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ERRATA

1. p.14, line 22. Insert after “y=XfB+u,” “where y is nx1, X is an nxk non-

stochastic matrix of rank &k <n, £ is a kx1 vector of parameters and u is
nx | disturbance vector”.

2. p.15,line 1.  Replace “(this is discussed in detail in Section 3.3)” with “where 7,
is a positive scalar, 17 is a k x 1 vector, z is the ordinary least squares residual

vector and P is any pxn matrix such that P'P=1,—X(XX) X' and
PpP'=], inwhich p=n-k”.

3. p.16, line 5. Insert the following paragraph afier line 5,
“Marginal likelihood is one of the likelihood based methods designed to
overcome the nuisance parameter problem. It involves transforming the
observed data such that the likelihood of the transformed data can be factored
into two parts, one being uninformative about the parameter(s) of interest in
the absence of knowledge of the value of the nuisance parameter(s) and the
other part containing the parameter(s) of interest as the only unknown
parameter(s). This second factor is the marginal likelihood as introduced by
Fraser (1967) and further developed by Kalbfleisch and Sprott (1970). In the
context in which it is used in this thesis, Ara and King (1993) and Ara (1995)
have shown it is equivalent to the likelihood function of the standard maximal

invariant under transformations of the form T(y). In this form, it therefore has
all the properties of a full likelihood. Given how the marginal likelihood is

constructed, there is no loss of information in using it in place of the full
likelihood.”

4. p.33. Replace the last paragraph of Section 2 5 with the following.
“Andrews and Ploberger (1994) derived asymptctically optimal tests for
testing problems when a nuisance parameter is present under the alternative
hypothesis but not under the null hypothesis. This is a nonstandard testing
problem for which likelihood based asymptotic tests such as the LR, LM and
Wald tests are difficult to apply because of problems in determining their
distributions. Also, as Andrews and Ploberger point out, the asymptotic
optimality properties of these tests no longer apply. They used a weighted
average power criterion to generate asymptotically optimal tests similar to
such a criterion used by Wald (1943). The weighting function is defined over
the space of the nuisance parameter that is present under the alternative
hypothesis but not under the null. They constructed general tests that are
asymptotically optimal in the sense that they maximize weighted power
asymptotically under a sequence of local alternatives. Their new tests are of an
average exponential form and are called the exponential Wald, exponential
LM and exponential LR tests.

In special cases where through invariance and/or similarity, the testing
problem essentially boils down to one in which the null hypothesis is simple
and the alternative hypothesis is composite, finite-sample optimal tests can be
constructed through the use of the Neyman-Pearson (NP) lemma. This
involves applying the lemma to a weighted average of likelihoods under the
alternative hypothesis and results in invariant or similar tests that maximize
weighted power. Andrews et al. (1996) outlined this approach in the case of




testing for one or more changepoints at unknown times in a multiple linear
regressiow. shodel. Here the timing of the changepoint is an unknown parameter
which is present only under the alternative hypothesis. In a further paper,
Andrews and Ploberger (1996) applied this approach to testing for white noise
against an autoregressive moving average (ARMA(1,1)) model.

In this thesis, we propose a new test procedure for the problem of testing a
composite null against a composite alternative hypothesis by applying the
generalized NP lemma. This allows us to extend the work of Andrews and
Ploberger to the construction of tests that are optimal in small samples in that
they maximize weighted power subject to controlling the level of average size
over each of a number of subspaces of the null hypothesis parameter space.
The test is general and does not require there to be a nuisance parameter that
appears only under the alternative hypothesis.”

5. p.42, line 10. Insert the following lines afier “composite hypotheses.”
“Andrews et al. (1996) and Andrews and Ploberger (1996) constructed tests
that maximize weighted power for testing problems in which the null
hypothesis is simple after suitable reduction via invariance or similarity. Their
results are based on the NP lemma. Our work involves null hypotheses which
are still complex afier suitable reduction and is based on the genecralized NP
lemma.”

6. p.46, line 17. Replace “prior distribution” with “weighting distribution”.

7. p47, line 9. Replace “prior distribution” with “weighting distribution”.

8. p.48. Insert the following paragraph after the equation (3.6).
“Clearly, the ¢,’s are one’s preferred level of significence and chosen by the
user. An obvious approach is to make them equal ¢, =¢, =---=¢, and then

equal to the desired significance level. We believe this is the best approach.
However, the generalized NP lemma does allow flexibility in this area when
testing composite hypotheses.”

8. p.50. Insert the following paragraph before Section 3.3.

“It may be tempting to use the data to help decide on the weighting function
given the data has information regarding the true values of the parameters.
This is not recommended because it is likely to result in a loss of power. This
is because the generalized NP lemma would no longer apply. Also it is similar
to a jurnp from a point optimal test to a LR test. In the former, the point at
which power is to be optimized is chosen in advance with good results. In the
latter, parameters under the alternative are replaced with estimates. As pointed
out in a survey article on testing for aulocorrelation in linear models by King
(1987b, p.59), ‘It would seem that the LR test is a particularly unieliable test
for serial correlation. Dent (1973) found it to have poor power against AR(1)
disturbances, while Brandsma and Ketellapper (1979) reported a similar
finding for the LR test against first-order spatial autoregression. Maddala and
Rao (1973) were so puzzled by the poor power of the LR test against AR(1)
disturbances in the lagged dependent variable mode), they repeated their
calculations using a different algorithm for computing the MLE’s’.”

9. p.72, line 14, Insert after “control average size.” “The use of the uniform
distribution means that average sizes, and average powers are unweighted
averages.”
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10. p.74, line 9. Replace “The sizes can be undesirably large in some parts of the
null hypothesis parameter space while being smaller than the desired size in
other parts of the null hypothesis parameter space” with “The sizes may be
undesirably large in some parts of the null hypothesis parameter sub-spaces
(©,) while being smaller than the desired size in other parts of the null

hypothesis parameter sub-spaces”.
11. p.145, line 9. Change “z,, and w,,” to “z,, and w,,”.

12. p.201, line 17. Insert the following paragraph after line 17,
“In this thesis, we have paid very little attention to computational efficiency.
We have constructed computer programs te do the task but without worrying
about how long the task takes. Clearly, future research is needed on reducing
computation time by the use of more efficient algorithms and programming.
We conjecture that a greater attention to this issue might reduce computational
time by up to 90%.”

Additional references

Brandsma, A.S. and Ketellapper, R.H. (1979), Further evidence on alternative
procedures for testing of spatial autocorrelation among regression
disturbances, in: C.P.A. Bartels and R.H. Ketellapper, eds., Exploratory and
Explanatory Statistical Analysis of Spatial Data, Boston: Martinus Nijhoff,
113-136.

Dent, W.T. (1973), A power study of several tests for autocorrelation, New Zealand
Economic Papers, 7, 109-120.

Maddala, G.S. and Rao, A.S. (1973), Tests for serial correlation in regression models
with lagged dependent variables and serially correlated errors, Econometrica,
41, 761-774. -
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Abstract

This thesis is concerned with hypothesis testing in econometrics and proposes a new

optimal approach for testing composite hypotheses.

Hypothesis testing is a fundamental tool for evaluating econometric models. it can be
used to test aspects of econometric theory or to check model specification. It is
therefore essential to have reliable test procedures for the small samples
econometricians sometimes have to deal with, particularly, when nuisance parameters
are present. In the absence of uniformly most powerful (UMP} tests, King (1987a)
suggested the use of point optimal (PO) tests which are most powerful at a chosen
point under the alternative ilypothesis. For sinations where PO tests cannot be

constructed, King suggested an approximate point optitnal (APO) test.

The existing literature shows that King's PO tests are not suitable for all testiné
problems. For example, Silvapulle and King (1991) could not find a point optimal
invariant (POI) test for testing first-order moving average (MA(1)) disturbances
against first-order autoregressive (AR(1)) disturbances in the linear regression model.
They recommended the use of an approximate point optimal invariant (APOI) test.
This motivated us to construct a general test procedure, called the average power test,
based on the generalized Neyman Pearson lemma. The test maximizes average power
funciion subject to average size being controlled over subspaces of the null parameter

space for testing a composite null hypothesis against a composite alternative.




In this thesis, we apply this new testing approach to the testing problem considered by
Silvapulle and King (1991), to testing the form of heteroscedastic disturbances and to

testing joint MA(1)-MA(4) against joint AR(1)-AR(4) disturbances in the jinear

regression model. For the first testing problem, the nuli and alternative hypothesis Chapter 1
parameter spaces are restricted to unit intervals. We compare the small sample size and
power properties of the test with those of Silvapulle and King’s APOI tests, with Introduction

encouraging results. The new test is found to have good small sample size and power
properties. For the second and third testing problems, both the null and alternative

hypotheses parameter spaces are one-sided infinite intervals and two-dimensional
P P P 1.1  Background

squares, respectively. Results of size and power calculations indicate that our new test . oo
It is well recognised that Ragnar Frisch first introducec the term ‘econometrics’ in the

has fairly good small sample size and power properties. For the third testing problem,
early 20th century (see for example, Darnell (1984, 1594), Bjerkholt (1995, 1998) and

we find it extremely time consuming to obtain the critical values for which the average ) . .
Strom (1998)). This term appeared in his very first paper in economics which was

size conditions are simultaneously satisfied. This is because the test procedure is '
written in French and was published in 1926 (Frisch (1926)).

extremely computer intensive when the hypotheses are multidimensional. Our study

clearly indicates that the new optimal test procedure performs well at least for the Economelrics, in its early stages was very much concerned with the application of
testing problems we considered, especially when the sample size is small. statistical methods. As Hillier and King (1991, p.1) remarked,
The overall recommendation of this thesis is that the new test procedure has These methods had originally been developed for the natural sciences

. - : . : . : where careful attention to the experimental design can often justify the
considerable potential, particularly for problems in which the effective null hypothesis

confident use of relatively simple stochastic models. ... In particular, there
parameter space can be kept small. The new test procedure can be favourably is usually greater uncertainty about the stochastic mechanism that

considered in situations where PO and APOI tests cannot be constructed or appear to generated the data, making it essential to have available reliable diagnostic

procedures that allow one to at least check the adequacy of the model
perform poorly. o . o . )
used, and idezally would indicate the direction or directions in which

revision of the model might prove fruitful.

Some applied researchers (Klein (1947) and Stone (1954)) quickly appreciated these

needs. In this regard, Hillier and King (1991, p.1) further noted:




2 Chapter |

However, tiie modern applied econometrician uses more complicated
models (nonlinear, dynamic, censored, etc.), and wishes to entertain the
possibility of departures from the basic model in a number of directions.
Research on diagnostic testing has, according, expanded greatly in its

attempt to meet these needs.

Clearly hypothesis testing has an important role to play in econometric practice. It too
has a long history. After the publication of Karl Pearson’s (1900) goodness of fit test, the
systematic development of hypothesis testing began (see Beta and Premaratne (2001,
p.38)). Neyman an;l Pearson (1933) laid the foundation of the theory of hypothesis
testing and the concept of an optimal test was introduced through the analysis of the
poﬁer function. An important building block for test construction is the Neyman-
Pearson (NP) lemma which provides a way to find the most powerful (MP) and
uniformly most powerful (UMP) tests. Neyman and Pearson (1936) gencralized the
fundamental NP lemma but compared to the number of applications of the NP lemma,

the generalized NP lemma has been very much under utilized.

During the last four decades the likelihood ratio (LR} test, Wald and Lagrange multiplier
(LM) tests have emerged as three important classical test principles based on likelihood
theory. They have been popular with econometricians but are not totally ideal, particular
with respect to power in the case of one-sided testing problems or in applications with
large numbers of parameters and a small number of obscrvations. However,
~ ynometricians have produced a large number of general test procedures such as those
proposed by Hausman (1978), White (1982), Tauchen (1985), Newey (1985) and King

(1987a).
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Introduction 3

A new development in econometric theory during the last two to three decades is the
shift of focus from asymptotic theory to finite sample properties. Prior to this, there was
little econometricians couid do about the exact finite sample distributions of estimators
and test statistics (see Chen (2001, p.3)). Therefore most inferencial procedures relied on
first-order asymptotics. Monte Carlo results provided frequent embarrassing evidence
against this approach. Many studies in different settings showed that first-order
asymptotic theory provides poor approximations to finite sample distributions and can
provide poor inferences in practical applications, see for example Bewley (1986, Section
3.3), Cox and Reid (1987), King (1987b), King and McAleer (1987), Moulton and

Randolph (1989), Chesher and Austin (1991) and McAleer (1993).

This shift towards more accurate and more reliable small sample inference is largely
facilitated by rapid increases in computing capacity. That is, as in many disciplines,
computers have playcd an essential role in making finite sample econometrics
operational. There is sofiware for data management, modelling, estimation, inference,
simulation and graphics which make things easier (see for details, Hendry (2001)). The
typical building blocks for economeiric analysis are model specification, model
selection, model estimation, hypothesis testing and forecasting/prediction. The aim of
the thesis is to make a contribution in the area of testing a composite null hypothesis

against a composite alternative hypothesis.

1.2  Motivation and direction of the thesis

Many applied econometric studies involve testing hypotheses about the parameters of
econometric models. The first aim of hypothesis testing is to control the probability of

Type I error, that is, the critical value of the test should be chosen so that the test rejects




4 Chapter 1

a correct null hypothesis with a probability a (specified level of significance). The
second aim is to make the probability of correcily rejecting the null hypothesis (the
power of the test) as high as possible. Most hypotheses in econometrics are composite,
the null hypothesis does not completely specify the data generation process in the sense
that there are parameters with unknown values involved. Consequently, the sampling
distribution of the test statistic is unknown except in special cases. Ir these
circumstances it is highly likely that the sampling distribution of the test statistic
depends on one or more unknown population parameters. As a result, the probaility of
Type I error can vary with different values of the parameters and we cannot fix this error
at a desired level. Alternatively, a test statistic is pivotal if its iinite-sample distribution
under the null does not depend on unknown population parameters. However, pivotal
test statistics are not available in many econometric applications unless strong
distributional assumptions are made. When the test statistic is not pivotal, its Type I
critical value can be very different at different points under the nuli hypothesis (see for

details, Horowitz (2001), and Horowitz and Savin (2000) for a numerical example).

King (1987a) introduced the class of point optimal invariant (POI) tests for testing both
simple and composite hypotheses, which are most powerful invariant tests at a chosen
point under the alternative hypothesis. POI tests have excellent power properties for a
number of testing problems in econometrics. They can have good power properties even
at parameter points away from the point of the alternative hypothesis at which power is
optimized but are not suitable for all testing problems. There are some situations where
the test docs not work at all. For exampk, Silvapulle and King ('l 991) could not find a
POI test for testing MA(1) against AR(1) disturbances in the linear regression mode!l and

they recommended the use of an approximately POI (APOI) test. Rahman and King
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(1994) considered testing random regression coefficients in the presence of AR(1) errors
using APOI tests and they concluded that the extra computation required for the APOI
tests hardly seems worthwhile. POl tests are based on the fundamental NP lemma. A
starting point of this thesis is that almost no test procedures havé been developed to
exploit the generalized NP lemma, one exception being the work of Sriananthakumar
(2000). She constructed the g test, an APOI test for testing composite hypotheses by
using the generalized NP lemma which depends on a choice of representative densities.
Unfortunately the particular choice of representative densities determines the form of the
test. This motivated us to construct a new test procedure for testing composite

hypotheses by using the generalized NP lemma which is introduced in Chapter 3.

Two decades ago, it was not possib.e to implement some test procedures due to the lack
of computer power. Recently there has been a dramatic change in the computing power
available to researchers and it is much easier to implement almost all types of test
procedure through Monte Carlo simulations. We fully expect these increases in

computer power to continue over the next two decades.

The overall objectives of this thesis are:

) to design a new test procedure for the problem of testing a compesite null
against a composite alternative based on the generalized NP lemma;

ii) to implement the new test procedure, which involves solving a number of
practical issues with respect to controlling average size over a number of

subregions under the nul} hypothesis; and

3
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iti) to investigate the small sample performance of the new testing approach
with respect to the following individual hypothesis testing problems in the

context of the linear regression model:

a) testing for MA(1) disturbances against AR(1) disturbances;
b) testing for different forms of heteroscedastic disturbances (based on
Hildreth-Houck random coefficient models); and

c) testing joint MA(1)-MA(4) against joint AR(1)-AR(4) disturbances.

1.3 Outline of the thesis

This thesis is organized into eight chapters. Following this introductery chapter, Chapter
2 reviews the literature related to hypothesis testing. It surveys the literature invelving
optimal, PO and approximately PO (APO) iests in the context of the linear regression
modet for composite hypotheses testing problems. Because all the applications
considered in this thesis are non-nested, the review also focuses on contributions to tests
of non-nested hypotheses and some popular non-nested tests are discussed briefly and
their limitations noted. Other topics briefly discussed include nuisance parameters,

invariance arguments and marginal likelihood methods.

This literature review reveals the importance of developing optimal tests which have
excellent finite-sample properties, such as, PO tests, rather than largesample based tests.
Studies involving APO tests indicate that they are not always suitable for ali composite
hypotheses testing problems and in some cases they do not work well at ail. Almost all
existing tests in the context of non-nested testing are large-sample I:fased tests and many

of them perform poorly in finite samples. These problems are the key issues of this

thesis.

Introduction

Chapter 3 explores a general solution to testing a composite nuil against a composite
alternative. Ve discuss the theory behind our new appreach and how the test procedue
can be applied to the problem of testing the structure of -he disturbances in the lincar
regression model. We refer to this new approach as the ‘average pewer test’, It involves
maximizing the average power function of the test subject to -.u?emge size being
controlied over different subregions of the null hypothesis parameter space. We note that
controlling average size over the entire null parameter space, namely © , may result in
undesirably large sizes in some parts of & with smaller sizes in other part o€ © . In
order to minimize this possibility, we allow for © to be partitioned into m disjoint
subregions, namely, ©,,9,,..,0, so that ®=60,Uu6®,L.VO, . This appoach
involves finding several critical values tor which the average size conditiotis ase fulfilled
simultaneously. We discuss the standard invariance: technique which can be used to
simplify the testing problem by eliminating some niiisance parameters. We outline the

steps involved in calculating the critical values by using Monte Carlo simulation.

Chapter 4 illustrates the new test procedure by applying it to the problem of testing for
MA(1) disturbances against AR/ i disturbances in the iinear regression model where
Silvapulle and King (1991) could not find a POI test and were forced to use an APOI
test. This chapter e«plotes a number pracucat issues with the aim of finding answers. An
important question is whether controlling uverage size does a good job tn controlling
size overall. A number of subregions can be chosen to help control size, This chapter
compares the performance of our new approach with various versions of Silvapulle and

King’s (1991) APOL tests.
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Chapter S investigates the choice of boundary points of the subregions under the null compatible (Pentium 111, 600E with 256 Mb Sdram) computers, The built-in random

number generators (functions RNDS and/or RNDUS) were used to generate all random

hypothesis parameter space, In Chapter 4, we use what we call the high size/low size
technique to determine the boundary points of the subregions under the null hypothesis numbers for the Mente Carlo simulation experiments discussed in this thesis.
parameter space. This chapter constracts a pseudo power envelope to trace out the

. maximum attainable power for a given problem in order to provide a benchmark against

which the new test procedure can be evaluated.

Chapter 6 investigates the performance of the new test procedure by applying it to

testing for alternative forms of heteroscedastic disturbances in the linear regression

e "H"-:‘?‘-‘-'- !.-'51#‘-

model. In this case, we concentrate on the form ot hetevoscedasticity that results from

the Hildreth-Houck random coefficient model. The applicat.on investigated in Chapter 4

involved parameter spaces under both hypotheses being restricted to the unit interval.
Chapter 6 examines the performance of the test procedure when both the null and
alternative hypothesis parameter spaces are extending to an infinite interval (one-sided

infinite interval) with suitable choices of subregions under the nutl parameter space.

Chapter 7 explores the problem of testing joint MA(1)-MA(4) against joint AR(1)-
AR(4) disturbances in the linear regression model. This chapter investigates the
performance of the test in a situation which involves testing two~dimensional parameter

spaces nnder the null and alternative.

This thesis closes in Chapter 8 with a summary and scine concluding remarks.

1.4 Computations

All the calculations reported in this thesis were performed using the GAUSS

programming language, Version 3.2.35, Aptech Systems, Inc. (GAUSS (1998)) on IBM-
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Literature Survey

2.1 Introduction

For econometricians, hypothesis tests are a fundamental tool for evaluating econometric
inodels and a meaningful evaluation of an econometric model depends on the use of
accurate statistical test procedures. During last three decades, numercus test statistics
have been developed for testing both nested and non-nested models in econometrics.
Substantial advances have been made in developing diagnostic tests for the validity of
various model specifications. There exist many diagnostic tests such as the DW test for
serial correlation, LM tests for various forms of heteroscedasticity and autocorrelation,
tests for multiple time series models, tests of distributional shape, tests for functional
form, structural stability, structural change, spatial error autocorrelation, non-normality
and so on; see for example Poskitt and Tremayne (1981, 1982), Spiegelhalter (1983),
Tauchen (1985), Ljung (1986), Andrews (1988), Beggs (1988), Pagan and Vella (1989),
Hillier (1991), Ai and Cassou (1993), Anselin et al. (1996), Kang and Inder (1996),
Wooldridge (2001) and Mao and Lindsay (2002}, Also, there is a special issue of the
Journal of Econometrics on diag “ostic testing edited by Hillier and King (1991). In

many econometric applications, there often exist non-nested specifications that can
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characterize the same variable of interest. When alternative non-nested models are
available, it is particularly important to test which model is correctly specified because

correct model specification is essential for inference, forecasting and policy making.

The purpose of this chapter is to survey the literature on optimal tests for testing models
in cconometrics and other related issues. There is an extensive literature on different
approaches to statistical inference from the viewpoints of pararnetrfc, non-parametric,
semi-parametric, Bayesian and decision theoretic approaches. We will focus our
discussion on parametric problems in the context of linear regression models and simple
non-linear regression models. The classical tests, namely, the LR, Wald and LM tests
can be used both for simple and composite hypotheses testing problems. But problems
arise in dealing with likelihood functions when there are nuisance parameters present,
particularly with the accuracy of estimates and tests in small samples. Finite sample
properties of the test procedures are therefore very important. it is hard to derive the
finite sample distributions of test statistics in the presence of nuisance parameters,
econometricians often use large sample based disiributions as approximations. There are
a number of techniques that exist to eliminate the nuisance parameters from the testing
problem, an important one being the use of invariance arguments. In the following

section we discuss nuisance parameters and invariance arguments in more detail.

The majority of the tests proposed for non-nested problems are large sample based and
large sample based tests sometimes perform poorly in terms of size properties in smail
samples (see McAleer and Pesaran (1986), McAleer (1987, 1995), King and McAleer
(1987) and Godfrey (1998)). It is well known that the estimates based on maximum

likelihoed can be biased in finite samples and the tests based on maximum likelihood
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can sometimes perform poorly in finite samples (see McAleer and Pesaran (1986)). Ara
(1995), Grose (1998) and Rahman and King (1998) have demonstrated that marginal
likeliﬁood based tests can perform better than conventional likelihood based tests in
small samples. This indicates that better handling of nuisance parameters may improve
finite sample properties of large sample based approaches. King’s (1987a) point optimal
(PO) and approximately PO (APO) testing approaches are particularly aimed at small
sample testing problems and have been applied successfully to a number of testing
problems. This chapter also aim. to survey the contributions on PO testing of non-nested
hypotheses. In this thesis, our interest is in composite hypothesis testing of the
regression model in which two forms of disturbance processes i.c., autoregressive and
moving average processes, or autocorelation and heteroscedasticity, or joint

autoregressive and moving average processes are possible.

The plan of this chapter is as follows. We briefly discuss nuisance parameters,
invariance arguments and the marginal likelihood in Section 2.2. In Section 2.3, the
general ideas of optimal test procedures as covered in the literature are outlined. Sections
2.4 and 2.5 introduce PO and APO tests, respectively, andcompare PO and APQO tests
with other existing tests of composite hypotheses. Section 2.6 briefly surveys some non-

nested testing problems and discusses the performances of Cox’s test, the J, P, J4,

F, Cox-type N and adjusted Cox-type N tests. Finally, concluding remarks are made

in Section 2.7.
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2.2 Nuisance parameters, invariance arguments and the marginal
liketihood

In cconometrics, almost all hypothesis testing problems of interest involves nuisance

parameters. If the testing problem is a parametric one, it may involve a large, pethaps a
very large number of unknown parameters. Almost cerlainly, at least some of these
parameters will not be of any particular interest to the researcher. The term ‘nuisance
parameter’ refers to the parameter or set of parameters which do not have any interest to

the researcher.

For hypothesis testing problems that involve nuisance parameters, the true size of the
test can differ substantially from its nominal size, particularly when many nuisance
parameters are present. It is therefore of interest to differentiate the class of tests for a
particular testing problem whose size does not depend on nuisance parameters. A critical
region whose size is independent of nuisance parameters is known as a similar region

(for details, see Hillier (1987)).

Suppose y is an observed data vector which we wish to use to test a hypothesis. .
Commonly, in a non-experimental discipline such as econometrics, y is assumed to be a
variable of interest, which is modelled by a distribution function, assunied known except
for its parameter values. Precise and consistent estimation of the model itself is our next
concern and it is assumed that at least some of the model parameters wili be of interest.
Suppose we can write the joint density of y=(y, »3, ..., ¥,)" a8 f(y;u, €), where u

is a vector of nuisance parameters and & is our parameter (vector) of interest.
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For the problem of testing H,: 8 = 8,, where 8, is a specific value of @, the size of any

critical region @ (also known as rejection region, i.e., we reject H, if y falls in this
region) for testing H,, namely J J O p, 8,)dy = a(u), will typically be a function of

the nuisance parameter vector 4. A critical region @ is a similar region of size &, if
and only if, @ has size @ in the conditional distribution of y given ¢ (the test statistic)

for almost all ¢#. Then one might seek a test that is best within the class of similar critical

regions.

The problem of testing H,: 8= 8,, against the specific value of H,: 8= 6, is invariant
in the sense of Lehmann (1959) under a group G of transformations acting on the
sample y if for any transformation 7(y) € G, the probability distribution of T(y)
belongs to the same set (H, or H ) as y. That is, a test with critical region « is an
invariant test if y e implies T(y) ew forall T{(y) eG and y ¢w implies T(y)ew.
With respect to these transformations, the vector v=g(») is 2 maximal invariant
statistic (see Lehmann (1959)) if it is a statistic which takes the same value fory vectors
that are connected by transformations and different values for y's not connected by
transformations. Now if we wish to restrict our attention to tests that are invariant utider
the transformations 7(y), then we can treat the maximal invariant as though it is the
observed data. This ¢~ because all invariant test statistics can be written as a function of
the maximal invariant. A test is invariant under a group of transformations on y, if and

only if, the critical region for the test is defined in terms of the maximal invariant. For

example, in the case of testing the disturbance structure in the linear regression model,

y=Xp+u, the testing problem is invariant to transformations of the form

e e
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T(»)= nyy+ Xn and v= Pz/(z2'2)" is a maximal invariant (this is discussed in detail in

Section 1.3).

A number of researchers have used invariance argumcn'ts to climinate nuisance
parameters from their testing problems (sec for example, Durbin and Watson (1971),
Kariya and Eaton (1977), King (1980, 1981a, 1981b, 1982a, 1983a), Franzini and
Harvey (1983), Sargan and Bhargava (1983), Lehmann (19806), King and Inder (1986),
King and Smith {1986}, Honda (1988), Ara and King (1993, 1995) and Ara (1995)). In
addition King and Hillier (1985) constructed a locally best invariant (LBI) test for the

case of testing a single parameter when the alternative is one-sided, i.e., for the wider

problem of testing the null hypothesis H,: @ =0 against H,: > 0, when the covariance

matrix of the regression disturbance vector u is of the form o&°Q(8). Also, they
constructed a locally best unbiased invariant (LBUI) test when the alternative is two-

sided, that is, for testing H,: 6 =0 against H): 0= 0.

The most popular basis for inference in econometrics is that based on the likelihood
function. It is sometimes described as the likelihood principle. Its strength is that is
casily applied to problems of inference in multiparameter models. A large part of the
literature has generally concentrated on the idea of removing, in some sensc. at least
some of the parameters from the likelihood in order to improve inference on the others.
An extended list of ‘modified’ likelihoods has resulted; ranging from the now
conventional concentrated, or profile, likelihood, in which some parameters are replaced
by “estimators” that solve the first-order equations but are a function of other

parameters, through to conditional, marginal and integrated likelihoods (Kalbfleisch and

Sprott (1970)), various conditional, adjusted and modified profile likelihoods (Cox and
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Reid (1987, 1993), Bamderff-Nielsen (1983), McCullagh and Tibshirani (1990), Laskar
(1998), Laskar and King (1998)), to canonical and expected likelihoods (Hinde and
Aitkin (1987), Conniffe (1987)). All of these are intended to allow inference on the
parameter or parameters of interest, along with minimising interference from nuisance

parameters.

The concept of marginal likelihood was first introduced by Fraser (1967) in the context
of structural inference. Since then this approach has been applied to the problem of
testing the parameters of the linear regression model, their marginal likelihood is easily
obtained and well known. The properties of marginal likelihood baszd tests have been
considered in the context of testing for autocorrelation (Corduas (1986), Ara (1995), Ara
and King (1993)); testing for heteroscedasticity (Levenbach (1973)) and testing for
random coefficients (Ara and King (1993)). In all cases use of the marginal likelihood
has resulted in an improvement in the finite sample propertics of inferential procedures.
Laskar and King (1995) considered LR, LM and Wald tests of the MA(1) error model
and reported improved size and power for marginal likelihood based tests. Rakman and
King (1998) observed that the LM test based on the marginal likelihood tends to be more
powerful than its conventional counterparts. The general theme of this literature is that
procedures based on the marginal likelihood show a distinct improvement over

equivalent procedures based on the conventional concentrated likelihood.

2.3 Optimal tests

In this section we survey important ideas related to statistical inference, with respect to
hypothesis testing in econometrics. We start the discussion of particulay methods of

inference by looking at problems with a very simple structure. Suppose that we have the
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data vector y and a hypothesis H, concerning its density f,(y). The purpose of a
hypothesis test is to examine the consistency of the data with H,, . In order to do this we
need to have some idea of the type of departure from the null hypothesis that we wish to
be looking out for. We now assume that, in addition te /{,, we have onc or more
alternative hypotheses representing the directions of the departures from . Let H,
{0=8,) be a particular simple (a hypothesis is simple when it completely specifies the
distribution of y) alternative hypothesis. The problem is basically one of deciding

whether H, or H, is more appropriate.

The main too! we have for choosing a test statistic in order to maximize power s the NP

temma which suggests the use of the LR

_ L.

=T oy

2.1)

when just those two distributions are under consideration. Clearly, the larger the value of

t{»), the worse the fit under H,, so we reject H, for large values of ¢(y).

We suppose that 1(y), under Hg, is a continuous random variable such that for ail

0 < a < 1, there exists a unique critical value, ¢, , which is defined by
Pr(¢t(y) 2 ¢, | H,) = a, (2.2)

for ¢, when a significance level a is chosen. The NP lemma states that for any size

the LR critical region,

ty)ze,, 2.3)
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is the most powerful (MP) test. The NP lemma is the foundation of tests with good

power properties.

Suppose now that under #H, we have just one distribution but under A, we have a

collection of distributions, f(y, 8), one for each different value of & such that 8> 0,
Cox and Hinkley (1974, p.101) state that two cases may now arise

i)  we get the same size & best (or MP) critical region (via the NP lemma) for

all distributions of y under & _;

i}  the best (or MP) critical region depends on the particular distribution of y

under H_.

In order to find out which of these two possibilitics i1s true, we would first select a
particular distribution of y under A, (say, €=46, >0) and then treat this choice as a
simple alternative hypothesis. With respect to testing a simple aull hypothesis against
this simple alternative, the NP lemma gives us the MP critical region. If afier taking
various monotonic transformations (quite often useful in numerical work) to simplify the

form of the test statistic, we find it does not depend on the choice of &, under H, then

[T

we have case (i). Otherwise, the test depends on the choice of 8, and will change as &,

changes, so case (i1) is the outcome.

The performance of a test is typically assessed by its size and power properties.
Econometricians are always concemned with optimality ¢f powér. Neyman and Pearson
(1933) laid down the foundation for the theory of optimal test procedures by introducing

the uniformly most powerful (UMP) test. A test is said to be UMP when it is MP for
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every alternative distribution. For a parunetric hypothesis testing problem, we would
always prefer to use an UMP test, which maximizes the power curve over the entire

parameter space,

King (1996) pointed out that statistical theory is good at suggesiing optima! test
procedures for situations invelving only a few parameters, but beyond this is rather less
helpful. Later, Grose (1998, p.11) commented that this point might be extended by
noting that only for a single parameter system can the estimation/inference problem be
said to be solved in any general sense and cases involving more than one parameter must

be handled according to their own nature.

In our case (i) above, where the test does not depend on 8, , we have a test that is MP for
every value of @ under /. This is an ideal test and is UMP. lts power functions always

dominate the power curves of any other test of the same significance level,

A UMP test may not always exist. Unfortunately, it is rarely possible to find a UMP test
when the alternative hypothesis is composite (a hypothesis is composite when it does not
completely speeify the distribution of the data vector) and/or in the presence of nuisance
parameters. A more realistic situation is case (ii), in which case we need to decide how

to make a choice of test.

There are a number of possible approaches. We consider here the situation when the
distributions under H, are indexed by a single parameter . Cox and Hinkley (1974,
p.102) consider various technigues for constructing tests of a simple hypothesis against a
composite alternative when no UMP test exists. They suggest three different approaches

to choose the point at which the power optimised:
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i) to pick, somewhat arbitrarily, a “typical” point 8, in the allernative
parameter space and use it in the test in order to {ind a test that is MP for

that particular chosen point under the altermative;

ii) to take €,, a chosen point from the altcenalive parameter space which is

very close to its H, value, i.e.. lo maximize the power locally ncar the nul

hypothess; -

iii) to maximize some weighted average of power over the alternative

parameter space,

Thus if uniform optimization is impossible, other approaches of test construction such as
the principles of unbiased tests, consistent tests, locally most powerful (LMP) tests,
invariant tests, similar tests that may ensure certain known but lesser optimal power
properties, can be claimed. Davies (1969} defined a PO test 1o be °4 optimal’® if its
power function is always a monotonic decreasing function of the parameter under test

and its power reaches a predetermined value most quickly. Bhatti and King (1990} have

given an example of a B optimal test.

The locally best (LB) test is optimal in the sense that its pawer curve has the steepest
slope of all power curves with the same size under the null hypothesis. For a single
parameter, Neyman and Pearson (1936) proposed a test which they called a type A test
and which is a locally best unbiased (LLBU) or locally most powerful unbiased (1.MPU)
test. They also introduced the A, type test whichisa uniform}y most powerful unbiasel
(UMPU) test. In the case of a composite hypothesis, Neyman {1935) constructed type B

and type B, tests in the presence of a nuisance paraicter, that are LBU and UPMU,
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respectively. For two anknown parameters, Neyman and Pearson (1938) constructed a
type C test. Isaacson (1951) introduced a type D test, but unfortunately in practice, type
I3 tests are very difficult to apply. Later, Lebmann (1986, p.529) proposed a modificd

version of the type DD test and named it a type E test which admits a nuisance parameter.

Following Neyman and Pearson (1936); Ferguson (1967), Efron (1975), King and Hiller
{1985), Sen Gupta (1987), and Wu and King (1994) reviewed the LB test. For testing a
single parameter against a one-sided alternative, the LB test is a well defined and
accepted test. King and Hiller (1985) and Wu and King (1994) noted that the LB test is
equivalent to the LM test based on the square root of the standard LM test statistic. King
and Wu (1997) recommended a one-sided LM-type test which is locally mean mod
powerful (LMMP), a generalisation of a single parameter LB test. Majumder (1999)
proposed a distance-based approach to a single parameter or scalar case to one-sided or
partially one-sided testing problems. He developed a modification of King and Wu’s
LMMP tes: and other LM-type tests. As this LMMP test is not suitable for testing
partiaily one-sided alternatives, he suggested that the genemlization would solve the

problem.

Neyman and Pearson (1936) first introduced and proved the generahzed Neyman-
Pearson lemma is basic in the theory of statistical hypotheses testing. Here we present
the lemma only, for full mathematical details see Dantzig and Wald (1951). We quote

the generalization of the fundamental NP lemma from Lehmann (1986, p.96):

Theorem: Let f,,.... f,., be real-vatued functions defined on a Euclidean
space A and integrable x, and suppose that for given constants ¢,,..., ¢,,

there exists a critical function ¢ satisfying
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I¢_ﬁdﬂ =¢, f=L..,m (2.4) L.ﬁm(}})({‘, _ (2.9)
Let & be the class of critical functions ¢ for which (2.4) holds.
(i) Among all members of £ there exists one that maximizes evolves rejecting /, when
)8 St (2:5)
(i) A sufficient condition for « member ¢ to maximiz: (2.5) is the Saa 0> 2 hL), (2.10)

i=a]

existence of constants %,,..., &, su>h that N
where k,, £,, ..., k, are “critical values™ chosen to satisfy (2.8).

$0) =1 when £, () > D kS0,
- (2.6)
#(y)=0 when £, (») <D kL(»).

i=|

Ifany member of the class of critical regions, @, satisfies (2.10) with &,, &, ..., k20,

"
then it maximize (2.9) among ail critical functions satisfying
(iil) I a member of ¢ satisfies (2.6) with %,,..., &, 20, ther: it maximize

(2.5) among ull crtical functions satisfying j fOMysc, i=h2 . m @2.11)

j¢ﬂd}l.<.c‘-, f=1.., m. (2.7

(iv) The set M of points in m-dimensional space whose coordinates are This 1s one example of an application of the generalized NP lemma. Note also that

(Iqﬁ Sy, _[ ¢ fmd,u} for some critical function ¢ is convex and Sio% [0 oy [ () do not need to-be likelihood functions or density functions. In

closed. if (¢,,..., ¢,,) is an mner point of A , then there exist constants fact, in our application in Chapter 3, we will be using integrated likelihood functions.

ko k
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and a test ¢ satistying (2.4) and (2.0), and a necessary
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condition for a membsr of ¢ to maximize (2.5) is that (2.6) holds. The generalized NP lemma states that if one finds appropriate critical values

ki kyy ...y &k, such that the m size conditions (2.8) hold simultaneously, for those

m

s T
S LS

e Y, £i¥), ..., f.(3) are m separate density functions under H, and . .
Suppose fiyh £;1) Sa(3) P 4 ’ critical values the test will be the most powerful. We note that there are not a lot of

Sua(¥) is the density under H,. Also suppose for given probability constants examples of applications of the generalized NP lemma, although Sriananthakumar

Cy» Cyy oy €, there exists a critical region @ of the form that H, is rejected if » cw (2000) used this lemma 1o construct an APOI test.

satisfying ;
E: There seems to be a range of tests, each optimal in one sense but no obvious choice of

j fiMdy=c¢, i=1,2,..,m, (2.8) which is best. If this is the case, according to Lehmann (1947) the choice has to be based

on mformation not contained in the general formulation of the testing problem. If no
‘hen the gencraiized NP lemima tells us that the critical region to maximize power, i.¢.,
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such additional information is available, the choice must of necessily be somewhat

arbitrary.

2.4  Point optimal tests

The origin of the key idea behind the PO test goes back to Lehmann and Stein (1948).
Other references are Lehmann (1959), Davies (1969), Kadiyala (1970) and Berenblut
and Webb (1973). It was King (1985a, 1985b) who used the term “point optimal™ and

sparked a revival of intetest in the tradition of optimal test procedures. King (1983z)

.provides a discussion of the theoretical foundations of PO tests and King (1987a)

presented a clear and thorough explanation of PO testing by simplifying the method of

test construction and by introducing computational checks for accuracy.

