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ERRATA AND ADDENDUM

The following paragraph should be inserted immediately following the statement of
the Clifford-McLean theorem for bands {Theorem 1.3.14):

For any band, the relations £ and R commute {111, Proposition 2.1.3). From [111,
Corollary 1.5.12] it follows that D = LoR = Ro L = L VR. We remark that these
equalities are fundamental when manipulating D on any band.

Paragraph 1.4.3, Line 7. The sentence:

Leech has shown that the class of quasilattices is a variety [145, Section 1}, ...
should read:

Laslo and Leech have shown that the class of quasilattices is a variety (145, Section 1],

Paragraph 1.4.3, Line 10. The sentence:

Leech has also shown that quasilattices satisfy a modified form of the Clifford-
McLean theorem: ...

should read:

Laslo avd Leech have also shown that quasilattices satisfy a modified form of the
Clifford- McLean theorem: ...

Paragra:sh 1.4.3, Line 12. The sentence:

Further information about quasilattices may be found in Leech [145, Sections 1, 2,
3, 4 and 6].

should read:

Further information about quasilattices may be found in Laslo and Leech [145,
Sections 1, 2, 3, 4 and 6}

Paragraph 1.4.4, Line 6. The sentence:

Leech has observed that the class of paralattices is a variety [145, Section 1], ...
should read:

Laslo and Leech have observed that the class of paralattices is a variety [145, Sec-
tion 1), ...

The following paragraph should be inserted immediately following the statement of
the Clifford-McLean theorem for skew lattices (Theorem 1.4.10):

The Clifford-McLean theorem for skew lattices is also known as the first decompo-
sition theorem for skew lattices in the literature.

p. 60 Identity (1.34) should read:

@)= {z=(y=2)}=~0 (1.34)

p. 105 Line 4. The sentence:

This is shown in the following result, which may be understood as a kind of a
‘Clifford-McLean theorem’ for pre-BCK-algebras.
should read:
This is shown by the following ‘maximal image’ result, which may be understood
as a pre-cursor to a Clifford-McLean theorem for pre-BCK-algebras. In the sequel
we shall in fact see that, under appropriate conditions, Theorem 2.1.14 merges with
the usual assertion of the Clifford-McLean theorem for bands {Theorem 1.3.14),
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ERRATA AND ADDENDUM

p- 135 The first two sentences of Paragraph 2.2.16 should read:
2.2.16. Positive Implicative Pre-BCK-Algebras. A positive implicative pre-
BCK-algebra is a pre-BCK-algebra A such that A/Z & B for some positive implica-
tive BCK-algebra B.

p. 299 The first sentence of Remark 3.3.9 should read:
One-sided non-commutative lattices were introduced by Laslo and Leech in [145,
Section 4] under the name flat non-commutative lattices, in conformance with stan-
dard non-commutative lattice theory terminology.

p. 305 The first sentence of the paragraph immediately following Theorem 3.3.15 should
read:
An upper implicative BCS band is an algebra (4; Vv,\,0) of type (2,2,0) such that:
(i) the reduct (A; v,0) is an upper band with zero; ...

p. 306 Identity (3.72) should read:
\(z\(zVyVa)) == (8.72)
p. 307 Top line, The statement: '
» PQc denote the variety of upper pre-BCK-bands when £’ = {A,\,0};
should read:
o PQ. denote the variety of upper pre-BCK-bands when C' = {Vv,\,0};

p- 308 The statement of Corollary 3.3.19 should read:
Corollary 3.3.18. Let A€ C'. For any A € 1Qg¢, the principal subalgebra (a]a
generated by a¢ € A is ¢ Booleen lattice. ...

p- 309 The statement of Corollary 3.3.20 should read:
Corollary 3.3.20. Let {A,V} CC' and let A € 1Qe.....

p. 319 The first sentence of the statement of Proposition 3.3.35 should read:
Corollary 3.3.35. For any A € BP¢ the following assertions hold: . ..

p- 320 The proof of Corollary 3.3.36 should be deleted.
Since £ V R = D holds for either A or v, Corollary 3.3.36 is an immediate conse-
quence of Corollary 3.3.35, and as such does not require any proof.

p. 328 The statement of Theorem 3.3.49 should read:
Theorem 3.3.49. An algebra A := (A; A,V,/,0) of type (2,2,2,0} is an implicative
BCK £4-BCK local paralattice iff the reduct {A; A,V,0)} is a local paralattice with
zero, .
p. 375 Reference [6} should read:
[6} P. Agliano, Congruence quasi-orederability in sublractive varieties,
J. Austral. Math, Soc. T1 (2001), 421-445.
375 Reference [7] should read:
[7] P. Agliand, Fregean subtractive varieties with definable congruences,
J. Austral. Math. Soc. 71 (2001}, 353-366.
p. 387 Reference [145] should read:

[145] G. Laslo and J. Leech, Green’s equivalences on noncommutative latt-
ices, Acta Sci. Math. (Szeged) 68 (2002), 501-533.
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Abstract

The class of BCK-algebras (hereafter BCK) is a relatively point-regular quasi-
variety that arises naturally both in algebraic logic and universal algebra. In
algebraic logic, BCK arises as the equivalent algebraic semantics of Meredith’s
BCK logic, an important substructural logic with applications to proof theory.
In universal algebra, BCK arises as the class of all residuation subreducts of
partially ordered commutative residuated integral monoids (briefly, pocrims);
the class of pocrims is a quasivariety whose relative subvarieties include the
varieties of hoops and dual Brouwerian semilattices. The class of pre-BCK-
algebras (hereafter PBCK) is a subtractive but not point-regular variety, the
members of which naturally generalise BCK-algebras., The theory of pre-BCK-
algebras and the applications of this theory to universal algebra and algebraic
logic are the subject of this thesis.

Chapter 1 provides a structured account of the theory relevant to the study of
pre-BCK-algebras, including: Laslo and Leech’s tlieory of quasilattices, par-
alattices and skew lattices; Blok and Pigozzi’s hierarchy of varieties with Equa-
tionally Definable Principal Congruences (briefly, EDPC); the theory of BCK-
algebras and BCK-lattices due to Iséki, Idziak and others; Agliano and Ursini’s
theory of ideals and subtractive varieties; ahd the theory of algebraisable and
assertional logics due to Blok, Pigozzi, Raftery and others. The main new
results concern distributivity in skew lattices. A counterexample is presented
showing that the middle distributive identities for skew lattices are indepen-
dent; and a theorem asserting the interderivability of the middle distributive
identities for symmetric skew lattices is stated. The results obtained answer
two questions of Leech.

Chapter 2 is devoted to a study of the theory of pre-BCK-algebras. The
elementary_ theory of pre-BCK-algebras is considered in Section 1 of Chapter
2. Some results relating PBCK {o existing classes of algebras generalising BCK
to the subtractive but not (relatively) point-regular case are presented. In
one of two key results of the section, a ‘Clifford-McLean’-type theorem for




pre-BCK-algebras, it is shown that the equivalence = induced by the natural
quasiordering < on a pre-BCK-algebra A is a congruence on A such that the
quotient algebra A /= is the maximal BCK-algebra homomorphic image of A.
For an appropriate notion of ideal, the ideal theory of pre-BCK-algebras is
investigated. The relationship between ideals and congruences on pre-BCK-
algebras is also briefly explored. In the other major result of the section, it
is proved that the assertional logics of the variety of pre-BCK-algebras and
the quasivariety of BCK-algebras coincide, and hence that a quasi-identity
of the form éc (%) = 0 D t{¥) ~ 0 is satisfied by PBCK iff it satisfied by
BCK. Co]lec;i\r:ely, the results indicate that much of the first-order theory of
BCK-algebras extends to pre-BCK-algebras.

Varieties of pre-BCK-algebras are investigated in Section 2 of Chapt : 2. For
a variety V of BCK-algebras, the natural pre-BCK-algebraic counterpart V,
of V is the class {A € PBCK : A/Z 2¢ B for some B € V}. In the main result
of the section, it is shown that the natural pre-BCK-algebraic counterpart of
any variety of BCK-algebras is itself a variety. The varieties of commutative,
positive implicative and implicative BCK-algebras are important classes of
BCK-algebras; their natural pre-BCK-algebraic counterparts are the varieties
of commutative, positive implicative and implicative pre-BCK-algebras respec-
tively. An order-theoretic characterisation of commutative pre-BCK-algebras
is provided, and an ideal-theoretic characterisation of positive implicative pre-
BCK-algebras is presented. For a suitable notion of prime ideal, it is also
shown that an ideal of an implicative pre-BCK-algebra is prime iff it is maxi-
mal iff it is irreducible. The results obtained suggest that, for any variety V of
BCK-algebras, the first-order theory of V, stands in relation to V as the first-
order theory of pre-BCK-algebras stands in relation to the first-order theory
of BCK-zlgebras.

The variety of implicative BCS-algebras, a class of pointed groupoids, is studied
in Section 3 of Chapter 2. It is shown that the variety of implicative BCS-
algebras is a subvariety of the variety of implicative pre-BCK-algebras. Some
examples are presented showing that implicative BCS-algebras arise naturally
in several contexts in universal algebra and algebraic logic, including binary




discriminator varieties (in particular, pseudocomplemented semilattices) and
fixedpoint discriminator varieties {in particular, certain varieties of n-potent
BCK-algebras). It is shown that an implicative pre-BCK-algebra is an im-
plicative BCS-algebra iff it has a certain left normal band with zero polyno-
mial reduct whose underlying partial ordering respects implicative pre-BCK
difference in a precise sense. A representation theorem is proved showing that
the category of implicative BCS-algebras is isomorphic to the category of left
handed locally Boolean bands for suitable choices of objects and morphisi: s,
The subdirectly irreducible implicative BCS-algebras are characterised (with
R. J. Bignall): they are the 2-element implicative BCK-algebra and the alge-
bras B obtained from the non-trivial Boolean algebras B upon replacing the
unit element of each B with a twc-element clique. It is shown that the class
of implicative BCK-algebras is generated (as a variety) by a certain 3-element
pre-BCK-algebra B,, and hence that the lattice of varieties of implicative BCS-
algebras is a three-element chain; the only non-trivial subvariety of the variety
of implicative BCS-algebras is the variety of implicative BCK-algebras. Collec-
tively, the results attest that implicative BCS-algebras are a ‘non-commutative’
analogue of implicative BCK-algebras, and as such, more closely resemble im-
plicative BCK-algebras than do implicative pre-BCK-algebras.

In Chapter 3 the theory of pre-BCK-algebras is applied to the study of cer-
tain classes of algebras arising naturally in universal algebra and algebraic
logic. In Section 1 of Chapter 3 subtractive varieties with Equationally Defin-
able Principal Ideals (briefly, EDPI) are considered. For subtractive varieties,
equational definability of principal ideals is the ideal-theoretic analogue of
equationally definable principal congruences. It is shown that the variety of
positive implicative pre-BCK-algebras is termwise definitionally equivalent to
the variety of MINI-algebras introduced recently by Agliano and Ursini. A
result is proved showing that a variety V is subtractive with EDPI iff every
A €V has a MINI-algebra polynomial reduct whose ideals coincide with those
of A. A structure theorem for MINI-algebras is also proved: for a suitable
notion of weakly compatible operation, it is shown that a variety is termwise
definitionally equivalent to a variety of MINI-algebras with weakly compatible ‘
operations iff it is subtractive, weakly congruence orderable with EDPI. Sub-
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tractive weak Brouwerian algebras with filter-preserving operations (briefly,
subtractive WBSO varieties) are an important class of subtractive varieties
with EDPI that arise in the first instance from algebraic logic. A natural ex-
ample of a subtractive WBSO variety is the variety of Nelson algebras, which
arises from the algebraisation of constructive logic with strong negation. It is
shown that the variety of Nelson algebras has a commutative (but not regular)
Ternary Deductive term and is congruence permutable. An explicit Quater-

nary Deductive terin is also given. The results obtained answer a question of
Blok and Pigozzi.

Binary discriminator and dual binary discriminator varieties are studied in
Section 2 of Chapter 3. The binary discriminator and dual binary discriminator
were recently introduced by Chajda, Hala§ and Rosenberg in an attempt to
generalise the ternary discriminator and dual ternary discriminator to varieties
with 0 exhibiting congruence permutability and congruence distributivity only
locally at O respectively. It is shown that the variety generated by the class of
‘all algebras (4; h,0), where h is the dual binary discriminator on A and 0 is
a nullary operation, is precisely the variety of left normal bands with zero. A
semigroup-theoretic characterisation of dual binary discriminator varieties is
also provided. It is shown that the variety generated by the class of all algebras
(A; b,0), where b is the binary discriminator on A and 0 is a nullary operation,
is exactly the variety of implicative BCS-algebras. A natural characterisation
of binary discriminator varieties is presented: a pointed variety is a binary

discriminator variety iff it is subtractive with EDPI and is generated by a
class of ideal simple algebras. Point-regular binary discriminator varieties are
an important subclass of binary discriminator varieties; two results are proved
that together show a point-regular variety is a binary discriminator variety iff
it is a ‘pointed’ fixedpoint discriminator variety. In the major result of the
section, the ‘pointed’ fixedpoint discriminator varieties are characterised: they
are precisely the varieties that are ideal determined, semisimple with EDPC.
Some theorems connecting ‘pointed’ fixedpoint discriminator varieties with
.pbinted ternary discriminator varieties are also presented. The results answer
~ in part a question of Blok and Pigozzi.




Pre-BCK-algebras structurally enriched with band or skew lattice operations
are studied in Section 3 of Chapter 3. Bands and skew lattices structurally
enriched with difference operations arise naturally in pointed discriminator
varieties as skew Boolean algebras and skew Boolean intersection algebras
{briefly, skew Boolean N-algebras). Skew Boolean algebras arise as distributive
skew lattices structurally enriched with a relative complementation operation;
skew Boolean M-algebras are skew Boolean algebras for which finite meets exist
with respect to the natural skew lattice partial order. A theory of pre-BCK
bands and pre-BCK quasilattices that parallels Laslo and Leech’s theory of
quasilattices is briefly outlined. In one of the two main results of the section,
the skew Boolean algebras are characterised among the pre-BCK quasilattices:
they are precisely the pre-BCK quasilattices for which the quasilattice with
zero reduct is a join symmetric skew lattice with zero and the pre-BCK-algebra
reduct is an implicative BCS-algebra. A theory of <¢-BCK bands and <g-
BCK paralattices that parallels Idziak’s theory of BCK-semilattices and BCK-
lattices is briefly outlined. In the other main result of the section, the skew
3oolean N-algebras are chiaracterised among the <¢-BCK paralattices: they are
precisely the <3-BCK paralattices for which the paralattice with zero reduct
is a join symmetric local skew lattice with zero and the BCK-algebra reduct
is an implicative BCK-algebra. A theory of double-pointed skew Boolean N-
algebras akin to that of skew Boolean M-algebras is also presented, together
with an axiomatisation of the assertional logic of the variety of (left handed)
double-pointed skew Boolean N-algebras. Collectively, the results obtained
intimate that pre-BCK algebras structurally enriched with band or skew lattice
operations may provide a unifying framework for the study of several classes
of ‘generalised Boolean structures’ arising naturally in universal algebra and
algebraic logic.

In Chapter 4 the research undertaken in this dissertation is briefly reviewed,
and some potential avenues for future research are presented.
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Chapter 1

Introduction

1.1 Introduction

1.1.1. About This Thesis. Beginning with the papers of Krull [143] and
Ward and Dilworth [235] residuated algebraic structures have been the sub-
ject of study for over half a century. Nonetheless, it is only recently that the
residuated algebraic structures associated with logical systems have been se-
riously investigated [34, p. 597}, even though residuation in such structures
is typically the algebraic counterpart of implication in the associated logic.
Much of the recent work concerning residuated algebfa.ic structures in logic
has focussed on two related classes of algebras: the class of partially ordered
commutative residuated integral monoids (briefly, pocrims) [109, 176, 39]; and
the class of BCK-algebras {126, 70, 38]. Let (4; <) be a poset such that:
(i) (4; <) is integral in the sense that there exists a least element 0 € A
which acts as an identity element for an order compatible commutative as-
sociative binary multiplication & on A; and (ii) (4; <) is residuated in the
sense that there exists a binary operation ~ on A such that, for ahy a,b € A,
e¢~b = min{c € A: a < c® b}. Then (4; <) is first-order definition-
ally equivalent to an algebra (4; ®, ~,0) of type (2,2,0); such an algebra
is a pocrim. The class of all pocrims is a quasivariety [121, 123] but is not
a variety [109]. A BCK-algebra is a { =, 0)-subreduct of a pocrim; equiva-
lently, by results of Wronski [242), Ono and Komori [176], Fleischer [90} and
Palasifiski [178], an algebra (4; +,0) of type (2,0) is a BCK-algebra iff the
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following identities and quasi-identity are satisfied:

(z-y)=~(z—2) = (z~y) =0 (1.1)
(z—(z~y))—y=0 - (1.2)
z—2=0 (1.3)
0-z~0 (14)
r—yx~0&y—z~0Dz~y. (1.5)

The class of all BCK-algebras is thus a quasivariety; it is not a variety [240).
By results of Blok and Pigozzi [31], Blok and Jonsson [28] and Raftery and
van Alten [192] the class of BCK-algebras [pocrims] is termwise definitionally
equivalent to the equivalent algebraic semantics of Meredith’s BCK logic [165),
[186, p. 316] [BCK logic with ‘fusion’ [28]]. BCK logic [with fusion] is an
important substructural logic which arises in the first instance from proof
theory; see {80, Section 4] for a discussion and references. '

A significant body of work now exists showing pocrims and BCK-algebras play
a central role in the theory of the residuated structures associated with logical
systems (for an extended discussion and references see Blok and Pigozzi [34,
Section 6]). This is most readily seen from the theory of hoops, which are
pocrims that are ‘naturally ordered’ in the sense that for any ¢, b€ 4, a < &
implies there exists ¢ € A such that a @ ¢ = b. The study of hoops and
their residuation subreducts is due variously to Biichi and Owens [48], Fer-
reirim [88], Blok and Pigozzi [34] and Blok and Ferreirim [26, 27) (see also
Bosbach [44, 45, 46]), while the study of hoops with ‘normal multiplicative
operators’ is due to Blok and Pigozzi [34]. ‘Hoop logics’ are deductive systems
whose equivalent algebraic semantics are termwise definitionally equivalent to
‘quasivarieties of (structurally enriched) hoops. Included among the hoop logics
are the classical and intuitionistic sentential calculi; all the normal modal ex-
tensions of classical and intuitionistic -propositionai logic; the w-valued propo-
sitional calculus of Lukasiewicz [155]; and the logics Lgck and LJ* of Ono
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and Komori [176). Respectively, the equivalent algebraic semantics of these
deductive systems are termwise definitionally equivalent to: the varieties of
Boolean and Heyting algebras; the varieties of Boolean and Heyting algebras
with ‘normal multiplicative operators’; the variety of Wajsberg algebras (see
Font, Rodriguez and Torrens [92], Chang {59} and Mundici [171]); and certain
varieties of residuated lattices (see Blount [43]). See Agliano [5, Section 4.6).

Although the theory of hoops provides a unifying framework for many of the
logical systems and associated classes of algebras traditionally considered the
domain of algebraic logic, there exist important examples of algebraisable de- -
ductive systems whose equivalent algebraic semantics are classes of residuated
algebraic structures that are not termwise definitionally equivalent to quasiva-
rieties of (structurally enriched) pocrims or BCK-algebras. For example, linear
logic [97] is algebraisable [3, Section 2.2); its equivalent algebraic semantics is
termwise definitionally equivalent to the variety of girales, a class of semilattice
ordered residuated monoids that is not a variety of pocrims {5, Section 4.1].
Relevance logic [12] is algebraisable [93); its equivalent algebraic semantics
is termwise definitionally equivalent to the variety of De Morgan monoids,
also a class of semilattice ordered residuated monoids that is not a variety of
pocrims [5, Section 4.4]. Residuated structures that are not pocrims also arise
naturally in universal algebra. Ordinals closed under addition provide natural
examples of residuated ordered monoids for which the monoid operation is
not commutative [229, Example 1.8]. Ideal lattices of rings (considered with
“ideal multiplication and set inclusion) also form residuated ordered monoids
with a non-commutative monoid operation [229, Example 1.7]; notably, lat-
tices of topologising filters on rings with identity [98] may be understood as
such monoids [229, Appendix]. Besides being of independent interest in their
own right, classes of residuated algebraic structures found in universal algebra
are often a. [ intrinsic interest from the perspective of algebraic logic in the
sense that they may arise naturally as ‘quasivarieties of logic’: that is, they
are termwise definitionally equivalent to the equivalent algebraic semantics of
some algebraisable deductive system. See Blok and Raftery [40, Section 5] and
Barbour and Raftery {16, Section 6].
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Recent developments in algebraic logic and universal algebra have thus lead to
the study of several classes of algebras generalising pocrims and BCK-algebras.
The most prominent of these generalisations is that of pocrims to polrims and
BCK-algebras to BCC- or left residuation algebras. A polrim is a partially or-
dered integral monoid that is residuated on the left; the residuation subreducts
of polrims are the BCC- or left residuation algebras. The classes of polrims
and left residuation algebras are both quasivarieties [229, Proposition 1.4] that
are not varieties {229, Proposition 4.1]. Commutative polrims are precisely the
pocrims, while left residuation algebras satisfying a certain principle of ‘quasi-
commutation’ are exactly the BCK-algebras [229, Example 1.5]. Polrims and
their residuation subreducts have been investigated by several authors, includ-
ing Komori [138, 139], Ono and Komori [176}, Raftery and van Alten [192},
van Alten {229}, and van Alten and Raftery [231, 230]. Polrims arise naturally
both in universal algebra and algebraic logic; in particular, the quasivariety of
polrims {left residuation algebras] is termwise definitionally equivalent to the
equivalent algebraic semantics of the {&, D}-fragment [{D}-fragment] of the
logic Hgcc of Ono and Komori {176]. Other classes of residuated monoids gen-
eralising pocrims and BCK-algebras to have been considered in the literature
include the sircomonoids of Raftery and van Alten [193] and their residua-
tion subreducts, the BCI-algebras of Iséki [122]; and the semilattice ordered
residuated monoids of Agliano [5]. The study of all such monoids is part of
a much larger theory of ‘residuals without residuation’ pioneered by several
authors including Meyer and Routley [166), Dunn [85, 86}, Ursini [223] and
Agliano [5]. Of particular relevance to algebraic logic is Dunn’s theory of ‘par-
tial gaggles’ [86], which seeks to provide a uniform semantical approach to the
study of substructural propositional logics, including: classical and intuition-
istic logic; the various modal and relevance logics; linear logic; BCK logic; and
the Lambek calculus [144]. See also Restall [198, Chapter II].

One principle common to pocrims, BCK-algebras and most of their generalisa-
tions is the existence of a finite set of binary terms {d;(z,y): i =1,...,n} and
a (definable) constant 0 such that the following identities and quasi-identity
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are satisfied:
di(z,2) ~ 0 and (SC di(z,y) 0Dz = y. (1.6)
i<n

For example, the set of terms {z = y, y - £} witnesses (1.6) for the quasivariety
of BCK-algebras (and thus for pocrims); this follows immediately from (1.3)
and (1.5). In algebraic terms, satisfaction of the identities and quasi-identity
of (1.6) by a quasivariety K (with a (definable) constant term) is equivalent
to relative point (or 0, if the constant term is specified as 0) reqularity. Regu-
larity conditions in universal algebra always demand congruences of algebras
be determined by certain subsets of their universes; in particular, relative 0-
regularity asserts that the K-congruences of any A € K are determined by
their 0*-classes. While regularity conditions in universal algebra are well un-
derstood (see for instance [74, 89, 104, 78]}, the metalogical significance of such
conditions has been less clear. Recently the status of these conditions in alge-
braic logic has been clarified by Blok and Raftery [40}, who have shown that
a quasivariety K is a ‘quasivariety of logic’ precisely when the K-congruences
of members of K are determined by suitably defined subsets of their universes.
In logical terms, therefore, relative point regularity is a sufficient condition for
a quasivariety to be a ‘quasivariety of logic’; further, although not necessary,
the condition of relative point regularity is satisfied by most familiar classes of
algebras arising as the equivalent algebraic semantics of some algebraisable de-
ductive system. Blok and Raftery’s result has very recenily engendered some
interest in regularity conditions for algebraic logic, both syntactically (Blok
and La Falce [25]) and from the perspective of full regularity (Barbour and
Raftery [16]).

Perhaps because of the centrality of regularity conditions to algebraic logic,
classes of algebras that are not relatively point regular but which naturally
geheralise pocrims, BCK-algebras or related structures in some sense have
not been previously investigated in algebraic logic to any significant degree,
bar two exceptions. The first of these exceptions is a certain variety V of -
algebras considered by Blok and Raftery in [38, Section 4] and by Agliano
and Ursini in [10] (to within termwise definitional equivalence); members of V
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(V-algebras) naturally generalise BCK-algebras but are not in general point
regular. The role played by V-algebras in the theory of BCK-algebras has been
briefly considered by Blok and Raftery in {38, Section 4]. In particular, Blok
and Raftery have shown [38, Proposition 2, Theorem 8) that a certain 3-element
algebra B, € V, though not itself a BCK-algebra, plays an important role in
the theory of BCK-algebras. The second exception is the variety of MINI-
algebras considered by Agliano and Ursini in [11]. MINI-algebras naturally
generalise positive implicative BCK-algebras (the (=, 0)-subreducts of dual
Brouwerian semilattices, or, equivalently, hoops satisfying £ ® = ~ z) but are
not in general point regular, Results due to Agliano and Ursini show MINI-
algebras play a fundamental role in the theory of subtractive varieties with
equationally definable principal ideals: see in particular [11, Corollary 3.8].
Collectively, the work of Blok and Raftery and Agliano and Ursini suggests
that an appropriate generalisation of BCK-algebras that subsumes both Blok
and Raftery’s variety V and Agliano and Ursini’s variety of MINI-algebras (up
to termwise definitional equivalence) may be of interest in algebraic logic.

Call an algebra (4; =,0) of type (2,0) a pre-BCK-algebra iff it satisfies the
identities (1.1)~(1.4) and the identity:

T—-0=z, (1.7)

The identity (1.7) in conjunction with (1.3) ensures that the variety of pre-
BCK-algebras is subtractive in the sense of Agliano and Ursini [222, 10, 9, 11,
225] and hence that the variety of pre-BCK-algebras contains both Blok and
Raftery’s variety V and Agliano and Ursini’s variety of MINI—algebras (up to
terr-wise definitional equivalence). Since pre-BCK-algebras do not in general
satisfy the quasi-identity (1.5), binary terms d;(z, y) satisfying (1.6) need not
exist, whence the variety of pre-BCK-algebras is not G-regular. On the other
hand, by a result of Iséki {126, Theorem 2] the class of all BCK-algebras
satisfies (1.7), and so is a subquasivariety of the variety of pre-BCK-algebras.
Thus the variety of pre-BCK-algebras may be understood as a generalisation of
BCK-algebras to the non;l-elatively point regular case that subsumes both the
variety V of Blok and Raftery and {to within termwise definitional equivalence)
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the variety of MINI-algebras of Agliano and Ursini. In this thesis we offer
and explore the theory of pre-BCK-algebras as a generalisation of the theory
of BCK-algebras to the non-relatively point regular case. In particular, our
program is to investigate the elementary theory of the variety of pre-BCK-
algebras and some of its subvarieties, and to apply this theory to the study of
some varieties arising naturally in universal algebra and algebraic logic.

Remark 1.1.2. Two fundamental restrictions are imposed on the scope of
the work presented in this thesis. First, our study of pre-BCK-algebras does
not extend to a study of quasivarieties of pre-BCK-algebras (with the obvious
exception of the class of BCK-algebras), despite the fact that quasivarieties are
the natural algebraic counterparts of algebraisable logics in the sense that the
equivalent algebraic semantics of an algebraisable logic can always be taken
to be a quasivariety. The rationale behind this (admittedly artificial) restric-
tion is that the theory of subtractive varieties, which plays an important role
in our investigation of the variety of pre-BCK-algebras and its subvarieties,
does not extend well to quasivarieties: see for instance Blok and Raftery [40,
p. 181, Example 7.2] or van Alten {229, pp. 71-72]. Second, our study of pre-
BCK-algebras does not extend to a study of algebras naturally generalising
pocrims in some sense but which fail to be relatively point-regular. While the
role played by residuated ordered monoids in universal algebra and algebraic
logic is an important motivation for the work undertaken in this thesis, it is
not yet clear what form such a generalisation of these monoids should take,
or even if such a generalisation of these monoids is of any intrinsic interest:
c¢f. Higgs '[109, p. 72} and the remarks of §4.2.1. a

1.1.3. Organisation. This dissertation is organised as follows. In an at-
tempt to keep this thesis self-contained, in the remainder of this chapter we
introduce some notation and terminology and review those parts of universal
algebra and algeb'raic logic pertinent to the study of pre-BCK-algebras, includ-
ing: the theory of bands; Leech’s theory of non-commutative and skew lattices,
the theory of varieties with equationally definable principal congruen-es due to
Blok, Kohler and Pigozzi; the theory of BCK-algebras and BCK-lattices due
to Iséki, Tanaka, Idziak and others; Agliano and Ursini’s theory of ideals and
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subtractive varieties in universal algebra; and the thecry of assertional and
algebraisable logics due to Blok, Pigozzi and Raftery. Our survey is leisnrely:
we take the opportunity to present the occasional new result and example,
and generally to tidy up some loose ends. Chapter 2 is devoted to the study
proper of the theory of pre-BCK-algebras. Adopting the approach of Iséki and
Tanaka’s survey paper of BCK-algebras [126], we show the elementary theory
of pre-BCK-algebras closely parallels thai of BCK-algebras. In Chapter 3 we
apply the theory of pre-BCK-algebras to three important classes of algebras
arising naturally in algebraic logic and universal algebra, ramely: subtractive
varieties with equationally definable principal ideals; binary discriminator va-
rieties; and pointed ternary discriminator varieties. In Chapter 4 we briefly
review the work undertaken in this thesis and make some saggestions for future
work.

1.2 Notation and Term:nology

In this section we fix some of the fundamental notation used throughout
this thesis and introduce some terminology of universal algebra and algebraic
logic. For notation and terminology not explicitly introduced either here or
in the sequel we generally follow Burris and Sankappanavar [55] or Blok and
Pigozzi [36].

1.2.1. Ordered Sets. A quasiorder (also preorder in the literature) is a
reflexive transitive relation. A quasiordered set is a pair {(A; <) where 4 is a
set and < is a quasiorder. Let (A; <) be a quasiordered set. For B C A and
a € A we define:

(Bl:={beA:b=aforsomea€ B}, (a]:=({a}]
[B):={b€ A:a 2 bforsome ac B}, [a):= [{a}).

i

The set (a] is called the principai (order) ideal generated by a in (4; <), A
subset B of A is said to be hereditary in (4; <} if B = (B]. An element
m € A is minimal {mazimal] if m < a [@a X m] for any ¢ € A. Observe that
minimal and maximal elements of a quasiordered set need not be unique in
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general. A minimal element [maximal element] of a quasiordered set (4; X)
is called a least element [greatest element] if it is unique. Let B C A. An
element ¢ € A is a lower bound [upper bound] of B if ¢ < b [b X ¢] for all
b € B. An element d € A is a greatest lower bound [least upper bound] of B
if d is a lower bound [upper bound] of B and ¢ < d [d X ¢] for any lower
bound [upper bound] ¢ of B. Observe that greatest lower and least upper
bounds of B need not be unique in general. The set of greatest lower [least
upper] bounds of B is denoted glb B {lub B]. For B := {ai,...,an} the set
glb B [lub B] is alternatively denoted glb {ay, ..., an} [lub{ay,..., a.}]. Given
elements a, b of a quasiordered set {4; <) with a < b, the interval [a, b] is the
set {c€ A:a<c=b}

A partial order is a réﬂexive, symmetric and transitive relation. A partially
ordered set is a pair {4; <), where A is a set and < is a partial order. We
abbreviate the term ‘partially ordered set’ by posef. The following lemma is
folklore.

Lemma 1.2.2. [196, Theorem 185.2] Let (A; <) be a quaszordered set and
let £ be the binary relation defined by:

aZb iff a<bandb=<a

Jor any a,b € A. Then Z is an equivalence relation on A. Moreover, the
binary relation < defined on AJZ by:

{aJz<[b]z if a=d

for any [alz, [blz € A/Z with a,b € A is a partial ordering on A/Z.

Lemma 1.2.3. Let (A, =) be a quasiordered set and let = be the equivalence
relation on A induced by < in the sense of Lemma 1.2.2. The following state-
ments hold for any a, b € A:

1. If dy € A is o greatest lower bound of {a,b} and dy 2 d; for dy € A, then
d» s also a greatest lower bound of {a, b};

2. If d, dy € A are both greatest lower bounds of {a, b}, then d\ = dy.

T S U U
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Proof. For (1), let d; € A be a greatest lower bound of {a, b} and suppose
dy = d) for dy € A. Since d; < dy, d is a lower bound of {a,b}. f c€ Aisa
lower bound of {a, b}, then ¢ < d) < d; since d, is a greatest lower bound of
{a,b}. Thus d; is also a greatest lower bound of {a, b}. For (2), let d;, € A
be greatest lower bounds of {a, b}. Since d; is a lower bound of {a, b} and d;
is a greatest lower bound of {a, b} we have d; < dy; likewise we have d; =< d;.
Thus d) = dp as required. ]

Let {A; <) be a quasiordered set. The proper part of <, denoted <, is defined
as < but not =. A subset B of A is called a cligue of Z if B2 C =. Let
(4; <) be a poset. A quasiorder < on A is said to be admissible if, for all
a,b € A, a < bimplies a < b. Further details concerning quasiorderings and
partial orderings may be found in Wechler [236, pp. 31-35] and Cleave [51,
Chapter 5§5-6].

1 We fix a countably infinite set X of variables for use

1.2.4. Languages.
throughout this thesis. In an algebraic [logical] context, we usually write
z,Y,2,... [p,g,7,...] for metavariables ranging over X. In the sequel we
confine our attention to algebraic languages unless otherwise stated. Thus
a language L consists of a set £ of function symbols togetheﬂx_‘ with an ar-
ity function ar that assigns a natural number to each function symbol in L.
By abuse of notation we often identify a language £ with its set of function
symbols £, while by abuse of language we sometimes describe an (algebraic)
language as a type. Given a language £, in an algebraic context the members
of X and L are called individual variables and operation symbols respectively,
while in a logical context the members of X and £ arc respectively referred to
as propositional variables and logical connectives. The term or formula alge-
bra of type L over X, denoted Tz (X) or Fmyg, is the absolutely free algebra
of type £ over X. In an a.lgebré.ic context elements s,t,u,v,... of T¢(X)
are called L-terms, while in a logical context elements ¢, ¥, x, ... of Fm, are
called £-formulas. An L-substitution is an endomorphism of the formula alge-
bra'over L; notice that an L-substitution o may be identified with its restric-

tion to X by the universal mapping property [55, Lemma I11§10.6]. We often

'The material in this subsection is adapted from van Alten [§29, Chapter 0).
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drop the prefix £ from the phrases ‘L-substitution’, ‘L-term’ and ‘L-formula’
when £ is understood.

1.2.5. Universal Algebra. Algebrasare denoted A, B, C,... and their re-
“spective universes are denoted A, B, C,.... An algebra A is trivial if |A| =1
and non-trivial otherwise. Classes of algebraé are denoted K, V,.... Through-
out this thesis we make standard use of the algebraic class operators |, H, S, P,
P (for subdirect products) and P, (for ultraproducts). For a class K of simi-
lar algebras, we write V(K) for the variety HSP(K) generated by K [55, The- .
orem 11§9.5] and Q(K) for the quasivariety ISPP,(K) generated by K [102];
recall Q(K) = ISP(K) when K is finite. We also write Kg for the subclass of

finite algebras of K and Kg; for the subclass of subdirectly irreducible members
of K.

Let A be a set. The set of equivalence relations on A is denoted Eq(A) and the
lattice of equivalence relations on A is denoted Eq(A). The set of all partitions
of A is denoted II(A) and the lattice of all partitions of A is denoted TI(A).
For m € I(4) let 8(x) := {{a, ) € A%: {a,b} C B for some B € 7 }. By [55,
Theorem 1§4.11] TI(A) is isomorphic to Eqg(A) under the mapping 7 — 8(r)
(m € TI(A4)). Let 0 € Eq(A). We write variously a8b, a = b(mod8) and a = b
for {a, b) € 6. For cvery ¢ € A, we denote the equivalence class of ¢ modulo 8
by [als. We denote the quotient set by A/8. The identity relation on A is
denoted wy- and the universal relation A x A is denoted ¢ 4.

The se¢t «f congruences on an algebra A is denoted Con A and the lattice
of congruences on A is denoted Con A. For B C A2, the congruence on A
generated by B is denoted ©2(B). For ¢,b € A we abbreviate ©*({(a,d)})
by ©4(a,b). The identity congruence on A is denoted w, and the universal
congruence A X A'is denoted ¢4.

Let K be a class of similar algebras and let A € K. A constant term of A or K
is any nullary or constant unary term function, or, less precisely, the element
of A (or of each member of K) that constitutes the range of such a function [34,
p- 551]. A constant is a nullary fundamental operation. We say A is with 0
if 0 is a constant term of A. We say K is with 0 if O is a constant term of K.
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We say K is pointed if it is with O for some constant term 0; observe that a
pointed class may have more than one constant term.

Let A be an algebra. Elements a,b € A ai» said to be residually distinct if
they have distinct images in every non-trivial homomorphic image of A; in
symbols, ©*(a, b) = 15 [34, p. 551]. We say A is with {0, 1} if A has constant
terms 0 and 1 such that 04 and 14 are residually distinct. We say a class K

of simnilar algebras is with {0, 1} if K has constant terms 0 and 1 such that 04

and 1# are residually distinct in any non-trivial member A of K. We say K
is dcuble-pointed if it is with {0,1} for some constant terms 0 and 1; notice
that a double-pointed class may have more than two constant terms. Observe
that any variety V with 0 may be associated with a class V* with {0, 1} upon
adjoining a new nullary operation symbol 1 to the language of V and defining:

V¥ = {(A; 1): A€V and 041 141 ¢ 4 are residually distinet}

where (A; 1) is the algebra obtained from A by enriching the signature of A
with the nullary operation symbol 1 whose interpretation is a fixed element
1 € A. VT is called the generic double-pointed expansion of V. In certain cir-
cumstances VT is always guaranteed to be a variety: see Blok and Pigozzi [34,
p. 551] for details.

Let A be an algebra with 0. We say A is O-regular if [0]p = [0]¢ implies
B = ¢ for all 8,¢ € Con A. A variety V with 0 is O-regular if every A € V
is O-regular. V is said to be point regular if it is O-regular for some constant
term 0. V is strongly O-regular if V is O-regular and, for any A € V, every
compact congruence of A is principal [181, p. 483]. V is strongly point regular
if it is strongly O-tegular for some constant term 0.

Proposition 1.2.6. [17, Lemma 1.4.10]; [104, Corollary 1.7] Let V be a
variety with 0. V is O-regular iff there exist binary terms di, ..., d, of V such
that the identities:

&(z,2) = 0, | 1<i<n

|



1.2. Notation and Terminology 13

and the quasi-identity:
di(z,y)=0& ... & dp(2,y) = 0Dz =y

hold in V.

Let K be a quasivariety an! ‘st A € K. A congruence @ on A is called a
K-congruence if A/§ ¢ K. The set of all K-congruences on A is denoted
Cong A; notice Cong A = Con A if K is a variety. When ordered by inclusion .
Cong A gives rise to an algebraic lattice Conk A [38, p. 633]. We say A is K-
subdirectly irreducible if A has a minimal non-trivial K-congruence. By a result
of Mal’cev [156], every algebra B € K is isomorphic to a subdirect product of
K-subdirectly irreducible members of K (that are homomorphic images of B).
We say A is K-congruence distributive if Cong A is a distributive lattice;
K is called K-congruence distributive if every member of K is K-congruence
distributive. We say A has the K-congruence ertension property if for any
B € S(A) and any K-congruence @ of B, there is a K-congruence ¢ of A such
that ¢ N (B x B) = 8. We say K has the K-congruence eztension property if
every member of K has the K-congruence extension property. Suppose A is
with 0. A is called K-0-regular if [0]p = [0]¢ implies § = ¢ for all , ¢ € Conk A;
K is said to be K-0-regular if every member of K is K-O-regular.

Let V be a variety, let A € V and let K C V be a fixed subquasivariety
of V. A congruence # on A is called a V/K-congruence if A/6 € K. The
set of all V/K-congruences on A is denoted Cony;x A and yields an alge-
braic lattice Cony/k A under inclusion [88, Section 4.2.1, p. 80]. We say A
is V/K-congruence distributive if Conyk A is a distributive lattice; V is V/K-
congruence distributive if every member of V is V/K-congruence distributive.
We say A has the V/K-congruence eztension property if for any B € S(A)
and any V/K-congruence & of B, there is a V/K-congruence ¢ of A such that
#N{B x B) = 0; V has the V/K-congruence eztension property if every member
of V has the V/K-congruence extension property. Suppose A is with 0. A is
called V/K-0-regular if [0)p = [0]4 implies & = ¢ for all §,¢ € Conyx A; V is
said to be V/K-0-regular if every member of V is V/K-0-regular.
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Remark 1.2.7. Let K be a class of similar algebras and let A := (4; --+)
be an algebra of the same type. In some recent literature in algebraic logic
a ‘relative congruence’ is a congruence # € Con A such that A/¢ € K: see
for instance Blok and Raftery [38] or Ferreirim [88]. Although this notion of
‘relative congruence’ clearly subsumes both the notion of K-congruence and the
notion of V/K-congruence as defined above, we explicitly distinguish between
K- and V/K-congruences for the sake of clarity in the sequel. n

Theorem 1.2.8 (Principle of the Maximal V/K-Homomorphic Image).
(cf. [62, Proposition 1.7]) Let V be o variety, let A€V andlet KC V bea
fized subquasivariety of V. Then the intersection p of allV /K-congruences on A
exists and is a V/K-congruence. Thus A/p is the maximal V/K-homomorphic
image of A in the sense that A/p € K, and every other homomorphic image B
of A. such that B € K is a homomorphic image of A/p. '

Proof. Let V, A and K be as in the statement of the theorem. Since the V/K-
congruences of A are closed under arbitrary intersection the intersection p of
all V/K-congruences of A exists and is itself a V/K-congruence. Let B be any
homomorphic image of A such that B € K. By the homomorphism theorem
[55, Theorem 11§6.12], B =2 A /# for some § € Con A. By hypothesis, A /8 € K.
Thus ¢ is a V/K-congruence, and so p C @ by definition of p. But then A/p
is a homomorphic image of A/ (by [55, Theorem I1§6.8; Exercise 11§6.6]), so
A /p is a homomorphic image of B. u

Let V be a variety, let A € V and let K C V be a fixed subquasivariety
of V. Remark 1.2.7 notwithstanding, we invariably describe the maximal V/K-
homomorphic image of A as the maximal K-homomorphic image of A, in
keeping with the spirit of the existing !iterature: see for instance Clifford and
Preston [62, p. 18].

1.2.9. Algebraic Logic.? Let £ be a language. A pair (I, ¢), where I"
is a finite set of L-formulas and ¢ is an L-formula, is called an (inference)
rule (over L). An aziom is an inference rule of the form (@, ); we invariably
identify an axiom (@, @) with the L-formula ¢. Let Az U Ir be a set of axioms

2The material in this subsection is adapted from van Alten [229, Chapter 0).
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and inference rules over £ and let AU{¥} C Fm,. A derivation of ¥ from A
(with respect to AzUIT) is a non-empty finite sequence ¢, . . ., @, of L-formulas
such that ¢, = ¢ and for 7 = 1,...,n, one of the following conditions holds:
(i) p:i € 4; (ii) p; is a substitution instance of an axiom; or (iii) there exists an
inference rule (I, x) of Az U Ir and a substitution ¢ such that p; = o(x) and
o{v) € {p1,...,pi-1} foreach v € I'. A deductive or Hilbert system S (over L)
is a pair (£,b¢) where the binary relation Fg: P(Fmz) — Fmg is defined by
I' g @ iff ¢ is derivable from I with respect to Az U Ir. The relation g
is called the consequence relation of S, and a deductive system is sometimes
identified with its consequence relation. Typical examples of deductive systems
include CPPC, the classical propositional calculus, and IPC, the intuitionistic
propositional calculus.

Let S be a deductive system over a language £ determined by a set Az U Ir
of axioms and inference rules. The set Az U Ir is called an ariomatisation
of S and the axioms and inference rules in Az U Ir are called the azioms and
inference rules of S, respectively. Clearly a Hilbert system may have more
than one axiomatisation. A Hilbert system for which there exists a finite
axiomatisation is said to be finitely axiomatisable. For an inference rule (I, )
of §, we usually write I" kg ¢; we also write g ¢ for @ ¢ . An L-formula ¢
for which F¢ ¢ is called a theorem of S. We adopt the following conventions
concerning sets of L-formulas I', A and L-formulas ¢, ..., ¢n, ¥:

PLye e Pn g ¢ abbreviates {p1,...,¢n} g ¥;
I'pkg1 abbreviates I'U{p} ¢ 9;
I'tg A abbreviates I'kg o forall p € 4;
I'4s A abbreviates I't~g A and A kg T.

For sets of L-formulas IN,...,I%, A and L-formulas ¢i,...,0,, 1, we also
write:

Fl’_s‘xf’l Fn"'sﬁon

Abg
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as shorthand notation for ‘I g 1 and ... and [}, Fg @, implies A kg 1’; by
abuse of language we call such a metalogical implication a rule of S.

Let S be a deductive system over a language £. For any p,¢ € Fm. and
I, A C Fmg, the consequence relation I-g is easily seen to satisfy the following
three conditions:

1. ¢ € I implies I" l-g ¢;

2. I'tgpand I' C A implies 4 ¢ ¢;

3. I'kg o and A g9 for each ¢ € I' implies 4 ¢ ¢.
Moreover, g is finitary in the sense that:

4, I' ¢ o implies A g ¢ for some finite A C I';
and b is also structural in the sense that:

5. I =g ¢ implies o[I'] g o (i) for every substitution o € Z.

Conversely, the Lo$-Suszko theorem {153] (see also {238, Chapter 382]) asserts
that every relation between sets of £-formulas and £-formulas satisfying con-
ditions (1)-(5) above is the consequence velation ‘of some Hilbert system S
over £. Without loss of generality, therefore, a deductive system (L,Fg) may
be defined as a relation -g: P(Fm;) — Fm, satisfying (1)~(5) above; defining
axioms and inference rules need not be assumed. The above remarks notwith-
standing, for binary £-formulas A, V, =, A, a unary L-formula — and an n-ary
logical connective @ of £, we identify and earmark the following rules for use
in the sequel [238, Section 2.3.1}:

(AD) PaFgpAg (Adjunction)
Aghk
(SP) PRATs p} (Simplification)
PAgkgq

o p V
(AT) Pls? q} (Addition)
| pkgavy
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Nipkgx g x

(SM) Nevyrgx (Summation)
(MP) P,pqtgq (Modus Ponens)
Pa 30 I—S 1!) .
(DT) T'Fgp—9 (Deduction Rule)
(CN) p,oplgq (Contradirtion)
Lipkg—o
(RAY) gy (Weak Reductio ad Absurdum)
(R) Fg @A (Reflexivity)
(S) AP kg YAy (Symmetry)
(T) PAY, PAx Fg pAX (Transitivity)
(A-MP) @, AP b ¢ . (A-Detachment)
(CP-w) LA, .y PalNYn Fg (D1« Pu) AT (1, - -, )

(w-Compatibility)

A binary L-formula A [V; —] is a congunction [disjunction; conditional] for § if
the entailments (AD) and (SP) [(AT) and (SM); (MP) and (DT)] are satisfied
by S. A binary L-formula A is called a G-ideniity for S if the the entailments
(R), (8), (T), (A-MP) and (CP-w) (for every n-ary logical connective w € £)
are satisfied by §. A unary L-formula - is a weak negation for S if the
entailments (CN) and (RA) are satisfied by S. Given a conjunction A and a
conditional — for S, a biconditional for S is the derived connective:

peqg=(p>9A(g=p).

Let S be a deductive system over a language £. An eztension of S is any
system 8':= (L, }-g,) over the same language such that I' -5 ¢ implies I" For @




1.3. Bands, Monoids and Semilattices 18

for all I' U {} C Fm,. §'is said to be aziomatic if it obtained by adjoining
new axioms to S only (that is, if the inference rules of S are left fixed). For
a sublanguage L' C L, let g, denote the restriction of - to L' in the sense
that I'bg, ¢ iff I' g ¢ and I"' U {¢} € Fm,:. The resulting deductive system
8’ == (L', bg) is called the £'-fragment of S.

