 .

(7=1,2,.

,5)

,5)

,5)

,5)

,5)

,5)

,5)

,5)

,5)

.,5)

-.5)

.,5)

.,5)

.,5)

1

.,5)

1

.,5)

1

-,5)

15

-,8)

Q<y <0.l5

(7=1.2,- ..,8)

0</<0.15

(7=1.2,. -,8)

Subregions

2

0.1 < 7 <0.15
(7=6,7,8)
0.1</<0.2
(7=6,7,..., 10)
0.\<y <0.25
(7=6,7,..., 13)
0.1<x<0.3
(7=6,7, ...,15)
0.1<7<0.35
(7=6,7,..., 18)
0.1</<0.4
(7 =6,7, ...,20)
0.1</<0.45
(7 =6, 7. ...,23)
0.1</<0.5
(7=6,7, ...,25)
0.1</<0.55
(7 =6, 7,..., 28)
0.1</<0.6
(7 =6, 7.....30)
0.1</<0.65
(7 =6. 7, ...,33)
0.Kf<0.7
(7 =6,7, ...,35)
0.1<^<0.75
(7 =6, 7, ...,38)
0.K/<0.8
(7 =6, 7, ...,40)
0.1</<0.85
(7 =6,7, ...,43)
0.1</<0.9
(7 =6,7, ...,45)
0.\<y <0.95
(7=6,7, ...,48)

0.15</<0.2
(7=9,10)
0.15<^<0.25
(7 =6, 7, ...,13)

0.15<7<0.3
(7 =9, 10, ...,15)

©3

0.15</<l

(7=9,10,...,
0 .2</<l
(7=11,12,...
0.25 < y < 1
(7=14,15,...
0.3 < y < 1
(7=16,17,..
0.35 < y < 1
(7=19,20,..
0.4 < / < 1
(7=21,22,..
0.45 < y < 1
(7=24,25,..
0.5 < y < 1
(7=26,27,..

0 .55</<l
(7=29,30,..

0 .6< /< l
(7=31,32,..
0.65 <y<\
(7=34,35...
0.7<X<l
(7=36,37...

0.75<X<l
(7=39,40,..

0.8 < y < 1
(7=41,42,.

0.85 < y S 1
(7 -14,45,.

Q3<y<\
(7=46.47..

0.95 < y <: 1
(7=49,50)

0.2<y <\
(7=11,12,.
0.25 < y <: 1

(7=14,15,.

0 .3<X<l

(7=16,17,

50)

,50)

,50)

.,50)

.,50)

-, 50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

..,50)

-,50)

-,50)

-,50)

...,50)

...,50)

I
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Test
number

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

0</<0.15
(7=1,2.... .

0</<0.15
(7=1.2,...,
0<7<0.15
(7=1,2,...,
0<7<0.15

(7=1.2,...,
0<^<0.15

(7=1 .2 , - ,
0<7<0.15
(7=1,2,...,
0</<0.15
(7=1,2,...,
0</<0.15
(7=1,2,...,
0</<0.15
(7=L2
o<y <o.i5

(7=1.2,- . ,
0</<0.15

(7=1,2,...,
0</<0.15
(7=1,2,...,
0</<0.15

(7=L2
0<7<0.2
(7=1,2,...,
0</<0.2
(7=1,2,...,
0<7<0.2
(7=1,2,...,
0</<0.2
(7=1,2,...,
0</<0.2

(7=1.2,...,
0</<0.2
(7=1,2,...,

0</<0.2
(7=1,2....,

8)

8)

8)

8)

8)

8)

8)

8)

8)

8)

8)

8)

8)

10)

10)

10)

10)

10)

10)

10)

Subregions

• M l

2

0.15 <7<0.35
(7=9,10 18)
0.15 < / < 0 . 4
(7=9, 10,. ...20)
0.15<y <0.45
(7 =9, 10, ...,23)
0.15</<0.5
(7-9, 10, ...,25)
0.15<^<0.55
(7=9, 10, ...,28)
0.15<^<0.6
(7=9, 10, ...,30)
0.15</<0.65
(7=9,10 33)
0.15<7<0.7
(7=9, 10, ...,35)
0.15<^<0.75
(7=9,10,. ..,38)
0.15</<0.S
(7=9, 10, ...,40)
0.15<7<0.85
(7=9, 10, ...,43)
0.15</<0.9
(7=9, 10,... ,45)
0 15</<0.95
(7=9, 10,...,48)
0.2 < v<0.25

(7 ='1.12. 13)
0.2</<0.3
(7=11,12,..., 15)
0.2 < / < 0.35
(7=11.12..... 18)
0.2</<0.4
(7=H.12 20)
0.2</<0.45
(7=H.12 23)
0.2 < 7 < 0.5
(7=11, 12. ...,25)
0.2</<0.55
(7=11, 12,. ..,28)

IMJ

3

0.35 < y < l
(7=19,20,..
0.4 < y £ l

(7=21,22...
0.45 < y < l
(7=24,25,..
0.5 < y £ 1

(7=26,27...
O.55</<1
(7=29,30,..
0.6 < y < 1
(7=31,32...
0.65 < y < 1

(7=34,35...
0.7</<l
(7=36,37...
0.75 < y < 1
(7=39,40...
0.8< 7 < 1

(7=41,42,..
0.85 < y < 1

(7=44,45...
0 .9< /< l
(7=46,47...
0.95 < y < 1

(7=49,50)

0.25 < y < 1

(7=14,15...
0.3 < y < l

(7=16,17,..
0.35 < y < l

(7=19,20,..

0 . 4 < ^ < l

(7=21,22...

0.45 < y < 1

(7=24.25...
0.5 < y < l

(7=26,27...

0.55 <y<\

(7=29,30,..

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

., 50)

.,50)

.,50)
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Table 5.1 (contn'd)
Table 5.1 (contn'd)

Test
number

59

60 .

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

o<y <0.2
(7=1.2,..., io)
0<y<0.2
(7=1,2,..., 10)
0<y <o.2
(7=1,2,..., 10)
o<y <0.2
(7=1,2,..., 10)
o<y <o.2
(7=1,2, . . . , 10)

0<y<0.2
(7=1,2,..., 10)
0<y <0.2
(7=1,2, ...,10)
o<y <0.2
(7 =1,2,...,10)
0<y <0.25
(7=1,2,--,13)
0<y <0.25
(7 =1,2, ...,13)
0</<0.25
(7=1, 2,...,13)

0<y <0.25
(7=1, 2,...,13)

0<y <0.25
(7=1,2,..., 13)
0<y <0.25
(7=1,2,...,13)
0<y <0.25
(7=1,2,..., 13)
0<y <0.25
(7=1, 2,...,13)

0<y <0.25
(7 =1,2,...,13)

0<y <0.25
(7=1,2,... ,13)

0<y <0.25
(7=!,2, ...,13)
0<y <0.25
(7=1,2, ...,13)

Subregions

0.2<y<0.6
(7=11, 12,...,30)
0.2<y<0.65
(7=11,12,...,33)
0.2<y<0.7
( 7 = 1 ' . »2 35)

0.2 < y <0.75
(7=H.12 38)
0.2<y<0.8
(7=11, 12,...,40)

0.2<y<0.85
(7-11, 12,...,43)
0.2<y<0.9
(7=11, 12,...,45)
0.2 <y <0.95
(7=H.12 48)
0.25<y<0.3
(7=14,15)
0.25 < y <0.35
(7=14,15 18)

0.25<y<0.4
(7=14, 15,...,20)
0.25<y<0.45
(7=14, 15,...,23)
0.25<y<0.5
(7=14,15,...,25)
0.25 < y < 0.55
(7=14,15, ...,28)
0.25 <y <0.6
(7=14, 15. ...,30)
0.25 < y < 0.65
(7=14, 15,...,33)

0.25 <y <0.7
(7=14,15 35)
0.25 <y <0.75
(7=14, 15,. ..,38)
0.25 <y <0.8
(7=14, 15,...,40)
0.25 <y <0.85
(7=14, 15,...,43)

0 3

0.6 < y <1

(7 =31,32, ...,50)

0.65 < y < 1
(7 =34,35,..., 50)

0.7</<l
(7=36,37 50)
0.75 < y < I
(7 =39,40,...,50)

0.8<y <1
(7 =41,42,...,50)

0.85 <y <1
(7 =44,45,...,50)

0.9 <y<\
(7=46,47 50)
0.95 <y<\

(7=49,50)

0.3 < y <i
(7=16, 17,...,50)
0.35 < y <1
(7=19,20 50)

0.4 < y < 1
(7 =21, 22,...,50)

0.45 < y < 1
(7-24,25,...,50)

0.5 <y <i
(7 =26, 27,..., 50)

0.55 <y<\
(7=29,30 50)
0.6 < y < 1
(7=31,32 50)
0.65 < y < 1
(7 =34, 35,...,50)

0.7<y <l
(7 =36,37,..., 50)

0.75 <y <1
(7 =39, 40,..., 50)

0.8 <y <1
(7 =41,42,...,50)
0.85 < y < 1
(7 =44,45, ...,50)

Test
number

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1

0<y <0.25
(7=1.2 13)

0</<0.25
(7=1,2, ...,13)
0<y <0.3
(7=1,2, . . . , 15)

o<y <o.3
(7=1,2. . . . , 15)
o<y <o.3
(7=1,2, . .- , 15)

0</<0.3
(7=1,2, . . . , 15)

0</<0.3

(7=1,2,..., 15)
o<y <0.3
(7=1.2,..., 15)
0<y<03
(7-=1.2,...,15)

0<y <0.3
(7=1,2, . . . , 15)

o<y <o.3
(7=1-2,. . . , 15)
0<y <0.3
(7=1,2,.-, 15)
o<y <0.3
(7=1,2,..., 15)
0<y <0.3
(7=1,2, . . . , 15)

0<y <0.3
(7-1,2,..., 15)
0<y <0.35
(7=1,2, . . . , 18)

0</<0.35
(7=1,2,..., 18)
0<y <0.35
(7 =1,2, ...,18)

0<y<0.35
(7=1,2, . . . , 18)

0</<0.35
(7=i,2,..., is)

Subregions

0 2

0.25</<0.9
(7=14,15 45)
0.25 <y <0.95

(7=14,15 48)
0.3 <y <0.35
(7=16,17,18)

0.3 <y <0.4
(7=16, 17,...,20)
0.3 < y < 0.45
(7=16,17 23)
0.3 <y <0.5
(7=16, 17, ...,25)

0.3 <y <0.55
(7=16, 17, ...,28)
0.3 < / <0.6
(7=16,17 30)

0.3 < y <0.65
(7=16, 17,...,33)

0.3</<0.7
(7=16, 17 35
0.3 <y <0.75
(7=16, 17, ...,38)
0.3</<0.8
(7=16, 17,...,40)
0.3<y<0.85
(7=16, 17,...,43)

0.3</<0.9

(7=16,17 45)
0.3 <y <0.95
(7=16, 17,....48)
0.35 <y <0.4
(7=19,20)
0.35 <y <0.45
(7=19,20 23)
0.35 <y <0.5
(7 =19, 20,....25)

0.35<y<0.55
(7-19,20 28)
0.35<y<0.6
(7 =19, 20,....30)

3

0.9 <y <1
(7=46,47,...,

0.95 <y<\

(7=49,50)

0.35 <y <1
(7=19,20
0.4 <y <1
(7=21,22
0.45 < y < 1
(7=24,25,...

0.5<^<l
(7=26,27,...

0.55 < y < 1
(7=29,30,...
0.6<y <1
(7=31,32,.. .

0.65 < y < 1
(7=34,35,...

0.7 <y <l
(7=36,37,...
0.75 <y <1
(7=39,40,..
0.8 <y < 1
(7=41,42,..
0.85 <y <1
(7=44,45,..

0.9</<l
(7=46,47,..
0.95 < y < 1
(7=49,50)
0.4 < y < 1
(7=21,22,..

0.45 < y < 1
(7=24,25,..
0.5 < y < 1
(7=26,27,..
0.55 < y < 1
(7=29,30,..

0.6 < y < 1
(7=31,32,.

50)

,50)

,50)

,50)

,50)

,50)

,50)

,50)

,,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

.,50)

..,50)

...50)
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Table 5.1 (contn'd)

Test

number

99

100

101

102

103

104

105

106

107

108

109

no

111

112

113

114

115

116

117

118

0</^035
(7=1,2,..., 18)
0<7<0.35
(7=U2,..., 18)
0</<0.35
(7=1,2,..., 18)
0</<0.35
(7-1,2,..., 18)
0<y <0.35

U*' —.18)
0<7<0.35
(7=1,2,..., 18)
0<7<0.35
(7=1.2,..., 18)
0<y<0A
(7 =1,2,...,20)

0<^<0.4
(7 =1,2,...,20)

0<y<0A
(7 =1,2,...,20)

0<;K<0.4
(7=1,2, ...,20)
0</<0.4
(7=1,2, ...,20)
0</<0.4
(7 =1,2,...,20)
0<X^0.4
(7=1,2, ...,20)
0</<0.4
(7 =1,2,...,20)

0<X<0.4
(7 =1,2,...,20)

0</<0.4
(7 =1,2,...,20)

0</<0.4
(7 =1,2,...,20)

0 < y < 0.45
(7 =1,2,...,23)

0<X<0.45
(7=1,2,...,23)

Subregions

0 2

0.35</<0.65
(7=19,20, ...,33)
0.35<7<0.7
(7 =19, 20,...,35)
0.35 < ,7 < 0.75
(7=19,20, ..., 38)
0.35 < 7 <0.8
(7=19,20 40)
0.35 < / < 0.85
(7=19,20, ...,43)
0.35 < / < 0.9
(7=19,20, ...,45)
0.35 < y < 0.95
(7=19,20, ...,48)
0.4 < ̂  < 0.45
(7=21,22,23)
0.4 < 7 < 0.5
(7 =21,22,...,25)
0.4 < 7 < 0.55
(7=21,22, ...,28)

0.4</<0.6
(7=21,22 30)
0.4 < / < 0.65
(7 =21, 22,...,33)

0.4<7<0.7
(7 =21, 22,...,35)
0.4<X<0.75
(7 =21, 22,...,38)
0.4<;'<0.8
(7 =21, 22,...,40)
0.4 < / < 0.85

(7=21,22, ...,43)

0A<y <b.9
(7 =21, 22,...,45)

0.4 < / < 0.95

(7 =21, 22,...,48)
0.45 <y< 0.5
(7=24,25)
0.45 <}'< 0.55
(7=24,25 28)

3

0.65 < / < 1
(7=34,35,...,
0.7 < y < 1
(7=36,37
0.75 < Y < 1
(7=39,40,...,
0.8 < v < 1
(7=41,42,...,

0.85 < y < 1
(7=44,45
0.9<X <1
(7=46,47,...,
0.95 <Y<\

(7=49,50)
0.45 < y < 1
(7=24,25,...
0.5</<l
(7=26,27,...

0.55</<l
(7=29,30,...

0.6</<l
(7=31,32,...

0.65<7<l
(7=34,35,..
0.7 < y < 1

(7=36,37...
0.75 < y < 1
(7=39,40,..

0.8<7<l
(7=41,42,..
0.85 < / < 1
(7=44,45,.,

0.9<X<l
(7=46,47,.
0.95 < y < 1
(7=49,50)
0.5 < y < 1
(7=26,27,.

0.55 < y < 1
(7=29,30,.

50)

50)

50)

50)

50)

,50)

,50)

,50)

,50)

,50)

.,50)

.,50)

.,50)

.,50)

...50)

..,50)

-,50)

,..,50)
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Table 5.1 (contn'd)
117

Test
number

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

• M l

1

0<X<0.45
(7=U2 23)
0</<0.45
(7=L2 23)
0</<0.45
:7=1,2,...,23)
0<y <0.45
(7 =1,2, ...,23)
0<y <0.45
(7 =1,2,....23)

0<7<0.45
(7 =1,2,...,23)
0</<0.45
(7 =1,2,. ..,23)
0<X<0.45
(7 =1,2,...,23)
0^X<0.5
(7 =1,2,...,25)

0</<0.5
(7=1,2,.. . ,25)

0<X<0.5
(7 =1,2,...,25)
0<y <0.5
(7=1,2, ...,25)
0<7<0.5
(7=1,2, ...,25)
0</<0.5
(7=1,2, ...,25)
0</<0.5
(7=1, 2,....25)

0</<0.5
(7 =1,2,...,25)

0</<0.5
(7=1,2, ...,25)
0<7<0.55
(7=1, 2,...,28)

0</<0.55
(7 =1,2, ...,28)
0</<0.55
(7=1, 2,....28)

Subregions

2

0.45 < y < 0.6
(7=24,25 30)
0.45 < y < 0.65
(7 =24,25,..., 33)
0.45 < y < 0.7
(7=24,25 35)
0.45 < 7^0.75
(7 =24,25,..., 38)
0.45 < 7 < 0.8
(7 =24,25,...,40)
0.45</<0.85
(7 =24,25,...,43)
0.45</<0.9
(7 =24,25,...,45)
0.45 < y <0.95
(7 =24,25,...,48)
0.5 < y < 0.55
(7=26,27,28)
0.5 < y < 0.6
(7=26,27 30)
0.5 < / < 0.65
(7 =26, 27,...,33)
0.5</<0.7
(7 =26, 27,..., 35)
0.5 <y< 0.75
(7 =26, 27,..., 38)
0.5 < Y < 0.8
(7 =26, 27,...,40)
0.5</<0.85
(7 =26, 27,..., 43)
0.5 <y< 0.9
(7 =26, 27,..., 45)
0.5 < 7 < 0.95
(7 =26, 27,...,48)
0.55<X<0.6
(7=29,30)
0.55<7<0.65
(7 =29, 30,..., 33)

0.55 < / < 0.7
(7 =29, 30,..., 35)

©3

0.6</<l

(7=31,32,...,
0.65 <y<\

(7=34,35
0.7</<l
(7=36,37,...
0.75 < y < 1

(7=39,40,...
0.8</<l
(7=41,42,...

0 .85<r^ l
(7=44,45,...

0.9</<l
(7=46,47,...
0.95 < y < 1
(7=49,50)
0.55<^<l
(7=29,30,...
0.6 < / £ 1
(7=31,32,..,
0.65 <y<\
(7=34,35,..
0.7 < y < 1
(7=36,37,..
0.75 < / < 1
(7=39,40...

0.8<7<l
(7=41,42,..
0.85 < y < 1
(7=44,45...

0.9<7<l
(7=46,47,..
0.95 < y < 1

(7=^9,50)
0.6 < y < 1
(7=31,32,..

0.65 <y<\
(7=34,35,..
0.7<X<l
(7=36,37,.

50)

,50)

.50)

,50)

,50)

,50)

,50)

,50)

,50)

,50)

.,50)

.,50)

.,50)

• ,50)
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.,50)
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Table 5.1 (contn'd)

Test

number

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

0<^<0.55
(7 =1,2,...,28)

0<^<0.55
(7 =1,2, ...,28)

0<y<0.55
(7 =1,2,...,28)

0<y <0.55
(7 =1,2,....28)

0<X <0.55
(7 =1,2,...,28)

0</<0.6
(7 =1,2, ...,30)

0<^<0.6
(7 =1,2,...,30)
0<y <0.6
(7 =1,2,...,30)
0</<0.6
(7 =1,2,...,30)

0<^<0.6
(7 =1,2,...,30)

0<y <0.6
(7=1,2,...,30)
0</<0.6
(7 =1,2,. ..,30)
0</<0.65
(7=1,2 33)
0<y<0.6S
(7 =1,2, ...,33)
0</<0.65
(7 =1,2, ...,33)
0</<0.65
(7=1,2, ...,33)
0</<0.65
(7=1,2,. ..,33)
0<X^0.65
(7 =1,2,...,33)

0<X^0.7
(7=L2,. . . ,35)

0</<0.7
(7 =1,2, ...,35)

Subregions

2

0.55 < y < 0.75
(7 =29,30, ...,38)

0.55 <y< 0.8

(7=29,30 40)

0.55 <;f< 0.85
(7=29,30, ...,43)
0.55 <y <0.9
(7=29,30 45)
0.55 <)'< 0.95
(7=29,30 48)
0.6</<0.65
(7=31,32,33)
0.6</<0.7
(7=31, 32,...,35)
0.6 < y < 0.75
(7 =31, 32,...,38)

0.6<7<0.S
(7 =31,32,...,40)
0.6 < ^ < 0.85
(7 =31,32,...,43)

0.6 < / < 0.9
(7=31,32,...,45)
0.6 <X< 0.95
(7 =31, 32,...,48)
0.65</<0.7
(7=34,35)
0.65 < / < 0.75
(7 =34,35,...,38)

0.65 < / < 0.8
(./=34,35, ...,40)
0.65</<0.85
(7 =34,35,...,43)

0.65 < ^ < 0.9
(7 =34,35, ...,45)

0.65</<0.95
(7 =34,35,...,48)

0.7<X^0.75
(7=36,37,38)
0.7</<0.8
(7=36,37, ...,40)

0.75 < y < l
(7=39,40

0.8</<l
(7=41,42

0.85 < y < 1
(7=44,45,...,

0.9<7<l
(7=46,47,...,
0.95 < y < 1
(7=49,50)
0.65 < y < 1
(7=34,35

0.7 < T' < 1
(7=36,37,...

0.75<7<l
(7=39,40,...
0.8 < y < 1
(7=41,42,...
0.85 < ̂  < 1
(7=44,45,...

