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ERRATA AND ADDENDUM

p. 24 The following paragraph should be inserted immediately following the statement of
the Clifford-McLean theorem for bands (Theorem 1.3.14):
For any band, the relations C and 1Z commute [111, Proposition 2.1.3]. From [111,
Corollary 1.5.12] it follows that V = £of t = fto£ = £ V ft. We remark that these

^ l equalities are fundamental when manipulating V on any band.

\ \ p. 28 Paragraph 1.4.3, Line 7. The sentence:
i4 Leech has shown that the class of quasilattices is a variety [145, Section 1], . . .

should read:
J Laslo and Leech have shown that the class of quasilattices is a variety [145, Section 1],
K • • •

K
y, p. 28 Paragraph 1.4.3, Line 10. The sentence:
^ Leech has also shown that quasilattices satisfy a modified form of the Clifford-
r McLean theorem: ...
ff should read:
w Laslo and Leech have also shown that quasilattices satisfy a modified form of the
B Clifford- McLean theorem: .:.

p. 28 Paragraph 1.4.3, Line 12. The sentence:
" Further information about quasilattices may be found in Leech [145, Sections 1, 2,
* 3, 4 and 6].
? should read:
f Further information about quasilattices may be found in Laslo and Leech [145,
^ Sections 1, 2, 3, 4 and 6].

I p. 28 Paragraph 1.4.4, Line 6. The sentence:
Leech has observed that the class of paralattices is a variety [145, Section 1], . . .
should read:
Laslo and Leech have observed that the class of paralattices is a variety [145, Sec-
tion 1], . . .

p. 31 The following paragraph should be inserted immediately following the statement of
the Clifford-McLean theorem for skew lattices (Theorem 1.4.10):
The Clifford-McLean theorem for skew lattices is also known as the first decompo-
sition theorem for skew lattices in the literature.

p. 60 Identity (1.34) should read:
(^y)-((^(y-^))«o (1.34)

p. 105 Line 4. The sentence:
This is shown in the following result, which may be understood as a kind of a
'Clifford-McLean theorem' for pre-BCK-algebras.
should read:
This is shown by the following 'maximal image' result, which may be understood
as a pre-cursor to a Clifford-McLean theorem for pre-BCK-algebras. In the sequel
we shall in fact see that, under appropriate conditions, Theorem 2.1.14 merges with
the usual assertion of the Clifford-McLean theorem for bands (Theorem 1.3.14).
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2 ERRATA AND ADDENDUM

p. 135 The first two sentences of Paragraph 2.2.16 should read:
2.2.16. Positive Implicative Pre-BCK-Algebras. A positive implicative pre-
BCK-algebra is a pre-BCK-algebra A such that A/H ^ B for some positive implica-
tive BCK-algebra B.

p. 299 The first sentence of Remark 3.3.9 should read:
One-sided non-commutative lattices were introduced by Laslo and Leech in [145,
Section 4] under the name flat non-commutative lattices, in conformance with stan-
dard non-commutative lattice theory terminology.

p. 305 The first sentence of the paragraph immediately following Theorem 3.3.15 should
read:
An upper implicative BCS band is an algebra {A; V,\,0) of type (2,2,0) such that:
(i) the reduct (A; V,0) is an upper band with zero; . . .

p. 306 Identity (3.72) should read:
x\(x\{x V I / V I ) ) B I (3.72)

p. 307 Top line. The statement:
• PQc denote the variety of upper pre-BCK-bands when C = {A, \, 0};

should read:
denote the variety of upper pre-BCK-bands when C = {V, \, 0};

p. 308 The statement of Corollary 3.3.19 should read:
Corollary 3.3.19. Let A€ C. For any A € IQc, the principal subalgebra (O]A
generated by a € A is a Boolean lattice....

p. 309 The statement of Corollary 3.3.20 should read:
Corollary 3.3.20. Let {A, V} C C' and let A € IQC»....

p. 319 The first sentence of the statement of Proposition 3.3.35 should read:
Corollary 3.3.35. For any A € BPc the following assertions hold: ...

p. 320 The proof of Corollary 3.3.36 should be deleted.
Since £ V 1i = V holds for either A or V, Corollary 3.3.36 is an immediate conse-
quence of Corollary 3.3.35, and as such does not require any proof.

p. 328 The statement of Theorem 3.3.49 should read:
Theorem 3.3.49. An algebra A := (A; A, V,/,0) of type (2,2,2,0) is an implicative
BCK <0-BCK local paralattice iff the reduct (A; A, V,0) is a local paralattice with
zero, ...

p. 375 Reference [6] should read:
[6] P. Agliano, Congruence quasi-orederability in subtractive varieties,

J. Austral. Math. Soc. 71 (2001), 421-445.

p. 375 Reference [7] should read:
[7] P. Agliano, Fregean subtractive varieties with definable congruences,

J. Austral. Math. Soc. 71 (2001), 353-366.

p. 387 Reference [145] should read:
[145] G. Laslo and J. Leech, Green's equivalences on noncommutative latt-

ices, Acta Sci. Math. (Szeged) 68 (2002), 501-533.
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Abstract

The class of BCK-algebras (hereafter BCK) is a relatively point-regular quasi-
variety that arises naturally both in algebraic logic and universal algebra. In
algebraic logic, BCK arises as the equivalent algebraic semantics of Meredith's
BCK logic, an important substructural logic with applications to proof theory.
In universal algebra, BCK arises as the class of all residuation subreducts of
partially ordered commutative residuated integral monoids (briefly, pocrims);
the class of pocrims is a quasivariety whose relative subvarieties include the
varieties of hoops and dual Brouwerian semilattices. The class of pre-BCK-
algebras (hereafter PBCK) is a subtractive but not point-regular variety, the
members of which naturally generalise BCK-algebras. The theory of pre-BCK-
algebras and the applications of this theory to universal algebra and algebraic
logic are the subject of this thesis.

Chapter 1 provides a structured account of the theory relevant to the study of
pre-BCK-algebras, including: Laslo and Leech's theory of quasiiattices, par-
alattices and skew lattices; Blok and Pigozzi's hierarchy of varieties with Equa-
tionally Definable Principal Congruences (briefly, EDPC); the theory of BCK-
algebras and BCK-lattices due to Iseki, Idziak and others; Agliano and Ursini's
theory of ideals and subtractive varieties; and the theory of algebraisable and
assertional logics due to Blok, Pigozzi, Raftery and others. The main new
results concern distributivity in skew lattices. A counterexample is presented
showing that the middle distributive identities for skew lattices are indepen-
dent; and a theorem asserting the interderivability of the middle distributive
identities for symmetric skew lattices is stated. The results obtained answer
two questions of Leech.

Chapter 2 is devoted to a study of the theory of pre-BCK-algebras. The
elementary theory of pre-BCK-algebras is considered in Section 1 of Chapter
2. Some results relating PBCK to existing classes of algebras generalising BCK
to the subtractive but not (relatively) point-regular case are presented. In
one of two key results of the section, a 'Clifford-McLean'-type theorem for



pre-BCK-algebras, it is shown that the equivalence S induced by the natural
quasiordering ^ on a pre-BCK-algebra A is a congruence on A such that, the
quotient algebra A/H is the maximal BCK-algebra homomorphic image of A.
For an appropriate notion of ideal, the ideal theory of pre-BCK-algebras is
investigated. The relationship between ideals and congruences on pre-BCK-
algebras is also briefly explored. In the other major result of the section, it
is proved that the assertional logics of the variety of pre-BCK-algebras and
the quasivariety of BCK-algebras coincide, and hence that a quasi-identity
of the form &(j(i)f t iOD t(x) « 0 is satisfied by PBCK iff it satisfied by

i<n

BCK. Collectively, the results indicate that much of the first-order theory of
BCK-algebras extends to pre-BCK-algebras.

Varieties of pre-BCK-algebras are investigated in Section 2 of Chapt ; 2. For
a variety V of BCK-algebras, the natural pre-BCK-algebraic counterpart V3

of V is the class {A e PBCK : A/S = B for some B <E V}. In the main result
of the section, it is shown that the natural pre-BCK-algebraic counterpart of
any variety of BCK-algebras is itself a variety. The varieties of commutative,
positive implicative and implicative BCK-algebras are important classes of
BCK-algebras; their natural pre-BCK-algebraic counterparts are the varieties
of commutative, positive implicative and implicative pre-BCK-algebras respec-
tively. An order-theoretic characterisation of commutative pre-BCK-algebras
is provided, and an ideal-theoretic characterisation of positive implicative pre-
BCK-algebras is presented. For a suitable notion of prime ideal, it is also
shown that an ideal of an implicative pre-BCK-algebra is prime iff it is maxi-
mal iff it is irreducible. The results obtained suggest that, for any variety V of
BCK-algebras, the first-order theory of V3 stands in relation to V as the first-
order theory of pre-BCK-algebras stands in relation to the first-order theory
of BCK-plgebras.

The variety of implicative BCS-algebras, a class of pointed groupoids, is studied
in Section 3 of Chapter 2. It is shown that the variety of implicative BCS-
algebras is a subvariety of the variety of implicative pre-BCK-algebras. Some
examples are presented showing that implicative BCS-algebras arise naturally
in several contexts in universal algebra and algebraic logic, including binary
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discriminator varieties (in particular, pseudocomplemented semilattices) and
fixedpoint discriminator varieties (in particular, certain varieties of n-potent
BCK-algebras). It is shown that an implicative pre-BCK-algebra is an im-
plicative BCS-algebra iff it has a certain left normal band with zero polyno-
mial reduct whose underlying partial ordering respects implicative pre-BCK
difference in a precise sense. A representation theorem is proved showing that
the category of implicative BCS-algebras is isomorphic to the category of left
handed locally Boolean bands for suitable choices of objects and morphisir s.
The subdirectly irreducible implicative BCS-algebras are characterised (with
R. J. Bignall): they are the 2-element implicative BCK-algebra and the alge-
bras B obtained from the non-trivial Boolean algebras B upon replacing the
unit element of each B with a two-element clique. It is shown that the class
of implicative BCK-algebras is generated (as a variety) by a certain 3-element
pre-BCK-algebra B2, and hence that the lattice of varieties of implicative BCS-
algebras is a three-element chain; the only non-trivial subvariety of the variety
of implicative BCS-algebras is the variety of implicative BCK-algebras. Collec-
tively, the results attest that implicative BCS-algebras are a 'non-commutative'
analogue of implicative BCK-algebras, and as such, more closely resemble im-
plicative BCK-algebras than do implicative pre-BCK-algebras.

In Chapter 3 the theory of pre-BCK-algebras is applied to the study of cer-
tain classes of algebras arising naturally in universal algebra and algebraic
logic. In Section 1 of Chapter 3 subtractive varieties with Equ^tionally Defin-
able Principal Ideals (briefly, EDPI) are considered. For subtractive varieties,
equational definability of principal ideals is the ideal-theovetic analogue of
equationally definable principal congruences. It is shown that the variety of
positive implicative pre-BCK-algebras is termwise definitionally equivalent to
the variety of MINI-algebras introduced recently by Agliano and Ursini. A
result is proved showing that a variety V is subtractive with EDPI iff every
A € V has a MINI-algebra polynomial reduct whose ideals coincide with those
of A. A structure theorem for MINI-algebras is also proved: for a suitable
notion of weakly compatible operation, it is shown that a variety is termwise
definitionally equivalent to a variety of MINI-algebras with weakly compatible
operations iff it is subtractive, weakly congruence orderable with EDPI. Sub-

VI
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tractive weak Brouwerian algebras with filter-preserving operations (briefly,
subtractive WBSO varieties) are an important class of subtractive varieties
with EDPI that arise in the first instance from algebraic logic. A natural ex-
ample of a subtractive WBSO variety is the variety of Nelson algebras, which
arises from the algebraisation of constructive logic with strong negation. It is
shown that the variety of Nelson algebras has a commutative (but not regular)
Ternary Deductive term and is congruence permutable. An explicit Quater-
nary Deductive term is also given. The results obtained answer a question of
Blok and Pigozzi.

Binary discriminator and dual binary discriminator varieties are studied in
Section 2 of Chapter 3. The binary discriminator and dual binary discriminator
were recently introduced by Chajda, Halas and Rosenberg in an attempt to
generalise the ternary discriminator and dual ternary discriminator to varieties
with 0 exhibiting congruence permutability and congruence distributivity only
locally at 0 respectively. It is shown that the variety generated by the class of
all algebras (A; h,0), where h is the dual binary discriminator on A and 0 is
a nullary operation, is precisely the variety of left normal bands with zero. A
semigroup-theoretic characterisation of dual binary discriminator varieties is
also provided. It is shown that the variety generated by the class of all algebras
(A; 6,0), where b is the binary discriminator on A and 0 is a nullary operation,
is exactly the variety of implicative BCS-algebras. A natural characterisation
of binary discriminator varieties is presented: a pointed variety is a binary
discriminator variety iff it is subtractive with EDPI and is generated by a
class of ideal simple algebras. Point-regular binary discriminator varieties are
an important subclass of binary discriminator varieties; two results are proved
that together show a point-regular variety is a binary discriminator variety iff
it is a 'pointed' fixedpoint discriminator variety. In the major result of the
section, the 'pointed' fi*edpoint discriminator varieties are characterised: they
are precisely the varieties that are ideal determined, semisimple with EDPC.
Some theorems connecting 'pointed' fixedpoint discriminator varieties with

, pointed ternary discriminator varieties are also presented. The results answer
in part a question of Blok and Pigozzi.

vn



Pre-BCK-algebras structurally enriched with band or skew lattice operations
are studied in Section 3 of Chapter 3. Bands and skew lattices structurally
enriched with difference operations arise naturally in pointed discriminator
varieties as skew Boolean algebras and skew Boolean intersection algebras
(briefly, skew Boolean fl-algebras). Skew Boolean algebras arise as distributive
skew lattices structurally enriched with a relative complementation operation;
skew Boolean H-algebras are skew Boolean algebras for which finite meets exist
with respect to the natural skew lattice partial order. A theory of pre-BCK
bands and pre-BCK quasilattices that parallels Laslo and Leech's theory of
quasilattices is briefly outlined. In one of the two main results of the section,
the skew Boolean algebras are characterised among the pre-BCK quasilattices:
they are precisely the pre-BCK quasilattices for which the quasilattice with
zero reduct is a join symmetric skew lattice with zero and the pre-BCK-algebra
reduct is an implicative BCS-algebra. A theory of <0-BCK bands and <o-
BCK paralattices that parallels Idziak's theory of BCK-sernilattices and BCK-
lattices is briefly outlined. In the other main result of the section, the skew
Boolean D-algebras are characterised among the <o-BCK paralattices: they are
precisely the <o-BCK paralattices for which the paralattice with zero reduct
is a join symmetric local skew lattice with zero and the BCK-algebra reduct
is an implicative BCK-algebra. A theory of double-pointed skew Boolean H-
algebras akin to that of skew Boolean n-algebras is also presented, together
with an axiomatisation of the assertional logic of the variety of (left handed)
double-pointed skew Boolean Pi-algebras. Collectively, the results obtained
intimate that pre-BCK algebras structurally enriched with band or skew lattice
operations may provide a unifying framework for the study of several classes
of 'generalised Boolean structures' arising naturally in universal algebra and
algebraic logic.

In Chapter 4 the research undertaken in this dissertation is briefly reviewed,
and some potential avenues for future research are presented.
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Chapter 1

Introduction

1.1 Introduction

1.1.1. About This Thesis. Beginning with the papers of Krull [143] and
Ward and Dilworth [235] residuated algebraic structures have been the sub-
ject of study for over half a century. Nonetheless, it is only recently that the
residuated algebraic structures associated with logical systems have been se-
riously investigated [34, p. 597], even though residuation in such structures
is typically the algebraic counterpart of implication in the associated logic.
Much of the recent work concerning residuated algebraic structures in logic
has focussed on two related classes of algebras: the class of partially ordered
commutative residuated integral monoids (briefly, pocrims) [109, 176, 39]; and
the class of BCK-algebras [126, 70, 38]. Let (A; <) be a poset such that:
(i) (A; <) is integral in the sense that there exists a least element 0 G A
which acts as an identity element for an order compatible commutative as-
sociative binary multiplication © on A; and (ii) (A; <) is residuated in the
sense that there exists a binary operation — on A such that, for any a, b G A,

a — b = min{c G A' : a < c © &}. Then (A; <) is first-order definition-
ally equivalent to an algebra (A] ©, — ,0) of type (2,2,0); such an algebra
is a pocrim. The class of all pocrims is a quasivariety [121, 123] but is not
a variety [109]. A BCK-algebra is a (—, 0)-subreduct of a pocrim; equiva-
lently, by results of Wronski [242], Ono and Komori [176], Fleischer [90] and
Palasinski [178], an algebra (A; - , 0) of type (2,0) is a BCK-algebra iff the
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following identities and quasi-identity are satisfied:

x-y)-{x~z))-{z-y)ttO

(x-(x — y))~y^O

x — x ?a 0

0 — X^iO

x — y & 0 &; y — i w 0 D i w y,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

The class of all BCK-algebras is thus a quasivariety; it is not a variety [240].
By results of Blok and Pigozzi [31], Blok and Jonsson [28] and Raftery and
van Alten [192] the class of BCK-algebras [pocrims] is termwise definitionally
equivalent to the equivalent algebraic semantics of Meredith's BCK logic [165],
[186, p. 316] [BCK logic with 'fusion' [28]]. BCK logic [with fusion] is an
important substructural logic whirh arises in the first instance from proof
theory; see [80, Section 4] for a discussion and references.

A significant body of work now exists showing pocrims and BCK-algebras play
a central role in the theory of the residuated structures associated with logical
systems (for an extended discussion and references see Blok and Pigozzi [34,
Section 6]). This is most readily seen from the theory of hoops, which are
pocrims that are 'naturally ordered' in the sense that for any a, b € A, a < b

implies there exists c G A such that a (& c = b. The study of hoops and
their residuation subreducts is due variously to Biichi and Owens [48], Fer-
reirim [88], Blok and Pigozzi [34] and Blok and Ferreirim [26, 27] (see also
Bosbach [44, 45, 46]), while the study of hoops with 'normal multiplicative
operators' is due to Blok and Pigozzi [34]. 'Hoop logics' are deductive systems
whose equivalent algebraic semantics are termwise definitionally equivalent to
quasivarieties of (structurally enriched) hoops. Included among the hoop logics
are the classical and intuitionistic sentential calculi; all the normal modal ex-
tensions of classical and intuitionistic propositional logic; the w-valued propo-
sitional calculus of Lukasiewicz [155]; and the logics LBCK and LJ* of Ono
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and Komori [176]. Respectively, the equivalent algebraic semantics of these
deductive systems are termwise definitionally equivalent to: the varieties of
Boolean and Heyting algebras; the varieties of Boolean and Heyting algebras
with 'normal multiplicative operators'; the variety of Wajsberg algebras (see
Font, Rodriguez and Torrens [92], Chang [59] and Mundici [171]); and certain
varieties of residuated lattices (see Blount [43]). See Agliano [5, Section 4.6].

Although the theory of hoops provides a unifying framework for many of the
logical systems and associated classes of algebras traditionally considered the
domain of algebraic logic, there exist important examples of algebraisable de-
ductive systems whose equivalent algebraic semantics are classes of residuated
algebraic structures that are not termwise definitionally equivalent to quasiva-
rieties of (structurally enriched) pocrims or BCK-algebras. For example, linear
logic [97] is algebraisable [3, Section 2.2]; its equivalent algebraic semantics is
termwise definitionally equivalent to the variety of girales, a class of semilattice
ordered residuated monoids that is not a variety of pocrims [5, Section 4.1].
Relevance logic [12] is algebraisable [93]; its equivalent algebraic semantics
is termwise definitionally equivalent to the variety of De Morgan monoids,
also a class of semilattice ordered residuated monoids that is not a variety of
pocrims [5, Section 4.4]. Residuated structures that are not pocrims also arise
naturally in universal algebra. Ordinals closed under addition provide natural
examples of residuated ordered monoids for which the monoid operation is
not commutative [229, Example 1.8]. Ideal lattices of rings (considered with
ideal multiplication and set inclusion) also form residuated ordered monoids
with a non-commutative monoid operation [229, Example 1.7]; notably, lat-
tices of topologising filters on rings with identity [98] may be understood as
such monoids [229, Appendix]. Besides being of independent interest in their
own right, classes of residuated algebraic structures found in universal algebra
are often si. f intrinsic interest from the perspective of algebraic logic in the
sense that they may arise naturally as 'quasivarieties of logic': that is, they
are termwise definitionally equivalent to the equivalent algebraic semantics of
some algebraisable deductive system. See Blok and Raftery [40, Section 5] and
Barbour and R,aftery [16, Section 6].
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Recent developments in algebraic logic and universal algebra have thus lead to
the study of several classes of algebras generalising pocrims and BCK-algebras.
The most prominent of these generalisations is that of pocrims to polrims and
BCK-algebras to BCC- or left residuation algebras. A polrim is a partially or-
dered integral monoid that is residuated on the left; the residuation subreducts
of polrims are the BCC- or left residuation algebras. The classes of polrims
and left residuation algebras are both quasivarieties [229, Proposition 1.4] that
are not varieties [229, Proposition 4.1]. Commutative polrims are precisely the
pocrims, while left residuation algebras satisfying a certain principle of 'quasi-
commutation' are exactly the BCK-algebras [229, Example 1.5]. Polrims and
their residuation subreducts have been investigated by several authors, includ-
ing Komori [138, 139], Ono and Komori [176], Raftery and van Alten [192],
van Alten [229], and van Alten and Raftery [231, 230]. Polrims arise naturally
both in universal algebra and algebraic logic; in particular, the quasivariety of
polrims [left residuation algebras] is termwise definitionally equivalent to the
equivalent algebraic semantics of the {&, Defragment [{Defragment] of the
logic HBCC of O n o and Komori [176]. Other classes of residuated monoids gen-
eralising pocrims and BCK-algebras to have been considered in the literature
include the sircomonoids of Raftery and van Alten [193] and their residua-
tion subreducts, the BCI-algebras of Iseki [122]; and the semilattice ordered
residuated monoids of Agliano [5]. The study of all such monoids is part of
a much larger theory of 'residuals without residuation' pioneered by several
authors including Meyer and Routley [166], Dunn [85, 86], Ursini [223] and
Agliano [5]. Of particular relevance to algebraic logic is Dunn's theory of 'par-
tial gaggles' [86], which seeks to provide a uniform semantical approach to the
study of substructural propositional logics, including: classical and intuition-
istic logic; the various modal and relevance logics; linear logic; BCK logic; and
the Lambek calculus [144]. See also Restall [198, Chapter II].

One principle common to pocrims, BCK-algebras and most of their generalisa-

tions is the existence of a finite set of binary terms {dj(a;, y) : i = 1, . . . , n} and

a (definable) constant 0 such that the following identities and quasi-identity
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are satisfied:

and
\<n

x & y. (1.6)

For example, the set of terms {x — y,y — x} witnesses (1.6) for the quasivariety
of BCK-algebras (and thus for pocrims); this follows immediately from (1.3)
and (1.5). In algebraic terms, satisfaction of the identities and quasi-identity
of (1.6) by a quasivariety K (with a (definable) constant term) is equivalent
to relative point (or 0, if the constant term is specified as 0) regularity. Regu-
larity conditions in universal algebra always demand congruences of algebras
be determined by certain subsets of their universes; in particular, relative 0-
regularity asserts that the K-congruences of any A 6 K are determined by
their 0A-classes. While regularity conditions in universal algebra are well un-
derstood (see for instance [74, 89,104, 78]), the metalogical significance of such
conditions has been less clear. Recently the status of these conditions in alge-
braic logic has been clarified by Blok and Raftery [40], who have shown that
a quasivariety K is a 'quasivariety of logic' precisely when the K-congruences
of members of K are determined by suitably defined subsets of their universes.
In logical terms, therefore, relative point regularity is a sufficient condition for
a quasivariety to be a 'quasivariety of logic'; further, although not necessary,
the condition of relative point regularity is satisfied by most familiar classes of
algebras arising as the equivalent algebraic semantics of some algebraisable de-
ductive system. Blok and Raftery's result has very recently engendered some
interest in regularity conditions for algebraic logic, both syntactically (Blok
and La Falce [25]) and from the perspective of full regularity (Barbour and
Raftery [16]).

Perhaps because of the centrality of regularity conditions to algebraic logic,
classes of algebras that are not relatively point regular but which naturally
generalise pocrims, BCK-algebras or related structures in some sense have
not been previously investigated in algebraic logic to any significant degree,
bar two exceptions. The first of these exceptions is a certain variety V of
algebras considered by Blok and Raftery in [38, Section 4] and by Agliano
and Ursini in [10] (to within termwise definitional equivalence); members of V
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(V-algebras) naturally generalise BCK-algebras but are not in general point
regular. The role played by V-algebras in the theory of BCK-algebras has been
briefly considered by Blok and Raftery in [38, Section 4]. In particular, Blok
and Raftery have shown [38, Proposition 2, Theorem 8] that a certain 3-element
algebra B2 G V, though not itself a BCK-algebra, plays an important role in
the theory of BCK-algebras. The second exception is the variety of MINI-
algebras considered by Agliano and Ursini in [11]. MINI-algebras naturally
generalise positive implicative BCK-algebras (the (— , O)-subreducts of dual
Brouwerian semi lattices, or, equivalently, hoops satisfying x © x « x) but are
not in general point regular. Results due to Agliano and Ursini show MINI-
algebras play a fundamental role in the theory of subtractive varieties with
equationally definable principal ideals: see in particular [11, Corollary 3.8].
Collectively, the work of Blok and Raftery and Agliano and Ursini suggests
that an appropriate generalisation of BCK-algebras that subsumes both Blok
and Raftery's variety V and Agliano and Ursini's variety of MINI-algebras (up
to termwise definitional equivalence) may be of interest in algebraic logic.

Call an algebra (A; — , 0) of type (2,0) a pre-BCK-algebra iff it satisfies the

identities (1.1)—(1.4) and the identity:

x — x. (1.7)

The identity (1.7) in conjunction with (1.3) ensures that the variety of pre-
BCK-algebras is subtractive in the sense of Agliano and Ursini [222,10, 9,11,
225] and hence that the variety of pre-BCK-algebras contains both Blok and
Raftery's variety V and Agliano and Ursini's variety of MINI-algebras (up to
terr^wise definitional equivalence). Since pre-BCK-algebras do not in general
satisfy the quasi-identity (1.5), binary terms di(x,y) satisfying (1.6) need not

exist, whence the variety of pre-BCK-algebras is not 0-regular. On the other
hand, by a result of Iseki [126, Theorem 2] the class of all BCK-algebras
satisfies (1.7), and so is a subquasivariety of the variety of pre-BCK-algebras.
Thus the variety of pre-BCK-algebras may be understood as a generalisation of
BCK-algebras to the non-relatively point regular case that subsumes both the
variety V of Blok and Raftery and (to within termwise definitional equivalence)
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the variety of MINI-algebras of Agliano and Ursini. In this thesis we offer
and explore the theory of pre-BCK-algebras as a generalisation of the theory
of BCK-algebras to the non-relatively point regular case. In particular, our
program is to investigate the elementary theory of the variety of pre-BCK-
algebras and some of its subvarieties, and to apply this theory to the study of
some varieties arising naturally in universal algebra and algebraic logic.

Remark 1.1.2. Two fundamental restrictions are imposed on the scope of
the work presented in this thesis. First, our study of pre-BCK-algebras does
not extend to a study of quasivarieties of pre-BCK-algebras (with the obvious
exception of the class of BCK-algebras), despite the fact that quasivarieties are
the natural algebraic counterparts of algebraisable logics in the sense that the
equivalent algebraic semantics of an algebraisable logic can always be. taken
to be a quasivariety. The rationale behind this (admittedly artificial) restric-
tion is that the theory of subtractive varieties, which plays an important role
in our investigation of the variety of pre-BCK-algebras and its subvarieties,
does not extend well to quasivarieties: see for instance Blok and Raftery [40,
p. 181, Example 7.2] or van Alten [229, pp. 71-72]. Second, our study of pre-
BCK-algebras does not extend to a study of algebras naturally generalising
pocrims in some sense but which fail to be relatively point-regular. While the
role played by residuated ordered monoids in universal algebra and algebraic
logic is an important motivation for the work undertaken in this thesis, it is
not yet clear what form such a generalisation of these monoids should take,
or even if such a generalisation of these monoids is of any intrinsic interest:
cf. Higgs [109, p. 72] and the remarks of §4.2.1. a

1.1.3. Organisation. This dissertation is organised as follows. In an at-
tempt to keep this thesis self-contained, in the remainder of this chapter we
introduce some notation and terminology and review those parts of universal
algebra and algebraic logic pertinent to the study of pre-BCK-algebras; includ-
ing: the theory of bands; Leech's theory of non-commutative and skew lattices,
the theory of varieties with equationally definable principal congruences due to
Blok, Kohler and Pigozzi; the theory of BCK-algebras and BCK-laUices due
to Iseki, Tahaka, Idziak and others; Agliano and Ursini's theory of ideals and
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subtractive varieties in universal algebra; and the theory of assertional and
algebraisable logics due to Blok, Pigozzi and Raftery. Our survey is leisurely:
we take the opportunity to present the occasional new result and example,
and generally to tidy up some loose ends. Chapter 2 is devoted to the study
proper of the theory of pre-BCK-algebras. Adopting the approach of Iseki and
Tanaka's survey paper of BCK-algebras [126], we show the elementary theory
of pre-BCK-algebras closely parallels thai, of BCK-algebras. In Chapter 3 we
apply the theory of pre-BCK-algebras to three important classes of algebras
arising naturally in algebraic logic and universal algebra, namely: subtractive
varieties with equationally definable principal ideals; binary discriminator va-
rieties; and pointed ternary discriminator varieties. In Chapter 4 we briefly
review the work undertaken in this thesis and make some suggestions for future
work.

1.2 Notation and Terminology

In this section we fix some of the fundamental notation used throughout
this thesis and introduce some terminology of universal algebra and algebraic
logic. For notation and terminology not explicitly introduced either here or
in the sequel we generally follow Burris and Sankappanavar [55] or Blok and
Pigozzi [36].

1.2.1. Ordered Sets. A quasiorder (also preorder in the literature) is a
reflexive transitive relation. A quasiordered set is a pair {A; z$) where A is a
set and ^ is a quasiorder. Let (A] <) be a quasiordered set. For B C A and
a € A we define:

[B] := {b G A : b ̂  a for some a <E £} , (a] := ({a}]

[B) :={bEA:a^b for some a G B], [a) := [{a}).

The set (a] is called the principal (order) ideal generated by a in (A] •<). A
subset B of A is said to be hereditary in {A\ ^) if B = (B). An element
m G A is minimal [maximal] if m < a [a •< m] for any a G A. Observe that
minimal and maximal elements of a quasiordered set need not be unique in



m

1.2. Notation and Terminology

general. A minimal element [maximal element] of a quasiordered set (A\ <)

is called a least element [greatest element] if it is unique. Let B C A. An

element c G A is a lower bound [upper bound] of B if c •< b [b •< c] for all

b £ B. An element d G A is a greatest lower bound [least upper bound] of B

if d is a lower bound [upper bound] of B and c -< d [d •< c] for any lower

bound [upper bound] c of B. Observe that greatest lower and least upper

bounds of B need not be unique in general. The set of greatest lower [least

upper] bounds of B is denoted gib B [lub B], For B := {a i , . . . , an} the set

gib B [lub B] is alternatively denoted gib {a i , . . . , an} [lub {a i , . . . , on}]. Given

elements a, b of a quasiordered set (.4; ^ ) with a •< 6, the interval [a, b] is the

set {c G A : a ^ c <̂ 6}.

A partial order is a reflexive, symmetric and transitive relation. A partially

ordered set is a pair (A] <), where A is a set and < is a partial order. We

abbreviate the term 'partially ordered set' by poset The following lemma is

folklore.

Lemma 1.2.2. [196, Theorem I§5.2] Let (A; :<) be a quasiordered set and

let S be the binary relation defined by:

a3b iff a ^ b and b •< a

for any a,b G A. Then 5 is an equivalence relation on A. Moreover, the

binary relation < defined on A/3 by:

[ o ] s < [ 6 ] s iff a l b

for any [a]s, [b]z G A/E with a,b G A is a partial ordering on A/E.

Lemma 1.2.3. Let {A;' ^ ) be a quasiordered set and let E be the equivalence

relation on A induced by ^ in the sense of Lemma 1.2.2, The following state-

ments hold for any a, b G A:

1. If d\ G A is a greatest lower bound of {a, b} and a\Ed\ for a\. G A, then

a\ is also a greatest lower bound of {a, b};

2. If d\, d2 G A are both greatest lower bounds of {a, b}, then d\ E a\.

-A,
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Proof. For (1), let d\ € A be a greatest lower bound of {a, b} and suppose

a\ S d\ for a\ 6 A Since d2 •< d\% a\ is a lower bound of {a, 6}. If c € 4̂ is a

lower bound of {a, &}, then c ^ d\ •< a\ since di is a greatest lower bound of

{a, b}. Thus do, is also a greatest lower bound of {a, b}. For (2), let d\, d2£ A

be greatest lower bounds of {a, b}. Since d\ is a lower bound of {a, b} and d2

is a greatest lower bound of {a, 6} we have d\ •< d2) likewise we have d^< d\.

Thus d\ S Gfe as required. •

Let (A; :<) be a quasiordered set. The proper part of ^ , denoted -<, is defined

as •< but not E. A subset B of A is called a cKgwe of S if B2 C S. Let

(i4; <) be a poset. A quasiorder •< on A is said to be admissible if, for all

a, b € A, a < 6 implies a < b. Further details concerning quasiorderings and

partial orderings may be found in Wechler [236, pp. 31-35] and Cleave [61,

Chapter 5§5-6].

1.2.4. Languages.1 We fix a countably infinite set X of variables for use

throughout this thesis. In an algebraic [logical] context, we usually write

x, y, z,... [p, q,r,...] for metavariables ranging over X. In the sequel we

confine our attention to algebraic languages unless otherwise stated. Thus

a language C consists of a set £ of function symbols together with an ar-

ity function ar that assigns a natural number to each function symbol in C.

By abuse of notation we often identify a language C with its set of function

symbols £, while by abuse of language we sometimes describe an (algebraic)

language as a type. Given a language C, in an algebraic context the members

of X and C are called individual variables and operation symbols respectively,

while in a logical context the members of X and C arc respectively referred to

as propositional variables and logical connectives. The term or formula alge-

bra of type C over X, denoted T/;(X) or Fm£, is the absolutely free algebra

of type C over X. In an algebraic context elements s, t, u, v,... of Xc(X)

are called C-terms, while in a logical context elements cp, ip, x, • • • of Fni£ are

called C-formulas. An C-substitution is an endomorphism of the formula alge-

bra1 over C\ notice that an jC-substitution a may be identified with its restric-

tion to X by the universal mapping property [55, Lemma II§10.6]. We often

1The material in this subsection is adapted from van Alten [229, Chapter 0].
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drop the prefix C from the phrases X-substitution', X-term' and '^-formula'

when £ is understood.

1.2.5. Universal Algebra. Algebras are denoted A, B, C, . . . and their re-

spective universes are denoted ^4,5, C, An algebra A is trivial if |J4| = 1

and non-trivial otherwise. Classes of algebras are denoted K, V, — Through-
out this thesis we make standard use of the algebraic class operators I, H, S, P,
Ps (for subdirect products) and Pu (for ultraproducts). For a class K of simi-
lar algebras, we write V(K) for the variety HSP(K) generated by K [55, The-
orem II§9.5] and Q(K) for the quasivariety ISPPU(K) generated by K [102];
recall Q(K) = ISP(K) when K is finite. We also write KFIN for the subclass of
finite algebras of K and Ksi for the subclass of subdirectly irreducible members
of K.

Let A be a set. The set of equivalence relations on A is denoted Eq(A) and the
lattice of equivalence relations on A is denoted Eq(j4). The set of all partitions
of A is denoted II(i4) and the lattice of all partitions of A is denoted II(-A).
For IT £ H(A) let 0(ir) := {(a, b) G A2 : {a, b] C B for some B G ?r}. By [55,
Theorem I§4.11] 11(̂ 4) is isomorphic to Eq(A) under the mapping TT H-> 9(TT)

(TT eli(A)). Let 6 G Eq(A). We write variously a9b\ a = b(mod6) and a =o b

for (a, b) G 0. For every a G A, we denote the equivalence class of a modulo 6

by [a]9. We denote the quotient set by A/9. The identity relation on A is
denoted Wyi-and the universal relation Ax A is denoted i&.

The set of congruences on an algebra A is denoted Con A and the lattice
of congruences on A is denoted Con A. For B C i 2 , the congruence on A
generated by B is denoted GA(5). For a, 6 G A we abbreviate 0A({(a, 6)})
by OA(a, b). The identity congruence on A is denoted wA and the universal
congruence A x A is denoted i&-

Let K be a class of similar algebras and let A G K. A constant term of A or K

is any nullary or constant unary term function, or, less precisely, the element

of A (or of each member of K) that constitutes the range of such a function [34,

p. 551]. A constant is a nullary fundamental operation. We say A is with 0

if 0 is a constant term of A. We say K is with 0 if 0 is a constant term of K.
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We say K is pointed if it is with 0 for some constant term 0; observe that a

pointed class may have more than one constant term.

Let A be an algebra. Elements a, 6 G A ai- said to be residually distinct if

they have distinct images in every non-trivial homomorphic image of A; in

symbols, 0A(a , b) — L& [34, p. 551]. We say A is with {0,1} if A has constant

terms 0 and 1 such that 0A and 1 A are residually distinct. We say a class K

of similar algebras is with {Q, 1} if K has constant terms 0 and 1 such that 0A

and 1 A are residually distinct in any non-trivial member A of K. We say K

is double-pointed if it is with {0,1} for some constant terms 0 and 1; notice

that a double-pointed class may have more than two constant terms. Observe

that any variety V with 0 may be associated with a class V+ with {0,1} upon

adjoining a new nullary operation symbol 1 to the language of V and defining:

V+ := {(A; 1) : A G V and 0<A; 1), 1<A; 2> G A are residually distinct}

where (A; 1) is the algebra obtained from A by enriching the signature of A

with the nullary operation symbol 1 whose interpretation is a fixed element

1 G A. V+ is called the generic double-pointed expansion of V. In certain cir-

cumstances V+ is always guaranteed to be a variety: see Blok and Pigozzi [34,

p. 551] for details.

Let A be an algebra with 0. We say A is 0-regular if [0]̂  = [0]^ implies

9 — (f> for all 9,cf) G Con A. A variety V with 0 is 0-regular if every A G V

is 0-regular. V is said to be point regular if it is 0-regular for some constant

term 0. V is strongly 0-regular if V is 0-regular and, for any A G V, every

compact congruence of A is principal [181, p. 483]. V is strongly point regular

if it is strongly 0-fegular for some constant term 0.

Proposit ion 1.2.6. [17, Lemma 14.10]; [104, Corollary 1.7] Let V be a

variety with 0. V «'s 0-regular iff there exist binary terms d\,..., dn o/V such

that the identities:

0, Ki<n

m ifei
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I?

and the quasi-identity:

) y) « 0 & . . . & dn(.T, y) w 0 a;

/ioW m V.

Let K be a quasivariety an 5 [sit A £ K. A congruence 6? on A is called a

K-congruence if A/0 e K. The set of all K-congruences on A is denoted

; notice ConK A = Con A if K is a variety. When ordered by inclusion

gives rise to an algebraic lattice ConK A [38, p. 633]. We say A is K-

subdirectly irreducible if A has a minimal non-trivial K-congruence. By a result

of Mal'cev [156], every algebra B 6 K ic isomorphic to a subdirect product of

K-subdirectly irreducible members of K (that are homomorphic images of B).

We say A is K-congruence distributive if ConK A is a distributive lattice;

K is called K-congruence distributive if every member of K is K-congruence

distributive. We say A has the K-congruence extension property if for any

B G S(A) and any K-congruence 9 of B, there is a K-congruence 0 of A such

that (f)C\(B x B) = 9. We say K has the K-congruence extension property if

every member of K has the K-congruence extension property. Suppose A is

with 0. A is called K-O-regular if [0]Q = [0]^ implies 9 = $ for all 9, <fi G ConK A;

K is said to be K-O-regular if every member of K is K-O-regular.

Let V be a variety, let A 6 V and let K C V be a fixed subquasivariety

of V. A congruence 9 on A is called a V/K-congruence if A/9 € K. The

set of all V/K-congruences on A is denoted Cony/KA and yields an alge-

braic lattice Conv/KA under inclusion [88, Section 4.2.1, p. 80]. We say A

is V/K-congruence distributive if Conv/K A is a distributive lattice; V is V/K-

congruence distributive if every member of V is V/K-congruence distributive.

We say A has the V/K-congruence extension property if for any B 6 S(A)

and any V/K-congruence 9 of B, there is a V/K-congruence 0 of A such that

0D(J5 x B) = 9; V has the V/K-congruence extension property if every member

of V has the V/K-congruence extension property. Suppose A is with 0. A is

called V/K-O-regular if [0]e = [0]^ implies 9 = (f> for all 9, <j) G Cony/K A; V is

said to be V/K-O-regular if every member of V is V/K-O-regular.
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Remark 1.2.7. Let K be a class of similar algebras and let A := (A\ • • •)
be an algebra of the same type. In some recent literature in algebraic lo^ic
a 'relative congruence' is a congruence 9 G Con A such that A/9 G K: see
for instance Blok and Raftery [38] or Ferreirim [88]. Although this notion of
'relative congruence'' clearly subsumes both the notion of K-congruence and the
notion of V/K-congruence as defined above, we explicitly distinguish between
K- and V/K-congruences for the sake of clarity in the sequel. •

Theorem 1.2.8 (Principle of the Maximal V/K-Homomorphic Image).
(cf. [62, Proposition 1.7]) Let V be a variety, let A E V and let K C V be a

fixed subquasivariety of V. Then the intersection p of all V/K-congruences on A

exists and is a V/K-congruence. Thus A/p is the maximal V/K-homomorphic
image of A in the sense that A/p G K; and every other homomorphic image B
of A such that B G K is a homomorphic image of A/p.

Proof. Let V, A and K be as in the statement of the theorem. Since the V/K-
congruences of A are closed under arbitrary intersection the intersection p of
all V/K-congruences of A exists and is itself a V/K-congruence. Let B be any
homomorphic image of A such that B G K. By the homomorphism theorem
[55, Theorem II§6.12], B £ A/0 for some 9 G Con A. By hypothesis, A/9 G K.
Thus 9 is a V/K-congruence, and so p C 0 by definition of p. But then A/p

is a homomorphic image of A/9 (by [55, Theorem II§6.8; Exercise II§6.6]), so
A/p is a homomorphic image of B. •

Let V be a variety, let A G V and let K C V be a fixed subquasivariety
of V. Remark 1.2.7 notwithstanding, we invariably describe the maximal V/K-
homomorphic image of A as the maximal K-homomorphic image of A, in
keeping with the spirit of the existing literature: see for instance Clifford and
Preston [62, p. 18].

1.2.9. Algebraic Logic.2 Let £ be a language. A pair (r, </?), where F

is a finite set of £-formulas and (p is an £-formula, is called an (inference)

rule (over £). An axiom is an inference rule of the form (0, ip); we invariably
identify an axiom (0, tp) with the £-formula tp. Let Ax U Ir be a set of axioms

2The material in this subsection is adapted from van Alten [229, Chapter 0].
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and inference rules over £ and let A U {ip} C Fm^. A derivation ofip from A

(with respect to AxUlr) is a non-empty finite sequence <pi,..., (pn of £-formulas

such that ipn = ip and for i = 1 , . . . , n, one of the following conditions holds:

(i) (pi 6 Z\; (ii) <pi is a substitution instance of an axiom; or (iii) there exists an

inference rule (F, x) of ^ ^ U Ir and a substitution or such that </?; = cr(x) and

a(i>) G {y?i,..., ipi-i} for each u G T . A deductive or Hilbert system § (over £)

is a pair (£, hs) where the binary relation h s: P(Fm£) -> Fm£ is defined by

F h s (/? iff y? is derivable from T with respect to i4x U Ir. The relation h s

is called the consequence relation of S, and a deductive system is sometimes

identified with its consequence relation. Typical examples of deductive systems

include CPC, the classical propositional calculus, and IPC, the intuitionistic

propositional calculus.

Let S be a deductive system over a language £ determined by a set Ax U Ir

of axioms and inference rules. The set Ax U Ir is called an axiomatisation

of § and the axioms and inference rules in Ax U Ir are called the axioms and

inference rules of S, respectively. Clearly a Hilbert system may have more

than one axiomatisation. A Hilbert system for which there exists a finite

axiomatisation is said to be finitely axiomatisable. For an inference rule (f, ip)

of S, we usually write F h s ip\ we also write h s ip for 0 h§ (p. An £-formula ip

for which h§ tp is called a theorem of S. We adopt the following conventions

concerning sets of £-formulas F, A and £-formulas v?i,..., <pn) ip:

tpu...,(pn)rsil> abbreviates {(pu.. .,cpn} h s ip;

F,ip\-§ip abbreviates F U {y>} h § ip;

F h s A abbreviates F hg ip for all (p e A;

F Hh§ A abbreviates F h s A and A h§ F.

For sets of £-formulas Fi,...,Fn,A and £-formulas ipu...}tpn,i>, we also

write:

> * l

A h rn
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as shorthand notation for Ti h§ tpx and ... and Fn Hs tpn implies A h s ^'; by

abuse of language we call such a metalogical implication a rule of §.

Let S be a deductive system over a language C. For any <p,ip € Fni£ and

F, A C Fm£, the consequence relation h s is easily seen to satisfy the following

three conditions:

1. </? G F implies F h§ <p\

2. rhg</9 and F C A implies A h s <p\

3. F h§ (p and A hs ^ for each ip e F implies Z\ h s (p.

Moreover, h§ is finitary in the sense that:

4. F h§ (p implies A h§ (p for some finite A C F\

and l-§ is also structural in the sense that:

5. F \~s<p implies a[F] hg cr((p) for every substitution cr G S.

Conversely, the Los-Suszko theorem [153] (see also [238, Chapter 3§2]) asserts
that every relation between sets of /^-formulas and ^-formulas satisfying con-
ditions (l)-(5) above is the consequence relation of some Hilbert system §
over £. Without loss of generality, therefore, a deductive system \£, hs) may
be defined as a relation hs: PfFm^) -> Fni£ satisfying (l)-(5) above; defining
axioms and inference rules need not be assumed. The above remarks notwith-
standing, for binary £-formulas A, V, —>•, A, a unary £-formula -> and an n-ary
logical connective w of £, we identify and earmark the following rules for use
in the sequel [238, Section 2.3.1]:

(AD)

(SP)

(AT)

p , Q h* P A (Adjunction)

(Simplification)

(Addition)

"I1.* ^ \"
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x
(SM)

(MP)

(DT)

(CN)

h

<p
r i-

(Summation)

(Modus Ponens)

(Deduction Rule)

(Contradiction)

(Weak Reductio ad Absurdum)

(Reflexivity)

(Symmetry)

(Transitivity)

(A-Detachment)

(R)

(S)

(T)

(A-MP)

(CP-w) if

(•ca-Compatibility)

A binary £-formula A [V; -»] is a conjunction [disjunction; conditional] for § if
the entailments (AD) and (SP) [(AT) and (SM); (MP) and (DT)] are satisfied
by S. A binary £-formula A is called a G-ideniity for S if the the entailments
(R), (S), (T), (A-MP) and (CP-tu) (for every n-ary logical connective w € £)
are satisfied by S. A unary £-formuia -i i s a weak negation for § if the
entailments (CN) and (RAj) are satisfied by S. Given a conjunction A and a
conditional —> for S,'a biconditional for S is the derived connective:

p -H- q := (p -> q) A (q -> p).

Let § be a deductive system over a language £. An extension of § is any

system S' := (£, hg,) over the same language such that F h s (p implies F hg, tp

•:;:•:;•; I
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for all F U {<p} C Fm£. §' is said to be axiomatic if it obtained by adjoining

new axioms to § only (that is, if the inference rules of S are left fixed). For

a sublanguage £' C £, let h§, denote the restriction of h§ to £' in the sense

that P hs, ip iff F h s <p and P U {ip} C Fni£». The resulting deductive system

S' := (£' ,K,) is called the £'-fragment of S.

1.3 Bands, Monoids and Semilattices

Various classes of bands, monoids and semilattices play an important role in

this thesis. Here we briefly review and summarise some of the theory of these

classes that ill be needed in the sequel,

1.3.1. Semigroups. A groupoid is an algebra {A; •) of type (2). A groupoid

whose operation is associative is a semigroup. The binary operation • of a

semigroup (A; •) is called multiplication] given a, b G A, the multiplication

a-bis (informally) written ab if the context is clear. Given a semigroup (A\ •)

and Oi,. . . , an G A, the product aia^- • • an is defined inductively by:

if n = 1

fln-i)an otherwise.

An easy proof by induction [103, Proposition I§2.1] shows this definition of

product has an unambiguous meaning.

Example 1.3.2. [87, Section 2] On any non-empty set A two semigroups can

always be constructed, viz.:

1. The left zero semigroup A^ on A, with multiplication a -AL b :— a for

any a,b Z A; and

2. The right zero semigroup A# on A, with multiplication a -AR b := b for

any a,b G A .

A semigroup with zero (4; •) is a semigroup with an element 0 such that

aO = 0 = 0a for all a e A; the element 0 is called the zero of (A; •). A

K-J,.'®;:S.d
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semigroup with identity is defined dually. By abuse of language and notation

we will often confuse a semigroup with zero A with the algebra {Ay -,0)

obtained from A by enriching the type of A with a new nullary operation

symbol 0 whose canonical interpretation on {A; -,0) is 0 G A, where 0 is

the zero of A. Like remarks apply concerning semigroups with identity. It is

always possible to adjoin a zero to a semigroup (A; •). Let 0 £ A and define:

a -° b :=
a • b if a, b G A

0 otherwise.

The resulting algebra (A U {0}; -°) is a semigroup with zero and is called a

semigroup with a zero adjoined.

1.3.3. Polrims and Pocrims. A monoid is a semigroup with identity. Let

(A; ©, 0) be a monoid whose identity element 0 is the least element of a partial

order < o n A, compatible with the binary operation © in the sense that a < b

implies both a © c < b © c and c © a < c 0 b for any a,b,c G A. If for every

a, b G A there is a least element c (denoted a — b and called the (left) residual

of a and b) of A such that a < c © 6, then the algebra A := (A; ©, — , 0) is a

partially ordered left residuated integral monoid (briefly, polrim) [38, pp. 81-

82], [229, p. 16]. Polrims arise naturally in algebraic logic and have been con-

sidered by Raftery and van Alten [192] and van Alten [229] among others. A

partially ordered commutative residuated integral monoid, or pocrim for short,

is a polrim (A; ©, — , 0) whose monoid operation is commutative [229, Exam-

ple 1.5]. Pocrims also arise naturally in algebraic logic and have been studied

by several authors, including Blok and Raftery [39], Fleischer [90], Higgs [109]

and Iseki [123]. See also Bosbach [45], Ono and Komori [176], Raftery and van

Alten [192] and-van Alten [22;):.

1.3.4. Dually Relatively Pseudocomplemented Semilattices. A join

or upper semilattice is a poset (A] <) for which lub{a, b} exists for all a, b G A.

Let {A; V,0) be an arbitrary join semilattice with least element and let

a, b G A. Recall that the dual relative pseudocomplement a * b of b with

respect to a is (if it exists) the unique element of A satisfying a < b V c
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iff a * b < c for al l c G A [38, E x a m p l e I I ] . If a * b ex i s t s for all a , b e A ,

then (A\ V, 0) is said to be dually relatively pseudocomplemented. In the case

where the operation of dual relative pseudocomplementation is distinguished,

the resulting algebra (A; V, *,0) is called a dual Brouwerian semilattice [129,

Definition III§4.1]. Dually relatively pseudocomplemented semilattices were

introduced (in dually isomorphic form) by Birkhoff in [23, pp. 147-149], while

dual Brouwerian semilattices have been studied by Kohler in [135] and by

Nemitz [175] in dually isomorphic form under the name implicative semilat-

tices. A result of Blok and Pigozzi shows that the class of dual Brouwerian

semilattices is precisely the class of all pocrims for which the monoid oper-

ation is idempotent [34, Corollary 1.23] (see also Cornish [67] and Blok and

Raftery [39, p. 294]). It is folklore that the lattice of varieties of dual Brouw-

erian semilattices has a unique atom [39, p. 295], namely the class of all dual

Brouwerian semilattices A such that A f= x * (y * x) « x: in this case the

semilattice ordering on A is a lattice ordering and a* bis the complement of b

in the interval [0, a V b] for any a, b G A. Thus the unique atom in the lattice

of varieties of dual Brouwerian semilattices is termwise definitionally equiva-

lent to the variety GBA of generalised Boolean algebras, namely the class of

all relatively complemented distributive lattices with zero in which the oper-

ations of zero and relative complementation are distinguished. For notational

purposes, from this point forth we will always denote the operation of relative

complementation in a generalised Boolean algebra by a/b.

An algebra {A; A, V, 0) of type (2,2,0) is called a dually relatively pseudocom-

plemented lattice if: (i) the reduct (A; A, V) is a lattice; and (ii) the reduct

{A; V, 0) is dually relatively pseudocomplemented. A dual Brouwerian lattice

is an algebra (A; A, V, *, 0) of type (2, 2,2,0) such that the reduct {A; A, V, 0)

is a lattice1 with zero and the reduct (A; V, *, 0) is a dual Brouwerian semi-

lattice. Such a lattice is always distributive: see Curry [75, Theorem 4§C5].

Dual Brouwerian lattices have been studied extensively in the literature: see

for instance McKinsey and Tarski [161, 162] where they are studied in dually

isomorphic form under the name Brouwerian lattices.

1.3.5. Pseudocomplemented Semilattices. A meet or lower semilattice
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is a poset (A) <) for which glb{o, 6} exists for all a, b € A. Let (̂ 4; A, 0) be a

meet semilattice with zero. An element a* G A is called a pseudocomplernent

of a € A if a A a* = 0, and a A b = 0 implies 6 < a* [101, p. 58]. An

element can have at most one pseudocomplement. An algebra {A] A, *,0) of

type (2,1,0) is called a pseudocomplemented semilattice if the reduct (A; A, 0}

is a meet semilattice with aero and for any a G A, the pseudocomplement

of a exists and is a*; observe this definition implies any pseudocomplemented

semilattice has a greatest element 1 := 0* with respect to the underlying semi-

lattice order. Pseudocomplemented semilattices have been studied by several

authors, including Prink [96], Jones [128] and Ribenboim [200], to whom the

following theorem is due.

Theorem 1.3.6. [200] An algebra (A; A, *, 0) of type (2,1,0) is a pseudocom-

plemented semilattice iff the reduct {A; A, 0) is a meet semilattice with zero

and the following identities are satisfied:

x A a;* « 0

x A (x A y)* £

z A 0* « re

0** « 0.

x A y*

(1.8)

(1.9)

(1.10)

(1.11)

Thus the class PCSL of pseudocomplemented semilattices is a variety.

Let B := (B\ A, V,', G, 1) be a non-trivial Boolean algebra with least element 0

and unit element 1. Let B := B I) {m} where a < m for all a € B. Then

(B] <) is a meet semilattice with zero. Moreover, B is pseudocomplemented:

for any b e B,

m if b = 0

b' itbeB,

0 if b = m.

m ^

We denote the resulting pseudocomplemented semilattice by B.

Theorem 1.3.7. [128, Theorem /.2] A non-trivial pseudocomplemented semi
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lattice is subdirectly irreducible iff it is isomorphic to B for some Boolean al-

gebra B.

Theorem 1.3.8. [128, Theorem 11.1] The class of pseudocomplemented semi-

lattices is generated (as a variety) by the 3-element chain 3 (considered as a

pseudocomplemented semilattice).

Corollary 1.3.9. [128, Theorem 11.1] The lattice of varieties of pseudocom-

plemented semilattices is a 3-element chain. The only non-trivial subvariety of

the variety of pseudocomplemented semilattices is the class {A G PCSL : A \=

x** ~ x}, and this class is termwise definitionally equivalent to the variety of

Boolean algebras.

Let A be a pseudocomplemented semilattice. The skeleton S(A) of A is the

set {a* : a G A} and the dense set D(A) of A is t';e set {a G A : a* = 0}. The

following properties of S(A) and D(A) are essentially well known [14, p. 153],

[101, p. 59]: (i) {0,1} C S(A); (ii) 1 G D(A); (iii) a G S(A) iff a = a** for any

a G A] and (iv) a,b €. S(A) implies a A b G S(A).

Theorem 1.3.10 (Glivenko-Frink Theorem). [IGl, Theorem i§6.4] Let A

be a pseudocomplemented semilattice with skeleton S(A). Then the underlying

partial ordering of A partially orders S(A) and makes S(A) into a Booleari

lattice, For a,b £ S(A) we have a A b G S(A), and the join in S(A) is

described by:

aV b = (a* A b*)*.

An algebra (A; A,V, *,0) of type (2,2,1,0) is called a distributive lattice with

pseudocomplementation if: (i) the reduct (A; A,V) is a distributive lattice;

and (ii) the reduct {A] A,*,0) is a pseudocomplemented semilattice. Clearly

the class DLPC of all distributive lattices with pseudocomplementation is a va-

riety. Distributive lattices with pseudocomplementation have been extensively

studied by many authors; standard references include Gratzer [101, Chapter 3]

and Balbes and Dwinger [14, Chapter VIII].

1.3.11. Bands. An element e of a semigroup (A; •) is an idempotent if

e2 = e; (A; •) is an idempotent semigroup, or a band, if all its elements are



1.3. Bands, Monoids and Semilattices 23

idempotent. The study of bands dates back to the 1950s and the papers of

Kimura [133, 134], McLean [163], and Yamada and Kimura [244]. A detailed

development of the theory of bands may be found in Petrich [180, Chapter II];

see also Howie [111, Sections 4.4-4.6].

Example 1.3.12. (c/. [Il l , Theorem 1.1.3]) A semigroup (A] •) satisfying

aba = a for any a, b G A is called a rectangular band. Rectangular bands are

precisely the bands satisfying the identity x-y • z « x-z. Any such semigroup

is isomorphic to a semigroup of the form (B x C; •), where B and C are

non-empty sets and multiplication on B x C is defined as:

(61,c1)(62,c2) := (&i,c2)

for any 61? b2 € B and ci, c2 6 C. The name 'rectangular' stems from this last

property: if (&i, Ci) and (62, c2) are construed as vertices of a rectangle in the

Cartesian plane, the products (&i, Ci)(5o. e2) = (61, C2) and (62, c2)(&i, c\) =

(62, c{) comprise the remaining two vertices of the rectangle. •

Let (A] -) be a band. The Green's quasiorders on (A; •) are the relations <c,

<K and •<•£> defined respectively by [208, Section 0]:

a ^£ b iff ab = a, a <-ji b iff 6a = a, a <v b iff aba = 0

for any a, 6 6 A; these relations are all proper quasiorderings. Each of the

relations <-^ and •<£ is contained in -<T>, and -<t> is called the natural qua-

siordering [208, Proposition 1]. In the sequel we write simply •< for •<?> if there

is no danger of confusion. The relation <-« defined on {A\ •) by:

0 b iff a and b iff ab = a = 6a

for any o,i 6 i 'is the natural partial order [103, Proposition II§1.1]; it is

properly a partial ordering and is denoted by < hereafter if the context is

clear. The following lemma is folklore.

Lemma 1.3.13. For a band A := (A; •) and a fixed a G A the following

assertions hold:

< : • , . , , •: . , , ' S
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1. (a] = {c : c < a} = aAa (for aAa := {ada : d G A});

2. (a] is a subuniverse of A;

3. The. principal subalgebra (a] := ((a]; -Al(<»]̂  generated by a is a monoid.

Proof. For (1), let b G aAa. Then b = ada for some d G A, whence a(ada) =

ada = (ada)a. Thus ada < a, and b = ada e {c : c < a}. Conversely, let

b G {c : c < a}. Then b < a, whence b = bb = abba = aba G aAa. Thus

= {c : c < a}. Items (2) and (3) now follow trivially. •

The Green's relations £, TZ and D o n a band (A; •) are the symmetric parts
of the Green's quasiorders, namely [208, Section 0]:

C := {(a, b) \ a <cb and b ̂ c a}j

TZ := {(a, 6) : a ^-^ 6 and 6 <TI a},

X> := {(a, 6) : a^ b and 6 ^ a}.

Each of £, TZ and X> is an equivalence relation. Note that since < is a partial

ordering, no non-trivial equivalence is induced by < on a band.

Theorem 1.3.14 (Clifford-McLean Theorem). [Ill, Theorem 44.1]Each

V-class of a band A is a maximal rectangular subalgebra of A. Moreover, the

equivalence V is a congruence on A which induces the maximal semilattice

homomorphic image A/V of A.

1.3.15. . Left [Right] Normal Bands. A band is called regular if it sat-
isfies the identity x-y-x-z-x^x-y-z-x. For a band A, the following

are equivalent [180, Proposition II.3.6], [133, Theorem 4, Corollary 4]: (i) A is

regular; (ii) the relations C and 1Z are congruences on A; (iii) A decomposes

uniquely to within isomorphism as the fibre product A/C xAfx>A/TZ. A band

is normal if the identity x-y-z-xtax-z-y-x holds, and a normal band is

regular [244, Lemma 1]. The following lemma is folklore.

Lemma 1.3.16. For any band A and a, 6, c, G A, the following are equivalent:

1. A is normal;
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2. For any a G A, the principal subalgebra (a] generated by a is a semilat-

tice;

S. If a < b then ac < be and ca < cb.

Proof (1) =>• (2) Let a £ A and let b, c G (a]. Since the principal sub-

algebra (a] is a monoid with identity a (by Lemma 1.3.13(3)), we deduce

be = abca = acba = cb by normality.

(2) => (3) Let a < b and let c G A. Since bob < b and beb < b we deduce

bcac = bc(bab)c = (bcb)(bab)c = (bab)(bcb)c = a(bcb)c = (ab)cbc = aebe

by (2). But aebe = (ab)cbc = a(bc)bc — a(bc) = (ab)c = ac and so ac < be.

The inclusion ca < cb is handled similarly.

(3) =^ (l) Assume (3) holds and notice this is equivalent to the implication:

a < c and b < d implies ab < cd (1.12)

for any a, 6, c, d G A. Let a,b,c G A. Prom (1.12), acba < a and abca < abca

we have acba = acba(abca)acba < a(abca)a = a6ca, just because acbaVabca.

Similarly, abca < acba so acba = a&ca follows. •

A band with zero A is locally Boolean if for every a G A the principal subalge-

bra (a] is a Boolean lattice with respect to the natural partial ordering; notice

this implies A is normal by Lemma 1.3.16. The following useful technical

result is due-to the author and the author's Ph.D. supervisor.

Lemma 1.3.17. Let A be a locally Boolean band. Then A/V is the maximal

semilaUice with zero homomorphic image of A. Moreover, every principal

order ideal of A/V is a Boolean sublattice of A/V under the semilaUice partial

ordering, so A/V is locally Boolean.

Proof By the Clifford-McLean theorem, A/V is the maximal semilattice with

zero homomorphic image of A. Denote by v the canonical epimorphism map-

ping A onto A/V. If B is a subsemilattice of A then it is immediate from

the definition of V that the restriction of v to B is one-to-one and is thus an

isomorphism from B onto u\B], the image of B under v.
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Let now / be a principal order ideal of A/V. Then / is generated by some ele-

ment [b]t> £ A/V where b is some element of A. For any such element b let (6]

be the principal subalgebra of A that it generates. Since (6] is a subsemilattice

of A, (&] is isomorphic to &*[(&]], and hence v[(b]] is a Boolean lattice. But

[c]v e !/[(&]] iff [c]v e {v{b)]AfD iff [c]v <A/V [b]v, so u[(b}] = / , which

completes the proof. •

A band is left regular [right regular] if the identity x-y-x & x-y [x-y-x & y-x]is

satisfied. For a band A, the following are equivalent [180, Proposition II.3.12]:

(i) A is left regular [right regular]; (ii) £ = V \R = V\. Trivially a left regular

[right regular] band is regular. A band is left normal [right normal] if the

identity x • y • z « x • z • y [x • y • z « y • x • z] is satisfied. Clearly a left

normal [right normal] band is both normal and left regular [right regular] [244,

Lemma 1]. The variety InB of left normal bands has been studied by several

authors in the literature, including Vagner [227] and Schein [203], to whom the

following theorem is due.

Theorem 1.3.18. [203] Up to isomorphism, the only subdirectly irreducible

left normal bands are 2, 2^ and 3L, where 2 is the one element semilattice

with a zero adjoined, 2^ is the left normal band on {a, b} and 3^ is the band

2i with a zero adjoined. In symbols, InBsi = {2 ,2 i ,3 i} .

In the statement of the following corollary and in the sequel lnB0 denotes the

variety of left normal bands with zero.

Corollary 1.3.19. Up to isomorphism, the only subdirectly irreducible left

normal bands with zero are 2 and 3/,. In symbols, lnBOsi = {2, 3^}.

Proof. Let (A; -,0) be a subdirectly irreducible left normal band with zero.

Its band reduct {A\ •) must also be subdirectly irreducible, since (A; -,0) and

(A; •) have the same congruences. Hence (̂ 4; •) must be either 2 or 3^. •

Example 1.3.20. Let Ln := (L; -,0) be an algebra of cardinality n + 1

equipped with a distinguished element 0 and a binary operation • defined by:

o 6 : =
0 if b = 0

a otherwise
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for any a, b € L. Then Ln is a left normal band with zero whose only In-

equivalence classes are {0} and L — {0}. For every 0 / s 6 £, therefore,

(a] is a two element Boolean lattice. Hence Ln is locally Boolean and (by

Lemma 1.3.17) Ln/X> is isomorphic to 2, the one element semilattice with a

zero adjoined. •

1.4 Skew Boolean Algebras and Discriminator

Varieties

Discriminator varieties have been called 'the most successful generalisation of

Boolean algebras to date, successful because we obtain Boolean product rep-

resentations' [55, .Chapter IV§9, p. 186]. Skew Boolean fl-algebras are a class

of structurally enriched non-commutative lattices that enjoy deep connections

with (pointed) discriminator varieties. We briefly review some of these con-

nections in this section.

1.4.1. Non-commutative Lattices. Recall from [145] that a double band

is an algebra (A; A, V) of type (2,2) such 'hat the reducts (A; A) and (A; V)
are bands; given the associativity of the operations A and V we omit paren-
theses in the sequel where no ambiguity can arise. In view of the remarks
of §1.3.11, on any double band (A; A, V) there arise eight Green's quasiorder-
ings: the four quasiorderings ^ ; A ) , z^ ; A > , d© ; A> and <^ ;A> on {A; A);
and the four quasiorderings d ^ , ^ ; V > , d^5V> and <^ ;V> on (A\ V). A
non-commutative lattice is a double band (A] A, V) for which at least one of
the quasiorders induced by the operation V is dual to one of the quasiorders
induced by the operation A in the sense that a ^ ; A* b iff b ^^'V^ a for
£i,£/2 £ {£,7?., X>,%}; this definition is implicit in Leech [145, Section 1].

Remark 1.4.2. Traditionally, a non-commutative iattice has been understood
as an algebra (4; A, V) of type (2,2) whose idempotent and associative oper-
ations A and V satisfy certain absorption identities. Non-commutative lattices
in this sense have a long history and have been studied by many authors; see
the survey paper of Leech [150, Section 0] for details. Our motivation for de-
parting from this tradition stems from lattice theory: if (-A; A, V) is a lattice,
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then each of the operations induces a. partial oidering on A that dualises the

other [145, Section 1]. For a further discussion and justification of the study

of non-commutative lattices in the sense of this thesis, see [150, Section 0]

and [145, Section 1]. • •

In this thesis we shall be exclusively concerned with three particular classes

of non-commutative lattices: quasiiattices, paralattices and (above all) skew

lattices.

1.4.3. Quasiiattices. A qua.silat.tice is a double band (A; A,V) such that

the quasiorder -<v' and the quasiorder ^ ' ' dualise in the sense that

a 'A> b iff b a for any a, b € A [145, Section 1]. In view of this

duality we work solely with the quasiorder -<\y'A' in the sequel; to simplify

notation we write simply a •< b for a ^ ' A ' b for any a, b 6 A when no

confusion can exist. The relation < is called the natural quasilattice quasiorder

(cf. [149, Section 3.8]). Leech has shown that the class of quasiiattices is a

variety [145, Section 1], axiomatised relative to the variety of double bands

by the identities xA(yVxVy)Ax?ax and y V (x A y A re) V y « y.

Leech has also shown that quasiiattices satisfy a modified form of the CliiTord-

McLean theorem: every quasilattice is a lattice of its maximal rectangular

subalgebras [145, Corollary 3]. Farther information about quasiiattices may

be found in Leech [145, Sections 1, 2, 3, 4 and 6].

1.4.4. Paralatt ices. A double band {̂ 4; A,V) for which the partial or-

ders <$f'A) and < i* v> dualise in the sense that a < ^ ; A> b iff b < ^ ; v ) a for

any a, b € A is called a paralattice [145, Section 1]. In view of this duality we

work solely with the partial order < ^ ; A' in the sequel, simply writing a < b

for a <^4> A' b when no confusion can arise. The relatk n < is called the natural

paralattice partial order] see [146, Section 1.1]. Leech has observed that the

class of paralattices is a variety [145, Section 1], axiomatised relative to the va-

riety of double bands by the identities x A (x V y V x) & x & (x \/ y V x) A x

and x V (x A y A x) & x & (x A y A x) V x. A further study of paralattices

may be found in [145, Sections 1, 5 and 6].

1.4.5. Skew Lattices. A shiw lattice [A] A, V) is a double band such that
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^ A > dualises *%''v) and ^ A> dualises ^ V) in the sense that a ^ A> b

iff 6 ^^ ; V > a and a ^ ; A > 6 iff b •<%'v> a for any a, 6 € A [145, Section 1].

For any skew lattice these absorption dualities are equivalent to the following

absorption identities [146, Section 1.1]:

x A (x V y)

x V (x A y)

(y V x) A x

(y A x) V £

x

x

(1.13)

(1.14)

(1.15)

(1.16)

It follows that the class of skew lattices is a variety [146, Theorem 1.2]. Prom

the obvious equational axiomatisation for the variety of skew lattices it is clear

that any skev/ lattice A := (A; A,V) is self-dual in the sense that it is closed

under three distinct dualisations, viz.:

1. The horizontal dual: Ah :— (A; Ah,Vh), where a Ah b : - b A a and

a\/h b := 6 V a, for any a, b G A;

2. The vertical dual: A" := (A\ AV,VV), where a A" b := a V 6 and

aVv b :-- a A 6, for any a, 6 G A;

3. The dou&fe : Ad := A*".

For convenience, when we refer in the sequel to skew lattice duality, we will

mean any of the three distinct dualisations cited above.

Example 1.4.6. [146, Section 1.1] Lattices provide an immediate example of

a class of skew lattices, since every lattice is clearly a skew lattice satisfying

the additional identities x V y « y V x and x A y & y A x. •

Example 1.4.7. ([146, Section 1.4]; cf. [87, Section 2]) A class c-f skew

lattices distinct from lattices is the class of rectangular skew lattices. Let L

and R be non-empty sets and let D := L x R be their Cartesian product.

Define the operations A and V for any a,b e L and a', b' G R as follows:

(a,b)A(a',b'):=(a,b')

(a,b)W(a',b'):=(a',b)
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A sequence of easy checks confirms that the algebra (D; A, V) is a skew lattice.

Lemma 1.4.8. (cf. [145, Section lj) Any skew lattice (A; A,V) is a par-

alattice. That is, the partial orders <ru'
A' and <Sn'

v' dualise in the sense that

a <{u A> biffb < # ; v> a for any o, b e A.

Proof. Let A be a skew lattice and a, b € A. Suppose a < ^ b. Then

bVa = bV (b A a) = b by (1.14). Moreover, a V i = (a A i) V ft =

b by (1.16). Thus b <^ ; V > a. Similarly b <^ ; V > a implies a <^1;A> 6

using (1.13) and (1.15). •

Lemma 1.4.9. (cf. [145, Section 2j) Any skew lattice (A] A, V) is a quasi-

lattice. That is, the quasiorders -<^v '
A' and •<)-,'v' dualise in the sense that

a <v'%A) b iffb ^ v ) a-for any a,beA.

Proof. Let A be a skew lattice and a, b € A. Suppose a -<)£' b. Observe

this implies:

b A o = (a A (b A a)) V (b A a)

= a V (6 A a)

and hence that:

b V a = (6 V a) A ((b V a) V (6 A a))

= (6 V a) A (b V (a V (b A a)))

= (b V a) A (b V (b A a))

= {b V a) A b

Therefore we conclude: ,

i V a V J = (J V o) V 6

= ({b V a) A b) V b

by (1.16)

as a 'A>

by (1.13)

by (1.17)

by (1.14).

by (1.18)

by (1.16)

(1.17)

(1.18)
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and so b ^ ' v ) a. Similarly b ^ V > a implies a <%'A> b by s k e w lattice

duality. •

The Green's relations £, % and D o n a skew lattice (A] A, V) are the symmetric

parts of the Green's quasiorders, namely:

£ := C{A'A) = rtA'v> := {(a, b) : a <c b and b <c a}

11 : = n{A> A> = C{A>v> := {(a , b) : a ̂  b and 6 ^ a }

V i^vV't =V{A''W) := {{a,b) : a ̂  6 and 6 < a}

for any a,b e A, where ^ A ) ^ ^ ; A> a n d ^ ^ A ) ^(A;w)^n(A;v) a n d

denote the various Green's relations on the reduct (̂ 4; A) [(^4; V)] [150, Sec-

tion 1.3]. In the sequel the Green's relation P o n a skew lattice is called

equivalence [146, Section 1.6].

Theorem 1.4.10 (Clifford-McLean Theorem for Skew Lattices). [146,

Theorem 1.7] Let A be a skew lattice. Then equivalence as defined above is

a congruence relation. The V-equivalence classes are the maximal rectangular

subalgebras of A, while the quotient algebra A/V is the maximal lattice homo-

morphic image of A. For all a,b G A, the following conditions are equivalent:

1. aVb;

2. a A b A a = a and b A a A b = b;

3. a A b = b V a.

A skew lattice (̂ 4; A, V) is said to be left handed if the reduct (A; A) is left

regular; right handed skew lattices are defined dually.

Theorem 1.4.11 (Second Decomposition Theorem for Skew Lattices).

[146, Theorem 1.15] Let A be a skew lattice. Then A is regular. That is, A

satisfies the identities:

xAyAxAzAxttxAyAzAx
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Thus C is a congruence on A, and AR := A/C is the maximal right handed

image of A. Dually, 7£ is a congruence and Ai := A/7£ is the maximal left

handed image of A. Finally, the following commuting diagram forms a pullback

of skew lattices:

AR

I*
A/V

•R.

Skew lattices were introduced by Leech in a 1989 study [146] of bands of

idempotents in rings. Let A := (A; +, •) be a ring. For any a, b G A, define

the derived operations A and V by a A b := a-b and a V b := a+6 — (a•&). Let

E(A) denote the set of idempotents of A. If B C E(A) is closed under both A

and V as defined above, then (B; A,V) is a skew lattice [146, Theorem 2.6].

Even more is true: every multiplicative band in E(A) that is maximal with

respect to being right regular is a skew lattice [146, Theorem 3.2]. Since their

introduction skew lattices have been studied by a number of authors, including

Bignall and Leech [19], Leech [146, 147, 148, 150, 145], and Spinks [210, 212].

1.4.12. Skew Lattices with Zero. Let A be a skew lattice. A maximal

element of A is an element m such that a A m A a = a, or, equivalently,

a ^ m for all a G A. When they exist maximal elements form an equivalence

class under V called the maximal class [147, Section 1.4]. Minimal elements

of A and the minimal class are defined dually. A skew lattice with zero is a

skew lattice (4; A,V) for which there exists 0 G A (the zero of (A; A,V))

such that 0 is the least element under the natural skew lattice partial order;

a skew lattice with identity is defined dually. For any skew lattice A the

following are equivalent: (i) A is a skew lattice with zero; (ii) for all a € A,

oA0 = 0 = 0 A i ; (iii) for all a € A, a V 0 = a = 0 V a; (iv) A has a unique

minimal element. By abuse of language and notation we will often identify a

skew lattice with zero A := (A; A,V> with the algebra (A\ A,V,0) obtained

from A by enriching the language of A with a new nullary operation symbol 0

whose canonical interpretation on (A; A, V, 0) is 0 € A, where 0 is the zero of
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A; like remarks apply for skew lattices with identity. The following lemma is

immediate.

L e m m a 1.4.13. Let (A] A, 0) [(A; A, V, 0)7 be a band with zero [skew lattice

with zero]. Then 0 •< a for all a £ A, and a V 0 iff a = 0. Thus for any

elements a,b,c G A, if a A c = 0 then a A b A c = 0.

1.4.14. Left Handed [Right Handed] Skew Lattices. Let A be a skew

lattice and a, 6 G A. By [146, Section 1.13], [150, Section 1.5] and [210,

Section 3.3] the following are equivalent: (i) A is left handed; (ii) V = £; (iii)

A^xAyAxmxAy and A ( = i V y V 2 ; « j / V i ; (iv) if aVb then

a A b = a and a V b = 6; (v) A [= a; A (?/ V re) « re and A (= (re A y) V re « a;.

Clearly left handed [right handed] skew lattices form a variety. To within

isomorphism every skew lattice uniquely decomposes as the fibred product of

a right handed skew lattice with a left handed skew lattice over a common

underlying maximal lattice homomorphic image [146, Corollary 1.16]: this

is an immediate consequence of Theorem 1.4.11. See also [150, Section 1.5,

Theorem 1.6].

1.4.15. Symmetric Skew Lattices. A skew lattice A is called meet sym-

metric if fl V 6 = 6 V a implies a A b = b A a for any a, b G A. For a

skew lattice A, the following are equivalent [210, Section 3.5]: (i) A is meet

symmetric; (ii) A\=xAyA(xVy\/x)&(xVy\/x)AyAx; (iii)

A J= x A y A (x V y) « (y V re) A (y A x). A skew lattice A is called

join symmetric if a A b = b A a implies a V b = b V a for any a, b G A.

For a skew lattice A, the following are equivalent [210, Section 3.5]: (i) A is

join symmetric; (ii) A |= i V y V ( i A y A i ) » ( i A y A i ) V y V i ;

(iii) A |= x V y V (re A y) « (y A x) V y V x. Meet symmetry for an

arbitrary skew lattice does not imply join symmetry, nor conversely; see [210,

Section 3.5] for details. A skew lattice is symmetric if it is both meet symmet-

ric and join symmetric. For a skew lattice A the following are equivalent [146,

Proposition 2.3, Theorem 2.4]: (i) A is symmetric; (ii) A is biconditionally

commutative (that is, aV b = bV a iff a Ab = b A a) [146, Section 2,3]; (iii)

the subalgebra B generated from any non-empty, element-wise A-commuting
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subset B of A is a sublattice. The motivation for the study of symmetric skew

lattices comes from skew lattices in rings, which are symmetric—see [I46, Sec-

tion 2] and [150, Section 2] for details.

1.4.16. Local Skew Lattices. A skew lattice {A; A, V) is said to be local

when its reduct (A; A) is normal. For a skew lattice A, the following are

equivalent: (i) A is local; (ii) A\=xAyAzAx&xAzAyAx\ (iii)

the natural skew lattice partial order is preserved under meets; (iv) for all

a € A, the principal subalgebra (a] generated by a is a sublattice. Local skew

lattices have been studied under the name normal skew lattices by Leech [148]

in conformance with standard semigroup terminology; see also [147, Section 2].

A version of the following lemma is asserted without proof in [148].

Lemma 1.4.17. (cf. [148, Section 2.1]) A local skew lattice is meet symmet-

ric. Thus a local skew lattice is symmetric iff it is join symmetric.

Proof. Let A be a local skew lattice and let a, b € A. For the first statement

it is sufficient in view of the remarks of §1.4.15 to show a V b = & V a implies

a A b — b A a. So suppose a V b = b V a. We have:

a A b = ((b V a) A a) A (b A (b V a))

= ((a V b) A a) A (b A (a V b))

= ((a V b) A b) A (a A (a V b))

= b A a

by (1.15) and (1.13)

since a V b — b V a

by normality

by (1.15) and (1.13).

Thus A is meet symmetric. The second statement now follows trivially. •

As with symmetric skew lattices, the study of normal skew lattices is motivated

by the study of skew lattices in rings: every maximal normal band of idempo-

tents in a ring forms a normal skew lattice which is the full set of idempotents

in the subring it generates [148, p. 1], [147, Theorem 2.2].

1.4.18. Distributive Skew Lattices. There are several different notions

of distributivity for skew lattices in the literature. In this thesis a skew lattice

is distributive if it satisfies the following middle distributive identities [150,
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Section 2.5]:

x A (y y z) A x tt (x A y A x) y (x A z A x)

x V (y A z) V x « (a; V j / V a;) A (a; V z V a;).

(1.19)

(1.20)

By Theorem 2.8 of Leech [146] skew lattices arising in rings satisfy the iden-

tities (1.19)—(1.20): this provides the motivation for the study of distributive

skew lattices. Since their introduction distributive skew lattices have been

studied in a number of contexts; see for instance [150, Section 0.5] and [152,

pp. 13 ff]. In [148, Section 2] Leech gave a range of conditions under which the

middle distributivity identities are equivalent for skew lattices, and in [150,

Section 2.5] posed tLe following problem: Are the identities (1.19) and (3.20)

equivalent for skew lattices, as they are for lattices? The following nine ele-

ment counterexample, found using the model generating program SEM [246],

answers this question in the negative.

Example 1.4.19. The clauses:

x A (y A z) « (x A y) A z

x V (y V z) « (a; V y) V z

x A (a; V y) « x

x V (a; A y) « x

(y V a;) A x « x

(y A a;) V x w x

x A (y V z) A x « (a; A y A a;) V (a: A z A x)

Ay (B A C) V Afi{AV By A) A (A V C V A)

have the following model:
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a

(8.c)

d}

Figure 1.1. (a): The skew lattice of Example 1.4.19; (b) Its maximal lattice
homomorphic image.

Model (found by SEM 1.7).
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A := a; B := 6; C := c. "

The skew lattice of Example 1.4.19 is depicted in Figure l.l(a); its maxi-

mal lattice homomorphic image is illustrated in Figure l.l(b). In the Hasse

diagram of Figure l.l(a) the unbroken lines depict the natural skew lattice

partial ordering, while the broken horizontal lines connect elements lying in

• ' • " ' • . V '
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the same non-trivial clique (that is, elements lying in the same non-trivial V-

class); we remark that we adopt these diagramming conventions without fur-
ther comment in the sequel in relation to the depiction of bands, (structurally
enriched) skew lattices, and more generally any algebra with an underlying
partial order and an underlying admissible quasiorder. The X>-classes form
the cliques in Figure l.l(b); from Figure 1.1 (b) it is evident that there are
three non-trivial X>-classes {&,/}, {#, c} and {e, d}, and three trivial classes
{1}, {a} and {0}. Since X>-equivalent elements i and j satisfy % A j = j

and i V j — i, the example is right handed. It follows that the entire skew
lattice is determined from P-equivalence and the natural partial ordering. In
particular, 0 is the zero element since i A 0 = 0 = 0 A i. Similarly 1 is
the identity element since 1 v i = l = i V I holds. In general, calculations
of meets and joins in a skew lattice is trivial if either: (i) the elements in-
volved are comparable; or (ii) the involved meet or join classes are trivial. A
fully general account of how non-trivial meets and joins are determined from
the geometric structure of a skew lattice is given in [150]. With respect to
the non-trivial cases involving {6,/}, {g, c} and the meet class {e,d}, the
situation is as follows. Since e < b,g and d < f, c, the meets i A g = e
and i A c = d obtain for i € {&,/}, and i A b = e and i A / = d for
i e {g, c}. Thus it is apparent that (1.19) holds, but A V (B A C) V A = /
[ft (AV B V A) A {AV C V A) = b for (A,B,C) G { (a , b, c) , (a, e, c )}
and A V {B A C) V A = b iff (A V B V A) A (A V C V A) = / for

(A,B,C)e{(a,d,g),(aJ,g)}.

In addition to the counterexample given above, SEM was subsequently able to
exhibit a further three non-isomorphic nine element counterexamples satisfying
either (1.19) or (1.20) but not both. These remaining counterexamples arise by
skew lattice duality in the following manner. Let T denote the skew lattice of
Example 1.4.19. Then Th is a left handed skew lattice with the same diagram
as that of Figure 1.1 (a). Likewise Tv and Td both share a distinct diagram,
which is the result of 'flipping' the illustration of Figure 1.1 (a) across the bfgc

axis. This diagram is used to determine a unique left handed structure T"
and a unique right handed structure Td. All four skew lattices have the same
maximal lattice image as that given in Figure 1.1 (b).

"•- <• A A
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Theorem 1.4.20. The four skew lattices T, Tft, T" and Td form a complete

set of counterexamples of minimal order showing that for the skew lattice iden-

tities, neither (1.19) nor (1.20) implies the other. This set of counterexamples

has the property that any one member is sufficient to generate the remaining

three.

Proof. The first statement of the theorem obtains because the search per-

formed by SEM is exhaustive, no models of order 8 or less were found during

its search, and no other models of order 9 distinct from T, Th, Tv and Td

exist. The second statement follows upon observing that if T' is any dual of T,

then the set of duals of T and the set of duals of T' coincide. •

Neither the skew lattice of Example 1.4.19 nor any of its duals are symmet-
ric. This observation has lead Leech to ask [151]: Are the identities (1.19)
and (1.20) equivalent for symmetric skew lattices? The following theorem of
the author answers this question. The long proof obtained using the automated
theorem prover OTTER [158] is omitted, but may be found in [210].

Theorem 1.4.21. [210, Section 3.1J; [212, Theorem 2.3] For a symmetric

skew lattice A, the following are equivalent:

1. A (= x V (y A z) V x « (a; V y V x) A (a; V z V a:);

2. A (= x A (y V z) A x « (x A y A x) V (a; A z A x).

For symmetrical local skew lattices the situation in relation to distributivity

is even more pleasing, as the following theorem of Leech [150] shows.

Proposition 1.4.22. [150, Theorem 3.2] For a local skew lattice A, the

following are equivalent:

1. For each a € A, the sublattice (a) is distributive;
i

2. The maximal lattice homomorphic image A/V is distributive;

3. A (= x V (y A z) V x « (a; V y V x) A (a; V z V x);

4- A\=xA(y\/z)Axtt(xAy/\x)V(xAzAx).
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y+x x+y+x y+x+y x+y

x(y+x) y(x+y)

yx

u:=(x+y)x(y+x)
v:=(y+x)y(x+y)

Figure 1.2. The free symmetric local skew lattice with zero on two free gener-
ators x, ~y.

Moreover, the skew lattice subvariety of local skew lattices that are both sym-

metric and distributive is characterised by the identities:

x A (y V z) « (x A y) V (x A z)

(x V y) A z « (x A z) V (y A z).

(1.21)

(1.22)

Example 1.4.23. Let 2 be the one-element semilattice with a zero adjoined,

let R denote the right handed rectangular skew lattice on {a, b} and let L de-

note its left handed dual. Let S : = L x R x 2 x 2 . Upon adjoining a zero to S

we obtain (by [149, Theorem 4.10]) a skew lattice isomorphic to F(z,]/), the

free symmetric local skew lattice with zero on two free generators x,~y: see Fig-

ure 1.2. (For notational reasons, the free generators of, ~y are denoted simply by

x, y in the'diagram (and like remarks apply to products of x, ?/); also sum (+)

and product (juxtaposition) notation is used in the figure instead of the famil-

iar symbols V and A for join and meet respectively.) From Proposition 1.4.22

we may conclude that F(af,17) is distributive, simply because F(af,17)/X> is the

free distributive lattice with zero on two free generators. It follows from these

remarks that F(af, ?/) coincides with the free distributive symmetric local skew

lattice on two free generators. In contrast, the free symmetric skew lattice on

two free generators is infinite: see Leech [149, Theorem 4.12]. •
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Throughout the remainder of this section, all skew lattices of interest are dis-

tributive symmetric local skew lattices with zero.