1.3 Bands, Monoids and Semilattices

Various classes of bands, monoids and semilattices play an important role in
this thesis. Here we briefly review and summarise some of the theory of these
classes that - -ill be needed in the sequel.

1.3.1. Semigroups. A groupoid is an algebra (4; -) of type (2). A groupoid
whose operation is associative is a semigroup. The binary operation - of a
semigroup (A; -} is called multiplication; given a, b € A, the multiplication
a - b is (informally) written ab if the context is clear. Given a semigroup (A4; -)
and ay,..., a, € A, the product g a; - - @, is defined inductively by:

ay itn=1

aias - Qy .
(a1a2+++ Gn_1)@n oOtherwise.

An easy proof by induction {103, Proposition 1§2.1] shows this definition of
product has an unambiguous meaning.

Example 1.3.2. [87, Section 2] On any non-empty set A two semigroups can

always be constructed, viz.:

1. The left zero semigroup A on A, with multiplication a -4¢ b := a for
any a,b € A; and |

2. The right zero semigroup A g cn A, with multiplication a -A® b := b for
any a,b € A.

A semigroup with zero (A; -} is a semigroup with an element 0 such that
@} = 0 = Oq for all a € 4; the element 0 is called the zero of (4; ). A
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semigroup with identity is defined dually. By abuse of language and notation
we will often confuse a semigroup with zero A with the algebra (4; -,0)
obtained from A by enriching the type of A with a new nullary operation
symbol 0 whose canonical interpretation on (4; -,0) is 0 € A, where 0 is
the zero of A. Like remarks apply concerning semigroups with identity. It is
always possible to adjoin a zero to a semigroup {(4; ). Let 0 ¢ A and define:

a-b ife,beA

0 otherwise.

ally.=

The resulting algebra (4 U {0}; ,0) is a semigroup with zero and is called a
semigroup with a zero adjoined.

1.3.3. Polrims and Pocrims. A monoid is a semigroup with identity. Let
(A; ®,0) be a monoid whose identity element 0 is the least element of a partial
order < on A, compatible with the binary operation @ in the sense that ¢ < b
impliesboth a® c<b®cand cDea < cP b forany a,b,c € A. If for every
a,b € A there is a least element ¢ (denoted a = b and called the (left) residual
of a and b) of A such that @ < c¢® b, then the algebra A := (4; @, ~,0) is a
partially ordered left residuated integral monoid (briefly, polrim) [38, pp. 81—
82], [229, p. 16]. Polrims arise naturally in algebraic logic and have been con-
sidered by Raftery and van Alten [192] and van Alten [229] among others. A
partially ordered commutative residuated integral monoid, or pocrim for short,
is a polrim {4; &, =, 0) whose monoid operation is commutative [229, Exam-
ple 1.5]. Pocrims also arise naturally in algebraic logic and have been studied

by several authors, including Blok and Raftery [39], Fleischer [90], Higgs [109]

and Iséki [123]. See also Bosbach [45], Ono and Komori [176], Raftery and van
Alten [192] and 'van Alten [2:9!.

1.3.4. Dually Relatively Pseudocomplemented Semilattices. A join
or upper semilattice is a poset {4; <) for which lub{a, b} exists for all a,5 € A.
Let {4; Vv,0) be an arbitrary join semilattice with least element and let
e, b € A. Recall that the dual relative pseudocomplement a % b of b with
respect to a is (if it exists) the unique element of A satisfying a < & V ¢




1.3. Bands, Monoids and Semilattices 20

iff axb < ¢ forall ¢c € A [38, Example II). If a x b exists for all ¢,d € A,
then (4; V,0) is said to be dually relatively pseudocomplemented. In the case
where the operation of dual relative pseudocomplementation is distinguished,
the resulting algebra (A4; V, *,0) is called a dual Brouwerian semilattice [129,
Definition I1I§4.1]. Dually relatively pseudocomplemented semilattices were
introduced (in dually isomorphic form) by Birkhoff in [23, pp. 147-149], while
dual Brouwerian semilattices have been studied by Kohler in [135] and by
Nemitz [175] in dually isomorphic form under the name implicative semilat-
tices. A result of Blok and Pigozzi shows that the class of dual Brouwerian
semilattices is precisely the class of all pocrims for which the monoid oper-
ation is idempotent [34, Corollary 1.23] (see also Cornish {67} and Blok and
Raftery [39, p. 294]). It is folklore that the lattice of varieties of dual Brouw-
erian semilattices has a unique atom {39, p. 295], namely the class of all :‘ual

Brouwerian semilattices A such that A = z % (y * ) &~ «: in this case the
semilattice ordering on A is a lattice ordering and ¢ * b is the complement of &
in the interval [0, a V b} for any a,b € A. Thus the unique atom in the lattice
of varieties of dual Brouwerian semilattices is termwise definitionally equiva-
lent to the variety GBA of generalised Boolean algebras, namely the class of
all relatively complemented distributive lattices with zero in which the oper-
ations of zero and relative complementation are distinguished. For notational
purposes, from this point forth we will always denote the operation of relative
complementation in a generalised Boolean algebra by a/b.

An algebra (4; A,V,0) of type (2,2, 0) is called a dually relatively pseudocom-
plemented lattice if: (i) the reduct (A; A, V) is a lattice; and (ii) the reduct
(4; V,0) is dually relatively pseudocomplemented. A dual Brouwerian lattice
is an algebra (4; A,V,x,0) of type (2,2,2,0) such that the reduct (4; A,V,0)
is a latticer with zero and the reduct (4; V,*,0) is a dual Brouwerian semi-
lattice. Such a lattice is always distributive: see Curry [75, Theorem 4§C.5].
Dual Brouwerian lattices have been studied extensively in the literature: see
for instance McKinsey and Tarski [161, 162] where they are studied in dually
isomorphic form under the name Brouwerian lattices.

1.3.5. Pseudocomplemented Semilattices. A meet or lower semilattice
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is a poset (4; <) for which gib{a, b} exists for all a,5 € A. Let (4; A,0) be a
meet semilattice with zero. An element a* € A is called a pzeudocoinplement
of a € Aifa A a*=0,and ¢ A b = 0 implics b < ¢* [101, p. 58). An
element can have at most one pseudocomplement. An algebra (4; A,*,0) of
type (2, 1,0) is called a pseudocomplemented semilaitice if the reduct (4; A, Q)
is a meet semilattice with zero and for any a € A4, the pseudocomplement
of a exists and is a*; observe this definition implies any pseudocomplemented
semilattice has a greatest element 1 := 0* with respect to the underlying semi-
lattice order. Pseudocomplemented semilattices have been studied by several
authors, including Frink [96], Jones [128] and Ribenboim {200], to whom the
following theorem is due.

Theorem 1.3.6. [200] An algebra (4; A,*,0) of type (2,1, 0) is a psendocom-
plemented semilattice iff the reduct {A; A,0) is a meet semilatiice with zero
and the following identities are satisfied:

Az =0 (1.8)
zA(zAy) ' =zAy (1.9)
TA0 R - (1.10)
0** ~ 0. (1.11)

Thus the class PCSL of pseudocomplemented semilatlices is ¢ variety.

Let B := (B; A,V,',G,1; ¢ a non-trivial Boolean algebra with least element 0
and unit element 1. Let B := B U {m} where a < m for all ¢ € 5. Then
(B; <) is a meet semilattice with zero. Moreover, B is pseudocor:plemented:
for any b € B,

m ifb=0
b= ifoeB, b#0
0 ifh=m.

We dencte thie resulting pseudocomplemented semilattice by B.

Theorem 1.3.7. [128, Theorem 1.3 A ron-trivial pseudocomplemented semi-

P

.

S T P
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lattice is subdirectly irreducible iff it is isomorphic to B for some Boolean al-

gebra B.

Theorem 1.3.8. [128, Theorem 11.1] The class of pseudocomplemented semi-
lattices 1s generated {as a variety) by the 3-element choin 3 (considered as a
pseudocomplemented semilattice).

Corollary 1.3.9. [128, Theorem 11.1] The lattice of varieties of pseudocom-
plemented semilattices is a 3-element chain. The only non-trivial subvariety of
the variety of pseudocomplemented semilattices is the class {A € PCSL: A |=
z** = z}, and this class is termwise definitionally equivalent to the variety of
Boolean algebras. '

Let A be a pseudocomplemented semilattice. The skeleton S(A) of A is the
set {a*: a € A} and the dense set D(A) of A is t'ie set {a € A : a* = 0}. The
following properties of S(A) and D(A) are essentially well known (14, p. 153,
(101, p. 59): (i) {0,1} C S(A); (i) 1 € D(A); (iii) ¢ € S(A) iff ¢ = o™ for any
a € A; and (iv) a, b € S(A) implies a A b € S{A).

Theorem 1.3.10 (Glivenko-Frink Theorem). [151, Theorem 186.4] Let A
be a pseudocomplemented semilattice with skeleton S(A). Then the underlying
partial ordering of A partially orders S(A) and makes S(A) into a Boolean
lattice. For a,b € S(A) we have a A b € S(A), and the join in S(A) is
described by:

aVb=(a* AbY).

An algebra (4; A,V,*,0) of type (2,2,1,0) is called a distributive lattice with
pseudocomplementation if: (i) the reduct (A; A,V) is a distributive lattice;
and (ii) the reduct {4; A,*,0) is a pseudocomplemented semilattice. Clearly
the class DLPC of all distributive lattices with pseudocomplementation is a va-
riety. Distributive lattices with pseudocomplementation have been exiensively
studied by many authors; standard references include Gritzer [101, Chapter 3]
and Balbes and Dwinger {14, Chapter VIII].

1.3.11. Bands. An element e of a semigroup (A4; ) is an idempoteni if

e? = ¢, (A; ) is an idempotent semigroup, or a band, if all its elements are
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idempotent. The study of bands dates back to the 1950s and the papers of
Kimura {133, 134], McLean {163], and Yamada and Kimura [244]. A detailed
development of the theory of bands may be found in Petrich {180, Chapter II];
see alsc Howie {111, Sections 4.4-4.6].

Example 1.3.12, {¢f [111, Theorem 1.1.3]} A semigroup {A; -) satisfying
abe = o for any e,b € A is called a rectangular band. Rectangular bands are
precisely the bands satisfying the identity z - y - 2 = 2 - 2. Any such semigroup
is isomorphic to a semigroup of the form (B x C; -), where B and C are
non-empty sets and multiplication on B x ¢ is defined as:

(bl, Cl)(bg, Cg) = (bl, 02)

for any by, bo € B and ¢;, ¢2 € C. The name ‘rectangular’ stems from this last
property: if (b, ¢;) and (bg, ¢p) are construed as vertices of a rectangle in the
Cartesian plane, the products (b, ¢1){4. c2) = (b1, c2) and (by, e2){b1, c1) =
(by, c1) comprise the remaining two vertices of the rectangle. o

Let (A; *) be a band. The Green’s quasiorders on (A; -) are the relations =<,
=<r and =p defined respectively by [208, Section 0]:

a3 biffab=a, a2gbifba=4a, a=<pbiffaba=a

for any a,b € A; these reiations are all proper quasiorderings. Each of the
relations <z and = is contained in <p, and =<p is called the naturel qua-
siordering [208, Proposition 1]. In the sequel we write simply =< for <p if there
is no danger of confusion. The relation <4 defined on {4; -} by:

e<ybd ff a=<; and g b iff ab=a=ba

for any a,b € A'is the natural partiai order [103, Proposition I1§1.1}; it is
properly a partial ordering and is denoted by < heveafter if the context is
clear. The following lemma is folklore.

Lemma 1.3.13. For a band A := (4; ) and o fized o € A the following
assertions hold:

D L R R SF I LR A A
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1 {a)={c:c<a} =ada (for ada:= {ada:d € A}),
2. (a] is a subuniverse of A;
8. The principal subalgebra (a] := {(a); -Alial) generated by a is ¢ monoid.

Proof. For (1), let b € ada. Then b = ada for some d € A, whence a(ada) =
ada = (ada)a. Thus ade < @, and b = ada € {c : ¢ < a}. Conversely, let
be{c:c<a}. Then b < a, whence b = bb = abba = aba € ada. Thus
ada = {c: ¢ < a}. Items (2) and (3) now foliow trivially. B

The Green’s relations £,R and D on a band (4; -) are the symmetric parts
of the Green’s quasiorders, namely [208, Section 0]:

L= {(a,b):a 2 band b=, a},
R:={(a,8): a =g b and b g a},
D= {(a,b): ¢ < band b X a}.

Each of £, R and D is an equivalence relation. Note that since < is a partial
ordering, no non-trivial equivalence is induced by < on a band.

Theorem 1.3.14 (Clifford-McLean Theorem). [111, Theorem 4.4.1] EBach
D-class of a band A is a mazimal rectangular subalgebra of A. Moreover, the
equivalence D is a congruence on A which induces the mazimal semilattice
homomorpkic image A/D of A.

1.3.15. . Left [Right] Normal Bands. A band is called regular if it sat-
isfies the identity z - y-2-2.2 ~ z-y-2z-z. For a band A, the following
are equivalent [180, Proposition 11.3.6], [133, Theorem 4, Corollary 4]: (i) A is
regular; (ii) the relations £ and R are congruences on A; (iii) A decomposes
uniquely to within isomorphism as the fibre product A/L xa/p A/R. A band
is normal if the identity z -y .22z = z-2 -y -z holds, and a normal band is
regular [244, Lemma 1]. The following lemma, is folklore.

Lemma 1.3.16. For any band A and a, b, ¢, € A, the following are equivalent:

1. A is normal;
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2. For any a € A, the principal subalgebra (a) generated by a is a semilat-
tice;

3. If a < b then ac < bc and ca £ cb.

Proof. (1) = (2) Let ¢ € A and let b,¢ € (a]. Since the principal sub-
algebra (a] is a monoid with identity ¢ (by Lemma 1.3.13(3)), we deduce
bc = abca = acba = cb by normality.

(2) = (3) Let a < b and let ¢ € A. Since bab < b and beb £ b we deduce
beac = be(bab)e = (bed)(bab)e = (bab)(beb)e = a(beb)e = (ab)cbe = ache
by (2). But acbc = (ab)cbe = a(be)bc = a(bc) = (ab)c = ac and so ac < be.
The inclusion ca < c¢b is handled similarly.

(3) = (1) Assume(3) holds and notice this is equivalent to the implication:
a<c¢c and b<d implies ab<cd (1.12)

for any a,b,c,d € A. Let a,b,c € A. From (1.12), acba < a and abea < abca
we have acba = acba(abca)acba < a(abca)a = abca, just because acbaDabea.
Similarly, abca < acba so acba = abea follows. . ]

A band with zero A is locally Boolean if for every a € A the principal subalge-
bra (a] is a Boolean lattice with respect to the natural partial ordering; notice
this implies A is normal by Lemma 1.3.16. The following useful technical
result is due-to the author und the author’s Ph.D. supervisor.

Lemma 1.3.17. Let A be a locally Boolean band. Then A /D is the mazimal
semilattice with zero homomorphic tmage of A. Moreover, every principal
order ideal of A/D is a Boolean sublattice of A /D under the semilaitice partial
ordering, so A/D is locally Boolean.

Proof. By the Clifford-McLean theorem, A /D is the maximal semilattice with
zero homomorphic image of A. Denote by v the canonical epimorphism map-
ping A onto A/D. If B is a subsemilattice of A then it is immediate from
the definition of D that the restriction of v to B is one-to-one and is thus an
isomorphism from B onto ¢[B], the image of B under v.
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Let now I be a principal order ideal of A/D. Then I is generated by some ele-
ment [blp € A/D where b is some element of A. For any such element b let (]
be the principal subalgebra of A that it generates. Since (8] is a subsemilattice
of A, (3] is isomorphic to »[(b]], and hence v[(d]] is a Boolean lattice. But
[clo € v[(b] iff [c]p € (v(b)],/p iff [c]o <A/P [b]p, s0 ¥[(B]] = I, which
completes the proof. |

A band is left regular [right regular] if the identity z-y-z = z.y [z -y T = y-z] is
satisfied. For a band A, the following are equivalent [180, Proposition I1.3.12]:
(i) A is left regular [right regular]; (ii) £ =D [R = D]. Trivially a left regular
[right regular] band is regular. A band is left normal [right normal] if the
identity z -y 2= z-2-y [z -y-2 = y-z-2]is satisfied. Clearly a left
normal [right normal] band is both normal and left regular {right regular] [244,
Lemma 1). The variety InB of left normal bands has been studied by several
authors in the literature, including Vagner {227] and Schein {203], to whom the
following theorem is due.

Theorem 1.3.18. [203] Up to isomorphism, the only subdirectly irreducible
left normal bands are 2, 2p and 3, where 2 is the one element semilattice
with a zero adjoined, 2y, is the left normal band on {a, b} and 3, is the band
21 with a zero adjoined. In symbols, InBg; = {2,-2 L, 3.}

In the statement of the following corollary and in the sequel InBg denotes the
variety of left normal bands with zero.

Corollary 1.3.19. Up to isomorphism, the only subdirectly irreducible left
normal bands with zero are 2 and 3;. In symbols, InBpg; = {2, 31}

Proof. Let (4; -,0) be a subdirectly irreducible left normal band with zero.
Its band reduct {A4; -} must also be subdirectly irreducible, since (4; -,0) and
(A; ) have the same congruences. Hence {A; -) must be either 2 or 3. u

Example 1.3.20. Let L, := (L; -,0) be an algebra of cardinality n + 1
equipped with a distinguished element 0 and a binary operation - defined by:

10 ifb=0

ab =
a otherwise
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for any a,b € L. Then L, is a left normal band with zero whose only D-
equivalence classes are {0} and L — {0}. For every 0 # a € L, therefore,
(4] is a two element Boolean lattice. Hence L, is locally Boolean and (by
Lemma 1.3.17) L, /D is isomorphic to 2, the one element semilattice with a
zero adjoined. .

1.4 Skew Boolean Algebras and Discriminator
Varieties

Discriminator varieties have been called ‘the most successful generalisation of
Boolean algebras to date, sucressful because we obtain Boolean product rep-
resentations’ [55, Chapter 1V§9, p. 186]. Skew Boolean N-algebras are a class
of structurally enriched non-commutative lattices that enjoy deep connections
with (pointed) discriminator varieties. We briefly review some of these con-
nections in this section.

1.4.1. Non-commutative Lattices. Recall from [145] that a double bond
is an algebra (A4; A, V) of type (2,2) such *hat the reducts (4; A) and (4; V)
are bands; given the associativity of the operations A and V we cmit paren-
theses in the sequel where no ambiguity can arise. In view of the remarks
of §1.3.11, on any double band (A; A, V) there arise eight Green’s quasiorder-
ings: the four quasiorderings -_<$;A‘ A), _-5;‘; ‘A), 55;"‘ A and sgf N on (4; A)
and the four quasiorderings jch‘ V) jff.f M3 55;‘ 'V and gf,f iV on (4; v). A
non-commautative lattice is a double band (4; A, V) for which at least one of
the quasiorders induced by the operation V is dual to one of the quasiorders
induced by the operation A in the sense that a j(g‘f; N b i b ;if;‘:”’) a for
G1,G2 € {£,R, D, H}; this definition is implicit in Leech [145, Section 1].

Remark 1.4.2. Traditionally, a non-commutative lattice has been understood
as an algebra (4; A,V) of type (2,2) whose idempotent and associative oper-
ations A and V satisfy certain absorption identities. Non-commutative lattices
in this sense have a long history and have been studied by many authors; see
the survey paper of Leech [150, Section 0] for details. Our motivation for de-
parting from this tradition stems from Jattice theory: if (4; A, V) is a lattice,
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-

then each of the operations induces a partial ordering on A that dualises the
other [145, Section 1}. For a further discussion and justification of the study _
of non-commutative lattices in the sense of this thesis, see {150, Section 0] {
and [145, Section 1. ‘ .

In this thesis we shall be exclusively concerned with three particular classes
of non-commutative lattices: quasilattices, paralattices and (above all) skew
lattices. .

1.4.3. Quasilattices. A quasiloitice is a double band (4; A,V) such that
the quasiorder 55;‘ ") and the quasiorder 5,‘;‘ ‘¥) dualise in the sense that
a 5§;“; N b b qu V) g for any a,b € A [145, Section 1]. In view of this
duality we work solely with the quasiorder 53‘ A in the sequel; to simplify
notation we write simply ¢ < b for a 5&;“‘ N b for any a,b € A when no
confusion can exist. The relation < is called the natural quasilattice quasiorder
(¢f. [149, Section 3.8]). Leech has shown that the class of quasilattices is a
variety [145, Section 1], axiomatised relative to the variety of double bands
by the identitiess z A{y Ve Vy)AzxzandyV(ZAyAzT)Vy=Uy
Leech has also shown that quasilattices satisfy a modified form of the Cliiford-
McLean theorem: every quasilattice is a lattice of its maximal rectangular
subalgebras {145, Corollary 3]. Further information about quasilattices may

be found in Leech [145, Sections 1, 2, 3, 4 and 6].

1.4.4, Paralattices. A double band (A; A,V) for which the partial or-
ders <} and <! dualise in the sense that ¢ <$5™ b iff b <45V o for
any a,b € A is called a paralattice [145, Section 1]. In view of this duality we
work solely with the partial order ggf; ") in the sequel, simply writing a < 0.
for a S—(;f ' b when no confusion can arise. The relatic a < is called the natural
paralattice partial order; see [146, Section 1.1]. Leech has observed that the
ciass of paralattices is a variety {145, Section 1], axiomatised relative to the va-
riety of double bands by the identities s A{(z VyVa)xzx={zVyVI)Az
andzV{(zAyAz)=z~(zAyAz)V s Afurther study of paralattices
may be found in [145, Sections 1, 5 and 6].

- 1.4.5. Skew Lattices. A skew lattice {A; A, V) is a double band such that
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<N dualises <S8V and <N dualises <Y in the sense that o <" p
iff b <Y g and @ <5 b iff b <V o for any a,b € A [145, Section 1].
For any skew lattice these absorption dualities are equivalent to the following
absorption identities [146, Section 1.1]:

tAN(zVYy) =z ' (1.13)
cV(EAYy) =z (1.14)
(yVe)Az=zg (1.15)
(yAz)Ve=z, (1.16)

It foliows that the class of skew lattices is a variety [146, Theorem 1.2]. From
the obvious equational axiomatisation for the variety of skew lattices it is clear
that any skew latiice A := (4; A, V) is self-dual in the sense that it is closed
under three disfinct dualisations, viz.:

1. The horizontal dual: A* :=: {4; Ah,vh), where a A" b := b A a and
aV*b:=bVa, for any a,b € A:

2. The vertica! dual: A := (A; A",V"), where a A" b := a V b and
aV'b:=aAbd forany a,be A;

3. The double dual: A% .= A®,

For convenience, when we refer in the sequel to skew lattice duality, we will
mean any of the three distinct dualisations cited above.

Example 1.4.8. [14€, Section 1.1] Lattices provide an immediate example of
a class of skew lattices, since every lattice is clearly a skew lattice satisfying
the additional identities s Vy~yVzandz Ay~ y A z. n

Example 1.4.7. ([146, Section 1.4]; ¢f. [87, Section 2]) A class ¢f skew
lattices distinet from lattices is the class of rectangular skew lattices. Let L
and R be non-empty sets and let D := L X R be their Cartesian product.
Define the operations A and V for any a,b € L and o/, € R as follows:

(a, b) A (@, b := (a, b')
(a,b) V (@', 1"} := (a, b)

T A
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A sequence of easy checks confirms that the algebra (D; A, V) is a skew lattice.
. _

Lemma 1.4.8. (c¢f [145, Section 1]) Any skew lattice (A; A, V) is a par-
alattice. That is, the partial orders S,(,f N and gf,f; VY dualise in the sense that
a _<_.(,f;'\> biff b ngw) a for any a,b € A.

Proof. Let A be a skew lattice and a,b € A. Suppose a gf;f"‘) b. Then
bVva=5bV(hAa =bby (1.14). Moreover, a Vb ={a Ab) Vb=
b by (1.16). Thus b <(5“! a. Similarly b <Y o implies ¢ <"V b
using (1.13) and (1.15). .

Lemma 1.4.9. (cf. [145, Section 2/) Any skew lattice {A; A,V) is a quasi-

lattice. That is, the quasiorders 55;‘“"’ and 5%4 "V} dualise in the sense that
a 5&;4"" biffb 5%4; V) o for any a,b € A.

Proof. Let A be a skew lattice and a,b € A. Suppose a <55™ b. Observe
this implies:

baa=(aA(bAa))V(bAa) by (1.16)
=aV(bAa) o asax®MNy (117)

and hence that:

bVa—(bVa)/\(bVa)V (b A a)) by (1.13)

=(bVa) A (bv(aV(bAa))

=(bVa)A(bV(bAa)) by (1.17)
={(bVa)Ab by (1.14). (1.18)

Therefore we conclude: |,

bvavb=(bVva)Vbd
=((bva)ab) Vb by (1.18)
=b | by (1.16)
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and so b 53‘ V) g Similarly b ;5554 V) g implies a qu‘ N by skew lattice
duality. ]

The Green’s relations £, R and D on a skew lattice (4; A, V) are the symmetric
parts of the Green’s quasiorders, namely:

L= LAN = R4V .= {(a,b): a %, band b=, a}
R = RUWAN = £V} = {(a, b): a g band b <z a}
D:=DWN =DMV .= {(a,b): a < band b < a}

for any a,b € A, where LA RUAIA) and DA [LAVY RIAIV) and DIAIVY
denote the various Green’s relations on the reduct (4; A) [{4; V)] [150, Sec-
tion 1.3]. In the sequel the Green’s relation D on a skew lattice is called
equivalence [146, Section 1.6).

Theorem 1.4.10 {Clifford-McLean Theorem for Skew Lattices). (146,
Theorem 1.7] Let A be a skew lattice. Then equivalence as defined above is
a congruence relation. The D-equivalence classes are the mazimal rectangular
subalgebras of A, while the quotient algebra A /D is the mazimal lattice homo-
morphic image of A. For all a,b € A, the following conditions are equivalent:

1. aDb;
2. eAbAa=aandbAanb=);

3 anb=bVa.

A skew lattice (A; A, V) is said to be left handed if the reduct (A4; A) is left
regular; right handed skew lattices are defined dually.

Theorem 1.4.11 (Second Decomposition Theorem for Skew Lattices).
{146, Theorem 1.15] Let A be a skew lattice. Then A is regular. That is, A
satisfies the identities:

EAYANTAZATRIANYANZAR
tVyvVezVzezVvVezrzVyVvVzVve,

B - -
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Thus £ is a congruence on A, and Ag := A/L is the maximal right handed
image of A. Dually, R is a congruence and Ay := A/R is the mazimal left
handed image of A. Finally, the following commuting diagram forms a pullback
of skew latlices:

A L5 Ap

7| |=

Ay — A/D

Skew lattices were introduced by Leech in a 1989 study {146] of bands of
idempotents in rings. Let A := (A; +,:) be a ring. For any a,b € A, define
the derived operations AandVby a Ab:=a-banda V b := a+b—(a-b). Let
E(A) denote the set of idempotents of A. If B C E(A) is closed under both A
and V as defined above, then (B; A,V) is a skew lattice [146, Theorem 2.6}.
Even more is true: every multiplicative band in E{A) that is maximal with
respect to being right regular is a skew lattice {146, Theorem 3.2). Since their
introduction skew lattices have been studied by a number of authors, including
Bignall and Leech [19], Leech [146, 147, 148, 150, 145}, and Spinks {210, 212].

1.4.12. Skew Lattices with Zero. Let A be a skew lattice. A mazimal
element of A is an element m such that a A m A a = a, or, equivalently,
a X m for all a € A. When they exist maximal elements form an equivalence
class under D called the mazimal class [147, Section 1.4]. Minimal elements
of A and the minimal class are defined dually. A skew latiice with zero is a
skew lattice (A; A,V) for which there exists 0 € A (the zero of {(4; A,V))
such that 0 is the least element under the natural skew lattice partial order;
a skew lattice with identity is defined dually. For any skew lattice A the
following are equivalent: (i) A is a skew lattice with zero; (ii) for all @ € 4,
eA0=0=0AA4; (iii) foralla€ A, a VO =a =0V a; (iv) A has a unique
minimal element. By abuse of language and notation we will often identify a
skew lattice with zero A := {A; A, V) with the algebra (4; A,V,0) obtained
from A by onriching the language of A with a new nullary operation symbol 0
whose canonical interpretation on (4; A, V,0) is 0 € 4, where 0 is the zero of
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A; like remarks apply for skew lattices with identity. The following lemma is
immediate.

Lemma 1.4.13. Let {4; A,0) [(4; A,V,0)] be a band with zero [skew lattice
with zero]. Then 0 <X a for all a € A, and a DO iff a = 0. Thus for any
elements a,b,c€ A, ffaAnc=0thenaAbAc=0.

1.4.14. Left Handed {Right Handed] Skew Lattices. Let A be a skew
lattice and a,b € A. By [146, Section 1.13], [150, Section 1.5} and [210,
Section 3.3] the following are equivalent: (i) A is left handed; (ii) D = £; (iii)
AEzAyAzxzAyand ARz VyVexyVag (iv) if aDb then
aAb=aandaVb=b (V) AlzA(yVz)=zandAE(zAy)VI=z.
Clearly left handed [right handed] skew lattices form a variety. To within
isomorphism every skew lattice uniquelv decomposes as the fibred product of
a right handed skew lattice with a left handed skew lattice over a common
underlying maximal lattice homomorphic image [146, Corollary 1.16}: this
is an immediate consequence of Theorem 1.4.11. See also [150, Section 1.5,
Theorem 1.6).

1.4.15. Symmetric Skew Lattices. A skew lattice A is called meet sym-
metricif ¢« V b=>bV aimpliecsa A b = b A o for any a¢,b € A. For a
skew lattice A, the following are equivalent [210, Section 3.5]: (i} A is meet
symmetric; (i) AFzAyA(zVyVr)=(zVyVzr)AyA g (i)
AEzsAyn(zVy =@V AyAz). A skew lattice A is called
join symmetricif a A b= b A aimpliessa vV b = b V a for any a,b € A.
For a skew lattice A," the following are equivalent [210, Section 3.5): (i) A is
join symmetric; () Az VyV{EAyAZ)R (AyAZ)V YV
(iii) A F2zVyV(Ay ~(yAz)VyV sz Meetsymmetry for an
arbitrary skew lattice does not imply join symmetry, nor conversely; see [210,
Section 3.5] for details. A skew lattice is symmetric if it is both meet symmet-
ric and join symmetric. For a skew lattice A the following are equivalent [148,
Proposition 2.3, Theorem 2.4]: (i) A is symmetric; (ii) A is biconditionclly
commutative (thatis, a Vb =>bV aiff a A b= b A a) [146, Section 2.3]; (iii)
the subalgebra B generated from any non-empty, element-wise A-commuting
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subset B of A is a sublattice. The motivation for the study of symmetric skew
lattices comes from skew lattices in rings, which are symmetric—see [146, Sec-
tion 2] and [150, Section 2] for details.

1.4.16. Local Skew Lattices. A skew lattice (4; A, V) is said to be local
when its reduct {(A; A) is normal. For a skew lattice A, the following are
equivalent: (i) Aislocal; i) ARz AyAzAT Rz A2ZAYAg; (iii)
the natural skew lattice partial order is preserved under meets; (iv) for all
a € A, the principal subalgebra (a] generated by a is a sublattice. Local skew
lattices have been studied under the name normal skew lattices by Leech [148]
in conformance with standard semigroup terminology; see also [147, Section 2].
A version of the following lemma is asserted without proof in [148).

Lemma 1.4.17. (¢f. [148, Section 2.1]) A local skew lattice is meet symmei-
ric. Thus a local skew lattice is symmetric iff it is join symmetric.

Proof. Let A be a local skew lattice and let a, b € A. For the first statement
it is sufficient in view of the remarks of §1.4.15 to show ¢ V b = b V a implies
aAb="5bAa Sosuppose aVb=15bV a Wehave:

aAb=((bVva)Aa)A(bA(DVa)) by (1.15) and (1.13)
=((avd)Ana)A(bA(aV D)) sinceaVb=bVa
=((aVd)Ab)A(an(aVD)) by normality

bAa by (1.15) and (1.13).

Thus A is meet symmetric. The second statement now follows trivially. |

As with symmetric skew lattices, the study of normal skew lattices is motivated
by the study of skew lattices in rings: every maximal normal band of idempo-
tents in a ring forms a normal skew lattice which is the full set of idempotents
in the subring it generates [148, p. 1], [147, Theorem 2.2).

1.4.18. Distributive Skew Lattices. There are several different notions
of distributivity for skew lattices in the literature. In this thesis a skew lattice
is distributive if it satisfies the following middle distributive identities [150,

: : : . Lam : . L e P .2 FEE TR Ty v
e a oy e . . - A i G e e gt e W ST e e e S et et S M e e i Tl b S ez T el g e, ST e e e R e i £ RS
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Section 2.5]:

sA{(yVaIAsx=(zAYyAz)V(TAzAT) | (1.19)
sV(yAz)Vezs{zVyVz)a(zVvaVae). (1.20)

By Theorem 2.8 of Leech [146] skew lattices arising in rings satisfy the iden-
tities (1.19)-(1.20): this provides the motivation for the study of distributive
skew lattices. Since their introduction distributive skew lattices have been
studied in a number of contexts; see for instance [150, Section 0.5] and [152,
pp. 13 ff]. In [148, Section 2] Leech gave a range of conditions under which the
middle distributivity identities are equivalent for skew lattices, and in [150,
Section 2.5) posed tLe following problem: Are the identities (1.19) and (1.20)
equivalent for skew lattices, as they are for lattices? The following nine ele-
ment counterexample, found using the model generating program SEM [246],
answers this question in the negative.

Example 1.4.19. The clauses:

sA(yAZ)= (T AY) A2
tV{yva)=(zVy)Vze

tA(zVy =z

zV@EAy)=z

(yVa)Az=z

(yAz)Vemz
TA(yVAz=(EZAYyAT)V(EAZAL)
AV(BAC)VAZ(AVBVAA(AV CV A

have the following model:

: el Lo o e e S BT e ki e K e e e 4 i g i i o i e L T T LTI
S e o 1 B K R e
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{0}
(a) (b

Figure 1.1. (a): The skew lattice of Example 1.4.19; (b) Its maximal lattice
homomorphic image.

Mode! (found by SEM 1.7).

A0 a b ¢ d e f g 1 VIO a & ¢ d ¢ f g 1
0j0 0 0 0 0 0 0 O O 0|0 a b ¢ d e f g 1
al0 a a 0 G 0 a 0 a aje ¢ b1 f b6 f 1 1
bj0 a b d d e f e b b|b b b 1 b b b 1 1
c|0 0 e ¢c d e d g ¢ clec 1 1 ¢ ¢ ¢ 1 ¢ 1
dj0 0 e d d e d e d d|d f f ¢ d d f ¢ 1
e|0 0 e d d e d e e ele b b g e e b ¢ 1
f10abddefef fifff1VFFf11
310 0 e ¢c d e d g g glg 1 1 g g ¢ 1 g 1
110 ¢ 6 ¢c d e f g 1 111 1 1 1 1 1 111
A:=gqg; B:=b; C:=c. : o

The skew lattice of Example 1.4.19 is depicted in Figure 1.1(a); its maxi-
mal lattice homomorphic image is illustrated in Figure 1.1(b). In the Hasse
diagram of Figure 1.1(a) the unbroken lines depict the natural skew lattice
partial ordering, while the broken horizontal lines connect elements lying in
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the same non-trivial clique {that is, elements lying in the same non-trivial D-
class); we remark that we adopt these diagramming conventions without fur-
ther comment in the sequel in relation to the depiction of bands, (structurally
enriched) skew lattices, and more generally any algebra with an underlying
partial order and an underlying admissible quasiofder. The D-classes form
the cliques in Figure 1.1(b}; from Figure 1.1(b) it is evident that there are
three non-trivial D-classes {b,f}, {g, c} and {e, d}, and three trivial classes
{1}, {a} and {0}. Since D-equivalent elements i and j satisfy 1 A j = j
and 7 V § = i, the example is right handed. It follows that the entire skew
Jattice is determined from D-equivalence and the natural partial ordering. In
particular, 0 is the zero element since ¢ A 0 = 0 = 0 A ¢. Similarly 1 is
the identity element since 1 V ¢ =1 = ¢ vV 1 holds. In general, calculations
of meets and joins in a skew lattice is trivial if either: (i) the elements in-
volved are comparable; or (ii) the involved meet or join classes are trivial. A
fully general account of how non-trivial meets and joins are determined from
the geometric structure of a skew lattice is given in [150]. With respect to
the non-trivial cases involving {b,f}, {g,c} and the meet class {e,d}, the
situation is as follows. Since ¢ < b,g and d < f,c, the meets i A g = ¢
and ¢ A ¢ = d obtain for i € {b,f}, and i A b= e and i A f = d for
i € {g,¢}. Thus it is apparent that (1.19) holds, but AV(BAC)V A=
iff (AVBVAAAV CV A =bfor{4B0C) ¢ {(a,b, ¢), (a, e,c)}
and AV (BAC)VA=biff(AVBVAANAV CV A =ffor
(4,B,C) € {(a, d, g),{a, f, .‘?)}

In addition to the counterexample given above, SEM was subsequently able to
exhibit a further three non-isomorphic nine element counterexamples satisfying
either (1.19} or (1.20) but not both. These remaining counterexamples arise by
skew lattice duality in the following manner. Let T denote the skew lattice of
Example 1.4.19. Then T* is a left handed skew lattice with the same diagram
as that of Figure 1.1(a). Likewise T and T both share a distinct diagram,
which is the result of ‘lipping’ the illustration of Figure 1.1(a) across the bfgc
axis. This diagram is used to determine a unique left handed structure TV
and a unique right handed structure T¢. All four skew lattices have the same
maximal lattice image as that given in Figure 1.1(b).
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Theorem 1.4.20. The four skew lattices T, T*, T and T¢ form a complete
set of counterezamples of minimal order showing that for the skew lattice iden-
tities, neither (1.19) nor (1.20) implies the other. This set of counterezamples
has the property that any one member is sufficient to generate the remaining
three.

Proof. The first statement of the theorem obtains because the search per-
formed by SEM is exhaustive, no models of order 8 or less were found during
its search, and no other models of order 9 distinct from T, T*, T and T¢
exist. The second statement follows upon observing that if T' is any dual of T,
then the set of duals of T and the set of duals of T coincide. ]

Neither the skew lattice of Example 1.4.19 nor any of its duals are ;symmet;
ric. This observation has lead Leech to ask [151]: Are the identities (1.19)
and (1.20) equivalent for symmetric skew lattices? The following theorem of
the author answers this question. The long proof obtained using the automated
theorem prover OTTER [158] is omitted, but may be found in [210].

Theorem 1.4.21. [210, Section 3.7); [212, Theorem 2.3] For a symmetric
skew lattice A, the following are equivalent:

L AEzsvV(yAz)Vem(zVyVa)A(zV 22V
2 AFzA(yVIIAs=(@AyAT)V(ZAZAI).

For symmetrical local skew lattices the situation in relation to distributivity
is even more pleasing, as the following theorem of Leech [150] shows.

Proposition 1.4.22. [150, Theorem 3.2] For a local skew laltice A, the
following are equivalent:

1. For each a € A, the sublattice (a} 15 distributive;
2. The maxzimal lattice icmomorphic image A/D is distributive;
3 AzVvAz)Vzx(zVyVa)A(zVzVaI);

fARzA(yV2)Az=(zAyAT)V (T AzAI).
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y+x X+y+x  yx+y x+y

-—— - e - - o -

Xy+x) y(x+y)

us={x+y)x(y+x}
w=(y+x)y{x+y) o

Figure 1.2. The free symmetric local skew lattice with zero on two free gener-
ators 7, 7.

Moreover, the skew lattice subvariety of local skew lattices that are both sym-
metric and distributive is characterised by the identities: -

sA{yvz)x(@Ay)V(zA2) | (1.21)
(gvyAzm{zAZ)V (YA 2). (1.22)

Example 1.4.23. Let 2 be the one-element semilattice with a zero adjoined,
let R denote the right handed rectangular skew lattice on {a, b} and let L de-
note its left handed dual. Let S := L x R x 2 x 2. Upon adjoining a zero to S
we obtain (by [149, Theorem 4.10]) a skew lattice isomorphic to F(Z,7), the
free symmetric local skew lattice with zero on two free generators 7, 7: see Fig-
ure 1.2. (For notational reascus, the free generators T, 7 are denoted simply by
z,y in the diagram (and like remarks apply to products of F, 7); also sum (+)
and product (juxtaposition) notation is used in the figure instead of the famil-
iar symbols V and A for join and meet respectively.) From Proposition 1.4.22
we may conclude that F(Z, ) is distributive, simply because F(Z,%)/D is the
free distributive lattice with zero on two free generators. It follows from these
remarks that F(Z,7) coincides with the free distributive symmetric local skew
lattice on two free generators. In contrast, the free symmetric skew lattice on
two free generators is infinite: see Leech {149, Theorem 4.12]. .
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Throughout the remainder of this section, all skew lattices of interest are dis-
tributive symmetric local skew lattices with zero.

1.4.24. Skew Boolean Algebras. A skew lattice A is called locally Boolean
if: (i) it is symmetric; (ii) it has a zero; and (iii) each principal subalgebra (a]
generated by a € A is a Boolean lattice [150, Section 3.1]. From the remarks
of §1.4.16 and Proposition 1.4.22 it is clear that any locally Boolean skew lat-
tice is distributive symmetric local. The following result, which is folklore,
properly characterises the locally Boolean skew lattices among the distributive
symmetric local skew lattices; the proof is due to the author and the author’s
Ph.D. supervisor.

Proposition 1.4.25. (¢f. [65, Proposition 2.3]) Let A be a distributive sym-
metric local skew lattice with zero. The following are equivalent:

1. A is locally Boolean; '
2. A/D is a relatively complemented distributive lattice with zero;

3. For all a,b € A there is a unique ¢ € A such that (a AbAa)Ve=a
and cA(aAbAa)=0

4. A has relative complements: if b < a, then b has ¢ unique complement
in {a].

Proof. (1) = (2) Suppose A is locally Boolean. By previous remarks and
Lemma 1.3.17, A/D is a distributive lattice with zero in which every principal
order ideal is a Boolean lattice under the semilattice partial ordering. This
is sufficient to guarantee A /D is relatively complemented: see Cornish and
Hickman [72] or Cornish [64].

(2) = (3) Suppose A/D is a relatively complemented distributive lattice with
zero. To simplify notation we write @ for the equivalence class [a]p in A/D
containing'a € A. In A/D we have that @ A b is complemented in the interval
from 0 to @, so there is a @ < @ such that wAb=0and e AbVT =1 In

view of these remarks we have:

E=TATAT
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=TA((aAb)VT) AT
=(@AaANbDAT)V(TATAT) by middle distributivity _
=aAbAaVaAwAa. |

Thus ¢ = (a A b A a) V c(mod D), where ¢ = a A w A a. By the Clifford
Mec-Lean theorem,

=aA((aAdbAa)Vec)Aa
={an(anbAra)Aa)V(aAcAa) by middle distributivity
={aAbAa)V(aA(aAwAa)Aa)
={aNbAa)V(aAwAa)

={aANbAa)Ve

On the other hand, from w A b = 0 we have:

0=aAnlAa
=aAwAbAa by Lemma 1.4.13
={aAwAa)A{aAbAa) by regularity
=cA(aAbAa)

To see ¢ is unique, suppose (s AbAa) Ve =a=(aAbAa)V ¢ while
aAbAaAc=0and aAbAaA ¢ =0. We have:

ena=((aNbAa)Va)Aa
={(aAbAaAc)V{(aAcag) by (1.22)
=0V81

=q.
Also, '

arneg={(eAbAa)Ve)Ag
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={eaAbAeAc)V(aAda) by (1.22)
=0V (Cz A Cl)

= g3 N\ €.

Similarly, o Aa=cand o Aa=cANg. Thusg=aAcg=cAc=
¢z A a = ¢, completing the proof.

(3) = (4) Suppose b < a. ThenbAe=0b=0a A b, whence a AbAa =0
Since ¢ is clearly the maximal element of the sublattice (a], by (3) we have
that ¢ is the unique complement of 4 in (a].

(4) = (1) Let a € A and let b € (a]. Then b < g, and by (4) there is a unique
complement of b in (a}. n

Let A be a locally Boolean skew lattice. The standard difference of a,b € A
is a\b, the complement of a A b A a in (a] [19, Definition 3.1]. A skew
Boolean algebra is an algebra (4; V, A, \,0) of type (2,2,2,0) that satisfies all
the identities determining distributive symmetric local skew lattices with zero,
together with the identities [19, Definition 3.1):

(F\y)VzAyAz)=z | (1.23)
tAygAZ)V(z\y) =z | (1.24) |
(Z\yYyA(zAyAz)~0 (1.25) |
(z Ay Az)A (z\y) = 0. (1.26)

Clearly the class SBA of skew Boolean algebras is a variety [147, Theorem 1.8];
for axiomatisations see Spinks [210, Section 4], Cornish [65, Section 2] and ;
Leech [150, Section 3.3]. An important consequence of the identities (1.23)-
(1.26) is Proposition 1.4.27 below, which is part of the folklore of non-commutative 'E
lattice tfleory.

Lemma 1.4.26. The variety of skew Boolean algebras satisfies the following
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identities:
z A (z\y) = z\y (1.27)
(z\y) Az = z\y. (1.28)

Proof. Let A be a skew Boolean algebra and let ¢,b € A. We have a\b =
((@a A b A a) v (a\D)) A (a\b) = a A (a\b) by (1.15) and (1.24), which
establishes (1.27). Also a\b = (a\b) A ((a\b) V (6 A b A @)} = (a\D) A a
by (1.13) and (1.23), which establishes (1.28). n

Proposition 1.4.27. (Bignall} Let A be a skew Boolean algebra. If 0 €
Con (4; A,V), then 6 € Con A. Thus Con (4; A,V) = Con A.

Proof. 1t is sufficient to show that @ € Con (4; A, V) has the substitution
property for the \ operation. Let a = a; {mod#) and b = b (mod ) and
notice a A b A a =g a; A by A a;. We have:

a\b = a A (a\b) by (1.27)
=y a1 A (a\b) |
= ((o1 A by A a1) V (ar\ 1)) A (a\D) - by (1.24)

(((11 A by A Gl) A (a\b)) Vv ((al\bl) A (G\b)) by (122)
= ((a A b A a)A(a\b)) V ((ar1\b) A (a\}))

=0V ((a\h) A (a\b)) by (1.26)
"= (a\b1) A (a\).
Also,
a\by = (a1\by) A ay | by (1.28)
=g (a\b1) A a
= (a\b) A ((a A b A a) V (a\b)) by (1.24)
= ((a\b1) A (a A b A a)) V ((a\b1) A (a\B)) by (1.21)

=y ((al\bl) A (0,1 A bl N (31)) V ((al\bl) A (a\b))
=0V ((al\bl) A (a\b)) by (125)
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= {a1\b1) A (a\b).
We conclude a\b =4 a;\by, and the proposition is proved. =

Example 1.4.28. ([147, Example 1.7(b)}; cf. [65, p. 287]) Let A := (4; A
,V, 0) be a rectangular skew lattice with a zero adjoined. Then A is relatively
complemented: upon distinguishing the operation of standard difference we
obtain a primitive skew Boolean algebra consisting of 0 together with a single
non-zero equivalence class A. N

Primitive skew Boolean algebras play an important role in the theory of skew
Boolean algebras. In the statement of the following theorem, 27 denotes the
two element primitive skew Boolean algebra, while 3] and 3% denote the prim-
itive left and right handed three-element skew Boolean algebras respectively.

Theorem 1.4.29. [1/7, Theorem 1.18] A skew Boolean algebra is directly
indecomposable iff it is primitive. Up to isomorphism, the only subdirectly
irreducible skew Boolean algebras are the algebras 27, 3% and 3%.