0.9 < y < 1
(7=46,47,...

0.95 < y < 1
(7=49,50)

0.7 < y < 1
(7=36,37...

0.75 < y < 1
(7=39,40,..

O.S</ < 1
(7=41,42,..
0.85 <y<\
(7=44,45,.

0.9<X^I
(7=46,47,.
0.95 < y < 1
(7=49,50)
0.75 < y < 1
(7=39,40,.

0.8</<l
(7=4U42,.

50)

50)

50)

50)
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Table 5.1 (contn'd)

Test
number

159

160

161

162

163

164

165

166

167

168

169

170

171

Our test

1

0</<0.7
(7=1,2,....35)
0</<0.7
(7=1,2,... ,35)

0</<0.7
(7=1, 2,...,35)

0<^<0.75
(7=1,2,... ,38)

0<X^0.75
(7=1,2,... ,38)

0<f<0.75
(7=1,2,...,38)
0 < ^ <0.75
(7=1,2,... ,38)

0<y<0.&
(7 =1,2,...,40)

0<^<0.8
(7 =1,2, ...,40)

0</<O.S
(7=1, 2,...,40)

O</<0.85
(7 =1,2,...,43)

0<^<0.85
(7=1,2, ...,43)
0</<0.9
(7=1,2, ...,45)
0</<0.23
(7 =1,2,...,12)

Subregions

2

0.7<^^0.85
(7=36,37 43)
0.7</<0.9
(7 =36,37,...,45)

0.7 < / < 0.95
(7=36,37, ...,48)
0.75<X^0.8
(7=39,40)
0.75</<0.S5
(7 =39,40,...,43)
0.75 <y <0.9
(7=39,40 45)

0.75 < / < 0.95
(7=39,40 48)
0.8<v<0.85
(7=41,42,43)
0.8<X^0.9
(7 =41, 42,...,45)
0.8 < 7 <0.95
(7 =41,42,...,48)
0.85<^<0.9
(7=44,45)
0.85 < / < 0.95
(7 =44,45,...,48)

0.9 < y < 0.95
(7=46,47,48)
0.23</<0.63
(7=13, 14,...,32)

0.85 < y < 1
(7=44,45,..

0.9</<l
(7=46,47,..

0.95 < y < 1
(7=49,50)
0.8< ^ < 1
(7=41,42,..

0.85 < y <\
(7=44,45,..

0.9 < y < 1
(7=46,47...

0.95 < y < 1
(7=49,50)

0.85<^<l
(7=44,45,.

0.9</<l
(7=46,47,.
0.95 < y < 1
(7=49,50)

0.9<^<l
(7=46,47,.

0.95 < y < 1
(7=49,50)

0.95 < y < 1
(7=49,50)

0.63 <y<\
(7=33,34,.

.,50)

.,50)

., 50)

.,50)

..,50)

-,50)

..,50)

...50)

...,50)
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Table 5.2

Final critical values /:, , k2 and k3 when m = 3: X2 design matrix with n = 20.

Test
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

*.

-0.0837
-0.025
-0.0544
-0.0252
-0.1167
-0.1464
-0.162
-0.1325
-0.1321
-0.124
-0.1456
-0.1257
-0.0845
-0.0872
-0.081
-0.0814
-0.0609
-0.0646
-0.0123
-0.0228
-0.0051
-0.2373
-0.0805
-0.1044
-0.1079
-0.0231
-0.0526
-0.0231
-0.0679
-0.074
-0.0067
-0.0217
-0.0103
-0.0021
-0.0113
-0.0088
0.0139
-0.1833
-0.1074
0.0209
0.0378
0.0155
0.0578

Critical

K
0.255
0.25
0.437
0.49
0.93
1.2
1.45
1.5
1.67
1.8
2.1
2.17
2.05
2.23
2.34
2.5
2.49
2.67
0.21
0.39
0.475
1.33
1.05
1.33
1.52
1.35
1.65
1.67
2.06
2.27
2.05
2.3
2.38
2.475
2.7
0.56
0.595
1.5
1.44
1.22
1.32
1.64
1.6

values

*3

2.233
2.2
2.18
2.195
1.59
1.2
0.93
0.87
0.82
0.5
0.28
0.07
0.07
-0.1
-0.13
-0.316
-0.33
-0.606
2.21
2.1
2.22
1.05
1.25
0.93
0.63
0.81
0.5
0.44
0.065
-0.02
-0.07
-0.165
-0.31
-0.36
-0.67
2.0
2.05
0.87
0.94
0.9
0.75
0.62
0.49

Test
number

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

*.

0.0706
0.0815
0.0616
0.0658
0.0729
0.0831
0.0758
0.0761
0.0155
-0.0425
0.0222
0.123
0.0595
0.1172
0.1278
0.146
0.1391
0.1676
0.1564
0.1941
0.2145
0.2058
0.1774
0.029
0.1301
0.1778
0.1767
0.1798
0.2043
0.2344
0.2715
0.257
0.2432
0.2617
0.3054
0.3063
0.2838
0.1268
0.1633
0.2727
0.275
0.304!
0.3337

Critical

*2

1.7
1.8
2.15
2.3
2.41
2.48
2.74
2.91
0.61
1.15
1.15
1.0
1.5
1.44
1.59
1.68
1.72
1.9
2.19
2.06
2.09
2.3
2.74
1.58
1.17
1.23
1.47
1.75
1.8
1.8
1.71
2.03
2.4
2.4
2.21
2.38
2.8
1.31
1.7
1.31
1.6
1.65
1.68

values

*3

0.4
0.1
-0.01
-0.18
-0.23
-0.37
-0.452
-0.78
1.8
1.01
0.95
1.1
0.5
0.6
0.35
0.35
0.31
-0.001
-0.19
-0.174
-0.3
-0.39
-0.785
0.8
0.9
0.82
0.45
0.37
0.21
0.2
0.003
-0.09
-0.28
-0.3
-0.38
-0.45
-0.87
0.5
0.45
0.43
0.37
0.18
0.15
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Table 5.2 (contn'd)

Test
number

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

k,
i

0.3463
0.3497
0.365
0.3733
0.4023
0.4363
0.4922
0.3644
0.3978
0.4106
0.4247
0.4246
0.4488
0.4813
0.515
0.5137
0.4915
0.6851
0.5457
0.4494
0.525
0.5605
0.5716
0.7117
0.7229
0.654
0.6889
0.8187
0.6967
0.6913
0.6716
0.6788
0.9391
0.727
0.8766
0.917
0.9748
1.0152
0.8707
0.9S89
0.8507
0.8327
0.9224

Critical

k

1.8
2.0
2.1
2.26
2.25
2.3
2.25
1.44
1.34
1.5
1.64
1.98
2.0
2.0
2.03
2.25
2.6
1.96
2.72
1.27
1.3
1.38
.65
.35
.5
.95

2.02
1.7
2.405
2.7

.54

.59

.0

.9

.6

.58

.61

.6
2.45
2.08
1.1
1.62
.43

values

-0.08
-0.15
-0.26
-0.315
-0.444
-0.478
-0.735
0.66
0.37
0.36
0.12
-0.02
-0.17
-0.195
-0.297
-0.357
-0.59
-0.432
-0.988
0.24
0.35
0.17
0.025
-0.05
-0.11
-0.335
-0.357
-0.39
-0.62
-1.076
0.3
-0.046
0.35
-0.27
-0.21
-0.29
-0.3
-0.409
-0.7
-0.898
-0.03
-0.15
-0.22

Test
number

k.

130 0.9659
131
132
133
134
135
136
137
13p

7 1 ,

1 -

I4l
142
143
144
145
146
147
148
149
150
I5l
152
153
154
155
156
157
158
159 2
160
I6l
162 :
163 :
164 :
165 ;
166 :
i67 :
168 :
169 :
170 :
I7l 1

.017

.1196

.2003

.2142

.1393

.1383

.1861

.1621

.328

.4252

.6307

.6087

.4991

.2591

.347

.5806

.6489

.6687

.5959

.521

.5921

.6158

.7768

.797

.8559

.7598

.4471

.9115
'.0243
.9253
.8688

'.1168
'.1433
1.137
'.0335
t.0885
1.123
'.0932
1.6104
'..5871
'.3732

Our test 0.2098

Critical values

.51

.55

.42

.22

.32

.83

.5

.32

.6
1.23
1.01
0.54
0.77
.26

1.2
1.35
0.68
0.65
0.65
0.94
1.63
1.35
.2

0.54
0.47
0.3
1.005
1.9
0.2
-0.03
0.23
0.59
-0.07
-0.197
-0.195
0.35
1.1
0.78
1.4
-1.7
-1.19
0.8
1.84

-0.25
-0.35
-0.305
-0.33
-0.382
-0.87
-0.132
-0.25
-0.3313
-0.31
-0.215
-0.06
-0.21
-0.658
-0.37
-0.365
-0.165
-0.125
-0.175
-0.345
-0.985
-0.397
-0.5
-0.15
-0.155
-0.06
-0.69
-1.1
-0.02
0.112
-0.063
-0.48
0.03
0.157
0.13
-0.38
-1.09
-0.655
-1.54
0.95
1.01
-1.444
0.055
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Table 5.3

Calculated sizes of the test when m = 3 at the five percent level: X2 design matrix
with /; = 20.

Parameter

VcUUCo

x = o.o
0.1
0.2
0.3

• 0.4
0.5
0.6
0.7
0.8
0.9

^ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.047

0.056
0.069*
0.078*
0.080*
0.071*
0.056
0.046
0.032*
0.022*

11**

0.050
0.037
0.036*
0.045
0.052
0.057
0.058
0.054
0.046
0.043

21**

0.045

0.046
0.050
0.057
0.058
0.054
0.046
0.038
0.023*
0.015*

2

0.04S

0.055
0.068*
0.077*
0.075*
0.068*
0.053
0.044
0.030*
0.020*

12**

0.047
0.037
0.036*
0.045
0.053
0.057
0.058
0.060
0.055
0.053

22

0.047
0.036*
0.043
0.058
0.070*
0.077*
0.070*
0.058
0.046
0.037

3

0.047

0.046
0.058
0.065*
0.067*
0.059
0.051
0.043
0.028*
0.019*

13**

0.047
0.043
0.048
0.057
0.061
0.063
0.059
0.059
0.051
0.047

23

0.043

0.040
0.047
0.059
0.067*
0.070*
0.061
0.049
0.042
0.027*

4**

0.049

0.050
0.058
0.063
0.063
0.056
0.047
0.040

' 0.024*
0.016*

14**

0.046
0.042
0.045
0.053
0.057
0.061
0.059
0.055
0.053
0.053

24

0.045
0.038
0.041
0.057
0.064*
0.072*
0.063
0.054
0.044
0.035*

Sizes

Test number

5

0.043
0.044
0.051
0.063
0.071*
0.067*
0.057
0.046
0.037
0.024*

6

0.046
0.040
0.049
0.060
0.070*
0.073*
0.065*
0.052
0.043
0.029*

Test number

15**

0.046
0.042
0.046
0.055
0.056
0.060
0.056
0.053
0.045
0.044

Test i

25

0.049

0.040
0.041
0.054
0.062
0.071*
0.066*
0.060
0.049
0.040

16**

0.046
0.041
0.044
0.053
0.056
0.059
0.056
0.052
0.048
0.051

lumber

26

0.045
0.042
0.051
0.061
0.068*
0.068*
0.063
0.050
0.042
0.032*

7

0.046
0.039
0.044
0.057
0.066*
0.074*
0.064*
0.055
0.045
0.036*

17

0.044
0.044
0.052
0.060
0.063
0.064*
0.060
0.052
0.046
0.04S

27**

0.047
0.040
0.041
0.051
0.061
0.063
0.058
P--12

4
0.038

$

0.046

0.038
0.043
0.055
0.063
0.066*
0.060
0.050
0.042
0.035*

18**

0.045
0.042
0.050
0.058
0.060
0.062
0.058
0.050
0.044
0.048

28**

0.046

0.043
0.047
0.056
0.063
0.063
0.058
0.052
0.042
0.036*

9**

0.047

0.038
0.038
0.050
0.058
0.059
0.054
0.046
0.040
0.029*

19

0.049
0.052
0.063
0.072*
0.072*
0.064*
0.053
0.044
0.029*
0.020*

29**

0.052
0.041
0.041
0.048
0.052
0.056
0.058
0.057
0.053
0.052

10**

0.049

0.038
0.040
0.050
0.060
0.062
0.058
0.052
0.044
0.038

20

0.047
0.045
0.059
0.066*
0.070*
0.061
0.052
0.043
0.028*
0.020*

30**

0.055

0.041
0.039
0.043
0.049
0.051
0.055
0.050
0.049
0.048

* denotes value significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.
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Table 5.3 (contn'd)

Parameter
values

^ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

31**

0.044
0.043
0.050
0.058
0.059
0.061
0.060
0.054
0.048
0.047

41

0.059

0.048
0.048
0.058
0.063
0.067*
0.061
0.053
0.044
0.036*

5!**

0.051

0.049
0.047
0.047
0.050
0.049
0.P45
0.041
0.039
0.043

32**

0.047

0.042
0.047
0.050
0.055
0.056
0.056
0.051
0.046
0.047

42**

0.061
0.045
0.040
0.047
0.054
0.056
0.055
0.048
0.040
0.036*

52**

0.058

0.044
0.044
0.053
0.054
0.054
0.047
0.041
0.030*
0.021*

33**

0.045

0.044
0.050
0.054
0.057
0.058
0.055
0.050
0.046
0.049

43**

0.053
0.047
0.049
0.051
0.058
0.060
0.056
0.049
0.043
0.037

53

0.067*

0.046
0.047
0.055
0.067*
0.074*
0.067*
0.056
0.047
0.037

34**

0.045
0.044
0.049
0.057
0.058
0.060
0.057
0.051
0.044
0.047

44**

0.052
0.049
0.050
0.053
0.057
0.060
0.053
0.049
0.043
0.036*

54

0.064*

0.047
0.045
0.050
0.060
0.062
0.060
0.052
0.042
0.036*

Sizes

Test

35**

0.044

0.044
0.049
0.053
0.056
0.058
0.054
0.048
0.044
0.046

Test

45**

0.053
0.050
0.053
0.054
0.060
0.062
0.059
0.058
0.053
0.047

Test

55

0.053

0.051
0.053
0.061
0.064*
0.065*
0.057
0.047
0.041
0.027*

number

36

0.050

0.048
0.055
0.063
0.069*
0.061
0.053
0.044
0.030*
0.021*

number

46**

0.052

0.045
0.044
0.046
0.049
0.050
0.053
0.048
0.046
0.046

number

56

0.067*

0.048
0.043
0.044
0.055
0.060
0.062
0.058
0.050
0.044

37**

0.053
0.046
0.047
0.054
0.053
0.053
0.045
0.039
0.026*
0.018*

47**

0.053
0.047
0.045
0.045
0.050
0.051
0.051
0.049
0.049
0.049

57**

0.057

0.047
0.046
0.051
0.058
0.058
0.057
0.049
0.042
0.036*

38

0.072*

0.049
0.045
0.059
0.070*
0.079*
0.074*
0.061
0.052
0.041

48**

0.052
0.048
0.046
0.047
0.050
0.051
0.047
0.046
0.045
0.048

58**

0.057

0.048
0.046
0.050
0.055
0.058
0.058
0.053
0.046
0.042

39

0.074*

0.047
0.042
0.044
0.058
0.061
0.058
0.052
0.042
0.036*

49**

0.052
0.048
0.049
0.051
0.054
0.053
0.048
0.046
0.043
0.047

59**

0.054

0.047
0.047
0.051
0.054
0.056
0.052
0.047
0.042
0.036*

40

0.055
0.047
0.048
0.061
0.065*
0.073*
0.064*
0.055
0.045
0.036*

50**

0.050

0.049
0.047
0.047
0.051
0.049
0.044
0.043
0.039
0.043

60

0.096*
0.074*
0.066*
0.061
0.059
0.057
0.051
0.044
0.037
0.033*

* denotes value significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.
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Table 5.3 (contn'd)

* denotes value significantly different from tlie five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.

125

Parameter

7 = 0.0
0.1
0.2
0.3
0.4
0.5
0.6

" 0.7
0.8
0.9

7 = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

7 = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

61**

0.052

0.050
0.051
0.055
0.057
0.058
0.057
0.051
0.048
0.046

71

0.070*

0.052
0.042
0.041
0.048
0.052
0.052
0.052
0.047
0.041

81

0.074*
0.051
0.040
0.040
0.047
0.058
0.060
0.060
0.054
0.048

62**

0.053

0.048
0.046
0.047
0.050
0.050
0.049
0.048
0.046
0.048

72

0.069*
0.054
0.045
0.040
0.046
0.049
0.052
0.054
0.048
0.041

82

0.074*
0.049
0.036*
0.036*
0.041
0.052
0.056
0.055
0.052
0.045

63**

0.046

0.051
0.055
0.059
0.061
0.059
0.056
0.051
0.045
0.046

73**

0.063
0.054
0.050
0.046
0.050
0.051
0.050
0.048
0.045
0.039

83

0.064*

0.053
0.048
0.047
0.054
0.059
0.060
0.056
0.051
0.044

64**

0.037

0.046
0.056
0.063
0.063
0.062
0.057
0.051
0.044
0.046

74**

0.054

0.055
0.058
0.057
0.061
0.061
0.060
0.059
0.058
0.056

84

0.069*
0.052
0.044
0.040
0.046
0.050
0.052
0.051
0.044
0.040

Sizes

Test

65**

0.042

0.047
0.056
0.062
0.062
0.061
0.056
0.049
0.043
0.040

Test

75**

0.061

0.057
0.054
0.054
0.055
0.051
0.050
0.047
0.047
0.050

Test

85**

0.063
0.054
0.046
0.044
0.047
0.050
0.051
0.053
0.048
0.042

number

66**

0.050

0.049
0.051
0.053
0.054
0.051
0.047
0.043
0.040
0.043

number

76**

0.063

0.053
0.049
0.046
0.042
0.042
0.042
0.043
0.045
0.052

number

86**

0.055
0.053
0.051
0.051
0.053
0.051
0.050
0.050
0.045
0.041

67

0.066*

0.048
0.045
0.048
0.063
0.069*
0.069*
0.060
0.051
0.042

77**

0.061
0.055
0.054
0.052
0.053
0.046
0.043
0.041
0.041
0.048

87**

0.052
0.052
0.052
0.054
0.054
0.053
0.052
0.055
0.056
0.058

68

0.066*
0.050
0.044
0.048
0.057
0.058
0.058
0.050
0.042
0.036*

78**

0.041

0.048
0.056
0.062
0.060
0.057
0.051
0.046
0.041
0.044

88**

0.053
0.053
0.052
0.052
0.054
0.049
0.047
0.046
0.049
0.055

69

0.067*

0.050
0.048
0.052
0.060
0.060
0.058
0.049
0.042
0.036*

79**

0.041

0.048
0.055
0.062
0.061
0.057
0.049
0.046
0.039
0.043

89**

0.042
0.049
0.055
0.056
0.052
0.049
0.046
0.044
0.044
0.051

1

70 | |

0.071* | | j
0.052 | |
0.045 pi
0.047 | j
0.055 H
0.060 5i
0.061 l j
0.057 I
0.052 if
0.043 1

i
80** W

0.047 ;|f
0.050 1§
0-056 H
0.057 m
0.055 (11
0.050 1
0.046 g |
0.039 If
0.037 l|i
o.o4i m

if
90** 1

0.039 1
0.047 |
0.053 1
0.056 f
0.054 §§
0.048 1
0.045 M

ting0.041 I
0.042 I
0.046 1

Table 5.3 (contn'd)

Parameter
values

/ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

7=0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

7 = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

91**

0.036*

0.045
0.054
0.060
0.058
0.052
0.048
0.042
0.040
0.044

101**

0.034*

0.043
0.053
0.056
0.053
0.052
0.046
0.043
0.047
0.053

111**

0.026*

0.038
0.048
0.055
0.059
0.057
0.056
0.050
0.047
0.049

92**

0.030*

0.044
0.051
0.060
0.060
0.055
0.050
0.045
0.039
0.043

102**

0.035*

0.044
0.054
0.056
0.052
0.048
0.044
0.039
0.040
0.044

112**

0.028*
0.039
0.050
0.054
0.052
0.049
0.045
0.042
0.047
0.054

93**

0.029*

0.041
0.053
0.06!
0.063
0.060
0.053
0.048
0.041
0.043

103**

0.040
0.046
0.053
0.054
0.050
0.044
0.040
0.034*
0.035*
0.041

113**

0.027*
0.039
0.049
0.056
0.052
0.051
0.047
0.040
0.039
0.045

94**

0.053

0.047
0.045
0.047
0.054
0.058
0.056
0.048
0.042
0.037

104**

0.024*

0.036*
0.050
0.059
0.063
0.059
0.053
0.048
0.042
0.043

114**

0.023*
0.035*
0.049
0.059
0.063
0.059
0.054
0.048
0.043
0.046

Sizes

Test

95**

0.046

0.044
0.045
0.047
0.051
0.056
0.057
0.055
0.051
0.044

number

96**

0.052

0.048
0.050
0.051
0.051
0.052
0.051
0.049
0.044
0.040

Test number

105**

0.031*

0.043
0.051
0.057
0.052
0.049
0.044
0.037
0.032*
0.033*

Test

115**

0.027*

0.040
0.049
0.056
0.051
0.049
0.045
0.038
0.033*
0.038

106**

0.062

0.055
0.048
0.043
0.045
0.049
0.051
0.054
0.050
0.044

number

116**

0.027*

0.039
0.048
0.055
0.049
0.046
0.044
0.035*
0.031*
0.034*

97**

0.050

0.048
0.047
0.049
0.048
0.048
0.049
0.051
0.047
0.043

107**

0.037

0.044
0.050
0.053
0.054
0.054
0.050
0.046
0.044
0.038

117**

0.031*
0.041
0.047
0.051
0.054
0.052
0 049
0.044
0.040
0.037

98**

0.050

0.040
0.045
0.047
0.043
0.041
0.043
0.047
0.047
0.049

108**

0.033*
0.042
0.047
0.050
0.054
0.051
0.048
0.047
0.042
0.040

118**

0.030*
0.039
0.047
0.048
0.049
0.048
0.046
0.048
0.051
0.053

99**

0.041
0.046
0.051
0.050
0.048
0.047
0.045
0.046
0.049
0.056

109**

0.032*

0.041
0.046
0.049
0.049
0.048
0.045
0.044
0.044
0.044

119**

0.020*

0.031*
0.044
0.055
0.058
0.059
0.053
0.045
0.038
0.034*

100**

0.037

0.046
0.052
0.054
0.055
0.050
0.047
0.046
0.048
0.053

110**

0.025*
0.037
0.049
0.054
0.059
0.060
0.061
0.054
0.053
0.053

120**

0.029* '
0.039
0.048
0.049
0.051
0.047
0.043
0.044
0.052
0.059

* denotes value significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.
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Table 5.3 (contn'd)

Parameter
values

Sizes

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Test number

121* • 122*" 123** 124** 125** 126** 127** 128** 129**

0.023*

0.033*
0.046
0.053
0.053
0.055
0.053
0.049
0.049
0.052

131**

0.022*

0.036*
0.047
0.056
0.058
0.054
0.050
0.045
0.046
0.051

141

0.014*

0.022*
0.039
0.055
0.065*
0.069*
0.063
0.059
0.052
0.047

0.022*

0.033*
0.046
0.056
0.059
0.054
0.051
0.047
0.046
0.051

132**

0.020*

0.031*
0.047
0.058
0.061
0.057
0.051
0.048
0.044
0.046

142

0.013*

0.022*
0.039
0.054
0.062
0.065*
0.060
0.057
0.050
0.049

0.020*

0.030*
0.046
0.055
0.060
0.054
0.050
0.046
0.042
0.047.