We start by describing a PO test in the context of testing

1)  asimple null against a simple alternative hypothesis;

ii)  a simple null against a composite alternative hypothesis; and

iii) a composite nuli against a composite alternative.

When a test achieves optimum power at a particular parameter point it is then rcferred to
as a PO test. For a lesting problem that involves a simple null against 2 simple
alternative, is well known that the NP lemma provides us with an MP test. That is, the

LR test (see equations (2.1) and (2.3)} is the MP test and hence it is the PO test.

For a testing problem that involves a simple null against a composite altemative, then
for a chosen point in the alternative parameter space, the LR test of this fixed point

under the alternative is a test that is MP in the neighbourhood of the chosen point; hence
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it is a PO test. When the testing problem invelves both composite null and alternative
hypotheses, onc might use the LR test that corresponds to a fixed point under the null
and a fixed point under the alternative. This does not necessarily result in a test which is
MP in the neighbourhood of the chosen point in the alternative parameter space. The
rcason for this is that since the null hypothesis is composite, the probability of a Type |
crror, that s, the size of the test, may be a function of the nuil hypothesis parameters;
consequently the maximum size of the test may exceed the nominal level. The standard
approach in this case (see, for example, Lehmann and Stein (1948)), is to control the
maximum size to be less than or equal to some desired level of significance.
Unfortunately, there are many circumstances in which size will vary across the null
hypothesis parameter space. If such a critical value is chosen so that the global
maximum of the size function of the LR test is attained at some point in the null
parameter space, then King (1987a) called the test a Pseudo PO (PPO) test. If such a
critical value is chosen so that the maximum size is attained precisely at the chosen point
in the nuil hypothesis parameter space, then it is a MP test in the neighbourhood of the

chosen point in the altemative parameter space and therefore a PO test.

In the absence of UMP tests, King (1987a) constructed the PO test for a very general
framework and applied this to the problem of testing AR(1) errors against MA(1) errors
in the lincar regression model. King proposed the PO test for the general problem of
testing (not in all cases) which includes both nested and non-nested problems as special

cases and involves testing
H,: y hasdensity f(y. 8) (2.12)

against
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H . y has density g(v, ¢), (2.13)

where y is the observed sample, € is a px 1 vector of parameters restricted to the set

Q and ¢ is a ¢x 1 vector of parameters restricted to the set ®. It is assamed that the

possible range of parameter sets, Q and @, are as small as possible.

As mentioned in Section 2.2, for the simpler problem of testing

Hy: y has density f (v, 6)) (2.14)
: .;1.gainst
H': v has density g(y, ¢,), (2.15)

where 8, €Q and ¢, e® are fixed and known, we have simple null and simple
alternative hypotheses. Therefore the NP lemma implies that rejecting H, for large

values of

0., ‘ :g(J’a¢1)
O )= 0)

is a MP test. If 1(8,, ¢,) is used as a test statistic for the wider problem of testing the
simple null hypothesis, H,, against the composite aliernative, H, , then this test serves
as the MP test in the neighbourhood of ¢ = ¢,. However, as already noted the same test
does not necessarily result in a MP test in the neighbourhood of ¢ = @,, when testing the
composite null, H,, against the composite alternative, H,. For the test, when H, is

composite, the distribution of ¢ under H, and hence the probability of Type 1 error IS
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likcly to be a function of @. Hence, for this case, the critical value, ¢, , is found by

solving

Pr{1(0,, ¢,) > c |y hasdensity f(y, O)]<a, forall 0eQ,forc,, (210)

K

with equality for at least one value of &. That is, we have to choose &, such that the
maximum size of the test occurs at this point, Then testing M, against /1, the test is

MP in the neighbourhood of ¢ = ¢, , and we have the PO fest.

Since King (1980), PO testing has been an active field of research. The most successful
applications of PO testing have been in the context of the linear regression model. Some

specific examples of PO test are: testing for AR(1) disturbances (Berenblut and Webb

(1973), King (1985a), Dufour and King (1991)); testing for fourth-order autacorrelation
in presence of first-order autocorrelation (King (1989)); testing for MA(1) disturbances
(King (1985b)); testing for AR(1) against MA(1) disturbances (King and McAleer
(1987)); testing for heteroscedasticity (Evans and King (1985b, 1988)); testing for serial
correlation and heteroscedasticity (King (1986), King and Evans (1984)); testing for
random walk disturbances (Sargan and Bhargava (1983)); testing for random
coefficients (Franzini and Harvey (1983), Shively (1986, 1988a, 1988b), Brooks (1993,
1995), Brooks and King (1994a, 1994b)); testing for unit roots in observed time series
(Bhargava (1986), Jaeyoun and Schmidt (1996)); testing for moving average unit roots
in ARIMA models (Saikkonen and Luukkonen (1993)); testing for autoregressive
disturbances in a time series regression with missing obsrvations (Shively (1993));
testing for block effects in regression disturbances (King and Evans (1986), Bhatti

(1992a), Bhatti and King (1993, 1794)); testing for serial correlation in a large number
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of small samples (Bhatti (1992b)); tests of lincar regression disturbances (Evans and
King (1985a)); testing for trend stationarity (Mwang and Schmidt (1993)); tests of the
error covari{incc matrix (Honda {1989)); point-optimal Cox tests (Dastoor and Fisher
(1988a)); tests of non-nested error processes (King (1983a, 1987a), Siivapulle (1991,
1994a, 1994b), Silvapulle and King (1991, 1993)), inference in integreted autorepressive
models (Rothenberg and Stock (1997)) and inference in nearly integrated non Gaussian

models (Thompson (2002)).

Regardless of its excellent performance in many instances, King's (1987a) PO test has
-had its opponents (see, Dastoor and Fisher (1988b), Bierens (1988) and Potscher
(1988)). The main criticisms King’s PO test have received are mentioned briefly in
Sriananthakumar (2000, p.13). One important criticism is that if the null hypothesis is
simple (possibly after reduction by invariance), PO tests are easily constructed using the
NP lemma. But in practice, there are many existing testing problems that cannot be
simplified by using invanance arguments or by any other means. In other words, if the
null hypothesis is not simple (or cannot be reduced to a simple hypothesis by invartance
arguments), the construction of the PO test poses unresolved problems. Thus, in the case
where the null hypothesis is composite, under what conditions do PO tests, exist? How

can PO tests be found in this case?

As the complete knowledge of the distcibution is a prerequisite for the application of PO
tests to regression problemns, some researchers have ignored the PO test (even for
situations where it can be easily constructed). They have developed or used tests, which
have known asymptotic distributions (see, Burke et al. (1990} and Smith and Tremayne

(1990)). Some researchers find it very straightforward to apply asymptotic tests because
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of their known asymptotic null distribution, However, computational simplicity is not
the only criterion for making a choice of testing procedure. In the following section we

review approximate FO (APO) tests,

2.5 Approximate point optimal tests

In the previous section, we mentioned that King {1987a) reviewed the theory of PO test
construction for a very general framework and applied it to the problem of testing AR(1)
disturbances against MA(1) disturbances in the linear regressionmodel. In casts where
the null hypothesis cannot be reduced to a simple hypothesis, there is o clear approach
for constructing a test with optimal power properties. King observed that his approach
does not suit ali testing problems and does not work in anumber of cases. One example
of a situation in which King’s test does not work involves testing MA(1) disturbaunces
against AR(1) disturbances in the linear regression model. Silvapulle and King (1991)
could not find a PO invariaat (POI) test (if a test achieves optimum power at a particular
point within the class of invariant tests then it is called a POI test) for this testing
problem. Unfortunately, sometimes the presence of nuisance parameters that c:nnct be
eliminated through invariance arguments considerably complicates the construction of
PO tests. In fact, there is no guarantee that the method of construction ouihined by (ling

(1987a) will work in all situations.

King (1989) applied the APOI test to the problem of testing for fourth-order
autocorrelation disturbances in the presence of firstorder autocorrelation in the linear
regression model. He found that it works well. For the problem of testing MA(1)
disturbances against AR(1) disturbances in the linear regression model, Silvapulle and

King (1991) could not find a POI test, they recommended the use of an APQOI test. For
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this testing problem following King (1987a), the critical regions of a POI test with

optimal power al p= p, >0 can be written as

{Po> Vo) = AS(p,) iUy ) i <y 2.17)

where #i and i are the generalized ieast squares (GLS) residual vectors of the general
linear regression model y= Xf+u, assuming the covariance matrices =(p,) and
Q(y,) , respectively. We assume that » is normally distributed, although this can be

extended to elliptical symmetry without changing any of what follows.

" Now the test statistic given in (2.17), requires the critical value ¢ and the parameter ¥

to be chosen in such a way that

Pris(0o, 7o) < ¢ |~ N(O, Ay )]=a, (2.18)
and

Pr{s(0,, 7o) <C |t~ N, Q)< a, forall 7, 2.19)

where a is the desired level of significance. King mentioned that Imhof’s (1961)
algorithm could be used to solve (2.19) and this may be achieved using Koerts and

Abrahamse’s (1969) FQUAD subroutine or Imhof’s algorithm coded by Davies (1980).

For more detail see King (1987a).

To obtain appropriate y, and ¢ values to construct an APOI test, King (1987a)

suggested an iterative procedure (see for details Silvapulle and King (1991)). He also

suggested that the APOI test might work well if it is nearly a PO test, otherwise it may

not always be reliable.
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Sriananthakumar (2000) constructed the g test: an APOI test based on the generalized
NP lemma. For the g test, if the observed sample is generated from one of a finite
number of densities under the nuli, then the generalized NP lemma provides a PO test
for the problem of testing for a finite number of observable density functions against a

single alternative density function. Supposc, one wishes to test composite hypotheses of

the form given by equations (2.12) and (2.13) and ¢ e® is the point under the
alternative hypothesis at which the power is to be optimized. Then the testing problem

can be written as
H,: y has density f(y, 6) (2.20)

against
H: y has density g(y, é). (2.21)

The g test involves approximating f(y, 9), 8, by a finite number (say, r) of
densitics by the selection of r separate & points in , namely, 8, 6,, ..., 6,. The

corresponding densities,
Si=f(8),i=L2,..7, (2.22)

are regarded as representative densities of f(y, 8). The generalized NP lemma is used

to obtain a PO solution for this type of approximation.

In construction of the g test, for the selected chosen points under the null, a

corresponding number of representative densities are needed for which the size
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cenditions hold simultaneously. That is, for the existence of the g test, the following r

size condrions,
P02 Y RAONY~ SN =a, j=1 20, (2.23)

where a; is the desired level of significance, need to be solved simultancously by

appropriate choices of values for k,, k,, ..., k,.

If this does not work in terms of giving acceptable size properties across the entire null
hypothesis parameter space, Sriananthakumar suggested adding another representative
density under the null and solving for an extra size condition. The process of increasing

the number of representative densities is followed until the desired outcome is achieved.

The g test is applied with a minimum number of representative densities under the null,
because as the number of representative densities increases, the required computing time
increases exponentially. She applied the g test to two testing problems, namely, testing
for MA(1) disturbances against AR(1) disturbances and testing for AR(1) disturbances
against IMA(1,1) disturbances in the linear regression model. She compared its size and

power properties in small samples with those of King's APO! tests and the asymptotic

~ tests of Silvapulle and King (1991) and Silvapulle (1994a). She found that the g test

performed well for both testing problems, while King’s APOI tests performed extremely
well for the former problem but performed pootly for the latter, in terms of size and

power properties.

The existing literature shows that the traditional asymptotic tests based on the marginal

likelihood sometimes performs better than those based on the standard likelihood in
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finite samples. Also, POI tests can have excellent finite sample properties and APOI

tests perform well in a few cases, Rahman and King (1994) compared testing for random

regression coefficients in the presence of autocorrelation, using marginal likelihood

based LM tests, King and Wu's (1997) asympiotic LMMP (ALMMP) tests and APOI
tests, They calculated small sample sizes and powers and found that marginal likelihood
based tests are very competitive in terms of power with APOI tests. ALMMP and
marginal likelithood based LM tests also appeared to have more desirable sizes than
APOQI tests. Rahman and King further concluded that the extra computation required to
apply APOI tests hardly seems worthwhile. Patticularly for large sample sizes, APOI
tests do not seem to result in clear-cut improvements in cither size or power. On the
other hand, the marginal likelihood based LM test is reasonably reliable for large sample
sizes. Rahman and King also noted that the marginal likelihood based ALMMP test is
best in terms of average power but for data sets in which the component scores used in
the test statistic are negatively correlated, the test performs. poorly. In their test, it
appeared that the lower than nominal sizes for middle values of the nuisance parameter,
is a cause of the APQI tests not performing better than the other tests. This means that
the APOI test may not be optimizing power at the chosen point under the altemative
hypothesis. Thus, a more appropriate choice of APOI test could have changed Rahman

and King’s conclusion.

Andrews and Ploberger (1994) derived asymptotically optimal tests for testing problem
when a nuisance parameter is present under the alternative hypothesis but not under the
null hypothesis. They considered a nonstandard testing problem which was of interest
because the classical asymptotic optimality properties of LM, Wald, and LR tests do not

hold for nonstandard testing problems. They used the weighted average power criterion
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(prior) to generatc the optimal tests similar to that used by Wald (1943). Their study
indicates that the LR test is not an optimal test using the weighting functions. However,

it is asymptotically admissible (see Andrews and Ploberger (1995)). Andrews and
Ploberger (1994) also introduced the average exponential tests. These tests are
asymptotically optimal in the sense that they minimizc the weighted average power for
specific weight functions. Subsequcntly,. Andrews. et al. {1996) derived a class of finite

sample optimal tests for one or more changepoints at unknown times in a multiple linear
regression model. They considered a weighted average power by replacing a weight
function over the number of changepoints. Andrews and Ploberger (1996) commented
that the standard LR and sup LM tests beat any given test in terms of weighted average
power against alternatives that are local to, but sufficiently distant from, the null.In this
thesis, we propose a new test procedure for the problem of testing a composite nuli
against a composite alternative hypothesis where we optimize a weighted average power
function. This extends the of Andrews, Ploberger and others alcng with the third option

(see p.19) suggested by Cox and Hinkley (1974, p.102).

2.6 Brief survey of non-nested testing
As Pesaran and Weeks (2001, p.289) noted,

From a statistical view point the main difference between the nested and
nonnested hypothesis testing lies in the fact that the usual loglikelihood
ratio or Wald statistics used in the conventional hypothesis testing are
automatically centred at zero under the null when the hypotheses under
consideration are nested while this is not true in the case of nonnested
hypotheses. However, once the conventional test statistics are
approximately centred {(at least asymptotically) the same classical

techniques can be applied to testing of non-nested hypotheses.
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In this section we briefly survey the literature on non-nested hypotheses testing in
econometrics and statistics. The seminal papers of Cox (1961, 1962) were the pioneering
contribution to non-nested hypotheses testing in statistice. In these papers, three general
approaches to non-nested testing problems are discussed. The modified ( centred) log-
likelihood ratio principle, hereafter known as the Cox-test was subsequently applied in
linear econometric models by Peseran (1974) and in simple non-linear equations by
Pesaran and Deaton (1978), Evans and Deaton (1980) and Fisher and McAleer (1981).
Unfortunately, some confision has arisen in respect to the interpretation of these tests.
There would appear to be several reasons for this, the distinction to be drawn between
discrimination and significance testing. It is not clear which of these is being considered
because the Cox-test may be used for either. Therefore, it is essential to have a clear
understanding of the inferences that might be drawn f;om the Cox-test (for details, see
Fisher and McAleer (1979)). Dastoer (1981) in commenting on Fisher and McAleer’s
(1979) paper, observed that the Cox procedure in general, t.:ertainly yields four possible

conclusions and to suggest that nine conclusions might be possible could mislead the

researcher.

The Cox-test has mainly been applied to linear and simple non-linear regression models.
The reasons may be due to the complex computation of the numerator of the Cox
statistic in non-regression circumstances. To overcome this problem, Pesaran and
Pesaran (1993) proposed a new procedure for computing the Cox statistic for tests of
non-nested hypotheses based on stochastic simulation which have been found works

reasonably well even for a moderate number of replications.
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Atkinson (1970) advocated the comprehensive model approach, whereby non-nested
models are tested against an artificially constructed general model that includes the non-
nested models as special cases. This approach is based on exponential weighting of the
probability. density functions underlying the respective hypotheses, see also Quandt
(1974) and Davidson and MacKinnon (1981). But this approach has some important
limitations because the testing framework is nested, the test under the null is non-
sténdard due to the fact that under the null, the parametess of the alternative hypothesis
. disappear (see Pesaran and Weeks (2001)). This problem is known as Davies’s problem

(see Davies (1977)).

From the existing literature on non-nested hypothesis testing, it is evident that there are
many other tests that under certain conditions are asymptotically equivalent to the Cox
test. These asymptotic tests have been proposed and investigated by several authors in
the context of non-negsted, non-linear and multivariate regression models. Among these,
the J and P tests proposed by Davidson and MacKinnon (1981, 1982) seem 1o be very
popular because they are conceptually simpler and are very easy to implement asing
existing computer software. Moreover, the J test can be generalized relatively easily to
cases where the regression function under the alternative hypothesis is non-parametric,
see Delgado and Stengos (1994). Also, the J and P tests can be regarded as a way of
implementing the astificial nesting (AN) procedure of Atkinson (1970) which soived the
identification problem normally associated with such procedures. The JA test proposed
by Fisher and McAleer (1981), the Cox-type N test proposed by Pesaran (1974) and
adjusted Cox-type tests derived by Godfrey and Pesaran (1983) also seem to be popular

in contrast to Deaton’s (1982) F test which is less frequently used than either the J or
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JA tests. This may be due to its poor power performances (see McAleer and Pesaran

(1986)).

Michelis (1999) investigated the asymptotic null distributions of the J and Cox non-
nested tests under a specific assumption of model orthogonality. He concluded that the
J and Cox tests are no lor.ger asymptotically equivalent as they are in the standard case
of non-orthogonal models. The J and Cox tests tend to over-reject more severely when
the correlation among the non-nested regressors is weakened (Godfrey and Pesaran,
1983). Also, Michelis’s simulation results indicate that, with nearly orthogonal models,
the J and Cox tests have excessive size distortion that increases with the number of
non-nested regressors in the alternative model, and the size of the Cox test becomes
substantially larger than the size of the J test. To overcome the poor performance of the
Cox test, Godfrey and Pesaran ;;roposcd some small sample cortections and in particular

the adjusted Cox-type N test which results in substantial improvement in its finite

sample performance. Then the estimated sizes of the adjusted Cox-type N test are very

close to the nominal size and powers are typically higher than those of the F test.

From the literature, it is evident that the Cox and Cox-type N tests of non-nested
regression models have significantly higher than nominal sizes, particularly in finite
samples. The J4 and F tests have accurate sizes, however the J4 test may be less
powerful than the J test in certain situations, especially when two sets of regressors are
nearly orthogonal (Davidson and MacKinnon, 1982, p. 563). There is a need for a beiter
approximation to the finite sample distribution of the J test statistic to overcome the
size distortion cdue fo near orthogonality and to improve on the normal approximation

based on asymptotic theory in small samples. Fan and Li (1995) proposed a bootstrap
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version of the J and JA tests to improve on the normal approximation to the finite
sample distributions. It is evident that the empirical sizes for both the bootstrap J and

JA tests are very close to the nominal size and their power properties are good.

McAleer (1995) pointed out that there is a considerable body of evidence that the J and

P tests and Cox-type N test can perform badly in small samples, particularly in the
context of testing two non-nested linear regression models. Godfrey (1998, p. 60) noted
that the J test has several useful features: it is easily generalized to allow for several
non-nested alternative regression models; and it has considerable intuitive appeal. He
argued that after adjustment of critical values, the J test might be more powerful than
other procedures. He applied the bootstrapping method considered by Horowitz (1994)
to the J test to reduce the problem of over rejection of true models. He also applied the
same technique to the Cox-type test, J4 test, F test and adjusted Cox-type N test of
Godfrey and Pesaran and observed a substantial improvement in finite sample sizes
when the errors are normally and independently distributed. His power results indicate
that the J and adjusted Cox-type N tests are equally powerful, whereas the J4 and F

tests are less powerful. He considered applying the bootstrap method to non-nested
multiple alternatives based upon an appropriate joint J test and recommended that
bootstrap samples could be used to make more reliable inferences from diagnostic
checks as well. Davidson and MacKinnon (1996) also successfully applied the bootstrap
J-type test and Davidson and MacKinnon (2002) investigated its properties in the
context of non-nested linear regression models. Their analysis implied that the J test

performed very well when bootstrapped, except in certain extreme cases.
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The encompassing principle of Hendry and Richard (1982), Mizon (1984), and Mizon
and Richard (1986) is a leading approach to a non-nested testing framework; see also
Gourieroux et al. (1983). Mizon and Richard (1986) proposed two encompassing testing
procedures: the Wald encompassing test and the score encompassing test; for a
definition of encompassing, see Gourieroux and Monfort (1995). Their analysis
indicated that the conventional F test, as well as the one degree of freedom non-nested
tests, has an encompassing interpretation and that the F test is a complete parametric
encompassing test. They introduced the concept of implicit null hypotheses which
enables alternative test statistics to be compared. They also mentioned that a complete
parametric encompassing test is powerful for a wider range of alternatives than
incomplete parametric encompassing tests. McAleer and Pesaran (1986) noted that
encompassing (ests are simple‘ applications of Cox’s principle. Encompassing tests are
harder to implement because the test statistics are not always easy to evaluate. Chen and
Kuan (2002) proposed a more operational encompassing test that is asymptotically
equivalent to the Wald and score encompassing tests. Their proposed pseudo-true score
encompassing test is relatively easy to evaluate. Their simulations indicated that this test
has better finite sample performance than the J, J4 and Cox tests. This test is not
restricted to testing conditional mean specifications and hence extends the applicability
of the conditional mean encompassing test of Wooldridge (1990) and the proposed test
serves as a useful complement to existing non-nested tests. Recently, Ramalho and
Smith (2002) investigated non-nested tests for competing moment condition models
using a semi-parametric generalized empirical likelihood framework. They proposed
Cox-type, moment encompassing and patametric encompassing non-nested tests. It is

evident that some tests are most powerful, their empirical size characteristics oppose
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their practical use. Also, their parametric encompassing statistics represent an important

method for the assessment of models against specific non-nested alternatives.

Based on Cox’s principle, Walker (1967) first introduced a test for testing non-nested
time series models, specifically AR(p) against MA(g) processes, but his test was not
popular because of its high computational cost particularly, when both p and ¢ exceed
one. Godfrey and Tremayne (1988), Smith and Tremayne (1990) and Burke et al
(1990) proposed and implemented pure significance (PS) tests for testing AR(1) against
MA(1) errors in the linear regression model. King (1983a, 1987b), King and McAleer
‘(1987) and Fianses (1992) considered the problem of testing between AR and MA
disturbance models for the linear regression model. McAleer et al. (1988), Hall and
McAleer (1989), Godfrey and Tremayne (1992) studied the problem of testing between
AR and MA time series models. McAleer et al. (1990) presented several straightforward
procedures regarding the disturbances in a linear regression model for testing non-nested
models of first or higher order autocorrelation processes which are altemative
approaches to {esting non-nested models with autocorrelated disturbances. They
illustrated the test procedures with an application to US unemployment using annual

time series data.

Silvapulle and King (1993) constructed a non-nested test of joint AR(1)-AR(4)
disturbances against joint MA(1)-MA(4) disturbances in the linear regression model and
illustrated the test with an application to quarterly time Series data. They conclided with
some discussion of the problem of testing general AR(p) disturbances against MA(g)
disturbances. Baltagi and Li (1995) derived two extensions of the PS test proposed by

Burke et al. (1990) and applied the first test to the problem of testing for AR(1)
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disturbances against MA(1) disturbances, and the second test for MA(1) disturbances
against AR(1) disturbances in an error component model. It is evident from their Monte
Carlo results that for testing AR(1) disturbances against MA(1) disturbances, the PS test
performs well when the sample size, # 2 60 and they do not recommend the test when
the sample size is small or moderate and the number of individuals is large. However,
the PS test performs well for testing MA(1) disturbances against AR(1) disturbances
when the number of individuals is large and does not rply on sample size (1) to achieve
its asymptotic distribution. McKenzie et al. (1999} developed some simple prediction
tests for testing AR(p) against MA(g) errors and vice versa in the linear regression
model. For the simpler case, testing for AR(1) against MA(1) errors, they compared the
finite sample properties of their tests with those of Burke et al. ’s PS test and the LM
tests of AR(1) against ARfVIA(I,l) errors. The Monte Carlo results supported their

prediction tests, the LM and PS tests perform worst.

2.7 Concluding remarks

This chapter reviewed the liferature on optimal, PO and APO tests for composite
hypothesis testing problems in the context of linear regression model and several
potential problems were highlighted. We also focused on contributions to tests of non-
nested hypotheses and discussed some popular non-nested tests, We briefly discussed
nuisance parameters, invariance arguments and the marginal likelihood. In the literature,
the solution for testing simple hypotheses is well established, therefore we focus our

attention on composite hypothesis testing problems.

The literature surveyed in this chapter indicates that there are many asymptotic tests for

composite non-nested testing but all of them are not equally efficient for diagnostic
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testing in econometrics. Some limitations of these tests were also surveyed. Among the
optimal tests, King’s (1987a) PO tests seem to be popular for composite hypotheses
testing problems involving regression disturbances. His PO tests can have excellent
finite sample properties compared to existing popular non-nested tests, Unfortunately,
the: PO test cannot be constructed for all testing problems. For example, in ove case
Silvapulle and King (1991) could not find a PO test, so they recommended the use of an
APQ test. The APO test does not alwa)}s seem 1o be reliable. Thus, it is important lo find

a general solution for testing a composite null against a composite alternative.

In this thesis, wé propose a new approach, called the average power test which is based
on the generalized NP lemma for testing composite hypotheses. Sriananthakumar (2000)
proposed the g test: an APOI test for testing a composite null hypothesis. The
generalized NP lemma provides a PO test for the problem of testing a finite number of
representative densities against a single alternative. For the g test, if the number of
representative densities is high then it is hard to find the critical values for which the size
condition hoids simultaneously. The new approach that we propose does not rely on the
choice of representative densities but rather constructs the test with maximum average
power while controlling average size over different subsets of the null hypothesis

parameter space.

Chapter 3

A New Approach to Testing a Composite Null against a
Composite Alternative

3.1 Introduction

As noted in Chapter 2, the theory of hypothesis testing is well developed in the case of
testing a simple null hypothesis against a simple alternative hypohesis and a simple null
hypothesis against a composite alternative hypothesis. We know in the former case that
the NP lemma provides the most powerful test while in the latter case, the same lemma
can be used to construct a test that is optimal (most powerful) at a chosen point under the
alternative hypothesis parameter space. This test is known as a peint optimal (PO) test.
In hypothesis testing, much less developed is the problem of testing a composite null
hypothesis against a composite alternative. There are a number of procedures that
involve techniques for reducing the dimension of a composite null hypothesis, which in
some cases can reduce a composite null hypothesis to a simple hypothesis. These include
invariance arguments, which can be used to simplify the testing problem and eliminate
some or all the nuisance parameters in the model under the null hypothesis. For example,
see King and Hillier (1985). The theory of sufficient statistics and similar critical
regions can also be used to reduce the complexity of the testing problem, see for

example Cox and Hinkley (1974, p.135).
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However, in cases where the null hypothesis cannot be reduced to a simple hypothesis,
there is no clear approach for constructing a test with optimal smalksample power
properties. ' King (1987a) reviewed the theory of point optimal invariant (POI) tests,
which have been found to work well for some composite hypothesis testing problems in
tinite samples but he observed that his approach does not suit all testing problems and
&oes not work in a number of cases. One example of a situation in which it does not
work involves testing for ﬁrst—order‘moving average (MA(1)) disturbances against first
order autoregressive (AR(1)) disturbances. Silvapulle and King (1991) could not find a
POI test for this testing problem so they recommended the use of an approximﬁtely POI
(APOI) test. In this regard, we can say that when testing a composite null against a
composite alternative, the NP lemsma does not provide a test which is PO. However, itis

not clear that the APOI test is necessarily the best test in this case.

POl and APOI tests are based purely on the NP lemma, which requires a simple null
hypothesis and a simple alternative. The generalized NP lemma allows for a composite
null hypothesis that has a finite number of possible distributions under the null
hypothesis. This does not suit composite hypotheses which involve nuisance parameters,

because such parameters typically can take an infinite (uncountable) number of values.

The aim of this chapter is to explore a general solution to testing a composite nuil
hypothesis against a composite alternative. It involves maximizing the average power of
the test subject to average size being controlled over different subsets of the null
hypothesis parameter space. The choice of maximizing average power comes from Cox
and Hinkley’s (1974, p.102) suggestion discussed in Chapter 2 and the recent work by

Andrews and Ploberger (1994, 1995, 1996) in a different context. Working with average
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sizes over a countable number of subsets of the null hypothesis parameter space allows
us to use the generalized NP lemma to construct the optimal test. A composite null
hypothesis brings with it the possibility that a test’s size will vary with different
parameter values under the null hypothesis. In such cases, the standard approach to test
construction (see, for example, Lehmann and Stein (1948)) is to control the maximum
size to be less than or equal to some desired level of significance. Typically this is
extremely difficult and time consuming. One may not always be certain that a critical
value, which controls size locally, also controls it giobally. Controlling average size over
subregions selected to reduce variability in size over the entire parameter space does

seern to be an alternative worthy of investigation.

In this chapter we illustrate the new test procedure by showing how it can be applied to

the problem of testing disturbances in the linear regression model.

The plan of this chapter is as foilows. The theory and general testing procedure is
discussed and outlined in Section 3.2, Section 3.3 covers the application of the test
procedure to the problem of testing the dislurﬁances in the linear regression model and
provides solutions to a number of practical problems that arise when applying the test.

Some concluding remarks are made in the final section.

3.2  Theory and the testing procedure

Let y be an observable #x 1 vector and suppose we wish to test
H,: y has density f (y, )

aganst
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H,:y has density g(y, 4)

where g jsa jx1 vector of unknown parameters restricted to the set @ and g is a

i x 1 vector of parameters restricted to the set . This is a very general form of testing
problem and it is assumed that any knowledge about the pessible range of parameter

values has been used to keep the parameter sets, g and ¢, as small as possible.

Our aim is to find the critical region ,, = g for which we reject H, when ;, ¢ and

which maximizes average power subject to controlling the average size (probability of a
Type 1 error) of the test. We note that controlling average size over the entire parameter

space under py , namely @, may result in undesirably large sizes in some parts of @

while smaller in other parts of @ . In order to minimize this possibility, we allow for @

to be partitioned into ,, disjeint subregions, namely @,,@,,...,@  so that

O=0,u0,L.6,

and we aim to control the average size over each of these subregions under g .

Because fy is rejected when y e g, I 1y, 8)dy is the size of the test for a given g
value under ff . In order to define the average size over the subregion @ , we need a
weighting function, p (4), defined for @, i=1,2,...,m- This function is rather

like the density function of a prior distribution for g defined over @, . Then the average

size of the test over the subregion g _under fj is

Jl@; Lf (y ’ 9)(1}? Po;(B)de
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= [ [, £, O)pu(6)d6 i

=j'mj:.(y]dy, i=12,..,m,
where
749)= [, /(- 6)pa(6)a6 @3.1)

is the weighted average over ©, of the density functions of y. It can aiso be thought of

as an integrated likelihood function for 8 €©, . -

The power of the test for a given parameter vector ¢ under | is J g(y. @)dy . In order

to define the average power over @, we need a weighting function p,(¢) defined over

pe®. Again this can be the density function of a prior distribution for ¢, alinough

given its role in weighting powers, it is much better thought of as the density function of

a weighting distribution. The average power function of the test is
I, 0. o)y p,(g)as
=] |, 8 d)p.()ds dy

= _Lfmn(J’)dy R

where

Fun0) = [ 803, )p.(#)i (3.2)
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is the weighted average over ¢ of the density functions of ;, under z7 . It can also be

thought of as an integrated likelihood function for f; .

Given y.(3), ..., £u(¥)s fuu(¥) defined by (3.1) and (3.2), our aim is to find the critical

region ,, which maximizes average power, namely

J-mfmﬂ(y)dy (3.3)

subject to controiling average size over the subregions ©,,i=12,..,m which can be

written mathematically as

I filydy<e, i=12,..,m (3.4)

where . is the desired maximum average size over the subregion @, under H,- The
solution to this problem is given by the generalized NP lemma (introduced in Section

2.3, also see Lehmann, 1986, p.96). The critical region defined by

w= {y:f..,+1(y) 53 k.-f,-(y)} ’ 3-5)

provided that the constants f k. .. k, exist such that the inequalities (3.4) hold,
maximizes average power. Therefore, under H,» We have size conditions in order to
solve for the ,, constants f &, .. k, - Note that the generalized NP lemma requires
the constants, k.. . k -t all be positive real numbers. If one or more of the k, is

negative, then the test is optimal in the class of tests such that

(3.6)

I pMy=¢, i=12..,m
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In summary, the maximum average power test proposed in this chapter for testing a

composite null hypothesis against a composite alternative is based on rejecting H, for

observed y such that

fra0)2 SRS () 3.7

im]

where &, k,, ..., k,, are constants (critical values) chosen such that the size conditions

given by (3.4) or (3.6) are satisfied.

There are two special cases worthy of mention. Observe that when m =1, then (3.7)

reduces to

fz(y) 2 klf;(y)
which is equivaiont to

LD o,
FAC

in which the lefi-hand expression is a ratio of integrated likelihoods and &, is the critical
value calculated to control the average size of the test. In the case of the null hypothesis

being the simple hypothesis that y has density f(y). then m=1, f£,(y)=f(»),

S (V)= £2(¥) which is still defined by (3.2), and (3.4) becomes

[ 1y <e,. (3.8)

In addition, (3.7) becomes
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.[,, 2(y. d)p,(8)d¢

>4, (3.9
S)

where k, is such that (3.8) holds. The testis defined by (3.9) and can be thought of as

being based on a weighted average of the likelihood ratios g(», ¢) / (. 6)

3.3 Application to testing disturbances in the linear regression model

In order to apply the test given by (3.7), there are a number of practical issues that have

to be considered such as the choice of ,,, construction of the integrated likelihoods
F(5)s eos L) ,' S and the calculation of the critical values k. .. k . Some

of these have specific solutions, which will best be left to the next chapter. In this

section, we discuss some solutions in the context of testing disturbances in the linear

regression model.

Consider the linear regression model

y=Xp+u (3.10)

where , is px 1, X iSan yxk non-stochastic matrix of rank <, and gisa kx|

vector of parameters. Let the ,, « | disturbance vector ;, be distributed as N(O, 0-29(9))
under p and N(O, O-?-g(¢)) under f , where Q6) and () are nxan matrix
functions of the scalars g and 4, respectively.

Our interest is in testing

Hy:u~ N(0, 57Q(9)), <01, (3.11)
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against
H:u~N(0, o'S(g)), 1L <¢<l, (3.12)

in the context of the linear regression model (3.10), where /, could be -0, and /, could

be +co. Similarly, /, could be —co, and I, could be +co.

For this testing problem, S and o’ are nuisance parameters. Their influence can be

removed through standard invariance arguments because the testing problem defined by

(3.10), (3.11) and (3.12) ts invariant to transformations of the form
yr=a,p+ Xn, (3.13)

where 77, is a positive scalar and 5 isa k x | vector. Clearly we wish to consider only
tests which are invariant to transformations of y of the form of (3.13). With respect to

these transformations, the px1 vector

Pz

r=

is a maximal invariant, where p=n—-k, z= My is the OLS residual vector from (3.10),
M=1 -X(X'X)'] X' and P is any px»n matrix such that P'P=M and PP'= f,.

Because all statistics invariant to transformations of the form of (3.13) can be written as
functions of v, for the purpose of our testing problem, we can treat v as the observed

data.
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The joint density function of ,, when ;, ~ N(O, o A( ,1)) where Af1) i5 an ,; x » mMatrix

function of j , has been found by King (1979) to be

-pi2

h(v)=%1"(p/2)7:'*’"'2|PA(/1)P'I_UZ(v'(PA(/l)P')"'v) (3.14)

‘with respect to the uniform measure on {\,;v eR” viv= 1}. It is possible to show, as

pointed out by Verbyla (1990), that
|PA(2)P| =) xR A XA (2)" &

and from lemma 2 in King (1980) that

' N E(l], %H()')
12 (PA(A)P ) v=—
where z(1) is the OLS residual vector from the regression

ARy = A(A) " xB+ AR) P u (3.15)

in which p(1)~"? 1s the inverse of A(1)"? which is defined by

AR (AR)") = A(2)

Using these results, our problem of testing (3.11) against (3.12) in the context of (3.10),

becomes one of testing
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. -pi2
-2 - -f "2" -
H.,:hn(v, 9) = ";_'F(P/2)71'""2|X:X|"2|Q(9)| "'|X'Q(9) % u[ (9)‘2(9)] ’
z'z
h<0<l, (3.16)

against
H":h"(v’gﬁ)=%r(pf2)”-";2IXW|U2IE(¢)|-“2|X'E(¢)'l Xl-uz[z(qﬁ z(gﬁ)]

Lg<i, (3.17)

where Z(6) denotes z(1) with A(1)=Q(6) and Z(¢) denotes £(1) with A(2)=Z(g).
Observe that through invariance arguments, we have the respective parameter spaces as

@={6:/,<0<} and ®={g:/;<$<!}.

First let us consider the test for which we control average size over the whole of @, i.e.,
m=1. Denote the weighting functions for each hypothesis under consideration as
Po(8) and p_ (4}, respectively. The test which maximizes average power subject to

controlling average size over @, involves reiecting H, for

h

J3T(e/ 2)7?"'”IX':\’!”’IE(¢)I“”’|XE(¢)“Xi"'”[w] P$)ds

i
2c, j%’r(p / 2)”-”’2ixwlmlﬁ(é‘)l"'”

L

' ~pi2
A’n(e)“x|"’2[z_(%;@] P (6.

After cancellation of some constants, this is equivalent to
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O OR WG|, (g
2¢ (3.18)

I el |x ooy X

where [, [,» [, and J, all are appropriate boundaries of the parameter space which may

be infiniie and ¢_ is the critical value calculated to control average size.

If we denote the critical region given by (3.18) as w(c, ) then finding involves

solving
1, "
Jo Iy 1 @)d0dv=f [ (v, E)ivd6=a (3.19)

for . where  is the desired average size or “significance level”.
4

If one or more of 7 (;= 1,2, 3 and 4) are infinite, there is an issue of truncation ervor to
[

find the solution of (3.18) and (3.19). First consider the denominator of (3.18). Four

cases then may arise. These are as follows.

Casel. Ify (i=1,2) are all finite, then there is no issue of truncation error.
CaseIl. 1If l, =—wo and /, is finite, then the denominator of (3.18) is

-2

-t E"(9)‘ ‘ZH(Q) Poy(0)d0, (3.20)

2'z

ji]cz(e)\’"zlx*n(e)" X|

which is equivalent to
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-l

Mg V-2 e o et 2] Z(6) 2(6
Il ™|x afey" 4 Qz—(—) Pu0)d6

e

-pi2

2| (g o I
ig_);:(—l P (D)0,

-

+_[:1 IQ(Q)l-uz

xXQe)'x

for which A, the truncation point, is chosen so that

-pi2

P (0)dO< g,

!

Q(a)ruzl{\,,g(g)-:Xl—uz f“:@g(_gl

z

M, |

—iC

(3.21)

where ¢ is a small value known as the truncation error. Therefore (3.20) can

be approximated by the second term of (3.21) and this approximation will

result in a truncation error of less than ¢.