Let A be a skew Boolean algebra. A. is called left handed [right handed] if
its skew lattice reduct (A4; A, V) is left handed [right handed]. The subvariety

of left handed skew Boolean algebras [right handed skew Boolean algebras] is

denoted 1hSBA [rhSBA]. Left handed skew Boolean algebras were introduced

by Cornish in {65] under the name Boolean skew algebras. Skew Boolean al-

gebras were introduced in full generality under the name skew quasi-Boolean

algebras by Leech in [147]. It is not immediately apparent that Cornish’s class

of Boolean skew algebras coincides with the class of left handed skew Boolean

algebras; see Spinks [210, Section 4.1] for a discussion and proof. The moti-

vation for the study of skew Boolean algebras comes in the first instance from .
ring theory: every maximal normal band of idempotents in a ring forms a skew

Boolean algebra'[l46, ‘Theorem 2.2].

Let A be a skew Boolean algebra with maximal class M. An algebra {4; A
yV,\,0,1) of type (2,2,2,0,0) obtained from A by adjoining to the language
of A a new nullary operation symbol 1 whose canonical interpretation on
(4; AV, 0, 1) is a fixed element 1 € M is a gquasi-bounded skew Boolean
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algebra. Somewhat confusingly, quasi-bounded skew Boolean algebras were
introduced by Leech in [147] under the name skew Boolean algebras.

Example 1.4.30. Let A := (4; A,V,* 0) be a distributive lattice with pseu-
docomplementation. For any a, b € A, define the operations:

aAb:=aA b
aVb:=(anb)Vb
e\b:=a A b%;

also, recall 1 := 0*. An easy but tedious verification shows the induced algebra

(4; A, V,\,0,1) is a left handed quasi-bounded skew Boolean algebra iff Ais

a Stone algebra, namely a distributive lattice with pseudocomplementation
satisfying z* V z** ~ 1. Further, (4; A,V,\,0,1) is term equivalent to a
Boolean algebra iff {A; A,V,*,0,1) is a Boolean algebra. These remarks yield
a new solution to Birkhoff [23, Problem 70]. a

Example 1.4.31. Let A := (4; A,V,—,0,1) be a Heyting algebra, namely a
Brouwerian lattice with distinguished least element. It is well known (see for
instance (14, p. 174]) that upon defining a* := ¢ — 0 for any a € A the induced
algebra A* := (4; A, V,*,0) is a distributive lattice with pseudocomplementa-
tion with greatest element 1 = 0*. For any a,b € A, define the operations A, V
and \ as in the preceding example. An easy verification using the identities
and quasi-identities of [75, Chapter 4, Section C.2] shows that if A is a lin-
early ordered Heyting algebra (that is, if A = (z = y) V (y — z) ~ 1) then
AR(z—y)V ((z = y) = y) = 1 It follows that the polynomial reduct A*
is a Stone algebra, and thus that the induced algebra (A4; IR \,0,1) is a left
handed quasi-bounded skew Boolean algebra. m

1.4.32. Skew Boolean N-Algebras. Let B be a subset of the universe of
a skew lattice A. The infimum of B with respect to the underlying natural
partial ordering of A, if it exists, is called the intersection of B in A, and
is denoted (B [19, Definition 2.5]. A skew lattice is said to have [finite]
intersections if every non-empty |finite] subset has an intersection. A skew
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Boolean algebra with intersections is a skew Boolean algebra for which the
skew lattice reduct has finite intersections [19, Section 1.4].

Example 1.4.33. Let A := (4; A,V,\,0) be a finite skew Boolean algebra.
Then for every ¢ ¢ 4, the principal subalgebra (a] of A is finite. Since the
reduct (A4; A,V,0) is a local skew lattice with zero, A has intersections by [19,
Proposition 2.10]. "

In the sequel we view skew lattices having finite intersections as as algebras
{4; A, V,0) of type (2,2,2). That the class of such algebras is a variety is an
immediate consequence of the following proposition.

Proposition 1.4.34. [19, Proposition 2.6] A skew lattice having finite inter-
sections is an algebra (A; A,V,0N) of type (2,2,2) such that (A; N) is a meet
semilattice, (A; A,V) is a skew lattice, and for which the following identities
hold:

zN{zAYyAT)RZTAYAT
sA(zNy)=zNy=(zNy) Az

A skew Boolean intersection algebra, -or skew Boolean N-algebra for short, is
an algebra (4; A,V,\,n,0) of type (2,2,2,2,0) such that: (i) the reduct
(A; A V,\,0) is a skew Boolean algebra; and (ii) the reduct {(A; A,V,N)
is a skew lattice with intersections. Clearly the class SBIA of skew Boolean
N-algebras is a variety.

Examl;le 1.4.35. [19, Example 3.2b] Let {A4; V, A, \,0) be a primitive skew
Boolean algebra, as per Example 1.4.28. Prim.itive skew Boolean algebras
possess arbitrary intersections, with () a; being the common value when all
the a; are equal, and O otherwise; this property characterises the primitive
skew Boolean algebras among all the non-trivial skew Boolean algebras with
intersections. A primitive skew Boolean MN-algebra is a primitive skew Boolean
algebra with intersections in which the intersection operation is distinguished:
see Leech [150, Section 4.4]. .

Theorem 1.4.36. [19, Theorem 8.5] The following assertions hold in the
variety of skew Boolean N-algebras:
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b

1. The primitive skew Boolean N-algebras are the non-trivial simple alge-
bras;

2. The primitive skew Boolean N-algebras are the subdirectly irreducible al-
gebras;

3. Every non-trivial skew Boolean N-algebra is a subdirect product of prim-

itive algebras.

A skew Boolean N-algebra is said to be left handed [right handed] if its skew
lattice reduct is left handed [right handed]. The subvariety of left handed
skew Boolean -algebras [right handed skew Boolean N-algebras] is denoted
[hSBIA [rhSBIA]. Skew Boolean N-algebras were introduced in their left handed
form under the name quasi-Boolean skew lattices by Bignall in {17}, and in full
generality by Bignall and Leech in [19]. See also [150, Section 4].

1.4.37. Discriminator Varieties and Dual Discriminator Varieties.
The ternary discriminator and dual ternary discriminator on a set A are the
functions ¢ : A> = A and d : A% — A defined respectively by [183, 95):

ifa=b if a=b
Ha,be)=4° " and d(d,b,c) =14

¢ otherwise ¢ otherwise.

A ternary term i(z,y,z) [d(z,y,z)] that realises the ternary discriminator
[dual ternary discriminator] on an algebra A is called a ternary discriminator
term (dual ternary discriminator term) for A. An algebra A is said to be a
ternary discriminator algebra [dual ternary discriminator algebra] if it has a
ternary discriminator term [dual ternary discriminator term]. If K is a class
of algebras of the same similarity type with a common ternary discriminator
term [a common dual ternary discriminator term], then the variety V(K) gener-
ated by K is'called a ternary discriminator variety [dual ternary discriminator
variety]. Observe that any ternary discriminator variety is a dual ternary
discriminator variety, since d(z,y, z) = t(z, t(z,y, z), 2) [95, Section 1}; con-
versely, a dual ternary discriminator variety is a discriminator variety iff it
is congruence permutable [95]. We will always drop the qualifier ‘ternary’ in




1.4. Skew Boolean Algebras and Discriminator Varieties 48

Tar

the sequel if the context is clear. In the statement of the following theorem
and in the sequel, zAy abbreviates (for skew Boolean N-algebras) the term

(z\(zny)) vV (y\(y " 2)).

Theorem 1.4.38. [19, Theorem 4.4, Corollary 4.9] The class of skew Boolean
N-algebras is a discriminalor variely, with discriminator term given by:

t(z,y,2) = (2\(zAy)) V (s\(z N y)).

The pure pointed discriminator variety is the pointed discriminator variety of
type {3,0) generated by the class of all pointed discriminator algebras (4; ¢, 0)
where { is the discriminator function on A and 0 is a nullary operation {19,
Definition 4.6]. In the statement of the following theorem and in the sequel
the pure pointed discriminator variety is denoted by PDy.

Theorem 1.4.39. [19, Theorem 4.7] The variety PDgy is termwise defini-
tionally equivalent to the variety of left handed skew Boolean N-algebras. In
particular, given (A; t,0) € PDy, left handed skew Boolean N-operations V, A
and \ and N are defined on A by:

a Ab:=1t(b,¢(5,0,a),0)
aV b:=1t(b,0,a)
a\b := t(0, b, a)
aNb:=t(a,t(a,b,0),0)

for any a,b € A. Conversely, given a left handed skew Boolean N-algebra
(4; A VN, 0) and a, b, c € A, the operation t(a, b, ¢) := (c\b) V{cAa)V .
(e\(a N b)) yields an algebra (4; t,0) in PDy.

Bignall and Leech have noted [19, p. 396) that PDy is also termwise definition-
ally equivalent to the variety of right handed skew Boolean N-algebras.

Corollary 1.4.40. (19, Corollary {.8] Any algebra A in a pointed discriming-
tor variety has a left handed skew Boolean N-algebra polynomial reduct whose
congruences coincide with those of A.
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Discriminator varieties were introduced by Pixley in [183}, while dual discrim-
inator varieties were introduced by Fried and Pixley in [95]. Discriminator
varieties have been extensively studied in the literature: see (55, Chapter IV§9]
for an introductory discussion, [237] for a comprehensive study, and Jonsson’s
survey of congruence distributive varieties (129, Chapter IV] for a more recent

discourse.

1.5 Varieties with EDPC

Let S be a strongly algebraisable deductive system with equivalent variety
semantics V. It was early understood in the study of algebraic logic that S
satisfies some reasonable form of the deduction-detachment theorem iff V has

equationally definable principal congruences. In conjunction with the‘realisa-'

tion that varieties with equationally definable principal congruences are con-
gruence distributive, this fact has lead to an intensive study of such varieties
by Blok, Kohler, Pigozzi and others. We summarise some results of their
investigations in this section.

1.5.1. Equationally Definable Principal Congruences. Let K be a
class of similar algebras. A first-order formula ¢(z,y,u,v) in the language
of K is said to define principal congruences in K if, for all A € K and a,b € A,

0%(a,b) = {{c,d) € A x A: A = ©[a, b, ¢c,d]}.

K is said to have definable principal congruences if there exists a first-order
formula in the language of K that defines principal congruences in K [129,
Definition 111§2.1].

The study of varieties with definable principal congruences was initiated by |

Baldwin and Berman in (15}, and in [94] Fried, Gratzer and Quackenbush intro-
duced the notion of equationally definable principal congruences. A variety V
has Eguationally Definable Principal Congruences {EDPC for short) if there
exist finitely many pairs (p1, @), ..., (Pa, @}, ¢ = 1,..., n, of d-ary terms of V
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such that for all A e Vand all a,b,¢,d € A,
¢ = d(mod©*(a,b)) iff pi(a,b,c,d) =gl (a,b,c d) ;

for each ¢ = 1, ..., n. The following result is due variously to Blok, Kéhler and
Pigozzi [136] and van Alten [229]. In the statement of the theorem and in the
sequel Cp A [Cp A] denotes the set [join semilattice] of compact congruences
on an algebra A. '

Theorem 1.5.2. ([186]; [229, Proposition 5.19(i})]) For any variety V, the
following are equivalent:

1. V has EDPC;

2, The join semilattice {Cp A; V,wa) of compact congruences of A is dually
relatively pseudocomplemented for any A € V.

Moreover, if V has EDPC, the following statements hold:

3. V is congruence distributive and has the congruence estension property;

4. V is semisimple iff V is generated (as a variety) by a class of simple
algebras.

Since their introduction varieties with EDPC arising from algebraic logic have
been systematically studied by Blok and Pigozzi in a series of papers [29, 30,
34, 35; for a survey of much of this work beyond that presented below see
Jonsson [129, Chapter II1}.

1.5.3. WBSO Varieties and QD Terms. Recall from [29, Lemma 2.7
that a variety of weak Brouwerion semilutlices with filter preserving opera-
tions (briefly, a WBSO variety) is a variety V with 1 such that: (i) the join
semilattice (Cp A;; V,wa) of compact congruences is dually relatively pseudo-
complemented; and (ii) there exist binary terms —,- and A in the language
of V such that for any A € V and a, b € 4, |

0%(a - b,1) = ©2(h,1) x 0(a, 1)
O%(a-b,1) = ©%(a,1) vV OA(5,1)
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©4(alb, 1) = ©*(a, b)

where * denotes dual relative pseudocompiementation in {Cp A; V, wa). An
algebra A is called a week Brouwerian semilattice with filter preserving oper-
ations if it is a member of a WBSO variety, or, equivalently, V = V(A) for
some WBSO variety V. The terms —,- and A are called weak relative pseu-
docomplementation, weak meet and Gddel equivalence terms respectively. In
general, none of these terms need be unique; see [29, p. 357). A weak join
for a WBSO variety V is a binary term z + y of V with the property that
OA(a+ b,1) = ©*(e,1)NOA(b,1) for all A € V [29, p. 370]. In general, a
WBSO variety need not have a weak join; nor need a weak join, if it exists, be

unique.

Let A be a weak Brouwerian semilattice with filter preserving operations.
The binary relation < defined on A by the condition a R biff a = b =1
for art a,b € A is a quasiordering. The equivalence ~ induced by < is a
corzruence on {4; +,—,1) and {4; -, —,1)/~ is a Brouwerian semilattice
that is dually isomorphic to the dual Brouwerian semilattice (Cp A; V, *,wa)
under the map a — ©%(a,1) {29, p. 352], {35, p. 7]. A is a weak Boolean
algebra with filter preserving operations if the dual Brouwerian semilattice of
compact congruences {(Cp A; V,*,wy) is (termwise definitionally equivalent
to) a generalised Boolean algebra. A subset FF C A is a weak filter of A
ifl € F,a-b € F whenever q,b € F, and b € F whenever a € F and
a — b =1 [29, p. 351); the set of weak filters of A is denoted Wf A. Blok,
Kohler and Pigozzi have shown that the weak filters of A are exactly the
subsets of A of the form | J G, where G is a filter of {4; -, —,1})/~ [29, p. 354;
Theorem 2.6). Call a subset F of the universe of A an implicative filter if
1€ F,and a,a = b € F implies b € F. A version of the following result is
mentioned without proof in {35, p. 7); see also [29, p. 352].

Lemma 1.5.4.. (cf. [35 p. 7]; of. [29, p. 852]) Let V be a WBSO wvariety.
Let A€V and {1} C F C A. The following are equivalent:

1. F =11}y for some @ € Con A;

2. F is a weak filter of A;
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3. F is an implicative filier of A.

Proaf. The equivalence of (1) and (2) is proved in [29, p. 352]). To complete
the proof of the lemma it is sufficient in view of preceding remarks to show the
equivalence of (2) and (3) in the context of Brouwerian semilattices; for this
see either Meng et al {164, Theorem 10} or Rasiowa [195, Theorem IV§2.1}.
B

Proposition 1.5.5. (29, Lemma 2.2/ Let A be a weak Brouwerian semilatiice
with filter preserving operations. The maps § — [1])y (6 € ConA) and F
{{a,b) : aAAb € F} (F € Wi A) are mutually inverse isomorphisms between
the congruence and weak filter lattices of A.

Proposition 1.5.6. [29, Lemma 2.4] Let V be a WBSO variety. For any
A €V the following assertions hold: *

1. Every compact congruence of A 1s principal. In particular, for any a,b €
A,

@A((ah bi)y..., (an, bp)) =
@A(( . (alﬁAbi) A ) ._._1_ (anAAbn), 1);

2. For any a,b,c,d € A,

¢ =d(mod©*(a,d)) iff (aAb) o4 (cAtd)=1.

Thus V has EDPC.

Let A be an algebra. A Quaternary Deductive (QD) term on A is a term

q(,y, z, w) such that for any a,b,¢,d € 4 (29, p. 359,

¢ fa=b

qA(a, b,¢,d) =
d ife=d (mod 04 (a, b))

A QD term on a variety V is a term ¢(z,y, z, w) such that ¢{z,y,2,w) is a
QD term on every member of V. The QD term may be regarded as a natural

ki it e pe e oo
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generalisation of the normal transform to non-semisimple varieties; see Blok,
Kohler and Pigozzi {29, Section 3} and Blok and Pigozzi {34, p. 547 for details.

Theorem 1.5.7. [34, Theorem 1.25(i)] A variety has a QD term iff it is
congruence permutable and has EDPC,

Theorem 1.5.8. [84, Theorem 1.26] For e variety V with 1 the following are
equivalent:

1. V 1is congruence permutable, 1-regular, and has EDPC;

2.V has a QD term and a Gddel equivalence term;

3. V is a congruence permutable WBSQ variety.
1.5.9. TD Terms and Fixedpoint Discriminator Varieties. A ternary
term e(z,y,2) is a ternary deductive term for a class K of similar algebras
if K = e(z,z,2) = z and, moreover, for all A € K and q,b,¢,d € 4,
e*(a,b,¢) = e*(a,d,d) if ¢ = d{mod©*(a,d)). A version of the follow-

ing lemma is proved in Blok and Pigozzi [34]. See also Bignall [18, Lemma 2.1]
and McKenzie [159, Theorem 1.3).

Lemma 1.5.10. (c¢f. [84, Theorem 2.3]) Let V be a variety with a TD term
e(z,y,z). For any algebra A € V, Con A = Con (4, e*).

Proof. Let V be a variety with a TD term e(z,y,z) and let A € V. By [34, |
Theorem 2.3(iii)], A satisfies the identity:

e(z,y,f(2,--. ) = e(z,y,f(e(z, 9, 2), - - -, €(2, ¥, 20)))

for every n-ary operation symbol f in the type of A. This implies the relation
©(a, b) defined on A x A by: | | |

O(a,b) := {{c,d) € A x A:e™(a,b,¢) = e*{(a,d,d)}

is a congruence relation on A, and therefore on {4; e?) as well. Now if ¢ =
d (mod ©(a, b)) and ¢ is any congruence on (4; eA) such that ¢ = d (mod ¢),
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then:
¢= eA(a’ a, C) =g eA(a? b, C) = eA(a’ b, d) =¢ eA(a: a, b) = b,

which implies that ©(a, b) is the principal congruence generated by (a, b) on
both (4; e*) and A. This means that {4; e%) and A have the same principal
congruences. But by [55, Theorem 11§5.7(d)] any congruence § on (4; e*) is
given by:

6=\/{e“ **)(a,b) : a = b(mod#)},

where the join is taken in the lattice of equivalence relations on A. By previ-
ous remarks, such a join must also yield a congruence relation on A, whence
Con (4; e*) C Con A. Since the converse is clear, the result follows. "

Let V be a variety with a TD term e(z,y,2). By the proof of the preced-
ing lemma, eA(a,d,c) = eA(a, b, d) iff ¢ = d{mod©*(a, b)), whence V has
EDPC [34, Corollary 2.5]. Moreover, V is congruence 3-permutable by {34,
Theorem 2.9]; in general, V need not be congruence permutable. The follow-
ing proposition is implicit in [29].

Proposition 1.5.11. (cf. [29, p. 361]) For a variety V, the following asser-
tions hold: )

1. Suppose V has a TD term e(x,y,2). If p(z,y,2) is a Mal’cev term for V
then the term:

a(z,y, 2, w) := p(e(z, ¥, 2), e(z, y, w), w)
is a @D term for V;

2. Suppose V has a QD term q(z,y,2,w). IfV is L-regular (for some
constant term 1) and dy(z,y),...,ds(z,y) are binary terms witnessing
the 1-regularity of V in the sense of Proposition 1.2.6 then V is ¢ WBSO
variety with weak meet, weak relative pseudocomplementation and Géodel ‘
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equivalence terms defined respectively by:

z—y:=q(z,1,y1)
z-y:=q(z,1,9,1)
-TAy = ( ’ (dl(xay) ) d2($, y)) ) ) ' dﬂ(ms y)

Moreover, VE1 =z = 1.

Proof. Let V be a variety. For (1), assume V has a TD term e(z, y, z). Suppose
first that p(z, y,2) is a Mal’cev term for V. Let A € V and let a,b,¢,d € A.
Suppose ¢ = d{mod ©*(a, b)). Then e*(a,b,¢) = g = e*(a, b, d) for some
g € A by previous remarks and thus:

¢(a, b, ¢, d) = p* (e*(a, b, c), e*(a, b, d), d)
=p*(g,9,d)

=d since p(z,z,y) ~ y.
On the other hand, suppose a = 5. Then:

¢*(a,b, ¢, d) = p*(e*(a, 6, ¢), €*(a, 0, d), d)
=pA(ca d, d) since 8($,.’B,y) Y

=c " since p(z,y,y) ~ =.

Thus ¢(z, y, 2, w) is a QD term for V as claimed.

For (2), assume q(z,y,z,w) is a QD term for V. Assume also that V is
I-regular (for some constant term 1). By Theorem 1.5.7 V is congruence
permutable with EDPC, so V is a congruence permutable WBSO variety by
Theorem 1.5.8. Let -y, £ — y and tAy be as in the assertion of the
proposition. By [29, Theorem 3.5(i),Theorem 3.7(iii)] we have that the term
£ — ¥y is a weak relative pseudoicomplement for V such that V=1 — z = g,
while by (29, Theorem 3.5(ii)] we have that the term z - y is a weak meet. Let
di(z,y),...,dn(z, y) be terms witnessing the 1-regularity of V in the sense of -
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Proposition 1.2.6. Since z - y is a weak meet for V,

O (aAtb,1) = O (- (di*(a, ) d*(a, b)) & --+) * d¥(a, b),1)
= 04(df(a,b),1) v ©*(df*(a,b),1) V-V ©*(d}(a, ]),1)
= 0*(a, b)
by [29, Theorem 0.7]. Thus zAy is a Gédel equivalence term for V as claimed.
]

A'TD term e(z, ¥, 2) on an algebra A is commutative if e* (a, b, eA(d’, V', ¢)) =
eA(d', ¥, er(a, b, c)) for all a,b,a', ¥, ¢ € A; a TD term e(z,y, z) on a vari-
ety V is commutative if it is commutative on every member of V. Let A be
a set. A ternary operation f : A> — A is called a fizedpoint discriminator if
there exists an element d € A such that [34, Definition 3.3):

ifa=b ;
fla,b,¢c) = ¢ na

d otherwise,

in which case d is called the discriminating element of f. Note that in gen-
eral the discriminating element associated with a fixedpoint discriminator in
a fixedpoint discriminator variety need not be a constant term [34, p. 580].
An algebra A is called a fizedpoint discriminator algebra if there is a ternary
term f of A that realises the fixedpoint discriminator on A. A variety V is a
fizedpoint discriminator variety if there is a ternary term f of V and a sub-
class K of V such that f* is a fixedpoint discriminator on each A € K and
V = V(K). In this case f is called a fizedpoint discriminator term for V.

Theorem 1.5.12. [34, Theorem 8.5] For any variety V the following are
equivalent:

1.V is a fizedpoint discriminator variety;

2. V is semisimple and has a commutative TD term.

Moreover, if the equivalent conditions (1)—(2) are met, then a ternary term
e(z,y,z) is a commutative TD term for V iff it is a fizedpoint discriminator
term for V.
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Let V be a variety with 0. By remarks due to Blok and Pigozzi [34, p. 582],
if V is a ternary discriminator variety then it is a fixedpoint discriminator
variety. Indeed, if ¢(z,y, 2) is a discriminator term for V then f(z,y,z) :=
t(t(z, y, ), t(z,¥,0), 0) is a fixedpoint discriminator term for V. More gener-
ally, we have:

Theorem 1.5.13. [84, Theorem 3.8] For any pointed variety V the following
are equivalent:

1. V is a ternary discriminator variety;

2. V is a congruence pemiutable fizedpoint discriminator variety;

8. V is congruence permutable, semisimple and has a commutaiive TD term,
4. V is congruence permutable, semisimple and has EDPC;

5. V is ¢ congruence permutable variety »j weak Boolean algebras with filter
preserving operations.

If these conditions hold then any constant term can be taken to be the discrim-
inating element of a fizedpoint discriminator term of V.

Let A be an algebra with 1. A TD term e{z,y,2) on A such that ¢ =
b (mod ©*(eA(a, b,1),1)) for all a,b € A is said to be reqular (for A) with
respect to 1; note e(z,y,1) witnesses 1-regularity in the sense of Proposi-
tion 1.2.6 by the remarks of [34, p. 585] and hence that 14 is a regular element
of A in the usual sense. Let V be a variety with 1 and let e(z, y, z) be a TD
term for V. Call e(z, y, z) regular (for V) with respect to 1 if it is regular with
respect to 1 for every member of V.

Theorem 1.5.14. Let V be a variety with {0,1}. Suppose moreover that V
18 ¢ fizedpoint discriminator variety generated by a class K C V of fizedpoint
discriminator algebras, that f(z,y, 2) is a fivedpoint discriminator term for V
_and that 0 is the discriminating element on any A € K. Then the following
statements hold:

1. f(z,y,2) is a commutative TD term for V that is regular with respect
lo1; '
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2. V is a variety of weak Boolean algebras with filter preserving operations
whose weak meet, weak relative pseudocomplement and Godel equivalence
terms are defined respectively by:

z-y:=f(z,1,y)
z—=y:=f(f(z,1,9),f(z,1,1),1) t
Ty = f(z,y,1).

Proof. The first assertion is just [34, Corollary 4.8]. In view of the first asser-
tion, Theorem 1.5.12 and [34, Theorem 4.4], V is a semisimple WBSO variety
with the stated weak meet, weak relative pseudocomplementation and Gdédel
equivalence terms. Since any semisimple WBSO variety is a variety of weak
Boolean algebras with filter preserving operations (by [30, Corollary 4.3]), the
second assertion follows. ' N

The fixedpoint discriminator was introduced by Blok and Pigozzi in their study
of varieties with EDPC [34] as a generalisation of the ternary discriminator to
varieties for which congruence permutability fails, while the TD term was in-
troduced in the same paper as a generalisation of the fixedpoint discriminator.
See [34, Definition 3.3; pp. 580-583; pp. 588-590] and [35] for more details.

1.6 BCK-Algebras

BCK-algebras play a central role in this thesis. Here we briefly survey the
elementary theory of BCK-algebras and some related classes.

1.6.1. BCK-Algebras. For the sake of convenience we repeat here the
definition given in §1.1.1. An algebra (4; =, 0} of type (2,0) is called a BCK-
algebra iff it satisfies the following identities and quasi-identity [126, Defini-
tion 1]: '

(Gy)~(@~2) = (z=y) =0 - (L1)
(t-(@=y)~y~0 (1.2)
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r—z=0 (1.3)
0—z=~0 (1.4)
r—-y~0&y—zsx~0Dcmy. (1.5)

it is immediate that the class BCK of BCK-algebras:is a quasivariety; re-
sults due to Wronski [240] and Higgs [109] show BCK is not a variety. Be-
cause of (1.3) the class of BCK-algebras may be construed as a quasivariety
of groupoids; consequently we (informally) denote BCK difference = in the
sequel by juxtaposition when no confusion can arise. '

BCK-algebras were introduced by Imai and Iséki in a 1966 paper [119]. Histor-
ically, the motivation behind the introduction of BCK-algebras was twofold.
First, Imai and Iséki wished to give an abstract characterisation of set differ-
ence and its properties; and second, Imai and Iséki were interested in inves-
tigating systems of implicational calculi related to combinatory logic, partic-
ularly the BCK system of Meredith [186, p. 316]. The connection between
the two motivations arises from the close relationship observed between set
difference in set theory and implication in propositional calculi. Since their
introduction BCK-algebras have been the subject of a vast amount of critical
exegesis (see for instance the survey articles [126] and [70] and the more re-
cent paper [38] of Blok and Raftery), and in particular connections with the
original motivations of Imai and Iséki have been clarified. Indeed, results due
to Palasinski [178], Ono and Komori [176], Fleischer [90] and Wronski [242]
show that an algebra (4; =,0) of type (2,0) is a BCK-algebra iff it is
the (= ,0)-subreduct of a pocrim; see Blok and Raftery [39] and van Al-
ten [229, Chapter 1] for details. On the other hand, Blok and Pigozzi {31,
Section 5.2.3] have shown BCK is termwise definitionally equivalent to the
equivalent algebraic semantics (in the sense of {31]) of BCK logic, while Bun-
der {51, Theorem 1} has proved that an algebra (4; = ,0) of type (2,0) is a
BCK-algebra iff it satisfies the quasi-identity (1.5) and the algebraic analogues
of the B-combinator (p = ¢) —+ ((¢ = r) = (p — r)}, the C-combinator
(p> (¢ r)) = (¢ = (p — r)) and the K-combinator p — (¢ — p),
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respectively the identity (1.1) and the identities:

z—y)—2m(z—2)—y (1.29)
(z-9)—z~0. - | (1.30)

Another important identity known to be satisfied by the quasivariety of BCK-
algebras is (126, Theorem 2J: N

s (1.7)

and in fact Higgs [109, p. 70] and Blok and Raftery [38, Section 1) have shown
independently that an algebra (4; =, 0) of type (2,2,0) is a BCK-algebra iff
it satisfies the identities (1.1), (1.4), (1.7) and the quasi-identity (1.5).

Lemma 1.6.2. [126, p. 4] Let (4; +,0) be e BCK-algebra and let <o be
the relation defined by a <o b iff ab = 0 for any a,b € A. Then (4; <)
is o partially ordered set with O as its least element. Moreover, right [left]
multiplication by a fived element of A is isotone [antitone].

On an arbitrary BCK-algebra A there exists a second partial order <;, coarser
than <g, and defined by ¢ <; b iff @ € bA for any ¢,b € A (where b4 =
{bc : ¢ € A}); this observation is due to Guzmdn {105, Proposition 3.2(a)].
Proposition 1.6.4 below, which sharpens Guzman’s result, will be needed in the
sequel; we remark that this proposition does not seem to have been reported
in the literature previously.

Lemma 1.6.3. (cf. [105, Lemma 1.2(i), Proposition 2.2(c)]) The quasivari-
ety of BCK-algebras satisfies the following identities:

t-(z-(z=y)) =z -y (1.31)
E—y)—zmz=(z-((z~y) —2)) | (1.32)
(z—y)~(z=(z~(2=-y) =0 (1.33)
(z-y)—((z—~y)~2) =0. - (1.34)
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Procf. Let (4; = ,0) be a BCK-algebra and let a, b, ¢ € A. To see (1.31) holds,
observe that a{ab) <o b by (1.2), whence ab <o a(a(ab)) by Lemma 1.6.2.
On the other hand, note that a(a(ab)) <o ab by (1.2). Thus a{a(ab)) = ab
by (1.5). For (1.32), we have 0 = (a(a{(ab)c)))((ab)c) by (1.2), whence
a(a((ab)c)) <o (ab)c. Conversely, put a := g and § := (ab)c. We have:

0= ((ad) )((ab ) by (1.3)

= ((ab)((ad)c) by (1.29)
=((a ((ab)c))b) by (1.29)

~ ((aB)b)c

= ((e(afap))b)c by (131)

= ((a(a( a( ab)e))))b)c

= ((ab)(a(a((ab)c))))c by (1.29)

= ((ab)c)(a(a((ad)c))) by (1.29).

Thus (ab)e <q a(a{(ab)c)), which establishes (1.32). For (1.33), we have

0 = ((ab)(a(c(ch)))) ((c(ch))b) = (ab)(afc(ch))) by (1.1), (1.2) and (1.7).
For (1.34), we have 0 = {(ab)(a(be))) ((be}d) = (ad)(a(bc)) by (1.1), (1.30)
and (1.7). " .

Proposition 1.6.4. Let A be a BCK-algebra. The following statements hold:

1. The binary relation <, defined for any a, b € A by:
a<1b iff acbd iff acbnNA iff dbNnae=a

where b a := b(ba) and bN A := {bNc: c € A}, is a partial order
on A. Moreover for any a,b € A, the relation <, enjoys the following
properties:

(i) Ifa<ibthena<yb
(it) If a <; b then ac <4 b¢;
(i) 0 < a.
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9. The binary relation <, defined for any a,b € A by:
a<ab iff (b(ba))(ba)=a iff bNa=a enda(ba)=a

i3 a partial order on A. Moreover for any a,b € A, the relation <,
enjoys the following properties:

(i) Ifa<ybthena<yb;
(it) If a <o b then ac <o be;
(iii) 0 <, a.

Proof. To prove <; is a partial ordering under the stated conditions it is suffi-
cient to verify the equivalences a € bA iff a € 5N A iff bNa = qa, just because
the relation <; defined by a <; b iff @ € bA is a partial order on A by [105,
Proposition 3.2(a)]. So suppose that @ € bA. Then a = bc for some ¢ € A,
whence a = bec = b(b(bc)) € bN A by (1.31). Suppose a € b N A. Then
a = b(bc) for some ¢ € A. By (1.31) we have a = b(bc) = b(b(b(bc))) = bNa.
Suppose b N a = a. Then a = b(ba) € bA, andso a € bAiff a € bN A
iff N a = a as required. To see Item (1)(i) holds, observe a <; b implies
0 = (b(ba))b = ab by (1.30) and hence that a <¢ b. For (1)(ii), suppose
a <; b. We have:

(be){(be)(ac)) = (bc)((bc)((b(ba))c)“) since bNae=a

= (be)((be){(be)(ba))) by (1.29)
= (bc)(ba) by (1 )
= (b(ba))c by (1.2}
= ac since bNa = a.

Thus ac <, be. Item (1)(iii) is clear.

To prove <, is a partial ordering under the stated conditions we first show
(b(ba))(ba) = a if bNa = a and a(be) = a for any a,b € A. Suppose
(b(ba))(8a) = a. We have:

bNa = (b(ba))0 by (1.7)
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= (b(ba)) ((b(ba))a)
= (b(ba)) ((b(ba))((b(ba))(ba)))
= (b(ba))(ba)

=a

It follows that a = (b(ba)) (ba) = a(ba). Conversely, if b5Na = a and a(ha) =

by (1.2)

sincs (b(ba))(ba) = a
by (1.31)

since (b(ba))(ba) = a.

v

then a = a(ba) = (b(ba))(ba). Thus (b(ba))(ba) = e if bNa = aand
a(ba) = @ as claimed. To see <, is a partial order we verify the propertties of

reflexivity, anti-symmetry and transitivity directly. For reflexivity just note

a <z o from (a(aa))(ae) = (a0)0 = a. For anti-symmetry, observe ¢ <z b

implies ¢ <; b and likewise b <, ¢ implies & <; @, whence a = 5. For

transitivity, suppose a <; b and b <, c. It is sufficient to show ¢ a = q and

a(ca) = a. Tosee cNa = a, put a:= ¢, B = cb, v := ba and observe:

a = b(ba)
= (c(cb))(ba)
= (aB)y
= a(a((aB)))
= c¢(e((c(cb))(ba)))
= ¢{c(b(ba)))

= ¢(ca)
To see a = a(ca), observe:

= (b(ba))(ca)

== (5{ca))(ba)

((e(ct))(a))(ba)
((c{ca))(cb))(ba)
=
(
(

{

a(ob))(ba)
(b(ba))(ch))}(ba)
(b(cb))(ba))(ba)

il

snce bNa=a

since cNb=1b
by (1.32)

since cNb=b

since bNa = a.

since bNa=a
by (1.29)
since cNb=b
by (1.29)
since cNa=a
since bNa=a
by (1.29)
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= (5(ba)) (ba) since b(ch) = b
= a(ba) since bNa=a
=a since a(ba) = a.

Thus <, is transitive and hence a partial order. Item (2)(i) is clear from
preceding remarks. For (2)(ii), it is sufficient to show a <, b implies ac <; be
and (ac)((hc)(ac)) = ac. So suppose a <p b. Then a <; b and’so ac <, be.

Moreover, ({ac)((bc)(ac)))(ac) = ((ac)(ac))((be)(ac)) = 0((bc)(ac)) =
by (1.29) and (1.7) and so (ac)((bc)(ac)) <q¢ @c. On the other hand, put
o= ac, B := ba and <y := bc. We have:

(ac)((ac)((be)(ac))) = (ac)((ac){(bc)((b(ba))c))) since bNa=a
= (ac)((ac)((be)((be)(ba)))) by (1.29)
((a(ba))c) ((ac)((bc)((bc)(ba)))) since a(ba) =a
((ac)(ba)){(ac)((be)((be)(ba)))) by (1.29)
= (af) (e(v(18)))
0 by (1.33).

I

Thus ac <o (ac)((bc){ac)). We conclude (ac)((bc)(ac)) = ac and thus a <2 b
implies ac <y be as claimed. Item (2)(iii) 1s clear. | "

In the sequel we work primarily with the partial order <¢; we write simply <
for <o when there is no danger of confusion.

Example 1.6.5. The partial orders <, <; and <, are distinct on an arbitrary
BCK-algebra. To see this, consider the BCK-algebra A := (A4; =, 0) where
A= {0, ¢a,b,c,1} and BCK difference is defined by the following operation

S b b e,
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& —9
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Figure 1.3. The BCK-algebra of Example 1.6.5: (a) Under the partial order <y;
(b) Under the partial order <;; (c) Under the partial order <,.

table:

. A

= oo R QO
[ T o S - S o B e N )
oo o OO O o
B O o O Ol
e T e B e B e B o N N

0
a
b
c
1

The Hasse diagrams corresponding to the underlying partially ordered sets
(A; <o), {4; <1)and (4; <,) aredepicted in Figure 1.3. From these diagrams
it is clear that the partial orders <g, <; and <, are distinct. u

Remark 1.6.6. In contrast to <p, <; and <, are not in general antitone in
. each of their positions. To see this, consider the BCK-algebra of Example 1.6.5.
One easily checks that b <; ¢, but a = 1l¢ £, 1b = b. Likewise 0 <5 ¢ but
a=1lc £, 10 =1. B

Remark 1.6.7. Define the { =, 0)-terms z ~ y*, n € w inductively by:

z—ydi=z

z—y*tli=(z =y 1y for £ > 0.
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Owing to (1.30) these terms form a descending chain in an arbitrary BCK-
algebra: zy* < ... < 2y? < zy < 7. Let A be a BCK-algebra and a,b € A. In
the preceding parlance, the BCK partial orders <4, <; and <3 can be described
by:

a<gb iffil ab=0
a<i b iff b(ba) =a w
a<s b iff b(ba)? =a.

From the description above of <g, <; and < it is natural to anticipate that the
family of relations {<,: n > 1} defined by a <, b iff 5(ba)™ = a is an infinitely
descending chain of partial orders on A. This is not the case: using (1.31)
and (1.32) and the { =, 0)-terms zy"™ it is possible to show directly that, for
anyn>2, a<, bif a <, b "

Problem 1.6.8. Investigate the behaviour of the partial orders <;,¢ = 0,1, 2,
on a BCK-algebra. Does there exist a natural family of partial orders on an
arbitrary BCK-algebra generalising the orders <;,¢ = 0,1,2? ]

Let A be a BCK-algebra. An ideal of A is a subset I of A such that 0 € J and
a,ba € I implies b € I. It is folklore that the set I(A) of all ideals of A forms
an algebraic lattice I(A) under set inclusion. Let @ # B C A. The ideal (B)a
of A generated by B is (\{J € I{A) : B C J}, the intersection of all ideals
of A containing B. By definition, (@)a := {0}. The following characterisation
of (B)a for non-empty B C A is due to Iséki [120, Theorem 3]:

(B)A = {aeA:(Hnew)(ﬂbl,...,bnGB)(abl...b,.:O)}.

The following technical result, which will be needed in the sequel, is due to
Palasinski {177] and. Cornish [70].
Proposition 1.6.9. For any BCK-algebra A, the following assertions hold:

1. {177, Theorem 1] The ideal lattice of A is distributive;

2. {10, Theorem 4.1] A enjoys the ideal extension property: whenever B €
S(A) and I € 1(B) there ezists J € I(A) such that JN B = I. In
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particular, (I)a, the ideal of A generated by I, can always be taken as a
suitable J.

In general, an ideal I of A is the 0-class of at least one, and possibly many
congruences on A, of which the largest ¢; := {(a,b) € A X A : ab,ba € I}
is actually a BCK-congruence. Conversely, for any ¢ € Con A, the 0-class
{a€ A:(a,0) €8} isanideal of A.

e

Theorem 1.6.10. [88, Proposition 1] For a BCK-algebra A the following
assertions hold: | |

1. The maps I s ¢y (I € I(A)) and 6 i [0]s (9 € Congck A) are mutually
inverse lattice isomorphisms between the BCK-congruence lattice of A
and the ideal lattice of A;

2. A is BCK-0-regular, BCK-congruence distributive and enjoys the BCK-
congruence extension property;

3. H(A) C BCK iff A is O-reqular, in which case A is also congruence
distributive. If HS(A) C BCK, then A has the congruence extension

property.

It is known that the congruences (in the absolute sense) of BCK-algebras are
not well-behaved in general. In particular, Wroiiski [241, Theorem 5, The-
orem 6] and Nagayama [173, Theorem 1.3] (see also Example 2.3.10 in the
sequel) have shown that the congruence lattices of BCK-algebras need satisfy
no lattice identities beyond those satisfied by all lattices. An example due to
Blok and Raftery [37] shows also that BCK-algebras do not in general enjoy
the congruence extension property. In contrast, Proposition 1.6.2 and Theo-
rem 1.6.10 show the situation to be quite different for BCK-varieties, namely
those varieties of algebras of type (2,0) whose members are BCK-algebras.
In the remainder of this section we describe some BCK-varieties of relevance
to the sequel, together with several equational classes of BCK-algebras aug-
mented with additional operations.

1.6.11. Commutative BCK-Algebras. A BCK-algebra (4; =,0) for
which the underlying partially ordered set {4; <} is a meet semilattice is called
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a commutative BCK-algebra; in this case a N b := a(ab) (the BCK meet) is
the gicatest lower bound of {a, b} for any a, b € A. For any BCK-algebra A,
the following are equivalent [126, Theorem 3]: (i} A is a commutative BCK-
algebra; (ii) A = zNy ~ yNz. From (ii) it follows easily that the class cBCK of
all commutative BCK-algebras is a variety {245]. Problem 1.6.8 notwithstand-
ing, we also have the following characterisation of commutative BCK-algebras,
which will be needed in the sequel. See also Cornish [71,"Proposition 1.8].

Lemma 1.6.12. A BCK-algebra s commutative iff its underlying partial or-
ders <o and <; coincide.

Proof. Let A be a BCK-algebra and let a,b € A.

(=) Suppose A is commutative. If & <; b then ¢ <4 b by Proposition 1.6.4(1}(i).
For the converse, if ¢ <¢ b then a N b = a, and hence also b N a = a since A
is commutative. But this means that a <; b by Proposition 1.6.4(1)(i).

(<) Suppose a <p b iff @ <; b. Because a N b <g b, by hypothesis we have
that a N b <; b, whence 6N (aNd) = anN b by Proposition 1.6.4(1)(i). Put
a:=b, B:= aand v := ab. We have:

(anb)(dna)={bNn(anb) )(bna)
= (b(b(a(abd))))(b(ba))
= (b(b(ba))) (b(a(ab))) by (1.29)
= (ba)(b(a(abd))) by (1.31)
= (aB)(a(87))
=0 | by (1.34).

Thus aNb <g bMa, and by symmetry bNa <o aNb. Therefore and = bNa,
and A is commutative. .

Commutative BCK-algebras were introduced by Tanaka [214] and have been
studied subsequently by several authors, including Traczyck [216], Cornish {64,
Section 3], Romanowska and Traczyck [202, 201}, Cornish, Sturm and Traczyk
[73] and Yutani [245). In particular, results due to Traczyk [216, Lemma 2.1,
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Theorem 2.4] show that the underlying meet semilattice (4; N) of a commuta-
tive BCK-algebra A is in fact a distributive nearlattice; recall from [70, p. 112]
and [64, p. 48] that a [distributive] nearlattice is a lower semilattice (A4; A)
in which each principal order ideal (m] := {a € A : a € m} is a [distributive]
lattice. For a € (m], the map Ny, : (m] = (m] defined by N (a) := ma is
an involution (duval order isomorphism that is its own inverse), whence the
supremum of a,b € (m] is a U b := Ny (Np(a) N Niu(b)). See Cornish [64,
Lemma 3.1] and Cornish and Hickman [72].

1.6.13. Positive Implicative BCK-Algebras. Let A be a BCK-algebra,
with underlying poset {4; <). For any a,b,c € A, (ab)c < (ac)(bc) [126,
p. 12); in general, the opposite inclusion does not hold. A positive implicative
BCK-algebra is a BCK-algebra for which the inequality (ac)(bc) < (ab)c is
identically satisfied. For a BCK-algebra A, the following are equivalent [38,
Propositicn 13]: (i) A is positive implicative; (i) A |= (z - y) ~ y =~ z ~ y; (iii)
AlE(z=(z+y))=(y=z) = (y=(y==)) = (¢ ~y). Henkin [108] appears
to have been among the first to consider positive implicative BCK-algebras:
they are precisely his class of implicative models. Since Henkin's 1950 paper
positive implicative BCK-algebras have been independently investigated by
a number of authors, including Diego [79] (in dually isomorphic form under
the name Hilbert algebras—see Kondo [140]), Rasiowa [195, Section 11§2] (in
dually isomorphic form under the name positive implication algebras), Iseki
and Tanaka [126] and more recently Blok and Raftery {39]. Results due to
Diego [79] show the class pBCK of positive implicative BCK-algebras is a lo-
cally finite variety, while results due to Blok and Pigozzi [34, Corollary 1.23],
Cornish {67] and Blok and Raftery {39, p. 294] show pBCK is precisely the class
of all { =, 0)-subreducts of dual Brouwerian semilattices. The following lemma
is a variant on this last.

Lemma 1.6.14. [7, Lemma 3.9] If each two. elements a, b from a non-empty
subset B of a join semilattice A have a dual relative pseudocomplement a * b
that belongs to B, then (B; x) is a positive implicative BCK-algebra.

Recall from Remark 1.6.7 that the {+,0)-terms z =~ y*, n € w, are defined

T gt v

e
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inductively by:

z—yi=x

z—y*tl=(z ¢~y for k > 0.
In [68] Cornish studied BCK-algebras satisfying:
x—'—y"'” ~r—y" ' (En)

where 1 € n € w as a natural generalisation of positive implicative BCK-
algebras; the variety of positive implicative BCK-algebras is just the class
“of all BCK-algebras satisfying (E;). For each n € w, the class e,BCK of
BCK-algebras satisfying (E,) is a variety [68, Theorem 1.4], the members of
which are known as n-potent BCK-algebras. Cornish has shown these varieties
form a strictly increasing chain [70, Section 3.6). Since their introduction the
varieties ¢,BCK, n € w, have been studied by a number of authors, including
Cornish [70, Section 4], Blok and Raftery [38, 39] and Palasiriski [179], to whom
the following theorem is collectively due.

Theorem 1.6.15. [70, Corollary 4.2]; [179]; /89, Theorem 4.2] For a variety V
of BCK-algebras the following assertions hold:

1. 'V has a commutative TD term iff V is a subvariety of e,BCK for some
n € w. IfV is a subvariety of e,BCK, n € w, then a commutative (but
not regular) TD term for V is:

e(z,y,2) = (z = (2 —9)") — (y—2)™

* 2.V has EDPC iff V is a subvariety of e,BCK for some n € w. For any
algebra A € ¢,BCK, n € w, and a,b,¢,d € A,

c=d(mod©*(q, b)) iff (c(ab)*)(ba)" = (d(ab)")(ba)"
i ((ed)(ab)") (ba") = (de)(ab)") )"
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1.6.16. Implicative BCK-Algebras. Let A := (4; /,0) be a BCK-
algebra. If A |= z/(y/2) ~ = then A is called an implicative BCK-algebra.
A well known result of Iséki [126, Theorems 9,10] asserts that a BCK-algebra,
is implicative iff it is both commutative and positive implicative, whence the
class of implicative BCK-algebras is a variety. The following equational char-
acterisation is due independently to Kalman [131] and Abbot [2].

Theorem 1.6.17. ([131, p. 402]; [2, Section 1]) An algebra {4; /,0) of type
(2,0} is an implicative BCK-algebra iff it satisfies the following identities:

z/(y/r)~z (1.35)
z/(z/y) = y/(y/=) (1.36)
(z/y)/z = (z/2)/y (1.37)
/3~ 0. (1.38)

Thus the class iBCK of implicative BCK-algebras is a variety.

Example 1.6.18. Let C, := (C; /,0) be an algebra of type (2,0) with
cardinality n + 1 and operation / defined by:

e ifa#bd

0 otherwise

ab =

for any a,b € C. Then C, is an implicative BCK-algebra; we call C,, a flat
implicative BCK-algebra on n + 1 elements. n

Because of (1.3)—(1.4) and (1.7) any two-element implicative BCK-algebra is
flat and so may be identified with C,. It is easy to see that C, embeds into
any non-trivial BCK-algebra, and hence that Q(C;) is the smallest non-trivial
subquasivariety of BCK-algebras. In fact Q(C;) is the unique atom in the
lattice of varieties of BCK-algebras; this is a consequence of the following
result, due to Kalman, which wiil b needed in the sequel.