133

0.019*

0.031*
0.049
0.062
0.068*
0.064*
0.06U
0.053
0.045
0.046

0.019*
0.031*
0.045
0.057
0.060
0.056
0.052
0.048
0.041
0.043

134

0.019*
0.030*
0.050
0.063
0.068*
0.064*
0.062
0.052
0.045
0.046

0.023*

0.036*
0.046
0.053
0.050
0.046
0.044
0.035*
0.031*
0.034*

0.021*

0.030*
0.047
0.057
0.060
0.055
0.049
0.044
0.039
0.042

Test number

135**

0.020*

0.033*
0.049
0.061
0.063
0.058
0.052
0.048
0.042
0.043

136**

0.021*
0.032*
0.044
0.051
0.054
0.052
0.052
0.048
0.048
0.049

0.030*

0.039
0.048
0.056
0.055
0.054
0.053
0.050
0.051
0.052

137**

0.021*

0.030*
0.043
0.053
0.054
0.053
0.050
0.047
0.047
0.051

Test number

143** 144** 145** 146** 147**

0.014*
0.022*
0.041
0.054
0.058
0.061
0.056
0.051
0.045
0.049

0.022*

0.034*
0.045
0.054
0.054
0.052
0.048
0.046
0.048
0.057

0.019*
0.030*
0.045
0.055
0.057
0.052
0.050
0.046
0.049
0.056

0.015*
0.028*
0.044
0.056
0.061
0.063
0.060
0.055
0.049
0.050

0.014*
0.024*
0.042
0.055
0.060
0.063
0.058
0.055
0.046
0.044

0.029

0.039
0.049
0.052
0.051
0.047
0.044
0.043
0.046
0.049

138**

0.022*

0.033*
0.045
0.055
0.055
0.051
0.048
0.044
0.047
0.054

148

0.015*
0.024*
0.042
0.056
0.062
0.065*
0.059
0.055
0.047
0.042

0.026*

0.041
0.050
0.055
0.052
0.054
0.050
0.047
0.048
0.052

139**

0.016*
0.027*
0.043
0.053
0.058
0.054
0.051
0.047
0.044
0.050

149

0.015*

0.026*
0.044
0.058
0.064*
0.064*
0.061
0.053
0.045
0.047

130**

0.024*

0.038
0.050
0.057
0.056
0.055
0.052
0.047
0.048
0.052

140**

0.015*
0.026*
0.044
0.056
0.060
0.061
0.057
0.051
0.045
0.046

150**

0.015*

0.026*
0.042
0.055
0.059
0.056
0.051
0.046
0.040
0.042

* denotes value significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.

Table 5.3 (contn'd)
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Parameter
values

^ = 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X = o.o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X-o.o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

151**

0.016*

0.026*
0.042
0.054
0.059
0.055
0.051
0.049
0 051
0.057

159

0.014*
0.025*
0.039
0.055
0.065*
0.071*
0.066*
0.062
0.057
0.046

167

0.015*
0.026*
0.045
0.060
0.065*
0.064*
0.059
0.052
0.042
0.044

152**

0.015*

0.026*
0.043
0.054
0.059
0.054
0.050
0.048
0.045
0.054

160

0.015*
0.027*
0.044
0.059
0.068*
0.071*
0.064*
0.059
0.051
0.046

168

0.016*
0.026*
0.045
0.059
0.065*
0.060
0.058
0.049
0.042
0.043

153

0.015*

0.025*
0.043
0.056
0.062
0.065*
0.056
0.056
0.047
0.04?

161

0.016*
0.028*
0.045
0.062
0.071*
0.068*
0.067*
0.058
0.052
0.053

169**

0.012*
0.019*
0.030*
0.047
0.055
0.061
0.059
0.060
0.056
0.051

Sizes

Test number

154

0.015*

0.024*
0.044
0.057
0.063
0.066*
0.059
0.056
0.048
0.043

155

0.014*

0.024*
0.040
0.055
0.064*
0.069*
0.064*
0.060
0.053
0.047

Tost number

162

0.014*
0.024*
0.041*
0.055
0.062
0.067*
0.061*
0.060
0.052
0.047

163

0.014*
0.024*
0.039
0.054
0.062
0.070*
0.064*
0.061
0.054
0.046

Test number

170**

0.012*

0.019*
0.030*
0.047
0.054
0.060
0.058
0.059
0.055
0.056

156**

0.015*

0.024*
0.043
0.056
0.062
0.063
0.059
0.052
0.045
0.047

164

0.014*
0.024*
0.039
0.054
0.062
0.069*
0.063
0.062
0.055
0.046

171

0.016*
0.027*
0.046
0.061
0.069*
0.068*
0.062
0.054
0.047
0.047

157

0.026*

0.047
0.064*
0.072*
0.062
0.053
0.045
0.042
0.042
0.055

165

0.016*
0.026*
0.044
0.058
0.068*
0.068*
0.065*
0.059
0.053
0.053

Our test**

0.058
0.055
0.049
0.049
0.053
0.052
0.055
0.053
0.050
0.046

158

0.015*
0.027*
0.044
0.059
0.070*
0.069*
0.064*
0.059
0.051
0.046

166**

0.014*
0.026*
0.044
0.057
0.063
0.060
0.053
0.050
0.043
0.048

* denotes values significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.
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Table 5.4

Calculated powers of the test when m = 3 at the five percent level: X2 design matrix
with n = 20.

Parameter
values

Powers

/9=0.1
0.2
O'\
0.4
0.5
0.6
0.7
0.8
0.9

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Test number

I 4** 5 8

0.061

0.082
0.113
0.153
0.217
0.287
0.382
0.468
0.562

11**

0.039
0.046
0.069
0.107
0.163
0.253
0.351
0.464
0.573

21**

0.049
0.063
0.091
0.127
0.181
0.248
0.336
0.430
0.520

0.061
0.082
0.112
0.152
0.215
0.280
0.374
0.459
0.552

12**

0.039

0.046
0.071
0.111
0.170
0.259
0.356
0.472
0.581

22

0.037

0.052
0.080
0.128
0.19!
0.287
0.383
0.496
0.595

0.048
0.070
0.100
0.137
0.194
0.265
0.353
0.442
0.539

13**

0.047

0.061
0.088
0.128
0.190
0.277
0.371
0.484
0.594

23

0.043

0.059
0.088
0.132
0.193
0.276
0.369
0.473
0.571

0.052

0.071
0.098
0.137
0.192
0.257
0.346
0.434
0.526

14**

0.044

0.058
0.085
0.123
0.188
0.266
0.366
0.476
0.584

24

0.040

0.055
0.081
0.128
0.186
0.274
0.373
0.482
0.579

0.046

0.063
0.092
0.137
0.199
0.276
0.368
0.463
0.560

0.043

0.059
0.087
0.134
0.196
0.280
0.376
0.482
0.573

Test number

15** 16**

0.045
0.060
0.086
0.124
0.186
0.261
0.360
0.470
0.574

0.044

0.059
0.085
0.122
0.183
0.258
0.357
0.466
0.572

Test number

25

0.041

0.052
0.076
0.123
0.179
0.275
0.376
0.492
0.594

26

0.045
0.064
0.095
0.137
0.194
0.279
0.375
0.481
0.576

0.040

0.054
0.082
0.133
0.188
0.279
0.376
0.4S7
0.584

17

0.048
0.065
0.095
0.132
0.194
0.272
0.366
0.475
0.579

27**

0.041

0.055
0.078
0.121
0.179
0.263
0.363
0.469
0.578

0.039
0.056
0.080
0.124
0.182
0.270
0.365
0.475
0.573

18**

0.047

0.063
0.093
0.132
0.189
0.268
0.361
0.472
0.567

28**

0.045

0.063
0.090
0.129
0.186
0.274
0.369
0.473
0.578

0.04

0.051
0.073
0.115
0.173
0.253
0.352
(0.456
».554

19

0.055
0.075
0.106
0.147
0.209
0.275
0.368
0.453
0.549

29**

0.043

0.051
0.071
0.112
0.168
0.253
0.352
0.470
0.578

10*

0.039
0.052
0.074
0.119
0.176
0,263
0.361
C.46S
0.578

20

0.049
0.069
0.102
0.139
0.200
0.269
0.358
0.445
0.544

30**

0.042

0.048
0.067
0.107
0.160
0.239
0.341
0.451
0.564

** indicate an accepted test.
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Table 5.4 (contn'd)

Parameter
values

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/J-0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

31**

0.049
0.062
0.093
0.130
0.191
0.272
0.368
0.478
0.584

41

0.050

0.065
0.088
0.129
0.189
0.273
0.375
0.478
0.579

51**

0.050

0.059
0.079
0.117
0.166
0.236
0.325
0.426
0.527

32**

0.044

0.059
0.084
0.122
0.180
0.255
0.355
0.461
0.571

42**

0.047

0.052
0.075
0.106
0.166
0.249
0.350
0.453
0.558

52**

0.047

0.059
0.077
0.116
0.171
0.244
0.336
0.431
0.532

33**

0.048
0.062
0.087
0.127
0.184
0.260
0.356
0.465
0.567

43**

0.048

0.060
0.082
0.122
0.179
0.259
0.357
0.463
0.566

53

0.048

0.057
0.083
0.125
0.181
0.282
0.378
0.487
0.590

34**

0.047
0.063
0.093
0.130
0.189
0.262
0.358
0.466
0.566

44**

0.051
0.061
0.087
0.123
0.182
0.260
0.358
0.459
0.564

54

0.049
0.056
0.081
0.117
0.175
0.262
0.362
0.471
0.571

Powers

Test

35**

0.047

0.061
0.086
0.124
0.181
0.257
0.351
0.454
0.555

Test

45**

0.053

0.066
0.094
0.129
0.187
0.274
0.367
0.482
0.591

Test

55

0.054

0.070
0.094
0.133
0.191
0.270
0.362
0.465
0.563

number

36

0.051

0.071
0.097
0.135
0.193
0.267
0.357
0.444
0.547

number

46**

0.048

0.055
0.072
0.116
0.166
0.243
0.342
0.452
0.561

number

56

0.050
0.052
0.075
0.109
0.167
0.261
0.362
0.477
0.5 S3

37**

0.048

0.063
0.084
0.119
0.175
0.245
0.334
0.431
0.520

47**

0.047

0.057
0.072
0.116
0.167
0.240
0.338
0.442
0.556

57**

0.049

0.059
0.082
0.118
0.176
0.257
0.358
0.460
0.565

38

0.052

0.057
0.080
0.127
0.187
0.285
0.387
0.499
0.601

48**

0.050

0.060
0.078
0.119
0.169
0.239
0.336
0.442
0.548

58**

0.050
0.060
0.079
0.117
0.172
0.256
0.357
0.464
0.576

39

0.050

0.053
0.073
0.111
0.165
0.255
0.353
0.465
0.567

49**

0.052

0.061
0.087
0.123
0.174
0.249
0.340
0.444
0.549

59**

0.049

0.058
0.082
0.119
0.174
0.248
0.347
0.452
0.555

40

0.048
0.064
0.089
0.134
0.191
0.281
0.377
0.486
0.586

50**

0.050

0.059
0.079
0.119
0.166
0.234
0.326
0.426
0.532

60

0.077

0.079
0.104
0.134
0.186
0.256
0.351
0.450
0.551

** indicates an accepted test.
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** indicates an accepted test.

131

Table 5.4 (contn'd)

Parameter

/?=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

61**

0.056

0.065
0.091
0.126
0.183
0.260
0.354
0.465
0.572

71

0.053
0.054
0.071
0.099
0.153
0.230
0.333
0.443
0.556

81

0.053
0.047
0.065
0.099
0.152
0.245
0.353
0.469
0.578

62**

0.052
0.061
0.079
0.120
0.168
0.241
0.334
0.436
0.548

72

0.057

0.058
0.076
0.102
0.157
0.231
0.331
0.443
0.555

82

0.052
0.048
0.059
0.090
0.137
0.224
0.330
0.442
0.559

63**

0.053
0.067
0.097
0.138
0.194
0.263
0.359
0.465
0.570

73**

0.057

0.065
0.078
0.118
0.167
0.237
0.339
0.442
0.553

83

0.056
0.062
0.080
0.115
0.169
0.257
0.355
0.468
0.576

64**

0.050

0.074
0.105
0.146
0.204
0.274
0.366
0.472
0.574

74**

0.06

0.069
0.097
0.138
0.191
0.270
0.362
0.473
0.583

84

0.056
0.061
0.074
0.104
0.155
0.229
0.332
0.439
0.551

Powers

Test

65**

0.051
0.072
0.103
0.142
0.197
0.267
0.360
0.462
0.563

Test

75**

0.06

0.065
0.085
0.127
0.172
0.246
0.340
0.440
0.555

number

66**

0.052

0.061
0.088
0.125
0.173
0.246
0.331
0.429
0.532

number

76**

0.058
0.064
0.074
0.111
0.159
0.222
0.314
0.411
0.522

Test number

85**

0.056
0.061
0.077
0.109
0.162
0.236
0.331
0.442
0.554

86**

0.054
0.064
0.084
0.124
0.173
0.245
0.339
0.446
0.556

67

0.049

0.053
0.075
0.120
0.176
0.273
0.372
0.491
0.592

77**

0.059
0.064
0.086
0.124
0.168
0.240
0.323
0.423
0.528

87**

0.057
0.064
0.086
0.126
0.177
0.250
0.343
0.448
0.560

68

0.053
0.054
0.081
0.115
0.170
0.259
0.356
0.462
0.567

78**

0.052

0.075
0.105
0.144
0.192
0.265
0.349
0.452
0.555

88**

0.056
0.065
0.088
0.126
0.172
0.244
0.334
0.432
0.546

69

0.054
0.062
0.085
0.124
0.176
0.262
0.363
0.467
0.568

79**

0.051

0.077
0.105
0.144
0.189
0.263
0.348
0.447
0.549

89**

0.052
0.065
0.092
0.129
0.173
0.243
0.331
0.431
0.538

1
1

70 |

0.055 |
0.057 1
0.079 1
0.112 |
0.168 |
0.256 |
0.358 p
0.473 1
0.579 |

80** |

0.052 |

0.065 1
0.095 |
0.127 1
0.174 1
0.245 1
0.328 1
0.418 |
0.519 Ij

i
90** |

m
0.050 M

0.064 I
0.093 I
0.129 |
0.174 |
0.243 I
0-324 I !
0.423 I !
0.530 m

ii F^^T

Parameter
values

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/3 = 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p = 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

91**

0.048

0.068
0.100
0.138
0.184
0.254
0.336
0.435
0.539

101**

0.045

0.066
0.093
0.133
0.180
0.248
0.330
0.430
0.538

111**

0.040

0.061
0.096
0.136
0.190
0.261
0.353
0.460
0.571

92**

0.045

0.067
0.099
0.142
0.190
0.259
0.342
0.443
0.544

102**

0.046

0.068
0.093
0.133
0.176
0.243
0.324
0.422
0.523

112**

0.041

0.061
0.090
0.132
0.177
0.242
0.325
0.424
0.530

93**

0.045

0.072
0.099
0.142
0.195
0.267
0.355
0.455
0.557

103**

0.050

0.069
0.094
0.125
0.166
0.235
0.313
0.398
0.502

113**

0.041

0.063
0.093
0.135
0.177
0.244
0.327
0.429
0.529

94**

0.050
0.058
0.075
0.113
0.168
0.251
0.349
0.454
0.558

104**

0.038

0.065
0.095
0.137
0.192
0.266
0.354
0.457
0.560

114**

0.037
0.062
0.096
0.136
0.192
0.263
0.355
0.458
0.563

Powers

Test number

95**

0.048

0.057
0.078
0.117
0.165
0.253
0.350
0.457
0.571

Test

105**

0.046

0.069
0.098
0.134
0.175
0.243
0.325
0.419
0.514

Test

115**

0.042
0.066
0.095
0.134
0.176
0.243
0.322
0.416
0.515

96**

0.053

0.063
0.080
0.122
0.169
0.242
0.343
0.445
0.555

number

106**

0.057

0.059
0.076
0.105
0.158
0.236
0.332
0.445
0.555

number

116**

0.041

0.063
0.095
0.132
0.170
0.236
0.316
0.408
0.505

97**

0.053

0.061
0.081
0.118
0.165
0.241
0.334
0.441
0.552

107**

0.048
0.062
0.086
0.125
0.173
0.245
0.344
0.443
0.556

117**

0.041

0.059
0.086
0.123
0.173
0.242
0.339
0.438
0.549

98**

0.052

0.058
0.075
0.106
0.152
0.225
0.319
0.419
0.532

108**

0.045

0.060
0.086
0.124
0.171
0.242
0.337
0.439
0.550

118**

0.043
0.058
0.082
0.119
0.165
0.237
0.329
0.428
0.541

99**

0.050

0.063
0.083
0.115
0.162
0.231
0.322
0.419
0.532

109**

0.044

0.058
0.084
0.121
0.164
0.237
0.330
0.428
0.541

119**

0.033

0.055
0.090
0.127
0.186
0.255
0.351
0.454
0.557

100**

0.048
0.064
0.090
0.126
0.173
0.245
0.328
0.429
0.541

110**

0.037

0.058
C.094
0.133
0.190
0.263
0.358
0.466
0.576

120**

0.044

0.061
0.084
0.117
0.167
0.233
0.316
0.417
0.529

** indicates an accepted test.



132 133

Table 5.4 (contn'd) Table 5.4 (contn'd)

Parameter
values

Powers

Test number

121** 122** 123** 124** 125** 126** 127** 128** 129*

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.034

0.056
0.090
0.128
0.181
0.252
0.336
0.440
0.552

131**

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.038

0.062
0.095
0.134
0.183
0.254
0.334
0.440
0.545

141

0.023

0.048
0.080
0.128
0.188
0.280
0.380
0.492
0.599

0.035

0.057
0.091
0.131
0.186
0.2.55
0.341
0.445
0.552

132**

0.033

0.060
0.093
0.133
0.189
0.260
0.353
0.455
0.560

142

0.024

0.048
0.078
0.124
0.187
0.271
0.369
0.479
0.589

0.031

0.056
0.089
0.130
0.184
0.254
0.345
0.448

• 0.554

133

0.033

0.061
0.094
0.136
0.199
0.270
0.369
0.474
0.578

143**

0.024

0.048
0.080
0.122
0.182
0.263
0.357
0.467
0.566

0.033

0.058
0.091
0.132
0.188
0.258
0.352
0.453
0.556

134

0.032

0.062
0.093
0.137
0.198
0.273
0.374
0.475
0.575

144**

0.035
0.061
0.091
0.131
0.179
0.247
0.328
0.429
0.541

0.038

0.062
0.093
0.129
0.170
0.237
0.316
0.407
0.509

0.032

0.059
0.091
0.131
0.185
0.255
0.343
0.44
0.537

Test number

135*"