Case IIL 1f /, is finite and /, = o0, then the denominator of (3.18) is

-pl2

 lo(o) ™ |x ey x |“”2 M o (6)d0,

which is equivalent to

-pl?
Ay - o F fe
.[“:! |Q(9)| "2|X'Q(9) 'XI in2 EE;;Z_L&J Pl (0)d6
. -pi2
= -2 1 A bd
+-[‘fz IQ(9)| |X'Q(9) lX| :_(2;__(_9) Pu(6)d8,

(3.22)

(3.23)
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for which pf, , the truncation point, is chosen so that
-2

‘ .[; |Q(9)|_”2|X ' ‘Q(‘Q)hl X |—lu E-Léz'j—(@ Pa(B)B<e,

where ¢ is a small value being the maximum allowable truncation error.
Therefore (3.22) can be approximated by the first term of (3.23) and this

approximation will result in a truncation error of less than ¢.
Case IV. If j =~ and /, = w0, wien the denominator of (3.18) is
| 2

-pf2

w - o -v2] 28 "‘z“ &
[ loe) ™| (o) x| z—(—)-:—(-)- Po(O)d6, (3.24)
which is equivalent to
. -2
- o v 2(8) Z(6
[l | x ate)" x| 020\, oo
- z'z
, -piz
Al -2, oL 2‘(9] ;«‘-‘(9) o
O R I R I
[} ~pid
B LG CR P (3.25)

+ )™ o)

z'z

for which pz, and py, are the truncation points chosen so that
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-pl2

J‘:l |Q(9)'—II2|X,Q(9)"lx‘-”2 w pm(a)do

¥
]

—pfz

-2 M Pu(O)d0|< ¢,

&

+f [Q(@)]"”]X'Q(@)"X|

where £ is a small value being the maximum allowable truncation error.
Therefore (3.24) can be approximated by the middle term of (3.25) and this

approximation will result in a truncation error of less than ¢.

Now if we consider the numerator of (3.18), similar cases will happen for /; and /, .

The consequence of this is that for the purpose of evaluating (3.18) and (3.19), /,, /4,, /

and /, can be regarded as finite without any loss of generality.

Unfortunately, (3.18), and (3.19) both involve integrals, which do not have any
analytical solutions. We therefore have to resort to numerical approximation methods.
We can approXimate the integrals in (3.18) by sumiming the areas under a large number,
say g, of rectangles of width (/, -1;)/q for the numerator and (!, —/,)/q for the
denominator whose height is equal to the value of the function being integrated at the
midpoint of the base of the rectangle (for both integration with respect to 8 and @). The
bases of the rectangles combined cover the interval of integration. This involves

replacing dand ¢ in  the integrands by 4 +(2j-1)(,-1)/(2q) and

L+(27 -1, 1)/ (2q), wherej=1,2, ..., ¢, multiplying by (,,—1)/qand (/, -4)/q

respectively and summing the areas of the rectangles.
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Thus (3.18) can be approximated by (see Conte, 1963, p.120)

A -2

( r
) 2e,) 5} Uy - 1)p.(8,)
'z MG

\ - >c (326)
( —-pi2

Slo(o,f rrafe,) x| LG} R

j=l

Sys(e ) s,y x

i=l

where @ = +(2;-1)(, —1)/(2q) a4 ¢, =1 +(2j-10L -1)/29), j=12,..,q-
Observe that we can cancel 5, from the numerator and denominator of the lefi-hand
side (LHS) of (3.26). We retain these ;~ terms because they help with the numerical

stability of the functions we are dealing with, particularly since they involve powers of

the order 5 /2.

The LHS of (3.19) can be approximated using Monte Carlo integration in the fol]ox;ing
way. First draw a g value from p_(g). Then generate an ;<1 y vector via (3.10) and
(3.11). Because of invariance, we can set g<0 and 52 = 1. For the given value of ¢,

(the LHS of (3.19) is a function of ¢, }, conduct the test using (3.26). Repeat this a large
number of times. The proportion of times 77 is rejected in these simulations provides an

estimate of the LHS of (3.19). This atlows us to solve (3.19) forcu via trial and error.

As discussed in Section 3.2, a potential problem with controlling the average size of our
test is that sizes can be undesirably large in some parts of @ while being smaller than
desired in other parts of . For example, if we divided @ into three subregions

(;u = 3), the critical region (3.26) now becomes
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xoe) x

-1/2 M poj(gj) (327)

Y |Q(¢9J,)|‘"2

fegqy+l

where k,, k, and &, are critical values calculated to control average size over the three
subregions of © and the values of ¢, and g, are determined by the boundaries of these

subregions. The terms (/,—/;)/q and (/,-1)/q are absorbed into the constants &,, k,

and £,.

Similarly, if we divided @ into m subregions with inner boundary points 8,, 8,,

Tu ey

&,.-1+ the boundary points for the purpose of summation, ¢,, g, ..., q,,, are determined
by rounding (6,-1)q/0, ~1)+(1/2)), (0, -4)q/(t, -1)+(/2)), R
(8, ~1)q/(, = 1) +(1/2)), respectively, down to the nearest integer, then the critical

region becomes
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-pi?

P, (4;)

4

>[e(e, ) rs(e) X

=1

- ;:(¢ j)' ‘z*(¢ j)

1

’ -pi2
) - <2l 716,) 218,
o 3ale ) atey A | 2L
sttt
f -pi2
_ L el e z(e,
i, oo} ooy | LT )

FEIR

iti ; verage size over the
where k. k,, ..., k, ar€ critical values calculated to control averag m

subregions of @ .

Returning to the case of ,,; = 3 for illustration, if we denote the critical region given by
(327) as wlk,k,k) and if © ={06,<6<6}> 0,={66,<0<6,} and
0,={06,<0<6,} where g =1, 6, =1, and 9, and 9, are the chosen boundaries of

the subregions of @ , then finding £ , f, and g, involves solving

1] Wv,0)dvdd=a, i=1,2,3 (3.29)
&; Jwlky k2. k)

jointly for j , g, and j . Note that g, and g, in (3.27) are determined by rounding

(B~ 1)aft = 1) +(/2)) A4 (8, ~1)q/(l,~1)+(1/2))> respectively, down to the
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nearest integer. Again the LHS of (3.29), for i=1,2, 3, can be approximated using
Monte Carlo integration as follows. For the given value of , first draw a 8 value
from p,,(6), then gencrate y via (3.10) and (3.11) with f=0and &* =1. For the given
values of k,, &, ana k,, conduct the test for this y vector using (3.27). Repeat this a

large number of times. The proportion of times H, is rejected provides an estimate of

the LHS of (3.29).

Solving the three equations given by (3.29) for k,, k,, &, can be difficult and time

consuming. In the experiments reported in the next chapter, we used the following steps

to solve for &,, &, and £,.

Step 1.  Fix the values of &, and k, to some reasonable initial values. Solve (3.29)

with i =1 for k,. This can be done by rewriting (3.27) as

. -pi2
) . a2 218, £
5 3 ol ety | 2LTE |0,
Fgp+l 2z
, ~pil
-1 I ¢.) e
0 3 ol ) frate,)" o | 2L, 6,
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—pi2

-2 E’(Qj) '2'."(9}) pm(gj)Z K, (3.30)

i

2

i=l

oo, xrals,)

repeatedly drawing g values to generate j, from , (@), calculating the LHS
of (3.30) and then sorting these values in ascending order so as to find the

100(1- o) percentile value which is . .

Step 2.  Taking these values of t &, and &, calculate the LHS of (3.29) for ;- 2.
Let this value be denoted by .. If 5 = o, go to step L s, > » Make g,
bigger otherwise make k, smaller with the aim of getting 5, close to o and

repeat steps 1 and 2.

Step 3. Taking the values of | £, and £, used in step 2, calculate the LHS of (3.29)
for j=3. Denote this value by 5 . If 5 =y, we have found the required
values of k,, k, and k- If 5> a0 make f, bigger otherwise make £, smaller

with the aim of getting 5, close to 4 and repeat steps 1, 2 and 3.

The above algorithm applies for the case of ,, =3 it can easily be generalized for
general . If we denote the critical region given by (3.28) as w(k , k,, ..., k,,) and if

O, ={9: 8., 595‘9:‘}: i=12,..,m where Gy =1 0, =1 and 8, 6,,....0,. are

our chosen boundaries of our subregions of @, then finding f, 4 ... k involves

solving

[ Wv,0)dvdf=a, i=1,2,..,m> (3.31)
O, dar{ky kay k)

A New dpproach to Testing a Composite Null against a Composite Alternative 63

jointly for &, k,, ..., k, . The integers q,, q,, ..., q,.., given in (3.28) are defined above.
Again the LHS of (3.31), for i=1,2, ..., m, can be approximated using Monte Carlo

integration as follows. For the given value of 7, first draw a @ value from Po(O),

generate 3 via (3.10) and (3.11) with f=0and ¢* =1. For the given values of
kis ky, ..., k,,, conduct the test for this y vector using (3.28). Repeat this a large number

of times. The proportion of times H, is rejected provides an estimate of the LHS of

(3.31).

Solving the m equations given by (3.31) for k,, k,, ..., k,, is really difficult and time

consuming. We can use the following mr steps to solve for &, &,, ..., k

m*

Step 1. Fix the values of &,, £, ..., k, to some reasonable initial values. Solve 3.31)

with i =1 for k,. This can be done by rewriting (3.28) as

«pi2

Sfe(o ) este) o _(i"i.)_”ﬁﬂ_)

P.(8,)

I

—k, Z IQ(GI)'_”Z'X’Q{H})-IXI‘M M P0l8))

...__kmj i IQ(Q;)I-M’X'Q(OJ)_IX_”2 ‘ﬂf%“

F=if ot *1

R Y T e
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~pl2

e M INCAEY? (3.32)
2'z

i)

Yl j)"‘"zlx' afe,)"'x

i=

repeatedly drawing g values to generate j, vectors from p_(6) calculating
the LHS of (3.32) and then sorting these values in ascending order so as to

find the 100(1-a) percentile value which is .

Step 2. Taking these values of &, .. &, calculate the LHS of (3.31) for ;- 2.
Let this value be denoted by g, . If 5, = ¢ 8O to step 3.1 g, >a; make ,
bigger otherwise make f, smaller in an attempt to get close to o and

repeat steps 1 and 2.

Step 3. Taking the valuesof k., ... k% used in step 2, calculate the LHS of (3.31)
for ; — 3. Denote this value by . If 5, =g, g0 10 stepd. If 5 > o> make g,

bigger otherwise make . smaller with the aim of getting g close to o and

repeat steps 1, 2 and 3.

Step 4. Taking the valuesof x k, ..., k used in step 3, calculate the LHS of (3.31)
for ; - 4. Denote this value by s . If 5 = o, B0 to step 5.1f 5, > v » make f,

bigger otherwise make g, smaller and repeat steps 1, 2, 3 and 4.

Step ;. Taking the values of k%, .. k, used in step (; 1), calculate the LHS of

(3.31) for j= j. Denote this value by s If s, =ar 80 to step (j+1). If

A New Approach to Testing a Compasite Null against a Composite Alternative 635

s, >a, make k, bigger otherwise make k, smaller and repeat steps

Ly 24 ooy

Step », Taking the values of k. k,, ..., k,, used in step (m—1), calcufate the LHS of
(3.31) for i=m. Denote this value by s,. If 5, =, we have found the
required values of &, &,, ..., k, . If 5, > a, make k_, bigger otherwise make

k_, smaller and repeat steps 1,2, ... m.

Here we see that the amount of computation involved does increase exponentially with

m . It is best, therefore, that i be kept as small as possible.

3.4 Concluding remarks

in this chapter we have presented a new approach to test construction when testing a
composite null hypothesis against a composite alternative based on using the generalized
NP lemma to maximize average power subject to controlling average size over different
subsets of the null hypothesis paramete.r space. We discussed the new test procedure by
applying it to the probiem of testing disturbance errors in the linear regression model.
This problem was deliberately chosen because, through invariance arguments, it reduces
to composite null and alternative hypotheses involving scalar parameters. It is also a
testing problem for which in some cases it has been difficult to find a satisfactory test.
The new test procedure has considerable potential, particularly for problems in which

the effective nui! hypothesis parameter space can be kept small.

A i e e hp o
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In the next chapter we illustrate the new test procedure by applying it to the problem
Silvapulle and King (1991) could not find a POI test for and were forced to recommend
the use of an APOI test for. This problem is testing for MA(1) disturbances against
AR(1) disturbances in the linear regression model. A small sample power comparison
reveals that the new test can be substantially more powerful than various versions of the
APOI test recommended by Silvapulle and King. Following the next two chapters, we

will inve.tigate how well the procedure works for other types of parameter spaces under

the null hypothesis.

Chapter 4

Application of the New Approach to a Single Parameter
Problem

4.1 Introduction

In the previous chapter, we introduced a new approach to testing a composite null
hypothesis against a composite alternative. We outlined the theory behind this approach
with particular emphasis on testing the disturbances in the linear regression model. In
this testing problem, we are interested in a particular parameter or a set of parameters.
Clearly the remaining parameters are nuisance parameters which it would be nice to be
able to eliminate. We discussed in Section 3.3 the standard invariance technique that can
be used to simplify the testing problem and eliminate the nuisance parameters involved

in the regression model under consideration.

There are a number of practical issues that were not explored in Chapter 3. These
include: (2) Does controlling average size do a good job in controlling size overall? (b)
How should m be chosen? (c) How easy is it to apply this test procedure? (d) Does this
test procedure perform well? (e) If so, how well will it perform in comparison with other

tests? These are some of the questions this chapter seeks to answer.
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We will address these questions by considering the application of the new test procedure
to testing for MA(1) disturbances against AR(1) disturbances in the linear regression

model.

Nicholls, Pagan, and Terrel {1975) ascribed the general lack of interest in models with
MA disturbances to the computational difficuity involved in estimating its regression
parameters. This problem has now been overcome by the amival of powerful personal
computers. King (1983b) considered a point optimal procedure for testing MA(l)
disturbances in the linear regression model. The reverse problem of testing AR(1)
against MA(1) disturbances.has been extensively studied in the time series framework,
see for example, Walker (1967), King (1983a), King (1987a), King and McAleer (1987),

Burke et al. (1990} and Baltagi and Li (1995).

King (1983a) constructed and investigated the properties of a test for teéting AR(1)
against MA(1) disturbances, called a psendo POI (PPOI) test, by applying the NP lemma
to 2 maximal invariavnt statistic. In his paper, King mentioned that wrongly correcting for
AR(1) disturbances in a model with MA(l) errors can lead to inefficient parameter
estimates and, more importantly, misleading inferences. Also, he poiated out that the
confirmation or rejection of a particular economic theory could plausibly depend upon
whether a certain set of regression disturbances are AR(1} orMA(1), see for example,
Rowley and Wilton (1973). King and McAleer (1987) further compared the small
sample properties of the Cox test, some linearized Cox tests, and an APOI test, as well as
the LM test of AR(1) against ARMAC(1,1) disturbances in the linear regression model.

Their comparison showed King’s test to have the best power properties. King (1987a)
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discussed an application to the non-nested problcm of testing for AR(1) disturbances
against MA(1) disturbances in the linear regression model and calculated powers for a
POI test procedure. Unfortunately the POI test cannot be constructed for all testing
problems. For example, Silvapulle and King (1991) could not find a P-JI test for testing
MA(1) against AR(1) disturbances in the linear regression model, so tiiey recommended
the use of an APOI test. In this chapter we will evaluate the small sa nple properties of
our new test procedure in the context of the problem of testing MA(1) against AR(})
disturbances in the linear regression model, and compare these propert es with those of

Silvapulle and King’s test.

The plan of this chapter is as follows. Tﬁe model, testing problem and the tost procedure
are discussed and outlined in Section 4.2 which covers ti:e application of the test to the
problem of testing for MA(1) disturbances against AR{1) disturbances in the linear
regression model. A Monte Carlo experiment for exploring the properties of the new test
procedure is outlined in Section 4.3. Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4 cover the
experimental design and the size properties of the new test when m=1, m=2 and
m= 3, respectively. A comparison of the small sample size and power properties of the
new test and various versions of the APOI test recommended by Silvapulle and King
(1991) is reported in Section 4.4. It demonstrates the potential of the new test procedure.

Some concluding remarks are made in the final section.

4.2  The model, testing problem and the test procedure

Consider the linear regression model (3.10)

. ——— e = o el
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y=Xp +1u.
If the components of the n x 1 disturbance vector u are generated by the MA(1) process
u =e +re., 1=1,2,..,u, (4.1

where et=(e,, €, .., 8,) ~ N(0, 6°1,,,), then u~N(0, 6°E(y)), where Z(y) is the

tridiagonal matrix with 1+ y? as the main diagonal clements and y as the non-zero off-

diagonal elements. If the components of « are generated by the stationary AR(1} process

u=pu_ +e, |p<l, 1=12,..,n, (4.2)
where  u, ~ N(O, 0'2/(1 —-p’)) and  e=(e, €, ..., e,,)' ~ N(0, 0'11,_)‘, then
u~ N0, a’Q(p)) in which Q(p) is an nxn matrix whose (i, /)" element is
P (-
Our interest is in testing

Hy:u~ N(0, 6°Z(7)), 0<yst, 4.3)
against

H,:u~N(0, a*Q(p)), 0<p<l, (4.4)

in the context of the linear regression model (3.10). Observe that we are assuming non-
negative autocorrelation in the disturbances. The discussion below can easily be

generalized to the case of negative autocorrelation. Typically when one is considering
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disturbance models of the form of (4.1) and (4.2), one is also willing to make an
assumption about whether consecutive disturbances are positively or ncgatively
correlated. As noted by Silvapulle and King (1991), if available, this knowledge should

be incorporated into the test in order to improve power.

As we mentioned in the previous chapter, the parameters P and &° are nuisance
parameters for our testing problem. Their influence can be removed through standard

invariance arguments because the testing problem defined by (3.10), (4.3) and (4.4) is

invariant to transformations of the form (3.13).

Now using the results of (3.16) and (3.17), our problem of testing (4.3) against (4.4) in

the context of (3.10), becomes one of testing

, =pi?
_ 1 2 iy N2 [ A 2
dn:h“(p’}/)z-i-r(pr)}r o""zil‘ XI"' IE(};)I ! IX’Z(J’) 1‘,\_’I Z(rlr:(y) »
against
, -pi2
1 -pfd [] /2 Re - Tz d
H i (v00) = T(p 2)w Lex ol o)™ o Z_(»Og: @
O<p<l, (4.6)

where Z(y) is the OLS residual vector from the regression defined in (3.15), Z(y)
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denotes Z(A) with A(2)=Z(y) and also, Z(p) denotes (1) with A(2)=Q(p).
Observe that through invariance arguments and our assumption of positive

autocorrelation, we have restricted the respective parameter spaces to @ = {y:0<y <1}

and ®={p:0<p<l}.

Fir‘st let us consider the test for which we control average size cizr the entire parameter
space of @, ie, m=1. Now the fundamental NP lemma implies that the test which
maximizes average power subject to controlling average size over the entire null
hypothesis parameter space, can be based on the critical region of the form (after

cancellation of some constants)

-pi2

xeopy x| S (pl,:(p) p(p)dp

.Ll IQ (p)l-uz

s | L

z¢, _L:‘Z(y)lﬁm

_[:‘ Q(p)l-uzl X' Q)" ™" 3(/9)::5(9) dp

k 22

or, y v 2 ¢ 4.7
-v2 ool T

R R M A2

where p(p) and p(y) are the weighting functions of o and y respectively, and ¢, is
tne critical value calculated to control average size. The uniform distribution would

appear to be a good choice of weighting function for o and y because both p and y
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are restrivted to lie in an interval. in equation (4.7), p(p) and p(y) have been replaced

by uniform density functicas which cancel.

If we denote the critical region given by (4.7) as w(c, ), then using equation (3.19),

finding ¢, involves solving

i |
J‘m(q,}-[o ho(b! )’)(17 d]’ == J‘g-['u(cu) ho(v, y)t;vtf}' = (4-8)
for ¢,, where a is the desired average size of the test.

Equations (4.7) and (4.8) both involve integrals, which do not have analytical solutions,
Therefore, as discussed in Chapter 3, we can approximate the integrals in (4.7) by
summing the areas under a large number, say ¢, of rectangles of width 1/¢ . The bases

of the rectangles combined cover the unit interval. This involves replacing p and y in
the integrands by (27 -1)/(2¢), where j is a positive integer, namely j=1,2,..., ¢,

multiplying by 1/g and summing the areas of the rectangles. Thus (4.7) can be

approximated by (see Conte, 1965, p.120)

. -2

$He ko e

J=l 2z

——r 26, 49)
ilz(}’j)]-mlx' 3(}’])-] X’-Uz E'(}’,-) 5(?;)
z'z

Jel

wherep, =y, =(2/-1)/(2q), j=12,..,¢.
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The LHS of (4.8) can be approximated using Mon:e Carlo integration by repeatediy
drawing a y value from the uniform distribution on [0,1], then generating an nx1 ¥
vector via (3.10) and (4.1). Because of invaniance, we set §=0 and o” =1. To calculate
the critical value ¢, , again we repeatedly draw y values from the uniform distribution
on [0,1] to generate y vectors, each time calculating the LHS of (4.9) and then sorting

these values in ascending order so as to find the (1- @)100 percentile value at the o

percent level. This is our estimated value of ¢, .

As discussed in Section 3.2 of Chapter 3, a poter;tial problem is with controliing the
average size of our test. The sizes can be undesirably large in some parts of the null
hypothesis parameter space while being smaller than the desired size in other parts of the
null hypothesis parameter space. We conducted some simulation experiments, form=1,

m=2 and m=3 for testing (4.3) against (4.4) in the context of (3.10). In this testing
problem when m=1 and m=2, we did indeed find regions of larger sizes than & and

regions of lower sizes than « under the nuil hypothesis. For this testing problem,
finally, we divided the nuil hypothesis parameter space © into three disjoint intervals
(m=3), determined by boundaries where the size in the case of m= 1 as a function of

y crosses a =005 for the test given by (4.9). When this was done we saw that sizes of

the resultant test are reasonably acceptable.

A detailed discussion of the test procedures and the size properties of the test withm =1,

m=2 and m=3 are given below.
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4.3 Monte Carlo experiments

In order to investigate the small sample size and power properties of our test in the
context of testing MA(1) against AR(1) disturbances in the linear regression model, we
conducted a Monte Carlo experiment. The experiment was also carried out to compare
the small sample size and power properties of our new test and three verstons of the

APOI test recommended by Silvapulle and King (1991).

4.3.1 Experimental design

Two thousand replications were used to investigate the size and power properties of our
test. The critical values were calculated at the five percent level. For two thousand
teplications, estimated rejection probabilities outside the range [0.037, 0.063] are

significantly different from the five percent ievel at the 0.01 level.

In order to compare the size and power properties of our test with different versions of
Silvapulle and King’s (1991) APOI tests, we used their experimental design matrices

(also see Silvapulle, 1991) which are as follows:

Xl (nx3; n=20,60). The first n observations of Durbin and Watson's (1951,

p.160) consumption of spirits example; that is, a constant, plus annual data on

the price of spirits and household income in the UK.

X2 (nx3; =20, 60). A constant dummy, the quarterly Australian Consumer

Price Index (CPI) commencing 1959(1) and the same index lagged one quarter.
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X3 (nx5; n=20,60). X2 augmented by adding the CPI lagged two quarters and

three quarters as additional regressors.

X4 (n x 3, n=20, 30). The regressors are a constant, logarithms of Chow’s (1957,

Table 1, p.32) automobile stock per capita and logarithm of personal money

stock per capita variables for the United States 1921-1950.
|

X 5 (nx3; n=20, 60). The regressors are the eigenvectors corresponding to the
three smallest eigenvalues of the nxn Durbin-Watson (DW) differencing
matrix A,, which is the tridiagonal matrix, whose main diagonal is
(1,2,2,...,2,1) and whose leading diagonals are (-1, -1, ..., —1) We note

that the first regressor is a constant.

All the design matrices cover a variety of economic phenomena. The design matrix X1
which includes a constant dummy, iias smoothly evelving regressors with no hint of
seasonality, X2 and X3 exhibit practical degrees of multicollinearity. The matrix X5
was included because the DW test is approximately uniformly most powerful invariant
for this matrix. The sample sizes for all the design matrices are 20 and 60 except for X4

where the sample sizes are 20 and 30. The X3 matrix was included to see if the number

of regressors affects results.

For the problem under consideration, the proposed test under H, and H, is invariant

with respect to 4 and o7, and we have chosen, =0 and o’ =1 for the simulation

experiment.
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The first step involved deciding on the value of m for which the size of our fest is
approximately controlled. We mentioned earlier that we conducted some simulation
experiments to choose the value of m and we tried m=1, m=2 and m=3. Finally we

saw that the test performs well for m = 3, Detailed discussions follow.

4.3.2 Size properties of the test with m=1

Using 2000 replications with m=1, we calculated the critical values ¢, for all the

design matrices based on (4.7). These values are presented in Table 4.1. For these critical
values, using (4.9) we calculated the level (sizes) of the test for different values of 7,
namely, y =0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under H,. These estimated
sizes are presented in Table 4.2. From this table we see that the estimated sizes are far
from the average size (« = 0.05), some sizes are undesirably larger than the average size
while others are much smaller than the average size. We do not view this as successfully
controlling the probabilities of Type I errors across the null hypothesis parameter space
because most of the estimated sizes are outside the rejection probabilities range [0.037,
0.063} and are therefore significantly different from five percent at the 0.01 level. This
led us to consider m=2. In the following section we discuss the size properties of the

test for m=2.

4.3.3 Size properties of the test with m =2

We wish to control the average estimated sizes of our test over suitable regions under
H,. When we controtled the average estimated size of our test over the whole parameter

space (m =1) under H,, naturally we got some sizes that are above average and some
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that are below average. Our suggestion is to split the sample space under H, into two

regions and control average size over each of these regions. An obvious approach to is
split into those regions for which size was above average when m =1 and those regions
for which size was below average. In the former region, this should have the desirable
effect of lowering sizes when they are previously above average and for the (atter, this
‘should raise estimated sizes that have previously been below average. With this in mind
and using the calculated sizes for m=1 presented in Table 4.2, we divided the null
hypothesis parameter space (0<y.<1) into two disjoint intervals, with the boundary
points calculated through simple interpolation. For example, in the case of the X1

design matrix with # = 20, through interpolation we estima:ed that smaller than average
sizes lie in the ranges 0 <y <024 and 0.64 <y <1, and therefore larger than average
sizes lie in the interval 0.24 < ¥ £0.64; see Table 4.2. In this case, our aim is to control
average size over these two regions in the hope that this gives a test with better size

properties. Ranges of the two disjoint intervals and the corresponding values of j,

where p, =y, = (2 Jj- 1)/(2q), j=12,..,50, for all design matrices are presented in

Table 4.3.

Thus for m =2, equation (3.7) gives the test that maximizes average power subject to

two size conditions and involves a critical region of the form
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where £, and %, are critical values calculated to control average size over the two
subregions of © and the values of ¢, and ¢, ars determined by the boundaries of the

subregions.

Il we denote the critical region given by (4.10) as w(k,,:’cz_) and if

O ={rresrsydviry,<y <y} and @, ={yy, <y <y,}, where
¥o=0, y3=1, y, and y, are the chosen boundaries of the subregions of @, then

finding %, and %, involves solving
j@i L(kl.mbn(v, y)dvdy =a, i=1,2, @.11

Jointly for &, and k,. Here ¢, and ¢, in (4.10) are determined by rounding (y,q +(1/2))

and (y,q +(1/2)) respectively, down to 12 nearest integer.

The LHS of (4.11) can be approximated using Monte Carlo integration in the following




T R L e e

80 Chapter 4

way, First, fix the value of &, o some reasonable initial value. Solve (4.11) with i =1

for k,. Rewriting (4.10) as

-2

! 7(p,) 2(e))
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can help do this. It involves repeatedly drawing y values from the uniform distribution
over [0, 1]. If such a ¥ value belongs to @, then generate the y vectors via (3.10) and
(4.1) with #=0 and o’ = 1. Otherwise, again we repeat this step by drawing another y

value from the uniform distribution. The next step involves calculating the LHS of
(4.12), and then sorting these values in ascending order so as to find the ninety-fifth
percentile value at the five percent level, which is k. For these values of %, and k,,
calculate the LHS of (4.11) for i=2. Let this value be denoted by s,. If 5, =, we

have found the required values of &, and &, . If s, > a, make %, bigger, otherwise make
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k, smaller with the aim of getting s, closer to @ and repeat these steps again. This

allows us to solve (4.11) for &, and %, via trial and error.

Final critical values of k, and k, for all design matrices are given in Tablc 4.4. From
this table we observe that 4, and %, are always positive numbers and the &, values are
always far larger than %, values for all design matrices. From the critical values, we also
observe that there is a decreasing trend for the &, and 4, values as the sample size

increases, the one exception for &, being for X3 and for %, being for X4.

Using the critical values &, and £,, we calculated the sizes of the test using (4.10) for
different values of y , namely, y =0.0, O.i, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under
H,. The estimated sizes are presented in Table 4.5. Again we see that the sizes of the
test obtained were not satisfactory due to the fact that we are controlling average size.
Here the sizes at the end points of the null hypothesis parameter space are the worst.
These sizes are significantly different from our nominal size. This caused us to decide to
divide the mull hypothesis parameter spare into three disjoint intervals and control
average sizes of these three intervals. The detailed discussions of the size properties of

the test for m =3 are given below.

4.3.4 Size properties of the test with m=3

In the previous subsection, we discussed the option of controiling the average estimated
size of our test over two regions of the null hypothesis parameter space (m=2). The

choice of regions was determined by sizes for the m =1 case. Unfortunately the resultant
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test sizes were judged to he less then acceptable. Part of the problem seems be that one
of the regions is made up of two intervals, with one interval having typically higher sizes
balanced on average by lower sizes for the other interval. This led us to consider three
intervals based on the m =1 sizes. These are the LHS interval for which sizes are below
average, the middle interval for which sizes are above average and the RHS inw:val for
which sizes are below average. For example, in the case of the X1 design Pmtrix with
n=20, these intervals are 0<y<024(0,), 024<y<064(©,) and
0.64 < y <1(@,}, respectively, see Table 4.6. In this case, ranges of e three disjoint
intervals ind the corresponding values of j, where p, =y, =(2j-1)/(2¢),

j=1,2, ., 50, for all design matrices are presented in Table 4.6.

Thus for m =3, equation (3.7) gives the resultant test that maximizes average power

subject to three size conditions and involves a critical region of the forr:

+k, Z‘E(y I IX' y,) I_”

st
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where &,, &, and &, are critical values calculated to control average size over the three

subregions of & and the values of ¢, and ¢, are determined by the boundaries of these

subregions.

If we denote the critical region given by (4.13) as w(k, k,, k) and if

O, ={rrvesr<nt, ©,={rr,<ysy,} ad O,={p1y, <y <y,} whete y,=0,
v:=1,and ¥, and 7, are our chosen boundaries of our subregions of €, then finding

k,, k, and k, involves solving

J

J-w[k|.k:.k3}},(v,y)(lv(iy =g, J: i, 2, 3 . (4’14)

]

jointly for k., k, and k;. Here q and g, in (4.13) are determined by rounding

(r,q +(1/2)) and (y,q +(1/2)), respectively, down to the nearest integer.

Again the LHS of (4.14), for i=1,2,3, can be approximated using Monte Carlo
integration. Solving the three equations given by (4.14) for k,, k,, k, can be difficult
and time consuming, but it can be solved via trial and error. When solving for the critical
values k; (i =1, 2, 3) using (4.14), we used Steps 1 to 3, discussed in Section 3.3 for

m =3, so the average size conditions are simultanzously satisfied.

Calculated critical values of &,, k, and k, for different design matrices are given in
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Table 4.7. From this table we observe that the k, values are always far larger than the &,

and k, values for all design matrices. We also observe that there is a decreasing trend for
the k,, k, and k, values when the sample size is increasing, the only exceptions being
for k, for X3 and k, for X4. From the values presented in Table 4.7, we observe that
k, and k, are always positive numbers. Moreover, for some cascs, the k, values are
close to zero. In addition to that, &, takes a very small negative value wheh the sample
size is increased. Note that Lechmann (1986) required the constants %,, £,, ..., k,, to all
be positive numbers. Arthanari and Dodge (1980, Result 4.5.1, p.196) have been able to
show that the NP lemma and the generalized version of the lemma only require the
existence of real numbers %,, k,, ..., k,,. From the two experiments with m=2 and

m =73 we observed that the behaviour and the pattern of the critical values &, and &, are

very similar,

Once we obtained the critical values &, (i=1,2,3), the sizes and powers were
calculared using (4.13) for y =0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under H,

and for p=0.1, 0.3, 0.5, 0.7 and 0.9 under H,. The calculated sizes are presented in

Table 4.8.

Our interest in this table is to see the behaviour of the sizes of our new test given thatwe

are controlling average size. It is pleasing to note that the calculated sizes for all design
matrices with # =20 fall within the range [0.037, 0.063] making them not significantly
different from five percent at the 0.01 level. Note that we are more anxious when the
estimated sizes are greater than 0.063 rather than beiow 0.037. With this in mind, there

are a few points (most of them are near to the boundary points, y =0.0 and 0.9) which
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are significantly different from five percent at the 0.01 level for the hrger sample sizes.
Overall we find the sizes of our test to be very acceptable for small sample sizes, when

m =13, at least for the ten y values we considered.

4.4 Power comparison of the test with 71 =3

Table 4.9 presents the calculated sizes and powers of our avergge power test and the

corresponding sizes and powers of three versions of Silvapuile and King’s (1991) APO!
test, namely the 5(0.3,7;), 5(05,7,) and s(0.75,7;) tests. Here we note that the size and

power results for the three different versions of APOI tests for X2 design matrix come
from Siivapulle and King (1991), and for all other design matrices, the results come from
Silvapulle' (1991). The sizes of our test have been estimated via simulation methods
using 2000 replications, ‘sizes within the range [0.037, 0.063] are not significantly
different from 0.05 at the 0.01 level. On the other hand, the sizes and powers for the
APOI tests have been calculated to a much higher level of accuracy using standard

numerical methods based on Imhof’s (1961) algorithm as discussed by King (1987a).

The first aspect that we have discussed in the previous section is the behaviour of th;:
sizes of our new test. Now we want to compare sizes of our test with three different
versions of Silvapulle and King’s (1991) APOT test. We observe from Table 4.9 that
sizes for all design matrices with #=20 fall within the rejection probability interval

[0.037, 0.063]. Note that when the sample size is small there are a few sizes that are

‘ - » . . . . .
The author wishes thank Associate Professor Silvapulle for giving her permission to use these results

from her Ph.D. thesis.
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higher than 0.05 while all sizes of three different versions of the APOI test are0.05 or
belowv. One reason for this difference may be the fact that because the new test seeks to
control average size at 0.05, it should have slightly higher sizes than the APOI tests.
There‘are a few sizes of our test that are significantly different from five percent at the
0.01 level when the sample size is increased. Overall we find that the sizes of the new
test perform very well for small sample sizes, when m=3. With respe(:t to the size
condition, we can say that our test compares favourably with each of the three different

versions of Silvapulle and King"s (1991) APOI tests when the sample size is small.

The second point of Table 4.9 is to compare the power of our test with that of the APOI
tests. We observe that for all design matrices, when the samplesize is small except when
£=03 for X1 and p=0.1, 0.3 for X3 and X5 the powers of the new ftest are
typically higher than those of the APOI tests. On the other hand, when the sample size is
larger except when p=0.1 for all design matrices, p=0.9 for X3, p=0.3,0.5,0.7 for
X4 and p=0.3, 0.9 for X5 the powers of the new test are even higher than those of the
APO! tesis. The new test still has a very clear power advantage, that is, when the sample
size is small, on an average the new test gained 0.7 to 5.7 percentage points for all design
matrices and when the sample size is large, the new test gained 0.8 to 1.9 percentage
points in terms power improvement except for X'4. Also, we observe that when the
sample size is small for all design matrices when p=10.7, 0.9 the powers of the new test
are much higher than those of the APOI tests. The better powers could be due to the
slightly higher sizes of the new test. Considering all these cases, the new test continues
to show its very clear superiority in terms of power when the sample size is smatl. This

leads us to conclude that, at least for the problem of testing for MA(1} disturbances
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against AR(1) disturbances in the linear regression model, the new test is a better test
than the APOI test which Silvapulle and King (1991) found out-performed the LM test

and an analogous test to Burke et al.’s (1990) asymptotic test.

4.5 Concluding remarks

In this chapter we have considered the application of the new approach which was
constructed in Chapter 3 for testing a composite null hypothesis against a composite
alternative. We illustrated the new test procedure by applying it to the problem of testing
for MA(1) disturbances against AR(1) disturbances in the linear regression model as a
single parameter testing problem. The problem was deliberately chosen because through
invariance arguments, it reduces to composite null and alternative hypotheses involving
a scalar parameter defined over the unit interval. It is also a testing problem for which it
has been difficult to find a satisfabtory test. The main practical difficulty is with the
finding of critical values for which the average size conditions of the test are
simultaneously satisfied. In this approach, we only used the uniform distribution as a
weighting function. It can easily be applied using a nor-uniform: distribution. Using
Sitvapulle and King's {1991) APOI tests as benchmarks, the new test was found to have
good small sample size and power properties. This suggests the new procedure has
considerable potential, particularly for problems in which the effective null hypothesis

parameter space can be kept small. Further research is needed in order to see how well
the test procedure works when the boundary peints of the subregions of the null

hypothesis parameter space are chosen without any reference to lower than average size

and higher than average size regions in the m=1 case, we will call this the high
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Table 4.1

Critical values (¢, ) for X1, X2, X3, X4 and XS design matrices when m = { at the
five percent level.

size/low size technique in the remainder of the thesis. Also, we need to seec how well the

procedure works for other types of parameter spaces under the null hypothesis. In the

following chapters we will look at these issues. Design matrix Sample Size (n)  Critical values (c, )

: 7
5 X1(nx3) 20 2.5521 :
3 60 1.9359

. X2(nx3) 20 2.5748

g 60 2.0125
e
X3{nx5) 20 2.2807
C 60 1.9539
X4 (" x 3) 20 2.6958
l?j 30 2.2886
j X5(nx3) 20 2.8923
; 60 2.0428
ilif,:
Table 4.2
Culculated sizes of the test when m =1 at the five percent level. '
Parameter Sizes
values
X1l(nx3) X2(nx3) X3(nx5) X4(nx3) X5(nx3)
¥ n=20 60 20 60 20 60 20 30 20 60
0.0 0.013*  0.009* 0017* 0.009* 0.030* 0.010* 0.014% 0016 0013* 0908*
}j 0.1 0.025* 0.041  0.027* 0.035* 0.041  0.036* 0.025* 0.036* 0.024* 0.034*
4 0.2 0.043 0.081* 0.040 0.074*  0.055 0.080* 0045 0.064*  0.040 0.068*
3 0.3 0060  0.114* 0.061  0.109* 0.068* 0.114* 0.061  0.088* 0.058  0.109*

i 04 0.068* 0.123*  0.0069* 0.113*  0.073* 0.119* 0.069* 0.097* 0.068* 0.117*
3 0.5 0.068* 0.101*  0.062 0.092*  0.069* 0.096* 0.001 0.089*%  0.064%  0.091*
E 0.6 0.055 0.053 0.053 0.050 0.062 0.055 0.052 0.069* 0.048 0.047
*‘ 0.7 0.041 0.019%  0.044 0.023*  0.047 0.024*  0.035% 0042 0.029*  0.017*
' 08 0.025* 0.006* 0.029¢« 0.007* 0.033* 0.007* 0.020* 0.022¢ 0017 0.0n6*

0.9 0.G17*  0.000* 0.021* 0.201* 0.027* 0.002* 0.015* 0.010* 0.011* 0.000*

*denotes value significantly different from five percent at the 0.01 level.
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Table 4.3

Ranges of the two disjoint intervals and the corresponding values of j , where

pj=y;=(2J“1)/(2Q)’ j=l’ 2)"-1 q, q=50

Sample Size

(n)

Subregions

©,

(smaller than average size for

o,
¢ (larger than

m=1) average size for
m=1)
For design matrix X1{nx3)
20 0=y =<02400064<y =1 0.24< y £0.64
(j=12,..,12 W j=3334,..,50) (J=13,14,..,32)
60 0SSy 0120061 <y <1 0.12< ¥ £0.61

(f=1.2,.., 60U j=32,33,...,50)

For design matrix X2 {1 x 3)

20

60

0S¥ S0.23L0.63<y <1
(j=1,2,..., 12 j=33,34,..,50)
0<y <014 LU0.60<y <1
(j=1,2,...7 j=31,32, .., 50)

For design matrix X 3{7 x 5)

20

60

0y 016068 <y £
(Jj=1,2,.., 8 j=3536,...,50)
0y £0.13V061<y £
(f=1,2,..., 7\ j=32,33,...,50)

For design matrix X4{n x 3}

20

30

0S¥ £0.23U061<y <1
(=02, ..., 120 j=32,33, ..., 50)
0y S0.15U0.67<y <
(j=1,2, ..., 8 j=35,36,...,50)

For design matrix X5(nx3)

20

60

0y <025U0.58<y 51
(J=12,..,130 j=30,31,..,50)
0y £0.15V0.59<y £1
(j=1,2,....8V j=31,32,...,50)

(j=7,8,...31)

023 <y <0.63
(f=13,14, .., 32)
0.14< ¥ £0.60
(j=8,9,..,30

0.16< ¥ <0.68
(7=9,10,...,34)
0.13<y £0.6
(j=8,9,...,31)

0.23< y 0.6
(j=13,14, ..., 31)
0.15< ¥ £0.67
(J=9, 10, ..., 34)

0.25< y <0.58
(j=14,15,..., 29)
0.15< ¥ £0.59
(J =9, 10, ...,30)

Table 4.4

Final critical values &, and k£, when m=2.