Theorem 1.6.19. [131, Lemma 2] Up to isomorphism, iBCKg; = {C,}.

Combining Theorem 1.6.19 with Birkhoff’s subdirect representation theorem
yields the following result, which is also due to Kalman [131] (for a proof of
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Theorem 1.6.20 that does not assume the axiom of choice, see Cornish [66,
Corollary 1.5]). We remark that it is this result that justifies the change
in notation for implicative BCK difference from = to / encountered in this
section and in the sequel.

Theorem 1.6.20. [181] The class iBCK is precisely the class of all {/,0}-
subreducts of Boolean algebras (4; AV, ,0,1), where af/b = a A b for any
a, b€ A . ]

Implicative BCK-algebras were first introduced by Monteiro [168] (in du-
ally isomorphic form under the name Tarski algebras) and independently by
Kalman in [131] (under the name flocks). Implicative BCK-algebras have
been studied subsequently by a range of authors, including Abbott [2, 1] (in
dually isomorphic form under the name implication algebras}), Rasiowa {195,
Sections 11§5-7) (likewise), and Iséki and Tanaka [126]. The following repre-
sentation theorem is due to Abbott [2, 1]. In the statement of the theorem,
a semi-Boolean algebra is a locally Boolean meet semilattice: that is, a meet
semilattice (4; A,G) in which for each ¢ € A the principal subalgebra (a] is a
Boolean lattice under the semilattice partial ordering.

Theorem 1.6.21. [2, Theorem 6, Theorem 7] Bvery z'niplz'cative BCK-algebra
(4; /,0) induces a semi-Boolean algebra {(A; N,0) upon defining a N b :

I

Lt

af(a/b) for any a,b € A. Conversely, every semi-Boolean algebra (4; N,0
determines an implicative BCK-algebra (A; /,0) under the operation a/b :
(an b)ia] for ang a,b € A, where (anN b)za] denotes the complement of aN b in
the principal subclgebra (8] generated by a. Moreover, these correspondences
are inverse to eoch other.

I

A BCK-algebra A is bounded if there exists 1 € A such that ¢ < 1 for any
a € A. As usual, by abuse of language and notation we will often confuse
a bonnded BCK-algebra A with its expansion to {4; /,0,1), where 1 is a
new nullary operation symbol adjoined to the language of A whose canonical
interpretation on (4; /,0,1)is 1 € A.
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Corollary 1.6.22. The underlying posei {A; <)} of a bounded implicative
BCK-algebra (A; /,0,1) is a Boolean lattice. For any a,b € A, '

aAb=anb
avb=1/((1/a) N (1/b)).

1.6.23. BCK-[Semi]Lattices. An algebra (4; A, +,0) of type (2,2,0) is
called a lower BCK-semilattice if: (i) the reduct (4; =,0) is a BCK-algebra;
and (ii) the following conditions are satisfied with respect to the BCK partial
order < for any a, b, ¢ € A [116, p. 840]:

ahnb<a (1.39)
anb<b . (1.40)
c<aand c< bimply c<aAb. (1.41)

An upper BCK-semilattice is defined analogously as an algebra (4; Vv, =,0)
of type (2,2, 0) such that: (i) the reduct (4; ~,0) is a BCK-algebra; and (ii)
for any a,b € A, a V b is the least upper bound of the doubleton {a, b} with
respect to the BCK partial order. A BCK-laitice is an algebra (4; A,V, ~,0)
of type (2,2,2,0) such that: (i} the reduct {(4; A, =,0) is a lower BCK-
semilattice; and (ii) the reduct {4; Vv, =,0) is an upper BCK-semilattice.
The following characterisation of BCK-[semi]lattices is implicit in the proof
of {116, Theorem 1J.

Lemma 1.6.24. (cf. [116, Theorem 1) An algebra (A; A, ~,0) [A4; V
» =,0)] of type (2,2,0) is a lower BCK-semilattice fupper BCK-semilattice] iff
the following conditions hold:

1. The reduct {(A; A) [(A; V)] is a meet semilattice [join semilattice];
2. The reduct (A; =,0) is « BCK-algebra;

3. The BCK partial order coincides with [dualises] the semilattice pariial
order.,
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An algebra (A; AV, =,0) of type (2,2,2,0) is a BCK-lattice iff the following
conditions hold:

L. The reduct {A; A,V) is a lattice;
2. The reduct {A; - ,0) is a BCK-algebra,
§. The BCK partial order coincides with the lattice partial order.

Proof. To prove the lemma it is sufficient to prove the first statement in the
context of lower BCK-semilattices. Let A be a lower BCK-semilattice and let
g,b,¢c,d € A. Cleatly conditions (1) and (2) are satisfied. From (1.39) we
have (a = (a = b)) A b < =0 g = (g =), while from ¢ = (a =) <4 =0

¢+ (a~b), a=(a=>b) <4 =% pand (1.41) we have a = (a =b) <4 =0 -

(a={a=b)) A b. Thus (a=~(a=b)) Ab=a=(a=b). If c <4 =0 4
then ¢ = c~0=c+{c=d) = {c=(c=d) Ad=(c=0)Ad=cAd,
so ¢ <A 4. On the other hand, from (1.39) we have a A b <4 =0 p,
andso (a A b)=b==0. If ¢ <" d then 0= (cAd)~d=c~d and so
¢ <4 =9 d, Thus (3) holds, and A satisfies {1)~(3). Since the converse is
clear, the lemma is proved. n

Theorem 1.6.25. [116, Theorem 1] The class IBS [uBS] of lower [upper]
BCK-semilattices is a variety. Therefore the class BL of BCK-lattices is also
@ variety.

BCK-[semi}lattices were introduced by Idziak in [116]. ‘They have since been
studied by Idziak (115, 117], Raftery and Sturm [190], Kondo [141] and Ono
and Komori [176] among others. Examples of BCK-[semi]lattices abound in
the literature, and iuclude dual Brouwerian semilattices (see {164} and [60] for
details) and generalised Boolean algebras (see Corollary 3.3.56 in the sequel).

1.7 Ideals and Subtractive Varieties

The theory of ideals in universal algebra and the theory of subtractive varieties,
as developed by Agliano, Ursini and others, are the major tcols we employ in
ou study of pre-BCK-algebras. We sunitnarise here the parts of these theories
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all classes of algebras considered are pointed; typically we always assume the
existence of a constant term 0.

1.7.1. Ideal Terms. Let K be a class of algebras of the same similarity
type. A term p(Z, 7) in the langliage of K is a K-ideal term in § (in symbols
p(%,7) € ITk(¥)) if the identity p(&,0,...,0) ~ 9 holds in K. A non-empty
subset I of A € K is a K-ideal of A if for any p(Z,7) € ITk(¥) we have
pA(Gb) € I for & € Aand b € I [104, p. 46]). The intersection of K-ideals is
itself a K-ideal and one easily sees that the set Iix(A) of all K-ideals of A forms
an algebraic lattice Ix{A) under inclusion [104, Lemma 1.2]. For any B C 4,
the ideal (B)% generated by B is the set {p?(@, 3) : p(Z,7) € IT(y); d €
A,B € B}. A K-ideal is compact when it is finitely generated; for B :=
{a,.-., a,}, the compact ideal (B)Y is denoted (a,..., a,)%. By [11, p. 360]
the set CIk(A) of compact K-ideals of A forms a join subsemilattice CIx(A)
of Ix(A) under inclusion. A K-ideal is said to be principal when it is generated
by a single element; the principal ideal {B)¥ generated by B := {a} is denoted
{a)§. Clearly (0)} = {0}. When K is {A} (or, equivalently, the variety V(A)
generated by A) then a K-ideal is simply called an ideal and all affixes and
suffixes in sight are dropped, provided the context is clear. The set {[0]9 :
f € Con A} is denoted by N(A), and any element of N(A) is called a normal
set; trivially N(A) € I(A) C Ix(A). Clearly N(A) inherits in a natural way
the lattice structure of Con A: see [222, p. 205]. We say K [an algebra A]
has normal ideals if Ix(A) = N(A) for all A € K [if I(A) = N(A4)]. K
has normal ideals, the set of all ideals [lattice of ideals] of any A € K may
be denoted simply by I(A) [I(A)] without any reference to K; we adopt this
convention in the sequel. We say an algebra A [a class K] is ideal simple if the
only ideals of A [of all A € K] are {0} and A. We say A is hereditarily ideal
simple if eviry subalgebra of A is ideal simple; K is hereditarily ideal simple if
every member of K is hereditarily ideal simple. Finally, an ideal I of A is said
to be proper if I # A, and émproper otherwise. |

The study of K-ideals was initiated by Gumm and Ursini in [104], wherein they
proposed the syntactic notion of ideal described above as an abstraction of the

that we exploit in the sequel, Unless otherwise stated, throughout this section
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familiar closure properties of ‘ideals’ arising in commonly occurring classes
of algebras. Since their introduction, K-ideals in universal algebra have been
studied by Agliano and Ursini in several contexts; see [8, 218, 219] for details.

Remark 1.7.2. Blok and Raftery [40] have recently proposed a still more gen-
eral notion of ideal than that of Gumm and Ursini, applicable to general (not
necessarily pointed) quasivarieties. Inspired by [31), Blok and Raftery view the
closure systems of (K-) congfuences of algebras in a quasivariety K as models of
a certain deductive system S(K, 7) ‘extracted’ from the quasi-equational theory
of K by means of a suitable translation 7 (for details, see [40, Section 5]). For
A € K a strong ideal of A is simply an S(K, 7)-filter of A, namely a subset of A
closed under the axioms and inference rules of S(K, 7). In [40, Section 7] Blok
and Raftery compare their notion of ideal with that proposed by Gumm and
Ursini, and show in [40, Theorem 7.4] that for subtractive varieties the two
notions coincide. Because we restrict ourselves to the investigation of subtrac-
tive varieties in this thesis, we are free to work just with the syntactic notion
of ideal proposed by Gumm and Ursini; this we (mostly) do in the sequel. &

Application of Gumm and Ursini’s theory of ideals is primarily directed in
the literature towards ideal determined varieties. Recall from [104] that a
variety V is i{deal determined if for all A € V, any V-ideal is the 0-class of
exactly one congruerce, or equivalently, if the map 6 — [0]p (6 € ConA) is a
lattice isomorphism from Con A onto I(A).

Proposition 1.7.3. [104, Corollary 1.9] A variety V with O is ideal deter-
mined iff it is 0-reqular and there exists a binary term s(z,y) in the language
of V such that:

s(z,2) ~ 0 | (1.42)
s(z,0) ~ z. | (1.43)

1.7.4. Subtractive Varieties. A variety V is subtractive if there exists a
binary term s(z,y) of V such that the identities (1.42) and (1.43) are satis-
fied in V; an algebra A is subtractive if V(A) is subtractive. A variety V is
coryiuence O-permutable if for any A € V and 6,6 € Con A, [0pog = [0]gos-
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For a variety V, the following are equivalent [222, Propositicn 1.2): (i) V is
subtractive; (ii) V is congruence O-permutable; and (iii) for cach A € V, the
map & [0]p {# € Con A) is a lattice epimorphism from Con A into Iy{A).

Proposition 1.7.5. [222, Proposition 1.4] Let \V be a subtractive variety and
let A € V. Then every I € Iy(A) is a congruence class. That is, Iy(A) =
N(A), and so V has normal ideals.

Subtractive varieties were introduced by Ursini in [222] and. have been system-
atically investigated by Agliano and Ursini [9, 10, 11, 222, 225] in a program
strongly intluenced by recent developments in universal algebra, including com-
mutator theory and the theory of varieties with equationally definable pfinci-
pal congruences. Particularly important among subtractive varieties are those

satisfyips 1 370
s(0,z) = 0. 1.44
)

Indeed, recall from [81, Definition 2] vhat a variety V is congruen.ce 0 -distributive
if for any A € V and 8,¢,¢ € Con &, [Vpveyry = [0)onp)vionp)- A variety
that is both ongruence 0-permutable and congruence O-distributive is said to
be arithmetical at 0. A variety V is ideal distributive if Iv{A) is a distribu-
tive lattice for any A € V. For a varicty V, the following are equivalent [81,
Theorem 4], 19, Proposition 4.3}: (i) there exists a binary term s(z,y) of V
such that V sutisfies (1.42)~(1.44); (ii) V is arithmetical a¢ 0; and (i) V is
subtracirve and ideal distributive.

1.7.6. Congruences of Subtractive Varieties. In general, a subtractive
variety need not be ideal determined. Let A be a (subtraciive) algebra and I €
[{A). Let CON(I) := {# € ConA : [0} = I} denote the set of congruences
of A whose O-classes coincide with I. Let I° = A CON(J) [I€ := \f CON(I)]
denote the least [greatest] congruence of A whose O-class is . If A is an
algebra with .iormal ideals, CON(I) = {I°, I] is an interval in Con A [10,
Proposition 1.3). Let ( )* : I(A) -+ ConA and ( }* : I(A) — Con A ke the
maps defined by I+ I¢ and 1 ~+ I¢ respectively. For # € Con A let bo [61]
denote the least [greatest] congruence {[0}s)° [([0]s)¢] on A whose O-class is
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[0)p. Let 8 := CON([O]&); notice § = [6y,8,). Let ( )o : Con A — Con A and
{)1: Con A — Con A be the maps defined respeciively by § — 8; and 6 — 6;.

A system of 0-terms (without parameters) for a class K of similar algebras is
aset D= {dj (z,y):5€J } of ierms in the language of K such that:

1. K= dj(z,2) = 0 for all j € J;
2. Forall Ac Kand ¢ € 4,if d*(0,a) = 0 for all j € J, then a = 0.

Let A be an algebra and [ € I{A). Define I® C A x A by (a,b) € I? iff
for all j € J, d*(a,b) € I. For 6 € Con A let §° := [0]7. For a class K of
similar algebras, aset D := {dj(:c, y):jed } of terms of K is a system of ideal
congruence terms (without parameters) for K (in short, an IC-system (without
parameters) for K) if 87 € Con A and [0]s0 = [0]o for all A € K. Observe that
if K has normal ideals, D is an IC-system for K iff for all A € K and I € I(A),
I? € CON({I), or, equivalently, I® € Con A and [0];p = I.

Proposition 1.7.7. [10, Proposition 8.8, Proposition 8.9] Let V be a varieiy
with normal ideals and let D be a system of O-terms for V. The fellowing are
equivalent:

1. For AeV, (0)2 € ConA;

2. D is an IC-system for V;

3. ForAcVandfcCon A, 00 =46,;
4. For AeVand I € (A), I? = I,

A variety is said to be finitely congruential if it has a finite IC-system without
parameters; by {10, Theorem 3.10] a finitely congruential variety with normal
ideals is subtractive. For subtractive varietics, finite congruentiality generalises
point regularity: see Agliano and Ursini {10, Remark (4), p. 322].

1.7.8. Equationally Definable Principal Ideals. A class K of algebras
of a given similarity type has Equationally Definable Principal K-Ideals (briefly,
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EDPI) if there are terms p;(z, ), ¢i(z,¥), ¢ = 1,...,n in the language of K
such that for any A € K and ¢, b € A:

a € (b)a iff p2(a,b) = ¢*(a, d) i=1,...,n.

Equationally definable principal ideals were introduced by Agliano and Ursini
in [9] as the ideal-theoretic analogue of equationally definable principal con-
gruences. Subtractive varieties with EDPI have been investigated at length by
Agliano and Ursini [9, 11], to whom the following result is due.

Theorem 1.7.9. [6, Theorem 4.1] For a subtractive variety V, the following
are equivalent:

1. V has EDPI;

2. There 1s a binary term p(z,y) of V such that:
a € (b)A sﬁr pA(aa b) =0

forany A eV;

3. The join semilattice (CI(A); V, (0)a) of compact ideals is dually rela-
tively pseudocomplemented for any A € V.

Moreover, if V has EDPI then there exists a binary term z =~ y of V witnessing
both subtractivity and EDPI in the sense of (2) above. That is, there exists a
binary term x =y of V such that for any A€V and 2,b € A,

a=1{
a—-20=gq

a€(bya iff a—4b=0,

Propesition 1.7.10. ([11, Theorem 3.1]; [4, Corollary £]) Let V be a sub-
tractive variety. IfV has EDPC thenV has EDPI. Conversely, if V is ideal de-
termined and has EDPI, then V has EDPC and the map 6 v+ [0]s (6@ € Con A)

1 @ duas Brouwerian semilattice isomorphism from Cp A onto CI{A) for any
AeV,
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Example 1.7.11. [11, Example 3.7] An algebra (4; —,1) of type (2,0) is
called a MINI-algebra if the following identities are satisfied:

RS - | (1.45)
loz=s (1.46)
(z=@—=2) =2 (Y2 (@E-22))=1 (1.47)
= (y—z)~1. {1.48)

Hilbert algebras are precisely those MINI-algebras for which the quasi-identity:
trycl&y—resrxldrry ‘ (1.49)

holds. Hence the variety of MINI-algebras is a natural generalisation of the
variety of Hilbert algebras to the subtractive but not 1-regular case. In conse-
quence, the class of MINI-algebras provides a natural example of a subtractive
variety with EDPI (that does not have EDPC); indeed, the term y — x wit-
nesses both subtractivity and EDPI in the variety of MINI-algebras in the sense
of Theorem 1.7.9 above. ]

Proposition 1.7.12. [11, Corollary 3.6] For a variety V with language (=~ , 0)
of type (2,0) the following are equivalent:

1. Forall AcV and a,b € A,
a€{b)a iff a—b=0

a—-b=0and b—a=0 implies a = b;

2. V is a variety of positive implicative BCK-algebras.

Let V ke g variety. A meet generator term for V is a binary term M in the
language of V such that for any A € V and a, b € A [11, p. 378],

(a)a A& (B) 5 = (a 1A b) 4.

A join generator term for V is a binary term U of V such that for any A € V
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and a, b € 4 [11, p. 379),
{@)a VI (b)a = (a U b)a.

Subtractive varieties with a meet liwin] generator term have been studied by
Agliano and Ursini in [11, Section 4, Section 5], For a subtractive variety V,
the following are equivalent: (i) V is ideal distributive and the meet of two
principal ideals is principal; (it) V has a meet generator term [11, p. 378; The-
orem 4.2). Concerning join generator terms, the following proposition obtains

for arbitrary (that is, not necessarily subtractive) varieties.

Proposition 1.7.13. [11, Proposition 4.3] For a variety V, the following are

equivalent:
1. For any A €V, the join of two principal ideals is principal;

2. For any A €V, every compact ideal is principal;

3. There is a binary term U and two ternary terms r(z,y, 2) and ¢(z,y, 2)
of V such that the ideniities:

ouo~=0 |
r(z,y,0) =~ 0
t(z,y,0) =0
r{z,y,sUy) =~z

tz,y,zUy) =y

hold tn V;
4. V has a join generator term.
If any of (1)~(4) hold, the binary term U of (3) is a join generator term for V.

Let K be a class of similar algebras. For any A € K let =4 be the relation
defined on A by [6, p. 2):

axp b iff GA (0, a) = eA(Oa b)
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for any a, b € A. If K has normal ideals, then a ~o4 b iff Na(e) = Na(b) (by
Agliano [7, p. 5]), where Na(a), Na(b) denote the normal sets generated by
{a}, {b} respectively. Therefore if K is a subtractive variety then @ ~4 b iff

(&) = (B)a-

Lemma 1.7.14. Let V be o subtractive variety with EDPI and let £ =y be
a binary term witnessing both sublractivity and EDPI for V in the sense of
Theorem 1.7.9. For any A €V,

~a = {(a,0):a—2b=0=0b"Aa}.

Proof. Let V and = be as in the statement of the lemma. Let A € V. For
any a,b € A, we have that areab iff (a)y = (b)s if @ & (b)a,b € (a)a iff
a=2b=0=b=4q (by EDPI). n

Because of Lemma 1.7.14, the following theorem may be inferred from resuits

due to Agliano and Ursini [11].

Theorem 1.7.15. Let V be a subtractive variety with EDPI. Let ¢ ~ y witness
both subtractivity and EDPI for V in the sense of Theorem 1.7.9 and let A € V.
The following assertions held:

1. {11, Theorem 3.4(2)] (PI(A); x,(0)a) is a positive implicative BCK-
algebra isomorphic with (A; ~,0)/~a;

2. (11, p. 383] If V has a meet generator term z My, the compact ideals *
of A are closed under intersection. Thus (CI(A); ), V,*, (0)a) is a :
dually Brouwerian lattice and (PI(A); N, *,{0)a) is a (N, *)-subreduct
of (CI(A); N,V, %, (0)a) isomorphic with (4; N, = ,0)/~a;

3. [11, Theorem 5.1(2)] IfV has a join generator term z\y, then (PI(A); V
+*,{0)a) is a dual Brouwerian semilattice isomorphic with (4; U, =~ ,0)/~a;

R N T T T L T e

4. [11, Theorem 5.6(2)] If V has both a meet and join generator term then
(PI(A); N,V,*,{(0)a) is a dually Brouwerian lattice isomorphic with

(Aa n, U, = :0>/ﬁA'

A
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Let K be a class of similar algebras. For any A € K, the relation =, is
an equivalence relation. If ~a = wy for any A € K, K is said to be con-
gruence orderable. A point-regular congruence orderable variety is Fregean.
Congruence orderable varieties were introduced by Biichi and Owens in {49
and have been studied by Idziak, Somczyfiska and Wroniski [118], Pigozzi [181]
and Agliano [7}, to whom the following proposition is due.

Proposition 1.7.16. [7, Theorem 2.1] Let V be a subtractive variety and
let s(z,y) witness subtractivity for V. If V is congruence orderable then V is
0-reqular and the terms dy(z,y) := s(z,y) and dy(z,y) := s(y,z) witness 0-
reqularity for V in the sense of Proposition 1.2.6. Thus a congruence orderable
subtractive variety is Fregean.

Let K be a class of similar algebras. If 4 € Con A for any A € K then K
is called weakly congruence orderable or congruence quasi-orderable. Weak
congruénce orderability was introduced by Agliano in [6] as a weakening of
the concept of congruence orderability. For subtractive varieties with EDP],
weak congruence orderability has been studied by Agliano and Ursini [11] and
Agliano [6), to whom the following result is due.

Lemma 1.7.17. [6, Corollary 2.5] Let A be a subtractive algebra. Then A
is weakly congruence orderable iff for any binary term s(z,y) witnessing sub-
tructivity for A one has:

~a = {(a,b): s%(a,b) = 0 = 52(b, a) } = (0)5.

Proposition 1.7.18. Let V be a subtractive variety and let s(z,y) be a term
witnessing the subtractivity of V. ThenV is congruence orderable iff V is weakly
congruence orderable and the binary terms d&(z,y) = s{z,y), db(z,y) =
s{y, ¢) witness the O-regularity of V in the sense of Proposition 1.2.6.

Proof. Let V be a subtractive varicty wid let s(z,y) be a term witnessing
the subtractivity of V. Suppose V is rotgruence orderabie. Trivially V is
weakly congruence orderable. Morcover, by Proposition 1.7.16 tie terms
di(z,y) == s(z,y), do(z,y) = s(y,z) witness the O-regularity of V in the
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sense of Proposition 1.2.6. Conversely, suppose V is weakly coigruence order-
able and moreover that the binary terms dy(z, ) = s(z, y), da(z, y) := s(y, z)
witness the O-regularity of V. Let A € V and a,b € A. By Lemma 1.7.17,
ar,b implies s2(a,b) = 0 = sA(b,a), whence di(a,b) = 0 = df(a,b),

whence @ = b by Proposition 1.2.6. Thus V is congrueace orderable. n

Proposition 1.7.19. [6, Theorem 4.2] Let V be a weakly congruence orderable
subtractive variety with EDFPI. Then V. is a congruence orderable subtractive
variety with EDPC.

1.7.20. Binary and Dual Binary Discriminator Varieties. Let A bea
set. For a fixed but arbitrary 0 € A the binary discriminator and dual binary
discriminator on A are the functions b : A2 — A and h : A% — A defined
respectively by [58, Section 2j:

‘ a ife=0 0 ife==0
b(a,c) = and h(e,c):=
0 otherwise a otherwise

for any @, ¢ € A; the element 0 € A is called the discriminating elemert. An
algebra A with O is called a binary discriminator algebra [dual binary dis-
criminator algebra] if there is a binary term b [a binary term h] of A whose
canonical interpretation on A is the binary discriminator [dual binary discrimi-
nator] with discriminating element 04. A variety V with 0 is said to be a binary
discriminator variety [dual binary discriminator wariety] if there is a Linary
terma b of V [k of V] and a subclass K of V such that 6* is the binary discrimi-
nator {14 is the dual binary discriminator] witl: discriminating element 0* on
each A € K and V = V(K); b [h] is called a binary discriminator term [dual
dinary discriminator term| for V. Note that any binary discriminator variety
is a dual binary discriminator variety, since h(z, y) = b(z, b(z, y)); conversely,
a dual binary disciiminator varietjr is a hinary discriminator variety iff it is
subtractive [58, Theorem 2.1(1)].

Theorem 1.7.21. [58, Theorem 5.1] For a variety V the following are equiv-
alent:
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1. V is a binary discriminalor variety;
9. The following assertions hold for V and a binary term b(z,y) of V:

(a) V satisfies the identities:

b(z,0) =~ z,
(0, z) ~ «,
b(z,z) = 0,
b(z, by, 7)) = ;

(b) V satisfies the identity:
b(f(21s- -2 30),y) = b(f(b(z1,9), ..., b(2n, ), 1)

for every n-ary operation symbol f in the type of V;

{¢c) V is generated by a class K C V whose members are ideal simple;

3. There exists a binary term b(z,y) of V satisfying (2)(a)—(2)(b) above
and V is generated by a class K C V whose algebras have no proper

congruence kernels.

The binary discriminator and dual binary discriminator were introduced by
Chajda, Halas and Rosenberg in a 1999 paper [58] in an attempt to generalise
the ternary discriminator and dual ternary discriminator to varieties exhibit-
ing congruence permutability and congruence distributivity only locally at 0
respectively. For a brief discussion contrasting the binary discriminator with
the ternary discriminator, see {58, p. 242, pp. 247-248, p. 249).

1.8 Algebraisable and Assertional Logics

In [31] Blok and Pigozzi introduced an abstract notion of algebraisability based
on a generalisation of the classical Lindenbaum-Tarski process in an attempt
to formalise the precise connection between EDPC and the deduction theo-
rem [182, p. 125). Since the publication of the seminal monograph [31] alge-
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braic logic has been intensively developed by Blok, Czelakowski, Herrmannm,
Pigozzi and others. In this section we briefly review Blok and Pigozzi’s theory
of algebraisable logics, and also consider some recent developments in algebraic
logic concerning the assertional logics of pointed quasivarieties.

1.8.1. Algebraisable Deductive Systems. Let K be a class of algebras
of type £ and let S be a deductive system of the same type. K is called
an algebraic semantics for S if g can be interpreted in | in the following
sense: there exist finite families {6y,...,d,} and {e1,...,&,} of equations in
one variable such that for all 'U {p,%} CFmzand I =1,...,r,

Frge it {800 ~edx):xe€T; t=1,...,r} =k G(p) = &lp).
(1.50)

K is said to be equivalent to S if =« can be interpreted in S in the following
sense: there exists a finite system {A;,..., A} of formulas in two variables
such that for all I"'U {p, ¥} C Fm,

prP bk {0{eA) me(pdAip) 1 i=1,...,m; t=1,...,r}
| (1.51)

The equations 8, ~ &,, t = 1,...,r, are called the defining equations for S
and K while the family {A,,..., Ay} of composite binary connectives is called
a system of equivalence formulas for S and K. A deductive system is said to be
algebraisable if it has an equivalent algebraic semantics. Suppose S is algebrais-
able with equivalent algebraic semantics K. Because of [31, Corollary 2.11],
K may be identified with the quasivariety Q(K) it generates; that is, K is an
equivalent quasivariely semantics. If K is a variety then K is an equivalent
variety semantics, and in this case S is said to be strongly algebraisable. The
following intrinsic characterisation of algebraisable deductive systems is due to
Blok and Pigozzi {31].

Theorem 1.8.2. [81, Theorem 4.7] A deductive system S is algebraisable iff.
there exists a finite family {Ay,...,Am} of formulas in two variables and finite
families {6,,...,6,} and {e1,...,&,} of equations in a single variable such that
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for any connective @ (of rank n) and formulas ¢y, ..., 05, Y1,..., %0, ©, ¥,
y the following five conditions hold for j =1,...,m:

1. Fg 0Azp;

2. {pAip:i=1,...,m} g YA;p;

S {pAp:i=1,...,m}Uu{A;x:i=1,...,m} g Aj(p, x);
foA{orDiri=1,...,m; k=1,... .0} Fgw(en, ..., @) @(%1, . .. ¥0);
5. x g {S()AiE(x):i=1,...,m; t=1,...,7}.

In this event {{y,...,Ap} and &y = &y, t = 1,...,7 are systems of equivalence
formulas and defining equations for S.

It is possible for distinct algebraisable deductive systems to have the same
equivalent algebraic semantics: see Blok and Pigozzi [31, Chapter 5.2.4]. On
the other hand, the equivalent algebraic semantics associated with a given
algebraisable deductive system is unique {31, Theorem 2.15] and is determined
by the algorithm of the following theorem.

Theorem 1.8.3. [81, Theorem 2.17] Let S be a deductive system given by
a set of arioms Az and o set of inference rules Ir. Assume § is algebrais-
able with equivalence formulas {A,,...,An} a'.'nd defining equations d; =~ &,
t =1,...,7. Then the unique equivaleni quasivariety semantics for S is az-
iomatised by the identities:

1. 6!".((19)%&(@)) t=1,...,r,
for each ¢ € Az;

2. 8i(zAiz) me(zdiz), i=1,...,m;t=1...,7;

together with the following quasi-identities:

3. &:::1&;:161()(“) ~ Et(xﬂ) o 6‘(@) ~ EI(S")a I=1...,r
for each {{x1,...,xn}, ) € Ir;

4 & &0z iy) = e(zhiy) Do =y,
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Example 1.8.4. Let £ := {—} be a language of type (2). BCK logic is
the deductive system BCK := (£, e ) defined by the following axioms and 3
inference rule [28, Lecture 6, Section 2.2]:

(0= 0) = ((a=1) = (p = 1) O ® |
(po(g=n)—=(a=—r) (©)
p—=(g—p) (K) "
PP = ¢ Fpek ¢ (BCK-MP)

BCK logic has been extensively studied in the literature: see [80, Section 4] for

a survey and references. Results due to Blok and Pigozzi [31, Theorem 5.10,
Theorem 5.11] show BCK is algebraisable; its equivalent algebraic semantics
is termwise definitionally equivalent to the quasivariety BCK? of dual BCK-
algebras introduced by Blok and Pigozzi in [32, Example 7.3] and axiomatised

by the following set of identities and quasi-identities:

oy (yo22)2(s—2) =1
o {(zoy) =y =1
T—=I~x~1

z—=>1~1

zry=1l1&y—zx=1Dzr~y.

Clearly BCK? is itself termwise definitionally equivalent to (in fact, is dually
isomorphic to) the quasivariety of BCK-algebras—for details, see {32, Exam-
ple 7.3]. ‘ "

Following the publication of the seminal monograph [31] algebraisable logics
have been the object of intense investigation; for a (partial) survey of the
literature, see the tutorials of Blok and Pigozzi [36) and Blok and Jonsson [28).

1.8.5. Matrix Semantics. An L-matriz (or simply a matriz when C is
understood) is a tuple (A, F), where A is an algebra of type £ and F is 2
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subset of A. For any L-matrix (A; F) and I'U {¢} C Fmyg, let k=, ry:
P(Fmg) — Fm, be the relation defined by I' Fa; r) @ if:

h(¥) € I for every o € I' implies 2(p) € F, for every h: Fmg — A.

If M is a class of L-matrices, then I" Em @ if I' |=(a; 5y ¢ for every (A; F) € M,

Let S be a deductive system of type £, A be an algebra of the same type and
let F C A. The subset F' of A is called an S-filter of A, or simply a filter
when S is understood, if I' b ¢ implies I' {=(a, py @ for all ' U {p} C Fmy;
the set of all S-filters of A is denoted Fig A. If F is an S-filter, then the L-
matrix (A; F) is called a mairiz model of S; the class of all matrix models
of S is denoted MatS. A congruence # on A is said to be compatible with F
if a € F and (g, b) € 6 implies b € F [31, Section 1.4]; the largest congruence
on A compatible with F' is called the Leibniz congruence on A over F and
is denoted Qs (F) [31, Theorem 1.5]. The natural map 24 : FisA — Con A
defined by F = QA(F) is called the Leibniz operator on A. An S-matrix is
said to be reduced if QA(F) = wa, and the class of all reduced S-matrices is
denoted Mat* §.

Theorem 1.8.6 (Reduced Matrix Completeness Theorem). [36, The-
orem 3.5] Let S be a deductive system and let Mat™ S be the class of all reduced
S-matrices. For all ' U {op}, )

Prge iff I Emars @

For a deductive system § over a language £, a class M of L-matrices is said
to be a matriz semantics of S if, for all I'U {p} C Fm¢, I' g 0 iff I = o
For a deductive system §, a quasivariety K and a system 6, =~ ¢, t =1,...,r
of equations in one variable the following are equivalent [31, Theorem 2.4]: (i)
the class of matrices {(A, {F§¥}) : A € K}, where F{* = {a € A:6{(a) =
eMa), t=1,..., 7}, is a matrix semantics for §; and (ii) K is an algebraic
semantics for S with defining equations §, ~ e, t=1,..., .

Theorem 1.8.7. [81, Corollary 5.3] Let § be an algebraisable deductive sys-
tem. Let K be the equivalent quasivariety semantics of S and let Mat*$S be

e
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the class of all reduced S-matrices. Then.K is the class of all algebra reducts
of Mat* S, viz.:

K={A:(A,F)€Mat'S for some S-filter F of A}.

Lemma 1.8.8. Let S, and Sy be deductive systems over the same language L.
If $1 and Sy are algebraisable with the same defining equations and the same
equivalent algebraic semantics then they coincide.

Proof. Let S, and S; both be algebraisable with equivalent quasivariety se-
mantics K and defining equations é; =~ ¢, £t = 1,...,r. By previous remarks
and Theorem 1.8.7, Mat*S; = {{A,{a € A: 6 (a) =el(0}, t=1,...,7}):
Ac K} = Mat* S,. Hence S, and S, coincide by Theorcm 1.8.6. N

1.8.9. Assertional Logics of Pointed Quasivarieties. For a quasiva-
riety K of algebras with 1 over a language L, the assertional logic of K, in

symbols S(K, 1), is the closure operator kg 1y defined by the class of matrices
M(K, 1) := {(A, {14} : A € K} in the sense that:

P"'s(KJ)‘P iff I' vk e

for any I' U {¢} C Fm,. Because K is a quasivariety, Fs(k,1) 18 finitary and
structural, and hence is a deductive system in the sense of this thesis. Since
M(K,1) is a matrix semantics for S{K, 1) by definition, the asserticnal logic
S(K, 1) may be defined equivalently by specifying that, for any I'U{¢} C Fm,,

rgnye ff {v=1l:ypelpke~Ll

The entailment {¢y =~ 1 : ¢ € I'} =« v =~ 1 is itself equivalent to the existence
of some finite A C I" such that:

Kk &w@) =15 0(5) ~1

whence it is a harmless notational convenience to assume, for any entailment
A bgacqy o, that AU{p} is a finite set of terms, all of the form x(f), where 7 is
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understood as a finite sequence of variables, including all that occur in AU{p}.
See Raftery and van Alten [193, Section 4.1].

Example 1.8.10. Let M(BCK?, 1) denote the class of matrices of the form:
(A, {17} : A e BCKP)

where BCKP is the class of dual BCK-algebras (recall Example 1.8.4). By an
argument analogous to that of [36, p. 24] M(BCK?, 1) is precisely the class of
reduced BCK-matrices of BCK. By the reduced matrix completeness theorem
it follows that the deductive system S(BCK®, 1) coincides with BCK. .

Assertional logics of pointed classes were introduced by Pigozzi in [181, Sec-
tion 2] (but see also Curry [75, pp. 64 ff.]). For recent work concerning as-
sertioral logics of pointed classes, see Blok and Raftery [41], [40, Section 6],
Czelakowski and Jansana [77, Section 6], Czelakowski and Pigozzi [78, Sec-
tion 2.1], Raftery and Barbour {16, Section 2.3] and Raftery and van Alten (193,
Section 4.1]. (See also Ursini [224, Section 2] for related work.) For varieties
with normal ideals, the associated assertional logics have been investigated by
Agliano and Ursini in {10, pp. 314 ff.], wherein the following lemma is stated
without proof. The proof we give below is implicit in Blok and Raftery (40,
Lemma 5.1, Section 7]; see also Blok and Raftery {40, Theorem 7.4, Corol-
lary 7.5).

Lemma 1.8.11. Let V be a variety with normal ideals and let S(V, 1) be the

assertional logic of V. For any A € V, the V-ideals of A coincide with the
S(\/, 1)-filters of S(V, 1).

Proof. Let V, §(V,1) and A be as in the statement of the lemma. By [40,
Lemma 5.1) the 1-class of any congruence of A is a S(V, 1)-filter of A. Con-

versely, any S(V, 1)-filter is a V-ideal by the remarks of [40, Section 7, p. 180].
N :

The following lemma is also stated without proof by Agliano and Ursini in {10,
p. 314).
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Lemma 1.8.12. Let V be o variety with normal ideals. For any A € V and
Iel(A), Qa(l) =1Ix

Proof. Let V, A and I be as stated. In view of the preceding lemma, by [40,
Proposition 6.1) we have that I = [l]g, (s for any I € I(A)}, which implies
Qa(I) = I as required. s

For a variety V with normal ideals, let V. := {A : A = B/(1)§ for some
B € V} be the class of reduced algebras of V. -

Remark 1.8.13. In [10, p. 296, p. 315] Agliano and Ursini define ¥, :=
{A/(0)3 : A € V} for any variety V with normal ideals. This definition is in
error {226]: V. must be closed under isomorphic copies by {10, Proposition 3.3].
The definition of V. used throughout this thesis reflects this correction. =

Theorem 1.8.14. Let V be a variety with normal ideals. The following are

equivalent:
1. V is finitely congruential;
2. S(V, 1) is algebraisable;
3. V. is a quasivarietly.

Moreover, if S(V, 1) is algebraisable then V, is the equivalent algebraic seman-
tics of S(V, 1). ‘

Proof. The first assertion is [10, Theorem 3.13]. By [77, Proposition 6.9] and
Lemma 1.8.12, V, is exactly the class of algebra reducts of the reduced matrices
of S{V, 1), which implies V, is the equivalent algebraic semantics of S(V, 1) by
Theorem 1.8.7. , u

Theorem 1.8.15. [10, Corollary 3.17] Let V be a variety with normal ideals.
The following are equivalent:

1. V is ideal determined;

2 V=V,
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3. 8(V,1) is strongly algebraisable and its equivalent algebraic semantics is
ezactly V.

Generalisations of the previous theorem to the effect that a quasivariety K
with 1 is K-1-regular iff K is the equivalent algebraic semantics of its alge-
braisable assertional logic S(K, 1} have very recently been obtained by several
authors: see Blok and Raftery [40] and Barbour and Raftery 16, Corollary 50].

1.8.16. The Deduction Theorem in Algebraic Logic. Let S be a de-
ductive system. S is said to have a Deduction-Detachment Theorem (DDT} if
there exists a finite set £ := X(p, ¢) == {¢i(p,¢) : i = 1,...,n} of formulas
of S such that for any set I'U {i, ¢} of formulas of S [36, Section 4],

Tobgy iff okg S(p,9).

In this case, ¥ is called a deduction-detachment set for S. Observe that the
existence of a DDT for S does not imply the existence of a conditional for S;
of course, the converse does obtain.

Theorem 1.8.17. [86, Theorem 7.8] Let S be a strongly algebraisable deduc-
tive system and let V be its equivalent variety semantics. Then S has a DDT
iff V has EDPC.

The deduction theorem in algebraic logic has been extensively investigated by
Blok, Pigozzi, Czelakowski and others: see for instance [33, 36, 76]. For a
history of the deduction theorem in logic see Porte {185].




Chapter 2

The Theory of
Pre-BCK-Algebras

In this chapter we investigate the theory of pre-BCK-algebras. Our study is
based on and guided by Iséki and Tanaka’s standard survey paper An intro-
du.tion to the theory of BCK-algebras [126}. Thus the scope of our study is
largely limited to the variety of pre-BCK-algebras simpliciter and to some nat-
ural pre-BCK-algebraic counterparts of the varieties of commutative, positive
implicative and implicative BCK-algebras. Qur study of pre-BCK-algebras
does not extend to pre-BCK-algebraic analogues of the varieties of n-potent
BCK-algebras described in §1.6.13, or to pre-BCK-algebraic analogues of other
varieties of BCK-algebras that have been considered in the literature, such as
the residuation subreducts of hoops.

QOur main goal in this chapter is to show that pie-BCK-algebras admit a co-
herent elementary theory. In particular, our aim is to demonstrate that much
of the first-order theory of BCK-algebras, suitably generalised, extends to pre-
BCK-algebras. (By fiat, we highlight differences between the theory of pre-
BCK-algebras and the theory of BCK-algebras where these occur.) Nonethe-
less, our ultimate motivation in studying pre-BCK-algebras is not simply an
interest in generalisation for its own sake; rather, the driving force behind our
study lies in the development of the applications of the sequel. This focus
is most clearly reflected in this chapter in the emphasis given herein to the
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development of the order theory and the ideal theory of pre-BCK-algebras.

2.1 Pre-BCK-Algebras

In this section we study pre-BCK-algebras as a generalisation of pre-BCK-
algebras to the subtractive but not point-regular case.

In §2.1.1 pre-BCK-algebras proper are introduced. It is shown that the variety
PBCK of pre-BCK-algebras coincides with a certain variety of algebras gen-
eralising BCK and considered by Blok and Raftery in [38] and independently
(in dually isomorphic form) by Agliano and Ursini in [10]. We also prove that
the variety of pre-BCK-algebras is a subvariety of the varietal closure of the
quasivariety of left residuation algebras. In one of the two main results of the
section, a ‘Clifford-McLean’-type theorem for pre-BCK-algebras, we show that
for a pre-BCK-algebra A, the equivalence = induced by the natural pre-BCK
quasiordering X (in the sense of Lemma 1.2.2) is a congruence on A such that
the quotient algebra A/Z is the maximal BCK-algebra homomorphic image
of A.
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For a suitable notion of pre-ideal, the pre-ideal theory of pre-BCK-algebras is
studied in §2.1.20. We provide a simple characterisation of pre-ideal generation

AT I T

in pre-BCK-algebras. For a pre-BCK-algebra A, it is shown that a pre-ideal
of A is just the inverse image of an ideal of the maximal BCK-algebra homo-
morphic image A /5. We also establish some other properties of pre-ideals of
pre-BCK-algebras.

In §2.1.25 the relationship between pre-ideals and congruences in pre-BCK-
algebras is invéstiga.ted. It is shown that every pre-ideal of a pre-BCK-algebra A
is the O-class of a PBCK/BCK-congruence on A. Hence we deduce that for
pre-BCK-algebras, pre-ideals coincide with the (PBCK-) ideals of Gumm and
Ursini described in §1.7.1. We prove that the lattice of all ideals of a pre- | "'
BCK-algebra is isomorphic to its lattice of PBCK/BCK-cngruences. Further,
we establish the existence of a commutative square of isomorphisms between :
the ideal and PBCK/BCK-congruence lattices of a pre-BCK-algebra and the
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ideal and BCK-congruence lattices of its maximal BCK-algebra homomorphic

image.

The assertional logic of the variety of pre-BCK-algebras is studied in §2.1.33.
We prove the variety of pre-BCk-algebras is finitely congruential, and hence
show the assertional logic of the variety of pre-BCK-algebras is algebrais-
able with equivalent algebraic semantics (termwise definitionally equivalent
to) BCK. In consequence we infer the other main result of the section: a

n
quasi-identity of the form @_z}s,(i‘) ~ 0 D t{F) ~ 0 is satisfied by PBCK iff it
is satisfied by BCK. |

2.1.1. Pre-BCK-Algebras. An algebra (4; +,0) of type (2,0) is cailed
a pre-BCK-algebra (in the sense of Cornish) if the following identities are
satisfied {71, Section 1]:

(z~y)—~(@—2)~(2=y)=0 (2.1)
(c-(z-y)~y=0 (2.2)
t—g =0 (2.3) i
0—z 0. (2.4)

+

Because of (2.3), the class of pre-BCK-algebras may be understood as a variety
of pointed groupoids; consequently we (informally) denote pre-BCK difference i
by juxtaposition in the sequel when no confusion can arise. Clearly a pre-
BCK-algebra is a BCK-algebra iff it satisfies the quasi-identity:

-

r

r—y=0&y—r=0Dz~xy. (2.5)

Recall from [121, 123] that a BCK-algebra A := (4; ~, 0) satisfies Iséki’s con-
dition (8) iff there exists a largest element a + b of the subset {c € 4 : ca < b}
for any a,5 € A4, or, equivalently, A possesses another binary operation +
such that a(b + ¢) = (ab)c is identically satisfied. Pre-BCK-algebras were
introduced by Cornish in [71] as a means of constructing BCK-algebras from
BCK-algebras with condition (S). Cornish’s construction, reproduced in Ex-
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ample 2.1.2 below, generalises Wroniski’s example {240} showing that the class
of BCK-algebras is not a variety; see [71, Theorem 2.2) and the remarks there-
after.

Example 2.1.2. [71, Section 2] Let (4; =,+,0) be a BCK-algebra with
condition (S) and let ¢ be any element of A. Let A’ := {a’ : a € A} and
A" = {a" : a € A} be two sets equipotent with A and let W,(4) be the
(disjoint) union of A, 4’ and A”. For any a, b € W;(4) let the product = We{4)
be defined as follows:

Ap

ab:=a—"b,

al'bf - a"bﬂ = b_‘_Aa
ab’ = agb” := 0,

a'b = (a+b),

a"b = (a + b)",

a'b" = a"b = {b + t)a.

By [71, Lemma 2.1] W,(4) := (W,(4); ~W+4),0) is a pre-BCK-algebra.
Wroniski's example {240 showing that the class of BCK-algebras is not a variety
is W1 (w) . . 2

Let {(4; ~,0) be a pointed groupoid with operation - defined by ab = 0
for any a,b € A. It is clear from (2.1)-(2.4) that (4; -~ ,0) is a pre-BCK-
algebra. This observation is indicative of the fact that interesting classes of
pre-BCK-algebras are those possessing one or more additional properties. Let
{(4; =, +,0) be a BCK-algebra with condition (S) and let ¢ be any element
of A. Because a -+ 0 = a for any a € A, W,(4) is a pre-BCK-algebra sat-
isfying the identity  ~ 0 ~ . Thus it is consistent with Cornish’s original
construction to mean by ‘pre-BCK-algebra’ a pre-BCK-algebra (in the sense
of Cornish) satisfying z =0 ~ 5. In this thesis, therefore, a pre-BCK-algebra
is a pre-BCK-algebra (in the sense of Cornish) satisfying:

T-0xz. (2.6)

AR B
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The variety PBCK of pre-BCK-algebras is thus the class of algebras axioma-
tised by (2.1)-(2.4) and (2.6). Given these definitions, the following result is

immediate.
Theorem 2.1.3. The variety of pre-BCK-algebras is subtractive witness z = y.

Example 2.1.4. The identities {2.3), (2.4) and (2.6) assert that up to isomor-
phism there is a single two-element pre-BCK-algebra, namely the two-element
implicative BCK-algebra C;. It is easy to see C; embeds into every non-trivial
pre-BCK-algebra and hence that Q(C,) is the smallest non-trivial subquasi-
variety of PBCK; ¢f. [231, p. 6]. Even more is true: because C, generates the
class of implicative BCK-algebras as a variety (recall Theorem 1.6.19), iBCK
is the unique atom in the lattice of varieties of pre-BCK-algebras. . =

Example 2.1.5. Denote by B, the algebra ({0,1,2}; +,0) of type (2,0)
with operation + defined by:

~B2lg 1 2
0 {000

100
2 {200

The 3-element pointed groupoid B, is the simplest example of a pre-BCK-
algebra that is distinct from a BCK-algebra. In their Siena paper [54] Burris
and Berman have recently catalogued all-3-element groupoids; the Siena cat-
alogue number of By is 216. From this remark and [54, p. 390] the following
facts are known about the variety V(B,) g:eherated by Bs:

¢ The set of types (in the sense of Hobby and McKenzie’s tame congruence
theory [110]) realised in V(B,)} is {1, 3};

¢ V(B,) is not congruence distributive, congruence modular or congruence
permutable; |

¢ V(B,) does not have a decidable first-order theory;

¢ |[F(0)| =1, |F(1)] = 2 and |F(2)} = 7, where |F(n)| denotes the cardi-
nality of the V(B;)-free algebra F(n) on n free generators.
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Classes of algebras generalising BCK but which fail in any sense to be point-
regular have been considered by several authors in the literature: for instance,
see Bunder [52), Blok and Raftery [38], Agliano and Ursini [10] and Hum-
berstone {113]. However, such classes have invariably been introduced in the
context of a wider field of study and have not been considered extensively in
their own right. Apropos this remark, let V denote the variety of algebras with
language { =, 0) of type (2,0) axiomatised by the identities (2.1), (2.4), (2.6)
and introduced by Blok and Raftery in [38, Section 4] in the context of their
investigation into the quasivariety of BCK-algebras and its subvarieties.