1.4.24. Skew Boolean Algebras. A skew lattice A is called locally Boolean

if: (i) it is symmetric; (ii) it has a zero; and (iii) each principal subalgebra (a]

generated by a G A is a Boolean lattice [150, Section 3.1]. Prom the remarks

of §1.4.16 and Proposition 1.4.22 it is clear that any locally Boolean skew lat-

tice is distributive symmetric local. The following result, which is folklore,

properly characterises the locally Boolean skew lattices among the distributive

symmetric local skew lattices; the proof is due to the author and the author's

Ph.D. supervisor.

Proposition 1.4.25. (cf [65, Proposition 2.3]) Let A be a distributive sym-

metric local skew lattice with zero. The following are equivalent:

1. A is locally Boolean;

2. A/V is a relatively complemented distributive lattice with zero;

3. For all a,b G A there is a unique c G A such that (a A&A a) V c = a

and c A (a A b A a) = 0;

4- A has relative complements: if b < a, then b has a unique complement

in (a].

Proof. (1) => (2) Suppose A is locally Boolean. By previous remarks and

Lemma 1.3.17, A/V is a distributive lattice with zero in which every principal

order ideal is a Boolean lattice under the semilattice partial ordering. This

is sufficient to guarantee A/V is relatively complemented: see Cornish and

Hickman [72] or Cornish [64].

(2) => (3) Suppose A/V is a relatively complemented distributive lattices with

zero. To simplify notation we write a" for the equivalence class [a]p in A/V

containing-a G A. In A/V we have that ~a A b is complemented in the interval

from 0 to "a, so there is a "w < ~a such that wAft = 0 and a A b V W = ~a. In

view of these remarks we have:

= "o A "a A ~a
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= a" A ((a A b) V To) A a

= ( a A o A 6 A a ) v ( a A i A a )

= aAbAaVaAwAa.

by middle distributivity

Thus a = ( o A 6 A a ) V c (mod £>), where c = a A w A a. By the Clifford

Mc-Lean theorem,

a —a A ((a A b A a) V c) A a

= (a A (a A & A a) A a) V (a A c A a)

= (a A 6 A a) V (a A (a A w A a) A a)

= (a A b A a) V (a A w A a)

= (a A b A a) V c.

On the other hand, from iu A b — 0 we have:

0 = a A 0 A a

=aAwAbAa

= (a Aw A a) A (a A b A a)

= c A (a A b A a).

by middle distributivity

by Lemma 1.4.13

by regularity

To see c is unique, suppose (a A b A a) V c\ = a = (a A b A a) V Oi while

a A & A a A c i = 0 and a A & A a A c 2 = 0. We have:

Also,

a A c\ = ((a A b A a) V ci) A Ci

= (a A & A a A Ci) V (ci A

= 0V ci

by (1.22)

a A ci = ((a A b A a) V c2) A

.•it
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(a A 6 A a A cj) V (C2 A

0 V (c2 A

c2 A q.

by (1.22)

Similarly, C2 A a = c2 and c2 A a = c2 A c\. Thus1 ci = a A Ci = c2 A c\ =

c2 A a = c2, completing the proof.

(3) =$>• ( 4 ) S u p p o s e b < a. T h e n b A a = b = a A b , w h e n c e a A b A a = b.

Since a is clearly the maximal element of the sublattice (a], by (3) we have

that c is the unique complement of 6 in (a].

(4) =>• (1) Let a G A and let b G (a]. Then b < a, and by (4) there is a unique

complement of b in (a]. •

Let A be a locally Boolean skew lattice. The standard difference of a, 6 € A

is a\&, the complement of a A b A a in (a] [19, Definition 3.1]. A skew

Boolean algebra is an algebra (A] V, A, \ , 0) of type (2,2,2,0) that satisfies all

the identities determining distributive symmetric local skew lattices with zero,

together with the identities [19, Definition 3.1]:

{x\y) V (x A y A x) « x

(;.j; A y A x) V (x\y) w a;

{x\y) A (x A y A x) w 0

(x A y A x) A (x\y) « 0.

(1.23)

(1.24)

(1.25)

(1.26)

Clearly the class SBA of skew Boolean algebras is a variety [147, Theorem 1.8];

for axiomatisations see Spinks [210, Section 4], Cornish [65, Section 2] and

Leech [150, Section 3.3]. An important consequence of the identities (1.23)—

(1.26) is Proposition 1.4.27 below, which is part of the folklore of non-commutative

lattice theory.

Lemma 1.4.26. The variety of skew Boolean algebras satisfies the following
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x A {x\y) «

( i \y) Aa;w i \y .

(1.27)

(1.28)

Proo/. Let A be a skew Boolean algebra and let a, 6 6 A We have a\b =

((a A 6 A a) V (a\b)) A (a\6) = a A (a\6) by (1.15) and (1.24), which

establishes (1.27). Also a\b = (a\b) A ((a\b) V (a A b A a)) = (a\b) A a

by (1.13) and (1.23), which establishes (1.28). •

Proposition 1.4.27. (Bignall) Let A be a skew Boolean algebra. If 6 .€

Con {A] A, V), then 6 e Con A. Thus Con (4; A, V) = Con A.

Proof. It is sufficient to show that 6 G Con (A; A,V) has the substitution

property for the \ operation. Let a ~ a\ (mod 9) and b = b\ (mod 0) and

notice o A b A a =# ai A b\ A ai. We have:

a\6 = a A

=e a! A (a\b)

A 6i A ai) V (ai\6i)) A (a\b)

A 6i A Ol) A (a\6)) V ((oi\6i) A (a\6))

=fl ((a A 6 A a) A (a\6)) V ((oi\6i) A (o\6))

= 0 V ((fll\6!) A (a\6))

A (a\b).

by (1.27)

by (1.24)

by (1.22)

by (1.26)

Also,

(ai\b{) A ax

8 (ai\6i) A a

(ai\&i) A ((a A b A a) V (a\6))

((oi\&i) A (a A & A a)) V ((oi\6i) A (a\6))

fl ((fli\6i) A (a! A &i A Ol)) V ((aA&i) A (o\6))

0 V ((aA6i) A (a\6))

by (1.28)

by (1.24)

by (1.21)

by (1.25)
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A (a\b).

We conclude a\b =g <ii\6i, and the proposition is proved. •

Example 1.4.28. ([147, Example 1.7(b)]; cf. [65, p. 287]) Let A := {A; A

, V, 0) be a rectangular skew lattice with a zero adjoined. Then A is relatively

complemented: upon distinguishing the operation of standard difference we

obtain a primitive skew Boolean algebra consisting of 0 together with a single

non-zero equivalence class A. •

Primitive skew Boolean algebras play an important role in the theory of skew

Boolean algebras. In the statement of the following theorem, 2P denotes the

two element primitive sk<=w Boolean algebra, while 3£ and 3 ̂  denote the prim-

itive left and right.handed three-element skew Boolean algebras respectively.

Theorem 1.4.29. [147, Theorem 1.13] A skew Boolean algebra is directly

indecomposable iff it is primitive. Up to isomorphism, the only subdirectly

irreducible skew Boolean algebras are the algebras 2P, 3P
L and 3P

R.

Let A be a skew Boolean algebra. A is called left handed [right handed] if

its skew lattice reduct (A] A, V) is left handed [right handed]. The subvariety

of left handed skew Boolean algebras [right handed skew Boolean algebras] is

denoted IhSBA [rhSBA]. Left handed skew Boolean algebras were introduced

by Cornish in [65] under the name Boolean skew algebras. Skew Boolean al-

gebras were introduced in full generality under the name skew quasi-Boolean

algebras by Leech in [147]. It is not immediately apparent that Cornish's class

of Boolean skew algebras coincides with the class of left handed skew Boolean

algebras; see Spinks [210, Section 4.1] for a discussion and proof. The moti-

vation for the study of skew Boolean algebras comes in the first instance from

ring theory: every maximal normal band of idempotents in a ring forms a skew

Boolean algebra [146, Theorem 2.2].

Let A be a skew Boolean algebra with maximal class M. An algebra (A] A

, V, \ , 0,1) of type (2,2,2,0,0) obtained from A by adjoining to the language

of A a new nullary operation symbol 1 whose canonical interpretation on

(A; A,V, \ , 0 , l ) is a fixed element 1 £ M is a quasi-bounded skew Boolean
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algebra. Somewhat confusingly, quasi-bounded skew Boolean algebras were
introduced by Leech in [147] under the name skew Boolean algebras.

Example 1.4.30. Let A := (.A; A, V,*, 0) be a distributive lattice with pseu-

docomplementation. For any o, b G A, define the operations:

a~/\b:= a A &**

aVb:= (a A b*) V b

a\b := a A &*;

also, recall 1 := 0*. An easy but tedious verification shows the induced algebra
{A; A, V, \, 0,1) is a left handed quasi-bounded skew Boolean algebra iff A is
a Stone algebra, namely a distributive lattice with pseudocomplementation
satisfying x* V x** « 1. Further, (A; A,V, \,0,1) is term equivalent to a
Boolean algebra iff (A] A, V, *, 0,1) is a Boolean algebra. These remarks yield
a new solution to Birkhoff [23, Problem 70]. •

Example 1.4.31. Let A := (J4; A,V,-»,0,l)bea Heyting algebra, namely a

Brouwerian lattice with distinguished least element. It is well known (see for

instance [14, p. 174]) that upon defining a* := a -> 0 for any a e A the induced

algebra A* := (A; A, V, *, 0) is a distributive lattice with pseudocomplementa-

tion with greatest element 1 = 0*. For any a,b e A, define the operations A, V

and \ as in the preceding example. An easy verification using the identities

and quasi-identities of [75, Chapter 4, Section C.2] shows that if A is a lin-

early ordered Heyting algebra (that is, if A |= (x -> y) V (y -> x) « 1) then

A [= (x -» y) V ((x -> y) -> y) « 1. It follows that the polynomial reduct A*

is a Stone algebra, and thus that the induced algebra (A; A,V,\,0,l)isa left

handed quasi-bounded skew Boolean algebra. •

1.4.32. Skew Boolean n-Algebras. Let B be a subset of the universe of
a skew lattice A. The infimum of B with respect to the underlying natural
partial ordering of A, if it exists, is called the intersection of B in A, and
is denoted f]B [19, Definition 2.5]. A skew lattice is said to have [finite]

intersections if every non-empty [finite] subset has an intersection. A skew
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Boolean algebra with intersections is a skew Boolean algebra for which the

skew lattice reduct. has finite intersections [19, Section 1.4].

Example 1.4.33. Let A := {A\ A, V,\,0) be a finite skew Boolean algebra.

Then for every a £ A, the principal subalgebra (a] of A is finite. Since the

reduct (A; A, V,0) is a local skew lattice with zero, A has intersections by [19,

Proposition 2.10]. •

In the sequel we view skew lattices having finite intersections as as algebras
(A] A, V, n) of type (2,2,2). That the class of such algebras is a variety is an
immediate consequence of the following proposition.

Proposition 1.4.34. [1.9, Proposition 2.6] A skew lattice having finite inter-

sections is an algebra (A] A, V, (~l) of type (2,2,2) such that (A) n) is a meet

semilattice, (A; A, V) is a skew lattice, and for which the following identities

hold:

x A (x fl y) ~ x D y « (x D y) A a;.

A skew Boolean intersection algebra, or skew Boolean D-algebra for short, is
an algebra (A] A,V,\,n,0) of type (2,2,2,2,0) such that: (i) the reduct
(A; A,V,\,0) is a skew Boolean algebra; and (ii) the reduct (A] A,V,fl)
is a skew lattice with intersections. Clearly the class SBIA of skew Boolean
fl-algebras is a variety.

Example 1.4.35. [19, Example 3.2b] Let (A; V, A,\,0) be a primitive skew
Boolean algebra, as per Example 1.4.28. Primitive skew Boolean algebras
possess arbitrary intersections, with f) a; being the common value when all
the a,- are equal, and 0 otherwise; this property characterises the primitive
skew Boolean algebras among all the non-trivial skew Boolean algebras with
intersections. A primitive skew Boolean fi-algebra is a primitive skew Boolean
algebra with intersections in which the intersection operation is distinguished:
see Leech [150, Section 4.4]. •

Theorem 1.4.36. [19, Theorem 3.5] The following assertions hold in the

variety of skew Boolean f\-algebras:
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1. The primitive skew Boolean H-algebras are the non-trivial simple alge-

bras;

2. The primitive skew Boolean C\-algebras are the subdirectly irreducible al-

gebras;

3. Every non-trivial skew Boolean D-algebra is a subdirect product of prim-

itive algebras.

A skew Boolean n-algebra is said to be left handed [right handed] if its skew

lattice reduct is left handed [right handed]. The subvariety of left handed

skew Boolean fl-algebras [right handed skew Boolean fl-algebras] is denoted

IhSBIA [rhSBIA]. Skew Boolean fl-algebras were introduced in their left handed

form under the name quasi-Boolean skew lattices by Bignall in [17], and in full

generality by Bignall and Leech in [19]. See also [150, Section 4].

1.4.37. Discriminator Varieties and Dual Discriminator Varieties.
The ternary discriminator and dual ternary discriminator on a set A are the

functions t : A3 -> A and d : A3 -> A defined respectively by [183, 95]:

c if a = 6 \ a if a = b
i(o, b,c):—\ and d(a, b, c) := <

a otherwise I c otherwise.

A ternary term t(x,y,z) [d(x,y,z)] that realises the ternary discriminator
[dual ternary discriminator] on an algebra A is called a ternary discriminator

term [dual ternary discriminator term] for A. An algebra A is said to be a
ternary discriminator algebra [dual ternary discriminator algebra] if it has a
ternary discriminator term [dual ternary discriminator term]. If K is a class
of algebras of the same similarity type with a common ternary discriminator
term [a common dual ternary discriminator term], then the variety V(K) gener-
ated by K is'called a ternary discriminator variety [dual ternary discriminator

variety]. Observe that any ternary discriminator variety is a dual ternary
discriminator variety, since d(x,y,z) « t(x,t(x,y,z),z) [95, Section 1]; con-
versely, a dual ternary discriminator variety is a discriminator variety iff it
is congruence permutable [95]. We will always drop the qualifier 'ternary' in
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the sequel if the context is clear. In the statement of the following theorem

and in the sequel, xAy abbreviates (for skew Boolean fl-algebras) the term

(x\{xr\y))v(y\(ynx)).

Theorem 1.4.38. [19, Theorem 4-4, Corollary 4-9] The class of skew Boolean
H-algebras is a discriminator variety, with discriminator term given by:

t{x,yiz):={z\{xbyj)v(x\{xny)).

The pure pointed discriminator variety is the pointed discriminator variety of

type (3,0) generated by the class of all pointed discriminator algebras (A; t, 0)

where t is the discriminator function on A and 0 is a nullary operation [19,

Definition 4.6]. In the statement of the following theorem and in the sequel

the pure pointed discriminator variety is denoted by PD0.

Theorem 1.4.39. [19, Theorem 4-7] The variety PDo is termwise defini-

tionally equivalent to the variety of left handed skew Boolean H-algebras. In

particular, given {A\ i, 0) G PD0, left handed skew Boolean D-operations V, A

and \ and n are defined on A by:

a A b :

o V b:

o\6:

an 6:

t(b, i(6,0, o), a)

i(6,0, a)

*(0,6,o)

t(a, i(a,6,0),0)

for any a, 6 € A. Conversely, given a left handed skew Boolean C\~algebra

(A; A, V,\,D,0) and a,b,c G A, the operation t(a, 6, c) := {c\b) V (c A a) V

(a\(afl 6)) yields an algebra (A] i,0) in

Bignall and Leech have noted [19, p. 396] that PDo is also termwise definition-

ally equivalent to the variety of right handed skew Boolean n-algebras.

Corollary 1.4.40. [19, Corollary 4-8] Any algebra A in a pointed discrimina-

tor variety has a left handed skew Boolean D-algebra polynomial reduct whose

congruences coincide with those of A.
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Discriminator varieties were introduced by Pixley in [183], while dual discrim-

inator varieties were introduced by Pried and Pixley in [95]. Discriminator

varieties have been extensively studied in the literature: see [55, Chapter IV§9]

for an introductory discussion, [237] for a comprehensive study, and Jonsson's

survey of congruence distributive varieties [129, Chapter IV] for a more recent

discourse.

1.5 Varieties with EDPC

Let § be a strongly algebraisable deductive system with equivalent variety

semantics V. It was early understood in the study of algebraic logic that S

satisfies some reasonable form of the deduction-detachment theorem iff V has

equationally definable principal congruences. In conjunction with the realisa-

tion that varieties with equationally definable principal congruences are con-

gruence distributive, this fact has lead to an intensive study of such varieties

by Blok, Kohler, Pigozzi and others. We summarise some results of their

investigations in this section.

1.5.1. Equationally Definable Principal Congruences. Let K be a

class of similar algebras. A first-order formula ip(x,y,u,v) in the language

of K is said to define principal congruences in K if, for all A G K and a, b 6 A,

9A(a, 6) = {(c, d) G A x A : A |= <p[a, 6, c, d]}.

K is said to have definable principal congruences if there exists a first-order

formula in the language of K that defines principal congruences in K [129,

Definition III§2.1].

The study of varieties with definable principal congruences was initiated by

Baldwin and Berman in [15], and in [94] Pried, Gratzer and Quackenbush intro-

duced the notion of equationally definable principal congruences. A variety V

has Equationally Definable Principal Congruences (EDPC for short) if there

exist finitely many pairs (pi, ft),..., (pn, ?„), i = 1 , . . . , n, of 4-ary terms of V

: • £ / • •
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such that for all A G V and all a, 6, c, d G A,

c = d (mod 0A (a , 6)) iff pt
A(a, 6, c, d) = gA(a, 6, c, d) <-

for each i — 1 , . . . , n. The following result is due variously to Blok, Kohler and

Pigozzi [136] and van Alten [229]. In the statement of the theorem and in the

sequel Cp A [Cp A] denotes the set [join semilattice] of compact congruences

on an algebra A.

Theorem 1.5.2. ([136]; [229, Proposition 5.19(i)]) For any variety V, the

following are equivalent:

1. V has EDPC;

2. The join semilattice (Cp A; V, CJA) of compact congruences of A is dually

relatively pseudocomplemented for any A G V.

Moreover, if V has EDPC, the following statements hold:

3. V is congruence distributive and has the congruence extension property;

4- V is semisimple iff V is generated (as a variety) by a class of simple

algebras.

Since their introduction varieties with EDPC arising from algebraic logic have

been systematically studied by Blok and Pigozzi in a series of papers [29, 30,

34, 35]; for a survey of much of this work beyond that presented below see

Jonsson [129, Chapter III].

1.5.3. WBSO Varieties and QD Terms. Recall from [29, Lemma 2.7]

that a variety of weak Brouwerian semilattices with filter preserving opera-

tions (briefly, a WBSO variety) is a variety V with 1 such that: (i) the join

semilattice (Cp A; V,WA) of compact congruences is dually relatively pseudo-

complemented; and (ii) there exist binary terms ->, • and A in the language

of V such that for any A G V and a, b G A,
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>*ta
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where * denotes dual relative pseudocompiementation in (CpA; V,O;A)- An
algebra A is called a weak Brouwerian semilattice with filter preserving oper-

ations if it is a member of a WBSO variety, or, equivalently, V = V(A) for

some WBSO variety V. The terms —>, • and A are called weak relative pseu-

docompiementation, weak meet and Godel equivalence terms respectively. In

general, none of these terms need be unique; see [29, p. 357]. A weak join

for a WBSO variety V is a binary term x -f y of V with the property that

9A(a +6,1) = 6A (a , 1) n 0A(6, I) for all A e V [29, p. 370]. In general, a

WBSO variety need not have a weak join; nor need a weak join, if it exists, be

unique.

Let A be a weak Brouwerian semilattice with filter preserving operations.

The binary relation •< defined on A by the condition a ^ 6 i f f a - > 6 = l

for arr a, b G A is a quasiordering. The equivalence ~ induced by ^ is a

congruence on (A) •,->, 1) and (A; •,-», l ) / ~ is a Brouwerian semilattice

that is dually isomorphic to the dual Brouwerian semilattice (CpA; V, *,UJA)

under the map a i-> 0 A (a , 1) [29, p. 352], [35, p. 7]. A is a weak Boolean

algebra with filter preserving operations if the dual Brouwerian semilattice of

compact congruences (CpA; V,*,O;A.) is (termwise definitionally equivalent

to) a generalised Boolean algebra. A subset F C A is a weak filter of A

if 1 6 F, a - b G F whenever a,b G F, and b € F whenever a e F and

a -> b = 1 [29, p. 351]; the set of weak filters of A is denoted Wf A. Blok,

Kohler and Pigozzi have shown that the weak filters of A are exactly the

subsets of A of the form (J G, where G is a filter of (A] •, -», l ) / ~ [29, p. 354;

Theorem 2.6]. Call a subset F of the universe of A an implicative filter if

1 G F, and a,a-*beF implies b G F. A version of the following result is

mentioned without proof in [35, p. 7]; see also [29, p. 352].

Lemma 1.5.4.- (cf. [35, p. 7]; cf. [29, p. 352]) Let V be a WBSO variety.

Let A G V and {1} C F C A. The following are equivalent:

1. F = [\}e for some 6 G Con A;

2. F is a weak filter of A;

- , ' , . • : ? ' . . . . l i-j , -V; ^ . . t " '
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3. F is an implicative filter of A.

Proof. The equivalence of (1) and (2) is proved in [29, p. 352]. To complete

the proof of the lemma it is sufficient in view of preceding remarks to show the

equivalence of (2) and (3) in the context of Brouwerian semilattices; for this

see either Meng et al [164, Theorem 10] or Rasiowa [195, Theorem IV§2.1].

Proposition 1.5.5. [29, Lemma 2.2] Let A be a weak Brouwerian semilattice

with filter preserving operations. The maps 9 i-» [l]e (9 G Con A) and F \-t

{(a, b) : aAb G F} (F G VVf A) are mutually inverse isomorphisms between

the congruence and weak filter lattices of A.

Proposition 1.5.6. [29, Lemma 2.4] Let V be a WBSO variety. For any

A G V the following assertions hold:

1. Every compact congruence of A is principal. In particular, for any a,b G

A,

2. For any a, 6, c, d G A,

c = d(modeA(a,b)) iff (aAA6) ->A (cAAd) = 1.

Thus V has EDPC.

Let A be an algebra. A Quaternary Deductive (QD) term on A is a term

q{x, y, z, w) such that for any a, 6, c, d G A [29, p. 359],

gA(a,6, c, d) :=
c if a = 6

d if c = <2(modeA(a, &)).

A QD term on a variety V is a term q(x, y, z, w) such that q(x, y, z, w) is a

QD term on every member of V. The QD term may be regarded as a natural

urn
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generalisation of the normal transform to non-semisimple varieties; see Blok,

Kohler and Pigozzi [29, Section 3] and Blok and Pigozzi [34, p. 547] for details.

Theorem 1.5.7. [34, Theorem 1.25(i)J A variety has a QD term iff it is

congruence permutable and has EDPC.

Theorem 1.5.8. [34, Theorem 1.26] For a variety V with 1 the following are

equivalent:

1. V is congruence permutable, \-regular, and has EDPC;

2. V has a QD term and a Godel equivalence term;

3. V is a congruence permutable WBSO variety.

v-i
1.5.9. TD Terms and Fixedpoint Discriminator Varieties. A ternary

term e(x,y,z) is a ternary deductive term for a class K of similar algebras

if K |= e(x,x,z) « z and, moreover, for all A G K and a,b,c,d G A,

eA(a,b,c) = eA(a,b,d) if c = d(modOA(a,b)). A version of the follow-

ing lemma is proved in Blok and Pigozzi [34]. See also Bignall [18, Lemma 2.1]

and McKenzie [159, Theorem 1.3].

Lemma 1.5.10. (cf. [34, Theorem 2.3]) Let V be a variety with a TD term

e(x, y, z). For any algebra A e V , Con A = Con (A; eA).

Proof. Let V be a variety with a TD term e(a;, y,z) and let A € V. By [34,

Theorem 2.3(iii)], A satisfies the identity:

, y,f(e(x, y, zx),..., e{x, y, *„

for every n-ary operation symbol / in the type of A. This implies the relation

0(a, b) defined on A x A by:

0(o, b) := {(c, 4)eAxA: eA(a, 6, c) = eA(a, 6, d)}

is a congruence relation on A, and therefore on (A] eA) as well. Now if c =

d (mod0(a, b)) and <j) is any congruence on (A] eA) such that c = d (mod^),
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c = e (o, a, c) =4, e (a, 6, c) = eA(a, 6, d) =^ e (a, a, 6) = 6,

which implies that 0(a, b) is the principal congruence generated by (a, b) on

both (A; eA) and A. This means that (A] eA) and A have the same principal

congruences. But by [55, Theorem II§5.7(d)] any congruence 6 on (A] eA) is

given by:

a,b) : o= 6(mod0)},6 =

where the join is taken in the lattice of equivalence relations on A. By previ-

ous remarks, such a join must also yield a congruence relation on A, whence

Con (A; eA) C Con A. Since the converse is clear, the result follows. •

Let V be a variety with a TD term e(x,y,z). By the proof of the preced-

ing lemma, eA(a, 6, c) = eA(a, 6, d) iff c = d(mod0A(a, 6)), whence V has

EDPC [34, Corollary 2.5]. Moreover, V is congruence 3-permutable by [34,

Theorem 2.9]; in general, V need not be congruence permutable. The follow-

ing proposition is implicit in [29].

Proposition 1.5.11. (cf. [29, p. 361]) For a variety V, the following asser-

tions hold:

1. Suppose V has a TD term e(x,y,z). Ifp(x,y,z)isa Mal'cev term for V

then the term:

q{x, y, z, w) := p(e(x, y, z), e(x, y, w), w)

is a QD term for V;

2. Suppose V has a QD term q(xty,z,w). If V is 1-regular (for some

constant term 1) and d\(x, y),..., dn(a;, y) are binary terms witnessing

the 1-regularity o/V in the sense of Proposition 1.2.6 then V is a WBSO

variety with weak meet, weak relative pseudocomplementation and Godel
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equivalence terms defined respectively by:

x-¥y:=

x • y := g(ar, 1, y, x)

xAy := (• • • (di{x, y) • ck(x, y))

Moreover, V |= 1 —> a; « a;.

) • dn{x, y).

Proof. Let V be a variety. For (1), assume V has a TD term e(x, y, z). Suppose

first that p(x} y, z) is a Mal'cev term for V. Let A e V and let a, 6, c, d G A.

Suppose c = d(mod 0 A (a , 6)). Then eA(a, 6, c) = # = eA(a, 6, d) for some

g € Aby previous remarks and thus:

qA(a, 6, c, d) = pA(eA(o, 6, c), eA(a, 6, d), d)

since p(x,a;, y) w y.

On the other hand, suppose a = b. Then:

qA(a, 6, c, d) = pA(eA(a , a, c), eA(a, a, cf),

= c

since e(x,x,y) « y

since p{x}y} y) « a;.

Thus g(aj, y, 2;, w) is a QD term for V as claimed.

For (2), assume q(x,y,z,w) is a QD term for V. Assume also that V is

l:regular (for some constant term 1). By Theorem 1.5.7 V is congruence

permutable with EDPC, so V is a congruence permutable WBSO variety by

Theorem 1.5.8. Let x • y, x -> y and x&y be as in the assertion of the

proposition. By [29, Theorem 3.5(i),Theorem 3.7(iii)] we have that the term

x -> y is a weak relative pseudocomplement for V such that V (= 1 -> x « x,

while by [29, Theorem 3.5(ii)] we have that the term x • y is a weak meet. Let

d\{x, y),..., dn(xy y) be terms witnessing the 1-regularity of V in the sense of
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Proposition 1.2.6. Since x • y is a weak meet for V,

9 A (aA A(aAA6,1) = 0
A((• • • K A ( a , b) -A rfA(a, b)) A •••

9 A (d A (a , 6), 1) V GA(d2
A(a, 6), 1) V

A dA(a, 6),

• V 9 A (d A (a , 6), l)

= 0A(a ,6)

by [29, Theorem 0.7j. Thus rcAy is a Godel equivalence term for V as claimed.

A TD term e(x, y, z) on an algebra A is commutative if eA(a, 6, eA(o', 6', c)) =

eA(o', 6', eA(a, b, c)) for all a, b, a', b', c e A] a, TD term e(x, y, z) on a vari-

ety V is commutative if it is commutative on every member of V. Let A be

a set. A ternary operation / : A3 —>• A is called a fixedpoint discriminator if

there exists an element d £ A such that [34, Definition 3.3]:

/(a, 6, c) :=
if a = b

d otherwise,

in which case d is called the discriminating element of/. Note that in gen-

eral the discriminating element associated with a fixedpoint discriminator in

a fixedpoint discriminator variety need not be a constant term [34, p. 580].

An algebra A is called a fixedpoint discriminator algebra if there is a ternary

term / of A that realises the fixedpoint discriminator on A. A variety V is a

fixedpoint discriminator variety if there is a ternary term / of V and a sub-

class K of V such that / A is a fixedpoint discriminator on each A G K and

V = V(K). In this case / is called a fixedpoint discriminator term for V.

Theorem 1.5.12. [34, Theorem 3.5] For any variety V the following arc

equivalent:

1. V is a fixedpoint discriminator variety;

2, V is semisimple and has a commutative TD term.

Moreover, if the equivalent conditions (l)-(2) are met, then a ternary term

e(x, y, z) is a commutative TD term for V iff it is a fixedpoint discriminator

term for V.
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Let V be a variety with 0. By remarks due to Blok and Pigozzi [34, p. 582],

if V is a ternary discriminator variety then it is a fixedpoint discriminator

variety. Indeed, if t(x,y,z) is a discriminator term for V then f(x,y,z) :=

t(t(x, y, z), t(x, y, 0), 0) is a fixedpoint discriminator term for V. More gener-

ally, we have:

Theorem 1.5.13. [34, Theorem 3.8] For any pointed variety V the following

are equivalent:

1. V is a ternary discriminator variety;

2. V is a congruence permutable fixedpoint discriminator variety;

3. V is congruence permutable, semisimple and has a commutative TD term;

4. V is congruence permutable, semisimple and has EDPC;

5. V is a congruence permutable variety of weak Boolean algebras with filter

preserving operations.

If these conditions hold then any constant term can be taken to be the discrim-

inating element of a fixedpoint discriminator term of V.

Let A be an algebra with 1. A TD term e(x, y,z) on A such that a =

b (mod6A(eA(a, 6,1), 1)) for all a, b G A is said to be regular (for A) with

respect to 1; note e(x, y, 1) witnesses 1-regularity in the sense of Proposi-

tion 1.2.6 by the remarks of [34, p. 585] and hence that 1 A is a regular element

of A in the usual sense. Let V be a variety with 1 and let e(x,y, z) be a TD

term for V. Call e(x, y, z) regular (for V) with respect to 1 if it is regular with

respect to 1 for every member of V.

Theorem 1.5.14. Let V be a variety with {0,1}. Suppose moreover that V

is a fixedpoint discriminator variety generated by a class K C V of fixedpoint

discriminator algebras, that f(x, y, z) is a fixedpoint discriminator term for V

and that 0A is the discriminating element on any A € K. Then the following

statements hold:

1. f(x,y,z) is a commutative TD term for V that is regular with respect

to 1;
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2. V is a variety of weak Boolean algebras with filter preserving operations

whose weak meet, weak relative pseudocomplement and Godel equivalence

terms are defined respectively by:

x-y:=f{x,l,y)

x->y := f{f(x, 1, y)J{x, 1,1), 1)

xAy:=f{x,y,l).

Proof. The first assertion is just [34, Corollary 4.8]. In view of the first asser-
tion, Theorem 1.5.12 and [34, Theorem 4.4], V is a semisimple WBSO variety
with the stated weak meet, weak relative pseudocomplementation and Godel
equivalence terms. Since any semisimple WBSO variety is a variety of weak
Boolean algebras with filter preserving operations (by [30, Corollary 4.3]), the
second assertion follows. " •

The fixedpoint discriminator was introduced by Blok and Pigozzi in their study

of varieties with EDPC [34] as a generalisation of the ternary discriminator to

varieties for which congruence permutability fails, while the TD term was in-

troduced in the same paper as a generalisation of the fixedpoint discriminator.

See [34, Definition 3.3; pp. 580-583; pp. 588-590] and [35] for more details.

1.6 BCK-Algebras

BCK-algebras play a central role in this thesis. Here we briefly survey the

elementary theory of BCK-algebras and some related classes.

1.6.1. BCK-Algebras. For the sake of convenience we repeat here the
definition given in §1.1.1. An algebra (A; - , 0) of type (2,0) is called a BCK-

algebra iff it satisfies the following identities and quasi-identity [126, Defini-
tion 1]:

(1.1)

(1.2)

z ~ V) ~ (z ~ z)) - {z - y) « 0

(x - (x - y)) — y « 0
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x — x fa 0

0 — x «O

(1.3)

(1.4)

(1.5)

It is immediate that the class BCK of BCK-algebrast is a quasivariety; re-

sults due to Wroriski [240] and Higgs [109] show BCK is not a variety. Be-

cause of (1.3) the class of BCK-algebras may be construed as a quasivariety

of groupoids; consequently we (informally) denote BCK difference — in the

sequel by juxtaposition when no confusion can arise.

BCK-algebras were introduced by Imai and Iseki in a 1966 paper [119]. Histor-

ically, the motivation behind the introduction of BCK-algebras was twofold.

First, Imai and Iseki wished to give an abstract characterisation of set differ-

ence and its properties; and second, Imai and Iseki were interested in inves-

tigating systems of implicational calculi related to combinatory logic, partic-

ularly the BCK system of Meredith [186, p. 316]. The connection between

the two motivations arises from the close relationship observed between set

difference in set theory and implication in propositional calculi. Since their

introduction BCK-algebras have been the subject of a vast amount of critical

exegesis (see for instance the survey articles [126] and [70] and the more re-

cent paper [38] of Blok and Raftery), and in particular connections with the

original motivations of Imai and Iseki have been clarified. Indeed, results due

to Palasifiski [178], Ono and Komori [176], Fleischer [90] and Wronski [242]

show that an algebra (A; - , 0) of type (2,0) is a BCK-algebra iff it is

the (—, 0)-subreduct of a pocrim; see Blok and Raftery [39] and van Al-

ten [229, Chapter 1] for details. On the other hand, Blok and Pigozzi [31,

Section 5.2.3] have shown BCK is termwise definitionally equivalent to the

equivalent algebraic semantics (in the sense of [31]) of BCK logic, while Bun-

der [51, Theorem 1] has proved that an algebra {A; —, 0) of type (2,0) is a

BCK-algebra iff it satisfies the quasi-identity (1.5) and the algebraic analogues

of the B-combinator (p -* q) -» ((q -> r) -» (p ->• r)), the C-combinator

(p -> (q -» r)) -> [q -> (p ~> r)) and the K-combinator p -> (q -»
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ft

respectively the identity (1.1) and the identities:

(x — y) — z « (a; — z) — y

(x — y) — x « 0.

(1.29)

(1.30)

Another important identity known to be satisfied by the quasivariety of BCK-

algebras is [126, Theorem 2]: Y

x — 0 « x (1.7)

and in fact Higgs [109, p. 70] and Blok and Raftery [38, Section 1] have shown

independently that an algebra (.4; — , 0) of type (2,2,0) is a BCK-algebra iff

it satisfies the identities (1.1), (1.4), (1.7) and the quasi-identity (1.5).

Lemma 1.6.2. [126, p. 4] Let (A; - , 0 ) be a BCK-algebra and let <0 be

the relation defined by a <o b iff ab = 0 for any a,b G A. Then (A; <o)

is a partially ordered set with 0 as its least element. Moreover, right [left]

multiplication by a fixed element of A is isotone [antitonej.

On an arbitrary BCK-algebra A there exists a second partial order <i , coarser

than <o, and defined by a <i b iff a G bA for any a, b G A (where bA :=

{be : c G 4}); this observation is due to Guzman [105, Proposition 3.2(a)].

Proposition 1.6.4 below, which sharpens Guzman's result, will be needed in the

sequel; we remark that this proposition does not seem to have been reported

in the literature previously.

Lemma 1.6.3. (cf. [105, Lemma 1.2(i), Proposition 2.2(c)]) The quasivari-

ety of BCK-algebras satisfies the following identities:

x — (x — (x — y)) « x — y

(x — y) — zttx — (x — ((x — y) — z))

{x-y)-(x-{z-{z- y))) « 0

-y)- ({x -y)-z)fi*0.

(1.31)

(1.32)

(1.33)

.(1-34)



1.6. BCK-Algebras 61

'3

U

Proof. Let {A; —, 0) be a BCK-algebra and let a,b,c E A. To see (1.31) holds,

observe that a(ab) <o b by (1.2), whence ab <Q a(a(ab)) by Lemma 1.6.2.

On the other hand, note that a(a(ab)) <0 ab by (1.2). Thus a(a(ab)) = ab

by (1.5). For (1.32), we have 0 = (a(a((ab)c)))({ab)c) by (1.2), whence

a(a((ab)c)) <o {ab)c. Conversely, put a := a and /? := (ab)c. We have:

Q = ({ab)c)((ab)c)

= ((ab)((ab)c))c

{(a(a(a((ab)c))))b)c

{(ab)(a(a((ab)c))))c

{(ab)c)(a(a((ab)c)))

by (1.3)

by (1.29)

by (1.29)

by (1.31)

by (1.29)

by (1.29).

Thus (ab)c <0 a(a((o6)c)), which establishes (1.32). For (1.33), we have

0 = ((ab){a{c(cb))))((c{cb))b) = {ab)(a{c{cb))) by (1.1), (1.2) and (1.7).

For (1.34), we have 0 = ({ab){a{bc)))({bc)b) = {ab)(a{bc)) by (1.1), (1.30)

and (1.7). •

Proposition 1.6.4. Let A be a BCK-algebra. The following statements hold:

1. The binary relation <i defined for any a, 6 E A by:

a <i b iff a e bA iff a e bnA iff b 0 a = a

where b fl a := b(ba) and b 0 A := {b f) c : c G A}, is a partial order

on A. Moreover for any a, 6 G A, the relation <i enjoys the following

properties:

(i) If a <i 6 then a <o b;

(ii) If a <i b then ac <i 6c;

(Hi) 0 <i a.
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2. The binary relation <2 defined for any a,b G A by:

o- <2 b iff (6(6a))(6a) = a iff b n a = a and a(6a) = a

is a partial order on A. Moreover for any a,b G A, the relation <2

enjoys the following properties:

(i) If a <2b then a <\ b;

(ii) If a <2 b then ac <2 be;

(in) 0 <2 a.

Proof. To prove <i is a partial ordering under the stated conditions it is suffi-

cient to verify the equivalences a G bA iff a G b D A iff b D a = a, just because

the relation <i defined by a <i b iff a G M. is a partial order on yl by [105,

Proposition 3.2(a)]. So suppose that a G bA. Then a = be for some c G A,

whence a = be = b(b(bcj) e b n A by (1.31). Suppose a G 6 n A. Then

a = 6(6c) for some c G A By (1.31) we have a = b(bc) = b(b(b(bc))) = bda.

Suppose b H a = a. Then a = b(ba) G bA, and so a G 6̂ 4 iff a G 6 D A

iff 6 n a = a as required. To see Item (l)(i) holds, observe o < i ft implies

0 = (b(ba))b = ab by (1.30) and hence that a <o b. For (1)(ii), suppose

a <i b. We have:

(bc)({bc)(ac)) == (bc){(be)((b(ba))c))

= (bc){(be)((bc)(ba)))

= (bc)(ba)

= {b(ba))e

— ac

since b(~) a

by (1.29)

b y ( i ')

by (1.1 >

since 6 n a

= a

= a.

Thus ac <i be. Item (l)(iii) is clear.

To prove <2 is a partial ordering under the stated conditions we first show

(b(ba))(ba) = a iff b D a — a and a(ba) = a for any o,li 6 i Suppose

(b(ba))(ba) = a. We have:

a = (6(6o))0 by (1.7)
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J

(b(ba))((b(ba))a)

{b(ba)){(b(ba))((b(ba))(ba)))

(b(ba))(ba)

= a

ty (1.2)

sinco (b(ba))(ba)

by (1.31)

since (b(ba))(ba)

= a

= a.

It follows that a = (b(ba))(ba) = a(ba). Conversely, if bHa = a and a(ha) -- a

then a = a(ba) = (b(ba))(ba). Thus (b(ba))(ba) = a iff 6 fl o = a and

a(ba) — a as claimed. To see <2 is a partial order we verify the properties of

reflexivity, anti-symmetry and transitivity directly. For reflexivity just note

a <2 a from (a(aa))(aa) = (a0)0 = a. For anti-sjanmetry, observe c <2 i

implies a <i i and likewise b <2 a implies b <i a, whence a — b. For

transitivity, suppose a <2 b and b <2 c. It is sufficient to show cC\(i— a and

a(ca) = a. To see c fl a = a, put a := c, /? := c6, 7 := 6a and observe:

fl = 6(6a)

= (C(c6))(6a)

= c(c((c(c6))(6a)))

= c(ca)

To see a = a(ca), observe:

a(ca) = (b(ba

•= (a(c6))(6a)

= ((b(ba))(cb))(ba)

since & fl a = a

since cC\b = b

by (1.32)

since c fl 6 — &

since b 0 a = a.

since

by(i

since

by(l

since

since

6 0

.29)

cfl

.29)

cfl

bn

a = a

6 = 6

a = a

a = a

by (1.29)
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= {b(ba))(ba)

= a(ba)

= a

since b(cb) — b

since b n a — a

since a(ba) = a.

Thus <2 is transitive and hence a partial order. Item (2)(i) is clear from

preceding remarks. For (2)(ii), it is sufficient to show a < 2 6 implies ac <i be

and (ac)((bc)(ac)) = ac. So suppose a <2 b. Then a <\ b and'so ac <i be.

Moreover, ((ac)((bc)(ac)))(ac) = ({ac)(ac))((bc){ac)) = 0({bc){ac)) = 0

by (1.29) and (1.7) and so (ac)(<(bc)(ac)) <Q ac. On the other hand, put

a := ac, /3 \— ba and 7 := be. We have:

(ac)((ac)((bc)(ac))) = (ac)({ac)((bc)((b(ba))c))) since 6 fl a

= (ac)((ac)((6c)((6c)(6a)))) by (1.29)

= ((o(6o))c)((ac)((6c)((6c)(6o)))) since a(6o)

= ((oc)(6o))((ac)((6c)((6C)(6a)))) by (1.29)

by (1.33).

= a

= 0

= 0

Thus ac <0 (ac)((6c)(ac)). We conclude (ac)((bc)(ac)) — ac and thus a <2 &

implies ac <2 6c as claimed. Item (2)(iii) is clear. •

In the sequel we work primarily with the partial order <o; we write simply <

for <0 when there is no danger of confusion.

Example 1.6.5. The partial orders <o, <i and <2 are distinct on an arbitrary

BCK-algebra. To see this, consider the BCK-algebra A := (̂ 4; —, 0) where

A \— {0, a, 6, c, 1} and BCK difference is defined by the following operation
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0

(a)

c a

0

(c)

Figure 1.3. The BCK-algebra of Example 1.6.5: (a) Under the partial order <0;
(b) Under the partial order <x; (c) Under the partial order <2-

table:
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0

0
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0

0

b

c
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b

0

0

0

b

b

c

0

0

0

0

a

1

0

0

0

0

0

1

The Hasse diagrams corresponding to the underlying partially ordered sets

{M <o)> (-4; <i) and (A; <2) are depicted in Figure 1.3. From these diagrams

it is clear that the partial orders <o, <i and <2 are distinct. •

Remark 1.6.6. In contrast to <o, <i and <2 are not in general antitone in

each of their positions. To see this, consider the BCK-algebra of Example 1.6.5.

One easily checks that b <i c, but o = l c ^ i l 6 = 6. Likewise 0 <2 c but

a = l c & 1 0 = l. •

Remark 1.6.7. Define the ( - , O)-terms x - yn, new inductively by:

x — y° := x

x - yk+1 := (x - yk) - y for k > 0.
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Owing to (1.30) these terms form a descending chain in an arbitrary BCK-

algebra: xyk < ... < xy2 < xy < x. Let A be a BCK-algebra and a,b G A. In

the preceding parlance, the BCK partial orders < 0 , < i and <2 can be described

by:

a <o b iff ab = 0

a <i b iff b(ba)1 = a A>

a < 2 b iff b{ba)2 = a.

Prom the description above of <o, < i and <2 it is natural to anticipate that the

family of relations { < n : n > 1} defined by a <n b iff 6 (6a)" = a is an infinitely

descending chain of partial orders on A. This is not the case: using (1.31)

and (1.32) and the (— ,0)-terms xyn it is possible to show directly that, for

any n > 2, a < n +i b iff a < n b. •

P r o b l e m 1.6.8. Investigate the behaviour of the partial orders <,-, i = 0,1,2,

on a BCK-algebra. Does there exist a natural family of partial orders on an

arbitrary BCK-algebra generalising the orders <,-, i = 0,1,2? •

Let A be a BCK-algebra. An ideal of A is a subset I of A such that 0 € I and

a,ba e I implies b € I. It is folklore that the set I (A) of all ideals of A forms

an algebraic lattice 1(A) under set inclusion. Let 0 ^ B C A. The ideal {B)x

of A generated by B is f |{ J G I(A) : B C j } , the intersection of all ideals

of A containing B, By definition, ( 0 ) A : = {0}- The following characterisation

of {B)A for non-empty B C A is due to Iseki [120, Theorem 3]:

{B)A := bu...,bn£ B){ah ...bn = 0 )} .

The following technical result, which will be needed in the sequel, is due to

Palasinski [177] and. Cornish [70].

Proposition 1.6.9. For any BCK-algebra A, the following assertions hold:

1. [177, Theorem 1] The ideal lattice of A is distributive;

2. [70, Theorem 4-1] A enjoys the ideal extension property: whenever B G

S(A) and I G I(B) there exists J G I(A) such that J D B = I. In
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particular, {I) A , the ideal of A generated by / , can always be taken as a

suitable J.

In general, an ideal / of A is the 0-class of at least one, and possibly many

congruences on A, of which the largest <f>i := {{a, b) £ A x A : a&, 6a G / }

is actually a BCK-congruence. Conversely, for any 6 G Con A, the 0-class

{ a G A : (a, 0) G 6} is an ideal of A.

Theorem 1.6.10. [38, Proposition 1] For a BCK-algebra A the following

assertions hold:

1. The maps I H> 0/ (/ G I(A)) and 9 H> [0]$ (9 G ConecK A) are mutually

inverse lattice isomorphisms between the BCK-congruence lattice of A

and the ideal lattice of A;

2. A is BCK-0-regular, BCK-congruence distributive and enjoys the BCK-

congruence extension property;

3. H(A) C BCK iff A is 0-regular, in which case A is also congruence

distributive. If HS(A) C BCK, then A has the congruence extension

property.

It is known that the congruences (in the absolute sense) of BCK-algebras are

not well-behaved in general. In particular, Wroriski [241, Theorem 5, The-

orem 6] and Nagayama [173, Theorem 1.3] (see also Example 2.3.10 in the

sequel) have shown that the congruence lattices of BCK-algebras need satisfy

no lattice identities beyond those satisfied by all lattices. An example due to

Blok and Raftery [37] shows also that BCK-algebras do not in general enjoy

the congruence extension property. In contrast, Proposition 1.6.9 and Theo-

rem 1.6.10 show the situation to be .quite different for BCK-varieties, namely

those varieties of algebras of type (2,0) whose members are BCK-algebras.

In the remainder of this section we describe some BCK-varieties of relevance

to the sequel, together with several equational classes of BCK-algebras aug-

mented with additional operations.

1.6.11. Commutative BCK-Algebras. A BCK-algebra (A\ - , 0 ) f o r

which the underlying partially ordered set (A; <) is a meet semilattice is called



1.6. BCK-Algebras 68

a commutative BCK-algebra; in this case a D b := a(ab) (the BCK meet) is

the gieatest lower bound of {a, b} for any a, b € A. For any BCK-algebra A,

the following are equivalent [126, Theorem 3]: (i) A is a commutative BCK-

algebra; (ii) A(= xC\y « yC\x. From (ii) it follows easily that the class cBCK of

all commutative BCK-algebras is a variety [245]. Problem 1.6.8 notwithstand-

ing, we also have the following characterisation of commutative BCK-algebras,

which will be needed in the sequel. See also Cornish [71,'Proposition 1.8].

Lemma 1.6.12. A BCK-algebra is commutative iff its underlying partial or-

ders <o and <i coincide.

Proof. Let A be a BCK-algebra and let a, b € A

(=$•) Suppose A is commutative. If a <i b then a <o b by Proposition 1.6.4(1)(i).

For the converse, if a <o b then a D b = a, and hence also bD a = a since A

is commutative. But this means that a <i b by Proposition 1.6.4(l)(i).

(t=) Suppose a <o & iff a <i 6. Because a D b <o b, by hypothesis we have

that aHb <i b, whence b D (a n b) = a D & by Proposition 1.6.4(l)(i). Put

a := 6, P := a and 7 := ab. We have:

(anb)(bna) = (6 n (a n &))(6n a)

= 0

by (1.29)

by (1.31)

by (1.34).

Thus 0 n 6" <o bHa, and by symmetry bf)a <0 af)b. Therefore a n b = b n a,

and A is commutative. •

Commutative BCK-algebras were introduced by Tanaka [214] and have been

studied subsequently by several authors, including Traczyck [216], Cornish [64,

Section 3], Romanowska and Traczyck [202, 201], Cornish, Sturm and Traczyk

[73] and Yutani [245]. In particular, results due to Traczyk [216, Lemma 2.1,
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Theorem 2.4] show that the underlying meet semilattice (.A; n) of a commuta-

tive BCK-algebra A is in fact a distributive nearlattice; recall from [70, p. 112]

and [64, p. 489] that a [distributive] nearlattice is a lower semilattice (A\ A)

in which each principal order ideal (m] := {a G A : a < m} is a [distributive]

lattice. For a G (m], the map Nm : (m] —¥ (m] defined by Nm(a) :== ma is

an involution (dual order isomorphism that is its own inverse), whence the

supremum of a, b G (m] is a U b := Nm(Nm(a) n N^(b)). See Cornish [64,

Lemma 3.1] and Cornish and Hickman [72].

1.6.13. Positive Implicative BCK-Algebras. Let A be a BCK-algebra
with underlying poset (A] <). For any o, 6, c G A, (ab)c < (ac)(bc) [126,

p. 12]; in general, the opposite inclusion does not hold. A positive implicative

BCK-algebra is a BCK-algebra for which the inequality (ac)(bc) < (ab)c is

identically satisfied. For a BCK-algebra A, the following are equivalent [38,

Proposition 13]: (i) A is positive implicative; (ii) A \= (x — y) — y « x — y\ (iii)

A [= (x — (x — y)) — (y — x) « (y — (y — x)) — (x — y). Henkin [108] appears

to have been among the first to consider positive implicative BCK-algebras:

they are precisely his class of implicative models. Since Henkin's 1950 paper

positive implicative BCK-algebras have been independently investigated by

a number of authors, including Diego [79] (in dually isomorphic form under

the name Hilbert algebras—see Kondo [140]), Rasiowa [195, Section II§2] (in

dually isomorphic form under the name positive implication algebras), Iseki

and Tanaka [126] and more recently Blok and Raftery [39]. Results due to

Diego [79] show the class pBCK of positive implicative BCK-algebras is a lo-

cally finite variety, while results due to Blok and Pigozzi [34, Corollary 1.23],

Cornish [67] and Blok and Raftery [39, p. 294] show pBCK is precisely the class

of all (—, 0)-subreducts of dual Brouwerian semilattices. The following lemma

is a variant on this last.

Lemma 1.6.14. [7, Lemma 3.2] If each two elements a, b from a non-empty

subset B of a join semilattice A have a dual relative pseudocomplement a * b

that belongs to B, then (B; *) is a positive implicative BCK-algebra.

Recall from Remark 1.6.7 that the (-,0)-terms x-yn, n G u, are defined

U ,~<
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inductively by:

x — y° := x

x-yk+l :=(x-yk)-y

In [68] Cornish studied BCK-algebras satisfying:

for k > 0.

x — y x — y1 (En)

where 1 < n G u as a natural generalisation of positive implicative BCK-

algebras; the variety of positive implicative BCK-algebras is just the class

of all BCK-algebras satisfying (Ei). For each new, the class enBCK of

BCK-algebras satisfying (En) is a variety [68, Theorem 1.4], the members of

which are known as n-potent BCK-algebras. Cornish has shown these varieties

form a strictly increasing chain [70, Section 3.6]. Since their introduction the

varieties enBCK, n € w, have been studied by a number of authors, including

Cornish [70, Section 4], Blok and Raftery [38, 39] and Palasinski [179], to whom

the following theorem is collectively due.

Theorem 1.6.15. [70, Corollary 4.2]; [179]; [39, Theorem 12] For a variety V

of BCK-algebras the following assertions hold:

1. V has a commutative TD term iff\/ is a subvariety o/enBCK for some

n e u). IfV is a subvariety o/enBCK; n G to, then a commutative (but

not regular) TD term for V is:

e(x,y,z):=(z-{x-y)n)-(y-x)n.

2. V has EDPC iff\/ is a subvariety o/enBCK for some n G u. For any

algebra A G enBCK, n €u, and a,b,c,d G A,

c = d (mod0A(a, b)) iff (c{ab)n){ba)n = (d{ab)n)(ba)n

iff ((cd)(ab)n){ban) = ((dc){ab)n){ba)n.
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1.6.16. Implicative BCK-Algebras. Let A := (A\ /,0) be a BCK-
algebra. If A (= x/(y/x) as x then A is called an implicative BCK-algebra.
A well known result of Iseki [126, Theorems 9,10] asserts that a BCK-algebra
is implicative iff it is both commutative and positive implicative, whence the
class of implicative BCK-algebras is a variety. The following equational char-
acterisation is due independently to Kalman [131] and Abbot [2],

Theorem 1.6.17. ([131, p. 402]; [2, Section 1]) An algebra (A; /,0) of type

(2,0) is an implicative BCK-algebra iff it satisfies the following identities:

x/(y/x) as x

x/(x/y) ta y/(y/x)

(x/y)/z « (x/z)/y

x/x as 0.

(1.35)

(1.36)

(1.37)

(1.38)

Thus the class iBCK of implicative BCK-algebras is a variety.

Example 1.6.18. Let Cn := (C; /,0) be an algebra of type (2,0) with
cardinality n + 1 and operation / defined by:

ab :=
a if a ^ b

0 otherwise

for any a, b G C. Then Cn is an implicative BCK-algebra; we call Cn a flat

implicative BCK-algebra on n + 1 elements. •

Because of (1.3)—(1.4) and (1.7) any two-element implicative BCK-algebra is
flat and so may be identified with Ci. It is easy to see that Ci embeds into
any non-trivial BCK-algebra, and hence that Q(Q) is the smallest non-trivial
subquasivariety of BCK-algebras. In fact Q.(Ci) is the unique atom in the
lattice of varieties of BCK-algebras; this is a consequence of the following
result, due to Kalman, which will bti needed in the sequel.

Theorem 1.6.19. [131, Lemma 2] Up to isomorphism, iBCKsi = {Ci}.

Combining Theorem 1.6.19 with Birkhoff's subdirect representation theorem
yields the following result, which is also due to Kalman [131] (for a proof of
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Theorem 1.6.20 that does not assume the axiom of choice, see Cornish [66,

Corollary 1.5]). We remark that it is this result that justifies the change

in notation for implicative BCK difference from — to / encountered in this

section and in the sequel.

V

Theorem 1.6.20. [131] The class iBCK is precisely the class of all {/,0}-

subreducts of Boolean algebras (A) A,V,',0,1), where a/6 := a A bl for any

a,beA. . •

Implicative BCK-algebras were first introduced by Monteiro [168] (in du-

ally isomorphic form under the name Tarski algebras) and independently by

Kalman in [131] (under the name flocks). Implicative BCK-algebras have

been studied subsequently by a range of authors, including Abbott [2, 1] (in

dually isomorphic form under the name implication algebras), Rasiowa [195,

Sections II§5—7] (likewise), and Iseki and Tanaka [126]. The following repre-

sentation theorem is due to Abbott [2, 1]. In the statement of the theorem,

a semi-Boolean algebra is a locally Boolean meet semilattice: that is, a meet

semilattice (A] A, 0) in which for each a G A the principal subalgebra (a] is a

Boolean lattice under the semilattice partial ordering.

Theorem 1.6.21. [2, Theorem 6, Theorem, 7] Every implicative BCK-algebra

(A; / , 0) induces a semi-Boolean algebra {A\ fl, 0) upon defining a n b :—

a/(a/b) for any a, 6 e A. Conversely, every semi-Boolean algebra {A; n,0)

determines an implicative BCK-algebra {A\ / ,0) under the operation a/b :=

(afl b)',, for any a,b € A, where (afl &)'/ i denotes the complement of aC\b in

the principal subalgebra (a] generated by a. Moreover, these correspondences

are inverse to each other.

A BCK-algebra A is bounded if there exists 1 G A such that a < 1 for any

a G A. As usual, by abuse of language and notation we will often confuse

a bounded BCK-algebra A with its expansion to {A; / ,0 ,1) , where 1 is a

new nullary operation symbol adjoined to the language of A whose canonical

interpretation on (4; / , 0,1) is 1 G A.

ft /
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Corollary 1.6.22. The underlying posei (A; <) of a bounded implicative

BCK-algebra {A\ / , 0,1) is a Boolean lattice. For any a, b G A,

a A b = aHb

1.6.23. BCK-[Semi]Lattices. An algebra (A; A, - , 0) of type (2,2,0) is

called a lower BCK-semilattice if: (i) the reduct (A; — , 0) is a BCK-algebra;

and (ii) the following conditions are satisfied with respect to the BCK partial

order < for any a, b, c (E A [116, p. 840]:

a A b < a

a/\b<b .

e < a and c < b imply c < a A b.

(1.39)

(1.40)

(1.41)

An upper BCK-semilattice is defined analogously as an algebra (A] V, -=-, 0)

of type (2,2,0) such that: (i) the reduct (A; —, 0) is a BCK-algebra; and (ii)

for any a, 6 G A, a V b is the least upper bound of the doubleton {a, 6} with

respect to the BCK partial order. A BCK-lattice is, an algebra (A] A, V, —, 0)

of type (2,2,2,0) such that: (i) the reduct (A\ A, - , 0 ) is a lower BCK-

semilattice; and (ii) the reduct (A; V, - , 0 ) is an upper BCK-semilattice.

The following characterisation of BCK-[semi]lattices is implicit in the proof

of [116, Theorem 1].

Lemma 1.6.24. (cf. [116, Theorem 1]) An algebra {A; A, - ,0> [{A) V

, - , 0)7 of type (2,2,0) is a lower BCK-semilattice [upper BCK-semilattice] iff

the following conditions hold:

1. The reduct (A; A) [(A] V)] is a meet semilattice [join semilattice];

2. The reduct (A; - , 0) is a BCK-algebra;

3. The BCK partial order coincides with [dualises] the semilattice pariial

order.
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An algebra (A; A, V, - , 0) of type (2,2,2,0) is a BCK-lattice iff the following

conditions hold:

1'. The reduct {A; A, V) is a lattice;

2. The reduct {A; - ,0) is a BCK-algebra;

31. The BCK partial order coincides with the lattice partial order.

Proof. To prove the lemma it is sufficient to prove the first statement in the

context of lower BCK-semilattices. Let A be a lower BCK-semilattice and let

a, b, c, d £ -4. Clearly conditions (1) and (2) are satisfied. From (1.39) we

have (a^(a^- b)) A b <<A> ^ >0) a -̂  (a -̂  fc), while from a~{a^-b) <</; ̂  >°>

a - (a - 6), a - (a - 6) < ^ ; ^ >°> b and (1.41) we have a - (a - b) <<A> ^ >°>

( o ^ ( o - 6 ) ) A b. Thus (a-^ (a •*•&)) A b = a - ( a - 6 ) . If c <<A> "'°> d

then c = c - 0 = c-{c-d) = (c -̂ (c -̂  d)) A d = (c - 0) A d = c A d,

so c <^;A> d. On the other hand, from (1.39) we have a A b <(A] ̂ )0> 6,

and so (o A 6) - 6 = 0. If c <{A' A> d then 0 = (c A d) - d = c - d and so

c <^ ; ~'°) d. Thus (3) holds, and A satisfies (l)-(3). Since the converse is

clear, the lemma is proved. •

Theorem 1.6.25. [116, Theorem 1] The class IBS /uBS/ of lower [upper]

BCK-semilattices is a variety. Therefore the class BL of BCK-lattices is also

a variety.

BCK-[semi]lattices were introduced by Idziak in [116]. They have since been

studied by Idziak [115, 117], Raftery and Sturm [190], Kondo [141] and Ono

and Komori [176] among others. Examples of BCK-[semi]lattices abound in

the literature, and include dual Brouwerian semilattices (see [164] and [60] for

details) and generalised Boolean algebras (see Corollary 3.3.56 in the sequel).

1.7 Ideals and Subtractive Varieties

The theory of ideals in universal algebra and the theory of subtractive varieties,

as developed by Agliano, Ursini and others, are the major tools we employ in

ou! study of pre-BCK-algebras. We summarise here the parts of these theories
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that we exploit in the sequel. Unless otherwise stated, throughout this section

all classes of algebras considered are pointed; typically we always assume the

existence of a constant term 0.

1.7.1. Ideal Terms-. Let K be a class of algebras of the same similarity
type. A term p(x, y) in the language of K is a K-ideal term in y (in symbols
p(x, y) G ITK(i/)) if the identity p(x, 0 , . . . , 0) « 0 holds in K. A non-empty
subset / of A € K is a K-ideal of A if for any p{x,y) G lT^(y) we have
pA(a, b) G I for a G A arid b € / [104, p. 46]. The intersection of K-ideals is
itself a K-ideal and one easily sees that the set IK (A) of all K-ideals of A forms
an algebraic lattice IK (A) under inclusion [104. Lemma 1.2]. For any B C A,

the ideal (B)% generated by B is the set {pA(a, 6) : p(x,y) G ITK(J/); a G
A,b G B}. A K-ideal is compact when it is finitely generated; for B :=
{oi,..., an}, the compact ideal (#)£ is denoted (a1}..., an)£. By [11, p. 360]
the set CIK(A) of compact K-ideals of A forms a join subsemilattice CIK(A)

of IK (A) under inclusion. A K-ideal is said to be principal when it is generated
by a single element; the principal ideal (#)£ generated by B := {a} is denoted
(o)J. Clearly (0)£ = {0}. When K is {A} (or, equivalently, the variety V(A)
generated by A) then a K-ideal is simply called an ideal and all affixes and
suffixes in sight are dropped, provided the context is clear. The set {{Q]e :
9 E Con A} is denoted by N(A), and any element of N(A) is called a normal

set; trivially N(A) C I(A) C IK (A). Clearly N(A) inherits in a natural way
the lattice structure of Con A: see [222, p. 205]. We say K [an algebra A]
has normal ideals if IK(A) = N(A) for all A G K [if I(A) = N(A)]. If K
has normal ideals, the set of all ideals [lattice of ideals] of any A G K may
be denoted simply by I(A) [I(A)] without any reference to K; we adopt this
convention in the sequel. We say an algebra A [a class K] is ideal simple if the
only ideals of A [of all A G K] are {0} and A. We say A is hereditarily ideal

simple if evzxy subalgebra of A is ideal simple; K is hereditarily ideal simple if
every member of K is hereditarily ideal simple. Finally, an ideal / of A is said
to be proper if / ^ A, and improper otherwise.

The study of K-ideals was initiated by Gumm and Ursini in [104], wherein they

proposed the syntactic notion of ideal described above as an abstraction of the
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familiar closure properties of 'ideals' arising in commonly occurring classes
of algebras. Since their introduction, K-ideals in universal algebra have been
studied by Agliano and Ursini in several contexts; see [8, 218, 219] for details.

Remark 1.7.2. Blok and Raftery [40] have recently proposed a still more gen-
eral notion of ideal than that of Gumm and Ursini, applicable to general (not
necessarily pointed) quasivarieties. Inspired by [31], Blok and Raftery view the
closure systems of (K-) congruences of algebras in a quasivariety K as models of
a certain deductive system §(K,r) 'extracted' from the quasi-equational theory
of K by means of a suitable translation r (for details, see [40, Section 5]). For
A e K a strong ideal of A is simply an §(K, r)-filter of A, namely a subset of A
closed under the axioms and inference rules of §(K,r). In [40, Section 7] Blok
and Raftery compare their notion of ideal with that proposed by Gumm and
Ursini, and show in [40, Theorem 7.4] that for subtractive varieties the two
notions coincide. Because we restrict ourselves to the investigation of subtrac-
tive varieties in this thesis, we are free to work just with the syntactic notion
of ideal proposed by Gumm and Ursini; this we (mostly) do in the sequel. •

Application of Gumm and Ursini's theory of ideals is primarily directed m

the literature towards ideal determined varieties. Recall from [104] that a
variety V is ideal determined if for all A 6 V, any V-ideal is the 0-class of
exactly one congruence, or equivalently, if the map 8 »-» [0]g (6 € Con A) is a
lattice isomorphism from Con A onto I(A).

Proposition 1.7.3. [104, Corollary 1.9] A variety V with 0 is ideal deter-
mined iff it is 0-regular and there exists a binary term s(x,y) in the language
o/V such that:

s(x,x)

s{x,0)

0 (1.42)

(1.43)

1.7.4. Subtractive Varieties. A variety V is subtractive if there exists a
binary term s(x, y) of V such that the identities (1.42) and (1.43) are satis-
fied in V; an algebra A is subtractive if V(A) is subtractive. A variety V is
congruence O-permutable if for any A 6 V and 0 , 0 <E Con A , [0]eo(i> -

,¥•



1.7. Ideals and Subtractive Varieties 77

For a variety V, the following are equivalent [222, Proposition 1.2]: (i) V is

subtractive; (ii) V is congruence O-permutable; and (iii) for each A 6 V, the

map 9 H* [0]fl (6 £ Con A) is a lattice epimorphism from Con A into Iy(A).

Proposition 1.7.5. [222, Proposition 14] Let V & e a subtractive variety and

let A e V. Then every I £ Iy(A) is a congruence class. That is, Iv(A) =
N(A), and so V has normal ideals.

Subti active varieties were introduced by Ursini in [222] and. have been system-

atically investigated by Agliano and Ursini [9, 10, 11, 222, 225] in a program

strongly influenced by recent developments in universal algebra, including com-

mutator theory and the theory of varieties with equationally definable princi-

pal congruences. Particularly important among subtractive varieties are those

satisfy!?" — •• i ^ " ^ ;

5(0, x) « 0. (1.44)

Indeed, recall from [81, Definition 2] ohat a variety V is congruence 0 -distributive

if for any A <= V and 0 ,0 ,^ 6 Con A, [0](flVflA* = [0](<M,/,)V(<MI/>)-
 A v a r i e t y

that is both congruence 0-permutable and congruence O-distributive is said to

be arithmetical at 0. A variety V is ideal distributive if Iv(A) is a distribu-

tive lattice^ for any A € V. For a variety V, the following are equivalent [81,

Theorem 4], [P, Proposition 4.1]: (i) there exists a binary term s(x,y) of V

such that V satisfies (1.42)-(1.44); (ii) V is arithmetical at 0; and (iii) V is

subtractive and ideal distributive.

1.7.6. Congruences of Subtractive Varieties. In general, a subtractive

variety need not be ideal determined. Let A be a (subtractive) algebra and / G

I(A). Let CON(J) := {9 e Con A : [0}s - 1} denote the set of congruences

of A whose 0-classes coincide with L Let Is := / \ CON(/) [Ie : - V CON(/)]

denote the least [greatest] congruence of A whose 0-class is / . If A is an

algebra with normal ideals, CON(J) = [Is, P] is an interval in Con A [10,

Proposition 1.3]. Let ( )* : I(A) --> Con A ?.nd ( )* : I(A) -> Con A be the

maps defined by / s~> I6 and 1 »~> P respectively. For 0 € Con A. let 0o [0i]

denote the least [greatest] congnience i[0}e)
5 \{[Q}o)e] on A whose 0-ciass is
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. Let 0 := CON([0]fl); notice 0 = [0o>0i]. Let ( )0 : Con A -> Con A and
()x : Con A —> Con A be the maps denned respectively by 0 H> 0O and 0 y-¥ 8\.

A system of 0-terms {without parameters) for a class K of similar algebras is

a set D := {dj{x, y) : j G J } of terms in the language of K such that:

1. K |= dj{x, x) « 0 for all j € J;

2. For all A G K and a G A, if d^(0, a) = 0 for all j G J, then o = 0.

Let A be an algebra and / G I(A). Define ID C A x A by (a, b) G ID iff

for all j G J, d/Ha, 6) € / . For 0 G Con A let 0^ := [0]f. For a class K of

similar algebras, a set D := {d/(a;, y) : j € / } of terms of K is a system of ideal

congruence terms {without parameters) for K (in short, an IC-system {without

parameters) for K) if 0D € Con A and [0]̂ r> = [Q]Q for all A 6 K. Observe that

if K has normal ideals, D is an IC-system for K iff for all A G K and / G I(A),

ID G CON(/), or, equivalent^, ID G Con A and [Q]lD = I.

Proposition 1.7.7. [10, Proposition 3.8, Proposition 3.9] Let V be a variety

with normal ideals and let D be a system of 0-terms for V. The following are

equivalent:

1. For K ^ , (0)£GConA;

2. D is an IC-system for V;

3. For A G V and 6 G Con A, 6D = 0i;

I For A G V and I G I(A), ID = /£.

A variety is said to be finitely congruential if it has a finite IC-system without
parameters; by [10, Theorem 3.10] a finitely congruential variety with normal
ideals is subtractive. For subtractive varieties, finite congruentiality generalises
point regularity: see Agliano and Ursini [10, Remark (4), p. 322].

1.7.8. Equationally Definable Principal Ideals. A class K of algebras

of a given similarity type has Equationally Definable Principal K-Ideals (briefly,
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EDPI) if there are terms Pi(x, y)) qt(x, y), i = 1 , . . . , n in the language of K

such that for any A G K and a, 6 G A:

Equationally definable principal ideals were introduced by Agliano and Ursini

in [9] as the ideal-theoretic analogue of equationally definable principal con-

gruences. Subtractive varieties with EDPI have been investigated at length by

Agliano and Ursini [9, 11], to whom the following result is due.

Theorem 1.7.9. [6, Theorem 4-1] For a subtractive variety V, the following

are equivalent:

1. V has EDPI;

2. There is a binary term p(x,y) o/V such that:

ae(b)A iff

for any A G V;

3. The join semilattice (CI(A); V, (0 )A) of compact ideals is dually rela-

tively pseudocomplemented for any A G V.

Moreover, i/V has EDPI then there exists a binary term x — y o/V witnessing

both subtractivity and EDPI in the sense of (2) above. That is, there exists a

binary term x — y o/V such that for any A G V and a, b G A,

a-A0 = a

iff a-Ab =

Proposition 1.7.10. ([11, Theorem 3.1]; [4, Corollary 2]) Let V be a sub-

tractive variety. //V has EDPC then V has EDPI. Conversely, z/V is ideal de-

termined and has EDPI, then V has EDPC and the map 0 i-> [£)]„ (9 G Con A)

is a dual Brouwerian semilattice isomorphism from Cp A onto CI(A) for any

A 6 V. S

I
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Example 1.7.11. [11, Example 3.7] An algebra {A; ->,1> of type (2,0) is

called a MINI-algebra if the following identities are satisfied:

X - * 1 « 1

1 —)• a; « x

(x-*{y-*z

x->(y-*x)

((x -> y) -» (x

1.

(1.45)

(1.46)

(1.47)

(1.48)

Hilbert algebras are precisely those MINI-algebras for which the quasi-identity:

(1.49)

holds. Hence the variety of MINI-algebras is a natural generalisation of the

variety of Hilbert algebras to the subtractive but not 1-regular case. In conse-

quence, the class of MINI-algebras provides a natural example of a subtractive

variety with EDPI (that does not have EDPC); indeed, the term y -» x wit-

nesses both subtractivity and EDPI in the variety of MINI-algebras in the sense

of Theorem 1.7.9 above. •

Proposition 1.7.12. [11, Corollary 3.6] For a variety V with language (— , 0)

°f tyPe (2,0) the following are equivalent:

1. For all A € V and a,b e A,

a 6 (6)A iff a-b = 0

a — b = 0 and b — a = 0 implies a = 6;

2. \l is a variety of positive implicative BCK-algebras.

Let V be a variety. A meet generator term for V is a binary term f~l in the

language of V such that for any A € V and a, b e A [11, p. 378],

A join generator term for V is a binary term U of V such that for any A € V
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mda.be A [11, p. 379],

Subtractive varieties with a meet [join] generator term have been studied by
Agliano and Ursini in [11, Section 4, Section 5]. For a subtractive variety V,
the following are equivalent: (i) V is ideal distributive and the meet of two
principal ideals is principal; (ii) V has a meet generator term [11, p. 378; The-
orem 4.2]. Concerning join generator terms, the following proposition obtains
for arbitrary (that is, not necessarily subtractive) varieties.

Proposition 1.7.13. [11, Proposition 4-3] For a variety V, the following are

equivalent:

1. For any A G V, the join of two principal ideals is principal;

2. For any A G V, every compact ideal is principal;

3. There is a binary term U and two ternary terms r(x, y, z) and t(x, y, z)

of V such that the identities:

ouo«o

r(x,y,x

t(x, y, x U y) « y

hold in V;

4- V has a join generator term.

If any of (l)-(4) hold, the binary term U of (3) is a join generator termfcrV.

Let K be a class of similar algebras. For any A G K let « A be the relation
denned on A by [6, p. 2]:
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for any a, b G A. If K has normal ideals, then a « A b iff NA(O<) = NA(&) (by

Agliano [7, p. 5]), where NA(a),NA(&) denote the normal sets generated by

{a},{6} respectively. Therefore if K is a subtractive variety then a « A b iff

(a) A = (6>A-

Lemma 1.7.14. Let V be a subtractive variety with EDPI and let x — y be

a binary term witnessing both subtractivity and EDPI for V in the sense of

Theorem 1.7.9. For any A G V,

«A = { K b) : a - Ab = 0 = b - Aa}.

Proof. Let V and — be as in the statement of the lemma. Let A G V. For

any a, b G A, we have that a« A 6 iff (a) A = (&)A iff a € (&)A> b G {a)^ iff

o^-A6 = 0 = 6 - A o (by EDPI). •

Because of Lemma 1.7.14, the following theorem may be inferred from results

due to Agliano and Ursini [11].

Theorem 1.7.15. Let V be a subtractive variety with EDPI. Let x — y witness

both subtractivity and EDPIforV in the sense of Theorem 1.7.9 and let A G V.

The following assertions hold:

1. [11, Theorem 3-4(2)] (PI(A); *, (0}A) is a positive implicative BCK-

algebra isomorphic with {A; — , 0 ) / « A ;

2. [11, p. 383] If V has a meet generator term x fl y, the compact ideals

of A are closed under intersection. Thus (CI(A); :),V,*, (0)A) is a

dually Brouwerian lattice and (PI(A); D, *, (0 )A) is a (C\,*)-subreduct

o/(CI(A); n, V,*, (0)A) isomorphic with {A; n, — , 0 ) / « A /

3. [11, Theorem 5.1(2)] If'V has a join generator term xUy, then (PI(A); V

? *) (0)A) is a dual Brouwerian semilattice isomorphic with (A] U, — ,

4- [11, Theorem 5.6(2)] If V has both a meet and join generator term then

(PI(A); n, V,*, (0)A) is a dually Brouwerian lattice isomorphic with

{A; n . U . -
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Let K be a class of similar algebras. For any A G K, the relation « A is

an equivalence relation. If « A = WA for any A G K, K is said to be con-

gruence orderable. A point-regular congruence orderable variety is Fregean.

Congruence orderable varieties were introduced by Bliclii and Owens in [49]

and have been studied by Idziak, Somczynska and Wroriski [118], Pigozzi [181]

and Agliano [7], to whom the following proposition is due.

Proposition 1.7.16. [7, Theorem 2.1] Let V be a subtractive variety and

let s(x,y) witness subtractivity for V. 7/V is congruence orderable then V is

0-regular and the terms d\(x,y) := s(x,y) and a\{x: y) := s(y,x) witness 0-

regularity for\f in the sense of Proposition 1.2.6. Thus a congruence orderable

subtractive variety is Fregean.

Let K be a class of similar algebras. If J^A £ Con A for any A G K then K

is called weakly congruence orderable or congruence quasi-orderable. Weak

congruence orderability was introduced by Agliano in [6] as a weakening of

the concept of congruence orderability. For subtractive varieties with EDPI,

weak congruence orderability has been studied by Agliano and Ursini [11] and

Agliano [6], to whom the following result is due.

Lemma 1.7.17. [6, Corollary 2.5] Lei A be a subtractive algebra. Then A

is weakly congruence orderable iff for any binary term s(x,y) witnessing sub-

tractivity for A one has:

« A = {(a, 6) : .sA(a, b) = 0 = sA(6, a)} = (0)A.

Proposition 1.7.18. Let V be a subtractive variety and let s(x,y) be a term

witnessing the subtractivity o/V. Then V is congruence orderable iffV is weakly

congruence orderable and the binary terms d\(x,y) :— s{x,y), d%(x,y) :=

s{y,x) witness the O-regularity o/V in the sense of Proposition 1.2.6.

Proof. .Let V be a subtractive varitfry uud let s(x,y) be a term witnessing

the subtractivity of V. Suppose V is a ngruence orderabie. Trivially V is

weakly congruence orderable. Moreover, by Proposition 1.7.16 the terms

:= s(x, y), d2{x,y) := s(y,x) witness the O-regularity of V in the
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sense of Proposition 1.2.6. Conversely, suppose V is weakly coiigruence order-

able and moreover that the binary terms d\(x, y) := s(z, y), d2{x, y) := s(y, x)

witness the O-reguiarity of V. Let A € V and a, 6 G A. By Lemma 1.7.17,

a«A& implies sA(a,b) = 0 = sA(b,a), whence d^(a,b) = 0 - d£(a,b),

whence a = b by Proposition 1.2.6. Thus V is congruence orderable. •

Proposition 1.7.19. [6, Theorem 4-2]Let V be a weakly congruence orderable

subtractive variety with EDPI. Then Ve is a congruence orderable subtractive

variety with EDPC.

1.7.20. Binary and Dual Binary Discriminator Varieties. Let A be a

set. For a fixed but arbitrary 0 € A the binary discriminator and dual binary

discriminator on A are the functions b : A2 —> A and h : A2 —> A defined

respectively by [58, Section 2]:

. a if c = 0 . . 0 if c - 0
6(a, c) := \ and /i(a, c) := <

0 otherwise I a otherwise

for any a,c € A; the element 0 E A is called the discriminating element. An

algebra A with 0 is called a binary discriminator algebra [dual binary dis-

criminator algebra] if there is a binary term b [a binary term h] of A whose

canonical interpretation on A is the binary discriminator [dual binary discrimi-

nator] with discriminating element 0A . A variety V with 0 is said to be a binary

discriminator variety [dual binary discriminator variety] if there is a binary

term b of V [h of V] and a subclass K of V such that !>A is the binary discrimi-

nator [hA is the dual binary discriminator] with discriminating element 0A on

each A e K and V = V(K); b [h] is called a binary discriminator term [dual

binary discriminator term] for V. Note that any binary discriminator variety

is a dual binary discriminator variety, since h(x, y) « b(a;, b(x, y)); conversely,

a dual binary discnminator variety is a binary discriminator variety iff it is

subtractive [58, Theorem 2.1(1)].

Theorem 1.7.21. [58, Theorem 5.1] For a variety V the following are equiv-
alent:
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1. V is a binary discriminator variety;

2. The following assertions hold for V and a binary term b(x,y) o/V;

(a) V satisfies the identities:

b(x,O) m z,

b(O,x) fa x,

b(x,x) fa 0,

b(x,b(y,x)) f*x\

(b) V satisfies the identity:

b(f{xu...,xn),y) fa b(f(b(xuy),...,b(xniy)),y)

for every n-ary operation symbol f in the type o/V;

(c) V is generated by a class K C V whose members are ideal simple;

3. There exists a binary term b(x,y) o/V satisfying (2)(a)-(2)(b) above

and V is generated by a class K C V whose algebras have no proper

congruence kernels.

The binary discriminator and dual binary discriminator were introduced by
Chajda, Halas and Rosenberg in a 1999 paper [58] in an attempt to generalise
the ternary discriminator and dual ternary discriminator to varieties exhibit-
ing congruence permutability and congruence distributivity only locally at 0
respectively. For a brief discussion contrasting the binary discriminator with
the ternary discriminator, see [58, p. 242, pp. 247-248, p. 249].

1.8 Algebraisable and Assertional Logics

In [31] Blok and Pigozzi introduced an abstract notion of algebraisability based
on a generalisation of the classical Lindenbaum-Tarski process in an attempt
to formalise the precise connection between EDPC and the deduction theo-
rem [182, p. 125]. Since the publication of the seminal monograph [31] alge- i
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braic logic has been intensively developed by Blok, Czelakowski, Herrmann,

Pigozzi and others. In this section we briefly review Blok and Pigozzi's theory

of algebraisable logics, and also consider some recent developments in algebraic

logic concerning the assertional logics of pointed quasivarieties.

1.8.1. Algebraisable Deductive Systems. Let K be a class of algebras
of type C and let § be a deductive system of the same type. K is called

an algebraic semantics for § if h s can be interpreted in (=« in the following

sense: there exist finite families {5 l 5 . . . , 5r} and {e i , . . . , er} of equations in

one variable such that for all F U {</?, i/>} C Fm£ and I = 1 , . . . , r,

iff
(1.50)

K is said to be equivalent to § if |=K can be interpreted in S in the following

sense: there exists a finite system {Ai , . . . , Am} of formulas in two variables

such that for all F U {ip, if)} C

=H=K {6t(ipAiil;) t = 1 , . . . , m; t = 1 , . . . , r . j

(1.51)

The equations 5t ~ £*, t = l , . . . , r , are called the defining equations for §

and K while the family {A l 5 . . . , Am} of composite binary connectives is called

a system of equivalence formulas for § and K. A deductive system is said to be

algebraisable if it has an equivalent algebraic semantics. Suppose S is algebrais-

able with equivalent algebraic semantics K. Because of [31, Corollary 2.11],

K may be identified with the quasivariety Q(K) it generates; that is, K is an

equivalent quasivariety semantics. If K is a variety then K is an equivalent

variety semantics, and in this case S is said to be strongly algebraisable. The

following intrinsic characterisation of algebraisable deductive systems is due to

Blok and Pigozzi [31].

Theorem 1.8.2. [31, Theorem 4.7] A deductive system § is algebraisable iff.

there exists a finite family {Ai , . . . , Am} of formulas in two variables and finite

families {S\,..., 6r} and {e i , . . . , er} of equations in a single variable such that
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for any connective w (of rank n) and formulas v?i, • •

X the following five conditions hold for j = 1 , . . . , m :

1. l-

"0i> f>

2. {(pAii/>: i = 1 , . . . , m} h

3. {(pAtf : i = 1 , . . . , m} U * = 1,. . . , m} h

4. {ipkAiil)k : i = 1 , . . . , m; A; = 1, . . . ,»} h s t y

•5- X H^s {^(x)A,ef(x) : i = 1 , . . . , m; i = 1 , . . . , r } .

/n i/iis eueni {Ai , . . . , Am} and 6t « £«, i = 1 , . . . , r are systems of equivalence

formulas and defining equations for §.

It is possible for distinct algebraisable deductive systems to have the same

equivalent algebraic semantics: see Blok and Pigozzi [31, Chapter 5.2.4]. On

the other hand, the equivalent algebraic semantics associated with a given

algebraisable deductive system is unique [31, Theorem 2.15] and is determined

by the algorithm of the following theorem.

Theorem 1.8.3. [31, Theorem 2.17] Let S be a deductive system given by

a set of axioms Ax and a set of inference rules Ir. Assume § is algebrais-

able with equivalence formulas {Ai , . . . , Am} and defining equations 6t ~ £t,

t = 1, . . . , r. Then the unique equivalent quasivariety semantics for S is ax-

iomatised by the identities:

for each ip G Ax;

2. 5t(xAix) ix), i = 1, . . . , m; t = 1,.,.., r;

together with the following quasi-identities:

3. &S=1&J=1*t(x«) « et(Xu) D 8t(<p) »

for each ( { x i , . . . , X n } , < p ) 6 I r ;

I K = 1 k r
t = 1 5 t { x A i y ) « e t ( x A i y ) D x n y



1.8. Algebraisable and Assertional Logics 88

Example 1.8.4. Let C :- {-»} be a language of type (2). BCK logic is

the deductive system BCK'. := (£, H ^ K ) defined by the following axioms and

inference rule [28, Lecture 6, Section 2.2]:

(p -> q) -> (p

~» (P

)) (B)

(C)

(K)

(BCK-MP)

BCK logic has been extensively studied in the literature: see [80, Section 4] for

a survey and references. Results due to Blok and Pigozzi [31, Theorem 5.10,

Theorem 5.11] show BCK is algebraisable; its equivalent algebraic semantics

is termwise definitionally equivalent to the quasivariety BCKC of dual BCK-

algebras introduced by Blok and Pigozzi in [32, Example 7.3] and axiomatised

by the following set of identities and quasi-identities:

(x -> y) -» {(y -> z) -» (a; -> z)) « 1

x -> ((a; -> y) ->

a; ->• a; « 1

Clearly BCK1' is itself termwise definitionally equivalent to (in fact, is dually

isomorphic to) the quasivariety of BCK-algebras—for details, see [32, Exam-

ple 7.3], , •

Following the publication of the seminal monograph [31] algebraisable logics

have been the object of intense investigation; for a (partial) survey of the

literature, see the tutorials of Blok and Pigozzi [36] and Blok and Jonsson [28].

1.8.5. Matrix Semantics. An C-matrix (or simply a matrix when C is

understood) is a tuple (A, F), where A is an algebra of type C and F is a
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subset of A. For any £-matrix (A; F) and F U {</>} C Fm^, let

F(FmJc) -> Fmc be the relation defined by F f=(A; F) <P if:

h(ip) G F for every ip G F implies h(cp) G F, for every to: Firi£ —> A.

If M is a class of ^-matrices, then F \=M <p if F f=(A; F) V for every (A; F) G M.

Let § be a deductive system of type £, A be an algebra of the same type and

let F C A. The subset F of A is called an S-filter of A, or simply a filter

when § is understood, if F h§ y? implies T f=(A; F) V for all F U {</>} C Fm/;;

the set of all §-filters of A is denoted Fi§ A. If F is an S-filter, then the C-

matrix (A; F) is called a matrix model of S; the class of all matrix models

of § is denoted MatS. A congruence 6 on A is said to be compatible with F

if a G F and (a, b) G 9 implies b G F [31, Section 1.4]; the largest congruence

on A compatible with F is called the Leibniz congruence on A over F and

is denoted £1&(F) [31, Theorem 1.5]. The natural map CIA : Fi§ A -> Con A

defined by F i-» CIA(F) is called the Leibniz operator on A. An §-matrix is

said to be reduced if £IA(F) = UJA, and the class of all reduced §-matrices is

denoted Mat* S.