Sample size Critical values

(n)
k,
For design matrix X1(nx3)
20 0.3938 1.980
60 0.2000 1.710
For design matrix X'2(n x 3)
20 0.2969 2100
60 \ 0.2018 1.600
For design matrix X3 (nx5)
20 0.0420 2.100
60 0.3271 1.6085
For design matrix X4(nx3)
20 0.5423 1.690
30 0.0911 2.320
For design matrix X'5(nx 3)
20 0.6002 1.890
60 0.3494 1.800

Table 4.5

Calculated sizes of the test when m =2 at the five percent level.

Parameter Sizes
values
X1(nx3) X2(nx3) X3(nx5) X4(nx3) X5(nx3)
Y n=7290 60 20 60 20 60 20 30 20 60

0.0 0.136*  0.224*  0.164* 0.269*  0.074*  0207¢ 0.097* 0.165* 0.096* 0.263*
0.1 0.092*  0.082* 0.112* 0.113¢  0.056 0.085* (.081* 0.089*  0.071* 0.108*
0.2 0.063 0.047 0.075* 0.054 0.046 0.048 0.072* 0.052 0.059 0.045
0.3 0.052 0.054 0.055 0.057 0.0438 0.058 0.068% 0.043 0.052 0.046
0.4 0.041 0.065*  0.046 0.065* 0.048 0.062 0.060 0.050 0.045 0.053
0.5 0.044 0.057 0.044 0.056 0.044 0.057 0.057 0.049 0.042 0.048
0.6 0.043 0.039 0.041 0.042 0.046 0.043 0.051 0.046 0.039 0.032*
0.7 0.039 0.022* 0.038 0.023*  0.047 0.027¢ 00a7 0.038 0.034*  0.019*
0.8 0.037 0.012*  0.035* 0.014% 0.042 0.011%  0.020*  0.032* 0,027 0.008*
09 0.032* G.004* 0.033* 0.006* 0.040 0.006% 0.024*  0.025* 0.022* 0.004*

*  denotes value significantly different from five percent at the (.01 level.
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Ranges of the three disjoint intervals and the corresponding values of j , where
py=7;=(2j-1)/(29), j=1,2,..,q,¢=50.

Table 4.6

Sample size

(n)

Subregions
e, o, e,
{smaller than {larger than (smaller than

average size)

average size)

* average size)

For design matrix X1(# x 3)

20

60

05y £0.24
(j=1.2,..., 12)
0S¥ <012
(j=1,2,...,6)

For design matrix X2 (n x 3)

20

60

0< ¥y <023
(j=1,2,...,12)
0<y<0.14
(j=1,2,...7

For design matrix X 3(7 x 5}

20

60

05y =016
(j=12,...,8)
0<y £0.13
(j=1,2,...7

For design matrix X4 (1 x 3}

20

30

0<y £0.23
(j=1,2,..,12)
0<y £0.15
(j=1,2,...,8)

For design matrix X 5(s x 3)

20

60

0sy <025
(j=1,2,..,13)
0<y £0.15
(j=1,2,..., 8

0.24< ¥ <0.64

(j=13,14, ..., 32)

0.12< ¥ 0.6
(J=7,8,....31)

0.23< ¥ <0.63
(j=13,14,...,32)
0.14 < ¥ <0.60
(j=8$,9, ...,30)

0.16< ¥ £0.68
(j=9,10, ..., 34)
0.13< ¥ 0.6
(j=8.9,...,31)

0.23 < ¥ <0.61
(f=13,14,...,31)
0.15< ¥ £0.67
(j=9,10, ..., 34)

0.25 <y <0.58
(j=14,15,...,29)
0.15< ¥ <059
(j=9,10, ..., 30)

0.64< y £
(J =33, 34, ..
061<y <1
(J =32, 33,

0.63<y <1
(f=33,34, ...
0.60<y <1

(j=31,32, ...

0.68<y <1
(j =35,36, ..
0.61<y S1
(j=32,33,..

0.61<y <1
(j=32,33,
0.67<y <1
(J=35,36, ..

0.58< y <1
(j =30, 31,
0.59<y <1
(f=31,32, ...

W 30)

-1t)

,50)

»30)

- 30)

=14

.y 30}

w30)

e 30)

, 50}

Table 4.7
Final critical values %,, k, and k, when m=3.

Sample size

Critical values

(n)
k, k, ky
For design matrix X1(n x3)
20 0.2072 1950 0.0350
60 0.0861 1.610 -0.0011
For design matrix X2(nx3)
20 0.2098 1.840 0.0550
60 0.1202 1.520 -0.0012
For design matrix X3(n x 5)
20 0.0448 2014 0.0300
60 0.1083 1.590 -0.0025
For design matrix X4{»n x 3)
20 0.2242 1.720 0.1000
30 0.0689 2350 -0.0200
For design matrix X'5(n x 3)
20 0.2423 1.97 0.0200
60 0.1335 1.683 -0.0006
Table 4.8
Calculated sizes of the iesi whicii m =3 at the five percent level. ,
Parameter Sizes
values
X1(nx3) X2(nx3) X3(nx5) X4(nx3) X5(nx3)
Y n=20 60 20 60 20 90 20 30 20 60
0.0 0.061 0.080* 0.058 0.076%* 0054 0.075*  0.056 0.075* 0.055 0.091*
0.1 0.048 0.030*  0.053 0.031* 0.040 0.030* 0.053 0.043 0.044 0.035*
0.2 0.042 0.038 0.049 (.041 0.045 0.035*  0.000 0.030*  0.042 0.032*
0.3 0.040 0.060 0.049 0.058 0.048 0.058 0.003 0.038 0.045 0.047
04 0.046 0.070*  0.053 0.069*  0.049 0.064*  0.0660 0.048 0.048 0.059
0.5 0.049 0.064* 0.052 (.061 0.046 0.061 0.063 0.051 0.049 0.055
0.6 0.047 0.048 0.055 0.050 0.049 0.052 0.061 0.050 0.050 0.038
0.7 (0.050 0.631* 0.053 0.045 0.049 0.043 0.060 0.045 0.048 0.031*
0.8 0.050 0.034*  0.050 0.046 0.045 0.045 0.051 0.042 0.048 (.033+*
0.9 0.048 0.076*  0.046 0.072% 0.042 0.076%  0.043 0.042 0.047 0.058

*

denotes value significantly different from five percent at the 0.01 level.
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Table 4.9 Table 4.9 {contn’d)
Calculated sizes and powers of the new test and APOI tests for X1, X2, X3, X4 and -
X5,when m=3 and H;u, =e +)e,_,, 0y <1, is tested againstf,:u, = pu,_, +e,, Hypothesis/ New APOI tests New APOI tests
0< p<1, at the five percent level. parameter test _ ) test
values 0y s(0S,r))  s(075.y,) 0y s{0Sr))  s(0I5.7.)
Hypothesis/  New APOI tests New APOI tests X% =20
parameter test test = XX n=60
values s(03.7))  s(0Sy)  s(075,7)) s003.7))  S05.r)  s(075r7) H,
. - y=209 0042 0048 0049  0.050 0.076 0.040  0.049  0.050
XI:n=20 Xt n=060 0.7 0.049 0.046  0.047  0.048 0.043 0.048  0.047 0.047
H, , 0.5 0046 0044 0.045  0.045 0.061 0.045 0043  0.042
y=09 0048 0048 0049 0048 007 0048 0047  0.047 03 0048  0.044 0045  0.045 0.058  0.043  0.041 0.041
07 0050  0.047 0048  0.046 0031 0046 0044 0044 Ol gode DO 006 0047 0030 0.045 0044 0.044
0.5 0049 0046 0045  0.044 0.064 0044 0042 0042 ‘ 054 0050 0050 0.050 0.075 0050 0050  0.050
0.3 0040 0045 0043  0.043 0.060 0042 0039  0.039 H,
0.1 0048 0046 0.044  0.044 0.030 0047 0044  0.046
00  0.06] 0050 0050  0.050 0050 0050 0050  0.050 p=01 0048 0052 0053 0053 0.033 0.058 0056  0.057
03 0064 0070 0071  0.071 0.139 0.132 0127 0123
f, 0.5  0.138 0.130  0.133 0132 0.504 0.441 0.436 0.429
p=01 0055 0052 0051 0051 0.031 0.054  0.052  0.051 0.7 0283 0252 0261  0.264 0880 0859 0862  0.362 3
03 0073 0079 0076  0.075 0138 0131 0122 0119 0.9 0455 0418 0435 0447 0985 0989 098  0.990
0.5 0177  0.116  0.163  0.159 0492 0434 0426 0419
0.7 0363 0335 0337 0336 0.868 0839 0842  0.845 X4:n=20 X4: n=30
0.9 0557 0515 0526 0536 0984 0975 0979 0984 H,
X2:n=20 X2: n=60 =09 0043 0048 0049  0.048 0.042 0.049  0.049 0.050
Y 0.7 0060 0046 0048  0.047 0.045 0.048 0048  0.048
A 0.5 0063  0.044 0045  0.045 0.051 0.045 0044  0.043
y=09 0046 0049 0049  0.049 0072 0049  0.049 0.049 0.3 0063 0044 0044  0.045 0.038  0.043 0043  0.042
0.7 0.053 0.049 0.048 0.048 0.045 0.048 0.047 0.046 0.1 0,053 0.046 0.045 0.046 0.043 (.044 0.045 0.044
0.5 0.052 0.046 0.046 0.045 0.063 0.045 0.043 0.042 0.0 0.056 0.050 0.050 4.050 0.075 0.050 0.050° 0.050
03 0049 0044 0045 0044 0058 0043  0.042  0.041 H
0.1 0055  0.048  0.047  0.046 0.031 0046  0.044  0.043 “
00 0058  0.050 0050  0.050 0.076  0.050 0050  0.050 p£=01 0058 0054 0053  0.053 0.040 0052 0054  0.054
. 0.3 009 0076 0076 0074 0.074 0094 0092  0.090 ;
« 0.5 0.185 0.152  0.155  0.150 0.235 0.243  0.244 0.238 N
p=01 0057 0052 0051 0050 0036 0053  0.052 0.051 0.7 0371 0293 0310 0317 0.531 0543 0538 0538
03  0.081 0.076 0.077  0.073 0.149 0.136 0.132 0.126 0.9 0.588 0.438 0.484 0.539 0.799 0.778 0.792 0.803
05 0.7 0.156  0.156  0.154 0528 0455 0453 0.442
07 0344 0311 0324 0324 0.806 0870  0.875 0.872 v
09 0566 0504 0.529  0.540 099 0990  0.99] 0.992
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Table 4.2 (contn’d)
Hypothesis/  New APOI tests New APOI tests
arameter fest test .
galues s(03y))  s(05,y)  s(075,7,) s(03.7)  s(05y)  s(075,y)) Chapter 5
X5n=20 XS n=60
H » - - »
0 08 ogis  0oso 0050 An Investigation of the Choice of Boundary Points under
y=09 0047 0050 0050  0.049 0. ) ) ) :
07 0048 0049 0048  0.047 0.031 0047 0047  0.047 the Null Hypothesis
0.5 0.049 0.040 0.045 0.044 - 0.055 0.044 0.043 0.042
0.3 0.045 0.045 0.043 0.043 0.047 0.043 0.042 0.040
0.1 0044 0046 0045  0.045 0.036 0.045  0.043 0.042
0.0 0.055 0.050 0.050 0.050 0.091 0.050 (0.050 0.050
H -
a 5.1  Imtroduction
p= 401 0.047 0.053 0.052 G.053 0.042 0.058 0.056 0.054
0.3 0.073 0.075 0.073 0.072 (.128 0.133 0.130 0.122 ‘ . . . . ‘
0.5 0146  0.141 0139 0.137 0483 0435 0434 0423 A new approach to testing a composite null hypothesis against a composite alternative
07 0265 0250 0251 0249 0.857 0.840  0.844 0.842
0.9 0.385 0.343 0.348 0.350 0.975 0.977 0.979 0.979

using the generalized NP lemma was introduced in Chapter 3. In that chapter we

outlined the theory of this new approach with particular emphasis on testing the
disturbances in the general linear regression model. These testing problems involve
nuisance parameters which in this case can be eliminated through invariance arguments.
In Chapter 4, we applied the new test procedure to the problem of testing for MA(1)
disturbances against AR(1) disturbances in the linear regression modet with the aim of

exploring a number of pra:tical issues.

Our new test involves maximizing the average power subject to controlling the average
size over different regions under the null hypothesis parameter space. A major question
is how many regions sholuld we use. With respect to testing for MA(1) disturbances
against AR(1) disturbances in the linear regression model, we conducted some

simulation experiments for tests constructed based on one region (,, = 1), the entire null

hypothesis parameter space (@={y:0<y<1}), and for ,, - 7, two subsets of the null
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hypothesis parameter space. After completing these simulation experiments, we decided

we needed to control the average size of the test over the three subsets (m=3) of the

null .hypothcsis parameter space. When conducting the simulation experiments for m=2
and m = 3, the boundary points of the subregions of the null hypothesis parameter space
were chosen through the high size/low size technique. We saw that our test for m=3,
appeared to do a good job of controlling sizes overall, especially when the sample size is
small. lﬁ addition, the power of the test appeared to be satisfactory. Overall our test
performed well with respect to sizes and powers for m =3, when the boundary points
were selected by the high size/low size method. Unfortunately we are not sure that this is
a good method for deciding on the boundary points of these subregions. There may be
another way to choose the boundary points such that sizes are controlled adequately and

the resultant test has better power.

How can we check whether our high size/low size technique is a good one for choosing
the boundary points? One approach we could take to answering this question is to devise
a power envelope. The power envelope is the maximum power that can be obtained at
each particular point under the alternative hypothesis over all tests of a designated size.
We will investigate this by conducting an experiment with many different choices of
boundary points. That is, we systematically will choose different boundary points of the
three subregions {(m=23) of the null hypothesis parameter space for separate tests and
using the power results of the resultant tests with acceptable sizes, we will trace out a
power envelope of sorts. This is not a true power envelope because we are not
considering all possible tests. However it will provide us with a guide. We will call it a

pseudo power envelope. It will be interesting to see if the new approach introduced in
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Chapter 3 and as applied in Chapter 4, leads to useful results compared to this pseudo

power envelope.

In this chapter, our aim is to investigate the performance of our test for different
boundary points of the subregions of the test when ,, — 3. We realise that changing the
middle two boundary potnts of the three subsets of the null hypothesis parameter space

©® also changes the test, its critical values (k,, i=1,2,3) and hence the calculated

sizes and powers of the test. With this in mind, we chose different boundary points of the
three subregions and then calculated the critical values, sizes and powers of the resultant

test.

The calculation of the pseudo power envelope provides a benchmark against which the
power performance of different tests can be measured. For example we can calculate the
average deviation (AD) of the test’s power from the pseudo power envelope.
Altematively we could calculate the sum of squared deviations (SSD) of the actual
power from the pseudo power envelope. Clearly the best test would be the test with
smatlest AD or SSD, so our approach will lead to the construction of the best test within

our class of tests.

We can also use the pseudo power envelepe to judge the relative performance of our
test proposed in Chapter 4 that is based on the high size/low size technique. If our
proposed test has power close to the pseudo power envelope, our proposed approach can
be judged to be a reasonable one. A small improvement in AD of the power of the best
test over the proposed test would mean that the huge amount of extra computation in

finding the best test is not well justified.

e
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The plan of this chapter is as follows. The methodology of the experiment is discussed in
Section 5.2. Details of the Monte Carlo experiment are outlined in Section 5.3. We
report the experimental design, size results and power results for all experiments for the
test with m=3 in subsections 5.3.1, 5.3.2 and 5.3.3, respectively. The best test is

identified in subsection 5.3.3. The final section contains some concluding remarks.

5.2 Methodology

As stated in the above section, our aim is to investigate different splits of the nuli
hypothesis parameter space into three subregions with the aim of maximising the power
of our test. This requires a benchmark for power, an obvious one being the power

envelope as discussed above.

We constructed a pseudo power envelope as follows. For each test, the boundary points
of the three subregions of (® = {y: 0< y <1}) are chosen systematically without the use
of a numerical technique. We have to choose only the middle two boundary points for
the three subregions of the null hypothesis parameter space, because the starting
boundary point and the end boundary point are known to us, being zero and one,
respectively. The middle two boundary points were systematically set as a pair from

0.05i, i=1,2,..., 19, resuiting in ¢, combinations of choice for these two boundary

points, i.e. the total number of choices for the middle two boundary points was one
hundred and seventy-one. For example, for the first set of systematic choices, we made
eighteen choices of the middle two boundary points in which case the three subregions

under the null hypothesis parameter space were @, ={y:0<y <005},

®, = {y: 0.05<y <005/} and ©,={:005i<y<l}, for j=2,3,..,19,
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consecutively. For the second set of systematic choices, we made seventeen choices of
the middle two boundary points and in this case the three disjoint intervals under the null
hypothesis parameter space were @ = {y: 0<y <0.1}, @, = {y: 01 <y <0055} and
O, ={y:005/<y<1}, for j=3,4,..,19, consecutively. Similarly, for the third set of
systematic choices, we made sixteen choices of the middle two boundary points and the
three disjoint intervals under the null hypothesis parameter space were
O,={:0<y<015), ©,={:015<y <0055} and @ ={y:005/<y<1}, for
j=4,5,...,19 consecutively and so on. For all combinations of the choice of the two
boundary points of the three subregions of the null hypothesis parameter space, we
conducted a total of one hundred and seventy-one separate tests. Using the size results of
one hundred and seventy-one tests, we calculated the powers of those tests with
acceptable sizes in order to calculate the pseudo power envelope. The pseudo power
envelope was then calculated as the maximum power of all thesc remaining tests for

each value of p- Detailed descriptions are given in the following section.

3.3 Monte Carlo experiments

In order to investigate the performance of our test for different boundary points of the
three subsets of the null hypothesis parameter space in the context of testing MA(1)
disturbances against AR(1) disturbances in the linear regression model, we conducted a
Monte Carlo experiment. The experiment involved constructing the pseudo power
envelope as outlined above. We calculated the AD and SSD of the power of each of the
tests under the pseudo power envelope. From the calculated AD we can find the overall
best test where AD is least. This will allow us to find the appropriate boundary points of

the three subregions of @ of the test, which maximizes average power. Also we
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compared the AL of the power of the test proposed in previous chapter with the AD of
the power of the best test. From this comparison, if we find that the power of the test
proposed in Chapter 4 is close to the power of the best test as identified against the
pseudo power envelope, then we can say thut our proposed test is realistically a good
test. 1t would indicate that there is little to be gained from the vast amount of extra

computation required to find the best test using the pseudo power envelope.

5.3.1 Experimental design

For the above-mentioned testing problem, two thousand replications were used to
calculate the sizes and pewers of our test for different boundary points of the subregions

under the null hypothesis. The critical values were calculated at the five percent level.

- To construct a pseudo power envelope of the test, we chose only the X2 (used in

Chapter 4) design matrix with n= 20, because this matrix exhibits practical degrees of
multicollinearity. For this choice of design matrix we have constructed a total of one
hundred and seventy-one different tests. We confined our choice to a single design

matrix, because for each test we have to calculate the critical values &, i=1,2, 3, so

that the three size conditions are simultaneously fulfilled, via the trial and error. The
calculation for one trial takes about four minutes. Typically, calculating of a set of
critical values requires 10-50 trials, i.e, 40-200 minutes. Our single design matrix for
sample size n=20 required approximately 342 hours to calculate the one hundred and
seventy-one sets of critical values. Then follows the calculation of sizes and powers of
the test. Therefore, calculating critical values and the required sizes and powers is
laborious and time consuming. [n other words for a single design matrix, there is a huge

amount of calculation required to calculate the pseudo power envelope. So our choice
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had to be limited to one design matrix. This is a clear drawback of our simulation

experiment.

For two thousand replications, if the calculated size for a test falls outside the estimated
rejection probability range [0.037, 0.063], then it is judged to be significantly different

from five percent at the 0.0 level.

We mentioned in Chapter 4 that for the problem under consideration, our proposed test

under the null hypothesis and alternative hypothesis is invariant with respect to the
nuisance parameters, g and 4?, and we have chosen g=¢ and 52 -1 for the

simulation experiment. We already decided that the value of ,,, is three, and we have

seen that the size of our test is approximately controlled for this value of ,,.

Thus for ,, = 3, equation (3.7) gives the resultant test that involves a crifical region of
the form (4.9) given in (4.13). In equation (4.13), k, i=1,2,3, are the critical values
calculated to control average size over the thiee subregions of the null hypothesis
parameter space, and 5 and g4, are the outer limits of summation over these subregions.
These two limit integers are determined by rounding (y,g+1/2) and (7,q +1/2)

respectively, down to the nearest integer, where y, and y_ are the systematically chosen
middle two boundary points of the subregions of @. Ranges of the three disjoint
intervals and the corresponding values of j together with the test number for a total of

one hundred and seventy-one tests for the design matrix y3 with , = 20 are given in

Table 5.1.

In order to solve for the critical values k, i=1,2,3, using equation (4.14), we used

Steps 1 to 3, discussed in Section 3.3 for ,, = 3, so that the average size conditions are




104 Chapter 5

simultaneously satisfied. The calculated critical values &, i=1, 2, 3, for different tests
are presented in Table 5.2. From this table we observe that all &, values are positive
except six values (where ¢, is greater than or equal 40), while k&, and £, take both
positive as well as negative values. We observe that k, takes large positive values when
the interval of the first subregion (@,) is large and k&, takes large positive values when
the third subregion (®,) interval is large. We also observe that when g, is less or equal
to iO, then £, takes a negative value and when g, is greater than 28, then £, takes a

negative value.

Once we obtain the critical values &,, i=1, 2, 3, we can calculate the sizes and powers

of our test. In the following sections, we report the size and power results of our tests.

53.2 Size results
Using the critical values k,, i=1,2,3, presented in Table 5.2, we calculated the sizes
of our test statistic through equation (4.13) for y =0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8

and 0.9 under H, . The calculated sizes are presented in Table 5.3.

From Table 5.3, we observe that out of a total of one hundred and seventy-one tests,
there are sixty-two (36%) tests where the calculated sizes first decrease, then increase

and again decrease as y increases, and for sixty (35%) tests, the sizes increase then

decrease and again increase. For twenty-eight (16%) tests, the sizes first increase and
then decrease and for one test, the sizes are iirst decreasing and then increasing. There is
also only one test where all sizes decrease and for the other remaining tests, sizes do not

follow any pattern. There are two tests (test numbers 74 and 87) where 2l calculated
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sizes are lower than or equal to 0.05. There are another two tests (test numbers 98 and

109) where all calculated sizes are greater than 0.05. The worst calculated size is 0,096

which occurs for test number 60.

The calculated sizes that fall outside the rejection probability range [0.037, 0.063] are
significantly different from five percent at the 0.01 level, for two thousand replications.
A “star” in Table 5.3 indicates a significantly different calculated size of a test. We
observe that some sizes are significantly different from five percent at the 0.01 level

when the interval of the first subregion (®) is very small (i.e., close to the starting
boundary point} and the third subregion (@,) interval is large under the null hypothesis
parameter space. These significantly different values belong to @, and most of these
sizes occur at the middle and end boundary points under H,- On the other hand, when
both intervals 0, and @, are large, some calculated sizes which belong to @, are
significantly different from five percent. Also we observe that when the interval 0, is
small, calculated sizes are must likely to be small at the end boundary point under H,-
Stmilarly, when the interval @ is large, calculated sizes are likely to be small at the

starting boundary point under z .

In our testing approach, we are controlling the average size over different subregions
under the null hypothesis parameter space at the five percent level of significance. In this
regard, if the calculated size of the test is less than .05 we are not concerned about it but
if it is greater than 0.05 especially when it exceeds0.063, the upper limit of the rejection
probability range, we are much more concerned about it. From this point of view, we
also accepted the test when the only calculated sizes significantly different from 0.05 are

less than 0.037, the lower limit of the rejection probability range. Otherwise, we rejected
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the test in the sense that we did not use it in the construction of the pseudo power
envelope. With respect to these size conditions, we discarded some tests. A total of one
hundred and fifteen (67%) tests were accepted out of one hundred and seventy-one tests,
and these are indicated by a “double star” in Table 5.3. The powers of these one hundred

and fifteen accepted tests were used to calculate a pseudo power envelope.

From the size analysis we observe that in most cases, the size performance of our
accepted test is very good when the intervals ©,, ©,and O, are not large. This
indicates that when the intervals of the three subregions are comparativeiy small, our test

successfully controls the average size.

On the other hand, according to the size conditions discussed above, a total of fifty-six
(33%) tests were rejected out of one hundred and seventy-one tests. From the length
analysis of the three subsets of © of the rejected tests, we observe that for thirty-three
(59%) tests, the largest interval of one subset is greater or equal 0.65 and for other
fifteen (41%) tests, the largest interval of one subset is in between 0.45 and 0.6. As we
mentioned earlier, constructing a pseudo power envelope is time consuming. We can
consider reducing this time by restricted to intervals of 0.65 or less. If we use this
restriction then we can discard sixty-four tests from a tota! of one hundred and seventy-

one tests, a more than one-third time saving at least for this case.

In the following section we analyse the powers of each of the accepted tests against the

pseudo power envelope.
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5.3.3 Power results

Using the critical values k, i=1,2,3 presented in Table 5.2, we calculated the powers
of our test statistic through equation (4.13) for p=0.1,02,03,04,0.5,06,0.7, 0.8
and 0.9 under g . The calculated powers of a total of one hundred and seventy-one tests
for design matrix y2 for , = 90 are presented in Table 5.4. From the table we observe
that, under f , the calculated powers gradually increase as , increases from 0.1 to 0.9
except for two tests (test numbers 81 and 82), where powers first decrease and then
increase. We also observe that when the interval @, is large (2 0.65), then calculated

power for 5.2 0.1 is very small and then powers gradually increase as increases.

The powers of the accepted tests with respect to the size conditions are indicated by a
“double star” in Table 5.4. The power results of those one hundred and fifteen accepted
tests were used to construct our pseudo power envelope. We calculated the AD and SSD
of the power of each of the accepted tests under the pseudo power envelope and the test
proposed in Chapter 4 (boundary points are chosen by the high size/low size technique).
To calculate the AD and SSD of the power of each of the tests that have acceptable size,

we first found the pseudo power envelope as outlined above (maxp) for I(=9) different

points of ,, namely, ,=01i, j=1,2,..,/ separately under py . We used the

- - f
following two formulae: (i) AD= %Z(mam‘” o —power,_, ), and (i)
=1

i
SSD = Y (maxp .o, — power,_,,)?, to calculate the AD and SSD of the power of each

far]

of the acceptable tests, respectively under pseudo power envelope. The calculated AD
and SSD of the power along with the rank of each of the accepted tests from smallest to

the highest order are presented in Table 5.5.
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From Table 5.5 we observe that the smallest AD is 0.005889, which occurs for test 64
for which the three subregions are ©,:0<y <02, ©,:02<y<085 and
®,: 085<y <1. We note that this test also has the smallest SSD, which fortunately
means there is no conflict between these two criteria for assessing closeness to the
pseudo power envelope. We can identify this as the best test with respect to closeness of
power to the pseudo power envelope. The second smallest AD is 0.008333 for tests 45
and 74; in these cases the three subregions are ©,: 0<y £0.15, ©,: 015<y €065 and
®3:‘0.(~.5 <y<l, and 0©;:0<y<025, 0, 025<y<065 and 6,:065<y<l,
respectively. The worst AD is 0.042556 which occurs for test 76 whose three subregions
are ®,:0<y <025, 0,:025<y<075 and@®,: 0.75<y <1. The results indicate that
for différcnt boundary points, the powers of our test cross and some depart significantly
. from this pseudo pdwer envelope. The calculated AD of our test proposed in Chapter 4
is 0.023778 and the three subregions are ©,:0<y <023, ©,:023<y <063 and
©,: 063 < y <1, which are very close to the three subregions of test 74, that has the
second smallest AD. Also, after doing one month’s extra work to calculate the pseudo
power envelope, comparing the AD of our proposed test with the best test of the pseudo
power envelope we see that there is only an average 1.8 percentage points increase in
terms of power improvement. This small improvement in terms of power over the
proposed test does not really justify all the extra computation that has gone into finding a

best test through the pseudo power envelope.

Comparing the AD and SSD of the pseudo power envelope with the test proposed in
Chapter 4, we observe that in both circumstances the boundary points of our proposed

test are very similar to the boundary points of the test that has the second smallest AD
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and SSD. Note that in some cases, the ranks for both AD and SSD are same, but in the
other cases the ranks are different. Overall we claim that our high size/low size
technique is an appropriate one for choosing the boundary points of the subregions under

H, and our proposed test is also not too different from the best test.

5.4  Concluding remarks

In this chapter we have constructed a pseudo power envelope for the new test procedure,
with the aim of investigating the results of choosing different boundary points of the
three subregions under H, We applied one hundred and seventy-one different versions
of the new test procedure for testing MA(1) disturbances against AR(1) disturbances in
the linear regression model to construct the pseudo power envelope. From the pseudo
power envelope we find that .he best test is test 64 which has the least AD and the
second best tost s 74. We compared the AD and SSD from the power envelope of the
powers of our teists used to calculate this envelope with the AD and SSD of the power of
the test proposed in Chapter 4. This comparison shows that the boundary points of our
proposed test are very close to the boundary points of test 74. Also, as mentioned in the
previous section, through identifying the best test by reference to the pseudo power
envelope, we gained only 1.8 percentage points in terms of power improvement.
Although we limited our experiment to a single design matrix because of computational

and time constraints, the results are very encouraging. They indicate that without
spending a lot of time for computation to construct the pseudo power envelope we can
get reasonably close to the best test by using the high size/low size technique. Therefore

the large amount of extra computation required finding the best test via a pseudo power

envelope does not appear to be justified. Hence, we can say that for our proposed new

1 T e e e A
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N _ hriaue to choose the bound s Ranges of three disjoint intervals and the corresponding values of i where
test procedure we cat use the high size/low size technique to choose the boundary po p,=7,=Q@i-1)/(2q) j=1,2, . q> g =50: X2 design matrix with , = 20 .
1 of the subregions of @ with some confidence. -
3 Test Subregions
number
C..)l GZ ®3
I 0< ¥ <005 0.05< ¥ <0.1 0.1<y <1
(j=1.2,3) (J=4,5) (j=6,7,...,50)
2 0< ¥ £0.05 0.05< ¥ <0.15 0.15<y £1
1 (j=1,2,3) (j=4.5,....8) (J=9,10,...,50)
3 0<y £00s 0.05< y £0.2 02<y £1
(f=1,2,3) (f=4,5,..,10) (j=11,12,...,50)
: 4 0< ¥ 005 0.05< ¥ £0.25 0.25<y <1
3 (j=1,2,3) (j=4,5,..., 13) (j=14,15,...,50)
5 0< y £0.05 0.05<y <0.3 03<y <1l
(/=12,3) (j=4,5,..,15) (f=16,17,...,50)
1 6 o<y 005 005< y £0.35 035<y <1
1 (j=1,2,3) (j=4,5,...,18) (j=19,20,..., 50)
7 0<y <005 0.05 <y <0.4 0.4<y <1
(j=1,2,3) (/=4,5,...,20) (j=21,22, ..., 50)
8 0< y £0.05 0.05< ¥ £0.45 045<y €1
) (j=1,2,3) (j=4,5,...,23) (J=24,25,...,50)
] 9 0< ¥ £0.05 0.05<y <05 0.5<y <1
(j=1,2,3) (j=4,5, ..., 25) (j=26,27,...,50)
. 10 0< ¥y £005 0.05 <y <0.55 055<y <1
(j=1,2,3) (F=4.5,....28) (J=29,30, ..., 50)
1 0< y €005 0.05 <y S0.6 0.6<y <1
(j=1,2,3) (f=4,5, ...,30) (j=31,32,..., 50)
3 12 0< y £0.05 0.05< y <0.65 0.65<y <1
(j=1,2,3) (=4,5,..,33) (F=34,35,...,50)
- 13 0< ¥ £0.05 0.05< ¥ £0.7 0.7<y <1
(j=1,2,3) (j=4,5,...,35) (f=36,37, ..., 50}
E 14 05y 0.05 0.05< ¥ <0.75 075<y <1
(j=1,2,3) (j=4,5,...,38) (=39, 40, ..., 50)
15 0< y <005 0.05< ¥ <0.8 0.8<y <1
(j=1,2,3) (j=4,5, ...,40) (j=41,42, ..., 50)
E 16 05y €005 0.05< y <0.85 085<y <1
(j=1,2,3) (j=4,5,...,43) (J=44,45, ..., 50)
17 0< y £0.05 0.05<y <09 09<y <1
4 (j=1,2,3) (j=4.5,...,45) (j=46,47, ..., 50)
3 18 0< ¥ <0.05 0.05<y £0.95 0.95<y <1
(j=1.2,3) (j=4,5,...,48) ( j =49, 50)
El
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Table 5.1 (conin’d) Table 5.1 {contn’d)
Test Subregions Test Subregions
number number
®, ®, 9, 0, o, 0,
19 0<y <01 0L<y <015 0-!5_<75' 39 0< ¥ £0.15 0.15 < ¥ <035 035<y <1
(j=1,2,...5) (j=6,7.8) (J=9,10,...,50) (j=|,2. e 8) . (j=9’]0.__.’|3) (J‘=19‘20’._"50)
20, 0<y <01 0.1<y £02 02<y =1 40 0< 7 <015 0.15 <y <0.4 04<y <1
(j:[,z’”.‘s) (j=6‘7,..., 10) (_]=|l,12...—g50) (j.____,"z‘ v 8) (j=9,10,--—.20) (j=2]‘22,_”'50)
21 0sy <01 0.1<y <025 0.25<y <1 41 0 ¥ S0.15 0.15< ¥ £0.45 045<y <1
(j=1,2,...,5) (j=6,7,..,13) (j=14,15,...,50) (j=1,2 ...,8) (j=9,10, ..., 23) (j=24,25,...,50)
22 0<y <01 0.1<y <03 03<y =1 42 0<y <015 0.15<y <05 05<y <1
(j=1,2,....5) (f=6,7,...15) (J=16,17,...,50) (j=1,2,...,8) (j=9,10, ...,25) (F=26,27, ...,50)
23 0<y <01 0.1<y <035 035<y <1 43 0<y <015 0.15< ¥ <055 0.55<y <1
. : - . 7 y Y
(J=1,2,..,,5) (J=6,7,...,18) (J=19,20, ..., 50) (j=1,2,....8) (j=9, 10, ....28) (j =29, 30, ..., 50)
24 0<y <0. 0.1<y <04 04<y <l 44 0< ¥ £0.15 Q.1S< ¥ £0.6 0.6<y <1
(J=12,...5) (j=6,7,...,20) (j=21,22,...,30) (j=12,..8) (j=9,10, ..., 30) (j=31,32, ..., 50)
(j=1,2,...,5) (f=6,7,...,23) (J=24,25,...,50) (j=1,2..8) (J=9,10, ..., 33) (J =34, 35, ...,50)
26 0<y <0l 0.1<y <05 05<y =l 46 0< ¥ <015 0.15<y €07 07<y <1
(j=1,2,..,5 (j=6,7,..,25) (J=26,27,...,50) (=12 .,8 (j=9,10,...,35) {f=36,37, ..., 50)
(j=1,2,...,5) (j=6,7,...,28) (j=29,30,....50) (j=1,2,..38) (J=9,10,...,38) (J =39,40, ..., 50)
28 0Ly 20 0.1<y 206 0.6<y =1 48 0<y <015 0.15< y <08 08<y €I
(j=1,2,..,5) (j=6,7,....30) (J=31,32,...,50) (j=12..8) (j=9,10,...,40) (j=41,42, ...,50)
29 0Sy <01 0.1<y =065 065<y <1 49 0< ¥ <015 0.15< y <0.85 085<y <1
(j=1,2,..,9) (j=6,7,..,33) (J=34,35,....30) (j=1,2,..,8) (j=9,10, ..., 43) (j =44, 45, ..., 50)
30 0Sy <o0.l 0.1<y =07 0.7<y S1 50 0<y €015 0.15< ¥ <0.9 09<y <1
(j=1.2,...,9) (J=6,7,....35) (J=3("31'---'50) (j=1,2,...,8) (j=9,10, ...,45) (J =46,47, ..., 50)
3 0<y <01 0.1<y <075 073<y =l 51 0< 7 <0.15 015< ¥ 095 095<y <1
(j=1,2,....5) (J=6,7.....38) (J =39,io,...,50) (j=12,..8) (f=9,10,...,48) ( J =49, 50)
32 0<y 201 0.1<y <08 08<y =l 52 0< 7 <02 0.2< ¥ <025 025< ¥ <1
(j=],2,.-.,5) (j=6,7,.‘.,40) (J‘ =4/l,42"",50) (j=l‘2‘.“’ 10) (jz‘l, 12, 13) (j=|49 IS....,SO)
33 0<y <01 0.1<y S0385 0.85 <y =1 53 0< ¥ 02 02< ¥ <03 03<y <I
(j=1,2..9% (j=6.7,...,43) (J 44,45,...,50) (j=1,2,...,10) (J=11,12, ..., 15) (j=16,17, ...,50)
34 0<y 0.1 0.1<y <09 09<y =1 54 0< ¥ <02 02<y <035 035<y <1
(j=1,2,....5) (j=6.7,....45) U*“ﬁ"‘l’"-’s") (j=12, ..., 10) (j=i1,12,....18) (j=19,20, ..., 50)
35 0<y <01 0.1<y <095 0.95<y =1 5 0< ¥ <02 02<y <04 04<y <1
(j=1,2...5) (f=6,7,...,48) (J=49,i0) (j=1,2, ..., 10) (j=11,12,...,20) (j=21,22,...,50)
36 0< ¥ <015 0.15< ¥ £0.2 02<y <1 56 0%y <02 02< 7 <045 04s<y <1
(Jj=1,2..8 (j=9,10) (}:H,li,l...,SO) (f=1,2, ..., 10) (F=11,12,...,23) (J=24,125,...,50)
37 0<y <045 0.15<y <025 0B3<y = 57 0<y <02 02<y <05 05<y <1
(Jj=1,2,...8) (j=6.7,...13) (J'““"‘(S""'SO) G=1,2, ..., 10) (j=I1, 12, ..., 25 (j =26,27, ..., 50)
38 0<y <0.15 0.15<y 03 0.3<y st 58 0<y <02 02< ¥ <055 055<y <1
(j=1,2,...,8) (j=910,..,15) (J=16,117,...,50) (j=1,2,...,10) (Jj=11,12,...28) (J =29,30, ..., 50)
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X Table 3.1 (contn’d) Table 5.1 (contn’d)
K Test Subregions Test Subregions
number number
0, o, O, 0, o, 0,
59 0S¥ <02 02<y $0.6 0.6<y <1 79 0<y <025 025<y 09 09<y <1
(j=1,2,...10) (j=11,12,...,30) (j=31,32,..,50) (j=1,2, . 13) (j=14,15,...,45) (J =46,47, ..., 50)
60 . 0<y <02 02<y €0.65 065<y <1 80 0<y £0.25 025 <y <0.95 095<y <1
(j=1,2,..., 10) (J=11,12,..,,33) (J=34,35,...50) (j=1,2, .., 13) (j=14,15,....,48) (J =49, 50)
61 0<y €02 02<y £0.7 0.7<y =1 81 0<y £03 03<y £0.35 035<y <1
(j=1,2,..,10) (j=1112,..,35) (J=36,37,..,50) (j=1,2,...,15) (f =16, 17,18) (j=19,20, ..., 50)
62 0y $02 02<y 075 0.75<y sl 82 0<y €03 03<y 04 0.4<y <1
(j=h2...,10) (J=11,12,....38) (J=39,40,..., 50} (j=1,2...,15) (j=16,17,...,20) (J=21,22,...,50)
63 0<y €02 02<y =038 0.8<y <1 83 0y <03 03< y <045 045<y S1
(j=1,2,..,10) (J=11,12,...,40) (J=41,42,..,50) (j=1,2, 0. 15) (j=16,17,....23) (j=24,25, ..., 50)
64 0Ly 502 02<y =085 0.85<y <1 84 0<y €03 03<y <05 05<y <1
(j=1.2...,10) (J=11,12,..,43) ( j=44,45,...,50) (j=1,2,...,15) (j=16,17, ...,25) (f=26,21,...,50)
65 0<y £02 02<y 509 0.9<y <l 85 0< y <03 03< y <0.55 055<y <1
(j=12,...,10) (j=11,12,...,45) (j=46,47, ..., 50) (j=1.2,...,15) (j=16,17,...28) (f=29,30,...,50)
66 0<y £02 0.2<y <095 095<y =1 86 0<y <03 03<y £06 06<y <1
(j=1,2, ..., 10) (j=11,12,...,48) (J =49,50) (j=1,2,..,13) (j=16,17, ..., 30) (j=31,32,..., 50)
. 61 0<y £0.25 0.25<y £0.3 03<y =1 87 0<y <03 0.3< y S0.65 0.65< ¥ <1
(j=1,2,..,13) (J=14,15) (j=16,17,...,50) (j=1.2,...,15) (j=16,17,...,33) (j=34,35, ..., 50)
68 0<y <025 0.25<y 035 035<y =1 88 0< ¥ €03 03<y £0.7 0.7<y <1
(j=12.-13) (j=14,15,...,18) (j=19,20,..,50) (j=1,2,...,15) (j=16,17,...,35 (j=36,37, ..., 50)
69 0< ¥ €025 0.25<y S04 04<y <l 89 0<y 03 03<y <075 0.75<y S
(j=1,2,...13) (j=14,15,...20) (J=21,22,...,50) (j=1,2,..,195) (j=16,17,...,38) (J=39,40, ..., 50)
70 0< ¥ £0.25 025<y £043 045<y <1 90 0< ¥ €03 03<y <08 08<y <1
(Jj=12..,13) (j=14,15,....23) (J=24,25,...50) (j=1,2,...,15) (j=16,17,...,40) (j=41,42,...,50)
7 0< y £0.25 0.25<y S0.5 05<y =1 91 0<y <03 0.3<y <085 085<y <1
; (G=1,2,..513) (J=14.15, ..., 25) (J=26,27, ..., 50) (j=1,2,...,15) (j=16,17, ...,43) (j=44,45, ..., 50)
12 0<y £0.25 025<y <055 0.55<y <1 92 0y <03 03<y <09 09<y <1
(j=1,2,...13) (J=14,15,....28) (J=29,30,....50) (=12 ...,15) (j=16,17, ..., 45) (j=46,47. ..., 50)
73 0<y $025 025<y <06 06<y =1 93 0<y <03 03<y <095 095<y <1
(j=h2...13) (Jj=14,15, ..., 30) (f=31.32....,50) (j=1,2, ..., 15) (j =16,17, ...,48) (j =49, 50)
74 0<y £0.25 025<y =065 0.65<y <1 94 0< ¥ =0.35 0.35<y <04 04<y <1
(j=12,...13) (j=14.15,..,33) (/=34.35, .., 30) (j=0,2,...18) (j=19,20) (j=21,22, ..., 50)
7 0y £0.25 025<y <07 07<y < 05 0< ¥ <035 035< ¥ £0.45 045<y <1
(J=1,2,.13) (J=14,15,....35) (J=36,37, ..., 50) (j=1,2,...,18) (j=19,20,...,23) (j=24,25, ..., 50)
76 0< y £0.25 0.25<y £0.75 0.75<y =1 96 0< ¥ 035 0.35< ¥ <05 05<ys!
(j=1,2 .. 13) (j=14,15,...,38) (j =39,40,....50) (j=1,2,....18) (j=19,20, ....25) (j=26,27, ..., 50)
7 0y <025 025<y <08 08<y <1 97 0< ¥ €035 0.35< ¥ <0.55 055<y <1
(j=12..13) (J=14,15, ..., 40) (J=41,42,....50) (j=1,2...,18) (j=19,20, ...28) (j=29,30, ..., 50)
78 0y <025 025<y <085 085<y =1 98 0< ¥ <035 0.35< ¥ <06 06<y <1
(j=1,2, .., 13) (j =14,15,...,43) (j=44,45,...,50)