Lemma 2.1.6. An algebra (4; = ,0) of type (2,0) is a pre-BCK-algebra iff it
satisfies (2.1), (2.4) and (2.6). Thus the variety of pre-BCK-algebras coincides
with Blok and Raftery’s variety V.

Proof. Let (4; = ,0) be an algebra of type (2, 0) satisfying (2.1), (2.4) and (2.6).

Let a,b € A. Noticethat 0 = ((¢ = 0) = (a=8)) ~(b~0) = (a~(a~8)) = b
by (2.1) and (2.6). Thus (2.2) holds. Moreover, by (2.6) we obtain 0 =
((a=(a+0)) =0 = ¢+ aand so (2.3) holds also. The converse is clear.  ®

Let X be the variety of algebras with language ( =, 0) of type (2, 0) axiomatised
by the identities (2.1), (2.3), (2.4), (2.6) and the identity:
(G-~ ) ~(@=n=~0. . (27)

The variety X was introduced by Agliano "and Ursini (in dually isomorphic
form) in a case study [10, Example 4.5, pp. 330~332] concerning the relation-
ship between ideals and congruences in subtractive varieties.

Lemma 2.1.7. The variety of pre-BCK-algebras satisfies the following iden-
tities:
=y~ (z=-(z—(z=y)) =0 (2.8)
(z-(y=2)) = (= ((x—-2) = (u=y))) ~0. (2.9)
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& Proof. Let A be a pre-BCK-algebra and let a,b,¢,d € A. For (2.8), put
a:=a,B = b and v := c(cb). We have:
= ((aB)(em) (48) by (2.1)
= ((aB)(am))((c(cb))b)

= ((oB)(@n)0 by (2.2) o

= (ab)(a(c(ch)))-

For (2.9), put @ := a, 3 := be and «y := (dc)(db). We have: % :_:_3

0= ((aB)(@1)(18) by (21) | L

= ((eB)(ay)) (((de)(db)) (oc)) -

= ((aB)(a))0 by (2.1) _

= (aB)(ay) by (2.6) L

= (a(be) (a((de)(dD))).

Proposition 2.1.8. The variety of pre-BCK-algebras satisfies the following | -_

identities: 3; :

(69~ (z29) ~“e=5)~0. (27) L

(e=y)~2) = (z=2)=y)~0. _ (2.10)

Proof. Let A be a pre-BCK-algebra and let a, b, ¢ € A. We first derive (2.10). ’ .o

For (2.10), put o := (ab)e, 8 := (ac), v := b and § := a. We have: i :

0= (a(8)) (=((67)(86))) by (29) =

= (((ab)c)((ac)b))}(((ab)c)((ab)(a(ac))))- f
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Put o := ab, B8 := ¢ and v := a. We have:

(((ab)e)((ac))) (((ab)e)((ab)(a(ac))))

= (((ab)e)((ac)h)) ((aB) (@(v(v8))))
= (((ab)c)((ac)b))0 by (2.8)
= ((ab)¢)((ac)d) by (2.6).

For (2.7), put a := ab, B := cb and 1y := ac. We have:

0= ((aB)7)((am)B) by (2.10)
= ((@B)r)(((ab)(ac))(ch))

= ((aﬁ)'y)(} by (2.1)

= (aﬁ)'y by (2.6)

Lemma 2.1.9. An algebra (A; ~,0) of type (2,0) is a pre-BCK-algebra iff
it satisfies (2.1), (2.3), (2.4), (2.6), and (2.7). Thus the variety of pre-BCK-
algebras coincides with Agliano and Ursini’s variety X.

Proof. Let A be a pre-BCK-algebra. Then A = (2.1),(2.3),(2.4), (2.6) by
definition. Also A |= (2.7) by Proposition 2.1.8, so A € X. Conversely,
if (A; =,0) is an algebra of type (2,0) satisfying (2.1), (2.3), (2.4), (2.6)
and (2.7) then (4; =,0) is a pre-BCK-algebra by Lemma 2.1.6. "

Several K-O-regular quasivarieties K generalising BCK have also been consid-
ered in the literature, of which the most important is the class of left resid-
uation algebras. A left residuation algebra is a (= ,0)-subreduct of a pol-
rim [229, Chapter 1, p. 17}; recall the definition of a polrim from §1.3.3; By
van Alten [229, Proposition 1.4(i)] the class LR of all left residuation alge-
bras is a quasivariety, axiomatised by the identities (2.4), (2.6), (2.7) and
the quasi-identity (2.5); LR is not a variety {139, Theorem 9]. Because of (2.5)
and (78, Theorem 2.3], LR is LR-0-regular, while by van Alten and Raftery [231,
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Lemma 3.1] BCK is exactly the subquasivariety of left residuation algebras ax-
jomatised by either of the identities:

(z—y)—z=(z—2)—y or {(z—(z—y))=-y=0.

Left residuation algebras were introduced under the (misleading—see van Al-
ten [229, Proposition 2.10; p. 40]) name BCC-algebras by Komori in [139].
They have since been studied by several authors, including Komori {138, 139],
Dudek {82, 83, 84], Ono and Komori [176] and Wroniski [242]. A recent ma-
jor study of left residuation algebras (and their associated assertional logics)
is van Alten [229); see also Raftery and van Alten [192] and van Alten and
Raftery {230, 231]. Van Alten [229, Chapter 3] and Komori [138] have also
studied the varietal closure H(LR) of the variety of left residuation algebras;
the following theorem is due to Komori [138].

Theorem 2.1.10. [138, Theorem 6] The variety H(LR) generated by the
class LR of all left residuation algebras is finitely based and aziomatised by the
identities (2.4), (2.6) and (2.7).

Proposition 2.1.11. (c¢f. [231, Lemma 3.1]) An algebra A := (4; =,0) of
type (2,0) is a pre-BCK-algebra iff A € H(LR) and moreover A satisfies:

(z—(z=y))~y=0. o (2.2)

Thus the variety of pre-BCK-algebras is an equational subclass of H(LR), the
variely generated by the class of all left residuation algebras.

Proof. (=) Let A be a pre-BCK-algebra. By definition A = (2.2). Moreover
A k= (2.7) by Proposition 2.1.8; since A k= (2.4), (2.6) by definition, we have
that A € H(LR) by Theorem 2.1.10.

() Let A € H(LR) be such that A |= (2.2) and let 4, b, ¢ € A. Throughout
the proof we denote ~4 by juxtaposition for ease of notation. Put o :=
¢,8:=b and vy := ¢(cb). We have:

0= ({(aB)(¥8))(a7) by (2.7)
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= ((aB)((c(cb))b)) (o)
= ((aB)0)(a) by (2.2)
= (af)(e) by (2.6)
= (ab){a(c(ch)))- (2.11)

Put == a, 8 := be and v := (bd)(cd). We also have:

0= ((aB)(8))(cy) by (2.7)
= ((aB)(((bd)(cd))(be)) Y ay)
= ((@B)0)(ay) Yy (2.7)
= (af)(a) by (2.6)
= (a(be))(a((bd)(cd)). (2.12)

For (2.1), put a := (ab)(ac), B := cb and 7 := ab. We have:

= (eB)(a(1(78))) by (2.11)
= (((ab)(ac))(cb)) (((ab)(ac))((ab)((ab)(ch)))).

Put o :=ab, B :=a, v:= ¢ and § := b. We have:

(((ab)(ac))(cb)) (((ab)(ac))((ab)((ab)(ch))))
= (((ab)(ac))(cb)) ((alB7)) (@ (BE)(29))))
= (((ab)(ac))(ch))0 by (2.12)
= ((ab)(ac))(cb) by (2.6).

Thus A = (2.1). By Theorem 2.1.10 we have that A |= (2.4),(2.6), which
implies A is a pre-BCK-algebra by Lemma 2.1.6. »

Because of Proposition 2.1.11, results obtained by van Alten [229], Komori [138,
139] and others about H(LR) are applicable to PBCK. In particular, the follow-
ing useful technical lemma may be regarded as a specialisation to pre-BCK-
algebras of a result due to van Alten [229].

ST AT T




2.1. Pre-BCK-Algebras 104

Lemma 2.1.12. (¢f. [229, Lemma 1.2]) Let A be o pre-BCK-algebra and
let < be the binary relation defined on A by a X b iff ab =0, Then (4; X) is
o quasiordered set with least elemeni 0. Moreover, the relation X satisfies the
following conditions for any a,b,c € A:

1. If a < b ther cb =X ca;
2. If a X b then ac X be;
3. ab<a.

Proof. Let A be a pre-BCK-algebra and let a,b,c € A. By (2.3), ¢ < a.
Suppose @ < b and b < ¢. Then ab = 0 and bc = 0, so ac = ((ac)0)0 =
((ac)(ab))(bc) = 0 by (2.6) and (2.1). Thus a =< ¢ and = is a quasiorder
on A. Also, 0 X a for any e € A by (2.4), so 0 is a minimal element under <.
Suppose G # m € A is another element minimal under <. Then foralle € 4
we have m < 4, and in particular m < 0. Thus m0 = 0. But m0 = m by (2.6),
so 0 = m, a contradiction. Therefore 0 is unique and so is the least element
of A under <. To complete the proof of the lemma it remains to show (1)-
(3). For (1), suppose a % b. Then ab = 0 and (cb)(ca) = ({cb)(ca))0 =
((ct)(ca))(ab) = O by (2.6) and (2.1). Thus cb < ca. For {2), suppose
6 < b. Then @b = 0 and (ac)(bc) = ((ac)(be))0 = ((ac)(bc))(ab) = 0 by (2.6)
and (2.7). Thus ac < be. For (3), just note (ab)a = ((ab)(aO))(Ob) =0
by (2.6), (2.4) and (2.1), whence ab < a. »

Remark 2.1.13. (cf. [70, Example 3.1]) Let (4; <) be a quasiordered set
with least element 0 € A. For any a,b € A, let:

. 0 ifaxb
g—b:=
a otherwise.

Then the induced algebra {4; ~,0) is a pre-BCK-algebra, whose underlying
quasiordering is consistent with the original quasiordering on A. Hence the
underlying quasiordering on a pre-BCK-algebra has no interesting properties
in general. B
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The preceding remark notwithstanding, the equivalence = induced by the pre-
order < {in the sense of Lemma 1.2.2) plays a special role in the theory of
pre-BCK-algebras. This is shown in the following result, which may be under-
stood as a kind of ‘Clifford-McLean theorem’ for pre-BCK-aigebras.

Theorem 2.1.14. For any pre-BCK-algebra A the following assertions hold:

1. The equivalence = induced by =< in the sense of Lemma 1.2.2 is a con-
gruence on A, and A/Z is a BCK-algebra;

2. Z is the smallest congruence on A whose quotient algebra ts a BCK-
algebra, and so A[Z is the mazime: BCK-algebra homomorphic image
of A;

3. [0l = {0};

4. E={0)a

Proof. Let A be a pre-BCK-algebra.

{1

For (1), suppose @y Z by, ag = bp for ay, by, ap, bo € A. From a; < b; we have
a8 X byaz by Lemma 2.1.12(2) and from b, < a; we have bja; X bibe by
Lemma 2.1.12(1). By transitivity, a1a; < b bo. Also, from a, < b we have
biby < b1ay by Lemma 2.1.12(1) and from b = a; we have bja; =3 aya; by
Lemma 2.1.12(2). By transitivity, by < a18. Thus ‘5@, = b by and E is
a congruence on A. To see A/Z is a BCK-algebra it is sufficient to show
A/E k& (2.5). Suppose abZ 0 and ba 2 0. From ab < 0, ba < 0 we have
ab = 0 = ba by Lemma 2.1.12, so a = b. Thus A/= |= (2.5) and A/Z is a
BCK-algebra.

For (2), let 8 € Con A be such that A /6 is a BCK-algebra. Suppose a Z b
for ¢,b € A. Then ab = 0 and ba = 0, and thus ab =p 0 and ba = 0.
Since A/f }= (2.5) we have that ¢ =¢ b. Thus = is the smallest congruence
on A whose quotient algebra is a BCK-algebra, and A /2 is the maximal BCK-
algebra homomorphic image of A..

For (3), let a € A be such that ¢ £0. Then a < 0, so ¢ = 0 by Lemnma 2.1.12.
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For (4), it is sufficient by definition of (0)3 to show & is the largest congruence
9 € ConA such that [0]p = {0}. Now Z is a congruence on A such that
[0)= = {0} by (1) and (3). Let 6 € Con A be such that [0]g = {0} and suppose
g =y bfor a,b € A Then ab=p a0 =0 and ba =, bb = 0, so ab, ba € [0].
But [0]p = {0}, s0 @b =0 and ba =0, which implies a=b. u

Corollary 2.1.15. For any pre-BCK-algebra A (with underlying quasiorder = )
the partial orders </Z and <AIZ coincide, where </Z denotes the partial order
on A/S induced by X in the sense of Lemma 1.2.2 and <A/E denotes the un-
derlying particl order of the mazimal BCK-algebra homomorphi¢ image A/E

of A

" Proof. Let A, A/Z, </ and <*/= be as in the statement of the corollary.
Thyoughout the proof to simplify notation we write @ for the equivalence class
[a]z in A/E containing a € A. Let 3,b € A/S with a,b € A. We have:

a</20 iff axb by Lemma 1.2.2
if ¢—A2b=0" by Theorem 2.1.14(3)

Corollary 2.1.16. Let A be a pre-BCK-algebra. An .identity of the form
t(Z) ~ 0 is satisfied by A iff it is satisfied by its mazimal BCK-algebra homo-
morphic image AJZ. In symbols,

AtEH~0 iff A/EEtE) ~0.

Proof. Let A be a pre-BCK-algebra. Clearly A |= ¢(Z) ~ 0 implies A/S |=
t(Z) ~ 0. For the converse, suppose A/E |= t(Z) = 0. Let i € A4 and let
v : A = A/Z denote the natural map. By assumption, v(t4(8) = v(0%);
since y(0A) = [04]z = {04} (by Theorem 2.1.14(3)), we infer tA(g) = 0.
Thus A = ¢(Z) &~ 0 as desired. .
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Corollary 2.1.17. The class PRCK, of reduced algebras of PBCK is exacily
the class BCK of BCK-algebras.

Proof. Just observe A &€ PBCK, iff (0)4 = wa iff £ = wy (by Theorem 2.1.14(4))
iff A € BCK. .

Corollary 2.1.18. For any A € PBCK, Conpgck/acik A C [, ta)-

Proof. Let 6 € Conpgekjeck A. By Theorem 2.1.14(2) we have E < 0 < ¢a,
and so @ € [E, LA]. Thus COHPBCKIBCK AC [E, LA]. ]

Remark 2.1.19. The converse of the preceding corollary does not hold in
general. Consider Wroniski’s example W1 ({w) (Example 2.1.2) that shows the
class of BCK-algebras is not a variety. Since W, (w) is a BCK-algebra, Z =
ww, (s)- But there exists § > Z such that By = W (w)/8 (see Wroniski [240]),

whence Conpgck/ack Wi{w) € [E, tw, (w))- .

2.1.20. Pre-Ideal Theory of Pre-BCK-Algebras. Let / be a non-empty
subset of (the universe of) a pre-BCK-algebra A. 7 is called a pre-ideal if the
following conditions are satisfied:

0Del, , (2.13)
a € l,ba €I implies b € I. : (2.14)

The set of all pre-ideals of a pre-BCK-algebra A is denoted by Pre (A). The
following easy lemma collects together some useful facts.about pre-ideals.

Lemma 2.1.21. (c¢f [229, Lemma {.16]) For a pre-BCK-algebra A the
following assertions hold:

1. A pre-ideal of A is a hereditary subset of (A; <);

2. If I is a pre-ideal of A, and there exist a el Aand by,..., b, € I such
that (- - ((ab1)ba) -+ )by =0, then a € I;

3. For any congruence § on A, the 0-class [0]o = {a € A : (4,0) € 8} of 6
is a pre-ideal of A;
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4. A pre-ideal of A is o subuniverse of A.

Proof. Let A be a pre-BCK-algebra. For (1), let I be a pre-ideal. From e € I
and b < o we have ba = 0 € I, whence b € I by the definition of I as a
pre-ideal. Since 0 € 7, (2) now follows by repeated application of (1). For (3),
let # € Con A and let a,ba € [0]p. Since b = 50 =, ba =y 0 we have b =, 0;
that is to say b € [0lp. Since 0 € [0}g, we have that [0)p is a pre-ideal. For (4),
let ] be a pre-ideal of A and let g, b € I. By Lemma 2.1.12(3) we have ab < q;
thus ab € I by (1) and [ is a subuniverse of A. 5

The conditions {2.13)—(2.14) defining pre-ideals, in conjunction with the results
of Lemma 2.1.21, suggest intuitively that every pre-ideal of a pre-BCK-algebra
is the inverse image of an ideal of its maximal BCK-algebra homomorphic
_image. This intuition is made precise in the following theorem, the proof of
which is due mutatis mutandis to the author’s Ph.D. supervisor. See also
Corollary 2.1.29 in the sequel. '

Theorem 2.1.22. [17, Lemma 1.1.9] The set Pre(A) of all pre-ideals of a pre-
BCK-algebra A forms an algebraic lattice Pre{A) when ordered by inclusion,
which is isomorphic to the lattice of ideals of A /= under the map I 51 /2 for
any I € Pre(A).

Proof. 1t is clear that if I is a pre-ideal of A, then v([) is an ideal of A/=. Con-
versely, if J is an ideal of A/Z, then I = {a € A : a € [b): for some [b]z € J}
is a pre-ideal of A with the property that ¢(f) = J. Thus ¢ is a bi-
jection between the pre-ideals of A and the ideals of A/=. Suppose now
that Iy and I, are pre-ideals of A such that I} C L. -Then [alz € ¥(])
implies {6 € A : bZa} C L C L, which implies [alz € ¥(&), and so
¥(h) C (k). Conversely if J; and J, are ideals of A/Z such that J, C Jj,
then p™1(J}) = {a € A: a € [bzforsome Dlz=€ /1}} C {a € A:a €
8]z for some [b)z € Jg} = ¥~1(J,). Thus ¢ is an order isomorphism, and
hence a lattice isomorphism between the algebraic lattices of pre-ideals and
ideals of A and A/Z. ' | "

In light of the preceding theorem, it is natural to anticipate that results con-
cerning ideals of BCK-algebras cited in §1.6.1 extend to pre-ideals of pre-BCK-
algebras. Certainly this is the case in relation to the following proposition,
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which characterises the pre-ideal (B)a 1= ({J € Pre(A) : B C J} generated
by non-empty B C A of any pre-BCK-algebra A (of course, (B)a exists be-
cause pre-ideals of A are closed under arbitrary intersections). The result is
due to van Alten [229, Proposition 4.16(iv)], who first stated and proved the
proposition in the context of pre-ideals of left residuation algebras. Because of
Proposition 2.1.11, van Alten’s proof generalises to pre-BCK-algebras without

modification.

Proposition 2.1.23. (c¢f. [125, Theorem 3]) Let A be a pre-BCK-algebra.
Forany@# B C A,

(Bla={a€A:(Anew)(Be,...,ca € B) such that (---(acy) -+ )ca =0}.

 In particular, for any b € A,
(0)a ={a € A:(In €w) such that ab™ = 0}.

Proof. Let A be a pre-BCK-algebra and let @ # B C A. Let D= {a € 4:

(An€w)Fei, ..., cn € B) such that (-+-(acy)- - Jen = 0}. By Lemma 2.1.21(2)

we have D C (B)a. Also, B C D, so it remains only to establish that D is a
pre-ideal of A. Let a € A and b, ab € D, say:

(- ((@B)er) Yo = 0= (oo (bdh) )

where the ¢;, d; are in B. Then:

(-~(((°--(adl)“-)dm)cl)”-)cu -

(- (-~ (adr) -+~ )dm)0)er) -+~ ) en

(- (((C -+ (adr) - )dm)((- -+ (bdr) - -~ Jdm))er) -« ) em
(

0

I

i

1A

-((ab)er)-+-¢n) by (2.7) and Lemma 2.1.12(2)

$0 ¢ € D, as required. ' |

Some further properties of pre-ideals of pre-BCK-algebras analogous to prop-
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erties of ideals of BCK-algebras are established in the following proposition.
Concerning the statement of the proposition, a pre-BCK-algebra A is said to
enjoy the pre-ideal extension property if for any B € S(A) and any I € Pre(B)
there is a pre-ideal J € Pre(A) such that JNB = 1.

Proposition 2.1.24. For any pre-BCK-algebra A, the following assertions
hold:

1. Pre(A) is a distributive lattice;

2. A enjoys the pre-ideal eztension property.

Proof. (1) follows immediately from Theorem 2.1.22 and Proposition 1.6.9(1).
For (2), suppose A € PBCK, B € S(A) and I € Pre(B). Then for A /= € BCK,
B/Z € S(A/Z) and ¥(I) € Pre(B/ZE) there exists an ideal J € Pre(A/Z)
such that J N B/E = 9(I), where ¥(I) is the image of I under the map 9 of
Theorem 2.1.22. Indeed, by Proposition 1.6.9(2) we can pick J = ((I)), .
Now ¥~1(J) is a pre-ideal of A with the property that ¥~} (J)NB=1. =&

2.1.25. Pre-Ideals and Congruences of Pre-BCK-algebras. Recall
from §1.6.1 that for a BCK-algebra A, any ideal of A (in the sense of §1.6.1)
is the O-class of a BCK-congruence on A, and conversely that the O-class of
any (BCK-) congruence on A is an ideal of A. Inasmuch as pre-ideals and
PBCK/BCK-congruences are (for pre-BCK-algebras) the pre-BCK-algebraic
analogues of ideals and BCK-congruences {of BCK-algebras), respectively, the
preceding remarks invite (for pre-BCK-algebras) a study of the relationship
between pre-ideals and PB(i{/BCK-congruences.

Theorem 2.1.26. For any pre-BCK-algebra A and I € Pre(A), the rela-
tion ¢y defined on A x A by:

¢1 :={(a,b)€A><A:ab,ba€I}

1S o congruence on A, and the quotient algebra A/¢; is a BCK-algebra.

Proof. Let A be a pre-BCK-algebra, let I € Pre(A) and let ¢; be as in the
statement of the theorem. To see ¢; is an equivalence relation, we show (for
any a,b,c € A):

| A AR
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(i) G Z¢; &
(ii) a =4, b implies b =4, a;
(iil) @ =4, b, b =4, ¢ implies a =y, c.

For (i), we have that aa =0 € I by (2.3), s0 a =y, a.

For (ii), we have that a =,, b implies b =g, a by definition of ¢;.

For (iii), suppose a =y, b and b =,, ¢. By (2.1) applied twice, we have that
((ac)(ab))(bc) = 0 € I and ((ca)(cb))(ba) = 0 € I. Since ab,bc-€ I and
¢b, ba € I by assumption, we have that ac, ca € I by Lemma 2.1.21(2} applied '5
twice. Hence a =, c.

By (i), (il) and (iii), ¢ is an equivalence relation. To see ¢, is a congruence

on A, it is sufficient to show (for any ay, as, by, b € A):
(iv) &y =4, 0z and by =4, by implies by =4, a2by. B

| To prove (iv), we show:

(iv)(a) by =4, by implies a1y =4, a1bo;

(iv)(b) @1 =4, 0 implies a by =4, abo.

For (iv)(a), suppose by =4, by. By (2.1) applied twice, ({a161)(a182))(b2by) =

0e7and ((arbe)(e1h))(bibe) =0¢ 1. Since byby € 1, b1}, € I by hypothesis, H
(a:b1)(arbs) € I,(arbhs)(arby) € I by Lemma 2.1.21(1) applied twice. Hence ,
wby =4, abs. |

For (iv)(b), suppose a; =4, az. By (2.7) applied twice, {(a;1b2)(a2b2)){t102) =
0 € I and ((aabo)(arbr))(ma) = 0 € I. Since a0, € I,aa1 € I by hy-
pothesis, (a15s)(aabs) € I, (a2b2)(a1h;) € I by Lemma 2.1.21(1) applied twice.
Hence a;bs =4, azbs.

By (iv)(a), (iv)(b) and (iii), we infer that a, =y, ap and b =4, by implies
a1by =4, apby, which establishes (iv).

By (i), (i), (iii) and (iv), ¢; is a congruence on A. Hence A /¢ is a pre-BCK-
algebra. To complete the proof, it is sufficient in view of the remarks of §2.1.1
to show A/¢; k= (2.5). So suppose ab =g, 0 and ba =y, 0 for a,b € A. Then
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(ab)0 € I and (be)0 € I, so ab € I and ba € I by (2.6); that is to say a =, b.

Hence A/¢; = (2.5). Therefore A/¢; is a BCK-algebra, and the proof is
complete. n

By Proposition 1.7.5, any subtractive variety has normal ideals. This result
does not extend to {even K-O-regular) quasivarieties K with a binary term
s(z,y) witnessing (1.42), (1.43): for a counterexample see van Alten [229,
pp. 7T1-72]. Nonetheless, Proposition 4.15 of van Alten [229] implies that,
for a BCK-algebra A, a non-empty subset 7 C A is a BCK-ideal of A iff
I € N(A) iff I is an ideal of A (in the sense of §1.6.1). For pre-BCK-algebras,
Theorem 2.1.26 in conjunction with the following lemma yields the crucial
connection between pre-ideals and PBCK-ideals presented in Proposition 2.1.28
below.

Lemma 2.1.27. Let A be a pre-BCK-algebra, let I € Pre(A) and let ¢; be
the congruence induced by I in the sense of Theorem 2.1.26. Then I = [0,
and ¢; is the largest congruence on A with this property.

Proof. Let A be a pre-BCK-algebra, let J € Pre(A) and let ¢; be the con-
gruence induced by [ in the sense of Theorem 2.1.26. Let ¢ € I. By (2.6),
a0 = a € I, while 0a = 0 € I by (2.4). Hence a =4, 0. That is to say,
@ € {0]g,, s0 I C [0]s,. Conversely, let ¢ € [0]s,. Then a =y, 0, and so a0 € I.
Since 0 € I, we infer that a € I by the definition of I as a pre-ideal. Thus
[0]¢1 ClandI= [0]-151‘

-

Suppose now that @ is a congruence on A such that [0]p = I. Let a = b for
a,b € A. Then ab =4 aa =0 and ba =4 bb = 0, so ab, ba € [0]p; that is to say

e =g, b. Since [0]p = I, a =4, b. Thus 6§ C ¢y, and the proof is complete.
.

Proposition 2.1.28. A non-empty subset C A of a pre-BCK-algebra A is
a pre-ideal of A iff it is o PBCK-ideal of A. Hence Ipgex(A) = Pre(A).
Proof. Let A be a pre-BCK-algebra with {0} C I C 4.

(=) Suppose I € Pre(A). By Lemma 2.1.27, I = [0]s,, where ¢; is the

congruence on A of Theorem 2.1.26. Hence I € N(A). Since A is subtractive,
I € Ippck(A) by Proposition 1.7.5. Hence Pre(A) C Ipgck(A).
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(¢<=) Suppose I € Ipgck(A). Since A is subtractive, I € N{A) by Proposi-
tion 1.7.5. That is, I = [0] for some 6§ € Con A. Hence I € Pre(A) by
Lemma 2.1.21(3). Thus Ipgck(A) C Pre(A). X

In view of the preceding proposition, from this point forwards we will always
employ the notation and terminology of §1.7.1 in connection with (pre-) ideals
of pre-BCI{-algebras.

Corollary 2.1.29. The set 1(A) of all ideals of a pre-BCK-algebra A yields
a distributive algebraic lattice I(A) when ordered by inclusion. For any I,J €
I(A),

INI=InJ={anb:aecl,becJ}
IvJ={b:forsomeacl, bacJ}

where a N b := a(ab) for any a,b € A.

Proof. Let A be a pre-BCK-algebra. By the remarks of §1.7.1, the set I(A) of
ideals of A yields an algebraic lattice I(A) under inclusion, which is distributive
by Proposition 2.1.28 and Proposition 2.1.24(1). Let I,J € I(A). It is clear
that IAJ=1INJ. Tosee INJ={aNb:acl,beJ} letc:=aNnb
where s € T and b € J. Then ¢ X a € I and ¢ X b € J by Lemma 2.1.12(3)
and (2.2) respectively, so ¢ € I and ¢ € J by Lemma 2.1.21(1); that is to say
ceInJ. Hence {aNb:a € I,b€ J} CINJ and, since the opposite inclusion
is trivial, equality holds. That I v J = {b : for some a € I, ba € J} follows

immediately from the remarks of §1.7.1 and Part (4) of {222, Proposition 1.3|.
(]

By Theorem 1.6.10, the maps 7 % ¢; (I € I(A)) and 8 £ [0]s (9 € Congcx A)
are, for any BCK-algebra A, mutually inverse lattice isomorphisms between
the ideal lattice of A and BCK-congruence lattice of A, which result suggests
the following theorem,

Theorem 2.1.30. For any pre-BCK-algebra A, the maps [ & ¢; (Ie I(A))

-1
and 0 55 [0]s (8 € Conpack/ack A) are mutually inverse lattice isomorphisms
between the PBCK/BCK-congruence lattice of A and the ideal lattice of A.
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Proof. Let A be a pre-BCK-algebra. To prove the theorem it suffices to show:

(i) The maps ¢ and ¢! are mutually inverse bijections;
(ii) The maps ¢ and ¢~ are order preserving.

For (i), it is sufficient to show ¢~ oy = wy(a) and YoE™ = Woonggeypex A~ 10 the
former case @' o = wya since I = [0}y, for every I € I{A) by Lemma 2.1.27
In the latter case 8 < ¢yq, (for 8 € Conpaek/sek A) by Lemma 2.1.27, so it
remains only to show @), < 6. So let a = b (mod ¢y, ) for a,b € A. Then
ab, ba € [0]p by definition of ¢pg),; that is to say ab, ba = 0. Since A/f € BCK
by hypothesis, we infer that a = b by (2.5). Hence ¢yq, € 6. Thus ¢y, = 6,

-1 _
and 80 Y 0 YT = Wlonpgex/ack A-

For (ii}, to see ¢ is order preserving let I,J € I(A) with I C J. Suppose
¢ =4, bfor a,b € A. Then ab, ba € I, and since I C J we have also that
eb,ba € J. Thus.a =4, b and ¢; C ¢;. Hence ¢ is order preserving. To
see ¢! is order preserving, let 6,7 € Conpgck/sck A with @ C 9. Suppose
¢ € [0)p. Then e =4 0, and since § C 3 we have also that ¢ =, 0. Thus
a € [0}, and [0]y C [0])y. Hence ¢! is order preserving. "

Corollary 2.1.31. For any pre-BCK-algebra A, the following assertions hold:
L. A is PBCK/BCK-0-regular; |
2. A is PBCK/BCK-congruence distributive;:
3. A has the PBCK/BCK-congruence eztensien property.

Proof. Let A be a pre-BCK-algebra. For (1), let 8 and 9 be PBCK/BCK-
congruences on A such that [0lp = [0],. By Lemma 2.1.21(3), [0}y and [0},
are both ideals, which coincide by assumption of the equality of [0]p and [0]y.
Because of Theorem 2.1.30, we infer that 6 = ¢, so A is PBCK/BCK-0-regular
and (1) holds. The remaining assertions of the corollary now follow trivially
from PBCK/BCK-D-regularity and Proposition 2.1.24. 8

From Theorem 1.6.10, Theorem 2.1.22 and Theorem 2.1.30, we may also infer:

A W ERIN:
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Theorem 2.1.32. For any pre-BCK-algebra A, the map 6 v /2 (6 €
Conpgck/ack A) is an isomorphism from the PBCK/BCK-congruence lattice
of A onto the BCK-congruence lattice of A/=. Therefore if H(A/Z) C BCK
then Conpgck /e A and Con A/E are isomorphic.,

Proof. For any pre-BCK-algebra A, we have that Conpgek/sek A = I(A) by
Theorem 2.1.30; that I(A) =2 I(A/Z) by Theorem 2.1.22; and that I(A/Z) =
Congck A/Z by Theorem 1.6.10. By composition of maps, it follows that
Conpgck/ack A = Congex A/E under the mapping 6 v dyg),,z,, Which sim-
plifies to § +> 8/= by PBCK/BCK-O-regularity as claimed. The remaining
assertion of the theorem now follows, because the condition H{A/Z) C BCK
guarantees that every congruence on A/= is a BCK-congruence. Y |

We conclude this subsection by noting that the proof of Theorem 2.1.32 im-
plicitly establishes the existence of a commutative square of isomorphisms
connecting the ideal and PBCK /BCK-congruernce lattices of a pre-BCK-algebra
to the ideal and BCK-congruence lattices of its maximal BCK-algebra homo-
morphic image. In more detail: given a pre-BCK-algebra A (with maximal
BCK-algebra homomorphic image A/Z) and the maps:

IS ¢y, . Tel(A/Z)
%1z, I €I(A)
15 ¢, IeI(A)
8% 8/=, 9 € ConA

of Thetgirem 1.6.10, Theorem 2.1.22, Theorem 2.1.30 and Theorem 2.1.32 re-
spectively, the diagram:

I(A) Yy A/S)

wl . le

Conpack/ack A —— Congex A/E.

commutes in the category of lattices.

2.1.33. The Asserticunal Logic of the Variety PBCK.  Let the class PBCK®
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of dual pre-BCK-algebras be the variety of algebras with language (—,1) of
type (2,0} axiomatised by the following identities:

(z—=9) = ((y—2)—(z22)) =1 (2.15)
? 3 ((z—=y)—y) =1 (2.16)
sl (2.17)
r—1~1 (2.18)

1— 2z~ 1 (2.19)

notice that the class BCK? of dual BCK-algebras (recali Example 1.8.4) is
exactly the subquasivariety of PBCK? axiomatised by the quasi-identity:

try=l&y—csx1Dz~y.

Let T£(X) denote the term algebra of type £ over X, where £ is the language
of pre-BCK-algebras. Also, let T0(X) denote the term algebra of type L£”
over X, where £? is the language of dual pre-BCK-algebras. Consider the
maps 77 : Tg(X) = Tzo(X) and € : To{X) = Te(X) defined respectively by:

n(0) =1 “
N(z) =z g€ X
n(p — g) := n{g) = n(p) ,q € Te(X)
and: -
(1) == 0_
{(z) =z reX
E(r —» ) := &(s) = &(r) . 1,8 € Ten(X).

Because of the axiomatisation of PBCK by (2.1)~(2.5) and the axiomatisation
of PBCK? by (2.15)-(2.19), the proof of the following lemma is trivial and
hence is omitted. |

Lemma 2.1.34. Forp, g € T£(X) and r,s € Tzo{X) the following assertions
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hold:
1. IfPBCK |= p ~ ¢ then PBCK® = n(p) ~ n(q);
2. If PBCK? |= r ~ s then PBCK = £(r) = &(s).
Moreover, £ on = wryx) end 70§ = wr_,(x)-

Recall from §1.8.9 that for any quasivariety K with 1, the inherent assertional
logic S(K, 1) of K may be defined by specifying that, for all I'U {¢} € Fmg,
Mgy eif{y=1:9v¢ I'} Ex ¢ = 1. Because the variety of pre-BCK-
algebras is termwise definitionally equivalent to (in fact, is dually isomorphic
to) the variety of dual pre-BCK-algebras (by Lemma 2.1.34), the preceding

observation implies the assertionai logics S{PBCK,0) and S(PBCK”,1) are -

definitionally equivalent. In a sense, it is thus a harmless notational conve-
nience to ascribe to the variety of pre-BCK-algebras the intrinsic assertional
logic S(PBCK®, 1} of the variety PBCK? of dual pre-BCK-algebras; of course,
like remarks apply concerning BCK and S(BCK?,1). In the sequel, therefore,
we shall not hesitate to denote by S(PBCKP, 1) [S(BCK?,1)] the inherent
assertional logic of the variety of pre-BCK-algebras [the quasivariety of BCK-
algebras] when convenient.

Proposition 2.1.35. [10, Proposition 4.5/ D := {z ~y,y~z} is an IC-
system (without parameters) for PBCK. Hence I¢ = ¢; for any ideal I and
' = oy, for any congruence @ of a pre-BCK-aigebra.

Proof. Let D := {z ~ y,y = z} and observe D <a system of O-terms for PBCK.
Let A € PBCK and recall I := {(a,b) € A A: ab,ba € I} for any ideal
I € I(A). Since (0)a = {0}, (0)F = {0}° = {(a,b) € A x A: ab,ba =
0} =Z € Con A by Theorem 2.1.14(1). By Proposition 1.7.7(2) we ha-e that
D is an IC-system without parameters for PBCK. The second statement now
follows immediately from Proposition 1.7:7(4). | "

In [130] Kabzifiski studied the lattice A2(K) of all quasivarieties K over the
language (—,1) of BCK® algebras for which Emxyy = Fumecke,1), Where
Fm(1) is the matrix consequence determined by the class of all matrices

e i b Pl e e e e e R i R
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{(A,{1A}) 1 A € K} and f=p@exo 1y is the matrix consequence of Exam-
ple 1.8.10, or equivalently all quasivatieties K for which K is an algebraic se-
mantics for BCK. By [130, Fact 1] 3CK® is the smallest element of A%(K).
In [130, Fact 2] Kabzirniski asserts without proof tha* PBCK? is a member of
A®(K). The following theorem, which shows PBCK and BCK have the same
assertional logic (namely BCK), verifies Kabziniski’s result. For some recent
results related to and generalising the theorem, see Blok and Raftery [41, Ex-
ample 6.2].

Theorem 2.1.36. The assertional logic S(PBCKP, 1) of the variety of pre-
BCK-algebras is algebraisable with equivalent algebraic semantics BCKP. Thus
the variety of pre-BCK-algebras and ifie quasivariety of BCK-algebras have the
same assertional logic, name’y BLK.

Proof. For the first assertion of the theorem, we nave that PBCK is finitely
congruential by Proposition 2.1.3%, so S(PBCK, v} is algebraisable with equiv-
alent algebraic semantics PBCK, by Theorem 1.8.14. Because PBCK, coincides
with BCK by Corolla.y 2.1.17, from Lemma 2.1.34 it follows that S(PBCK?, 1)
is algebraisable with v uivalent algebraic samautics BCKP. For the second
assertion of the theorem, we have that S(BCKP 1) coincides with BCK by
Example 1.8.10, so S(BCK”, 1) is algebraisable with equivalent algebraic se-
mantics BCKP by Example 1.8.4. Hence S(PBCK®,1) and S(BCKP, 1) have
the same equivalent algebraic semantics, namely BCK®. Since S(PBCK? 1)
and S$(BCK®, 1) also have the same defining equation. (viz., p = 1), they are
identical by Lemma 1.8.8. Hence PBCK and BCK have the same assertional
logic, namely BCK. ‘ |

Remark 2.1.37. It should not be supposed that PBCK is the largest quasi-
variety K with'language (—,1) of type (2,0) such that Fuk,1) = Fueck?,)-
Indeed, by Kabziriski {130, Fact 3] the greatest element of A9(X) is the quasi-
variety axiomatised by the following identities and quasi-identity:

(:!:~+y)——}((z-—+.3:)—->(z—-+y))%1.'
(y—(z-2)2(z=2(y—=2) =1
r=2{y—oz)x1
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r-1lx1&z—y~=1Dy~1

We remark that Kabzinski’s result is essentially a specialisation to S(PBCKP,1)
of an observation due to Blok and Pigozzi [31, p. 16], which characterise the
largest algeoraic semantics of any deductive system having an algebraic se-

mantics. |

Corollary 2.1.38. A quasi-identity of the form:

iﬁ_&lsf(:c') ~0DtF) =0 (2.20)

is satisfied by PBCK iff it is satisfied by BCK. In particular, an identity of the

form:
1) ~ 0

is satisfied by PBCK ‘iﬁ" it 15 satisfied by BCK.

Proof. Let {si(Z):i=1,..., n} U {t(%)} be (= ,0)-terms in the variables Z.
ldentify the (—,1)-terms {n{si(¥)) : i = 1,...,n} U {n(t(@))} (where n :
T;(X) — To(X) is the map of Lemma 2.1.34) in the variables ¥ with the
(=, 1)-formulas {@;(F) : i =1,...,n} U {4(p)} in the variables §. Given this
netation, from Theorem 2.1.36 and repeated application of Lemma 2.1.34 we
have the following string of equivalences:

BCK j= &%, s5i(F) 0D t(F) =0 iff
Asi@) = 0:i= 1,...,n} ek t(:‘z;:) ~0 iff

{ns@)~1:i=1,... ,n} Eacko n(t(I)) =1 iff
{(,o;(fi) ri=1,...,n} Fsaek? 1) P(p) iff
{vi@):i= 1,...,n} FspBex? 1) Y(p) ff |
{(n(s(@) =1:i=1,...,n} Feacxe N(HZ)) 7 1 iff
{s(F)m0:i=1,...,n} Fpack H{Z) # 0 iff
PBCK |= &P, 8i(F) = 0D t(F) = 0.

=
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Therefore BCK |= {2.20) iff PBCK |= (2.20), which establishes the first assertion
of the theorem. The second assertion now follows trivially by specialisation.
.

The following corollary seems first to have been proved (in a slightly more
general form) using algebraic methods by van Alten and Raftery [231). See
also Raftery and van Alten (193, Corollary 10].

Corollary 2.1.39. (c¢f. [281, Corollary 8.4]) A quasi-identity of the form:

§_Lls,-(§) ~ 0D HE) ~0 (2.20)

is satisfied by the varietal closure H(BCK) of the quasivariety of BCK-algebras
iff it satisfied by BCK. In perticular, an identity of the form:

is satisfied by H(BCK) iff it is satisfied by BCK.

Proof. Suppose H(BCK) k= (2.20). Because BCK € H(BCK) we deduce BCK =
(2.20). Conversely, suppose BCK & (2.20). From Theorem 2.1.38 we infer
PBCK }= (2.20); since H{BCK) C PBCK {by Komori [138, Theorem 7]}, we
deduce H(BCK) = (2.20) as required. The second assertion follows trivially
by specialisation. ‘ ' »

Recall that, for a quasivariety K, a relative subvariety of K is a quasivariety K’
such that K' = KN V(K") for some K" C K. Let S be an algebraisable deduc-
tive system with equivalent algebraic semantics K. By Blok and Jénsson [28,
Lecture 6, p. 4, Theorem 1.4], the axiomatic extensions of S are in one-to-
one correspondence with the relative subvarieties of K. In more detail, let S’
be an axiomatic extension of S. By Blok and Pigozzi {31, Corollary 4.9], 8’
is algebraisable, say with equivalent quasivaa'ieifsy semantics K, and by The-
orem 1.8.3(1)-(2), (3)~(4), it follows that K’ is a relative subvariety of K.
Conversely, it follows from (1.51) and Theorem 1.8.3(1)~(2), (3)-(4) that if K”
is any relative subvariety of K, then there exists an axiomatic extension S*
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of § whose equivalent quasivariety semantics is K”. See also van Alten [229,
Section 4.4; p. 78].

From the preceding discussion and Theorem 2.1.36, it follows that the inherent
assertional logic S(V, 0) of any subvariety V of the variety of pre-BCK-algebras
coincides with an axiomatic extension of BCK (in fact, with the axiomatic
extension of BCK arising as the intrinsic assertional logic of the quasivariety of
BCK-algebras axiomatised relative to V by (2.5)—see Proposition 2.2.4 below).
Hence the inherent assertional logic of any variety of pre-BCK-algebras has a
familiar description (recall Example 1.8.4). Because of this observation, we
shall dismiss from further consideration the assertional logics of those varieties
of pre-BCK-algebras we encounter in the sequel.

2.1.40. Quasi-Bounded Pre-BCK-Algebras. A mazimal element of a
pre-BCK-algebra A is an element m € A such that a < m for all ¢ € A.
When they exist maximal elements form an equivalence class under = called
the mazimal class; ¢f. [147, Section 1.4]. Let A be a pre-BCK-algebra with
maximal class M. The algebra A' := (4; +,0,1) obtained from A upon
enriching the language of A with a new nullary operation symbol 1 whose
canonical interpretation on A? is a fixed 1 € M is called a quasi-bounded pre-
BCK-algebra. Clearly the class PBCK! of quasi-bounded pre-BCK-algebras
is a variety, axiomatised relative to the variety of pre-BCK-algebras by the

identity z = 1 = G.

Remark 2.1.41. In passing from a given pre-BCK-algebra A with maximal
class M to a quasi-bounded pre-BCK-algebra Al there is in general no natural
choice of maximal element 1 € M. Indeed, it seems-plausible that distinct
choices of maximal element give rise to non-isomorphic quasi-bounded pre-
BCK-algebras, although we have no proof of this. n

For a pre-BCK-algebra A, the derived operation a M b := a(ab) is called
the pre-BCK meet (briefly, meet) of a,b € A.. Given a quasi-bounded pre-
BCK-algebra A%, the pre-BCK complement (briefly, complement) of a € 4 is
6* := la, while the pre-BCK join of a, b € A (briefly, join) is allb := (a*Mb*)*.
The three derived operations *, M and U play an important role in the sequel;
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the two trivial lemmas below, whose proofs are omitted, summarise some ele-
mentary properties of these operations that will be needed subsequently.

Lemma 2.1.42. The variety of pre-BCK-algebras satisfies the following iden-

tities:
zM0~0 (2.21)
0Nz ~0 (222
Nz =~z (2.23)

Moreover, if A is a pre-BCK-algebra the following statements hold for any
a,be A:

L ab=0ifanb=a;
2. aNb is a lower bound of {a, b}.

Lemma 2.1.43. (cf. [126, Proposition 2J; cf. [126, Corollary 1]) The variety
of quasi-bounded pre-BCK-algebras satisfies the following identities:

zNl~xz (2.24)
inz ~z™ (2.25)
Uz ~z™ : (2.26)
sUl~1 " (2.27)
Uz~ 1. _— (2.28)

Moreover, if Al is a quasi-bounded pre-BCK-algebra the following statements
hold for any a,b € A:

1. a* < a;

2. a*b* < ba;

3. a < b implies b* < a*;’
4. a*hb = b*a;

5. a*tt E ax
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2.2 Varieties of Pre-BCK-Algebras

In this section we study varieties of pre-BCK-algebras, with a focus on the nat-
ural pre-BCK-algebraic counterparts of the varieties of commutative, positive
implicative and implicative BCK-algebras.

Arbitrary varieties of pre-BCK-algebras are briefly investigated in §2.2.1. For
any variety V of BCK-algebras, the natural pre-BCK-algebraic counterpart
of V is the class {A € PBCK : A/Z = B for some B € V}. In the main result
of the section, it is shown that the natural pre-BCK-algebraic counterpart of
any variety of BCK-algebras is itself always a variety. We also show that any
variety of pre-BCK-algebras containing the 3-element pre-BCK-algebra B, of
Example 2.1.5 fails to enjoy many of the properties typically associated with
a ‘tractable’ class of algebras.

In §2.2.9 the variety of commutative pre-BCK-algebras is studied as the natural
pre-BCK-algebraic counterpart of the variety of commutative BCK-algebras.
In particular, it is shown that the commutative pre-BCK-algebras are charac-
terised among the pre-BCK-algebras by means of a certain natural condition
on the pre-BCK quasiordering.

In §2.2.16 we investigate the variety of positive implicative pre-BCK-algebras,
the natural pre-BCK-algebraic counterpart of the variety of positive implica-
tive BCK-algebras. 1t is proved that a variety of pre-BCK-algebras is a variety
of positive implicative pre-BCK-algebras iff it is subtractive, weakly congru-
ence orderable and has EDPI (witness z - y). For any positive implicative
pre-BCK-algebra, we also give an internal characterisation of dual relative
pseudocomplementation in the join semilattice of compact ideals.