Theorem 1.8.6 (Reduced Matrix Completeness Theorem). [36, The-

orem 3.5] Let § be a deductive system and let Mat* § be the class of all reduced

^-matrices. For all F U {cp},

For a deductive system § over a language C, a class M of £-matrices is said

to be a matrix semantics of § if, for all F U {<£>} C Fm^, F hg <p iff F \=M <P-

For a deductive system S, a quasivariety K and a system 8t ~ et, t = 1 , . . . , r

of equations in one variable the following are equivalent [31, Theorem 2.4]: (i)

the class of matrices {(A, {F^£}) : A G K}, where F^£ = {a G A : 6f(a) =
£t(a)> £ = 1, . . . , r} , is a matrix semantics for §; and (ii) K is an algebraic

semantics for S with defining equations 5t ~ et, t = 1 , . . . , r.

Theorem 1.8.7. [31, Corollary 5.3] Let S be an algebraisable deductive sys-

tem. Let K be the equivalent quasivariety semantics of § and let Mat* § be
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the class of all reduced S -matrices. Then K is the class of all algebra reducts

o/Mat*§, viz.:

K = {A : (A, F) e Mat* § for some S-filter FofA}.

Lemma 1.8.8. Let S\ and §2 be deductive systems over the same language C.

If §i and §2 are algebraisable with the same defining equations and the same

equivalent algebraic semantics then they coincide.

Proof. Let §i and §2 both be algebraisable with equivalent quasivariety se-

mantics K and defining equations 5t ~ f,t, t = 1 , . . . , r. By previous remarks

and Theorem 1.8.7, Mat* Si = {(A, {a € A : 5f(a) = e^(o), t = 1 , . . . , r}) :

A G K} = Mat* §2- Hence §1 and §2 coincide by Theorem 1.8.6. •

1.8.9. Assertional Logics of Pointed Quasi varieties. For a quasiva-

riety K of algebras with 1 over a language £, the assertional logic of K, in

symbols §(K, 1), is the closure operator h§,K ̂  defined by the class of matrices

M(K, 1) := {(A, {1A}) : A G K} in the sense that:

i f f

for any V U {ip} C Fm^. Because K is a quasivariety, hg/K ^ is finitary and

structural, and hence is a deductive system in the sense of this thesis. Since

M(K,1) is a matrix semantics for S(K, 1) by definition, the assertional logic

S(K, 1) may be defined equivalently by specifying that, for any Fu{(p} C

r i f f

The entailment {ijj « 1 : ip e F} |=« p « 1 is itself equivalent to the existence

of some finite AC F such that:

K(=

whence it is a harmless notational convenience to assume, for any entailment

^ ^ , I ) '•Pi tnat; Au{ip} is a, finite set of terms, all of the form x(p), where p is

, fv I
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understood as a, finite sequence of variables, including all that occur in Al){(p}.

See Raftery and van Alten [193, Section 4.1].

Example 1.8.10. Let M^CK^l) denote the class of matrices of the form:

( A , { l A } : A e B C K D )

where BCKD is the class of dual BCK-algebras (recall Example 1.8.4). By an

argument analogous to that of [36, p. 24] M(BCK£), 1) is precisely the class of

reduced BCK-matrices of BC&. By the reduced matrix completeness theorem

it follows that the deductive system ^(BCK0,1) coincides with BCK. •

Assertional logics of pointed classes were introduced by Pigozzi in [181, Sec-

tion 2] (but see also Curry [75, pp. 64 ff.]). For recent work concerning as-

sertional logics of pointed classes, see Blok and Raftery [41], [40, Section 6],

Czelakowski and Jansana [77, Section 6], Czelakowski and Pigozzi [78, Sec-

tion 2.1], Raftery and Barbour [16, Section 2.3] and Raftery and van Alten [193,

Section 4.1]. (See also Ursini [224, Section 2] for related work.) For varieties

with normal ideals, the associated assertional logics have been investigated by

Agliano and Ursini in [10, pp. 314 ff.], wherein the following lemma is stated

without proof. The proof we give below is implicit in Blok and Raftery [40,

Lemma 5.1, Section 7]; see also Blok and Raftery [40, Theorem 7.4, Corol-

lary 7.5].

Lemma 1.8.11. Let V be a variety with normal ideals and let S(V, 1) be the

assertional logic of V. For any A G V, the V'-ideals of A coincide with the

Proof. Let V, §(V, 1) and A be as in the statement of the lemma. By [40,

Lemma 5.1] the 1-class of any congruence of A is a S(V, l)-filter of A. Con-

versely, any S(V, l)-filter is a V-ideal by the remarks of [40, Section 7, p. 180].
•

The following lemma is also stated without proof by Agliano and Ursini in [10,
p. 314].
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Lemma 1.8.12. Let V be a variety with normal ideals. For any A € V and

Proof. Let V, A and / be as stated. In view of the preceding lemma, by [40,

Proposition 6.1] we have that / = [l]nA(/) f° r a n v ^ G *(A), which implies

Q,A(I) = P as required. •

For a variety V with normal ideals, let Ve := {A : A = B / ( 1 ) B for some

B £ V} be the class of reduced algebras of V.

Remark 1.8.13. In [10, p. 296, p. 315] Agliano and Ursini define Ve .:=

{A/(0)A : A G V} for any variety V with normal ideals. This definition is in

error [226]: V£ must be closed under isomorphic copies by [10, Proposition 3.3].

The definition of Ve used throughout this thesis reflects this correction. •

Theorem 1-8.14. Let V be a variety with normal ideals. The following are

equivalent:

1. V is finitely congruential;

2. S(V, 1) 25 algebraisable;

3. V£ is a quasivariety.

Moreover, i/S(V, 1) is algebraisable then V€ is the equivalent algebraic seman-

tics of'S(V,1).

Proof. The first assertion is [10, Theorem 3.13]. By [77, Proposition 6.9] and

Lemma 1.8.12, Ve is exactly the class of algebra reducts of the reduced matrices

of S(V, 1), which implies Ve is the equivalent algebraic semantics of S(V, 1) by

Theorem 1.8.7. , •

Theorem 1.8.15. [10, Corollary 3.17] Let V be a variety with normal ideals.

The following are equivalent:

1. V is ideal determined;

2. V = VF:
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3. §(V, 1) is strongly algebraisable and its equivalent algebraic semantics is

exactly V.

Generalisations of the previous theorem to the effect that a quasivariety K

with 1 is K-1-regular iff K is the equivalent algebraic semantics of its alge-

braisable assertional logic §(K, 1) have very recently been obtained by several

authors: see Blok and Raftery [40] and Barbour and Raftery [16, Corollary 50].

1.8.16. The Deduction Theorem in Algebraic Logic. Let S be a de-
ductive system. S is said to have a Deduction-Detachment Theorem (DDT) if

there exists a finite set S := S(p, q) := {C»(PJ #) : i = 1,. • •, n} of formulas

of S such that for any set F U {(p, ij)} of formulas of S [36, Section 4],

iff

In this case, E is called a deduction-detachment set for S. Observe that the

existence of a DDT for S does not imply the existence of a conditional for §;

of course, the converse does obtain.

Theorem 1.8.17. [36, Theorem 7.3] Let § be a strongly algebraisable deduc-

tive system and let V be its equivalent variety semantics. Then S has a DDT

iffy has EDPC.

The deduction theorem in algebraic logic has been extensively investigated by

Blok, Pigozzi, Czelakowski and others: see for instance [33, 36, 76]. For a

history of the deduction theorem in logic see Porte [185].



Chapter 2

The Theory of

Pre-BCK-Algebras

In this chapter we investigate the theory of pre-BCK-algebras. Our study is
based on and guided by Iseki and Tanaka's standard survey paper An intro-

duction to the theory of BCK-algebras [126]. Thus the scope of our study is
largely limited to the variety of pre-BCK-algebras simpliciter and to some nat-
ural pre-BCK-algebraic counterparts of the varieties of commutative, positive
implicative and implicative BCK-algebras. Our study of pre-BCK-algebras
does not extend to pre-BCK-algebraic analogues of the varieties of n-potent
BCK-algebras described in §1.6.13, or to pre-BCK-algebraic analogues of other
varieties of BCK-algebras that have been considered in the literature, such as
the residuation subreducts of hoops.

Our main goal in this chapter is to show that pie-BCK-algebras admit a co-
herent elementary theory. In particular, our aim is to demonstrate that much
of the first-order theory of BCK-algebras, suitably generalised, extends to pre-
BCK-algebras. (By fiat, we highlight differences between the theory of pre-
BCK-algebras and the theory of BCK-algebras where these occur.) Nonethe-
less, our ultimate motivation in studying pre-BCK-algebras is not simply an
interest in generalisation for its own sake; rather, the driving force behind our
study lies in the development of the applications of the sequel. This focus
is most clearly reflected in this chapter in the emphasis given herein to the
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development of the order theory and the ideal theory of pre-BCK-algebras.

2.1 Pre-BCK- Algebras

In this section we study pre-BCK-algebras as a generalisation of pre-BCK-

algebras to the subtractive but not point-regular case.

In §2.1.1 pre-BCK-algebras proper are introduced. It is shown that the variety

PBCK of pre-BCK-algebras coincides with a certain variety of algebras gen-

eralising BCK and considered by Blok and R.aftery in [38] and independently

(in dually isomorphic form) by Agliano and Ursini in [10]. We also prove that

the variety of pre-BCK-algebras is a subvariety of the varietal closure of the

quasivariety of left residuation algebras. In one of the two main results of the

section, a 'Clifford-McLean'-type theorem for pre-BCK-algebras, we show that

for a pre-BCK-algebra A, the equivalence S induced by the natural pre-BCK

quasiordering ^ (in the sense of Lemma 1.2.2) is a congruence on A such that

the quotient algebra A / 5 is the maximal BCK-algebra homomorphic image

of A.

For a suitable notion of pre-ideal, the pre-ideal theory of pre-BCK-algebras is

studied in §2.1.20. We provide a simple characterisation of pre-ideal generation

in pre-BCK-algebras. For a pre-BCK-algebra A, it is shown that a pre-ideal

of A is just the inverse image of an ideal of the maximal BCK-algebra homo-

morphic image A/H. We also establish some other properties of pre-ideals of

pre-BCK-algebras.

In §2.1.25 the relationship between pre-ideals and congruences in pre-BCK-

algebras is investigated. It is shown that every pre-ideal of a pre-BCK-algebra A

is the 0-class of a PBCK/BCK-congruence on A. Hence we deduce that for

pre-BCK-algebras, pre-ideals coincide with the (PBCK-) ideals of Gumm and

Ursini described in §1.7.1. We prove that the lattice of all ideals of a pre-

BCK-algebra is isomorphic to its lattice of PBCK/BCK-c mgruences. Further,

we establish the existence of a commutative square of isomorphisms between

the ideal and PBCK/BCK-congruence lattices of a pre-BCK-algebra and the

i
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ideal and BCK-congruence lattices of its maximal BCK-algebra homomorphic

image.

The assertional logic of the variety of pre-BCK-algebras is studied in §2.1.33.
We prove the variety of pre-BCK-algebras is finitely congruential, and hence
show the assertional logic of the variety of pre-BCK-algebras is algebrais-
able with equivalent algebraic semantics (termwise definitionally equivalent
to) BCK. In consequence we infer the other main result of the section: a

n

quasi-identity of the form &Sj(a;) « 0 D t(x) « 0 is satisfied by PBCK iff it

is satisfied by BCK.

2.1.1. P r e - B C K - A l g e b r a s . An algebra (̂ 4; - , 0 ) of type (2,0) is called

a pre-BCK-algebra (in the sense of Cornish) if the following identities are

satisfied [71, Section 1]:

((a; - y) - [x - z)) — (z — y) « 0

(x — [x — y))—y « 0

x — x « 0

0 — X: W 0 .

(2.1)

(2.2)

(2.3)

(2.4)

Because of (2.3), the class of pre-BCK-algebras may be understood as a variety
of pointed groupoids; consequently we (informally) denote pre-BCK difference
by juxtaposition in the sequel when no confusion can arise. Clearly a pre-
BCK-algebra is a BCK-algebra iff it satisfies the quasi-identity:

y- (2.5)

Recall from [121,123] that a BCK-algebra A := (A] - , 0) satisfies Iseki's con-

dition (S) iff there exists a largest element a + b of the subset {c e A : ca < b}

for any o,i 6 i , or, equivalently, A possesses another binary operation +

such that a(b + c) = (ab)c is identically satisfied. Pre-BCK-algebras were

introduced by Cornish in [71] as a means of constructing BCK-algebras from

BCK-algebras with condition (S). Cornish's construction, reproduced in Ex-
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ample 2.1.2 below, generalises Wronski's example [240] showing that the class

of BCK-algebras is not a variety; see [71, Theorem 2.2] and the remarks there-

after.

Example 2.1.2. [71, Section 2] Let (A\ - , + , 0 ) be a BCK-algebra with

condition (S) and let t be any element of A. Let A' := {a' : a € A} and

A" := {o" : a 6 A} be two sets equipotent with A and let V t̂(̂ 4) be the

(disjoint) union of A, A' and A". For any a, b e Wt(A) let the product - W*M

be denned as follows:

ab := a — 6 ,

ab' = ab" := 0,

a"b := (a + &)",

By [71, Lemma 2.1] W t(A) := (Wt(A)\ - ^ W t ^ , 0 ) is a pre-BCK-algebra.

Wronski's example [240] showing that the class of BCK-algebras is not a variety

Let (A] —, 0) be a pointed groupoid with operation — defined by ab = 0

for any a, b G A. It is clear from (2.1)-(2.4) that (A; - ,0) is a pre-BCK-

algebra. This observation is indicative of the fact that interesting classes of

pre-BCK-algebras are those possessing one or more additional properties. Let

(A\ - , +, 0) be a BCK-algebra with condition (S) and let t be any element

of A. Because a + 0 = a for any a e A, W t(A) is a pre-BCK-algebra sat-

isfying the identity x — Q « x. Thus it is consistent with Cornish's original

construction to mean by 'pre-BCK-algebra' a pre-BCK-algebra (in the sense

of Cornish) satisfying a; — 0 « x. In this thesis, therefore, a pre-BCK-algebra

is a pre-BCK-algebra (in the sense of Cornish) satisfying:

x — 0 « x. (2.6)
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The variety PBCK of pre-BCK-algebras is thus the class of algebras axioma-

tised by (2.1)-(2.4) and (2.6). Given these definitions, the following result is

immediate.

Theorem 2.1.3. The variety of pre-BCK-algebras is subtractive witness x — y.

Example 2.1.4. The identities (2.3), (2.4) and (2.6) assert that up to isomor-
phism there is a single two-element pre-BCK-algebra, namely the two-element
implicative BCK-algebra Ci. It is easy to see C\ embeds into every non-trivial
pre-BCK-algebra and hence that Q(Ci) is the smallest non-trivial subquasi-
variety of PBCK; cf. [231, p. 6]. Even more is true: because Ci generates the
class of implicative BCK-algebras as a variety (recall Theorem 1.6.19), iBCK
is the unique atom in the lattice of varieties of pre-BCK-algebras. •

Example 2.1.5. Denote by B2 the algebra ({0,1,2}; - , 0 ) of type (2,0)

with operation — defined by:

_:.B2

0
1

2

0

0
1

2

1

0
0
0

2

0
0

0

The 3-element pointed groupoid B2 is the simplest example of a pre-BCK-

algebra that is distinct from a BCK-algebra. In their Siena paper [54] Burris

and Berman have recently catalogued all >3-element groupoids; the Siena cat-

alogue number of B2 is 216. Prom this remark and [54, p. 390] the following

facts are known about the variety V(B2) generated by B2:

• The set of types (in the sense of Hobby and McKenzie's tame congruence
theory [110]) realised in V(B2) is {1,3};

• V(B2) is not congruence distributive, congruence modular or congruence

permutable;

• V(B2) does not have a decidable first-order theory;

• |F(0)| = 1, |.F(1)| = 2 and \F{2)\ = 7, where \F(n)\ denotes the cardi-
nality of the V(B2)-free algebra F(n) on n free generators.

I
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Classes of algebras generalising BCK but which fail in any sense to be point-
regular have been considered by several authors in the literature: for instance,
see Bunder [52], Blok and Raftery [38], Agliano and Ursini [10] and Hum-
berstone [113]. However, such classes have invariably been introduced in the
context of a wider field of study and have not been considered extensively in
their own right. Apropos this remark, let V denote the variety of algebras with
language ( - , 0 ) of type (2,0) axiomatised by the identities (2.1), (2.4), (2.6)
and introduced by Blok and Raftery in [38, Section 4] in the context of their
investigation into the quasivariety of BCK-algebras and its subvarieties.

Lemma 2.1.6. An algebra (A] - , 0) of type (2,0) is a pre-BCK-algebra iff it

satisfies (2.1), (2.4) and (2.6). Thus the variety of pre-BCK-algebras coincides

with Blok and Raftery's variety V.

Proof. Let {A; -=-, 0) be an algebra of type (2,0) satisfying (2.1), (2.4) and (2.6).
Let a,beA. Notice that 0 = ((a - 0) - (a - 6)) - (b - 0) = (a - (a - b)) - b

by (2.1) and (2.6). Thus (2.2) holds. Moreover, by (2.6) we obtain 0 =
((a - (a — 0)) - 0 = a — a and so (2.3) holds also. The converse is clear. •

Let X be the variety of algebras with language ( - , 0) of type (2,0) axiomatised
by the identities (2.1), (2.3), (2.4), (2.6) and the identity:

{(x -y)-L(z~ y)) -1- (z - 0. (2.7)

The variety X was introduced by Agliano "and Ursini (in dually isomorphic
form) in a case study [10, Example 4.5, pp. 330-332] concerning the relation-
ship between ideals and congruences in subtractive varieties.

Lemma 2.1.7. The variety of pre-BCK-algebras satisfies the following iden-
tities:

(x~y)-(x~(z-:-{z~ y))) « 0

(x ~ {y ~ *)) - (a: - ((« - z) - (u - y))) « 0.

(2-8)

(2.9)
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Proof. Let A be a pre-BCK-algebra and let a, 6, c, d G A. For (2.8), put

a := a, (3 := b and 7 := c(cb). We have:

O=((o0)(a7))(70)

= ((o/3)(Q7))0

by (2.1)

by (2.2)

by (2.6)

= (ab){a(c(cb))).

For (2.9), put a:= a,/3 := be and 7 := (dc)(d&). We have:

0 =

= ((a0)(a7))O

by (2.1)

by (2.1)

by (2.6)

Proposition 2.1.8. The variety of pre-BCK-algebras satisfies the following

identities:

((x - y) - (z - y)) - {x - z) » 0 ,

((x — y) — z) — ((x — z) — y) w 0. _

(2.7)

(2.10)

Proof Let A be a pre-BCK-algebra and let a,b,ce A. We first derive (2.10).

For (2.10), put a := (ab)c,fi := {ac),y := b and 5 := a. We have:

by (2.9)

= (((a6)c)((ac)6))(((a6)c)((a6)(a(ac)))).'

; ' : . • • • ; , ' • • / ; . • • . _ - • . < ' • , . ' - • , • , . . • • . ; ' ' - . ' '
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Put a := 06, /3 := c and 7 := a. We have:

{((ab)c)((ac)b))(((ab)c)((ab)(a(ac))))

= (((ab)c)((ac)b))0

= {(ab)c)((ac)b)

For (2.7), put a := a&,/3 := cb and 7 := ac. We have:

by (2.8)

by (2.6).

0 = cn)P) by (2.10)

by (2.1)

by (2.6)

Lemma 2.1.9. An algebra (A; — ,0) of type (2,0) is a pre-BCK-algebra iff

it satisfies (2.1), (2.3), (2.4), (2.6), and (2.7). TTms the variety of pre-BCK-

algebras coincides with Agliano and Ursini's variety X.

Proof. Let A be a pre-BCK-algebra. Then A |= (2.1), (2.3), (2.4), (2.6) by

definition. Also A \= (2.7) by Proposition 2.1.8, so A 6 X. Conversely,

if {A\ - ,0> is an algebra of type (2,0) satisfying (2.1), (2.3), (2.4), (2.6)

and (2.7) then (A; - , 0) is a pre-BCK-algebra by Lemma 2.1.6. •

Several K-O-regular quasivarieties K generalising BCK have also been consid-

ered in the literature, of which the most important is the class of left resid-

uation algebras. A left residuation algebra is a (—, 0)-subreduct of a pol-

rim [229, Chapter 1, p. 17]; recall ,the definition of a polrim from §1.3.3. By

van Alten [229, Proposition 1.4(i)] the class LR of all left residuation alge-

bras is a quasivariety, axiomatised by the identities (2.4), (2.6), (2.7) and

the quasi-identity (2.5); LR is not a variety [139, Theorem 9]. Because of (2.5)

and [78, Theorem 2.3], LR is LR-O-regular, while by van Alten and Raftery [231,
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Lemma 3.1] BCK is exactly the subquasivariety of left residuation algebras ax-

iomatised by either of the identities:

(a; — y) — z « (a: — z) — y or (a; — (a; — y)) — y « 0.

Left residuation algebras were introduced under the (misleading—see van Al-

ten [229, Proposition 2.10; p. 40]) name BCC-algebras by Komori in [139].

They have since been studied by several authors, including Komori [138, 139],

Dudek [82, 83, 84], Ono and Komori [176] and Wronski [242]. A recent ma-

jor study of left residuation algebras (and their associated assertional logics)

is van Alten [229]; see also Raftery and van Alten [192] and van Alten and

Raftery [230, 231]. Van Alten [229, Chapter 3] and Komori [138] have also

studied the varietal closure H(LR) of the variety of left residuation algebras;

the following theorem is due to Komori [138].

Theorem 2.1.10. [138, Theorem 6] The variety H(LR) generated by the

class LR of all left residuation algebras is finitely based and axiomatised by the

identities (2.4), (2.6) and (2.7).

Proposition 2.1.11. (cf. [231, Lemma 3.1]) An algebra A := (A\ - ,0) of

type (2,0) is a pre-BCK-algebra iff A £ H(LR) and moreover A satisfies:

(2.2)-{x-y)) — y

Thus the variety of pre-BCK-algebras is an equational subclass of H(LR), the

variety generated by the class of all left residuation algebras.

Proof. (=>•) Let A be a pre-BCK-algebra. By definition A |= (2.2). Moreover

A [= (2.7) by Proposition 2.1.8; since A |= (2.4), (2.6) by definition, we have

that A € H(LR) by Theorem 2.1.10.

(«=) Let A e H(LR) be'such that A f= (2.2) and let a, 6, c G A. Throughout

the proof we denote — A by juxtaposition for ease of notation. Put a :=

fl>j8 := b and 7 := c(cb). We have:

0 = ((a/3) (70)) (07) by (2.7)
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= ((a«((c(c6))6))(o!7)

= (o6)(a(c(c6))).

Put a:= a,(3 := 6c and 7 := (6d)(cd). We also have:

0 =

For (2.1), put a1 := (ab)(ac),/3 := cb and 7 := ab. We have:

(((ab)(ac))(cb)){{(ab)(ac))((ab)((ab)(cb))))

{((ab)(ac))(cb))0

{(ab)(ac))(cb)

by (2.2)

by (2.6)

(2.11)

by (2.7)

>y (2-7)

by (2.6)

(2.12)

O=(a0)(a(7(70))) by (2.11)

= (((a6)(ac))(C6))(((a6)(ac))((a6)((a6)(c6)))).

Put o; := a6, j3 := a, 7 := c and 5 := &. We have:

by (2.12)

by (2.6).

Thus A |= (2.1). By Theorem 2.1.10 we have that A (= (2.4), (2.6), which

implies A is a pre-BCK-algebra by Lemma 2.1.6. •

Because of Proposition 2.1.11, results obtained by van Alten [229], Komori [138,

139] and others about H(LR) are applicable to PBCK. In particular, the follow-

ing useful technical lemma may be regarded as a specialisation to pre-BCK-

algebras of a result due to van Alten [229].
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Lemma 2.1.12. (cf. [229, Lemma 1.2]) Let A be a pre-BGK-algebra and

let •< be the binary relation defined on A by a •< b iff ab = 0, Then (A; •<) is

a quasiordered set with least element 0. Moreover, the relation •< satisfies the

following conditions for any a,b,c G A:

1. If a •< b then cb •< ca\

2. If a -<b then ac ^ bc\

3. ab •< a.

Proof. Let A be a pre-BCK-algebra and let a,b,c G A. By (2.3), a < a.

Suppose a •< b and b •< c. Then ab = 0 and be = 0, so ac = ((ac)0)0 =

((ac)(ab))(bc) — 0 by (2.6) and (2.1). Thus a •< c and •< is a quasiorder

on A. Also, 0 •< a for any a G A by (2.4), so 0 is a minimal element under •<.

Suppose 0 ^ m G A is another element minimal under <. Then for all a G A

we have m < a, and in particular m < 0. Thus mO = 0. But mO = m by (2.6),

so 0 = m, a contradiction. Therefore 0 is unique and so is the least element

of A under •<. To complete the proof of the lemma it remains to show (1)-

(3). For (1), suppose a < b. Then ab - 0 and (cb){ca) = ((c6)(co))0 =

({cb){ca)){ab) = 0 by (2.6) and (2.1). Thus cb < ca. For (2), suppose

a < b. Then ab = 0 and {ac){bc) = ((ac)(6c))0 = ({ac){bc)){ab) = 0 by (2.6)

and (2.7). Thus ac ^ 6c. For (3), just note (ab)a = ((a6)(aO))(O6) = 0

by (2.6), (2.4) and (2.1), whence ab < a. " •

Remark 2.1.13. (cf. [70. Example 3.1]) Let (A; •<) be a quasiordered set

with least element 0 G A. For any a, b G A, let:

a — b :=
0 if a •< b

a otherwise.

Then the induced algebra (A\ — , 0) is a pre-BCK-algebra, whose underlying

quasiordering is consistent with the original quasiordering on A. Hence the

underlying quasiordering on a pre-BCK-algebra has no interesting properties

in general. •
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The preceding remark notwithstanding, the equivalence H induced by the pre-

order •< (in the sense of Lemma 1.2.2) plays a special role in the theory of

pre-BCK-algebras. This is shown in the following result, which may be under-

stood as a kind of 'Clifford-McLean theorem' for pre-BCK-algebras.

Theorem 2.1.14. For any pre-BCK-algebra A the following assertions hold:

1. The equivalence H induced by •< in the sense of Lemma 1.2.2 is a con-

gruence on A, and A/H is a BCK-algebra;

2. S is the smallest congruence on A whose quotient algebra is a BCK-

algebra, and so A/H is the maximv\ BCK-algebra homomorphic image

of A;

3. [0]s = {0};

Proof. Let A be a pre-BCK-algebra.

For (1), suppose a\ S &i, 0Q H 62 for a1? 61} a2, 62 £ A. From ax < &i we have

Gi°2 di hov by Lemma 2.1.12(2) and from 62 ^ &i we have 6102 -< 6162 by

Lemma 2.1.12(1). By transitivity, a ^ •< 6162- Also, from 02 •< b2 we have

6162 di ha<2 by Lemma 2.1.12(1) and from 61 ^ 01 we have 6102 d± 1̂̂ 2 by

Lemma 2.1.12(2). By transitivity, 6162 ^ a i^ - Thus ^102 5 &1&2 and S is

a congruence on A. To see A/H is a BCK-algebra it is sufficient to show

A/H |= (2.5). Suppose ab H 0 and ba H 0. From ab •< 0, 6a < 0 we have

a& = 0 = 6a by Lemma 2.1.12, so a H 6. Thus A/H |= (2.5) and A/H is a

BCK-algebra.

For (2), let 6 G Con A be such that A/6 is a BCK-algebra. Suppose a H b

for a,b e A. Then aft = 0 and ba = 0, and thus at ~0 0 and 6a =g 0.

Since A/9 \= (2.5) we have that a =0 0. Thus H is the smallest congruence

on A whose quotient algebra is a BCK-algebra, and A/H is the maximal BCK-

algebra homomorphic image of A.

For (3), let a e A be such that a HO. Then a •< 0, so a = 0 by Lemma 2.1.12.

1

•~*.:l:Xl::!\L .-
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For (4), it is sufficient by definition of (0)^ to show S is the largest congruence

e <E Con A such that [Q]B = {0}. Now S is a congruence on A such that

[0]= = {0} by (1) and (3). Let 9 e Con A be such that [0], = {0} and suppose

a s , b for o, b £ A. Then ab =0 aa = 0 and 6a =, 66 - 0, so o6, 6a <E [0]B.

But [0]0 = {0}, so ab = 0 and 6a = 0, which implies a26. •

Corollary 2.1.15. For any pre-BCK-algebra A (with underlying quasiorder •<)

the partial orders ^ / S and <A/S coincide, where -</S denotes the partial order

on A/§ induced by * in the sense of Lemma 1.2.2 and <A /2 denotes the un-

derlying partial order of the maximal BCK-algebra homomorphic image A/5

of A-

Proof Let A, A/3, ^ / 2 and <A 'H be as in the statement of the corollary.

Throughout the proof to simplify notation we write a for the equivalence class

[o]3 in A/a containing a e.A. Let a, 6 G A/a with a, 6 e A. We have:

iff a - A 6 = O

iff a - A / s 6 =

iff a < A / s 6 .

by Lemma 1.2.2

by Theorem 2-1.14(3)

Corollary 2.1.16. Let A be a pre-BCK-algebra. Anjdentity of the form

t{x) *0is satisfied by A iff it is satisfied by its maximal BCK-algebra homo-

morphic image A/S. In symbols,

Proof. Let A be a pre-BCK-algebra. Clearly A |= t{x) ^ 0 implies A/S f=

t{x) » 0. For the converse, suppose A/S |= t{x) « 0. Let 2 G A and let

i> : A -» A/S denote the natural map. By assumption, v{tA{a)) - u(0 );

since j/(0A) = [0A]s = {0A} (by Theorem 2.1.14(3)), we infer tA(a) = 0A.

Thus A |= t(x) « 0 as desired. '
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Corollary 2.1.17. The clasv PBCKC of reduced algebras of PBCK is exactly

the class BCK of BCK-algebras.

Proof. Just observe A € PBCK£ iff (0)A = uA iff S = wA (by Theorem 2.1.14(4))

iffAGBCK. •

Corollary 2.1.18. For any A € PBCK, ConPBcK/BCK A C [H,tA]-

Proof. Let 9 E ConpecK/BCK A. By Theorem 2.1.14(2) we have H < 9 < L&,

and so 9 e [H, ^A]- Thus ConPBcK/BCK A C [E, LA}- •

Remark 2.1.19. The converse of the preceding corollary does not hold in

general. Consider Wronski's example Wi(w) (Example 2.1.2) that shows the

class of BCK-algebras is not a variety. Since W i (u) is a BCK-algebra, 5 =

wWl(w). But there exists 9 > E such that B 2 = Wi(w)/0 (see Wroriski [240]),

whence ConPBcK/BCK Wi(w) % [S,twi(«)]. •

2.1.20. Pre-ideal Theory of Pre-BCK-Algebras. Let / be a non-empty

subset of (the universe of) a pre-BCK-algebra A. / is called a pre-ideal if the

following conditions are satisfied:

O e J ,

a € I,ba e I implies b G / .

(2.13)

(2.14)

The set of all pre-ideals of a pre-BCK-algebra A is denoted by Pre(A). The

following easy lemma collects together some useful facts .about pre-ideals.

Lemma 2.1.21. (cf. [229, Lemma J[.16]) For a pre-BCK-algebra A the

following assertions hold:

1. A pre-ideal of A is a hereditary subset of (A; •<);

i

2. If I is a pre-ideal of A,, and there exist a € A and 61 } . . . , bn € / such

that (• • • ((061)62) • • ')bn = 0, then a G I;

3. For any congruence 9 on A, the 0-class [0]e = {a G A : (a,0) € 9} of 9

is a pre-ideal of A;

I
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4. A pre-ideal of A is a subuniverse of A.

Proof Let A be a pre-BCK-algebra. For (1), let / be a pre-ideal. Prom a G 7

and H 0 we have 6a = 0 € / , whence b G / by the definition of / as a

pre-ideal. Since 0 G 7, (2) now follows by repeated application of (1). For (3),

let 6 G Con A and let a, ba G [0}g. Since b = 60 =0 ba =0 0 we have b =g 0;

that is to say b G [0]e. Since 0 G [0]$, we have that [0]$ is a pre-ideal. For (4),

let / be a pre-ideal of A and let a, b G / . By Lemma 2.1.12(3) we have ab •< a;

thus 06 G / by (1) and 7 is a subuniverse of A. •

The conditions (2.13)-(2.14) defining pre-ideals, in conjunction with the results

of Lemma 2.1.21, suggest intuitively that every pre-ideal of a pre-BCK-algebra

is the inverse image of an ideal of its maximal BCK-algebra homomorphic

image. This intuition is made precise in the following theorem, the proof of

which is due mutatis mutandis to the author's Ph.D. supervisor. See also

Corollary 2.1.29 in the sequel.

Theorem 2.1.22. [17, Lemma 1.1.9] The seiPre(A) of all pre-ideals ofapre-

BGK-algebra A forms an algebraic lattice Pre(A) when ordered by inclusion,

which is isomorphic to the lattice of ideals of A/H under the map 11-* 7/H for

any I G Pre(A).

Proof. It is clear that if 7 is a pre-ideal of A, then ^(7) is an ideal of A / 5 . Con-

versely, if J is an ideal of A / 2 , then 7 = { a G i 4 : a G [b]s for some [&]= G J}

is a pre-ideal of A with the property that i])(I) — J. Thus ip is a bi-

jection between the pre-ideals of A and the ideals of A/H. Suppose now

that 7i and 72 are pre-ideals of A such that 7i C 72. "Then [a]= G ip{h)

implies {b G A : bSa} C 7X C 72, which implies [o]s £ ^(^2), and so

i>{h) C ^(72). Conversely if J\ and J2 are ideals of A/H such that J\ C J2:

then VH-A) - {a e A \ a £ [b]E for some [6]s G J j C {a G A : a G

[6]s for some [6]s G J2} = rj)'1^). Thus ^ is an order isomorphism, and

hence a lattice isomorphism between the algebraic lattices of pre-ideals and

ideals of A and A/H. • •

In light of the preceding theorem, it is natural to anticipate that results con-

cerning ideals of BCK-algebras cited in §1.6.1 extend to pre-ideals of pre-BCK-

algebras. Certainly this is the case in relation to the following proposition,

• > • • &

, & «
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which characterises the pre-ideal (-B)A := f){J e Pre(A) : B C j } generated

by non-empty B C A of any pre-BCK-algebra A (of course, (J9)A exists be-

cause pre-ideals of A are closed under arbitrary intersections). The result is

due to van Alten [229, Proposition 4.16(iv)], who first stated and proved the

proposition in the context of pre-ideals of left residuation algebras. Because of

Proposition 2.1.11, van Alten's proof generalises to pre-BCK-algebras without

modification.

Proposition 2.1.23. (cf. [125, Theorem 3]) Let A be a pre-BCK-algebra.

For any 0 ^ B C A,

{B)A = {aeA:(3n £ u)(3 cx,..., cn £ B) such that (•••(aci) •••)cn = 0}.

In particular, for any b £ A,

— {a £ A: (3n £LJ) such that abn — 0}.

Proof. Let A be a pre-BCK-algebra and let 0 ^ B C A. Let D :-• {a e A :

(3 n e u){3 c i , . . . , cn £ B) such that (• • • [acx) • • •) cn = 0}. By Lemma 2.1.21(2)

we have D C (B)A- Also, B C D, so it remains only to establish that D is a

pre-ideal of A. Let a e A and 6, ab € D, say:

where the a, dj are in B. Then:

= 0

cn) by (2.7) and Lemma 2.1.12(2)

so a e D, as required. •

Some further properties of pre-ideals of pre-BCK-algebras analogous to prop-

1
1
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erties of ideals of BCK-algebras are established in the following proposition.
Concerning the statement of the proposition, a pre-BCK-algebra A is said to
enjoy the pre-ideal extension property if for any B G S(A) and any / G Pre(B)
there is a pre-ideal J G Pre(A) such that J C\ B = I.

Proposition 2.1.24. For any pre-BCK-algebra A, the following assertions

hold:

1. Pre(A) is a distributive lattice;

2. A enjoys the pre-ideal extension property.

Proof. (1) follows immediately from Theorem 2.1.22 and Proposition 1.6.9(1).
For (2), suppose A G PBCK, B G S(A) and / G Pre(B). Then for A/S G BCK,
B/E G S(A/H) and ip{I) G Pre(B/5) there exists an ideal J G Pre(A/S)
such that J n B/E = ij)(I), where ip{I) is the image of J under the map ijj of
Theorem 2.1.22. Indeed, by Proposition 1.6.9(2) we can pick J = (i0(/))A.=..
Now i)~l(J) is a pre-ideal of A with the property that i>~l{J) H B = / . •

2.1.25. Pre-Ideals and Congruences of Pre-BCK-algebras. Recall
from §1.6.1 that for a BCK-algebra A, any ideal of A (in the sense of §1.6.1)
is the 0-class of a BCK-congruence on A, and conversely that the 0-class of
any (BCK-) congruence on A is an ideal of A. Inasmuch as pre-ideals and
PBCK/BCK-congruences are (for pre-BCK-algebras) the pre-BCK-algebraic
analogues of ideals and BCK-congruences (of BCK-algebras), respectively, the
preceding remarks invite (for pre-BCK-algebras) a study of the relationship
between pre-ideals and PBCK/BCK-congruences.

Theorem 2.1.26. For any pre-BCK-algebra A and I G Pre(A), the rela-
tion 0/ defined on A x A by:

(f>i := {(a, b) £ Ax A: ab,ba€ 1}

is a congruence on A, and the quotient algebra A/<£/ is a BCK-algebra.

Proof. Let A be a pre-BCK-algebra, let / G Pre(A) and let 0/ be as in the
statement of the theorem. To see 0/ is an equivalence relation, we show (for
any a, 6, cG A):
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(i) a =0, a;

(ii) a =^ ; b implies b = ^ a;

(iii) a =0Z b, b =^7 c implies a = ^ c.

For (i), we have that aa = 0 € / by (2.3), so a =^7 a.

For (ii), we have that a =^7 6 implies b =^7 a by definition of <£/.

For (iii), suppose a =^7 6 and & =^7 c. By (2.1) applied twice, we have that

((ac)(ab))(bc) = 0 € / and ((ca)(cb)){ba) = 0 G J. Since ab,bc e I and

c&, ba G / by assumption, we have that ac, ca G / by Lemma 2.1.21(2) applied

twice. Hence a =^7 c.

By (i), (ii) and (iii), 0/ is an equivalence relation. To see $/ is a congruence

on A, it is sufficient to show (for any a\, a2, &i, &2 G -A):

(iv) 01 =0, 02 and 61 =^ ; 62 implies ai&i =^7 a2&2-

To prove (iv), we show:

(iv)(a) 61 =07 62 implies ax&i =^7 oi&2;

(iv)(b) 01 =07 02 implies 0^2 =^ ; «2&2-

For (iv)(a), suppose 61 =/,, 62- By (2.1) applied twice, ((ai6i)(a162))(&2&i) =

0 6 / and ((aib2)(aibi))(bib2) = 0 G / . Since &2&i G / , 61 b<2 G / by hypothesis,

(ai6i)(ai62) G / , (ai&2)(ai&i) G J by Lemma 2.1.21(1) applied twice. Hence

bi&i = 0 ; 0162.

For (iv)(b), suppose 01 =^7 02- By (2.7) applied twice, ((ai62)(fl2&2))(aiO2) =

0 G / and ((0262X^1 &2))(o2fli) = 0 6 / . Since 0102 G / , 0201 G / by hy-

pothesis, (ai62)(o2&2) G / , (a2^2)(oi&2) G i by Lemma 2.1.21(1) applied twice.

Hence ai&2 =4,1 a2b2-

By (iv)(a), (iv)(b) and (iii), we infer that ai =^7 02 and 61 =^7 b2 implies

aibi =07 a2&2, which establishes (iv).

By (i), (ii), (iii) and (iv), 0/ is a congruence on A. Hence A/(f>i is a pre-BCK-

algebra. To complete the proof, it is sufficient in view of the remarks of §2.1.1

to show A/0 / (= (2.5). So suppose ab =^ 0 and ba =^7 0 for a, b G A. Then
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(o6)0 E / and (ba)O E / , so ab € / and 60. € / by (2.6); that is to say a =^7 b.

Hence A/0/ |= (2.5). Therefore A/0 / is a BCK-algebra, and the proof is

complete. •

By Proposition 1.7.5, any subtractive variety has normal ideals. This result
does not extend to (even K-O-regular) quasivarieties K with a binary term
s(x,y) witnessing (1.42), (1.43): for a counterexample see van Alten [229,
pp. 71-72]. Nonetheless, Proposition 4.15 of van Alten [229] implies that,
for a BCK-algebra A, a non-empty subset / C A is a BCK-ideal of A iff
I E N(A) iff / is an ideal of A (in the sense of §1.6.1). For pre-BCK-algebras,
Theorem 2.1.26 in conjunction with the following lemma yields the crucial
connection between pre-ideals and PBCK-ideals presented in Proposition 2.1.28
below.

Lemma 2.1.27. Let A be a pre-BCK-algebra, let I E Pre(A) and let (f)j be

the congruence induced by I in the sense of Theorem 2.1.26. Then I = [0]^/;

and <f>i is the largest congruence on A with this property.

Proof. Let A be a pre-BCK-algebra, let / E Pre(A) and let 0/ be the con-
gruence induced by / in the sense of Theorem 2.1.26. Let a £ I. By (2.6),
aO = a e I, while Oa = 0 E / by (2.4). Hence a =^7 0. That is to say,
a E [0]^, so / C [0]^. Conversely, let a E [0]^. Then a =^ ; 0, and so ad E /.
Since 0 E /, we infer that a E / by the definition of / as a pre-ideal. Thus

, C / a n d J =

Suppose now that 6 is a congruence on A such that [0}e = / . Let a =e b for

a, b E A. Then ab ~e aa = 0 and 6a =g bb — 0, so ab, ba E [0] ;̂ that is to say

a =4>[0]e b. Since [0]̂  = 7, a = ^ b. Thus 9 C 0/, and the proof is complete.
•

Proposition 2.1.28. A non-empty subset I C A of a pre-BCK-algebra A is

a pre-ideal of A iff it is a PBCK-ideal of A. Hence IPBCK(A) = Pre(A).

Proof. Let A be a pre-BCK-algebra with {0} C I C A.

(=>) Suppose I E Pre(A). By Lemma 2.1.27, / = [0]^, where 0/ is the
congruence on A of Theorem 2.1.26. Hence / E N(A). Since A is subtractive,
1 ^ IPBCK(A) by Proposition 1.7.5. Hence Pre(A) C I P B CK(A).



2.1. Pre-BCK-Algebras 113

Suppose / G IPBCK(A). Since A is subtractive, / G N(A) by Proposi-

tion 1.7.5. That is, I = [Q]e for some 6 G Con A. Hence / G Pre(A) by

Lemma 2.1.21(3). Thus IP BCK(A) C Pre(A). •

In view of the preceding proposition, from this point forwards we will always

employ the notation and terminology of §1.7.1 in connection with (pre-) ideals

of pre-BCK-algebras.

Corollary 2.1.29. The set I(A) of all ideals of a pre-BCK-algebra A yields

a distributive algebraic lattice I(A) when ordered by inclusion. For any / , J G

I AJ = If)J = {a\lb:ael, beJ}

I v J = {b : for some a e I, ba e J}

where a fl b := a(ab) for any a, b G A.

Proof. Let A be a pre-BCK-algebra. By the remarks of §1.7.1, the set I(A) of

ideals of A yields an algebraic lattice I(A) under inclusion, which is distributive

by Proposition 2.1.28 and Proposition 2.1.24(1). Let I,J G I(A). It is clear

that I A J = / D J. To see I n J = {a n b : a G / , b G J} , let c := a l~l 6

where a £ I and b G J. Then c •< a e I and c •< b G J by Lemma 2.1.12(3)

and (2.2) respectively, so c G / and c G J by Lemma 2.1.21(1); that is to say

c G JO J. Hence {a(~l& : a G I , 6 G J} C If]J and, since the opposite inclusion

is trivial, equality holds. That / V J = {b : for some a G I, 6a G J } follows

immediately from the remarks of §1.7.1 and Part (4) of [222, Proposition 1.3].

By Theorem 1.6.10, the maps I & fa (I e I(A)) and 0 E> [0]fl (9 G ConBCK A)

are. for any BCK-algebra A, mutually inverse lattice isomorphisms between

the ideal lattice of A and BCK-congruence lattice of A, which result suggests

the following theorem.

Theorem 2.1.30. For any pre-BCK-algebra A, the maps I&fa (/ G I(A))

and 9 i-> [Q]e {9 G ConpecK/BCK A) are mutually inverse lattice isomorphisms

between the PBCK/BCK-congruence lattice of A and the ideal lattice of A.
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Proof. Let A be a pre-BCK-algebra. To prove the theorem it suffices to show:

(i) The maps </? and ip~l are mutually inverse bisections;

(ii) The maps ip and <p~x are order preserving.

For (i), it is sufficient to show (p~lcxp = WI(A) and ipo(p~l = u>conPBCK/BCK A- In the

former case ip~loip = WI(A) since / = [0]^7 for every / € I(A) by Lemma 2.1.27

In the latter case 9 < <j>[Q]a (for 9 G ConpecK/BCK A) by Lemma 2.1.27, so it

remains only to show 4>[o]B ^ $• So let a = b (mod</>[0]e) for a> b € A. Then

aft, 6a G [0]e by definition of 4>[Q]9; that is to say ab, ba =# 0. Since A/0 G BCK

by hypothesis, we infer that a =e b by (2.5). Hence <£[o]fl Q 9. Thus 0[O|fl = 9,

and soipo ip~l = wConpBCK/BCK A -

For (ii), to see ip is order preserving let / , J G I(A) with I Q J. Suppose

a =07 b for a, b € A. Then ab,ba G / , and since / C J we have also that

a6,6a € J. Thus• a =4^ 6 and </>/ C 0 j . Hence tp is order preserving. To

see (p~l is order preserving, let 9,tj) E ConpecK/BCK A with 9 C ip. Suppose

0 G [O]0. Then a =0 0, and since 9 C t/> we have also that a =^ 0. Thus

a G [0],/, and [0]g C [0]^. Hence cp'1 is order preserving. •

Corollary 2.1.31. For any pre-BCK-algebra A, the following assertions hold:

1. A is PBCK/BCK-O-regular;

2. A is PBCK/BCK-congruence distributive;*

3. A has the PBCK/BCK-congruence extension property.

Proof. Let A be a pre-BCK-algebra. For (1), let 9 and if> be PBCK/BCK-

congruences on A such that [0]* = [0]^. By Lemma 2.1.21(3), [0]e and

are both ideals, which coincide by assumption of the equality of [0]̂  and

Because of Theorem 2.1.30, we infer that 9 = ^, so A is PBCK/BCK-O-regular

and (1) holds. The remaining assertions of the corollary now follow trivially

from PBCK/BCK-O-regularity and Proposition 2.1.24. •

From Theorem 1.6.10, Theorem 2.1.22 and Theorem 2.1.30, we may also infer:

•4*,ti
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Theorem 2.1.32. For any pre-BCK-algebra A, the map 9 HV 0/H (6 €

ConpBCK/BCK A) is an isomorphism from the PBCK/BCK-congruence lattice

of A onto the BCK-congruence lattice o/A/H. Therefore if H(A/H) C BCK

then ConpBCK/BCK A and Con A/H are isomorphic.

Proof For any pre-BCK-algebra A, we have that ConPBcK/BCK A = I(A) by

Theorem 2.1.30; that I(A) £ I(A/S) by Theorem 2.1.22; and that I(A/S) S

H by Theorem 1.6.10. By composition of maps, it follows that

= ConBcK A/H under the mapping 9 A- </>[o](e/H), which sim-

plifies to 9 A 0/S by PBCK/BCK-O-regularity as claimed. The remaining

assertion of the theorem now follows, because the condition H(A/S) C BCK

guarantees that every congruence on A/H is a BCK-congruence. •

We conclude this subsection by noting that the proof of Theorem 2.1.32 im-

plicitly establishes the existence of a commutative square of isomorphisms

connecting the ideal and PBCK/BCK-congruence lattices of a pre-BCK-algebra

to the ideal and BCK-congruence lattices of its maximal BCK-algebra homo-

morphic image. In more detail: given a pre-BCK-algebra A (with maximal

BCK-algebra homomorphic image A/H) and the maps:

/ A j/s,

9 A 0/H,

/ e
/ e
I e I(A)
9 e Con A

of Theorem 1.6.10, Theorem 2.1.22, Theorem 2.1.30 and Theorem 2.1.32 re-

spectively, the diagram:

"I "
ConPBCK/BCK ConBcK A/H.

commutes in the category of lattices.

2.1.33. The Assertioual Logic of the Variety PBCK. Let the class PBCKD

IX
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of dual pre-BCK-algebras be the variety of algebras with language (-», 1) of

type (2,0) axiomatised by the following identities:

{x -+ y) -+ ({y -> z) -> (a;

x -» ((& -> y) ->

x -» a; « 1

0) « 1 (2.15)

(2.16)

(2.17)

(2.18)

(2.19)

notice that the class BCK^ of dual BCK-algebras (recall Example 1.8.4) is

exactly the subquasivariety of PBCK1* axiomatised by the quasi-identity:

Let T£(X) denote the term algebra of type £ over X, where £ is the language

of pre-BCK-algebras. Also, let T £ D (X) denote the term algebra of type £D

over X, where £D is the language of dual pre-BCK-algebras. Consider the

maps 7]: T£(X) -» T £ D ( X ) and f : TCD(X) -» T£(X) defined respectively by:

77(0) := 1

r)(x) := x i 6 X

and:

:= 0

Because of the axiomatisation of PBCK by (2.1)—(2.5) and the axiomatisation

of PBCKD by (2.15)-(2.19), the proof of the following lemma is trivial and

hence is omitted.

Lemma 2.1.34. Forp, q € T£(X) and r,s 6 T £ D ( X ) the following assertions
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hold:

1. If PBCK (= p » q then PBCK5 (= r)(p)

5. // PBCKD |= r » s Men PBCK (= f (r) « f (s).

Moreover, £ o 17 = o f = WT£O(X)-

Recall from §1.8.9 that for any quasivariety K with 1, the inherent assertionai

logic S(K, 1) of K may be defined by specifying that, for all F U {<p} C Fm£,

F I-S/K1) <£ iff {t/> « 1 : i/> E T} |=K ^ « 1. Because the variety of pre-BCK-

algebras is termwise definitionally equivalent to (in fact, is dually isomorphic

to) the variety of dual pre-BCK-algebras (by Lemma 2.1.34), the preceding

observation implies the assertionai logics §(PBCK, 0) and §(PBCKI),1) are

definitionally equivalent. In a sense, it is thus a harmless notational conve-

nience to ascribe to the variety of pre-BCK-algebras the intrinsic assertionai

logic S(PBCKI), 1) of the variety PBCKD of dual pre-BCK-algebras; of course,

like remarks apply concerning BCK and E^BCK1*, 1). In the sequel, therefore,

we shall not hesitate to denote by §(PBCKP,1) [S(BCKD,1)] the inherent

assertionai logic of the variety of pre-BCK-algebras [the quasivariety of BCK-

algebras] when convenient.

Proposition 2.1.35. [10, Proposition 4-5] D := {x — y, y — x] is an IG-

system (without parameters) for PBCK. Hence I€ = 0/ for any ideal I and

6l = </>[0]fl for any congruence 8 of a pre-BCK-algebra.

Proof. Let D := {x — y, y — x} and observe D "a system of 0-terms for PBCK.

Let A € PBCK and recall ID := {(a, b) e A A: 06, 6a € 1} for any ideal

/ e I(A). Since (0)A = {0}, (0)£ = {0}D = {(a, b) eAxA:ab,ba =

0} = 5 G Con A by Theorem 2.1.14(1). By Proposition 1.7.7(2) we ha>e that

D is an IC-system without parameters for PBCK. The second statement now

follows immediately from Proposition 1.7^7(4). •

In [130] Kabzinski studied the lattice A°(K) of all quasivarieties K over the

language (-+, 1) of BCK15 algebras for which |=M(K,I) = f=M(BCKD,i)> w n e r e

hM(K,i) is the matrix consequence determined by the class of all matrices
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{(A,{1A}) : A €• K} and h^BC-K^i) *S t n e matrix consequence of Exam-

ple 1.8.10, or equivalently all quasivarieties K for which K is an algebraic se-

mantics for BCK. By [130, Fact 1] BCKD is the smallest element of AQ(K).

In [130, Fact 2] Kabzinski asserts without proof tha1. PBCK° is a member of

A^(K). The following theorem, which shows PBCK and BCK have the same

assertional logic (namely BCK), verifies Kabzinski's result. For some recent

results related to and generalising the theorem, see Btak and Raftery [41, Ex-

ample 6.2].

Theorem 2.1.36. The assertional logic §(PBCKD,1) of the variety of pre-

BCK-algebras is algebraisable with equivalent algebraic semantics BCK1'. Thus

the variety of pre-BCK-algebras and the quasivariety of BCK-algebras have the

same assertional logic, name'j BCX.

Proof. For the first assertion of the theorem, we have that PBCK is finitely

congruential by Proposition 2.1.35, so S(PBCK, 0) is algebraisable with equiv-

alent algebraic semantics PBCK6 by Theorem 1.8.14. Because PBCKe coincides

with BCK by Corolla:y 2.1.17. from Lemma 2.1.34 it follows that §(PBCKD, 1)

is algebraisable with *v 'divalent algebraic semantics BCK13. For the second

assertion of the theorem, ve have that S(BCKI>,1) coincides with 1CK by

Example 1.8.10, so S(BCKi>,;l) is algebraisable with equivalent algebraic se-

mantics BCK13 by Example 1.8.4. Hence S(PBCKD,1) and S(BCKC,1) have

the same equivalent algebraic semantics, namely BCK73. Since S(PBCKZ},1)

and §(BCK£>,1) also have the same defining equation-(viz., p « 1), they are

identical by Lemma 1.8.8. Hence PBCK and BCK have the same assertional

logic, namely BCK. % •

Remark 2.1.37. It should not be supposed that "PBCK is the largest quasi-

variety K with'language (-»,1) of type (2,0) such that (=M(K,I) = 1=M(BCKD,I)-

Indeed, by Kabzinski [130, Fact 3] the greatest element of AQ(K) is the quasi-

variety axiomatised by the following identities and quasi-identity:

{x -» y) -» ((z

{y -» (z -> a;))

x -$ {y -* x) &

x)

- f ' J l
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X

We remark that Kabzinski's result is essentially a specialisation to S(PBCKD, 1)

of an observation due to Blok and Pigozzi [31, p. 16], which characterise the

largest algebraic semantics of any deductive system having an algebraic se-

mantics. •

Corollary 2.1.38. A quasi-identity of the form:

a 0 (2.20)

is satisfied by PBCK iff it is satisfied by BCK. In particular, an identity of the

form:

t{x) » 0

is satisfied by PBCK iff it is satisfied by BCK.

Proof. Let (s,(f) : i = 1 , . . . , n} U {t(x)} be (— , 0)-terms in the variables x.

Identify the (-*,l)-terms {rj(si(x)) : i — l , . . . , n } U {r]{t(x))} (where r/ :

T£(X) -)• TCD(X) is the map of Lemma 2.1.34) in the variables x with the

(->•, l)-formulas {(Pi{p) : i ~ 1 , . . . , n} U {VKfO} m *^e variables p. Given this

notation, from Theorem 2.1.36 and repeated application of Lemma 2.1.34 we

have the following string of equivalences:

BCK |= &?=1Si(2) « 0 D t{x) « 0 iff

{si(x) fa 0 : i = 1 , . . . , n} [=BCK <(#) « 0 iff

W ) « 1 : i = 1 , . . . , n} t=BCK^ »/(*P)) « 1 iff

(|f): i = 1 , . . . , n} l - g ^ c ^ ^ V(p) iff

(p) : « = 1 , . . . , n} I-S(PBCKD,I) W ) iff

5j(f).) « 1 : i = 1 , . . . , n} |=PBCKO *7(*(#)) w 1 iff

si(f) w 0 : t = 1 . . . . , n} |=PBCK t{x) w 0 iff

PBCK |= &?=1Si(£) « O D <(a?) « 0.
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Therefore BCK |= (2.20) iff PBCK (= (2.20), which establishes the first assertion

of the theorem. The second assertion now follows trivially by specialisation.

i

The following corollary seems first to have been proved (in a slightly more

general form) using algebraic methods by van Alten and Raftery [231]. See

also Raftery and van Alten [193, Corollary 10].

Corollary 2.1.39. (cf. [231, Corollary 3.4]) A quasi-identity of the form:

(2.20)

is satisfied by the varietal closure H(BCK) of the quasivariety of BGK-algebras

iff it satisfied by BCK. In particular, an identity of the form:

t(x) » 0

is satisfied by H(BCK) iff it is satisfied by BCK.

Proof. Suppose H(BCK) (= (2.20). Because BCK C H(BCK) we deduce BCK |=

(2.20). Conversely, suppose BCK \= (2.20). From Theorem 2.1.38 we infer

PBCK t= (2.20); since H(BCK) C PBCK (by Komori [138, Theorem 7]), we

deduce H(BCK) f= (2.20) as required. The second assertion follows trivially

by specialisation. •

Recall that, for a quasivariety K, a relative subvariety of K is a quasivariety K'

such that K' = KO V(K") for some K" C K. Let S be an algebraisable deduc-

tive system with equivalent algebraic semantics K. By Blok and Jonsson [28,

Lecture 6, p. 4, Theorem 1.4], the axiomatic extensions of § are in one-to-

one correspondence with the relative subvarieties of K. In more detail, let S'

be an axiomatic extension of S. By Blok and Pigozzi [31, Corollary 4.9], S'

is algebraisable, say with equivalent quasivariety semantics K', and by The-

orem 1.8.3(l)-(2), (3)-(4), it follows that K' is a relative subvariety of K.

Conversely, it follows from (1.51) and Theorem 1.8.3(l)-(2), (3)-(4) that if K"

is any relative subvariety of K, then there exists an axiomatic extension S"

it - .'"Mii'tv;:
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of § whose equivalent quasivariety semantics is K". See also van Alten [229,

Section 4.4; p. 78].

From the preceding discussion and Theorem 2.1.36, it follows that the inherent

assertional logic §(V, 0) of any subvariety V of the variety of pre-BCK-algebras

coincides with an axiomatic extension of BCK (in fact, with the axiomatic

extension of BCK arising as the intrinsic assertional logic of the quasivariety of

BCK-algebras axiomatised relative to V by (2.5)—see Proposition 2.2.4 below).

Hence the inherent assertional logic of any variety of pre-BCK-algebras has a

familiar description (recall Example 1.8.4). Because of this observation, we

shall dismiss from further consideration the assertional logics of those varieties

of pre-BCK-algebras we encounter in the sequel.

2.1.40. Quasi-Bounded Pre-BCK-Algebras. A maximal element of a
pre-BCK-algebra A is an element m G A such that a ^ m for all a G .A.

When they exist maximal elements form an equivalence class under H called

the maximal class; cf. [147, Section 1.4]. Let A be a pre-BCK-algebra with

maximal class M. The algebra A 1 := (A; —, 0,1) obtained from A upon

enriching the language of A with a new nullary operation symbol 1 whose

canonical interpretation on A 1 is a fixed 1 G M is called a quasi-bounded pre-

BCK-algebra. Clearly the class PBCK1 of quasi-bounded pre-BCK-algebras

is a variety, axiomatised relative to the variety of pre-BCK-algebras by the

identity x — 1 « 0.

Remark 2.1.41. In passing from a given pre-BCK-algebra A with maximal

class M to a quasi-bounded pre-BCK-algebra A 1 there is in general no natural

choice of maximal element 1 G M. Indeed, it seems"plausible that distinct

choices of maximal element give rise to non-isomorphic quasi-bounded pre-

BCK-algebras, although we have no proof of this. •

For a pre-BCK-algebra A, the derived operation a fl 6 := a(ab) is called

the pre-BCK meet (briefly, meet) of a, b G A.\ Given a quasi-bounded pre-

BCK-algebra A1, the pre-BCK complement (briefly, complement) of a G A is

a* := la, while the pre-BCK join of a, 6 G A (briefly, join) is aUb := (a*n&*)*.

The three derived operations *, n and U play an important role in the sequel;
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the two trivial lemmas below, whose proofs are omitted, summarise some ele-
mentary properties of these operations that will be needed subsequently.

Lemma 2.1.42. The variety of pre-BCK-algebras satisfies the following iden-

tities:

sno«o (2.21)

0 n x « 0 (2.22)

XHXKX. (2.23)

Moreover, if A is a pre-BCK-algebra the following statements hold for any

a, b G A:

1. ab = 0 iff anb = a;

2. a n 6 is a lower bound of {a, b}.

Lemma 2.1.43. (cf. [126, Proposition 2]; cf. [126, Corollary 1]) The variety

of quasi-bounded pre-BCK-algebras satisfies the following identities:

l n x « x**

x U x « re**

(2.24)

(2.25)

(2.26)

i U l « l (2.27)

1 U X ~ 1. {t.ZQ)

Moreover, if A 1 is a quasi-bounded pre-BCK-algebra the following statements

hold for any a,b € A:

1. a** ^ a;

2. a* 6* < ba;

3. a< b implies b* •< a*;

I a*bEb*a;

5. a***Ea\
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2.2 Varieties of Pre-BCK-Algebras

In this section we study varieties of pre-BCK-algebras, with a focus on the nat-

ural pre-BCK-algebraic counterparts of the varieties of commutative, positive

implicative and implicative BCK-algebras.

Arbitrary varieties of pre-BCK-algebras are briefly investigated in §2.2.1. For

any variety V of BCK-algebras, the natural pre-BCK-algebraic counterpart

of V is the class {A G PBCK : A / 5 = B for some B G V}. In the main result

of the section, it is shown that the natural pre-BCK-algebraic counterpart of

any variety of BCK-algebras is itself always a variety. We also show that any

variety of pre-BCK-algebras containing the 3-element pre-BCK-algebra B 2 of

Example 2.1.5 fails to enjoy many of the properties typically associated with

a 'tractable' class of algebras.

In §2.2.9 the variety of commutative pre-BCK-algebras is studied as the natural

pre-BCK-algebraic counterpart of the variety of commutative BCK-algebras.

In particular, it is shown that the commutative pre-BCK-algebras are charac-

terised among the pre-BCK-algebras by means of a certain natural condition

on the pre-BCK quasiordering.

In §2.2.16 we investigate the variety of positive implicative pre-BCK-algebras,

the natural pre-BCK-algebraic counterpart of the variety of positive implica-

tive BCK-algebras. It is proved that a variety of pre-BCK-algebras is a variety

of positive implicative pre-BCK-algebras iff it is subtractive, weakly congru-

ence orderable and has EDPI (witness x — y). For any positive implicative

pre-BCK-algebra, we r also give an internal characterisation of dual relative

pseudocomplementation in the join semilattice of compact ideals.

In §2.2.28 the variety of implicative pre-BCK-algebras is considered as the nat-

ural pre-BCK-algebraic counterpart of the variety of implicative BCK-algebras.

The variety of implicative pre-BCK-algebras is characterised as precisely the

intersection of the varieties of commutative and positive implicative pre-BCK-

algebras. For a suitable notion of prime ideal, we also show that an ideal / of

an implicative pre-BCK-algebra A is prime iff it is maximal iff it is irreducible

>.* " • ? • • _
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iff A/0/ is isomorphic to the 2-element implicative BCK-algebra Ci.

2.2.1. Varieties of Pre-BCK-Algebras. With any variety V of BCK-

algebras, we may naturally associate a class V3 := {A G PBCK : A / 5 = B for

some B G V} of pre-BCK-algebras. We call V3 the natural pre-BCK-algebmic

counterpart of V. Because of the following theorem of Blok and Raftery [38,

Section 4] (see also Raftery and Sturm [191, Corollary 2.8], Idziak [114, The-

orem 1], van Alten [229, Proposition 4.4] and Blok and la Falce [25, Theo-

rem 4.3]), which characterises syntactically those subclasses of PBCK that are

varieties of BCK-algebras, the class V3 is always a variety. Henceforth, for

any algebra with language (— , 0) of type (2,0), we denote by x — 11?= i u»0*0

the term (• • • (x — Ui(x)) • • •) — un(x), where n G u and u i , . . . , un are (— , 0)-

. terms in the variables x.

Theorem 2.2.2. [38, Corollary 10]; [191, Corollary 2.8] Let K be a class of

algebras with language (— ,0) of type (2,0). Then V(K) is a BCK-variety iff

K C PBCK and K satisfies some identity:

x -flu-fa;
m

y " (2.29)
3=1

for fixed n , m G tu and ( — , 0 ) - t e r m s %,. . . , u n , v i , . . . , v m such that BCK
satisfies:

0 « Vj(x,x)

In this case, V(K) is congruence 3-perrnutable.

Theorem 2.2.3. Let V be a variety of BCK-algebras, axiomatised relative to

PBCK by some identity:

x - !!«*(*,
m

(2.29)

for fixed n,m G w and ( — ,0)-terms , . . . , vm such that BCK

siilsiii
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satisfies:

Then V3 is a variety, axiomatised relative to PBCK by the pair of identities:

mn ( W — ( — I F (^i\x-> y)) ~ \y ~ j[j[ vj\.x,
t = l 7 = 1

(2.30)

and:

m
(2.31)

t = l

Proo/. Let V be a variety of BCK-algebras axiomatised relative to PBCK by

the identity (2.29) for a given choice of n, m G u and ( — , 0)-terms Wi,..., un5

ui,..., i»m and let W be the variety of pre-BCK-algebras axiomatised relative

to PBCK by the pair of identities (2.30)-(2.31) for the same choice o f n , m 6 w

and (—, 0)-terms u\,..., un, vi,..., vm. To prove the theorem it suffices to

show V3 coincides with W.

Let A 6 V,. Then A / S £ B for some B G V. Now B f= (2.29), so

B (= (2.30), (2.31) by (1.3). Therefore A / S |= (2.30), (2.31), because iden-

tities are preserved by isomorphic copies. But then A (= (2.30), (2.31) by

Corollary 2.1.16, so A G W. Hence V3 C W. For the converse, let A G W.

Then A/S [= (2.30), (2.31), so A/E |= (2.29) by (2.5). Thus A G V3 and

W C V,. Hence V3 = W, and the proof is complete. •

Recall from §1.8.9 that, for any variety V with normal ideals, the class Ve of

reduced algebras of V is {B : B = A/(0)^ for some A G V}. Because of

Theorem 2.1.14(4), if V is a variety of pre-BCK-algebras then V£ = {B : B ^

A/SA for some A G V}. Moreover, one easily sees in this case that (V£)3 =

V. That is, Ve may be understood as the natural BCK-algebraic counterpart

of V. Consequently, the following proposition (which is a specialisation of a

fragment of a more general theorem for subtractive varieties due to Agliano

and Ursini [10]) can be considered as a kind of a converse of Theorem 2.2.3.
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Proposition 2.2.4. (cf. [10, Theorem 3.13]) Let V be a variety ofpre-BCK-

algebras. Then Ve is the quasivariety of BCK-algebras axiomatised relative

to V by the quasi-identity:

x — y & 08zy — x &0 D x & y. (2.5)

Proof. Let V be a variety of pre-BCK-algebras. By Proposition 2.1.35, V is

finitely congruential witness D := {x — y, y — x}. Therefore ID = I£ for any

I € I(A) and A e V. It follows that:

A e V e iff

— Ab = 0 = b — Aiff a — Ab = 0 = b — Aa implies a = b

for any a, b £ A. Hence Ve is exactly the quasivariety of BCK-algebras ax-

iomatised relative to V by the quasi-identity (2.5). •

Let V be a variety of BCK-algebras with natural pre-BCK-algebraic counter-

part V3. Because of Theorem 2.2.3 and the definition of V3, Corollary 2.1.14

and Corollary 2.1.38 together indicate that the first-order theory of V3 stands

in relation to V as the first-order theory of PBCK stands in relation to BCK;

support for this contention is provided by our study of the natural pre-BCK-

algebraic counterparts of the varieties of commutative, positive implicative

and implicative BCK-algebras in §2.2.9, §2.2.16 and §2.2.28 respectively in the

sequel.

The preceding remarks and Corollary 2.1.31 notwithstanding, in general the

second-order theory of V3 bears little resemblance to the second r ier-theory

of V. This is exemplified by the final result (Corollary 2.2.6 below) of this brief

subsection, which shows that any variety of pre-BCK-algebras that contains

the 3-element pre-BCK-algebra B^ of Example 2.1.5 is not 0-regular, congru-

ence distributive or congruence n-permutable for any n > 2 (contrast this

result with Theorem 1.6.10). The corollary obtains as an easy consequence

of the following proposition of Blok and Raftery [38, Section 4], which shows

BCK is the splitting quasivariety associated with the algebra B2 in PBCK. In

the statement of the proposition and in the sequel, for any quasivariety K we
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denote by AQ(K) the 'lattice of subquasivarieties' of K, namely the dual ot the

lattice of corresponding implicational theories of K.

Proposition 2.2.5. [38, Proposition 2] The pair (Q(B2),BCK) splits the

lattice AQ(PBCK). That is, for every quasivariety K C PBCK, either K C BCK

orQ(B2)CK.

Proof. Let K € Ag(PBCK) with K % BCK. By hypothesis, K ^ (2.5), so there

exists an algebra A 6 K with elements a,b € A such that ab = 0 = 6a, but

a ^ b. Then {0, a, b} is the universe of a subalgebra of A isomorphic to B2 .

Hence B2 G K and Q(B2) C K. •

Corollary 2.2.6. (cf [25, Corollary 3.5]) For any variety V of pre-BCK-

algebras the following assertions hold:

1. V is 0-regular iffy C BCK;

2. V is congruence distributive iffV C BCK;

3. V is congruence n-permutable for some n > 2 ijff V C BCK. In particular,

if V C BCK, then V is congruence 3-permutable (and not congruence

permutable).

Proof. Suppose V C BCK. Then V is both 0-regular and congruence distribu-

tive by Theorem 1.6.10(2); also V is congruence n-permutable for n = 3 by

Theorem 2.2.2. However, V is not congruence permutable, since the smallest

non-trivial variety of BCK-algebras (namely, the variety of implicative BCK-

algebras) is not congruence permutable (by results due to Mitschke [167, The-

orem 2] and Blok and Pigozzi [34, pp. 583-584]). For the converse, suppose

V % BCK. Then Q(B2) C V by Proposition 2.2.5 and therefore V(B2) C V.

But V(B2) is not O-regular (since B 2 itself is not 0-regular) and is neither con-

gruence distributive nor congruence n-permutable for any n > 2 (by Blok and

Raftery [38, Proposition 3]). Hence V is not 0-regular, congruence distributive

or congruence n-permutable for any n > 2. •

Remark 2.2.7. In their paper on the lattice of subquasivarieties of BCK-

algebras, Blok and Raftery report that [38, Corollary 4]:
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1. BCK is the largest subquasivariety of PBCK that is BCK-O-regular; and

2. BCK is the largest subquasivariety of PBCK that is BCK-congruence dis-

tributive or that satisfies any non-trivial BCK-congruence identity.

Unfortunately, the proofs provided for both these claims appear flawed by an

ambiguous usage of the term 'relative congruence' [24]. We have been unable

to exhibit an alternative proof that establishes these claims. •

Problem 2.2.8. Is BCK the largest subquasivariety of PBCK that is BCK-

O-regular, BCK-congruence distributive or that satisfies any non-trivial BCK-

congruence identity? •

2.2.9. Commutative Pre-BCK-Algebras. By a commutative pre-BCK-

algebra we mean a pre-BCK-algebra A such hat A/E = B for some commu-

tative BCK-algebra B. By Yutani [245], the class of all commutative BCK-

algebras is a variety, axiomatised relative to PBCK by the identity:

x — {x — y) w y — (y — x) (2.32)

so by Theorem 2.2.3, +he class cPBCK of all commutative pre-BCK-algebras is

also a variety, axiomatised relative to PBCK by the identity:

(x - (x - y)) -(y-(y-x) (2.33)

since (2.32) is of the form of (2.29) and is symmetric in the individual vari-

ables x and y. Thus we have the following result:

Theorem 2.2.10. An algebra (A; — , 0) of type {2,0} is a commutative pre-

BCK-algebra iff the following identities are satisfied:

((x -y)-(x-z))-{z-y)&0

0 — x & 0

x —0 w x

(2.1)

(2.3)

(2.6)
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— y)) — — x)) « 0. (2.33)

Thus the class cPBCK of commutative pre-BCK-algebras is a variety.

Recall that, by definition, a BCK-algebra A is commutative if its underlying

poset (A; <) is a meet semilattice, or equivalently, if glb{a, 6} exists for any

a,b£ A.

Proposition 2.2.11. Let A be a pre-BCK-algebra. If A is commutative, then

for every a,b € A, both aP, b and bP, a are greatest lower bounds of {a, b}

with respect to the underlying pre-BCK quasiorder •<. Conversely, if for every

a,b € A, both a I~l b and bP. a are greatest lower bounds of {a, b} with respect

to the underlying pre-BCK-quasiorder <, then A is commutative.

Proof. Let A be a pre-BCK-algebra and let a, b € A.

Suppose A is commutative. By Lemma 2.1.42(2), a P b is a lower bound of

{a, b}. Suppose c •< a and c •< b for some c G A. We have:

0 = (c(co))(a(ac))

= (cO)(a(ac))

= c(a(ac))

by (2.33)

by (2.6)

whence c < a\l c. Put a := a, /? := ac and 7 := ab. Since:

O=((ab)(ac))(cb)

= ((ab)(ac))Q

= (ab)(ac)

by (2.1)

as c :< 6

by (2.6)

we have:

0 = ((a/3) (cry)) ( 7 « by (2.1)

by (2.34)

by (2.6)

(2.34)
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whence o l~l c •< aHb. Thus c •< af lc ^ aHb. By transitivity, c ^ a l~l &, and

so a l~l 6 is a greatest lower bound of {a, b}. By (2.33), G fl & S 6 f~l a, sofcfia

lies in the same clique as a fl 6. By Lemma 1.2.3(1), b n a is a greatest lower

bound of {a, b}.

Conversely, suppose that for every a, b G A, both a PI b and b fl a are greatest

lower bounds of {a, b}. By Lemma 1.2.3(2) we have that a fl b S b fl a, whence

(a(ab)) (b(ba)) = 0. Thus A is commutative. •

Remark 2.2.12. Let A be a pre-BCK-algebra. For A to be commutative,

the requirement that both a fl 6 and bfl a be greatest lower bounds of a, b G A

cannot be weakened to the requirement that just one of a fl b or 6 n a be a

greatest lower bound for {a, b}. To see this, consider the pre-BCK-algebra A

with operation table:

-i.A

0

1

2

3

0

0

1

2

3

1

0

0

2

0

2

0

0

0

0

3

0

0

2

0

An easy sequence of checks shows a fl b is a greatest lower bound of any a, b 6

{0,1,2,3}. However, A is not commutative, as (l - (1 - 2)) - (2 - (2 - 1)) =

Let A be a commutative pre-BCK-algebra and let m G A be fixed. For a, b € A

such that a, b ^ m, we have ab •< a •< m by Lemma 2.1.12(3). Thus the

principal order ideal (m] is a subuniverse of A. We write (m] for the subalgebra

of A with subuniverse (m]. By definition, a ^ m for all a G (m]. Thus m

is a maximal element of (m], the restriction HLmi of H to (m] has a maximal

class M and (m] induces a quasi-bounded pre-BCK-algebra (m]1. In general,

there may be many possible choices for an element c G M such that l ^ = c.

However, we will always fix l ^ 1 := m, whence we will not be careful to

distinguish between (m] and (m]1 in the sequel.

Let A be a commutative pre-BCK-algebra and let m G 4̂ be fixed. Since (m]

•Ji

^ r-
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is a quasi-bounded pre-BCK-algebra, it has (by the remarks of §2.1.40) both

a derived 'complementation' operation * and a derived 'join' operation U. To

signify these derived operations are local to (m], we write a*^ and a U ^ b

for the complement of a € (m] and the join of a, b G (m] respectively. Further,

to simplify notation in the sequel we write a ^ for a*^m\ af^ for («(in])(m]

Lemma 2.2.13. (cf. [126, Proposition 2]; cf. [126, Corollary 1J) Let A1 be

a quasi-bounded commutative pre-BCK-algebra. For any a £ A, a** 5 a.

Proof. Suppose A1 is a commutative pre-BCK-algebra. Let a e A. By (2.2)

we have a** = l( la) ^ a. By (2.33) we have also that (a(al))( l( la)) = 0,

whence a(l( la)) = 0 since a < 1. Thus a ^ l ( la) , so a •< a**. Hence a**Ea.

•

If A is a commutative BCK-algebra then, by the remarks of §1.6.11, the un-

derlying poset (A; <) is not merely a meet semilattice; it is in fact a (distribu-

tive) nearlattice. Let (A; <) be a meet semilattice. By definition, (A; <)

is a nearlattice if, for every m G A, the principal order ideal (m] is a lattice.

Equivalently, (A; <) is a nearlattice if it enjoys the upper bound property:

that is, if the supremum lub{a, 6} exists when a, b G A share a common upper

bound [64, Section 3, p. 487].

Lemma 2.2.14. (cf. [126, p. 9[) Let A be a commutative pre-BCK-algebra

and let m G A be fixed. If a,b •< m then a L/ml b is a-least upper bound of a

and b in (m\.

Proof. Assume A, a, b, m are as stated. By Proposition 2.2.11, a?m-< n
s o a H ' % ^ Km] n 6(»])(m] b y L e m m a 2.1-43(3). Now a H

and 6 S ftfij by Lemma 2.2.13, so a * afa d ( « H n 6(*m])fm] and b * bfa <
(«])(»]- B y transitivity, a, b * (a(*m] n 6(*m])(*m]. Thus (a(*m] n 6(*m]);m] isn 6(«])(

an upper bound of {a, b}.

Let c ^ m for some c G A with a,b ^ c. By Lemma 2.1.43(3) we have
C H ^ a(m], *(*„»]• Thus cfm] ^ afm] n 6fm] by Proposition 2.2.11 and so (a(*m] n

Hm])(m] - c(*m] b v Lemma 2.1.43(3). Because c^j 5 c by Lemma 2.2.13, we

!?• • • ' ! & • • • •
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have that (a(*m] n &(*m])(*m] ^ cgj ^ c. By transitivity, (a(*m] n 6(*m])(*m] < c,

whence (a^mj ("1 &(*mi)(m] is a least, upper bound of {a, 6}. •

Because of Proposition 2.2.11 and Lemma 2.2.14, it is natural to ask if each

initial segment (m], m e A, of a commutative pre-BCK-algebra A supports (in

some sense) a 'generalised lattice' structure, and in particular if ((m]; fl, U^m )̂

is a non-commutative lattice (in the sense of §1.4.1). Let A 1 be the 5-element

quasi-bounded commutative pre-BCK-algebra (with derived pre-BCK meet

flAl) delined by the following operation tables:

0

a

b

c

1

Q

0

a

b
c

1

a

0

0

0

0

b

b

0

0

0

0
r-

c

0

0

0

0

a

1

0

0

0

0

0

n A l

0

a

b

c

1

0

0

0

0

0

0

a

0

a

b

c

c

b

0

a

b

c

a

c

0

a

b

c

b

1

0

a

b

c

1

Observe l n ( i r i u ) = i n c - & ^ c = l r i a = ( i n i ) n a , whence (A; n) is not

a band. Thus in particular (A; fl, U) is not a double band and the induced

algebra (A; n , u ) is not a non-commutative lattice.

Remark 2.2.15. Let A be a commutative pre-BCK-algebra and let m e A

be fixed. The preceding remarks notwithstanding, (m] does support a 'gener-

alised lattice' structure in a sense made precise as follows! Recall from [223,

Section 10.1] that a [quasi-bounded] quasi-lattice (in the sense of Ursini) is a

structure [{.1; A, V, 0,1; ^>] (.4; A, V; ^> of type [(2.2,0,0,2)] (2,2,2) such

that the following conditions hold for Miy o, b € A.:

QL1. (A] •<) is a quasiordered set;

QL2. The quasi-meet c, A b of a and b satisfies:

(a) a A b •< a;

(b) aAb<b;

(c) For all c £ A, H c A H s hnplies fl A H c;



2.2. Varieties of Pre-BCK-Algebras 133

QL3. The quasi-join a V b of a and b satisfies:

(a) ad>aV b;

(b) b dt a V b;

(c) For ail c G A, c •< a A c ^ 6 implies c ^ c V f t ;

QL4. [For all c G A, 0 ^ c ^ 1.]

[Quasi-bounded] quasi-lattices were introduced by Ursini in his study of alge-

braic semantics for linear logic [223], in order to provide a model for the 'turbo

monoids' of Girard [97, p. 24]. By remarks due to Ursini [223, Section 10.1],

the equivalence ~ on A x A induced by ^ in the sense of Lemma 1.2.2 is a con-

gruence on any [quasi-bounded] quasi-lattice [(A; A, V,0,1; ^)] (A] A, V; <)

such that [(A; A,V,0,l; ^>/«] (4; A,V; ^ ) / « is a [bounded] lattice. Thus

every [quasi-bounded] quasi-lattice has the global outline of a [bounded] lattice

(compare this statement with the Clifford-McLean theorem for quasilattices).

However, a quasi-lattice (in the sense of Ursini) ia not in general a quasilattice

in the sense of this thesis (that is, in the sense of §1.4.1); the converse does

obtain.

By a reduced [quasi-bounded] quasi-lattice we mean a [quasi-bounded] quasi-

lattice [(A; A,V,0,1; :<)] (A; A,V; ^) such that a~6 iff a = b for any

o, b G A. Clearly every reduced [quasi-bounded] quasi-lattice is a [bounded]

lattice. A distributive [quasi-bounded] quasi-lattice is a jquasi-bounded] quasi-

lattice [(A; A,V, 0,1; ^)] (A] A,V; ^) whose reduced image [(̂ 4; A, V

, 0,1; ^ ) /~] {A] A, V; ^ ) / ~ is distributive. Now let A be a commuta-

tive pre-BCK-algebra and let m G A be fixed. Then the induced structure

([m]] LjM, n, 0, m\ ^|(mi) is a distributive quasi-bounded quasi-lattice, whose

reduced image ({rn]m, \J>m\ fl, 0, m\ ^ |(m i)/S is precisely the bounded distribu-

tive sublattice (WI/SJA/H of the commutative BCK-algebra A/2 .

Proof. Let (A; — , 0) be a commutative pre-BCK-algebra and let m G A be

fixed. Let a, 6, c G (m]. Clearly the restriction ^|/mi of •< to (m] is a quasiorder

on [m], whence Condition (QL1) above is satisfied.
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To see fl is a quasi-meet, observe first that a fl H a and a H b •< 6, just

because on b is a lower bound of {a,b}. Suppose o ^ c l l H c . Put a := a,

/? := c and 7 := c(cb). We have:

0= ((a/?) (or)) (7«

(ac)0

ac

by (2.1)

by Lemma 2.1.12(3)

by (2.6)

since a •< cH b

by (2.6).

Thus a ^ c. Since a i~l 6 ^ 0, we have a f l H a ^ c, whence a n 6 X c by

transitivity. Thus ("I is a quasi-meet and Condition (QL2) above is satisfied.

To see L H is a quasi-join, notice first that both a ^ al_H b and b < al_H 6,

because a \J-m^ b is an upper bound of {a, 6} in (mj. Suppose c ^ a fl c ^ 6.

Put a := c, /?:-- a and 7 := a(ac). We have:

by (2.1)

by Lemma 2.1.12(3)

by (2.6)

since c •< a l~l c

by (2.6).

(ca)(c(o(ac)))

(ca)0

ca

Thus c ^ a. Since a X a LjM 6, we have c •< a •< a !_im] 6, whence c •<

a Lj(m^ 6 by transitivity. Thus U.M is a quasi-join and Condition (QL3) above

is satisfied.

For Condition (QL4) above, just note 0 •< a ^ m for all a G (m). Thus the

induced structure ((m]; U ^ , n , 0 . m; d|(m]) is a quasi-bounded quasi-lattice.
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To complete the proof, just note the reduced image ((m]; n, U, 0,1; :< |(m])/H

of ((HI]; U ^ , n, 0, m; ^|(m]) may be identified with the bounded commutative

BCK-subalgebra (m/H]A/=, which is a bounded distributive sublattice of A / 3

by the remarks of §1.6.11. •

2.2.16. Positive Implicative Pre-BCK-Algebras. A positive implica-

tive pre-BCK-algebra is a pre-BCK-algebra A such that A/H = B for some

positive implicative pre-BCK-algebra B. Since the class pBCK of all positive

implicative BCK-algebras is a variety, axiomatised relative to PBCK by the

identity [38, pp. 294-295]:

(x-(x- y)) -(y-x)*i (y-(y- x)) - {x - y) (2.35)

the class pPBCK of all positive implicative pre-BCK-algebras is also a variety,

by Theorem 2.2.3, axiomatised relative to PBCK by the identity:

((x -(x- y)) -(y- x)) - ((y -(y- x)) - (x - y)) « 0

since (2.35) is of the form of (2.29) and is symmetric in the variables x and y.

This characterisation of pPBCK notwithstanding, the following axiomatisation

is often more useful in practice.

Theorem 2.2.17. An algebra (A; — ,0) of type (2,0) is a positive implicative

pre-BCK-algebra iff the following identities are satisfied:

((x -y)-(x- z)) -{z —

x — 0 « x

(2.1)

(2.3)

(2.6)

(x — y) — ({x — y) — y) (2.36)

Thus the class pPBCK of positive implicative pre-BCK-algebras is a variety.

Proof. Let A be a positive implicative pre-BCK-algebra. By definition we

have that A (= (2.1), (2.3), (2.6), so it only remains to show A |= (2.36).
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Since A is positive implicative, A/E = B for some positive implicative BCK-

algebra B. Because B is positive implicative, B (= (x — y) — y « x — y, so

B \= (2.36) by (1.3). As identities are preserved by isomorphic copies, we have

that A/S |= (2.36), so A f= (2.36) by Corollary 2.1.16.

Conversely, suppose A := (A\ —, 0) is an algebra of type (2,0) such that

A |= (2.1), (2.3), (2.6), (2.36). By (2.1), (2.3), (2.6) and Lemma 2.1.6, A is a

pre-BCK-algebra. By (2.36), A /S (= (a; - y) - ((a; - y) - y) « 0; also A / 5 f=

((x - y) -- y)-(x-y) « 0 by (1.30). Hence A / 5 f= (x-y)--y « x - y

by (1.5), so A is positive implicative. •

By Proposition 1.7.12, the variety pBCK of positive implicative BCK-algebras

is precisely the class of all BCK-algebras with EDPI (witness x — y). By Corol-

lary 2.2.6(1), therefore, pBCK is precisely the class of all 0-regular pre-BCK-

algebras with EDPI (witness x — y). Since pBCK may be described alterna-

tively as exactly the class of all 0-regular positive implicative pre-BCK-algebras

(by Corollary 2.2.6(1) and Theorem 2.2.17), the preceding remarks suggest that

pPBCK is a variety of pre-BCK-algebras with EDPI (witness x — y) (but which

is not 0-regular). This last motivates the study of the ideal theory of positive

implicative pre-BCK-algebras, the key to which is Lemma 2.2.19 below. See

also Agliano [6, Section 4, p. 14].

Lemma 2.2.18. The variety of positive implicaiive pre-BCK-algebras satisfies

the following identity:

x ~y)~{z- y)) - {(x - z) - y) « 0. (2.37)

Proof. Let A be a positive implicative pre-BCK-algebra. Then A / 5 = B

for some positive implicative BCK-algebra B. Since B is positive implicative,

Bf= ((x - y) - {z - y)) « (x - z) -y by the remarks of §1.6.13, so B (= (2.37)

by (1.3). Since identities are preserved by isomorphic copies, A / 5 (= (2.37),

whence A f= (2.37) by Corollary 2.1.16. •

Lemma 2.2.19. (cf. [68, Lemma 2.3]; cf. [195, Theorem II§1.8]) Let A

he a positive implicative pre-BCK-algebra. For any ideal I € I(A) and fixed
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a £ A, the supremum I V ^ (a) A of I and (a)A in the ideal lattice I(A) is

{6 E A : 6a E / } . Consequently,

bael iff bel VI(A) (a>A.