0.034

0.061
0.093
0.135
0.193
0.259
0.351
0.448
0.547

136*"

0.032

0.054
0.087
0.126
0.179
0.250
0.337
0.439
0.552

Test number

145*"

0.032

0.056
0.090
0.130
0.181
0.250
0.331
0.435
0.546

146**

0.028
0.051
0.085
0.129
0.191
0.269
0.362
0.476
0.584

0.041
0.062
0.089
0.130
0.183
0.254
0.343
0.447
0.555

137**

0.033

0.053
0.087
0.127
0.178
0.248
0.334
0.435
0.547

147*"

0.025

0.049
0.082
0.125
0.187
0.271
0.364
0.476
0.585

0.042

0.064
0.086
0.124
0.170
0.236
0.326
0.427
0.535

138**

0.034

0.057
0.091
0.129
0.178
0.245
0.329
0.429
0.538

148

0.025

0.049
0.083
0.125
0.188
0.269
0.368
0.478
0.585

0.042

0.065
0.094
0.135
0.182
0.249
0.336
0.437
0.545

139**

0.028

0.052
0.082
0.127
0.181
0.254
0.345
0.452
0.554

149

0.028

0.052
0.085
0.130
0.192
0.269
0.365
0.472
0.579

** indicates an accepted test.

130**

0.042

0.065
0.098
0.138
0.188
0.254
0.342
0.442
0.551

140**

0.027

0.051
0.083
0.127
0.187
0.262
0.359
0.468
0.573

150**

0.027

0.051
0.082
0.125
0.187
0.254
0.345
0.441
0.538

?'':

Parameter
values

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/7=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

151**

0.028
0.053
0.082
0.127
0.183
0.254
0.345
0.450
0.553

159

0.025
0.049
0.082
0.130
0.189
0.284
0.383
0.500
0.605

167

0.027
0.051
0.084
0.130
0.189
0.267
0.364
0.466
0.566

152**

0.028
0.053
0.082
0.126
0.181
0.256
0.342
0.443
0.546

160

0.028
0.052
0.086
0.135
0.194
0.281
0.381
0.493
0.602

168

0.027
0.053
0.083
0.128
0.190
0.263
0.360
0.455
0.553

153

0.026

0.051
0.084
0.127
0.190
0.272
0.367
0.479
0.587

161

0.029
0.053
0.087
0.134
0.201
0.278
0.380
0.488
0.595

169**

0.020
0.037
0.072
0.116
0.173
0.262
0.361
0.483
0.588

Powers

Test number

154

0.026
0.050
0.084
0.129
0.189
0.274
0.371
0.482
0.588

Test

162

0.025
0.050
0.083
0.127
0.188
0.277
0.375
0.490
0.599

Test

170**

0.019
0.038
0.070
0.115
0.174
0.261
0.357
0.476
0.583

155

0.025
0.050
0.083
0.129
0.190
0.280
0.379
0.495
0.601

number

163

0.025
0.049
0.083
0.126
0.189
0.277
0.377
0.492
0.600

number

171

0.029

0.054
0.086
0.132
0.197
0.272
0.373
0.473
0.580

156**

0.026
0.050
0.083
0.126
0.187
0.265
0.361
0.469
0.570

164

0.025
0.050
0.083
0.126
0.189
0.277
0.377
0.492
0.600

Our test**

0.057

0.063
0.081
0.120
0.171
0.248
0.344
0.454
0.566

157

0.048
0.074
0.109
0.142
0.188
0.255
0.331
0.416
0.511

165

0.029
0.052
0.087
0.132
0.196
0.276
0.376
0.486
0.593

158

0.028

0.053
0.087
0.135
0.195
0.279
0.380
0.491
0.601

166**

0.027

0.053
0.082
0.125
0.188
0.259
0.355
0.448
0.549

Maximum
power

0.060
0.077
0.105
0.146
0.204
0.277
0.371
0.484
0.594

** indicates an accepted test.
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Table 5.5

Average deviations (AD), sum of squared deviations (SSD) of the power and the
corresponding rank of accepted test with respect to size condition.

Test
number

4
9
10
11
12
13
14
15
16
18
21
27
28
29
30
31
32
33
34
35
37
42
43
44
45
46
47
48
49
50
51
52
57
58
59
61
62
63
64
65
66

A D (rank)

0.022778 (40)
0.027889 (67)
0.020889 (34)
0.028111 (68)
0.023667 (45)
0.008667 (04)
0.014222(10)
0.016889(19)
0.019111 (25) -
0.014000(09)
0.030333 (82)
0.019000(24)
0.012333(07)
0.024444 (48)
0.033222(100)
0.010111(05)
0.020778 (32)
0.018000(23)
0.016000(15)
0.022444 (39)
0.033222 (99)
0.029111(72)
0.020222 (30)
0.019222(26)
0.008333 (02)
0.029222 (75)
0.031333(90)
0.030778(86)
0.026556 (60)
0.036333 (107)
0.037000(108)
0.033889(102)
0.021556(35)
0.020778 (32)
0.026000(58)
0.016222(17)
0.031000(87)
0.012444(08)
0.005889(01)
0.011222(06)
0.031222(89)

SSD (rank)

0.008523 (72)
0.007343 (59)
0.004348 (32)
0.007717(62)
0.005801 (42)
0.001234(05)
0.002112(10)
0.002656(14)
0.003362(21)
0.001984(09)
0.011861(94)
0.003565 (24)
0.001649(06)
0.005962 (46)
0.010399(86)
O.OO1O85 (04)
0.003971 (28)
0.003058(18)
0.002492(12)
0.005020 (36)
0.013029(101)
0.008220 (68)
0.003908 (26)
0.003657 (25)
0.000907 (03)
0.008171 (67)
0.009528(81)
0.009621 (82)
0.007443 (60)
0.014355 (104)
0.015035 (106)
0.012233(95)
0.004528 (34)
0.004291 (31)
0.006602 (50)
0.002620(13)
0.010053 (84)
0.001654(07)
0.000687(01)
0.001841(08)
0.011441(92)

Test
number

73
74
75
76
77
78
79
80
85
86
87
88
89
90
91
92
93
04
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

A D (rank)

0.029111 (72)
0.008333 (02)
0.025333 (53)
0.042556(115)
0.033667(101)
0.014333(11)
0.016111 (16)
0.032778 (95)
0.032222 (93)
0.025889 (55)
0.023000 (42)
0.028333 (69)
0.029333 (76)
0.032000(91)
0.024000 (47)
0.020778(31)
0.014556(12)
0.026889(61)
0.024667 (49)
0.027333 (65)
0.030222(81)
0.042222(114)
0.037889(109)
0.030444 (83)
0.028333 (69)
0.032222 (93)
0.040667(113)
0.017111 (20)
0.032778 (95)
0.032778 (95)
0.026222 (59)
0.029333 (76)
0.034556(105)
0.015889(13)
0.016667(18)
0.032889 (98)
0.031111 (88)
0.017333(22)
0.034333(104)
0.039111 (111)
0.029778 (79)

SSD (rank)

0.009104(75)
0.000733 (02)
0.007308 (58)
0.021171(114)
0.014061 (103)
0.003389 (22)
0.004429 (33)
0.014423(105)
0.010834(89)
0.007027 (56)
0.005633 (40)
0.009339 (78)
0.010328(85)
0.012784(98)
0.007894 (66)
0.005919(45)
0.002949(17)
0.007102(57)
0.005910(44)
0.007722 (63)
0.009464 (79)
0.019106(111)
0.016091 (109)
0.010606(88)
0.009809 (83)
0.013624(102)
0.023158(115)
0.003248 (20)
0.015191 (107)
0.011215(91)
0.007010(55)
0.008790 (73)
0.012509(96)
0.002389(11)
0.002718(15)
0.012804(99)
0.011826(93)
0.003168(19)
0.015895(108)
0.020412(113)
0.008926 (74)
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Table 5.5 (contn'd)

Test
number

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
135
136

A D (rank)

0.035111(106)
0.023333 (44)
0.038889(110)
0.027667 (66)
0.025000(50)
0.025222 (52)
0.021889(36)
0.039667(112)
0.027222 (64)
0.023778 (46)
0.034222(103)
0.025889 (55)
0.022000 (38)
0.025889 (55)
0.020222 (29)
0.021889(36)
0.029111(72)

SSD (rank)

0.012738(97)
0.005276 (37)
0.016838(110)
0.007745 (64)
0.006439 (48)
0.006295 (47)
0.004865 (35)
0.020077(112)
0.008343(71)
0.005742(41)
0.01293(100)
0.007813 (65)
0.005820 (43)
0.007629(61)
0.004166(30)
0.005547 (39)
0.008336 (70)

Test
number

137
13S
139
140
143
144
145
146
147
150
151
152
156
166
169
170

Our test

A D (rank)

0.030667 (84)
0.032000(91)
0.027000 (62)
0.020111(27)
0.023222 (43)
0.030667 (84)
0.029667 (78)
0.015889(14)
0.017111 (21)
0.029778 (79)
0.027000 (62)
0.029000(71)
0.020111 (28)
0.025778 (54)
0.022889(41)
0.025000 (50)
0.023778

SSD (rank)

0.009486 (80)
0.011186(90)
0.006S97 (52)
0.003965 (27)
0.005287 (38)
0.010510(87)
0.009269 (77)
0.002867(16)
0.003498 (23)
0.009214(76)
0.006973 (54)
0.008325 (69)
0.004103(29)
0.006792(51)
0.006512(49)
0.006925 (53)
0.005800

• i



Chapter 6

Testing for Heteroscedastic Disturbances in the Linear
Regression Model

6.1 Introduction

In Chapter 4 and Chapter 5, we applied our nev/ test procedure to testing for MA(1)

disturbances against AR(1) disturbances in the linear regression model. For this

particular testing problem, both the null hypothesis and the alternative hypothesis

parameter space were restricted to a positive unit interval. In this case, we saw that the

new test procedure performs well for m = 3 with respect to size conditions as well as

having good power properties especially when the sample size is small. This goc.t'

performance may be because the parameter spaces under both hypotheses are restricted

to the unit interval. An interesting question is what is the test performance for other

types of parameter spaces?

We do not know how well our test performs when both the null and the alternative

hypothesis parameter space are extended to an infinite interval. In this chapter our aim is

to investigate the performance of our new test for a testing problem which involves both

the null hypothesis and the alternative hypothesis parameter spaces being a one-sided

infinite interval. How well will our test perform in this case? How should in be chosen?

These are some of the questions we are looking to answer in this chapter.
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We will address these questions by considering the application of the test procedure to

testing for heteroscedastic disturbances in the linear regression model.

The plan of this chapter is as follows. Section 6.2, describes and outlines the model, the

testing problem and the test procedure for testing heteroscedastic disturbances in the

linear regression model. A Monte Carlo experiment which aims to explore the properties

of the test procedure, is outlined in Section 6.3. The design of experiment, size and

power properties of the test when m — \ and m — 2 are reported in Section 6.3.1, 6.3.2,

6.3.3, respectively. Also, test sizes controlled at x = Q when m — \ are discussed in

Section 6.4, and properties of this test procedure and results are reported in Section

6.4.1, 6.4.2, respectively. Section 6.5 contains some concluding remarks.

6.2 The model, testing problem and the test procedure

Consider the linear regression model with heteroscedastic disturbances

(6.1)

where y, x •> /? a r e a s defined by (3.10) and v is n x \ disturbance vector whose

components are generated as follows

v, =z,u, +en = 1,2,.... w, (6.2)

where z is a non-stochastic variable (which could be a regressor), e ~//y(0, cr2)>

u, ~ IN(0, /l0o"2), /Lo = G2Ja2 a n d u, i s independent of e>. Then the properties of Of

are that it is normally distributed with £(L>) = O, var(t> ) = <r2(l + A, Z2) ,

COV(L>,, L>5) = 0, t*s, that is, „ - iV(0, o-2Q(A0))> where Q ( ^ O ) is the nxn diagonal
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matrix with diagonal elements (l + /loz(
2). An example of this kind of model is the

Hildreth-Houck (Hildreth and Houck (1968)) single random coefficient model.

An alternative hypothesis could be that v distributed as u~iV(0, <j2E(r0)), where

S(r0) is the nxn diagonal matrix with diagonal elements ( l+row2) , where w, is

another non-stochastic variable which may also be regressor.

Our interest is in testing

(6.3)

against

Ha:u~N(0,<r2Z(To)), 0<r0<co, (6.4)

in the context of the linear regression model (6.1). In this testing problem, both the Ao

and r0 parameters, lie between 0 and oo. For the simplicity of our calculations, we

transform the parameters Ao and r0 to X and r by the functions A = AO/(1 + AO) and

r = ro/(l + r 0 ) , respectively. The transformed ranges of A and r now become [0, 1].

Using these transformations our testing problem now becomes one of testing

H0:u~N(0, 0<X<\ (6.5)

against

Ha:v~N{0, (6.6)

Testing for Heteroscedastic Disturbances in the Linear Regression Model 139

where Q ( ^ ) is the „ x / , diagonal matrix with diagonal elements (\ + [j{/(\-A)]z2)

£( r ) is the „ x n diagonal matrix with diagonal elements (l + [W(] _ rYhv2) •

For this testing problem, n and Q-2, are nuisance parameters. Their influence can be

eliminated through the standard invariance arguments because (6.1), (6.5) and (6.6) are

invariant to transformations of the form (3.13). Note that the linear regression models

(3.10) and (6.1) are the same except for the disturbance term.

Now -ring the results of (3.16) and (3.17), our problem of testing (6.5) against (6.6) in

the context of (6.1), becomes one of testing

(6.7)

against

-1X"L(T)-1X

(6.8)

and pp> -j , n = ,i-k,where v = i £ , p is any DXn matrix such that
(z'z)l/2 F

z is the OL^ residual vector from (6.1) and z(X) ls m e ^^S residual vector from the

regression defined in (3.15), with A(/l) = Q(/l) a n ^ also, 2{X) denotes z{v) w i t n



140 Chapter 6

We observe that through the invariance arguments, we have again restricted the

respective parameter spaces to © = {X: 0 < X < 1} and <& = {r: 0 < r < 1} . Now using

equation (4.7), the test which maximizes average power subject to controlling average

size over the entire null hypothesis parameter space, i.e., m- 1, can be based on the

critical region of the form

-i/2fz(r)'z(r)'

z'z
p(T)dT

X
-\I2

•,<-.

p{X)dX

or,
z'z

(IT

(6.9)
x X dX

where p{z) and p(X) are the weighting functions for r and X respectively, which are

uniform distributions and ca is the critical value calculated to control average size of the

test. In inequality (6.9), p{x) and p(X) have been replaced by uniform density

functions.

If 'Vr denote the critical region given by (6.9) as co{ca), then using equation (3.19),

finding ca involves solving

f f//0(v, X)dXdv = f f ho(v, X)dvdX = a

for c , where a is the desired average size of the test.

(6.10)
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Equations (6.9) and (6.iO) involve integrals, which do not have any analytical solutions.

Therefore, as discussed in Chapter 3, we can approximate the integrals in (6.9) by

numerical integrals so that (6.9) can be approximated by (see Conte, 1965, p. 120)

7 = 1 >c. (6.11)

where Tj = X. ={2j-\)/(2q)*j = 1, 2,..., q•

As we mentioned in Chapter 3, a potential problem is with controlling the average size

of the test. Some sizes can be undesirably large in some parts of the null hypothesis

parameter space while other sizes can be smaller than the desired size in some other

parts of the null hypothesis parameter space. We conducted some simulation

experiments, for m - \ and m - 2 for testing (6.7) against (6.8) in the context of (6.1).

A detailed discussion of the test procedures, the size and the power properties of the test

with m = i and m~2^ ' s given in the following section.

6.3 Monte Carlo experiment

In this section, we report a Monte Carlo experiment to investigate the behaviour of the

small sample size and power properties of the test in the context of testing

heteroscedastic disturbances in the linear regression model, when both the null and

alternative hypothesis parameter spaces are one-sided infinite. Also, an aim is to find the

appropriate choice of m for which the size conditions are satisfied.
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6.3.1 Design of experiment

In the simulation experiments, two thousands replicaiions were used to investigate the

small sample size and power properties of the test. We calculated the exact five percent

critical values. For this testing problem, we used the A'l, A'2, X\ X4 and X5 (defined

in Chapter 4) design matrices which cover a variety of economic phenomena. Along

with these design matrices two different sets of non-stochastic variables were used. The

first set of non-stochastic variables take the values z,, = //// under H{) and

wu -(n + \-t)/u, t =-\,2;...,n, under Ha, i.e., w takes the reverse values of z. The

second set of non-stochastic varieties take the values z,, = ///; und^r Ho and w2l = (h if

t < n/2, or 1, if /> »/2, / = 1.'.',...,;», under Ha. We used these two different sets of

non-stochastic variables to see the variation in calculated sizes and powers of the test

statistic. For both sets of non-stochastic variables, data were generated by randomly

drawing from the null hypothesis parameter space in order to calculate the critical values

(ca) of the test statistic.

For the. testing problem under consideration, the proposed new test under //„ and Htl is

invariant with respect to the nuisance parameters, ji and a1, "»nd we have chosen ji - 0

and a1 = 1 for all simulation experiments.

The first step involved deciding on the value of ,:i for which the size of the test is

approximately controlled. We carried out some simulation experiments to choose the

value of in and conducted some experiments for m = \ and ;?i = 2 for the above

mentioned two sets of non-stochastic variables. In the simulation experiment when

m = 1, we indee.: rmd regions of larger sizes than average size and regions of lower sizes
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than average size under the null hypothesis. For this reason, we divided the null

hypothesis parameter space 0 into two disjoint intervals ( , „ -2 ) , determined by the

boundary where the size in the case of m - \ as a function of % crosses a - 005 for the

test givsa by (6.9). In this case we see that the sizes of the resultant test are reasonably

acceptable. Thus for m = ^ we see that the size performances of the test is not that good

while for m = 2, overall the test performs well. Detailed discussions are given below.

6.3.2 Size and power properties of the test with tn = 1

As mentioned in the previous section, two different sets of non-stochastic variables were

used to calculate the sizes and powers of the test. For both sets of non-stochastic

variables, ^ is drawn randomly from (6.5), the null hypothesis parameter space (for data

generation purposes), in order to calculate the critical values c for ail design matrices.

Thus based on (6.9) with m=\, we calculated the critical values which control the

average size of the test over the entire null hypothesis parameter space. The calculated

critical values are presented in Table 6.1.

For - and w , using the critical values presented in Table 6.1 through equation (6.11),

we calculated the sizes of the test for different values of x, namely, ^ = 0.0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under / / . The estimated sizes are presented in Table

6.2. For two thousand replications, estimated sizes outside the ranp [0.037, 0.063] are

significantly different from the five percent level at the 0.01 level. The values denoted

by a 'star' in Table 6.2 are significantly different from five percent at the 0.01 level.

Ft cm. this table our interest is to see the behaviour of the estimated sizes of the test as we

are controlling the average size at 0.05. We see that some estimated sizes are far from
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the average size, i.e., significantly different from the five percent level. A few of them

are smaller than the average size (a - 0.05) while some others are undesirably larger

than the average size. While we are controlling the average size of the test over the

entire null hypothesis parameter space, we do not seem to be successfully controlling the

probabilities of Type I errors across the parameter space under Ho. This led us to

consider m = 2 for zu and \\\,.

For zu and wu, we also calculated the powers of the test by using equation (6.11) for

different values of r , namely, r = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under//,,

and the estimated powers are presented in Table 6.3. From this table we see that the

powers of the test gradually increase when r increases both for small and large sample

sizes for all design matrices. We also see that when the sample size is large, the powers

of the test are much higher (more than double for the points r = 0.3, 0.4, 0.5, 0.6, 0.7,

0.8 and 0.9) compared to those for the smaller sample size.

Similarly, for z,, and w2l, taking the critical values calculated for this set of non-

stochastic variables presented in Table 6.1, through equation (6.11), we calculated the

sizes of the test for different values of X under Ho. Also, we calculated the powers of

the test for different values of r under Ha. The estimated sizes are presented in Table

6.4 and the powers are presented in Table 6.5. From Table 6.4 we see that there is a large

number of estimated sizes that are far from the average size. Only a few sizes are smaller

than the average size while a number of sizes are undesirably larger than the average

size. This means our controlled sizes are not within an acceptable range. This motivated

us to consider m - 2 for z2. and w2l.
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From Table 6.5 we see that the powers of the test slowly increase as T increases for all

design matrices. We observe that when the sample size is large, the powers of the test

are higher compared to those of the smaller sample size. For both sets of non-stochastic

variables, we also observe that the powers of the test show a very similar pattern

although the powers for z and w are slightly higher than the corresponding powers

for - and u, . This may be due to the fact that for -, and w , the calculated sizes of
*2f U 2 f J *\t " i f

the test for the starting boundary points ^ - 0 . 0 , 0.1, 0.2 are higher compared to the

corresponding sizes for 7 and w , For r and w , the calculated sizes for the points
r c i,2| "2f "\t "If

X = 0.0, 0.1, 0.2 are above the average size while for z and 1V , the sizes are below the

average size.

In the following section, we discuss the size and power properties of the test with m - 2

for the two sets of non-stochastic variables.