In §2.2.28 the variety of implicative pre-BCK-algebras is considered as the nat-
ural pre-BCK-algebraic counterpart of the variety of implicative BCK-algebras.
The variety of implicative pre-BCK-algebras is characterised as precisely the
intersection of the varieties of commutative and positive implicative pre-BCK-
algebras. For a suitable notion of prime ideal, we also show that an ideal I of
an implicative pre-BCK-algebra A is prime iff it is maximal iff it is irreducible
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iff A/¢; is isomorphic to the 2-element implicative BCK-algebra C;.

2.2.1. Varieties of Pre-BCK-Algebras. With any variety V of BCK-
algebras, we may naturally associate a class V, := {A € PBCK : A/E 2 B for
some B € V} of pre-BCK-algebras. We call V, the natural pre-BCK-algebraic
counterpart of V. Because of the following theorem of Blok and Raftery [38,
Section 4] (see also Raftery and Sturm [191, Corollary 2.8], Idziak [114, The-
orem 1], van Alten [229, Proposition 4.4] and Blok and la Falce [25, Theo-
rem 4.3]), which characterises syntactically those subclasses of PBCK that are
varieties of BCK-algebras, the class V, is always a variety. Henceforth, for
any algebra with language ( =, 0) of type (2,0}, we denote by z ~ [, w(%)
the term (-« (= (%)) - -+ ) = ua(Z), where n € w and wy, ..., u, are (=, 0)-
terms in the variables 7.

Thecrem 2.2.2. [388, Corollary 10]; [191, Corollary 2.8] Let K be a class of
algebras with language (=, 0) of type (2,0). Then V(K)} is a BCK-variety iff
K C PBCK and K satisfies some identity:

n m

z= [Julz ) v vy = [Jvilz,v) (2.29)
i=] i=1

for fited n,m € w and {~,0)-terms v,..., Un, V1,..., Un Such that BCK

satisfies:

ui(z, z) = 0 ~ vz, z) i=1...,n j=1,...,m.

T

In this case, V(K) is congruence 3-permutable.

Theorem 2.2.3. Let V be a variety of BCK-algebras, axiomatised relative to
PBCK by some identity:

n m .
o= [Jute,y) = y= [[u6v) * (2.2
j=1

i=1

for fized n,m € w and (=,0)-terms wuy,..., Un, ¥1,..., Um Such that BCK
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satisfies:
4(z,2) = 0 = v(x, ) i=1,...,n, j=1,...,m.

Then V, is a variety, aztomatised relative to PBCK by the pair of ideniities:

(55“.- Hui(m:y)) — (y'._ ij(..",‘, y)) ~0 (230)
and:
(v= [Tw@9) = (o= JJuten) ~0. (2.31)

Proof. Let V be a variety of BCK-algebras axiomatised relative to PBCK by
the identity (2.29) for a given choice of n,m € w and ( ~,0)-terms v, ..., Uy,
vy,..., Uy and let W be the \;ariety of pre-BCK-algebras axiomatised relative
to PBCK by the pair of identities (2.30)-(2.31) for the same choice of n,m € w
and (=, 0)-terms #y,..., Uy, Yi,..., Un. TO prove the theorem it suffices to
show V, coincides with W.

Let A € V;. Then A/Z = B for some B € V. Now B [ (2.29), so
B | (2.30),(2.31) by (1.3). Therefore A/=Z [ (2.30},(2.31), because iden-
tities are preserved by isomorphic copies. But then A = (2.30),(2.31) by
Corollary 2.1.16, so A € W. Hence V, € W. For the converse, let A € W,
Then A/E k= (2.30},(2.31), so A/E = (2.29) by (2.5). . Thus A € V, and
W C V,. Hence V, =W, and the proof is complete. n

Recall from §1.8.9 that, for any variety V with normal ideals, the class V of
reduced algebras of V is {B : B & A/(0)4 for some A € V}. Because of
Theorem 2.1.14(4), if V is a variety of pre-BCK-algebras then V, = {B B
A/Z, for some A € V}. Moreover, one easily sees in this case that (V‘;)'9 =
V. That is, V, may be understood as the natural BCK-algebraic counterpart
of V. Consequently, the following proposition {which is a specialisation of a
fragment of a more general theorem for subtractive varieties due to Agliano
and Ursini {10]) can be considered as a kind of a converse of Theorem 2.2.3.
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Proposition 2.2.4. (c¢f. [10, Theorem 8.18]) Let V be a variety of pre-BCK-
algebras. Then V¢ is the quasivariety of BCK-algebras aziomatised relative
to V by the quasi-identity:

r—yx0&y—z=0Dz=y. (2.5)

Proof. Let V be a variety of pre-BCK-algebras. By Proposition 2.1.35, V is
finively congruential witness D := {z =y, y ~ z}. Therefore I® = I for any
Iel(A) and A € V. It follows that:

AeV, iff (O)j,L = WA

if e—2b=0="5-*¢impliesa =5

for any a,b € A. Hence V., is exactly the quasivariety of BCK-algebras ax-
iomatised relative to V by the quasi-identity (2.5). ]

Let V be a variety of BCK—algébraS with natural pre-BCK-algebraic counter-
part V,. Because of Theorem 2.2.3 and the definition of V,, Corollary 2.1.14
and Corollary 2.1.38 together indicate that the first-order theory of V, stands
in relation to V as the first-order theory of PBCK stands in relatior to BCK;
support for this contention is provided by our study of the natural pre-BCK-
algebraic counterparts of the varieties of commutative, positive implicative
and implicative BCK-algebras in §2.2.9, §2.2.16 and §2.2.28 reSpé_ctively in the
sequel.

The preceding remarks and Corollary 2.1.31 notwithstanding, in g-eral the
second-order theory of V, bears little resemblance to the second ¢ Jfer-theory
of V. This is exempliiied by the final result (Corollary 2.2.6 below) of this hrief
subsection, which shows that any variety of pre-BCK-algebras that contains
the 3-element pre-BCK-algebra B, of Example 2.1.5 is not O-regular, congru-
ence distributive or congruence n-permutable for any n > 2 (contrast this
result with Theorem 1.€.10). The corollary obtains as an easy consequence
of the following proposition of Blok and Raftery [38, Section 4], which shows
BCK is the splitting quasivariety associated with the algebra By in PBCK. In
the statement of the proposition and in the sequel, for any quasivariety K we
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denote by A9(K) the ‘lattice of subquasivarieties’ of K, namely the dual of the
lattice of corresponding implicational theories of K.

Proposition 2.2.5. [88, Proposition 2] The pair (Q(B2), BCK) spiits the
lattice A9 (PBCK). That s, for every quasivariety K C PBCK, either K C BCK
or Q(Bz) C K.

Proof. Let K € A9(PBCK) with K € BCK. By hypothesis, K [~ (2.5), so there
exists an algebra A € K with elements a, b € A such that ab = 0 = ba, but
e # b, Then {0, a, b} is the universe of a subalgebra of A isomorphic to Bs.

Hence B2 € K and Q(B;) C K. .

Corollary 2.2.6. (cf. [25, Corollary 8.5]) For any variety V of pre-BCK-
algebras the following assertions hold:

1. V is O-regular iff V C BCK;
2. V is congruence distridutive iff V C BCK;

3. V is congruence n-permutable for some n > 2 iff V C BCK. In particular,
if V C BCK, then V is congruence S-permutable (and not congruence

permutable).

Proof. Suppose V C BCK. Then V is both 0-regular and congruence distribu-
tive by Theorem 1.6.10(2); also V is congruence n-permutable for n = 3 by
Theorem 2.2.2. However, V is not congruence permutable, since the smallest
non-trivial variety of BCK-algebras (namely, the variety of implicative BCK-
algebras) is not congruence permutable (by results due to Mitschke [167, The-
orem 2f and Blok and Pigozzi [34, pp. 583-584}). For the converse, suppose
V € BCK. Then Q(B;) C V by Proposition 2.2.5 and therefore V(B,) C V.
But V(B,) is not G-regular (since B itself is not 0-regular) and is neither con-
gruence distributive nor congruence n-permutable for any n > 2 (by Blok and
Raftery [38, Proposition 3]). Hence V is not O-regular, congruence distributive
or congruence n-permutable for any n-> 2. )

Remark 2.2.7. In their paper on the lattice of subquasivarieties of BCK-

algebras, Blok and Raftery report that [38, Corollary 4):
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1. BCK is the largest subquasivariety of PBCK that is BCKX-0-regular; and

2. BCK is the largest subquasivariety of PBCK that is BCK-congruence dis-
tributive or that satisfies any non-trivial BCK-congruence identity.

Unfortunately, the proofs provided for both these claims appear flawed by an
ambiguous usage of the term ‘relative congruence’ [24]. We have been unable
to exhibit an alternative proof that establishes these claims. ]

Problem 2.2.8. Is BCK the largest subquasivariety of PBCK that is BCK-
0-regular, BCK-congruence distributive or that satisfies any non-trivial BCK-
congruence identity? n

2.2.9. Commutative Pre-BCK-Algebras. By a commutative pre-BCK-
algebra we mean a pre-BCK-algebra A such “hat A/E = B for some commu-
tative BCK-algebra B. By Yutani [245], the class of all commutative BCK-
algebras is a variety, axiomatised relative to PBCK by the identity:

t—(z—-y)~y—(y—1z) (2.32)

so by Theorem 2.2.3, the class cPBCK of all commutative pre-BCK-algebras is
also a variety, axiomatised relative to PBCK by the identity:

(z=(z=y)—(y—(y—2) =0 | - (23)

since (2.32) is of the form of (2.29) and is symmerric in the individual vari-
ables z and y. Thus we have the following result: -

Theorem 2.2.10. An algebra (A; =,0) of type (2,0} is a commutative pre-
BCK-algebra iff the foliowing identities are satisfied:

0—zx0 _ | (2.3)
r—0=xz (2.6)

G-y =(z=2) = (z-y) =0 ,_ (2.1)
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(z—~(z—9)—(v=(y—=z)) ~0. (2.33)

Thus the class cPBCK of commutative pre-BCK-algebras is a variety.

Recall that, by definition, a BCK-algebra A is commutative if its underlying
poset {A4; <) is a ineet semilattice, or equivalently, if glb{a, b} exists for any
a,be A |

Proposition 2,211, Let A be a pre-BCK-algebra. If A is commutative, then
for every a,b € A, both a Db und b a are greatest lower bounds of {a,b}
with respect to the underlying pre-BCK quasiorder <. Conversely, if for every
a,b € A, both a1 and b N a are greatest lower bounds of {a, b} with respect
to the underlying pre-BCK-quasiorder <, then A is commutative.

Proof. Let A be a pre-BCK-algebra and let ¢,b € A.

Suppose A is commutative. By Lemma 2.1.42(2), a N b is a lower bound of
{a,b}. Suppose ¢ < a and ¢ < b for some ¢ € A. We have:

0= (c(ca))(a(ac)) by (2.33)
= (¢0)(a(ac)) asc=a
= ¢(a(ac)) by (2.6)

whence ¢ < a Mc¢. Put o := a, 8 := ac and 7 := ab. Since: .

0= ((ab)(ac))(ch) by (2.1)
= ((ab)(ac))O asc=Xb |
= (ab)(ac) ' by (2.6) T (254)

we have:

0= ((af)(a))(78) by (2.1) .
= ((aB)(a7))((ab)(ac))
= ((~8)}{am))0 by (2.34)
~ (a(ac)){a(ab)) by (26)

. . . .. . PR 4
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whence aM¢ <X aMb. Thus ¢ X aNe <X aflb. By transitivity, ¢ < eN b, and
so a M b is a greatest lower bound of {a, b}. By (2.33), ¢eMbEbNa,sc bMa
lies in the same clique as a M b. By Lemma 1.2.3(1), b M ¢ is a greatest lower
bound of {a, b}.

Conversely, suppose that for every a,b € A, both a1 b and b1 a are greatest
lower bounds of {a, b}. By Lemma 1.2.3(2) we have that a1 5= bMa, whence
(a(ad)}{b(ba)} = 0. Thus A is commutative. n

Remark 2.2.12. Let A be a pre-BCK-algebra. For A to be commutative,
the requirement that both aMb and bMNa be greatest lower bounds of 6, b € A
cannot be weakened to the requirement that just one of aM b or 2N a be a
greatest lower bound for {a, b}. To see this, consider the pre-BCK-algebra A
with operation table:

~Alp 123
0 [00O0O
111000
21220 2
3 13000

An easy sequence of checks shows a4 is a greatest lower bound of any a, b €
{0,1,2,3}. However, A is not commutative, as (1= (1+2)) = (2=(2+1)) =
1+-0)~(2~2)=1-0=1%#0. u

Let A be a commutative pre-BCK-algebra and let m & Abe fixed. For a,be A
such that a,b <'m, we have ab < ¢ <X m by Lemma 2.1.12(3). Thus the
principal order ideal (m] is a subuniverse of A. We write (m] for the subalgebra
of A with subuniverse (m]. By definition, ¢ < m for all ¢ € (m]. Thus m
is a maximal element of (m], the restriction E|,,; of E to (m] has a maximal
class M and (m] induces a quasi-bounded pre-BCK-algebra (m]. In general,
there may be many possible choices for an element ¢ € M such that 1™ = ¢,
However, we will always fix 1M .= m, whence we will not be careful to
distinguish between (m] and (m]* in the sequel.

Let A be a commutative pre-BCK-algebra and let m € A be fixed. Since (m)
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is a quasi-bounded pre-BCK-algebra, it has (by the remarks of §2.1.40) both
a derived ‘complementation’ operation * and a derived ‘join’ operation LJ. To
signify these derived operations are local to (m], we write ¢*™ and o Li(™] p
for the complement of ¢ € (m] and the join of a, b € (m] respectively. Further,
to simplify notation in the sequel we write U pa] for o*(™, O] for (a{m])zm] and
afm or ((afm))omy )i

Lemma 2.2.13. (c¢f. [126, Proposition 2]; cf. [126, Corollary 1]) Let A* be
a quasi-bounded commutative pre-BCK-algebra. For any a € A, a** E a.

Proof. Suppose Al is a commutative pre-BCK-algebra. Let a € A. By (2.2)
we have ¢** = 1(1a) X a. By (2.33) we have also that (a(al)){1(1a)) = 9,
whence a(l(la)) = 0 since ¢ < 1. Thus a <X 1(1a), so a < ¢**. Hence a** E .
|

If A is a commutative B'CK-algebra then, by the remarks of §1.6.11, the un-
derlying poset {4; <) is not merely a meet semilattice; it is in fact a (distribu-
tive} nearlattice. Let (A4; <) be a meet semilattice. By definition, (4; <)
is a nearlattice if, for every m € A, the principal order ideal (m] is a lattice.
Equivalently, {4; <) is a nearlattice if it enjoys the upper bound property:
that is, if the supremum lub{e, b} exists when @, b € A share a common vpper
bound [64, Section 3, p. 487). ‘

Lemma 2.2.14. (cf. [126, p. 9]) Let A be a commutative pre-BCK-aigebra
and let m € A be fivred. If 2,0 < m then a U™ b is a-least upper bound of a
and b in (m).

Proof. Assume A, a, b, m are as stated. By Proposition 2.2.11, Uy 71 b;:“m] =
s D> SO Gmps Oy = (@l M b))y by Lemma 2'.1.43(3). Now a Z agpy
and b Z by, by Lemma 2.2.13, 50 & X afpy = (0( M fg)(my 20d b X 5y =

(a(m] M bfyimy- By transitivity, a, b < (a&"m] n b{m])fm]. Thus (a1 bm)im 18
an upper bound of {a, b}.

Let ¢ < m for some ¢ € A with ¢,b X ¢. By Lemma 2.1.43(3) we have
Clm) = Gfms Om)- ThUS ¢y X @iy N b,y by Proposition 2.2.11 and so (ag, N
By im) = C(my by Lemma 2.1.43(3). Because ¢y ¢ by Lemma 2.2.13, we
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have that (a{m] N bfm])zm] 2 ¢fm X ¢ By transitivity, (a(*m] n b{m])fm] < ¢,
whence (a(,;) M b(,1 )7 S & least upper bound of {a, b}. n

Because of Proposition 2.2.11 and Lemma 2.2.14, it is natural to ask if each
initial segment (m), m € A, of a commutative pre-BCK-algebra A supports (in
some sense) a ‘generalised lattice’ structure, and in particular if {(m]; 1, ™)
is a non-commutative lattice (in the sense of §1.4.1). Let A? be the 5-element
quasi-bounded commutative pre-BCK-algebra (with derived pre-BCK meet
rA') deiined by the following operation tables:

A9 g b el PA{O a b c 1
O (¢ 0000 6 |00 000
a 0 0 00 ¢ |0 a ¢ & a
b |4 0 0 0 0 b |0 5 b b b
¢c ¢ 00 C0 ¢c {0 ¢c ¢c-¢c ¢
1 15260 1]0¢adb1

Observe 1N(1Mu) = 1MNc= b # ¢ =1Ma = (iN1)MNa, whence (4; M) is not
a band. Thus in particular (4; N,U) is not a double band and the induced
algebra (A; r, LI) is not a non-commutative lattice.

Remark 2.2.15. Let A be a commutative pre-BCK-algebra and let m € A
be fixed. The preceding remarks notwithstanding, (m] does support a ‘gener-
alised lattice' structuce in & sense made precise as follows. Recall from (223,
Section 10.1] that & [quasi-bounded) quasi-lattice (in the sense of Ursini) is a
structure [(.4; A,V,0,1; ) (4; A, V; X) of type [(2.2,0,0,2)] (2,2,2) such
that the following conditions hold for any a, b € A:

QL1. (A; =) is a quasioidered set;

QL2. The gquasi-meet ¢, A b of o and b satisfies:
(@) e A b= a;

(b} aAb XY

(c) Forallce€ A, e XcAb=<ciaplicsa Ab <X ¢;




2.2. Varieties of Pre-BCK-Algebras 133

QL3. The quasi-join a V b of a and b satisfies:

(a) a XaVvi;
(b) b=<aVb

(c) Forallc€ A,cXaANc=xbimpliesc<aVb
QLA. [Forallc€ 4,02 ¢c=<1]

[Quasi-bounded] quasi-lattices were introduced by Ursini in his study of alge-
braic semantics for linear logic {223}, in order to provide a model for the ‘turbo
monoids’ of Girard {97, p. 24]. By remarks due to Ursini [223, Section 10.1],
the equivalence = on 4 X A induced by =< in the sense of Lemma 1.2.2 is a con-
-gruence on any [quasi-bounded] quasi-lattice [{4; A,V,0,1; <)} (4; A, V; %)
such that [{4; A,V,0,1; R)/=] (4; A, V; 2)/= is a [bounded] lattice. Thus
every [quasi-bounded] quasi-lattice has the global outline of a [bounded] lattice
(compare this statement with the Clifford-McLean theorem for quasilattices).
However, a quasi-lattice (in the sense of Ursini) is not in general a quasilattice
in the sense of this thesis (that is, in the sense of §1.4.1); the converse does
obtain.

By a reduced [guasi-bounded] quasi-latiice we mean a [quasi-bounded] quasi-
lattice [{(4; A,V,0,1; =<} (4; A,V; <) such that a=b iff ¢ = b for any
a,b € A. Clearly every reduced [quasi-bounded] quasi-lattice is a [bounded]
lattice. A distributive [quasi-bounded] quasi-lattice is a [quasi-bounded) quasi-
lattice [{A; A,V,0,1; =)] (4; A,V; =) whose reduced image [(4; A,V
0,1 X}/=] (4; A,v; <)/= is distributive. Now let A be a commuta-
tive pre-BCK-algebra and let m € A be fixed. Then the induced structure
{(m}; U™, 1,0, m; <], is a distributive quasi-bounded quasi-lattice, whose
reduced image ({m}; L™, 1,0, m; jl(m]) /Z 1s precisely the bounded distribu-
tive sublattice (m/5]a/z of the commutative BCK-algebra A /Z.

Proof. Let (4; =,0) be a commutative pre-BCK-algebra and let m € A be
fixed. Let a, b, ¢ € (m]. Clearly the restriction <], of < to (m] is a quasiorder
on (m], whence Condition (QL1) above is satisfied.
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To see I is a quasi-meet, observe first that aMbd < ¢ and aNbd <X b, just
because a M b is a lower bound of {a, b}. Suppose a X ¢ b < ¢. Put a := a,
B := ¢ and v := ¢(cb). We have:

0= ((aB)(am)(78) by (2.1)
= ((aB)(am))((c(cb))e)
= ((eB){a))0 by Lemma 2.1.12(3)
= ((eB)(e7)) by (2.6)
= (ac) (a(c(cb)))
= (ac)0 since a < ¢
= ac¢ by (2.6).

Thus ¢ < ¢. Since aMNb <X a, we have aMb < a < ¢, whence aM b < ¢ by
transitivity. Thus M is a quasi-meet and Condition (QL2) above is satisfied.

To see L™ is a quasi-join, notice first that both ¢ < aU(™ p and b < a U™ ,
because ¢ LI b is an upper bound of {¢, b} in (m]. Suppose ¢ < an¢ =< b.
Put a := ¢, 8 == ¢ and v := a{ac). We have:

0= ((aB)(a1))(v6) by (2.1)
= ((@B)(e7))((a(ac))e) | |
= ((aB)(ey))0 by Lemma 2.1.12(3)
= (af)(a) by (2.6)
= (ca) (e(a(oc))) “
= (ca)0 since c <aNc
= ca by (2.6).

Thus ¢ < a. Since a < a U™ 5 we have ¢ < a < a UM b, whence ¢ <
¢ U b by transitivity. Thus U is a quasi-join and Condition (QL3) above
is satisfied.

For Condition (QL4) above, just aote 0 X a X m for all a € (m]. Thus the
induced structure {(m]; L™, 7,0, a; :5|(m]> is a quasi-bounded quasi-lattice.
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To complete the proof, just note the reduced image ((m]; mnu,o6,1; < |(m]>/3
of {(m]; L™, 1,0,m; < (m]) may be identified with the bounded commutative
BCK-subalgebra (m/&]a /=, which is a bounded distributive sublattice of A /=
by the remarks of §1.6.11. _ ]

2.2.16, Positive Implicative Pre-BCK-Algebras. A positive implica-
tive pre-BCK-algebra is a pre-BCK-algebra A such that A/Z = B for some
positive implicative pre-BCK-algebra B. Since the class pBCK of all positive
implicative BCK-algebras is a variety, axiomatised relative to PBCK by the
identity [38, pp. 294-295]:

@)~ ~y=@=2)=(=-y) (2.35)

the class pPBCK of all positive implicative pre-BCK-algebras is also a variety,
by Theorem 2.2.3, axiomatised relative to PBCK by the identity:

(z=(z~y)=-(v—2) - ((y=(y=2))=(z—y)) =0

since (2.35) is of the form of (2.29) and is symmetric in the variables z and y.
This characterisation of pPBCK notwithstanding, the following axiomatisation
is often more useful in practice.

Theorem 2.2.17. An algebra (A; =,0) of type (2,0) is a positive implicative
pre-BCK-algebra iff the following identities are satisfied: '

(e=y)—(@=2)~(2=y) =0 - (2.1)
0z~ 0 ' (2.3)
t—0=z | (2.6)
(z—9)—((z~y)~y) =0 (2.36)

Thus the class pPBCK of positive implicative pre-BCK-algebras is a variety.

Proof. Let A be a positive implicative pre-BCK-algebra. By definition we
have that A | (2.1),(2.3),(2.6), so it only remains to show A |= (2.36).
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Since A is positive implicative, A/E = B for some positive implicative BCK-
algebra B. Because B is positive implicative, B = (t~y)~y = z+y, so
B k= (2.36) by (1.3). As identities are preserved by isomorphic copies, we have
that A/Z = (2.36), so A = (2.36) by Corollary 2.1.16.

Conversely, suppose A := (4; =,0) is an algebra of type (2,0} such that
A E(2.1),(2.3),(2.6), (2.36). By (2.1), (2.3), (2.6) and Lemma 2.1.6, A is a
pre-BCK-algebra. By (2.36), A/E=(z~y)~((z~y)~y) = 0;alsu A/S =
((z=y)+y)=(z=y) =~ 0 by (1.30). Hence A/EE (z-y)+y~z+y
by (1.5), so A is positive implicative. |

By Proposition 1.7.12, the variety pBCK of positive implicative BCK-algebras
_is precisely the class of all BCK-algebras with EDPI (witn.ess z = y). By Corol-
lary 2.2.6(1), therefore, pBCK is precisely the class of all 0-regular pre-BCK-
algebras with EDPI {witness z ~ y). Since pBCK may be described alterna-
tively as exactly the class of all 0-regular positive implicative pre-BCK-algebras
(by Corollary 2.2.6(1) and Theorem 2.2.17), the preceding remarks suggest that
pPBCK is a variety of pre-BCK-algebras with EDPI (witaess ¢ ~ y) (but which
is not O-regular). This last motivates the study of the ideal theory of positive
implicative pre-BCK-algebras, the key to which is Lenima 2.2.19 below. See
also Agliano [6, Section 4, p. 14).

Lemma 2.2.18. The variety of positive implicative pre-BCK-algetras satisfies
the following identity:

(c29) = (z29) = (&=2) ~p) ~o0. (237)

Proof. Let A be a positive implicative pre-BCK-algebra. Then A/= = B
for some positive implicative BCK-algebra B. Since B is positive implicative,
BE ((z+y)=(2+y)) ~ (z = 2) = y by the remarks of §1.6.13, 50 B = (2.37)
by (1.3). Since identities are preserved by isomorphic copies, A/Z k= (2.37),
whence A |= (2.37) by Corollary 2.1.16. n

Lemma 2.2.19. (c¢f. [68, Lemma 2.8]; ¢f. [195, Theorem II§1.8]) Let A
be a positive implicative pre-BCK-algebra. For any ideal I € I(A) and fired
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a € A, the supremum I V™ (a), of T and (a)a in the ideal lattice I(A) is
{b € A: ba € I}. Consequently,

bacl iff belV™® (a)4.

Proof. Let A be a positive implicative pre-BCK-algebra and let I € I{A). Let
a € A be fixed and let J := {b € A : ba € I}. Because I{(A) is directed,
IVI® (a)p = (TU {a}) A 50 to prove the lemma it is sufficient to show:

(i) J is an ideal of A;
(i) J is the smallest ideal of A such that ¢ € J and I C J.

For (i), we have that 0 € J since 0a =0 € I by (2.4). Suppose b, cb € J for
b,c € A. Then ba, (cb)a € I by definition of J. As ((ca)(ba))((cb)a) =0€ I
{by (2.37)) we have that ca € I by Lemma 2.1.21(2). Hence ¢ € J and J is
an idesl. ‘

For (ii), we have that ¢ € J since aa = ( € I by (2.3). Suppose b € I. Because
P : ba <X b by Lemma 2.1.12(3) we have that ba € I by Lemma 2.1.21(1). Hence
1 b€ Jand I CJ. Therefore J is an ideal of A with ¢ € J and 7 C J. Let
K € I(A) be such that ¢ € K and 1 € K. Suppose b€ J. Then ba € [ C K.
; Since ba,a € K, we have that b € K by definition of K as an ideal. Hence
J C K and J is the smallest ideal of A such that a € J and a C J. L]

. . ' : . .

Let A be a pre-BCK-algebra, let I € I(A) and let ¢ € A be fixed. For
ease of notation in the sequel, we write (I, a)a for the supremum (I U {a}),
of I and (a)4 in the ideal lattice I{A). Also, we contirue to write (a] for
{b:b = a}, and we write AN a for {dbMa: b € A}, the principal left ideal
generated by a.
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Theorem 2.2.20. For a variety V of pre-BCK-algebras, the following are
equivalent: -

1. V is a variety of positive implicative pre-BCK-algebras;

2. V is weakly congruence orderable and the binary term z ~y witnesses
both subtractivity and EDPI for V in the sense of Theorem 1.7.9.
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If V is a variety of positive tmplicative pre-BCK-algebras, then the following
assertions also hold for any A€V and a,b € A:

3. {a)a =(a]=4ANg;
4. 6 €(b)a iff ab=0iff aNb=a;

5. {a=b)a = (a)a *{b)a, where « denotes dual relative pseudocomplemen-
tation in the join semilattice (CI(A); V,(0)a) of compact ideals of A.

Proof. Let V be a variety of pre-BCK-algebras.

(1) = (2) Suppose V is a variety of positive implicative pre-BCK-algebras.
By Theorem 2.1.3, V is subtractive witness z = y. To see z = y also witnesses
EDPI for V, just note that ¢ € (b)a iff a € ({0},8), iff ab € (0)a (by
Lemma 2.2.19) iff ab = 0 for any A € V and a,b € A. To see V is weakly
congruence crderable, it is sufficient to show ©4(0, a) C ©4(0,5) iff a < b for
any A € Vand ¢,b € A, just because of Lemma 1.7.17 and Theorem 2.1.14(4).
Solet A € Vand a,b € A Suppose a X b. Then a = a0 =ga(g; ab =0,
so ©2(a,0) C ©*(b,0). Conversely, suppose ©2(0,a) C ©4(0,5). Then
(e)a € (b)a by normality of ideals and so ¢ € {(b}s. Since V has EDPI
witness z = y it follows that ab = 0; that is to say a < b.

(2) = (1) Suppose V is weakly congruence orderable and that the binary
term = =y witnesses both subtractivity and EDPI for V in the sense of The-
orem 1.7.9. Then V¥, is a congruence orderable "subvariety of V by Propo-
sition 1.7.19, and so also has EDPI witness  ~ y. Moreover, V, is 0-regular
witness {z ~ y, y = 2} by Provosition 1.7.18, and so is a variety of positive im-
plicative BCK-algebras by Proposition 1.7.12. Let A € V. By the preceding
characterisation of V., we have that A/{0) = B for some positive implicative
BCK-algebra B. But this means that A/= = B, because {0)4 = Z4 by The-
orem 2.:.34(4). it follows that A is a positive implicative pre-BCK-algebra.
Hence V is 2 va iety of positive implicative pre-BCK-algebras. .

Throughov ¢ the remainder of the proof, assume that V is & variety of positive
implicative pre-BCK -algebras. Let A € V and g, b, € A.
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For (3), we have that (a] = (a), by EDPI. Suppose b € (a]. Then ba = 0
and so b = b0 = b(ba) € A a. Hence (a] C AM a. Conversely, suppose
b€ AMNa. Then b = c(ca) for some ¢ € A. Since ¢(ca) < a by {2.2),
we have that c{ce) € (a); that is to say b € (a]. Hence ANa C (6] and
(a] = AMa. For (4), we have @ € (b)s iff ab = 0 (by EDPI} iff a b = a
(by Lemma 2.1.42). For (5), let I € I(A). Becauwr of Lemama 2.2.19, we have
(ab)a C Iiff {(a)a C (B)a V 1,50 (ab}a is the dual relative pseudocomplement
of (b} with respect to {(a)a in (CI(A); V,(0)a). n

Remark 2.2.21. The variety of pre-BCK-algebras does not have EDPI. In
particular, the class jJBCK of all BCK-algebras satisfying the identity:

R R (R URE))) SRR R CR CREN))

of Cornish [69] is a BCK-variety that does not enjoy EDP1. To see this, observe
that jBCK is a variety (by Thc.rem 2.2.2 or Cornish [69, Lemma 1)} which is
not contained in any of the varieties e,BCK, n € w (by Blok and Raftery [38,
Proposition 16]). Since a variety of BCK-alzebras has EDPI iff it is contained
in some €,BCK, n € w (by Theorem 1.6 10, Theorem 1.6.15 and Proposi-
tion 1.7.10), iBCK does not have EDPI. (This argument was communicated to
the author by Professor James Raftery [188].)

The construction used by Blok and Raftery to show jBCK is not contained in
any e,BCK, n € w, nroduces, for each k¥ > 1, an aigebra A, in JBCK that is not
in any ¢,BCK. However, the ideal lattice of A iz, for each £ > 1, isomoerphic
to the three-elemen: dually relatively pseudocomplemented semilattice. Thus
Blok and Raftery’: construction cannot be used to exhibit an explicit example
of a BCK-algebra A for which the join semi’attice (CI(A); Vv, (0) 4 of compact
ideals is not dually relative pseudocomplemented. 3

Problem 2.2.22. Exhibit an explicit example of a (pre-) BCK-algebra A for
which the join semilattice (CI(A); V,{0)a) of compact ideals is not dually
relatively pseudocomplemented. "

Because pre-BCK difference witnesses both subtractivity and EDPI for pPBCK
in the sense of Theorem 1.7.9, Items (1) and (3) of the following corollary result

S EE T
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as an immediate consequence of Theorem 1.7.15(1). Despite this remark, we
give as an easy modification of a result of Agliano [7] a direct proof of the
corollary, on the grounds that this is conceptually simpler than an appeal to
Theorem 1.7.15.

Corollary 2.2.23. (cf. [7, Lemma 3.8]) For any positive implicative pre-
BCK-algebra A, the following assertions hold:

1. The set PI(A) of principal ideals of A is closed under dual relative
pseudocomplementation. Thus (PI(A); *,{(0)a) is a positive implicative
BCK-algebra;

2. The map a — {a)a is a homomorphism from A onto (PI{A); ,(0)a).
Moreover, ker f = Z;

3. The map [a]z — (a)a is an isomorphism from A /E onto (PI(A); *,{(0)4).

Proof. Let A be a positive implicative pre-BCK-algebra. For (1), just note
the set PI(A) is closed under dual relative pseudocomplementation by Theo-
rem 2.2.20(5), and hence that (PI(A); %, (0)a) is a positive implicative BCK-
algebra by Lemma 1.6.14. For (2) the map f : A — PI(A) defined by a ~+ (a)a
is clearly onto. Moreover f(a=4b) = (a =2b)s = (a)a «PHANOA) (b}, =
F{a) x(PUAE % (04) £(p) by Theorem 2.2.20(5), so {ignoring issues of similarity
type) f is a homomorphism from A onto (PI(A); *, (0) A). Also {a, b} € ker f
iff (a)a = (b)a iff [Oloa(o,a) = [Oloao,e) iff & = D {modE) iff (a,b) € E by
the proof of Theorem 2.2.20, so ker f = E. For (3), just note that A/Z is
isomorphic to (PI(A); *,{0)a) under the map [a]z > (a)a as an immediate
consequence of (2) and the homomorphism theorem [99, Theorem 1§11.1]. ®

Let A be a pre-BCK-algebra. Theorem 2.2.20(5) essentially provides an inter-
nal description of the dual relative pseudocomplement I*J of principal ideals [
and J in the join semilattice (CI(A); V, (0)a) of compact ideals of A. The-
orem 2.2.26 in the sequel, which follows immediately from Proposition 2.2.25
below, extends this characterisation of dual relative pseudocomplementation
to arbitrary members of (CI(A); V, (0)a).
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Lemma 2.2.24. Let A be o pre-BCK-algebra. For any b,c € A and any
a1y.. -, 0n € 4,

(- ((bc}ar) -+ ) an = ((-+ (bay) - - ‘Yan)c (modZ).

Proof. The proof is by induction on n. We show only (---((bc)a;)--+)a, =<
((-- (bay) - - -)ay) ¢; the proof of the opposite inclusion is similar and is omit-
ted. For n = 1, just note (be)a; = (ba;)c by (2.10). Suppose now that the
claim holds for ¥ < n. By the inductive hypothesis, (---((bc)ar)-+)ax =
((-+- (bay) -+ - )ax ) c, whence:

(¢ ((be)ar) -+ )ar) araa = (-~ (bar) - - Yae)€) o (2.38)

by Lerama 2.1.12(2). Put « := (---(bay)---)ax, B = ¢ and v = a1
From (2.10) we have (a8)y < {av)8, whence:

(-~ (bar) - - - Yar)e) agar = (((-+ - (bar) - -+ Yox) Gk ) C- (2.39)

From (2.38), (2.39) and transitivity we conclude:

(("‘((bc)al) "‘)ak)ak+1 = (((“‘(bal)"°)ak)ak+1)c “

as required. o n

Proposition 2.2.25. Let A be a positive implicative pre-BCK-algebra. For
any ay,..., ap € A,

(ag,..., an)Az{ceA:(o--((cal)ag)---)a,,=0}.

Proof. The proof is by induction on 5. For n =1, {g;)a = {c € A : ¢y = 0}
by EDPI, so the basis case holds. Suppose the claim holds for k¥ < n. We are
required to show:

(@10 0ty ara)a = {0 € A1 (- ((ca)en) - Jaw)amsr = 0. (2:40)

Solet I := {a;,...,a;)a. By Lemma 2.2.19 and the inductive hypothesis, we

.......
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have:

(1«5 Ok, Brg1)A = (I, ag11)a
=IV'™ (g 11)a
={ce A: cay1 €1}
‘ ={ceA: (- ((cars)a) - )ax =0},

To complete the proof let J := {c € A : (---((car1)m) - )ax = 0} and let
K= {c €A (((car) )ag)ops = 0}; we show J = K. Let 6 €.7. Then
(- {(bars1)ar) - )ax = 0, so ((---(bar)--)ax)ar4r = 0 by Lemma 2.2.24
and Corollary 2.1.14(3). Thus b € K and J C K. For the converse, let
b€ K. Then ((---(bar)-)ag) a1 =0, s0 (-« ((bags1)ar) - )ax = 0, also
by Lemma 2.2.24 and Corollary 2.1.14(3). Thus b € J and K C J. Hence
J = K. This establishes {2.40), so the proof is complete. a

Theorem 2.2.26. (c¢f. [68, Theorem 2.5]) Let A be a positive implicative
pre-BCK-algebra and let I := {a1,...,a)a, J := (b1,...,b:)a be two finitely
generated ideals of A. For i = 1,...,t, let d; := (---(aiby)---)b,. Then
the dual relative pseudocomplement I xJ of I and J in the join semilattice
(CI(A); V,(0)a) of compact ideals of A is the ideal (dy, ..., d;)a.

By a quasi-bounded positive implicative pre-BCK-algebra we mean any quasi-
bounded pre-BCK-algebra induced from a positive implicative pre-BCK-algebra
with a maximal class. Because of Theorem 2.2.17 and_the remarks of §2.1.40,
the class pPBCK! of all quasi-bounded positive implicative pre-BCK-algebras
is a variety. We conclude this subsection with a technical lemma concerning
pPBCK?! that will be needed in the sequel.

Lemma 2.2.27. The variety pPBCK! of quasi-bounded positive implicative _
pre-BCK-algebras coincides with pPBCK™, the generic double-pointed ezpan- _.
sion of the variety of positive implicative pre-BCK-algebras. ]

Proof. Let A' € pPBCK™. For any a € 4, a = aM1 Zga1;y aN0 =0, 50
©A%(0,1) = 141 that is to say A' € pPBCK*. Hence pPBCK! C pPBCK™.
For the opposite inclusion, let At € pPBCK™. We separate the proof into two
cases:
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(i) 0=1;
(5i) 0 # 1.

For (i), suppose 0 = 1. Then ©AT(0,1) = wa+. But ©4¥(0,1) = 14+ by
hypothesis, so A¥ is trivial and 1 is maximal. Hence A+ € pPBCK".

For (ii), suppose 0 # 1. Then A is non-trivial, so we may assume to the
contrary that 1 is not maximal. Since 1 is not maximal, there exists 0 # a €
A such that either 1 < a or 1 and e are incomparable under the pre-BCK
quasiorder. In either case it follows that a ¢ (1)a-, where A~ denotes the
positive implicative pre-BCK-algebra reduct of A+, because of the description
- of the principal ideals of A~ as the hereditary subsets of A. Thus (1)5- is
proper. Since At and A~ have the same congruences, {1)a+ = {1)a- by
normality of ideals; that is to say (1)a+ is proper. But this implies (1)4 ., <
1a+, where (1)4, is the least congruence on A+ whose 0O-class is {1)4+, so
©47(0,1) < 1a+ since (1), = ©47(0,1). Hence 0 and 1 are not residually
distinct, a contradiction. Thus 1 is maximal, and At € pPBCKZ,

By (i) and (ii), A* € pPBCK!. Hence pPBCK* C pPBCK. Therefore
pPBCK* = pPBCK?, and the proof is complete. .

2.2.28. Implicative Pre-BCK-Algebras. By an implicative pre-BCK-
algebra we mean a pre-BCK-algebra A such that A/E= B for some implica-
tive BCK-algebra B. Since the class iBCK of all implicative BCK-algebrasis a
variety, axiomatised relative to PBCK by the identity (cf (38, pp. 294-295]):

-@-y)-@y-z)~y—(y—1) (2.41)

the class iPBCK of all implicative pre-BCK-algebras is also a variety, by The-
otem 2.2.3. In particular, iPBCK is axiomatised relative to PBCK by the pair
of identities: '

l.

(G=E@=y)=-~2) (= (y=2)~0
(y=(y==2) (e (e —y)~(y =) ~0

as (2.41) is of the form (2.29). The preceding characterisation of iPBCK

) 2 "'!'.i-'..":-' o » .‘-'?'.: .
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notwithstanding, the following axiomatisation often proves more useful in prac-
tice.

Theorem 2.2.29. An algebra (A; = ,0) of type (2,0) is an implicative pre-
BCK-algebra iff the following identities are satisfied:

(e=y)—(@—2)—(z=y)=0 (2.1)
0—z=0 (2.3)
t—0r 3 (2.6)
z=(z=-(y—=2))~0. (2.42)

Thus the class IPBCK of a’mp‘licative pre-BCK-algebras is a variety.

Proof. Let A be an implicative pre-BCK-algebra. By definition we have that
A | (2.1),(2.3),(2.6), so it only remains to show A |= (2.42). Since A is
implicative, A/= = B for some implicative BCK-algebra B. Because B is
implicative, B = z ~ (y = z) = z, so B |= (2.42) by (1.3). As identities are
preserved by isomorphic copies, we have that A/Z |= (2.42), so A |= (2.42) by
Corollary 2.1.16.

Conversely, suppose A := {4; =,0) is an algebra of type (2, 0) such that
A= (21),(2.3),(2.6),(2.42). By (2.1), (2.3), (2.6) and Lemma 2.1.6, A is
a pre-BCK-algebra. By (2.42), A/EE z=(z=(y = :r;))- ~ 0; also A/Z |
(z+(y ~2)) ~z ~ 0by (1.30). Hence A/E =3z~ (y~z) = z by (1.5),s0 A
is implicative. L

By the remarks of §1.6.16, a BCK-algebra is implicative iff it is both commuta-
tive and positive implicative. This observation yields the following alternative
characterisation of implicative pre-BCK-algebras, which will be needed in the
sequel. '

Proposition 2.2.30. A pre-BCK-algebra 1s implicative iff it is both commuta-
tive and positive implicative. Thus the variety of implicative pre-BCK-algebras
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is the intersection of the variety of commutative pre-BCK-algebras and the
variety of positive tmplicative pre-BCK-algebras.

Proof. Let A be a pre-BCK-aigebra. Suppose A is implicative. Then A/Z &
B for some implicative BCK-algebra B. Since B is both commutative and pos-
itive implicative, A is both commutative and positive implicative. Conversely,
suppose A is both commutative and positive implicative. Then A = B for
some commutative and positive implicative BCK-algebra B. Since B is im-
plicative, A is implicative. The remaining assertion of the proposition now
follows. | "

Let V be a subtractive variety. Recall ([9, Section 2}) a term (%, 7, Z) is a
commutator term for V-in ¥, Z (where %, Z are disjoint sets of variables) if it is
both an ideal term in § and an ideal term in Z; that is, if t € ITy(7) NITy(Z2).
We denote the set of all commutator terms for V in §,7 by CTy(¥,Z). For
A €V and non-empty H,K C A, let:

[H,K]a = {t*(&,h,k) : (£,§,2) € CTV(§,2); € A, he H,ke K}.

[H, K]a is called the commutator of H, K in A for V. The commutator of
ideals was introduced for ideal determined varicties by Ursini in [220] (see also
Gumm and Ursini {104, Section 2]) and for subtractive varieties in general
by Ursini in [222, Section 2] (see also Agliano and Ursini [9, Section 2] and
Ursini [225]). By [10, Proposition 2.1(i)], [H, K]a € (H)a N (K)a always;
when V is ideal distributive the opposite inclusion also holds, in which case
[H,K]a = (H)a N (K)4 [9, Proposition 4.1(2)].

Let V be a subtractive variety and let A € V and 4,b € A. A (proper)
ideal I of A iz said to be prime if whenever [a,b]a C I thena € lfor b € I;
this definition originates with Ursini [221] (see also Chajda and Halas [57]).
Therefrre if V is ideal distributive, then I is prime if {(a)a N (b)a C I implies
aclorbel.

Proposition 2.2.31. For any implicative pre-BCK-algebra A and a,b € A,
{(@)a N {b)a = (a N b)a.
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Proof. Let A be an implicative pre-BCK-algebra and let a,b € A. By the
proof of Corollary 2.1.29 we have {a M b)a C {(a)a N {b)s always. For the
opposite inclusion, ¢ € {a)a N {b)4 implies ¢ € {a}a and ¢ € (b)a, which
implies ¢ <X a, b, which implies ¢ < a1 (since aM b is a greatest lower bound
of {a, b}}, which implies ¢ € {(aMb)a. Thus (a)aN{b)a C (aMb)s as required.
]

Let A be an implicative pre-BCK-algebra. Because PBCK is ideal distributive
(by Proposition 2.1.24(1)), from Proposition 2.2.31 we have that a proper
ideal I of A is prime if (e N b)4 C I implies either ¢ € I or b € I for all
a, b € A. Equivalently, I is prime if:

aNbel implieseitheracforbel (2.43)

for all a,b € A. For implicative BCK-algebras, an elegant theory of prime
ideals {which exploits exactly the notion of primality expressed by (2.43)) has
been developed by Rasiowa in [195, Chapter 1I§6]. This last, in conjunction
with preceding remarks, motivates the study of prime ideals in implicative
pre-BCK-algebras. '

Lemma 2.2.32. The variety of {(positive) implicative pre-BCK-algebras satis-
fies the following identity:

-y = (-y)~(y—12) =0 (2.44)

Proof. We have been unable to find a derivation of (2.44) (for (positive) im-

plicative BCK—algebras)' in the literature, sc we do not invoke Corollary 2.1.16
to prove the lemma. Instead we provide a derivation of (2.44) {for (positive)
implicative pre-BCK-algebras). Let A be a (positive) implicative pre-BCK-
algebra and let @, b € A. Put a:= ab, §:= b and 7y := ba. We have:

= ((aB)(ay))(vB) by (2.1)
= ((af) ) (Ga)t) ]
= ((aB)(e))0 by Lemma 2.1.12(3)

= (af)(a) - . by (2.6)




T " = AR JERTT M REP IR T AT M P S s g s T

2.2. Varieties of Pre-BCK-Algebras 147

= ((ab)b) ((ab)(ba)). (2.45)

For (2.44), put a := ab, § := (ab)(be) and « := (ab)b. We have:

0 = ((aB)(e))(v8)
= ((aB)(0)) (((ab)b)((ad)(ba)))

= ((aB)(e))0 by (2.45)
= (af) () by (2.6)
= (aB)((ab)((ab)b)) .
= {aB)0 by (2.36)
= (ab)((ab)(ba)) by (2.6).

Let A be an implicative pre-BCK-algebra and lei I be a proper ideal of A.
We say I is i#rreducible provided that:

I'=JNK implieseither I =JorI =K (2.46)

for any two proper ideals J, K € I{A). An ideal that is not irreducible is said
to be reducible. The following proposition is a modification of a result due to
Rasiowa {195, Chapter II].

Proposition 2.2.33. (c¢f. [195, Theorem II§6.1]) Let A be an implicative
pre-BCK-algebra and let I be an ideal of A. Then I is prime iff it is irreducible.

Proof. Let A be an implicative pre-BCK-algebra and I be a proper ideal of A.

(=} Suppose I is not irreducible. Then there exist proper ideals J, K € [{A)
such that ] = JNK but T # J and I # K. Clearly J € K and X € J.
Indeed, J C K implies ] = JNK = J while K C J implies I = JNK = K,
both of which contradict the reducibility of 7. Thus there exist a,b € A such
that e € J,b € K but ¢ € K, b ¢ J. To complete the proof we show:

(i) ab,ba & I;
(i) ab M ba € 1.
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For (i), we show only that ab € I; the proof that ba € I is analogous and is
omitted. So let {I, b)4 be the ideal generated by TU{b}. Clearly I C (I,b)5 C
K. Hence a & (I,b)a, since a € (I, )4 implies ¢ € K, a contradiction. But
this implies ab & I, because (I, b)s = {c € A: cb € I'} by Lemma 2.2.19.

For (i), simply note ab Nba = 0 € I by (2.44).

By (i) and (ii), ab, ba € I but ab M ba € I, which proves by (2.43) that I is
not prime.