Proof. Let A be a positive implicative pre-BCK-algebra and let / E X(A), Let

a E A be fixed and let J := [b E A : 6a E / } . Because I(A) is directed,

/ V 1 ^ (a)A = ( / U {a})A , so to prove the lemma it is sufficient to show:

(i) J is an ideal of A;

(ii) J is the smallest ideal of A such that a € J and I C J.

For (i), we have that 0 E J since Oa = 0 E / by (2.4). Suppose 6, cb E J for

6, c E A Then 6a, (cb)a E / by definition of J. As ((ca)(ba)) ((c6)a) = 0 E /

(by (2.37)) we have that ca E / by Lemma 2.1.21(2). Hence c e J and J is

an idevd.

For (ii), we have that a E J since aa = G E / by (2.3). Suppose 6 E / . Because

6a ^ 6 by Lemma 2.1.12(3) we have that 6a E / by Lemma 2.1.21(1). Hence

6 E J and I C. J. Therefore J is an ideal of A with a E J and I C J. Let

if E I(A) be such that a E K and / C tf. Suppose 6 E J. Then bael CK.

Since 6a, a E # , v/e have that 6 E if by definition of K as an ideal. Hence

J C K and J is the smallest ideal of A such that a E J and o C J . •

Let A be a pre-BCK-algebra> let I E I(A) and let a e A be fixed. For

ease of notation in the sequel, we write (/, a)A for the supremum (/ U {a})A

of / and (a) A in the ideal lattice I (A). Also, we continue to write (a] for

{ 6 : 6 ^ a}, and we write A l~l a for {6 l~l a : 6 E .4}, the principal left ideal

generated by a.

Theorem 2.2.20. For a variety V of pre-BCK-algebras, the following are

equivalent:

1. V is a variety of positive implicative pre-BCK-algebras;

2. V is weakly congruence orderable and the binary term x — y witnesses

both subtractivity and EDPI for V in the sense of Theorem 1.7.9.
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// V is a variety of positive implicative pre-BCK-algebras, then the following

assertions also hold for any A G V and a, b G A:

3. (a)A = {a] = An a;

4. a e (b)A iff ab = 0 iff a\lb= a;

5. (a — 6)A = (a)A * (&)A, where * denotes dual relative pseudocomplemen-

tation in the join semilattice (CI(A); V, (0)A) of compact ideals of A.

Proof. Let V be a variety of pre-BCK-algebras.

(1) => (2) Suppose V is a variety of positive implicative pre-BCK-algebras.

By Theorem 2.1.3, V is subtractive witness x — y. To see x — y also witnesses

EDPI for V, just note that a G (b)A iff a G {{0}, b)A iff ab G (0)A (by

Lemma 2.2.19) iff ab = 0 for any A G V and a, b G A. To see V is weakly

congruence orderable, it is sufficient to show 9A(0, o) C 0A(O, b) iff a ^ b for

any A G V and a, b G A, just because of Lemma 1.7.17 and Theorem 2.1.14(4).

So let A G V and a, b G A. Suppose a < b. Then a = aO =0A(O)6) ab = 0,

so 9A(a,0) C 9A(6,0). Conversely, suppose 9A(0, a) C 9A(0,6). Then

(O)A Q (b)A by normality of ideals and so a G (&)A- Since V has EDPI

witness x — y it follows that ab = 0; that is to say a •< b.

(2) =$- (1) Suppose V is weakly congruence orderable and that the binary

term x — y witnesses both subtractivity and EDPI for V in the sense of The-

orem 1.7.9. Then V£ is a congruence orderable "subvariety of V by Propo-

sition 1.7.19, aud so also has EDPI witness x — y. Moreover, V£ is 0-regular

witness {x — y, y — x} by Proposition 1.7.18, and so is a variety of positive im-

plicative BCK-algebras by Proposition 1.7.12. Let A G V. By the preceding

characterisation of Ve, we have that A/(0)A = B for some positive implicative

BCK-algebra B. But this means that A/H = B, because (0)A = HA by The-

orem 2.1.14(4). It follows that A is a positive implicative pre-BCK-algebra.

Hence V is a vaviety of positive implicative pre-BCK-algebras.

Throughor c the remainder of the proof, assume that V is a variety of positive

implicative pre-BCK-algebras. Let A G V and a, 6, G A.
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For (3), we have that (o] = (a)/, by EDPI. Suppose b G (a]. Then ba = 0

and so b = bO — b(ba) G A n a. Hence (a] C A l~l a. Conversely, suppose

i e i n o, Then b = c(ca) for some c 6 A Since c(ca) •< a by (2.2),

we have that c(co) G (a]; that is to say b G (a]. Hence An a C (a] and

(a] = A n a. For (4), we have a G (6>A iff ab = 0 (by EDPI) iff a n 6 = a

(by Lemma 2.1.42). For (5), let / G I(A). Becaur of Lemma 2.2.19, we have

(O6)A C / iff (a)A C (6)A V / , so (a&)A is the dual relative pseudocomplement

of (b)A with respect to (a)A in (CI(A); V, (0)A). •

Remark 2.2.21. The variety of pre-BCK-algebras does not have EDPI. In

particular, the class jBCK of all BCK-algebras satisfying the identity:

x - (x - {y - (y - x))) &y~(y-{x-(x- y)))

of Cornish [69] is a BCK-variety that does not enjoy EDPI. To see this, observe

that jBCK is a variety (by Theorem 2.2.2 or Cornish [69, Lemma 1]) which is

not contained in any of the varieties enBCK, n G UJ (by Blok and Raftery [38,

Proposition 16]). Since a variety of BCK-al^ebras has EDPI iff it is contained

in some enBCK, n € u (by Theorem 1.6 10, Theorem 1.6.15 and Proposi-

tion 1.7.10). jBCK does not have EDPI. (This argument was communicated to

the author by Professor James Raftery [188].)

The construction used by Blok and Raftery to show jBCK is not contained in

any enBCK, n G UJ, produces, for each k > 1, an algebra A* in jBCK that is not

in any enBCK. However, the ideal lattice of Ak is, for each k > 1, isomorphic

to the three-element dually relatively pseudocomplemented semilattice. Thus

Blok and Raftery'j; construction cannot be used to exhibit an explicit example

of a BCK-algebra A for which the join semi.'attice (CI(A); V, (0)A) of compact

ideals is not dually relative pseudocomplemented. 3

Problem 2.2.22. Exhibit an explicit example of a (pre-) BCK-algebra A for

which the join semilattice (CI(A); V, (0)A) of compact ideals is not dually

relatively pseudocomplemented. •

Because pre-BCK difference witnesses both subtractivity and EDPI for pPBCK

in the sense of Theorem 1.7.9, Items (1) and (3) of the following corollary result
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as an immediate consequence of Theorem 1.7.15(1). Despite this remark, we

give as an easy modification of a result of Agliano [7] a direct proof of the

corollary, on the grounds that this is conceptually simpler than an appeal to

Theorem 1.7.15.

Corollary 2.2.23. (cf. [7, Lemma 3.3]) For any positive implicative pre-

BCK-algebra A, the following assertions hold:

1. The set PI(A) of principal ideals of A is closed under dual relative

pseudocomplementation. Thus (PI(A); *, (0)A) is a positive implicative

BCK-algebra;

2. The map a H* (a) A is a homomorphism from A onto (PI(A); *, (0 )A) .

Moreover, ker/ = H;

3. The map [a]-= H> (a) A is an isomorphism from A/E onto (PI(A); *, (0 )A) .

Proof. Let A be a positive implicative pre-BCK-algebra. For (1), just note

the set PI(A) is closed under dual relative pseudocomplementation by Theo-

rem 2.2.20(5), and hence that (PI(A); *, (0)A) is a positive implicative BCK-

algebra by Lemma 1.6.14. For (2) the map / :• A —> PI(A) defined by a H* (a) A

is clearly onto. Moreover f(a^Ab) = {a^-Ab)A = (d)A *<PI(A); *,<o)A) (&)A =

f(a) *(pi(A); *.(°>A> f(ty by Theorem 2.2.20(5), so (ignoring issues of similarity

type) / is a homomorphism from A onto (PI(A); *, (0)A)- Also (a, b) G ker/

iff (a)A = (6)A iff [O]eA(o,a) = Ple^o,*) iff a = "&(rnodH) iff (a, b) G S by

the proof of Theorem 2.2.20, so ker/ = E. For (3), just note that A/H is

isomorphic to (PI(A); *, (0)A) under the map [a]s H-> (a)A as an immediate

consequence of (2) and the homomorphism theorem [99, Theorem 1§11.1]. •

Let A be a pre-BCK-algebra. Theorem 2.2.20(5) essentially provides an inter-

nal description of the dual relative pseudocomplement / * J of principal ideals /

and J in the join semilattice (CI(A); V, (0)A) of compact ideals of A. The-

orem 2.2.26 in the sequel, which follows immediately from Proposition 2.2.25

below, extends this characterisation of dual relative pseudocomplementation

to arbitrary members of (CI(A); V, (0)A)-

mi
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Lemma 2.2.24. Let A be a pre-BCK-algebra. For any b,c € A and any

a i , . . . ,On G A,

(•••((6c)ai)---)oB = {{•"{bai)---)an)c (mod 5 ) .

Proof. The proof is by induction on n. We show only (• • • ((6c)ai) • • -)an ^

((• * • (6fli) • • • )an)c; the proof of the opposite inclusion is similar and is omit-

ted. For n = 1, just note (bc)ai ^ (bai)c by (2.10). Suppose now that the

claim holds for k < n. By the inductive hypothesis, (• • • ((bc)ai) • • -)ak dt

((• • • (bai) • • • )ak) c, whence:

((6c )ak)ak+i ^ (((• • • (6ai) • • • )ak)c)ak+i (2.38)

by Lemma 2.1.12(2). Put a := (• • • (bai) • • -)ak, /3 := c and 7 := ak+\.

From (2.10) we have (0:^)7-^ (0:7)/?, whence:

(6ai)

From (2.38), (2.39) and transitivity we conclude:

(2.39)

((• • • ((6c)ai) • • • )ak)ak+i ^ (((• )ak)ak+i)c

as required.

Proposition 2.2.25. Let A be a positive implicative pre-BCK-algebra. For

any a i , . . . , an e A,

( 0 1 , . . . , a B ) A =

Proof. The proof is by induction on n. For n = 1, (ai)A = {c E J4 : cai = 0}

by EDPI, so the basis case holds. Suppose the claim holds for k < n. We are

required to show:

(oi , . . . , 0*, ak+i)A = {c e A :((••• ((001)02) • • -)ak)ak+1 = 0}. (2.40)

So let / := (a\,..., ak)A- By Lemma 2.2.19 and the inductive hypothesis, we
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have:

= / VI(A)

= (/, ajt+i)A

(ak+l)A

A: cak+1 G 1}

= {cG A: (•••((caib+i)a1)

To complete the proof let J := {c G A : (• • • ((ca*+i)ai) • • •)afc = 0} a n ^ let

if := {c G 4 : ((• • • (cai) • • -)«*)fl*+i = °} ; w e show J = if. Let 6 € / . Then

(• ••((6ajfc+i)ai) • •-)ajt = 0, so ((• • • (bai) • • •)fl*)a*;+1 = 0 by Lemma 2.2.24

and Corollary 2.1.14(3). Thus b G K and J C K. For the converse, let

b e K. Then ((• • • (ba\) • • • )a*) aA+i = 0, so (• • • ((6ajb+i)ai) • • •) a* = 0, also

by Lemma 2.2.24 and Corollary 2.1.14(3). Thus b G J and if C J. Hence

J = K. This establishes (2.40), so the proof is complete. •

Theorem 2.2.26. fc/. /##, Theorem 2.5]) Let A be a positive implicative

pre-BCK-algebra and let I := (a\,..., at)A, J '— {h, • •., &J-)A ^e ^ o finitely

generated ideals of A. For i — 1 , . . . , t, let d,- := (• • • (a»6i) • • • )br. Then

the dual relative pseudocomplement I * J of I and J in the join semilattice

(CI(A); V, (0)A) of compact ideals of A is the ideal {d\,..., CQA-

By a quasi-bounded positive implicative pre-BCK-algebra we mean any quasi-

bounded pre-BCK-algebra induced from a positive implicative pre-BCK-algebra

with a maximal class. Because of Theorem 2.2.17 and^the remarks of §2.1.40,

the class pPBCK1
rof all quasi-bounded positive implicative pre-BCK-algebras

is a variety. We conclude this subsection with a technical lemma concerning

pPBCK1 that will be needed in the sequel.

Lemma 2.2.27. The variety pPBCK1 of quasi-bounded positive implicative

pre-BCK-algebras coincides with pPBCK+, the generic double-pointed expan-

sion of the variety of positive implicative pre-BCK-algebras.

Proof. Let A1 G pPBCK1. For any a G A, a - a fi 1 = 0 A i ( o l ) a l~l 0 = 0, so

9A l(0,l) = tAi; that is to say A1 G pPBCK+. Hence pPBCK1 C pPBCK+.

For the opposite inclusion, let A + G pPBCK+. We separate the proof into two

cases:
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(i) 0 = 1;

(ii) 0 ± 1.

For (i), suppose 0 = 1. Then 6A + (0 , l ) = uA+. But 0A+(O,1) = tA+ by

hypothesis, so A + is trivial and 1 is maximal. Hence A + 6 pPBCK1.

For (ii), suppose 0 ^ 1 . Then A is non-trivial, so we may assume to the

contrary that 1 is not maximal. Since 1 is not maximal, there exists O ^ o G

A such that either 1 -< a or 1 and a are incomparable under the pre-BCK

quasiorder. In either case it follows that a $. (1)A-» where A~ denotes the

positive implicative pre-BCK-algebra reduct of A + , because of the description

of the principal ideals of A" as the hereditary subsets of A. Thus (1)A- is

proper. Since A + and A~ have the same congruences, (1)A+ = (1)A- by

normality of ideals; that is to say (1)A+ is proper. But this implies (1)A+ <

tA+, where (1)A+ is the least congruence on A + whose 0-class is (1)A+, SO

GA+(0,1) < tA+ since (1)A+ = 0A +(0,1). Hence 0 and 1 are not residually

distinct, a contradiction. Thus 1 is maximal, and A + € pPBCK1.

By (i) and (ii), A+ € pPBCK1. Hence pPBCK+ C pPBCK1. Therefore

pPBCK+ = pPBCK1, and the proof is complete. •

2.2.28. Implicative Pre-BCK-Algebras. By an implicative pre-BCK-

algebra we mean a pre-BCK-algebra A such that A / 2 = B for some implica-

tive BCK-algebra B. Since the class iBCK of all implicative BCK-algebras is a

variety, axiomatised relative to PBCK by the identity (c/. [38, pp. 294-295]):

(re — (x - y)) — (y - x) » y - (y — x) (2.41)

the class iPBCK of all implicative pre-BCK-algebras is also a variety, by The-

orem 2.2.3. In particular, iPBCK is axiomatised relative to PBCK by the pair

of identities:

((x -(x- y)) -- (y - x)) -(y-(y-x))&0

{y~{y~ x)) - ((x -(x- y)) -{y- x)) « 0

as (2.41) is of the form (2.29). The preceding characterisation of iPBCK

• « : •
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notwithstanding, the following axiornatisation often proves more useful in prac-

tice.

Theorem 2.2.29. An algebra (A; — ,0) of type (2,0) is an implicative pre-

BCK-algebra iff the following identities are satisfied:

0 —- x ~ 0

x — 0 « x

(2.1)

(2.3)

(2.6)

%b i JJ " ^ I y (2.42)

Thus the class iPBCK of implicative pre-BCK-algebras is a variety.

Proof. Let A be an implicative pre-BCK-algebra. By definition we have that

A [= (2.1), (2.3), (2.6), so it only remains to show A \= (2.42). Since A is

implicative, A / S = B for some implicative BCK-algebra B. Because B is

implicative, B \= x — (y — x) « x, so B |= (2.42) by (1.3). As identities are

preserved by isomorphic copies, we have that A /S f= (2.42), so A f= (2.42) by

Corollary 2.1.16.

Conversely, suppose A := (J4; — ,0) is an algebra of type (2,0) such that

A (= (2.1), (2.3), (2.6), (2.42). By (2.1), (2.3), (2.6) and Lemma 2.1.6, A is

a pre-BCK-algebra. By (2.42), A /S (= x - (x - (y - x))~ m 0; also A/S (=

[x - (y — x)) — x « 0 by (1.30). Hence A/H |= x — (y — x) « x by (1.5), so A

is implicative. •

By the remarks of §1.6.16, a BCK-algebra is implicative iff it is both commuta-

tive and positive implicative. This observation yields the following alternative

characterisation of implicative pre-BCK-algebras, which will be needed in the

sequel.

Proposition 2.2.30. A pre-BCK-algebra is implicative iff it is both commuta-

tive and positive implicative. Thus the variety of implicative pre-BCK-algebras
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is the intersection of the variety of commutative pre-BCK-algebras and the

variety of positive implicative pre-BCK-algebras.

Proof. Let A be a pre-BCK-algebra. Suppose A is implicative. Then A/H =

B for some implicative BCK-algebra B. Since B is both commutative and pos-

itive implicative, A is both commutative and positive implicative. Conversely,

suppose A is both commutative and positive implicative. Then A = B for

some commutative and positive implicative BCK-algebra B. Since B is im-

plicative, A is implicative. The remaining assertion of the proposition now

follows. •

Let V be a subtractive variety. Recall ([9, Section 2]) a term t(x, ?y, z) is a

commutator term for V-m y, z (where y, z are disjoint sets of variables) if it is

both an ideal term in y and an ideal term in z\ that is, if t e lTy(y)nlTy(z).

We denote the set of all commutator terms for V in y, z by CTv(y,2)- For

A G V and non-empty H, K C A, let:

[H,K]A := {tA{a,h,k) : t{x,y,z) G CTv(yJ); a e A,h G H,k e K}.

[H, K)A is called the commutator of H, K in A for V. The commutator of

ideals was introduced for ideal determined varieties by Ursini in [220] (see also

Gumm and Ursini [104, Section 2]) and for subtractive varieties in general

by Ursini in [222, Section 2] (see also Agliano and Ursini [9, Section 2] and

Ursini [225]). By [10, Proposition 2.1(i)], [H,K]A C (H)A D (K)A always;

when V is ideal distributive the opposite inclusion also holds, in which case

[H,K]A = {H)A fl (K)A[9, Proposition 4.1(2)].

Let V be a subtractive variety and let A 6 V and a,b E A. A (proper)

ideal / of A is said to be prime if whenever [a, 6]A Q I then a € / or b € / ;

this definition originates with Ursini [221] (see also Chajda and Halas [57]).

Therefore if V is ideal distributive, then / is prime if (a)A H (b)A C I implies

o E I or b e I.

P r o p o s i t i o n 2 . 2 . 3 1 . For any implicative pre-BCK-algebra A and a,b € A ,
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Proof. Let A be an implicative pre-BCK-algebra and let a, b G A. By the

proof of Corollary 2.1.29 we have (a n 6)A Q (G)A H (&)A always. For the

opposite inclusion, c G (O)A H (6)A implies c G (a)A and c G (&)A5 which

implies c •< a, 6, which implies c •< a n 6 (since a ("I & is a greatest lower bound

of {a, &}), which implies c 6 (an&)A- Thus (fl)An(6)A C (anb)A as required.

Let A be an implicative pre-BCK-algebra. Because PBCK is ideal distributive

(by Proposition 2.1.24(1)), from Proposition 2.2.31 we have that a proper

ideal / of A is prime if (a l~l &)A Q I implies either a G / or b e / for all

a, b G A. Equivalently, / is prime if:

a n b G / implies either a G / or b G / (2.43)

for all a, 6 G -4. For implicative BCK-algebras, an elegant theory of prime

ideals (which exploits exactly the notion of primality expressed by (2.43)) has

been developed by Rasiowa in [195, Chapter II§6]. This last, in conjunction

with preceding remarks, motivates the study of prime ideals in implicative

pre-BCK-algebras.

Lemma 2.2.32. The variety of (positive) implicative pre-BCK-algebras satis-

fies the following identity:

(x-y)- ((x -y)-(y- x)) « 0. (2.44)

Proof. We have been unable to find a derivation of (2.44) (for (positive) im-

plicative BCK-algebras) in the literature, sc we do not invoke Corollary 2.1.16

to prove the lemma. Instead we provide a derivation of (2.44) (for (positive)

implicative pre-BCK-algebras). Let A be a (positive) implicative pre-BCK-

algebra and let a, b G A. Put a := ab, /3 :— b and 7 := 6a. We have:

0=((a/?)(<*7))(7« by (2.1)

by Lemma 2.1.12(3)

• by (2.6)
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= ((ab)b)((ab)(ba)).

For (2.44), put a := aft, /? := (ab)(ba) and 7 := (a6)6. We have:

0=((aft(Q7))(7/3)

= (a/3)((o6)((a6)6))

by (2.45)

by (2.6)

by (2.36)

by (2.G).

(2.45)

Let A be an implicative pre-BCK-algebra and lei / be a proper ideal of A.

We say / is irreducible provided that:

/ = J D K implies either / = J or / = K (2.46)

for any two proper ideals J,K G I(A). An ideal that is not irreducible is said

to be reducible. The following proposition is a modification of a result due to

Rasiowa [195, Chapter II].

Proposition 2.2.33. (cf [195, Theorem II§6.1]) Let A be an implicative

pre-BCK-algebra and let I be an ideal of A. Then I is prime iff it is irreducible.

Proof. Let A be an implicative pre-BCK-algebra and / be a proper ideal of A.

(=>) Suppose / is not irreducible. Then there exist proper ideals J,K E I(A)

such that / = J n K but I ^ J and / ^ K. Clearly J % K and K £ J.

Indeed, J C K implies I = J nK = J while K C J implies I = JnK = K,

both of which contradict the reducibility of I. Thus there exist a, b G A such

that a G J,b G K but a 0 K,b £ J. To complete the proof we show:

(i) ab, ba <£ /;
(ii) ab n 6a G / .

I-iilfer"
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For (i), we show only that 0,6 £ / ; the proof that ba £ I is analogous and is

omitted. So let {/, 6) A be the ideal generated by 7u{6}. Clearly / C (7, 6)A C

K. Hence a £ (7, 6)A> since a G (7, 6)A implies a G K, a contradiction. But

this implies ab £ 7, because (7, b)A = {c G -A : c& G 7} by Lemma 2.2.19.

For (ii), simply note ab n ba = 0 G / by (2.44).

By (i) and (ii), ab,ba £ I but aft (1 6a G 7, which proves by (2.43) that / is

not prime.

) Suppose / is not prime. Then there exist a, 6 G A such that a ^ b and

aHb £ I, but a $ I and 6 0 7. Let (7, a)A and (7, 6)A be the ideals generated

by 7 U {a} and 7 U {b} respectively. To complete the proof we show:

(i) 7 = <7,a)An(7,6)A ;

(ii) (7, O)A is a proper ideal such that 7 ^ (7, a)A]

(iii) (7, 6)A is a proper ideal such that 7 ^ (7, 6)A.

For (i), the inclusion 7 C (7, a)A n (7, 6)A is obvious. For the opposite inclu-

sion, we have:

(7, fl)A n (7, 6)A = (7 VI(A) (a)A) n (7 VI(A) (b)A)

= I VI(A) « a ) A n (6)A)

= 7 VI(A) (a n 6>A '

by Proposition 2.1.24(1) and Proposition 2.2.31, s"b (7, o)An(/ , b)A = {d eA:

d{a n b) G 7} by Lemma 2.2.19. Let c G (7, a)A D (7, 6>A. Then c{a n b) G 7,

and since a f~l b G 7 we have that c G 7 by the definition of 7 as an ideal. Hence

(7, o)A n (7, b)A C 7 and 7 = (7, a)A n (7, 6>A.

For (ii), 7 7̂  (7, a)A since a 0 7. To see (7, a)A is proper, assume to the

contrary that b G {I, a)A. Then 6a G 7 by Lemma 2.2.19. Since (&na)(al~l&) =

0 G 7 by (2.33) and an& G 7 by hypothesis, we infer 6 G 7 by Lemma 2.1.21(2),

which is a contradiction. Hence 6 ^ (7, a)A and (7, a)A is proper.

For (iii), 7 ^ (7, 6)A since 6 ^ 7 . To see (7, 6)A is proper, assume to the

contrary that a G (7, 6)A- Then a6 G 7 by Lemma 2.2.19. Since a l"l 6 G 7
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by hypothesis, we infer a G / by the definition of / as an ideal, which is a
contradiction. Hence a ^ (/, 6)A and (/, 6)A is proper.

By (i), (ii) and (iii), / = (/, a)An(J, 6)A where (/, a) A and (/, 6)A are proper
ideals such that / ^ (/, a) A and / ^ (/, 6)A, which proves by (2.46) that / is
not irreducible. •

Let A be an implicative pre-BCK-algebra. A proper ideal / of A is said to be
maximal provided it is not a proper subset of any proper ideal. The following
proposition is an easy modification of a result due to Rasiowa [195, Chapter II].

Proposition 2.2.34. (cf. [195, Theorem II§6.2j) Let A be an implicative

pre-BCK-algebra and let I be an ideal of A. Then I is prime iff it is maximal.

Proof. Let A be an implicative pre-BCK-algebra and / be a proper ideal of A.

Suppose / is prime and assume to the contrary that / is not maximal.
Then / is a proper subset of some proper ideal J G I (A) and so there exists
Q G A such that a $. I but a e J. Let (/, a)A be the ideal generated by
I U {a}. Clearly / C (/, a)A C J. To complete the proof it is sufficient to
show that (/, a)A (and hence J) is improper. Since ca F] a — 0 G / (by (2.36))
and a g" / we have that ca £ I for all c G A by (2.43). But this implies
c G (/, a)A for all c G A because (/, O)A = {£ G A : ba e / } by Lemma 2.2.19.
Thus (/, a)A = A and so J = A, a contradiction.

(<=) Suppose / is maximal and assume to the contrary that / is not irreducible.
Then there exist proper ideals J, K G I(A) such that I = J C\K but I ^ J

and I ^ K. But this implies I = JnKcJtmdI = JnKcK, whence
/ = J D K is a proper ideal contained in both the proper ideals J and K.

Thus / is not maximal, which is a contradiction. Hence / is irreducible, which
shows by Proposition 2.2.33 that / is prime. •

The following result is also an easy modification of a theorem of Rasiowa [195,
Chapter II].

Proposition 2.2.35. (cf. [195, Theorem II§64]) Let A be an implicative

pre-BCK-algebra and let I be an ideal of A. Then I is prime iff A/(j)j is
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isomorphic to the two-element flat implicative BCK-algebra Ci, where (j)j is

the congruence induced by I in the sense of Theorem 2.1.26.

Proof. Let A be an implicative pre-BCK-algebra and let / be an ideal of A.

(=$>) Suppose / is prime. By Lemma 2.1.27 we have a G / iff a = 0 (mod0/),

whence [a]^ = [0]^ for a G / . Suppose now that a g I and b & I. Prom

a & I and ba n a = 0 G / (by (2.36)) we have that ba G I by (2.43). Likewise,

from b $ I and ab n 6 = 0 € / (by (2.36)) we have that a& G / by (2.43).

Since ab, ba G 7 we infer a = 6 (mod0/), or equivalently, [a]^ = [6]^. Hence

(the universe of) the quotient algebra A/0 / has exact!*' two elements. Since

<j>i > S we have that A/(f>j is a BCK-algebra, and the result is now forced by

the remarks of §1.6.16.

(<£=) Suppose A/0/ is isomorphic to the 2-element flat implicative BCK-algebra

Ci. Then / is proper (because / improper implies A/0 / is trivial, a contra-

diction). Let a £ I and b $ I. Since the equivalence class [0]^ contains

(by Lemma 2.1.27) exactly those elements of A belonging to / we infer that

[a](t>i — [%n Just because (the universe of) the quotient algebra A/0 / has

only two elements. Hence a = b (mod0/), so ab, ba G / . But then a fl b £ I,

because a fl b G / and ab £ I implies a G / by the definition of / as an

ideal, which is a contradiction. We have shown that a &. I and b $ I implies

a (1 b $. I, which proves by (2.43) that / is prime. •

Theorem 2.2.36. (cf. [195, Theorem II§6.4]) Let A be an implicative pre-

BCK-algebra. For any ideal I G I(A) the following are equivalent:

1. I is prime;

2. I is maximal;

3. I is irreducible;

4- A/0/ is isomorphic to the two-element flax implicative BCK-algebra C\.

where 4>i is the congruence induced by I in the sense of Theorem 2.1.26.
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Moreover, any proper ideal I G I (A) is contained in a prime ideal In partic-

ular,

I = C\{J ' J is a prime ideal of A and I C J } .

Proof. It remains only to establish the final claim. By Proposition 2.2.33,

the prime ideals of any implicative pre-BCK-algebra A are precisely the meet

irreducible elements of I (A). The claim now follows, since any element of an

algebraic lattice is the infimum of meet irreducible elements. •

2.3 Implicative BCS-Algebras

In this section we study the variety of implicative BCS-algebras, a class of

pointed groupoids that more closely resemble implicative BCK-algebras than

do implicative pre-BCK-algebras.

Implicative BCS-algebras proper are introduced in §2.3.1. We show the variety

of implicative BCS-algebras is a subvariety of the variety of implicative pre-

BCK-algebras, and also prove that iBCK is the only non-trivial subquasivariety

of the variety of implicative BCS-algebras that is a non-trivial subquasivariety

of BCK. Some examples showing that implicative BCS-algebras arise naturally

in universal algebra in binary discriminator varieties (including psi-idocom-

plemented semilattices) and in algebraic logic in 'pointed' fixedpoint discrim-

inator varieties (including certain subvarieties of n-potent BCK-algebras) are

presented.

The role of the pre-BCK-meet f~l in the theory of implicative BCS-algebras is

considered in §2.3.19. It is shown that the existence of a left normal band

with zero polynomial reduct (n, 0) whose underlying natural band partial or-

der <^'0 ' respects implicative pre-BCK difference in a certain precise sense

distinguishes the implicative BCS-algebras among the implicative pre-BCK-

algebras. A representation theorem for implicative BCS-algebras is proved:

for suitable choices of objects and morphisms, it is shown that the categories

of implicative BCS-algebras and left handed (equivalently, left regular) locally
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Boolean bands are isomorphic.

In §2.3.42 we characterise (to within isomorphism) the subdirectly irreducible

implicative BCS-algebras: they are precisely the 2-element implicative BCK-

algebra and the algebras B obtained from the non-trivial Boolean algebras B

upon replacing the top element of each B with a two-element H-class.

Quasi-bounded implicative BCS-algebras are studied in §2.3.57. For a quasi-

bounded implicative BCS-algebra A1, the skeleton S(AX) is the set {a* : o e

A}. An internal description of the maximal bounded implicative BCS-algebra

homomorphic image A 1 / ^ of a quasi-bounded implicative BCS-algebra A 1

is given in terms of the skeleton S(A1). We apply this characterisation to

give a new and conceptually simple proof of the Glivenko-Frink theorem for

pseudocomplemented semilattices.

In §2.3.70 the role played by the 3-element pre-BCK-algebra B 2 of Exam-

ple 2.1.5 in the theory of implicative BCS-algebras is investigated. We show B 2

generates the class of implicative BCS-algebras (as a variety) and hence that

the lattice of varieties of implicative BCS-algebras is a 3-element chain; the

only non-trivial subvariety of the variety of implicative BCS-algebras is the

variety of implicative BCK-algebras.

2.3.1. Implicative BCS-Algebras. An implicative BCS-algebra is an al-

gebra (A] \ , 0) of type (2,0) such that the following identities hold:

x\x « 0

(x\y)\z « (x\z)\y

{x\z)\(y\z) « (x\y)\z

x\(y\x) « x.

(2.47)

(2.48)

(2.49)

(2.50)

Because of (2.47), the class iBCS of implicative BCS-algebras may be construed

as a variety of pointed groupoids; consequently in the sequel we (informally)

denote implicative BCS difference by juxtaposition when no confusion can

arise. Identity (2.49) is an algebraic analogue of the S-combinator (p —> (q -»
r)) -*" {(P ~* Q) "* (P ~* r)) °f combinatory logic; this accounts for the origin
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0
a

0
0
0
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0
0

(a) (b) (c) (d)

Figure 2.1. Independence tables for the implicative BCS identities.

of the term (BCS-algebra'. The qualifier 'implicative' is intended to suggest

(as per implicative BCK-algebras) that the binary operation in question is

an algebraic analogue of (specifically) classical (that is, material) implication;

recall (2.50) is an algebraic analogue of Peirce's law ((p —¥ q) —V p) —> p.

Remark 2.3.2. In the variety of implicative BCS-algebras the identities (2.47)-

(2.50) are independent, as the operation tables of Figure 2.1 confirm. Let

A be the algebra defined by the operation table of Figure 2.1 (a). Then

A |= (2.48)-(2.50); however A ^ (2.47) since a\a = a ^ 0. Suppose instead

that A is the algebra defined by the operation table of Figure 2.1(b). An

easy sequence of checks shows A \= (2.47), (2.49)-(2.50) but that A ^ (2.48),

since (a\c)\d = a\d = b ^ a = b\c = (a\d)\c. / Let A be the algebra

defined by the operation table of Figure 2.1(c). It is readily verified that

A 1= (2.47)-(2.48), (2.50) but that A ^ (2.49), just beeause (b\a)\c = 0\c =

0 ^ 6 = 6\0 = (6\c)\(a\c). Suppose now that A is the algebra defined

by the operation table of Figure 2.1(d). Clearly A |= (2.47)-(2.49); however

A £ (2.50) as a\(0\o) = o\0 = 0 ^ a. •

Lemma 2.3.3. The variety of implicative BCS-algebras satisfies the following

identities:

(x\y)\y « x\y

(x\y)\(z\x) « x\y

(2.51)

(2.52)

(2.53)
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(Av)\(y\z)
(Ay)\{Av)

(2.54)

(2.55)

Proof. Let A be an implicative BCS-algebra and let a,b,c G A. For (2.51)

note (ab)b = (ab)(b(ab)) = ab by (2.50) applied twice. For (2.52) we have

(ab){ca) = (a{ca))b = ab by (2.48) and (2.50). For (2.53) we have a(b{ca)) =

(a{ca))(b{ca)) = {ab){ca) = ab by (2.50), (2.49) and (2.52). For (2.54)

we have {ab){bc) = (ab)((b(ab))c) = {ab)({bc){ab)) = ab by (2.50), (2.48)

and (2.50). For (2.55) we have (ac){bc) = (ab)c = (ac)6 = {ab)(cb) by (2.49),

(2.48) and (2.49). . •

Proposition 2.3.4. The variety of implicative BCS-algebras satisfies the fol-

lowing identity:

x\(x\(x\y))*x\y. (2.56)

Proof Let A be an implicative BCS-algebra and let a, b G A. We have:

ab = (ab)(a(ab))

= (a{a{ab)))(b{a(ab))

= (a{a{ab))(ba)

= (a{ba))(a(ab))

= a(a(ab))

by (2.50)

by (2.49)

by (2.53)

by (2.48)

by (2.50)

which establishes (2.56) as required. •

In the statement and proof of the following two results we ignore issues of type.

Proposition 2.3.5. / / A is an implicative BCS-algebra then A is an im-

plicative pre-BCK-algebra. Thus the variety of implicative BCS-algebras is a

subvariety of the variety of implicative pre-BCK-algebras.

Proof. Let A be an implicative BCS-algebra and let a,b,c € A. By (2.50)

and (2.47) we have a — a(aa) = aO, so A j= (2.6). From (2.50) it follows that
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0 = O(aO) = Oa, whence A |= (2.4). Also,

{(ab)(ac))(cb) == ((ab)(cb))(ac)

= [(ac)b)(ac)

= ((oc)(ac))6

= 06

= 0

by (2.48)

by (2.49)

by (2.48)

by (2.47)

so A (= (2.1). By Lemma 2.1.6 we conclude that A is a pre-BCK-algebra. To

see A is implicative, just notice 0 = aa = a(a(6o)) by (2.47) and (2.50). •

Remark 2.3.6. The variety of implicative BCS-algebras is properly contained

within the variety of implicative pre-BCK-algebras. To see this, consider the

following algebra A:

.i. A

0

a

b

c

0

0

a

b

c

a

0

0

b

0

b

0

c

0

a

c

0

0

b

0

An easy sequence of checks shows that A is an implicative pre-BCK-algebra.

However, A is not an implicative BCS-algebra, since a(ba) = ab = c ^ o. •

Proposition 2.3.7. For the variety of implicative BCS-algebras the following

assertions hold:

1. iBCK is contained in any non-trivial subquasivariety o/iBCS;

2. iBCK is the only non-trivial subquasivariety o/iBCS that is a non-trivial

subquasivariety of BCK. Thus iBCK is axiomatised relative to iBCS by

any identity of the form:

m

y
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where n,m € u> and U\,..., un, i>i,..., vm are (\, 0) -terms such that BCK

satisfies:

i = 1 , . . . , n, j = 1 , . . . , m.

/n particular, iBCK is axiomatised relative to iBCS 6y £/ie identity:

x\(x\y) « y\(y\x).

Proof. For (1) let K be a non-trivial subquasivariety of iBCS. Then K is a

non-trivial subquasivariety of PBCK by Proposition 2.3.5 and so iBCK C K by

Example 2.1.4. For (2), let K be a non-trivial subquasivariety of iBCS such

that K C BCK. From K (= x\(y\x) w x and K C BCK we have that K C iBCK;

since there are no non-trivial subquasivarieties of iBCK (by [131, Theorem 2]

end [39, Theorem 4.4]) we infer that K is iBCK. The remaining claims now

follow from Theorem 2.2.2. •

Although PBCK has been encountered previously in the literature as a gener-

alisation of BCK that fails in any sense to be point regular (recall Lemma 2.1.6

and Lemma 2.1.9), according to Iseki [124] the variety of implicative BCS-

algebras has not previously been considered in the literature in any context.

Nonetheless, individual members of iBCS have been employed in a number of

studies of BCK-algebras and subtractive varieties; such algebras have invari-

ably belonged to the following class of examples.

Example 2.3.8. Let B n := (J5n; \,0) be an algebra of cardinality n + 1

equipped with a distinguished element 0 and a binary operation \ defined by:

ab :=
a if 6 = 0

0 otherwise

for any a,b € Bn. Then B n is a flat implicative BCS-algebra (on n + 1

elements). In particular, the algebra B2 of Example 2.1.5 is a flat implicative

BCS-algebra (on 3 elements); of course, B2 is the simplest example of an

implicative BCS-algebra that is not an (implicative) BCK-algebra. •
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Remark 2.3.9. Let B n := (Bn; \ , 0) be a flat implicative BCS-algebra on n+1

elements. Let 6 be an equivalence relation on Bn — {0} and let $ := 0u{(0.0)}.

An easy inspection of B n shows <j> is a congruence on B n . Suppose now that

a E Bn and 6 =̂  0. By inspection of B n and Lemma 2.1.42 we have a =

aV\b =0Bn(O)6) aflO = 0, whence isn — 0B n(6,0). Therefore the lattice ConBn

of congruences on B n is isomorphic to the lattice of equivalence relations on

Bn - {0} together with a new largest element ten = 6Bn(6,0) for any 6 ^ 0

adjoined. (In essence this observation has been made previously by both Blok

and Raftery [38, p. 74] and Agliano and Ursini [8, Example 6.2].)

In [65, Lemma 4.8(i)] Cornish considered the congruence structure of primi-

tive left handed skew Boolean algebras and proved that for any primitive left

handed skew Boolean algebra A, the lattice Con A of congruences on A is

isomorphic to the lattice of equivalence relations of the set A — {0}, together

with a new largest element i& = 0A(a,O) for any a E A — {0} adjoined. It

follows that left handed skew Boolean algebra operations may be imposed on

a flat implicative BCS-algebra B n , n G CJ, without disturbing the congruence

structure of B n , upon defining:

a if b ± 0 I b if b ^ 0
a A b := < and a V b :=

0 otherwise I a otherwise

for any a,b G Bn. •

Apropos preceding remarks, in [240] Wronski proved that the class BCK is not

a variety by showing B2 G H(BCK). Cornish extended Wronski's result in [71,

Theorem 2.2], where he proved that any BCK-algebra with condition (S) can

be embedded as a BCK-algebra into a BCK-algebra that has B2 as a homo-

morphic image. In [114] Idziak exploited properties of the algebra B2 in his

study of the congruence n-permutability of BCK-varieties; various properties

of the algebra B 2 have also been exploited by Blok and Raftery [38, Theorem 8]

and van Alten [229, Proposition 4.4] in obtaining results about BCK-algebras

and related structures. Most recently Blok and La Falce [25] have employed a

generalisation of the algebra B 2 in their study of certain 'varietising' identities

arising naturally in algebraic logic. Also, in [8, Example 6.2] Agliano and Ursini
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exhibited the variety V(B5) generated by the algebra B 5 as an example of a

subtractive variety that is not ideal determined, and in [11, Example 3.7] again

used B5 in proving that the variety of MINI-algebras (recall Example 1.7.11)

does not have EDPC. More generally, all the algebras B n , n G o>, have been

considered briefly by Blok and Raftery in the context of their study of the

lattice of subquasivarieties of BCK-algebras: see [38, Section 4] for details.

In the context of BCK-algebras, the following example, due in essence to

Wronski [241], typifies many of the considerations encountered in the preceding

applications and studies of (flat) implicative BCS-algebras.

Example 2.3.10. (cf. [241, Applications]) Recall from [125, Example 1]

or [38, Example 1] that the set w of all non-negative integers is the universe

of a BCK-algebra u := (a;; — u, 0), where BCK difference is defined naturally

bv:

a
a -- b if a > b

0 otherwise

for any a,b G w. In [241] Wronski employed u in constructing a family of BCK-

algebras that generalise his example Wi(w) [240] showing that BCK-algebras

do not form a variety. Let R(u) := {rm : m G u} and let In := {0, . . . , n — 1}

for every n = 2,3 , . . . . Let N r ; := ((/,, x R(w)) Uw; - Nn , 0) be the algebra

with distinguished element 0 and binary operation — Nn defined as follows [241,

p. 222]:

a-N"6 :=a-wb

a-N"(i,r6):=0

{i,rb)-
Nna:=(i,rb+a)

for any i,j G /„ and a, 6 G u. By Theorem 1 and Theorem 3 of [241] N n

is a BCK-algebra. Consider now the equivalence relation 9 on the base set

(/„ x R(u)) U w of N n induced by the partition {{0} x R(u>),..., {n - 1} x

:§ - i | |
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i?(cj),o>}. Clearly 9 is a congruence relation on N n , and it is easy to see tha.t

the quotient algebra N n /0 is a flat implicative BCS-algebra onn + 1 elements.

By Remark 2.3.9 the congruences on Nn/6 other than the universal congruence

are in one-to-one correspondence with the partitions of Nn/9— {[O]o}, while by

Wroiiski [241, Theorem 4] the congruences of N n other than the universal and

identity congruences are in one-to-one correspondence with partitions of the

set of indices In. It readily follows that the congruences of N n other than the

identity congruence are in one-to-one correspondence with the congruences

of Nn /0, and hence that (ConNn - {wNn}; C) £ ConN n / 0 . Prom this

observation and Remark 2.3.9 we immediately obtain Wronski's results [241,

Theorem 5, Theorem 6] that the congruence lattice of Nw obeys no special

lattice identities at all, and that Nw is not congruence m-permutable for any

m£w; cf. [38, Section 1]. •

It is natural to ask if implicative BCS-algebras distinct from flat algebras occur

readily in universal algebra and/or algebraic logic. The following example

shows (non-flat) implicative BCS-algebras arise naturally from flat implicative

BCS-algebras in a large class of varieties occurring in universal algebra.

Example 2.3.11. Let V be a binary discriminator variety with binary discrim-

inator term b(x,y) and let K C V be a class of binary discriminator algebras

generating V as a variety. Let A € K. By definition of the binary discriminator,

a if c = 0

0 otherwise

for any a,c G A, whence (A] 6A,0) is a flat implicative BCS-algebra by

Example 2.3.8. Since the identities satisfied by V are precisely those satisfied

by K, it follows that any B e V has a canonical implicative BCS-algebra

polynomial reduct (B\ 6B,0). •

By way of illustration we give a practical application of Example 2.3.11.

Example 2.3.12. (cf. [10, Example 4.4]) The variety PCSL of pseudocomple-

mented semilattices is a binary discriminator variety with binary discriminator
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term x A y*. Thus for any A G PCSL the polynomial reduct {A] \ , 0) is an

implicative BCS-algebra, where a\b := a A b* for any a,b e A.

Proof. Let 3 be the 3-element chain (considered as a pseudocomplemented

semilattice). An easy inspection of the induced algebra (3; \ , 0) shows it to

be a flat implicative BCS-algebra. Since 3 generates PCSL as a variety (by

Theorem 1.3.8), we infer that the variety of pseudocomplemented semilattices

is a binary discriminator variety with binary discriminator term x A y*. By

Example 2.3.11 it follows that the polynomial reduct (A] \ , 0) of any A G PCSL

is an implicative BCS-algebra.

This last may also be observed directly in an easy and instructive proof. Let

A € PCSL and let a,b,c G A. We verify that the defining identities for

implicative BCS-algebras are satisfied. For (2.47) we have:

a\a = a A a"

= 0 by (1.8).

For (2.48) we have:

{a\b)\c = (a A b*) A c*

= (a A c*) A 6*

For (2.49) we have:

(a\c)\{b\c) = {a A c*) A (6 A c*)*

= a A (c* A (6 A c*)*)

= a A (c* A (c* A by)

= a A (c* A 6*)

= (o A 6*) A c*

= (o\b)\c.

by (1.9)
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For (2.50) we have:

a\{b\a) = a A (6 A a*)*

= a A (a A (b A a*))*

= a A ((a A a*) A b)*

= a A (0 A

= a A0*

= a

by (1.9)

by (1.8)

by (1.10).

Thus (A; \ , 0) f= (2.47)-(2.50), and the proof is complete. •

Implicative BCS-algebras distinct from flat algebras (but which nonetheless

arise from such structures) also occur quite naturally in a fairly wide class of

varieties occurring in algebraic logic, as the following example shows.

Example 2.3.13. (cf. [65, p. 290]; cf. [19, Theorem 4.7]) Let V be a

fixedpoint discriminator variety with 0. Let K C V be a class of fixedpoint

discriminator algebras generating V as a variety and suppose that 0A is the

discriminating element on any A G K. Let f(x, y,z) be a discriminator term

for V and let x\y := f(O,y,x). Let A G K. By definition of the fixedpoint

discriminator,

a\Ab=fA(0,b,a)

a if b = 0

0 otherwise

for any a, b G A, whence (A; \ A , 0) is a flat implicative BCS-algebra by Exam-

ple 2.3.8. Since the identities satisfied by V are precisely those satisfied by K

it follows that any B G V has a canonical implicative BCS-algebra polynomial

reduct (B\ \B,0>. •

To further illustrate Example 2.3.13 we give a concrete application.

Example 2.3.14. Let cenBCK, new, denote the intersection of the vari-

eties cBCK and enBCK. By the remarks of §1.6.13 the classes cenBCK are
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variet ies t h a t form a n infinite s t r i c t ly inc reas ing cha in . For each new, le t

lcenBCK d e n o t e t h e subc lass of ce n BCK sat isfying t h e i den t i t y :

(x-y)n(y-x) «0.

Concerning the classes icenBCK, new, the following assertions hold:

1. For each new, lcenBCK is a fixedpoint discriminator variety with fixed-

point discriminator term f(x, y, z) := {z — (x — y)n) — (y — x)n;

2. For each new, lcenBCK is generated by a single fixedpoint discriminator

algebra An , for which 0An is the discriminating element.

Thus for any A G lcenBCK, n G w, the polynomial reduct (A; \,0) is an

implicative BCS-algebra, where a\b := / A (0 , b, a) = abn for any a, b G A.

Proof. For (1), by Theorem 1.6.15(1) each variety cenBCK, n G w, has a com-

mutative TD term f(x, y, z) :— [z — (x — y)n) — (y — x)n, just because it is a

subvariety of enBCK. Since each cenBCK is semisimple (by Cornish [68, Corol-

lary 3.2]), from Theorem 1.5.12 we have that cenBCK is a fixedpoint discrim-

inator variety with fixedpoint discriminator term f(x,y,z). By Cornish [70,

Theorem 5.7; Section 3.6] the result now follows for lcenBCK, new.

For (2) let Au be a chain of order type CJ, say Q < OQ < a\... < ac < Let

Aw := [Au] — Aw, 0) where a,- — A<J a, := amax{»-;,o} for any a,-, a,- G Au. Let A*

denote the subalgebra (a*] of Aw. By [68, Theorem 3.5], IcekBCK = V(Ajk).

Because Ajt is simple (by Cornish [70, Section 3.6]), from Theorem 1.5.12

it follows that A* is a fixedpoint discriminator algebra. Moreover, from the

description of A* we may infer additionally that 0A t is the discriminating

element. From these remarks it follows that, for each new, the variety

icenBCK is generated as a variety by the fixedpoint discriminator algebra An,

for which 0An is the discriminating element.

For the final claim, let A G lcenBCK, new, and let a, b G A. By Ex-

ample 2.3.13 the polynomial reduct (̂ 4; \ , 0) is an implicative BCS-algebra.

.;«!«'#''.
<••:•£&&•;•£
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Moreover,

a\&=/A(0,M)

= (aOn)6n

and the result follows.

by (1.4), (1.7)

by [68, Lemma l.l(ii)]

Remark 2.3.15. The proof of Example 2.3.14(1) also shows that, for each

n € w, the class cenBCK is a fixedpoint discriminator variety with fixedpoint

discriminator term /(re, y,z) := (z — (x — y)n} — (y — x)n. However, for no

cenBCK, n G w, does any subclass of {A* : k 6 w} (where the A* are as

in the proof of Example 2.3.14(2)) generate cenBCK as a variety: see Cor-

nish [70, Lemma 5.6] (and also Komori [137, Theorem 3.13] and Iseki and

Tanaka [125, Example 5]). Therefore we may not conclude from the proof

of Example 2.3.14(2) that each cenBCK, n 6 w, is generated as a variety by

a class K C cenBCK of fixedpoint discriminator algebras such that 0A is the

discriminating element on any A € K. However, see Example 3.2.30 in the

sequel. •

The discussion of Example 2.3.14 can potentially be placed in the wider context

of the classes enBCK, new. Let A be a positive implicative BCK-algebra and

let a, b € A. By Guzman [105, Proposition 3.2(c)], the underlying BCK partial

ordering <! on A is a meet semilattice ordering with greatest lower bound

a D1 b := (a(ab))(ba) such that every principal <i-order ideal of (A\ <x)

is a Boolean lattice. (In other words, (A] rij) is semi-Boolean.) Since any

BCK-algebra satisfying (En) also satisfies:

by Lemma 1.3 of Cornish [68], it is natural to pose the following problem.

Problem 2.3.16. Let A € enBCK, n e u. For any a, b € A, let a n n b :=

{a(ab)n)(ba)n. Is the derived algebra (A; T)n) always a meet semilattice? If so,
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let <n denote the underlying partial order of (A] Dn). Does (A\ <n) support
in any sense a semi-Boolean or other 'locally Boolean' structure? •

Let A be a positive implicative BCK-algebra. Because the underlying <i-
ordering of A is semi-Boolean, A has an implicative BCK-algebra polynomial
reduct (A; /,0), where a/b := o(a n1 b)1 for any a, b 6 A; for details, see
Theorem 3.3 of Guzman [105]. This remark prompts the following problem.

Problem 2.3.17. Let A e enBCK, n e w. Let a\b := a(a nn b)n for any
a, b € A. Is the induced algebra (A\ \,0) always an implicative BCS-algebra?

It is known and quite easy to see [68, p. 419] that any finite BCK-algebra
satisfies (En) for some nEw. This observation in conjunction with preceding
remarks suggests the problem below.

Problem 2.3.18. Does every finite BCK-algebra have an implicative BCS-
algebra polynomial reduct? •

In view of the preceding discussion, binary and 'pointed' fixedpoint discrimi-
nator varieties may not exhaust those classes of algebras in which implicative
BCS-algebras arise naturally. We return to this point in Example 3.2.20 in the
sequel.

2.3.19. Left Handed Locally Boolean Bands. Theorem 1.6.21 shows
that the derived semilattice meet n plays a fundamental role in the theory of
implicative BCK-algebras, even to the point of determining some second-order
properties (see Cornish [64, Section 3]). This observation, in conjunction with
Proposition 2.3.5 and Proposition 2.2.31, prompts the study of the role played
by the pre-BCK meet PI (hereafter, implicative BCS meet fl) in implicative
BCS-algebras.

Proposition 2.3.20. The variety of implicative BCS-algebras satisfies the fol-
lowing identities:

(2.57)

(2.58)

{x n y)\(s n z ) « (x\z)\(x\y)

{x n y)\z * (x\z)\(x\y)
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(x\z) nyn (x\z)\(x\y)

(x\z) n (y\z) « (x\z)\(x\y)

x n (j/\z) « (a;V)\(a;\y)

(2.59)

(2.60)

(2.61)

(2.62)

Proof. Let A be an implicative BCS-algebra and let o, 6, c e A. For (2.57),

we have:

(an

For (2.58),

6)(on c)= (a(o6))(o(ac))

= (a(a(ac)))(a6)

= (ac)(ab)

we have:

(a n b)c = (a(ab))c

= (ac)(ab)

by (2.48)

by (2.56)

by (2.48)

For (2.59), it is sufficient by (2.58) to show {ac) n b = (a n b)c. We have:

(ac)F\b = {ac)({ac)b)

= (ac){(ab)c)

= (a(ab))c

by (2.48)

by (2.49)

For (2.60), it is sufficient by (2.59) to show (ac) l~l (6c) = (ac) n b. We have:

(ac) n(6c) == (ac)((oc)(6c))

= (ac)((a6)c)

= (oc)((ac)6)

= (ac) n 6.

by (2.49)

by (2.48)
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For (2.61), it is sufficient by (2.60) to show o n (6c) = {ac) n (6c). We have:

a fl (6c) == a(a(6c))

= (a(ca))(a(6c))

= (a(a(6c)))(ca)

= (a(a(6c)))(c(a(6c)))

= (oc)(a(6c))

= {a{a{bc)))e

= (ac)({a(bc))c)

= (ac)((ac){bc))

= (ac)n (6c).

by (2.50)

by (2.48)

by (2.53)

by (2.49)

by (2.48)

by (2.49)

by (2.48)

For (2.62), it is sufficient by (2.61) to show (a n b){c n 6) = a n (6c). So let

a := a, f3 := 6 and 7 := c l~1 6. We have:

(an6)(cn6) = (an 0)7

= (0:7) (a/3)

= a n (p<y)

= a n (6(cn6))

= an(6(c(c6)))

= a n (6c)

by (2.58)

by (2.61)

by (2.53)

Proposition 2.3.21. The variety of implicative BCS-algebras satisfies the fol-

lowing identities:

(2.63)

(2.64)

Proof. Let A be an impl ica t ive BCS-a lgebra a n d let a,b,c G A . For (2.63),

x n {y n z)« {x n y) n z

xn {y nz) « xn (zn y).
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we have:

(a n b) n c = (a(ab)) ((a(ab))c)

= (o(o6))((an6)c)

= (o(o6))((ac)(a6))

Put a:= a, (3 := aft and 7 := (oc)(a6). We have:

(a(a6))((oc)(a6)) = (a

= {a((ac)(ab)))(ab).

Put a := a, (3 := b and 7 := c. We have:

(a((ac)(ab)))(ab)={a((ay)(aP)))(ab)

= (a(on(6c)))(a6)

= (fl(a(a(6c))))(a6).

Put a := a and /3 := 6c. We have:

(o(a(o(6c))))(a6)=(a(a(a/3)))(o6)

= (a(bc)){ab).

Put a := a, /? := 6 and 7 := 6c. We have:

(a(bc))(ab) = (ary)(a^)

= ar\ (pi)
= on(6(6c))

= on(inc).

by (2.58).

by (2.48)

by (2.61)

by (2.56)

by (2.61)
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For (2.64), put a := a, p := ab and 7 := c. We have:

a n (b n c) = ( a n b) n c

= (a(a&))((ac)(a&)).

Put a := a, (3 := a6 and 7 := ac. We have:

(fl(a6))((oc)(a6)) = (a/

= (a(ac))((a6)(ac)).

Put a \= a, (3 := b and 7 := ac. We have:

by (2.48)

by (2.55)

= (a(ac)) (

= (a(ac))((a(ac))6)

= ( a n c ) n i

= a n (en 6).

by (2.48)

Recall from [206, p. 295] that a restrictive bisemigroup is an algebra (A; AL, AR)

of type (2,2) such that: (i) the reduct (A] A^) is a left normal band; (ii) the

reduct (A; AR) is a right normal band; and (iii) the following associativity

condition is satisfied:

[xARy)ALz « xAR{yALz). (2.65)

Restrictive bisemigroups were introduced by Schein in [206] in connection with

the theory of binary relations [228]. Let A and B be sets and let p and a be
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binary relations from A into B. The restrictive composition of the first kind

of p and a is the binary relation > C ^ x 5 defined by [207, p. 309]:

pt> o := (TTI(P) x J5) Do-

where 7Ti is the first projection map. Analogously the restrictive composition

of the second kind of p and a is the binary relation <! C i x 5 defined by [207,

p. 309]:

p<a := pC\(Ax 7r2(cr))

where TT2 is the second projection map. Upon denoting the set of all one-to-one

binary relations from A to B by R(A, B), the structure (R(A, B); >, <]) is a

restrictive bisemigroup, the restrictive subbisemigroups of which are known as

restrictive bisemigroups of invertible mappings.

Corollary 2.3.22. For any implicative BCS-algebra A, the following asser-

tions hold:

1. A has a left normal band with zero polynomial reduct (A; fl/,, 0), where

a \1L b := a fl b for any a,b G A;

2. A has a right normal band with zero polynomial reduct (A\ HR, 0), where

a\lRb := b\l a for any a,b € A;

3. A has a restrictive bisemigroup polynomial reduct (A]

4- The restrictive bisemigroup polynomial reduct (A; fl/,, fl^) of (3) is iso-

morphic to a restrictive bisemigroup of invertible mappings.

Proof. Let A be an implicative BCS-algebra and let a fl^ b := a fl b for any

a, b E A. For (1), just note that the identities (2.63)-(2.64) in conjunction

with the identities (2.21)-(2.23) of Lemma 2.1.42 assert that the polynomial

reduct (A; HL, 0) is a left normal band with zero. For (2), let a \1R b := b l~l a

for any a,b € A. An easy sequence of checks shows that the derived algebra

(A; nR, 0) is a right normal band with zero. For (3), recall from Schein [207,

p. 313] that any left normal band (A; AL) induces a restrictive bisemigroup
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{A] Ai,Afl) upon defining an inverse operation A# by aA^6 := 6A/,a for

any a, b e A. For (4), just note by Schein [207, Theorem 5; pp. 313-314] that

any restrictive bisemigroup induced by a left normal band in the above manner

is isomorphic to a restrictive bisemigroup of invertible mappings. •

Remark 2.3.23. It is entirely arbitrary whether we consider in general the

left normal band with zero polynomial reduct or the right normal band with

zero polynomial reduct of an implicative BCS-algebra A. In the sequel we will

exclusively consider only the left normal band with zero polynomial reduct,

denoting it simply (A; n,0), bearing in mind that all results obtained extend

to the right normal case. •

Because of Corollary 2.3.22(1), implicative BCS-algebras enjoy equationally

definable properties of left normal bands with zero. Since the Green's qua-

siorderings <ci ~^n and •<•£> and the natural partial ordering < H are term

definable on any band, we have that they are also definable on any implicative

BCS-algebra.

Lemma 2.3.24. Let A be an implicative BCS-algebra and let •< be the binary

relation defined on A by a ^ b iff ab = 0. For any a,b 6 A, a •< b iff

a _ ^ , n,o> ft iff a _^M; n>°) i iff an b = a, and so (A; •<) is a quasiordered set

with least element 0. Moreover, the relation •< satisfies the following conditions

for any a,b,c E A:

1. If a -<b then cb •< ca\

2. If a ^ b then ac •< be,

3. If a<b then aT\c< br\c;

4- If o- ^ b then c fl a •< c\lb.

Proof. For the first assertion, (A; •<) is a quasiordered set with 0 as least

element (by Lemma 2.1.12) for which Lemma 2.1.42(1) ensures ab = 0 iff

a n b = a, and for which the remarl'S of §1.3.11 and §1.3.15 ensure a n b = a

iff a ^ ; n>°> iff a ^^ ; n>0> 6. It remains to prove Items (l)-(4). Items (1)

and (2) have already been established in Lemma 2.1.12(1), (2) respectively.
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Because ^ ^ n>0' and •< coincide, Items (3) and (4) follow from a standard

result of semigroup theory asserting that the P-quasiorder on an arbitrary

band is compatible with band multiplication: see Schein [208, Proposition 1].

Proposition 2.3.25. Let A be an implicative BCS-algebra and let < be the

binary relation defined on A by a < b iff af\b ~ a = b\la. For any a,b € A,

a <u' iff a —ft'n " iff a — b> (^i ^ ) *5 a partially ordered set with least

element 0, and •< is admissible with respect to <. Moreover, < satisfies the

following conditions for any a,b,c 6 A:

1. If a < b then cb < ca;

2. If a < b then ac < be.

3. If a < b then a l~l c < b n c;

4- If a < b then c fl a < c fl b;

Proof. For the first assertion, a < 6 i f f a m = a = 6 r u i f f a <^ ; n > 0 > b,

which implies (A] <) is a partially ordered set by the remarks of §1.3.11.

Moreover, 0 < a for any a G A and •< is admissible with respect to < by

Lemma 2.1.42. It remains to establish a < ^ ; n ' 0 > 6 iff a ^ ^ ; n< ^ 6. It is

clear by definition that a < ^ ' n ' 0 ' b implies a ^ ^ ' n > 0 ' b. For the converse,

assume a 'n ' 6; it is sufficient to show a. •<£' b.

n'0)

left normality,

It remains to prove Items (l)-(4). Items (3) and (4) follow from left normality

and Lemma 1.3.16. For (1), assume a < b. Then a •< b and cb •< ca by

Lemma 2.3.24(1), whence:

(c6)((c6)(ca))

(c6)0

cb by (2.6).
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For the opposite inclusion, assume a < b. We have:

(ca)n(cfc) = ((ca)b)((ca)c)

= ((ca)6)0

= (co)6

= (c6)a

= (cb)(b(ba))

by (2.61)

by Lemma 2.1.12(3)

by (2.6)

by (2.48)

since b l~l a — a

by (2.54).

Thus cb < ca, and (1) is proved. For (2), assume a < b. Then a •< b and

ac r> be by Lemma 2.3.24(2), whence:

(ac)n(fcc) = (ac)((ac)(6c))

= (ac)0

= ac by (2.6).

For the opposite inclusion, assume a < b. We have:

(6c) n (ac) = {(be) e) {(be) a)

(be)((be) a)

(be) n a

(6c)(6a)

(b(ba))e

ac

by (2.61)

by (2.51)

by (2.59)

oy (2.48)

nee 6 n a = a

Thus ac < be, and the proof is complete. •

By Lemma 2.3.24 and Proposition 2.3.25, small finite implicative BCS-algebras

may be depicted graphically using the Hasse diagramming conventions of §1.4.18.

We provide a concrete example by way of illustration.

Example 2.3.26. Using Lemma 2.3.3 and Proposition 2.3.4 the free implica-

tive BCS-algebra F(af, "y) on two free generators af, "y may be determined simply



2.3. Implicative BCS-Algebras 173

by computing all products involving x and y. The resulting operation tables

for F^,?/) and its left normal band with zero polynomial reduct are shown be-

low (where for simplicity of notation in the tables, we denote implicative BCS

difference by juxtaposition, and also write x and y for ~x and 7J respectively

(and similarly for products of x and ?/)).
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The Hasse diagram of F(x, y) is shown in Figure 2.2. For notational reasons,

implicative BCS difference is denoted by juxtaposition in the figure; also the

free generators of, ~y are denoted simply by x, y respectively (and like remarks

apply to products of x. ]/). •

Let A be a pre-BCK- algebra vrith an underlying partial order < (which need

not necessarily coincide with ^ ) - If oh < a for any a, b 6 A we say < respects

pre-BCK difference. In Theorem 2.3.29 below we show that the existence of a

left normal band with zero polynomial reduct (l~l, 0) whose underlying natural

band partial order respects implicative pre-BCK difference distinguishes the
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Figure 2.2. The iBCS-free algebra on two free generators a;, y.

implicative BCS-algebras among the implicative pre-BCK-algebras. But first,

two auxilliary lemmas; Theorem 2.3.29 shows the hypotheses of the second of

these lemmas are not artificial.

Lemma 2.3.27. The variety of (positive) implicative pre-BCK-algebras satis-

fies the identity:

({x -y)- ({x ~ y) - z)) ~{z- (2.66)

Proof. Let A be a (positive) implicative pre-BCK-algebra and let a, 6, c G A.

We have ab < (ab)b, so {ab)({ab)c) < ({ab)b)({ab)c) (by Lemma 2.1.12(2)),

so ({ab){{ab)c)){cb) < ({{ab)b)({ab)c)){cb) (by Lemma 2.1.12(2)) = 0 by (2.1),

so ((ab)((ab)c))(cb) = 0 by Lemma 2.1.12. •

Lemma 2.3.28. Let A be an implicative pre-BCK-algebra such that the poly-

nomial reduct {A; n,0) is a left normal band with zero. Suppose further that

the underlying natural band partial order <^ ' n > ' on the polynomial reduct

(A\ n, 0) respects implicative pre-BCK difference; that is, for any a,b E A,

(2.67)

Then A satisfies the following identities:

(x -y)n(z-y)*i(x-y)nz (2.68)
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x n {y — z) « {x — z) n ?/

(3 — y) — -2 « (a; — 2) n (re — ?/).

(2.69)

(2.70)

Proof. Let A be an implicative pre-BCK-algebra for which the polynomial

reduct (A; n, 0) is a left normal band with zero and suppose further that A

satisfies (2.67) for any a,b £ A. Let a, 6, c € A. For (2.68) we have:

{ab)

:

For (2.69)

a

For (2.70)

n(c6) = (a&)n (cn(c6))

= ((06) n c) n (c6)

= ((a6)nc)(((a6)nc)(c6))

= ((a6)nc)(((a6)((a6)c))(c6))

= ((a6)nc)0

= {ab) n c

, we have:

n(6c) = an {{be)n 0)

= on((6c)n(ac))

= an((oc)n(6c))

= (a n {ac)) n (k)

= {ac) n (6c)

= (ac) n 6

, we have:

{ab)c = {ab)\l {{ab)cj

= (an(a6)) n((a6)c)

= an {{ab)n{{ab)c))

= a n {{ab)c)

= {ac) n {ab)

by (2.67)

by (2.66)

by (2.6).

by left normality

by (2.68)

by left normality

by (2.67)

by (2.68).

by (2.67)

by (2.67)

by (2.67)

by (2.69).
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Theorem 2.3.29. For any implicative pre-BCK-algebra A the following are

equivalent:

1. A is an implicative BCS-algebra;

2. The polynomial reduct {A] fl, 0) is a left normal band with zero, and any

one of the following conditions is satisfied:

(a) Right [left] multiplication by a fixed element of A is isotone [an-

titonej with respect to the underlying natural band partial order

<<f' n'0>. That is, for any a,b,c£ A,

i. Tfa<{£'n>0) b then c& <<f>n'0> ca;

ii. Ifa<^'n'0) b then ac <<fn'0> be.

(b) The underlying natural band partial order <n'
n' respects implica-

tive pre-BCK difference. That is, for any a,b G A,

ab< (A; n,0)

n a. (2.67)

(c) A satisfies the identities:

x — (x fl y) ss x — y « x fl (x — y). (2.71)

Proof. Let A be an implicative pre-BCK-algebra. To prove the theorem we

show (1) => (2)(a) =* (2)(b) <=> (2)(c) and (2)(b), (2)(c) =» (1).

(1) =$> (2) (a) Suppose A is an implicative BCS-algebra. Then the polynomial

reduct (̂ 4; !~l,0) of A is a left normal band with zero (by Corollary 2.3.22(1))

such that right [left] multiplication by a fixed element of A is isotone [anti-

tone] with respect to the underlying natural band partial order <!^'n>0' (by

Proposition 2.3.25(1),(2)).

Throughout the remainder of the proof, assume that the polynomial reduct

[A] n, 0) of A is a left normal band with zero.
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(2) (a) =>• (2)(b) Let a € A and suppose right [left] multiplication by a fixed

element of A is isotone [antitone] with respect to the underlying natural band

partial order <^ ;n>0>. Since {A; n,0) is a band with zero, 0 <^ ; n ' 0 ) b for

any b £ A, whence ab <^ ;n>0> aQ = a for any a G A. Thus <^ ; n '0 > respects

implicative pre-BCK difference.

(2)(b) <£> (2)(c) Suppose <^ ; n > 0 ) respects implicative pre-BCK difference.

Then ab <$f;n'0) a for any a, b € A, so a(a n b) = o(a(a6)) = a n (aft) = aft.

Thus A (= (2.71). Conversely, suppose A \= (2.71). Let a,b € A. By hypothe-

sis, a!~l(a&) = ab] also(a&)("1a = (ab)((ab)a) = (ab)0 = a& by Lemma 2.1.12(3)

and (2.6). Thus a&<# ; n '0 ) a.

(2)(b), (2)(c) =» (1) Suppose both A (= (2.71) and aft <^ ;n>0> a for any

a, 6 € A. We verify directly that the defining identities (2.47)-(2.50) for

implicative BCS-algebras are satisfied. So let a,b,c 6 A. It is clear that (2.47)

is satisfied, because A is a pre-BCK-algebra. For (2.48), we have:

(ab)c = (ac)D(ab)

= ai~l (ac) n (ab)

= all (ab) n (ac)

n(ac)

by (2.70)

by (2.67)

by left normality

by (2.67)

by (2.70).

For (2.49), put a \— a, j3 := ac and 7 := (ac fl b). We have:

(ac)(bc) == (a(bc)) n (ac)

- (a\l(a(bc))) n(ac)

= (a(aH(bc))) n(ac)

= (a(acn b)) n (ac)

= (ay) n 0

by

by

by

. by

(2.70)

(2.C7)

(2.71)

(2.69)

by (2.69)

= an ((ac)((ac)n 6))
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= a i l ((ac) n

= an ({ac)b)

= {ab) fl (ac)

= (ac)b

= (ab)c.

((ac)b)) by

by

by

by

(2.71)

(2.67)

(2.69)

(2.70)

For (2.50), we have:

a(ba) = a n (a(ba))

= a(an (6a))

= a(a(a{ba)))

= aO

= a

by (2.67)

by (2.71)

by (2.42)

by (2,6).

Remark 2.3.30. The hypothesis that the natural band partial order respect

implicative pre-BCK difference cannot be omitted in the assertion of Theo-

rem 2.3.29. To see this, consider the 4-element impiicative pre-BCK-algebra A

of Remark 2.3.6, whose polynomial reduct (A] n, 0) has the following operation

table:

n A

0

a

b

c

0

0

0

0

0

a

0

a

0

c

b

0

0

b

0

c

0

a

0

c

An easy sequence of checks shows that (A; n, 0) is a left normal band with zero.

However, the natural band partial order < ^ ; n'0' does not respect implicative

pre-BCK difference, since ab = c ^^ ; n > 0 ' a; and A is not an implicative

BCS-algebra by the remarks of Example 2.3.6. •

Recall from Theorem 1.6.21 that every implicative BCK-algebra (A] / , 0) has a
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semi-Boolean algebra polynomial reduct (A] n, 0), where a Pi b := a/(a/b) for

any o, 6 6 i , and conversely that every semi-Boolean algebra (A] n, 0) induces

an implicative BCK-algebra (A; / ,0) , where a/6 := (a n b)[ay In a sense,

this representation result characterises implicative BCK-algebras entirely in

semilattice-theoretic terms. This remark, in conjunction with Theorem 2.3.29,

begs the question of whether implicative BGS-algebras may be characterised

similarly in semigroup-theoretic terms, and in particular in terms of left normal

bands with zero. We devote the remainder of this subsection to the study and

solution of this problem. To begin, let A be an implicative BCS-algebra with

left normal band with zero polynomial reduct (A\ (1,0). Recall from §1.3.11

that for any m G A, m fl A := {m fl a : a G -4}.

Proposition 2.3.31. Let A be an implicative BCS-algebra and let m G A be

fixed. Then m P\ A = {a G A : a < m} = {a G A : m l~l a = a}. Moreover,

mnA is closed under \, and on mil A the partial order < and the quasiorder •<

coincide. Thus the principal subalgebra (m] := (mF\A; nAl™n>i) generated by m

is a Boolean lattice.

Proof. Let A be an implicative BCS-algebra and let m € A be fixed. By left

normality and Lemma 1.3.13(1), m fl A = {a : a < m}. Since m l~l a = a iff

a <m, the first statement of the proposition holds. For the second assertion,

suppose o, b G m PI A. Then a < m, so ab < mb by Proposition 2.3.25(2).

But mb < m, so ab < m by transitivity, whence m PI A is closed under \ .

Also", a < b implies a •< b since ^ is admissible with respect to <. Conversely,

a •< b implies ab = 0, which implies a fl b — a (by Lemma 2.1.42(1)), which

implies b\la = a (since (m] is a subsemilattice of (A; fl,0) by Lemma 1.3.16).

Thus o < 6, and the partial order < and the quasiorder •< coincide on m fl

A. Therefore for any a, b G m fl A, ab = 0 = ba implies a = 6, so (m fl

A; \, 0) is an implicative BCK-algebra such that the implicative BCK partial

ordering coincides with the semilattice partial ordering on m fl A. Since (m] is

bounded (by Lemma 1.3.13(1)), (m fl A; \,0> is bounded, so (m fl A] <) is a

Boolean lattice by Corollary 1.6.22; that is to say (m] is a Boolean lattice. This

establishes the final assertion of the proposition, and the proof is complete. •

Recall from §1.3.15 that a band with zero A is locally Boolean if for every
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aGv4, the principal subalgebra (a] generated by a is a Boolean lattice. If A

is a locally Boolean band and A is also left regular (equivalently, left normal),

then by analogy with non-commutative lattice theory we call A a left handed

locally Boolean band. (Right handed locally Boolean bands may be defined

dually, though our concern here is with left handed locally Boolean bands.)

As an immediate consequence of Corollary 2.3.22(1) and Proposition 2.3.31 we

have the following result.

Theorem 2.3.32. Every implicative BCS-algebra (A; \ ,0) has a left handed

locally Boolean band polynomial reduct (A; II, 0), where a fl b := a\(a\b) for

any a,b G A.

Let A be an implicative BCS-algebra. Call A bounded if there exists 1 G A

such that a < 1 for any a G A. As usual, by abuse of language and nota-

tion we confuse a bounded implicative BCS-algebra A with its expansion to

{A; \ , 0,1), where 1 is a new nullary operation symbol adjoined to the language

of A whose canonical interpretation on (A; \ , 0,1) is 1 € A. The following

corollary to Theorem 2.3.32 may be inferred immediately from Corollary 1.6.22

and Proposition 2.3.31.

Corollary 2.3.33. (cf. [126, Theorem 12]; cf. [2, Theorem 8]) The un-

derlying poset (A\ <) of a bounded implicative BCS-algebra (A; / ,0 , l ) is a

Boolean lattice. For any a,b G A,

a A b = a fl b

a V 6 = l \ ( ( l \ o ) n ( l \ 6 ) ) .

Let (A; n, 0) be a left handed locally Boolean band. Because a f~l b <% a for

any a, b G A, locally Boolean bands possess an induced difference operation \.

In more detail: given a,b G A, the difference a\b is defined to be (a f~l 6)?,,

namely the complement of a\l b in the principal subalgebra (a] generated by a.

In the following two results, we denote this induced difference by juxtaposition.

Lemma 2.3.34. For a left handed locally Boolean band A and a, 6 G A the

following assertions hold:
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1. a l~l (ab) = ab = (ab) n a;

2. C/*a6i = (ab) fl C/*oi for any c £ A such that c <-« ab.

Proof. For (1), just note ab = (a fl &)?, <-« a. For (2), assume c <% ab.

Since (a&) fl c,*ai <?{ a& by left normality, (ab) f~l C/*aj € (ab]. It remains to show

(ab) fl C/*oi is the complement of c in (a&]. For this, observe:

({ab) n cj,j) n c = (fl6) n (c*{a] n c)

= 0

and also:

((aft) n cfal) c = ((a6) n cf.j) U^ c as (06] < (a]

= ((a6) U(o] c) n (c(*a] U
(o] c) by distributivity

= (ab) n (c(*a] U
(a] c) as c <n ab, (ab] < (a]

= (ab) n a

= ab by (1).

Theorem 2.3.35. Every left handed locally Boolean band (A; n,0) induces

an implicative BCS-algebra (A; \ , 0) unrfer the operation a\b := (a fl 6)^, /or

any a, 6 6 -A, w/iere (a f~l b)1Q-, denotes the complement of af\b in the principal

subalgebra (a] generated by a.

Proof. Let A be a left handed locally Boolean band and let a, •' c G A. To see

the derived algebra (A; \, 0) is an implicative BCS-algebra, we verify (.A; \ , 0)

satisfies the defining identities (2.47)-(2.50).

For (2.47), simply notice aa = (al~l d)?ffli = a?, — 0.

For (2.48), observe (ab) PI c < ^ ab by left normality, and hence that:

(ab)c=((ab)nc)*iab]

= (ab) n ((06) n c)(*a] by Lemma 2.3.34(2)
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= (ab) n ((a6) n a n c)" by Lemma 2.3.34(1)

= (a6) n ((a6)(0] U
(a] (a n c)*{a]) by De Morgan's laws

= (ab) n ((fl6)fa] U« (ac))

= ((aft) n (fl6)(*a]) U ^ ((ab) n (ac)) by distributivity

= 0uW ((o6)n(oc))

= (06) n (ac).

By symmetry in the elements b and c we deduce also that (ac)b = (ac) n(ab).

But this implies (ab)c = (ac)b, since:

(ab) n (ac) = on (a&) n (ac)

= a n (ac) n (a

= (ac)n(ab)

by Lemma 2.3.34(1)

by left normality

by Lemma 2.3.34(1).

For (2.49) it is sufficient to show (ab)c = (ab)(cb). By definition (ab)c =

((ab) n c)* and (ab)(cb) = ((ab) n (c6))/a«; we claim (aft) n c X> (ab) n (c6).

Because A is locally Boolean, A / P is semi-Boolean by Lemma 1.3.17. Since

(x/y)/((x/y)/z) « (x/y)/{(x/y)/(z/y)) is a n identity of implicative BCK-
algebras (by (2.59) and (2.60)), from Theorem 1.6.21 we may infer [(ab) l~l

c]v = [(ab) n (cb)]v in A/X>; that is to say {ab) Y\cV (ab) n (c6). Now

(aft) n c, (06) n (c6) <7{ ab by left normality, so (ab) l~l c, (aft) P. (c6) € (a6]. But

this implies (by Proposition 2.3.31) that the equivalence (ab) n cV (ab) fl (c6)

collapses in (aft] to the equality (aft)n(cfe) = (ab)Dc. Because (ab] is Boolean,

it is uniquely complemented, and so we deduce ( (o l i )nc)y = ((ab)n(cb)),b-,\

that is to say (ab)c = (ab)(cb).

For (2.50), observe first that a n (ba) = 0. Indeed,

0 = (b n a) n (b n a)(*6]

= 6 n a n (6a)

= b n (6a) n a

= (6a) n a

by left normality

by Lemma 2.3.34(1)
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which implies a l~l (ba) = 0 by Lemma 1.4.13, just because a l~l (ba)V(ba) fl a.

To complete the proof, simply notice:

a(ba) = (an(ba))*a]

= 0(4

= a.

Theorem 2.3.36. In the variety of implicative BCS-algebras and the class of

left handed locally Boolean bands, the following assertions hold:

1. Every implicative BCS-algebra {A; \ ,0) induces a left handed locally

Boolean band (A; fl,0) upon defining aHb := a\(a\b) for any a, b G A;

2. Every left handed locally Boolean band (A; fl, 0) determines an implica-

tive BCS-algebra (A] \ , 0) under the operation a\b := (a n 6)/0, for any

a, b G A, where (aHb)*,-, denotes the complement of aV\b in the principal

subalgebra (a] generated by a.

Moreover, the correspondences of (1) and (2) are inverse to each other. In

more detail, if (A; \ , 0) is an implicative BCS-algebra with left handed locally

Boolean band polynomial reduct (A; fl, 0), then implicative BCS difference on

(A\ n, 0) as induced by the operation \ ^ ; n>0^ of (2) coincides with implicative

BCS difference \<A'>\>°) on {A] \,0>; that is, a\^;n'°>& = a\^;\'°>6 for any

a, b G A. Conversely, if (A\ (1,0) is a left handed locally Boolean band with

induced implicative BCS-algebra (A; \ , 0), then the implicative BCS meet on

(A; \, 0) as determined by the operation n ^ ; ^ of (1) coincides with the band

operation n^ ;n>0) on (A] 11,0); that is, a n ^ ^ b = a n(i4;r1'0> b for any

a,beA.

Proof. It remains only to prove the final assertion. Let (A; \ , 0) be an im-

plicative BCS-algebra with left handed locally Boolean band polynomial reduct

(A; n,0). For any a,b,e A,
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\-°> by Corollary 2.3.33

by (2.56).

Conversely, let (A; l~l, 0) be a left handed locally Boolean band with induced

implicative BCS-algebra (A; \ , 0). For any a, b £ A,

by De Morgan's laws

a 6.

Remark 2.3.37. Let A := (A] -,0) be a locally Boolean band. For any

a, b G A, afea < w a, and so A possesses an induced difference operation \ ^ ; •>0 ,̂

where a\^ ; '^b := (a6a)(aiA, the complement of aba in the principal subalgebra

(O]A generated by a. As with left handed locally Boolean bands, the induced

algebra (.A; \ ^ ; ' ' 0 \ 0 ) is an implicative BCS-algebra. (For a justification of

this assertion., see the proof below.) In spite of this observation, however, there

seems little profit in studying locally Boolean bands as a generalisation of left

handed locally Boolean bands, because the correspondences of Theorem 2.3.36

are not preserved: while every (not necessarily left or right handed) locally

Boolean band induces an implicative BCS-algebra, the locally Boolean band

polynomial reduct of any implicative BCS-algebra is always left (or right)

handed.

Proof. Let A := {A; -,0) be a locally Boolean band. For any a, b € A, let

a\iA' -.°)̂  : = (a&a)/oi , the complement of aba in the principal subalgebra (a]_\

generated by o. To see the induced algebra (̂ 4; \ ^ ; ' > 0 \ 0 ) is an implicative

BCS-algebra, let a fl b :=•- aba for any o, b € A. We claim:
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(i) The polynomial reduct (A] fl, 0) is a left normal band with zero;

(ii) For any a G A, (a]^;.,<» = (o](A;u,o)\

(Hi) If b, c G (O]A then b • c = b fl c.

For (i), easy but tedious computations show the polynomial reduct (.A; l~l, 0) is

a left normal band with zero, just because (A; •, 0) is normal (by Lemma 1.3.16).

For (ii), it sufficient to show a < ^ ; ->0> b iff a < ^ ; n>°> b for any a, b G A. So

let a,beA. Clearly a <^;••°> b implies a <<^n-°> b. Conversely, a <(A;n>0) b

implies aba = a = bab, so ab = (bab)b = bab = a and ba = b(bab) = bob — a,

whence a <(A''">°) b.

For (iii), let 6, c G (G]A- Since (O]A is a subsemilattice of (.4; -,0) we have

b - c = b • c- b = bn c as desired.

To complete the proof, notice (ii)-(iii) imply the principal subalgebra (a](A; n,o)

of (A; n,0) coincides with the principal subalgebra (C]A of A for any o € i ,

whence (A\ n, 0) is a left handed locally Boolean band by (i). By Theo-

rem 2.3.35 we have that the induced algebra (A; \ ^ ; n > 0 \ 0 ) is an implica-

tive BCS-algebra, where for any a, 6 G A, a\^n'°H := (a n b)fa] . But

( a n l ) | a ] M n o ) = (a6a)('o]A for any a,b G A, so a\^-'°>6 = a\^A'n^b. Thus

^ ^ is an implicative BCS-algebra as asserted. •

We cannot hope for a further sharpening (in purely algebraic terms) of the

relationship between the class of implicative BCS-algebras and the class of left

handed locally Boolean bands on at least two counts. On the one hand, the

class of all left handed locally Boolean bands is not even a quasivariety, since

it is not closed under the formation of subalgebras. (To see this, just consider

the 4-element Boolean lattice 4 (with universe {0, a, 6,1}, least element 0 and

greatest element 1) as a semi-Boolean algebra. Clearly ({0, o, 1}; 11,0) is a

subalgebra of 4 such that 0 < a < 1.) On the other hand, the natural mor-

phisms between left handed locally Boolean bands (namely those left normal

band with zero homomorphisms that preserve Boolean sublattices) cannot be

given a purely algebraic description. This is the subject of Theorem 2.3.39 be-

low. But first, the following lemma, which is an easy modification of a result

due to Cornish [64].
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i

.

Lemma 2.3.38. (cf. [64, Lemma 3.3]) Let A be a left handed locally Boolean

band and let a G A be fixed. Let 9 be a congruence on the underlying left

normal band with zero polynomial reduct (A\ n, 0) such that for each b €. A,

the restriction Q\,b, of 9 to the principal subalgebra (b] generated by b is a lattice

congruence on (&]. Then A/9 is a left handed locally Boolean band and the

restriction of the canonical map v : A -» A/9 is a lattice homomorphism of

(a]A onto (v(a)]A/0-

Proof. Let r denote the restriction of u. Notice that for u(b) G A/9, u(b) G
(Kfl)]A/« i m P l i e s u(b) <{v{a)]A/e *>(a), which implies u(b) = u(a) nW'^ /«
v(b) = u(c) for some c G A, whereby c= a n A b G (a]A- Hence r is onto, and
we can regard each element of (i/(a)]
c < A A/fl

to be of the form for a suitable

a.

Let b,c G (a] and let d :-= 6 U ^ c. Then r(6), r(c) <Mfl)]A/« r(rf). Suppose
«*(6),r(c) <W°)1A/« r ( e ) aiSo for some e G (o). Then b = 6 n e(mod6') and
c = c n e (mod0). Therefore d = b U ^ c = (b n e) u(al (c n e) (mode). In
other words, r(d) = r((b n e) u(ol (c n e)) <^a^/» r(e). Therefore r(d) =
r(6) u(l/(a^A''p r(c). Thus (v(a)]A/B is a lattice and the quotient A/9 is a left
handed locally Boolean band. H

Theorem 2.3.39. Let A be an implicative BCS-algebra with left handed locally

Boolean band polynomial reduct (A] n,0). The following are equivalent:

1. 9e ConA;

2. 9 G Con (A; n, 0) and 9\,a, G Con (a] for each a G A, where 9\^ denotes

the restriction of 9 to the principal subalgebra (a] generated by a;

3. 9 € Con (A\ H, 0) and 0|/ai is a lattice congruence on (a] for each a & A.

Proof. (1) =^ (2). Clearly 9 is a congruence on the polynomial reduct (A; l~l, 0).
Moreover, because (a] is a subalgebra of A for each a G A, the restriction 9\^

must be a congruence on (a].