6.3.3 Size and power properties of the test with m = 2

We desire to control the average estimated sizes of the test over suitable regions under

/ / . Bearing this in mind, for z and w , and based on the estimated sizes presented in

Table 6.2 with m = ^ we divided the null hypothesis parameter space into two disjoint

intervals. One subregion (0 ) is made up of the parameter values which have larger

than average size while the other one (Q \ comprises those parameter values which

resulted in smaller than average size under the null hypothesis for the m - \ version of

the test. When we control average size over these two regions, we are expecting that the

estimated sizes will come very close to the average size. The boundary point of the two

disjoint intervals is determined by the high size/low size technique. For z and w ,
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ranges of the two disjoint intervals and the corresponding values of j , where

X . = r. = (2j - \)/(2q), j = 1, 2,..., q, q = 50, for all design matrices are presented in

Table 6.6.

Thus for in = 2, equation (3.7) gives the resultant test that maximizes average power

subject to controlling two size conditions and involves a critical region of the form

(6.11) which now becomes

-Vi(z(A.JYz(A.J)
V-/-/2

7=1 z'z

+k, (6.12)
Z'Z

where k{ and Jfc, are the critical values and qx is determined by the boundary of the two

subregions.

If we denote the critical region given by (6.12) as co(k^ k2) and if 0 , = {A: A, < A < A,}

and ®2 = {A:A2<A<A3}, where A, =0, A3 = 1 and A, is the chosen boundary of

subregions of 0 , then finding A:, and k2 involves solving

f f ho

jointly for A:, and Jfc2. In equation (6.12), qx is determined by rounding

down to the nearest integer.

(6.13)

Testing for Hcterosccdastic Disturbances in the Linear Regression Model 147

Now for 2 and w , the critical values, £ and ^ , for all design matrices were

calculated via trial and error, so that the two size conditions are simultaneously satisfied.

These critical calculated values are presented in Table 6.7. From this table, we see that

£ values are far larger than £ values for all cases. The values of fc are always positive

while ^ always takes small negative values. From the critical \alues, we also observe

that £ always increases as the sample size increases, the one exception being for ^ 3 .

On the other hand, £ decreases for x\ X2, XJ an(^ increases for ^ 4 , A'5 w n e n the

sample size increases.

Using the critical values presented in Table 6.7, we calculated the sizes of the test by

using (6.12) for different values of x under / / and calculated the powers of the test for

different values of r under // . The calculated sizes are presented in Table 6.8 and the

calculated powers are presented in Table 6.9.

From Table 6.8 we see that there are a few sizes significantly different from five percent

at the 0.01 significance level. There are only three sizes that are much larger than the

average size when „ = 50, these are at or near the first boundary point Q = o.O f°r X2

and i = 0.0' 0.1 for ^ 3 ) of the null hypothesis parameter space. Overall we find that

the sizes of the test are very acceptable, with m - 2, for z and w , when the sample

size is small.

From Table 6.9 we see that the powers of the test increase as T increases for all design

matrices. Comparing the powers presented in Table 6.3 for „,- = 1 when the estimated

sizes are not controlled for z and w , with those powers of the test for /;, = 2, we see



148 Chapter 6

that the powers of the test for m = 2 are always lower than the powers of the test for

m --• 1. The main reason may be because some of the calculated sizes of the test with

m = 1 are higher compared to those for m = 2, particularly where the two parameter

spaces meet at X = r = 0.

Similarly, for z2l and w2l, based on the estimated sizes presented in Table 6.4 for m = 1,

we divided the null hypothesis parameter space into two disjoint intervals. One

subregion (0,) is a region which is made up of the parameter values that have smaller

than the average size and the other one (0,) is the region of values with larger than the

average sizes under the null hypothesis parameter space for the m -• 1 version of the test.

The boundary point of the two disjoint intervals is determined by the same technique

mentioned above, i.e., the high size/low size technique. For z2l and w2l, ranges of the

two disjoint intervals and the corresponding values of j , where Xj = Tj = (2j-\)/(2q),

j = 1, 2,..., q, q - 50 for all design matrices are presented in Table 6.10.

Thus the test with 7;/ = 2, involves a critical region given by (6 12) and using (6.12) we

calculated the critical values kx and k2, via trial and error. The calculated critical values,

fr, and k2, for z2l and w2l, are presented in Table 6.11. From this table we see that k2

values are far larger than £, values for all design matrices. The values of k2 are always

positive numbers whereas kx takes positive as well as small negative values.

For z2l and vv2,, using the critical values presented in Table 6.11, by equation (6.12), we

calculated the sizes of the test for different values of A under HQ and calculated the

powers of the test for different values of r under Ha. The calculated sizes are presented

in Table 6.12 and the powers are presented in Table 6.13.
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From Table 6.12 we see that all the estimated sizes of the test fall within the rejection

probability range [0.037, 0.063] are not significantly different from five percent at the

0.01 level for all design matrices. It is pleasing to see that the sizes of the test are very

acceptable for all design matrices, when m = 2, for - and Wi both for small and large

sample sizes.

Also, from Table 6.13 we find that the powers of the test with m = 2 increase as T

increases for all design matrices. It can be observed that the powers of the test with

m - 1 are slightly higher than, the powers of the test with m = 2 • This is mainly because

when m - 2, we controlled the sizes of the test to the average size which makes the

powers a bit lower than the powers of the test when the sizes are not so well controlled,

that is, m = \.

Overall we can say that the size and power properties of the test are reasonably

acceptable for testing for heteroscedastic disturbances in the linear regression model for

both Z)( and VV) , and z^ and w^, when m ~ 2.

6,4 Test sizes controlled at A = 0 with m = 1

We conducted a further simulation experiment to investigate the behaviour of the small

sample size and power properties of the test when the test sizes are controlled at x = 0

under the null hypothesis parameter space for z and w , when m - \. We carried out

this simulation experiment to see how well our test procedure works in this case. It must

be noted that in this case the resultant test is no longer optimal but His of interest to see

how much power is lost by using this slightly different test procedure.
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6.4.1 Properties of the test when sizes controlled at A = 0 with m - 1

In Section 6.3.3, we observed that the size and power properties of the test for;?; = 2 are

acceptable for both zu and wu, and z2t and H\, . However, a lot of computational time

was used to find the critical values A', and k2 for which the size conditions are satisfied.

Also, for zu and wu, when m = 1 we see from Table 6.2 that sizes of the test decrease as

A increase. Then it is very easy to control the maximum size of our test which always

(at least in our experiments) occurs at A = 0. For this case, in order to calculate the sizes

and powers of the test, we calculated the critical value (co) for all design matrices based

on (6.9), with m = 1, where the data are simulated by taking A = 0. The calculated

critical values are presented in Table 6.14.

6.4.2 Results

Using the critical values presented in Table 6.14, we calculated the sizes of the test

through equation (6.11) for different values of A under Ho and calculated the powers of

the test for different values of r under Hu. The calculated sizes are presenteo fa Table

6.15 and the powers are presented in Table 6.16.

From Table 6.15 we see that all the estimated sizes of the test for all design matrices are

lower or equal to 0.05. This indicates that the size performance of the test is very

satisfactory for all design matrices, when sizes of the test are controlled at A = 0 with

m = 1, for z,, and wu, both for the smaller and the larger sample sizes. From this point

of view, v/e can say that without spending a lot of computational time to calculate the

sizes of the test which control average size over different regions under Ho, we can get
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the good results within a very short time by following the above-mentioned test

procedure.

From Table 6.16 we see that the powers of the test increase as r increases for all design

matrices. For - and n, , comparing the powers of the test presented in Table 6.9 for

m = 2 when the estimated sizes are controlled, to those powers of the test for m = \

controlled at x = 0 > vve s e e that when the sample size is small, the powers of the test for

„, = i controlled at x = 0 a r e always higher than the powers of the test for m = 2- On

average, there is zero to 3.0 percentage points increase in terms of power improvement

for all design matrices. Also for larger sample sizes, we see that the powers of the test

for /;, = i controlled at x = 0 a r e lower than the powers of the test for m = 2 with an on

average 0.3 to 6.2 percentage points decrease. One reason for this case may be the fact

that for the starting boundary point x = 0A the calculated sizes of the test for ;;, = 2 are

always higher (above the average size) than the calculated sizes of the test for m = \

with size controlled at x = 0 where all estimated sizes are lower than or equal to 0.05.

There is one case, namely, the ^4 with „ = 30, where the power of the test coincides

for the end boundary point (x = 0.9 )• m general we can see that when the sample size is

small, the size and power performance of the test for„, = \ when sizes are controlled at

X. = 0 f° r z ant* w is v e ry competitive and the test may be recommended. But when

the sample size is large, it may be worthwhile for using the new procedure with m - 2

with respect to size and power properties.
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6.5 Concluding remarks

In this chapter we have applied the new test approach to testing for heteroscedastic

disturbances in the linear regression model. This testing problem is of interest because

both the null and the alternative hypothesis parameter spaces are one-sided infinite

intervals. For this testing problem we used two sets of non-stochastic variables and we

got different results for these two different sets of variables. For both sets of non-

stochastic variables when m = 2, the test performs well with respect to size conditions.

The power properties of the test are well behaved because we are testing for

heteroscedastic disturbances. Further results for z,, and wu when m = 1 and the test

sizes are controlled at X = 0 indicates that for small sample size, the test performance is

fairly good but there is a clear loss of power when we used this test procedure for the

larger sample size. It seems that extra computation for m = 2 is rewarded in terms of

power. From this viewpoint we conclude that the new test approach can work well for

testing problems where both the null and alternative hypothesis parameter spaces are

one-sided infinite intervals. We are able to work on this type of testing problem because

of the parameter transformation used to transform the parameter spaces to finite

intervals.
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Table 6.1

Critical values ( c ) of the test for two different sets of non-stochastic regressor values
for all design matrices when m-\, at the five percent level.

Design matrix

* 1 ( , I X 3 )

A'2(//x3)

A'3(//x5)

A'4(//x3)

X5{nx3)

Sample Size
(»)

20
60

20
60

20
60

20
30

20
60

For 2 and }

4.1071
4.0562

4.4477
4.2111

4.3157
4.2352

4.2945
3.8365

4.405S
4.1852

Critical values ( c )

u> For 2 and u ,
"i f ""2/ " 2 /

1.6210
1.5852

1.5359
1.6391

1.5522
1.5986

1.5287
1.7021

1.5145
1.6370

Table 6.2

Calculated sizes of the test when / / • ~ — (ln, 0 < A < 1 ' s tested against

Ha: wu =(« + ! - /)/«, / = 1, 2,.. . ,«, 0 < r < 1 > f o r m = 1 a t the five percent level.

Parameter
values

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

/;=20

0.079*
0.069*
0.061
0.056
0.048
0.044
0.041
0.035*
0.032*
0.027*

ATI

60

0.134*
0.107*
0.090*
0.072*
0.054
0.042
0.034*
0.025*
0.019*
0.014*

20

0.079*
0.068*
0.058
0.056
0.048
0.041
0.038
0.034*
0.031*
0.025*

X2

60

0.128*
0.105*
0.084*
0.062
0.053
0.041
0.032*
0.024*
0.021*
0.018*

Sizes

20

0.079*
0.070*
0.064*
0.053
0.043
0.040
0.036*
0.029*
0.026*
0.024*

XT,

60

0.127*
0.107*
0.088*
0.067*
0.053
0.048
0.041
0.033*
0.029*
0.026*

20

0.075*
0.065*
0.055
0.049
0.044
0.037
0.034*
0.030*
0.026*
0.023*

'

X4

30

0.127*
0.113*
0.10G*
0.087*
0.071*
0.065*
0.056
0.051
0.041
0.036*

20

0.075*
0.065*
0.060
0.052
0.046
0.040
0.035*
0.031*
0.027*
0.023*

X5

60

0.127*
0.106*
0.084*
0.065*
0.053
0.041
0.032*
0.026*
0.020*
0.015*

denotes value significantly different from the five percent level at the 0.01 level.
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Parameter

Table 6.3

Calculated powers of the test when Ho: zu - t/n, 0 < X < 1 is tested against
Hlt: wu = (// + ! - t)/n. / = 1, 2,...,//, 0 < r < 1, for in = 1 at the five percent level.

Powers

x\
T "=20 60 20

X2

60 20

X3

60 20

X4

30 20

X5

60

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.091
0.105
0.119
0.134
0.146
0.159
0.171
0.182
0.197

0.169
0.202
0.243
0.2S4
0.319
0.347
0.386
0.418
0.453

0.095
0.106
0.116
0.131
0.145
0.154
0.165
0.181
0.200

0.161
0.199
0.236
0.271
0.303
0.338
0.373
0.403
0.434

0.089
0.101
0.112
0.122
0.13S
0.149
0.158
0.171
0.182

0.158
0.192
0.229
0.264
0.297
0.330
0.357
0.387
0.418

0.089
0.098
0.112
0.12S
0.141
0.154
0.166
0.17S
0.184

0.148
0.162
0.181
0.202
0.222
0.237
0.254
0.283
0.298

0.087
0.099
0.112
0.126
0.143
0.156
0.175
0.185
0.194

0.169
0.203
0.242
0.274
0.315
0.350
0.382
0.415
0.445

Table 6.4

Calculated sizes of the test when Ho: z2l = t/n, 0 < X < 1 is tested against
Hit: w,, =0, if t < n/2, or 1, if / > n/2, t = 1, 2,...,/;, 0 < r < 1, for m - 1 at the five

percent level.

Parameter
values

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

«=2(

0.033*
0.036*
0.041
0.047
0.050
0.052
0.053
0.057
0.059
0.059

X\

) 60

0.040
0.046
0.051
0.054
0.058
0.062
0.066*
0.070*
0.076*
0.079*

20

0.045
0.048
0.051
0.055
0.058
0.061
0.061
0.065*
0.066*
0.070*

X2

60

0.040
0.046
0.049
0.053
0.057
0.060
0.064*
0.067*
0.068*
0.072*

Sizes

X3

20

0.053
0.053
0.056
0.058
0.060
0.063
0.065*
0.067*
0.069*
0.072*

60

0.034*
0.042
0.046
0.050
0.054
0.057
0.061
0.065*
0.072*
0.074*

20

0.051
0.055
0.061
0.063
0.065*
0.067*
0.070*
0.074*
0.077*
0.080*

A'4

30

0.037
0.039
0.042
0.044
0.045
0.048
0.049
0.050
0.051
0.053

20

0.050
0.052
0.054
0.057
0.060
0.060
0.067*
0.069*
0.072*
0.073*

X5

60

0.036*
0.040
0.048
0.051
0.056
0.060
0.064*
0.065*
0.068*
0.071*

denotes value significantly different from the five percent level at the 0.01 level.
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Table 6.5

Calculated powers of the test when //o- - _ tin ? Q < X < 1 *s tested against

Ha\ w2l = 0, # / < n/2, or 1, if / > ;,/2 , / = l, 2,.... w, 0 < r < 1» f o r m -1 at the five
percent level.

Parameter
values

r

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

, ,=2

0.051
0.059
0.070
0.084
0.097
0.109
0.119
0.131
0.143

XI

0 60

0.062
0.088
0.117
0.146
0.179
0.212
0.242
0.279
0.310

20

0.059
0.071
0.080
0.099
0.110
0.127
0.141
0.154
0.171

X2

60

0.062
0.079
0.106
0.132
0.164
0.197
0.228
0.259
0.294

Powers

20

0.059
0.070
0.081
0.091
0.102
0.112
0.125
0.134
0.139

Y3

60

0.057
0.0S2
0.112
0.140
0.166
0.195
0.227
0.257
0.287

20

0.066
0.079
0.091
0.102
0.123
0.136
0.151
0.162
0.177

X4

30

0.046
0.054
0.061
0.077
0.093
0.105
0.123
0.140
0.158

20

0.058
0.072
0.086
0.095
0.107
0.121
0.136
0.153
0.166

X5

60

0.059
0.081
0.106
0.134
0.174
0.204
0.232
0.265
0.294

Table 6.6

Ranges of the two disjoint intervals and the corresponding values of y , where

7 = l , 2 , . . . , 9 . 9 = s 5 0 . a n d Z i | = / / M , w,, = (H +1-/) /«•

r = 1,2, . . . ,«•

Design matrix Sample Size

( / i )

Subregions

0, 0 2

(larger than average size for (smaller than average size for
m = 1) m = 1)

* 1 ( I I X 3 )

,V2(//x3)

X3(nx5)

X4{nx3)

A'5(/;x3)

20

60

20

60

20

60

20

30

20

60

0<

0<

0<

0<

0<

0<

0<

0<

0<

0<

A < 0.38 (7 =1,2, ..

X <0.43 (7 =1,2,..

A < 0.38 (7 =1,2,..

X < 0.42 (7 =1,2,..

X < 0.33 (7 =1,2,..

X <0.46(7=1,2,..

X < 0.23 (7 =1,2,..

A<0.71 (7=1,2, . .

X < 0.33 (7 =1,2,..

X < 0.42 (7=1, 2,..

.,19)

.,22)

.,19)

-.21)

.,17)

.,23)

-.12)

-.36)

,17)

.,21)

0.38<A< 1 (7

0 . 4 3 < / l < l ( 7

0.38< X < 1 (7

0.42< X< 1 (7

0.33< X < 1 (7

0.46 < X< 1 (7

0.23< X < 1 (7

0.1\<X< 1 (7

0.33 < X< 1 (7

0.42< X < 1 (7

=20,21,

=23, 24,

=20,21,

=22, 23,

=18,19,

=24, 25,

= 13, 14,

=37, 38,

=18, 19,

=22, 23,

...,50)

...,50)

...,50)

...,50)

...,50)

...,50)

...,50)

...,50)

...,50)

....50)
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Table 6.7

Final critical values kx and k2 when zu = t/n and wu = (n •*- \-t)jn, t = 1, 2,. . . ,
for m = 2 at the five percent level.

Design matrix

ATI (/; x 3)

A-2(7,x3)-

A3 (77X5)

A'4(»x3)

A^5(7/x3)

Sample size (7;)

20
60

20
60

20
60

20
30

20
60

Critical

*•

3.8946
3.9709

3.5142
3.5379

3.9040
3.0458

3.3866
5.4805

3.2769
3.9008

values

*,

-0.825
-0.71

-0.70
-0.54

-0.92
-0.50

-0.74
-1.50

-0.60
-0.62

Table 6.8

Calculated sizes of the test when Ho: zu = t/n, 0 < X < 1 is tested against
Ha: wu = (// + ! - t)/n, t = 1, 2,. . . , /;, 0 < r < 1, for m = 2 at the five percent level.

Parameter
values

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

i«= 2(

0.041
0.036*
0.035*
0.033*
0.035*
0.035*
0.038
0.042
0.045
0.048

ATI

) 60

0.063
0.043
0.035*
0.031*
0.031*
0.035*
0.041
0.046
0.050
0.057

20

0.058
0.054
0.050
0.047
0.045
0.044
0.044
0.047
0.049
0.047

X2

60

0.065*
0.053
0.044
0.036*
0.033*
0.035*
0.041
0.049
0.051
0.055

20

0.044
0.043
0.042
0.042
0.044
0.044
0.045
0.047
0.048
0.052

Sizes

A3

60

0.089*
0.074*
0.059
0.056
0.052
0.050
0.051
0.053
0.055
0.057

20

0.043
0.041
0.043
0.041
0.043
0.044
0.044
0.045
0.049
0.049

XA

30

0.059
0.052
0.044
0.043
0.044
0.048
0.049
0.052
0.055
0.060

20

0.052
0.051
0.044
0.043
0.039
0.037
0.039
0.038
0.041
0.043

X5

60

0.062
0.048
0.037
0.034*
0.030*
0.035*
0.040
0.044
0.049
0.056

denotes value significantly different from the five percent level at the 0.01 level.
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Table 6.9

Calculated powers of the test when HQ- Z^ ~ tjn, o < A < 1 is tested against

Ha: wu = (w +1 -t)/n, / = 1, 2, . . . ,», 0 < r < 1. f o r m = 2 at the five percent level.

Parameter
values

r

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

77=20

0.046
0.054
0.058
0.066
0.072
0.077
0.0S4
0.0S9
0.100

60

0.078
0.102
0.117
0.143
0.172
0.200
0.229
0.263
0.288

20

0.066
0.070
0.077
0.0S7
0.097
0.104
0.111
0.119
0.133

X2

60

0.091
0.111
0.131
0.160
0.191
0.220
0.252
0.275
0.306

Powers

20

0.047
0.052
0.057
0.064
0.073
0.079
0.087
0.093
0.094

XI

60

0.115
0.137
0.165
0.194
0.223
0.253
0.284
0.311
0.337

20

0.048
0.049
0.056
0.060
0.069
0.078
0.0S4
0.090
0.098

XA

30

0.070
0.081
0.096
0.113
0.118
0.130
0.142
0.154
0.164

20

0.059
0.066
0.074
0.082
0.086
0.095
0.105
0.113
0.122

X5

60

0.081
0.099
0.121
0.144
0.179
0.208
0.240
0.263
0.2S6

Table 6.10

Ranges of the two disjoint intervals and the corresponding values of y, where

,. = r y = (2y-l)/(2<7)>./ = 1,2, ...,<?> q = 50>™dz2l=t/n, w2/ = 0, if t < n/2.

! ' i f />/i/2> / = 1, 2, ...,/»•

Design matrix Sample Size

in)
Subregions

0> 0 2 4

(smaller than average size for (larger than average size for
77/ = 1 ) 777 = 1 )

A'2(/?x3)

A"3(wx5)

;f4(/ix3)

A'5(;JX3)

20

60

20

60

20

60

20

30

20

60

0 <

0<

0<

0<

0<

0<

0<

0<

0<

0<

X < 0.20 (7=1,2, . .