(j=1,2,...,18)

(j=19,20, ..., 30)

(j=31,32,....50)
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Table 5.1 (contn’d) Table 5.1 (contn’d)
Test Subregions Test Subregions
number _ number -
©, @, ©; 0, 0, 0,
29 0y <035 0.35< y <0.65 065<y <1 119 0< ¥ <045 045< ¥ <0.6 06<y L1
A (J=4L2 .18 (j=19.20,....33) (J=34.35,...,50) (F=1,2..,23) (f=24,25, ..., 30) (j=31,32,...,50)
100 0S¥ 5035 035<y s07 07<y <) 120 0<y 045 045< y £0.65 0.65<y <1
(j=1,2,...,18) (j=19,20,...,35) (j=36,37,...,50) (F=1,2,...,23) (J=24,25,....33) (J =34, 35, ..., 50)
101 0y £035 0.35< ¥ £0.75 075<y 1 121 0S 7 045 045<y £0.7 0.7<y <1
(J=1,2,..,18) (J=19,20,...,38) (J =39, 46, ..., 50) Cj=1,2,...23) (j=24,25, ..., 35) (j=36,37, ..., 50)
102 0<y <035 035<y <08 08<y =1 122 0% ¥ S045 045< y £0.75 0.75<y <1
(J=12,...,18) (j=19,20,...,40) (J=41,42, .., 50) (j=12,..,23) (j=24,25,...,38) (j=39,40, ..., 50)
103 0 7 £0.35 035<y £0.85 0.85<y <1 123 0< y 045 0.45<y <08 0.8<y <1
(j= e 18) (j=19.20, ...,43) (f=44,45,....30) (j=1,2,...,23) (j =24,25, ..., 40) (j=41.42,...,50)
104 0Sy £035 035<y <09 09<y <! 124 0< y £0.45 045< y <085 0.85<y <1
; (j=1.2,...,18) (J=19,20, ...,45) (j=46,47,....50) (j=1,2,...23) (j=24,25, ..., 43) (j =44, 45, ..., 50)
105 0S¥ <035 035< ¥ $0.95 095<y <1 125 0< y <045 0.45< ¥ 0.9 09<y <1
(j=12,....18) (J=19.20, ....48) (J =49, 50) (j=1.2,...23) (j=24,25, ...,45) (j =46, 47, ..., 50)
106 0y <04 0.4<y S0.45 0.45<y <1 126 0< y 045 045< y <0.95 0.95<y <1
(j=1,2, ..., 20) (j=21,22,23) (j=24,25, ..., 50) ol 23) (2425, ..., 48) (j =49, 50)
107 0Ly £04 0.4<y <05 05<y <l 127 0<y 0.5 0.5< ¥ <055 0.55<y <1
(j=).2,...20) (j=21,22,....25) (J=26,27,....50) (j=1,2...,25) (j =26,27,28) (j=29,30, ..., 50)
108 0y S04 04<y <055 0.55<y <1 128 0<y <05 05<y <06 0.6<y <1
(j=1.2,..,20) (j=21,22,...,28) (J =29, 30, ....50) (j=1,2,....25) (j=26,27,...,30) ( j=31,32,...50)
109 0y <04 04<y <06 06<y =1 129 0<y <05 0.5< y <065 0.65<y <1
(j=1,2,...,20) (j=21,22,...,30) (j=31,32,...,50) G120 25) (}=26.27, .3 (j=34,35, ... 50)
110 0<y <04 0.4< y <065 0.65<y £1 130 0<y <05 05< ¥ <07 07<y <1
(j=1,2,...,20) (Jj=21.22,..,33) (J=34,35,...,50) (=12, ...25) (j=26,27, ..., 35) (j =36,37, ..., 50)
t 0y <04 04<y <07 07<y sl 131 0<y <05 0.5< ¥ S0.75 075<y S1
(j=12..20) (/=21,22,...,35) (J=36,37,....50) (j=1.2,..,25) (j=26,27,...,38) (J =39, 40, ..., 50)
H2 0<y <04 04<y <075 075<y =1 132 0< ¥ <0.5 05<¥ <038 08<y <1
(j=1.2,...,20) (j=21,22,..,38) (J =39, 40, ..., 50) (j=1,2,...,25) (J=26,27, ...,40) (j=41,42, ..., 50)
13 0S y <04 04<y <08 0.8<y <1 133 0<y <05 05<y <085 085<y <1
(J=1,2,...,20) (j=21,22,...40) (j=41,42, ..., 50) (j=1,2,...25) (j=26,27, ...,43) (j =44, 45, ..., 50)
114 05y <04 04< y <0.85 085<y S| 4 i34 0<y <05 05<y <09 09<y <1
(f=1,2,....20) (f=21,22,...,43) (J =44,45,....50) (j=1.2,...,25) (j=26,27, ...,45) (j =46,47, ..., 50)
s 0<y <04 04<y <05 09<y £1 135 0<y 0.5 0.5< ¥ $0.95 0.95<y <1
(J=1,2,..,20) (j=21,22,...,45) (J=46,47, ....50) (F=1,2,....25) (j =26,27, ...,48) (j =19, 50)
116 0<y <04 04<y <095 0.95<y <1 136 0< y €055 0.55< ¥ 0.6 06<y <!
(j=1,2, ....20) (j=21,22, ...,48) (J=49,50) (j=1.2,...28) (j =29, 30) (j=31.32,...,50)
17 0<y <045 045<y S0 05<y =l 137 0< 7 <0.55 0.55< ¥ <0.65 065<7 <1
(j=1,2,...,23) (J=24,25) (J=26,27....,50) & (j=1,2,...28) (j =29, 30, ..., 33) (j =34,35, ..., 50)
118 0<y <045 045< ¥ £0.55 0.55<y <1 - 138 0<y <055 055<y <07 07<y <1

(j=1,2,..,23)

(j =24,25, ....28)

(=29.30, ..., 50)
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¥
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(j=1,2, ..., 28)

(j =29, 30, ...,35)

(j=36,37,...,50)




118

(j=1,2,....35)

( J =36,37, ..., 40)

(j=41,42,...,50)
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Table 5.1 {contn’d) Table 5.1 (contn’d)
Test Subregions Test Subregions
number number
o > ©s e, 0, 0,
139 0< y <0.55 0.55<y 2075 0.75<y £1 150 05y <07 07<y <085 085<7 <1
(j=1,2,...,28) (j =29, 30, ...,38) (J =39, 40, ..., 50) b2, 00 35) (i =36,37, ... 43) L t4, 45, ... SO
140 05 ¥ <0.55 0.55< ¥ 0.8 08<y <1 160 0<y <07 07<y <09 09<7 <1
(j=1,2,...,28) (j =29, 30, ..., 40) (j =41,42,...,50) m1.2,..39) (236,37, .. 45) A6, 4T, .. 5O
141 0y <055 0.55< ¥ £0.85 085<y <1 164 0<y <07 07<7 <095 095< 7 <1
(j=1,2,..,28) (J =29, 30, ...,43) (j=44,45,...,50) Go1.2.35) (36,37, . 48) (j =45, 50)
- 0=y 2055 0.55<y 20 0I<y =l 162 0Sy <075 0.75<y <0.8 0.8<y <1
(j=1,2,...,28) (J=29,30, ....45) (J =46,47, ..., 50) (j=1.2,..,38) (j =39, 40) (J=41,42, ..., 50)
e 0572035 0.5 <y 09 095<y =1 163 0Ly £0.75 0.75< ¥ £0.85 0.85<y <1
(j=1,2,....28) (j=29,30,...,48) (J =49, 50 (j=1,2,...,38) (f =39,40, ..., 43) (f =44,45, ..., 50)
144 0< ¥ <06 0.6< y <065 065<y £1 164 0<y 075 075< y <09 09<y <1
(J=12...30) (J=31.32,33) (J=34,35, ... 50) (j=1,2,..,38) (J =39, 40, ..., 45) (J =46,47, ..., 50)
1 0=y 06 06<y =07 07<y =1 165 0Ly L0758 0.75< y <0.95 0.95<y £
(Jj=1,2,...,30) (j=31,32,....35) (j=36,37,.... 50) G2, 38 (j=39,40, ... 45) (j =9, )
146 0y <06 0.6<y <075 0.75<y £1 166 o<y <038 08< 7 <085 085<y <1
(j=1,2,...,30) (j=31,32,...,38) (j =39, 40, .... 50) (j=1.2, ..40) (=1, 42.43) 45, 50)
" 05y 206 06<y =08 08<y =l 167 0<y <038 0.8<y <09 09<y <1
(j=1,2,..,30) (J=31,32,...,40) (J=41,42,...,50) (j=1,2,...40) (f=41,42,...,45) (j =46,47, ..., 50)
148 0sy 206 0.6<y <085 085<y =1 168 0<y <08 0.8<y S095 095< ¥ <1
(j*=1,2, ..., 30) (j=31,32,...43) (j=44,45, ...,50) a1.2, . 40) (=41, 42, .. 48) (=49, 50)
149 0<y £0.6 06<y £09 09<y <1 169 0< y <05 085< y £09 09<7 <]
(j=1.2,..,30) (j=31,32,...,45) (j =46, 47, ..., 50) Gol2 43 (j =44, 45) 4647, . 50}
150 0<y £0.6 06<y £0.95 095<y s1 170 0< ¥ <0.85 0.85< ¥ $0.95 0.95<y <1
(J=1,2...30) (j=31,32,....48) (] =49.50) o (j=1,2,...,43) (J =44,45, ..., 48) (j =49, 50)
151 0< ¥ £0.65 0.65<y £0.7 07<y <1 - 0< <09 09< 7 <095 095< <1
(j=1,2,..,33) (J=34,35) (j =36.37....,50) a2, d5) (j =16, 47, 43) =49, 50)
152 0< ¥ <065 0.65< y <075 0.75<y <1 Ourtest  0<y <023 0.23< y S0.63 063<y <1
(j=1,2,...33) (f =34,35, ...,38) (f =39,40, ..., 50) =12, 12) et 4, ..32) (=33, 34. . 50
153 0< ¥ <065 065<y <08 08<y <1
(j=h2,..,33) (F=34,35, ...,40) (j=41,42, ..., 50) %
154 0< ¥ £0.65 065<y <085 0.85<y <1 o
(j=1,2,...,33) (j=34,35, ...,43) (f =44, 45, ..., 50) é
155 0< ¥ £0.65 0.65<y <09 09<y <1 =
(j=1,2,...,33) (J=34,35, ..., 45) (j =46,47, ..., 50) é
156 0< y £0.65 0.65<y £0.95 095<y Sl &
(j=1,2,..,33) (j=34,35, ...,48) (j =49, 50) t,
157 0<y £07 0.7<y €075 0.75<y S|
(j=1,2,...,3% (j=36,37,38) (j =39, 40, ..., 50) ‘
158 0<y <07 0.7<y <08 0.8<y <1



Table 5.2

Final critical values %,, k, and k, when m=3: X2 design matrix with n =20.

Test " Critical values Test Critica! values
number number
k, k, k, k, k, k,

H -0.0837 0.255 2.23) 44 0.0706 1.7 0.4
2 ~0.025 0.25 22 45 0.0815 1.8 0.1
3 -0.0544 0.437 2,18 46 0.0610 2.15 -0.0]
4 -0.0252 0.49 2.195 47 0.0658 23 -0.18
5 -0.1167 0.93 1.59 48 0.0729 2.4t -0.23
6 -0,1464 1.2 1.2 49 0.0831 248 -0.37
7 -0.162 145 093 50 0.0758 2.74 -0.452
8 -0.1325 1.5 0.87 51 0.0761 291 -0.78
9 -0.1321 1.67 0.82 52 0.0155 0.01 1.8
10 -0.124 1.8 0.5 53 -0.0425 1.15 1.01
11 -0.1456 2.1 0.28 54 0.0222 1.15 0.95
2 -0.1257 217 0.07 535 0.123 1.0 i1
13 -0.0845 2.05 0.07 56 0.0595 1.5 0.5
14 -0.0872 223 -0.1 57 0.1172 1.44 0.6
5 -0.081 234 -0.13 58 0.1278 1.59 0.35
16 -0.0814 25 -0.316 59 0.146 1.68 0.35
17 -0.0609 249 -0.33 60 0.1391 1.72 0.31
18 -0.0646 2.67 -0.606 61 0.1676 1.9 -0.001
19 -0.0123 0.21 2.21 62 0.1564 2.19 .19
20 -0.0228 0.39 2.1 63 0.1941 2.06 -0.174
4 2! -0.0051 0475 222 64 0.2145 2.09 -0.3
22 -0.2373 1.33 1.05 65 0.2058 23 -0.39
23 -0.0805 1.05 1.25 66 0.1774 2.4 -0.785
24 -0.1044 1.33 0.93 67 0.029 1.58 0.8
25 ~0.1079 1.52 0.63 68 0.1301 117 0.9
26 -0.0231 1.35 0.81 69 0.1778 1.23 0.82
27 -0.0526 1.65 0.5 70 0.1767 1.47 0.45
28 -0.0231 1.67 0.44 71 0.1798 1.75 0.37
29 -0.0679 2.06 0.065 72 0.2043 1.8 0.21
30 -0.074 227 -0.02 73 0.2344 1.8 0.2
3 -0.0067 205 (.07 74 0.2715 171 0.003
- kY -0.0217 23 -0.165 75 0.257 203 -0.09
33 -0.0103 238 -0.31 76 0.2432 24 -0.28
34 -(.0021 2475 -0.36 77 0.2617 24 -0.3
35 -0.0113 2.7 -0.67 78 0.3054 2.21 -0.38
36 -0.0088 0.56 2.0 79 0.3063 2.38 -0.45
37 0.0139 0.595 2.05 80 0.2838 28 -0.87
38 -0.1833 1.5 0.87 81 0.1268 1.31 0.5
9 -0.1074 1.44 0.94 82 6.1633 17 0.45
40 0.0209 1.22 0.9 83 02727 .31 0.43
41 0.0378 1.32 0.75 84 0.275 1.6 0.37
42 0.0155 1.64 0.62 85 0.3041 1.63 0.18
43 0.0578 1.6 0.49 86 0.3337 1.68 0.15
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Table 5.2 (contn’d)
Test Critical values Test Critical values
number number
kl kz k3 kl kl kl\
87 0.3463 1.8 -0.08 130 0.9659 1.51 -0.25
88 (.3497 2.0 -0.15 131 1.017 1.55 -0.35
89 0.3065 2. -0.26 132 1.1196 1.42 -0.305
o0 0.3733 2.26 -0.315 133 1.2003 1.22 -0.33
921 0.4023 2.25 -0.444 134 1.2142 1.32 -0.382
92 0.4363 2.3 -0.478 135 1.1303 1.83 -0.87
93 04922 2.25 0,735 136 1.1383 1.5 -0.132
94 0.3644 1.44 .66 137 1.1861 1.32 -0.25
95 0.3978 1.34 0.37 13¢ 1.1621 1.6 -0.3313
96 0.4106 1.5 0.36 LI 1.328 1.23 -0.31
97 0.4247 1.64 0.12 VoL 1.4252 1.01 0,215
98 0.4246 i.98 -0,02 141 1.6307 0.54 -0.06
99 0.4488 2.0 -0.17 142 1.6087 0.77 -0.21
100 0.4813 2.0 -0.195 142 1.4991 1.26 -0.658
101 0.515 2.03 -0.297 144 1.2591 i.2 -0.37
102 0.5137 225 -0.357 145 1.347 1.35 -0.365
103 0.4915 2.6 (.59 146 1.5800 0.68 -0.165
104 0.6851 196 -0.432 147 1.6439 0.65 -0.125
105 0.5457 2.72 -0.988 148 1.6687 0.65 -0.175
106 0.4494 1.27 0.24 149 1.5959 0.94 -(.345
107 0.525 1.3 0.33 150 1.521 1.63 -0.985
108 0.5605 1.38 017 151 1.5921 1.35 -0.397
109 0.5716 1.65 0.025 152 1.6158 1.2 -0.5
110 0.7117 1.35 -0.05 153 1.7768 0.54 -0.15
111 0.7229 1.5 -0.11 154 1.797 0.47 -0.155
112 0.654 1.95 -0.335 155 1.8559 0.3 -0.06
113 0.6889 2.02 -0.357 156 1.7598 1.005 -0.69
114 0.8187 1.7 -0.39 157 1.4471 i.9 -1.1
P15 0.6967 2.405 -0.62 158 19115 0.2 -0.02
116 0.6913 2.7 -1.076 159 2.0243 -0.03 0112
117 0.6716 1.54 03 160 1.9253 0.23 -0.003
118 0.6788 1.59 -0.046 16l i.8688 0.59 -0.48
119 0.9391 1.0 035 162 2.1168 -0.07 0.03
120 0.727 1.9 -0.27 163 2.1433 -0.197 0.157
121 0.8766 1.6 -0.21 164 2.137 -0.195 0.3
122 0917 1.58 -0.29 165 2.0335 0.15 -0.38
123 0.9748 1.61 -0.3 166 2.0885 1.1 -1.09
124 1.0152 1.6 -0.409 167 2.123 0.78 -(.655
125 0.8707 2.45 -0.7 168 2.0932 1.4 -1.54
126 (.9889 2.08 -(.898 169 2.6104 -1.7 0.95
127 0.8507 1.1 -0.03 170 2.5871 -1.19 1.04
128 0.8327 1.62 (.15 171 2.3732 0.8 -1.444
120 0.9224 1.43 -(0L.22 Qurtest 0.2008 1.84 0.055
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Table 5.3 Table 5.3 (contn’d)
Calculated sizes of the test when m =3 at the five percent level: X2 design matrix -
with #=20. Parameter Sizes
values
] Parameter Sizes Test number
values '
© Test number 3l 32sr 33eE 34wk 35w 36 378 33 39 40
I ) 3 . 5 6 7 8 gk qovr 7 =00 0.044 0047  0.045 0045 0044 0050 0053  0.072* 0.074* 0,055
0.1 0043 0042 0044 0044 0044 0048 0046 0049 0047  0.047
y =00 0.047 0.048 0.047 0.049 0.043 0.046 0.046 0.046 0.047 0.049 .2 0.050 0.047 0.050 0.049 0.049 0.055 0.047 0.045 0.042 0.048
; 0.3 0.058 0050 0054 0057 0053 0063 0054 0059 0044  0.06]
g . . . . . . . 1039 03 ] a
0100 0055 006 000 00 000 0@D  0mE  oms 00w n bon 00w oo G oom b oo oo e ooek
03 0078% 0077* 0065* 0063 0063 0060 0057 0055 0050 0.0 0.5 0061 0056 0058 0060 0058 0061 0053  0079%* 0061  0.073*
. 04 0.080* 0075%* 0.067* 0063  0071* 0070* 0.066* 0063 0058  0.06 0.6 0060 0056 0055 0057 0054 0053 0045  0074* 0058  0.064*
5 0.5 0.071* 0068* 0059 0056  0067¢* 0.073* 0.074* 0066* 0059  0.062 0.7 0.054 0051 0050 0051 0048 0444 0039 0061 0052  0.055
0.6 0056 0053 0051  0.047 0057 0065* 0.064* 0060 0054  0.058 0.8 0048~ 0046 0046 0044 0044 0030 0.026* 0052 0042 0045
07 0.046 0044 0043 0040 0046 0052 0055 0050 0046  0.052 0.9 0.047 0047 0049 0047 0046  0.021% 00I8* 0041  0.036* 0.036*
0.8 0.032¢  0.030* 0023* 0.024* 0037 0043 0045 0042 0040  0.044 Test number
022%  0.020%  0.019*  0.016*  0024%  0.029*  0.036* 0.035*% 0.029% 0.
0.9 0.022%  0.020* 0019 0.016* 0024* 0020* 0.036* 0035% 0.029% 0.038 . v g agse asee ages agwe ages dowe  sowe
Test number
. . \ i . 7 =00 0059 0061 0053 0052 0053 0052 0053 0052 0052 0050
L s 16 713 19 20 0.1 0.048 0045 0047 0049 0050 0.045 0047 0048 0048  0.049
¥ =00 0050 0047 0047 0.046 0046 0046 0044 0045 0049  0.047 0.2 0.048 0040 0049 0050 0053 0044 0045 0046  0.049  0.047
0.1 0.037 0037 0043  0.042 0042 0041 0044 0042 0052  0.045 0.3 0058 0047 0051 0053 0054 00460045 0047 0031 0047
. 02 0036* 0036* 0048 0.045 0046 0044 0052 0050 0063  0.059 04 006 0054 0058 0057 0060 0049 0050 0050 0034 0051
0.3 0.045 0.045 0.057 0.053 0.055 0.053 0.060 0.058 0.072*  0.066* 0.5 0.067* 0.056 0.060 0.060 0.062 0.050 0.051] 0.051 0.053 0.049
0.4 0.052 0053 0061  0.057 0056 0.056 0063 0060  0072* 0.070* 0.6 0.61 0055 0056 0053 0059 0053 0051 0047 0048 0044
0.5 0057 0057 0063 0061 0060 0059  0.064* 0062  0064* 0.06) 0.7 0.053 0048 0049 0049 0058 0048 0049 0046 0046  0.043
g 06 0058 0058 0059 005 0056 0056 0060 0058 0053 0052 0.8 0.044 0040 0043 0043 0053 0046 0049 0045 0043 0039
07 0054 0060 0059 0055 0053 0052 0052 0050 0044 0043 0.9 0.03¢* 0036* 0037  0036" 0047 0046 0049 0048 0047 0043
0.3 0046 0055 0051 0053 0045 0048 0046 0044  0029% 0.028* Test yumber
4 0.9 0043 0053 0047 0053 0044 0051 0048 0048  0020* 0020
-4 S1e%  53ea 53 54 55 56 578% 5gex 50%+ 60
Test number
o " - o ¥ =0.0 0051 0058 0067 0.064* 0053  0067* 0.057 0057 0054  0.096*
' 2 22 2 24 25 % 2 28 29 30 0.1 0.049 0044 0046 0047 0051 0048  0.047 0048  0.047  0.074*
. 7 =00 0045 0047 0043 0045 0049 0045 0047 G046 0.052 0055 02 0.047  0.044 0047 0045 0053 0043 0046 0046 0047  0.066*
0.1 0.046 0.036*  0.040 0.018 0.040 0.042 0.040 0.043 0.041 0.041 0.3 0.047 0.053 0.055 0.050 0.061 0.044 0.051 0.050 0.051 0.061
0.2 0050 0043 0047 0041 0041 0051 0041 0047 0041  0.039 04 0.050  0.054  0067* 0060  0.064* 0055 0058 0055 0054  0.059
03 0057 0058 0059 0057 005¢ 0061 0051 0056  0.048  0.043 0.5 0047 0054  0074* 0062  0065* 0060 0058 0058 0056 0057
0'_4 0058  0.070%* 0067* 0064* 0062 0068% 0.061 0.063 0.052 0.049 0.6 0.045 0.047 0.067* 0060 0057 0062  0.057 0.058 0052 0.051
0.5 0.054  0.077* 0.070* 0.072* 007i* 0.068* 0.063 0.063 0.056 0.051 0.7 0.04) 0.041 0.056 0.052 0.047 0.038 0.049 0.053 0.047 0.044
0.6 0046 0070 0061 0063  0066* 0063 0058 0058 0058  0.055 0.8 0.039  0.030* 0047 0042 0041 0050 0.042 0046 0042 0037
0.8 0.023* 0046 0042 0044 0049 0042 10042 0053 0049 — '
0.9 0.015% 0037  0.027* 0.035* 0040  0.032* 0038  0.036* 0052  0.048 * denotes value significantly different from the five percent level at the 0.01 level.

** indicates an accepted test with respect to the size condition.
* denotes value significantly different from the five percent level at the 0.01 level.
*+ indicates an accepted test with respect to the size condition.
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Table 5.3 (contn’d) Table 5.3 (contn’d)
Palrameter Sizes Parameter Sizes
values values
Test number Test number
6i¥*  62%F 63 6ar Gt 66t 67 68 59 70 OI** 2% O3x  g4%r  OSks  ggex  g7a¢  oges  ggwe  |Q*e
1 7= %I: : g-gzi ggzz g-g‘s'? g-giz g-gﬁ g-gig g‘gig* g-ggg* g-g‘;’;" g‘g;" y =00 0.036*  0.030* 0029* 0053 0046 0052 0050 0.050 0041  0.037
0.2 0051 0046 0055 0056 0056 0051 0045 0044 0048 0045 ol 001 bod ool o oo ool oot Q0 o016 006
' 03 0055 0047 0050 0063 0062 0053 0048 0048 0052  0.047 ‘ ' ‘ ‘ ' ‘ ' ‘ ' ‘ ‘
o3 O hhe o 0 oosr oosr coss 03 0060  0.060 006! 0047 0047 0051 0049 0047 0050  0.054
" 0.5 0058 0050 0059 0062 0061 0051  0069* 0058 0060  0.060 04 0058 0060 00630034 0051 0051 0048 0043 0048 0055
0.6 0057 0049 0056 0057 0056 0047  0.069% 0058 0058  0.061 0.5 oS - o G S A o A
0.7 0051 0048 0051 0051 0049 0043 0060 0.050 0049  0.057 0.6 g'gﬁg D e by ok on Dan oo 004
0.8 0048 0046 0045 0044 0043 0040 0051 0042 0042 0052 g; o0de 003 ool 004> 0031 0044 0047 0047 0049 0048
i ™ - . N . . R A A . A . .
0.9 0046 0048 0046 0046 0040 0043 0042  0.036* 0.036* 0043 oo 0044 0043 0043 6037 0044 0040 0043 0049 0056 0053
.1 Test number
E Test number
7! [ 101%%  102%  103*%  104**  105%*  J06**  107¢*  108**  109**  110**
y= %01 g‘gzg* g‘ggi* g'ggi g'g:: ggg; gggi g'gg’; g‘g:; g'g:; g'g:; 7 =00 0.034*  0.035* 0.040  0024* 0031* 0062 0037  0.033* 0032*  0.025*
02 0042 0045 0050 005§ 0054 0040 0054 0056 0055  0.056 01 0043 D044 0046 DO3GE 0443 0055 D04 - 0.042 00410037
03 Coi 0040 002 0037 0054 0046 0052 0062 0062 0057 0.2 0053 0054 0053 0050 0051 0048 0050  0.047 0046  0.049
E 0.4 0048 0046 0050 0061 0055 0042 0053 0060 0061  0.055 0.3 0056  0.056 0054 0059 0057 0043 0053  0.050 0045 0054
‘ 05 0052 0049 0051 0061 0051 0042 0046 0057 0057 0050 04 0053 0052 00500063 0052 0.045 0054 0.054 0049 0.059
1 0.5 0.052 0048 0044 0059 0040 0049 0054  0.051 0048  0.060
0.6 0052 0052 0050 0060 0050 0.042 0043 0051 0049  0.046 : 0 g 6 00k ooas . 1
: 7 0052 0054 0048 0059 0047 0043 0041 0046 0046  0.039 0.6 0.046 0044 0040 0053 0044 0051 0050 0. 0045 0.06
07 L oot oos o041 ood 003 o0 0.7 0.043 003  0034* 0048 0037 0054 0046  0.047 0044 0054
08 T ohe 005 005 0o  0os 0083 ooa 0.8 0047 0040  0035* 0042  0032* 0050 0044 0042 0044 0053
: : : ' : ' ‘ ‘ ' ' ' 0.9 0053 0044 0041 0043  0033* 0044 0038 0040 0044  0.053
Test number Test number
* *® *k E L] L 3 *%
3 8l 82 83 B4 W ¥ 88 5 20 LIPS 12e  QI3% 3de [iSex i6*® 17* LIgM [jo*r (20
¥ =00 0.074*  0.074*  0.064* 0069* 0063 0055  0.052 g'gg g‘gz g'gi: y =00 0026* 0028% 0027* 0023* 0027* 0027 0031* 0030° 00200 0.020% '
O o ook 00 00h 00 00s2 0055 0053 01 0038 0039 0039 0035t 0040 0039 0041 0039  0.031* 0039
. 02 e otaer 0o 00a0 0044  D0oSI 0054  00S2 0036 0056 0.2 0048 0050 0049 0040 0049 0048 0047 0047 0044  0.048
1 ot o 00il 0054 0045 0047 0053 0054 0054 0052  0.04 0.3 0055 0054 0056 0059 0056 0055 0051  0./ME  GOS5  0.040
0.5 0058 0052 0059 0050 0050 0051 0053 0.049 0049  0.048 04 0059 0052 0052 0063 0051 0049 0054 0049 0058  0.05]
] 06 0060 0056 0060 0052 0051 0050 0052 0047 0046 0045 05 0057 0049 0051 0059 0049 0046 0052 0048 0059  0.047
0.7 0060 0055 0056 0051 0053 0050 0055 0046 0044 004 0.6 0056 0045 0047 0054 0045 0044 0049 0046 0053 0043
00er 0031 00a 0048 0045 0056 0049 0044 0042 0.7 0050 0042 0040 0045 0038  0.035¢ 0044 0048 0045  0.044
~ 0.8 0.054 0. o5 0044 0040 0042 004 0038 0055 0051  0.046 0.8 0.047 0047 0039 0043  0033* 0.031* 0040 0051 0038 0052
0.9 0.048  0.045 : : ‘ ‘ ' ' ' ‘ 0.9 0.049 0054 0045 0046 0038  0034* 0037 0053  0.034* 0.059

* denotes value significantly different from the five percent level at the 0.01 level.

. - " * denotes value significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.

** indicates an accepted test with respect to the size condition.
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Table 5.3 (contn’d)
Parameter Sizes
values
Test number
121*% 122%* 123%* 124++ }25%¢ 126** 127%% 125%* [20%+ 130%+
y=00 0.023* 0.022* 0.020* 0019 0.023* 0021  0.030* 0.029 0.026% 0.024*
0.1 0.033*  0.033*  0.030* 0.031* 0.036* 0.030* 0039 0.039 0.041 0.038
0.2 0.046 0.046 0.046 0.045 0.040 0.047 0.048 0.049 0.050 0.050
0.3 0.053 0.056 0.055 0.057 0.053 0.057 0.056 {.052 0.055 0.0357
0.4 0.053 0.059 0.060 0.060 0.050 0.060 0.055 0.051 0.052 0.056
0.5 0.055 0.054 0.054 0.056 0.040 0.055 0.054 0.047 .054 0.035
0.6 0.053 0.051 0.050 0.052 0.044 0.049 0.053 0.044 0.050 0.052
0.7 0.049 0.047 0.046 0.048 0.035*% 0.044 0.050 0.043 0.047 0.047
0.8 0.049 0.046 0.042 0.041 0.031*  0.039 0.051 0.046 0.048 0.048
0.9 0.052 0.051 0.047 0.043 6.034*  0.042 0.052 0.049 0.052 0.052
Test number
[31%« 132+ 133 134 1354 136** [37** 138> 139+* | 4Q%*
y =00 0.022*  0.020¢ 0.019* 0019 0020 0.02(* 0.021* 0.022*% 0016 0.015*
0.1 0.036*  0.031*  0.031*  0.030* 0.033* 0032  0.030* 0033 0027 (.026*
0.2 0.047 0.047 0.049 0.050 0.049 0.044 0.043 0.045 0.043 0.044
0.3 0.056 0.058 0.062 0.063 0.061 0.051 0.053 0.055 0.053 0.056
0.4 0.058 0.061 0.068* 0.068¢ 0.063 0.054 0.054 0.055 0.058 0.050
0.5 0.054 0.057 0.064* 0.064* 0.058 0.052 0.053 0.051 0.054 0.061
0.6 0.050 0.051 0.060 0.062 0.052 0.052 0.050 0.048 0.051 0.057
0.7 0.045 0.048 0.053 0.052 0.048 0.048 0.047 0.044 0.047 0.051
0.8 0.046 0.044 0.045 0.045 0.642 0.048 0.047 0.047 0.044 0.045
0.9 0.051 0.046 0.046 0.046 0.043 0.049 0.051 0.054 0.050 0.046
Test number
141 142 143%* 144%™ 145%* 146** 147+* 148 149 150%*
y =00 0.014* 0.013* 0014 0.022* 0019 0.015* 0.014* 0,015 0.0i5* 0.015*
0.1 0.022*  0.022¢ 0.022* 0.034% 0030 0.028* 0.024*  0.024* 0.026* 0.026*
0.2 0.039 0.039 0.041 0.045 0.045 0.044 0.042 0.042 0.044 0.042
0.3 0.055 0.054 0.054 0.054 (0.055 0.030 0.055 0.056 0.058 0.055
0.4 0.065* 0.062 0.058 0.054 0.057 0.061 0.060 0.062 0.064* 0.059
0.5 0.069*  0.065¢ 0.061 0.052 0.052 0.063 0.063 0.065% 0.064* 0.056
0.6 0.063 0.060 0.056 0.048 0.050 0.060 0.058 0.059 0.061 0.051
0.7 0.059 {.057 0.051 0.046 0.046 0.055 0.055 0.055 0,053 0.046
0.3 0.052 0.050 0.045 0.048 0.049 0.049 0.046 0.047 0.045 0.040
09 0.047 0.04% 0.040 0.057 0.056 0.050 0.044 0.042 0.047 0.042
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Table 5.3 (contn’d)
Parameter Sizes
values
Test number
151 152+ 153 154 155 156 157 158
¥ =00 0.016* 0.015% 0.015% 0.015* 0.014* 0.015% 0.626* 0.015*
0.1 0.026* 0.026* 0.025* 0.024* 0.024* 0.024* 0.047 0.027*
0.2 0.042 0.043 0.043 0.044 0.040 0.043 0.064* (.044
0.3 0.054 0.054 0.056 0.057 0.055 0.056 0.072% 0.059
0.4 0.059 0.059 0.062 0.063 0.064* 0,062 0.062 0.070%
0.5 0.055% 0.054 0.065* 0.066* 0.069* 0.063 0.053 0.069+*
0.6 0.051] 0.050 0.056 0.059 0.064* 0.059 0.045 0.064*
0.7 0.049 0.048 0.056 0.056 0.060 0.052 0.042 0.059
0.8 0051 0.045 0.047 0.048 0.053 0.045 0.042 0.051
0.9 0.057 0.054 0.047 0.043 0.047 0.047 0.055 0.046
Test number
159 i60 161 162 i63 164 165 166**
y =00 0.014* 0.015+ 0.016* 0.014* 0.014* 0.014* 0.016* 0.014*
0.1 0.025* 0.027* 0.028* 0.024% 0.024+ 0.024* 0.026* 0.026%*
0.2 0.039 0.044 0.045 0.041* 0.039 0.039 0.044 0.044
0.3 0.055 0.059 0.062 0.055 0.054 0.054 0.058 0.057
0.4 0.065* 0.068* 0.071* 0.062 0.062 0.062 0.063* 0.063
0.5 0.071* 0.071* 0.068* 0.067* 0.070* 0.069* 0.068+ 0.060
0.6 0.066* 0.064* 0.067* 0.061* 0.064* 0.063 0.065* 0.053
0.7 0.062 0.039 0.058 0.060 0.061 0.062 0.059 0.050
08 0.057 0.051 0.052 0.052 0.054 0.055 0.053 0.043
0.9 (.046 0.046 0.053 0.047 0.046 0.046 0.053 0.048
Test number
167 168 169%* 170+ 171 Our test**
¥ =00 0.015* 0.016* 0.012% 0.012* 0.016* 0.058
0.1 0.026* 0.026* 0.019* 0.019+ 0.027+ 0.055
0.2 0.045 0.045 0.030* 0.030* 0.046 0.049
0.3 0.060 0.059 0.047 {0.047 0.061 0.049
0.4 0.065* 0.065* 0.055 0.054 0.069* 0.053
0.5 0.064* 0.060 0.061 0.060 0.068* 0.052
0.6 0.059 0.058 0.059 0.058 0.062 0.055
0.7 0.052 .049 0.060 0.059 0.054 0.053
0.8 0.042 0.042 0.056 0.055 0.047 0.050
0.9 0.044 0.043 0.051 0.056 0.047 0.046

* denotes value significantly different from the five percent level at the 0.01 level.