(2) =$> (3). Let a e Abe fixed. As the infimum b n c is a derived operation for

any b, c G (a], we deduce that 9 is a semilattice congruence. Moreover, since
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a

(a] is a bounded BCK-subalgebra of A, for any &, c E A the lattice supremum

6l_J C is also a derived operation, given by the formula of Corollary 2.3.33. Thus

the restriction of 9 to (a] is a lattice congruence.

(3) => (1). Suppose that for each a G A, 0Li is a lattice congruence on (a].

Then A/9 is left handed locally Boolean by Lemma 2.3.38. Let v : A —,> A/9

be the canonical homomorphism and let a,ai,b,b\ G A be such that a =

a\ (mod#|(aj) and b = bx (mod9\^). Now in A, a\b is the complement of aHb

in (aj. Since A./9 is left handed locally Boolean, u(a\b) is the complement of

i/(a)i~l^(6) in the Boolean lattice {v(a)] A/9- AS u(a) = v{ai) and v{b) = v(b\),

v(ai\bi) is also a complement of v(a)nu(b) m (v(o)] A/6- Because complements

are unique in (^(a)JA/0> we conclude v(a\b) = ^(oi\6i), which implies 9 is a

congruence on A as required. •

Although the correspondence between impiicative BCS-algebras and left handed

locally Boolean bands cannot be given a purely algebraic description, Theo-

rem 2.3.39 immediately suggests a categcry-iheoretic formalisation. Let IBCS

denote the caiegory for which:

• The objects of IBCS are the impiicative BCS-algebras;

• The morphisms of IBCS are the impiicative BCS homomorphisms.

Also, let LLBB denote the category for which:

• The objects of LLBB are the left handed locally Boolean bands;

• The morphisms of LLBB are the Boolean sublattice preserving homo-

morphisms, namely those homomorphisms h : A —> B, where A and B

are left handed locally Boolean bands, such that for each a G A, the re-

striction (ker/?)|(a] of the relation kernel ker h to the principal subalgebra

(a] generated by a is a lattice congruence on (oj.

Recall from category theory [160, Section 3.6] that categories C and D are

isomorphic jfT there exists a one-to-one functor F mapping C onto D. Since

a functoi F : C -> D is an isomorphism iff there exists a functor G : D —» C

such that F o G is the identity map on D and G o F is the identity map on
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C (where C [D] is the underlying class of objects in the category C [D]) [160,

Section 3.6], the following result is clear upon combining Theorem 2.3.36 and

Theorem 2.3.39.

Theorem 2.3.40. IBCS and LLBB are isomorphic as categories.

In light of the preceding result, it is natural to anticipate that structural results

concerning left normal bands with zero transfer to the setting of implicative

BCS-algebras. Certainly this is the case in relation to the ClifFord-McLean

theorem for bands, for which we have the following natural analogue.

Theorem 2.3.41 (Clifford-McLean Theorem for Implicative BCS-Algebras).
Let A be an implicative BCS algebra with left handed locally Boolean band poly-

nomial reduct (A; n,0). Then V^nfi)-equivalence is a congruence relation

on both (A; fl, 0) and A. The quotient algebra A/V^A-, n,o) is the maximal

implicative BCK-algebra homomorphic image of A and the quotient algebra

(A; n,O)/25(i4;n,o) is the maximal semi-Boolean algebra homomorphic image

of (A; n, 0), whilst the V^A;n,o)-congruence classes of both A and {A; fl, 0) are

the maximal left zero semigroups of {A; n,0). Fcr all a, 6 G A, the following

are equivalent:

1. a HA b;

2.

3. (A;n,o)

Proof. Let A be an implicative BCS-algebra with left handed locally Boolean

band polynomial reduct (A] fl, 0). Observe first that V^-, n,o) a n ( i £(A; n,o) coin-

cide by left normality and the remarks of §1.3.15, and also that V^ n,o) and 5 A

coincide by Lemma 2.3.24 (since they are respectively the equivalences induced

by the quasiorderings ^ ^ ' n ' 0 ' and < in the sense of Lemma 1.2.2). Thus

Items (l)-(3) are equivalent, and V^A-, n,o)-equivalence is a congruence relation

on both (A; n,0) and A. By Theorem 2.1.14 the quotient algebra A/D^ ;n,o)

is the maximal implicative BCK-algebra homomorphic image of A, while by

Lemma 1.3.17 (A] n,O)/V(A-,r\,o) is the maximal semi-Boolean algebra homo-

morphic image of (̂ 4; (1,0). Finally, left normality and the Clifford-McLean

iiili
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theorem for bands ensure the maximal left zero semigroups of (A) l~"l, 0) are

the X>(J4; n,o)-congruence classes of (A\ n, 0), and hence (by previous remarks)

of A. •

Theorem 2.3.41 justifies dubbing the congruence 5 on any implicative BCS-

algebra the 'Clifford-McLean congruence'. We will (sometimes) employ this

vocabulary in the sequel.

2.3.42. Subdirectly Irreducible Implicative BCS-Algebras. The com-
plete description (to within isomorphism) of both the subdirectly irreducible

left normal bands with zero and the subdirectly irreducible implicative BCK-

algebras (recall Corollary 1.3.19 and Theorem 1.6.19 respectively), in conjunc-

tion with the affinity of implicative BCS-algebras to both implicative BCK-

algebras and left normal bands with zero, suggests that the possibility of com-

pletely characterising the subdirectly irreducible implicative BCS-algebras (to

within isomorphism) may be strong. This subsection is devoted to the study

and solution of this problem. Our first order of business is to isolate a family

of subdirectly irreducible implicative BCS-algebras. This is the subject of the

following lemma, which is due to the author's Ph.D. supervisor.

Lemma 2.3.43. (Bignall) Let B := (.13; A, V/,0,1) be a non-trivial Boolean

algebra with bounded implicative BCK-algebra polynomial redact {B\ / , 0,1),

where a/b = a A b' for any a,b £ B. Let B' := B — {1} and let {mi, m^} be

disjoint from B. Let B := B' U {mi, m?} and let the difference \ be defined

on B as follows:

a\b:=

a/b ifa.be B'

0 if b € {mi, 702} and a £ B

a if a £ {mi, 7722} and 6 = 0

b' if a £ {mi, 7712} and 0 ^ b E B'.

Then the derived algebra B := (B; \ , 0) is an implicative BCS-algebra.

Proof. Let B be a non-trivial Boolean algebra with greatest element 1. Let B

be the subdirectly irreducible pseudocomplemented semilattice with greatest
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element m G B induced by B as per Theorem 1.3.7. Let B denote the canon-

ical implicative BCS-algebra polynomial reduct of B (arising as per Exam-

ple 2.3.12). It is trivial to check that the operation \ B defined on B is the

same as the operation \ B defined on B when the element 1 is renamed as mt
/•s

and the element m is renamed as m^. Hence B is an implicative BCS-algebra.

Lemma 2.3.44. Let B be a non-trivial Boolean algebra. Then the implicative

BCS-algebra B induced from B as per Lemma 2.3.43 is subdirectly irreducible

with monolith H.

Proof. Observe first that Wg U {(mi, 7722), (m2, mi)} = S G ConB. Therefore
ys

to see B is subdirectly irreducible with monolith S it is sufficient to show

mi = m2 (mod0) for any 8 G ConB where ^ W g . So let 9 G ConB be such

that 8 ^LJ-Q. There are two cases to consider:

(i) Me = {0};

(«) [0]« t {0}.

For Case (i), suppose [0]e = {0}. Then 9 C E = u^ U {(mi, m^), (m2, mi)}

by Theorem 2.1.14(4). Assume to the contrary that mi ^0 ma. Then 9 = OJ-Q

which is a contradiction. Thus m\~o

For Case (h), suppose [O]o ^ {0}. Then there exists 0 ^ a G B such that

0 = a (modt?). If a ^ {mi, m^} then mi = miO =0 m\a = rn^a =g m^O = m2

by definition of \ B . So suppose a G {mi, m^}. Let b G {mj, 7712} be such that

b ^ a. Then b = 60 =Q ba = 0 =0 a by definition of \ B as required. •

Implicative BCS-algebras arising as per Lemma 2.3.43 may be most easily

envisaged as Boolean algebras in which the unit element has been replaced by

a 2-element clique. To see this more clearly, let B o := Ci, where Ci is the 2-

element flat implicative BCK-algebra (recall Example 1.6.18). For 1 < n < u>,

let By, denote the implicative BCS-algebra induced as per Lemma 2.3.43 from

the non-trivial finite Boolean algebra B of cardinality 2". For n = 0,1,2,3,

the algebras B n are depicted in Figure 2.3.
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0

Figure 2.3. The subdirectly irreducible implicative BCS-algebras B n for n
0,1,2,3.

We devote the remainder of this subsection to proving that the family of al-

gebras {Bo} U {B : B a non-trivial Boolean algebra} comprises, to within iso-

morphism, all subdirectly irreducible members of the variety of implicative

BCS-algebras. With this aim in mind we identify and briefly study some stan-

dard congruences of implicative BCS-algebras in the following two lemmas.

Lemma 2.3.45. For any implicative BCS-algebra A the following assertions

hold:

1. For a fixed c G A, the maps:

(a) a t-> ac;

(b) aKafl c;

(c) a i-> c l~l a

are endomorphisms of A. Respectively, the associated congruences are

defined by:

(a)' a = b (mod^c) iff ac = be;

(by a = b (mod QC) iff aUc — bn c;

(c)' a = b (mod <rc) iff c n a = c l~l b.

2. For a fixed c G A,



2.3. Implicative BCS-Algebras 192

(a) $c = (c)d
A = 0A(O, c);

S < cc;

fife} = 2.

Proof. Let A be an implicative BCS-algebra. Let c be a fixed element of A

and let o, b G A For (1) we have that (ab)c = (oc)(6c) by (2.49), whence the

map a H-> ac is an endomorphism. Also (ab) fl c = (o6)(ac) = (a fl c)(6 f~l c)

by (2.59) and (2.62), so the map a 4 o (1 c is also an endomorphism. And,

c n (ab) = (cb)(ca) = (c n a)(c n 6) by (2.61) and (2.57), which implies the

map a i-> c fl a is an endomorphism as well. The remaining assertions follow

immediately from [55, Theorem II§6.8].

For (2)(a) let fic be as stated. Since (c)5
A = ([0]eA(0|C))* = 0A(O, c), it only

remains to show #c = 0A(O, c). From cc = 0 = Oc we have 0 = c (modi9c)

whence 0A(O, c) C $c. For the opposite inclusion just notice a = b (modi9c)

implies a = aO =0A(O,C)
 flc = be =0A(O)C) 60 = b. Thus #c C 0A(O, c) and so

For (2)(b) let o = 6 (modS). Then aUb = a and bUa = b by Lemma 2.1.42(*•.),

whence cfla = cHaHb = cnfefla = cf\b by left normality. Thus a = b (mod^ci

and 5 < ^c.

For (2)(c) suppose a = b (mod rice/i{<>c})- Then c fl a = c ("1 6 for any c € -4,

and in particular afla = a.n6 and 6fla = 6f~l6. Thus a = a(~l6 and b\la = b, so

a •< b and 6 ^ a by Lemma 2.1.42(1); that is to say a = b (modH). Conversely,

S < ?c for any c G 4 by (2,(b), so H < f]ceA^c}- Thus (\eA{<;c} = 2. •

Lemma 2.3.46. Lei A 6e an implicative BCS-algebra and let m G A be fixed.

The following assertions hold:

1. LJA = Qm iff & ^ Tn for any a £ A, where gm denotes the congruence of

Lemma 2.345(1)(b)';

2. E = <;m iff a ^ m for any a € A, where cm denotes the congruence of

Lemma 2.3.45(1) (c)';
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Proof. Let A be an implicative BCS-algebra and let m £ Abe fixed. For (1),

suppose UA = Qm- Notice aUm ~ (a l~l m) fl m for any a £ A and hence

that o = a n m (modgm). Now gm < E since gm is the identity congruence,

so a = a PI m(modH). Thus a ^ a n m. But (a(am))m, = 0 by (2.2) and

so a l~l m •< m. By transitivity we conclude a j m a s desired. Conversely,

suppose c ^ m for any c £ A and note this implies c f l m = c. Suppose

a = b (mod £m) for a,b £ A. Then a 11 m = 6 fl m, so a = a 11 m = 6 Cl ?7i = 6.

Thus a = b (moda^) a n d hence gm =

For (2), suppose H = ?m. By left normality m\la — mn(aT\m) for any a € A,

so a = a n m (mod?m), which implies a = a l~l m (modS). Thus a ^ a n m.

But (a(am))m = 0 by (2.2) and so a fl m ^ m. By transitivity we conclude

a ^ r n a s desired. Conversely, suppose c ^ m for any c G A and note this

implies cHm = c. Suppose a=b (modcm) for a,b € A. Then mfl a = mfl 6,

whence a = a f l m = a f l m n o = afl m f l i = a H b \1 m = a H b and

6 = 6 n m = 6 n m n 6 = 6 n m r i a = 6 r i a r i m = 6 r i a b y left normality.

By Lemma 2.1.42(1) we conclude a •< b and 6 •< a. Thus a = b (modS) and

m̂ Q S. The opposite inclusion follows immediately from Lemma 2.3.45(2)(b).

Recall that an element m € A of a pre-BCK-algebra A is maximal if a •< m

for all a G A. Recall also that all maximal elements (where they exist) of a

pre-BCK-algebra A lie in a unique S-class (the maximal class).

Lemma 2.3.47. Let A be a subdirectly irreducible implicative BCS-algebra

and let {7721,7̂ 2} be the pair of elements identified under every non-trivial

congruence relation of A. Then either A = Bo or A has a maximal class M

such that {mi, m^} C M.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra. We sepa-

rate tl, proof into two cases:

(i) A. e iftCK;

(li) .A. £iPJK.

For Case (i), suppose A G iBCK. From Theorem 1.6.19 we deduce A is isomor-

phic to the 2-element implicative BCK-algebra C l s which implies by definition



2.3. Implicative BCS-Algebras 194

that A is isomorphic to Bo .

For Case (ii), suppose A ^ iBCK. Let {mi, m2} be the pair of elements iden-

tified under every non-trivial congruence. Because A £ iBCK there exists a

subalgebra of A isomorphic to B2 by Proposition 2.2.5, so the Clifford-McLean

congruence S on A is non-trivial. Thus mi = m?(modS) and in particular

77̂2 di mii whence m% n mi. = m^ by Lemma 2.1.42^1). Let now gm be the

congruence relation of Lemma 2.3.45(l)(b)' defined by a — b(modgmi) iff

c n mi = ft n mi for any a, b G A. Because A is subdirectly irreducible gmi

is the identity congruence. For suppose to the contrary that gmi is not the

identity congruence. Then mi = m^ (modomi), so mi n mi = m2 l~l m^ that is

to say mi = w^Y\m\. But m2nm! = ma- Thus mi = m2, which contradicts the

subdirect irreducibility of A. Since gm is the identity congruence, we deduce

from Lemma 2.3.46(1) that mi is maximal. Since m^ lies in the same S-class

as mi we have also that m-2 is .naximal. We have shown A has a maximal

class M such chat {mi, m2} C M.. and the proof is complete. •

Lemma 2.3.47 demands attention be focussed on congruences of implicative

BCS-algebras with a maximal class, and in particular on the role played by

the Clifford-McLean congruence in such algebras.

Lemma 2.3.48. Let A be an implicative BCS-algebra with maximal class M.

For a fixed m G M, m = ma (modE) iff a = 0 for any a 6 A. Therefore if

a ^ O then ma £• M.

Proof. Let A be an implicative BCS-algebra with maximal class M. Let m €

M be fixed and let a e A. If a = 0 then ma = mO = m, so ma = m (modE).

Conversely, if ma = m(modS) then m •< ma, so m(ma) = 0. But then

a = aO =• a(m(mo)) = am = 0 by (2.53) and the maximality of m. Thus

m = ma (iuod S) iff a = 0. Suppose now that 0 / 0 and assume to che

contrary that ma G M. Then ma = m (rnodS) and so a = 0, a contradiction.

The remaining results of this subsection, including the following lemma, are

due jointly to the author and the author's Ph.D. supervisor.
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Lemma 2.3.49. Let A be an implicative BCS-algebra with maximal class M.

Let B be the subalgebra of A with universe B := A — M and let HB denote the

Clifford-McLean congruence on B. Then the relation:

[HJ := Sn U {(m, m) : m G M}

is a congruence relation on A.

Proo/, Let A be an implicative BCS-algebra with maximi 1 class M. Let B

be the subalgebra of A with universe B := A — M and let HB denote the

Clifford-McLean congruence on B. Clearly [HJ is an equivalence relation on A

such that S B Q |HJ C HA> where HA denotes the Clifford-McLean congruence

on A. Suppose ai = &i (mod [HJ) and a2 = b2 (mod [HJ) for oi, &i, 02, 62 € 4̂-

To see [HJ is a congruence on A we consider four cases:

(i) 01, 61 6 B and a2, b2 G B\ (iii) ai = 61 G M and a2? 62 G #;

(ii) ai, bi e B and 02 = 62 £ M\ (iv) 01 = 61 G M and 02 = b2 G M.

Of these cases, Cases (i) and (iii) are non-trivial. For Case (i), suppose a\,b\ G

B and a2, b2 G 5 . Then ai = 61 (modHs) and a2 = 62 (modHs), so a ^ =

6162 (modHB), which implies a\O2 = 6162 (mod [HJ).

For Case (iii), we distinguish two subcases:

(iii)(a) ai = bi E M and a2 = b2 = 0 E B;

(iii)(b) 01 = 61 G M and 0 ^ a2 G 5 , 0 ^ 62 G 5 .

Of these subcases, only Subcase (iii)(b) is non-trivial. So suppose ai = b\ G M

and 0 7̂  02 G B, 0 7̂  62 € B. Then ai = 61 (mod HA) and OQ. = b2 (mod HA)

(since 02 = b2 (modHB)), so 0102 = 6i62(modHA). Because aiO2 # M and

b\b2 0 M (by Lemma 2.3.48) we have that 0102 = hb2 (modHB), which implies

0102 = 6^2 (mod [HJ). •

Lemma ~ 3.50. Let A 6e an implicative BCS-algebra with maximal class M

and let [HJ be the congruence relation on A of Lemma 2.3-49. Then the

relation:

LSJ™:=LSju{<m,n)>(nJm)}
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is a congruence relation on A for any pair of maximal elements {m, n} C M.

Proof. Let A be an implicative BCS-algebra with maximal class M. Let B

be the subalgebra of A with universe B := A — M and let HB denote the

Clifford-McLean congruence on B. Let |_HJ be the congruence relation on A of

Lemma 2.3.49 and let m, n G M. Clearly |_HJ™ is an equivalence relation on A

such that HB Q |_SJ Q [HJ^1 C SA, where HA denotes the Clifford-McLean

congruence on A. Suppose ax = b\ (mod |_HJ™) and a-i = 62 (mod L^C) for

Qi) &b ^2, 62 G A. To see [SJ™ is a congruence on A we consider nine cases:

(vi) a\ — h\ G M and 02, b2 G {m, n};

(vii) ai, 61 G {m, n} and 02, &2 ^ B\

(viii) al5 6i G {m, n} and 02 = 62 £ M;

(ix) ai, bi E {m, n} and e ,̂ 62

(i) oi, h G B and 02, b2 G B\

(ii) ai, b\£ B and 02 = b2 G M;

(iii) a\, b\ E B and 02, 62 G {m, n};

(iv) 01 = ii 6 M and 02, &2 G J5;

(v) a\ = 61 G M and 02 = 62 G M;

Of these cases, Cases (ii), (iii), (v), (vi), (viii) and (ix) are trivial, while

Cases (i) and (iv) are covered by Lemma 2.3.49 (since [HJ C |_SJ™). For

Case (vii), we distinguish two subcases:

(vii)(a) a!, 61 G {m, n} and 02 = b2 = 0 G B\

(vii)(b) au 61 G {m, n] and 0 ^ a^ G B, 0 ^ b2 G 5 .

Of these subcases, only Subcase (vii)(b) is non-trivial. So suppose 01, 61 G

{m, n} and 0 7̂  02 G J5, 0 7̂  b2 G 5 . Then ai = 61 (modHA) (since 01, 61 G M)

and a2 = b2 (modHA) (since a2 = b2(mod'EB)), so 0102 = 6162 (modHA).

Because aia% £ M and b\b2 £ M (by Lemma 2.3.48) we have that

bib2 (modHB), which implies a ^ = 6162 (mod |_SJ), which implies

We are now in a position to complete the characterisation of the sub directly

irreducible implicative BCS-algebras. The proof is via three lemmas.

Lemma 2.3.51. Let A be a subdirectly irreducible implicative BCS-algebra

such that \A\ > 2. Then the relation [SJ of Lemma 2.349 is a congruence

relation on A; moreover [HJ =
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Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that

\A\ > 2. Then the relation [HJ is a congruence relation on A by Lemma 2.3.47

and Lemma 2.3.49. Let {mi, m^} be the pair of maximal elements identified

under every non-trivial congruence on A as per Lemma 2.3.47. Since [HJ does

not identify mi and mq it must be trivial; that is to say [HJ = W A . •

Lemma 2.3.52. Let A be a subdirectly irreducible im,plicative BCS-algebra

such that \A\ > 2. Then M = {mi, m^}, where M is the maximal class of A

and {mi, 7712} is the pair of maximal elements identified under every non-trivial

congruence relation on A.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that

\A\ > 2. By Lemma 2.3.47, A has a maximal class M such that {m^ m2} Q

M, where {mi, 7722} is the pair of elements identified under every non-trivial

congruence on A. Assume to the contrary that there exists n G A such

that n ^ mi,m2 but n G M. Let [HJ™1 := \p\ U {(mi, n), (n, mi)} and

let [Ej™2 := LSJ U {{ma, n), (n, m2)}. By Lemma 2.3.50 both [SJ™1 and

[HJ™2 are congruences on A. Moreover, [HJ™1 = WA U { ( ^ I 5 ft)> {n, mi)} a n d

[SJ™2 =u)Au{{m2,n),{n,m2)} by Lemma 2.3.51. Thus | S C and [HJ^2 are

non-trivial congruences on A whose intersection [Sj ̂  D [HJ ^2 is the identity

congruence O>A- Since this contradicts the subdirect irreducibility of A, the

only maximal elements of A are the elements mi,m2. Thus M = {mi,

Lemma 2.3.53. Let A be a subdirectly irreducible implicative BCS-algebra

such that \A\ > 2. Then /i = WA U {(mi, 7712), (m2, mi)} = H, where fi denotes

the monolith on A.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that

\A\ > 2. Let [HJ^ := [HJ U {(mi, m2), (m2, mi)}. By Lemma 2.3.47 and

Lemma 2.3.50 LHĴ J is a congruence on A and by Lemma 2.3.51 [HJ^J =

^A U {(mi, 7722), (m2, mi)}. Since m\ = mo. (mod fi) we have LHĴ J Q H\ con-

versely fj, C [HJ ̂  because the monolith on A is contained in any non-trivial

congruence on A. Thus fi = [HJ^ =w A U{(mi , m2), {rrh, mi)}.

For the remaining equivalence, let B be the subalgebra of A with universe

B :— A — {mi, m^} and let HB be the Clifford-McLean congruence pn B.
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Let HA denote the Clifford-McLean congruence on A and let 0 := HB U

{{mi, mi), (mi, 7722), (7712, mi), (7712, m^)}. Prom Lemma 2.3.52 we infer 6 =

5A, because maximal elements always lie in their own distinct SA-class. But

clearly 0 = |_SJ U {(mi, 7712), (wi2, mi)} = [HJJ^ = /i. Therefore EA - \i -

U {(mi, m2), (m2) mi)} and the lemma is proved. •

Let A be a subdirectly irreducible implicative BCS-algebra such that |J4| > 2.

Then the underlying poset {AfE; <A /E) of the maximal implicative BCK-

algebra homomorphic image A /S is a Boolean lattice by Lemma 2.3.47 and

Corollary 1.6.22. From Proposition 2.3.31 and Lemma 2.3.53 we deduce that

the underlying poset (A; <) of A is order isomorphic to a Boolean lattice with

its unit element replaced by a two-element clique. This forces the following

result.

Theorem 2.3.54. A non-trivial implicative BCS-algebra A is subdirectly irre-

ducible iff A is isomorphic to Bo or A is isomorphic to B for some non-trivial

Boolean algebra B.

Corollary 2.3.55. An implicative BCS-algebra is subdirectly irreducible iff it

is isomorphic to the canonical implicative BCS-algebra polynomial reduct of a

subdirectly irreducible pseudocomplemented semilattice.

Recall that for a class K of similar algebras

members of K.

denotes the subclass of finite

Corollary 2.3.56. (cf. [70, Corollary 6.2]) The variety of implicative BCS-

algebras is locally finite. Thus iBCS = V^BCSFIN); that is, iBCS is generated

as a variety by its finite members.

Proof. Let A be a finitely generated (say n generated) implicative BCS-algebra.

Then each subdirectly irreducible homomorphic image of A is finitely gener-

ated. By Theorem 2.3.54 these finitely generated subdirectly irreducible homo-

morphic images are all finite; moreover to within isomorphism there are only

finitely many such images that are generated by n or fewer elements. Let V

be the variety generated by this finite set of finite and subdirectly irreducible

algebras. Then A G V and V is locally finite, since any variety generated
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by a finite set of finite algebras is locally finite (by [55, Theorem Il§10.16]).

Thus A is locally finite, and in particular finite. Since every finitely generated

implicative BCS-algebra is finite, iBCS is locally finite as asserted. The second

statement now follows, since any locally finite variety is generated as a variety

by its finite members (see van Alten [229, p. 13]). •

2.3.57. Quasi-Bounded Implicative BCS-Algebras. A quasi-bounded

implicative BCS-algebra is an implicative BCS-algebra that is quasi-bounded.

By the remarks of §2.1.40 and §2.3.1 the class iBCS1 of all quasi-bounded

implicative BCS-algebras is a variety, which coincides with the generic double-

pointed expansion iBCS+ of the variety of implicative BCS-algebras by Lemma

2.2.27. The study of quasi-bounded implicative algebras is prompted by Lemma

2.3.47, which asserts that any subdirectly irreducible implicative BCS-algebra B

with \B\ > 2 has a maximal class, and thus gives rise to a quasi-bounded alge-

bra B1 . Our investigation of quasi-bounded implicative BCS-algebras begins

with the following three results, which summarise some elementary properties

of these algebras.

Lemma 2.3.58. The variety of quasi-bounded implicative BCS-algebras satis-

fies the following identities:

x n x*« o

(a;\y)** « x**\y"

x* fi y* & y* l~l a;*

a; fl (a; U ?/) ?s a;.

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

Moreover, for any quasi-bounded implicative BCS-algebra A 1 and a, b € A,

a < b implies b* < a*.

Proof. Let A1 be a quasi-bounded implicative BCS-algebra and let a, 6 G A.

For (2.72), a n a* = a(a(la)) = aa = 0 by (2.50) and (2.47). For (2.73),

a* = la = l ( l ( la) ) = a*** by (2.56). For (2.74), (ab)** = 1 n (ab) =
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(16)(la) = ( i n a)(l n b) = a**6** by (2.25), (2.61) and (2.57). For (2.75),

a*nb* = {a*)**nb* = ina*n6* = lnfe*na* = {b*)**na* = b*\la* by (2.73),

(2.25), left normality, (2.25) and (2.73). For (2.76), put a := a, P := 1 and

7 := a* n b*. We have:

a n ifii)
(0:7) {af3)

(ctnp){ani)

(anl)(an(a*

(anl)((ana*

(ani)(on6*)

(an 1)0

(am)
a

: n O)
) n 6*)

by

by

by

by

by

by

(2.61)

(2.57)

(2.72)

(2.22)

(2.6)

(2.24)

For the final assertion of the lemma, suppose a < b. We have a* n b* =

(la) n (16) = (la)(l(16)) = (l(l(16)))o = (16)o = (lb)(b(ba)) = 16 = 6*

by (2.59), (2.48), (2.56) and (2.54). Since 6* n a* = a* n 6* (by (2.75)) we

deduce 6* < a* as required. •

Lemma 2.3.59. cf. ([10, Proposition J^.l]) The variety of quasi-bounded

implicative BCS-algebras satisfies the following identities:

x LJ y « y U x

x U (y U z) w (re U y) U z.

(2.77)

(2.78)

Moreover, for any quasi-bounded implicative BCS-algebra A1 and a, 6, c G A,

b < c implies a LJ b < a LJ c.

Proof. Let A1 be a quasi-bounded implicative BCS-algebra and let a, 6, c G A.

For (2.77) we have a U 6 = (a* n 6*)* = (6* n a*)* = 6 U a by (2.75). For (2.78)
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we have:

aU{bUc) = (a*n((6*nc*)*)*)*

= (a* n {b* n c*)**)*

= (a*n(in(6*nc*)))*

--= ((a*ni)n(6*nc*))*

= (a*n6*n c*)*

But,

by (2.25)

by (2.24).

(aub)uc= (((a*nb*)*ync*y

= ((a* n b*)** n c*)*

= ((in(a*n&*))nc*)*

= ((ina*)n(6*nc*))*

= ((a*)** n (6* n c*)y

= (a* n 6* n c*y

so we conclude a U (6 U c) = (aU6)LJcas required.

by (2.25)

by (2.25)

by (2.73),

For the final assertion of the lemma, suppose b < c. Then c* < b* by

Lemma 2.3.58, so a* n c* < a* D b* by Proposition 2.3.25(4), so (a* n b*)* <

(a* n c*)* by Lemma 2.3.58; that is to say a U b < a U c. •

Proposition 2.3.60. For any quasi-bounded implicative BCS-algebra A1, the

following assertions hold:

1. The polynomial reduct (A] U, 1) is a commutative semigroup with identity

whose operation U is isotone with respect to the underlying natural band

partial order of A1;

2. For any a,b G A, ( a ) A i V I ( A l ) (6)A i = (a U 6>Ai.

Proof Item (1) follows as an immediate consequence of Lemma 2.3.59, (2.27)

and (2.28). For Item (2), it is sufficient to show xUy is a join generator term for

iBCS1. Let A1 be a quasi-bounded implicative BCS-algebra and let a, b 6 A.
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Put r{x,y,z) := (xr\z)\(y\x). Then r A l (a , 6,0) = (anO)(6a) = 0(6o) = 0

by (2.21) and (2.4) and rA\a, b,a U 6) = (a n (a U b)){ba) = a{ba) = a

by (2.76) and (2.50). Similarly iA l(a, &,0) = 0 and tA\a,b,a U 6) = 6 for

i(z, y, z) := (y n 2)\(r\y). Since 0 U 0 = 0** = 1 n 0 = 0 by (2.26) and (2.25),

we have that U is a join generator term for iBCS1 by Proposition 1.7.13. •

Example 2.3.61. (c/. [10, Example 4.4]) Let A := (A; A,*,0) be a pseudo-

complemented semilattice with greatest element 1 := 0*. For any a,b e A, let

a\b := a A b* as per Example 2.3.12. The following assertions hold:

1. The polynomial reduct (A] \ ,0,1) is a quasi-bounded implicative BCS-

algebra;

2. For any a, b € A,

an b = a A 6**,

aU&=:(a* A 6*)*.

Proof. For (1), by Example 2.3.12 it is sufficient to show a ^ 1 for any a € A.

Let a £ A. We have a\l = a A 1* = a A 0** = a A 0 = 0 by (1.11), so a ^ 1

and (A; \ , 0,1) is quasi-bounded.

For (2) let a, b G A. We have a n 6 = a\(a\b) = a A (a A b*)* = a A 6**

by (1.9). Also (a*)<*\.o,i> = l \o = 1 A (a*)A = (a*)A. Hence aU 6 =

(a* n b*)* = (a* A 6***)* = (a* A b*)* by (2.73). •

Example 2.3.61 and the theory of pseudocomplemented semilattices motivate

the following definitions. For any quasi-bounded implicative BCS-algebra A1

let the skeleton of A1 be:

S(A X ) : = {a*:ae A}.

Also, define the dense set of A1 to be:

:= {a:a* = 0}.
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Call A1 dense if D(A1) = A — {0}. The following two technical lemmas collect

together some useful properties of the skeleton S(A1) and dense set D(A1).

L e m m a 2 . 3 . 6 2 . For any quasi-bounded implicative BCS-algcbraA1 and o , 6 G

A , the following assertions hold:

**;

1. 0 G S(AJ) and 1 G

2. a G StA1) iff a = a*;

3. a,b £ S(A1) implies ab G S(A1).

Proof. Let A1 be a quasi-bounded implicative BCS-algebra and let a,b £ A.

For (1) just note 0 = 11 = 1* G S(AX) by (2.3) and 1 = 10 = 0* G S(AX)

by (2.6). For (2), suppose a G S(A1). Then a = c* for some c G A, and

a** = (c*)** = c* = a by (2.73). Conversely, suppose a = a**. Then a — c*

with c := o* so a G S(A1). For (3) suppose a,b G S(A1). Then a = a** and

b = 6** by (2) and so ab = a**6** = (a6)** by (2.74); from (2) we conclude

ab G S(A1) as desired. •

Lemma 2.3.63. For any quasi-bounded implicative BCS-algebra A1 anda,b G

A, the following assertions hold:

1. 1 G D(A1);

2. a e D(AX) iffc<a for any c G A. Thus A1 is dense iff (A; \ , 0) is

flat;

3. a* = b*iffa = 6(modH).

Proof. Let A1 be a quasi-bounded implicative BCS-algebra and let a,b G A.

For (1), just note 1* = 11 = 0 by (2.3). For (2), suppose a G D(AX) and

c G A. Since a* = 0, we have ca = (ca)0 = (ca)a* = (ca)(la) = (cl)a = 0a

(as c ^ 1) = 0 by (2.49). Thus c •< a. Conversely, a •< a for any c e A implies

1 •< a in particular. Thus la = 0 and a* = 0. Hence a G D(A1). The second

assertion follows immediately.

For (3), suppose a = 6(modH). Then ab = 0 = 6a, whence a* = la =

(la)0 = (lo)(6o) = (16)(a6) = (16)0 = 16 = 6* by (2.6), (2.55) and (2.6).
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Conversely, suppose a* = b*. Then ab = (ab)(la) ~ (ab)a* = (ab)b* —

(ab)(lb) = (al)b = 06 (as a * 1) = 0 by (2.52), (2.49) and (2.6). Likewise

ba = {ba){lb) = {ba)b* = {ba)a* = (ba){U) = (61)a = Oa (as b ^ 1) = 0

by (2.52), (2.49) and (2.6). Thus a = b (modS). •

For any quasi-bounded implicative BCS-algebra A1, the following two the-

orems show the skeleton S(AX) gives an internal description of the maximal

bounded implicative BCK-algebra homomorphic image A 1 / ^ , in the sense that

S(A1) has the structure of a Boolean lattice order isomorphic to the underlying

Boolean lattice of A 1 / 5 (recall Corollary 1.6.22).

Theorem 2.3.64. Let A1 be a quasi-bounded implicative BCS-algebra with

skeleton S(A1). Then S(A*) is a subuniverse of A1. Thus the underlying

natural band partial ordering of A1 partially orders S(A1) and makes S(AX)

into a Boolean lattice. For any a, b G S(A1), the meet and join in S(A1) are

respectively given by:

a A b = a fl b

Proof. Let A 1 be a quasi-bounded implicative BCS-algebra with skeleton S(A1).

By Lemma 2.3.62(1), {0,1} C S(A1), while a, 6 G S(AX) implies ab e S(AX)

by Lemma 2.3.62(3). Thus S(AX) is a subuniverse of A 1 and so inherits

the underlying natural band partial ordering of A1 . Let a, b € S (A1). By

Lemma 2.3.62(2) a = a** and 6 = 6**, whence:

o n b = a** n 6**

(l n o) n

(l n 6) n

6** n <r
6n a,

(1

i—
i

n6)
na)

by

by

by

(2.25)

left normality

(2.25)

so the quasi-bounded subalgebra (S(AX); \ , 0 , l ) is a bounded implicative

BCK-algebra. From Corollary 1.6.22 we have that (S(A2); <) is a Boolean
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lattice, where a A b = a n b and o V 6 = (o*n b*)* for any a,b e S(A1). •

Let A1 be a quasi-bounded implicative BCS-algebra with skeleton S(A1). In

the statement of the following theorem and in the sequel, let S(A1) denote the

bounded implicative BCK-algebra ^ ( A 1 ) ; \ , 0, l ) .

Theorem 2.3.65. (cf. [10, Proposition 4-4]) Let A 1 be a quasi-bounded

implicative BCS-algebra. Then S(A1) is isomorphic to the maximal bounded

implicative BCK-algebra homomorphic image Ax/H of A1 under the map a i->

[a]s

Proof. Let A1 be a quasi-bounded implicative BCS-algebra. Suppose b £ A/E.

Then I) — [a]s for some a e A. Now a** € S(A1) and a** = a (mod 5) by

Lemma 2.2.13, so [a*% = [a]2 = b. Thus h is onto. Let a, b € S(A1)

and suppose a = 6(modH). From Lemma 2.3.63(3) we have that a* — b*.

Therefore a** = b** and a = a** = &** = b since a = a** and b = b**

by Lemma 2.3.62(2). Thus h is one-to-one, and hence is a bijection between

and A/E.

Let o, b e S(A)1. By Lemma 2.3.62(2) we have that a = a** and b - b*\ so

/i(a\s<Al)6) = h(a\Alb) (by Theorem 2.3.64) = h(a**\Alb**) = [a**\Al&**]H =

[<»M]s\Al/s[6M]s = [ ak \ A l / E Ms = h{a)\Al'Eh(b). Moreover, h(0s^) =

h{QAl) = [0Al]H = 0Al/H and ^(l s(A l)) = h{lAl) = [ l A l ] E = l A l /H . Thus h

is a map from SfA1) into A x /S preserving \ s ( A l ) , 0s<Al) and l s(A l) ; that is

to say h is an isomorphism. •

As an application of Theorem 2.3.64 and Theorem 2.3.65 in a very natural

setting, we give below a new and conceptually simple proof of the Glivenko-

Frink theorem for pseudocomplemented semilattices.

Theorem 2.3.66 (Glivenko-Frink Theorem). Let A be a pseudocomple-

mented semilattice with canonical quasi-bounded implicative BCS-algebra poly-

nomial reduct (A; \ ,0,1). Then S(A) is a subuniverse of A and so inherits the

underlying semilattice partial ordering of A. Moreover S(A) = S((A; \ , 0,1))

and the semilattice partial ordering on S(A) and the natural band partial order-

ing on S((J4; \ , 0,1)) coincide on S(A). 77ms the semilattice partial ordering
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on S(A) makes S(A) into a Boolean lattice, and this Boolean lattice is order

isomorphic to the underlying poset of the maximal bounded implicative BCK-

algebra homomorphic image of (A; \ ,0,1). For any a, 6 G S(A) we have

a A b G S(A), and the join in S(A) is described by:

a V 6 = (a* A &*)*•

Proof. Let A and (A; \ , 0,1) be as in the statement of the theorem. Because

of Theorem 2.3.64 and Theorem 2.3.65, to prove the theorem it is sufficient to

show:

(i) S(A) is a subuniverse of A;

(ii) S(A) = S((i4; \ , 0 , l » ;

(iii) The semilattice partial ordering on S(A) and the natural band partial

ordering on S((A; \ , 0,1)) coincide on S(A).

For (i), by the remarks of §1.3.5 we have both 0 G S(A) and a, b G S(A)

implies a A b G S(A). Since S(A) is closed under * by definition we have that

S(A) is a subuniverse of A (this observation is also implicit in the original

statement of the Glivenko-Frink theorem (Theorem 1.3.10)).

For (ii) just note (a*)^ ' 0 ' 1) = (a*)A for any a G A by Example 2.3.61(2),

and hence that S(A) = {(a*)A : a <E A} = {(a*)<A'>\>°>l>} = S((A\ \ , 0 , l » .

For (iii), let a, b G S(A). We have a < A 6 i f f a A 6 = a = 6 A a i f f

a A &** = a = b** A a (since 6** = b by Lemma 2.3.62(2)) iftanb = a = bna

iff a ^ (MAi) ^ s o the semilattice partial ordering on S(A) and the natural

band partial ordering on S((A; \ , 0,1)) coincide on S(A). •

Remark 2.3.67. The Glivenko-Frink theorem for pseudocomplemented semi-

lattices has been established by at least three methods different from the above:

see the remark prior to [101, Theorem 1§6.4]. The present proof is direct and

would seem in principle to be the most elementary, simpler even than the short

proof of Katrinak [132]. •

Let A be an implicative BCS-algebra. A multiplier on A is a function / :

A -> A such that f(a n b) = f(a) n b for all a, b G A. The set of all mul-
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tipliers is denoted M(A). Multiplier extensions of implicative BCK-algebras

have been studied by Cornish [66]; what follows here is a version of a construc-

tion due to Bignall [17, pp. 49-51]. For any functions f,g:A-*A, define

f\g : A —> A and / fl g : A -> A pointwise by (f\g){a) := f(a)\g(a) and

(/ H 9){a) : = / ( a ) f"1 #(a) f° r all a G J4 respectively. Now f\g G M(A) since

(f\g)(a fl b) = / ( a n b)\g(a n 6) = (/(a) n b)\(g(a) n 6) = (/(a)\5(a)) n 6

(by (2.62)) = {f\g){a) fl 6. Also / n # G M(A), because (/ n g)(a fl 6) =

/(a n 6) n p(a n 6) = / (a) n 6 n #(a) n b = / (a) n p(a) n 6 (by left nor-

mality) = (/ n g)(a) n 6. Define 0 G M(A) by 0(a) := 0 and 1 G M(A) by

l(o) := a for all a G A. Put M(A) := (M(A); \ , 0 , l ) . Because the oper-

ations on M(A) are defined pointwise, the reduct (M(A); \ ,0) of M(A) is

an implicative BCS-algebra. Moreover, because (/ fl g){a) = / (a) (1 g(a) =

f(a)\(f(a)\g(a)) = f(a)\{(f\g)(a)) = (f\(f\g))(a), f n g is the implicative
BCS meet in (M(A); \ ,0 ) . Since (/ n l)(o) = f(a) n l(a) = / (a) n a =

/(a fl a) = / (a) , from Lemma 2.1.42(1) we deduce / •< 1 for any / G M(A);

that is to say M(A) is a quasi-bounded implicative BCS-algebra.

Let jia : A -> A denote the map defined by //a(&) := a fl 6. Since fia(b fl c) =

a fl (6 fl c) = (a fl 6) fl c = //a(6) fl c for all 6, c G i4 we have /z(o) G M(A) for

each a G A. Define \i: A -> M(A) by /z(a) := /i0. Then ^ is a homomorphism,

since \i{a\H)(c) = /i(a\A6)(c) = (a\Ab) n c = (a n c)\A(& n c) (by (2.62))

= ^ a ( c ) \ M ( A ) M6(c) and M0A)(c) = ^ 0 A ( C ) = 0A n c = 0A = 0(c) = 0M<A).

Moreover, fj, is one-to-one, since //(a) = /x(6) implies Ata(c) = /^6(c) for all

c €. A, which implies in particular that ^a(o) = /i6(a) and Ha{b) = ^^{b).

B u t t h e n a — b f l a a n d b = af] b, s o b = a , r \ b = b n a n b = b n b n a

(by left normality) = b fl a = a. Hence /z is an isomorphism from A onto the

subalgebra //[A] of M(A), where /z[A] denotes the image of A under /i.

Lemma 2.3.68. Every implicative BCS-algebra A embeds (as an implicative

BCS-algebra) into its canonical quasi-bounded implicative BCS-algebra multi-

plier extension M(A).

By a (\,O)-subreduct of a pseudocomplemented semilattice A := (A; A, *,0)

we mean a subalgebra of the canonical implicative BCS-algebra polynomial

reduct {A] \ , 0) of A. We conclude this subsection with the following problem,
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suggested by the preceding lemma and Theorem 1.6.20.

Problem 2.3.69. Is an algebra (A] \ , 0) of type (2,0) an implicative BCS-

algebra iff it is a (\, O)-subreduct of a pseudocomplemented semilattice? •

2.3.70. The Lattice of Varieties of Implicative BCS- Algebras. Prob-
lem 2.3.69 and the results of the preceding subsections suggest that the the-

ory of implicative BCS-algebras may bear the same relationship to the the-

ory of pseudocomplemented semilattices as the theory of implicative BCK-

algebras bears to the theory of Boolean algebras. Because the canonical im-

plicative BCS-algebra polynomial reduct of the 3-element chain 3 (considered

as a pseudocomplemented semilattice) is flat, Theorem 1.3.8 and the preced-

ing remarks call for a closer examination of the role played by the algebra

B2 := ({0,1,2}; \ , 0) of Example 2.1.5 in the variety of implicative BCS-

algebras.

Lemma 2.3.71. Let B*, k 6 w, be the k-th direct power 0/B2; that is, the

direct product of k copies 0/B2. Let:

M := {(ci , . . . , ck) : a ^ 0; i =

be the maximal class o/B*' n.d let:

Mi := {c 6 M :TTI(C) = 1} and M2 := {c € M : TTI(C) = 2},

where TTI denotes the first projection map. Let B be the subalgebra of B 2 with

universe B := B$ — M and let S B denote the Clifford-McLean congruence

on B. Then the relation:

6 := EB U (Mi x Mi) U (M2 x M2)

is a congruence on Brj.

Proof Let B*, M, Mi, M2, B, S B and 0 be as in the statement of the lemma.

Since {5, Mi, M2} partitions 5 | we infer G is an equivalence relation on 13$•

Moreover, clearly S B Q 0 C HB* , where SB* denotes the Clifford-McLean con-

7.
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gruence on B*. Suppose ax = 61 (mod0) and a2 = b2 (mod0) for ai, 61, 02, 62

A. To see 0 is a congruence we consider nine cases:

(i) ai, 61 G B and 02, b2 G B\

(ii) ai, 61 G B and 02, &2 € Mi;

(iii) a\, bi G B and a2, 62 G M2;

(iv) ai, 61 G Mi and 02, 62 € B\

(vi) ai, 61 G Mi and 02, 62 € M2;

(vii) ai, 61 G M2 and 02, 62 G B\

(viii) 01, 61 G Mi and 02» &2 £ Mi;

(ix) ai, 61 G M2 and 02, &2 € M2.

(v) ai, 61 G Mi and a2, 62 G Mi;

Of these cases, Cases (i), (iv) and (vii) are non-trivial. For Case (i), suppose

a\, 61 G B and 02, 62 G £?. Then ai = 61 (modHB) and 02 = b2 (modHB), so

aia2 = 6162 (modSB), which implies axa2 = 6162 (mod©).

Cases (iv) and (vii) are analogous, so we show only Case (iv). For Cese (iv),

we distinguish two subcases:

(iv)(a) ai, 61 G Mi and aq. = 62 = 0 G B;

(iv)(b) au bi e Mi dind 0 ^ 02 e B, 0 ^ b2 e B.

Of these subcases, only Subcase (iv)(b) is non-trivial. So suppose a\, 61 G Mi

and 0^O2eB,0^b2eB. Then ai = 6i(mod5Bfc) (since 01,61 G M)

and a2 = b2(modEBk) (since a% = 62(modSB)), so 0102 = 6162 (mod HBt).

Because a\Oa ^ M and 6162 ^ M (by Lemma 2.3.48) we have that aiO2 =

b\b2 (modSe), which implies aia2 = 6162 (mod0). •

Lemma 2.3.72. Let B2, k G u, be the k-th direct power of B2 and let 0 be

the congruence relation on 32 of Lemma 2.3.11. Then the quotient algebra

B*/© is isomorphic to B&, the finite and subdirectly irreducible implicative

BCS-algebra of cardinality 2k + 1.

Proof. Let Bi-; and © be an in the statement of the lemma. To prove the

lemma it is sufficient to show:

(i) Bj/© is subdirectly irreducible;

(ii) |fl*/0| = 2* + 1.

For (i), for ease of notation let B := B2/Q and let E B denote the Clifford-

McLean congruence on B. Now S B = SBk/0 = HB*/0 (where HBjy0 and

5Bi denote the Clifford-McLean congruence on Brj/0 and B* respectively), so
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{{Mi, M2), (M2, Mi)}, where Mi and M2 are as in Lemma 2.3.71.

Therefore to see B is subdirectly irreducible (with monolith HB) it is sufficient

to show Mj =0 M2 for any 9 G ConB such that 9 ^ LJB- SO let 6 G ConB be

such that 9 ^ UJB- There are two cases to consider:

(1)

(2)

= {0B};};
^ { O B } .

For Case (1), suppose [0B]e = {0B}. Then 9CEB= LJBU{(MU M2), (M2, M I ) }

by Theorem 2.1.14(4). Assume to the contrary that Mi ^ M2. Then 9

which is a contradiction. Thus Mi =9 M2.

For Case (2), suppose [0% ^ {0B}. Then there exists 0B ^ A G B (where

B := Bk/Q) such that 0B =0 A. We consider two subcases:

For Subcase (2)(a), suppose A £ {Mi,M2}. From Mi = M2(modHB) and

Lemma 2.1.12(1) we have MX\BA = M2\
BA (modHB). But Mi\BA 0 M and

Af2\
Bi4 0 M by Lemma 2.3.48, where M is the maximal class of B, which im-

plies by the description of the Clifford-McLean congruence HB that Mi\B^4 =

M2\BA But then Mi = M ^ O 3 =e Mi\BA = M2\
BA =e M2 \B0B = M2)

whence Mi =g M2.

For Subcase (2)(b), suppose A G {Mi,M2}. Let C G {Mi,M2} be such that

C ^ A. From C = A (modHB) we have C = C\B0B =9 C\BA = 0B =0 A as

required. This completes the proof that B is subdirectly irreducible.

For (ii), just note \B\ = |52*/6| = |52
fc/HB*|-l+2. But B^/HB* ^ (B2/HB2)A,

so |£2*/SBfc| = 2k, which implies \B\ = \Bj[/e\ = 2k - 1 + 2 = 2k + 1. Thus B

has cardinality 2k + 1 as asserted. n

Theorem 2.3.73. The 3-element flat implicative BCS-algebra B2 generates

the class of implicative BCS-algebras (as a variety). In symbols, iBCS =

Proof. Since B 2 G iBCS we have V(B2) C iBCS. Conversely, by Theo-

rem 2.3.54 we have that any finite and subdirectly irreducible implicative
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BCS-algebra is isomorphic either to Bo or to some B n , n G 10. Now B 2 /S

is isomorphic to Bo, so Bo G H(B2). For any k > 1, let B 2 be the k-th di-

rect power of B2 and let 0 be the relation defined on B% of Lemma 2.3.71.

By Lemma 2.3.71 and Lemma 2.3.72 we have that 0 is a congruence relation

on B2 such that B2/Q is isomorphic to B*, so B* G HP(B2). Suppose now

that A is a finite implicative BCS-algebra. Then A is isomorphic to a sub-

direct product of finite and subdirectly irreducible implicative BCS-algebras,

and so A G IPsHPH(B2). But IPsHPH < IPsHHP (by [160, Lemma 4.92])

= IPsHP < HPsHP < HHPsP (by [160, Lemma 4.92]) = HPsP = HPs

(by [160, Lemma 4.92]) < HSP, so A G V(B2). Thus V(B2) contains every

finite implicative BCS-algebra; that is to say JBCSFIN Q V(B2). But this im-

plies V(iBCSFlN) C V(B2), which implies iBCS C V(B2) by Corollary 2.3.56.

Corollary 2.3.74. The following assertions hold in the variety of implicative

BCS-algebras:

1. The equational theory of the variety of implicative BCS-algebras is de-

cidable;

2. The first-order theory of the variety of implicative BCS-algebras is unde-

cidable.

Proof. Item (1) follows from local finiteness (Corollary 2.3.56) and a well

known result due to Harrop [107] (see also Blok and Ferreirim [27, Lemma 3.13])

to the effect that a variety V of algebras over a finite language has a decidable

equational theory if V is finitely axiomatisable and is generated (as a vari-

ety) by its finite members. Item (2) follows immediately from the remarks of

Example 2.1.5 and Theorem 2.3.73. •

Let V be a variety. Denote by AF(V) the 'lattice of varieties' of V, namely

the dual of the lattice of corresponding equational theories (see for example

Gratzer [99, p. 172]). For pseudocomplemented semilattices, it follows easily

from the fact that the 3-element chain 3 (considered as a pseudocomplemented

semilattice) generates PCSL as a variety (recall Theorem 1.3.8) that AV(PCSL)

is a 3-element chain, whose unique atom {A G PCSL : A \= x** « x] is
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termwise definitionally equivalent to the variety of Boolean algebras (recall

Theorem 1.3.9). This remark, in conjunction with Theorem 2.3.73, calls for a

study of Av(iBCS), the lattice of varieties of implicative BCS-algebras. But

first, concerning the lattice of varieties of pre-BCK-algebras Ay(PBCK), recall

iBCK is the unique atom of AK(PBCK) by the remarks of Example 2.1.4.

Theorem 2.3.75. AK(iBCS) is a three-element chain. The only non-trivial

subvariety of iBCS is iBCK, the unique atom of AV(PBCK). Thus iBCS is a

cover o/iBCK in Ay(PBCK) (in fact, is the only cover o/iBCK in Ay(PBCK)

that is not a variety of BCK-algebras).

Proof. Let V C iBCS. If V C BCK then V = iBCK by Proposition 2.3.7(2).

If V % BCK then Q(B2) C V by Proposition 2.2.5, so iBCS = V(B2) C V by

Theorem 2.3.73. Thus iBCS is a cover of iBCK in AV(PBCK) (in fact, is the

only cover of iBCK in Ay(PBCK) that is not a variety of BCK-algebras). •

By Example 2.1.4 iBCK is also the unique atom ofA^(PBCK), the lattice

of quasivarieties of pre-BCK-algebras. However, Theorem 2.3.75 cannot be

generalised to the assertion that iBCS covers iBCK in A^(PBCK), in view of

the following result of Blok and Raftery [38]. The proof given here is new.

Proposition 2.3.76. [38, Proposition 6] The quasivariety Q(B2) is not a

variety. Thus iBCS is not a cover o/iBCK in A^(PBCK).

Proof. Assume to the contrary that Q(B2) is a variety. By Theorem 2.3.73

and hypothesis we have iBCS = V(B2) = Q(B2) = ISP(B2), which implies

iBCSsi C IS(B2), a contradiction. The remaining assertion now follows. •

Blok and Raftery first proved Proposition 2.3.76 by showing that the algebra

B2 x Ci has a homomorphic image isomorphic to B2 , and hence that H(B2 x

Ci) %. IPs(B2,Ci). Thus they do not exhibit a quasi-identity satisfied by

Q(B2) but not by iBCS. We also have been unable to exhibit such a quasi-

identity.

Problem 2.3.77. Exhibit a quasi-identity satisfied by Q(B2) but not by iBCS.
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For BCK-algebras, the partially ordered 'set' PK(BCK) of all subvarieties

of BCK has been investigated by several authors, including Wroriski [239],

Wroriski and Kabzinski [243], Blok and Raftery [38] and Kowalski [142] (see

also Van Alten [229, Chapter 6] and van Alten and Raftery [231]), and in par-

ticular it is known that PK(BCK) := (PK(BCK); C) is a (distributive) lattice

with unique atom iBCK [38, Theorem 11]. Let L3 := ({0,1,2}; - ,0) be the

BCK-algebra with 0 < 1 < 2 and 2 ̂ - 1 := 1 and let H3 := ({0,1,2}; - , 0) be

the BCK-algebra with 0 < 1 < 2 and 2 - 1 := 2. The algebras L3 and H3 are

dually isomorphic to the implicational reducts of the 3-element Lukasiewicz al-

gebra and the 3-element linearly ordered Heyting algebra, respectively, and by

Jonsson's lemma V(L3) and V(H3) are covers of iBCK in the lattice Pv(BCK).

By results due to Kowalski [142] the converse also holds, and so V(L3), V(H3)

are the only covers of iBCK in PK(BCK).

Theorem 2.3.78. The varieties V(L3), V(H3) and iBCS are the only covers

o/iBCK inkv{PBCK).

Proof. Let V be a cover of iBCK in Ay(PBCK). By Proposition 2.2.5 either

V € PK(BCK) or Q(B2) C V. If Q(B2) C V then V is iBCS by Theorem 2.3.75.

So suppose V 6 Py(iBCK). Since PV(BCK) is a sublattice of A7(PBCK)

(by [38, Theorem 11]) we must have that V is a cover of iBCK in Py(BCK).

Thus V is either V(L3) or V(H3). •



Chapter 3

Applications to Universal

Algebra and Algebraic Logic

In this chapter we consider applications of the theory of pre-BCK-algebras to

universal algebra and algebraic logic. In particular, we study three classes of al-

gebras arising naturally in both universal algebra and algebraic logic, namely:

subtractive varieties with EDPI; binary (and dual binary) discriminator va-

rieties; and (pointed ternary discriminator varieties qua) pre-BCK-algebras

structurally enriched with band operations. Our motivation for studying sub-

tractive varieties with EDPI stems from Theorem 2.2.20 and the fundamental

role played by MINI-algebras in such varieties (recall the remarks of §1.1.1).

Our study of binary discriminator varieties is stimulated by Example 2.3.11

and Example 2.3.13; recall these results collectively assert that implicative

BCS-algebras arise naturally as polynomial reducts of members of binary and

pointed ternary discriminator varieties. Our investigation of pre-BCK-algebras

structurally enriched with band operations is prompted by Theorem 1.4.39 and

Corollary 1.4.40, which show that, in a sense, the study of pointed ternary dis-

criminator varieties reduces to the study of skew Boolean fl-algebras.

In investigating each of the three classes described above, our main aim is

to establish the role played (if any), at a structural level, by the theory of

pre-BCK-algebras. In particular, our object (with occasional diversions) is to

ascertain the extent to which the ideal theory and/or congruence structure of
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subtractive varieties with EDPI, binary discriminator varieties, and pointed

ternary discriminator varieties, may be reduced to a study of the ideal theory

and/or congruence structure of the varieties of MINI-algebras and implica-

tive BCS-algebras (possibly structurally enriched with additional operations)

respectively.

3.1 Subtractive Varieties with EDPI

By the remarks of Example 1.7.11, the variety of MINI-algebras is a natural

generalisation of the variety of Hilbert algebras to the subtractive but not

point-regular case, and hence is a natural example of a subtractive variety

with EDPI. Recently Agliano and Ursini have shown [10, Corollary 3.8] that

the variety of MINI-algebras is in fact a paradigm for subtractive varieties with

EDPI in the sense that a variety V is subtractive with EDPI iff every member

of V has a MINI-algebra polynomial reduct satisfying a certain weak 'ideal

compatibility property'. Insofar as the results of §2.2.16 show that the variety

of positive implicative pre-BCK-algebras is both a natural generalisation of

the variety of positive implicative BCK-algebras to the subtractive but not

point regular case and a natural example of a subtractive variety with EDPI,

the central role played by MINI-algebras in the theory of subtractive varieties

with EDPI calls for a study of the role played by positive implicative pre-BCK-

algebras in the theory of subtractive varieties with EDPI.

In §3.1.1 positive implicative pre-BCK-algebras, MINI-algebras and subtrac-

tive varieties with EDPI are studied. It is shown that the variety of positive

implicative pre-BCK-algebras is termwise definitionally equivalent to (in fact,

is dually isomorphic to) Agliano and Ursini's variety of MINI-algebras. We

show that a variety V is subtractive with EDPI iff every algebra A G V has a

MINI-algebra polynomial reduct whose ideals coincide with those of A, sharp-

ening the result of Agliano and Ursini alluded to above. A representation

theorem for weakly congruence orderable subtractive varieties with EDPI is

also proved: for a suitable notion of weakly compatible operation, a variety

is weakly congruence orderable and subtractive with EDPI iff it is termwise
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definitionally equivalent to a variety of MINI-algebras with weakly compatible

operations.

Subtractive WBSO varieties are studied in §3.1.22. Such varieties arise natu-

rally in algebraic logic and are subtractive (by definition) and have EDPI (since

they have EDPC). The subtractive WBSO varieties are characterised: they are

precisely the subtractive, strongly point regular varieties with EDPC. We also

show that any such variety V is distinguished as a WBSO variety by the pres-

ence of a weak relative pseudocomplementation —> such that the polynomial

reduct (A; -»A , 1) is a MINI-algebra for any A e V . An interesting example

of a subtractive WBSO variety is the variety N of Nelson algebras, which arises

in the first instance from the algebraisation of constructive logic with strong

negation. It is shown that N has a commutative (but not regular) TD term

and is congruence permutable. An explicit QD term for N is also given. In

consequence we infer that, for any variety V of Nelson algebras, the class of

implicative subreducts of V is a subvariety of the variety of MINI-algebras.

The results answer a question of Blok and Pigozzi.

3.1.1. Positive Implicative Pre-BCK Algebras and MINI-Algebras.
Recall from Example 1.7.11 that a MINI-algebra is an algebra (A] —>, 1) of

type (2,0) satisfying the following identities:

x -> 1 « 1

1 —> x « x

(x - » (y ->• z)) - » ((a; ->• y) (x ->• zj) pa 1

while a Hilbert algebra is a MINI-algebra satisfying the quasi-identity:

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

By definition, the class MINI of ail MINI-algebras is a variety. By the remarks

of §1.6.13, the quasivariety HI of all Hilbert algebras is also a variety, which

is termwise definitionally equivalent to (in fact, is dually isomorphic to) the
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variety of positive implicative BCK-algebras.

By the preceding remarks, Agliano and Ursini's variety of MINI-algebras is

a natural generalisation of the variety of Hilbert algebras to the subtractive

but not point regular case, in the sense that HI is precisely the subquasiva-

riety of MINI axiomatised by the quasi-identity (1.49). On the other hand,

Theorem 2.2.17 shows the variety of positive implicative pre-BCK-algebras is

a natural generalisation of the variety of positive implicative BCK-algebras to

the subtractive but not point regular case, in the sense that pPBCK is precisely

the subquasivariety of pBCK axiomatised by the quasi-identity (2.5). Hence

pPBCK stands in relation to pBCK as MINI stands in relation to HI. Because

the varieties HI and pBCK are dually isomorphic, this remark suggests that the

varieties MINI and pPBCK may themselves be dually isomorphic.

To clarify the relationship between the variety of positive implicative pre-

BCK-algebras and the variety of MINI-algebras, let the class MINI0 of dual

MINI-algebras be the variety of algebras with language (— , 0) of type (2,0)

axiomatised by the following identities:

Q _!_ <£ ~ Q

x — 0 & x

I I 1* 1 / 1 I V » / | I I / tY* iy I O i l f^^^ i l

\ \ ** / \ & / / \V / *^ /

(a; - y) — re « 0.

(3.1)

(3.2)

(3-3)

(3.4)

Let T£(X) denote the term algebra of type C over X, where £ is the lan-

guage of MINI-algebras. Also, let T £ D (X) denote the term algebra of type CD

over X, where CP is the language of dual MINI-algebras. Consider the maps

£ : T£(X) ->• T £ D ( X ) and 77: T£s(X) -> T£(X) defined respectively by:

6(1):= 0

:= x

« P

xex
P, Q € T£(X)
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and:

77(0) := 1

r](x) := x

r)(r-s) := 77(5) -> r]{r)

xex

(The maps f and 77 so defined should not be confused with the similar maps

of §2.1.33 in the prequel.) Because of the axiomatisation of MINI by (1.45)-

(1.48) and the axiomatisation of MINI1' by (3.1)-(3.4), the proof of the follow-

ing lemma is trivial and so is omitted.

Lemma 3.1.2. For p, q € T£(X) and r,s G T ^ X ) the following assertions

hold:

1. If MINI f= p « q then M\H\D (= £(p) « £(q);

2. If W\\H\D \=r&s then MINI (= r){r) « 77(5).

Moreover, 77 o f = CJTC(X) and £07] = WT £ 0 (X) .

By the preceding lemma, the variety of MINI-algebras is termwise definition-

ally equivalent to (in fact, is dually isomorphic to) the variety of dual MINI-

algebras. When coupled with the following proposition, this result yields The-

orem 3.1.4 below, which confirms that the varieties of positive implicative

pre-BCK-algebras and MINI-algebras are indeed dually isomorphic.

Proposition 3.1.3. An algebra (A; — , 0) of type (2,0) is a dual MINI-algebra

iff it is a positive implicative pre-RCK-algebra. Thus the variety of dual MINI-

algebras coincides with the variety of positive implicative pre-BCK-algebras.

Proof. (=>) Let A be a dual MINI-algebra and let a, 6 € A. Throughout

the proof we denote — A by juxtaposition for ease of notation. By definition

we have that A f= (2.4), (2.6), so to see A is a pre-BCK-algebra we have

only to show (by Proposition 2.1.11) that A |= (2.7). (2.2). For (2.7), put

ot := (ab)(cb),/3 := ac and 7 := (ac)b. We have:

0 = ((a/ by (3.3)
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= ((««(7«)((((a6)(c6))((ac)6))/3)

= (fa

= (((a6)(c6))(ac))(((ac)6)(oc)).

Put a := ac and 0 := b. We have:

(((a6)(c6))(oc))(((aC)6)(ac))

= (((a6)(c6))(ac))((a/?)a)

= (((o6)(c6))(ac))0

= ((a&)(c6))(ac)

For (2.2), put a := a(ab),fi := 6 and 7 := b(ab). We have:

0 =

= ((«/3)(7/?))(((fl(fl6))(6(flft)))0)

= {((a(ab))b)((b(ab))b)) {((a(ab))(b(ab)))0).

Put a := 06 and B := 0. We have:

by (3.3)

by (3.1)

by (3.2)

by (3.4)

by (3.2).

by (2.7)

by (3.2)

= {((a(ab))b)((b(ab))b)) {((a(ab))(b(ab)))((a(3)a))

= (((a(a6))6)((6(a6))6))(((a(O6))(6(a6)))(((a6)0)(a6))) by (3.4)

= (((a(a6))6)((6(a6))6))(((a(o6))(6(a6)))((a6)(a6))) by (3.2).

Put a := a,/3 := ab and 7 := b. We have:
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= (((a(ab))b)((b(ab))b))O

= ((a(ab))b){{b(ab))b)

Put a := b and /3 := ab. We have:

{(a(ab))b){(b(ab))b)

= ((a{ab))b)((aj3)a)

= ((a(a6))6)O

= (a(o6))6

by (3.3)

by (3.2).

by (3.4)

by (3.2).

Hence A f= (2.2), (2.7) and so is a pre-BCK-algebra. To see A is positive

implicative it is sufficient to note:

0 == {(ab)(bb))((ab)b)

= ({ab)((bO)b))({ab)b)

= {(ab)0){(ab)b)

= {ab)((ab)b)

by (3.3)

by (3.2)

by (3.4)

by (3.2)

(<=) Let A be a positive implicative pre-BCK-algebra. By definition we have

that A [= (3.1), (3.2). Moreover A f= (3.3) by Lemma 2.2.18; since A f= (3.4)

by Lemma 2.1.12(3) we have that A is a dual MINI-algebra. •

Theorem 3.1.4. The variety of MINI-algebras is terrnwise definitionally equiv-

alent to the variety of positive implicative pre-BCK algebras. Given a positive

implicative pre-BCK-algebra (A; — , 0), MINI-algebra operations are defined

on A by:

a —> b := b — a

1 :=0

for any a,b G A. Conversely, given a MINI-algebra (A; —>•,!), positive im-
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plicative pre-BCK-algebra operations are defined on A by:

a — b : = b —)• a

0 : = l

for any a,b E A .

Because the variety of positive implicative pre-BCK-algebras has EDPI witness

x — y (by Theorem 2.2.20), from Theorem 3.1.4 it follows immediately that the

variety of MINI-algebras is subtractive with EDPI witness y —> x (compare

this remark with Example 1.7.11). For the sake of developments in the sequel

we find it convenient to present this result here explicitly as a corollary.

Corollary 3.1.5. (cf. Example 1.7.11) The variety of MINI-algebras is sub-

tractive with EDPI. Moreover, the binary term y —>• x witnesses both sub-

tractivity and EDPI for MINI in the sense of Theorem 1.7.9. That is, for any

MINI-algebra A and a, 6 6 A,

a ->A o = 1

1 ->A a = a

(b)A iff b a = 1.

The variety of MINI-algebras is more than just a natural example of a sub-

tractive variety with EDPI; by Agliano and Ursini [11, Corollary 3.8] it is a

paradigm for such varieties in that a variety V is subtractive with EDPI iff

every A G V has a MINI-algebra polynomial reduct for which any ideal term

t{x, y) e lT\/(y) is compatible with V in the sense that for any a, 6 € A [11,

p. 375],

o tA(b, a) =

The following theorem, whose proof is included for the sake of completeness,

presents a variant on this result.
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Theorem 3.1.6. (cf. [11, Corollary 3.8]) For a variety V with 1, the follow-

ing are equivalent for a binary term x —> y of V:

1. The term y -> x witnesses both subtractivity and EDPI for V in the

sense of Theorem 1.7.9;

2. For any A G V, the polynomial reduct (A; —»A, 1) is a MINI-aigebra,

and either one of the following conditions is satisfied:

(a) Any ideal term t(x, y) G YTy(y) is compatible with V;

(b) For any a e A, (a)A = (a){A._+Atl).

Proof. Let V be as stated and let x —> y be a binary term of V.

(1) =»• (2) (a) Suppose y —»• x witnesses both subtractivity and EDPI for V

in the sense of Theorem 1.7.9. Then for any A G V, (-4; —>A, 1 ) / « A is a

Hilbert algebra dually isomorphic with (PI(A); *, (1)A) by Theorem 1.7.15(1).

Throughout the remainder of the proof to simplify notation we write ~a for

the equivalence class [a]?sA in A/ta^ containing a € A. As (1.45)—(1.47) are

identities in the language {->, 1) that hold in the variety of Hilbert algebras,

for any ~a,b,~c G A/&A with a, b, c G A we have:

1 — 1

~a = "a

a -> '

a-^A/

Because T = {1}, we infer:

(6 _>A/~A c ) ) ((a b) - . A/»A ^n _ T(a

a
1 -)-A a = a

(a -+A (b ->A c)) ->A ((a

a ->A (6 ->A a) = 1

6) ^ A (a

in A, whence (A; -*A, 1) is a MINI-algebra. To see any ideal term t(x, y) G

is compatible with V let t(x, y) G TTv(y) and suppose 6, a G A. Then
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tA(b, a) G (O)A by the description of (a) A given in §1.7.1. Since y

witnesses EDPI for V we have that a —> tA(b, a) = 1 as required.
x

(2) (a) => (2)(b) Suppose that for any algebra A 6 V, the polynomial reduct

(A; ->-A,l) is a MINI-algebra and that any ideal term t(x,y) G ITy(y) is

compatible with V. For any a G A, trivially (U>)(A;-+A,I) Q («)A- For the

opposite inclusion, let c G (CL)A- Then c = £A(£, a) where t(x, y) is an ideal

term in y and b, a G A, just because of the description of (a)A given in §1.7.1.

Since t(x, y) is compatible with V we have a -» tA(b, a) = 1, whence tA(b, a) G

{a){Ai->Atl) by Corollary 3.1.5. Thus c G (a)(A._>A)l) and (o)A C ( a ) ^ . ^ , ! ) .

(2)(b) =$• (1) Suppose that for any A G V the polynomial reduct (A; ~>A, 1) is

a MINI-algebra and (a)A = (a)(A;->*,i) for any a E A. Since y —>• £ witnesses

6of/i subtractivity and EDPI for (A; —»A, 1) in the sense of Theorem 1.7.9 (by

Corollary 3.1.5), y -» £ witnesses 6oi/i subtractivity and EDPI for A in this

sense also (by hypothesis). Thus y —> x witnesses both subtractivity and EDPI

for V in the sense of Theorem 1.7.9, and the proof is complete. •

Let V be a subtractive variety let A G V. Since any V-ideal of A is a directed

union of principal V-ideals, from Theorem 3.1.6 we may infer:

Corollary 3.1.7. For a variety V with 1 and a binary term x-^yof\l,

the term y —> x witnesses both subtractivity and EDPI for V in the sense of

Theorem 1.7.9 iff every algebra A G V has a MINI-algebra polynomial reduct

(A\ ->A , 1) whose M\N\-ideals coincide with the V'-ideals of A.

For a variety V with 1 and a binary term x —>• y of V, the preceding corollary

cannot be strengthened to the assertion that y —>• x witnesses both subtrac-

tivity and EDPI for V in the sense of Theorem 1.7.9 iff every A G V has a

MINI-algebra polynomial reduct (.A; —>A, 1) whose congruences coincide with

those of A. If every A G V has a MINI-algebra polynomial reduct (A\ ->A, 1)

whose congruences coincide with those of A, then certainly y -> x witnesses

both subtractivity and EDPI for V in the sense of Theorem 1.7.9. However,

as an immediate consequence of the following proposition we have that the

converse does not hold.
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Proposition 3.1.8. The binary term x\y witnesses both subtractivity and

EDPI for the variety IhSBA of left handed skew Boolean algebras in the sense

of Theorem 1.7.9. Hence the \hSBA-ideals of any left handed skew Boolean al-

gebra A coincide with the M\N\-ideals of its canonical MINI-algebra polynomial

reduct (A; —>A, 1A), where a —>A b := b\a for any a,b £ A and 1A := 0.

Nonetheless, there exists a left handed skew Boolean algebra S that has no

MINI-algebra polynomial reduct whose congruences coincide with those ofS.

Proof. To establish the first two assertions of the theorem, it is sufficient to

show that for any skew Boolean algebra A and a £ A,

(i) The reduct (A; \ , 0) is an implicative BCS-algebra;

(ii) (a)A = (a)(A;\,o)-

For (i), an easy inspection of the subdirectly irreducible skew Boolean alge-

bras 2P, 3P
L and 3^ shows that the reduct (A] \ , 0) of any skew Boolean

algebra A is an implicative BCS-algebra.

For (ii), let A be a skew Boolean algebra. Prom remarks due to Leech [150,

Section 4.6] it is known that a non-empty subset {0} C / C A is an SBA-ideal

iff the following conditions are satisfied [19, Definition 3.3]:

a,b € I implies a V b G / ; and

a G / , b G A implies b A a A 6 € / .

Notice (3.6) above is equivalent to:

a G I, b -<x> a, implies b G / .

(3.5)

(3.6)

(3.7)

For assume (3.6) and let a £ I and b ^x> a. Since b ^v a, 6 A a A b ••= b.

By (3.6), b G / . Conversely, assume (3.7) and let a G / and b G A. Since

6 A a A 6 ^ p a, by (3.7) we have b A a A b G / .

Let o G A. From (3.5) and (3.7) it follows easily that (a ) A = {b : b ^ a}.

On the other hand, {a){A]\fi) = {b : b <lA'>\>°) a} by Theorem 2.2.20(4),

Proposition 2.2.30 and Proposition 2.3.5. Therefore to see (<Z)A = (a>)(A; \,O) it

is sufficient to show c ^x> d iff c :<(j4;\'0) d for any c,d G A. So let c, d G A.
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Suppose c <x> d. Then c A rf A c = c, so 0 = (c\d) A (c A d A c) =

(c\rf) /\c = c\d by (1.25) and (1.28). Thus c ^^'\'°> rf. Conversely, suppose

c 2<M;\.o> d. Then c\rf = 0, so c = (c\rf) V (c A rf A c) = 0 V (c A d A

c) = c A rf A c by (1.23). Thus c <v & and so c ^> rf iff c <(A->\>°) rf. Hence

(o)A = <a>M;\,o>-

To establish the remaining assertion of the theorem, it is sufficient to show

that for any left handed skew Boolean algebra A,

(iii) The only polynomial reduct of A term equivalent to a MINI-algebra is

and also that:

(iv) There exists a left handed skew Boolean algebra S with Con (S; \ , 0) ^

ConS.

For (iii), let F(af,]/) denote the IhSBA-free algebra on two free generators x,lj.

From Example 1.4.23, the remarks of §1.4.24, Example 2.3.26 and (i) we see

at once that F(x, y) has P-equivalence classes:

{0}, {x, (x\/y)Ax}, {y, ( t /VJJA y}

{x\y}, {y\xr. {x Ay,y Ax}, {xWy,yVx}

with:

x A lj < x~, (f V x) A 1} ~y A ~x < lj, (x V f) A x~

\li <x~ Vlj V, (^ V TT) A ^ < W V ^

V lj) A 5f vXx < W, (lj V x~) A V-

Routine computations (by inspection of 2P and 3^) show that F(x, y) has

exactly one other X>-class distinct from those listed above, namely:

{(xWy)\(yAx)}

with:

Av> y\x <(xV y)\(x A y).< i V y, yV x

-.41
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x±y y+x

v:=(x+y)\(xy)

Figure 3.1. The IhSBA-free algebra on two free generators x, y.

whence F(rc, y) has the Hasse diagram of Figure 3.1 (where for notational

purposes the free generators of, ~y are denoted in the figure simply by x, y re-

spectively; like remarks apply to products of x~, y). Conversely, the diagram of

Figure 3.1 completely determines F(o;,]/), just because F(x,f) is left handed.

From this characterisation of F(af, ~y) it is now easy to see (by inspection of 2P

and 3P
L) that there exists no term function —>-A (other than that induced by

the term y\x) definable in terms of the fundamental left handed skew Boolean

algebra operations A, V, \ such that for any left handed skew Boolean alge-

bra A, the polynomial reduct (.A; —>A,0) is a MINI-algebra. Hence the only

polynomial reduct of A that is term equivalent to a MINI-algebra is (A; \ , 0).

For (iv), let S denote the 6-element algebra defined by the following operation
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tables:

AS

0

a

b

c

d

e

0

0

0

0

0

0

0

a

0

a

0

a

0

a

b

0

0

b

b

d

d

c

0

a

b

c

d

e

ft
.

0

0

b

b

Si
,

d

e

0

a

b

c

d

e

Vs

0

a

b

c

d

e

0

0

a

b

c

d

e

a

a

a

c

c

e

e

b

b

c

b

c

b

c

c

c

c

c

c

c

c

d

d

e

e

d

e

e

e

e

e

e

e

e

\ S

0

a

b

c

R
.

e

0

0

a

b

c

a.

e

a

0

0

b

b

d

d

b

0

a

0

a

0

a

c

0

0

0

0

0

0

d

0

a

0

a

0

a

e

0

0

0

0

0

0

It is readily verified that S is a left handed skew Boolean algebra: see Fig-

ure 3.2(a). To complete the proof it is sufficient by (iii) to show Con (S; \ , 0) ^

Con (S] A, V, 0), just because Con S = Con (S; A, V, 0) by Proposition 1.4.27.

To this end, let 6 be the equivalence relation on S x S induced by the par-

tition {{0},{a},{6,cf},{c},{e}}. It is tedious but straightforward to check

that 6 is a congruence relation on {S\ \ , 0) (for a complete description of the

congruence structure of (5; \ ,0) , see Figure 3.2(c); notice that for ease of

notation, congruences on (5; \ , 0) are represented in the figure by their cor-

responding partitions (with all parentheses dropped)). However, 9 is not a

congruence on (S; A, V,0). Indeed, suppose 9 G Con (S; A,V,0). Because

e =g e and b =$ d, we must have that e V b =0 e V d, which implies

c =g e, a contradiction. Hence 9 £ Con(5r; A,V, 0) (for a complete de-

scription of the congruence structure of (S; A,V,0), see Figure 3.2(b)) and

Con (S; \ , 0 ) ^ C o n ( S ; A,V,0). •

Corollary 3.1.9. Let V be a variety with 1 and let x —> y be a binary term

o/V such that y —> x witnesses both subtractivity and EDPI for V in the sense

of Theorem 1.7.9. In general, the congruences on the canonical MINI-algebra

polynomial reduct (A; —>A, 1) o / A G V need not coincide with those on A.

Let A be a set and let / be an n-ary operation on A. The slice fi(a), a 6 A,

is the unary operation obtained from / upon defining:

fi{a) := /(&!, . . . , 6,-_i, a, bi+h . . . A )
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Oabcde

Oa.bcde

Oabcde

Obd.ace,

a Oa, bc.de

O,a,b,c,d,e

(b)

Figure 3.2. (a) The left handed skew Boolean algebra S of Proposition 3.1.8;
•b) Con (S; A,V,0); (c) Con (S; \ ,0) .

for fixed &i,..., 6,_i, 6,+i , . . . , bn G A. In other words, the slice fi(a) is the

unary operation obtained from / by fixing all but one of its arguments. Given

an algebra A, an n-ary operation / of A is said to be compatible with a

congruence 9 on A if 9 has the substitution property with respect to / ; that

is, if:

a = b (mod0) implies / :(a) = fi(b) (mod#)

for all a, b G A and slices fi{a),fi(b), 1 < i < n. An n-ary operation / of A is

said to be compatible if it is compatible with every congruence on A.

A MINI-algebra [Hilbert algebra] with compatible operations is an algebra A :=

{A; ->, ljj)j(:j of type (2,0,...) such that: (i) the reduct (A; ->•, 1) is a MINI-

algebra [Hilbert algebra]; and (ii) each additional operation /;- is compatible

with (A; ->>, 1). Clearly an algebra A := (A; ->, l,fj)jeJ of type (2,0,...)

is a MINI-algebra [Hilbert algebra] with compatible operations iff Con A =

Con (A] —>•, 1). A version of the following lemma is presented without proof

in Agliano [7, Section 3].

Lemma 3.1.10. (cf. [7, Section 3, p. 9J) Let A be an algebra with 1, say

(A; l,fj)j£j, and let x —» y be a binary term of A such that the polynomial

reduct (A; —>A, 1) is a Hilbert algebra. The following are equivalent:
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1. A is term equivalent to a Hilbert algebra with compatible operations

(A] -VS

2. For any n-ary fundamental operation/ := fj of A,

for all a,b G A and slices fi{a),fi(b), 1 < i < n.

Proof. Let A be a Hilbert algebra and let a, 6, c, d 6 A. By Theorem 1.6.15(2),

c = d(modGA{a,b)) iff (a ->• b) -> ((6 -> a) -> (c -»• d)) =

(a -> 6) -> ((6 -»• a) ->• (d -> c));

the lemma follows directly from this description of the principal congruences.

A variety V is said to be a variety of MINI-algebras [Hilbert algebras] with com-

patible operations if every member of V is a MINI-algebra [Hilbert algebra] with

compatible operations. Given Corollary 3.1.9 and the remarks immediately

preceding Proposition 3.1.8, it is natural to ask if varieties of MINI-algebras

with compatible operations admit a relevant structure theorem. For the spe-

cial case of varieties of Hilbert algebras with compatible operations, a positive

answer to this question has been obtained by Agliano in [7, Section 3]. For

the sake of both completeness and developments in the sequel, we reproduce

Agliano's result in Theorem 3.1.11 below.

Theorem 3.1.11. [7, Theorem 3.4] For a variety V with 1 and a binary term

% —> y of\l, the following are equivalent:

1. V is termwise definit?anally equivalent to a variety of Hilbert algebras with

compatible operations. In particular, any algebra A := (A\ ljj)jej € V

is term equivalent to a Hilbert algebra with compatible operations (A; —>A

2. V is congruence orderable and subtractive with EDPC. In particular, V

is congruence orderable and the binary term y —> x witnesses both sub-

tractivity and EDPI for V in the sense of Theorem 1.7.9.
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Proof. Let V be a variety with 1 and let x -» y be a binary term of V.

(1) =r> (2) Suppose V is termwise definitionally equivalent to a variety of

Hilbert algebras with compatible operations. For the first assertion, if A :=

(A; lJ'j)jEj 6 V is term equivalent to a Hilbert algebra with compatible opera-

tions {A] -*A, lJj)j€J, then Con A = Con (A\ -» A , ljj)jej = Con (A; -V \ 1),

so A is congruence orderable and subtractive with EDPC. It follows that V is

congruence orderable and subtractive with EDPC. For the second assertion, if

A := (A; lJj)jeJ G V is term equivalent to a Hilbert algebra with compatible

operations {A\ -+AAJj)jeJi then Con A = Con (A] —>A, 1), so in particular

I(A) = l((A; ->A,1)), whence a € (6)A iff a G (6)(i4._>A)1) iff b ->A a = 1.

It follows that -»• witnesses both subtractivity and EDPI for V in the sense of

Theorem 1.7.9, and the proof is complete.

(2) => (1) Suppose V is congruence orderable and subtractive with EDPC,

and in particular that the binary term y —>• x witnesses both subtractivity

and EDPI for V in the sense of Theorem 1.7.9. Let A := (A; IJJ)JGJ G

V. Clearly A is term equivalent to the algebra (A; ->A, l,fj)j$j obtained

from A by enriching the type of A with a binary operation symbol —> whose

canonical interpretation is the term function —>A. We claim (A; —>A, l,fj)j^j

is a Hilbert algebra with compatible operations. To see this, it is sufficient by

Lemma 3.1.10 to show:

(i) The polynomial reduct (.4; - > A , 1) is a Hilbert algebra;

(ii) For any n-ary fundamental operation / •= fj of A,

for all a, b E A and slices fi{a),fi(b), 1 < i < n.

For (i), by Theorem 3.1.6 we have that the polynomial reduct (A] ->A,1) is ~

a MINI-algebra. By Theorem 3.1.4 and Corollary 2.2.23(2), the map / : a H-

(O)A is a homomorphism and (̂ 4; —)-A, l ) /ke r / is a Hilbert algebra, where

ker/ = {(a,b) : a ->A 6 = 1 = 6 ->A a} . Because V is congruence orderable,

it is 1-regular (in the sense,of Proposition 1.2.6) witness di(x,y) := x -> y,

da{x, y) := ?/ -» x by Proposition 1.7.16, from which it follows that ker/ =
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Hence (A\ —>-A, 1) is a Hilbert algebra.

For (ii), let f(x) be a fundamental operation of A, which we may take to be

unary without loss of generality. Let a,b G A and let:

{a -+A 6) Vl[A) (b ->A a) = [1],

for some 9 t Con A. Then of course [a]g ->A/<? [b]e = [l]e = [b]o -^A/e [a]9i so

(a, b) e 9. It follows that (f{a)J{b)) e 9 and by properties of -», f(a) ->A

/(&) € [1]*. But [l]e = (a ->A 6)A VI(A) (b -+A a)A , so Theorem 3.1.4 and

Lemma 2.2.19 applied twice gives:

as desired. •

Let A be an algebra with 1 and let Cone A := {9 £ Con A : 9 > <1)A}. An

n-ary operation / of A is said to be weakly compatible if it is compatible with

every congruence 9 6 Cone A. By analogy with the theory of MINI-algebras

with compatible operations, an algebra A := (.A; -», l,fj)jej of type (2,0,...)

is a MINI-algebra with weakly compatible operations if: (i) the reduct (A; ->, 1)

is a MINI-algebra; and (ii) each additional operation fj is weakly compatible

with (A; ->, 1).

Lemma 3.1.12. Let A := (A; -^
compatible operations. Then (1)A =

be a MINI-algebra with weakly

Proof. Let A := (A] —>•, l,fj)j^j be a MINI-algebra with weakly compatible

operations. B} hypothesis, Con tA = Cone(j4; -», 1), so (1)A € Con£A C

Cone(;4; -^,1). Hence (1)A € Con£(i; ->, 1); that is to say (1)A > <?Y{A;->,iy

The opposite inclusion is handled similarly. Thus (1)A = ( l ) ^ . ^ ^ . Since

(A\ -», 1) is weakly congruence orderable, by Lemma 1.7.17' we have that

. _,i) = w^i -.,!)• Hence <1)A =

Lemma 3.1.13. Let A := {A; -»,1,/J)J<=J be a MINI-algebra with weakly

compatible operations. Then Con A/(1)A = Con (4; -», 1)/(1)A.
j
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Proof. Let A := (A; ~>, l,fj)j<=j be a MINI-algebra with weakly compatible

operations. To prove the lemma, just observe that 0 G Con A/(1)A iff 9 =

•0/(1)A f°r s o m e V* £ Cone A (since (1)A is the least element of Con£ A) iff 9 =

^ / ( l ) ^ ; _>,!) with ij) e Con£(i4; ->, 1) (by Lemma 3.1.12 and hypothesis) iff 9 G

Con (.4; ->A)/(l)e(A;->,i) (since ( l ) ^ . ^ } is the least element of Cone(j4; ->

,1)) iff 0 G Con (4; ->,1)/(1)A (by Lemma 3.1.12). Hence ConA/( l )A =

Con (A] ->-, 1)/<1)A
 a s desired. •

Lemma 3.1.14. Let A be an algebra with 1, say {A: l,fj)j^j, and let x —>• y

be a binary term of A such that the polynomial reduct (A; —>-A, 1) is a MINI-

algebra. The following are equivalent:

1. A is term equivalent to a MINI-algebra with weakly compatible operations

(A; ^A

2. For any n-ary fundamental operation f := fj of A,

for all a, 6 G A and slices fi(a),fi(b), 1 < i < n.