A<S 0.18(7=1,2,..

X < 0.17 (7 -1 ,2 , . .

X < 0.20 (7 =1,2,..

/ l<0 .18 (7= l ,2 , . .

X < 0.20 (7 =1,2,..

X < 0.20 (7 =1,2,..

^ 0 . 1 5 ( 7 = 1 , 2 . . .

X < 0.20 (7 =1,2,..

X < 0.27 (7 -1 ,2 , . .

.,10)

9)

9)

., 10)

-,9)
.,10)

• JO)

.,8)

• JO)

., 14)

0.20 <

0.18<

0.17<

0.20 <

0.18<

0.20 <

0.20 <

0.15<

0.20 <

0.27 <

X
X

X
X

X
X

X
X

X
X

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

(7=11,12,.

(7=10,11,.

(7=10,11, .

(7=1M2,.

(7=10,11, .

(7=11,12,.

(7=11,12,.

(7=9,10,. .

(7=1U2, .
(7=15,16,.

..,50)

..,50)

..,50)

..,50)

• -,50)

..,50)

..,50)

.,50)

..,50)

...50)
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Table 6.11

Final critical values ft, and k2 when z2l = t/n and w,, =0, if / < n/2, or 1, if
/ > n/2, t = i, 2,..., n, for 7?J = 2 at the five percent level.

I
Design matrix

AH (77X3)

A'2(nx3)

X3(nx5)

XA(nx3)

X5(nx3)

Sample size (n)

20
60

20
60

20
60

20
30

20
60

Critical values

*,

-0.0349
-0.0060

-0.2344
0.0647

-0.1679
-0.0036

-0.0985
-0.2002

-0.1205
0.2390

k.

1.60
1.87

1.91
1.71

1.84
1.90

1.72
2.10

1.76
1.55
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Table 6.13

Calculated powers of the test when //o; z^ - tjn, o < /I < 1 is tested against

H,,\ w2l =0, ^ / < 77/2, or 1, if , > nj2 , / = 1, 2,... ,/;, 0 < r < 1. f o r m = 2 at the five
percent level.

Parameter
values

r

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

77=20

0.047
0.056
0.070
0.083
0.094
0.105
0.113
0.121
0.135
0.150

XI

60

0.047
0.064
0.077
0.09S
0.126
0.147
0.166
0.194
0.218
0.245

20

0.049
0.055
0.064
0.070
0.078
0.086
0.095
0.105
0.113
0.123

X2

60

0.049
0.070
0.087
0.109
O.!29
0.156
0.180
0.203
0.232
0.257

Powers

X3

20

0.051
0.05S
0.065
0.071
0.079
0.086
0.091
0.098
0.106
0.113

60

0.049
0.059
0.076
0.093
0.115
0.134
0.151
0.176
0.202
0.225

20

0.047
0.05 S
0.069
0.079
0.090
0.107
0.116
0.127
0.134
0.146

XA

30

0.055
0.059
0.065
0.071
0.077
0.0S4
0.091
0.107
0.117
0.127

20

0.045
0.055
0.062
0.069
0.0S3
0.092
0.102
0.113
0.122
0.132

X5

60

0.040
0.059
0.078
0.102
0.130 •)
0.159 1
0.184
0.216 »
0.237 I
0.265 i

Table 6.12

Calculated sizes of the test when Ho: z2l=ijn,0<A<\ is tested against
Ha: w2t =0, if t < «/2, or 1, if / > n/2, / = 1, 2,..., n, 0 < r < 1, for m = 2 at the five

percent level.

Parameter
values

X

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

"=20

0.047
o.o^y
0.050
0.052
0.052
0.054
0.055
0.057
0.058
0.060

n
60

0.047
0.047
0.048
0.052
0.052
0.053
0.053
0.054
0.056
0.055

20

0.049
0.047
0.048
0.048
0.049
0.048
0.049
0.050
0.051
0.052

XI

60

0.049
0.049
0.051
0.051
0.054
0.054
0.055
0.056
0.058
0.059

20

0.051
0.051
0.050
0.051
0.050
0.051
0.052
0.052
0.053
0.054

Sizes

X3

60

0.049
0.048
0.048
0.048
0.049
0.051
0.052
0.052
0.052
0.054

20

0.047
0.048
0.048
0.050
0.053
0.054
0.056
0.057
0.059
0.060

XA

30

0.055
0.052
0.052
0.051
0.051
0.049
0.048
0.049
0.049
0.049

20

0.045
0.046
0.047
0.048
0.049
0.051
0.053
0.053
0.053
0.054

X5

60

0.040
0.041
0.044
0.048
0.050
0.051
0.053
0.055
0.056
0.057

Table 6.14

Critical values ( c ) of the test for all design matrices for z and w when sizes are

controlled at ^ = Q , for m - \ at the five percent level.

Critical values ( c )

5.3663
9.0774

6.1441
8.S586

5.5979
8.7613

5.3611
7.5320

5.8346
9.2466

Design matrix

Ar3(/;x5)

X4(77X3)

A'5(?/x3)

Sample Size ( /7)

20
60

20
60

20
60

20
30

20
60
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Table 6.15

Calculated sizes of the test when HQ: z,, = ///;, (sizes are controlled at X = 0) is
tested against H(t: wv = (/»+1 - t)jn, / = 1, 2,..., //, for m = 1 at the five percent

level.

Parameter
values

X

x\
"=20 60 20

X2

60

Sizes

XI

20 60 20

X4

30 20

X5

60

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.050
0.044
0.037
0.033*
o.o:7*
0.023*
0.020*
0.016*
0.014*
0.011*

0.050
0.035*
0.024*
0.016*
0.015*
0.011*
0.009*
0.00S*
0.007*
0.005*

0.050
0.042
0.036*
0.030*
0.026*
0.023*
0.019*
0.017*
0.014*
0.013*

0.050
0.038
0.028*
0.021*
0.018*
0.015*
0.012*
0.009*
0.007*
0.004*

0.051
0.041
0.037
0.029*
0.026*
0.024*
0.022*
0.019*
0.018*
0.017*

0.051
0.044
0.034*

0.024*
0.017*
0.012*
0.010*
0.009*
0.009*

0.050
0.044
0.037
0.032*
0.028*
0.022*
0.020*
0.017*
0.015*
0.012*

0.051
0.041
0.034*
0.027*
0.020*
0.018*
0.015*
0.014*
0.013*
0.011*

0.050
0.041
0.035*
0.02S*
0.024*
0.020*
0.016*
0.013*
0.012*
0.010*

0.051
0.035*
0.026*
0.019*
0.014*
0.012*
0.009*
0.007*
0.006*
0.004*

denotes value significantly different from the five percent level at the 0.01 level.

Table 6.16

Calculated powers of the test when Hn: zu = t/n, (sizes are controlled at X = 0) is
tested against H(l: w,, = (n +1 - / ) / » , t = 1, 2,..., n, for m = 1 at the five percent

level.

Parameter
values

r

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

X\

"=20

0.060
0.070
0.075
0.088
0.100
0.107
0.116
0.127
0.136

60

0.071
0.093
0.110
0.135
0.158
0.191
0.218
0.246
0.278

20

0.057
0.063
0.076
0.087
0.096
0.105
0.115
0.128
0.137

X2

60

0.068
0.096
0.114
0.135
0.163
0.193
0.221
0.250
0.272

Powers

20

0.062
0.072
0.081
0.089
0.098
0.105
0.113
0.125
0.133

X3

60

0.071
0.093
0.114
0.133
0.159
0.183
0.209
0.239
0.264

20

0.058
0.070
0.081
0.089
0.098
0.112
0.122
0.133
0.141

XA

30

0.062
0.074
0.091
0.108
0.117
0.129
0.140
0.153
0.164

20

0.057
0.065
0.074
0.083
0.094
0.105
0.114
0.122
0.138

X5

60

0.069
0.089
0.108
0.129
0.161
0.190
0.223
0.249
0.274

t

Chapter 7

Testing Joint MA(1)-MA(4) against Joint AR(1)-AR(4)
Disturbances in the Linear Regression Model

7.1 Introduction

Through the work of Thomas and Waliis (1971), and Wallis (1972), there is recognition

that quarterly regression models may possess fourth-order autocorrelation because of

seasonal variation. Wallis (1972) found a rigorous solution to the fourth-order

autocorrelation testing problem by adapting the approach introduced by Durbin and

Watson (1950, 1951) for the equivalent first-order testing problem. In fact Wallis (1972)

and Vinod (1973) separately developed the fourth-order analogue of the Durbin and

Watson test statistic which is now known as the Wallis test, while Webb (1973)

suggested the generalisation of the Berenblut and Webb (1973) test. King (1984)

considered the fourth-order analogue of his (1982b) locally optimal bounds test for first-

order autoregressive disturbances. King (1989) noted that omitted or unobservable

regressors with seasonal components might well lead to both first-order and fourth-order

effects in the regression disturbances. He argued that the presence of first-order

autocorrelation in a quarterly regression model is a good reason to suspect additional

autocorrelation of a seasonal nature. This led him to propose a test for simple fourth-
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order autoregressive [AR(4)] disturbances in the presence of first-order autoregressive

[AR(1)] disturbances.

During last three decades, there has been an increased awareness of the moving average

(MA) process in regression disturbances and the MA process has been seen as an

important alternative [see, for example, Nicholls, Pagan and Terrell (1975)]. Perhaps

also because the Durbin-Watson test is approximately LB1 against either AR(1) or

MA(1) disturbances in the linear regression model, interest has focused on testing

AR(1) against MA(1) disturbances (see for example, Walker (1967), King (1983a), King

and McAleer (1987), Burke et al. (1990), Smith and Tremayne (1990), Franses (1992),

Silvapulle (1994a, 1994b), Baltagi and Li (1995)). Thu reverse problem of testing

MA(1) against AR(1) disturbances has been investigated by Silvapulle and King (1991),

Sriananthakumar (2000) and in Chapter 4. Walker (1967) developed Cox tests of AR(p)

processes against MA(q) processes and vice versa. Silvapulle and King (1993)

investigated the construction and application of POI tests of joint AR(1)-AR(4)

disturbances against joint MA(1)-MA(4) disturbances in the linear regression model and

they illustrated the testing problem with an application to a quarterly model of price

inflation in the United Kingdom during 1947-1970. Thus the reverse testing problem is

clearly also of interest. In addition, the increased awareness of MA processes and joint

first-order and seasonal autocorrelation suggests the need for a test of joint MA(1)-

MA(4) disturbances against joint AR(1)-AR(4) disturbances in quarterly regression

models. Joint processes of the multiplicative type such as joint MA(1)-MA(4) and joint

AR(1)-AR(4) processes have been found useful for empirical modelling of quarterly

time series (for example, for joint MA(1>MA(4) processes see Silvapulle and King

(1993); for joint AR(1)-AR(4) processes see Box and Jenkins (1976), Prothero and

Testing Joint MA(I)-MA(4) against Joint AR(I)-AR(4) Disturbances in the Linear Regression Model 163

Wallis (1976), Wallis (1977), Burman (1980), Harvey (1981) and Granger and Newbold

(1986)).

The aim of this chapter is to investigate the performance of the new test procedure

introduced in Chapter 3, by applying it to the problem of testing joint MA(1)-MA(4)

disturbances against joint AR(1)-AR(4) disturbances in the linear regression model. As

our test procedure works well for the testing problem of MA(1) disturbances against

AR(1) disturbances; and testing for heteroscedastic disturbances in the linear regression

model, we now investigate how well it extends to testing two-dimensional parameter

spaces under the null and alternative. Also, the aim of this chapter is to explore the

properties of our testing procedure for multiplicative type models involving two-

parameters. Particular issues are to see if the test procedure can be easily generalised to

two-parameters and to see what an appropriate choice of in is in this case.

The plan of this chapter is as follows. Section 7.2 introduces the testing problem and the

form of the test for testing joint MA(1)-MA(4) disturbances against joint AR(1)-AR(4)

disturbances in the linear regression model. An outline of the simulation experiments is

given in Section 7.3. Results of the simulations designed to explore the properties of the

test procedure for m = 1, m = 2, m = 2 with special weights and m = 3 , are reported in

Sections 7.4, 7.5, 7.6 and 7.7, respectively. Section 7.8 contains some concluding

remarks.
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7.2 The testing problem and the form of the test

Consider the linear regression model (3.10). Suppose one possibility is that the

components of the ; /x l disturbance vector u are generated by the joint MA(1)-MA(4)

process

u= = 1, 2, . . . , n, (7.1)

where L is the lag operator such that Le, = <?,_,, 0 < y . < 1 , » = 1,4, are unknown

parameters with at least one being non-zero and e - (e^ , e_3,..., en)' ~ N(Q, cr2/,l+s) -

The other possibility is that the components of // are generated by the stationary joint

AR(1)-AR(4) process

) i < , = « ? , , / = 1 , 2 , . . . , / » , (7.2)

where 0< p, < 1, / = 1, 4 , are unknown parameters and e = (e,, e2, ..., en)'

~N(0,a2In).

Now, consider the general fifth-order moving average (MA(5)) error process

u, = e,

By imposing restrictions on this process, that is, y2 = y3 = 0 and ys = yj4, this reduces

to

(7.3)

Tlius equation (7.1) is the special case of the general MA(5) process.

I
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Similarly, by imposing similar restrictions on the general fifth-order autoregressive

(AR(5)) error process yields

(7.4)", = P\u,-\ +
 PAU,-A ~ P\PA«,-S + e<>

which indicates that (7.2) is a special case of the stationary AR(5) process.

For equation (7.2), appropriate start up equations for the process following Silvapulle

(1991) are

u2 =b2)ux+b22e2,

113 = k»i "2 +^3:"i +^:o e3

z/4 = /J41»3 +bA2u2 +643M, +bA4eA

where btj 's are functions of p , and p 4 , and we define

2

P, P + P4)
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633 = buj(l-b3lax-b32a2),

_(\-al
2)(ax-a2a3)-ax(l-a1)(a2-ala3)

41 l 2 a 2 + 2 a 2 a a 2

1-af

c,c6-c3c4

C 6 C 2 ~ C 3 C S
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654 = a4 ~ b s \ a i -^52a2 ~ baax,

in which

c, = (1 - a,2

c2 = (1 -

c 3 = ( l -

c4 =

- (a2 -

- a 2 ) - ( a 2 -

c5 == (1 - a,2 )(a, - fl2a3) - (a, -

(for details see Silvapulle, 1991, Appendix 4.1, p.88-92).

Let S(y) be the variance-covariance matrix of the MA(1) process, defined in Chapter 4

and //(x, «) be the Cholesky decomposition matrix of S(y), that is, by definition of

Cholesky decomposition, H{y, n)H(y, /;)' =

Thus / / ( / ,« ) is the nx/i bi-diagonal matrix defined by Silvapulle (1991, p.70) as

follows

[a3 - a , a 4 - ( g 2 -flifl3)fc5l -(ax-
= _ _

i-a,
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H{y,„) =

//,, 0 0

//„ />„ 0

0 /j32 '»3333

0 0

0 0

0 0

0 0 0

0 0 0
V..-. o
Kn-\ K,

The non-zero elements of H(y, n) are generated by tlie recursive method as follows:

'/,,_! = 7/h,-\j-\' a n d A/ = [0 + 'y") ~'O-iJ ' i = 2, 3,.. . , ii.

Suppose, / / , ( / , ) = / / ( / , , //). If // is an integer multiple of 4, define

(7.5)

where ® is the Kronecker product. If n is not an integer multiple of 4, HA(y4) is

defined by first rounding // up to the next integer multiple of 4, applying (7.5) and then

deleting the extra number of bottom rows and right-hand columns to convert it back to

an // x n matrix.

Now, the process defined by (7.1) can be expressed as

and

Var(u) =
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Tlie process (7.2) can be expressed as

and

= crQ(/?,, p4), say,

where G{pv p4) is the inverse of the Cholesky decomposition matrix of the variance-

covariance matrix of the stationary joint AR(1)-AR(4) process, i.e.,

1 ,p 4 ) = G(p 1 ,A , r 1 G(p 1 , p 4 r 1 . Silvapulle (1991), Wu (1991) and Ara (1995)

derived the G(px, p4) matrix using different approaches. Following Silvapulle (1991),

the G(pv p4) matrix can be written as

-o,i

X
-ly
b44

1

X
X̂

44

P,P4
0

-PA,

0

633

44

"55

0

-PA

0

0

0

J_
^44

0

0

0

0

0

0

_1_

655
- P i

0

0 0

0 0

0 0

0 0

0 0

1 0

-p, 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

1 0

-p , 1
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where the bu 's are functions of p, and p 4 , are defined above.

It can be shown that b42 =bS2 =653 = 0 , (for details see Silvapulle (1991, Appendix 4.1,

p.88-92); Wu (1991, p.77-79); or Ara (1995, p.87-88)).

Our main concern is in testing

v \\ 0 < v < 1 z = 1 4 (16}

against

p4)) , 0<p , .< l , i = l ,4 , (7.7)

in the context of the linear regression model (3.10). Observe that we are assuming

positive first and fourth-order autocorrelation in the disturbances because positive

autocorrelation is the most likely outcome and therefore is the most interesting case to

consider. The discussion below for the test procedure can easily be generalized to the

case of negative autocorrelation.

The testing problem is invariant to transformations of the form (3.13). Now, using the

results of (3.16) and (3.17), our problem of testing (7.6) against (7.7) in the context of

(3.10), becomes one of testing (after cancellation of some constants)

-1/2
\-

z'z

(7.8)

against
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H,-ho(v, A , A
-1/2

0<Pi < 1 , 1 = 1,4, (7.9)

where z is the OLS residual vector from (3.10) and z(yx>yA) denotes z(X) with

A(A) = £( / , , yA) and also, z(px,pA) denotes z(A) with A(A) = O(p,, pA).

Observe that through invariance arguments and cur assumption of positive

autocorrelation, we have restricted the null and alternative hypothesis parameter spaces

to

respectively.

i ^ l / = l ,4} , and

Let us first consider the test, for which we control average size over 0 , i.e., m ~ 1. The

fundamental NP lemma implies that the test which maximizes average power subject to

controlling average size over the entire null hypothesis parameter space, can be based on

the critical region of the form

-1/2

z'z

N-/I/2

-1/2

z'z

-pll

p(r\
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-1/2 z(proA)'z(px,p4)
- , , ! • :

Z'Z
dpxdpA

or,
-1/2

N-/-/2

z'z

(7.10)

where p(px,pA) and /?(/ , , /4) are the weighting functions for the joint distribution of

p, and pA, and / , and / 4 , respectively and ca is the calculated critical value which

controls the average size of the test. In inequality (7.10), p(px,pA) and p(yx,yA) have

been replaced by the uniform density functions.

If we denote the critical region given by (7.10) as co(ca), then finding ca involves

solving

Wo

for ca, where a is the desired average size of the test.

Inequality (7.10) and equation (7.11) br>iU involve integrals, which have no analytical

solutions. For a numerical solution, we can approximate the integrals given in (7.10) by

numerical integrals so that it is approximately equivalent to
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, vl-l/2

UVP4/)|
/ \-l

!PirP4/j

-1/2

/

V.

vv / xl-l/2 / v-l -1/2

/

\ ' I./

z'z

\' '

z'z

>-,,/2

y/i/2 ~wn

»/4/)

(7.12)

where y , . = pu,= (2j-\)/2q , and yAI -pAI = (2l-\)/2q, j = / = 1, 2, . . . ,</ .

As discussed in Chapter 3, a potential problem is with controlling the average size of the

test. We conducted some simulation experiments, for /;; = 1, m-2, m = 2 with special

weights and m = 3 for testing (7.6) against (7.7) in the context of (3.10).

Detailed discussion of the test procedures, the size and the power properties of the test

with m = 1, m = 2, w = 2 with special weights and /;; = 3 are given in th« following

sections.

7.3 Outline of the simulation experiments

In this section, we report the results of simulation experiments to assess the small sample

size and power properties of our test in the linear regression model. The main objectves

of the experiments are to judge the performance of the test procedure for the joint

distribution of multiplicative type processes with an appropriate choice of m which

approximately controls the size of the test.

In this simulation experiment, 2000 replications were used to calculate the exact five

percent critical values. Sizes and powers of the test were also calculated .t the five

percent level of significance. We calculated the critical values with the disturbances of

(3.10) being generated following process (7.1). The sizes and powers of the test were



174 Chapter 7

calculated at each of the 25 grid-points, defined as {(^,, / 4 ) : y^yA =0.1, 0.3, 0.5, 0.7,

0.9}, under the null hypothesis parameter space 0 and {(p,, pA): pt,pA =0.1, 0.3, 0.5,

0.7, 0.9}, unou" the alternative hypothesis parameter space <£, respectively.

For this testing problem, in order to calculate the size and power properties of the test we

used the X2, X3 and X5 design matrices defined in Chapter 4 and design matrices

X6 which is as follows:

X6: (n x 6; n = 20, 60). A constant dummy, both current and lagged quarterly

Australian private capital movements, current and lagged quarterly Australian

Government capital movements and Australian retail trade commencing

1968(1).

These design matrices were chosen to cover a range of economic applications with

different degrees of seasonality. Moderate and steady seasonality are found in the

Australian retail trade series. Also, large fluctuations and strong seasonality with two

seasonal peaks per year are found in the two capital movement series.