(<) Suppose I is not prime. Then there exist a,b € A such that a # 6 and
anbeI,buta € Tand b & I. Let (I,a)a and (I, b)s be the ideals generated
by I U{a} and I U {b} respectively. To complete the proof we show:

i) I=({I,a)an{l,b)a;
(ii) (I,a)a is a proper ideal such that I # (I, a)a;
(iii) {Z, )4 is a proper ideal such that I # (I, b)4.

For (i), the inclusion I C (I, a)a N {I, b} is obvious. For the opposite inclu-
sion, we have:

(I,a)a N {1, b)a = (I VI® (a)5) N (I VI (b)4)
=TV ((a)a N (b))
= J vi&) (aMb)a

by Proposition 2.1.24(1) and Proposition 2.2.31, 8o (I, a}aN{I,b)a ={d € 4 :
d(and) € I'} by Lemma 2.2.19. Let ¢ € (I, a)a N {I,b)a. Then c(aNb) € I,
and since aMb € I we have that ¢ € I by the definition of I as an ideal. Hence
(La}an{I,0)a CTand I ={I,a)aN{I,b)a.

For (i), I # (I,a), since a € I. To see (I,a)a is proper, assume to the
contrary that b € (I, a)a. Then ba € I by Lemma 2.2.19. Since (bMNa)(and) =
0 € I by (2.33) and anbd € I by hypothesis, we infer b € I by Lemma 2.1.21(2),
which is a contradiction. Hence b & (I, a)s and (I, a)a is proper.

For (iii), I # (I,b)5 since b & I. To see {I,b), is proper, assume to the
contrary that a € (I,5)a. Then ab € I by Lemma 2.2.19. Since aNb € I
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by hypothesis, we infer a € I Uy the definition of I as an ideal, which is a
contradiction. Hence e ¢ (I, b)5 and {I, b), is proper.

By (1), (ii) and (iii), = (I, a}a N{I, b)a where (I, a)s and (I, b} a are proper
ideals such that I # (I, a)a and I £ (I, b)4, which proves by {2.46) that I is
not irreducible. n

Let A be an implicative pre-BCK-algebra. A proper ideal I of A is said to be
mazimal provided it is not a proper subset of any proper ideal. The following
proposition is an easy modification of a result due to Rasiowa [195, Chapter II].

Proposition 2.2.34. (cf. [195, Theorem I]§‘6.2]) Let A be an implicative
pre-BCK-algebra and let I be an ideal of A. Then I is prime iff it is mazimal.

Proof. Let A be an implicative pre-BCK-algebra and I be a proper ideal of A.

(=) Suppose I is prime and assume to the contrary that I is not maximal.
Then I is a proper subset of some proper ideal J € I(A) and so there exists
¢ € Asuch that a € I but ¢ € J. Let {I,a)a be the ideal generated by
ITU{a}. Clearly I C (I,a)a € J. To complete the proof it is sufficient to
show that (I, a}a (and hence J) is improper. Since caMa =0 € I (by (2.36))
and ¢ ¢ I we have that ca € I for all ¢ € A by (2.43). But this implies
c € {I,a)4 forall c € A because (I,a)s = {5 € A: ba € I'} by Lemma 2.2.19.
Thus (I, a)a = 4 and so J = A, a contradiction.

(<) Suppose I is maximal and assume to the contrary that I is not irreducible.
Then there exist proper ideals J, i € I(A) such that / = JNK but I # J
and I # K. But thisimplies I = JNK c Jand I = JNK C K, whence

I' = JNK is a proper ideal contained in both the proper ideals J and K.

Thus I is not maximal, which is a contradiction. Hence [ is irreducible, which
shows by Proposition 2.2.33 that I is prime. u

The following result is also an easy modification of a theorem of Rasiowa, [195,
Chapter I1).

Proposition 2.2.35. (c¢f. [195, Theorem II§6.4]) Let A be an implicative
pre-BCK-algebra and let I be an ideal of A. Then I is prime iff A/ is
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isomorphic to the two-element flat implicative BCK-algebra C, where ¢; is
the congruence tnduced by I in the sense of Theorem 2.1.26.

Proof. Let A be an implicative pre-BCK-algebra and let I be an ideal of A.

(=) Suppose [ is prime. By Lemma 2.1.27 we have o € I iff a = 0 (mod ¢,),
whence [a]g, = [0]¢, for e € I. Suppose now that ¢ ¢ I and b ¢ 1. From
agIand baMa=0¢€ 1T (by (2.36)) we have that ba € I by (2.43). Likewise,
fromb & Iand abMb =0 € I (by (2.36)) we have that ab € I by (2.43).
Since ab, ba € I we infer a = b (mod ¢;), or equivalently, [aly, = [b]s,. Hence
(the universe of) the quotient algebra A/¢; has exactly two elements. Since
¢; > Z we have that A/¢; is a BCK-algebra, and the result is now forced by
the remarks of §1.6.16.

(<) Suppose A/¢; is isomorphic to the 2-element flat implicative BCK-algebra
C;. Then [ is proper (because I improper implies A/¢; is trivial, a contra-
diction). Let @ € I and & ¢ I. Since the equivalence class [0];, contains
(by Lemma 2.1.27) exactly those elements of A belonging to I we infer that
[ale; = [bl4,, just because (the universe of) the quotient algebra A/¢; has
only two elements. Hence e = b (mod ¢;), so ab, ba € I. But then a Nb ¢ 1,
because a M b € I and ab € I implies a € [ by the definition of J as an
ideal, which is a contradiction. We have shown that a ¢ I and b € I implies
aMb ¢ I, which proves by (2.43) that I is prime. u

Theorem 2.2.36. (cf. [195, Theorem 1:1§6.4]) Let A be an implicative pre-
BCK-algebra. For any ideal I € I(A) the following are equivalent:

1. I is prime;
2. I is mazimal;
3. I is irreducible;

4. A/¢; is isomorphic to the two-element fla* implicative BCK-algebra C,,
where ¢; is the congruence induced by I in the sense of Theorem 2.1.26.
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Moreover, any proper ideal I € I{A) is contained in a prime ideal. In partic-

ular,
I={{J:J is a prime ideal of A and I C J}.

Proof. 1t remains only to establish the final claim. By Proposition 2.2.33,
the prime ideals of any implicative pre-BCK-algebra A are precisely the meet
irreducible elements of I{A). The claim now follows, since any element of an
algebraic lattice is the infimum of meet irreducible elements. ]

2.3 Implicative BCS-Algebras

In this section we study the variety of implicative BCS-algebras, a class of
pointed groupoids that more closely resemble implicative BCK-algebras than
do implicative pre-BCK-algebras.

Implicative BCS-algebras proper are introduced in §2.3.1. We show the variety
of implicative BCS-algebras is a subvariety of the variety of implicative pre-
BCK-algebras, and also prove that iBCK is the only non-trivial subquasivariety
of the variety of implicative BCS-algebras that is a non-trivial subquasivariety
of BCK. Some examples showing that implicative BCS-algebras arise noturally
in universal algebra in binary discriminator varieties (including pse:idocom-
plemented semilattices) and in algebraic logic in ‘pointed’ fixedpoint discrim-
inator varieties (including certain subvarieties of n-potent BCK-algebras) are
presented.

The role of the pre-BCK-meet M in the theory of implicative BCS-algebras is
considered in §2.3.19. It is shown that the existence of a left normal band
with zero polynomial reduct {r1,0) whose underlying natural band partial or-
der Sf(,? 0 respects implicative pre-BCK difference in a certain precise sense
distinguishes the implicative BCS-algebras among the implicative pre-BCK-
algebras. A representation theorem for implicative BCS-algebras is proved:
for suitable choices of objects and morphisms, it is shown that the categories
of implicative BCS-algebras and left handed (equivalently, left regular) locally
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Boolean bands are isomorphic.

In §2.3.42 we characterise (to within isomorphism) the subdirectly irreducible
implicative BCS-algebras: they are precisely the 2-element implicative BCK-
algebra and the algebras B obtained from the non-trivial Boolean algebras B
upon replacing the top element of each B with a two-element =-class.

Quasi-bounded implicative BCS-algebras are studied in §2.3.57. For a quasi-
bounded implicative BCS-algebra A?l, the skeleton S(A?) is the set {a*: a €
A}. An internal description of the maximal bounded implicative BCS-algebra
homomorphic image A'/Z of a quasi-bounded implicative BCS-algebra At
is given in terms of the skeleton S(A!). We apply this characterisation to
give a new and conceptually simple proof of the Glivenko-Frink theorem for
pseudocomplemented semilattices.

In §2.3.70 the role played by the 3-element pre-BCK-algebra B, of Exam-
ple 2.1.5 in the theory of implicative BCS-algebras is investigated. We show B,
generates the class of implicative BCS-algebras (as a variety) and hence that
the lattice of varieties of implicative BCS-algebras is a 3-element chain; the
only non-trivial subvariety of the variety of implicative BCS-algebras is the
variety of implicative BCK-algebras.

2.3.1. Implicative BCS-Algebras. An implicative BCS-algebra is an al-
gebra (4; \,0) of type (2, 0) such that the following identities hold:

-

Ao~ 0 (2.47)
(#\y)\z ~ (z\z)\y (2.48)
(2\2)\(y\2) = (z\y)\2 (2.49)
z\(y\z) ~ z. | (2.50)

Because of (2.47), the class iBCS of implicative BCS-algebras may be construed
as a variety of pointed groupoids; consequently in the sequel we (informally)
denote implicative BCS difference by juxtaposition when no confusion can
arise. Identity (2.49) is an algebraic analogue of the S-combinator (p — (¢ —
r)) = ({p = q) = (p = 7)) of combinatory logic; this accounts for the origin




2.3. Implicative BCS-Algebras 153

\Aoade\A{)abc
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Figure 2.1. Independence tables for the implicative BCS identities.

of the term ‘BCS-algebra’. The qualifier ‘implicative’ is intended to suggest
(as per implicative BCK-algebras) that the binary operation in question is
an algebraic analogue of (specifically) classical (that is, material) implication;
recall (2.50) is an algebraic analogue of Peirce’s law ((p — ¢) = p) — p.

Remark 2.3.2. In the variety of implicative BCS-algebras the identities (2.47)-
(2.50) are independent, as the operation tables of Figure 2.1 confirm. Let
A be the algebra defined by the operation table of Figure 2.1(a). Then
A = (2.48)-(2.50); however A = (2.47) since a\a = a # 0. Suppose instead
that A is the algebra defined by the operation table of Figure 2.1(b). An
easy sequence of checks shows A |= (2.47), (2.49)-(2.50) but that A [~ (2.48),
since {a\c)\d = a\d = b # a = b\c = (a\d)\c. Let A be the algebra
defined by the operation table of Figure 2.1(c). It is readily verified that
A = (2.47)-(2.48), (2.50) but that A F= (2.49), just beeause (b\a)\c=0\c =
0 # b = b\0 = (b\c)\(a\c). Suppose now that A is the algebra defined
by the operation table of Figure 2.1(d). Clearly A |= (2.47)-(2.49); however
A = (2.50) as a\(0\a) = a\0 =03 a. N

Lemma 2.3.3. The variety of implicative BCS-algebras satisfies the following

identities:
(z\y)\y = z\y (2.51)
(@\»\(2\z) ~ z\y (2.52)

2\(¥\(2\2)) = z\y (2.53)




2.3. Implicative BCS-Algebras 154

(z\y)\(y\2) =~ z\y (2.54)
(@\¥)\(2\y) = (z\2)\(y\2). (2.55)

Proof. Let A be an implicative BCS-algebra and let a,b, ¢ € A. For (2.51)
note (ab)b = (ab){b(ab)) = ad by (2.50) applied twice. For (2.52) we have
(ab)(ca) = {a(ca))b = ab by (2.48) and (2.50). For (2.53) we have a(b(ca)) =
(a(ca))(b(ca)) = (ab)(ca) = ab by (2.50), (2.49) and (2.52). For (2.54)
we have (ab)(bc) = (ab){(b(ab))c) = (ab}((bc)(ab)) = ab by (2.50), (2.48)
and {2.50). For (2.55) we have (ac)(bc) = (ab)c = (ac)b = (ab)(cb) by (2.49),
(2.48) and (2.49). n

Proposition 2.3.4. The variety of implicative BCS-algebras satisfies the fol-
lowing identity:

2\(2\(2\1)) ~ 7\v. (2.56)

Proof. Let A be an implicative BCS-algebra and let a, b € A. We have:

ab = (ab)(a{abd)) by (2.50)
= (a(a(ab))) (b(a(ab)) by (2.49)
= (a(a(ab))(ba) by (2.53)
= (a(ba))(a(ab)) by (2.48)
= a(a(ab)) by (2.50)
which establishes (2.56) as required. n

In the statement and proof of the following two results we ignore issues of type.

Proposition 2.3.5. If A is an implicative BCS-algebra then A is an im-
plicative pre-BCK-algebra. Thus the variety of implicative BCS-algebras is a
subvariety of the variety of implicative pre-BCK-algebras.

Proof. Let A be an implicative BCS-algebra and let a,b,¢ € A. By (2.50)
and (2.47) we have a = a{aa) = a0, so A }= (2.6). From (2.50) it follows that
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0 = 0(a0) = Oa, whence A |= (2.4). Also,

((ad)(ac))(cb) = ((ab)(ch))}(ac) by (2.48)
= ((ac)b)(ac) by (2.49)
= ((ac){ac))b by (2.48)
— 0b by (2.47)
=0

s0 A |= (2.1). By Lemma 2.1.6 we conclude that A is a pre-BCK-algebra. To
sce A is implicative, just notice 0 = ea = a(a(ba)) by (2.47) and (2.50). =

Remark 2.3.6. The variety of implicative BCS-algebras is properly contained
within the variety of implicative pre-BCK-algebras. To see this, consider the

following algebra A:
~Al) a b ¢
010000
a |la 0 ¢ O
b |& b 0 b
¢c lc 0 ¢ 0

An easy sequence of checks shows that A is an implicative pre-BCK-algebra.
However, A is not an implicative BCS-algebra, since a(ba) = ab=cs# a. 0

Proposition 2.3.7. For the variety of implicative BCS-algebras the following
assertions hold:

1. iBCK is contained in any non-trivial subquasivariety of iBCS;

2. iBCK is the only non-trivial subquasivariety of iBCS that is a non-irivial
subquasivariety of BCK. Thus iBCK is aziomatised relative to iBCS by
any identity of the form:

T\ H u(z,9) = 9\ [[ vz, v)

j=1
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where n,m € w and Uy, ..., Uy, V,. .., Uy are {\, 0)-terms such that BCK
satisfies:
ui(z, z) = 0 = v(z, z) i=1,...,n, j=1,...,m.

In particular, iBCK is aztomatised relative to iBCS by the identity:
2\(z\y) = y\(y\z).

Proof. For (1) let K be a non-trivial subquasivariety of iBCS. Then K is a
non-trivial subquasivariety of PBCK by Proposition 2.3.5 and so iBCK C K by
Example 2.1.4. For (2), let K be a non-trivial subquasivariety of iBCS such
that K C BCK. From K = z\(y\z) = z and K € BCK we have that K C iBCK;
since there are no non-trivial subquasivarieties of iBCK (by [131, Theorem 2]
and [39, Theorem 4.4]) we infer that K is iBCK. The remaining claims now
follow from Theorem 2.2.2. a

Although PBCK has been encountered previously in the literature as a gener-
alisation of BCK that fails in any sense to be point regular (recall Lemma 2.1.6
and Lemma 2.1.9), according to Iséki [124] the variety of implicative BCS-
algebras has not previously been considered in the literature in any context.
Nonetheless, individual members of iBCS have been employed in a number of
studies of BCK-algebras and subtractive varieties; such algebras have invari-
ably belonged to the following class of examples.

Example 2.3.8. Let B, = (B,; \,0) be an algebra of cardinality n + 1
equipped with a distinguished element 0 and a binary operation \ defined by:

ifb=0
ab = “ 1

0 otherwise

for any a,b € B,. Then B, is a flat implicative BCS-algebra (on n + 1
elements). In particular, the algebra B, of Example 2.1.5 is a flat implicative
BCS-algebra {(on 3 clements); of course, By is the simplest example of an
implicative BCS-algebra that is not an (implicative) BCK-algebra. |
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Remark 2.3.9. Let B, := (By; \, 0) be a flat implicative BCS-algebra on n+1
elements. Let 8 be an equivalence relation on B, ~ {0} and let ¢ := 8U{{0,0)}.
An easy inspection of B,, shows ¢ is a congruence on B,. Suppose now that
¢ € B, and b # 0. By inspection of B, and Lemma 2.1.42 we have a =
arb =g g,y aM0 = 0, whence ¢p, = ©B~(b,0). Therefore the lattice Con B,
of congruences on By, is isomorphic to the lattice of equivalence relations on
B, — {0} together with a new largest element tp, = ©B~(b,0) for any b # 0
adjoined. (In essence this observation has been made previously by both Blok
and Raftery [38, p. 74] and Agliano and Ursini [8, Example 6.2].)

In [65, Lemma 4.8(i)] Cornish considered the congruence structure of primi-
tive left handed skew Boolean algebras and proved that for any primitive left
handed skew Boolean algebra A, the lattice Con A of congruences on A is
isomorphic to the lattice of equivalence relations of the set A — {0}, together
with a new largest element t5 = ©%(a,0) for any a € A — {0} adjoined. It
follows that left handed skew Boolean algebra operations may be imposed on
a flat implicative BCS-algebra B,,, n € w, without disturbing the congruence
structure of B,, upon defining:

if b#£0 b ifb#£0
a/\b:z{al # and aVb:={ o #

0 otherwise a otherwise

for any a,b € B,. N

Apropos preceding remarks, in [240] Wronski proved that the class BCK is not
a variety by showing B, € H(BCK). Cornish extended Wroriski’s result in {71,
Theorem 2.2], where he proved that any BCK-algebra with condition (S) can
be embedded as a BCK-algebra into a BCK-algebra that has B, as a homo-
morphic image. In [114] Idziak exploited properties of the algebra B, in his
study of the congruence n-permutability of BCK-varieties; various properties
of the algebra By, have also been exploited by Blok and Raftery [38, Theorem 8]
and van Alten [229, Proposition 4.4] in obtaining results about BCK-algebras
and related structures. Most recently Blok and La Falce [25] have employed a
generalisation of the algebra B, in their study of certain ‘varietising’ identities
arising naturally in algebraic logic. Also, in [8, Example 6.2] Agliano and Ursini
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exhibited the variety V(Bs) generated by the algebra By as an example of a
subtractive variety that is not ideal determined, and in [11, Example 3.7} again
used Bs in proving that the variety of MINI-algebras (recall Example 1.7.11)
does not have EDPC. More generally, all the algebras B,, n € w, have been
considered briefly by Blok and Raftery in the context of their study of the
lattice of subquasivarieties of BCK-algebras: see [38, Section 4] for details.

In the context of BCK-algebras, the following example, due in essence to
Wronski 241], typifies many of the considerations encountered in the preceding
applications and studies of (flat) implicative BCS-algebras.

Example 2.3.10. (cf [24i, Applications]) Recall from [125, Example 1]
or [38, Example 1] that the set w of all non-negative integers is the universe
of a BCK-algebra w := (w; =¥, 0), where BCK difference is defined naturally
hy:

. a—~-b ifa>b
a—Yb .=
0 otherwise

for any a, b € w. In [241] Wroriski employed w in constructing a family of BCK-
algebras that generalise his example W (w) [240] showing that BCK-algebras
do not form a variety. Let R{w) := {ry, : m € w} and let I, :={0,...,n — 1}
for every n = 2,3,.... Let Ny, := {(l, X R(w)) Uw; ~%»,0) be the algebra
with distinguished element 0 and binary operation = N» defined as follows [241,
p. 222}

(i: Tb) — N“a = (31 rb-l-a)
(ra) = NoGym) = (b+ i —i]) ~“a
for any i,j € I, and a,b € w. By Theorem 1 and Theorem 3 of [241] N,

is a BCK-algebra. Consider now the equivalence relation § on the base set
(I X R(w)) Uw of N, induced by the partition {{0} x R(w),...,{n -1} x
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R(w), w}. Clearly € is a congruence relation on N, and it is easy to see that
the quotient algebra N,, /@ is a flat implicative BCS-algebra on n+1 elements.
By Remark 2.3.9 the congruences on N, /f other than the universal congruence
are in one-to-one correspondence with the partitions of N, /6 — {[0],}, while by
Wrotiski [241, Theorem 4] the congruences of Ny, other than the universal and
identity congruences are in one-to-one correspondence with partitions of the
set of indices I,. It readily follows that the congruences of N, other than the
identity congruence are in one-to-one correspondence with the congruences
of N,/6, and hence that (ConN, — {wn,}; €) & ConN,/6. From this
observation and Remark 2.3.9 we immediately obtain Wroriski’s results (241,
Theorem 5, Theorem 6] that the congruence lattice of N, obeys no special
lattice identities at all, and that N, is not congruence m-permutable for any
m € w; ¢f. [38, Section 1]. »

It is natural to ask if implicative BCS-algebras distinct from flat algebras occur
readily in universal algebra and/or algebraic logic. The following example
shows (non-flat) implicative BCS-algebras arise naturally from flat implicative
BCS-algebras in a large class of varieties occurring in universal algebra.

Example 2.3.11. Let V be a binary discriminator variety with binary discrim-
inator term b(z, y) and let K C V be a class of binary discriminator algebras
generating V as a variety. Let A € K. By definition of the binary discriminator,

ifc=0
b"‘(a, o) = a ife
0 otherwise

for any e,c € A, whence (4; b4,0) is a flat implicative BCS-algebra by
Example 2.3.8. Since the identities satisfied by V are precisely those satisfied
by K, it follows that any B € V has a canonical implicative BCS-algebra
polynomial reduct {B; b®,0). .

By way of illustration we give a practical application of Example 2.3.11.

Example 2.3.12. {¢f. [10, Example 4.4]) The variety PCSL of pseudocomple-
mented semilattices is a binary discriminator variety with binary discriminator
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term z A y*. Thus for any A € PCSL the polynomial reduct (4; \,0) is an
implicative BCS-algebra, where a\b := a A b* for any a, b € A.

Proof. Let 3 be the 3-element chain {considered as a pseudocomplemented
semilattice). An easy inspection of the induced algebra (3; \,0) shows it to
be a flat implicative BCS-algebra. Since 3 generates PCSL as a variety (by
Theorem 1.3.8), we infer that the variety of pseudocomplemented semilattices
is a binary discriminator variety with binary discriminator term z A y*. By
Example 2.3.11 it follows that the polynomial reduct {4; \,0) of any A € PCSL
is an implicative BCS-algebra. '

This last may also be observed directly in an easy and instructive proof. Let
A € PCSL and let a,b,c € A. We verify that the defining identities for
implicative BCS-algebras are satisfied. For (2.47) we have:

e\e =aAa*
=0 by (1.8).

For (2.48) we have:

(a\b\c=(a A bd*) A
=(aAc)AD

= (e\e)\b.
For (2.49) we have:

(a\e)\(B\e) = (e A c’) A (B A 7’
=aA(c"A(bAC))
=aA (" A{c"AD))
aA(e"AD) by (1.9)
(aAbd)AC

= (a\b)\c.

i
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For (2.50) we have:

a\(b\e) =a A (b A ")

=aA(aA(bAd)) by (1.9)
=an{(ana)nd) ‘
=aA{DAD)* by (1.8)
=aA(
=g ~ by (1.10).

Thus {4; \,0) = (2.47)~(2.50), and the proof is complete. u

Implicative BCS-algebras distinct from flat algebras (but which nonetheless
arise from such structures) also occur quite naturally in a fairly wide class of
varieties occurring in algebraic logic, as the following example shows.

: Example 2.8.13. (¢f [65, p. 290}; ¢f [19, Theorem 4.7]) Let V be a
b fixedpoint discriminator variety with 0. Let K C V be a class of fixedpoint
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discriminator algebras generating V as a variety and suppose that 04 is the
discriminating element on any A € K. Let f(g, y, #) be a discriminator term
for V and let z\y := f(0,y,3). Let A € K. By definition of the fixedpoint
discriminator,

aA\*b = 20,0, a)
_Ja ifb=90
0 otherwise
for any a, b € A4, whence {4; \*,0) is a flat implicative BCS-algebra by Exam-
ple 2.3.8. Since the identities satisfied by V are precisely those satisfied by K

it follows that any B € V has a canonical implicative BCS-algebra polynomial
reduct (B; \B,0). "

To further illustrate Example 2.3.13 we give a concrete application.

Example 2.3.14. Let ce,BCK, n € w, denote the intersection of the vari-
eties ¢cBCK and e,BCK. By the remarks of §1.6.13 the classes ce,BCK are
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varieties that form an infinite strictly increxsing chain. For each n € w, let
lce, BCK denote the subclass of ce,BCK satisfying the identity:

(z—y)N(y—=2)~0.

Concerning the classes ice,BCK, n € w, the following assertions hold:

1. For each n € w, lce,BCK is a fixedpoint discriminator variety with fixed-
point discriminator term f(z, y,2) = (2= (z - §)*) ~ (y = z)";

2. For each n € w, lce,BCK is generated by a single fixedpoint discriminator
algebra A, for which 04» is the discriminating element.

Thus for any A € lce,BCK, n € w, the polynomial reduct (4; \,0) is an
implicative BCS-algebra, where a\b := f4(0, b, a) = ab™ for any a, b € A.

Proof. For (1), by Theorem 1.6.15(1) each variety ce,BCK, n € w, has a com-
mutative TD term f(z,y,2) = (z = (z = y)") =~ (y ~ £)", just because it is a
subvariety of e,BCK. Since each ce,BCK is semisimple (by Cornish [68, Corol-
lary 3.2]), from Theorem 1.5.12 we have that ce,BCK is a fixedpoint discrim-
inator variety with fixedpoint discriminator term f(z,y,z). By Cornish [70,
Theorem 5.7; Section 3.6] the result now follows for Ice,BCK, n € w.

For (2) let A, be a chain of order type w, say 0 < @p < @;... < ¢ <.... Let
A, = (A,; =%,0) where a; = % a; = amaxfi-j,0) fOr any a;, a; € A,. Let Ag
denote the subalgebra (a3] of A,. By [68, Theorem 3.5), lcex BCK = V(Ay).
Because Ay is simple (by Cornish [70, Section 3.6]), from Theorem 1.5.12
it follows that A; is a fixedpoint discriminator algebra. Moreover, from the
description of A; we may infer additionally that 04* is the discriminating
element. From these remarks it follows that, for each n € w, the variety
iceaBCK is gencrated as a variety by the fixedpoint discriminator algebra A,
for which 0*~ is the discriminating element.

For the final claim, let A € lce,BCK, n € w, and let a,b € A. By Ex-
ample 2.3.13 the polynomial reduct {4; \,0) is an implicative BCS-algebra.




2.3. Implicative BCS-Algebras 163

Moreover,

a\b = f2(0, b, a)

= (a(Ob)“)(bO)“
= {(a0™)d" by (1.4), (1.7)
= ab" by [68, Lemma 1.1(ii)]
and the result follows. [

Remark 2.3.15. The proof of Example 2.3.14(1) also shows that, for each
n € w, the class ce,BCK is a fixedpoint discriminator variety with fixedpoint
discriminator term f(z,y,2) = (2= (z =y)") ~ (y ==z)". However, for no
cenBCK, n € w, does any subclass of {Ay : k € w} (where the Ay are as
in the proof of Example 2.3.14(2)) generate ce,BCK as a variety: see Cor-
nish [70, Lemma 5.6] (and also Komori [137, Theorem 3.13] and Iséki and
Tanaka [125, Example &]). Therefore we may not conclude from the proof
of Example 2.3.14(2) that each ce,BCK, n € w, is generated as a variety by
a class K C ce,BCK of fixedpoint discriminator algebras such that 04 is the
discriminating element on any A € K. However, see Example 3.2.30 in the
sequel. . N

The discussion of Example 2.3.14 can potentially be placed in the wider context
of the classes ¢,BCK, n € w. Let A be a positive implicative BCK-algebra and
let a,b € A. By Guzmaén [105, Proposition 3.2(c}], the underlying BCK partial
ordering <; on A is a meet semilattice ordering with greatest lower bound
an, b := (a(ab))(ba) such that every principal <;-order ideal of (4; <)
is & Boolean lattice. {In other words, (4; N,) is semi-Boolean.) Since any
BCK-algebra satisfying (E,) also satisfies:

g~y -2 =(y-(y=2)")~(z-y)"
by Lemma 1.3 of Cornish [68), it is natural to pose the following problem.

Problem 2.3.16. Let A € ¢,BCK, n € w. For any a,b € 4, let an_ b :=
(a(ab)") (ba)™. Is the derived algebra {4; 'N,) always a meet semilattice? If so,
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let <, denote the underlying partial order of (4; N ). Does (A; <,) support
in any sense a semi-Boolean or other ‘locally Boolean’ structure? n

Let A be a positive implicative BCK-algebra. Because the underlying <;-
ordering of A is semi-Boolean, A has an implicative BCK-algebra polynomial
reduct (4; /,0), where a/b := a{a N, b)! for any a,b € A; for details, see
Theorem 3.3 of Guzmaén [105]. This remark prompts the following problem.

Problem 2.3.17. Let A € ¢,BCK, n € w. Let a\b := a(a N, b)* for any
a,b € A. Is the induced algebra {4; \,0) always an implicative BCS-algebra?
.

It is known and quite easy to see [68, p. 419] that any finite BCK-algebra
satisfies (E,) for some n € w. This observation in conjunction with preceding
remarks suggests the problem below.

Problem 2.3.18. Does every finite BCK-algebra have an implicative BCS-
algebra polynomial reduct? u

In view of the preceding discussion, binary and ‘pointed’ fixedpoint discrimi-
nator varieties may not exhaust those classes of algebras in which implicative
BCS-algebras arise naturally. We return to this point in Example 3.2.20 in the
sequel. '

2.3.19. Left Handed Locally Boolean Bands. Theorem 1.6.21 shows
that the derived semilattice meet N plays a fundamental role in the theory of
implicative BCK-algebras, even to the point of determining some second-order
properties (see Cornish [64, Section 3]). This observation, in conjunction with
Proposition 2.3.5 and Proposition 2.2.31, prompts the study of the role played
by the pre-BCK meet M (hereafter, implicative BCS meet M) in implicative
BCS-algebras.

Proposition 2.3.20. The variety of implicative BCS-algebras satisfies the fol-
lowing identities:

(N y)\(z N2z) = (£\2)\(z\) (2.57)
(zNyN\z =~ (s\2)\(z\y) (2.58)

1
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(2\2) Ny = (z\2)\(z\y) (2.59)
(2\2) N (y\2) = (z\z)\(z\¥) (2.60)
z 0 (¥\2) = (2\z)\(z\y) (2.61)
(zNy\(zNy) = (@\2)\(z\y). (2.62)

Proof. Let A be an implicative BCS-algebra and let @, b,¢ € A. For (2.57),

we have:

(an b)(an¢) = (a(ab))(a(ac))
= (a(a(ac))){ab) by (2.48)
= (ac)(ab) by (2.56).

For (2.58), we have:

(e d)ec = (a(ab))c
= (ac)(ab) by (2.48).

For (2.59), it is sufficient by (2.58) to show (ac) M b = (a M b)c. We have:

(ac) M b = (ac)((ac)b)
= (ac)((ab)c) by (2.48
= (a(ab)}e by (2.49)
= (aNb)c.

For (2.60), it is sufficient by (2.59) to show (ac) N (bc) = (ac) M b. We have:

(ac) N (bc) = (ac)((ac)(bc))
= (ac)((ab)c) by {(2.49)
= (ac)((ac)b) by (2.48)
= (ac) N b.
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For (2.61), it is sufficient by {2.60) to show a M (bc) = (ac) M (bc). We have:

a N (bc) = a{a{bc))

= (a(ce)){a(bc)) by (2.50)
= (a(a(bc)))(ca) by (2.48)
= (a(a(bc))) (c(a(be))) by (2.53)
= (ac)(a(bc)) - by (2.49)
= (a(a(bc)))c by (2.48)
= (a) (a(te))c) by (2.49)
= (ac)((ac)(bc)) by (2.48)
= (ac) M (bc).

For (2.62), it is sufficient by (2.61) to show (a M &)(c M b) = a N (bc). So let
a:=a, B:=0band y:=cMb We have:

(eNbd)(cnd)=(aNB)y

= (a7)(ah) by (2.58)
= an(f7) by (2.61)
=af(d(cMb))
= a1 (5(c(ch)))
= a (k) by (2.53).

Proposition 2.3.21. The variety of implicative BCS-algebras satisfies the fol-
lowing identities:

sN{yNz)=(zNy)Nz (2.63)
eM(yMNz)=zN(zNy). (2.64)

Proof. Let A be an implicative BCS-algebra and let a, b, ¢ € A. For (2.63),
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we have:

(aMd) N e = (a(ab)){(a(ab))c)
= (a(ab)){(a N b)c)
(a(ab)){(ac)(ad)) by (2.58).

Put o := e, B := eb and 7 := (ac)(ab). We have:

(a(ab)) ((ac)(ab)) = (cB)y
= (a7)8 by (2.48)
= (a((ac)(ab)))(ab).

Put o := @, B := b and vy := ¢. We have:

(a((ac)(ab)))(ab) = (a((e7)(B)})(ab)

(a (M (B7) ) b) by (2.61)
(a(al"i(bc ) b)

= (a(a

a ¢)))) (abd).

Put & == g and § := bc. We have:

(a(a(a(be)))) (ab) = (afa(ap)))(ab)
= (af)(ab) by (2.56)

= (a(be))(ab).

Put ¢ :=a, §:= b and v := bec. We have:

(a(be))(ab) = (a)(eB)
= an () by (2.61)
= a N (b(bc))
=aMN(bdNc).
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For (2.64), put o := a, §:= ab and v := ¢. We have:

a(bMe)=(aMbd)Nec

= (a(ab)) ((a(ab))c)

= (a{ab)) ((aB)7)

= (a(ab)) ((a7)B) by (2.48)
= (a(ab))((ac)(ad)).

Put o := a, B := ab and v := ac. We have:

(a(ab)) ((ac)(ab)) = (aB)(7B)
= (a7)(B7) by (2.55)
= (a(ac)) ((ab)(ac)).

Put a:= @, 8 := b and v := ac. We have:

(a(ac)) ((ab)(ac)) = (a(ac)) ((ef B)7Y)
= (a(ac)) (av)8) by (2.48)
= (a(ac)) ((a(ac))d)
=(aNc)Md
= ¢ N (cMb).

; o Recall from [206, p. 295] that a restrictive bisemigroup is an algebra {A; Ay, Ag)
k ' of type (2,2) such that: (i) the reduct {4; Ap) is a left normal band; (ii} the

] reduct {4; Apg) is a right normal band; and (iii) the following associativity
condition is satisfied:

(zDpy)Drz =~ zAp(yAL2). (2.68)

Restrictive bisemigroups were introduced by Schein in {200] in connection with
the theory of binary relations [228]. Let A and B be sets and let p and o be
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binary relations from A into B. The restrictive composition of the first kind
of p and ¢ is the binary relation > C A4 x B defined by [207, p. 309}:

p> o= (m(p) x B)No

where 7, is the first projection map. Analogously the restrictive composition
of the second kind of p and ¢ is the binary relation <« C A x B defined by [207,
p. 309

p<o:=pNn (A xmny o))

where 79 is the second projection map. Upon denoting the set of all one-to-one
binary relations from A to B by R(4, B), the structure (R(4, B); >, <) is a
restrictive bisemigroup, the restrictive subbisemigroups of which are known as
resirictive bisemigroups of invertible mappings.

Corollary 2.3.22. For any implicative BCS-algebra A, the following asser-
tions hold:

1. A has a left normal band with zero polynomial reduct (A; Mg, 0), where
aNgb:=anb for any a,b € A;

2. A has a right normal band with zerc polynomial reduct (4; Mg, 0), where
~aNpb:=>bNa for any a,b € 4;

3. A has a restrictive bisemigroup polynomial reduct {A; Mg, Ng);

4. The resirictive bisemigroup polynomial reduct (A; Mg, Mg} of (3) is iso-
morphic to a restrictive bisemigroup of invertible mappings.

Proof. Let A be an implicative BCS-algebra and let a My b := a N b for any
a,b € A Tor (1), just note that the identities (2.63)-(2.64) in conjunction
with the identities (2.21)-(2.23) of Lemma 2.1.42 assert that the polynomial
reduct (4; My,0) is a left normal band with zero. For (2), let aNgb:=bMa
for any a,b € A. An easy sequence of checks shows that the derived algebra
{4; Mg, 0) is a right normal band with zero. For (3), recall from Schein {207,
p. 313] that any left normal band (4; Ap) induces a restrictive bisemigroup
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(4; Dp,Ap) upon defining an inverse operation Ag by alAgrb 1= bAga for
any @, b € A. For (4), just note by Schein {207, Theorem 5; pp. 313-314] that
any restrictive bisemigroup induced by a left normal band in the above manner
is isomorphic to a restrictive bisemigroup of invertible mappings. ]

Remark 2.3.23. It is entirely arbitrary whether we consider in general the
left normal band with zero polynomial reduct or the right normal band with
zero polynomial reduct of an implicative BCS-algebra A. In the sequel we will
exclusively consider only the left normal band with zero polynomial reduct,
denoting it simply {A; N, 0), bearing in mind that all results obtained extend
to the right normal case. ]

Because of Corollary 2.3.22(1), implicative BCS-algebras enjoy equationally -
definable properties of left normal bands with zero. Since the Green’s qua-

siorderings <z, =z and =p and the natural partial ordering <4 are term

definable on any band, we have that they are also definable on any implicative

BCS-algebra.

Lemma 2.3.24. Let A be an implicative BCS-algebra and let X be the binary
relotion defined on A by a X b iff ab = 0. For any a,b € A, a =2 b iff
a 5&;4‘ 0 iff a ﬁ(ﬁ‘d‘n’o) biff aNb=a, and so (A; <) is a quasiordered set
with least element 0. Moreover, the relation < satisfies the following conditions
for any a,b,c € A:

1. Ifa X b then ¢b <X cay
2. If a < b then ac < be;
. Ifa<XbthenaNec=xbNg;
4. Ifa<XbthencNa=<clb.

Proof. For the first assertion, (4; =) is a quasiordered set with 0 as least
element (by Lemma 2.1.12) for which Lemma 2.1.42(1) ensures ab = 0 iff
aMNb = a, and for which the remarl's of §1.3.11 and §1.3.15 ensure aNb =a
iff a -_5?;”’0) iff a j‘DA MO p. It remains to prove Items (1)-(4). Items (1)
and (2) have already been established in Lemma 2.1.12(1), (2) respectively.
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Because jga;np) and X coincide, Items (3) and (4) follow from a standard
result of semigroup theory asserting that the D-quasiorder on an arbitrary
band is compatible with band multiplication: see Schein [208, Proposition 1).
n

Proposition 2.3.25. Let A be an implicative BCS-algebra and let < be the
binary relation defined on A by a < b iffeNb=a=50Na. Foranya,b € A,
a 5;‘: $1.0) iff a jgl N0 g iff a < b, (A; <) is a partially ordered set with least
element 0, and < is admissible with respect to <. Moreover, < satisfies the
following conditions for any a, b, ¢ € A:

1. If a < b then ¢b < ca;
2. If a < b then ac < be.
3 Ifa<bthenaNe<blg
4. Ifa<bithencea<chb;

Proof. For the first assertion, ¢ < bif aMb = o = bMaiff ¢ 5™ 3,
which implies (4; <) is a partially ordered set by the remarks of §1.3.11.
Moreover, 0 < @ for any a € A and < is admissible with respect to < by
Lemma 2.1.42. It remains to establish a gg;,f‘* 0 b iff ¢ 5,5;‘;“"” b. It is
clear by definition that a 53;“;”’*” b implies a j.f,f‘ "0 b. For the converse,
assume @ jﬁ{“n’o) b; it is sufficient to show o 55{1‘“’0) b. By left normality,
aNb=aNbdNa=aN(bNa)=aNa=a,so a_—ﬁ(cA;n‘o) b.

It remains to prove Items (1)-{4). Items (3) and (4) follow from left normality
and Lemma 1.3.16. For (1), assume ¢ < b. Then ¢ < b and ¢b < ca by
Lemma 2.3.24(1), whence:

(cb) 1 (ca) = (cb)((cb)(ca))
= (¢b)0
= cb by (2.6).
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For the opposite inclusion, assume a < . We have:

(ca) 1 (cb) = ((ca)b) ((ca)c) by (2.61)
= ((ca)b)0 by Lemma 2.1.12(3)
= (ca)b by (2.6)
= (cb)a by (2.48)
= (cb) (b(ba)) since bMa=a
_ by (2.54).

Thus cb < ce, and (1) is proved. For (2), assume @ < b. Then ¢ < b and
ac < be by Lemma 2.3.24(2), whence:

(ac) 1 (be) = (ac)((ac)(be))
= (ac)0
= ac by (2.6).

For the opposite inclusion, assume a < b. We have:

(b¢) 1 (ac) = ((bc)c) ((be)a) by (2.61)
= (be){(be)a) by (2.51)
=(bc)Ma
= (bc)(ba) by (2.59)
= (b(ba))c 2y (2.48)
= ac nee bMe = a.
Thus ac < be, and the proof is complete. n

By Lemma 2.3.24 and Proposition 2.3.25, small finite implicative BCS-algebras

may be depicted graphically using the Hasse diagramming conventions i §1.4.18.

We provide a concrete example by way of illustration.

Example 2.3.26. Using Lemma 2.3.3 and Proposition 2.3.4 the free implica-
tive BCS-algebra F(Z, 7) on two free generators ¥, ¥ may be determined simply

i,
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by computing all products involving T and §. The resulting operation tables
for F(Z,¥) and its left normal band with zero polynomial reduct ure shown be-
low (where for simplicity of notation in the tables, we denote implicative BCS
difference by juxtaposition, and also write z and y for T and ¥ respectively
(and similarly for products of T and 7)).

\FEO | 0 =z y zy yz =zNy yNz
0 0 0 O 0 0 0 0
T z 0 zy zNy = Ty Ty
Y y yw 0 y yhz gy  yz
Ty zy 0 zy O Ty Ty Ty
YT yr yr 0O yz 0 YT YT

zNy (zNy 0 0 zNy zNy O 0

yNzg |yNz 0 0 yNz yNze O 0

ﬂF(EJ)
0

z Y zy yr zNy yNz
0 0 0 O 0 0

0
0
T 0 z zMNy zy 0 zNy; Ny
Yy 0 yNz gy 0 gy yMNz yNxz
zy |0 my 0 zy 0 .0 0
yz [0 O yz O yr € 0
zMNy |0 zNy zNy 0 0 =Ny zsNy
0

yNz yNz 0 0 yNz yiz

yMe

The Hasse diagram of F(%,7) is shown in Figure 2.2. For nctational reasons,
implicative BCS difference is denoted by juxtaposition in the figure; also the
free generators T, 7 are denoted simply by z, y respectively (and like remarks
apply to products of T, 7). _. , »

Let A be a pre-BCK- ulgebra with an underlying partial order < (which need
not necessarily coincide with <%). If ab < a for any q, b € A we say < respects
pre-BCK difference. In Thecrem 2.3.29 below we show that the existence of a
left normal band with zero polynomial reduct (M,0) whose underlying natural
band partial order respects implicative pre-BCK difference distinguishes the

R T R
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x(xy) ¥(yx)

0

Figure 2.2. The iBCS-free algebra on two free generators 7, 7.

implicative BCS-algebras among the implicative pre-BCK-algebras. But first,
two auxilliary lemmas; Theorem 2.3.29 shows the hypotheses of the second of
these lemmas are not artificial.

Lemma 2.3.27. The variety of (positive) implicative pre-BCK-algebras satis-
fies the identity:

(e-9)~(z=y)=2) - (z=y)=0. (2.66)

Proof. Let A be a (positive) implicative pre-BCK-algebra and let @, b, ¢ € A.
We have ab < (ab)d, so (ab)((ab)c) = ((ab)b)((ab)c) (by Lemma 2.1.12(2)),
so ((ab)((ab)c))(cb) = (((ab)b)((ab)e))(ch) (by Lemma 2.1.12(2)) = O by (2.1),
so ((ab)((ab)c))(cb) = 0 by Lemma 2.1.12. "

Lemma 2.3.28. Let A be an implicative pre-BCK-algebra such that the poly-
nomial reduct {A; 1,0) is a left normal band with zero. Suppose further that
the underlying natural band partial order 55,,’; 0 on the polynomial reduct
(A; 1,0) respects implicative pre-BCK difference; thet is, for any a,b € A,

ab B0, (2.67)
Then A satisfies the following identities:

<y N(e=y)~ (s —g) Nz (2.68)

W i
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zN{y~2z)=(z—2)Ny (2.69)
(z—y)—z=(z=2)N(z—y) (2.70)
Proof. Let A be an implicative pre-BCK-algebra for which the polynomial

reduct {A; M,0) is a left normal band with zero and suppose further that A
satisfies (2.67) for any a,b € A. Let ¢,b,c € A. For (2.68) we have:

(ab) M (cb) = (ab) N (e (cb ) by (2.67)
= ((eb)nc)m
= ((ab) M) ((( ab Me cb))
= ((ab) N ¢} (({ab){(ab)c cb))
= ((ab) N )0 by (2.66)
= (ab)Ne¢ by (2.6).

For (2.69), we have:

M (be) = a N ((bc) N a) by left normality
= a1 ((bc) N (ac)) by (2.68)
i = a M ((ac) N (be)) ' by left normality
= {(a (ac)) N (bc)
= (ac) M (be) by (2.67)
= (ac)Mb by (2.68).

For (2.70), we have:

(ab)c = (ad) N ((eb)c) by (2.67)
= (a N (ab)) N ((ab)c) by (2.67)
= a1 ({ab) N ((ad)c))
= a N ((ab)c) by (2.67)

= (ac) N (ab) by (2.69).
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Theorem 2.3.29. For any implicative pre-BCK-algebra A the following are
equivalent:

1. A is an implicative BCS-algebra,

2. The polynomial reduct (A; N, 0) is a left normal band with zero, and any
one of the following conditions is satisfied:

(a) Right [left] multiplication by a fived element of A is isotone [an-
titone] with respect to the underlying notural band partial order
53}4; "9, That is, for any a, b, c € A,

i If o <$5™ b then cb <35 ™ co;

i Ifa _<_5,f 00 b then ac ng;n,o) be.
(b) The underlying natural band partial order ng W) respects implica-
tive pre-BCK difference. That is, for any a,b € A,

ab <0 g, (2.67)

(c) A satisfies the identities:
s—(zNy)xmzs—y=zN(z—y). (2.71)

Proof.‘ Let A be an implicative pre-BCK-algebra. To prove the theorem we
show (1) = (2){a) = (2)(b) & (2)(c) and (2)(b), (2)(c) = (1).

(1) = (2)(a) Suppose A is an implicative BCS-algebra. Then the polynomial
reduct (A4; 1,0} of A is a left normal band with zero (by Corollary 2.3.22(1))
such that right [left] multiplication by a fixed element of A is isotone [anti-
tone] with respect to the underlying natural band partial order ggf;”'“’ (by
Proposition 2.3.25(1),(2)).

Throughout the remainder of the proof, assume that the polynomial reduct
(4; 1,0} of A is a left normal band with zero.




2.3. Implicative BCS-Algebras 177

(2)(a) = (2)(b) Let a € A and suppose right [left] multiplication by a fixed
element of A is isotone [antitone] with respect to the underlying natural band
partial order S,(;f M0 Since (A; N,0) is a band with zero, 0 5&;“”’“) b for
any b € A, whence ab SS,;?; " 40 = a for any @ € A. Thus gﬁj‘ 119 respects
implicative pre-BCK difference.

(2)(b) < (2){c) Suppose S_gf 109 respects implicative pre-BCK difference.
Then ab <™ a for any a,b € 4, s0 a(a N b) = a(a(ab)) = a (ab) = ab.
Thus A }= (2.71). Conversely, suppose A |= (2.71). Let a,b € A. By hypothe-
sis, al(ab) = ab; also (ab)Na = (ab)((ab)e) = (ab)0 = b by Lemma 2.1.12(3)
and (2.6). Thus ab <$°™ o

(2)(b), (2)(c) = (1) Suppose both A = (2.71) and ab S,{;‘n’m a for any
a,b € A. We verify directly that the defining identities (2.47)—(2.50) for
implicative BCS-algebras are satisfied. So let a, b, ¢ € A. It is clear that (2.47)
is satisfied, because A is a pre-BCK-algebra. For (2.48), we have:

(ab)c = (ac) N (ab) by (2.70)
= a M (ac) N (ab) | by (2.67)
= aM(ab) N (ac) by left normality
= (ab) N (ac) by (2.67)
= (ac)b by (2.70).