Proof Let A := (A] and —> be as in the statement of the lemma.

(1) =*• (2) Suppose A is term equivalent to a MINI-algebra with weakly com-

patible operations (A; -^A,l,f^)j€j. Because of Lemma 3.1.13, A/(1)A is

term equivalent to a Hilbert algebra with compatible operations {A\ —>A

, l ,^A);ej/(l)A- To simplify notation, throughout the remainder of the proof

we write 7z for the equivalence class [o](iyA in A/(l)e
A containing a G A. Let

/ A '•— fjA be an n-ary fundamental operation of A. Since the operation

/A /{1)A of A/(1)A is compatible with the Hilbert algebra polynomial reduct

(A\ ->A, 1)/(1)A, we have that:

for all o,6 G A/(l)e
A and slices

'A(a
A/^lV

(a),/t-
 A(6), 1 < « < n. Since
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= W ' we infer:

***!?•"*

~ A ~ A

for all a,b E A and slices /,• (a),/,- (b),l < i < n, as required.

(2) =^ (1) Clearly A is term equivalent to the algebra (A] —»A, l,f

obtained from A by enriching the type of A with a binary operation sym-

bol —> whose canonical interpretation is the term function -»A . We claim

(A; ->A,l,/yA)jej is a MINI-algebra with weakly compatible operations. By

assumption, (A; —>A,l) is a MINI-algebra. To complete the proof it is suf-

ficient to show Con£A = Cone (A\ —>-A,l). If 6 e Con£A then certainly

9 e Con£(i4; ->A ,1), so Con£A C Cone(A] —>A, 1). For the converse, let

6 e Con€(A; ->A, 1). Prom the remarks of [11, p. 315] we have that 9 = Ie

for some / G l((^4; ->A, 1)), whence 6 = (f>i by Theorem 3.1.4 and Proposi-

tion 2.1.35, where:

0/ := {(a, b) e A x A : a ->A 6, b ->A a G / } .

To complete the proof we show:

(i) (j>i is a congruence on A;

(ii) fo > (1>A-

For (i), by the proof of Theorem 2.1.26, (j)j is an equivalence relation on Ax A.

Let / := fjA be an n-ary fundamental operation of A and suppose a,-~A&»

i = 1 , . . . , n. For i = 1 , . . . , n and any c G A, let /,(c) denote the slice:

. . , & i - i , c, Oi

In what follows we write -» for ->A to simplify notation. By hypothesis, we

have that:

bx) (/[(ax)
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(a. _> bi) _> ((&,. _> ai) -> (fi(ai) -> fi{bi))) = 1

On)

and by symmetry, also:

i -> a,-) -> ((a,- -». 6,-) ̂  #(&,-) - f / , (a , ) ) ) = 1

(6n -^ an) -> ((an -» 6B) -)- (/n(6B) -^ ^(a , , ) ) ) = 1-

That is to say,

-»• 6i) -> ((6i , 0 2 , . . . , On)

a 2 , . . . , a I l ) ) ) = 1

(a,- ->• 6,-) -> ((6,- -> a,) -> ( / ( 6 b . . . , 6,-_i, a,-, a ,-+ i , . . . , an)

• • • i l>i-l, ^, Oi+i, . . . , On)))

and:

(an -» 6n) -> ((6n -»• an) . . . , 6B_i, aB)

02, . . . , 0,,)

1 ) a 2 , . . . , a n ) ) ) = 1

-)• a,-) -> ((a,- -> bi) -¥ ( / ( 6 i , . . . , 6i_i, &,-, O i+ i , . . . , aB)
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- l , a«> a «+l , • • • > an))) =

n - f an) -)• ((on -> bn) -> ( / (6 i , . . . , 6n_i, bn)

->• / ( & ! , . . . , 6 n - l , 0 n ) ) ) = l .

Since a,- « 6t- implies a,- -> 6,-, 6,- -> a,- € / for z = 1 , . . . , n, from (the dual of)

Lemma 2.1.21(2) we infer that:

f{ah 02,. . . , on) 0 2 , . . . , an) G

f(bi,..., 6i_i, a,-, o,-+i, . . . , a,,) . . . , 6,_i, 6,-, a i + i , . . . , an) G

. . . , 6n_i, on)

and also that:

. . . , 6n_i, bn) e

f(h, 02, . . . , On) -> /(f l l , 02, . . . , On) G /

f{h, • • • , 6,-1, ftj, flj+l, • . • , On) • • • , &.-1, Oi, Oi+l, • • •, a«) 6

Hence:

f(bi,..., 6n_i, 6n) -> / ( 6 i , . . . , 6n_i, an) G / .

, 02, • • •, On) = /(&!, 02, • • • . On) (mod 0

- 1 , a,-, fl,-+i,..., an) = / ( 6 i , . . . , 6,-_i, 6,-,

-..,ftn-i, W (mod0/)
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which implies / ( f l i , . . . , an) = / (&i, . . . , bn) (mod <f>i) by transitivity. Hence (f>j

is a congruence on A.

For (ii), just note that </>/ > (1)^4. ^ (because of Proposition 2.1.35) >

(by Lemma 3.1.12). Hence </>/ >

By (i) and (ii), 0/ is a congruence on A such that (f)j > {1)€
A. Therefore

cj>i e Cone A and hence 9 € Cone A (since 6 = 0/). Thus Cone(A; -»A,1) C

Con£ A, and the proof is complete. •

A variety V is called a variety of MINI-algebras with weakly compatible oper-

ations if every A G V is a MINI-algebra with weakly compatible operations.

If V is a variety of MINI-algebras with compatible operations, then certainly V

is a variety of MINI-algebras with weakly compatible operations. In general,

however, the converse does not hold. This is shown by Corollary 3.1.16 below,

which obtains as an immediate consequence of the following proposition.

Proposition 3.1.15. The variety of left handed skew Boolean algebras is

termwise definitionally equivalent to a variety of MINI-algebras with weakly

compatible operations. However, there exists a left handed skew Boolean alge-

bra S that has no MINI-algebra polynomial reduct whose congruences coincide

with those ofS. Hence the variety of left handed skew Boolean algebras is not

termwise definitionally equivalent to a variety of MINI-algebras with compatible

operations.

Proof. For the first assertion, by the proof of Proposition 3.1.8 we have that

any skew Boolean algebra A := (A; A, V, \ , 0) has a MINI-algebra polynomial

reduct (A; -* A , 1 A ) , where a -» A b := b\a for any a, b e A and 1 A :=

0. Further, an easy inspection of the subdirectly irreducible skew Boolean

algebras 2P, 3£ and 3^ shows SBA satisfies the identities:

((y -> a;) -> ((x o z) -)•(?/ o z)))

((y -)• x) -* {(z ox)-+(zo y)))(x - * y)
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where o denotes either the term corresponding to the skew lattice meet A or

the term corresponding skew lattice join V. From these remarks it follows

that A is term equivalent to a MINI-algebra with weakly compatible opera-

tions (A] —, A , 1 A , A, V). Hence SBA (and in. particular, IhSBA) is ternrnbe

definitionally equivalent to a variety of MINI-algebras with weakly comp&i ible

operations. The remaining statements of the proposition may be inferred from

Proposition 3.1.8. •

Corollary 3.1.16. Let V be a variety termwise definitionally equivalent to

a variety of MINI-algebras with weakly compatible operations. In general, V

is not termwise definitionally equivalent to a variety of MINI-algebras with

compatible operations.

Varieties of MINI-algebras with weakly compatible operations were introduced

by Agliano in [6, Section 4] (under the name MINI-algebras with compatible

operations) in the context of his study of weakly congruence orderable subtrac-

tive varieties with EDPI. Because of Lemma 3.1.13, the class of all varieties

of MINI-algebras with weakly compatible operations may be understood as

a natural generalisation of the class of all varieties of Hilbert algebras with

compatible operations; that this generalisation is essential follows from Corol-

lary 3.1.16. Inasmuch as varieties of MINI-algebras with weakly compatible

operations generalise varieties of Hilbert algebras with compatible operations,

Theorem 3.1.11 lends one to ask if varieties of MINI-algebras with weakly

compatible operations also admit a relevant structure theorem. The following

result answers this question in the affirmative.

Theorem 3.1.17. For a variety V with 1 and a binary term x —> y o/V; the

following are equivalent:

1. V is weakly congruence orderable and the binary term y —> x witnesses

both subtractivity and EDPI for V in the sense of Theorem 1.7.9;

2. V is termwise definiiionally equivalent to a variety of MINI-algebras with

weakly compatible operations. In particular, any A := {A; l,fj)jej € V

is term equivalent to a MINI-algebra with weakly compatible operations

{A; ^A
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Remark 3.1.18. The statement but not the proof of Theorem 3.1.17 is due

to Agliano [6, Section 4]. In more detail, in [6, Theorem 4.5] Agliano asserted

that:

'A pointed variety is weakly congruence orderable, subtractive and

has EDPI iff it is termwise definitionally equivalent to a variety of

MINI-algebras with [weakly] compatible operations.'

Although Agliano's proof of the sufficiency of the above assertion is valid, his

proof of the necessity of the assertion is not. For his proof of necessity Agliano

simply asserts that [6, p. 16]:

'In a MINI-algebra with [weakly] compatible operations the con-

gruences (and hence the ideals) depend only on the MINI-algebra

operation. Therefore any such variety is weakly congruence order-

able, subtractive and has EDPI.'

Because a variety of MINI-algebras with weakly compatible operations need

not have compatible operations (by Corollary 3.1.16), this argument is not

sufficient to establish the necessary direction of the preceding assertion. To

correct this error, we provide new proofs below of both the necessity and the

sufficiency of Theorem 3.1.17. •

Proof (of Theorem 3.1.17). Let V be a variety with 1 and let x —>• y be a

binary term of V.

(1) =$• (2) Suppose V is weakly congruence orderable and that the binary

term y -* x witnesses both subtractivity and EDPI for V in the sense of

Theorem 1.7.9. Let A := {A; l,^A)y€j G V. Clearly A is term equiva-

lent to the algebra (A\ -»A , l ,^A)jej obtained from A by enriching the type

of A with a binary operation symbol —> whose canonical interpretation on

(A; ->A,l,./JA)jej is the term function -*A. We claim (A; -»A , l,fjA)j<=j is

a MINI-algebra with weakly compatible operations. Since y —> x witnesses

both subtractivity and EDPI for V in the sense of Theorem 1.7.9, from Theo-

rem 3.1.6 we have that the polynomial reduct (A; ->A, 1) is a MINI-algebra.

Also, since V is weakly congruence orderable, from Proposition 1.7.19 we have
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that V£ is a subtractive congruence orderable variety with EDPC. From The-

orem 3.1.11 it follows that (A] -*A, 1 , / J A ) JGJ /«A is a Hilbert algebra with

compatible operations. That is to say, (A] ->A, l5^A)jej/(l)A is a Hilbert al-

gebra with compatible operations, just because « A = (1)A by Lemma 1.7.17.

The proof of Lemma 3.1.14 now shows that for any n-ary fundamental opera-

tion / A := fjA of A A

= 1(a ->A b) ->A ((6 ->A a) ->

~A ~A

for all a, b G A and slices /,- (a), ft (6), 1 < i < n. Thus (A; -+A,l,fA)jeJ

is a MINI-algebra with weakly compatible operations. Hence V is termwise

definitionaliy equivalent to a variety of MINI-algebras with weakly compatible

operations, and the proof is complete.

(2) => (1) Let A := (A; l,fj)jej G V. By hypothesis, A is term equiva-

lent to a MINI-algebra with weakly compatible operations (A] —»A, l,fA)jeJ.

Therefore V is subtractive (witness y —> x). To see V has EDPI (witness

y ->• x), it is sufficient by Corollary 3.1.7 to show I(A) = l((i4; ->A, 1)). As

Con A C Con (4; -»A ,1), we have that N(A) C N((A; ->A ,1)), and hence

that I(A) C I((^; ->A, 1)). For the converse, let / G l((yi; -^A, 1)) and let <£/

be the relation on A x A defined by:

0/ := {(a, b) G A x A : a -*A b, b ->A a G / } .

By the proof of Lemma 3.1.14, 0/ is a congruence on A. Moreover, / = [0]^,

just because of Theorem 3.1.4 and Lemma 2.1.27. Hence / G Iv(A) and

1((A; ->A, 1)) C I(A). Thus I(A) = I«,4; ->A, 1)) and V has EDPI (witness

y -*

It remains to show V is weakly congruence orderable. Since V is subtractive

with EDPI (witness y ->• x), from Lemma 1.7.14 we have that O«A& iff a ~+A

= 1 = 6 -> a iff a = 6(mod^>{i}). Since >̂{i} G Con A by the proof

of Lemma 3.1.14 we have that « A is a congruence on A, so A is weakly

congruence orderable. Hence V is weakly congruence orderable, and the proof
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is complete. •

Remark 3.1.19. In [6, Theorem 4.15] Agliano extended the characterisa-

tion of weakly congruence orderable subtractive varieties with EDPI of The-

orem 3.1.17 to subtractive weakly congruence orderable varieties with EDPI

and both a meet generator and a join generator term. Agliano's proof of [6,

Theorem 4.15] relies on the assumption that if A is an algebra term equivalent

to a (certain notion of) L-algebra with compatible operations (A] (1A, UA, —>A

J l)/i)i€J> t n e n Con A = Con (.A; —>A, 1). From the definition of an L-algebra

given by Agliano in [6, Section 4, p. 20], it is readily verified by inspec-

tion of the subdirectly irreducible skew Boolean algebras 2P, 3P
L and 3^ that

any skew Boolean algebra (£?; A, V, \ , 0) is term equivalent to an L-algebra

(B; n,U, —»,1). Prom Proposition 3.1.15 it follows that, in general, Con A ^

Con(i4; —^A,l). Hence the argument employed by Agliano to characterise

subtractive weakly congruence orderable varieties with EDPI and both a meet

generator and a join generator term does not hold in general, whence the

problem of characterising such varieties remains open. •

Example 3.1.20. By Example 2.3.12, any pseudocomplemented semilattice A

has a canonical implicative BCS-algebra polynomial reduct {A\ \ , 0), where

a\b := a A b* for any a, b G A. For any a,b e A, let a -» A b := b\a and let

1A := 0. Then for any a,b,c 6 A, we have that:

(a ->A b) -*A ((& ->A a) ->A (a* ->A b*))

= ((b*\a*)\(a\b))\(b\a)

= b* A a** A (a A b*)* A (6 . a*)*

= (a** A (a* A 6)*) A (6* A {b* A /•)*)

= (a** A (a* A /;)*) A (b* A a*) by (1.9)

= (a** A a*) A ((a* A b)* A b*)

= 0 A ((a* A b)* A b*) by (1.8)

= 0

= 1
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and:

(a ->A b) ->A {(b ->A a) ->A ((a A c) ->A (b A c)))

= (((6 A c)\(a A c))\(a\b))\(b\a)

= (b A c) A (a A c)* A (a A 6*)* A (6 A a*)*

= (c A (c A a)*) A (6 A (6 A a*)*) A (a A &7

= (cAa*)A(6 A a**) A (a A 6*)*

= (cA4) A (a* A a**) A (a A 6*)*

= (c A b) AO A (a A 6*)*

= 0

by (1.9)

by (1.8)

whence A is term equivalent to a MINI-algebra with weakly compatible op-

erations {A; —>-A,lA,A,*) (by Theorem 3.1.4). Hence PCSL is termwise def-

initionally equivalent to a variety of MINI-algebras with weakly compatible

operations; from Theorem 3.1.17 we conclude that PCSL is weakly congruence

orderable and subtractive with EDPI.

Conversely, from Example 2.3.12 we have that the variety PCSL of pseudo-

complemented semilattices is subtractive witness x\y. Also, by Agliano and

Ursini [11, p. 387] it is known that (a)A = {b : b < a**} for any pseudocom-

plemented semilattice A and a e A. Suppose b < a**. Then b A a** = b,

whence b A a* = (b A a**) A a* = b A (a** A a*) = 0 by (1.8). Hence

b d>{A] Vo> a. On the other hand, suppose 6 ^{A> \»°> a. Then b A a* - 0,

whence 6 A a** = b A {b A a*)* = b A 0* = b by (1.9). Hence b < a**

and so b < a** iff b ^<*\,o> a . T h u s (a)A = (a){A;\,o) and PCSL has EDPI

(we remark that this result has been obtained independently by Aglianb and

Ursini [11, Example 5.9]). Moreover, « A is an equivalence relation on A x A

(recall the remarks of §1.7.8) and for any a, b € A we have that att^b iff

o\6 = 0 = b\a (by( Lemma 1.7.14) iff a = ^ ( m o d S ^ o ) ) iff a* = b* (by

Example 2.3.61(2) and Lemma 2.3.63(3)). Suppose ai«A&i and aa^xh for

Gi>G2, &i, b2 G A. Since ax** = (a?)* = (b*)* = 6X** we have that « A has the
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substitution property for the * operation. Also,

A a2)* = 1 A f l 2J

air A (airy
:r A wry

by Jones [128, p. 2]

= (bi A b2y by Jones [128, p. 2]

and so « A also has the substitution property for the A operation. Thus «^ IS

a congruence on A and so PCSL is weakly congruence orderable. Since PCSL is
weakly congruence orderable and subtractive with EDPI, from Theorem 3.1.17
we conclude that PCSL is termwise definitionally equivalent to a variety of
MINI-algebras with weakly compatible operations. •

Theorem 3.1.17 notwithstanding, we do not know if varieties of MINI-algebras
with compatible operations admit a coherent structure theory in general. Hence
we conclude this subsection with the following problem.

Problem 3.1.21. Do varieties of MINI-algebras with compatible operations
admit a coherent structure theory? •

3.1.22. Subtractive WBSO Varieties and Nelson Algebras. Recall
the definition of a WBSO variety from §1.5.3. By a subtractive WBSO variety

we mean a WBSO variety that is subtractive. Subtractive WBSO varieties have
been characterised in the literature: by [11, Theorem 5.4] a pointed variety is
a subtractive WBSO variety iff it is ideal determined, has EDPI and a join
generator term. Let V be a subtractive WBSO variety. By hypothesis, V is
subtractive; moreover V is strongly point regular with EDPC by Lemma 1.5.4,
Proposition 1.5.5 and Proposition 1.5.6. Suppose now that V is a variety with 1
that is subtractive and strongly 1-regular with EDPC. Subtractivity and 1-
regularity imply V is ideal determined (by Proposition 1.7.3); also subtractivity
and EDPC imply V has EDPI (by Proposition 1.7.10). Le t A G V and let a, be

A. Since V is strongly 1-regular there exists c € A such that 0A(a, 1) v C p A
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)A(6,l) = 0 A ( c , l ) , whence:

(ah (b)A = [l]0A(a.1) V ^ [ 1 ] 6 A ( M )

== [1]eA(a,l)VCpA0A(6,l)

by subtractivity and the dual Brouwerian semilattice isomorphism 9 i->

between Cp A and CI(A) of Proposition 1.7.10. Thus the join on I(A) of

two principal ideals of A is always principal; from Proposition 1.7.13 it follows

that V has a join generator term. As V is ideal determined with both EDPI

and a join generator term, we have that V is a subtractive WBSO variety.

That is, we have proved:

Proposition 3.1.23. For a variety V with 1, the following are equivalent:

1. V is a subtractive WBSO variety;

2. V is ideal determined, has EDPI and a join generator term;

3. V is subtractive, strongly 1-regular and has EDPC.

Let V be a WBSO variety. Recall from [29, Section 2] that the following

identities and quasi-identity are satisfied for any weak relative pseudocomple-

mentation -> of V:

x x (3.8)

(3.9)

Pro)rx (3.8) and (3.9) it is clear that for V to be subtractive the quasi-identity (3.9)

need only be strengthened to the identity 1 -> x « x. By a WBSO& variety

we mean a WBSO variety V such that V ( = l - > a ; « a ; f o r a weak rela-

tive pseudocomplementation —h Clearly any WBSO* variety is subtractive;

in [4] Agliano investigated subtractive WBSO varieties and proved that the

converse also holds. That is, in a subtractive WBSO variety V it is always

possible to choose a weak relative pseudocomplementation -» in such a way
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that V (= 1 —> x « X] we call such a term a subtractive weak relative pseu-

docomplementation in the sequel. The following proposition, which sharpens

Agliano's characterisation of subtractive WBSO varieties, is implicit in results

due to Agliano [4] and Agliano and Ursini [11].

Proposition 3.1.24. For a variety V with 1 the following are equivalent:

1. V 25 a subtractive WBSO variety;

2. V w a WBSO* variety;

3. V 25 a WBSO variety and there exists a binary term x —> y of\l such

that:

(a) For any A € V, the polynomial reduct (A; ->A, 1) 25 a MINI-

algebra;

(b) x —>• y is a weak relative pseudocornplementation for V.

Proof The equivalence of (1) and (2) is proved by Agliano in [4, Theorem 4].

(3) => (2) is trivial. It therefore remains to show (2) =$• (3). So let V be

a WBSO# variety. Then there exists a binary term x -» y of V such that

V (= 1 -» x « x and x —> y is a weak relative pseudocomplementation,

whence Condition (3)(b) is satisfied. Let A € V and let a, b G A. Since x —> y

is a weak relative pseudocomplementation for V,

a 6 = 1 iff a •< b where •< is the quasiorder of §1.5.3

iff OA(b, 1) C 9A(a , 1) by [29, Lemma 2.5(i)]

iff [l]eA(6,i) C [l]eA(o>i)

iff (b)AC(a)A

iff b £ (a)A.

Hence y -» x witnesses both subtractivity and EDPI for V in the sense of

Theorem 1.7.9. By Theorem 3.1.6 we conclude that the polynomial reduct

(A; —>A, 1) is a MINI-algebra; thus Condition (3) (a) is satisfied also and the

proof is complete. •
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WBSO* varieties arise very naturally in algebraic logic as arbitrary congru-

ence permutable point regular varieties with EDPC. Indeed, suppose V is

a congruence permutable point regular (say 1-regular) variety with EDPC.

Then V has a QD term q(x,y,z,w) by Theorem 1.5.8 and binary terms

di(x, y),..., dn(x, y) witnessing the 1-regularity of V by Proposition 1.2.6. By

Proposition 1.5.11(2),

x-y:=q(x,l,y,x)

xAy:= dn(x,y)

are respectively subtractive weak relative pseudocomplementation, weak meet

and Godel equivalence terms for V, wheace V is a WBSO* variety.

To within clone equivalence, the term operations induced by a weak meet x • y

and weak relative pseudocomplementation x —» y in a WBSO variety faithfully

reflect conjunction and implication on the Brouwerian semilattice of compact

congruences of any member of the variety: see Blok and Pigozzi [34, p. 547]. In

view of this remark it is easy to see that • and —> are respectively a conjunction

and implication for the intrinsic assertional logic §(V, 1) of V. The following

result, which is essentially well known, formalises and extends this observation.

Proposition 3.1.25. LetM be a WBSO* variety with assertional logicS(V, 1).

Then §(V, 1) is algebraisable and its equivalent algebraic semantics is exactly V.

Moreover, for binary terms •, +, A, —> of V the following assertions hold (upon

identifying the individual variables re, y with the propositional variables p, q

respectively):

1. [181, Theorem 2.1] x • y is a weak meet for V iff p • q is a conjunction

2. [181, Theorem 2.2] x/\y is a Godel equivalence term for V iff pAq is a

G-identityforS(\/,l);

3. [181, Theorem 2.S] x —> y is a weak relative pseudocomplementation

for V iff p -» q is a conditional ft;r S(V, 1);
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4. [181, p. 185] (p -» q) • (q -> p) is a biconditional for S(V', 1) iffx-y and

x —> y ore respectively a weak meet and weak relative pseudocomplemen-

iation for V;

5. [224, Theorem 5.1] x + y is a lueak join for V iff p-t a is a disjunction

for 8(V,1);

6. If V is double-pointed (say with {0,1}) and x —> y is a subtractive weak

relative pseudocomplementaiion for V then p ->• 0 is a weak negation

/or S(V,1).

Proof. Let V be a WBSO# variety with assertional logic S(V,1). By The-

orem 1.8.15 S(V,I) is algebraisable and its equivalent algebraic semantics is

exactly V. Of tho remaining statements, only (6) is not explicit in the litera-

ture. So suppose V is with {C, 1} and that —> is a subtractive weak relative

pseudocomplementation for V. Let ~> p := p —> 0. To see -» is a weak negation

we show (CN) and (RAj) are respectively rules of §(V, 1), viz.:

1)"JJ\-,

Throughout the remainder of the proof we identify the individual variables %

with the prepositional variables p and the terms s(x)> \Si{x) : i —• 1,...., n} , t(x)

with the formulas (p{p), {ipi(p} : i = 1 , . . . , n} , i>(p) respectively. To ease no-

tation, for a given formula (p(p) we also write sir-.ply ip.

For (i), it is sufficient to show (s(f) ~ l,-> s(x) w 1} j=v t(x) & 1. So let

A € V and a G A If sA(a) =• 1 and -. sA(a) = 1 then 1 -> 0 = 1, which

implies 0 = 1 as —»• is a subtractive weak relative pseudocomplementation. But

then 0 and 1 are not residually distinct, so A is trivial and tA(a) = 1.

For (ii), by the remarks of <<1.8.9 we may assume without loss of general-

ity that F is finite, say {^1,... ,(pn}- Moreover, by ^3) -> is a conditional

for §(V, 1), so the entailment ipi,. ..,(pn,ib I~g/Vi) ^ ^ is equivalent to the

entailment h w i ) Vi -^ (^2 ~* (•••-> {<-pn ~> (^ ™* "̂  "0)) •••))> a n d i-'̂ e-

wise the entailment ^ i , . . - , ^ n ^"§(vi) "̂  ^' ^s equivalent to the entailment
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ip) •••))• To complete the proof it is

))

hS(V,l) ¥>1 ~*

therefore sufficient to show:

V

implies:

V

Let A E V and a G .A. Since the polynomial reduct (A; ->, 1) is a MINI-

algebra, (c —> (c -> 6)) -» (c —»• [>) = 1 for any 6, c G A by Theorem 3.1.4

and (2.36). Thus in particular tA(a) -» (iA(a) -> 0) ^ iA(a) ->• 0 (where < is

the underlying quasiorder on the MINI-algebra, polynomial reduct (A] ->, 1)),

whence repeated application of (the dual of) Lemma 2.1.12(2) shows:

5l
A(a) -» {s2

A(a) 0)))

5l
A(a) ~> (5

A(a) A(5f
A(a) 0))

Since s?(a) -> (S
A(a) -> ( • . . -» - (sA(a) -> ( i A (a) -> ( iA (a) -> 0))) • • • ) ) = !

by hypothesis, we conclude s^a) -> (sA(a) ->• (•••-» (5A(a) -> ( i A (a) ->

0)) •• •)) = 1 (because [ l ] s = {1} by (the dual of) Theorem 2.1.14(3)), which

implies the required implication holds.

By (i) and (i.i), both (CN) and (RAj) are rules of S(V,1). Therefore -. is a

weak negation for S(V, 1), and the proof is complete. •

Remark 3.1.26. In general, the proofs of Items (l)-(4) of Proposition 3.1.25

do not require the hypothesis of subtractivity. We have been unable to for-

mulate proofs of Items (5)-(6) without this assumption; however, we have no

proof that this additional condition is necessary. More generally, it is not

known to what extent satisfaction of the identity 1 -» x m x (where —> is

a weak relative pseudocomplernentation) is reflected in special properties of

WBSO varieties: see Blok and Pigozzi [29, p. 365; Theorem 3.7]. •

Problem 3.1.27. Comprehensively characterise those properties of WBSO#

varieties that do not extend to ^arbitrary WBSO varieties. •
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Recall from [14, Definition XI§2.1] that a De Morgan algebra, is an algebra

{A; A,V,~,O,1) of type (2,2,1,0,0) such that the reduct (A] A,V,O,1> is a

bounded distributive lattice and moreover the following identities are satisfied:

x ~ x

V y) x A ~ y.

(3.10)

(3.11)

(3.12)

A Nelson algebra (or quasi-pseudo Boolean algebra in the terminology of Ra-

siowa [196, pp. 75 ff.]) is an algebra (A; A, V, ->, ~, 0,1) of type (2,2,2,1,0,0)

such that the following conditions are satisfied for all a, 6, c G A [209, Sec-

tion 0]:

Nl. The reduct (A] A,V, ~,0,1) is a De Morgan algebra with greatest ele-

ment 1, least element 0 and lattice ordering <;

N2. The relation •< defined by a ^ 6 iff a —>• 6 = 1 is a quasiordering on A;

N3. a A b r< c iff a ^ b -»• c;

N4. a < b iff a •< b and ~ 6 ^ ~ a;

N5. a •< c and 6 ^ c implies a V b ^ c;

N6. a ^ 6 and a ;< c implies a < b A c;

N7. a A ~ H ~(a -)• 6) and ~(a -> b) •< a A ~ 6;

N8. ~(a -^ 0) < a and a ^ ~(a -> 0);

N9. a A ~ o < b.

Nelson algebras were introduced by Rasiowa in [194] (under the name Af-

lattices) as the algebraic counterpart of a particular (non-axiomatic) extension

of the intuitionistic sentential calculus called constructive logic with strong

negation, which latter was introduced independently by Nelson in [174] and

Markov in [157] in response to certain philosophical objections concerning the

non-constructive nature of falsity in IPC (for a discussion .soe Rasiowa [195,
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Chapter XII] or Wojcicki [238, Section 5.3.0]; see also Vorob'ev [233, 234]

and Thomason [215]). More particularly, by results of Rasiowa [195, Chap-

ter XII] and Blok and Pigozzi [31, Section 5.2.1] constructive logic with strong

negation is precisely the inherent assertional logic §(N,1) of the class N of

Nelson algebras. Since their introduction Nelson algebras have been studied

by a number of authors, including Brignole [47], Rasiowa [195, Chapter V],

Sendlewski [209] and, in a recent major study, by Viglizzo [232]. By Brig-

nole [47] or Rasiowa [195, Theorem V§2.1] the class N is a variety; by Blok and

Pigozzi [29, pp. 357-358] N is a WBSO variety with weak meet iAjf , weak

relative pseudocomplementation x —»• y and Godel equivalence term:

x y := {x =» y) A (y =» x)

where:

x => y := (x —> y) A ( ~ y —)• ~ x).

Results due to Rasiowa [195, Theorem V§1.3] show also that the variety of

Nelson algebras satisfies the identities:

X —> X & 1

1-)I«I,

(3.13)

(3.14)

whence —> witnesses both subtractivity and weak relative pseudocomplemen-

tation for N in the sense of Theorem 3.1.24. Thus N is a WBSO# variety.

There exist a number of open problems and erroneous communications in the

literature concerning Nelson algebras qua weak Brouwerian semilattices with

filter preserving operations [29, 34, 4]. In particular, in their paper [34] on

the structure of varieties with EDPC, Blok and Pigozzi posed the following

problem [34, Problem 7.4]: Does the variety of Nelson algebras have a com-

mutative, regular TD term, or even a TD term? Notice that although N has

EDPC (by Proposition 1.5.6, since it is a WBSO# variety) this problem is non-

trivial, because EDPC in and of itself does not imply the existence of a term
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e(x, y, z) of N such that both N (= e(x, x,z) & z and eA(a, 6, c) = eA(a, 6, d)

if c = rf (mod0A(a, 6)) for any A 6 N and a, 6, c, d 6 -4. See Blok and

Pigozzi [34, p. 570; Problem 7.1].

Lemma 3.1.28. The variety of Nelson algebras satisfies the following identi-

ties:

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

y)^x). (3.22)

Proof. Identity (3.15) is proved in Rasiowa [195, Theorem V§1.3], while iden-

tity (3.16) is established in Brignole [47, Theorem 3]. Identities (3.17) and (3.18)

are proved in Rasiowa [195, Theorem V§1.3]. Identity (3.19) follows triv-

ially from (Nl). Identity (3.20) is proved in Brignole [47, Theorem 3]. Iden-

tity (3.21) is established by Monteiro in [169,170] (see also Viglizzo [232, (1.9),

pp. 6-7]). Identity (3.22) is Theorem V§1.4 of Rasiowa [195]. •

Lemma 3.1.29. The variety of Nelson algebras satisfies the following identi-

ties:

a; —> (y —> z) re y - » (a; —> z)

{x Ay)->zfvx->(y-t z)

x A (y V z) re (a: A y) V (a; A z)

x —> (y A z) « (a; -> y) A (a; -> 0)

(a; V y) -> z re (a; -»• 2) A (y ~> -z)

(a; =» y) -»• ((y => a;) -»• y) re (y => x) -> ((a;

x x y)

*)•

(3.23)

(3.24)

(3.25)

Proof. Let A be a Nelson algebra and let a,b,c £ A. For (3.23), we have

1 = ~~a -> ( - a -> b) = a -» ( - a -> b) by (3.15) and (3.10). For (3.24),

we have a ->• (a -> b) = (a A a) -> b = a -» b by (3.18). For (3.25), we
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have ~(a A b) -»• c = (~ a V ~ 6) -> c = (~ a -> c) A (~ 6 ->• c) by (3.11)

and (3.21). . •

Lemma 3.1.30. T/ie variety of Nelson algebras satisfies the following identi-

ties:

(3.26)

(3.27)

(3.28)

Proo/. Let A be a Nelson algebra and let a,b e A. By (3.11), (3.10) and (3.16)

we have a A <~(a A~f i ) = o A ( ~ a V ~ ~ 6 ) = o A ( ~ f l V i ) = a A ( a - > b),

which establishes (3.26). For (3.27), put a := a, (3 := a and 7 := a —> b. We

have:

x A (x -> y) ~ x A ~(rc A ~ ?/)

a; -> ~ ( z A ~ ?/) « a; —»• ?/

re ->

a -+ b = a —> (a -* b)

= (a ~> a) A (a -> (a -* b))

= (a -)• )9) A (a -> 7)

= a: ->• (^ A 7)

= a 4 (fl A (a 4 J))

= a -> (a A (~ a V 6))

Put a := a, (3 := a and 7 := ~ a V 6. We have:

a -+ (a A (~ a V 6))

= a —> (j3 A 7)

= (a —>• (3) A ( a —>• 7 )

4 ( ~ a V 6))

= 1 A ( a - > ( ~ a V &))

= a -> (~ a V b)

by (3.24)

by (3.13)

by (3.20)

by (3.16).

by (3.20)

by (3.13)

by (3.10)
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= a a A ~ b) by (3.11).

For (3.28) jus t note a -> ~ ( a A b) = a - » ~ ( o

and (3.27).

(3.10)

•

Lemma 3.1.31. Tfte variety of Nelson algebras satisfies the following identi-

ties:

(x <=> y) -> a; « (ar 4=)> y) -> y

£ —> ~ y ~ ^ ~^ "̂ "(̂  ~^ 2/)

x —>• (y —>• 2) « (a; - ^ y) -> (a; ->

(3.29)

(3.30)

(3.31)

(3.32)

P?'oo/. Let A be a Nelson algebra and let a, 6, c G A. For (3.29) we have:

(a <£> 6) -> a = ((a => 6) A (b =*> a)) -> a

&) -». ((6 =̂ . o) -> 0)

a) ->• ( ( a =» 6) -»• a)

6) -> ((6 => a) -> 6)

> 6) A (6 =» a)) -> 6

= (6 =

= (a

= ((a

= (a <̂  6) -> 6.

For (3.30), put a :— a and 0 := a -> 6. We have:

a —> ~ ( a —>/?) = a -> ~ ^

= a —» ~(o; A y5)

= a -» ~ (a A (a -> &)).

Put a: := a A ~ a and /? := a A b. We have:

a -> ~(a A (a -^ b))

= a —>• ~ (a A (~ a V 6))

by (3.18)

by (3.17)

by (3.22)

by (3.18)

by (3.28)

by (3.16)
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a

a

a

a

((a A ~ a) V (a A b))

a V 0)

a A ~ P)

(~(a A ̂  a) A ~(a A

Put a :— a, (3 := ^ ( a A ~ a) and 7 := ~(a A 6). We have:

a (~(a A ~ a) A ~(a A 6))

= a 4 (,9 A 7)

= (a -> i9) A (a -» 7)

= (a —> ~(a A ~ a)) A (a -> ~(a A 6))

= (a -+ a) A (a ->• ~(o A b))

= l A ( a 4 ~ ( o A 6))

= a —> ~(a A 6)

For (3.31), put a := a -> 6, /? := a and 7 := c. We have:

( a -»• b) ->• ( a ->• c ) .

= o; -4 (/5 —> 7)

= /? -> (a -> 7)

= (a A (a -» 6)) ->• c

= (a A ~(a A ~ 6)) -)• c

P-.'?• a := c, ^ := ~(a A ~ 6) and 7 := c. We have:

(a A ~(a A ~ ft)) —> c

= (a A P) -> 7

= a -> (/3 -> 7)

by (3.19)

by (3.12)

by (3.20)

by (3.27)

by (3.13)

by (3.28).

by (3.17)

by (3.18)

by (3.26).

by (3.18)
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= a —> (~(a i\ ~ b) -> c).

Put a := a, fi := ~ b and 7 := c. We have:

a —> A

a

a

a

a

-> (^

-> (('

-> (('

-> (('

-> c

'(a

^ a

^ a

)

A,/?) -

• 7 )

c)

c)

A

A

A

7)

(~

(~

(b ->

->7))

6 - > c ) )

Put a := a, (3 :— ~ a •-> c and 7 := 6 -> c. We have:

a -»• a - ) • c) A (6 -> c))

= a -> (/3 /"• 7)

= (a —>• /?) A (o; ->• 7)

= (a - f (~ a -> c)) A (a -»• (6 ~

= 1 A (a -> {b -* c))

= a ->• (b - > c ) .

))

by (3.25)

by (3.10).

by (3.20)

by (3.23)

For (3.32), let a := a, (3 := a and 7 := (a -> b) V (a -> c). We have:

-> ((a -? 6) V (a -> c))

= 1 A (a -> ((a -> 6) V (a -)• c)))

= (/i -> a) A (a -> ((a ->• 6) V (a -»• c)))

= (a —> /5) A (a ~> 7)

= a -> (/3 A 7)

= a -4 (a A ((o 4 6) V (a ->• c))).

by (3.13)

by (3.20)
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Put a := a, /? := a —> b and 7 := a -» c. We have:

- ) c)))

a -> (a A (/? V 7))

a -+ ((0 A p) V (a A 7))

a -> ((a A (0 -> 6)) V (a A (a -» c))).

Put a :— a, /? := ~ a V 6 and 7 := ~ a V c. We have:

by (3.19)^

o A ( a - > 6)) V ( a A ( o 4 c)))

= a -> ((a A (~ a V b)) V (a A (~ a V c))) by (3.16)

= o ^ ( ( « A ^ ) V ( a A 7))

= a -> (a A (/3 V 7)) by (3.19)

= a -> (a A (^ a V b V ~ a V c)).

Put a := a, 0 := 6 V c. We have:

a -» (a A (~ a V b V ~ a V c))

= a-> (a A (~a V (6 V c)))

= a-> (a A (~a W 13))

= a ->• ( a A ( a - ) • 0))

= a-> (a A (a-» (6 V c))).

Put a := a, /3 := a and 7 := a -> (6 V c). We have:

a -> (a A (a -> (6 V c)))

'- Q -4 ((8 A 7)

= (a -» /?) A (a -* 7)

= (a -> a) A (a ->• (a -> (6 V c)))

= 1 A ( a - > ( o - ^ (6 V c)))

by (3.16)

by (3.20)

by (3.13)
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= a - • (a -» (6 V c))

= a -> (b V c) by (3.24).

Remark 3.1.32 (Added in proof). After obtaining the derivation of the

identity (3.31) given in the proof of Lemma 3.1.31 we were made aware of the

existence of Viglizzo [232, (1.11), p. 8], wherein a simpler derivation of (3.31)

may be found. •

Theorem 3.1.33. For any Nelson algebra A and a, 6, c, d G A,

c = d (mod 0A(a, b)) iff pA(a, b, c) = pA(a, 6, d)

where p(x,y,z) := (x <£> y) —> z. Thus the variety of Nelson algebras has

EDPC. Moreover, p(x, y, z) is a commutative TD term for N; it is not regular.

Proof. To see the variety of Nelson algebras has EDPC, let A be a Nelson

algebra and let $ := {(g,g') : (a & b) -* g = (a <$ b) -> g'}. Clearly $ is
an equivalence relation. Let c,c',d,d' 6 A and suppose c — c' (mod<fr) and

d = d' (mod $). To see $ is a congruence relation we show:

(i) cAd=c'Ad' (mod$); (iii) c -> d = c' -» 6! (mod$);

(ii) c V d= c' V <f (mod $); (iv) ~ c = ~ c' (mo

For (i), we have:

((a ^ 6) -» c) A ((a <

((a ^> 6) ^ c') A ((a

(a <^ 6) -^ (c' A d1)

So c A d = c' A d' (mod$). For (ii), we have:

6) -+ d)

b) -» d;

by (3.20)

by (3.20).

(a <=> b) -» (c V d) = (a ^ 6) -)•

(((a ^ 6) -> c) V ((a «*&)-> d)) by (3.32)

= (a & b) ->
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(((a & b) -> c') V ((a & b) -+ d'))

= (a «4> b) -> (c' V d') , by (3.32).

So c V d = c' V d' (mod$). For (iii), we have:

(a <& b) -> (c - )• d) == ((*«

= ((««

*&)->>

6)-> (c'--»d')

d) by (3.31)

•d<)

by (3.31).

So c —>• d = c' -> d' (mod$). For (iv), we have:

b) c = (a«

= ( a *

»&)->

*&)->

• - ( ( a

• - ( ( a

by (3.30)

by (3.30).

Thus ~ c = ~ c' (mod$) and $ is a congruence relation. Moreover (a, b) G $

by (3.29), so 6A(a , 6) C $. Conversely, if c = d (mod$) then c = 1 -» c =

(a ^ a) -4 c =0A(a ^ (a {̂  i) 4 c = (a {̂  ft) 4 d =0A(fl)t) (a ^ s) 4

d = 1 —>• d = d since —>• and -^ are respectively subtractive weak relative

pseudocomplementation and Godel equivalence terms for N. So $ C 9A(a , b)

and the terms p(x, y, z), p(x, y, w) witness EDPC for N.

Let a,b,c G A. To see p(x,y,z) is a TD term, it is sufficient to note

pA(a, a, c) = (a ̂  s) 4 c = 1 4 c = c, just because <& is a Godel equiva-

lence term for N and -4- is a subtractive weak relative pseudocomplementation.

To see p(x, y, z) is commutative, let a, b, a', b', c G A. We have:

pA{a,b,pA(a',b',c)) = (a& b) -> ((a' & b') -> c)

= (a' *• 6') -> ((a & b) -> c) by (3.17)

Finally, an easy inspection of the unique (to within isomorphism) 3-element

Nelson algebra establishes that p(x, y, z) is not regular. •
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Remark 3.1.34. Because of (3.18), p(x, y,z) := (x =$> y) -» ((y =» x) ->• z)

is also a commutative (but not regular) TD term for the variety of Nelson

algebras; compare Blok and Pigozzi [34, Corollary 5.2(i)]. •

Recall from [34, Corollary 5.2] that dual Brouwerian semilattices possess-two

distinct TD terms: the commutative (but not regular) TD term {z * (x * y)) *

(y*x) and the commutative and regular TD term z V ((x*y) V (y*x)). Thus

the existence of a commutative (but not regular) TD term for a variety V need

not preclude the existence of a commutative and regular TD term for V.

Problem 3.1.35. Does the variety of Nelson algebras possess a commutative,

regular TD term? •

Remark 3.1.36. In view of work due to Blok and Pigozzi [34, Section 5]

an obvious candidate for a commutative, regular TD term for the variety of

Nelson algebras is the term p(x, y, z) := (x <& y) A z. To see p(x, y, z) is not

a TD term for N, consider the following 6-element algebra A:

AA

0

a

b

c

d

1

0

0

0

0

0

0

0

a

0

a

a

a

a

a

b

0

a

b

c

d

b

c

0

a

c

c

a

c

d

0

a

d

a

d

d

1

0

a

b

c

d

1

VA

0

a

b

c

d

1

0

0

a

b

c

d

1

a

a

a

6

c

d

1

b

b

b

b

b

b

1

c

c

c

b

c

b

1

d

d

d

b

b

d

1

1

1

1

1

1

1

1

0

a

b

c

d

1

0

1

1

a

d

c

0

a

1

1

a

d

c

a

b

1

1

1

1

1

b

c

1

1

c

1

c

c

d

1

1

d

d

1

d

1

1

1

1

1

1

1

0

a

b

c

d

1

1

b

a

d

c

0

An easy sequence of checks shows A is a subdirectly irreducible Nelson al-

gebra and that the monolith of A is the congruence \i induced by the parti-
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Oabcdl

Oac.lh Oad.lbc

Oa,lb,c,d

O,a,b,c,d,l

(b)

Figure 3.3. (a) The Nelson algebra A of Remark 3.1.36; (b) Con A.

tion {{0, a}, {1, &}, {c}, {d}}: see Figure 3.3 (note that in Figure 3.3(b), the

congruences of A are represented by their corresponding partitions (with all

parentheses dropped)). Observe now that 0 = a (mod \i (1, &)), but (1 <$• b) A

0 = 6 A 0 = 0 ^ o = i A a = ( l ' » i ) A a . Thus p(x, y, z) does not even

witness EDPC for A, and so in particular cannot be a commutative, regular

TD term for N. •

In [29, p. 361] Blok and Pigozzi assert without proper proof that the variety

of Nelson algebras is not congruence permutable. This assertion is corrected

in [34, p. 606], where Blok and Pigozzi (citing an unpublished result of Idziak)

announce that the variety of Nelson algebras is congruence permutable. They

do not provide a proof, and in particular do not give a Mal'cev term.

Lemma 3.1.37. The variety of Nelson algebras satisfies the following identi-

ties:

~(x -> y) -¥ x « 1

~(z -> y) —> z « x ->

1 => x « x.

y ~» z)

(3.33)

(3.34)

(3.35)

Proof. Let A be a Nelson algebra and let a,b,c € A. For (3.33), observe that

~(a -> b) ^ a A ~ b by (N7). But a A ~ b < a, which implies a A ~ H a
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by (N4). Thus ~ ( a - > 6 ) ^ a A ~ 6 ^ a , whence ~ ( a -» b) ^ a by

transitivity. By (N2) we conclude ~ ( a - » 6 ) - > a = l . For (3.34), put

a := ~ ( a —>• 6), /? := a and 7 := c. We have:

->• 6) - » c = 1 ->• (~(a -¥ b) -> c)

= (~(a -4 6) -)• a) -> (~(a -> 6)

= (a —> P) -> (Q; —> 7)

= a- -4 (/? -> 7)

= 0 -> (a -> 7)

= a -4 (~(a -)• 6) -)• c).

c) by (3.33)

by (3.31)

by (3.17)

Put a := a, (3 := ~ ( a -> 6) and 7 := c. We have:

( ~ ( a ->• b) ->• c) == a -> (

= (a -»•

= ( a - *

= ( a - ^

= a - > • (

'fi ̂  7) '
P) "> (a ->
- (a ->6) )

~ 6 ) - » ( a -

7)

-4 (a -> c)

->c)

by (3.31)

by (3.30)

by (3.31)

For (3.35), observe l = > a =

by (3.14). Therefore to see 1 =$> a = a it is sufficient to show a < ~ a -> ~ 1,

or equivalently (by (N4), (N2)) both a - ) - ( ~ a - ) - ~ l ) = l and ~ ( ~ a ->

~1) -4 ~ a = 1. Now a -4 (~ a -4 ~ 1 ) = 1 by (3.23). Put a := ~ 0,

/5 := ~ 1 and 7 := ~ a. Then ~ ( ~ a — > ~ l ) - 4 ~ a = ~ ( a -> /3) —>• 7 = o; —>

(~ /5 —>• 7) = ~ a -> (~ ~ 1 —> ~ a) = ~ a —> (1 —> ̂  a) = ~ a — > ~ a = l

by (3.34),(3.10) and (3.13). Thus a < ~ a - 4 ~ l a s required. •

Lemma 3.1.38. Let A be a Nelson algebra. The following inequalities are

identically satisfied for any a, b € A:

a => b < a (3.36)

(3.37)
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Thus the following equations are identically satisfied for any a,b G A :

(a => b) ->• ( a ->• b) = 1 (3.38)

~(a -»&)-> ~(a =>• 6) = 1 (3.39)

(a=» 6) ->~(6-» ~a) = 1

6 —>• ~ a) —> <~(a =>• 6) = 1.

(3.40)

(3.41)

Proof. Let A be a Nelson algebra and let a, b G A. We have (a =$• b) A (a —>•

6) = ((a -»• 6) A (~ 6 -> ~ a)) A (a ->• ft) = (a -» b) A (~ 6 -)• ~ a) = a =̂> 6,

which is sufficient to establish (3.36). Also (a => b) A (~ 6 -> ~ a) = ((a ->

b) A (~ 6 —> ~ a)) A (~ b —>• ~ a) = (a —Y b) A (~ b -* ~ a) = a =^ 6, which

is sufficient to establish (3.37). Equations (3.38)-(3.41) now follow immediately

by (N4), (N2). ' •

Lemma 3.1.39. Let A be a Nelson algebra. The following inequalities are

identically satisfied for any a, b G A:

((a b) ^ ~ a .

(3.42)

(3.43)

Thus the following inequality is identically satisfied for any a,b G A :

(3.44)

Proof. Let A be a Nelson algebra and let a, b G A. For (3.42) observe first

that:

a=» 6) -> ,6)

= (a =» 6) ->• (a by (3.17)

by (3.38). (3.45)
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Also, put a := a, ft := b and 7 := ~(a => b) and observe that:

a

= a

=> 5))

/? -> 7)

—> 0) —> 7
-> 6) -> ~(a => 6)

by (3.34)

= 1 by (3.39). (3.46)

Now put a := a, /? := (a =>• b) —> b and 7 := ~ b —> ~(a =$• b). We have:

a -> ((a => b) => b)

= a -»• (((a =j > b) A

& -> ~ ( a =» 6)))

= a - ) (j9 A 7)

= (o; —>• /5) A (a —> 7)

= (o->- ((a=» 6) -> 6)) A

(a -> (~6 -> ~(a =» 6)))

= 1 A l
1

by (3.20)

by (3.45),(3.46)

which (in view of (N2)) establishes (3.42). For (3.43), put a := a => b, ft := b

and 7 := ~ a and observe first that:

' ( ( a =J> b) ->• 6 )

= a: ->

= (a => 6)

= 1

• 7

7)

a)

by (3.34)

by (3.40). (3.47)
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Also, put a := ~ b, /? \— ~(a =£• b) and 7 := ~ a and observe that:

b -> ~ ( a =$• 6)) —>• ~ a)

—>• /?) —> 7

a ->• (~ /? ->• 7)

~ 6 —> (~ ~ (a =4> 6) —> ~ a)

~ 6 -> ((a =» 6) -> ^ a)

(a =» 6) -> (~ 6 -* ~ a)
1

by (3.34)

by (3.10)

by (3.17)

by (3.40). (3.48)

Now put a := (a =>• b) -» b, ,6 := ~ b -> ~(a =» 6) and 7 := ~ a. We have

a => 6) =̂> 6) -> ~ a

( a = » 6) -> 6) A

(~ 6 —>• ~ ( a => 6))) -> ~ a

A 0) —>• 7

= (~ o: —>• 7) A (~ P —> 7)

-• (~((a => 6) -> 6) ->• ~ a) A

= 1 A l

= 1

by (3.25)

by (3.47),(3.48)

which (in view of (N2)) establishes (3.43). The remaining assertion of the

lemma now follows immediately by (N4). •

Theorem 3.1.40. (Idziak) The variety of Nelson algebras is congruence per-

mutable. A Mal'cev term witnessing congruence permutability is:

p(x, y, z) := ((a; =» y) => z) A {{z =>y)=$>x).
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Proof. Let A be a Nelson algebra and a, b G A. We have:

pA(a, a, b) = ((a => a) => b) A ((5 =4> a)

= (1 =» 6) A ((6 => a) =>» a)

= 6 A ((6 =* a) =» a)

= b

a)

and:

= a

pA(a,b,b) = ((a=>b)=>b) A

= ((a => b) => b) A (1 => a)

= ((a => b) => b) A a

a)

by (3.35)

by (3.44)

by (3.35)

by (3.44).

Corollary 3.1.41. The variety of Nelson algebras is arithmetical.

Proof. Congruence permutability is clear in view of the preceding theorem.

Since the variety of Nelson algebras has EDPC (by Theorem 3.1.33), it is

also congruence distributive (by Theorem 1.5.2(3)). Thus N is arithmetical as

asserted. •

In [29, p. 361] Blok and Pigozzi erroneously assert that the variety of Nelson

algebras does not have a QD term since it is not congruence permutable. The

following theorem corrects this assertion.

Theorem 3.1.42. The variety of Nelson algebras is a congruence permutable

WBSO variety. A QD term for N is:

q(x, y, z, w) := p(e(x, y, z), e(x, y, w), w)

where:

e{x,y,z) := (x & y) -+ z
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is the commutative TD term of Theorem 3.1.35 and:

p(x, y, z) := ({x z) A ((z => y) => a;,)

is the Mal'cev term of Theorem 3.1-40.

Proof. The first assertion is clear from previous remarks and Theorem 3.1.40.

The second assertion follows immediately from Theorem 3.1.33, Theorem 3.1.40

and Proposition 1.5.11(1). •

Corollary 3.1.43. The class Nss of all semisimple Nelson algebras, axioma-

tised relative to N by the identity:

[(x —> y) —> x) ~> x « 1,

is a discriminator variety. A discriminator term for Nss is given by q(x, y, z: x),

where q(x, y, z, w) is the QD term of Theorem 3.1.42-

Proof. By Viglizzo [232, Theorem 4.2] the class Nss of all semisimple Nelson

algebras is a variety, axiomatised relative to N by the identity:

((x -> y) -¥ x) -»• x « 1.

Since Nss is a semisimple congruence permutable WBSO variety, it is a dis-

criminator variety with discriminator term q(x,y,z,x)} where q(x,y,z,w) is

the QD term of Theorem 3.1.42. •

By an implicative subreduct of a Nelson algebra (A; A, V, —», ~, 0,1) we mean

a subalgebra of the reduct (A; ->, 1). If V is a variety of Nelson algebras, we

denote the class of implicative subreducts of V by S(V^>:1^). The following

theorem is an easy modification of a result due to Blok and Pigozzi [34].

Theorem 3.1.44. (cf. [34, Corollary 5.3]) For any variety V of Nelson

algebras, the class S^"*'1)) of implicative subreducts o/V is a variety.

Proof. We prove S(V^~>>1 )̂ is a variety by showing it is closed under S, P

and H. It is closed under S by definition, and it is easy to see it is closed

under P. So we have only to show HSJVt"*'^) C
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Let A := {A; -»,1) G SfV^'1*) and let B := <£; A, V,->,~,0,1) G V with

A G S((£; ->, 1)). Let $ be a congruence on A, and let F := [1]$. By

Lemma 1.5.4 (see also Rasiowa [195, Theorem V§4.4, Theorem V§4.3]) we

have that F is an implicative filter. That is, 1 G F and F has the detachment

property: 1 G F trivially, and, if c = 1 (mod$) and c -> d = 1 (inod$), then:

d = 1 -> d =$ c -* d =$ 1.

Let £ be the filter on B generated by F, and let Q{G) be the congruence

on B such that G — [1]©(G)! of course, Q(G) exists and is unique, just be-

cause of Proposition 1.5.5. By Proposition 1.5.5 (see also Rasiowa [195, The-

orem V§4.5]) 0(G) = {(a,b) e B x B : a => b,b => a e G}. Moreover,

by (3.17) and Rasiowa. [195, Theorem V§4.8] we have that a = b (mod0((?))

iff:

ci ->• (c2 -> ( )• (c* -> (a => 6))) • • •) = 1 and

for some Ci , . . . , Ck G F. If a. 6 G i4, then a => b,b =$> a E F follows from

the fact that F has the detachment property. Thus by Theorem 3.1.33, Re-

mark 3.1.34 and the definition of F,

a = 1 -» (1 -*• a)

=$ (a=>b)-> ((b => a) -> a)

= (a=>b)-+ ((b =>- a) -> 6)

=* 1 -> (1 -> 6)

= 6.

We have shown 0(G) n /i2 C $. Conversely, if a, 6 G 4 and a = b (mod*),

then a =>> 6 =«j 1 =$ 6 => a by Rasiowa [195, Theorem V§4.5]. Hence

a=>6, 6 = » a G F C G and consequently a = b (modQ(G)). Thus $ C

Q{G)nA2. So 0(C?) n ^ 2 = $, and thus A / $ is isomorphic to a subalgebra of

the implicative reduct of B/Q(G). Hence A / $ G S(V^'1^), which completes
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the proof of the corollary. ' •

Problem 3.1.45. Axiomatise the variety S(N{~>llJ). Is S(N^>1}) finitely ax-

iomatisable? •

Let V be a variety of Nelson algebras. By the previous theorem, the class

SfN/f"*'1)) of implicative subreducts of V is a variety. Moreover, by Rasiowa [195,

Theorem V§1.3] we have that N f= (1.45)-(1.48), so S(V^'1>) is a variety of

MINI-algebras (this observation also follows from Theorem 3.1.44 and Propo-

sition 3.1.24, since -4 is a subtractive weak relative pseudocomplementation

for N). Consider now the following 4-element Nelson algebra A:

AA

0

a

b

1

0

0

0

0

0

a

0

a

b

a

b

0

b

b

b

1

0

a

6

1

VA

0

a

b

1

0

0

a

b

1

a

a

a

a

1

b

b

a

b

1

1

1

1

1

1

0

a

b

1

0

1

b

1

0

a

1

1

1

a

b

1

6

1

b

.1

1

1

1

1

0

a

b

1

1

b

a

0

Since ((a -> 0) -» 0) -> 0 = (b -» 0) -> 0 = 1 -> 0 = 0 ^ 1, we conclude

that A)fc((x->y)-*x) ->x&l. Therefore in general S(VH.i>) ^ ^x ^

y) -4 x) —> x & 1. Prom these remarks it clearly follows that the varieties

of {commutative, positive implicative, implicative}-pre-BCK-algebras and the

variety of implicative BCS-algebras do not exhaust the naturally occurring

subvarieties of pre-BCK-algebras that may be of interest in universal algebra

and algebraic logic.

3.2 Binary and Dual Binary Discriminator Va-

rieties

Recall from Example 2.3.11 that on any binary discriminator algebra the bi-

nary discriminator is precisely implicative BCS difference, and thus that any

member of a binary discriminator variety has a canonical implicative BCS-

algebra polynomial reduct. This observation calls for a study of the role played

by implicative BCS-algebras in binary discriminator varieties. More generally,
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this remark (in conjunction with the remarks of §1.7.20) calls for the study of

bands in dual binary discriminator varieties.

Dual binary discriminator varieties are considered in §3.2.1. It is shown that

the variety of left normal bands with zero coincides with the pure dual binary

discriminator variety, namely the variety generated by the class of all dual

binary discriminator algebras (.A; h,0), where h is the dual binary discrimi-

nator on A and 0 is a nullary operation. We also give a semigroup-theoretic

characterisation of dual binary discriminator varieties in terms of left normal

bands with zero.

In §3.2.6 binary discriminator varieties proper are studied. It is shown that the

variety of implicative BCS-algebras coincides with the pure binary discrimina-

tor variety, namely the variety generated by the class of all binary discriminator

algebras (A] 6,0), where b is the binary discriminator on A and 0 is a nullary

operation. We prove that any member A of a binary discriminator variety V

has an implicative BCS-algebra polynomial reduct whose iBCS-ideals coincide

with the V-ideals of A. We characterise binary discriminator varieties in ideal-

theoretic terms: a pointed variety is a binary discriminator variety iff it is

subtractive with EDPI and is generated by a class of ideal simple algebras. A

characterisation of binary discriminator varieties in the spirit of Agliano and

Ursini's characterisation of subtractive varieties .*.i«h EDPI is also given. The

results are illustrated with some examples.

In §3.2.22 attention is focussed on point regular binary discriminator varieties.

We prove two results that together show a pointed variety is a point regular

binary discriminator variety iff it is a 'pointed' fixedpoint discriminator variety.

In the main result of the section, the 'pointed' fixedpoint discriminator varieties

are characterised: a pointed variety is a 'pointed' fixedpoint discriminator

variety iff it is ideal determined, semisimple and has EDPC. The results give

a partial answer to a question of Blok and Pigozzi.

The relationship between binary and pointed ternary discriminator varieties is

considered in §3.2.32. It is shown that a pointed variety is a pointed ternary

discriminator variety iff it is a congruence permutable point regular binary
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discriminator variety. We also give an (almost) trivial syntactic criterion both

necessary and sufficient for a point regular binary discriminator variety to be

a pointed ternary discriminator variety.

3.2.1. Dual Binary Discriminator Varieties. In [58, Example (2), p. 242]

Chajda, Halas and Rosenberg observed that the simplest non-trivial example of

a dual binary discriminator algebra is 2, the one-element semilattice with a zero

adjoined. Since 2 is, to within isomorphism, the only subdirectly irreducible

meet semilattice with zero, it follows from this example that the variety of meet

semilattices with zero is a dual binary discriminator variety. This result may

be regarded as a specialisation to meet semilattices with zero of the following

theorem, in the statement of which the pure dual binary discriminator variety

(in symbols, PdBD) denotes the variety generated by the class of all dual binary

discriminator algebras (A; /i,0), where h is the dual binary discriminator

function on A and 0 is a nullary operation.

Theorem 3.2.2. The variety of left normal bands with zero coincides with the

pure dual binary discriminator variety.

Proof. Let K denote the class of all dual binary discriminator algebras (A; h,0)

where h is the dual binary discriminator function on A and 0 is a nullary

operation. By definition of the dual binary discriminator and Example 1.3.20

every member of K is a left normal band with zero, so K C lnB0, the variety of

left normal bands with zero. Hence the variety V(K) generated by K, namely

PdBD, is a subvariety of In Bo- Conversely, the three-element left normal band

with zero 3^ is a member of K; since an easy consequence of Corollary 1.3.19

shows 3^ generates lnB0 as a variety we have that InBo = V(3i) C V(K) =

PdBD. •

Given a band with zero A, we say A is V-simple or primitive if the only

^-equivalence classes of A are {0} and A — {0}. Notice that A is £>-simp!e

iff A/V is isomorphic to 2, the one element semilattice with a zero adjoined.

By the proof of Theorem 3.2.2, any dual binary discriminator algebra (consid-

ered as a band with zero) is £>-simple, which observation suggests the following

semigroup-theoretic characterisation of dual binary discriminator varieties (im-

plicit in [58, Section 5]). In the statement of the theorem and in the sequel
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the dual binary discriminator [term] is denoted fl; of course, this change in

notation is legitimised by Theorem 3.2.2.

Theorem 3.2.3. (cf. [58, Theorem 5.2]) For a variety V the following are

equivalent:

1. V is a dual binary discriminator variety;

2. There exists a binary term x H y of V such that for any A G V, the

polynomial reduct (A; nA ,0) is a left normal band with zero, and any

one of the following conditions is satisfied:

(a) V is generated by a class of algebras K such that for each A G K, the

left normal band with zero polynomial reduct (A\ nA , 0) is V(A] n
A,o)~

simple;

(b) V is generated by a class of algebras K such that for each A G K,

the maximal semilattice homomorphic image (A; nA,0)/X>^i4;nAj0)

of the left normal band with zero polynomial reduct (A; nA , 0) is

isomorphic to 2, the one-element semilattice with a zero adjoined;

Proof. Let V be a variety with 0. By previous remarks the equivalence (2) (a) 43>

(2)(b) is clear, so it only remains to prove the equivalence (1) <& (2)(a).

(1) =>• (2) (a) Suppose V is a dual binary discriminator variety with dual binary

discriminator term x fl y generated by a class K of dual binary discriminator

algebras. By definition of the dual binary discriminator and Example 1.3.20,

the polynomial reduct (A; nA ,0) of each A G K is a left normal band with

zero whose only V(A.>ri A ̂ -equivalence classes are {0} and A — {0}. For each

A G K, therefore, (A; nA ,0) is primitive. Upon recalling that the class of

left normal bands with zero is equationally definable, we may also infer the

polynomial reduct (£; nB ,0) of any B G V is a left normal band with zero,

just because the identities satisfied by V are precisely those satisfied by K.

(2) (a) =>• (1) Suppose (2) (a) holds for V. Let K be a subclass of V satisfying

the conditions of (2)(a) and let A G K. Let a, b G A. If b - 0, then aHA b = 0

since the polynomial reduct (A; I~1A, 0) is a left normal band with zero. So
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assume b ^ 0. If o = 0, then a n A b = 0 = a, also because the polynomial

reduct (A; nA ,0) is a left normal band with zero. So assume o / 0 . Then

a,b G J 4 - { 0 } , whence a = b (mod2fyi;nA,o>) since (̂ 4; flA,0) is primitive. By

the Clifford-McLean theorem for bands, a flA b flA a = a, whence a flA b = a

by left normality. We have shown that, for any'a, b E A, a n A 6 = 0 if 6 = 0

and a otherwise, so f~lA is the dual binary discriminator on A Thus K is a

class of dual binary discriminator algebras; since K generates V as a variety

we have that V is a dual binary discriminator variety. •

Example 3.2.4. (c/. [58, Section 2, p. 241]) Let V be a pointed dual

ternary discriminator variety (say with 0) with dual ternary discriminator

term d(x,y,z) generated by a class K C V of dual ternary discriminator alge-

bras. For any A G K, let x n y := d(0, y, x). By definition of the dual ternary

discriminator,

a nA 6 = dA(0, 6, a)

0 if 6 = 0

a otherwise

whence A is a dual binary discriminator algebra. Hence K is a class of dual

binary discriminator algebras and V is a dual binary discriminator variety. •

Let A be a band with zero. For any 5 C i , let BAB [BA; AB] denote the

set {bab : b G B,a G A} [{6a; 6 G 5 , a G 4} ; {ab : a G A, b G B}]. A

non-empty subset I C A such that both IA C A and AI C A is an ideal

of A (in the usual semigroup-theoretic sense) [111, pp. 4-5]. By remarks of

Ursini [222, Remarks (b), pp. 211-212], the semigroup-theoretic ideals of A are

precisely the ideals of A in the sense of §1.7.1; from remarks due to Petrich [180,

Chapter 1.2.3, pp. 4-5], it follows that A is ideal simple iff B = BcB for all

c G B, where B := A — {0}. Suppose A is primitive. By assumption, a =

6 (mod£>) for any a, 6 G B, whence BcB = {dcd : d G B} = {d : d G B} = B

for all c G B. Hence A is ideal simple. Conversely, suppose A is ideal simple.

By hypothesis, BaB = B = BbB for all a,b G B. But for any a, 6 G A we have

that aVb iff AaA = AbA by Howie [111, Section 2.4, p. 55]. It follows that
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the only ^-equivalence classes of A are {0} and B (:= A - {0}), whence A

is primitive. Thus A is ideal simple iff it is primitive. This observation, in

conjunction with Theorem 3.2.3, gives rise to the following problem.

Problem 3.2.5. Give an ideal-theoretic characterisation of dual binary dis-

criminator varieties. t •

3.2.6. Binary Discriminator Varieties. To within isomorphism, there

is just one two-element binary discriminator algebra, namely the two-element

flat implicative BCK-algebra Ci of Example 1.6.18. Since Ci is, to within

isomorphism, the only subdirectly irreducible implicative BCK-algebra (recall

Theorem 1.6.19), the variety of implicative BCK-algebras is a binary discrim-

inator variety. We take this observation, which does not seem to have been

made by Chajda, Halas and Rosenberg in [58], as the starting point for our

study of binary discriminator varieties. To begin, denote by the pure binary

discriminator variety (in symbols, PBD) the variety generated by the class of

all binary discriminator algebras (A; 6,0), where b is the binary discriminator

function on A and 0 is a nullary operation.

Theorem 3.2.7. The variety of implicative BCS-algebras coincides with the

pure binary discriminator variety.

Proof. Let K denote the class of all binary discriminator algebras (A; 6,0)

where b is the binary discriminator function on A and 0 is a nullary opera-

tion. By Example 2.3.8 every member of K is a flat implicative BCS-algebra,

whence K C iBCS. It follows that the variety V(K) generated by K, namely

PBD, is a subvariety of iBCS. Conversely, the three-element flat implicative

BCS-algebra B 2 is a member of K; since B 2 generates iBCS as a variety (by

Theorem 2.3.73) we have that iBCS = V(B2) C V(K) = PBD. •

The following result is due to the author's Ph.D. supervisor. In the statement

of the theorem and in the sequel we denote the binary discriminator [term]

by \; of course, this change in notation is justified by Theorem 3.2.7.

Theorem 3.2.8. (Bignall) Any algebra A in a binary discriminator variety V

has an implicative BCS-algebra polynomial reduct whose \BCS-ideals coincide

with the V-ideals of A.
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Proof. By Theorem 3.2.7, any algebra A in a binary discriminator variety V

has a canonical implicative BCS-algebra polynomial reduct (-4; \ ,0) . Let

I e Iv(A). Since V is subtractive, / = [0]g for some 9 G Con A by Propo-

sition 1.7.5. Since 9 is also a congruence on (A; \ ,0) , we have that / is an

iBCS-ideal of (A; \ , 0), just because the ideals of any implicative BCS-algebra.

are the 0-classes of its congruences. For the converse, let (a)(J4i \,o) be a prin-

cipal iBCS-ideal of the canonical implicative BCS-algebra polynomial reduct

(A; \ , 0). Let $0 be the relation defined on A x A by b = c(mod#o) iff

b\a = c\a. By Lemma 2.3.45(l)(a)',(2)(a) i5a is a congruence on (A; \,0)

with the property that [0]^a = (a)(yi;\,o>- Suppose / is an n-ary fundamental

operation on A and that &,- = ct- (mod$a) for i = 1 , . . . , n. By Theorem 1.7.21,

. . . , bn)\a = f{h\a,..., bn\a)\a

= f(ci\a,...,cn\a)\a

= f(cu...,cn)\a

so f(b\, ...,bn)= / ( c i , . . . , cn) (mod#a). Hence $a is a congruence on A and

(fl)(i4;\,o) ^ Iv(A). Let now J be an arbitrary iBCS-ideal of (.4; \ ,0) . Put:

where the join is taken in the lattice of equivalence relations. Then ip must

be a congruence on both A and (A; \ , 0), just because each #„ is. Since the

0-class of ip is clearly J, we have that J is a V-ideal of A as required. •

In general, the converse of Theorem 3.2.8 fails to hold: see Remark 3.2.21 in

the sequel.

Corollary 3.2.9. Let V be a binary discriminator variety with binary dis-

criminator term x\y and dual binary discriminator term xHy. The following

statements hold:

1. V has EDPI witness x\y;

2. V is ideal distributive;
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3. V has the ideal extension property;

4- xfly is a meet generator term for V;

Further, if V is with {0,1}, then:

5. x U y := l \(( l \a;) l~l (l\y)) is a join generator term for V.

Proof. Because of Theorem 3.2.8, Proposition 2.3.5 and Proposition^.2.30, (1)

follows from Theorem 2.2.20, while (2) and (3) follow from Proposition 2.1,24.

For (4) and (5), notice that on any binary discriminator algebra, the binary

discriminator coincides with implicative BCS difference, while the dual binary

discriminator coincides with the implicative BCS meet. Because of these re-

marks and Theorem 3.2.8, Proposition 2.3.5 and Proposition 2.2.30, x n y

and x U y are meet and join generator terms for V by Proposition 2.2.31 and

Proposition 2.3.60(2) respectively. •

In introducing the binary discriminator as a generalisation of the ternary dis-

criminator to varieties exhibiting congruence permutability only locally at 0,

Chajda, Halas and Rosenberg were primarily concerned with generalising a

well-known result of Pixley [184, Theorem 3.1] to the effect that a (finite) al-

gebra A is a ternary discriminator algebra iff V(A) is arithmetical and A is

hereditarily simple. In particular, in [58] they proved:

Proposition 3.2.10. [58, Corollary 2.2] If A is a binary discriminator alge-

bra then V(A) is arithmetic at 0 and A is hereditarily ideal simple.

Chadja, Halas and Rosenberg were unable to establish a converse of Proposi-

tion 3.2.10, except in the restricted case of main ideal term algebras. A main

ideal term algebra is an algebra A with 0 for which there exists a binary term

function o and a unary term function ' of A such that the following equations

are identically satisfied for any a, b € A:

(a o b") o b' = 0 and a o 0' = a

and moreover:

(a)A = {bo a": be A} for every a £ A — {0},
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where a" is shorthand notation for (a')'. By [58, Theorem 4.1] a main ideal

term algebra A is a binary discriminator algebra iff A is ideal simple. In

contradistinction to this result, the following theorem characterises binary dis-

criminator algebras solely in ideal-theoretic terms.

Theorem 3.2.11. (cf. [229, Proposition 6.13]) An algebra-A is a binary

discriminator algebra iff A is ideal simple and the variety V(A) generated

by A is subtractive with EDPI.

Proof. (=>) Let A be a binary discriminator algebra. By Proposition 3.2.10, A

is ideal simple and V(A) is subtractive. Since V(A) is a binary discriminator

variety, by Corollary 3.2.9(1) we have that V(A) has EDPI.

(<=) Let A be ideal simple and suppose V(A) is subtractive with EDPI. By

Theorem 1.7.9 there exists a term x\y of V(A) that witnesses both subtrac-

tivity and EDPI in the sense that V(A) \= x\x « 0, x\0 « x and a\Bb = 0

iff a G (6)B for any B G V(A) and a, 6 G B. We will show x\y induces the

binary discriminator on A. Let a, b G A. Suppose 6 = 0. By subtractivity

a\Ab = a\A0 = a. Suppose 6 ^ 0 . From 6 e (6)A we have that (6)A ^ {0},

which implies by ideal simplicity that (b)A = A. Therefore a G (6)A, whence

a\Ab = 0 by EDPI. Thus A is a binary discriminator algebra. •

Corollary 3.2.12. A variety V is a binary discriminator variety iff it is sub-

tractive with EDPI and is generated by a class of ideal simple algebras.

In the following theorem, we give an alternative characterisation of binary dis-

criminator varieties, in the spirit of Agliano and Ursini's characterisation of

subtractive varieties with EDPI (Theorem 3.1.6); note that this characterisa-

tion of binary discriminator varieties is implicit in [58, Section 5].

Theorem 3.2.13. (cf. Theorem 1.7.21) For a variety V the following are

equivalent:

1. V is a binary discriminator variety;

2. There exists a binary term x\y of V such that:
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(a) For any A G V, the polynomial reduct (A] \A ,0) is an implicative

BCS-algebra;

(b) For any A G V and a G A, (a)A = (a){A.\Afi);

(c) V is generated by a class KCV whose members are ideal simple.

Proof. (1) =>• (2) Suppose V is a binary discriminator variety with binary dis-

criminator term x\y. For any A G V the polynomial reduct (A] \A ,0) is an

implicative BCS-algebra by Example 2.3.11, which establishes (2)(a). More-

over, for any A G V and a € A we have (a)A = (O){A-,\A,O)
 a s a particular case

of Proposition 3.2.8; thus (2)(b) holds. And, since V is a binary discriminator

variety, from Theorem 1.7.21 we have that V is generated by a class K C V of

ideal simple algebras, which establishes (2)(c).

(2) => (1) Suppose V is a variety satisfying (2)(a)-(c). By (2) (a) and Theo-

rem 2.1.3 we have that V is subtractive, while from (2)(b) and Theorem 2.2.20

we have that V has EDPI. Because of (2)(c), it follows that V is a subtractive

variety with EDPI generated by a class K C V of ideal simple algebras; the

result now follows from Corollary 3.2.12, •

In the following series of examples, we list some binary discriminator varieties

beyond those given by Chajda, Halas and Rosenberg in [58].

Example 3.2.14. Let V be a fixedpoint discriminator variety with 0 generated

by a class K C V of fixedpoint discriminator algebras such that 0 realises

the discriminating element on any A G K. Let f(x,y,z) be a fixedpoint

discriminator term for V. By Example 2.3.13, V is a binary discriminator

variety with binary discriminator term f(O,y,x), while K is a class of binary

discriminator algebras generating V. •

Example 3.2.15. (cf. [58, Section 2, p. 241]) Let V be a pointed ternary

discriminator variety (say with 0) with ternary discriminator term t(x, y,z)

generated by a class K C V o f ternary discriminator algebras. For any A G K,

let x\y := t(0, y,x). By definition of the ternary discriminator,
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a if b = 0

0 otherwise

whence the polynomial reduct {A; \A ,0) is a flat implicative BCS-algebra.

Hence K is a class of binary discriminator algebras and V is a binary discrim-

inator variety. •

Example 3.2.16. By the proof of Proposition 3.1.8, the reduct (.4; \ , 0) of any

primitive skew Boolean algebra A is a flat implicative BCS-algebra. Hence A is

a binary discriminator algebra, and the binary discriminator on A is standard

difference. By Theorem 1.4.29, the class SBA of skew boolean algebras is

generated as a variety by any family of primitive skew Boolean algebras that

contains the 3-element left and right handed primitive algebras 3P
L and 3^.

Hence SBA is a binary discriminator variety. •

Example 3.2.17. By Example 2.3.12 the class of pseudocomplemented semi-

lattices is a binary discriminator variety (with binary discriminator term x\y :=

i A (/*), generated (as a binary discriminator variety) by the 3-element chain 3

(considered as a pseudocomplemented semilattice). More generally, PCSL is

generated (as a binary discriminator variety) by any subclass of the family

of bounded chains (considered as pseudocomplemented :>::nilattices) that in-

cludes 3. Indeed, if A is a bounded chain, then b* = 0 if b ̂  0 and 0 otherwise,

whence a\b = a if b = 0 and a otherwise for any a, b (5 A. Hence the canonical

implicative BCS-algebra polynomial reduct (A] \ , 0) of A is flat, and A is a

binary discriminator algebra. •

Example 3.2.18. Recall from Example 1.4.30 that a Stone algebra is a dis-

tributive lattice with pseudocomplementation satisfying i ' V i " « 1, By

Balbes and Dwinger [14, Example VIII§7.2] any bounded chain A (considered

as a distributive lattice with pseudocomplementation) is a Stone algebra. By

Example 2.3.12 and the remarks of §1.3.5, A has a canonical implicative BCS-

algebra polynomial reduct (A\ \ ,0) , which must be flat by Example 3.2.17.

Hence A is a binary discriminator algebra. Since the class of Stone algebras is

generated (as a variety) by any subclass of the family of bounded chains that

includes 3, the 3-element chain considered as a Stone algebra (see Balbes and
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Dwinger [14, Theorem VIII§7.1] or Gratzer [100]), the class of Stone algebras
is a binary discriminator variety. i •

Remark 3.2.19 (Added in proof). The author's Ph.D. supervisor has

pointed out that the class of Abelian Rickart semirings, studied by Cornish

in [63], is also a binary discriminator variety. This observation generalises Ex-

ample 3.2.18, since Stone algebras are a subvariety of the variety of Abelian

Rickart semirings. •

The final example of this subsection shows that the variety DLPC of distribu-

tive lattices with pseudocomplementation is not a binary discriminator variety.

This example is of interest since every distributive lattice with pseudocomple-

mentation has a canonical implicative BCS-algebra polynomial reduct. Binary

discriminator varieties therefore do not exhaust those classes of algebras in

which implicative BCS-algebras arise naturally (recall the remarks following

Problem 2.3.IS in the prequel).

Example 3.2.20. By Example 2.3.12 and the remarks of §1.3.5 any distribu-

tive lattice with pseudocomplementation A has a canonical implicative BCS-

algebra polynomial reduct (A] \, 0), where a\b :— a A b* for any a, b e A.

However, DLPC is not a binary discriminator variety. To see this it is sufficient

to show there is no subclass K of DLPC with a binary term b(x, y) that realises

the binary discriminator on each A € K and for which DLPC = V(K). Observe

first by inspection of both the DLPC-free algebra on two free generators [217]

and the subdirectly irreducible members of DLPC [101, Section 16] that the

only binary term b(x, y) of DLPC inducing implicative BCS difference is re A y*.

Because of Example 2.3.61(2) and Lemma 2.3.63(2), this implies A is a binary

discriminator algebra iff (̂ 4; \ , 0) is flat iff A is dense (that is, any element

in A - {0} is dense). By results due to Agliano and Ursini [9, Result, p. 256]

and Gratzer [101, Exercise 3§14.3, p. 164] every dense distributive lattice with

pseudocomplementation (B] A, V, *,0) arises from a bounded distributive lat-

tice (B; A, V) upon: (i) adjoining a new element 0 to B such that 0 < b for

all 6 e B] (ii) defining a pseudocomplementation operation on B by b* := 0

if b ^ 0 and b* :— 1 otherwise, where 1 is the greatest element of B; and (iii)

distinguishing the operation * and the least element 0. (See also Balbes and



3.2. Binary and Dual Binary Discriminator Varieties 279

Dwinger [14, Example VIII§7.3].) Let A be a dense distributive lattice with

pseudocomplementation. Because of the definition of* on A, it is easy to see

that A |= x* V x** m 1, whence A is a Stone algebra. Hence the class of all

binary discriminator algebras of DLPC generates the variety of Stone algebras,

not the variety of distributive lattices with pseudocomplementation, so DLPC

is not a binary discriminator variety. •

Remark 3.2.21. Example 3.2.20 shows also that Condition (2)(c) of Theo-

rem 3.2.13 is not artificial. Indeed, we have already observed in Example 3.2.20

that any distributive lattice with pseudocomplementation A has a canonical

implicative BCS-algebra polynomial reduct (.4; \ ,0) , whence DLPC satisfies

Condition (2) (a) of Theorem 3.2.13. Also, by Agliano and Ursini [9, Exam-

ple 6.1, p. 256] the principal DLPC-ideal (6)A generated by b € A is (&**],

whence a <E (6>A iff a < b** iff a A b* = 0 iff a\b = 0 iff a € {b)(A;\fi)-

Thus the principal DLPC-ideals of A coincide with the principal iBCS-ideals

of (4; \ ,0) , and DLPC satisfies Condition (2)(b) of Theorem 3.2.13. Because

DLPC satisfies Conditions (2)(a)-(2)(b) of Theorem 3.2.13 but is not a binary

discriminator variety, Condition (2)(c) cannot be omitted from the assertion

of the theorem. •

3.2.22. Point Regular Binary Discriminator Varieties. Corollary 3.2.9

prompts us to investigate O-regular binary discriminator varieties, since 0-

regularity implies ideal determinacy for such varieties (by Proposition 1.7.3)

and hence EDPC (by Corollary 3.2.9(1) and Proposition 1.7.10). To begin,

recall from §1.5.9 that the fixedpoint discriminator on a set A is the ternary

operation / : A3 —> A defined for any a, 6, c 6 A by:

/ (a , 6, c) :=
c if a = b

0 otherwise,

where 0 € A is the discriminating element of/. A pointed fixedpoint discrimi-

nator algebra is an algebra A with 0 for which there is a ternary term / of A

that realises the fixedpoint discriminator on A such that 0A is the discriminat-

ing element. A pointed fixedpoint discriminator variety is a variety V with 0 for

which there is a subclass K of V such that V = V(K) and a ternary term / of V
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such that / realises the fixedpoint discriminator with discriminating element

0A on each A € K. In this case / is called a pointed fixedpoint discriminator

term for V.

Remark 3.2.23. Pointed fixedpoint discriminator varieties should not be con-
fused with fixedpoint discriminator varieties that happen to be pointed. In
particular, while every pointed fixedpoint discriminator variety is a fixedpoint
discriminator variety that is pointed, the converse does not hold. To see this,
let A := (A] 0A) be a pointed set. Let / : .A3 —> A be a fixedpoint discrim-
inator on A with discriminating element 0A ^ d 6 A. Let A := {A; / , 0 A ) .
Then V(A) is a fixedpoint discriminator variety that is'pointed, but it is not
a pointed fixedpoint discriminator variety. See Blok and Pigozzi [34, p. 580].

Theorem 3.2.24. Let V be a variety with 0. If V is a 0-regular binary dis-

criminator variety then V is a pointed fixedpoint discriminator variety. In this

case a pointed fixedpoint discriminator term for V is given by:

f{x,y,z) := {• - • (z\di(x,y))\- -)\dn{x,y)

where x\y is a binary discriminator term for V and d\(x, y),..., dn(x, y) are

binary terms witnessing the O-regularity o/V in the sense of Proposition 1.2.6.

Proof. Let V be a variety with 0. Suppose V is a 0-regular binary discriminator
variety with binary discriminator term x\y and that di(x, y),..., dn(x, y) are
binary terms witnessing the O-regularity of V in the sense of Proposition 1.2.6.
Let K C V be a class of binary discriminator algebras generating V as a va-
riety. We will show f(x,y,z) induces the pointed fixedpoint discriminator
on any member of K. So let A 6 K and a,b,c £ A. Suppose a = 6. By
Proposition 1.2.6 we have that di(x:x) « 0 for all 1 < i < n, whence:

6))\ ( c \ A 0 ) \ A ••• ) \ A 0

— c

by repeated application of the identity z\0 « x. Suppose instead that a ^
b. If dA(a, b) = 0 for all 1 < i < n then a = b by Proposition 1.2.6, a
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contradiction. Thus dA(a, b) ^ 0 for some 1 < i < n. By definition of the

binary discriminator, this implies that the subexpression of / A (a , 6, c) of the

form:

must equal 0. We therefore have that:

A(a, b))\ Ad,^(a, 6))\

= 0

by repeated application of the identity 0\x « 0. Hence / A ( a , 6,c) = c if

a = 6 and 0 otherwise, whence f{x,y,z) induces the fixedpoint discrimina-

tor on any member of K. Since K generates V as a variety we have that V

is a pointed fixedpoint discriminator variety and that f(x,y,z) is a pointed

fixedpoint discriminator term for V. •

Corollary 3.2.25. Let V be a variety with {0,1}. / /V is a 0-regular binary

discriminator variety then the following assertions hold:

1. The term f(x, y, z) of Theorem 3.2.24 is a commutative TD term for V

that is regular with respect to 1;

2. V is a variety of subtractive weak Boolean algebras with filter preserv-

ing operations. Weak meet, weak relative pseudocomplement and Godel

equivalence terms for V are defined respectively by:

Proof. Immediate by Theorem 3.2.24 and Theorem 1.5.14. •

Remark 3.2.26. The hypothesis that V is double-pointed in Corollary 3.2.25

is essential if the conclusions of the corollary are to obtain, since the variety
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of implicative BCK-algebras is a 0-regular binary discriminator variety that

does not possess either a TD term that is regular or a weak meet. See Blok

and Pigozzi [34, p. 589]. r •

Example 3.2.14 shows that a pointed fixedpoint discriminator variety is a bi-

nary discriminator variety. Given Theorem 3.2.24, it is therefore natural to ask

if the converse of Theorem 3.2.24 also holds. Perhaps surprisingly, the answer

to this question is 'yes'-

Theorem 3.2.27. Let V be a variety with 0. / / V is a pointed fixedpoint

discriminator variety, then V is a 0-regular binary discriminator variety. In

this case a binary discriminator term for V is given by:

x\y :=/(O,y,a:)

where f(x,y,z) is a pointed fixedpoint discriminator term for V, while the

binary terms:

di(x)y):=x\f(x,y,x) and := y\f(y,x,y)

witness O-regularity for V in the sense of Proposition 1.2.6.