** indicates an accepted test with respect to the size condition.

* denotes values significantly different from the five percent level at the 0.01 level.
** indicates an accepted test with respect to the size condition.
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4 Table 5.4 Table 5.4 (contn’d)
Calculated powers of the test when m =3 at the five percent level: X2 design matrix
i with n=20. Parameter _ Powers
i values
3 Parameter Powers Test number
values
3 Test number J1%F 3206 33w 3ges 3gas 36 37 38 39 40
, ; N o ; p 7 . g o p=0.1 0.049 0044 0048 0047 0047 0051 0048 0052 0050 0048
0.2 0062 0059 0062 0063 0061 0071 0063 0057 0053 0064
3 p=0.1 0.061 0.061 0.048 0.052 0.046 0.043 0.040 0.039 0.04 0.039 0.3 0.093 0.084 0.087 0.093 0.086 0.097 0.084 0.080 0.073 0.080
0.2 0082 0082 0070 0071 0063 0059 0054 0056 0051  0.052 0.4 0.130 0122 0127 0130 0024 0135 0119 6i27 011 0.134
b 013 o112 0100 0098 0002  00S7 0082 0080 0073 007 05 0.191 0180  0.184 0189  ©.I81  0.193 0475 087  0.165  0.191
i 0.4 0153 0152 0137 0.37 0137 0134 0133 0124 0115  0.119 0.6 0272 0255 0260 0262 0257 0267 0245 0285 0255  0.281
3 0.5 0217 0215 0194 0192 0199 0196 0188 0182 0173  0.176 0.7 0368 0355 0356 0358 0351 0357 0334 0387 0353 0377
o oty a0 0265 0257 0276 0280 0279 0270 0253 0263 0.8 0478 0461 0465 0466 0454 0444 0431 0499 0465  0.486
0.7 0382 0374 0353 0346 0368 0376 0376 0365 0352 036l 09 0584 0571 0567 0566 0555 0347 0520 0601 0567 0586
0.8 0468 0459 0442 0434 0463 0482 0487 0475  ©456  C.468 Test number
0.9 0562 0552 0539 0526 0560 0573 0584 0573 1554 0578
41 42%F 43R 44 45ER 4G 478 48er 40Re §Ors
g Test number :
. . . N > . . : =0l 0.050 0047 0048 0051 0053 0048 0047 0050 0052 0050
3 1 12 '3_ 14 15 16 17 8 19 20 0.2 0.065 0052 0060 0061 0066 0055 0057 0060 006!  0.059
p=0.1 0030 0039 0047 0044 0045 0044 0048 0047 0055  0.049 03 0.088 0075 0082 0087 0094 0072 007! 0078 0087 0079
. 02 0.046 0046 006! 0058 0060 0059 0065 0063 0075  0.069 0.4 0.129 0106 0022 0123 029 OM6  OM16  GLI9 0423 0119
o e 0071 0088 0085 0086 0085 0095 0091  0.106  0.102 0.5 0.180 0166 0.479 0.182  0.87 0166 0.167 0169 0174  0.166
0.4 0.107 0011 0128 0123 0424 0122 0132 0132 0147 0139 0.6 0273 0249 0259 0260 0274 0243 0240 0239 0249 0234
o ooy 0170 010 018 0186 0153 0194 018 0209 0200 0.7 0375 0350 0357 0358 0367 0342 0338 0336 0340  0.326
0.6 0253 0259 0277 0266 0261 0258 0272 0268 0275 0269 0.8 047§ 0453 0463 0459 0482 0452 0442 0442 0444 0426
0.7 0351 6356 0371 0366 0360 0357 0366 036! 0368 0358 09 0579 0558 0566 0564 03591 0561 0556 0548 0549 0532
0.8 0464 0472 0484 0476 0470 0466 0475 0472 0453 0445 Test number
0.9 0573 0581 0594 0584 0574 0572 0579 0567 0540 0544
Sper 52w 53 54 55 56 574 SgEx  5g%» 60
Test number
. . s ) e e e 3o p=0.1 0.050  0.047 0048 0049 0054 0050 0049 0050 0049 0077 &
21 22 23 2 2 L 0.2 0.059 0059 0057 0.056 0070 0052 0059 0060 0.058  0.079
=01 0049 0037 0043 0040 0041 0045 0041 0045 0043  0.042 03 0.079 0077 0083 0081 0094 0075 0082 0079 0082  0.104
0.2 0063 0052 0059 0055 0052 0064 0055  0.063 0051 0048 04 0117 016 0125 0117 0133 0109 0118 0117 Ol19 0134
o col 0030 0088 0081 0076 0095 0078 0090 0071 0067 0.5 0.166 0171 018t 0475  0.191 0167 0176 0172 0.174 0.8
0.4 0127  0.128 0132 0428 023 0137 0120 0129 GH12 0407 06 0236 0244 0282 0262 0270 0261 0257 0256 0248 0256
o el o191 0153 OIS 0179 0104 0179 0186 0168  0.160 0.7 0325 0336 0378 0362 0362 0362 0358 0357 0347 0.5
o2 O 037 027 0274 0275 0279 0263 0274 0253 0239 0.3 0.426 0431 0487 0471 0465 0477 0460 0464 0452 0450 2
0.7 0336 0383 0369 0373 0376 0375 0363 0369 0352 0.341 09 0527 0532 0390 0571 0563 058 0365 0576 0555 0551
0.8 0430 0496 0473 0482 0492 0481 0469 0473 0470 045 ——
0.9 0520 0595 0571 0579 0594 0576 0578 0578 0578 0.564 indicates an accepted test.

** jndicate an accepted test.
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f=
Lh

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Table 5.4 (contn’d) Table 5.4 (contn’d)
Powers Parameter Powers
b values
Test number Test number
G1%* H2** G3** G4¥* 65%* 66** 67 68 69 70 ' 0%+ 0% 934x 04+ Q5%+ O 07%% ORA* DO** 100**
0056 0052 0053 0050 0051 0052 0049 0053 0054  0.055 & p=0.1 0.048 0045 0045 0050 0048 0053 0053  0.052 0050  0.048
0.065 0061 0067 0074 0072 006! 0053  0.054 0062 0057 i 0.2 0068 0067 0072 0058 0057 0063 006! 0058 0063  0.064
0.09¢ 0079 0097 0105 0103 0088 0075 0081 0085 0079 0.3 0.100 0099 0099 0075 0078 0080 0081 0075 0083  0.090
0.126  0.120 0138 0446 0142 0125 0420 0115 0024 0412 0.4 0.038 0142 0142 0113 0117 0122 0118 0106 0115  0.126
0.183 0168 0194 0204 0197 0173 0176 0470 0.176  0.168 0.5 0.8 0190 0195  0.168  0.165 0169  0.165  0.152 0162  0.173
0260 0241 0263 0274 0267 0246 0273 0259 0262 0256 o 0.6 0254 0259 0267 0251 0253 0242 0241 0225 0231 0245
0354 0334 0359 0366 0360 0331 0372 0356 0363  0.358 5 0.7 0336 0342 0355 0349 0350 0343 0334 0319 0322 0328
0465 0436 0465 0472 0462 0429 0491 0462 0467 0473 i 0.8 0435  0.443 0455 0454 0457 0445 0441 0419 0419 0429
0572 0548 0570 0.574 0563 0532 0592 0567 0568 0579 f:?% 0.9 0539 0544 0557 0558 0571 0555 0552 0532 0532 0541
Test number frf Test number
7 e L LA 3 10)%*  102%%  103%%  104%*  105%*  106**  107** 108%™  100%*  |10%*
0053 0057 0057 006 0.06 0058 0059 0052 0051  0.052 p=01 0.045  0.046 0050 0038 0046 0057 0048  0.045 0044 0037
0.054 0.058 0.065 0.069 0.065 0.0064 0.064 0.075 0.077 0.065 % 0.2 0.066 0.068 0.069 0.065 0.069 0.059 0.062 0.060 0.058 0.058
0071 007 0078 0097 0085 0074 0036 005 0.105 gogg 0.3 0.093  0.093 0094 0095 0098 0076 0086 0086 0084  C.094
0.099 0002 ol18 0138 0127 041l G124 0-'4,; 0.144 3 0.4 0133 0133 0125  0.437 0134 0105 0125 024 0121 0133
0.153 0157 0167 0191 0472  0J59 0168 0192  0.189 0-‘24 0.5 0.180  0.176  0.0166 092  0.175 0158  0.U73 0471  0.164 G190
0.230 0231 0237 0270 0246 0222 0240 0265  0.263 g.z zg 0.6 0248 0243 0235 0266 0243 0236 0245 0242 0237 0263
0333 0331 0339 0362 0340 0314 0323 0349 0348 03 0.7 0330 0324 0313 0354 0325 0332 0344 0337 0330 0358
043 044 0 O O ee 0% 0'4:? g'g:g 0.8 0430 0422 0398 0457 0419 0445 0443 0439 0428  0.466
0.556 0555 0553 0583 0555 052 0528 0555 0549 : 0.9 0538 0523 0502 0560 0514 0555 0556 0550 0541 0576
Test number Test number
8l 2 8 B4 &STT O BGvr o ETTREET & 90 L™ 12%e 1I3% ll4ee 1ISeS LIGY* D17V DI8Y 119%s 120%
0.053 0052 0056 0056 0056 0054 0057 0056 0052  0.050 p=01 0040 0041 0041 0037 0042 0041 004l 0043 0033  0.044
0.047 0048 0062 0061 0061 0064 0064 0065 0065  0.064 0.2 0061 0061 0063 0062 0066 0063 00O 0058 0055  0.061
0.065 0059 0080 0074 0077 0084  0.086 0-?33 g-?gg g"l’gg 0.3 0.096 0090 0093 0096 0095 0095 008 0082 0090 0084
0.099 009 0115 0104 0.i09 0124 0126  0.126 - 0174 0.4 0136 0132 0435 0136 0434 0132 0123 0119  0.427 0117
0.152 0137 0169 0155 0162 0173 g-;’; g-gﬁ g% 0203 0.5 0.190 0177 0177 0492 0176 0170 0173 0165 0186  0.167
0.245  0.224 0257 0229 (236  0.245 : i a4 o3 0324 0.6 0261 0242 0244 0263 0243 0236 0242 0237 0255 0233
0353 0330 0355 0332 0331 0339 0343 033 D1 0423 0.7 0.353 0325 0327 0355 0322 0316 0339 0329 0351 0316
0469 0442 0468 0439 0442 0446 0-4‘613 g-‘s‘ig g- 98 0550 0.8 0460 0424 0429 0458 0416 0408 0438 0428 0454 0417
0.578 0559 0576 0551 0554 055 05 - ° : 0.9 0.571 0530 0529 0563 0515 0505 0549 0541 0557 0529

** indicates an accepted test.

** indicates an accepted test.
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Table 5.4 (contn’d) e Table 5.4 (contn’d)
E 53] \
i
3 Parameter Powers ;% Parameter _ Powers
values [ values
Test number '_ Test number
_:.; 121%% 122+ 123** 124+ 125%+ 126** 127*# 128%+ 129+ 130%* 1514+ 152%* 153 154 i55 156** 157 158
0.2 N.056 0.057 0.056 0.058 0.062 0.059 0.062 0.064 0.065 0.065 0.2 0.053 0.053 0.051 0.050 0.050 0.050 0.074 0.053
0.3 0.090  0.091 0.089 0.091 0.093 0.091 0.089 0.086 0.094 0.098 £ 0.3 0.082 0.082 0.084 0.084 0.083 0.083 0.109 0.087
0.4 0.128 0.131 0.130 0.132 0.129 0.131 0.130 0.124 0.135 0.138 0.4 0.127 0.126 0.127 0.129 0.129 0.126 0.142 0.135
0.7 0.336 0.341 0.345 0.352 0316 0.343 0.343 0.326 0.336 0.342 & 0.7 0.345 0.342 0.367 0.371 0.379 0.361 0.331 0.380
Test number o Test number
LA & X 13¢ 135136k 137 B 139 140 7 159 160 161 162 163 164 165 166**
p£=01 0.038 0.033 0.033 0.032 0.034 0.032 0.033 0.034 0.028 0.027 4,% p=01 0.025 0.028 0.029 0.025 0.025 0.025 0.029 0.027
. 0.4 0.134 0.133 0.136 0.137 0.135 0.126 0.127 0.129 0.127 0.127 b 0.4 0.130 0.135 0.134 0.127 0.126 0.126 0.132 0.125 .
B 0.5 0.183 0.189 0.199 0.198 0.193 0.179 0178 0.178 0.181 0.187 b 0.5 0.189 0.194 0.201 0.188 0.189 0.189 0.196 0.188 . 3
I:':'_;_. 0.6 0.254 0.260 0.270 0.273 0.259 0.250 0.248 0.245 0.254 0.262 ‘ 0.6 0.284 0281 0.278 0.217 0.277 0277 0.276 0.259 .
0.8 0.440 0.455 0474 0.475 0.448 0.‘3-39 0.435 0429 0452 0.468 « 0.8 0.500 0.493 0.488 0.490 0.492 0.492 0.486 0.448
0.9 0.545 0.560 0.578 0.575 0.547 0.352 0.547 0.538 0.554 0.573 0.9 0.605 0.602 0.595 0.599 0.600 0.600 0.593 0.549 -
Test number Test number
M1 12 143 L4 st M6 T g a9 150 167 168 169*  170** 17t Ourtest**  Maximum
p=0.] 0023 0024 0024 0035 0032 0028 0025 0025 0028  0.027 power
E 0.2 0.048 0048 0048  0.00] 0.056  0.051 0.049 0049 0052 0051 p=0.1 0.027 0.027 0.020 0.019 0.029 0.057 0.060
0.5 0.188 0.187 0.182 0.179 0.181 0.191 0.187 0.188 0.192 0.187 0.4 0.130 0.128 0.116 0115 0.132 0.120 0.146
07 0.380 0.369 0.357 0.328 0.331 0.362 0.364 0.368 0.365 0.345 _r 0.6 0.267 0.263 0.262 0.261 0.272 0.248 0.277 4
r:. 0.9 0.566 0.553 0.588 0.583 0.580 0.566 0.594 . 3
** indicates an accepted test. 5 —- -3
b ** indicates an accepted test. -4
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Table 5.5

Average deviations (AD), sum of squared deviations (SSD) of the power and the
’ corresponding rank of accepted test with respect to size condition.

Test  AD (rank) SSD (rank) Test  AD (rank) SSD (rank)
" number number

4 0.022778 (40) 0.008523 (72) 73 0.029111 (72) 0.009104 (75)
9 0.027889 (67) 0.007343 (59} 74 0.0083313 (02) 0.000733 (02)
10 0.020889 (34) 0.004348 (32) 75 0.025333 (53) 0.007308 (58)
il 0.028111 {(68) 0.007717 (62} 76 0.042556 (115) 0.021171 (114)
12 0.023667 (45) 0.005801 {(42) 77 0.033667 (101) 0.014061 (103)
i3 0.008667 (04) 0.001234 (05) 78 0.014333 (1 0.003389 (22)
14 0.014222 (10) 0.002112(10) 79 0.016111 {16) 0.004429 (33)
15 0.016889 (19) 0.002656 (14) 80 0.032778 (93) 0.014423 (105)
16 0.019111 (25) - 0.003362 (21) 85 0.032222 (93) 0.010834 (8Y)
18 0.014000 (09 0.001984 (09) 86 0.025889 (35) 0.007027 (56)
21 0.030333 (82) 0.011861 (94) 87 0.023000 (42) 0.005632 (40)
27 0.019000 (24) 0.003565 24 88 0.028333 (69) 0.009339 (78)
28 0.012333 (07 0.001649 (G6) 89 0.029333 (76) 0.010328 (85)
29 0.024444 (48) 0.005962 (40) 90 (.032000(91) 0.012784 (98)
30 0033222 (100) 0.010399 (86) 91 0.024000 (47) 0.007894 (66)
3] 0.010111 (05) 0.001085 (04) 92 0.020778 (31) 0.005919 (45)
32 0.020778 (32) 0.003971 (28) 93 0.014556 (12) 0.002949(17)
33 0.018000 (23) 0.003058 (18) 04 0.026889 (61) 0.007102 (87)
34 0.016000(15) 0.002492 (12} 95 0.024667 (4%) 0.005910 (44)
35 0.022444 (39) 0.005020 (36) 96 0.027313 (65) 0.007722 (63)
37 0.033222 (99 0.013029 (101) 97 0.030222 (81) 0.0009464 (79}
42 0.029111 (72) 0.008220 (68) 08 0.042222(114) 0.019186(111)
43 0.020222 (30) 0.003908 (26) 99 0.037889 (109) 0.016091 (109)
44 0.019222 (26) 0.003657 (25) 100 0.030444 (83) 0.0106006 (88)
45 0.008333 (02) 0.000907 (03) 101 0.028333(69) 0.009809 (83)
46 0.029222(75) 0.008171 (67) 102 0.032222 (93) 0.013624 (102)
47 0.031333 (90) 0.009528 (81) 103 0.040667 (113) 0.023158 (115)
48 0.030778 (306) 0.00962! (82) 104 0.017111 20) 0.003248 (20)
49 0.026556 (060) 0.007443 (60) 105 0.032778 (95) O.015191 (107)
50 (.036333(107) 0.014355 (104) 106 0.032778 (95) 0011215 (21)
51 0.037000 (108) 0.015035 (106) 107 0.026222 (59) 0.007010 (55)
52 0.033889 (102) 0.012233 (95) 108 0.029333 (7¢0) 0.008790(73)
57 0.021556 (35) 0.004528 (34) 109 0.034556 (105) 0.012509 (96)
58 0.020778 (32) 0.004291 (31) 110 0.G15889 (13) 0.002389(11)
59 0.026000 (58) 0.006602 (50) 111 0.016667 (18) 0.002718(15)
61 0.016222(17D 0.002620 (13} 112 0.032889 (98) 0.012804 (99)
62 0.031000 (87) 0.010053 (84) (13 0.031111(88) 0.011826 (93)
63 0.012444 (08) 0.001654 (07) 114 CON7333 (22 0.003168 (19)
64 0.005889 (01) 0.000687 (01) 115 0034333 (104)  0.015895 (108)
65 0.011222 (06) 0.001841 (68) 116 0030111 (111 0.020412 (113)
66 0.031222 (89) 0.011441 (92) 17 0.029778 (79) 0.008926 (74)
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Table 5.5 (contn’d)
Test  AD (rank) SSD (rank) Test - AD (rank) SSD (rank)
number number

118 0.035111 (106) 0.012738(9N 137 0.030667 (84) 0.009486 (80)
119 0.023313 (44) 0.005276 (37) 138 0.032000 (91 Q011186 (90)
120 0038889 (110) 0.016838 (110) 139 (.027000 (62) 0.006897 (52)
121 0.0276467 (66) 0.007745 (64) 140 0.020111(27) 0.003965 (27)
122 4025000 (50) 0.006439 (48) 143 0.023222 (43) 0.005287 (38)
123 {1.025222 (52) 0.006295 (47) 144 0.030667 (84) 0.010510(87
124 0.021889 (36) 0.004865 (35) 145 0.029667 (78) 0.009269 (7N
125 0.039667 (112) 0.020077(112) 146 0.015889 (14) 0.002867 (16)
126 0.027222 (64) 0.008343 (71} 147 0017111 (21) 0.003498 (23)
127 0.023778 (46) 0.005742 (41) 150 0.020778 (79) 0.009214 (76)
128 0.034222 (103) 0.01293 (160) i31 0.027000 (62) 0.006973 (54)
129 0.025889 (55) 0.007813 (65) 152 0.029000 (71) 0.008325 (69}
130 0.022000 (38) 0.005820 (43) 156 0.020111 (28) 0.004103 (29)
131 0.025889 (55) 0.007629 (61) 166 0.025778 (54) 0.006792 (51)
132 0.020222 (29) 0.004166 (30) 169 0.022889 (41) 0.006512 (49)
i35 0.021889 (36) 0.005547 (39) 170 0.025000 (50 0.000925 (53}
136 0029111 (72) 0.008336 (70) Curtest  0.023778 0.005800




Chapter 6

Testing for Heteroscedastic Disturbances in the Linear
Regression Model

6.1 Introduction

In Chapter 4 and Chapter 5, we applied our new test procedure to testing for MA(1)
disturbances against AR(1) disturbances in the linear regression model. For this
particular testing problem, both the null hypothesis and the alternative hypothesis
parameter space were restricted to a positive unit interval. In this case, we saw that the
new test procedure perfonms well for m=3 with respect to size conditions as well as
having good power properties especially when the sample size is small. This goc.'
performance may be because the parameter spaces under both hypotheses are restricted

to the unit interval. An interesting question is what is the test performance for other

types of parameter spaces?

We do not know how well our test performs when both the null and the alternative
hypothesis parameter space ate extended to an infinite interval. In this chapter our aim 1S
to investigate the performance of our new test for a testing problem which involves both
the null hypothesis and the alternative hypothesis parameter spaces being a one-sided
infinite interval, How well will our test perform in this case? How should i be chosen?

These are some of the questions we are looking to answer in this chapter.
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We will address these questions by considering the application of the test procedure to

testing for heteroscedastic disturbances in the linear regression model.

The plan of this chapter is as follows. Section 6.2, describes and outlines the model, the
testing problem and the test procedure for testing heteroscedastic disturbances in the
linear regression model. A Monte Carlo experiment which aims to explore the properties
of the test procedure, is outlined in Section 6.3. The design of experiment, size and
power properties of the test when ;= | and ,; =9 are reported in Section 6.3.1, 6.3.2,
6.3.3, respectively. Also, test sizes controlled at 3 .- g when ,, =1 are discussed in
Section 6.4, and properties of this test procedure and resuits are reported in Section

6.4.1, 6.4.2, respectively. Section 6.5 contains some concluding remarks.

6.2  The model, testing problem and the test procedure

Consider the linear regression model with heteroscedastic disturbances

y=Xf+v, (6.1)

where 5, x, p are as defined by (3.10) and , is x| disturbance vector whose

components are generaied as follows

v, =zl +e, t=12,..,n (6.2)

where ; 1s a non-stochastic variable (which could be a regressor), e ~ IN(0, o*)»
4, ~ IN(0, A,0%), A,=0?fo? and 4 is independent of e,- Then the properties of ,,
are that it is normally distributed with g(p)=0, var(v,)=0(1+ A,z}), and

cov(v,, 0,) =0, 1 s, that is, < N(0, €)X A,))> where €2y is the j; x , diagonal
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o
l‘" matrix with diagonal elements (14 4,z’). An example of this kind of model is the ) where (1) is the j x  diagonal matrix with diagonal elements (1 4.[4/(1- 1)]z?) and

Hildreth-Houck (Hildreth and Houck (1968)) single random coefficient model. £(r) 1s the , x ,; diagonal matrix with diagonal elements (; +{z/(1- D)w?)-

X ~ An alternative hypothesis could be that v distributed as v~ N(0, 0°Z(7,)), where For this testing problem, g and 42, are nuisance parameters. Their influence can be

R T

il

Z(r,) is the nxn diagonal matrix with diagonal elements (I+7r,w’), where w, is eliminated through the standard invariance arguments because (6.1), {6.5) and (6.6) are

A,
EV i

i

another non-stochastic variable which may also be regressor. invariant to transformations of the form (3.13). Note that the linear regression models

(3.10) and (6.1) are the same except for the disturbance term.
Our interest is in testing

'
‘ ' Now ..cing the results of (3.16) and (3.17), our problem of testing (6.5) against (6.6) in
H,; v~ N0, 0’Q1,), 0<,<w (6.3) 2
i the context of (6.1), becomes one of testing
£
against -
1 i 2h e 2] sy 4o FAYFA) Y
o Hy: (v, A= = T(pf2)a X x| Mo | x ey x| ("—(—_Z—}-)-] : 5
' H;v~N(0, 0%°%(z,)), 0<r1,<e0, (6.4) | i
3
: : : - 3 0<A<l, (6.7)
in the context of the linear regression model (6.1). In this testing problem, both the 4, %5
and 7, parameters, lic between 0 and «. For the simplicity of our calculations, we :f_ against
transform the parameters 4, and ¢z, to 4 and 7 by the functions 1= 4,/(1+2,) and ‘(s
. oy AV P g et w2 (2R 3
r=1,/(1+7,), respectively. The transformed ranges of 4 and 7 now become (0, 1}. H:h (v, 7)= > C(p/2)n™" | XX] " [2(2) I"‘ Z(7) X' 'z x g
Using these transformations our testing problem now becomes one of testing |
O<z<l, (6.8) '{
A
3
H,: v~ N0, a*Q(1)), 0gA<l (6.5) -
where =( f) }):lf’ , P isany py, wmatrix suchthat prp= s and ppr = Isp=n—k>
zz}"
against ;
z is the OLE residual vector from (6.1) and 7(7) is the OLS residual vector from the !
H,: v~ N(0, 0°Z(r)), 0<r<l, (6.6) regression defined in (3.15), with A(2)=Q(1) and also, () denotes 3(r) with t

ALY = Z(z). o
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We observe that through the invariance arguments, we have again restricted the
respective parameter spaces to ®={1:0<A <1} and ¢ ={r:0<7<1}. Now using
equation (4.7), the test which maxXimizes average power subject to conirolling average
~size over the entire null hypothesis parameter space, i.e., m=1, can be based on the

critical region of the form

N A=Y ~rf2
[ x ™ x l_m(—-‘"—‘ (rij(r)) p(r)dr

-~ . -2
,x"n(z,)-‘x|"’2(5_(:‘%r‘f_(ﬁ) PAYIA

e

>c. ju' ("

or, 2z ~>ec (6.9)

S (Y Y «
[y oy x| ‘(f—w-—-_—-(’” : (’1)] dA

'
22

1 7 [3~4 -pf2
o (20

where p(r) and p(A) are the weighting functions for v and 1 respectively, which are

uniform distributions and ¢, is the critical value calculated to control average size of the

test. In inequality (6.9), p(¢) and p(1) have been replaced by uniform density

functions.

If wo enote the critical region given by (6.9) as w(c,), then using equation (3.19),

finding ¢, involves solving
t |
N CO 6.10
L[mjuho(v, A)dAdy J‘UL(r“’ho(v, AdvdA = a (6.10)

for ¢, , where « is the desired average size of the test.
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Equations (6.9) and (6.10) involve integrals, which do not have any analytical solutions.
Therefore, as discussed in Chapter 3, we can approximate the integrals in (6.9) by

numerical integrals so that (6.9) can be approximated by (see Conte, 1965, p.120)

t)

_I;z( I(r,YI(r)) TP'Q
/s 6.11)

_t{z(?(ﬂj)' (/1_’.))_”2 -

ilz(fﬂlm

=

XE(r)' X

9]

-
“~

]

r

i|§z(/1l,.)]""’2]xnu_i)-' X

- Fa
o -

where 7,=4,=2j-D/Qqg) j=1,2,...,q9

As we mentioned in Chapter 3, a potential problem is with controlling the average size
of the test. Some sizes can be undesirably large in some parts of the null hypothesis
parameter space while other sizes can be smaller than the desired size in some other
parts of the null hypothesis parameter space. We conducted some simulation

experiments, for ,,; = | and ), =2 for testing {6.7) against (6.8) in the context of (6.1).

A detailed discussion of the test procedures, the size and the power properties of the test

with ,,; =1 and ,,; = 2, 1s given in the following section.

6.3 Monte Carlo experiment

In this section, we report a Monte Carlo experiment to investigate the behaviour of the
small sample size and power properties of the test in the context of testing
heteroscedastic disturbances in the linear regression model, when both the null and
alternative hypothesis parameter spaces are one-sided infinite. Also, an aim is to find the

appropriate choice of , for which the size conditions are satisfied.
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6.3.1 Design of experiment

In the simulation experiments, two thousands replicaiions were used io investigate the
small sample size and power properties of the test. We calculatud the exact five percent
critical values. For this testing probism, we used the X1, X2, X3, X4 and X5 (defined
in Chapter 4) design matrices which cover a variety of economic phenomena. Along
with these design matrices two Gifferent sets of non-stochastic variables were used. The
first set of non-stochastic variables take the valves z, =t/ under H, and
wy, =(n+1~6)/n, t=1,2,..,n under 5, ie., w takes the reverse values of z. The
second set of non-stochastic variz sles take the values z,, =¢/n und>r H, and w, =0, if
t<nf2, or 1, if t>nf2, =17, n under H,. We used these two different scis of
non-stochastic vanables o see the variation in calculated sizes and powers of the test
statistic. For both sets of non-stochastic variables, data were generated by vandomly

drawing from the null hypothesis parameter space in order %o caiculate the critical values

(¢, ) of the test statistic.

For the testing problem under consideration, the proposed new test under A, and /, is
invariant with respect to the nuisance parameters, # and ¢, and we have chosen §=0

and o =1 for all simulation experiments.

The first step involved deciding on the value of i for which the size of thc test is
approximately cuntrolled. We carried out some simulation experiments to choose the
value of /m and conducted some experimenis for m=1 and m=2 for the above
mentioned two sets of non-stochastic variabics. In the simulation experiment when

m =1, we inde. ‘ind regions of larger sizes than average size and regions of iower sizes

Testing for Heteroscedastic Disturbances in the Lincar Regression Mode! 143

than average size under the null hypothesis. For this reason, we divided the null
hypothesis parameter space @ into two disjoint intervals (,; = 2), detesmined by the
boundary where the size in the case of ;) = | as a function of 3 crosses 4 = g5 for the
test givea by (6.9). In this case we see that the sizes of the resultant test are reasonably
acceptable. Thus for ,, =1, we see that the size performances of the test is not that good

while for ; = 2, overall the test performs well. Detailed discussions are given below.

6.3.2 Size and power properties of the test with m =1

As mentioned in the previous section, two different sets of non-stochastic variables were
used to calculate the sizes and powers of the test. For both sets of non-stochastic
variables, 4 is diawn randomly from (6.5), the nuli hypothesis parameter space (for data

generation purposes), in order to calculate the critical values . for ail design matrices.

Thus based on (6.9} with ,, =1, we calculated the critical values which control the
average size of the test over the entire null hypothesis parameter space. The calculated
critical values are presented in Table 6.1.

1

For '3 and W, » using the critical values presented in Table 6.1 through equation (6.11),
we calculated the sizes of the test for different values of 5 namely, 3 0.0, 0.1, 0.2,
0.3,04, 0.5, 0.6, 0.7, 0.8 and 0.9 under 7 . The estimated sizes are presented in Table |
6.2. For two thousand replications, estimated sizes outside the rangs {0.037, 0.063] are
significantly different from the five percent level at the 0.01 level. The values denoted
by a ‘star’ in Table 6.2 are significantly different from five percent at the .01 level.
Fiom this table our interest is to see the behaviour of the estimated sizes of the test as we

are controlling the average size at 0.05. We sce that some estimated sizes are far from
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the average size, i.e., significantly different from the five percent level. A few of them
are smaller than the average size (« =0.05) while some others are undesirably larger
than the average size. While we are controlling the average size of the test over the
entire null hypothesis parameter space, we do not seem to be successfully controlling the

probabilities of Type 1 errors across the parameter space under H,. This led us to

consider m=2 for z, and w,,.

For z,, and w,, we also calculated the powers of the test by using equation (6.11) for

different values of 7, namely, r=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 under H,

and the estimated powers are presented in Table 6.3. From this table we see that the
powers of the test gradually increase when r increases both for small and large sample
sizes for all design matrices. We also see that when the sample size is large, the powers
of the test are much higher (more than double for the points r=0.3, 0.4, 0.5, 0.6, 0.7,

0.8 and 0.9) compared to those for the smaller sample size.

Similarly, for z,, and 3, taking the critical values calculated for this set of non-
stochastic variables presented in Table 6.1, through equation (6.11), we calculated the
sizes of the test for different values of A under H,. Also. we calculated the powers of
the test for different values of 7 under . The estimated sizes are presented in Table
6.4 and the powers are presented in Table 6.5. From Table 6.4 we sce that there is a large
number of estimated sizes that are far from the average size. Only a few sizes are smaller
than the average size while a number of szes are undesirably larger than the average
size. This means our controlled sizes are not within an acceptable range. This motivated

us to consider m=2 for z,, and w,,.
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From Table 6.5 we see that the powers of the test slowly increase as ; increases for all
design matrices. We observe that when the sample size is large, the powers of the test
are higher compared to those of the smaller sample size. For both sets of non-stochastic
variables, we also observe that the powers of the test show a very similar pattemn
aithough the powers for z, and w, are shightly higher than the corresponding powers

for z, and ,, . This may be due to the fact that for ; and y,, , the calculated sizes of

b}

the test for the starting boundary points 4 = 0.0, 0.1, 0.2 are higher compared to the
corresponding sizes for z, and Wy, For z, and W, the calculated sizes for the points
1 =00, 0.1, 0.2 are above the average size while for > and y, , the sizes are below the

average size.

In the following section, we discuss the size and power properties of the test with ,, — 2

for the two sets of non-stochastic variables.

5.3.3 Size and power properties of the test with m = 2

We desire to control the average estimated sizes of the test over suitable regions under
H, - Bearing this in mind, for z, and w,,» and based on the estimated sizes presented in
Table 6.2 with ,, =, we divided the null hypothesis parameter space into two disjoint
intervals, One subregion ®) is made up of the parameter values which have larger
than average size while the other one ©,) comprises those parameter values which

resulted in smaller than average size under the null hypothesis for the ,; = | version of
the test. When we control average size over these two regions, we are expecting that the
estimated sizes will come very close to the average size. The boundary point of the two

disjoint intervals is determined by the high size/low size technique. For ; and , ,
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ranges of the two disjoint intervals and the corresponding values of j. where
A,=7,=2i-/Q2q), j=12,..,q, ¢=50, for all design matrices are presented in

Table 6.6.

Thus for m =2, equation {3.7) gives the resultant test that maximizes average power
subject to controlling two size conditions and involves a critical region of the form

(6.11) which now becomes

'
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where &, and k, are the critical values and g, is determined by the boundary of the two

subregions.

If we denote the critical region given by (6.12) as w(k,, k,) and if @, = {4: 2, <A< A,}
and @, = {4, <14}, where A, =0, ;=1 and A, is the chosen bonndary of

subregions of ©, then finding %, and k, involves solving
ah= = 6.13
J@f '[""("‘l- kz)hﬂ(vl A)d‘ di=a s 1 19 29 ( )

jointly for k, and k,. In equation (6.12), ¢, is determined by rounding (4,¢ +(1/2)),

down to the nearest integer.
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Now for z, and W, » the critical values, k, and Ky for all design matrices were

calculated via trial and error, so that the two size conditions are simultaneoudy satisfied.
These critical calculated values are presented in Table 6.7, From this table, we see that

k, values are far larger than k, values for all cases. The values of k, are always positive
while , always takes small negative values. From the critical values, we also observe
that k, always increases as the sample size increases, the one exception being for y3.
On the other hand, , decreases for y1 x2, x5 and increases for y4, xys when the

sampie size increases,

Using the critical values presented in Table 6.7, we calculated the sizes of the test by

using (6.12) for different values of 4 under g and calculated the powers of the test for
different values of ; under g7 . The calculated sizes are presented in Table 6.8 and the

calcnlated powers are presented in Table 6.9.

From Table 6.8 we see that there are a few sizes significantly different from five percent
at the 0.01 significance level. There are only three sizes that are much larger than the
average size when , = 50, these are at or near the first boundary point (1 = g¢ for ){;2

and 3 =00, 0.1 for y3) of the null hypothesis parameter space. Overall we find that
the sizes of the test are very acceptable, with p; -3, for 7 and 4y, when the sample

size 1s small.

From Table 6.9 we see that the powers of the test increase as ; increases for all design
matrices. Comparing the powers presented in Table 6.3 for ,; =1 when the estimated

sizes are not controlled for ; and ,,, , with those powers of the test for =2, we see
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that the powers of the test for m=2 are aiways lower than the powers of the test for
m =1, The main reason may be because some of the calculated sizes of the test with
m=1 are higher compared to those for m =2, particularly where the two parameter

spaces meetat 4 =7r=0,

Similarly, for z,, and w,,, based on the estimated sizes presented in Table 6.4 form =1,
we divided the null hypothesis parameter space into two disjoint intervals. One
subregion (®,) is a region which is made up of the parameter values that have smaller

than the average size and the other one (®,) is the region of values with larger than the
average sizes under the null hypothesis parameter space for the m =1 version of the test.

The boundary point of the two disjoint intervals is determined by the same technique
mentioned above, i.c., the high size/low size technique. For z,, and 1w, , ranges of the
two disjoint intervals and the corresponding values of j, where 4, =7, =(2j~1)/(2¢),

j=1,2,..,q, ¢ =50 forall design matrices are presented in Table 6.10.

Thus the test with m =2, involves a critical region given by (€ 12) and using (6.12) we
calculated the critical values &, and k,, via trial and error. The calculated critical values,
k, and k,, for z,, and w,,, are presented in Toble 6.11. From this table we see that k,
values are far larger than %, values for all design matrices. The values of £, are always

positive numbers whereas k, takes positive as well as small negative values.

For z,, and w,,, using the critical values presented in Table 6.11, by equation (6.12), we
calculated the sizes of the test for different values of A under H; and calculaied the
powers of the test for different values of 7 under H, . The calculated sizes are presented

in Table 6.12 and the powers are presented in Table 6. 13.
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From Table 6.12 we see that all the estimated sizes of the test fall within the rejection
probability range [0.037, 0.063) are not significantly different from five percent at the
0.01 level for all design matrices. It is pleasing to see that the sizes of the test are very

acceptable for all design matrices, when ,, -2 for z,, and yp both for small and large

sample sizes.

Also, from Table 6.13 we find that the powers of the test with ,, - 2 increase as ,
ncreases for all design matrices. It can be observed that the powers of the test with
m =1 are slightly higher than the powers of the test with ,,, = 2. This is mainly because
when ,, = 2, we controlled the sizes of the test to the average size which makes the
powers a bit lower than the powers of the test when the sizes are not so well controlled,

that s, ,;=1-

Overall we can say that the size and power properties of the test are reasonably
acceptable for testing for heteroscedastic disturbances in the linear regression model for

both > and

’l:

, and 2, and W, » when p,=2.