We mentioned in the previous section that the testing problem is invariant with respect

to the nuisance parameters, /? and a2, and we have chosen, p - 0 and a1 = 1 for all

simulation experiments.

The first step involved deciding on the value of m for which the estimated size of the

test is approximately controlled. We pointed out earlier that we conducted some

simulation experiments to choose the value of m and we tried m = 1, m = 2, m = 2 with

special weights and m = 3. Finally we found that the test performs well for wi = 3.

Detailed discussions follow.
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7.4 Results for m = 1

Considering the entire null hypothesis parameter space 0 i.e., m = ) , we conducted

simulation experiments to calculate the critical values ca of the tesi statistic for all

design matrices based on (7.10), which control average size over 0 . The calculated

critical values are presented in Table 7.1. Using these critical values, we calculated the

sizes and powers of the test through equation (7.12), respectively for 25 grid-points of

(X,,/4) under HQ and for 25 grid-points of (p,,/?4) under Ha defined in the previous

section. For design matrices X2, X2, X5 and X6, the calculated sizes and powers of

the test are presented in Tables 7.2a, 7.2b, 7.2c and 7.2d, respectively. A value denoted

by a 'star' is significantly different from five percent at the 0.01 level under Ho.

From the size analysis of the test for m = 1, we see from Tables 7.2a-7.2d that there are

some sizes which are significantly different from the five percent significant level, when

the sample size is small. We also observe that among these significant sizes,a few sizes

are far larger than the average size, for example, for the grid-points

{(y,,r4) = (0.1,0.5), (0.5,0.5)} for X2, {(y,,y4) = (0.1,0.3), (0.1,0.5), (0.3,0.3), (0.3,0.5),

(0.5,0.5)} for XI and {(7,,^,) = (0.3,0.3)} for *5 and X6. When the sample size is

large, we find that almost all sizes are significantly different from the five percent level

but for the grid-points {(/,, y4): yvYi = 0.1, 0.3, 0.5} the sizes are undesirably larger

than the average size while others are smaller than the average size. This shows that the

test does not successfully control the average size over 0 with m = 1. This motivates us

to consider two subregions over 0 , i.e, m = 2.
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Also, from Tables 7.2a-7,2d we see that the calculated powers of the test for m = 1,

always increase as the grid-point under Hu moves further away from (px, p4) = (0, 0).

When the sample size is large, the powers are typically much higherthan the powers for

the smaller sample size. These power properties of the test are almost the same for all

design matrices.

In the following section we discuss the results, i.e. the size and power properties of the

f - for m = 2.

7.5 Results for m - 2

We want to control the estimated sizes of the test to be 0.05 over suitable subregions

under Ho. When we controlled the average size over 0 for the m = 1 version of the test,

we found some sizes are above average and some sizes are below average. Using the

high size/low size approach we divided 0 into two subregions. Accordingly, based on

the calculated sizes of the test for m = l presented in Tables 7.2a-7 2d, we divided the

null hypothesis parameter space {0 < y, < 1, i = 1, 4 } into two disjoint regions, with the

boundary points calculated through the high size/low size approach. For example, in the

case of the X2 design matrix with // = 20, smaller than average sizes lie in the regions

(0 < y , , / 4 < 0.2) and (0.6 < / l < l n 0 < ^ 4 < l ) , and larger than average sizes lie in the

regions (0<^, <0 .2n0 .2</ 4 <1) and (0.2 < / , <0 .6n0<^ 4 ^ 1), a n d similarly

n - 60 for X2, smaller than average sizes lie in the regions (0 < yx < 0.6 n 0.6 <yA<\)

and (0.6<yl<ln0<yA<\), and larger than average sizes lie in the region

( 0 < ^ P x 4 <0.6); see Table 7.2a. Ranges of the two disjoint regions and the

corresponding values of j and /, where yXj = (2j-\)/2q, and yA, = (2l-\)/2q,
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/ - / = 1, 2,..., q, q = 50, for all design matrices are presented in Table 7.3. In each

case the 0 , region (smaller than average size) is shaded in green and the 0 2 region

(higher than average size) is shaded in red.

Thus for m = 2, equation (3.7) gives the resultant test that maximizes average power

subject to two size conditions and involves a critical region of the form (7.12) which

now becomes

-1/2

'

-1/2

z'z

-1/2 -1
-1/2

z'z

-,,12

(7.13)

where kx and k2 are critical values calculated to control average size over the two

subregions of 0 .

If we denote the critical region given by (7.13) as co{k{, k2) and if 0 , are the set of

(y yA) points indicated in Table 7.3 shaded in green and 0 , are the set of (jx,yA)

points indicated in Table 7.3 shaded in red, then finding kx and k2 involves solving

J JQ

(7.14)
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jointly for fc, and k2.

The critical values k{ and k2 were calculated via the trial and error method, and are

presented in Table 7.4, for all design matrices. From this table we observe that k2 values

are far larger than A-, values for all cases. The values of k2 are always positive while kx

takes positive values when the sample size is small and negative values when the sample

size is large. From the critical values we also observe that both kx and k2 values

decrease as the sample size increases for all design matrices.

Using the critical values kx and k2 presented in Table 7.4, we calculated the sizes and

powers of the test through equation (7.13), for 25 grid-points of (yvyA) under Ho and

for 25 grid-points of (p,,/?4) u n d e r #«> respectively. For all design matrices, the

calculated sizes and powers of the test are presented in Tables 7.5a-7.5d.

Now if we analyse the calculated sizes of the test for m = 2, we see from Tables 7.5a-

7.5d that our test successfully controls the average size over the two regions under Ho,

when the sample size is small. In other words, when the sanple size is small, the

calculated sizes of the test fall within the rejection probabilities range [0.037, 0.063] at

the five percent significance level or are less than 0.05. But when the sample size i, 'arge

we observe that there are a few sizes which are significantly different from five percent.

Among these significant sizes, in particular, one calculated size which is much smaller

than the average size is that for grid-point {(yx,y4) = (0.1,0.1)} and the calculated size

for grid-point {(yx,yA) = (0.9,0.9)} is rather larger than the average size. This indicates

that for large samples, our test does not successfully control size over© for m = 2.
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From the analysis of powers of the test for w = 2, we see that the powers of the test are

well behaved for all cases. As the sizes of the test for m - 1 and in = 2 are different, so

the powers for in = 1 and in = 2 cannot be compared in a meaningful way.

7.6 Results for m - 2 with special weights

In this simulation experiment we have chosen only the A'5 design matrix with /; = 60,

to look at whether our test procedure works well or not with some special weights. We

restricted our choice to a single design matrix, because we have to calculate the critical

values, kx and k2, so that the two size conditions are simultaneously satisfied, via the

trial and error method. The calculation for one trial takes about two days. Typically,

calculating the critical values requires 10-30 trials, i.e, 20-60 days. Then follows the

calculation of sizes and powers of the test. Therefore, calculating critical values and the

required sizes and powers of the test is laborious and time consuming. So our choice had

to be limited to one design matrix. This is a clear drawback of our simulation experiment

but we can at least gauge the performance of the test procedure in this case.

In the previous section, we mentioned that the calculated sizes of the test for m = 2 with

n = 60, behave badly for the grid-points {(yx,yA) = (0.1,0.1)} and {(yx,yA) = (0.9,0.9)}.

Suppose we give some extra weight to the troublesome parts of the null hypothesis

parameter space then the size might be controlled and the largest and smallest sizes

might be close to 0.05. This led us to consider HI = 2, with special weights for

troublesome parts of parameter space such as {(yx,yA): Y\ el°»0-2]' Y* e[0,0.2]} i.e.,

for the grid-points {(yI,y4) = (0.1,0.1)} and {(y,,y4): y, e[0.8,l], yA e[0.8,l]} i.e., for

the grid-points {(yx,yA) = (0.9,0.9)}.
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In this experiment, we used the same two disjoint subregions of 0 and the

corresponding values of j and /, for the A'5 design matrix for in = 2 with ;; = 60

which were presented in Table 7.3, but with special weights on

' , , / , ) : / , e[0,0.2],/4 G[0,0.2]} and {(y,,y4): yx e[0.8,1], yA e [0.8,1]} (four-times

the nonnal weight).

Applying the four-times weights for the grid-points {(y],yA) = (0.1,0.1)} and

{(Y\->YA) = (0-9,0.9)}, we calculated the critical values A-, and k2 which turned out to be

A', = -0.000006 and k2 = 1.0. If we compare these critical values with the previous

critical values for in = 2 with equal (normal) weights, we see that new values are quite

different to the old values.

Using the critical values A-, = -0.000006 and £,=1.0, through equation (7.13) we

calculated the sizes and powers of the test which are presented in Table 7.6. From this

table we observe that there is no great improvement in the calculated sizes of the test.

While some calculated sizes improve, other calculated sizes are worst than previously.

The results indicate that giving special heavy weights to some part of the null parameter

space is helping to control size in that part of the space but at the expense of losing some

control in other parts of the space. We conclude that the test procedure does not work

that well with special weights for in = 2. The test procedure may be able to be tuned to

make it work by changing weights but we do not know for which weights it will work,

well. It would take a very large amount of computation to check this out. Therefore we

considered in - 3.
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7.7 Results for m = 3

In this section, we have also chosen only the ^ 5 design matrix with // = 60, to conduct

the simulation experiments for HI = 3 . The reason is as explained in the previous section.

For in - 3 , calculating critical values and the required sizes and powers of the test is

much more laborious and time consuming than for m = 2. Therefore we have restricted

our choice to a single design matrix.

Thus, based on the calculated sizes of the test for in = 1 and m = 2 presented in Table

7.2c and Table 7.5c, respectively, we divided the null hypothesis parameter space into

three disjoint regions and controlled average size over each of the subregions. We used

the high size/low size technique for division into two (m = 2) regions of the test for

in = 1. In this case (m = 2) there was one troublesome region (low size) and we divided

the low size region into two with the troublesome high size parts of this region certainly

the third region. That is, one subregion (0,) is that for which the smaller than average

sizes resulted, sizes larger than average size determined the second subregion (0,) and

the third subregion (0 3) covered those regions which resulted very high size (see Table

7.5c). Ranges of the three disjoint regions and the corresponding values ofy and /,

where yij = (2j-\)/2q, and yAt = (2/-1)/2</, j=l= 1,2, ...,</, are given in Table

7.7. The 0 , region is shaded in green, the 0 , region is shaded in red and the 0 3 region

is shaded in yellow.

Thus for m = 3, equation (3.7) gives the resultant test that maximizes average power

subject to three size conditions and involves a critical region of the form (7.12) which

now becomes
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where kx, A% and k3 are critical values calculated to control average size over the three

subregions of 0 .

If we denote the critical region given by (7.15) as co(kv k2, k3) and if 0 , is the set of

(y},y4) points shaded in green, 0 2 is the set of (y,,y4) points shaded in red and 0 , is

the set of (/, ,74) points shaded in yellow in Table 7.7, then finding kx, k2 and k3

involves solving

J JQi J(o(ki,k2,k7)

jointly for kx, k2 and ky.

/ = 1 , 2, 3 , (7.16)
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The critical values A',, k2 and ky were calculated via trial and error, so that the three

size conditions are satisfied. The calculated critical values are A, =-0.000845, k2 =1.6

and k3 =0.000012. Using these critical values through equation (7.15), we calculated the

sizes and the powers of the test, which are presented in Table 7.8. From this table, we

observe that there is a large improvement in the size performance of the test for m = 3

but yet a few sizes are significantly different from five percent. There are only two sizes

which are higher than the upper limit of the rejection probability range, these are for the

grid-points {(yltyA) = (03,0.5)} and {(yvy4) = (0.9,0.9)}. The sizes for the grid-points

{(yy,yA) = (0.3,0.5)} and {(yvyA) = (0.9,0.9)} were 0.062 and 0.194 for w» = 2, now

these sizes are controlled to 0.064 and 0.074, respectively. Also we observe that where

the sizes of the test for /;/ = 2 were smaller than 0.05, now these sizes come very close to

0.05. Overall we observe that the sizes of the test for m = 3 are better controlled than the

sizes of the test for m = 2, for X5 and /; = 60. If we compare the powers of the test for

m = 3 with m = 2, we see that the powers for in = 3 are bit higher than for m = 2, but

not remarkably higher. In other words, the power properties of the test are almost

unchanged.

7.8 Conclusions

This chapter investigated the problem of testing for joint MA(1)-MA(4) disturbances

against joint AR(1)-AR(4) disturbances in the linear regression model. We are interested

in this testing problem because the models we are considering both under the null and

alternative hypothesis are two-dimensional parameter space models. In this testing

problem, we have applied the new test approach as an example of an application to a

multidimensional parameter space under the null hypothesis. From the results, we see



184 Chapter 7

that the size and power performances of the test are veiy good for /;»= 2, when the

sample size is small. For the larger sample size, the estimated average sizes of the test do

not perform well for m = 2, i.e., all calculated sizes do not fall within the rejection

probability ranges. Also, further results for m - 2 with special weights indicate that the

size properties of the test for // = 60 do not perform as well. There is no improvement of

the sii s performance of the test for m = 2 with the special weights perhaps because we

did not follow a system to determine the weights for different parts of the null parameter

space. From the simulation results of the test for m = 3 with /; = 60, we can say that the

size properties of the test are close to acceptable. The results reported for //; = 3 with

// = 60, suggested that, the extra computation of the test procedure is well rewarded at

least in terms of size. As a result, we can conclude that our new test procedure can be

made to work for testing problems involving two-dimensional parameter space models

but it is time consuming to apply in practice, and may require future advances in

computer technology to make it a feasible test in this case.
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Table 7.1

Critical values (ca) of the test with m = 1, for testing joint MA(1)-MA(4) against
joint AR(1)-AR(4) disturbances for all design matrices at the five percent level.

Design matrix

X2(n x 3)

X3(n x 5)

A'5(/J x 3)

X6(n x 6)

Sample sizes (;/)

20
60

20
60

20
60

20

60

Critical values (cn)

2.9115
1.80S0

2.6663
1.8128

3.3635
1.9682

2.5588
1.9434

Table 7.2a

Selected calculated sizes and powers of the test for the X2 design matrix when
m - 1, at the five percent level.

;i = 20 H0:u,={\- Ha:(\-, -p4L)u, =e,

y*

0.1
0.3
0.5
0.7
0.9

/ =9

0.016*
0.018*
0.017*
0.016*
0.018*

0.7

0.031*
0.03S
0.027*
0.035*
0.032*

0.5

0.054
0.058
0.066*
0.054
0.056

0.3

0.05S
0.061
0.05S
0.060
0.058

0.1

0.041
0.063
0.066*
0.064*
0.068*

P*

0.1
0.3
0.5
0.7
0.9

P,=-l

0.038
0.067
0.155
0.402
0.834

0.3

0.078
0.102
0.173
0.392
0.821

0.5

0.162
0.184
0.231
0.405
0.S03

0.7

0.297
0.335
0.376
0.490
0.785

0.9

0.498
0.548

' 0.602
0.672
0.835

y*

0.1
0.3
0.5
0.7
0.9

y,=.9

0.001*
0.001*
0.003*
0.001*
0.000*

0.7

0.025*
0.030*
0.025*
0.010*
0.004*

0.5

0.096*
0.112*
0.084*
0.029*
0.006*

0.3

0.152*
0.181*
0.121*
0.036*
0.008*

0.1

0.106*
0.164*
0.112*
0.033*
0.004*

P*

0.1
0.3
0.5
0.7
0.9

p,=.l

0.111
0.316
0.636
0.911
0.997

0.3

0.292
0.412
0.646
0.909
0.993

0.5

0.619
O.ikC
3.765
0.929
0.994

0.7

0.893
0.910
0.931
0.979
0.999

0.9

0.988
0.990
0.995
0.999
1.000

denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.2b

Selected calculated sizes and powers of the test for tho X?> design matrix when
/;; = 1, at the five percent level.

// = 20 Ho:

YA

0.1
0.3
0.5
0.7
0.9

0.015*
0.017*
0.017*
0.017*
0.C25*

u, =(l-f

0.7

0.032*
0.033*
0.045
0.042
0.046

•r,£)O +
0.5

0.053
0.057
0.068*

• 0.064*
0.066*

Y*L)e,

0.3

0.062
0.073*
0.079*
0.071*
0.073*

0.1

0.045
0.065*
0.079*
0.073*
0.081*

PA

0.1
0.3
0.5
0.7
0.9

H, • (1

P, =•!

0.044
0.067
0.149
0.386
0.816

-pxL){\-p,L)u,=e,

0.3

0.077
0.0S8
0.156
0.359
0.800

0.5

0.138
0.151
0.200
0.365
0.772

0.7

0.243
0.280
0.323
0.438
0.745

0.9

0.422
0.471
0.528
0.594
0.778

n = 60 HQ:

YA

0.1
0.3
0.5
0.7
0.9

yt=.9

0.002*
0.003*
0.003*
0.001*
0.001*

u, =(1 + ,

0.7

0.024*
0.034*
0.031*
0.013*
0.003*

VXL)(\ +

0.5

0.104*
0.113*
0.084*
0.035*
0.012*

Y*L)e,

0.3

0.155*
0.177*
0.123*
0.039
0.010*

0.1

0.106*
0.159*
0.109*
0.039
0.007*

PA

0.1
0.3
0.5
0.7
0.9

Ha'- (

/>•=•!

0.107
0.299
0.614
0.899
0.996

\-pxL)(\-pAL)ut=et

0.3

0.277
0.396
0.625
0.S95
0.995

0.5

0.606
0.634
0.747
0.914
0.994

0.7

0.885
0.897
0.925
0.971
0.999

0.9

0.985
0.986
0.994
0.999
1.000

* denotes value significantly different from the five percent level at the 0.01 level.

Table 7.2c

Selected calculated sizes and powers of the test for the X5 design mntrix when m = 1,
at the five percent level.

« = 20 Ha:{\-pxL){\-pAL)ut=e,

YA

0.1
0.3
0.5
0.7
0.9

0.006*
0.009*
0.011*
0.011*
0.008*

0.7

0.029*
0.031*
0.035*
0.032*
0.027*

0.5

0.072*
0.063
0.056
0.049
0.046

0.3

0.073*
0.067*
0.059
0.051
0.046

0.1

0.044
0.054
0.056
0.053
0.043

PA

0.1
0.3
0.5
0.7
0.9

p,=.l

0.048
0.072
0.157
0.391
0.829

0.3

0.099
0.102
0.175
0.385
0.822

0.5

0.169
0.167
0.212
0.386
0.S02

0.7

0.253
0.251
0.282
0.409
0.753

0.9

0.339
0.343
0.370
0.450
0.681

n -

YA

0.1
0.3
0.5
0.7
0.9

60 Ho:

r,=.9

0.002*
0.002*
0.001*
0.001*
0.001*

u,=(\ + Y

0.7

0.022*
0.025*
0.023*
0.010*
0.002*

,I)(1 +

0.5

0.093*
0.108*
0.079*
0.033'*
0.005*

Y*L)e,

0.3

0.142*
0.173*
0.115*
0.033*
0.005*

0.1

0.093*
0.150*
0.108*
0.032*
0.002*

PA

0.1
0.3
0.5
0.7
0.9

Ha: (1

/> •= . !

0.098
0.299
0.631
0.906
0.996

-pxL)(\-pAL)ut =e,

0.3

0.27S
0.385
0.629
0.897
0.995

0.5

0.606
0.633
0.747
0.912
0.993

0.7

0.870
0.877
0.909
0.959
0.997

0.9

0.977
0.980
0.982
0.992
0.999

: denotes value significantly different from the five percent level at the 0.01 level.

Table 7.2d

Selected calculated sizes and powers of the test for the X6 design matrix when
m = 1, at the five percent level.

n =

YA

0.1
0.3
0.5
0.7
0.9

20 Ho

r,=-9

0.037
0.034*
0.033*
0.035*
0.033*

: » ,= ( ! +

0.7

0.050
0.047
0.041
0.044
0.043

Y\L)Q +

0.5

0.063
0.059
0.055
0.053
0.049

YAL)e,

0.3

0.061
0.068*
0.058
0.054
0.055

0.1

0.054
0.058
0.058
0.063
0.062

PA

0.1
0.3
0.5
0.7
0.9

//„: (1

P.-.1

0.065
0.084
0.136
0.3'1
0.739

-pxL){\-PiL)u, =e

0.3

0.081
0.086
0.135
0.291
0.699

0.5

0.134
0.137
0.171
0.285
0.648

0.7

0.234
0.256
0.293
0.360
0.600

0.9

0.433
0.490
0.545
0.611
0.710

YA

0.1
0.3
0.5
0.7
0.9

0.002*
0.005*
0.004*
0.002*
0.000*

0.7

0.020*
0.028*
0.027*
0.013*
0.004*

0.5

0.094*
0.111*
0.082*
0.035*
0.010*

0.3

0.139*
0.164*
0.113*
0.039
0.008*

0.1

0.091*
0.146*
0.108*
0.035*
0.008*

PA

0.1
0.3
0.5
0.7
0.9

0.095
0.276
0.580
0.890
0.994

0.3

0.257
0.357
0.590
0.878
0.994

0.5

0.558
0.601
0.728
0.895
0.993

0.7

0.848
0.873
0.908
0.960
0.997

0.9

0.981
0.985
0.993
0.998
1.000

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.3

Ranges of the two disjoint intervals and the corresponding values of j and / , where

r]J=(2j-\)/2q, ./ = 1,2,..., <y and f4i =(2/- l) /2</ , / = 1, 2, ..., r/, </=50.