Proof. Let V be a variety with 0. Suppose V is a pointed fixedpoint discrimi-

nator variety with pointed fixedpoint discriminator term f(x, y, z). Let KCV

be a class of fixedpoint discriminator algebras generating V as a variety. Put
x\y : = /(0,2/, a;). For any A € K and a, b € A, by Example 2.3.13 we have

that:

a \ A 6= / A (O ,6 , a )

a if b = 0

0 otherwise,

whence {A; \ ,0) is a flat implicative BCS-algebra. Thus x\y induces the

binary discriminator on any member of K. Since K generates V as a variety,

it follows that V is a binary discriminator variety. To see V is 0-regular,



3.2. Binary and Dual Binary Discriminator Varieties 283

put x/y := x\f(x,y,x). For any A € K and a, b E A, by definition of the

fixedpoint discriminator we have that:

a/b = a\AfA{a, b, a)

= / A (0 , / A ( a ,6 , a ) , a )

a if a ^ b

0 otherwise,

whence (A] / ,0) is (by Example 1.6.18) a^flat implicative BCK-algebra. Be-

cause the identities satisfied by V are precisely those satisfied by K, it follows

that any algebra B 6 V has an implicative BCK-algebra polynomial reduct

(B; / B , 0 ) . Since any algebra with a point regular polynomial reduct must

itself be point regular, we conclude from the O-regularity of (B; / B , 0) (re-

call Theorem 1.6.17 and Theorem 1.6.10(3)) that B is O-regular. Thus V is

0-regular and the binary terms di(x,y) :— x/y, d%(x,y) := y/x witness 0-

regularity for V in the sense of Proposition 1.2.6. •

Remark 3.2.28 (Added in proof). An implicative BCSK-algebra is an al-

gebra {A; /,\,0) of type (2,2,0) such that: (i) the reduct (A; / ,0) is an

implicative BCK-algebra; (ii) the reduct (A; \ ,0) is an implicative BCS-

algebra; and (iii) the implicative BCK partial order < ^ ; /)0) and the implicative

BCS partial order < ^ ; \)0> coincide. By an unpublished result of the author,

an algebra A := (̂ 4; / , \ , 0) of type (2,2,0) is an implicative BCSK alge-

bra iff A f= (1.35)-(1.38), A |= (2.47)-(2.50) and A satisfies the identities

{x\y)/x as 0 and x\(x\(x/y)) « x/y, whence the class iBCSK of implicative

BCSK-algebras is a variety.

The variety iBCSK arises in the first instance from algebraic logic. Let C :=

{->,=>} be a language of type (2,2). BCSK logic is the deductive system

'SK := ( A h ^ j j ) defined by the following axioms and inference rule:

> r)) =» ((p =* q)

=> q)=>p)=>p

(p => r))

HB1)

(B2)

(B3)
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(p -» (g -> r)) =* ((p

(p -» (g -> r)) =* (g -

((p -> g) -»p) =» p

((P

-» (p

(P

P)
sy

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(BCSK-MP)

BCSK logic was introduced by the author in [211] and has been extensively

investigated by Humberstone in [112], where connections with modal logic

(including the Lewis system S5) are established. Unpublished results of the

author show BCSK is algebraisable (with equivalence formulas {p =4> q, q =>• p}

and defining equation p « p => p) and that its equivalent algebraic semantics

is termwise definitionally equivalent to iBCSK.

Call an implicative BCSK-algebra flat if its underlying poset is flat. The proof

of Theorem 3.2.27 shows any pointed fixedpoint discriminator algebra (̂ 4; / , 0)

has a flat implicative BCSK-algebra polynomial reduct (A; / , \ , 0 ) , where:

a\b :=/(0, b, a) and a/b := a\f(a,b,a)

for any a,b 6 A. Conversely, unpublished results due to the author and the au-

thor's Ph.D. supervisor show that an implicative BCSK-algebra is subdirectly

irreducible iff it is flat (for some details, see Humberstone [112, Section 1,

Appendix B]), whence the class iBCSK is a pointed fixedpoint discriminator

variety with pointed fixedpoint discriminator term:

f{x,y,z) := (z\{x/y))\(y/x).
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Let FPD0 denote the pure pointed fixedpoint discriminator variety, namely the

variety of type (3,0) generated by the class of all pointed fixedpoint discrimi-

nator algebras (A] / , 0), where 0 is a nullary operation and / is the fixedpoint

discriminator on A with discriminating element 0. In view of the preceding

discussion, it is easy to see that FPD0 is termwise definitionally equivalent to

iBCSK. Moreover, because the congruence structure of any algebra in a fixed-

point discriminator variety is (by Lemma 1.5.10) completely determined by

the fixedpoint discriminator term, any algebra A in a pointed fixedpoint dis-

criminator variety must have an implicate BCSK-algebra polynomial reduct

whose congruences coincide with those of A. These remarks extend and con-

trast with Blok and Pigozzi [34, Section 3]: see in particular [34, Corollary 3.6].

In their study [34] of varieties with equationally definable principal congru-

ences, Blok and Pigozzi posed the following problem [34, Problem 7.3]: Does

there exist a purely algebraic characterisation of fixedpoint discriminator va-

rieties similar to the one for ternary discriminator varieties given in Theo-

rem 1.5.13(4)? For pointed fixedpoint discriminator varieties, the following

theorem provides an affirmative answer to this question.

Theorem 3.2.29. For a variety V with 0, the following are equivalent:

1. V is a pointed fixedpoint discriminator variety;

2. V is a 0-regular binary discriminator variety;

3. V is congruence O-permutable, 0-regular, semisimple with EDPC;

4- V is ideal determined, semisimple with EDPC.

Proof. Let V be a variety with 0. The equivalence (1) <£> (2) follows from

Theorem 3.2.24 and Theorem 3.2.27, while the equivalence (3) <F> (4) is clear

from Proposition 1.7.3. Thus it only remains to demonstrate the equivalence

(2) * (3).

(2) =>• (3) Suppose V is a O-regular binary discriminator variety. Then V is 0-

regular and subtractive by hypothesis. Also, V is a pointed fixedpoint discrim-
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inator variety by Theorem 3.2.24, and so is semisimple (by Theorem 1.5.12)

and has EDPC (by the remarks of §1.5.9).

(3) =>• (2) Suppose V is congruence O-permutable, 0-regular and semisimple

with EDPC. Since V is subtractive, by Proposition 1.7.10 we have that V

has EDPI. Since V is semisimple with EDPC, from Theorem 1.5.2(4) we have

that V is generated as a variety by a class K of simple algebras. By normality

of ideals we have that K is ideal simple, and so V is a subtractive variety

with EDPI that is generated by a class K of ideal simple algebras. Prom

Corollary 3.2.12 it follows that V is a binary discriminator variety; since V is

0-regular by hypothesis, V is a 0-regular binary discriminator variety. •

Although pointed fixedpoint discriminator varieties do not encompass even

those fixedpoint discriminator varieties that are pointed (by Remark 3.2.23),

the hypotheses of Theorem 3.2.29 are nonetheless satisfied by most fixedpoint

discriminator varieties arising naturally as 'quasivarieties of logic'. In particu-

lar, varieties of fc-potent Wajsberg algebras and their implicational subreducts

(including Boolean algebras and implicative BCK-algebras) are pointed fixed-

point discriminator varieties. See [34, Corollary 3.6].

Example 3.2.30. By Example 2.3.14(1) each variety cenBCK, n G w, is a

fixedpoint discriminator variety, with fixedpoint discriminator term f(x, y, z) :=

{z — (x — y)n) — (y — x)n. Although each cenBCK is pointed, the proof of Ex-

ample 2.3.14(1) does not show each cenBCK is a pointed fixedpoint discrim-

inator variety: recall Remark 2.3.15. In contrast, we may immediately con-

clude from Theorem 3.2.29 that each cenBCK, n G w, is a pointed fixedpoint

discriminator variety, just because each cenBCK is ideal determined (by The-

orem 1.6.10(3)) and semisimple with EDPC (by Example 2.3.14(1)).

Via Theorem 3.2.24, the proof of Theorem 3.2.29 yields a fixedpoint discrimi-

nator term for each cenBCK, n E w , namely /'(a;, y, z) := (z\(x — y))\{y — x),

where x\y is a binary discriminator term for cenBCK. For each n € w,

let x\y := x-yn. By [68, Lemma l.l(ii),(iii)] cenBCK (= x\x « 0 and

cenBCK f= x\0 « x, whence \ witnesses subtractivity for cenBCK. Also, \ wit-

nesses EDPI for cenBCK, since it is implicit in the proof of Blok and Raftery [39,
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Theorem 4.2] that a G (b)A iff a\Ab = 0 for any A G cenBCK. Hence \

is a binary discriminator term for each cenBCK, n G w, and f'{x,y,z) =

(z\{x - y))\{y - 1 ) = (z - (re - </)n) - (y - i ) n = / (* , y, *)• •

Let K be a quasivariety and A G K. Recall that a strong ideal of A in the sense
of Blok and Raftery [40] is an §(K,r)-filter of A, where S(K,r) is a certain
deductive system 'extracted' from the quasi-equational theory of K by means
of a translation r [40, Section 5]. Under inclusion, the set SId|<lT of all strong
ideals of A forms an algebraic lattice SICIK.T- In general, the natural map
rA/— : ConK A -> Sldx.T A sending a K-congruence to its associated strong
ideal is neither injective nor surjective. We say K is strongly ideal determined if,
for any A G K, the map rA/— : ConK A —>• SIdK)T A is a lattice isomorphism;
for details, see [40, Section 5, Theorem 5.2]. Theorem 3.2.29 and preceding
remarks invite the following problem:

Problem 3.2.31. Let V be a variety. Is V a fixedpoint discriminator variety
iff V is strongly ideal determined, semisimple with EDPC? •

3.2.32. Binary Discriminator Varieties and Pointed Ternary Dis-
criminator Varieties. Theorem 3.2.29 shows a variety with 0 is a pointed
fixedpoint discriminator variety iff it is a O-regular binary discriminator vari-
ety. Since the theory of the fixedpoint discriminator closely parallels that of
the ternary discriminator [34, p. 548], this observation calls for a study of the
relationship between binary and pointed ternary discriminator varieties. The
following theorem is an obvious consequence of Theorem 3.2.29 and the results
of §1.5.9.

Theorem 3.2.33. For a variety V with 0 the following are equivalent:

1. V is a ternary discriminator variety;

2. V is a congruence permutable O-regular binary discriminator variety.

In particular, if x\y is a binary discriminator term for V, p(x,y,z) is a

Mal'cev term for V, and d\(x, y) , . . . , du(x, y) are binary terms of V witnessing

the O-regularity o/V in the sense of Proposition 1.2.6, then:

t(x, y, z) := p(f{x, y, z),f{x, y, x), x)
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is a ternary discriminator term for V, where f(x, y, z) is the pointed fixedpoint

discriminator term of Theorem 3.2.24-

Proof. Let V be a variety with 0.

(1) =$• (2) Suppose V is a ternary discriminator variety. By Theorem 1.5.13

we have that V is a congruence permutable pointed fixedpoint discriminator

variety, so V is a congruence permutable 0-regular binary discriminator variety

by Theorem 3.2.27.

(2) =>• (1) Suppose V is a congruence permutable 0-regular binary discrimi-

nator variety. Then V is a pointed fixedpoint discriminator variety by Theo-

rem 3.2.24. Let fix, y, z) be the pointed fixedpoint discriminator term for V

of Theorem 3.2.24 and let p(x, ?/, z) be a Mal'cev term for V. Since f(x, y, z)

is a TD term for V (by Theorem 1.5.12), from Lemma 1.5.11(1) we have that

q(x,y,z, w) := p(f(z,y,z),f(x,y, w),w) is a QD term for V. Since V has per-
muting congruences q(x,y,z,x) is a ternary discriminator term for V; clearly

q(x,y,z,x) — t(x,y,z), completing the proof. •

By Corollary 2.2.6 and the remarks of §3.2.6 the variety of implicative BCK-

algebras is a 0-regular binary discriminator variety that is not congruence per-

mutable. Thus the hypothesis of congruence permutability cannot be omitted

from the statement of Theorem 3.2.33. The following example shows that the

assumption of O-regularity also cannot be dropped.

Example 3.2.34. Let A :~ {0,1,2} be a set and let t: A3 ->• A be the ternary

discriminator on A. Let A := (A; p,Q) be the algebra with distinguished

element 0 and ternary operation p : A3 —> A defined by:

a if a = 1, b = 2 and c = 0

b if a == 2, b = 1 and c = 0

t(a,b,c) otherwise

for any a,b,c G A. Let a\b := p(0, b, a) for any a, b G A. Clearly a\b is

the binary discriminator on A, so A is a binary discriminator algebra. More-

over, one easily checks that A |= p(x, x,y) « y and A \= p(x, y, y) « x; thus
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V(A), the variety generated by A, is a congruence permutable binary discrim-
inator variety. However, V(A) is not point regular, and in particular is not
0-regular. Indeed, one easily shows (by inspection of the V(A)-free algebra on
one free generator) that the only constant term of V(A) is 0. But the partition
{{0},{l,2}} induces a non-trivial (in fact, the only non-trivial) congruence
on A, whence A itself is not 0-regular. Thus V(A) is a congruence permutable
binary discriminator variety that is not point-regular (and in particular not
0-regular), and hence is not a ternary discriminator variety. •

In general, it is a non-trivial task to construct a Mal'cev term for a congruence
permutable variety: witness for example Theorem 3.1.40. A simpler syntactic
criterion both necessary and sufficient for a 0-regular binary discriminator
variety to be a ternary discriminator variety is therefore desirable. In the
following proposition we give just such a syntactic criterion. But first, let A

be a set and let 0 6 A be fixed but arbitrary. Recall from multiple-valued
switching theory [172, Chapter 3] that a binary function -f- : A2 —> A is called
a sum-like operation (with respect to 0) if o + 0 = a = 0 -f- a for any a £ A.

Let K be a class of algebras with 0. A binary term x + y of K is said to be sum-

like (with respect to 0) if the canonical interpretation of x + y on any A G K is
a sum-like operation with respect to 0A. See also Werner [237, Theorem 1.3].

Proposition 3.2.35. (cf. [39, Theorem 6.1(i)]) For a variety V with 0 the

following are equivalent:

1. V is a ternary discriminator variety;

2. V is a 0-regular binary discriminator variety with a binary term x + y

that is sum-like (with respect to 0).

In particular, if x\y and x + y are respectively a binary discriminator term

and a sum-like term for V, then:

t(x, y, z) := f(x, y, z) + (x\f(x, y, a;))

is a ternary discriminator term for V, where /(a;, y, z) is the pointed fixedpoint

discriminator term of Theorem 3.2.24-



3.2. Binary and Dual Binary Discriminator Varieties 290

Proof. Let V be a variety with 0.

(1) =>• (2) Suppose V is a ternary discriminator variety with ternary discrimi-
nator term t(x, y, z). By Theorem 3.2.33 we have that V is a 0-regular binary
discriminator variety. Put x + y := t(y,Q,x). Because of Theorem 1.4.39, we
have that x +A y is the left handed skew lattice join on any A 6 V, whence V
has a sum-like term.

(2) =$• (1) Suppose V is a 0-regular regular binary discriminator variety with
binary discriminator term x\y. By Theorem^.2.24 we have that V is a pointed
fixedpoint discriminator variety. Let K C V be a class of fixedpoint discrimina-
tor algebras generating V as a variety. Let x + y be a sum-like term for V and
put t(x,y,z) := /(x, y, z) + (x\f (x, y,x)), where f(x,y,z) is the pointed fixed-
point discriminator term of Theorem 3.2.24. By definition of the fixedpoint
discriminator, for any A G K and a, 6, c G A we have:

A I c if a = b A A a if o ̂  6
fA(a,b,c)={ and a\AfA(a,b7a) =1

10 otherwise 10 otherwise.

Since f is a sum-like term, it follows that tA(a,b, c) = a if a =fi b and c
otherwise. Thus t(x,y,z) induces the ternary discriminator on any member
of K; since K generates V as a variety we have that V is a ternary discriminator
variety with ternary discriminator term t(x, y,z). •

Remark 3.2.36. Let V be a dual binary discriminator variety with dual binary
discriminator term x A y. In [19, Section 4.10] Bignall and Leech essentially
assert that a necessary and sufficient condition for V to be a ternary discrim-
inator variety is the existence of a binary term x © y that is both a sum-like
term and a Godel equivalence term for V; in this case a ternary discriminator
term for V is given by:

t(x, y, z) := (x A {x © y)) © (z © (z A {x © y))).
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3.3 Pre-BCK Quasilattices and BCK Paralat-

tices

Collectively, the results of §3.4.32, §1.4.37, §3.2.6 and §3.2.22 intimate that

pre-BCK-algebras structurally enriched with (locally Boolean) band opera-

tions arise naturally in pointed discriminator, pointed fixedpoint discrimina-

tor and pointed discriminator varieties, which remark calls for a generalisa-

tion of Idziak's theory of BCK-[semi]lattices to the non-commutative case.

Lemma 1.6.24, which shows any BCK-[semi]lattice may be viewed as the con-

junction of a BCK-algebra and a [semi]lattice such that the underlying BCK-

algebra partial ordering and the [semi]lattice partial ordering either dualise

or coincide, suggests that an appropriate generalisation of BCK-[semi]lattices

is to algebras consisting of a pre-BCK-algebra reduct and a band or non-

commutative lattice reduct such that the underlying pre-BCK-algebra ordering

either coincides with or dualises an ordering on the band or non-commutative

lattice reduct. Because there exist two fundamental orderings •<-£> and <^ on

any band, Idziak's theory of BCK-[semi]lattices bifurcates when generalised to

the non-commutative case. On the one hand, the theory of BCK-[semi]lattices

generalises to a theory of pre-BCK bands and pre-BCK quasilattices PQC,

{ - ,0} C C C {A,V, - , 0 } ; and on the other, to a theory of BCK bands

and BCK paralattices BPC, { - ,0} C C C {A, V, - ,0} . Within the context

of the families PQc, PQc, it is natural to focus attention (ignoring issues of

type) on certain varieties IQc, {A,\, 0} C C C {A, V, \ , 0 } , of implicative

pre-BCK bands and implicative BCS quasilattices and certain varieties IPc,

{A, /, 0} C C" C {A, V, /, 0}, of implicative BCK bands and implicative BCK

paralattices respectively, since these cla.->ccs exhibit 'locally Boolean' behaviour.

Throughout this section, our study of all the various families PQc, IQc, BPc

and IPC» is informed by both Idziak's theory of BCK-[semi]lattices and Laslo

and Leech's recent study of paralattices and quasilattices [145].

In §3.3.2 we study the family of classes PQC, { - , 0 } C C C {A,V, - , 0 } .

Members of the classes PQC consist of pre-BCK-algebras (possibly) structurally

enriched with band operations A or V such that the natural band quasiorder <-D

•M
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coincides with or dualises the underlying pre-BCK-algebra quasiorder ^~>°K

Let A G C or V G C. For each choice of C, it is shown that the class PQC is a

variety. For each PQc, we present analogues of the Clifford-McLean theorem

for bands or quasilattices; some sufficient conditions for each PQC to be regular

(in a sense suitably modified from §1.3.15) are also presented.

In §3.3.13 we study the family of classes IQc, {\, 0 } C C ' C {A, V, \ , 0}. Mem-

bers of the classes IQC/ consist of implicative BCS-algebras (possibly) struc-

turally enriched with band operations A and V such that the natural band

partial order <% and quasiorder <v respectively coincide with or dualise the

underlying implicative BCS-algebra partial order <^'0^ and quasiorder -<^°\

For each choice of C, A G C or V G C\ it is shown that the class IQc is a

variety. Let AG C. For each C and any A G IQc, it is shown that the band

with zero reduct (A\ A,0) is locally Boolean (in the sense of §1.3.15). In one

of the two main results of the section, the skew Boolean algebras are charac-

terised amongst the members of IQc, {A, V} C C'. Ignoring issues of similarity

type, we also show that Idziak's variety of BCK-lattices is the splitting variety

associated with the variety of left handed skew Boolean algebras in a certain

large subvariety of PQc, {A, V} C C.

In §3.3.27 we study the family of classes BPC, { - ,0} C C C {A, V, - ,0}.

Members of the classes BPc consist of BCK-algebras (possibly) structurally

enriched with band operations A or V such that the natural band partial

order <-^ coincides with or dualises the underlying BCK-algebra partial or-

der <<~>°>. Let AG C or VG C. For each choice of C, we show that the

class BPc is a variety. It is shown that no non-trivial analogue of the Clifford-

McLean theorem exists for each BPc and hence that each BPc is only trivially

regular (in a sense suitably modified from §1.3.15). We also prove that each

BPC is ideal determined, congruence distributive and (when V G C) congruence

permutable.

In §3.3.43 we study the family of classes IPC«, {/,0} C C" C {A,V,/,0}.

Members of the classes IPc consist of implicative BCK-algebras (possibly)

structurally enriched with band operations A and V such that the natural

band partial order <•# coincides with or dualises the underlying implicative
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BCK-algebra partial order <</>0>. For each choice of C", A e C ' o r V G C",

it is shown that the class IPc is a variety. Let A € C". For each C" and

any A G IPc, it is shown that the band with zero reduct (A; A,0) is locally

Boolean (in the sense of §1.3.15). In the other main result of the section,

the skew Boolean H-algebras are characterised (to within termwise definitional

equivalence) amongst the members of IPc, {A, V} C C". We also present a

simple equational axiomatisation of the variety of skew Boolean n-algebras.

The final two subsections of this section are devoted to the further exploration

of the theory of skew Boolean n-algebras, and hence, by extension, the the-

ory of pointed discriminator varieties. In §3.3.59 the theory of skew Boolean

Pi-algebras as presented in §1.4.32, §1.4.37 is extended to double-pointed skew

Boolean n-algebras. It is shown that the class of double-pointed skew Boolean

n-algebras is a variety, and the subdirectly irreducible double-pointed skew

Boolean H-algebras are characterised to within isomorphism. It is also shown

that the variety of double-pointed left handed skew Boolean n-algebras coin-

cides with the pure double-pointed discriminator variety, namely the variety

of type (3,0,0) generated by the class of all double-pointed discriminator al-

gebras. In consequence, we infer that any algebra A in a double-pointed dis-

criminator variety has a double-pointed left handed skew Boolean n-algebra

polynomial reduct whose congruences coincide with those of A.

In §3.3.69 we present an axiomatisation of a certain deductive system SI

We show SWC is definitionally equivalent to the assertional logic of the; variety

of double-pointed left handed skew Boolean n-algebras, and hence infer that

SMPC is definitionally equivalent to the assertional logic of the pure double-

pointed discriminator variety. It is also show that, in principle, there exists an

axiomatisation of SWC such that (MP) is the only (proper) rule of inference.

Remark 3.3.1. We impose two fundamental restrictions on the scope of our

study of the varieties BP^ (and hence, by extension, on our study of the va-

rieties PQC) in this section. First, our study of the varieties BPc does not

extend to a study of those members of BPc for which the BCK-algebra reduct

has condition (S) (recall the definition of condition (S) from §2.1.1). Although

BCK-[semi]lattices with condition (S) were considered by Idziak in his origi-
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nal paper [116] on BCK-[semi]lattices, a study of those members of the vari-

eties BPC for which the BCK-algebra reduct has condition (S) contravenes (at

least in spirit) the restrictions of Remark 1.1.2, because BCK-algebras with

condition (S) are precisely the (—, 0)-reducts of pocrims (by results due to

Iseki [121, 123]). Second, our study of the varieties BPc does not extend to

a study of the assertional logics §(BPc,0) (with the obvious exception of the

assertional logic of the variety of double-pointed left handed skew Boolean

H-algebras), because the deductive systems §(BPc,O) are, by remarks due to

Restall [199], not in general amenable to standard logical analysis (for exam-

ple, in the sense of [198]): cf. Remark 3.3.80 and the remarks of §4.2.27 in

the sequel. By extension, the preceding restrictions apply mutatis mutandis

to our study of the varieties PQc, to better enable the uniform development

of the theory of the varieties BPc and PQC. •

3.3.2. Pre-BCK Bands and Pre-BCK Quasilattices. A lower pre-

BCK-band is an algebra (A; A, - , 0) of type (2,2,0) such that: (i) the reduct

(A-, A, 0) is a band with zero; (ii) the reduct (A; — , 0) is a pre-BCK-algebra;

and (iii) the natural band quasiorder ^ p coincides with the pre-BCK qua-

siorder ^A' ~ >°\ Clearly a lower pre-BCK band A is a lower BCK-semilattice

iff either A (= (2.5) or A f= x A y « y A x.

Theorem 3.3.3. An algebra (A; A, — ,0) of type (2,2,0) is a lower pre-BCK-

band iff the following identities are satisfied:

x A (y A z) « (x A ?/) A z (3.49)

(3.50)

((x -y)-(x-z))-(z-

x ~ 0 « x

(3.51)

(3.52)

(3.53)

{x A y A x) — (3.54)
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(a; — (x — y)) A y A (x — (a; — y)) « a; — (x — y).

Thus the class of lower pre-BCK bands is a variety.

(3.55)

Proof. Let A := (A; A, — , 0) be an algebra of type (2,2,0) satisfying (3.49)-

(3.53). To prove the theorem it is sufficient to show:

(i) A (= (3.54)-(3.55) iflM<* -">°> and <v coincide;

(ii) A |= (3.54)-(3.55) implies {A\ A, 0) is a band with zero.

For (i), let a, b G A and suppose A |= (3.54)-(3.55). Suppose a ^A> J->°> b.

Then a = a - 0 (by (3.52)) j= a - (a - b) = (a ^- (a - b)) A b A (a-(a-b))

(by (3.55)) = ( a - 0 ) A b A ( a - 0 ) = a A b A a (by (3.52)). Hence a ^ 6.

For the opposite implication, assume a <v b. Then a A b A a = a, whence

fl-U ( c A i A o ) - i = 0 b y (3.54). Hence a ^ -!-'°> 6 and thus

a <t> b iff a ^A' ~t0) b. Conversely, suppose the quasiorders ^ p and ^A' ~'0^

coincide. Prom a — (a — b) ^A' ~ ^ b we have a — (a — b) -<v b, which implies

(a — (a — 6)) A b A (a — (a — b)) = a — (a — b). Also, from a A 6 A a <x> b

we have a A b A a ^A' ~>0^ 6 whence (a A b A a) — 6 = 0. Thus A (=

(3.54)-(3.55).

For (ii), suppose A (= (3.54)-(3.55). We have 6 A 0 A 6 = ( 6 A 0 A 6 ) - 0 = 0

for any b e A by (3.52) and (3.54). Thus 0 = (a A 0) A 0 A (a A 0) = (a A

0) A (a A 0) = a A 0 for any a £ A. But then 0 = a A 0 A a = 0 A a , so the

reduct {̂ 4; A, 0) is a band with zero. •

An upper pre-BCK-band is an algebra (A; V, — , 0) of type (2,2,0) such that:

(i) the reduct (A; V, 0) is a band with identity; (ii) the reduct {̂ 4; —, 0) is a

pre-BCK-algebra; and (iii) the natural band quasiorder -<x> dualises the pre-

BCK quasiorder ^A' ~ )0> in the sense that a -<v b iff b -<(A] ~>0> a. Clearly

an upper pre-BCK band A is an upper BCK-semilattice iff either A {= (2.5)

o r A ( = i V j / « j / V 2 ; . The proof of the following theorem is similar to the

proof of Theorem 3.3.3 and is omitted.
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Theorem 3.3.4. An algebra (A; A, — ,0) of type (2,2,0) is an upper pre-

BCK-band iff the following identities are satisfied:

x V ( i / V z ) f a ( x V y ) V z

x V x ~ x

(3.56)

(3.57)

(3.58)

(3.59)

-y)-{x~z))

x — 0 & x

(3.60)

(3.61)

(3.62)

x V (y — (y — x)) V x « x

x — (y V a; V y) « 0.

T/iu5 i/ie c/ass o/ wpper pre-BCK-bands is a variety.

(3.63)

(3.64)

Remark 3.3.5. The identities (3.58)-(3.59) cannot be omitted from the ax-

iomatisation of the variety of upper pre-BCK bands given in Theorem 3.3.4.

To see this, let A := {0,1,2}, let A := (A; VA, ^-A ,0A) be the algebra

with distinguished element 0 and whose binary operations V and — A are

determined by the following operation tables:

VA

0

1

2

0

0

1

1

1

1

1

1

2

2

2

2

^. A

0

1

2

0

0

1

2

1

0

0

0

2

0

0

0

and let A' := (A; VA', - A ' , 0 A ' ) be the algebra of type (2,2,0) obtained

from A upon denning 0A ' := 0A , a-A'b := a - Ab and a VA' b := b VA a

for any a, b G A. An easy sequence of checks shows A (= (3.56)-(3.57),
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(3.59)-(3.64). However A j£ (3.58) since 2 V 0 = 1 ̂  2. From these remarks
and the definition of A' it follows at once that A' |= (3.56)-(3.58), (3.60)-(3.64)
but A £ (3.59). •

A quasilattice with zero is a qucwiattice (A; A, V) for which there exists 0 G A

(the zero of (A; A,V)) such that both 0 <^ ; A ) a and a <^ ; V ) 0 for all
a G A; by abuse of language and notation we often identify a quasilattice
with zero A := (A; A, V) with the algebra (A; A, V, 0) obtained from A upon
augmenting the language of A with a new nullary operation symbol 0 whose
canonical interpretation on {̂ 4; A, V, 0) is the zero element 0 G A. A pre-BCK

quasilattice is an algebra (A; A, V, — , 0) of type (2,2,2,0) such that: (i) the
reduct (A] A, V, 0) is a quasilattice with zero; (ii) the reduct (A; —, 0) is a
pre-BCK-algebra; and (iii) the natural quasilattice quasiorder <v coincides
with the pre-BCK quasiorder ^A' ~ »°\ Clearly a pre-BCK quasilattice A is a
BCK-lattice iff either A (= (2.5), A\=xAy^yAxorA\=xVy^yWx.

From Theorem 3.3.3 and Theorem 3.3.4 the following result is clear.

Theorem 3.3.6. An algebra A := {A; A, V, — , 0) of type (2,2,2,0) is a pre-

BCK quasilattice iff the reduct (A; A, — ,0) is a lower pre-BCK band and

the reduct (A; V, —, 0) is an upper pre-BCK band. Hence A is a pre-BCK

quasilattice iff A (= (3.49)-(3.64). Therefore the class ofpre-BCK quasilattices

is a variety.

Let C denote an arbitrary subset of the language {A, V, —, 0} of pre-BCK

quasilattices that contains both — and 0. Let:

• PQc denote the variety of pre-BCK-algebras when C = { — , 0};

• PQc denote the variety of lower pre-BCK bands when C = {A, — , 0};

• PQc denote the variety of upper pre-BCK bands when C = {V, —, 0};

denote the variety ofpre-BCK quasilattices when C = {A, V, — , 0}.

Notice that for each C, PQc is the class of algebras with language C axiomatised
by those identities among (3.49)-(3.64) that use only operation symbols from C;

of course, this observation is dependent upon the axiomatisation of the variety
of pre-BCK quasilattices given in Theorem 3.3.6.
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Remark 3.3.7. Let A be an algebra of type C. For £' C £, by an C -subreduct

of A we mean a subalgebra of the reduct A|£, := (A; fA)fec- For a class K of

algebras, let £'-K denote the class of all £'-subreducts of members of K. For

each C, PQc should not be confused with C-FQ. In particular, in contrast to

each PQc, we do not know in general if each C-PQ is even a quasivariety. •

Throughout the remainder of this subsection we assume A € C or V € C. Re-

call from §1.4.3 that quasilattices satisfy the following modified form of the

Clifford-McLean theorem: every quasilattice is a lattice of its maximal rect-

angular subalgebras. Because any member of any PQC possesses a coherent

D-quasiordering by definition, it is natural to anticipate that the Clifford-

McLean theorem for quasilattices extends to the varieties

Theorem 3.3.8 (Clifford-McLean Theorem for PQC). Let A € PQC. For

any a, b G A the following are equivalent:

1. aVb;

2. aEb.

Thus the following assertions hold:

1. If A G C then V-equivalence is a congruence relation on {A; A, —0).

The V-equivalence classes are the maximal rectangular subalgebras of

(A; A,0), while the quotient algebra (A; A, —,0)/T> is the maximal

lower BCK-semilattice homomorphic image of {A; A, —, 0);

2. If V € C then V-equivalence is a congruence relation on (A; V, — ,0).

The V-equivalence classes are the maximal rectangular subalgebras of

(A; V,0), while the quotient algebra (A; V, —,0)/V is the maximal

upper BCK-semilattice homomorphic image of (A] V, — , 0);

3. If {A, V } C C then V-equivalence is a congruence relation on A. The

V-equivalence classes are the maximal rectangular subalgebras of (A] A

, V, 0), while the quotient algebra A/V is the maximal BCK-lattice ho-

momorphic image of A.

F/r'JJI
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Proof. Let A G PQc- For the first assertion of the theorem, just note aVb iff

a dv b, b -<v a iff a ^A; ~ ^ b, b -<^A] ~>0^ a iff aEb. We prove the remaining

assertions of the theorem only in the case that {A, V} C C\ the proofs in the

other cases are not essentially different and are omitted. So suppose {A, V} C

C. Since 5 is a congruence on (A; —, 0) and I? is a congruence on (A; A, V

,0), it follows from the first assertion of the theorem that V is a congruence

on A. By the Clifford-McLean theorem for quasiiattices and Theorem 2.1.14,

we deduce that A/V is the maximal BCK-lattice homomorphic image of A

and that the ^-equivalence classes are the maximal rectangular subalgebras

of (A; A, V,0). This establishes the theorem in the case that {A,V} C C, so

the proof is complete. •

Let A be a non-commutative lattice. In general, the four Green's equivalences

£(A;A)> 7£(yi;A)> £(A; v) and Tfyx; v) on A need not be full congruences on A,

even if A is a quasilattice (compare this situation to that of skew lattices—

recall Theorem 1.4.11). A is said to be regular if all of C(A-,/\), T^(A-,A), £(A-,V)

and 7l(A;v) are congruences on A; notice this definition is consistent with

both §1.3.11 and Theorem 1.4.11. Necessary and sufficient conditions for the

regularity of non-commutative lattices have been studied extensively by Laslo

and Leech in [145, Section 4]. In more detail, recall from non-commutative

lattice theory that a non-commutative lattice is one-sided if any one of the

following pairs of identities is satisfied [145, Section 4]:

rr* A nt A rr* N̂** nt A rr* Q r\ f\ rp \ / nt \ / ft* ***** rr* \f nt

*Jb I \ U I \ JU ^*J U / \ Ju dl lvJ. Jb V y V «*/ ^"^ Jb w U

xAyAx&yAx and xVyVxmyVx. (r, r)

A non-commutative lattice is two-sided if it is not one-sided. By Laslo and

Leech [145, Theorem 20] one-sided quasilattices are regular. In turn, the class

of all regular quasilattices is a variety [145, Theorem 19] that is generated by

the class of all one-sided quasilattices [145, Theorem 20].

Remark 3.3.9. One-sided non-commutative lattices were introduced by Laslo
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and Leech in [145, Section 4] under the name flat non-commutative lattices,

in conformance with standard semigroup terminology. From the perspective

of algebraic logic, however, the use of the adjective 'flat' to describe one-sided

non-commutative lattices is unfortunate, for it conflicts with the established

meaning of the term 'flat' as employed in domain theory. In particular, it

conflicts with the term 'flat' as used in this thesis to describe algebras that are

flat posets (and hence flat domains) with respect to some underlying partial

ordering. We adopt alternative terminology here for this reason. •

Let A G PQC. By analogy with non-commutative lattice theory, for A6 C

[VG C- {A,V} C C] we say (A\ A, - , 0 ) [(A] V, - , 0 ) ; (A; A, V, - , 0 ) ] is

regular if £{A-,A) and H(A;A) [£(A-,V), T^{A-tv)\ £(A-,A), ^{A\A)-> £(A-,V), ^ ( ^ ; V ) ]

are congruences on (A; A, - . 0 ) [(A; V, — ,0); {A\ A,V, — ,0)]. For C =

{A, —, 0} [C = {V, —, 0}] we say A is one-sided if its band reduct (A; A)

[(A; V)] is eithar left regular or right regular (recall §1.3.11). We say A is two-

sided if it is not one-sided. For C = {A, V, — , 0} we say A is one-sided if its

quasilattice reduct (A; A, V) is one-sided; A is two-sided if it is not one-sided.

Proposition 3.3.10. Let A G PQc- If A is one-sided then A is regular.

Proof. We prove the proposition only in the case that {A, V} C C\ the proofs

in the other cases are not essentially different and are omitted. Let A G PQc-

By the Clifford-McLean theorem for PQC, the ^A-classes of A form maximal

rectangular bands in both (A; A) and (,4; V). Since the identities (I, l)-(r, r)

are respectively equivalent to assorting that:

a A b = a [aV h = a]'m each A-rectangular [V-rectangular] class;

a A b = b [a V b = a] in each A-rectangular [V-rectangular] class;

a A b = a [a V b = b] in each A-rectangular [V-rectangular] class;

a A b = b [a V b = b] in each A-rectangular [V-rectangular] class

it follows that each of £(A',A)I ^(>1;A)> £(A;V)
 an<3 T^(A;w) must be either £>A

or wA. Hence all of £(A-,A)> ^(A;A), £{MV) and %{A-,V) are congruences on A,

so A is regular. •

Let A G PQc. In general (that is, when A is two-sided), the equivalences

£<i4;A)> ^-(A; A), £{A;v) and 1Z(A;w) (if they exist) need not be full congruences
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on A. This is so even if A is a pre-BCK quasilattice whose quasilattice with

zero reduct (A\ A, V, 0) is a skew lattice. To see this, consider the following

5-element algebra A:

AA

0

a

b

c

d

0

0

0

0

0

0

a

0

a

b

c

a

b

0

b

b

c

b

c

0

c

b

c

c

d

0

d

b

c

d

VA

0

a

b

c

d

0

0

a

b

c

d

a

a

a

a

a

d

b

b

a

b

b

d

c

c

a

c

c

d

d

d

a

d

d

d

0

a

b

c

d

0

0

a

b

c

d

a

0

0

0

0

0

b

0

a

0

0

a

c

0

d

0

0

a

d

0

0

0

0

0

An easy sequence of checks establishes that A is a pre-BCK quasilattice for

which the quasilattice with zero reduct (A] A, V, 0) is a skew lattice with zero.

Moreover, a = a (mod C(A-, A,V)) and b = c (mod C^A-, A,V)) (since C(A-,A) —

%(A\ v) and 7£(,4; A) = C^A- V>—recall §1.4.5). However, (a — b) A (a — c) = a A

d = d ^ a = a — 6, so C(A-, A,V) is not a congruence on A.

For each C, the following proposition provides a sufficient condition for A €

PQC to be regular. Theorem 3.3.21 below shows the hypotheses of the proposi-

tion are not artificial; indeed, among natural syntactic conditions on members

of PQc implying regularity, the assumptions of the proposition are the most

general known to us.

Proposition 3.3.11. Let A G PQc- The following assertions hold:

1. If AG C, (A; A) is regular and A satisfies:

(x -- z) A(y-z)&(x Ay)-z (3.65)

(z-x)A(z-y)& {(a - (x A y)) - (x - y)) -(y-x) (3.66)

then (A; A, — ,0) is regular. That is, /1(A-,A) and 1Z(A-, A) are congruences

on (A; A, - , 0 ) ;

2. If V 6 C, (A; V) is regular and A satisfies:

i

(x — z)V (y — z) & (x V y) — z (3.67)
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(z - x) V (z - y) « z - ({(x Vy)~{x- y)) - (y - x)) (3.68)

then (A] V, — ,0) is regular. That is, £(A-,V)

on {A; V , - , 0 ) ;
are congruences

S, #{A,V} C C, (A; A,V, 0) is regular (in particular, if (A; A, V, 0) is a

skew lattice with zero) and A satisfies (3.65)-(3.68), then A is regular.

That is, C(A;,\), 71{A;A), £{A-,V) andlZ^v) are congruences on A.

Proof. Let A G PQc and let a,b,c G A. For (1), suppose AGC, (A; A) is

regular and that A |= (3.65), (3.66). We show only that C(A-, A) is a congruence

on (A; A, — ,0); the proof that H(A\*) is a congruence on (̂ 4; A, - , 0 ) is

similar and is omitted. Since (A] A) is regular, to see £(A-, A) is a congruence

on (.4; A, - , 0) it is sufficient to show:

(i) a = b (mod £(,4; X)) implies a — c = b - c (modjC^; A));

(ii) a = b (mod £(4 A)) implies c- a = c-b (mod C^ A))

since (i) and (ii) together guarantee the substitution property for the — op-

eration. So suppose a = b (mod£(4 A\). For (i), we have (a — c) A (b — c) —

(a A b) — c = a — c by (3.65); likewise (b ~ c) A (a — c) = b — c. For (ii),

notice a = b (mod £(4 A)) implies a = b (modV) and hence 0 = 6(modH).

By (3.66),

(c - 0) A (c - 6) = ((c - (a A b)) - (a - b)) -(b-a)

= ((c-(oA6))-0)-0

= c - (a A b) by (3.52)

= c — a.

Similarly [c—b) /\ {c — a) — c — b. Thus C(A- A) has the substitution property

for the — operation and £(/i;A> is a congruence on (.4; A, — ,0).

For (2), suppose V e C, (A; V) is regular and that A |= (3.67), (3.68). We

show only that C(A-, V) is a congruence on (A; V, — , 0); the proof that TZ^A-, V)

is a congruence on (.4; V, —, 0) is analogous and is omitted. Since (-4; V) is

regular, to see £ ^ ; V) is a congruence on (.4; V, — , 0) it is sufficient to show:
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(i) a = b (mod £(A-, v)) implies a — c — b — c (mod L(A-, V>);

(ii) a = b (mod C(A-, V)) implies c - a = c — b (mod £(,i; V))

since (i) and (ii) together guarantee the substitution property for the - op-

eration. So suppose a — b (modC^A- V))- For (i), we have (a — c) V (6 — c) =

(a V b) - c = a - c by (3.67); (6 - c) V (a - c) = b-c likewise. For (ii),

notice a = 6(modC^ ;V)) implies a = 6(modX>) and hence a — 6(modS).

By (3.68),

{c-ojV{c-b) = c- ({{a V b) - (a - b)) - {b - a))

= c-(((aV6)-0)-0)

V b) by (3.52)

•— c — a.

Similarly (c — b) V (c — a) = c — b. Thus £^4; V) has the substitution property

for the — operation and £(A-, V) is a congruence on (̂ 4; V, — , 0).

Item (3) now follows as a trivial consequence of (1), (2) and the regularity of

(A; A,V,0). •

Problem 3.3.12. For each C, let Kc denote the class of all members of PQC

that are regular. Is Kc equationally definable? •

3.3.13. Implicative BCS Bands and Implicative BCS Quasilattices.

By the results of §1.4.32, §1.4.37, §3.2.6 and §3.2.22, algebras arising in binary

discriminator, pointed fixedpoint discriminator and pointed ternary discrim-

inator varieties all support an underlying 'locally Boolean' structure (in the

sense of either §1.3.15 or §1.4.24), which observation motivates the study of

those members of PQc for wLich every (appropriately defined) principal sub-

algebra is B Boolean i ..ttice. Because of the results of §2.3.19, these remarks

lead naturally to a consideration of those members of PQc for which th* pre-

BCK-algebra reduct is an implicative BCS-algebra.

Proposition 3.3.14. Let A := {A; A,\, 0} be an algebra of type (2,2,0) such

that the reduct {A] A, 0) is a band with zero and the reduct (A\ \ , 0) iz an

implicative BCS-algebra. The following are equivalent:



3.3. Pre-BCK Quasilattices and BCK Paralattices 304

1. For any a,b G A ,

a<Hb iff a <{A< \'°> b and a <v b iff a ^{A> \'0) 6;

2. A satisfies the identity:

x A y A x & xf\y. (3.69)

Proof. Let A := (A; A, \ , 0) be an algebra of type (2,2,0) such that the

reduct (A] A, 0) is a band with zero and. the reduct (A] \ , 0) is an implicative

BCS-algebra.

(1) =r> (2) To prove the implication, we first observe that for any a, b G A,

(i) a A b A a = af\b (modS);

(ii) a\(a\(a A b A a)) = a A b A a.

For (i), a fl 6 is a greatest lower bound of {a, b} with respect to ^MV0) by

Proposition 2.3.5, Proposition 2.2.30 and Proposition 2.2.11. Also, a A b A a

is a greatest lower bound of {a, 6} with respect to ^A> ^ since it is a greatest

lower bound of {a, 6} with respect to ;<£>• Therefore a A b A a = aFib (modS)

by Lemma 1.2.3(2).

For (ii), just note.that a A b A a <n a implies a A b A a <(A>\>°) a, whence

a\[a\(a A b A a)) = a A b A a.

To complete the proof of the implication, let n, b G A and observe that a A

b A a, a l~l b G (a](>i; \,o)- Because of Proposition 2.3.31, this implies the

equivalence a A b A a ~ c n :. (modS) of (i) collapses in (fl]</i;\,o) to the

equality aAbAa = aHb. Hence a\b ~ (a (1 6)/oi = (a A b A
a)ui — (ail (a A b A a))*, , (by (ii)) = a\(a A b A a). But then

a Ab A a = a\(a\(o A b A a)) (by (ii)) — a\(a\b) as required.

(2) =» (1) To see a <(A' \«°> b iff a <H b for any a, b G A, suppose a < ^ ; \>0> b.

T h e n b H a = a , so a A b = (b D a ) A b = ( b A a A b ) A b = b A a A b =

b\la = a by (3.69) applied twice. Similarly, b A a = a. Therefore a <•« b. For
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t h e converse , s u p p o s e a < ^ b. T h e n a A b A a — a, so a — a/\b A a = a\lb

by (3.69) . S imi lar ly , a = b n a. The re fo re a <<*\,o> b.

To see a ^^:\ '°) b iff a •<?> b for any a,b £ A, suppose a ^^ ; \ ' ° ) b. Then

a\b = 0, so a — a\0 = a\(a\b) = a A b A a by (3.69). Hence a <v b. For the

converse, suppose a -<z> b. Then a A b A a = a and s o a = a A & A a = af~lfr

by (3.69). Therefore o\6 = 0 by Lemma 2.1.42(1). Hence a ^A< \«°> 6. •

A /ower imphcative BCS band is an algebra (.4; A,\,0) of type (2,2,0) such

that: (i) the reduct (A', A, 0) is a band with zero; (ii) the reduct (A; \ , 0) is an

implicative BCS-algebra; (iii.) the natural band quasiorder <v coincides with

the implicative BCS-algebra quasiorder <^A] \>0 ;̂ and (iv) the natural band par-

tial order <^ coincides with the implicative BCS-algebra partial order <SA> \>°K

From Proposition 3.3.14 the following result is clear.

Theorem 3.3.15. An algebra A := (A; A,\, 0) of type (2,2,0) is a lower

implicative BCS band iff the reduct (A; A,0) is a band with zero, the reduct

(A; \ , 0) is an implicative BCS-algebra, and A |= (3.69). Thus the class of

lower implicative BCS bands is a variety.

An upper implicative BCS band is an algebra (.A; A, \ , 0) of type (2,2,0) such

that: (i) the reduct (A; V, 0) is a band with zero; (ii) the reduct (A; \ , 0)

is an implicative BCS-algebra; (iii) the natural band quasiorder <x> dualises

the implicative BCS-algebra quasiorder <^A'y ^ in the sense that a •<?> b iff

b ^A; ~>0> 'a for any a, b G A; arid (iv) the natural band partial order <%

dualises the implicative BCS-algebra partial order < ^ ; \>0> in the sense that

o- dm b iff b < ^ ; ~>0^ a for any a, 6 G i . Although we know of no elegant

characterisation of upper implicative BCS bands analogous to that of Theo-

rem 3.3.15 in general, we nonetheless have the following result, the proof of

which is omitted.

Theorem 3.3.16. An algebra A := (A; V,\,0) of type (2,2,0) is an upper

implicative BCS band iff the reduct (A; V,0) is a band with zero, the reduct

(A; \ , 0) is an implicative BCS-algebra, and A satisfies the following identities:

x v (y\(y\z)) VI (3.70)
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x\{y V x V y) « 0 (3.71)

x\(x\x V y V a;)) « a;

(x V y V x)\[(x V j/ V z)\:c) « a;

(3.72)

(3.73)

re V (a;\?/) « a; (3.74)

(3.75)

77ms i/ie c/ass o/ upper implicative BCS bands is a variety.

Recall from [145, Section 1] that a fine quasilattice is a non-commutative lat-

tice that is simultaneously both a quasilattice and a paralattice. By the re-

marks of §1.4.3 and §1.4.4, the class of all fine quasilattices is a variety. Fine

quasilattices naturally generalise skew lattices, inasmuch as several important

structural results for skew lattices extend to fine qu-asiiattices: sea Laslo and

Leech [145, Section 5, pp. 28-29].

An implicative BCS quasilattice is an algebra of type (2, ?., 2,0) such that: (i)
the reduct (A; A, V,0) is a fine quasilattice with zero; (ii) the reduct {A; \,0)
is an implicative BCS-algebra; (iii) the natural quasilattice quasiorder <<r> co-
incides with the implicative BCS-algebra quasiorder -^Ai \)0^; and (iv) the nat-
ural quasilattice partial orde; <u coincides with the implicative BCS-algebra
partial order <tA> \>°\ Prom Proposition 3.3.14 the following result is clear.

Theorem 3.3.17. An algebra A := (A; A,V,\, 0) of type (2,2,0) is an im-

plicative BCS quasilattice iff the reduct (A] A, V, 0) is a fine quasilattice with

zero, the reduct (A; \,0) is an implicative BCS-algebra. and A [•-- (3.6S). Thus

the class of implicative BCS quasilattices is a variety.

For consistency with the prequel, let C denote an arbitrary subset of the

language {A, V, \, 0} of implicative BCS quasilattices that contains all of A, \

and 0. Ignoring issues of type, let:

• PQc denote the variety of pre-BCK-algeJ "^s when C ~ {\, 0};

• PQc denote the variety of lower pre-BCK bands when O ~ {A, \, 0};
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m

* PQc denote the variety of upper pre-BCK bands when C = {A, \, 0};

• PQc denote the variety of pre-BCK quasilattices when C = {A, V, \, 0}.

Also, let:

• IQc denote the variety of implicative BCS-algebras for C = {\,0};

9 \QCi denote the variety of lower implicative BCS bands for C = {A, \, 0};

denote the variety of upper implicative BCS bands for C — {V, \, 0};

• IQc denote the variety of implicative BCS quasilattices for C = {A, V

Given the above notation, clearly IQc C PQc for any fixed choice of C

In non-commutative lattice theory, there exists a fundamental connection be-
tween principal subalgebras of normal bands in semigroup theory and the study
of 'locally Boolean' structures: see Leech [150, Section 0.10]. For the varieties
IQc') AG C, however, it is the underlying implicative BCS-algebra principal
subalgebra structure that is decisive. To see this, let A G PQc? A G C, be such
that the reduct (A\ \, 0) is an implicative BCS-algebra. Notice that in this
case A has both a band with zero reduct (A] A, 0) and a left normal band with
zero polynomial reduct (A] n,0), where (A; n,0) is determined by (A\ \, 0)
as per Corollary 2.3.22(1). Prom this observation it follows that every a G A

generates both a principal subalgebra (Q\(A-, A,O) of the band with zero reduct
(A] A, 0) (recall Lemma 1.3.13) and a principal subalgebra (a](A; \,o) of the left
normal band with zero polynomial reduct (A; n, 0) (recall Proposition 2.3.31),
whence we have the following proposition.

Proposition 3.3.18. Let A€ C and let A G PQc be such that the reduct

(A; \, 0) of A is an implicative BCS-algebra. Then A G IQc iff the principal

subalgebras (a}(A;A,o) and (a](A-, \,o) coincide for each a G A.

Proof. Let A G C and let A G PQc be such that the reduct (A; \ , 0) of A
is f\n implicative BCS-algebra. Throughout the proof, we denote by (a](>i;A,o)
and (a](4; ^,o) the respective universes of the principal subalgebras («](.A;A,O)
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and (a](A; -,o)- To simplify notation, we may also write simply (a]A for both

(O](J4;A,O) and (a](A; — ,o) when these sets coincide.

(=*•) Suppose A G IQc- To see the principal subalgebras (a]^; A,O) and (a](A; \,O>

coincide for every a G A, it is sufficient to show:

(i) For any a e A, {a]{A;Afi) = {a}{A] \)0);

(ii) If 6, c G (aJA then b A c = b l~l c.

For (i), simply observe that for any a € A, {a](A;/\,o) = {b : b <% a} = {b :

b <^''\'°) a} = (o]( ;̂\,o> because <.n and <<i4;\>0> coincide.

For (ii), by (i) we have that (a](4;A,o) a n d ia]{A; — ,o) coincide, so the reference

to (a]A makes sense. Let b,c £ {O]A- From b A c= b A c A b (modX>) we have

that bAc=bAcAb (modS). Also, b A c A b ~ 6fl c (mod 5) by the proof

of Theorem 3.3.14. Hence b A c = b f~l c (modS). Now for any a £ Awe have

that the restriction of S to (a](.4; ^o) is the identity congruence on (a]^ \,o) (by

Proposition 2.3.31), whence the equivalence b A c= b\lc (modE) collapses to

the equality &Ac = &ricas desired.

{<=) Suppose the principal subalgebras (ffj^A.u} and (aj^^o) coincide for

each a € A. Since A G PQc, the quasiorders <v and ^^:\>0) coincide by

definition, so to establish the assertion we need only show that the partial

orders <^ and < ^ ; ^ coincide also. For this, just note that for any 6, c G -4,

b <n C iff (b]{A. A)o> C (C]M; A|0> iff (*](>!; \,0> Q {c](A;\fi) iff b <<A>\>°> C. •

Because of the proposition, for any A G IQc, A G C, we may unambiguously

denote by (a]A the principal subalgebra generated by a G A; we follow this

convention in the sequel.

Corollary 3.3.19. For any A G IQc, the principal subalgebra (a]A generated

by a £ A is a Boolean lattice. Consequently the band with zero reduct {A; A, 0)

is normal.

Proof. Let A G IQc- For every a € A, the principal subalgebra (a]A generated

by a is a Boolean lattice, because of Proposition 3.3.18 and Proposition 2.3.31.

Hence (A- A,0) is normal (by Lemma 1.3.16), and the proof is complete. •
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Given the preceding corollary, throughout the remainder of this subsection we

assume A G C.

Corollary 3.3.20. Let V G C and let A G IQc- If the quasilattice with zero

reduct (A] A, V, 0) is a skew lattice with zero, then it is distributive local

Proof. Let V G C and let A G IQc be such that the quasilattice with zero

reduct (A] A,V,0) is a skew lattice with zero. It is clear that (A; A, V,0) is

local. Since for each a € A, the sublattice (O]A is distributive, from Proposi-

tion 1.4.22 we deduce that (A; A,V,0) is also distributive. Thus (A; A,V,0)

is distributive local. •

An implicative BCS skew lattice is an algebra {A; A, V, \ , 0) of type (2,2,2,0)

such that: (i) the reduct (A] A,V,0) is a skew lattice with zero; (ii) the

reduct (A) \ , 0) is an implicative BCS-algebra; (iii) the natural skew lattice

quasiorder <?> coincides with the implicative BCS-algebra quasiorder -<(A' \'°);

and (iv) the natural skew lattice partial order <% coincides with the implicative

BCS-algebra partial order <^ ; \ ' 0 ) . Clearly the class of implicative BCS skew

lattices is a subvariety of the variety of implicative BCS quasilattices.

Corollary 3.3.19 and Corollary 3.3.20 direct attention towards those members

of IQC/, V G C, that are implicative BCS skew lattices, inasmuch as these alge-

bras preserve several important structural properties of skew Boolean algebras.

In particular, if (A; A, V, \ , 0) is an implicative BCS skew lattice, then: (i) the

skew lattice with zero reduct (A; A, V, 0) is distributive local; (ii) the reduct

(A; \ , 0) is an implicative BCS-algebra; and (iii) for every a £ A, the principal

subalgebra (O]A generated by a is a Boolean sublattice. The precise rela-

tionship between implicative BCS skew lattices and skew Boolean algebras is

clarified in the following theorem, a first-order proof of (a slightly less general

form of) which may be found in [210, Section 4.2].

Theorem 3.3.21. An algebra A := (A] A,V, \ ,0) of type (2,2,2,0) is a skew

Boolean algebra iff the following conditions are satisfied:

1. The reduct (A; A, V, 0) is a join symmetric skew lattice with zero;

2. The reduct (.4; \ ,0) is an implicative BCS algebra;
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3. A satisfies the identity:

xAy/\x~xf\y. (3.69)

Given assertions (l)-(3) above, implicative BCS difference coincides with stan-

dard difference.

Proof. Let A := (A; A, V, \ , 0) be an algebra of type (2,2,2,0).

Suppose A is a skew Boolean algebra. Then the reduct (4; A, V,0) is a

locally Boolean skew lattice (in the sense of §1.4.24) by definition and so is join

symmetric. Also, the reduct (A; \ ,0) is an implicative BCS-algebra by the

proof of Proposition 3.1.8. Moreover, A |= (3.69) since 2 p ,3£ ,3 j |= (3.69).

Hence A is an implicative BCS skew lattice.

(4=) Suppose A satisfies Conditions (l)-(3) of the theorem. By (3) and Propo-

sition 3,3.14, A G IQc- By Corollary 3.3.20, therefore, the skew lattice with

zero reduct (A] A,V,0) is distributive local. By (1) and Lemma 1.4.17 it

follows that (A] A,V,0) is symmetric. Since for every a € A, the princi-

pal subalgebras (a](A;A$) and (a]^ A,V,O) must coincide, by Corollary 3.3.19

we have that (A] A, V, 0) is locally Boolean. To complete the proof it re-

mains to show a\b is the standard difference of a, b G A. For this, just note

that a\b is the complement of a fl b in (flj^y)) by (2) and Corollary 2.3.33,

and hence that a\b is the complement of a A b A a in (a](yi; A,C) by (3) and

Proposition 3.3.18. Since (a](A;\o) and («](>*; A,V,O> must coincide, a\b is the

complement of a A b A a in (a](A; A,V,O)- Hence a\b is the standard difference

of a, & 6 A, and A is a skew Boolean algebra. •

Corollary 3.3.22. An algebra A := (A] A, V, \ , 0) of type (2,2,2,0) is a left

handed skew Boolean algebra iff the following conditions are satisfied:

1. The reduct (A\ A,V,0) is a join symmetric shew lattice with zero;

2. The reduct {A\ \ , 0) is an implicative BCS algebra;

3. The skew lattice meet A coincides with the implicative BCS meet fl.
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Given assertions (l)-(3) above, impiicative BCS difference coincides with stan-

dard difference.

Remark 3.3.23. The condition of join symmetry cannot be omitted from the

assertion of Theorem 3.3.21 and its corollary since the variety of left handed

skew Boolean algebras is properly contained within the class (in fact, variety)

of all impiicative BCS skew lattices for which the skew lattice reduct is left

handed. To see this, consider the algebra A := (A) A, V, \ , 0) of type (2,2,2,0)

with universe A := {0, a, 6, c, d, e,/} and derived binary operation (1 defined

by i fl j := i\{i\j) for any i,j G A determined by the following operation

tables:

AA

0

a

b

c

d

e

f

0

0

0

0

0

0

0

0

a

0

a

0

a

/
0

/

b

0

0

b

e

b

e

0

c

0

a

6

c

d

e

f

d

0

a

b

c

d

e

f

e

0

0

b

e

b

e

0

/
0

a

0

a

/
0

/

VA

0

a

b

c

d

e

f

0

0

a

b

c

d

e

f

a

a

a

c

c

c

c

a

b

b

d

b

d

a.

b

a.
c

c

c

c

c

c

c

c

d

d

a.
d

a-
a-

d

d

e

e

c

e

c

c

e

c

/

/

/

d

d

d
a.

/

\ A

0

a

b

c

d

e

f

0

0

a

6

c

d

e

f

a

0

0

b

e

b

e

0

6

0

a

0

a

f
0

/

c

0

0

0

0

0

0

0

a-

0

0

0

0

0

0

0

e

0

a

0

a

/
0

/

/
0

0

b

e

b

e

0

0

a

b

c

d

e

f

0

0

0

0

0

0

0

0

a

0

a

0

a

/
0

/

b

0

0

b

e

b

e

0

c

0

a

b

c

d

e

f

d

0

a

b

c

d

e

f

e

0

0

6

e

6

e

0

/
0

a

0

a

/
0

/

An easy sequence of checks shows: (i) the reduct (A] A, V, 0) is a left handed

skew lattice with zero; (ii) the reduct (A; \ , 0) is an impiicative BCS-algebra

(with impiicative BCS meet n); and (iii) i <?y j iff i < ^ ; \)0> j and i <v j iff

i -^(M.o) j for a n y i^j £ £ Hence A is an impiicative BCS skew lattice for

which the skew lattice reduct is left handed. However, A is not a left handed
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skew Boolean algebra, since the skew lattice with zero reduct (A] A, V, 0) is

not locally Boolean (in the sense of §1.4.24). In particular, (A; A, V, 0) is not

symmetric, since it is not join symmetric: ( a V 6 ) V ( a A & A a ) = d V 0 = d

but (a A b A a) V {b V a) = 0 V c = c. •

Denote by IrPQ the variety of (1, x)-vre-BCK quasilattices > namely the subva-

riety of PQC/, C = {A, V, \ ,0} , satisfying the identities (1, r); also, recall the

definition of Idziak's variety BL of BCK-lattices from §1.6.23. Perhaps surpris-

ingly, there exists an intimate connection between the variety of left handed

skew Boolean algebras and the variety of BCK-lattices (in the context of the

variety IrPQ). In more detail, the variety of left handed skew Boolean alge-

bras is the natural conjugate of BL in A v (IrPQ) in the same way that BCK is

the natural conjugate of the quasivaricty Q(B2) in Ay(PBCK) (recall Propo-

sition 2.2.5). This is shown by the following proposition, in the statement of

which (and throughout the remainder of this subsection), the type of Idziak's

variety BL is understood to be {A, V, \ , 0}.

Proposition 3.3.24, The pair (V(3j),BL) ['quivalently (lhSBA,BL)/ splits

the lattice of varieties A y (IrPQ) of (1, v)-pre-BCK quasilattices. Thus for every

variety K C IrPQ, either K C BL or V(3j) C K [equivalent^ IhSBA C K] (and

not both).

Proof. Suppose K € Av(IrPQ) and K % BL. By hypothesis, K does not sat-

isfy (2.5), so there is an algebra A <E K and there are elements a, b G A

such that a\b = 0 = b\a but a ^ b. Therefore a = 6(modS) and so

a = b (modZ>). Thus a A b A a = u and b A a A b = 6; because A f= (1, r)

we infer a A b = a and b A a = b. Similarly we deduce that a V b = b and

b V a = a. Because the reduct (A; A, V, 0) is a quasilattice with zero, we

conclude that {0, a, 6} is the universe of a subalgebra of A isomorphic to 3£.

Hence 3 j e K and, by Theorem 1.4.29, IhSBA = V(3j) CK. •

Remark 3.3.25. BL is also the splitting variety associated with the 3-element

right handed skew Boolean algebra 3^ in the variety of (r, \)-pre-BCK quasi-

lattices, namely the subvariety of PQc, C = {A, V, \ , 0}, satisfying the identi-

ties (r, 1). •
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Corollary 3.3.26. For a variety V of (i, x)-pre-BCK quasilattices the follow-

ing statements hold:

1. V is 0-regular i f V C BL;

2. V is congruence distributive i | V C BL;

3. V is congruence n-permutable for some n>2 iff V C BL. In particular,

i / V C BL then V is congruence permutable.

Proof. Let V be a variety of (1, r)-pre-BCK quasilattices. Suppose V C BL
Put di(x, y) := x\y and a\{x, y) := y\x. Then di(x, y) and a\.{x, y) are binary
terms of V satisfying the identities and quasi-identities of Proposition 1.2.6,
so V is 0-regular. Because V is subtractive (witness x\y), from Proposi-
tion 1.7.3 we infer that V is ideal determined. Since V |= (1.3), (1.4), (1.7), V is
ideal distributive by the remarks of §1.7.4, so V is congruence distributive by
ideal determinacy. Moreover, p(a;, y,z) ;= (x\(y\z)) V (z\(y\x)) isaMal'cev
term for V by Idziak [116, Theorem 2], so V is congruence permutable. For the
converse, suppose V % BL. Then IhSBA = V(3j) C V by Proposition 3.3.24.
Since the variety of left handed skew Boolean algebras is not 0-regular, V is not
0-regular. Moreover, because the variety of left handed skew Boolean algebras
satisfies no non-trivial congruence identities (by Lemma 4.8 of Cornish [65])
V does not satisfy any non-trivial congruence identity. In particular, V is not
congruence n-permutable for any n > 2. •

Corollary 3.3.26 in conjunction with the theory of BCK-lattices shows that
several important properties of. BCK-lattices do not extend to pre-BCK quasi-
lattices. On the other hand, by Theorem 3.3.8 the varieties PQc satisfy a
modified form of the Clifford-McLean theorem, while by Proposition 3.3.10,
one-sided members of any PQc are regular. Thus fundamental properties of
bands and quasilatticee are preserved by pre-BCK quasilattices. Collectively,
these observations sugge&'T. tbat, '.or pre-BCK bands and pre-BCK quasilattices,
the behaviour of these algebirs is more closely aligned to that of bands and
quasilattices than to that JL BCK-semilattices and BCK-lattices. We return
to this point in the iollowing subsection.
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3.3-27. BCK Bands and BCK Paralattices. Recall from Lemma 1.6.2
and Proposition 1.6.4 that for any BCK-algebra A, there exist distinct partial

orders < n , n = 0,1,2 on A, where for any a, b € A,

a <0 6 iff ab = 0

a <i b iff bC\ a = a

a<2b iff (6na)(6a) = a.

A loiuer <n-BCK band, n = 0,1,2, is an algebra (A] A, —, 0) of type (2,2,0)

such that: (i) the reduct (A] A, 0) is a band with zero; (ii) the reduct (A] — , 0)

is a BCK-algebra; and (iii) the natural band partial order <u coincides with

the BCK partial order <{
n
A' ">0>.

Theorem 3.3.28. An algebra (A; A, - ,0) of type (2,2,0) is a lower <0-BCK

band iff the following identities are satisfied:

x A (y A z) « (x A y) A z (3.76)

(3.77)

({x -y)-(x- z)) -{z-

— 0 X

0

(3.78)

(3.79)

(3.80)

(a; — (x —

y A(x — (x -'-- y)) « x — {x — y)

(x A y A x) — re « 0.

77ms i/ie c^oss c7 <Q-BCK bands is a variety.

(3.81)

(3.82)

(3.83)

Proo/. Let A = (A\ A, - ,0) be an algebra of type (2,2,0) satisfying (3.76)-

(3.80) and let a,b £ A. To prove the theorem it is sufficient to show:

(i) A |= (3.31)-(3.83) implies {A; - ,0) is a BCK-algebra;



3.3. Pre-BCK Quasilattices and BCK Paralattices 315

(ii) A (= (3.81)-(3.83) iff < ^ ; ' )0> and <n coincide;

(iii) A |= (3.81)-(3.83) implies (A\ A, 0) is a band with zero.

For (i), let a, b e A and suppose A |= (3.81)-(3.83). To see (A; - , 0 ) is a

BCK-algebra it is sufficient to show a — 6 = 0 = 6 — a implies a = b, just

because (A) - , 0) is a pre-BCK-algebra by (3.78)-(3.80). So let a - b = 0 =

b - a. Then a A b = (a - 0) A b (by (3.79)) = (a - (a - b)) A b = a - (a - b)

(by (3.81)) = a-^0 = a (by (3.79)). Also a A 6 = a A {b - 0 ) (by (3.79))

= a A (b - (b - a)) = b - {b - a) (by (3.82)) = b - 0 = b (by (3.79)). Hence

a = a A b = 6.

For (ii), suppose A (= (3.81)-(3.83). By (i), {A] - , 0 ) is a BCK-algebra,

so the reference to <Q ' makes sense. Assume a <Q ' b. Then

a = a-^0 (by (3.79)) = a - (a - 6) = ( a - ( a - f r ) ) A 6 (by (3.81)) =

( a - 0 ) A b (by (3.79)) = a A b. Also 6 A a = b A (a ---0) (by (3.79))

= b A ( a - ( a - f t ) ) = a - (a - 6) (by (3.82)) = a-^0 = a (by (3.79)).

Hence a <Q ' b implies a <-« b. For the opposite implication assume

Then sobAaAb = a and a — b =

{b A a A 6 ) - 6 = 0 by (3.83). Thus a < 6 and so a <n iff

<o ' ~~ Conversely, suppose the partial orders <K and <Q ' co-

incide. From (a — (a — b)) <Q ' ' b we have (a —(a — b)) <u b, which

implies (a :- (a — b)) A b = a — (a -- b) = b A (a — (a — b)). Moreover, from

a A b A a <•« a we have a A b A a <Q' a and thus (a A b A a) — a = 0.

Hence A f= (3.81)-(3.83).

For (iii), suppose A |= (3.81)-(3.83). Then (A; -=-, 0) is a BCK-algebra by (i),

so 0 <Q ' ~ a for all a € A by Lemma 1.6.2. By (ii), 0 <% a for all a € A,

so (A] A, 0) is a band with zero. •

For a lower <i-BCK band A and a,b e A, an argument similar to the proof

of Theorem 3.3.28 shows that a <\ ' b implies a <% b iff A satisfies the

iden^ies:

x A (x — y) « x — y.

(3.84)

(3.85)
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Conversely, a <% b implies a <\ ' b iff A satisfies the identity:

x — (x — (x A y A x)) « x A y A x. (3.86)

(For a lower <2-BCK band, we know of no corresponding equational charac-

terisation of the coincidence of the partial orders <2 ' ""' and <^.) Nonethe-

less, the identities (3.76)-(3.80), (3.84)-(3.86) are not sufficient to ensure sat-

isfaction of the quasi-identity (1.5). To see this, consider (A,\,0)-3£, the

(A,\, 0)-reduct of the 3-element left handed primitive skew Boolean alge-

bra 3P
L. An easy sequence of checks (ignoring issues of type) shows (A, \ , 0)-

3P
L \= (3.76)-(3.80), (3.84)-(3.86) but that A ^ (1.5).

Problem 3.3.29. For n = 1,2, is the class of lower <n-BCK bands equation-

ally definable? •

An upper <n-BCK band, n = 0,1,2, is an algebra (A; V, - , 0) of type (2,2,0)

such that: (i) the reduct (.4; V,0) is a band with identity; (ii) the reduct

(A] —, 0) is a BCK-algebra; and (iii) the natural band partial order <u

dualises the BCK partial order <„ ' ' ' in the sense that a <^ b iff b <n '

a for any a,b £ A. The proof of the following theorem is similar to the proof

of Theorem 3.3.28 and is omitted.

Theorem 3.3.30. An algebra (A; V, — ,0) of type (2,2,0) is an upper <o-

BCK band iff the following identities are satisfied:

x V (y V z) « (x V y) V z

x V a; « x

(3.87)

(3.88)

\\x ~ y) ~ \x ~ z)) ~ \z ~

x — 0 ~ x

(3.89)

(3.90)

(3.91)

(3.92)
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y V (x — (x — y)) « y (3.93)

(3.94)

Thus the class of upper <Q-BCK bands is a variety.

For n = 1,2, remarks concerning lower <n-BCK bands apply mutatis mutandis

to upper <n-BCK bands. In particular, for an upper <i-BCK band A and

a,b G A, a <„ ' ' b implies b <u a iff A satisfies the identities:

{x — y)V x & x

x V (x — y)~ x.

Conversely, a <% b implies b <n ' a iff A satisfies the identity:

(3.95)

(3.96)

{x V y V x) - ((x V y V x) - x) ~ x. (3.97)

(For an upper <2-BCK band, we know of no corresponding equational char-

acterisation of the dualisation of the partial orders < ' and How-

ever, the identities (3.87)-(3.91), (3.95)-(3.97) are not sufficient to ensure sat-

isfaction of the quasi-identity (2.5). To see this, consider (V,\, 0)-3^, the

(V, \ , 0)-reduct of the 3-element right handed primitive skew Boolean alge-

bra 3^. An easy sequence of checks (ignoring issues of type) shows that

(V,\,0)-3£ (= (3.87)-(3.91), (3.95)-(3.97) but that A ^ (1.5).

Problem 3.3.31. For n = 1,2, is the class of upper <n-BCK bands equation-

ally definable? •

A paralattice with zero is a paralattice (-4; A, V) for which there exists 0 e A

(the zero of (̂ 4; A,V)) such that 0 is the least element under the natural

paralattice partial order. As is usual, by abuse of language and notation we

often identify a paralattice with zero A := {A] A, V) with the algebra (̂ 4; A

, V,0) obtained from A upon enriching the language of A with a new nullary

operation symbol 0 whose canonical interpretation on (A] A, V, 0) is the zero

element 0 G A. A <Q-BCK paralattice is an algebra (A; A, V, —, 0) of type

(2,2,2,0) such that: (i) the reduct (4; A, V, 0) is a paralattice with zero; (ii)
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the reduct (A; —, 0) is a BCK-algebra; and (iii) the natural paralattice partial

order <•« coincides with the BCK partial order <Q ' ~ . Prom Theorem 3.3.28

and Theorem 3.3.30 the following result is clear.

Theorem 3.3.32. An algebra A := (A] A, V, - , 0) of type (2,2,2,0) is a

<Q-BCK paralattice iff the reduct (A] A, — ,0) is a lower <0-BCK band and

the reduct (A; V, — ,0) is an upper <Q-BCK band. Thus A is a <Q-BCK

paralattice iff A \= (3.76) - -(3.83), (3.87) - -(3.94). Therefore the class of

<Q-BCK paralattices is a variety.

Let C denote an arbitrary subset of the language {A, V, —, 0} of <o-BCK

paralattices that contains both — and 0. Let:

denote the quasivariety of BCK-algebras when C = { — , 0};

denote the variety of lower <o-BCK bands when C = {A, —, 0};

• BPc denote the variety of upper <0-BCK bands when C = {V, — , 0};

• BPc denote the variety of <o-BCK paralattices when C = {A, V, — ,0}.

Notice that for each C distinct from { — , 0}, BPc is the class of algebras with

language C axiomatised by those identities among (3.76)-(3.83), (3.87)-(3.94)

that use only operation symbols from C\ of course, this observation is depen-

dent upon the axiomatisation of the variety of <o-BCK paralattices given in

Theorem 3.3.32.

Remark 3.3.33. As per pre-BCK quasilattices, BPC should not be confused

(for each C) with C-BP, the class of all C-subreducts of the variety of <o-BCK

paralattices. In particular, in contrast to each BPc, we do not know in general

if each C-BP is even a quasivariety. •

Throughout the remainder of this subsection assume A € C or V G C. By

remarks due to Laslo and Leech [145, Section 5, p. 23], the Green's equivalences

V(A.t A) and V(A. V) on a paralattice A are not typically congruences, whence

paralattices do not in general possess a coherent Clifford-McLean structure. In

fact, by Laslo and Leech [145, Theorem 26], a paralattice A supports a coherent

Clifford-McLean structure iff it is simultaneously a quasilattice, in which case
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V(A;A) = ^(A;v)- Concerning the varieties BPc, the following proposition

shows that the presence of BCK difference causes members of BPC to have a

coherent Clifford-McLean structure only in the trivial (that is, commutative)

case.

Proposition 3.3.34. For any A G BPc the following assertions hold:

1. If AE C then a congruence on (A; A, — ,0) i

2. / /VG C then T>(A-,V) is a congruence on (A; V, — ,0) i

3. If {A, V}CC then Z ^

= ^(A; V) •

and T>^-, v) are congruences on A i - A) =

Proof We prove the proposition only for the case where {A, V} C C; the

proofs in the remaining cases do not differ significantly and are omitted. Let

{A, V}CC and let A G BPC. Suppose both V^ A) and V(A-, V> are congruences

on A. Then in particular U(A. A) and V^-, v) are congruences on the paralattice

with zero reduct (̂ 4; A, V, 0), so X> ;̂ A) = V(A- V) by previous remarks. In view

of this last, to simplify notation we can and will write V for V(A-, A) — T^(A-, V)

throughout the remainder of the proof. Let a, b £ A. To complete the proof it

is sufficient to show a = b (modP) implies a = b. So suppose a = b (modP).

Prom a A b A a — a A b A a (mod V) and a = b (mod V) we have that

( a A i i A d ) - o = (a A ii A a) — 6(modX>), since V has the substitution

property for the — operation. Because (a A b A a) — a = 0 by (3.83) we

have that (a A 6 A a) — b = 0 (modX>), whence (a A b A a) — b = 0 by

Lemma 1.4.13. But then a — b = 0 since a = 6(modX>). An analogous

argument shows b — a = 0; since (A; —, 0) is a BCK-algebra we have that

a = b. Thus V = u)&. Since the converse holds trivially, the proposition is

proved. •

Let A e BPC. Because ^ A j ^ ^ i A ) Q % 4 ; A ) and C(A;v),R(A;v) Q V(A;V)

(when these equivalences exist), an easy modification of the proof of Proposi-

tion 3.3.34 yields:

Proposition 3.3.35. For any A G BPc the following assertions hold:



3.3. Pre-BCK Quasilattices and BCK P a r a l a t t i c e s 3 2 0

1. If A £ C then £(A] A) and T^(A-, A) are congruences on (A; A, - - , 0) iff

2. If V £ C then £(A.y y) and *R>{A; V) are congi aences on (A; V, —, 0) iff

£(A; V) = WA = 11{A; V),*

. //{A, V}CC iften £(,4; A), T^(A-, A), £(A-, V)
 a "^^(A; v) fl^e a// congruences

on A zĵ  £(,4; A) = WA = TZ(A; A) and C(A-, V) = ^ A = 72.(4; v>-

Let A e BPC. For AG C [V€ C; {A,V} C C] (i4; A, - , 0 ) [(i4; V, - ,0>;

(/I; A, V, - , 0)] is regular if £{A. A) and 7e(j4. A> [£(/1. v>, ^ ( y i ; v>; C{A- A), ^ ; A>*

^<4;v), 7V;v)] are congruences on (i4; A, - , 0 ) [(A; V, - ,0>; (A\ A,V

, — , 0)]. Because of Proposition 3.3.35, an algebra A € BP-j is regular only in

the trivial (commutative) case.

Corollary 3.3.36. For A G BPc ^ e following assertions hold:

1. If A€C then (A; A, — ,0) is regular iff V(A. A) =

2. IfV€C then (A: V, - , 0) is regular iff V{A. V) =

3. If {A, V} C C then A is regular iff V{A. A) = CJA = T>{A] V).

Proof. We prove the corollary only for the case that {A, V} C C; the proofs

in the other cases are not significantly different and are omitted. So let A G

BPc where {A, V} C C. Suppose A is regular. Then C(A. A) and 7l(A; A) are

congruences on A, so £(A-,A) = ^ A = H(A;A) by Proposition 3.3.35(3). Since

V(A; A) = £(A; A) °H(A; A) (by Howie [ i l l , p. 46]) we have that V{A. A) = o;A; an

analogous argument shows V^A.^ = U>A- For the converse, suppose ^(A;A)
 =

u)A = V(A. V). Since both C(A; A) C V^A. A) and 1Z^A. A) C V(A] A) we must have

both C(A] A) = U>A arid TZ(A. A) = WA- Similar reasoning shows £(A] V) = WA and

ft(4;v) = WA- Thus all of £^ ; A ) , 7̂ (/i;A>, ^C(4;V) and 71(4; v) are congruences

on A, so A is regular. •

Recall from the remarks concluding §3.3.2 that the behaviour of pre-BCK

bands and pre-BCK quasilattices more closely resembles that of bands and

quasilattices than that of BCK-semilattices and BCK-lattices. In contrast,
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Proposition 3.3.34 and Corollary 3.3.36 suggest that the behaviour of <o-

BCK bands and <0-BCK paralattices is more closely aligned to that of BCK-

semilattices and BCK-lattices than to that of bands and paralattices. Further

support for this last contention is provided in the remaining results of this sub-

section, which show that properties of O-regularity, congruence distributivity

and congruence permutability enjoyed by BCK-semilattices and BCK-lattices

are preserved upon passing to <0-BCK bands and <0-BCK paralattices.

Proposit ion 3.3.37. (cf. [116, Theorem 1]) Let A G BPC. For any a,b e A,

the following are equivalent:

1. a = b;

2. a~b-0 = b-a.

/ /VG C, then either of (1) or (2) is equivalent to:

3. (a - b) V (6 - a) = 0.

Thus any variety BPc is 0-regular and hence ideal determined. That is, for

any A G BPc, the map 9 (->• [O]0 (9 G Con A) is a lattice isomorphism from

Con A into I( A) .

Proof. For the first assertion of the proposition, the only non-trivial implica-

tion to prove is (3) =*- (2). So let V G C and let A G BPC. Let a,b G A and

suppose (a - b) V (b - a) = 0. We have a-b - (a-b) V 0 = (a - b) V

(a - b) V (b - a) = (a-b) V (b - a) = 0, just because the reduct (A; V,0)

is a band with identity. Similarly, b — a = 0 V (b — a) = (a — 6) V (6 — a) V

(b — a) = (a — b) V (b — a) = 0. Thus a — 6 = 0 = 6 — a as required.

From the first assertion of the proposition and Proposition 1.2.6 it follows that

any BPC is 0-regular and hence (by Proposition 1.7.3) ideal determined. Thus

for any A G BPc the map 9 H-> [0]^ (9 G Con A) is a lattice isomorphism from

Con A into I(A). •

Remark 3.3.38. Because any BPc is ideal determined, it has a finite basis of

ideal terms (in the sense of [57]): see Chajda and Halas [57] or Ursini [221].

Nonetheless, in general we know of no simple description of the BPc-ideals
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for any variety BPC. In particular, for each choice of C, there exists A €

BPC such that IBPC(A) % IBCK((^4; — .0)) (by an easy modification of a

result due to Idziak [11G, Lemma 2(ii)], for each choice of C the converse

IBCK((-<4; — JO)) C I B P C (A) does obtain for any A £ BPc). Indeed, examples

due to Idziak [116, p. 979] show there exists A G BPc such that the inclu-

sion IBPC (A) C IBCK(C<4; — ,0)) is strict when VG C. To see the inclusion

IBpc(A) C IBCK((^4; —> 0)) is strict for C = {A, - , 0}, consider the following

4-element lower <0-BCK band A:

AA

0

a

b

c

0

0

0

0

0

a

0

a

a

a

b

0

a

b

c

c

0

a

b

c

0

a

b

c

0

0

a

b

c

a

0

0

a

c

b

0

0

0

c

c

0

0

a

0

An easy sequence of checks shows that A is simple but that {0,a,6}isaBCK-

ideal of the BCK-algebra reduct (A; - , 0 ) . HenceIBPc(A) £ I B CK((4; - , 0 ) ) .

Theorem 3.3.39. For each C, the variety BPc is congruence distributive.

Proof. Because BPC |= (1.3), (1.4), (1.7), from the remarks of §1.7.4 we have

that BPc is ideal distributive. Since BPc is ideal determined (by Proposi-

tion 3.3.37) we conclude that BPc is congruence distributive. •

Remark 3.3.40. It is easily verified that if V € C then the term M(x, y, z) :=

(x — (x — z)) V [z — (z — y)) V (y — (y — x)) is a majority term for BPc (see

also Idziak [116, p. 841, Theorem 2]). In contrast, the varieties BPC have no

majority term when V £ C: see Idziak [116, Remark, p. 842]. •

Proposition 3.3.41. Concerning the varieties BPC, the following assertions

hold:

1. (cf. [187, Theorem]) If A € C then BPC is congruence 4-permutable;
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2. (cf. [116, p. 841, Theorem 2]) If V 6 C then BPC is congruence per-

mutable, with Mal'cev term:

p(x, y, z) := (x - {y - zj) V (z ~ (y - a?)).

Proof. For (1), suppose A G C. Let:

Pi(x,y,z) :=x-(y-z)

P2{x, y, z) := (x-(x- y)) A (z - (z - .y))

,y,z) := z-(y-x).

By (1.7), (3.81), (3.82), (3.76) and (1.3), the variety BPAC satisfies the identi-
ties:

Pi{x,x,y) t =

and so is congruence 4-permutable by Hagemann and Mitschke [106, Theo-
rem 2].

For (2), suppose V G C and let p(x, y, z) be as in the statement of the propo-
sition. Because of (3.92) and (3.93), it is easily verified that BPc satisfies the
identities p(x, x,y) « y and p(x, y, y) « x. Hence p(x, y, z) is a Mal'cev term
for V and BPC is congruence permutable. •

Remark 3.3.42. The statement of Proposition 3.3.41(1) cannot be strength-

ened to the assertion that if A 6 C then BPc is congruence 3-permutable, in

view of a result of Raftery [187, Theorem] showing that the variety of lower

BCK-semilattices is not congruence 3-permutable. •

3.3.43. Implicative BCK Bands and Implicative BCK Para'iattices.
By the results of §1.4.32, §1.4.37, §3.2.6 and §3.2.22, algebras arising in binary
discriminator, pointed fixedpoint discriminator and pointed ternary discrim-
inator varieties all support an underlying 'locally Boolean' structure (in the
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sense of either §1.3.15 or §1.4.24). As in §3.3.13, this observation motivates

the study of those members of BPc for which every (appropriately defined)

principal subalgebra is a Boolean lattice. To begin, recall the definition of

the BCK meet n from §1.6.11. For a BCK-algebra A and any a E A, let

(a] := (aHA] n ' a n ^ . By analogy with semigroup theory we call (a] the

principal subalgebra generated by a, even though the polynomial reduct (A; D)

is not a semigroup in general.

Remark 3.3.44. For a BCK-algebra A, the principal subalgebra (a] generated

by a ^ A should not be confused with the BCK-subalgebra ((a]0; - A 'w,0),

where (a]0 := {6 : b <o a}, and which is also denoted (a]. In the sequel,

it will always be clear from context whether (a] denotes the BCK-subalgebra

(Ho5 - A'(o]> 0) or the principal subalgebra (a n A; nA 'an/1) generated by a.

For a BCK-algebra A, the principal subalgebra (a] generated by a € A may

be alternatively defined as ((a]i; nA '"n/1), where (a]i := {b : b <i a}, because

{b : 6 <i a} = a fl A by Proposition 1.6.4(1). From this observation it

follows that if A is commutative then (a] = ((a]o; nA'(°]), where (a]0 :=

{b : 6 <0 a}, since in this case <o=<i by Lemma 1.6.12. In other words,

if A is commutative, then (a] is precisely the principal subalgebra generated

by a of the semilattice polynomial reduct (A; n). It is this observation that

motivates our description of the algebra (a D A; nA ' a r u ) above as the principal

subalgebra generated by a. •

As per §3.3.13, our study of varieties BPC supporting a 'locally Boolean' struc-

ture centres on the interplay of the underlying band with zero principal subalge-

bra structure and the underlying BCK-algebra principal subalgebra structure.

In more detail, let A G C and let A e BPC. Then A has both a band with

zero reduct (A; A, 0) and a BCK-algebra reduct (A\ l~l, 0). Hence every a e A

generates both a principal subalgebra (fl](>i; A,O> of the band with zero reduct

(A] A>0) (recall Lemma 1.3.13) and a principal subalgebra (a](A-, -,o) of the

BCK-algebra reduct (A] 11,0). Although the principal subalgebra (a]^,-i; -.)0)

generated by a of the BCK-algebra reduct (A\ — ,0) is not a principal sub-

algebva in the usual semigroup theoretic sense, the following two results show

nonetheless that for the varieties BPC, A€ C, the behaviour of the under-
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lying BCK-algebra principal subaigebra structure is decisive (cf. Proposi-

tion 3.3.18).