6.4  Test sizes controlled at 1 =0 with m=1

We conducted a further simulation experiment to investigate the behaviour of the small
sample size and power properties of the test when the test sizes are controlled at 3 - ¢

under the null hypothesis parameter space for z,, and y, , when py - 1. We carried out
this simulation experiment to see how well our test precedure works in this case. It must
be noted that in this case the resultant test is no longer optimal but itis of interest to see

how much power is lost by using this slightly different test procedure.
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6.4.1 Properties of the test when sizes controlled at A = 0 with m=1

In Section 6.3.3, we abserved that the size and power properties of the test form =2 are
acceptable for both =, and w,,, and =, and w, . However, a lot of computational time
was used to find the critical values &, and %, for which the size conditions are satisfied.
Also, for z,, and w,,, when m =1 we see from Table 6.2 that sizes of the test decrease as
A increase. Then it is very easy to control the maximum size of our test which always
(at least in our experiments) occurs at A = 0. For this case, in order to calculate the sizes
and powers of the test, we calculated the critical value (c, ) for all design matrices based

on (6.9), with m =1, where the data are simulated by taking A =0. The calculated

critical values are presented 1n Table 6.14.

6.4.2 Results

Using the critical values presented in Table 6.14, we calculated the sizes of the test
throngh equation (6.11) for different values of A under H, and calculated the powers of
the test for different values of z under H, . The calculated sizes are presentea in Table

6.15 and the powers are presented in Table 6.16.

From Table 6.15 we see that all the estimated sizes of the test for all design matrices are
lowes or equal to 0.05. This indicates that the size performance of the test is very
satisfactory for all design matrices, when sizes of the test are controlled at A=0 with
m=1, for z, end w,, both for the smaller and the Jarger sample sizes. From this point
of view, we can say that without spending a lot of computational time to calculate the

sizes of the test which control average size over different regions under H,, we can get
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the good results within a very short time by following the above-mentioned test

procedure,

From Table 6.16 we see that the powers of the test increase as 7 increases for all design
matrices. For z, and W, > comparing the powers of the test presented in Table 6.9 for
m =2 when the estimated sizes are controlled, to those powers of the test for ;=

controlled at 3 = g, we see that when the sample size 18 small, the powers of the test for
m=1 controlled at 3 = g are always higher than the powers of the test for ,;=2. On
average, there is zero to 3.0 percentage points increase in terms of power improvement
for all design matrices. Also for larger sample sizes, we see that the powers of the test
for ,; =1 controlled at 3 — ¢ are lower than the powers of the test for ,, =2 with an on
average 0.3 to 6.2 percentage points decrease. Cne reason for this case may be the fact
that for the starting boundary point 3 = 0.0, the calculated sizes of the test for ,; = 2 are
always higher (above the average sizc) than the calculated sizes of the test for ,,; =

with size controlled at ; = ¢ where all estimated sizes are lower than or equal tc.:) 0.05.
There is one case, namely, the y4 with ,, = 30, where the power of the test coincides
for the end boundary point { 1 = 9.9 ). In general we can see that when the sample size is
small, the size and power performance of the test for ,, — | when sizes are controlled at
A=¢ for z and ,, is very competitive and the test may be recommended. But when
the sample size is large, it may be worthwhile for using the new procedure with ;, = 2

with respect to size and power properties.
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6.5 Concluding remarks

In this chapter we bave applied the new test approach to testing for heteroscedastic
disturbances in the linear regression model. This testing problem is of interest because
both the null and the alternative hypothesis parameter spaces are one-sided infinite
intervals. For this testing problem we used two sets of non-stochastic variables and we
got different resuits for these two different sets of variables. For both sets of non-
stochastic variables when 21=2, the test performs well with respect to size conditious.
The power properties of the test are well behaved because we are testing for
heteroscedastic disturbances. Further results for z, and w, when m=1 and the test
sizes are controlled at A =0 indicates that for small sample size, the test performance is
fairly good but there is a clear loss of power when we used this test procedure for the
larger sample size. It seems that extra computation for m= 2 is rewarded in terms of
power. From this viewpoint we conclude that the new test approach can work well for
testing problems where both the nuil and alternative hypothesis parameter spaces are
one-sided infinite intervals. We are able to work on this type of testing problem because

of the parameter transformation used to transform the parameter spaces to finite

intervals.
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Critical values (¢, ) of the test for two different sets of non-stochastic regressor values
for all design matrices when ,,, — |, at the five percent level,

Design matrix  Sample Size

Critical values (. )

(n)
For z and For z, and 4,
Xi(nx3) 20 4.1071 1.6210
60 4.0562 1.5852
X2(nx3) 20 44477 1.5359
60 42111 1.63%1
X3(nx5) 20 4.3157 1.5522
60 4.2352 1.5986
X4(nx3) 20 4.2945 1.5287
30 31.8365 1.7021
X5(nx3) 20 4.4058 1.5145
60 4.1852 1.6370
Table 6.2

Calculated sizes of the test when g . z, =t/n,0s A<l is tested against
O< 1<l for =1 at the five percent level.

H:w,=m+1~-0fu, 1=1,2,..,n,

Parameter Sizes
values
X1 X2 X3 X4 X5
A n=20 60 20 60 20 60 20 30 20 60

0.0 0.079*  0.134* 0.079* {0028 0.079%  0.127*  0.075* 0127 0.075%  (0.127*
0.1 0.069* 0.107* 0.068* 0.105* 0.070* Q107 0.065* 0.113* 0065  0.106*
0.2 0.061 0.090*  0.058 0.084*  0.064* 0.088* 0.055 0.106*  0.060 0.084*
0.3 0.056 0.072*  0.056 0.062 0.053 0.067* 0.049 0.087* 0.052 0.065*
0.4 (.048 0.054 0.048 0.053 0.043 0.053 0.044 0.071* 0.046 (.053
0.5 0.044 0.042 0.041 0.041 0.040 0.048 0.037 0.065* 0.040 0.041
0.6 0.041 0.034*  0.038 0.032*% 0036 0.041 0.034*  0.056 0.035*  0.032*
0.7 0.035*  0.025*  0.034* 0024  0.020*  0.033* 0.030* 0.051 0031*  0.026*
0.8 0.032*  0.019¢*  0.031* 0021 0026 0029 0.026* 0.041 0.027¢«  0.020*
0.9 0.027* 0.014*  0.025* 0.018* 0.024* 0.020 0.023* 0.036* 0.023* (0.015*

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 6.3

Calculated powers of the test when H,: z, =¢/n, 0< A <1 is tesied against
H:w,=(m+1-)/n, t=1,2,...,n, O<z<l,for m=1 at the five percent level.

Table 0.5

Calculated powers of the test when f . z, =1fn,0< A< is tested against
Hiw, =0, ¢<nf2,or Lifys 2, p=1,2, ., 0, 0<r<1,for = at the five

Parameter Powers percent level,
values _
Xl X2 A3 X4 X5 Parameter Powers
n=20 6 20 60 20 6 20 30 20 60 values
g - X1 X2 X3 X4 X5
r n=20 60 20 60 20 60 20 30 20 60
0.1 0.051 0.062 0.059 0.002 0.059 0.057 0.066 0.046 0.058 0.059
0.2 0.059 (.088 0.0M 0.079 0.070 0.082 0.079 0.054 0.072 0.081
03 0070 0117 0080  0.106 0081 0112 0091 0061 0086  0.106
04 0.084 0.146 0.099 0.132 0.091 0.140 0.102 0.077 0.095 0.134
05 0.097 0179  Qi10  0.164 0102 0166 0123 0093 0107  0.174
0.6 0.109 0.212 0.127 (1197 0.112 0.195 0.136 0.105 0.121 0.204
0.7 0119 0242 0141 0228 0125 0227  0.51 0123 0.136 0232
0.8 0.i31 0.279 0.154 0.259 0.134 0.257 0.162 0.140 0.153 0.265
0.9 0.143 0310 0171 0294  0.13% 0287 0177 0158  0.166  0.294
Table 6.4
Table 6.6

Calculated sizes of the test when Hy: z,, =1/n, 0< A <1 is tested against
H:w, =0, ift<uf2,0or],ift>nf2,1=1,2,...,n 0<r<l,form=1 at the five
percent level.

Ranges of the two disjoint intervals and the corresponding values of j» Where
A=1,=(2j-1/(2q9)> j=1,2, ... q> g=50,a00 z =t/ns w, =(n+1=0)/n>

(=12,..,n:
Parameter Sizes
values Design matrix ~ Sample Size Subregions
X1 X2 X3 X4 XS (1)
= 0 0 60 O : © :
A n=20 60 20 60 20 60 20 3 2 (larger than average size for (smaller than average size for
0.0 0033* 0040 0045 0040 0053  0.034* 0051 0037 0050  0.036* m=1 m=1)
0.1 0.036%¥  0.046 0.048 0.046 0.053 0.042 0.055 0.039 0.052 (.040 X1(nx3 20 0< A <038(/=].2 19 038< A < 1( j=20.21 50
0.2 0.041 0.051 0.051 0.049 0.056 0.046 0.061 0.042 0.054 0.048 ( ) 60 = : (-{ 2 19) : (-’. » 25 ... 50)
03 0.047 0.054 0.055 0.053 0.058 0.050 0.0063 0.044 0.057 0.051 NS A <043 (7=1,2,..,22) 043< A <1 (J=23,24,...,50)
0.4 0.050 0.058 0.058 0.057 0.060 0.054 0.065* 0.045 0.060 0.056 ) .
0.5 0052 0062 0061 0060 0063 0057  0067* 0048 0060  0.060 X2(nx3) 20 0SA<038(5=1,2,...,19) 038< A <1(j=20,21,...,50)
0.6 0.053  0066* 0.061  0.064* 0065* 0061  0.070* 0.049  0067* 0.064* 60 0SA<042(/=1,2.....21) 042< A <1(j=22,23,...,50)
0.7 0.057 0.070*  0.065* 0067 0.067* 0065  0.074*  0.050 0.069*  0,0653*
0.8 0.059  0.076* 0.066* 0.068* 0.060* 0072¢* 0077* 0051  0072* 0.068* X3(nx5) 20 0€A<033(j=1,2,... 17) 033< A< 1(j=18,19, ..., 50)
0.9 0.059 0.079*  0.070* 0.072* 0072* 0074* 0.080* 0.053 0.073*  0.071* 60 0< A< 046 (j=1,2,....23) 046< A <1 (j=24,25, ..., 50)
* denotes value significantly different from the five percent level at the 0.01 jevel. Xa(nx3) 20 0<A<023(/=1,2,....12) 023< A <1(j=13.14, ..., 50)
30 0S A<0T(j=1,2,...,36) 0.71< A <1(j=37,38, ..., 50)
20 o e
X5(nx3) 0SA<033(5=1,2,...17) 033< A <1 (j=18,19,...,50)

60 0SA<042(j5=1,2,...,21) 042< A <1(j=22,23,...,50)
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Table 6.9

Calculated powers of the test when H,:z,=t/n,0< A< Is tested against
Hi:w,=(m+1=-0)/n, t=1,2,...,n O<r<l,for ;=2 atthe five percent level.

Table 6.7

¥

_ Final critical values £, and &, when z,, =¢/n and w,, =(n-+1—-)}/n, t=12, ..., 4
' for m =2 at the five percent level.

Design matrix Sample size (n) Critical values Parameter Powers
values
k, k, X1 A2 A3 X4 X5

X1(nx3}) 20 3.8946 -0.825 T =20 60 20 60 20 60 20 30 20 60
60 3.9769 -0.71

20 15142 070 0.1 0.046 0078 0066 0090 0047 0115 0048 0070 0059 008

X2(nx3)- 60 3,537 054 0.2 0.054 0102 0070  0.011 0052 0437 0049 0081 0066  0.099

0.3 0.058 0117 0.077 0.131 0.057 0.165 0.056 0.096 0.074 0.121

X3(nx5) 20 3.9040 -0.92 0.4 0.066 0.143 0.087 0.160 0.064 0.194 0.060 0.113 0.082 0.144

Hx 60 3.0458 -0.50 0.5 0.072 01472 0097 0491 0073 0223 0069 0118  0.086  0.179

20 3.3866 -0.74 0.6 0.077 0.200 0.104 0.220 0.079 0.253 0.078 0.130 0.095 0.208

X4(nx3) 10 5.4805 -1.50 0.7 0.084 0229 0111 0252 0087 0284 0084 0142 0105 0240

’ 0.8 0.089 0.263 0.119 0.275 0.093 0.3n1 0.090 0.154 G.1i3 0.263

X5 3 20 3.2769 -0.60 0.9 0.100 0.288 0.133 0.306 0.094 0.337 0.098 0.164 0.122 0.286
(% 3) 60 3.9008 -0.62

Table 6.10
Ranges of the two disjoint intervals and the corresponding values of j» where
Table 6.8

A, =1,=(2j-1)/(2¢)> j=1,2,....,4> =50 and z, =¢/n> w, =0, ffgp/2, 00
Calculated sizes of the test when H: z, =¢/n, 0< A <1 is tested against Lif f>nf2s £=1,2, 0 n-

H:ow,=@m+1-0fn, t=12,..,n0<7<1,for m=2 atthe five percent level.

—

Design matrix ~ Sample Size Subregions
Parameter Sizes (n)
values 0, _ 0,
X1 X2 X3 X4 X5 (smaller than average size for  (larger than average size for
m=1} m=1)
A n=320 60 20 60 20 60 20 30 20 60 N
X1y x3) 20 0SAS020(/=1,2,....10) 0.20< A< (j=1112,..,50)
0.0 0.041 0063  0.058  0.065%* 0044  0.089* 0043 0059 0052 0062 60 0<A<0.18(/=1,2,...,9) 0.18< A <1 (=10, 1, ..., 50)
0.1 0.036* 0043 0054 0053 0043  0074* 0041  0.052 005}  0.048
0.2 0.035*  0.035* 0.050 0.044 0.042 0.059 0.043 0.044 0.044 0.037 X2(n%3) 20 0€A<017(j=12,..,9 017< A< (j=10,11,..,50)
0.3 0.033* 0.031* 0047  0.036* 0042 0056 0041 0043 0043  0.034* 60 i< . , .
0.4 0.035%  0.031* 0045  0.033* 0044 0052 0043 0044 0039  0.030% 0SA£020(/=1.2,....10) 020< A <t(j=N,12,...,50)
0.5 0.035* 0.035* 0.044  0.035¢ 0044 0050 0044  0.048 0037  0.035* 20 0< 1< . cd<iii=
0.6 0038 0041 0044 0041 0045 0051 0044 0040 0039 0040 X3(nx5) " SAL018(j=12,....9) 018<A<1(j=10.1, ... 50)
0.7 0.042 0046  0.047  0.040 0047 0053 0045 0052 0038  0.044 0L A£020(7=1,2,...,10) 020< A <1 (j=11,12,...,50)
0.8 0.045 0050 0049 0051 0048 0055  0.049  0.055 0041 0.049 ' '
20 - -
0.9 0.048 0057 0047 0055 0052 0057 0049 0060 0043  0.056 X4(nx3) VS A2020(7=1,2,...,10) 020< A <1(f=11,12,....50)
30 0SAL015(j=1,2,..,8) 0AS5< A <1 (J=9.10,...,50)
* denotes value significantly different from the five percent level at the 0.01 level. _ .
0 g y p (\’5(},X3) 20 0S./1£0.20(_}=|.2...-. 10) 0-20(/{<1(J=]l,12, ...,50)

60 0€A2027(j=1,2,...,14) 027< A <1(j=15.16, ..., 50)
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Table 6.13

Calculated powers of the test when Hyz, =t/n,0< <] is tested against

H:w, =0, iftSn/Zs or 1, ift)n/Za t=1,2,...,n O0<r<«l> for , = 2 atthe five
percent level.

Table 6.11

Final critical values % and k, when z,, =¢/n and w, =0, if t<u/2,0r 1, if
t>nf2,¢=1,2, .., n,for m=2 at the five percent level.

Design matrix Sample size (#) Critical values
Parameter Powers
k, k, values
) X1 X2 X3 X4 X5
XHnx3 20 -0.0349 1.60
( ) 60 -0.0060 1.87 T n=20 60 20 60 20 60 20 30 20 60
20 -0.2 )
X2(nx3) 60 S_ 03:; : g; 0.0 0047 0047 0049  0.049  0.05) 0.049 0.047  0.055 0.045 0.040
' 0.1 0.056 0.064 0.055 0.070 0.058 0.059 0.058 0.059 0.055 0.059
X3 5 20 -B.1679 1.84 0.2 0.070 0.077 0.064 0.087 0.065 0.076 0.069 0.065 0.062 0.078
(1 x3) 60 -0.0036 1.90 0.3 0.083 0098 0070 0.109 0071 0093 0079 0071 0069  0.102
20 _0.0085 172 0.4 0.094 0.120 0.078 0.129 0.079 0115 0.090 0.077 0.083 0.130
X4 (u x 3) 30 -0‘2002 2‘ 10 0.5 0.105 0.147 0.086 0.156 0.086 0.134 0.107 0.084 0.092 0.159
’ ’ 0.6 0.113 0.166 0.095 0.180 0.091 0.151 0116 0.091 0.102 0.184
, 3 20 -0.1205 1.76 0.7 0.12] 0.194 0.105 0.203 0.098 0.176 0.127 0.107 0.113 0.216
X 5(" X ) 60 0.2390 1.55 0.8 0.135 0218 0.113 0.232 0.106 0,202 0.134 0117 0.122 0.237
0.9 0.150 0.245 0.123 0.257 0.113 0.225 0.146 0.127 0.132 (.265
Table 6.12
Table 6.14

Calculated sizes of the test when H,: z,, =t /n, 0< A <1 is tested against
H:w, =0, ift<nf2,0r1,if t>nf2,1=1,2,..,0, 0<r<l,for m=2 atthe five
percent level.

Critical values () of the test for all design matrices for ; and , when sizes are
controlled at 3 - g, for ;; = | at the five percent level.

Parameter Sizes 4 Design matrix Sample Size () Critical values (Ca )
values
' X1 X2 X3 X4 X5 X{nx3) 20 5.3663
60 9.0774
/1 n =20 60 20 60 20 60 20 30 20 60 ‘X'z (” % 3) 260 6. 1441 !
60 8.8586
0.0 0.047 0047 0049 0049 0051 0040 0047 0055 0045  0.040 .
0.1 004y 0047 0047 0049 0051 0048 0048 0052  0.046  0.04] g X3(nx3) ég gggig
0.2 6050 0048 0048 0051 0050 0048 0048 0052 0047 0044 :
03 0052 0052 0048 0051 005! 0048 0050 0051 0048  0.048 X4(nx3) 20 51611
0.4 0.052 0052 0049 0054 0050 0.040 0053 0051 0049  0.050 4 30 75320
0.5 0.054 0053  0.048 0054 0051 0051 0054 0049 0051  0.051
0.6 0.055 0053  0.049 0055 0052 0052 0056 0048 0053  0.053 i X3(x3) 20 5.8346
0.7 0057 0054 0050 0056 0052 0052 0057 0049 0053  0.055 60 9.2466
0.3 0.058 0056 0051 0058 0053 0052 0059 0049 0053  0.056

0.9 0.060 0.055 0.052 0.059 0.054 0.054 0.060 0.049 0.054 0.057
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Table 6.15

Calculated sizes of the test when H: z,, = ¢/n, (sizes are controlled at A =0) is
tested against H,: w, =(n+1-1)/n, t=1,2, ..., n, for m=1 at the five percent

level.
Parameter Sizes
values
X1 X2 X3 X4 X5
A n =20 60 20 60 20 60 20 30 20 60
0.0 0.050 0.050 0.050 0.050 {.051 0.051 0.050 0.051 .050 0.051
0.1 0.044 0.035%  0.042 0.038 0.041 0.044 0.044 0.041 0.041 0.035*
0.2 0.037 0.024*  0.036* 0.028* 0.037 0.034*  0.037 0.034*  0.035*  0.026*
0.3 0.033*  0.016% 0.030* 0.021* 0029 00z  0.032*  0.027* 0.028* 0.019*
0.4 0.077* 0.015*  0.026* Q018 0.026* 0.024* 0.028* 0.020% 0.024% 0.014*
0.5 0.025* 0.011*  0.023*  0.015% 0.024¢« 0017  0.022*  0.018% 0.020* 0.012*
0.6 0.020*  0.009* 0.019% 0012* 0.022¢ 0.012*  0.020* 0.015* 0.016* 0.009*
0.7 0.016* 0.008¢ 0.017* 0.009* 0.019* 0.010* 0.017* 0.014* 0.013* 0.007*
0.8 0.014*  0.607* 0014 0007¢ 0.018* 0.009* 0015 00i3* 0012* 0.006*
- 0.9 0.011*  0.005* 0G.013* 0.004* 0.017*  0.000* 0012 0.011* 0.010* 0.004*

* denotes value significantly different from the five percent level at the 0.01 level.

Table 6.16

Calculated powers of the test when H,: z,, = ¢ /n, (sizes are controlled at 4 =0) is
tested against H: w, =(n+1-1)/n, t=1,2, ..., n, for m=1 at the five percent

level.
Parameter Powers
values
X1 X2 X3 X4 XS5

T =720 60 20 60 20 60 20 30 20 60
0.1 0.060 0.071 0.057 0.068 0.062 0.071 0.058 0.062 0.057 0.060
0.2 0.070 0.093 0.063 0.096 0.072 0.093 0.07¢ 0.074 0.065 0.089
0.3 0.075 0.110 0.076 0.114 0.081 0.114 0.081 0.091 0.074 0,108
0.4 0.088 0.135 0.087 0.135 0.089 0.133 0.089 0.108 0.083 0.129
0.5 0.100 0.158 (.096 0.163 0.098 0.159 0.098 0.117 0.094 0.161
0.6 0.107 0.191 0.105 0.193 0.105 0.183 0.112 0.129 0.108 0.190
0.7 0.116 0.218 0.115 0.221 0.113 0.209 0.122 0.140 0.1t4 0.223
0.3 0.127 0.246 0.128 0.250 0.125 0.239 0.133 .153 0.122 0.249
0.9 0.135 0.278 0.137 0.272 0.133 0.204 0.141 0.164 0.138 (0.274
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Chapter 7

Testing Joint MA(1)-MA(4) against Joint AR(1)-AR(4)
Disturbances in the Linear Regression Model

R e B

7.1 Introduction

Through the work of Thomas and Waliis (1971), and Wallis (1972), there is recognition
that guarterly regression models may possess fourth-order autocorrelation because of g
seasonal variation. Wallis (1972) found a rigorous solution to the fourth-order |
autocorrelation testing problem by adapting the approach introduced by Durbin and i

Watson (1950, 1951) for the equivalent first-order testing problem. In fact Wallis (1972)

T s L e e P R R B A LYY P, e et T i SR i i, i ey b o 1

:_"'_-'.'fi and Vinod (1973) separately developed the fourth-order analogue of the Durbin and
}:l" Watson test statistic which is now known as the Wallis test, while Wé:bb (1973)
sugpested the generalisation of the Berenblut and Webb (1973) test. King (1984)
considered the fourth-order analogue of his (1982b) locally optimal bounds test for first
order autoregressive disturbances. King (1989) noted that omitted or unobservable

regressors with seasonal components might well lead to both first-order and fourth-order :

ST T O

effects in the regression disturbances. He argued that the presence of first-order

autocotrelation in a quarterly regression model is a good reason fo suspect additional

autocorrelation of a seasonal nature. This led him to propose atest for simple fourth-
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order autoregressive [AR(4)] disturbances in the presence of first-order autoregressive

[AR(1)] disturbances.

During last three decades, there has been an increased awareness of the moving average
(MA) process in regression disturbances and the MA process has been seen as an
important alternative [see, for example, Nicholls, Pagan and Terrell (1975)]. Perhaps
also because the Durbin-Watson test is approximately LBl against either AR(1) or
MA(1) disturbances in tl;e linear regression model, interest has focused om testing
AR(1) against MA(1) disturbances (see for example, Walker (1967), King (1983a), King
and McAleer (1987), Burke et al. (1990), Smith and Tremayne (1990), Franses (1992),
Silvapuile {1994a, 1994b), Baltagi and Li (1995)). The reverse problem of testing
MA(1) against AR(1) disturbances has been investigated by Silvapulle and King (1991),
Sriananthakumar (2000) and in Chapter 4. Walker (1967} developed Cox tests of AR(p)
processes against MA(g) processes and vice versa. Silvapulle and King (1993)
investigated the construction and application of POl tests of joint AR(1)-AR(4)
disturbances against joint MA(1)-MA(4) disturbances in the linear regression modei and
they illustrated the testing problem with an application to a quarterly model of price
inflation in the United Kingdom during 1947-1970. Thus (he rcverse testing problem is
clearly also of interest. In addition, the increased awareness of MA processes and joint
first-order and seasonal autocorrelation suggests the need for a test of joint MA(l)-
MA(4) disturbances against joint AR(1)-AR(4) disturbances in quarterly regression
models. Joint processes of the multiplicative type such as joint MA(1)-MA(4) and joint
AR(1)-AR(4) processes have been found useful for empirical modelling of quarterly
time series (for example, for joint MA(1}MA(4) processes see Silvapulle and King

(1993); for joint AR(1)-AR(4) processes see Box and Jenkins (1976), Prothero and
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Wallis (1976), Wallis (1977), Burman (1980), Harvey (1981) and Granger and Newbold
(1986)).

The aim of this chapter is to investigate the performance of the new test procedure
introduced in Chapter 3, by applying it to the problem of testing joint MA(1)-MA(4)
disturbances against joint AR(1)-AR(4) disturbances in the linear regression model. As
our test procedure works well for the testing problem of MA(1) disturbances against
AR(1) disturbances; and testing for heteroscedastic disturbances in the linear regression
model, we now investigate how well it extends to testing two-dimensional parameter
spaces under the null and alternative. Also, the aim of this chapter is to explore the
properties of our testing procedure for multiplicative type models involving two-
parameters. Particular issues are to see if the test procedure canbe easily generalised to

two-parameters and to see what an appropriate choice of m is in this case.

The plan of this chapter is as follows. Section 7.2 introduces the testing problem and the
form of the test for testing joint MA(1)-MA(4) disturbances against joint AR(1)-AR(4)
disturbances in the linear regression model. An outline of the simulation experiments is
given in Section 7.3. Results of the simulations designed to explore the properties of the
test procedure for m=1, ni=2, m=2 with special weights and m =3, are reported in
Sections 7.4, 7.5, 7.6 and 7.7, respectively. Section 7.8 contains some concluding

remarks,
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7.2  The testing problen: and the form of the test

Consider the linear regression model (3.10). Suppose one possibility is that the
components of the n x1 disturbunce vector u are generated by the joint MA(1)-MA(4)

PTocess
u=+y,LX1+y, LY, (=1,2,..,n, (7.1)

where L is the lag opérator such that Le, =¢,,, O0<y, <1, i=1,4, are unknown

parameters with at least one being non-zero and ¢ = (e, €., ..., ¢,)' ~ N(0, ¢*1,.,5).

The other possibility is that the components of « are generated by the stationary joint

AR(1)-AR(4) process
(1-p L)YA=p, L, =¢,, t=1,2,..,n, (7.2)

where 0<p, <1, i=1,4, are unknown parameters and e={g, ¢, .., ¢,)

~N(0, 1) .
Now, consider the general fifth-order moving average (MA(S)) error process
=e+y ety ty€ sty tVsCs

By imposing restrictions on this process, that is, y, = y, =0 and y;=y,y,, this reduces

to
= +y ety stV Vil (7.3)

Thus equation (7.1) is the special case of the general MA(5) proccess.
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Similarly, by imposing similar restrictions on the general fifit-order autoregressive

(AR(5)) error process yields

I, = P, Pty — PPyt s e, (7.4)
which indicates that (7.2) is a special case of the stationary AR(3) process.

For equation (7.2), appropriate start up equations for the process following Silvapulle

(1991) are

t,=b,¢,

i, = by, + by,

1, = by, + by, +bey,

1, = byuy + bty +bgu +byey,

1ty = by 1y + Doty + byt ++ beguy + bses

where b, ’s are functions of p, and p,, and we define

(1+p! +p; +p) .
i, = 5 2 8 e
(1= Ao (- p X1 - p4)

_pi+pip,)
' e e,

L _p+p)
l+pqu

. ___Pl(Pf"‘PJ
3 l+pip,
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4 = o1+ p, by = a, —byay ~bya, —bya,,
4 4 L4
1+ 0104 4
3

bs = bn\/(l —bg,a, —bg,a, — bya, - bya,),
in which
o =(1-a;)a,—aa,)—(a, -aa,a, ~aa,),

¢, ={1-a)(1-a;)-(a, —-a,a,),

1-a; ¢, =(1-a} Ma, —a,ay) —(a, —aa,)a, -aa,),
a,—a} ¢, ={(1—a; Wa, —aa,) ~(a, -aa, Xa; —a,a,)
by, = -2’ K
-4,
¢ = (1-a; Xa, —a,a,) = (a, —aa,)(a, -a,a,),
by, = b:n/(l ~bya,~b,a,) '_";_. .
_'.": ¢, =(1-a})(1-a;})—{a,—aa,),

b = (1-—03)(01 —'03(13)—(1](1 _az)(ag - a,a,)

|_2al+2a’a, ~a’ ) (for details see Silvapulle, 1991, Appendix 4.1, p.88-92).
b =L T4% —a{l-a,)b,, Let X(y) be the variance-covariance matrix of the MA(1) process, defined in Chapter 4
42 = : 2 = 3
l-a,

and H{y, n) be the Cholesky decomposition matrix of Z(y), that is, by definition of

by =a,-bya, - b,a,,

Cholesky decomposition, H(y, m}H(y, n)' =Z(y).

by = bl!\/(l —bya, - b0, ~byas)

3 Thus H(y,n) is the nxn bi-diagonal matrix defined by Silvapulle (1991, p.70) as

€€y — C56, follows

by =————,
CyCy — CyC
¢, —Ch
bsz el St -1 § , +
¢,
b. = la; ~a,a, - (a, —a,a,)b, —(a, — a,a,)bs, |
33 1 _az s {
l i

ey e g o s e s

T ey o
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';,“ 0 0 v e 0 0]
by by O o o 00
O h, Iy, 0
H(y,n)= : :
0 0 0 P
O 0 0 hn.rr-i hmr

The non-zero elements of H(y, n) are generated by the recursive method as follows:

by =(1+77)",
N
b = ¥ fhnand By =0+ =030, =23,
Suppose, H,(y,)= H(y,, n).If n is an integer multiple of 4, define

H(y)=H(y,, n/4)®1,, (7.5)

where ® is the Kronecker product. If »# is not an integer multiple of 4, H,(y,) is

defined by first rounding n up to the next integer multiple of 4, applying (7.5) and then

deleting the extra number of bottom rows and right-hand columns to convert it back to

an i x 8 mairix.

Now, the process defined by (7.1) can be expressed as

= H.(}/‘)H4(}’_,)€,

and

Var(u) = U'ZHl(}’l)Hq(74)H4(.74)'H1(.V1)'

s Th e L
SRR B
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=c'Z(y,,7,), say.
The process (7.2) can be expressed as

G{pi» pJu=e,

and
Var(u) = G‘EG(pls p.a)_l G(o,s p.s)‘_l

= ng(pn Py} say,

where G(p,, p,) is the inverse of the Cholesky decomposition matrix of the variance-
covariance matrix of the stationary joint AR(1)-AR(4) process, i.e,
Qp,, £,)=GC(p,, 27 Glp,, p,)~". Silvapulle (1991), Wu (1991) and Ara (1995)
derived the G(p,, p,) matrix using different approaches. Following Silvapulle (1991),

the G(p,, p,) matrix can be written as

G(P., p“)z
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where the b, ’s are functions of p, and p,, are defined above.

It can be shown that b,, = b, = b, =0, (for details see Silvapulle (1991, Appendix 4.1,

p.88-92); Wu (1991, p.77-79); or Ara (1995, p.87-88)).

Our main concern 1s in testing

H,: u~ N(0, azzgyl,y4)), O0<y, <1, i=14, (7.6)
against

H.:u~N(@©, c*Qp,, £,)), 0 p <1, i=14, 7.7

in the context of the linear regression model (3.10). Observe that we are assuming
positive first and fourth-order autocorrelation in the disturbances because positive
autocorrelation is the most likely outcome and therefore is the most interesting case to
consider. The discussion below for the test procedure can easily be generalized to the

case of negative autocorrelation.

The testing problem is invariant to transformations of the form (3.13). Now, using the
results of (3.16) and (3.17), our problem of testing (7.6) against (7.7) in the context of

(3.10), becomes one of testing (after cancellation of some constants)

-pi2

‘-uz E(yl,y.‘)'f(?p}ﬁ)
2'z

X'E(?’uh)_lX

Hyho(vs 1007) < 2oy

0<y <1, =14, (7.8)

against
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' —pi2
- Z(p1.ps) Z(p1s P4)

'
ZZz

H,:h(v, o1 py) |Q(Pi 2Py )l_le'Q(pnpa)_l X

0<p, <1, i=14, (7.9)

where z is the OLS residual vector from (3.10) and Z(y,,y,) denotes Z'(1) with

A(A) = Z(y,, 7,) and also, Z(p,,p,) denotes (4} with A(1)=Q(p, p,).

Observe that through invariance argumernis and ocur assumption of positive

autocorrelation, we have restricted the null and alternative hypothesis parameter spaces
o ®={(}/“‘y4);0<y551, i=1’4}’ and q)={(pl’p-i):05pi<1’ i=l’4}’

respectively.

Let us first consider the test, for which we control average size over @, i.e., m=1. The
fundamental NP femma impiies that the test which maximizes average power subject to
controlling average size over the entire null hypothesis parameter space, can be based on

the critical region of the form

-2
w2l (0y,05) Z(p1p4) plosp.dpdp,
2’z

xQp,.0)" X[

(it

-2

Py oy dydy

)-le_”z E(}’nh)'g(?’vh)

2z

>e.f [y X,
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—pi

—
-

1p - o v F(p.0)F
[ [loleu) | xele,p) " 4] G D“Z, @up) | 4y ap,

]

or,

-2 = Cﬂ‘

1l -2 a | 2y, - :
J'OJGIE(}’“?‘)I 1 Xlz(}’|,)/4) |X| z(yl },4) (},l yal) 0’}’1(174

z'z

(7.10)

where p(p,,p,) and p(y,,r7,) are the weighting functions for the joint distribution of
p, and p,, and ¥, and y,, respectively and ¢, is the calculated critical value which

controis the average size of the test. In inequality (7.10), p(p,,0,) and p(y,.r,) have

been replaced by the uniform density functions.

If we denote the critical region given by (7.10) as w(c,), then finding ¢, involves

solving

1 pl I el
L{r"]jo J; h@(V, 7|s74)d}’ Ay dv= L Io L(cﬂ}ho(v,}/,,}q)dvdy dy,=a (7.11)

for ¢, where a is the desired average size of the test.

Inequality (7.10) and equation (7.11) bati involve integrals, which have no analytical
solutions. For a numerical solution, we can approximate the integrals given in (7.10) by

numerical integrals so that it is approximately equivalent to
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( ' -pil

Zgl |Q(pu spu) -uzleﬂ(pu apu)—l X-l“”- ‘ (pl,f’p-ifz': (pl,:' ’p.u)
(k . S 2 Ca

g U v el 3 ’ .

Z;lz(ﬁph;“ ' |X'2(r.,»,r4,) X[ 2y ”“L:VU Ya)

FLIN L
\ |

(7.12) ‘.

where 7, = p,;, =(2j=1)/2q,and y,, =p, =QI-1)[2q, j=1=12,..,q.

As discussed in Chapter 3, a potential problem is with controlling the average size of the
test. We conducted some simulation experiments, for m=1, m=2, m=2 with special

weights and m =3 for testing (7.6) against (7.7) in the context of (3.10).

Detailed discussion of the test procedures, the size and the power properties of the test
with m=1, m=2, m=2 with special weights and m=3 are given in t~ following }

seclions.

7.3  OQutline of the simulation experiments

In this section, we report the results of simulation experiments to assess the small ssmple
size and power properties of our test in the linear regression model. The main objecties
of the experiments are to judge the performance of the test procedure for the joint
distribution of multiplicative type processes with an appropriate choice of m which

approximately controls the size of the test.

In this simulation experiment, 2000 replications were used to calculate the exact five
percent critical values. Sizes and powers of the test were also calculated -t the five
percent level of significance. We calculated the critical values with the disturbances of

(3.10) being generated following process (7.1). The sizes and powers of the test were
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calculated ai each of the 25 grid-points, defined as {(y|, y,): ,.¥, =0.1, 0.3, 0.5, 0.7,

0.9}, under the null hypothesis parameter space ® and {(p,, p,): p,,p, =0.1,0.3, 0.5,

0.7, 0.9}, unuer the alternative hypothesis parameter pace @, respectively.

For this testing problem, in order to calculate the size and power properties of the test we

used the X2, X3 and X5 design matrices defined in Chapter 4 and design matrices

X6 which is as follows:

X6: (ux6;n=20,60). A constant dummy, both current and lagged quarterly
Austratian private capital movements, current and lagged quarterly Australian

Government capital movements and Australian retail trade commencing

1968(1).

These design matrices were chosen to cover a range of economic applications with
different degrees of seasonality. Moderate and steady seasonality are found in the
Australian retail trade series. Also, large fluctuations and strong seasonality with two

seasonal peaks per year are found in the two capital movement series.

We mentioned in the previous section that the testing problem is invariant with respect

to the nuisance parameters, f and o?, and we have chosen, f=0 and o’ =1 for ali

simulation experiments.

The first step involved deciding on the value of m for which the estimated size of the
test is approximately controlled. We pointed out earlier that we conducted some
simulation experiments to choose the value of m and we tried m=1, m=2, m=2 with
special weights and m=3. Finally we found that the test performs well for m=3.

Detailed discussions follow.

v 4 L N

Py L

M
i3
:

Testing Joint MA(7)-MA(4) against Joint AR(1}AR(4) Disturbances in the Lincar Regression Model 175

7.4  Results for m=1

Considering the entire null hypothesis parameter space © ie., m=1, we conducted
simulation experiments to calculate the critical values ¢, of the test statistic for ail
design matrices based on (7.10), which control average size over ® . The calculated
critical values are presented in Table 7.1, Using these critical values, we calculated the
sizes and powers of the test through equation (7.12), respectively for 25 grid-points of
(r,,7,) under H, and for 25 grid-points of {p,, p,) under H, defined in the previous
section. For design matrices X2, X3, X5 and X6, the calculated sizes and powers of
the test are presented in Tables 7.2a, 7.2b, 7.2c and 7.2d, respectively. A value denoted

by a ‘star’ is significantly different from five percent at the 0.01 level under H, .

From the size analysis of the test for m =1, we see from Tables 7.2a-7.2d that there are
some sizes which are significantly different from the five percent significant level, when
the sample size is small. We also observe that among these significant sizes,a few sizes
are far larger than the average size, for example, for the grid-points
W(r7s) = (01,05), (0505} for X2, {(r,,7,)=(0103), (0.1,0.5), (0.3,0.3), (0.3,0.5),
(0.5,0.5)} for X3 and {(y,.7,)=(03,03)} for X5 and X6. When the sample size is
large, we find that almost all sizes are significantly different from the five percent level
but for the grid-points {(y,, ¥,): ¥ ,¥. = 0.1, 0.3, 0.5} the sizes are undesirably larger
than the 1verage size while others are smaller than the average size. This shows that the
test does not successfully control the average size over ®@ with m=1. This motivates us

to consider two subregions over © ,i.e, m=2.
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Also, from Tables 7.2a-7.2d we see that the calculated powers of the test for m=1,

always increase as the grid-point under H, moves further away from (p,, p,)=1(0, 0).

When the sample size is large, the powers are typically much higherthan the powers for

the smaller sample size. These power properties of the test are almost the same for all

design matrices.

In the following section we discuss the results, i.e. the size and power properiies of the

t. o form=2.