J = 10 20 30 40

1.0

~5tT

189

Table 7.3 (contn'd)

10 20 30 40

.0

~50~
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Table 7.4

Critical values £, and k2 when m = 2, for testing joint MA( 1 )-MA(4) against joint
AR(1)-AR(4) disturbances at the five percent level.

Design matrix

X2(n x 3)

X3(n x 5)

X5(ux3)

X6(n x 6)

Sample size (n)

20
60

20
60

20
60

20
60

*.

0.1395
-0.000081

0.1557
-0.000135

0.0779
-0.000082

0.5714
-0.000148

Critical values

2.5
1.6

2.45
1.58

2.5
1.65

1.91
1.685

Table 7.5a

Selected calculated sizes and powers of the test for the X2 design matrix when
m = 2, at the five percent level.

n =

7A

0.1
0.3
0.5
0.7
0.9

20 Ho:

7, =-9

0.050
0.044
0.044
0.043
0.042

«,=(! +
0.7

0.058
0.053
0.050
0.047
0.049

0.5

0.058
0.054
0.045
0.046
0.051

0.3

0.039
0.041
0.035*
0.036*
0.043

0.1

0.023*
0.029*
0.031*
0.035*
0.035*

PA

0.1
0.3
0.5
0.7
0.9

K: (1

0.023
0.039
0.101
0.326
0.809

- pxL){\- p4L)u, -e,

0.3

0.054
0.069
0.119
0.316
0.790

0.5

0.146
0.158
0.185
0.343
0.780

0.7

0.334
0.342
0.368
0.464
0.772

0.9

0.559
0.588
0.621
0.684
0.848

n =

7A

0.1
0.3
0.5
0.7
0.9

60 Ho:

y,=.9

0.028*
0.030*
0.032*
0.055
0.155*

u,=(\ + y
0.7

0.035*
0.039
0.037
0.033*
0.033*

,Z)(1 +

0.5

0.045
0.056
0.058
0.048
0.040

YA^e,

0.3

0.039
0.059
0.065*
0.053
0.039

0.1

0.010*
0.042
0.052
0.045
0.041

PA

0.1
0.3
0.5
0.7
0.9

H.: (1

0.012
0.094
0.455
0.888
0.997

0.3

0.087
0.172
0.479
0.883
0.997

0.5

0.414
0.484
0.672
0.924
0.998

0.7

0.866
0.882
0.925
0.979
1.000

0.9

0.985
0.989
0.996
1.000
1.000

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.5b

Selected calculated sizes and powers of the test for the A'3 design matrix when
m = 2, at the five percent level.

;; = 20 //„:

7A

0.1
0.3
0.5
0.7
0.9

y{ =.9

0.051
0.049
0.050
0.044
0.047

" , = ( 1 +

0.7

0.059
0.051
0.046
0.045
0.049

r ,£)(i +
0.5

0.054
0.046
0.046
0.042
0.050

0.3

0.032*
0.038
0.038
0.038
0.044

0.1

0.021*
0.026*
0.030*
0.037
0.039

PA

0.1
0.3
0.5
0.7
0.9

K, • (i

Pi=.\

0.021
0.033
0.0S6
0.293
0.781

-pxL){\-pAL)u,=s,
0.3

0.049
0.052
0.092
0.275
0.759

0.5

0.114
0.120
0.139
0.283
0.736

0.7

0.263
0.274
0.292
0.391
0.711

0.9

0.471
0.503
0.535
0.591
0.771

7A

0.1
0.3
0.5
0.7
0.9

>', =-9

0.032*
0.037
0.040
0.061
0.146*

0.7

0.040
0.045
0.047
0.041
0.040

0.5

0.049
0.062
0.065*
0.059
0.049

0.3

0.036*
0.061
0.071*
0.058
0.050

0.1

0.010*
0.043
0.060
0.052
0.045

PA

0.1
0.3
0.5
0.7
0.9

p,=.\

0.011
0.091
0.428
0.878
0.997

0.3

0.086
0.161
0.462
0.S7S
0.997

0.5

0.401
0.463
0.665
0.918
0.998

0.7

0.855
0.876
0.917
0.974
1.000

0.9

0.985
0.989
0.996
0.999
1.000

* denotes value significantly different from the five percent level at the 0.01 level.

Table 7.5c

Selected calculated sizes and powers of the test for the X5 design matrix when
m -- 2, at the five percent level.

// = 20 / /„:

7A

0.1
0.3
0.5
0.7
0.9

Xl=.9

0.052
0.047
0.050
0.052
0.049

u,={\ + y

0.7

0.058
0.050
0.052
0.057
0.059

0.5

0.061
0.054
0.054
0.058
0.058

7AL)C,

0.3

0.044
0.045
0.046
0.048
0.050

0.1

0.023*
0.028*
0.037
0.047
0.050

PA

0.1
0.3
0.5
0.7
0.9

Ha\(\-pxL){\-p<L)u,=et

A = . l

0.028
0.041
0.124
0.375
0.838

0.3

0.063
0.068
0.134
0.377
0.834

0.5

0.139
0.137
0.182
0.392
0.827

0.7

0.264
0.242
0.270
0.418
0.788

0.9

0.367
0.348
0.380
0.474
0.745

// = 60 H0:u,={\

Pl=.\ 0.3 0.5 0.7 0.9

0.016
0.097
0.451
0.883
0.998

0.096
0.176
0.467
0.875
0.997

0.408
0.45 S
0.633
0.897
0.996

0.824
0.838
0.889
0.968
0.998

0.975
0.977
0.984
0.992
1.000

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.5d

Selected calculated sizes and powers of the test for the X6 design matrix when
m = 2, at the five percent level.

/i = 20 //<,:

YA

0.1
0.3
0.5
0.7
0.9

r,=,9

0.055
0.048
0.046
0.045
0.046

«,=*(! +

0.7

0.062
0.056
0.054
0.050 •
0.052

ylL){\ +

0.5

0.063
0.05S
0.052
0.054
0.052

Y*L)e,

0.3

0.054
0.052
0.049
0.047
0.048

0.1

0.041
0.041
0.044
0.044
0.047

PA

0.1
0.3
0.5
0.7
0.9

Ha: (1

0.043
0.056
0.103
0.263
0.705

- P\L)

0.3

0.063
0.073
0.115
0.258
0.675

(l~p4L)u, =et

0.5

0.128
0.125
0.156
0.267
0.624

0.7

0.256
0.265
0.29S
0.360
0.608

0.9

0.459
0.506
0.566
0.630
0.719

= 60 H0 u, = Ha:(l-PlL){l-pAL)ut=c,

YA

0.1
0.3
0.5
0.7
0.9

0.033*
0.035*
0.034*
0.046
0.093*

0.7

0.038
0.044
0.043
0.038
0.037

0.5

0.048
0.057
0.061
0.058
0.049

0.3

0.032*
0.053
0.072*
0.059
0.050

0.1

0.009*
0.039
0.056
0.051
0.048

PA

0.1
0.3
0.5
0.7
0.9

pt=.\

0.012
0.0S4
0.399
0.865
0.997

0.3

0.079
0.156
0.430
0.857
0.996

0.5

0.356
0.415
0.621
0.890
0.998

0.7

0.814
0.840
0.899
0.971
0.999

0.9

0.982
0.988
0.996
1.000
1.000

* denotes value significantly different from the five percent level at the 0.01 level.

Table 7.6

Selected calculated sizes and powers of the test for the X5 design matrix with // = 60
when special weights given for //; = 2, at the five percent level.

YA

0.1
0.3
0.5
0.7
0.9

y,=.9

0.033*
0.036*
0.034*
0.031*
0.044

Ho: u, =

0.7

0.047
0.054
0.049
0.040
0.035*

0.5

0.080*
0.092*
0.086*
0.065*
0.051

>(1 + / 4 L

0.3

0.081*
0.111*
0.104*
0.067*
0.054

)e,

0.1

0.036*
0.095*
0.094*
0.066*
0.051

PA

0.!
0.3
0.5
0.7
0.9

Ha:{\-pyL){\-p,L)ut=et

0.046
0.196
0.575
0.92.2
0.999

0.3

0.182
0.296
0.577
0.910
0.998

0.5

0.544
0.569
0.730
0.935
0.997

0.7

0.877
0.8S6
0.927
0.977
0.999

0.9

0.983
0.985
0.9S9
0.996
1.000

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.7

Ranges of the three disjoint intervals and the corresponding values of j and / , where

Yxj = (2j-l)/2q ,7 = 1, 2,..., q and yAl = (2l-l)/2q, / = 1, 2 q , q = 50 for the

X5 design matrix with n = 60.

50

40

30

20

10

/ = !

0.8

0.6

0.4

0.2

0

, - 1

LowSiajj' .:•

LoWSize
t X - ' '• • • ' •

7, =0-2

10

.'LowSize

<Low Size
' . ' • * ' • : • . • r . • ' . ' :

h ' - i j :':'••;;'-;';:;; »•'••• .•*.•;••:*'

0.4

20

•;'.l;o\v.Sj2e;"',

0.6

30

Lp\v'Si2cJ

• Low Size

Lpw^ize

LmvSize

Low Size:,'

0.8

40

High-Low Size

High-Low Size

' Low Size
• • . • • • • . • • • . . - r \ V . : . ' • . . • - . , • •

;'Low.Size .•:' \<-.
• ' • * • • • • " • • ; ' . - ! '

: LoW'Size '

1.0

50

Table 7.8

Selected calculated sizes and powers of the test for the X5 design matrix with n = 60

when m = 3 , at the five percent level.

YA

0.1
0.3
0.5
0.7
0.9

Vl=.9

0.047
0.048
0.046
0.041
0.074*

: w , = ( l -

0.7

0.031*
0.036*
0.039
0.032*
0.050

0.5

0.047
0.056
0.062
0.047
0.043

+ YiQet

0.3

0.040
0.062
0.064*
0.049
0.040

0.1

0.010*
0.044
0.057
0.044
0.040

PA

0.1
0.3
0.5
0.7
0.9

Ha:(i-PlL)(l-pA

A=.l

0.018
0.101
0.455
0.885
0.998

0.3

0.100
0.182
0.473
0.877
0.997

0.5

0.413
0.463
0.637
0.901
0.996

L)u,=et

0.7

0.829
0.841
0.892
0.969
0.998

0.9

0.975
0.977
0.985
0.993
1.000

* denotes value significantly different from the five percent level at the 0.01 level.



Chapter 8

Summary and Conclusions

Econometric modelling can be a powerful tool for economic analysis and forecasting

and a meaningful evaluation of an econometric model depends on the use of accurate

statistical test procedures. Another issue related to statistical testing is the presence of

nuisance parameters which can lead to misleading inferences in small samples. Proper

handling of nuisance parameters may result in a better test. Regression coefficients and

autocorrelated disturbances are common in econometrics and many techniques have

been suggested to eliminate or deal with nuisance parameters, such as, sufficient

statistics, invariant methods, marginal likelihoods, etc. A lack of observations also

implies there is a need for tests which are as accurate as possible in small samples.

In this thesis we have proposed a new optimal test procedure which is based on the

generalized NP lemma, called 'the average power test', for testing a composite null

against a composite alternative. It maximizes the average power function of the test

subject to the average size being controlled over different subregions of the null

hypothesis parameter space. The new testing approach involves the finding of several

critical values. These critical values are calculated by Monte Carlo simulation
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experiment via trial and error so that the average size conditions are simultaneously

satisfied.

This thesis has investigated the performance of the above mentioned new testing

approach with respect to testing for MA(1) disturbances against AR(1) disturbances,

testing the form of heteroscedastic disturbances and for testing joint MA(1)-MA(4)

against joint AR(1)-AR(4) disturbances in the context of the linear regression model.

The first aim was to investigate the performances of our new approach to see how well it

works for a single parameter testing problem; the second aim was to see the performance

of the test procedure for a heteroscedastic disturbances testing problem involving an

infinite parameter space; and the third aim was to investigate the test's performance in a

two-dimensional parameter testing problem. The following are a detailed discussion of

the findings of the thesis.

A literature survey related to hypothesis testing was presented in Chapter 2. This chapter

reviewed the literature involving optimal, PO and APO tests in the context of linear

regression model for composite hypotheses testing problems. Because all the

applications we considered in this thesis are non-nested, the review also focused on

contributions to tests of non-nested hypotheses and some popular non-nested tests were

discussed briefly and their limitations noted. Other topics briefly discussed include

nuisance parameters, invariance arguments and marginal likelihood methods. This

literature review reveals the importance of developing optimal tests which have

excellent finite-sample properties, such as, PO tests, rather than large-sample based tests.

When testing composite hypotheses, PO tests cannot always be constructed. In situations

where they cannot be constructed, King (1987a) suggested the construction of an APO
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test. Studies involving APO tests have indicated that it is not always suitable for all

composite hypothesis testing problems and in some cases it does not work well at all.

Almost all existing tests in the context of non-nested testing are large-sample based tests

and many of them perform poorly in finite samples. Sriananthakumar (2000) constructed

the g test which is an APOI test for testing a composite null against a composite

alternative. The g test is constructed using the generalized NP lemma to obtain a PO test

for a composite testing problem which required a finite number of representative

densities under the null and a single representative density under the alternative. Thus

this approach depends very much on the choice of representative densities. Our new

approach does not use representative densities but rather maximizes average power

subject to controlling average size over different subregions of the null hypothesis

parameter space.

In Chapter 3, we introduced our new approach to testing a composite null against a

composite alternative. We discussed the theory behind this new approach and how the

testing procedure can be applied to the problem of testing the structure of the

disturbances in the linear regression model. Controlling average size over the entire null

parameter space, namely 0 , may result in undesirably large sizes in some parts of 0

and smaller sizes in other parts of 0 . To minimize this possibility, we allow for 0 to be

partitioned into m disjoint subregions, namely, 0 , , 0 , , . . . , 0 m so that

0 = 0 , u 0 2 u . . . u 0 m . As mentioned earlier, this new approach involves finding several

critical values for which the average size conditions are fulfilled simultaneously. We

discussed the standard invariance technique which was used to simplifying the testing

problem by eliminating some nuisance parameters. We outlined the steps involved in

calculating the critical values by Monte Carlo simulation.

In Chapter 4, we illustrated the new test procedure by applying it to the problem of

testing for MA(1) disturbances against AR(1) disturbances in the linear regression

model. For this testing problem, Silvapulle and King (1991) could not find a POI test

and were forced to use an APOI test. This chapter explored a number of practical issues.

An important question was whether controlling average size did a good job in

controlling size overall. Typically we found that the sizes of our test were very

acceptable for small sample sizes when m = 3, that is, controlling average size over

three subregions of the null hypothesis parameter space. We compared the performance

of our new approach with three different versions of Silvapulle and King's (1991) APOI

tests, namely, s(O3,y'o),
 s(^/I) a n^ -v(0.75, / , ' ) , and found that the powers of the

new test are typically higher than those of the APOI tests. The new test has a very clear

power advantage. When the sample size is small, on average the new test gained 0.7 to

5.7 percentage points in terms of power for all design matrices and when the sample size

is large, the test gained 0.7 to 1.9 percentage points in terms of power improvement

except in one case. We concluded that at least for this testing problem, the new test is

better than the APOI test which Silvapulle and King (1991) found out performed the

Lagrange multiplier test and an analogous test to Burke et al.'s (1990) asymptotic test.

Using Silvapulle and King's (1991) APOI tests as benchmarks, the new test was found

to have fairly good size and power properties. Thus the new procedure has considerable

potential, particularly for problems in which the effective null hypothesis parameter

space can be kept small.

In Chapter 5, we investigated the choice of boundary points of the subregions under the

null hypothesis parameter space. In Chapter 4, we used the high size/low size technique
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to determine the boundary points of the subregions under the null hypothesis parameter

space. This chapter constructed a pseudo power envelope to trace out the maximum

attainable power for a given problem in order to provide a benchmark against which the

new test procedure was evaluated. This analysis indicated that without spending a lot of

time on computation to construct the pseudo power envelope, we can get reasonably

close to the best test by using the high size/low size technique. That is, when we

identified the best test by reference to the pseudo power envelope, we gained only 1.8

percentage points in terms of power improvement over the test constructed using the

high size/low size method. The large amount of extra computation required for finding

the best test via a pseudo power envelope does not appear to be justified. Thus, we

conclude that for our proposed new test procedure we can use the high size/low size

technique to choose the boundary points of the subregions of© with some confidence.

Chapter 6 investigated the performance of the new test procedure by applying it to

testing for heteroscedastic disturbances in the linear regression model. This is a testing

problem where both the null and alternative hypothesis parameter spaces are one sided

infinite intervals in contrast to the unit intervals for the problem of testing MA(1)

disturbances against AR(I) disturbances. Two different sets of non-stochastic variables

were used to investigate the performances of the test procedure. Our results indicate that

for both sets of non-stochastic variables when //; = 2, the test performs well with respect

to size conditions and the power properties of the test are very acceptable. Also, the

results for zu and wu, when test sizes for ;;; = 1 are controlled at X = 0 indicated that

for small sample sizes, the size and power performance of the test are fairly good but

there is a clear loss of power for the larger sample size. This indicates that extra

computation for m = 2 could be worthwhile. From this viewpoint, we conclude that the
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new test approach can work well for testing problems where both the null and alternative

hypothesis parameter spaces are one-sided infinite intervals.

In Chapter 7, we explored the problem of testing joint MA(1)-MA(4) against joint

AR(1)-AR(4) disturbances in the linear regression model. As mentioned earlier, the new

test procedure works well for the testing problem of MA(1) disturbances against AR(1)

disturbances; and also for testing heteroscedastic disturbances in the linear regression

model. This chapter investigated the performance of the test when it extends to testing

two-dimensional parameter spaces under the null and alternative. The results indicate

that the size and power performances of the test are very good for m-2, when the

sample size is small. For the larger sample size, the estimated average sizes of the test do

not perform well for /» = 2, that is, a few calculated sizes fall outside the rejection

probability ranges.

Also, further results for in = 2 with heavier weights applied for troublesome parts of the

null parameter space indicated that the size properties of the test for the larger sample

size do not perform well. With the heavier weights applied to troublesome parts, the

sizes are controlled for those parts of the parameter space but can be uncontrolled in

other parts of the null parameter space. There was no improvement in the size

performance of the test for m = 2 with the heavier weights, perhaps because we did not

follow a system to determine the weights for different parts of the null parameter space.

From the results of the test for m - 3 with n = 60, we conclude that the size properties

of the test are close to acceptable and power properties are well behaved. The results

reported for m = 3 with n = 60, suggest that the extra computation of the test procedure

is well rewarded at least in terms of size properties. As a result, we conclude that our
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new test procedure can be made to work for testing problems involving two-dimensional

parameter space models but it is time consuming to apply in practice, and may require

future advances in computer technology to make it a feasible test in this case.

The overall recommendation of this thesis is that the new test procedure has

considerable potential, particularly for problems in which the effective null hypothesis

parameter space can be kept as small as possible. A small sample power comparison

reveals that the new test can be more powerful than various versions of the APOI test

recommended by Silvapulle and King (1991). In situations where PO and APOI cannot

be constructed for composite null hypothesis testing problem, the new optimal test

procedure can be considered for general testing solution. In this new test approach,

certainly we can use the high size/low size method to choose the boundary points of the

subregions under the null parameter space. As the new test approach works well for a

testing problem when both null and alternative hypothesis parameter spaces are both

one-sided infinite intervals, it is recommended for testing problems when both the null

and alternative hypothesis parameter spaces are one-sided infinite intervals. This is

possible because of our transformation of the parameter space used in Chapter 6. The

new test procedure can be applied to two-dimensional parameter space models, the only

limitation is that it is time consuming but in the future, advances in computer technology

could make the test realistic for multi-dimensional parameter space models.

Finally, there are a few areas in which further research could be undertaken. In this

thesis, we applied the new optimal test procedure to three different composite testing

situations, with encouraging results. Clearly it is of interest to investigate its behaviour

for other testing problems. In our investigations, we only used the standard uniform
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distribution as a weighting function. It would be of interest to investigate the procedure's

behaviour for other weighting functions.

In this thesis, the new approach was applied to one parameter testing problems whan

both null and alternative hypothesis parameter spaces are the unit interval [0, 1] and the

one-sided infinite interval (0, oo). An obvious question is, can this approach be applied

to testing problems involving hypotheses defined over two-sided infinite intervals, i.e.,

(-oo, oo) ? For this, a logistic function might be a useful way to reduce the infinite

interval to a finite interval [-1, 1]. How well the new approach performs in this case is a

worthy research question. An important issue of the new approach was that of

computation. We took a simple approach to the problem of calculating the value of

various integrals, i.e., a numerical approximation method that works for one-dimensional

parameter testing problem. An obvious question is, are there better ways of calculating

these integrals that can reduce computation, particularly for multi-dimensional problems.

The new approach could also be used for testing a composite null against a simple

alternative hypothesis. The new test would maximize power under the simple alternative

subject to control of average size under the null. The robustness of the testing procedure

to non-normal errors is another area that could also be explored.

In summary, this thesis has investigated a new approach to testing composite

hypotheses. The new approach shows considerable promise when testing one-

dimensional parameter spaces, but future work is needed to understand its full potential.
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