Proposition 3.3.45. Let AG C and let A G BPc- For every a £ A, the

principal subalgebras (a]^-, A.O) and [CL[(A] - , O ) coincide iff the reduct {A; A,0)

is a normal band with zero and the reduct (A] —, U) is a commutative BCK-

algebra.

Proof. Let AG C and let A G BPc. Throughout the proof, we denote by

(fl](i4;A,o) an(3 (o](A; - ,o) the respective universes of the principal subalgebras

(a]{A\ A,O) and {a](A; -,o>- To simplify notation, we may also write simply (O\A

for both (aj^A.o) arid (aj^; — ,o) when these sets coincide.

(=>) Suppose that for every a G A, the principal subalgebras (a]{A-,A,o)

(a](A; — ,o) coincide. To see the reduct (A; — ,0) is a commutative BCK-

algebra, it is sufficient by Lemma 1.6.12 to show the partial orders <

and < i coincide. For this, observe that for any a,b G A,

.(A: - ,0)

b<[A''^'0)a iff be an A

iff be(a]{A.t^t0)

iff b G (a](,i ; A,O)

iff b <u a

iff 6 < ^ : " ' 0 > a

by Proposition 1.6.4(1)

by hypothesis

by Lemma 1.3.13(1)

since A G BPC.

Hence <Q and <•[ ' coincide, and (J4; — , 0) is commutative.

It remains to show the band with zero reduct (̂ 4; A, 0) is normal. To this

end, recall from §1.6.11 that since the BCK-algebra reduct (A; — ,0) is com-

mutative, it has a distributive nearlattice polynomial reduct (J4; D). For any

a G A, let (a](/i;n) denote the principal subaigebra of (̂ 4; n) generated by a.

Because (̂ 4; n) is a distributive nearlattice, every principle subaigebra (o]^., n)

is a distributive sublattice by the remarks of §1.6.11. Because (aj^n) coin-

cides with (a](i4; ^ i0) (by commutativity of (A; —, 0) and Remark 3.3.44), and

{a](A; J-,0) coincides with (^(^JA.O) (by hypothesis), we have that (a](A;A,o) is

a distributive sublattica. Hence for every a G A, the principal subaigebra
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(a]{A;A,o) generated by a is a sublattice. By Lemma 1.3.16 the band with zero

reduct {A\ A, 0) is normal, and the proof is complete.

(<=) Suppose the reducts (A; A,0) and (A] — ,0) are respectively a normal

band with zero and a commutative BCK-algebra. To see the principal sub-

algebras (aj^A.o) and (a]^ -,o) coincide for every a £ A it is sufficient to

show:

(i) For any a £ A, (a]{A.Afi) = (a]{A. ^)0);

(ii) If 6, c G (O]A then b A c = b D c.

For (i), just observe that for any a £ A, (a]^;Aio> = {b : b <% a} = {b :

b <o ' ' a} = {b : b <[ ' a] = (a](A; -,o) by commutativity of

(A; — , 0) and the coincidence of the partial orders <% and <Q ' .

For (ii), by (i) we have chat {a](A; A,O) and (a](A-, -,o) coincide, so the reference

to (aJA makes sense. Let b,c £ (O\A- Since (A] A,0) is normal, b A c is

the greatest lower bound of {b, c} with respect to the restriction of <-u to

ia]{A; A,O)- Also, b n c is the greatest lower bound of {&, c} with respect to the

restriction of <Q ' to (a)^. ^. )0), because {A\ — , 0} is commutative. Since

{a]{A-,Afi) = {a](A; -,o) (by (i)) and <H=<{QA' ~'0> (by our assumptions on A),

we have that b A c = b n c as desired. •

Remark 3.3.46. Let A be a BCK-algebra and let a £ A. Clearly, the def-

inition of the principal subalgebra (a] generated by a plays a crucial role in

the preceding proof. In particular, if (a] is instead defined as the algebra

(A fl a; DA''4no), then the argument of the proof is not sufficient to establish

Proposition 3.3.45, since in this case A D a -- {b : b <o a}. •

Let A G BPc, A G C, be such that the reduct (A; A, 0) is a normal band with

zero and the reduct (A; —, 0) is a commutative BCK-algebra. In view of

Proposition 3.3.45, we can unambiguously write (G]A for the principal subal-

gebra generated by a; we adopt this practice henceforth.

Proposition 3.3.47. Let AEC and let A G BPc be such that for every a £ A,

the principal subalgebras (aj^A.o) o,nd (a](A; -,o) coincide. Then for every

a £ A, the principal subalgebra (O\A is a Boolean sublattice iff the reduct

(A] — ,0) is an implicative BCK-algebra.
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Proof. Let A G C and let A G BPc be such that for every a G A, the principal

subalgebras (a](>i;A,o) and {a\(A] ^)0) coincide.

Suppose that, for every a G 7l, the principal subalgebra (O\A is a Boolean

sublattice. By our assumptions on A and Proposition 3.3.45, the band with

zero reduct (A] A,0) is normal and the BCK-algebra reduct (A; - ,0) is

commutative. Since (A; — , 0) is commutative, A possesses a meet semilattice

polynomial reduct (-4; fl). For any o G A, let (fl]<yj;n) denote the principal

subalgebra of (A; n) generated by a. Because b < ^ ; n ) c iff b <<i4; ~)0> c for

any b,c e A and the band with zero reduct {A; A,0) is normal, an argument

similar to the proof of Proposition 3.3.45 shows that for every a G A, (a](^; A,O)

and (a](>i;n) coincide. Hence the principal subalgebra (a j^n) is a Boolean

lattice for every a € A, and so (A; n) is semi-Boolean. From Theorem 1.6.21

it follows that {A] fl) has an induced implicative BCK difference operation / ,

w h e r e b / c := (b f l c)'(b] f o r a n y b , c £ A . B u t f o r a n y b , c £ A ,

= b-(b~(b-c))

by (1.31),

so b/c = b — c. Hence the reduct (A; —, 0) is an implicative BCK-algebra.

(<=) Suppose the reduct (A\ —, 0) is an implicative BCK-algebra. Then

for every a G A, the principal subalgebra (G]A is a Boolean lattice by our

assumptions on A and Corollary 1.6.22. •

Unless otherwise specified, throughout the remainder of this section we assume

A G C". Given this convention, Proposition 3.3.47 leads to the study in the

sequel of those members of BPc for which the band with zero reduct (.4; A, 0)

is normal and the BCK-algebra reduct (A; •*-, 0) is implicative.

A lower implicative <0-BCK normal band is an algebra (̂ 4; A,/,0) of type

(2,2,0) such that: (i) the reduct {A] A, 0) is a normal band with zero; (ii)
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the reduct (A] /, 0) is an implicative BCK-algebra; and (tfi) the natural band

partial order S% coincides with the BCK partial order <o ^'°\

Theorem 3.3.48. An algebra A := (A; A,/,0> of type (2,2,0) is a lower

implicative <o-BCK normal band iff the reduct (A; A, 0) is Q norfhal band with

zero, the reduct (A] / , 0) is an implicative BCK-algebra, and A |= (3-83), (3.84),

(3.85). Thus the class of lower implicative <0-BCK normal bands is a variety.

Proof Let A := (.4; A, / , 0) be an algebra of type (2,2,0) such that the reduct

(A; A, 0) is a normal band with zero and the reduct (A; /»0) is an implicative

BCK-algebra. Let a,b e A. To prove the theorem it is sufficient to show:

(i) (a A b A a) ^ a = 0 iff a <u b implies a < ^ ; />0> b\

(ii) (a •> b) A a = a - b = a A (a - b) iff a <{
0

A'/>0> b implies a <n b.

The proof of (i) is implicit in the proof of Theorem 3.3.28. For (ii), the remarks

immediately following Theorem 3.3.28 imply ( a - 6 ) A ^ — a - & = a A

(a~b) iff a <{*LQ) b implies a <n b. Since the BCK partial orders <<4: A°>

and <J4;/'°> coincide (by the proof of Proposition 3.3.45)> the result follows.

By analogy with the theory of skew lattices, call a paralattice (4; /\; V) local if

its band recoct (A; A) is normal. An implicative <Q-BCK l°£al paralattice is an

algebra (4; A,V,/,0) of type (2,2,2,0) such that: (i) the Muct (A] A,V,0)

is a local paralattice with zero; (ii) the reduct (A; /, 0) is 0& implicative BCK-

algebra; and (iii) the natural band partial order <n coincides with the BCK

partial order ^ / ) 0 ) . The proof of the following result may be established by

an argument similar to the proof of Theorem 3.3.48 and ke*ice is orflitted.

Theorem 3.3.49. An algebra A := (A] A, /, 0) of typt (2,2,0) *s an im-

plicative <Q-BCK local paralattice iff the reduct (A; Aj^O) is a local par-

alattice with zero, the reduct {A; /,0) is an implicative ^Cg-algebra, and

A |= (3.83), (3.95), (3.96). Thus the class of implicative <o~^Cj( local paralat-

tices is a variety.

For the sake of notational consistency with the prequel, throughout the re-
mainder of this subsection let C" denote an arbitrary sut>set of the language
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{A, V, /, 0} of implicative <o-BCK local paralattices that contains either /

and 0 or all of A, / and 0. Ignoring issues of type, let:

• BPC» denote the quasivariety of BCK-algebras when C" = {/, 0};

• BPC» denote the variety of lower <0-BCK bands when C" — {A,/, 0};

• BPC» denote the variety of <0-BCK paralattices when C" = {A, V, /, 0}.

Also, let:

• \PC" denote the variety of implicative BCK-algebras when C" = {/, 0};

• IPc denote the variety of normal lower implicative <o-BCK bands when

denote the variety of local implicative <o-BCK paralattices when

Given the above notation, clearly IPc Q BPc for any fixed choice of C".

Remark 3.3.50. An upper implicative <Q-BCK band is an algebra (A; V, /, 0)
of type (2,2,0) such that: (i) the reduct (A; V, 0) is a band with identity; (ii)
the reduct (A] /, 0) is an implicative BCK-algebra; and (iii) the natural band
partial order <u dualises the BCK partial order <Q in the sense that
a <% b iff b <o a for any a,b e A. Clearly the class of upper implicative
<o-BCK bands is a variety.

By normality, it is clear that no non-trivial (that is, non-commutative) normal

subvariety of the variety of upper implicative <o-BCK bands exists. Hence

there exists no non-trivial variety of upper implicative <0-BCK normal bands

that stands in relation to the variety of upper implicative BCS bands as the

varieties IPc, {A, \, 0} C C, stand in relation to the varieties IPc, {A, /, 0} C

C". For consistency and the sake of parity with the theory of the varieties

PQc, IQc, we let:

• BPc denote the variety of upper <0-BCK bands when C" = {V, /, 0};

• IPc denote the variety of upper implicative <0-BCK bands when C" =
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even though our interest in this thesis lies exclusively in the varieties IPC»,

A G C". That the preceding definitions are coherent in the context of a unified

theory of the varieties BPC», {/,0} C C" C {A,V,/,0}, follows from Theo-

rem 3.3.53 and the remarks of §4.2.27 in the sequel. •

Proposition 3.3.51. Let A. € \?c»- Then the polynomial reduct (A; \,0) is

an implicative BCS-algebra and the polynomial reduct (A] A, \ , 0) is a lower

implicative BCS band, where in both cases a\b := a/(a A "6 A a) for any

a, b € A. Consequently, if V £ C" then the polynomial reduct (A] A,V,\,0)

is an implicative BCS quasilattice. In particular, ifVG C" and the paralattice

with zero reduct (A; A, V, 0) is a skew lattice with zero, then the polynomial

reduct (A; A, V, \ , 0) is an implicative BCS skew lattice.

Proof. Let A G IPc- For the first assertion, by Theorem 1.6.21, Proposi-

tion 3.3.47 and the definition of \ we have that a\b = (a n (a A b A a))', ,

for any a, 6 € A. But,

a n (a A b A a) = (a A b A a) D a by commutativity of D

= (o A b A o)/((o A b A a)/a)

= (a A b A a)/0 by (3.83)

= a A b A a, (3.98)

so a\b = (a A b A a)',-, . From Remark 2.3.37 it follows that the polyno-

mial reduct (A; \ , 0) is an implicative BCS-algebra. To prove the remaining

assertions of the proposition it is sufficient to show the induced implicative

BCS-algebra partial order < ^ ; ^ and quasiorder ^A' ^ coincide with the

natural band partial order <% and quasiorder -<-p respectively. Because of

Proposition 3.3.14, this reduces to establishing that a\(a\b) = a A b A a for

any a, b e A. So let a, b € A. We have:

a\(a\b) = a/(a A (a/(a A b A a)) A a)

= a/(a/(a A b A a))

= a n (a A b A a)

= a A b A a

by (3.84), (3.85)

by (3.98).
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Proposition 3.3.52. Let V G C" and let A G IPC". / / the paralattice with zero

reduct (A] A, V, 0) is a skew lattice with zero, then the following assertions

hold:

1. The skew lattice with zero reduct (A; A, V, 0) is distributive local;

2. The polynomial reduct (A; A, V, fl) is a skew lattice with intersections,

where aHb := a/(a/b) for any a,b G A.

Proof. Let VG C" and let A G IPc be such that the paralattice with zero

reduct (.4; A, V, 0) is a skew lattice with zero.

For (1), we have that (A; A,V,0) is a local skew lattice by hypothesis. Since

for each a £ A, the sublattice (O]A is distributive (by the proof of Proposi-

tion 3.3.45), from Proposition 1.4.22 we deduce that (A; A, V, 0) is distributive.

For (2), the reduct (A; A, V) is a skew lattice, while the reduct (̂ 4; n) is a

meet semilattice. Since a n b = a iff a/b = 0 for any a,b G A, the underlying

partial order <Ai n on the semilattice polynomial reduct (A; n) coincides with

the underlying BCK partial order <Q ' ~~ on (A; — ,0). Since <0 ' and

<ii coincide by hypothesis, <(A] n) and <•# must coincide also. Therefore the

polynomial reduct (A; A, V, n) is a skew lattice with intersections, •

An implicative <Q-BCK local skew lattice is an algebra (A] A, V, \ , 0) of type

(2,2,2,0) such that: (i) the reduct (A; A, V, 0) is a local skew lattice with zero;

(ii) the reduct (A; \ , 0) is an implicative BCK-algebra; (iii) the natural skew

lattice partial order <% coincides with the implicative BCK-algebra partial

order <Q . Clearly the class of implicative <o-BCK local skew lattices is a

subvariety of the variety of implicative <0-BCK local paralattices.

Proposition 3.3.52 and Proposition 3.3.51 direct attention towards those mem-

bers of IPC//, V G C", that are implicative <o-BCK local skew lattices, inasmuch

as these algebras enjoy several important structural properties of skew Boolean

n-algebras. In particular, if (A; A, V, /, 0) is an implicative <0-BCK local skew

lattice, then: (i) the skew lattice with zero reduct (A, V, 0) is distributive lo-

cal; (ii) the polynomial reduct {A\ \ , 0) is an implicative BCS-algebra; (iii) the
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polynomial reduct {A] n) is a meet semilattice; and (iv) for every a £ A, the

principal subalgebra (a] generated by a is a Boolean sublattice. The precise

relationship between implicative <o-BCK local skew lattices an i skew Boolean

fi-algebras is clarified in the following theorem, a version of which is asserted

with second-order proof in Bignall and Leech [19, Section 4]. For the sake of

completeness, we provide a direct proof here.

Theorem 3.3.53. (cf. [19, Theorem 4-2]) A skew Boolean H-algebra is term

equivalent to an algebra (A] A, V, /, 0) of type (2,2,2,0) where:

1. The reduct {A\ A, V,0) is a join symmetric local skew lattice with zero;

2. The reduct {A\ / ,0) is an implicative BCK-algebra;

3. The natural skew lattice partial order <u and the BCK partial order <Q

coincide.

In particular, given such an algebra (A) A, V,/,0), standard difference \ and

the intersection operation C\ are respectively defined on A by:

a\b := a/(a A b A a) and a D b := a/(a/6)

for any a, 6 € A. Conversely, given a skew Boolean D-algebra (A; A, V, \ , D, 0)

and a, b € A, implicative BCK difference / is defined on A by:

a/b := a\(aD b).

Thus the variety of skew Boolean D-algebras is termwise definitionally equiva-

lent to the variety of implicative <0-BCK join symmetric local skew lattices.

Proof. Let A := (A; A, V, / , 0) be an algebra of type (2,2,2,0) satisfying

Conditions (l)-(3) of the theorem. Then A G IPC», C" = {A,V,/,0}. To

see the derived algebra (A; A,V,\,D,0) (where a\b := a/(a A b A a) and

a n b — a/(a/b) for any a, b G A) is a skew Boolean fl-algebra it is sufficient

to show:

(i) The polynomial reduct (A; A, V, \ , 0) is a skew Boolean algebra;

(ii) The polynomial reduct (J4; fl) is a meet semilattice;
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(iii) The induced semilattice partial order <(j4;n> coincides with the natural

skew lattice partial order <^.

For (i), because A G IPc, VG C", from Proposition 3.3.51 we have that the

polynomial reduct {A\ A, V, \, 0) is an implicative BCS skew lattice. Since

the skew lattice with zero reduct (A; A, V, 0) is join symmetric, from The-

orem 3.3.21 it follows that the polynomial reduct (-4; A,V, \ ,0) is a skew

Boolean algebra.

For (ii), because A G IPc, VG C", from Proposition 3.3.52(2) we have that

polynomial reduct (.A; A, V,n) is a skew lattice with intersections.

For (iii), we have a <^ ; n> b iff a <^;/'°> b for any a,b G A. Since A G IP?,

we infer that a < ^ ; n> b iff a <y_ b for any a,b £ A. Hence the induced

semilattice partial order <<j4;n> coincides with the natural skew lattice partial

order <-#.

For the converse, let A := (A; A, V, \ , D, 0) be a skew Boolean fl-algebra. We

verify Conditions (l)-(3) above are satisfied.

For (1), the reduct (A] A,V,0) is a distributive symmetric local skew lattice

with zero by definition, and so in particular is a join symmetric local skew

lattice with zero.

For (2), we have that the reduct {A] 0) is a meet semilattice by definition. For

any a G A, let (a]^ ; n) denote the principal subalgebra of (A] n) generated

by a. Because of Proposition 1.4.34 and the locality of the skew lattice with

zero reduct (.4; A, V, 0), an argument similar to the proof of Proposition 3.3.45

shows that for every a € A, the principal subalgebra (a](4; A,V,O) coincides with

(fl](4;n)- Without loss of generality, therefore, throughout the remainder of

the proof we can and will write (O]A for both (aj^A.v.o) and (a](/i;n)- Since

(A; A, V, 0) is locally Boolean (in the sense of §1.4.24), (a]A is a Boolean lattice

for every a G A. Hence (A] n) is semi-Boolean. From Theorem 1.6.21 it follows

that (A\ n) possesses an induced implicative BCK difference operation /,

where a/b := (a D &)(a]A for any a, b G A. To see a/b — a\{a n b), note:

(i) a\(a n b) is the complement of a A (a n 6) A a in (<X]A by definition of
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standard difference;

(ii) aA(aDb)Aa = ar\bby Proposition 1.4.34.

Because of (i) and (ii), we have that a\(a n b) is the complement of a n b

in (O\A; that is to say a\(a Hb) = (a D &)(aiA- Hence the induced implicative

BCK difference / is term definable, and A has an implicative BCK-algebra

polynomial reduct (A; / ,0) , where a/b := a\(a D b) for any a, b G A.

For (3), it is sufficient to show the BCK partial ordering <}Q
A'''0' coincides

with the semilattice partial ordering < ^ ; n ) . So suppose a < ^ ; ' ' 0 ' b. Then

0 = a/b = a\(a(1 b), so 0 = (a A (aPI b) A a)?, = (aD &)(oiA> which implies

a n b = a. Thus a <^: n ) 6. On the other hand, from a <(A'>n) b we have

a fl b = a, whence a/6 = a\(a D 6) = (a A (a D 6) A a)?, = ( o f l

O ( * O ] A = 6.

Remark 3.3.54. The condition of join symmetry cannot be omitted from

the assertion of Theorem 3.3.53 since the variety of left handed skew Boolean

fl-algebras is properly contained within the class (in fact, variety) of all im-

plicative <o-BCK local skew lattices for which the skew lattice reduct is left

handed. To see this, consider the algebra A := (A; A, V, /, 0) of type (2,2,0)

whose reduct (A; A, V, 0) is the sVew lattice with zero reduct of the implicative

BCS skew lattice of Remark 3.3.23, and whose operation / A is determined by

the following operation table:

/ A

0

a

b

c

d

e

f

0

0

a

b

c

d

e

f

a

0

0

b

e

d

e

f

b

0

a

0

c

/
e

f

c

0

0

b

0

d

0

/

d

0

a

0

c

0

e

0

e

0

a

b

a

d

0

/

/
0

a

b

c

b

e

0

An easy sequence of checks shows that: (i) the skew lattice with zero reduct

(A; A, V, 0) is local; (ii) the reduct (A; / , 0) is an implicative BCK-algebra;
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and (iii) i <-H j iff i <(A</<°) j for any i,j G A. Hence A is an implicative

<o-BCK local skew lattice for which the skew lattice reduct is left handed.

However, A is not a left handed skew Boolean n-algebra, since the skew lattice

with zero reduct (A; A, V, 0) is not locally Boolean (in the sense of §1.4.24).

In particular, (A; A, V, 0) is not symmetric, since it is not join symmetric:

(a V b) V (a A b A a) = d V 0 = d but (a A b A a) V (b V a) = 0 V c = c.

•

Remark 3.3.55 (Added in proof). A lower implicative BCK left normal

band is an algebra (A; / , fl, 0) of type (2, 2,0) such that: (i) the reduct (A; / , 0)

is an implicative BCK-algebra; (ii) the reduct {A; fl, 0) is a left normal band

with zero; and (iii) the implicative BCK partial order <Q ' >O' and the natural

band partial order <% coincide. By an unpublished result of the author, an

algebra A := {A; / , n, 0) of type (2,2,0) is a lower implicative BCK left

normal band iff A |= (1.35)—(1.38), A f= (a; fl y) n z « x n (y n z),x n x «

x, (x n y) fl z w (x fl z) PI y, and A {= (x fl y)/x « 0, x (~1 (x/y) « x/y, whence,

the class iBCKInB of lov/er implicative BCK left normal bands is a variety.

Recall the definition of an implicative BCSK-algebra from Remark 3.2.28. Be-

cause of Corollary 2.3.22(1), any implicative BCSK-algebra {A; /,\>0) has

a lower implicative BCK left normal band polynomial reduct (̂ 4; / , 11,0),

where a n b := a\{a\b) for any a, b € A. Conversely, an unpublished re-

sult of the author shows that any lower implicative BCK left normal band

(A] / , n ,0 ) has an implicative BCSK-algebra polynomial reduct (A; / , \ , 0 ) ,

where a\b := a/(af\b) for any a, b € A. Hence the variety of lower implicative

BCK left normal bands is termwise definitionally equivalent to the variety of

implicative BCSK-algebras (compare this result to that of Theorem 3.3.53).

Call a lower implicative BCK left normal band flat if its underlying poset is

flat. The proof of Theorem 3.2.27, in conjunction with preceding remarks,

implies that any pointed fixedpoint discriminator algebra (A; / , 0) has a flat

lower implicative BCK left normal band polynomial reduct (A] / , fl, 0), where:

o/6:=/(0 , / (o ,6 > o) > o) and a n b := / (0 , / (0 , b, a), a)

^ • ; 1
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for any a, b G A. Conversely, the description of the subdirectly irreducible

implicative BCSK-algebras given in Remark 3.2.28 implies that a lower im-

plicative BCK left normal band is subdirectly irreducible iff it is flat, whence

the class iBCKInB is a pointed fixedpoint discriminator variety, with pointed

fixedpoint discriminator term:

f{x, y, z) := (z\{z n (x/y))) H (z\(z n (y/x))).

Recall from Remark 3.2.28 that FPD0 denotes the pure pointed fixedpoint

discriminator variety. In view of the preceding discussion, it is easy to see

that FPD0 is termwise definitionally equivalent to iBCKInB. Since the con-

gruence structure of any algebra in a fixedpoint discriminator variety is (by

Lemma 1.5.10) completely determined by the fixedpoint discriminator term,

any algebra A in a pointed fixedpoint discriminator variety must have a lower

implicative BCK left normal band polynomial reduct whose congruences coin-

cide with those of A (compare this result to that of Corollary 1.4.40).

Ignoring issues of similarity type, it is clear from the conditions (i), (ii) and (iii)

above defining lower implicative BCK left normal bands that iBCKInB is a

subvariety of the variety of lower implicative <o-BCK normal bands. This

observation, in conjunction with the above remarks and the results of §3.2.6

and §1.4.37, implies that the study of the classes BPC, {^-,0} C C C {A,V

, — ,0} (and hence, by extension—recall Proposition 3.3.51—the classes PQc,

{ —, 0} Q C C {A, V, - , 0}) encompasses, to within termwise definitional

equivalence, the study of the pure binary discriminator, pure pointed fixed-

point discriminator and pure pointed ternary discriminator varieties. Con-

sequently, the study of pre-BCK quasilactices, BCK paralattices and related

structures provides a unifying framework for the study of several important

classes of 'generalised Boolean structures' arising naturally in universal algebra

and algebraic logic. •

Corollary 3.3.56. An algebra (A; A,V,/,0) of type (2,2,0) is a generalised

Boolean algebra iff the following conditions hold:

1. The reduct {A\ A. V,0) is a lattice with zero;
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2. The reduct (A; / , 0) is an implicative BCK-algebra;

3. The BCK meet xf)y and the lattice meet x A y coincide.

Henceforth, by abuse of language and notation we will always understand by

the term 'skew Boolean n-algebra' an algebra (A; A, V, / , 0) of type (2,2,2,0)

satisfying conditions (l)-(3) of Theorem 3.3.53. Conversely, by abuse of lan-

guage and notation an algebra (A; A, V, / , 0) of type (2,2, 2,0) satisfying the

defining conditions of Theorem 3.3.53 will always be called a 'skew Boolean D-

algebra'. See also Bignall and Leech [19, Section 4]. Given these conventions,

we have the following result, a first-order proof of which may be found in [210,

Section 5.2].

Theorem 3.3.57. An algebra (A; A, V, / , 0) of type (2, 2,2,0) is a skew Boolean

(1-algebra iff the following identities are satisfied:

(x V y) V z « x V (y V z)

(x A y) A z « x A (y A z)

(3.99)

(3.100)

x A (x V y) 7n x

(y A x) V x Rs x

(3.101)

(3.102)

x A (y V z) « (x A y) V (x A z)

(x V y) A z » (x A z) V (y A z)

(3.103)

(3.104)

x/(x/y)

x/(y/x)

(3.105)

(3.106)

(3.107)

(x A y A x)/x

& V

0 (3.108)

(3.109)

(3.110)
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I

Thus the class of skew Boolean H-algebras is a variety.

Proof. Let A := (A\ A, V, /, 0) be an algebra of type (2,2,2,0).

(=») Suppose A is a skew Boolean D-algebra. Then A f= (3.99)-(3.102),

(3.105)-(3.107) by the defining conditions of Theorem 3.3.53. Moreover, be-

cause of Theorem 3.3.53, A 6 IPC», C" = {A. V, / ,0} , so A (= (3.108)-(3.110)

by Theorem 3.3.49. Since A G \Pc, the skew lattice with zero reduct (A\ A

,V,0) is distributive local by Proposition 3.3.52, and so is symmetric by

Lemma 1.4.17 and hypothesis. Therefore A (= (3.103)-(3.104) by Proposi-

tion 1.4.22, and the proof is complete.

(<=) Suppose A [= (3.99)—(3.110). To see A is a skew Boolean D-algebra it is

sufficient to show the defining conditions of Theorem 3.3.53 are satisfied, viz.:

(i) The reduct {A] A, V,0) is a join symmetric local skew lattice with zero;

(ii) The reduct (A; / , 0) is an implicative BCK-algebra;

(iii) The partial orders <% and <Q coincide.

For (i), we first show (A; A, V, 0) is a skew lattice with zero. So let a, b G A.

By (3.101) and (3.109) a = a A (a V (a/6)) = a A a, whence A is idempotent.

By (3.101), idempotence of A and (3.103) we have a = a A (a V 6) = (a A

a) V (a A b) = a V (a A b). Similarly (b V a) A a = (6 A a) V (a A a) =

(b A a) V a = a by (3.104), idempotence of A and (3.102). By absorption,

a = a V (a A (a V b)) = a V a and thus (A; A,V) is a skew lattice.

Also, 0 = a/(a A a A a) = a/a by (3.108) and idempotence of A, whence

a = a V (a/a). = a V 0 by (3.109) and a = (a/a) V a = 0 V a by (3.110).

Thus {A; A, V, 0) is a skew lattice with zero, and the identities (3.103)-(3.104)

in conjunction with Proposition 1.4.22 now ensure (A] A,V,0) is distributive

symmetric local. Hence (A\ A,V, 0) is join symmetric local.

For (ii), we have already observed a/a = 0 for all a G A, so A |= x/x « 0.

From this remark, the identities (3.105)-(3.107), and Theorem 1.6.17 it follows

that the reduct (A; / ,0) is an implicative BCK-algebra.

For (iii), just notice that (A; A, V, /, 0) is a BCK paralattice by (i), Lemma 1.4.8,

(ii), (3.108)-(3.110) and Theorem 3.3.49. Therefore the natural skew lattice
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partial order <n and the BCK partial order <QA] '® coincide. •

Corollary 3.3.58. An algebra (A; A, V, /, 0) of type (2,2,2,0) is a lejt Jianded

skew Boolean H-algebra iff the identities of Theorem 3.3.57 are satisfied, where

(3.108) 25 replaced by the identity:

(x A y)/x « 0. (3.108')

Proof. Let A := (A; A, V, /, 0) be an algebra of type (2,2,2,0) such that

A 1= (3.99)-(3.107), (3.108'), (3.109)-(3.110) and let a,beA. By (3.103), we

have that a A {b V a) = (a A 6) V (a A a) = (a A b) V a. But by (3.108')

and (3.92), (a A b) V a = ((a A &)/0) V a = ((a A &)/((a A b)/a)) V a = a.

Hence a A ( & V a ) = a = ( a A & ) V a , and A is left handed by the remarks

of §1.4.14. Since the converse is clear, the corollary is proved. •

3.3.59. Double-Pointed Skew Boolean D-algebras. Let A be a skew

Boolean n-algebra with maximal class M. By analogy with the theory of pre-

BCK-algebras, an algebra A1 := (A] A,V,/ ,0,l) obtained from A upon ad-

joining to the language of A a new nullary operation symbol 1 whose canonical

interpretation on A 1 is a fixed 1 6 M is called a quasi-bounded skew Boolean

D-algebra. Clearly the class of quasi-bounded skew Boolean n-algebraa is a va-

riety, axiomatised relative to the variety of skew Boolean D-algebras by either

of the identities:

x\l or x Al /\ x & x.

Remark 3.3.60. As per pre-BCK-algebras, in passing from a given skew
Boolean fi-algebra A with maximal class M to a quasi-bounded skew Boolean
n-algebra A 1 there is typically no natural choice of maximal element 1 G M.

In general, it seems plausible that distinct choices of maximal element could
give rise to non-isomorphic quasi-bounded skew Boolean n-algebras, although
this possibility cannot occur in the completely reducible case (that is, when A
is isomorphic to a direct product of primitive algebras). •

A version of the following result occurs in Blok and Pigozzi [34, Section 1].
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Proposition 3.3.61. (cf. [34, Theorem 1.1]) An algebra (A\ A,V,/,O,1) of

type (2,2,2,0,0) is a double-pointed skew Boolean D-algebra iff it is a quasi-

bounded skew Boolean D-algebra. Thus the class SBIA+ of double-pointed skew

Boolean C\-algebras is a variety, axiomatised relative to the variety of skew

Boolean D-algebras by either of the identities x\l « 0 or x Al /\ x & x.

Proof. Because the ideals of any skew Boolean n-algebra coincide with the

ideals of its implicative BCS-algebra polynomial reduct, the first assertion

of the proposition follows from Lemma 2.2.27. The second assertion of the

proposition now follows from previous remarks. •

Let A be a primitive skew Boolean n-algebra (recall Example 1.4.35). Since A
is primitive, it has a maximal class M, which consists of all non-zero elements
of A. Thus A induces a double-pointed primitive skew Boolean n-algebra A+.
Because of Remark 3.3.60, A+ is unique to within isomorphism.

Theorem 3.3.62. The following assertions hold in the variety of double-

pointed skew Boolean fl-algebras:

1. The double-pointed primitive skew Boolean D-algebras are the non-trivial

simple algebras;

2. The double-pointed primitive skew Boolean D-algebras are the subdirectly

irreducible algebras;

3. Every non-trivial double-pointed skew Boolean D-algebra is a subdirect

product of primitive algebras.

Proof. For Item (1) [Item (2)] let A+ be a non-trivial simple [subdirectly irre-
ducible] double-pointed skew Boolean n-algebra. Its skew Boolean n-algebra
reduct A := (A; A,V,/,0) must also be non-trivial and simple [subdirectly
irreducible], since A and A+ have the same congruences. By Theorem 1.4.36
we deduce that A is primitive, so A+ is primitive. Item (3) now follows from
Birkhoff's subdirect representation theorem [55, Theorem II§8.6]. •

Recall from Theorem 1.4.38 that t(x,y,z) :- (z\(xAy)) V (x/y) is a ternary
discriminator term for SBIA, wheru x&y « {x/y) V [y/x] (since x\(x

x/y). Because of Theorem 3.3.62, we may infer the following result.
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Corollary 3.3.63. The class of double-pointed skew Boolean C\-algebras is a

discriminator variety, with discriminator term given by:

,y,z):= (z\{x&y))\/{x/y).

Let V be a pointed discriminator variety (say with 0) with discriminator

term t(x,y,z). By the remarks of §1.5.9, V is a pointed fixedpoint dis-

criminator variety, with pointed fixedpoint discriminator term f{x,y,z) :—

t(t(x,y>z),t(x,y,O),O). For [double-pointed] skew Boolean D-algebras we

have the following simplification.

Corollary 3.3.64. The class of [double-pointed] skew Boolean H-algebras is

a fixedpoint discriminator variety, with fixedpoint discriminator term given by

f{x,y,z) :=z\(xAy).

Proof. The result is established by an easy inspection of the subdirectly irre-

ducible [double-pointed] skew Boolean D-algebras. •

Remark 3.3.65. Because of Remark 3.2.28, f(x, y,z) := (z\(x/y))\(y/x) is
also a pointed fixedpoint discriminator term for both SBIA and SBIA+. •

By the pure double-pointed discriminator variety PDQ" we mean the double-

pointed discriminator variety of type (3,0,0) generated by the class of all

double-pointed discriminator algebras (A; i, 0,1) where t is the discriminator

and 0 and 1 are residually 'distinct nullary operations, while by the variety

of double-pointed left handed skew Boolean Ci-algebras !hSBIA+ we mean the

variety of all left handed skew Boolean H-algebras that are double-pointed.

Prom Theorem 1.4.39, Proposition 3.3.61 and [34, Theorem 1.1] we may infer

the following result.

Theorem 3.3.66. The variety PDQ is termwise definitionally equivalent to

the variety of double-pointed left handed skew Boolean D-algebras. In par-

ticular, given {A; i, 0,1) € PDQ, double-pointed left handed skew Boolean

C\-operations A, V and / are defined on A by:

aAb :=t(b,t{b,O, a), a)
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i

hi

a V 6 := t(6,0,o)

a/6 := £(a, 6,0)

/or any a, 6 G A. Conversely, given a double-pointed left handed skew Boolean

D-algebra (A; A, V, /, 0,1) and a, 6, c G .A, the operation i(a, 6, c) := (c/(c A
6)) V (c A a) V (a/6) yie/ds an algebra (A; t,0,l) in PDj.

Clearly PDQ is also termwise definitionally equivalent to the variety of double-

pointed right handed skew Boolean D-algebras.

Corollary 3.3.67. Any algebra A in a double-pointed discriminator variety

has a double-pointed left handed skew Boolean fl-algebra polynomial reduct

whose congruences coincide with those of A.

Proof. The result follows immediately from Theorem 3.3.66 and Lemma 1.5.10.

Remark 3.3.68. A pseudo-interior algebra is an algebra (A; •, —>•, °, 1) of type
(2,2,1,0) that is essentially a hybrid of an interior algebra and a residuated
partially ordered monoid (for a precise definition, see [35, Definition 2.6]).
A pseudo-interior algebra with compatible operations is a n a l g e b r a {A\ •,—>•
, °, 1, Fj),e/ where (A; •, ->, °, 1) is a pseudo-interior algebra and the additional
operations {F;);€/ are such that every congruence on A has the substitution
property with respect to each Fi [34, Corollary 2.17]. Pseudo-interior algebras
with compatible operations were introduced by Blok and Pigozzi in [35] as
the algebraic counterpart of a certain assertional logic inherent in any vari-
ety with a commutative, regular TD term; for details, see [34, Theorem 4.1].
By [35, Corollary 4.3], a double-pointed variety V is a ternary discriminator
variety iff it is termwise definitionally equivalent to a congruence permutable,
semisimple variety of pseudo-interior algebras with compatible operations; the
hypothesis that V is double-pointed is essential. The description of double-
pointed discriminator varieties and the associated assertional logics afforded
by this result should be compared and contrasted with Corollary 3.3.67 and
the developments of §3.3.69 in the sequel. •
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3.3.69. The Assertional Logic of the Variety IhSBIA4". Recall from

§1.8.9 that for any quasivariety K with 1, the inherent assertional logic S(K, 1)

of K may be defined by specifying that, for all F U {</>} C Fm£, F I~§(K,I)

(p iff {ij) « 1 : ip € F} (=K V3 ~ 1- ^ follows from this observation and

Theorem 3.3.66 that the assertional logic S(lhSBIA+, 0) of the variety of double-

pointed left handed skew Boolean n-algebras is definitionally equivalent to the

assertional logic S ( P D Q , 0 ) of the pure double-pointed discriminator variety.

This remark calls for a study of S(lhSBIA+,O); in this subsection we provide a

framework for such a study by axiomatising this deductive system.

Throughout this subsection, we work with a fixed language £ :=(A,V,=» ,0 , l )

of type (2,2,2,0,0), with fixed abbreviations:

p <-> q : = (p => q) A (q => p)

> q

- i p : = p —¥ 0

for propositional variables p, q, and with a fixed and defining collection AxUlr

of axioms and inferences rules, viz.:

((p A?)Ar)^(j)A(gA r))

((p V9)Vr)^(pV(?V r))

(SI)

(S2)

A (p V q)) & p (S3)

(S4)

({p V q) A (p V r)) ^ (p V (g A r))

((p V r) A (g V r)) ^ ((p A q) V r)

(S5)

(S6)

((P P

((p

(S7)

(S8)
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(p =* (q

p))

(p =4> r)) (S9)

(S10)

p)) «» p (Sll)

(S12)

H (OVp)^p (S13)

p
(p A r) <^ (g A s)

(CP-A) p
5 )

(CP-V)

(p =$> r)

V
(i-l)

p

The skew Boolean propositional calculus is the deductive system SfflPC over the

language C determined by the axiomatisation AxUlr. We denote by hSHpc the

consequence relation of SBPC. The skew Boolean propositional calculus was

introduced implicitly by the author's Ph.D. supervisor in [18] and explicitly

by the author's Ph.D. supervisor and the author in [20]; applications of the

skew Boolean propositional calculus to theoretical computer science have been

considered by the author and the author's Ph.D. supervisor in [21, 22].

Theorem 3.3.70. SMPC is algebraisable with equivalence formula p & q and

defining equation p « 1.

Proof. Immediate by Theorem 1.8.2 and the description of Ax U Ir. •

By Theorem 1.8.3, the equivalent algebraic semantics of SMPC is the quasivari-

ety K over the language £ axiomatised by the following collection of identities
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and quasi-identities:

((x

((a; V y)V z) xV (yV z))

A x) V x) 4$ x

y) => a;) a;

(y =»

(y V 1))

(a; A (y =» a;)) 4̂ > a;

=4> re) A a;) <£> ar

((a: V J ) A ( I V z)) <S> (ar V (y A z))

((a; V z ) A ( ? / V 2j) ^ ( ( i A j ) V

((a;

((y

(a:

(a; =

( y =*• (a:

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

a; ^ a; (3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)
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xttlDx&lKl (3.130)

I^1«1DI«1 (3.131)

i'^y«lDiwi/ (3.132)

where re <^ y abbreviates (x => y) A (y => x) for individual variables x, y.

To see the quasivariety K has a familiar description, let lhSBIA+£) denote the

variety with language C defined by the following set of identities:

(x A y ) A z ^ x A { y A z ) (3.133)

{x V y) V z « x V (y V z) (3.134)

x A {x V y) « a; (3.135)

i«3; (3.136)

(X

(y
x--

=^y)=>
V ,̂ ft* I • ' ^ .

— f »i/ J m' r *

^(y=>z

x w re

j ~ y -

=>y)--

^ (re =>• z)

(a; V y) A (re V z) « re V (y A z) (3.137)

(re V 2) A (y V z) « (re A y) V z (3.138)

(3.139)

(3.140)

(3.141)

(3.142)

re A (y =>• re) « re (3.143)

(y =» re) A x « re (3.144)

0 V re « re. (3.145)

Let T £ (X) denote the term algebra of type C over X and let T £ D ( X ) denote the

term algebra of type CD over X, where CP is the language of skew Boolean D-
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algebras. Consider the maps £ : T£(X) -> T £ D ( X ) and 77: T £ D ( X ) -» T£(X)

defined respectively by:

£(1) := 0

and:

:= x
A q) :=

V g) :=

V

P > 9 £

p,qE

77(0) :

77(1):

77(0;) :

77(7* A 5) :

77(7- V s) :

r){r/s) :

1

0

= x

7]{s)

77(5)

77(5)

r,sGT£(X)

r,6-GT£(X)

r,i6T£(X).

(The maps £ and 77 so defined should not be confused with the similar maps
of §2.1.33 or §3.1.1 in the prequel.) Because of Corollary 3.3.58 and the defini-
tion of lhSBIA+D, the proof of the following lemma is trivial and so is omitted.

L e m m a 3.3.71. Forp, q G T^(X) and r,s G T£o(X) the following assertions

hold:

1. If lhSBIA+D |= p w q then lhSBIA+ (= f (p)

2. If lhSBIA+ ( = r « s then lhSBIA+D |= 7]{r) « 77(5).

Moreover, 77 o £ = O;TC(X) ^^^ €O71 = WT£D(X) .

By Lemma 3.3.71, the variety lhSBIA+I) is termwise definitionally equivalent
to (in fact, is dually isomorphic to) the variety of double-pointed left handed

j
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skew Boolean Pl-algebras. In other words, lhSBIA+£> is precisely the variety of
dual double-pointed left handed skew Boolean H-algebras.

Proposi t ion 3.3.72. The quasivariety K coincides with the variety lhSBIA+£>

of dual double-pointed left handed skew Boolean C\-algebras. Hence SB1PC is

strongly algebraisable.

Proof. (Sketch) To prove the proposition, it is sufficient to show the qua-

sivariety K and the variety IhSBIA"1"11 coincide. To establish the inclusion

K C lhSB]A+£>, note first that:

lhSBIA+D f= x w y iff lhSBIA+D |= x <& y « 1 (3.146)

by Lemma 3.3.71 and Proposition 3.3.37(3). To complete the proof we show:

(i) lhSBIA+jD |= (3.111)-(3.123);

(ii) lhSBIA+Z) |= (3.124)-(3.132).

For (i), consider a defining identity of K, say (3.111). Then K (= (3.111), viz.:

K |= ((a; A y) A z) & (x A (y A z)) w 1.

Now by (3.133), we have that:

l h S B I A + D \±{x A y ) A z n x A ( y A z ) ,

so by (3.146), we have that:

lhSBIA+ D h {{x Ay)Az)&(xA (y A z)) « 1,

whence lhSBIA+D |= (3.111). Because of the axiomatisation of lhSBIA+D by

(3.133)-(3.145), a suitable modification of the preceding argument now shows

that lhSBIA+D |= (3.112)-(3.123) for each of the remaining identities (3.112)-

(3.123) d-fining K.

For (ii), consider a defining quasi-identity of K, say (3.129). Then K |= (3.129);
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that is to say:

By properties of «, we have that:

lhSBIA+Z}
w

vacuously, so by (3.146) we have that:

lhSBIA+i?

Hence lhSBIA+£) |= (3.129). Because of properties of « , a suitable modi-

fication of the preceding argument now shows lhSBIA+I> (= (3.125)—(3.128),

(3.130)-(3.132) for each of the remaining quasi-identities (3.125)-(3.128) and

(3.130)-(3.132) axiomatising K.

By (i) and (ii), lhSBIA+D \= (3.111)-(3.132), so K C lhSBIA+jD as desired.

To establish the inclusion lhSBIA+£) C K, note first that:

K =̂ x « y iff K\= x (3.147)

because of (3.124) and (3.132). To complete the proof, consider a defining

identity of lhSBIA+D, say (3.133). Then lhSBIA+D (= (3.133); that is to say:

lhSBIA+z? (= (a: A y) A z w x A (y A z).

Now by (3.111), we have that:

K |= ((a? A y) A z) <£> (a; A (y A z)) w 1,

so by (3.147) we have that:

K | = ( a ; A y ) A 2 f « a : A ( y A z).
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Thus K |= (3.133). Because of the axiomatisation of K by (3.111)-(3.132), a

suitable modification of the preceding argument now shows K \= (3.134)-(3.145)

for each of the remaining identities (3.134)—(3.145) defining lhSBIA+z?. Hence

lhSBIA+Z) C K. •
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Remark 3.3.73 (Added in proof). It is implicit in Blok and Pigozzi [36,

Sections 3.4.5-3.4.7] and the constructive proof of Andreka, Kurucz, Nemeti

and Sain [13, Theorem 3.2.3] that any axiomatisation of a K-1-regular qua-

sivariety K with 1 can be translated into an axiomatisation of the inherent

assertional logic S(K, 1) of K. In more detail, let K be a K-1-regular quasi-

variety (for some constant term 1) and let A := { A i , . . . , A m } be a set of

binary terms witnessing the K-1-regularity of K in the sense of Czelakowski

and Pigozzi [78, Theorem 2.3]. Let SK be the 2-dimensional deductive system

associated with K in the sense of Blok and Pigozzi [36, Section 3.4.7] and let:

r ( p ) : = { ( p , l ) } and p((p, q)) := A(p, q)

be (1, 2)-translations and (2, l)-translations in the sense of Blok and Pigozzi [36,

Section 6.1]. Then the image p[Id U Qld} of any axiomatisation Id U Qld of K

under p yields a deductive system S. Adjoin to § the further rule:

A 1 (p , l ) , . . . ,A m (p , l )h s p (3.148)

and denote the resulting dedi 3tive system by S'. Because of (3.148) and

the description of p[Id U Qld] ' is an interpretation of S' in SK and p is an

interpretation of SK in §', so §' nd §K are equivalent: see for instance Blok

and Pigozzi [36, Section 6.1]. Therefore S' is algebraisable with equivalence

formulas A l 5 . . . , Am and defining equation p « 1. Let K' be the equivalent

quasivariety semantics of §'. Then S' is S(K', 1). Moreover, because both K

and K' satisfy the quasi-identities:

x fay D Ai(a;, y) ra 1 & . . . & Am(z, y)
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, y)

one sees easily that K and K' coincide. Hence S' = S(K', 1) = S(K, 1). Theo-
rem 3.3.70 and its counterpart Proposition 3.3.72 may be seen as a particular
instance of this general argument, due in the form above to Professor James
Raftery and the author [189]. •

Theorem 3.3.74. SIPC coincides with §(lhSBIA+£>, 1), the assertional logic

of the variety of double-pointed left handed skew Boolean H-algebras.

Proof. By Theorem 3.3.70 and Proposition 3.3.72, SMPC is algebraisable with
equivalent algebraic semantics lhSBIA+I) and defining equation p « 1. But
by Theorem 1.8.15, S(lhSBIA+D, 1) is algebraisable with the same equivalent
algebraic semantics and defining equation, so by Lemma 1.8.8, SMPC and
S(lhSBiA+jD

5l) coincide. •

In the sequel we continue to denote S(lhSBIA+Z), 1) by SMPC. Upon recalling

from §3.3.59 that PDj denotes the pure double-pointed discriminator variety,

the following theorem may now be inferred from the preceding result and

Theorem 3.3.66.

Corollary 3.3.75. SBPC is definitionally equivalent to 8>(PDo,O), the asser-

tional logic of the pure double-pointed discriminator variety.

Although SMPC is a deductive system in the sense of §1.2.9, its presentation
Ax U Ir is too closely related to the underlying axiomatisation of its equivalent
algebraic semantics to be a Hilbert-style axiomatisation in any familiar sense
(for example, in the sense of Sundholm [213, Section 1]). In particular, Axlilr

is not an axiomatisation of SIPC for which (MP) is the only (proper) rule
of proof. We claim that there exists just such an axiomatisation of SMPC (in
principle). Our observation to this effect results as an easy consequence of
Theorem 3.3.77 below, which characterises the logical connectives of SMPC.
But first, the following useful technical lemma, a version of which occurs in
Bulman-Fleming and Werner [50]. See also Burris

r

! S
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Lemma 3.3.76. (cf. [50, Lemma 1.3]; cf. [53, Proposition 2.3.10]) For any

(double-pointed) skew Boolean D-algebra A and any a,b G A, the following

assertions hold:

1. OA(aAbA a, 0) = 9A(a, 0) AConA 0A(6,0);

2. 0 A ( a V b V o,0) = 0A(a,O) V C o n A 0A(6,O);

3.

4.

Proof. Let A be a (double-pointed) skew Boolean fl-algebra and a, b G A.

For (1), from Proposition 2.2.31 we have that (a fl b)A = (a) A H (&)A, just
because the ideals of A coincide with the ideals of its canonical implica-
tive BCS-algebra polynomial reduct (A] \, 0). Since a /\ b /\ a ~ a fife
(by (3.69)), we have that (a A b A a)A. = (« )A n (&)A- By normality of ideals,
[O]0A(aA6Aa)o) = [O]0A(O)O) fl [O]0A(6)O), so by ideal determinacy, 0 A ( a A & A

= 0A(a,o)neA(M).

For (2), we first observe that x V y V x is a join generator term for SBA.

Indeed, let:

xUy:=x\/yVx

r(x,y,z) :=z\(y\x)

t(x,y,z) :=y A (z\(x\y)) Ay.

By an easy inspection of the subdirectly irreducible skew Boolean algebras, we

see that SBA satisfies the identities:

r{x, y, 0) « 0

r(x, y , x U y) & x

ouo«o

t(x,y,O)*iO

t{x,y,xUy) » y

so x V y V x is a join generator term for SBA by Proposition 1.7-13. Be-

cause the ideals of any skew Boolean n-algebra coincide with the ideals of its

•II
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canonical skew Boolean algebra polynomial reduct, x V y V x is also a join

generator term for SBIA. Hence {a V b V (Z)A = (a) A V1^ ' (6)A- By normal-

ity of ideals, [O]0A(aV6Va)O) - [0]eA(Oi0) VI(A)
 [O]0A(6)O), SO by ideal determiriacy,

9 A ( a V b V a, 0) = e A (a , 0) VC o n A 0A(6,0).

For (3), from Theorem 2.2.20(5) we have that (a\b)A = (a)A * (&)A (where *

denotes dual relative pseudocomplementation in the join semilattice (CI(A); V

, (0)A) of compact ideals of A), just because the ideals of A coincide with the

ideals of its canonical implicative BCS-algebra polynomial reduct (̂ 4; \ , 0). By

normality of ideals, [0]QA(a\6)0) = [O]0A(a)O) *CI(A)
 [0]9A (6 )0)3 SO by subtractivity

and Proposition 1.7.10, GA(a\6,0) = 0A(a,O) * C p A 0A(6,O).

For (4), recall aAb = (a/b) V {b/a) for any skew Boolean fl-aigebra A and

a,b £ A. Let 6 £ Con A. From Proposition 3.3.37, we have that a/\b = 0

iff a = b. Applying this to the quotient algebra A/0, we infer that aAb —

0 (mod0) iff a = b (mod0), which implies that 0A(aA6,O) = 0 A (a , b). •

Theorem 3.3.77. lhSBIA+ is a WBSO* variety with:

1. Weak join x A y A x;

2. Weak meet x V y V x;

5. Subtractive weak relative pseudocomplementation x\y;

\. Go'del equivalence term x/S.y.

Hence the following assertions hold concerning the logical connectives ofS

1'. A is a conjunction;

%. V is a disjunction;

3'. —> is a conditional;

4'. •&• is a G-identity;

5'. «-» is a biconditional;

6. -1 is a weak negation.
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Proof. The theorem follows easily from Lemma 3.3.76, Theorem 3.3.74 and

Proposition 3.1.25. •

Corollary 3.3.78. For any C-formulas <£>, il),x> the following formulas are

theorems of SWC:

x))
A

A -0) —)•

<p - t (<p V

^ - » (<^ V

(v ->• x) -

Proo/. The result follows from Theorem 3.3.77 and Wojcicki [238, Theorem 2.4.7].

x) -> ((</> v ^ ) -»- x ) ) -

Corollary 3.3.79 (Deduction-Detachment Theorem for SWC). For all

<P

Remark S.a.80. By Corollary 3.3.79, ip{p) \~BWC f[p) iffhSHPC <p(p) ->

•iff !hSBIA+D t= s{x) -> t(f) » 1 iff 5A(a) ^ ^ tA(a) for all A G lhSBIA+D

and a € A, where 5(£), t(x) are £-terms in the individual variables x identi-

fied respectively with ^-formulas (f{p)^(p) in the propositional variables p.

Hence the consequence relation h§HPC of SWC induces only a quasiordering

on its underlying algebraic models. In general, therefore, it is not the case

that ip(p) -H-§!HP(C if>(p) iff lhSBIA"fjD |= s(x) « t{x). Because of Font and

Jansana [91, Proposition 2.43], this shows that SWC is not congruential in

the sense of Rautenberg [197]. •

Apropos the claim prefixing Lemma 3.3.76, because SWC has the DDT (wit-

ness x -> y), any axiomatisation of SWC (including Axlilr) may be converted
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into one in which (MP) (for -»), viz.:

P,P -> q^

is the only (proper) rule of inference. To see this, apply the DDT from left

to right repeatedly on all inference rules of a given axiomatisation of SWC

until they are in the form of axioms. Then the axiomatisation obtained by

adjoining (MP) (for —»•) as a (proper) rule of inference to the resulting collection

of axioms is clearly an axiomatisation of SIfflPC. (More generally, we remark

that if K is a quasivariety with 1 such that the assertional logic S(K, 1) has a

DDT with deduction-detachment set S := {Ci(p, q) : * = 1, . . . , n}, then any

axiomatisation of S(K, 1) may be converted into one in which:

: t =

is the only (proper) rule of inference [189].) Hence there exists (in principle)

an axiomatisation of SfflPC for which (MP) (for ->) is the only (proper) rule

of inference.

By the preceding observation, a direct demonstration that (MP) (for ->) is a

derived rule of proof for SBPC is of some independent interest. In the final

result of this subsection, we provide just such a direct proof of the detachment

property (for —>•).

Lemma 3.3.31. For any C-formula cp, the following formula is a theorem of

S» <p (3.149)

i
Proof.

(1) (y> => (y> V ¥>))*> 1 (S10), p : = p , q:=<p

(2) ip^ip (R)

(3) ( ( ^ (<p V rf) = ^ ) <£> (1 = M (1), (2),

(4) (1 = > 0 «>((¥>=» fo> V ¥>))=* p) (3),

Jilt
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(5)

(6)

(S7), p :=^,

(4), (5), (T)

Proposition 3.3.82 (Modus Ponens for =>). For all C-formulas ip,ip,

Proof.

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(ID

</,)

ij)

Assumption

(1), (1-1)

(R)

(2), (3), (CP-=*)

by (3.149)

(4), (5), (T)

(6), (S)

Assumption

(8), (1-1)

(7), (9), (T)

(10), (1-E).

i

Lemma 3.3.83. For any C-formula cp, the following formulas are theorems of

SMPC:

(</? A (p) <=> <p

(cp V ip) <$• ip

(3.150)

(3.151)

(3.152)
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(1)

(2) tp&

(3) (((ip

(4)

(5)

(6)

Proof. Let tp,ip be £-formulas. For (3.150), we have the following derivation:

(S7), p := ip, q ;= ip

(R)

AV) (1), (2), f€;P

Mp) (3), (S)

tp) A

For (3.151), we have the following derivation:

For (3.152), we have the following derivation:

(1)

(2)

(3) (y> =» (y> V

(4) (yj => y>) <^ (v? => (ip V

(5) (y> =» fa V
(6)

(7)

(4), (5), (T).

(1)

(2)

(3)

(4)

(5)

(6)

{ip A ip) 4=̂  ip

ip •4=r> ip

((ip A ip) V ip) & (<p V ip)

(ip V ip) •<=>• ((y? A </?) V <£>)

( ( ( £ A Q?) V GO) - ^ (Z?
\ \ r r / r / r

(ip \Jtp)&W

by (3.150)

(R)

(1), (2), (CP-V)

(3), (S)

(S4), q:=ip,p:=(p

(4), (5), (T).

(R)

by (3.151)

(1), (2), (CP-=*)

(3), (S)

(S10) , p:=tp,q:=<p

(4), (5), (T)

(6), (1-E).

Lemma 3.3.84. For any C-formulas ip, tp, the following formulas are theorems
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A

(ipV (ipA il>)) & ip

I V ip.

(3.153)

(3.154)

(3.155)

Proof. Let ip, ip, x be ̂ -formulas. For (3.153) we have the following derivation:

(1)

(2)

(3) ip & ip

(4) (fo,=»
(5) (lAip)& ((ip

(6) ((tp => tp) A tp)

(7)

tp) A

by (3.152)

(1), (l-I)

(R)

(2), (3), (CP-A)

(4), (S)

(S12), q := tp, p := ip

(5), (6), (T).

For (3.154) we have the following derivation:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Up v ip) 44> ip

(ip V ip) '•O- (ip V ip]

((ip V ip) A (ip V ip

(ip A (ip\/ ip)) &• (

((ip V ip) A (ip V tp

(ip A (ip V -0)) ^ (

(y> V (tp A iP)) & (

(ip A (ipV ^i)) <̂> ^

(ipV (ip A ip)) <̂> <y

)

))«*(^A(VV V))
(y V ip) A (ip V ?/>))

M - ^ ((̂ J V (if A Ip))

[ip V (ip A ip))

'tp A (ip V VO)

9

by (3.151)

(R)

(1), (2), (CP-A)

(3), (S)

(S5), p:=<p, q := <p, r

(4), (5), (T)

(6), (S)

(S3) , p:=<p, q:=(p

(7), (8), (T).

For (3.155) we have the following derivation:

(1) (R)
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(2)

(3)

(4)

(5) (l V (1 A cp))

(6)

(7) lVtp

by (3.153)

(2), (3), (CP-V)

(3), (S)

by (3.154)

(4), (5), (T)

(6), (1-E).

Proposition 3.3.85 (Modus Ponens for ->). For all C-formulas ip,ip,

Proof. By the definition of —> and Proposition 3.3.82, to prove the proposition

we need only show ip HSHPC ip V tp for all ^-formulas y>, ip. For this we have:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

ip

1V-0

Assumption

(1), (1-1)

(R)

(2), (3), (CP-V)

by (3.155)

(5), (1-1)

(4), (6), (T)

(7), (1-E).

The results of this subsection notwithstanding, we have been unable to obtain

a Hilbert-style axiomatisation of SMPC in which (MP) (for ->•) is the only

(proper) rule of inference that is 'aesthetically pleasing' in the sense that its

axioms have a familiar description. In particular, we have been unable to pro-

vide such an axiomatisation of SMPC whose axioms are based on the theorems

(or some variants of the theorems) of Corollary 3.3.78. Hence we conclude this

ifc?
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subsection with the following problem.

Problem 3.3.86. Give an 'aesthetically pleasing' Hilbert-style axiomatisation

of SlfflPC for which the only rule of inference is (MP) (for ->): p, p -» q H§HPC q.

1

t l

f i
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Chapter 4

Conclusion

4.1 Summary

Motivated by work of Blok and Raftery [38, Section 4] and Agliano and

Ursini [11, Example 3.7, Corollary 3.8], this thesis witnessed the introduction

of pre-BCK-algebras as a generalisation of BCK-algebras to the subtrcictive

but not BCK-O-regular case. In particular, this dissertation oversaw the in-

vestigation of the elementary theory of the variety of pre-BCK-algebras and

some of its subvarieties, and the application of this theory to the study of some

varieties arising naturally in universal algebra and algebraic logic.

Chapter 1 provided a structured account of the theory relevant to the study

of pre-BCK-algebras, including: Laslo and Leech's theory of quasilattices,

paralattices and skew lattices; Blok and Pigozzi's hierarchy of varieties with

EDPC; the theory of BCK-algebras and BCK-lattices due to Iseki, Idziak and

others; Agliano and Ursini's theory of ideals and subtractive varieties; and the

theory of algebraisable and assertional logics due to Blok, Pigozzi, Raftery and

others. The main new results concerned distributivity in skew lattices. By the

' results of §1.4.18, the equivalence of the middle distributive identities (1.19)-

(1.20) for lattices extends to symmetric skew lattices, but not to skew lattices.
The results provide support for Leech's contention (initially prompted by the

i remarks of §1.4.15) that '.. .symmetric skew lattices are the really nice skew
J lattices' [152, p. 17].

II
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It:

In Chapter 2 the elementary theory of the variety of pre-BCK-algebras and

some of its subvarieties was investigated. In Section 2.1 pre-BCK-algebras

proper were considered. The results obtained show that a significant fragment

of the first-order theory of BCK-algebras extends to pre-BCK-algebras; in

particular, the ideal theory of BCK-algebras carries over to pre-BCK-algebras

almost in its entirety. In Section 2.2 varieties of pre-BCK-algebras were stud-

ied. It was shown that the correspondence between the theory of BCK-algebras

and the theory of pre-BCK-algebras exhibited in Section 2.1 extends to sub-

varieties of BCK-algebras, inasmuch as with any variety V of BCK-algebras

there may be associated a variety V3 of pre-BCK-algebras ('the natural pre-

BCK-algebraic counterpart of V) such that V3 enjoys many of the same (first-

order) properties as V. In Section 2.3 the variety of implicative BCS-algebras

was investigated. Although the variety of implicative BCS-algebras fails to

enjoy many of the properties typically associated with a 'tractable' class of

algebras, the results of Section 2.3 nonetheless provide for these algebras a

fairly complete elementary theory closely resembling that of implicative BCK-

algebras. Collectively, the results of Chapter 2 indicate that pre-BCK-algebras

enjoy a coherent elementary theory that largely parallels the theory of BCK-

algebras. This suggests that pre-BCK-algebras are an appropriate generalisa-

tion of BCK-algebras to the subtractive but not BCK-O-regular case.

In Chapter 3 the theory of pre-BCK-algebras was applied to the study of
some varieties arising naturally in universal algebra and algebraic logic. In
Section 3.1 positive implicative pre-BCK-algebras in subtractive varieties with
EDPI were considered. The results obtained show in particular that the study
of ideals in subtractive varieties with EDPI reduces to the study of ideals in
positive implicative pre-BCK-algebras. In Section 3.2 connections between im-
plicative BCS-algebras and binary discriminator varieties were investigated. It
was shown that the variety of implicative BCS-algebras provides a convenient
framework for the study of binary discriminator varieties, and this observation
was exploited in clarifying relationships between binary discriminator, pointed
fixedpoint discriminator and pointed ternary discriminator varieties. In Sec-
tion 3.3 varieties PQc, BPc of pre-BCK/BCK-algebras structurally enriched
with band [double band] operations were studied as a generalisation of Idziak's

•m
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varieties of lower/upper BCK-semilattices [BCK-lattices]. It was shown that

the theory of the varieties PQc and BPc encompasses the theory of skew

Boolean algebras/skew Boolean fl-algebras, and hence (to within termwise def-

initional equivalence) subsumes the theory of pointed discriminator varieties.

Further, the results hint that the theory of the varieties BPc accommodates

the theory of pointed fixedpoint discriminator varieties (to within termwise

definitional equivalence). Collectively, the results of Chapter 3 indicate that

(structurally enriched) pre-BCK-algebras (distinct from BCK-algebras) arise

naturally in and simplify the study of several classes of varieties found in uni-

versal algebra and algebraic logic. This suggests that classes of (structurally

enriched) pre-BCK-algebras may provide a unifying framework simplifying the

study of several hitherto unrelated areas of universal algebraic logic.

As a generalisation of BCK-algebras to the subtractive but not BCK-O-regular

case, the work of this thesis thus attests that pre-BCK-algebras are of inter-

est both in their own right and in their application to the study of varieties

arising naturally in universal algebra and algebraic logic. Pre-BCK-algebras

are of interest in their own right, inasmuch as they are a natural and coher-

ent generalisation of BCK-algebras to the subtractive but not BCK-O-regular

case; and their applications to universal algebraic logic are of interest, insofar

as such algebras provide a unifying framework simplifying the study of sev-

eral important classes of varieties occurring naturally in universal algebra and

algebraic logic.

4.2 Future Work

The remarks of Section 4.1 clearly call for a further study of pre-BCK-algebras
and cf their application to universal algebra and algebraic logic. In what
follows we present a brief selection of problems outlining some possibilities for
future research.

4.2.1. Pre-BCK-Algebras. By the remarks of §1.1.1, residuated struc-

tures play a central role in the algebraic study of logical systems. The residu-

ated structures most commonly encountered in algebraic logic are (left) resid-
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uated partially ordered groupoids, or structures of the form (A] ©; <) where:

(i) < is a partial order on A; (ii) © is a binary operation on A isotone in each of

its positions; and (iii) the equivalence a < c©&iffa — &< cis satisfied for any

a,b,c G A. Pocrims and polrims provide natural examples of (left) residuated

partially ordered groupoids. On the other hand, members of pointed discrim-

inator varieties, WBSO* varieties and double-pointed binary discriminator

varieties provide important examples of algebras that do not in general enjoy

the underlying structure of a residuated partially ordered groupoid. Instead,

such algebras have the underlying structure of a (left) residuated quasiordered

groupoid, where a (left) residuated quasiordered groupoid is a structure of the

form (A] ©; <) such that: (i) •< is a quasiorder on A] (ii) © is a binary

operation on A that is isotone in each of its positions; and (iii) the equivalence

a •< c© b iff a — 6 •< c is satisfied for any a,b,c 6 A. Indeed, let V be a pointed

discriminator variety, WBSO* variety or double-pointed binary discriminator

variety and let U be a join generator term for V. For any algebra A in V, the

structure {A] LJA; •<) is a (left) residuated quasiordered groupoid, where •<

denotes the underlying quasiorder of the canonical MINI-algebra polynomial

reduct of A (which must exist as V has EDPI). Inasmuch as the results of

Section 2.1 lend to the conjecture that the class of residuated quasiordered

groupoids may admit a coherent elementary theory closely resembling that of

the class of residuated ordered groupoids, the preceding remarks call attention

to the following problem.

Problem 4.2.2. Investigate the class of residuated quasiordered groupoids.

Considered as residuated partially ordered groupoids, pocrims (or more gen-
erally polrims) are of particular interest in algebraic logic because they are
amenable to purely algebraic investigation, since any such structure (A] ©, 0; <
) satisfies a < b iff a — b = 0 for any a, b € A, whence the partial order < may
be completely recovered from the residuation operation —. These remarks
suggest that attention be focussed on residuated quasiordered groupoids that
(in some sense) naturally generalise pocrims, and in fact at least one such
class of residuated quasiordered groupoids has already been considered in the
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literature. Call an algebra A := (.A; ©, —, 0) of type (2,2,0) a pre-pocrim if:
(i) the reduct (A; ©,0) is a commutative monoid; (ii) the reduct (A; — ,0) is
a pre-BCK-algebra; and (iii) A satisfies the following identities:

((x - y) - z) — (x - (y © z)) « 0

(x - {y © z)) - ({x -y)-z)&0.

Clearly any pre-pocrim (A; ©, — ,0) has the underlying structure of a resid-

uated quasiordered groupoid (A; ©; <), where < denotes the underlying

quasiordering of the pre-BCK-algebra reduct {A\ — ,0). Pre-pocrims were

introduced by Higgs in [109] in connection with his example showing that the

class of all pocrims is not a variety. By [109, pp. 72-73] pre-pocrims are known

to preserve several important properties of pre-BCK-algebras: in particular,

for any pre-pocrim A, the relation 5 of Theorem 2.1.14 is a congruence on A

such that A/S is the maximal pocrim homomorphic image of A. Nonetheless,

it is unclear if pre-pocrims (considered as residuated quasiordered groupoids)

are the most appropriate generalisation of pocrims (understood as residuated

partially ordered groupoids). For let A be a pseudocomplemented semilat-

tice. By previous remarks, A has the underlying structure of a residuated

quasiordered groupoid (A; UA; <), where U is the join generator term of

Proposition 2.3.60(2) and •< denotes the underlying quasiorder of the canon-

ical implicative BCS-algebra polynomial reduct (A; \ , 0) of A. However, the

polynomial reduct (A] UA,\,0) is not a pre-pocrim, since A

Problem 4.2.3. Identify an appropriate generalisation of pocrims (consid-

ered as residuated partially ordered groupoids) to residuated quasiordered

groupoids. Does the quasivariety of pocrims admit a generalisation to a class

of residuated quasiordered groupoids analogous to that of BCK-algebras to

pre-BCK-algebras? •

Recall from §1.1.1 r.hat the quasivariety of BCK-algebras is precisely the class

of all (— , 0)- subrtducts of pocrims.

Problem 4.2.4. Is an algebra {A; —, 0) of type (2,0) a pre-BCK-algebra iff
it is a (— , Q)-subreduct of a residuated quasiordered groupoid in the sense of
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Problem 4.2.3? •

Residuated quasiordered groupoids may not be the only generalisation of pre-

BCK-algebras of interest in algebraic logic. Indeed, the results of Section 2.1,

in conjunction with work due to van Alten [229], suggest that the varietal

closure H(LR) of the quasivariety LR of left residuation algebras is of interest

in algebraic logic as a naturally occurring generalisation of the variety of pre-

BCK-algebras (recall Proposition 2.1.11). In the statement of the following

problem, an algebra A := {A; - ,0) of type (2,0) is called an H(LR)-algebra

if AEH(LR).

Problem 4.2.5. Investigate the variety H(LR). Do H(LR)-algebras stand in

relation to pre-BCK-algebras âs left residuation algebras stand in relation to

BCK-algebras? •

4.2.6. Varieties of Pre-BCK-Algebras. In Section 2.2 the varieties of

commutative, positive implicative and implicative pre-BCK-algebras were stud-

ied as the pre-BCK-algebraic counterparts of tho varieties of commutative,

positive implicative and implicative BCK-algebras respectively. In light of the

results of Section 2.3, Section 3.1 and Section 3.2, it is natural to anticipate

that the pre-BCK-algebraic counterparts of other naturally occurring varieties

of BCK-algebras may themselves be of interest in universal algebra and alge-

braic logic. Hence we posit:

Problem 4.2.7. Investigate those varieties V3 of pre-BCK-algebras arising

as the pre-BCK-algebraic counterpart of a naturally occurring variety V of

BCK-algebras. In particular, investigate the natural pre-BCK-algebraic coun-

terparts of the varieties enBCK, n 6 w, and the natural pre-BCK-algebraic

counterpart of the variety HBCK [38, Theorem 3.15] of all residuation sub-

reducts of hoops. •

Apropos the preceding problem, the remarks of §1.5.1 and the results.of Sec-
tion 3.1 collectively indicate that vanities of positive implicate pre-BCK-
Mgebras generalising the variety of positive implicative BCK-algebras may be
of particular interest in universal algebraic logic. Let K uenote the class of all
positive impjicat.ive pre-BCK-algebras A with a left normal baad with zero

I



4.2. Future Work 367

polynomial reduct (A; rii,0), where a Pi b := (a(ab))(ba) for any a, b G A,

such that the underlying natural band partial order <^ ' n i ) 0 ' respects pos-
itive implicative pre-BCK difference. Members of the class K more closely
resemble positive implicative BCK-algebras than do positive implicative pre-
BCK-algebras, inasmuch as any positive implicative BCK-algebra A has a
semi-Boolean algebra polynomial reduct (A; flj), where aO-^b := (a(ab))(ba)

for any a,b £ A (recall the remarks prior to Problem 2.3.16). Thus the fol-
lowing problem would seem relevant:

Problem 4.2.8. Characterise the class K. Is it a variety? What role, if any,

does K play in the theory of pre-BCK-algebras? In algebraic logic? •

4.2.9. Implicative BCS-Algebras. Recall from Theorem 2.3.29 that im-

plicative BCS-algebras are precisely those implicative pre-BCK-algebras A for

which the polynomial reduct (A; P., 0) is a left normal band with zero whose

underlying natural bant? partial order respects implicative pre-BCK difference.

This result warrants the study of bands in pre-BCK-algebras. and in partic-

ular the study of those pre-BCK-algebras A for which the polynomial reduct

(A; P, 0) is a (normal) band with zero. As we know of no such studies in the

existing literature concerning (normal) bands in BCK-algebras, the preceding

remarks call particularly for a study of bands arising in BCK-algebras.

Problem 4.2.10. Investigate (normal) bands in pre-BCK-algebras. In par-

ticular, investigate (normal) bands in BCK-algebras. Is the class of all BCK-

algebras {A\ - , 0) such that the polynomial reduct {A; n) is a (normal) band

equationally definable? •

By Theorem 2.3.73, the 3-element flat implicative BCS-algebra B2 generates

the class iBCS of implicative BCS-algebras as a variety. However, by Proposi-

tion 2.3.76, the quasivariety Q(B2) generated by B2 is not a variety, whence

the inclusion Q(B2) C V(Bs) is strict. In consequence, it is natural to focus

attention on the quasivariety Q(B2) as a specialisation of iBCS. In particular,

it is natural to ask to what extent membership of the quasivariety Q(B2) is

reflected in special properties of implicative BCS-algebras. In the statement

of the following problem and in the sequel, an algebra A := {A; —, 0) of type

(2,0) is called a Q(B2)-algebra if A € Q(B2).
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Problem 4.2.11. Characterise the Q(B2)-algebras amongst the implicative

BCS-algebras. •

The quasivariety Q(B2) also seems of intrinsic interest in its own right, in
view of the pivotal role it plays in the theory of BCK-algebras (recall Propo-
sition 2.2.5). Two of the most pressing problems concerning Q(B2) are the
following:

Problem 4.2.12. Give an implicational characterisation of the quasivariety

Q(B2). Is Q(B2) finitely axiomatisable? •

Problem 4.2.13. Characterise the Q(B2)-subdirectly irreducible Q(B2)-algebras.
To within isomorphism, are Ci,B2 the only Q(B2)-subdirectly irreducible
Q(B2)-algebras? •

In Problem 2.3.69 we a^ked if every implicative BCS-algebra arises as a 'resid-

uation subreduct' of a pseudocomplemented semilattice. It would also be of

interest to possess an embedding theorem for Q(B2)-algebras. Upon recalling

that the class of (\, 0)-reducts of members of SBAsi is, to within isomorphism,

precisely {Ci,B2}, the following problem is suggested by Problem 4.2.13 and

Kalman's proof of Theorem 1.6.20.

Problem 4.2.14. Is an algebra {A; \,0) of type (2,0) a Q(B2)-algebra iff it

is a (\, 0)-subreduct of a skew Boolean algebra? •

By Theorem 2.3.75, iBCS is a cover of iBCK in AV(PBCK), the lattice of

varieties of pre-BCK-algebras. However, by Proposition 2.3.76 this result does

not extend to AQ(PBCK), the lattice of quasivarieties of pre-BCK-algebras.

Therefore we pose the following problem:

Problem 4.2.15. Is Q(B2) a (unique) cover of the atom iBCK in AQ(PBCK)?

4.2.16. Subtractive Varieties with EDPI. Corollary 3.1.7 shows that

the study of the ideal theory of subtractive varieties with EDPI may be reduced

to the study of the ideal theory of MINI-algebras (or equivalently, positive

implicative pre-BCK-algebras) inasmuch as a variety V with 1 is subtractive

j' **•
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with EDPI (witness y -> x) iff every A G V has a MINI-algebra polynomial

reduct (A; -»A , 1) whose MINI-ideals coincide with the V-ideals of A. Because

any dual Brouwerian semilattice A := (A\ V,#,0) is termwise definitionally

equivalent to a generalised Boolean algebra i f f A j = £ * ( y * a ; ) « 2 ; (recall

the remarks of §1.3.4), the preceding observation calls for a study of the role

played by MINI-algebras satisfying [(x —)• y) -> x) —»• x « 1 in the theory of

subtractive varieties with EDPI; see also Blok and Pigozzi [30, Corollary 4.3].

In the statement of the problem below, a MINI-algebra A is said to be classical

if A f= ((re —> y) —> x) —> x « 1; clearly any classical MINI-algebra is term

equivalent to (in fact, is dually isomorphic to) an implicative pre-BCK-algebra

by Theorem 3.1.4.

Problem 4.2.17. Investigate the role played by classical MINI-algebras in

the theory of subtractive varieties with EDPI. If V is a subtractive vari-

ety with EDPI (witness y —> x), does it follow that the polynomial reduct

(A; ->A, 1) is a classical MINI-algebra iff for any A € V, the join semilattice

(CI(A); V, (0)A) of compact ideals of A is dually relatively complemented?

By the pure [subtractive] WBSO variety we mean the variety generated by
the class of all algebras A := {A; •,—>>, A, 1) of type (2,2,2,1) where the join
semilattice (Cp A; V,O;A) of compact congruences is dually relatively pseu-
docomplemented and •,—> and A are weak meet, [subtractive] weak relative
pseudocomplemention and Godel equivalence terms respectively. The pure
[subtractive] WBSO variety may be of interest in algebraic logic inasmuch as
it may provide a convenient framework for the study of [subtractive] WBSO
varieties, similar to the manner in which skew Boolean n-al^ebras provide a
point of reference for the study of pointed ternary discriminator varieties (re-
call Theorem 1.4.39) and implicative BCS-algebras provide a point of reference
for the study of binary discriminator varieties (recall Theorem 3.2.7).

Problem 4.2.18. Investigate the pure [subtractive] WBSO variety. •

In [34, p. 549] Blok and Pigozzi note that with some important exceptions,
the varieties of traditional algebraic logic all have (commutative) TD terms.
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Included among these classes are the varieties of dual Brouwerian semilattices

and positive implicative BCK-algebras, which have the (commutative) TD

term z — ((x — y) — (y — x)) (by [34, Corollary 5.2(ii)]), and the variety of

Nelson algebras, which has the (commutative) TD term ((x => y) —> (y =$•

x)) —> z (by Theorem 3.1.33). Upon observing that the (commutative) TD

terms for these varieties are all of the form ((•• • (di(x,y) -> d2(x,y)) ->

•• • ) -» dn(x, y)) —> z, where di{x, y),..., dn(x, y) are binary terms witnessing

point regularity in the sense of Proposition 1.2.6 and —> is a subtractive weak f;

relative pseudocomplementation, the following problem suggests itself.

Problem 4.2.19. Investigate the class of all varieties with a (commutative)

TD of the form ((• • • (di(x,y) —> d2(x,y)) ~> •••) -» dn(x,y)) -> z, where

d\(x, y),..., dn(x, y) are binary terms witnessing point regularity in the sense

of Proposition 1.2.6 and —> is a (subtractive) weak relative pseudocomplemen-

tation. In particular, investigate the class of all varieties with a (commutative)

TD term of the form (xAy) ~> z, where A and —> are a Godel equivalence

term and a (subtractive) weak relative pseudocomplementation respectively.

4.2.20. Binary Discriminator Varieties. By Theorem 3.2.29, a variety

with 0 is a pointed fixedpoint discriminator variety iff it is a 0-regular binary

discriminator variety. Prom this result it follows that the binary discrimina-

tor may be legitimately considered a generalisation of the pointed fixedpoint

discriminator to the subtractive (but not ideal determined) case. Inasmuch as

the theory of the fixedpoint discriminator closely parallels that of the ternary

discriminator [34, p. 548; Section 3], the preceding observation gives rise to

the following problem:

Problem 4.2.21. To what extent does the theory of the binary discriminator

parallel the theory of the (pointed) fixedpoint discriminator? Of the ternary

discriminator? •

Apropos the preceding problem, a suitable representation theorem would help

clarify connections between binary discriminator, pointed fixedpoint discrimi-

nator and ternary discriminator varieties. In particular, the following problem
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suggests itself, just because binary discriminator varieties have a well devel-

oped theory of prime ideals (by Theorem 3.2.8 and the results of §2.2.28).

Problem 4.2.22. Is there a sheaf-theoretic representation (in the sense of
Burris and Werner [56]) of binary discriminator varieties? •

In Remark 3.2.19, it was noted that the class of Abelian Rickart semirings is

a binary discriminator variety. This observation seems to be of some interest,

since it implies several classes of rings arising in real and complex analysis are

binary discriminator varieties.

Problem 4.2.23. Investigate the class of Abelian Rickart semirings (consid-

ered as a binary discriminator variety). •

By Example 2.3.12, another important example of a naturally occurring binary

discriminator variety is the class of pseudocomplemented semilattices. Call an

algebra (A] A, \ , 0) of type (2,2,0) a locally pseudocomplemented semilattice if:

(i) the reduct (A; A, 0) is a meet semilattice with zero; and (ii) for all a, b £ A,

the difference a\b is the pseudocomplement of b in the principal subalgebra (a]

generated by a. Locally pseudocomplemented semilattices are a natural gen-

eralisation of pseudocomplemented semilattices that stand in relation to such

algebras as generalised Boolean algebras stand in relation to Boolean algebras.

By an unpublished theorem of the author, the class of locally pseudocomple-

mented semilattices is a finitely based variety. This result, in conjunction with

preceding remarks, invites the study of the following problem.

Problem 4.2.24. Is the class of locally pseudocomplemented semilattices a

binary discriminator variety? •

A further unpublished result of the author shows that, for any locally pseu-

docomplemented semilattice A, the reduct (A] \,0) of A is an implicative

BCS-algebra. This result prompts the following question, which may be re-

garded as a generalisation of Problem 2.3.69.

Problem 4.2.25. Is an algebra {A; \, 0) of type (2,0} an implicative BCS-

algebra iff it is a (\, 0)-reduct of a locally pseudocomplemented semilattice?

i|f
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Locally pseudocomplemented semilattices were introduced by Gratzer in [101]
in connection with the following problem, which we include for the sake of
completeness.

Problem 4.2.26. [101, Problem 1§6.22, p. 67] Let A be a meet semilattice

with 0 for which (a] is pseudocomplemented for each a € A; let S (a) denote

the pseudocomplements in (a]. Characterise the family of Boolean algebras

4.2.27. Pre-BCK Quasilattices and BCK Paralattices. Recall that,

when generalised to bands, Idziak's theory of BCK-[semi]lattices bifurcates

(owing to the absence of commutativity). In one direction, Idziak's theory

of BCK-[semi]lattices generalises to a theory of pre-BCK bands and pre-BCK

quasilattices PQc; while in another, it generalises to a theory of BCK bands

and BCK paralattices BPc. As it stands, the study of these complementary

theories is largely orthogonal, since for each choice of C the varieties PQc and

BPc are incomparable. On the other hand, the results of §3.3.2 and §3.3.27

show th;',t the study of both families PQc, BPc is relevant to the study of

pointed fixedpoint discriminator and pointed ternary discriminator varieties.

Prompted by the desire to provide a unified framework for the study of binary

discriminator, pointed fixedpoint discriminator and pointed ternary discrimi-

nator varieties, these remarks engender the following question:

Problem 4.2.28. Find a common generalisation of pre-BCK bands [pre-BCK

quasilattices] and BCK bands [BCK paralattices]. •

In §3.3.2 and §3.3.27, interest was naturally centred on those varieties PQc
and BPC for which {A, - , 0} C C C {A, V, - , 0}. However, the varieties PQC

and BPc may also be of interest for other choices of C. In particular, those
varieties PQc and BPC for which {V, - , 0 } C C would seem to merit attention,
in view of the following two observations:

1. The variety SBA of skew Boolean algebras is termwise definitionally

equivalent to a subvariety of PQc, C = {V, \, 0};

2. The variety SBIA of skew Boolean n-algebras is termwise definitionally

equivalent to a subvariety of BPc, C" = {V, / , 0} .
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To justify (1), it is sufficient to note SBA |= a; A y « (y V x)\((x\y) V
whence any skew Boolean algebra {A] A, V,\, 0) is term equivalent to its own
reduct {.A; V,\, 0). Similarly, to justify (2) it is sufficient to note SBIA \=

x A y « (y V x)/((x/y) V (y/x)), whence any skew Boolean n-algebra
(A] A, V, /, 0) is term equivalent to its own reduct {A] V, /, 0).

Problem 4.2.29. Investigate those varieties PQc, BPc for which {V, — , 0} C

CC{A,V, - , 0 } . •

For any variety V C PQC, an easy modification of the prc of of Theorem 2.1.36

shows the assertional logic §(V,0) coincides with the assertional logic §(Ve, G)

of the variety of BCK-[semi]lattices V€ axiomatised relative to V by the quasi-

identity (2.5). Thus the assertional logic S(V,0) has a familiar description.

In contrast, for any variety V C BPc we have that V is 0-regular witness

{x — y,y — x} (by Proposition 3.3.37), whence the equivalent algebraic se-

mantics of the algebraisable assertional logic S(V, 0) is exactly V (by Theo-

rem 1.3.15). By Remark 3.3.1, therefore, the following problem is apposite:

Problem 4.2.30. For varieties V C BPc, investigate the assertional logics

S(V, 0). In particular, investigate the assertional logics §(BPc,0) of the vari-

eties BPC. •

In terms of gaining insight into the unfamiliar properties and behaviours of

the deductive systems S(BPc,0) (recall Remark 3.3.1), the problem of obtain-

ing a Gentzen-style axiomatisation for each §(BPc,0) would seem particularly

relevant.

Problem 4.2.31. For each BPc, give a Gentzen-style axiomatisation (if one
exists) of the assertional logic § (BPc, 0). •

Let K be a K-0-regular quasivariety. In traditional algebraic logic, a standard
approach for constructing a Gentzen-style axiomatisation of S(K, 0) lies in con-
servatively extending § [193, Definition 9.1] with a multiplicative conjunction
or fusion [199]. In algebraic logic, fusion of premisses fc closeh related to the
calculation of residuals [86, Section 2]. Inasmuch as BCK-algebras satisfying
Iseki's condition (S) are precisely the residuation reducts of pocrims, the pre-
ceding remarks call (for each BPc) for the study of the class of all members of
BPc for which the BCK-algebra reduct has condition (S).

i !
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Problem 4.2.32. For each BP^, investigate the class of all members of

for which the BCK-algebra reduct enjoys condition (S). In particular, study

the class of all BCK skew lattices for which the BCK-algebra reduct has con-

dition (S). •

By the remarks of §1.1.1, the study of /esiduated structures in universal alge-

bra was initiated by the papers of Kru"1 [143] and Ward and Dilworth [235]

on residuated lattices. Recently, the algebraic logic community has shown re-

newed interest in residuated lattices and their associated logics [43, 42, 127].

In view of these remarks and the initial motivations of this thesis, the following

problem (which is related to Problem 4.2.2) would seem pertinent.

Problem 4.2.33. Can the theory of residuated lattices be usefully extended

to skew lattices? •
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