7.5  Results for m =2

. We want to conirol the estimated sizes of the test to be 0.05 over suitable subregions

under H,. When we controlled the average size over @ for the m =1 versicn of the test,
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we found some sizes are above average and some sizes are below average. Using the

high size/low size approach we divided © into two subregions. Accordingly, based on

the calculated sizes of the test for m =1 presented in Tables 7.2a-7 2d, 'we divided the

null hypothesis parameter space {0 <y, <1, i=1,4} into two disjoint regions, with the

boundary points calculated through the high size/low size approach. For example, in the

case of the X2 design matrix with » =20, smaller than average sizes lie in the regions

(0<y,,¥,<02) and (06<y,£1N0<y, 1), and larger than average sizes lie in the

regions (0<y,<02N02<y,<1) and (02<y, <06n0<y, <D, and similarly

n =60 for X2, smaller than average sizes lie in the regions (0<y, 06N 06 <y, <1)

and (06<y, s1N0<y,<!), and larger than average sizes lie in the region

(0<y,¥,506); see Table 7.2a. Ranges of the two disjoint regions and the

corresponding values of j and /, where y,,=(2j-1)/2¢, and y, =(21-1)/2q,
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j=1=12,.,¢, g=50, for all design matrices are presented in Table 7.3. In each
case the ®, region (smaller than average size) is shaded in green and the ©, region

(higher than average size) is shaded in red.

Thus for m=2, equation (3.7) gives the resultant test that maximizes average power

subject to two size conditions and involves a critical region of the form (7.12) which

now becomes

-pi2

nf Z(p,opu) Fp1s04)

’

Ll i -2

ZZIQ(F’U’F’N)‘

J=l =1

| .

2{1:,]2_, > Erra)

X"Q(ﬁu !ﬁ'-u.')-l X

-
4

t

=142

' -pl2
r:z E’(}/U,}/,ﬂ) E’(ylj,)f‘,,-)]

z'z J

—-pik

-142 . -2l F i '~},.“},
WS T [l ratpra) ] | el )

{r1sra)ed:

XE(}’ 1_..‘*.7"4:)_l X

{ris 7 a)e@

(7.13)

where k, and &, are critical values calculated to control average size over the two

subregions of © .

If we denote the critical region given by (7.13) as wlk,, k,) and if ©, are the set of

(7,,7,) points indicated in Table 7.3 shaded in green and ©, are the set of (y,,7,)

points indicated in Table 7.3 shaded in red, then finding &, and %, involves solving

' = = 14
jJ'G‘_L{khk:]ho(v,yls74)(!"’({71(174 =a, i=1,2, (7.14)
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jointly for &, and £, .

The critical values &, and %, were calculated via the trial and error method, and are
presented in Table 7.4, for all design matrices. From this table we observe that &, values
are far larger than k, values for all cases. The values of k, are always positive while k,

takes positive values when the sample size is small and negative values when the sample
size is large. From the cri;cical values we also observe that both &, and £, values

decrease as the sample size increases for all design matrices.

Using the critical values &, and &, presented in Table 7.4, we calculated the sizes and
powers of the test through equation (7.13), for 25 grid-points of (y,7,) under #, and

for 25 grid-points of (p,,p,) under H,, respectively. For all design matrices, the

calculated sizes and powers of the test are presented in Tables 7.5a-7.5d.

Now if we analyse the calculated sizes of the test for m =2, we see from Tables 7.5a-
7.5d that our test successfully controls the average size over the two regions under i,
when the sample size is small. In other words, when the sanple size is small, the
calculated sizes of the test fail within the rejection probabilities range [0.037, 0.063] at
the five percent significance level or are less than 0.05. But when the sample size 1. 'arge
we observe that there are a few sizes which are significantly different from five percent.
Among these significant sizes, in particular, one calculated size which is much smaller
than the average size is that for grid-point {(y,,7.)= {(0.1,0.1)} and the calculated size
for grid-point {(¥,,¥ () =(0.9,09)} is rather larger than the average size. This indicates

that for large samples, our test does not successfully control size over® for m=2.
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From the analysis of powers of the test for m =2, we see that the powers of the test are
well behaved for all cases. As the sizes of the test for m=1 and m =2 are different, so

the powers for m=1 and m =2 cannot be compared in a meaningful way.

7.6  Results for m = 2 with special weights

In this simulation experiment we have chosen only the X'S design matrix with n =60,
to look at whether our test procedure works well or not with some special weights. We
restricted our choice to a single design matrix, because we have to calculate the critical
values, k, and k,, so that the two size conditions are simultaneously satisfied, via the
trial and error method. The calculation for one trial takes about two days. Typically,
calculating the critical values requires 10-30 trials, i.e, 20-60 days. Then follows the
calculation of sizes and powers of the test. Therefore, calculating crilical values and the
required sizes and powers of the test is laborious and time consuming. So our choice had
to be limited to one design matrix. This is a clear drawback of our simulation experiment

but we can at least gauge the performance of the test procedure in this case.

In the previous section, we mentioned that the calculated sizes of the test for m=2 with
5 = 60, behave badly for the grid-points {(y,,7,)=(0.1,01)} and {(7,,7,)=(09,09)}.
Suppose we give some extra weight to the troublesome parts of the nuil hypothesis
parameter space then the size might be controlled and the largest and smallest sizes
might be close to 0.05. This led us to consider m=2, with special weights for
troublesome parts of parameter space such as {(y,,7 7, €l0,02], 7, €[0,02]} 1,
for the grid-points {(7,,7.)=(0.L0.1)} and {(y,,7,) 7, €[08,1], 7, €[03,1]} i.e., for

the grid-points {(¥,,7,) =(0.9,09)}.

P AL Tt S
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In this experiment, we used the same two disjoint subregions of @ and the
corresponding values of j and /, for the XS design matrix for m=2 with #=60
which were presented in Table 7.3, but with special weights on

{(ri,7r.): 7, €l0,02), y, €[0,02)} and {(¥,.¥,): 7, €[08,1], v, €[08,1]} (four-times

the normal weight).

Applying the four-times weights for the grid-points {(y,,7,)=(01,0.)} and
{(y,,74)=(09,09)}, we calculated the critical values &, and &, which turned out 1o be

k, =-0.000006 and k, =1.0. If we compare these critical values with the previous
critical values for m =2 with equal (normal) weights, we see that new values are quite

different to the old values.

Using the critical values k, =-0.000006 and %, =1.0, through equation (7.13) we
calculated the sizes and powers of the test which are presented in Table 7.6. From this
table we observe that there is no great improvement in the calculated sizes of the test.
While some calculated sizes improve, other calculated sizes are worst than previously.
The results indicate that giving special heavy weights to some part of the null parameter
space is helping to control size in that part of the space but at the expense of losing some
control in other parts of the space. We conclude that the test procedure does not work
that well with special weights for m=2. The test procedure may be able to be tuned to
make it work by changing weights but we do net know for which weights it will work
well. It would take a very large amount of computation to check this out. Therefore we

considered mi=3.
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7.7  Results for m=3

In this section, we have also chosen only the X5 design matrix with » = 60, to conduct
the stinulation experiments for m = 3. The reason is as explained in the previous section.
For m =3, calculating critical values and the required sizes and powers of the test is
much more laborious and time consuming than for m = 2. Therefore we have restricted

our choice to a single design matrix.

Thus, based on the calculated sizes of the test for m=1 and m=2 presented in Table
7.2¢ and Table 7.5¢, respectively, we divided the null hypothesis parameter space into
three disjoint regions and controlled average size over cach of the subregions. We used
the high size/low size technique for division into two (m=2) regions of the test for
m =1, In this case (sm=2) there was one troublesome region (low size) and we divided
the low size region into hwo with the troublesome high size parts of this region certainly
the third region. That is, one subregion (®, ) is that for which the smaller than average
sizes resulted, sizes larger than average size determined the second subregion (®, ) and
the third subregion (©,) covered those regions which resulted very high size (see Tabl;
7.5¢). Ranges of the three disjoint regions and the corresponding values of j and /,
where y,,=(2j-1)/2¢, and y,, =(2/-1)/2¢, j=I=1,2,..,q, are given in Table
7.7. The ©, region is shaded in green, the @, region is shaded in red and the @, region

is shaded in yellow,

Thus for m =3, equation (3.7) gives the resultant test that maximizes average power
subject to three size conditions and involves a critical region of the form (7.12) which

now becomes
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where k,, k, and k, are critical values calculated to control average size over the three

subregions of & .

If we denote the critical region given by (7.15) as w(k,, k,, k;) and if @, is the set of
(7,,7,) points shaded in green, ©, is the set of (y,,7,) points shaded in red and ©, is
the set of (y,,7,) points shaded in yellow in Table 7.7, then finding &, &, and £,

involves solving
-”@,- L(khk:‘k!)hn(v,y,,h)a'vdy,dy,, =a, i=1,2,3, (7.16)

jointly for k,, k, and k,.
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The critical values &, &, and &, were calculated via trial and error, so that the three
size conditions are satisfied. The calculated critical values are %, =-0.000845, &, =1.6

and %, =0.000012. Using these critical values through equation (7.15), we calculated the
sizes and the powers of the test, which are presented in Table 7.8. From this table, we
observe that there is a large improvement in the size performance of the test for m =3

but yet a few sizes are significantly different from five percent. There are only two sizes
which are higher than the upper limit of the rejection probability range, these are for the
grid-points {(¥,,7,)=(03,05)} and {(y,,7,) =(09,09)} . The sizes for the grid-points
{7 ,7)=(03,05)}) and {(y,,7,)=(09,09)} were 0.062 and 0.194 for m=2, now
these sizes are controlled to 0.064 and 0.074, respectively. Also we observe that where
the sizes of the test for m1 =2 were smaller than 0.05, now these sizes come very close to
0.05. Overall we observe that the sizes of the test for =3 are better controlled than the
sizes of the test for m=2, for X5 and n=60. If we compare the powers of the test for
m=3 with m=2, we see that the powers for m =3 are bit higher than for m=2, but‘
not remarkably higher. In other words, the power properties of the test are almost

unchanged.

7.8 Conclusions

This chapter investigated the problem of testing for joint MA(1)-MA(4) disturbances
against joint AR(1)-AR(4) disturbances in the linear regression model. We are interested
in this testing problem because the models we are considering both under the null and
alternative hypothesis are two-dimensional parameter space models. In this testing
problem, we have applied the new test approach as an example of an application to a

multidimensional parameter space under the null hypothesis. From the results, we see
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that the size and power performances of the test are very good for m=2, when the Table 7.1 _;
-3 . . ) . . :
sample size is small, For the larger sample size, the estimated average sizes of the test do & Critical valves (¢, ) of the test with m = 1, for testing joint MA(1)-MA(4) against
joint AR(1)-AR(4) disturbances for all design matrices at the five percent level. g
not perform well for m=2, i.e.,, all calculated sizes do not fall within the rejection ¥ -
Destgn matrix Sample sizes (1) Critical values (c, )
probability ranges. Also, further resulis for m=2 with special weights indicate that the 3
XN2(nx3) 20 29115 i}
size properties of the test for n =60 do not perform as well. There is no improvement of 60 1.8080 :
X3(nx35) 20 2.6663 !
the si: 2 performance of the test for m =2 with the special weights perhaps because we 60 1.8128 !
: . ) _ X5(nx3) 20 3.3635
did not follow a system to determine the weights for different parts of the null parameter 60 1.9682 1‘
: X . ) X6(nx6) 20 2.5588
space. From the simulation results of the test for m =3 with u# =60, we can say that the 60 1.9434 i
size properties of the test are close to acceptable. The results reported form =3 with
n =60, suggested that, the extra computation of the test procedure is well rewarded at
. . Table 7.2a
least in terms of size. As a result, we can conclude that our new test procedure can be . ) )
Selected calculated sizes and powers of the test for the X2 design matrix when J.
made to work for testing problems involving two-dimensional parameter space modsls m=1, at the five percent level. i
. . . . . —_ - L - —
but it is time consuming to apply in practice, and may require future advances in n=20 Hyiu =(+y L)(+y,L)e H,:U=-p LY -p, L), =¢,
yo | n=9 07 0.5 0.3 0.1 o, o=l 03 05 07 09 )
computer technology to make it a feasible test in this case. ' g
0.1 | 0.016* 0.031*  0.054 0.058 0.041 0.1 70038 0078 0162 0297 (498 ;
6.3 | 0.018* 0.038 0.058 0.061 0.063 0310067 0102 0.184 0335 0.548
0.5 ! 0.017*  0.027* 0.066* 0.058 0.066* 0510155 G173 0231 0376 0.002 I
0.7 | 0.016% 0.035*% 0.054 0.060 0.064* 0710402 0392 0405 0490 0.672 14
0.9 | 0.018* 0.032* 0056 0.058 0.068* 0.9 0.834 0821 0803 0785 0.835 I
n=60 H,:v, =(1+y LX1+y,L)e, H :(I-pL)X1-p, L), =e¢, 1
v, |r=90 07 0.5 0.3 0.1 o, o=l 03 05 07 09
0.1 | 0.001* 0.025* 0.096* 0.152* 0.106* 0.t] 0111 0292 061v 0893 0988 {
0.3 | 0.001*  0.030* 0.112%  0.181%  0.164% 030316 0412 0602 0910 099 .
0.5 | 0.003* 0.025* 0.084* 0.221* 0.112* 05| 0636 0646 2763 0931 0995 3
0.7 {0.001* 0010 0029 0036* 0033" 0.7 0911 0909 0929 0979 0999 £
0.9 | 0.000* 0.004* 0.006* 0.008* 0.004* 09| 0997 0993 0994 0999 1.000 §
;;‘i
{

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.2b

Selected calculated sizes and powers of the test for the X3 design matrix when
m =1, at the five percent level.

Table 7.2d

Selected calculated sizes and powers of the test for the X6 dzsign matrix when
m =1, at the five percent level.

n=20 H,:u=0+y LYl+y,L)e H,.(1-p L)Y1~p, L), =¢, :
yo |7=9 07 05 03 o p, | =1 03 05 07 09 n=20 Hy:u=Q0+yL)1+r.L)e, H,:(1-oL)1-p,L)u, =e,
0.1 |0.015% 0.032% 0053 0062 0045 0.1 | 0.044 0077 0,138 0243 0.422 va | 71=9 0.7 0.5 0.3 0.1 py |le=t 03 05 07 09
03 | 0.017¢ 0.033* 0.057 0.073*  0.065* 03 | 0067 0038 0151 0280 04N 0.1 | 0.037 0.050 0.063 0.061 0.054 0.1 | 0.065 0081 0.134 0234 0433
05 [0.017% 0.045  0.068* 0079*  0.079* 05 | 0.149 0156 0200 0323 0528 03 |0034* 0047 0050  0068* 0058 03 | 0084 0086 0137 025 0490
0.7 | 0.017* {.042 *(.0G4A* 0.071* 0.073* 07 | 0386 0359 0365 0438 0.594 05 | noi3* 0.041 0.055 0.058 0.058 05 | 0136 0135 o !-7 1 0“2-93 0‘545
09 | 025% 0.046  0.066* 0073*  0.081* 09 | 0816 0800 0772 0745 0778 0.7 | 0.035* 0044 0053 0054  0.063 07 | 0311 0291 0285 0360 0.611
0.9 | 0.033* 0.043 0.049 0.055 0.062 09 | 0739 0699 0648 0600 0.710
n=60 Hyou, =(+y LY1+y,L)e, H,: (1-p,LY1-p,L)u, =¢,
vo ly=9 07 05 03 0.1 p, o=t 03 05 01 09 n=60 Hyiu =(+y,L)N1+y,L)e H,:(1-p,L)1-p,L)u, =e,
0.1 {0.002% 0.024% 0.104% 0.155%*  0.106* 0.1 | 6.107 0.277 0606 0.885 ¢Y8S Ya | £1=9 0.7 0.5 0.3 0.1 ps | =1 03 0.5 0.7 0.9
0.3 { 0.003* 0.034* 0.113* 0.177* {.150% 03 | 3.299 039 0634 0897 09806 0.1 | 0.002¢ 0.020* 0.094*% 0.139%  0.091% 0.1 | 0.095 0257 0558 0848 0.981
- 0.5 1 0.003* 0.031*  0.084* 0,123+ 0.109* 05 | 0614 0.625 0747 0925 0994 0.3 | 0.005* 0.028* 0.111* 0.164*  0.146* 03 | 0276 0357 0601 0873 0.985
0.7 | 0.001* 0.013* 0.035* 0.039 0.039 0.7 | 0.899 0895 0914 0971 0999 0.5 | 0.004* 0.027* 0.082* 0.113* 0.108* 05 | 0580 0590 0.728 0908 0:993
0.9 | 0.001* 0.003* 0.012* 0.010* 0.007* 09 | 9% 0995 0994 0999 1.000 0.7 | 0.002* 0.013* 0.035¢  0.039 0.035% 0.7 | 0890 0878 0895 0960 0.998
" X 0.9 | 0.000* 0.004%  0.010* 0.008* 0.008* 09 | 0994 (994 0993 0997 1.000
* denotes value significantly different from the five percent level «t the 0.01 level.

* denotes value significantly different from the five percent level at the 0.01 level.

Table 7.2¢

Selected calculated sizes and powers of the test for the XS design metrix when m=1,
at the five percent level.

n=20 H,:u =Q1+y L)1+y,L)e H: (1-pL)Y(1-p,L)u =e¢,

yo | ri=9 07 0.5 0.3 0.1 o, lo=l 03 05 071 09
0.1 | 0.006* 0.020%  0.072* 0.073* 0.044 0.1 0.048 .09 0169 0253 0339
0.3 | 0.009* 0.031* 0.063 0.067*  0.054 03] 0072 0102 0167 0251 0343
0.5 | 0.011*  0.035% 0056 0.059 0.056 0.5 0157 175 0212 0282 0370
0.7 | 0.011* 0.032* 0.049 0.051 0.053 0.7 0391 0385 0386 0409 0450
0.9 | 0.008* 0.027* 0.046 0.046 0.043 0.9 0.829 0.822 0802 0753 0.68!
n=60 H,u =(1+y,L)Y1+y,L)e, H,:(1-pLY1-p,L)u =e,

yo | 729 07 05 03 ol p, | o=t 03 05 071 09
0.1 | 0.002¢  0022* 0,003  0.J42%  0.093* 0.1 {1 0.098 0278 0606 0870 0977
0.3 ]0.002¢ 0.025% 0.108% 0.173* 0.150* 03102909 038 0633 0877 0980
0.5 | 0.001* 0.023* 0.079% Q115 0.l08* 0.5 | 0.631 0629 0747 0909 0982
07 | 0.001* 0.010% 0.033* 0.033* 0.032* 071 0906 0897 0912 0959 0992
09 | 0.001* 0002 0.005* 0.005* 0.002* 091 099% 0995 0993 0997 0999

* denotes value significantly different from the five percent level at the 0.01 level.
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Table 7.3

Ranges of the two disjoint intervals and the corresponding values of j and 7, where Table 7.3 (contn'd)
=(2j-D/2q, j=12 g and p, =Q-D[2q. 1 =12, ..., q, ¢=50. e o
yu=Qi-D2q. f Va=( /24 1 .. 1 MNP RIEN  Low Size . Low Size'
50 40 .
40 30
30 20
20 n=20 10
n=720 10 I=1
{= For
For XS5 50
¥ = design 0
' matrix
des:gn 0 0
matrix .
30 20
q n =60 i
n =060 20 10
10 1=
! =1
50
40
30
20
n =20 10
=2
n =20 i) =1
T=1 0 y, =02 0.4 0.6 osl 1.0 For
For o 10 20 o) 40 50 X6 50
¥3 = — design
design y,=10 EBEs : 0 : ; matrix 40
matrix 40 0.8 0 " > 2 ' 30
; : n =60 20
0 10
0 D {=1
0.8 1.0
40 50
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Table 7.4

Critical values k, and %, when =2, for testing joint MA(1)-MA(4) against joint
AR(1)-AR(4) disturbances at the five percent level.

Table 7.5b

Selected calculated sizes and powers of the test for the X3 design matrix when
m =2, at the five percent level.

Design matrix Sample size (») Critical values n=20 Hy:u=0+y L)1+y,L)e H:(l-pLY1-p,Ln, =2
; ] vo | =9 07 0.5 0.3 0.1 P |m=1 0305 07 09
_'i ‘ : 01 0051 0059 0054 0032  0.021* 0.1 | 0.021 0049 0.114 0263 0471
, 03 {0049 0051 0046 0038  0.026° 03 | 0.033 0052 0120 0274 0.503
: 2 : :
A2nx3) P o] i 05 | 0050 0046  0.046 0038  0030° 05 | 0036 0092 0130 0202 0535
' ‘ : 07 |0.044 0045 0042 0038  0.037 07 | 0293 0275 0283 0391 0591
X3(nx5) 20 0.1557 2.45 09 10047 0049 0050 0044  0.039 09 | 0781 0759 0736 0711 0778
60 -0.000135 1.58
X5(nx3) ?g 0.0779 2.5 n=060 Hy i, =(1+y,LX1+y,L)e H : (1-pLY{i-p,L)u =e,
-0.000082 :
X ’ 8 1.65 vo | r=9 07 0.5 0.3 0.1 p,lpm=l 03 05 07 09
3 X6(nx6) 20 0.5714 1.91
4 60 -0.000148 1.685 0.1 | 0.032¢ 0040 0049  0036* 0010 0.1 {0011 008 0401 0855 0985
' 03 10037  0.045 0062 0061  0.043 03 | 0.091 0.161 0463 0876 0.989
) 05 | 0.040 0047  0.065¢ 0071*  0.060 0.5 | 0428 0462 0.665 0917 0.996
0.7 1 0.061 0041 0059 0058  0.052 0.7 | 0.878 0878 0918 0974 0999
09 |0.146* 0.040 0049 0050  0.045 0.9 | 0997 0997 0998 1.000 1.000
Table 7.5a * denotes value significantly different from the five percent level at the 0.01 level.

Selected calculated sizes and powers of the test for the X2 design matrix when
m =2, at the five percent level.

Table 7.5¢

n=20 Hy:u =(+y,L)1+y,L, H:(A-pL)1-p, L)y = Selected calculated sizes and powers of the test for the X'5 design matrix when

Yo | ¥i=9 0.7 0.5 0.3 0.1 P |l A=l 03 0.5 0.7 0.9 m = 2, at the five percent level.

0.l 0050 0058 0058 0039  0.023* 0.1 | 0023 0054 0.146 0334 0559 :
| 0.3 10044 0053 0054 0041  0.029* 03 | 0039 0069 0.158 0342 0.588 n=20 Hyiw=(+y L)(+y,L)e H,:(1-pL)1-p L)y, =¢,
: 0.5 10044 0050 0045  0035* 0.031* 05 | 0101 0.119 0.185 0368 062
g : : - 5 . _ =1 03 05 07 09
0.7 10043 0047 0046  0036* 0.035 07 [ 0326 0316 0343 0464 0.684 7o | =9 0T 0.3 0.3 0.1 Py | A=l
| 09 10042 0049 0051 0043 0.035° 09 10809 0790 0780 0772 0848 00 | 0.052 0058 0061 0044  0.023* 0.0 | 0028 0063 0.139 0264 0.367
0.3 | 0.047 0050 0054 0045  0.028* 03 | 0041 0068 0137 0242 0348
n=60 Hyu=(~1+y,L)1+y,L)e H:(-p,LX1-p L =e 05 | 00560 0052 0054 0046 0037 05 | 0124 0134 0.182 0270 0380
: ——t ‘ - A=A XL e 07 | 0.052 0057 0058 0048  0.047 07 | 0375 0377 0392 0418 0474
1 Yo | 11=9 07 0.5 03 1 p. o=l 03 05 07 09 09 | 0.049 0059 0058 0050  0.050 0.9 | 0.838 0.834 0827 0788 0.745
0.1 |0028* 0.035* 0045 0039  0.010¢ 0.1 ] 0012 0087 0414 0866 0.985 : -
| 0.3 10.030* 0039 0056 0059  0.042 03 1 0094 0.172 0484 0382 0989 n=60 Hyiw =(+y L)(+y,L)e H,:(1-pLYi-p LYy, =¢,
0.5 | 0.032% 0.037 0058  0065* 0.052 05 | 0455 0479 0672 0925 099 1l 03 05 07 09
1 07 | 0055  0033* 0048 0053  0.045 0.7 | 0.888 0.883 0924 0.979 1.000 v\ n=y 07 0 0> vl La [ 017
09 | 0.155%  0.033* 0040 0039  0.041 0.5 10997 0997 0998 1.000 1.000 0.0 10.023*  0030* 0046 0030  0.010* 0.0 | 0.016 0096 0408 0824 0975
| 0.3 | 0.024%  0.034* 0055 0060  0.041 0.3 | 0097 0176 0458 0.83% 0977
* denotes value significantly different from the five percent level at the 0.01 level. 0.5 | 0.030%* 0038 0059 0062 0056 0.5 | 0451 0467 0633 0839 0.984
] 0.7 1005  0031* 0046 0048 0083 0.7 | G.883 0875 0.897 0968 0.992
i 0.9 | 0.194% 0030+ 0040 0039 0038 09 | 0.998 0997 0996 0998 1.000

* denotes vatue significantly different from the five percent level at the 0.01 level.




192
193
Table 7.5d

Selected calculated sizes and powers of the test for the X'6 design matrix when
m =2, at the five percent level.

Table 7.7

Ranges of the three disjoint intervals and the corresponding values of jand !, where
Yy=QRji-D2q, j=12,...,q and y, =(21-1)/2q,1 =1,2, ..., q, ¢ =50 for the

n=20 Hy:u=(0+y, LYX1+y,L)e H (l-plXl-pL)u =e¢ . o
8 ot =4y LY +7,L)e CU=p X =Pl =e X5 design matrix with n=060.
-9 07 0.5 0.3 0.1 =1 03 05 07 09 _ e _‘
vs | 7 Pi | A 50 7,210 IR s@ '- (Ll High-Low Size
0.1 [ 0055 0062 0063 0054 0041 0.1 | 0.043 0063 0128 0256 0.459 m R Loisi i e . - .
03 | 0048 0056 0058 0052 0041 03 | 0056 0073 0125 0265 0.506 0 il - B High-Low Size
0.5 | 0.046 0054 0052 0049  0.044 05 | 0.103 0115 0156 0298 0.566 30 Y3 N T L ow Size
0.7 | 0.045 0050 - 0054 0047 0044 07 | 0263 0258 0267 0360 0630 - A VA
09 | 0046 0052 0052 0048 0047 09 | 0.705 0675 0624 0608 0719 20 04§ » rLowSize [
10 02 g : z lf.(la.'w.'-.Si-zc. s
n=60 Hy:u =(01+y L)Y1+y,L)e H:(1-p L)l1-p,L)u =¢ = - e R
yo | nn=9 07 0.5 0.3 0.1 p. I m=t 03 05 07 09
=}

0.1 |0033* 0038 0048 0032*  0.009* 0.1 | 0012 0079 0356 0814 0982 2
03 | 0035 0044 0057 0053  0.039 03 | 0084 0.5 0415 0840 0988
0.5 | 0.03¢* 0043 006!  0072*  0.056 05 | 0399 0430 0621 0899 099
07 | 0046 0038 0058 0059  0.051 07 | 0865 0857 0890 0971 1.000
0.9 | 0.093* 0037 0049 0050 0048 09 | 0997 0996 0998 099 1.000 Table 7.8

Selected calculated sizes and powers of the test for the X5 design matrix with n =60

* denotes value significantly different from the five percent level at the 0.01 level. when m =3, at the five percent level

Hy:u, =(1+7,LY1+7,Le, H,:(1-p,L)Y1-p,Lyu, =e,
Table 7.6 Yo | 7=9 0.7 0.5 0.3 0.1 P | 2=1 03 0.5 0.7 0.9
Selected calculated sizes and powers of the test for the X5 design matrix with » = 60
. . . 0.1 | 0.047 0.031%  0.047 0.040 0.010* 0.1 } 0.018 0.100 0413 0829 0975
¢ = fi 1. :
when special weights given for m =2, at the five percent leve 0.3 10048  0.036* 0056 0062 0.044 0.3 1 0.101 0.182 0463 0.841 0977
) 0.5 | 0.046 0.03% 0.062 0.064*  0.057 0.5 | 0455 0473 0637 0892 0.985
Hy:u, =(1+y, L)(1+y,L)e, H, . (I-pLY1-p, LY, =¢, 0.7 10041  0.032* 0047 0049 0.044 07 | 0.885 0.877 0901 0969 0993
v | 7= 07 05 03 ol ol pel 03 05 07 09 09 | 0.074* 0050 0043 0040  0.040 09 | 0998 0997 0996 0998 1.000
0.1 10033* 0047 0080* 0.081*  0.036 0.1 10046 0.182 0544 0877 098 * denotes value significantly different from the five percent level at the 0.01 level,
03 | 0.036* 0054  0.092* 0.!11* 0095 0.3 | 0.196 0296 0569 0.886 0.985
05 | 0.034* 0049  0.086* 0.104*  (.094* 05 | 0575 0577 0730 0927 0989
07 10031* 0040  0.065* 0.067* 0.066* 07 | 0922 0910 0935 0977 0996
09 | 0.044  0035* 0051 0054  0.051 0.9 | 0999 0998 0997 0999 1.000

* denotes value significantly different from the five percent level at the 0.01 level.




Chapter 8

Summary and Conclusions

Econometric modeliing can be a powerful tool for economic analysis and forecasting
and a meaningful evaluation of an econometric model depends on the use of accurate
statistical test procedures. Another issue related to statistical testing is the presence of
nuisance parameters which can lead to misleading inferences in small samples. Proper
handling of nuisance parameters may result in a better test. Regression coefficients and
autocorrelated disturbances are common in econometrics and many techniques have
been suggested to eliminate or deal with nuisance parameters, such as, sufficient
statistics, invariant methods, marginal likelihoods, etc. A lack of observations also

implies there is a need for tests which are as accurate as possible in small samples.

In this thesis we have proposed a new optimal test procedure which is based on the
generalized NP lemma, called ‘the average power test’, for testing a composite null
against a composite alternative. It maximizes the average power function of the test
subject to the average size being controlled over different subregions of the null
hypothesis parameter space. The new testing approach involves the finding of several

critical values. These critical values are calculated by Monte Carlo simulation
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experiment via trial and error so that the average size conditions are simultaneously

satisfied.

This thesis has investigated the performance of the above mentioned new testing
approach with respect to testing for MA(1) disturbances against AR(1) disturbances,
testing the form of hcteroscedastic disturbances and for testing joint MA(1)-MA(4)
against joint AR(1)-AR(4) disturbances in the context of the linear regression model.
The first aim was to investigate the performances of our new approach to see how well it
works for a single parameter testing problem; the second aim was to see the performance
of the test procedure for a heteroscedastic disturbances testing problem involving an
infinite parameter space; and the third aim was to investigate the test’s performance in a

two-dimensional parameter testing problem. The following are a detailed discussion of

the findings of the thesis.

A literature survey related to hypothesis testing was presented in Chapter 2. This chapter
reviewed the literature involving optimal, PO and APO tests in the context of linear
regression model for composite hypotheses testing problems. Because all the
applications we considered in this thesis are non-nested, the review also focused on
contributions to tests of non-nested hypotheses and some popular non-nested tests were
discussed briefly and their limitations noted. Other topics briefly discussed include
nuisance parameters, invariance arguments and marginal likelihood methods. This
literature review reveals the importance of developing optimal tests which have
excellent finite-sample properties, such as, PO tests, rather than largesample based tests.

When testing composite hypotheses, PO tests cannot always be constructed. In situations

where they cannot be constructed, King (1987a) suggested the construction of an APO
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~ test. Studies involving APO tests have indicated that it is not always suitable for all
composite hypothesis testing problems and in some cases il does not work well at all.
Almost all existing tests in the context of non-nested testing are large-sample based tesis
and many of them perform poorly in finite samples. Sriananthakumar (2000) constructed
the g test which is an APOI test for testing a composite null against a composite
alternative. The g test is constructed using the generalized NP lemma to obtain a PO test
for a composite testing problem which required a finite number of representative
densities under the null and a single representative density under the alternative. Thus
this approach depends very much on the choice of representative densities. Qur new
approach does not use representative densities but rather maximizes average power
subject to controlling average size over different subregions of the mull hypothesis

parameter space.

In Chapter 3, we introduced our new approach to testing a composite null against a
composite alternative. We discussed the theory behind this new approach and how the
testing procedure can be applied to the problem of testing the structure of the
disturbances in the linear regression model. Controlling average size over the entire null
parameter space, namely ©, may result in undesirably large sizes in some parts of ©

and smaller sizes in other parts of © . To minimize this possibility, we allow for © to be
partitioned into m  disjoint subregions, namely, ©.,0,,...0, so that
@ =0,U0,u.. U0, . As mentioned earlier, this new approach involves finding several
critical values for which the average size conditions are fulfilled simultaneously. We
discussed the standard invariance technique which was used to simplifying the testing

problem by eliminating some nuisance parameters. We outlined the steps involved in

calculating the critical values by Monte Carlo simulation.

LEELAT et el
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In Chapter 4, we illustrated the new test procedure by applying it to the problem of
testing for MA(1) disturbances against AR(1) disturbances in the lincar regression
madel. For this testing problem, Silvapulle and King (1991) could not find a POI test
and were forced to use an APOI test. This chapter explored a number of practical issues.
An important questicn was whether controlling average size did a good job in
controlling size overall. Typically we f{ound that the sizes of our test were very
acceptable for small sample sizes when m =3, that is, controlling average size over
three subregions of the null hypothesis parameter space. We compared the performance

of our new approach with three different versions of Silvapulle and King’s (1991) APOI

tests. namely, s(0.3, y;), s(05, ;) and 5(0.75, y,), and found that the powers of the
new test are typically higher than those of the APOI tests. The new test has a very clear
power advantage. When the sample size is small, on average the new test gained 0.7 to
5.7 percentage points in terms of power for all design matrices and when the sample size
is large, the test gained 0.7 to 1.9 percentage points in terms of power improvemém
except in one case. We concluded that at least for this testing problem, the new test Is
better than the APOI test which Silvapulle and King (1991) found out performed the
Lagrange multiplier test and an analogous test to Burke et al.’s (1990) asymptotic test.
Using Silvapulle and King’s (1991) APOI tests as benchmarks, the new test was found
to have fairly good size and power properties. Thus the new procedure has considerable
potential, particularly for problems in which the effective null hypothesis parameter

space can be kept small.

In Chapter 5, we investigated the choice of boundary points of the subregions under the

null hypothesis parameter space. In Chapter 4, we used the high size/low size technique

=r
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to determine the boundary points of the snbregions under the null hypothesis parameter
space. This chapter constructed a pseudo power envelope to trace out the maximum
attainable power for a given problem in order to provide a benchmark against which the
new test procedure was cvaluated. This analvsis indicated that without spending a lot of
time on computation to construct the pseudo power envelope, we can get reasonably
close to the best test b} using the high sizelow size technique. Thut is, when we
identified the best test by reference to the pseudo power envelope, we pained only 1.8
percentage points in terms of power improvement over the test constructed ustng the
high size/low size method. The large amount of extra computation required for finding
the best test via a pseudo power envelope does not appear to be justified. Thus, we
conclude that for our proposed new test procedure we can use the high size/low size

technique to choose the boundary points of the subregions of ® with some confidence.

Chapter € investigated the performance of the new test procedure by applying it to
testing for heteroscedastic disturbances in the linear regression model. This is a testing
problem where both the null and alternative hypothesis parameter spaces are one sided
infinite sntervals in contrast to the unit intervals for the probiem of testing MA(1)
disturbances against AR(1) disturbances. Two different sets of non-stochastic variables
were used to investigate the performances of the test procedure. Our results indicate that
for both sets of non-stochastic variables when m = 2, the test performs well with respect
to size conditions and the power properties of the iest arc very acceptable. Also, the
results for z, and w, , when test sizes for m=1 are controlied at A =0 ndicated that
for small saraple sizes, the size and power performance of the test are fairly good but
there is a clear loss of power for the lurger sample size. This indicates that extra

computation for m=2 could be worthwhile. From this viewpoint, we conclude that the
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new test approach can work well for testing problems where both the null and alternative

hypothesis parameter spaces are one-sided infinite intervals.

In Chapter 7, we explored the problem of testing joint MA(1)-MA(4) against joint
AR(1)-AR(4) disturbances in the lineat regression model. As mentioned earlier, the new
test procedure works well for the testing problem of MA(1) disturbances against AR(1)
disturbances; and also for testing heteroscedastic disturbances in the linear rcgression
model. This chapter investigated the performance of the test when it extends to testing
two-dimensional parameter spaces under the null and alternative. The results indicate
that the size and power performances of the test are very good for m=2, when the
samplc size is small. For the larger sample size, the estimated average sizes of the test do
not perform well for m=2, that is, a few calculated sizes fall outside the rejection

probability ranges.

Also, further results for m =2 with heavier weights applied for troubiesome parts of the
null paiameter space indicated that the size properties of the test for the latger sample
size do not perform well. With the heavier weights applied to troublesome parts, the
sizes are controlled for those parts of the parameter space but can be uncontrolled in
other parts of the null parameter space. There was no improvement in the size
performance of the test for m =2 with the heavier weights, perhaps because we did not
follow a system to determine the weights for different parts of the nuil parameter space.
From the resulis of the test for m =3 with 2 = 60, we conclude that the size properties
of the test are close to acceptable and power properties are well behaved. The results
reported for m=3 with n =60, suggest that the extra computation of the test procedure

is well rewarded at least in terms of size properties. As a resuil. we conclude that our
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new test procedure can be made to work for testing problems involving two-dimensional
parameter space models but it is time consuming to apply in practice, and may require

{uture advances in computer technology te make it a feasible test in this case.

The overall recommendation of this thesis is that {he new test procedure has
considerable potential, particularly for problems in which the effective null hypothesis
parameter space can be kept as small as possible. A small sample power comparison
teveals that the new test can be more powerful than various versions of the APOI test
recommended by Silvapulie and King (1991). In situations where 'O and APO! cannot
be constructed for composite null hypothesis testing problem, the new optimal test
procedure can be considered for general testing solution. In this new test approach,
certainly we can use the high size/low size method to choose the boundary points of the
subregions under the null parameter space. As the new test approach works well for a
testing problem when both null and alternative hypothesis parameter spaces are both
one-sided infinite intervals, it is recommended for testing problems when both the nuil
and alternative hypothesis parameter spaces are one-sided infinite intervals. This is
possible because of our transformation of the parameter space used in Chapter 6. The
new test procedure can be applied to two-dimensional parameter space models, the only
limitation is that it is time consuming but in the future, advances in computer technology

could make the test realistic for multi-dimensional parameter space models.

Finally, there are a few areas in which further research could be undertaken. In this
thesis, we applied the new optimal test procedure fo three different composite testing
situations, with encouraging results. Clearly it is of interest to investigate its behaviour

for other testing problems. In our investigations, we only used the standard uniform
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distribution as a weighting function. It would be of interest to investigate the procedure’s

behaviour for other weighting functions.

In this thesis, the new approach was applied to one parameter testing problems wha
both null and alternative hypothesis parameter spaces are the unit interval [0, 1} and the
one-sided infinite interval (0, «0). An obvious question is, can this approach be applied
to testing problems involving hypotheses defined over two-sided infinite intervals, i.e.,
{(~m, ) ? For this, a logistic function might be a useful way to reduce the infinite
mterval to a finite interval {~1, 1]. How well the new approach performs in this case is a
worthy research question. An important issue of the new approach was that of
computation. We took a simple approach to the problem of calculating the value of
various integrals, i.e., a numerical approxtmation method that works for one-dimensional
parameter testing problem. An obvious question is, are there better ways of calculating

these integrals that can reduce computation, particularly for multidimensional problems.

The new approach could also be used for testing a composite nuil against a simple
alternative hypothesis. The new test would maximize power under the simple alternative
subject to control of average size under the null. The robustness of the testing procedure

to non-normal errors is another area that could also be explored.

In summary, this thesis has investigated a new approach to testing composite
hypotheses. The new approach shows considerable promise when testing one

dimensional parameter spaces, but future work is needed to understand its full potential.

i
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