For (2.49), put a:= a, 8 := ac and 7 := (ac N b). We have:

= (a(be)) M (ac) by (2.70)
= (a M (a(be))) M (ac) by (2.07)
= (a(an (b)) M (ac) by (2.71)
= (a(acn b)) M (ac) by (2.69)

= (av) M
M (5’7) by (2.69)
((ac)((ac )M b))

1l

afll
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= an ((ac) 1 ((ac)b)) by (2.71)
= an ({ac)b) by (2.67)
= (ab) N (ac) by (2.69)
= (ac)b by (2.70)
= (ab)c.
For (2.50), we have:
a(ba) = a N (a(ba)) by (2.67)
= a{a 1 (ba)) by (2.71)
= a(a(a(ba)))
= a0 by (2.42)
=a by (2.6).
n

Remark 2.3.30. The hypothesis that the natural band partial order respect
implicative pre-BCK difference cannot be omitted in the assertion of Theo-

rem 2.3.29. To see this, consider the 4-element implicative pre-BCK-algebra A

of Remark 2.3.6, whose polynomial reduct (4; I, 0) has the following operation

table:
M 10 a b ¢
0 (0 00O
a |0 a 0 a
b 10 0 b 0O
¢c |0 ¢ 0 ¢

An easy sequence of checks shows that (4; N,0) is a left normal band with zero.

However, the natural band partial order ng $00)

does not respect implicative

pre-BCK difference, since ab = ¢ ;{gf‘ o) a; and A is not an implicative

BCS-algebra by the remarks of Example 2.3.6.

Recall from Theorem 1.6.21 that every implicative BCK-algebra (4; /,0) has a
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semi-Boolean algebra polynomial reduct {(4; N, 0), where aN b := a/(a/b) for
any a, b € A, and conversely that every semi-Boolean algebra (4; N,0) induces
an implicative BCK-algebra (4; /,0), where a/b := (a N b);,. In a sense,
this representation result characterises implicative BCK-algebras entirely in
semilattice-theoretic terms. This remark, in conjunction with Theorem 2.3.29,
begs the question of whether implicative BCS-algebras may be characterised
similarly in semigroup-theoretic terms, and in particular in terms of left normal
bands with zero. We devote the remainder of this subsection to the study and
solution of this problem. To begin, let A be an implicative BCS-algebra with
left normal band with zero polynomial reduct (4; M,0). Recall from §1.3.11
that forany me A, mNA:={mNa:qa€ A}.

Proposition 2.2.31. Let A be an implicative BCS-algebra and let m € A be
fized. ThenmNA={a€e A:a<m}={a€ A:mNa=a}. Moreover,
mMA is closed under \, and on mM A the partial order < and the quesiorder <
coincide. Thus the principal subalgebra (m] := (mMA; NMPana) generated by m
is a Boolean lattice.

Proof. Let A be an implicative BCS-algebra and let m € A be fixed. By left
normality and Lemma 1.3.13(3), mNA = {a: e < m}. Since mNa = aiff
a < m, the first statement of the proposition holds. For the second assertion,
suppose a,b € m M A. Then a < m, so ab < mb by Proposition 2.3.25(2).
But mb < m, so ab < m by transitivity, whence m N A is closed under \.
Also; @ < b implies @ =< b since < is admissible with respect to <. Conversely,
¢ < b implies ab = 0, which implies ¢ M b = a (by Lemma 2.1.42(1)), which
implies bMa = a (since (m] is a subsemilattice of {A; M, 0} by Lernma 1.3.16).
Thus a < b, and the partial order < and the quasiorder < coincide on m N
A. Therefore for any a,b € m N A, ab = 0 = ba implies a = b, so (m N
A; \,0) is an implicative BCK-algebra such that the implicative BCK partial
ordering coincides with the semilattice partial ordering on m N A. Since (m] is
bounded (by Lemma 1.3.13(1)), (m N 4; \,0) is bounded, so {(m M A; <) is a
Boolean lattice by Corollary 1.6.22; that is to say (m)] is a Boolean lattice. This
establishes the final assertion of the proposition, and the proof is complete. =

Recall from §1.3.15 that a band with zero A is locally Boolean if for every
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¢ € A, the principal subalgebra (a] generated by a is a Boolean lattice. If A
is a locally Boolean band and A is also left regular (equivalently, left normal),
then by analogy with non-commutative lattice theory we call A a left handed
locally Boolean band. (Right handed locally Boolean bands may be defined
dually, though our concern here is with left handed locally Boolean bands.)
As an immediate consequence of Corollary 2.3.22(1) and Proposition 2.3.31 we
have the following result.

Theorem 2.3.32. Every implicative BCS-algebra (A; \,0) has a left handed
locally Boolean band polynomial reduct (A; N,0), where a M b := a\{a\}) for
any a, b € A.

Let A be an implicative BCS-algebra. Call A bounded if there exists 1 € A
such that ¢ < 1 for any ¢ € 4. As usual, by abuse of language and nota-
tion we confuse a bounded implicative BCS-algebra A with its expansion to
{A; \,0,1), where 1 is a new nullary operation symbol adjoined to the language
of A whose canonical interpretation on (A; \,0,1) is 1 € A. The following
corollary to Theorem 2.3.32 may be inferred immediately from Corollary 1.6.22
and Proposition 2.3.31.

Corollary 2.3.33. (cf. [126, Theorem 12]; c¢f. [2, Theorem 8]) The un-
derlying poset (A; <) of a bounded implicative BCS-algebra (A; /,0,1) is a
Boolean lattice. For any a,b € A,

aANb=alnbd

a Vv b =1\((1\a) 11 (1\d)).

Let (A; N,0) be a left handed locaily Boolean band. Because a N & <y a for
any a,b € A, locally Boolean bands possess an induced difference operation \.
In more detail: given a,b € A, the difference a\b is defined to be (a M b))
namely the complement of aMb in the principal subalgebra (a] generated by a.
In the following two results, we denote this induced difference by juxtaposition.

Lemma 2.3.34. For a left handed locally Boolear band A and a,b € A the
following assertions hold:
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1. an(eb) = ab = (ab)Na;
2. Cly = (ab) N Cal for any c € A such that ¢ <y ab.

Proof. For (1), just note ab = (a N b)E‘o] <% a. For (2), assume ¢ <y ab.
Since (ab) M ¢fy <n ab by left normality, (ab) N cf,; € (abl. It remains to show
(ab) M ¢, is the complement of ¢ in (ab]. For this, observe:

((ab) P cyy) Me = (ab) M (cly Mec)

=0
and also:
((ab) M cfy) W ¢ = ((ab) 71 ¢yy) U@ ¢ as (ab] < (q]
= ((ab) U c) N (cfy U ¢) by distributivity
= (ab) N{cfy Lt ¢) as ¢ <y ab, (ab) < (a]
= (ab)Ma
= ab by (1).

Theorem 2.3.35. Every left handed locally Boolean band (A; N,0) induces
an implicative BCS-algebra (A; \,0) under the operation a\b := (aN b}y, for
any a,b € A, where (an b)fa] denotes the complement of aM b in the principal
subalgebra (a) generated by a.

Proof. Let A be a left handed locally Boolean band and let a,” ¢ € A. To see
the derived algebra (4; \,0) is an implicative BCS-algebra, we verify (4; \,0)
satisfies the defining identities (2.47)-(2.50).

For (2.47)}, simply notice aa = {a N a:);a] = aiy =0.
For (2.48), observe (ab) N ¢ <3 ab by left normality, and hence that:

(ab)e = ((ab) M ¢)
= (ab) M ((ab) C)Ec] by Lemma 2.3.34(2)
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= (ab)N ((ad)Nan c) by Lemma 2.3.34(1)
= (ab) N ((ab)&] U (ane a) by De Morgan’s laws
= (ab) 11 ((ab)fyy U (ac))

= ((ab) 11 (ad)f,) ut@ ((ab) M (ac)) by distributivity

= 0U@ ((ab) M (ac))

= (ab) N (ac).

By symmetry in the elements b and ¢ we deduce also that (ac)b = (ac)M(abd).
But this implies (ab)c = (ac)b, since:

(ab) N (ac) = a N (ab) M (ac) _ by Lemma 2.3.34(1)
= oM {ac) N (ab) by left normality
= (ac) N {abd) by Lemma 2.3.34(1).

For (2.49) it is sufficient to show (ab)c = (ab)(cb). By definition (ab)c =
((ab) 11 c)( y and (ab)(cb) = ((ad) N {(ch) )( atp We claim (ab) T ¢ D (ab) M (cb).
Because A is locally Boolean, A/D is semi-Boolean by Lemma 1.3.17. Since
‘ (z/9)/((z/y)/2) ~ (z/y)/((2/y)/(z/y)) is an identity of implicative BCK-
algebras (by (2.59) and (2.60)), from Theorem 1.6.21 we may infer [(ab) N
L ¢}y, = [(ab) M (cb)], in A/D; that is to say (ab) N ¢ D (ab) M (cb). Now
_ (ab)Ne, (ad)M(cb) <4 ab by left normality, so (ab)MNe, (ab)M{(cb) € (ab). But
this implies (by Proposition 2.3.31) that the equivalence (ab) M ¢ D (ab) M (cb)

collapses in (ab] to the equality (ab)M(cb) = (ab)Mc. Because (abd] is Boolean,
it is uniquely complemented, and so we deduce ({a&)Mc), (o] = = ((ab)ri(cb)); ()
b that is to say (ad)c = (ab)(cb).

For (2.50), observe first that ¢ M (ba) = 0. Indeed,

0= (bMa)N(bMa)y
= bMar(ba)
=bM(ba)Ma by left normality
= (ba)Na by Lemma 2.3.34(1)

g
3
:




i
i
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which implies @ N (be) = 0 by Lemma 1.4.13, just because a M (ba)D(be) N a.
To complete the proof, simply notice:

a(be) = (an (ba));a]

= Ogg)

= a.

Theorem 2.3.36. In the variety of implicative BCS-algebras and the class of
left handed locally Boolean bands, the following assertions hold:

1. Every implicative BCS-algebra (A; \,0) induces a left handed locally
Boolean band (A; M, 0) upon defining a M b := a\(a\b) for any a,d € A;

2. Every left handed locally Boolean band (A; M, 0) determines an implica-
tive BCS-algebra (A; \,0) under the operation a\b := (a N b)E‘a] for any
a,b € A, where (al b)fa] denotes the complement of aflb in the principal
subalgebra (@) generated by a.

Moreover, the corresmondences of (1) and (2) are inverse to each other. In
more detail, if (A; \,0) is an implicative BCS-algebra with left handed iocally
Boolean band polynomial reduct {A; N, 0), then implicative BCS difference on
(4; 0,0) as induced by the operation \'4™9 of (2) coincides with implicative
BCS difference \{4V% on (A; \,0); that s, a\{4"0p = a\A\0p for any
a,b € A. Conversely, if (A; N,0) ¢s a left handed locally Boolean band with
induced implicative BCS-algebra (A; \,0), then the tmnplicative BCS meet on
(4; \,0) as determined by the operation N\ of (1) coincides with the band
operation M4 ™MD on (A; N,0); that is, a AN b = ¢ MDD b for any
a6, b€ A

Proof. It remains only to prove the final assertion. Let (4; \,0) be an im-
plicative BCS-algebra with left handed locally Boolean band polynomial reduct
{(4; N,0). For any a, b, € A,

A\ = (an b)y,
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= (a\m; W0 g\ (4 \90) b)):a]

= a\{4\0) (a\4 W0} g\ {4 W05)) by Corollary 2.3.33
= g\ \0p by (2.56).

Conversely, let (A4; M,0) be a left handed locally Boolean band with induced
implicative BCS-algebra {A; \,0). For any ¢, b € 4,

a AN b = g\(a\b)
— (a l—-l(A; ntU} (a r-i(A; 1,0} b)zta])(*a]
= G, L@l (g M4 00) b)a) by De Morgan’s laws
— o ufd (a ¢4 N0} b)f;]
= (ant4:m by
= g 4N p

Remark 2.3.37. Let A := (4; -,0) be a locally Boolean band. For any
a,b € A, aba <y a, and so A possesses an induced difference operation \ {4 "9,
where a\{4 "9} := (aba)(,, , the complement of aba in the principal subalgebra
(a]a generated by a. As with left handed locally Boolean bands, tiie induced
algebra {4; \{-9,0) is an implicative BCS-algebra. (For a justification of
this assertior, see the proof below.) In spite of this observation, however, there
seems little profit in studying locally Boolean bands as a generalisation of left
handed locally Boolean bands, because the correspondences of Theorem 2.3.36
are not preserved: while every (not necessarily left or right handed) iccally
Boolean band induces an implicative BCS-algebra, the locally Boolean band
polynomial reduct of any implicative BCS-algebra is always left (or right)
handed.

Proof. Let A := (A; -,0) be a locally Boolean band. For any a,b € A, let
a\ {40 = (aba){,),, the complement of abe in the principal subalgebra (6]
generated by 2. To see the induced algebra (A; \¢ %, 0) is an implicative
BCS-algebra, let a M b := aba for any ¢,b € A, We claim:
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(i) The polynomial reduct {(4; 1,0) is a left normal band with zero;
(i) For any a € 4, (a)i4; .0 = (elasnop;
(iii) If b,¢ € (a]a then b-c=bNec.

For (i), easy but tedious computations show the polynomial reduct (A: 1,0) is

a left normal band with zero, just because (A; -, 0) is normal (by Lemma 1.3.16).

For (ii), it sufficient to show a <49 b iff ¢ <4™9 p for any a,b € A. So
let a,b € A, Clearly @ <! b implies a <™ §. Conversely, a <{4 79 §
implies aba = a = babd, so ab = (bab)b = bab = a and ba = b(bab) = bab = a,
whence @ <0 p,

For (iii), let b,c € (a]a. Since (a] is a subsemilattice of {4; -,0) we have
bec=b-c-b=">0c as desired.

To complete the procf, notice (ii)—(iii) imply the principal subalgebra (a](4; n,0)
of {4; N,0) coincides with the principal subalgebra (a]a of A for any ¢ € A,
whence (A; M,0) is a left handed locally Roolean band by (i). By Theo-
rem 2.3.35 we have that the induced algebra {4; \(4™® 0) is an implica-
tive BCS-algebra, where for any a,b € 4, e\\4™0p := (a N b)za]u;n,o)' But
(e b); = (aba);,, for any a,b € 4, so a\!4 Op = a\Ai0p, Thus

(ﬂ}(A; n,0)
(A; \9,0) is an implicative BCS-algebra, as asserted. .

We cannot hope for a further sharpening (in purely algebraic terms) of the
relationship between the class of implicative BCS-algebras and the class of left
handed locally Boolean bands on at least two counts. On the one hand, the
class of all left handed locally Boolean bands is not even a quasivariety, since
it is not closed under the formation of subalgebras. (To see this, just consider
the 4-element Boolean lattice 4 (with universe {0, a, b, 1}, least element 0 and
greatest element 1) as a semi-Boolean algebra. Clearly ({O, a,1}; F'I,O) is a
subalgebra of 4 such that 0 < ¢ < 1.) On the other hand, the natural mor-
phisms between left handed locally Boolean bands (namely those left normal
band with zero homomorphisms that preserve Boolean sublattices) canuot be
given a purely algebraic description. This is the subject of Theorem 2.3.39 be-
low. But first, the following lemma, which is an easy modification of a result
due to Cornish [64).
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Lemma 2.3.38. (¢f. [64, Lemma 8.3]) Let A be a left handed locally Boolean
band and let ¢ € A be fired. Let & be a congruence on the underlying left
normal band with zero polynomial reduct (A; M, 0) such that for each b € A,
the restriction 9'(5] of 8 to the principal subalgebra (b] generated by b is a lattice
congruence on {b]. Then A/ is a left handed locally Boolean band and the
restriction of the canonical map v : A — A/0 is o lattice homomorphism of

(G]A onto (V(G)] Afo-

Proof. Let r denote the restriction of v. Notice that for v(b) € A4/8, v(b) €
(v(a)] , 1o implies v(b) <W@)lasm y(a), which implies v(b) = v(a) NENass
v(b) = v(c) for some ¢ € A, whereby ¢ = a* b € (a]a. Hence r is onto, and
we can regard each element of (u(a)] to be of the form v(c) for a saitable

c <A a.

N,

Let b, ¢ € (a] and let d == b U@ ¢. Then r(b), r(c) <¥®Nas r(d). Suppose
r(b), r(c) <¥@lase r(e) also for some e € (a). Then b = 4N ¢ (modé) and
¢ = ¢Ne(modd). Therefore d = b ¢ = (bMe) L (¢cMe)(modh). In
other words, r{d) = r{(bMe) U@ (c M e)) <@an r(e). Therefore r(d) =
r(b) U¥@lale r(c). Thus (v(a)]ays is a lattice and the ynotient A/f is a left
handed locally Boolean band. g

Theorem 2.3.39. Let A be an implicative BCS-algebra with left handed locally
Boolean band polynomial reduct (A; N,0). The following are equivalent:

1. 0 € ConA;

2. 6 € Con(4; N,0) and 8|, € Con (a] for each a € A, where b],) denotes
the restriction of 8 to the principal subalgebra (a] generated by a;

3. 6 € Con (4; M,0) and 8], is a lattice congruence on (a] for each a € A.

Proof. (1) = (2). Clearly 8 is a congruence on the polynomial reduct (4; M,0).
Moreover, because (a] is a subalgebra of A for each a € A, the restriction Ola)
must be a congruence on (a].

(2) = (3). Let a € A be fixed. As the infimum b ¢ is a derived operation for
any b, c € (a], we deduce that @ is a semilattice congruence. Moreover, since
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(e] is a bounded BCK-subalgebra of A, for any 4, ¢ € A the lattice supremum
bU ¢ is also a derived operation, given by the formula of Corollary 2.3.33. Thus
the restriction of @ to (a] is a lattice congruence.

(3) = (1). Suppose that for each a € A, 8|, is a lattice congruence on (a].
Then A./ is left handed locally Boolean by Lemma 2.3.38. Let v: A — A/0
be the canonical homemorphism and let a,a,,b,0 € A be such that a =
a1 (mod fl,) and b = b, (mod 8|,)). Now in A, a\b is the complement of alb
in (a]. Since A /8 is left handed locally Boolean, v(a\b) is the complement of
v{a)Nv(b) in the Boolean lattice (v(8)] ase. As v(a) = v(a) and v(b) = v(b)),
v(ar\by) is also a complement of v(a)Mw(b) in (¥(a)] oss. Because complements
are unique in (¥(a)] s, we conclude v(a\b) =v(a1\b;), which implies 6 is a |
congruence on A as required. ]

Although the correspordence between implicative BCS-algebras and left handed
locally Boolean ban<s cannot be given a purely algebraic description, Theo-
rem 2.3.29 immediately suggests a category-iheoretic formalisation. Let IBCS
denote the cavegory for which:

¢ The objects of IBCS are the implicative BCS-algebras;

o 'The morphisms of IBCS are the implicative BCS homomorphisms.
Also, let LLBB denote the category for which:

o The objects of LLBB are the left handed locally Boolean bands;

o The inorphisms of LLB1 are the Boolean sublattice preserving homo-
morphisms, namely those homomorphisms % : A — B, where A and B
are left handed locally Boolean bands, such that for each ¢ € A, the re-
striction (ker A1), of the relation kernel ker 4 to the principal subalgebra
(a] generated by ¢ is a lattice congruence on ().

Recall from catzgory theory {160, Section 3.6] that categories C and D are
isomorphic i there exists a one-to-one funcior F' mapping C onto D. Since
a functe: F: C — D is an isomorphism iff there exists a functor G: D — C g
such that F o & is the identity may. on D sand G o F is the identity map on '- g
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C (where C [D} is the underlying class of objects in the category C [D]) [160,
Section 3.6], the foliowing result is clear upon combining Theorem 2.3.36 and
Theorem 2.3.39.

Theorem 2.3.40. IBCS and LLBB are isomorphic as categories.

In light of the preceding result, it is natural to anticipate that structural results
concerning left normal bands with zero transfer to the setting of implicative
BCS-algebras. Certainly this is the case in relation to the Clifford-McLean
theorem for bands, for which we have the following natural analogue.

Theorem 2.3.41 (Clifford-McLean Theorem for Implicative BCS—AIgebras)'.
Let A be an implicative BCS algebra with left handed locally Boolean band poly-
nomial reduct (A; N,0). Then D4, no)-equivalence is a congruence relation
on both (A; N,0) and A. The quotient algebra A/Di4;ng ts the mazimal
implicative BCK-algebra homomorphic image of A and the quotient algebra
(A; N,0)/Dia;np) s the mazimal semi-Boolean algebra homomorphic image
of {A; 1,0), whilst the Dy4;ng)-congruence classes of both A and {4; N, 0) are
the mazimal left zero semigroups of {(A; N,0). For all a,b € A, the following

are equivalent:
1. aZa b;
2. aDyg;nmbd;
3. alya; .—.,0)6.-

Proof. Let A be an implicative BCS-algebra with left handed locally Boolean
band polynomial reduct (4; M, 0). Observe first that D4, ney and L4, n,0y coin-
cide by left normality and the remarks of §1.3.15, and also that Dy, ngy and Sy
coincide by Lemma 2.3.24 (since they are respectively the equivalences induced
by the quasiorderings 5@;" 19 and =< in the sense of Lemma 1.2.2). Thus
Items (1)~(3) are equivalent, and D4, noy~equivalence is a congruence relation
on both (A; N,0) and A. By Theorem 2.1.14 the quotient algebra A/D4; ng)
is the maximal implicative BCK-algebra homomorphic image of A, while by
Lemma 1.3.17 (4; N, 0)/Da; e is the maximal semi-Boolean algebra homo-
morphic image of {A; IM,0). Finally, left normality and the Clifford-McLean
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theorem for bands ensure the maximal left zero semigroups of (A4; M,0) are
the D4, n)-congruence classes of (4; M,0), and hence (by previous remarks)
of A. .

Theorem 2.3.41 justifics dubbing the congruence = on any implicative BCS-
algebra the ‘Clifford-McLean congruence’. We will (sometimes) employ this
vocabulary in the sequel.

2.3.42. Subdirectly Irreducible Implicative BCS-Algebras. The com-
plete description (to within isomorphism) of both the subdirectly irreducible
left normal bands with zero and the subdirectly irreducible implicative BCK-
algebras (recall Corollary 1.3.19 and Theorem 1.6.19 respectively), in conjunc-
tion with the affinity of implicative BCS-algebras to both implicative BCK-
algebras and left normal bands with zero, suggests that the possibility of com-
pletely characterising the subdirectly irreducible implicative BCS-algebras (to
within isomorphism) may be strong. This subsection is devoted to the study
and solution of this problem. Our first order of business is to isolate a family
of subdirectly irreducible implicative BCS-algebras. This is the subject of the
following lemma, which is due to the author’s Ph.D. supervisor.

Lemma 2.3.43. (Bignall) Let B := (B; A,V,',0,1) be a non-trivial Boolean
algebra with bounded implicative BCK-algebra polynomial reduct (B; /,0,1),
where afb = a A b for any a,b € B. Let B' := B — {1} and let {my, my} be
disjoint from B. Let B := B' U {my,m;} and let the difference \ be defined
on B as follows:

(/b ifabeB

0 ifbe {my,m} andacB

a if o € {my,m} and b=0

¥ ifa€ {m,m} and0s#bc B,

a\b := ¢

Then the derived algebra B := (B; \,0) is an implicative BCS-algebra.

Proof. Let B be a non-trivial Boolean algebra with greatest element 1. Let B
be the subdirecily irreducikie pseudocomplemented semilattice with greatest
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element m € B induced by B as per Theorem 1.3.7. Let B denote the canon-
ical implicative BCS-algebra polynomial reduct of B (arising as per Exam-
ple 2.3.12). It is trivial to check that the operation \P defined on B is the
same as the operation \P' defined on B when the element 1 is renamed as my
and the element m is renamed as m,. Hence B is an implicative BCS-algebra.
.

Lemma 2.3.44. Let B be a non-trivial Boolean algebra. Then the tmplicative
B(CS-algebra B induced from B as per Lemma 2.8.48 is subdirectly irreducible
with monolith Z.

Proof. Observe first that wy U {(ml, my), {ma, ml)} = = € ConB. Therefore
to see B is subdirectly irreducible with monolith = it is sufficient to show
my = my (mod 6) for any ¢ € Con B where 0 # wgy. Solet 8 ¢ Con B be such
that 8 # wy. There are two cases to consider:

(i} [0s = {0};
(ii) [0] # {0}.

For Case (i), suppose [0]p = {0}. Then 8 C E = wg U {{mq, mp), (my, m;)}
by Theorem 2.1.14(4). Assume to the contrary that my #¢ mp. Then 9 = wy
which is a contradiction. Thus m; =5 ms.

For Case (ii), suppose [0]; # {0}. Then there exists 0 # a € B such that
0=a(modd). If a & {my, mp} then my = m0 =p mya = mpa =p M0 = m,
by definition of \ﬁ. So suppose a € {my, my}. Let b € {my, mp} be such that
b3 a. Then b = b0 =4 ba = 0 =y a by definition of \f3 as required. |

Implicative BCS-algebras arising as per Lemma 2.3.43 may be most easily
envisaged as Boolean algebras in which the unit element has been replaced by
a 2-element clique. To see this more clearly, let Bg := C;, where C; is the 2-
element flat implicative BCK-algebra (recall Example 1.6.18). For1 < n < w,
let B,, denote the implicative BCS-algebra induced as per Lemma 2.3.43 from
the non-trivial finite Boolean algebra B of cardinality 2". For n = 0,1,2,3,
the algebras B,, are depicted in Figure 2.3. | |
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M 1 m2

0 0 0 0

Figure 2.3. The subdirectly irreducible implicative BCS-algebras B, for n =
0,1,2,3. |

We devote the remainder of this subsection to proving that the family of al-
gebras {B,} U{B : B a non-trivial Boolean algebra} comprises, to within iso-
morphism, all subdirectly irreducible members of the variety of implicative
BCS-algebras. With this aim in mind we identify and briefly study some stan-
dard congruences of implicative BCS-algebras in the following two lemmas.

Lemma 2.3.45. For any implicative BCS-algebra A the following assertions
hold:

1. For a fized ¢ € A, the maps:

(a) a - ac;
(b) a = alfc;

(c)a—cNa

are endomorphisms of A. Respectively, the associated congruences are
defined by: |

(a) a = b(modd,.) iff ac = be;
(b)) e=b(modg,) iff aNec=10N¢;
(¢} a=b(mods) iff cMa=cnb.

2. For a fized ¢ € A,
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(a) 9c = () = ©4(0,¢);
(b) & <¢;

(c) et =E.

Proof. Let A be an implicative BCS-algebra. Let ¢ be a fixed element of 4
and let a,b € A. For (1) we have that (ad)c = (ac)(bc) by (2.49), whence the
map a — ac is an endomorphism. Also {(ab) M ¢ = (ab)(ac) = (aMc)(bN¢)
by (2.59) and (2.62), so the map a — a M ¢ is also an endomorphism. And,
¢ (ab) = (cb)(ca) = (c M a)(c N b) by (2.61) and (2.57), which implies the
map a — ¢ a is an endomorphism as well. The remaining assertions follow
immediately from [55, Theorem II§6.8].

For (2)(a) let 9, be as stated. Since (¢} = ([Oloan,q)’ = O*(0, c), it only
remains to show 9, = ©4(0, c). From cc = 0 = 0c we have 0 = ¢ (modd,)
whence ©4(0,¢) C 9. For the opposite inclusion just notice a = & (mod d,)
implies a = a0 Sga(o,¢) a¢ = bc Sgag,) 60 = b. Thus ¥, C ©4(0, ¢) and so
9. = ©A(D, ¢).

For (2)(b) let @ = b (mod E). Then aNb = ¢ and bNa = b by Lemma 2.1.42("),
whence ¢Ma = eNafb = ¢MNbMa = ¢Nb by left normality. Thus a = b (mod ¢,;
and = < ¢,.

For (2)(c) suppose a = b (mod ((,co{sc}). Then cMa = cNb for any ¢ € 4,
and in particular ¢Me = eNb and bNe = bNbd. Thus ¢ = aMb and bMNa = b, so
¢ % band b X ¢ by Lemma 2.1.42(1); that is to say & = b (mod Z). Conversely,
= < forany ¢ € 4 by (2)(b), s0 Z < (Veeafse} Thus (Vea{sc} = Z. .

Lemma 2.3.46. Let A be an implicative BCS-algebra and let m € A be fized.
The following assertions hold:

1. wa = o, tff @ X m for any a € A, where p,,, denotes the congruence of
Lemma 2.3.45(1)(b)';

2.2 =¢y iff a X m for any a € A, where ¢, denotes the congruence of
Lemma 2.8.45(1)(c)'; .-
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Proof. Let A be an implicative BCS-algebra and let m € A be fixed. For (3),
suppose wa = gn. Notice a MTm = (el m) N m for any a € A and hence
that a = e M m (mod g,,). Now g < EZ since gy, is the identity congruence,
s0 a = aNm(modE). Thus ¢ X aNm. But (alam))m = 0 by (2.2) and
so a Mm = m. By transitivity we conclude a <X m as desired. Conversely,
suppose ¢ < m for any ¢ € A and note this implies ¢ M m = ¢. Suppose
a = b(mod g,,) for a,b € A. ThenaMm=bMNm,soa=alm=>bNm=0b.
Thus e = b (modw, ) and hence 9, = wa.

For (2), suppose = = ¢,,. By left normality mima = mN{aNm) for any a € A4,
s0 a = a N m(modgy,), which implies ¢ = ¢ Mm (modE). Thus a X aNm.
But (¢(am))m = 0 by (2.2) and so a N m < m. By transitivity we conclude
a < m as desired. Conversely, suppose ¢ % m for any ¢ € A and note this
implies ¢Mm = ¢. Suppose ¢ = b (mod¢y,) for a,b € A. Then mMNa =mnNb,
whence ¢ = aMNMm=¢MNmNae=aNmb=aNbdbNm=aNband
b=bMMm=0mNb=50bNmNae=0Naltm=5bNa by left normality.
By Lemma 2.1.42(1) we conclude ¢ < b and b < a. Thus ¢ = b (modE) and
¢m € Z. The opposite inclusion follows immediately from Lemma 2.3.45(2)(b).
n

Recall that an element m € A of a pre-BCK-algebra A is maximel if ¢ X m
for all @ € A. Recall also that all maximal elements (where they exist) of a
pre-BCK-algebra A lie in a unique Z-class (the maximal class).

Lemma 2.3.47. Let A be a subdirectly irreducible tmplicative BCS-algebra
and let {my, 10} be the pair of elements identified under every non-irivial
congruence relation of A. Then either A 2 By or A has a mazimal class M
such that {my, my} C M.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra. We sepa-
rate t!.- proof into two cases:

(i) £ €vulk;

(i) A ¢ P K.
For Case (i), suppose A € iBCK. From Theorem 1.6.19 we deduce A is isomor-
phic to the 2-element implicative_\B(_]K-a’lgebra Cy, which implies by definition
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that A is isomorphic to B.

For Case (ii), suppose A ¢ iBCK. Let {m;, mo} be the pair of elements iden-
tified under every non-trivial congruence. Because A ¢ iBCK there exists a
subalgebra of A. isomorphic to By by Proposition 2.2.5, so the Clifford-McLean
congruence = on A is non-trivial. Thus m; = ms(mod Z) and in particular
mp <X my, whence m; N m; = my by Lemma 2.1.42,1). Let now g, be the
congruence relation of Lemma 2.3.45(1)(b)’ defined by ¢ = b (meod gy, ) iff
alm = bMNm for any a,b € A. Because A is subdirectly irreducible g,
is the identity congruence. For suppose to the contrary that g, is not the
identity congruence. Then my = m, (mod gy, ), S0 ™y N My = myp M my; that is
to say my = mpMm;. But meMmy; = my. Thus my = my, which contradicts t_he
subdirect irreducibility of A. Since g, is the identity congruence, we deduce
from Lemma 2.3.46(1) that m; is maximal. Since m, lies in the same =-class
as my; we have also that m, is .naximal. We have shown A has a maximal
class A1 such that {m;, my} C A7. and the proof is ccmplete. N

Lemma 2.3.47 demands attention be focussed on cengruences of iniplicative
B(CS-algebras with a maximal class, and in particular on the role played by
the Clifford-}McLean congruence in such algebras.

Lemma 2.3.48. Let A be an implicative BCS-algebra with marimal class M.
For a fized m € M, m = ma(modZ) iff a = 0 for any a € A. Therefore if
a0 then ma ¢ M.

Proof. Let A be an bplicative BCS-algebra with maximal class M. Let m €
M be fixed and let ¢ € A. If @ = 0 then ma = m0 = m, so ma = m (moed ).
Conversely, if me = m (modZ) then m <X ma, so m(ma) = 0. But then
a = a0 = a(m(ma)) = am = 0 by (2.53) and the maximality of m. Thus
m = ma(wodZ) iff @ = 0. Suppose now that a # 0 and assume to che

contrary that ma € M. Then ma = m (mod Z) and so a = 0, a contradiction.
n

The remaining results of this subsection, including the following lemma, are
due jointly to the author and the author’s Ph.D. supervisor.
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Lemma 2.3.49. Let A be an implicative BCS-algebra with mazimal class M.
Let B be the subalgebra of A with universe B := A— M and let Eg denote the
Clifford-McLean congruence on B. Then the relation:

|Z) =Zgu{{m,m): me M}

is a congruence relation on A.

Prooj. Let A be an implicative BCS-algebra with maxim:1 class M. Let B
be the subalgebra of A with universe B := A — M and let g denote the
Clifford-McLean congruence on B. Clearly |Z] is an equivalence relation on A
such that Sg C |=| C E4, where Z4 denotes the Clifford-McLean congruence
on A. Suppose ¢; = b (mod |Z]) and a; = by (mod |E)) for ay, b1, @z, b2 € 4.
To see |Z] is a congruence on A we consider four cases:

(i) a1,b € B and a;, b, € B; (iii) ) = by € M and az, by € B;
(i) e, hheBand gz =beM; (V)ao=heMandap=50reM.

Of these cases, Cases (i) and (iii) are non-trivial. For Case (i), suppose a;, b, €
B and a3, b, € B. Then a; = b; (modZg) and a; = b (modZg), so a0 =
b1bz (mod Eg), which implies ayap = by by (mod |Z]).

For Case (iii), we distinguish two subcases:

(iii)(a) @y = b € M and ay = by =0 € B;
(iii)(b) ey = by € M and 0# o, € B, 0 # by € B.

Of these subcases, only Subcase (iii)(b) is non-trivial. So suppose ¢; = b € M
and 0 # ap € B, 0 # by € B. Then a; = b (modZ,) and a = by (mod Zp)
(since @y = by (modER)), 50 a1 = b1 by (modZ,). Because a0 ¢ M and
biby & M (by Lemma 2.3.48) we have that g,ap = b, b (mod Zg), which implies
0y = byby (mod [Z]). | .

Lemma . 3.50. Let A be an implicative BCS-algebra with mazimal class M

and let |Z] be the congruence relation on A of Lemma 2.8.4{9. Then the
relation:

=] = E]u{{m,n), (n,m)}
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is a congruence relation on A for any pair of mazimal elements {m,n} C M.

Proof. Let A be an implicative BCS-algebra with maximal class M. Let B
be the subalgebra of A with universe B := A — M and let Zp denote the
Clifford-McLean congruence on B. Let | =] be the congruence relation on A of
Lemma 2.3.49 and let m,n € M. Clearly |Z]7 is an equivalence relation on A
such that Sg C |E] C |E]) € Ea, where Z4 denotes the Clifford-McLean
congruence on A. Suppose a, = b (mod |Z]}') and a, = by (mod |E]7) for
ay, by, g, bo € A. To see [Z]} is a congruence on A we consider nine cases:

(i} @, b € B and o, b, € B; (vi) @ =b € M and a, b» € {m, n};
(ii) ai, b € B and ap = b € M; (vii) a1, b, € {m,n} and ap, b, € B;

(iii) a1, b € B and ap, b, € {m,n}; (viii) a;,b € {m,n} and a» = b, € M;
(iv) a; = by € M and @, b, € B; (ix) @, b € {m,n} and 0, by € {m, n}.
(

v} ¢y =b € M and ap = b, € M;

Of these cases, Cases (ii), (iil), (v), (vi), (viii) and (ix) are trivial, while
Cases (i) and (iv) are covered by Lemma 2.3.49 (since |Z] C |E]}). For
Case (vii), we distinguish two subcases:

(vii)(a) a1, b1 € {m,n} and a; = by = 0 € B;
(vii)(b) a1, b € {m,n} and 0 # ap € B, 0 # b, € B.

Of these subcases, only Subcase (vii)(b) is non-trivial. So suppose a;, b, €
{m,n}and 0 # ap € B, 0 # by € B. Then a; = b; (mod Z,) (since a1, b, € M)
and g = by (modZ,) (since a; = by (n0d Zg)), s0 1oy = brbe (Mmod Zy).
Because a;02 € M and bby ¢ M (by Lemma 2.3.48) we have that ga; =
bib; (mod Zp), which implies a1, = b1, (mod |Z]), which implies a;a,
bybs (mod | =] 7).

w

We are now in a position to complete the characterisation of the subdirectly
irreducible implicative BCS-algebras. The proof is via three lemmas.

Lemma 2.3.51. Let A be a subdirectly irreducible implicative BCS-algebra
such that |A} > 2. Then the relation |E| of Lemma 2.8.49 is a congruence
relation on A; moreover |Z] = wa.




2.3. Implicative BCS-Algebras 197

Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that
|A| > 2. Then the relation | =] is a congruence relation on A by Lemma 2.3.47
and Lemma 2.3.49. Let {m;, my} be the pair of maximal elements identified
under every non-trivial congruence on A as per Lemma 2.3.47. Since |Z] does
not identify m; and m, it must be trivial; that is to say |E| = wa. |

Lemma 2.3.52. Let A be a subdirectly irreducible implicative BCS-algebra
such that |A| > 2. Then M = {my, my}, where M is the magimal class of A
and {my, ma} is the pair of mazimal elements identified under every non-trivial
congruence relation on A.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that
|A] > 2. By Lemma 2.3.47, A has a maximal class M such that {m, mp} C
M, where {m;, mp} is the pair of elements identified under every non-trivial
congruence on A. Assume to the contrary that there exists n € A such
that n % my,mp but n € M. Let |EJ7 := |E) U {{my,n),{n,m)} and
let |Z|7? = |S] U {{ma,n),{n,me)}. By Lemma 2.3.50 both |Z|™ and
|Z]5 are congruences on A. Moreover, |27 = wa U {(m1, n), {n,m)} and
2] = waU{{ma, n), (n, m)} by Lemma 2.3.51. Thus |Z|7"* and |Z|}? are
non-trivial congruences on A whose intersection |Z];" N{E]7? is the identity
congruence wa. Since this contradicts the subdirect irreducibility of A, the

only maximal elements of A are the elements my, mp. Thus M = {my, ma}.
z

Lemma 2.3.53. Let A be a subdirectly irreducible implicative BCS-algebra
. such that [A| > 2. Then p = wa U {(m1, ma), (mg, m)} = E, where pu denotes
the monolith on A.

Proof. Let A be a subdirectly irreducible implicative BCS-algebra such that
|4l > 2. Let |E|m = |E] U {{m;, mp),{mg,m)}. By Lemma 2.3.47 and
Lemma 2.3.50 |Z]}} is a congruence on A and by Lemma 2.3.51 [Z]} =
wa U {{m1, ma), (mg, m1)}. Since my = my (mod ) we have |E|! C p; con-
versely p C |E]71 because the monolith on A is contained in any non-trivial
congruence on A. Thus p = || = wa U {(my, ma), (mp, my) }.

For the remaining equivalence, let B be the subalgebra of A with universe
B = A - {my, m} and let Zp be the Clifford-McLean congruence on B.
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Let =4 denote the Clifford-McLean congruence on A and let © := Zp U
{{ms, m), (ma, ma), (mp, my), (mg, my) }. From Lemma 2.3.52 we infer © =
Za, because maximal elements always lie in their own distinct =4 -class. But
clearly © = [Z] U {{my, mg), (mg, m;)} = |E]7! = p. Therefore 4 = p =
wa U {{my, mz}, (my, m1)} and the lemma is proved. .

Let A be a subdirectly irreducible implicative BCS-algebra such that |A| > 2.
Then the underlying poset {4/Z; <A/Z) of the maximal implicative BCK-
algebra homomorphic image A /= is a Beolean lattice by Lemma 2.3.47 and
Corollary 1.6.22. From Proposition 2.3.31 and Lemma 2.3.53 we deduce that
the underlying poset {4; <) of A is order isomorphic to a Boolean lattice with
its unit element replaced by a two-element clique. This forces the following
result.

Theorem 2.3.54. A non-trivial implicative BCS-algebra A s subdirectly irre-
ducible iff A is isomorphic to By or A is isomorphic to B for some non-trivial
Boolean algebra B.

Corollary 2.3.55. An implicative BCS-algebra is subdirectly irreducible iff it
is 1somorphic to the canonical implicative BCS-algebra polynomial reduct of a
subdirectly irreducible pseudocomplemented semilattice.

Recall that for a class K of similar algebras Kg,y denotes the subclass of finite
members of K.

Corollary 2.3.56. (cf. [70, Corollary 6.2]) The variety of implicative BCS-
algebras is locally finite. Thus iBCS = V(iBCSgw); that is, iBCS is generated
as a variety by its finite members.

Proof. Let A be a finitely generated (say » generated) implicative BCS-algebra.
Then each subdirectly irreducible homomorphic image of A is finitely gener-
ated. By Theorem 2.3.54 these finitely generated subdirectly irreducible homo-
morphic images are all finite; moreover to within isomorphism there are only
finitely many such images that are generated by n or fewer elements. Let V
be the variety generated by this finite set of finite and subdirectly irreducible
algebras. Then A € V and V is locally finite, since any variety generated
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by a finite set of finite algebras is locally finite (by [55, Theorem I11§10.16]).
Thus A is locally finite, and in particular finite. Since every finitely generated
implicative BCS-algebra is finite, iBCS is locally finite as asserted. The second
statement now follows, since any locally finite variety is generated as a variety
by its finite members (see van Alten [229, p. 13]). "

2.3.57. Quasi-Bounded Implicative BCS-Algebras. A quasi-bounded
implicative BCS-algebra is an implicative BCS-algebra that is quasi-bounded.
By the remarks of §2.1.40 and §2.3.1 the class iBCS? of all quasi-bounded
implicative BCS-algebras is a variety, which coincides with the generic double-
pointed expansion iBCS* of the variety of implicative BCS-algebras by Lemma
2.2.27. The study of quasi-bounded implicative algebras is prompted by Lemma
2.3.47, which asserts that any subdirectly irreducible implicative BCS-algebra B
with |B| > 2 has a maximal class, and thus gives rise to a quasi-bounded alge-
bra BL. Our investigation of quasi-bounded implicative BCS-algebras begins
with the following three results, which summarise some elementary properties
of these algebras.

Lemma 2.3.58. The variety of quasi-bounded implicative BCS-algebras satis-
fies the following identities:

zMz* 0 (2.72)
T (2.73)
(z\y)™ =~ =™ \y™ (2.74)
Ny ~y'Ng (2.75)
zM(zUy) =~z (2.76)

Moreover, for any quasi-bounded implicative BCS-algebra A and a,b € A,
a <b implies b*<a

Proof. Let A! be a quasi-bounded implicative BCS-algebra and let a, b € A.
For (2.72), a M a* = a(a(la)) = aa = 0 by (2.50) and (2.47). For (2.73),
¢ = la = 1(1(1a)) = a** by (2.56). For (2.74), (ab)™ = 1M (ad) =




2.3. Implicative BCS-Algebras 200

(16)(1a) = (L M a)(1 M b) = a*b* by (2.25), (2.61) and (2.57). For (2.75),
a*Mb* = (a™)"*Nd* = 1Na*Nd* = 1Mb*Ma* = (b*)*Na* = b*MNea* by (2.73),
(2.25), left normality, (2.25) and (2.73). For (2.76), put a ;= a, 8 := 1 and
v = a* M b*. We have:

an(aUd)=an(1(e*Nb*)

=aN(f)

= (ay)(ab) by (2.61)
= (anB)(any) by (2.57)
= (an1)(an(a*Nb*))

= (an1)((ana*)nd*)

= (an1)(0n b by (2.72)
={an1)0 by (2.22)
={anl) by (2.6)
=a by (2.24).

For the final assertion of the lemma, suppose ¢ < 4. We have o* N b* =

(1a) M (10) = (1a)(1(10)) = (1(1(18)))a = (1b)a = (1b)(b(ba)) = 1b = b*
by (2.59), (2.48), (2.56) and (2.54). Since b* M a* = a* M b* (by (2.75)) we
deduce §* < a* as required. u

Lemma 2.3.59. c¢f. ({10, Proposition 4.1]) The variety of quasi-bounded
implicative BCS-algebras satisfies the following identities:

sUy~ylz (2.77)
sU(yUz)~ (zUy)U 2 | (2.78)

Moreover, for any quasi-bounded implicative BCS-algebra A and a,b,c € A,
b<c implies alb<aUec.

Proof. Let A be a quasi-bounded implicative BCS-algebra and let a, b, ¢ € A.
For (2.77) we have el b = (a*Md*)* = (b*Ma*)* = bUa by (2.75). For (2.78)
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we have:
L(bue) = (a* ("N )y’
= (a*n{e* Ny
= (a*n{Ind*neY)) by (2.25)
= ((a*Nn1)N{*net))’
=(a*Nb*NneH)” by (2.24).
But,

(eub)uc=(((a*Nb*)*)* Ne*)’
= ((a*Nb*)* ne*)’

= ((1n(e*no7))Ne)’ by (2.25)
=((1ne)N(*ne?)’

= ((¢)* N (b* " )’ by (2.25)
= (a* M b* M c*)* by (2.73),

so we conclude ¢ U (bU ¢) = (e U b) U ¢ as required.

For the final assertion of the lemma, suppose b < ¢. Then ¢* < b* by
Lemma 2.3.58, so a* M ¢* < a* M b* by Proposition 2.3.25(4), so (a* N b*)* <
(a*Mc*)* by Lemma 2.3.58; that istosay aU b < alic. ]

Proposition 2.3.60. For any quasi-bounded implicative BCS-algebra Al, the
following assertions hold:

1. The polynomial reduct {A; U, 1) is a commutative semigroup with identity
whose operation Ll is isotone with respect to the underlying notural band
partial order of Al;

2. For any a,b € A, {(a)ar Ve (b)ar = (a U b)ar

Proof. Item (1) follows as an immediate consequence of Lemma 2.3.59, (2.27)
and (2.28). For Item (2), it is sufficient to show zUy is a join generator term for
iBCS'. Let A! be a quasi-bounded implicative BCS-algebra and let a, b € A.
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Put (2,9, 2) := (z N 2)\(y\z). Then 74" (a, ,0) = (a N 0)(ba) = 0(ba) = 0
by (2.21) and {2.4) and rA'(a,b,a U b) = (an(auUb))(ba) = alba) = a
by (2.76) and (2.50). Similarly 4" (a,b,0) = 0 and t*'(a,b,a L b) = b for
t(z,y,2) := (y N 2)\{z\y). Since 0UO = 0** =1N0 =0 by (2.26) and (2.25),
we have that U is a join generator term for iBCS® by Proposition 1.7.13. =

Example 2.3.61. {¢f. [10, Example 4.4]) Let A := (4; A,*,0) be a pseudo-
complemented semilattice with greatest element 1 := 0*. For any a, b € 4, let
a\b := a A b* as per Example 2.3.12. The following assertions hold:

1. The polynomial reduct (4; \,0,1) is a quasi-bounded implicative BCS-
algebra;

2. For any a,b € A,

albd=aAd™,

(aa)(A; W1 (a")A,

alUb={(a"Ab")".

Proof. For (1), by Example 2.3.12 it is sufficient to show ¢ < 1 for any a € A.

Letac A. Wehave a\l=a A1*=aA0*=aA0=0by (1.11),s0 a X 1
and {4: \,0,1) is quasi-bounded.

For (2) let a,b € A. We have and = a\(a\b) = a A (a A b*)* =a A b**
by (1.9). Also (e*)iV0) = 1\g =1 A (a*)* = (a*)A. Hence aU b =
(#* M0%)* = (a* A ***)* = (a” A b*)* by (2.73), .

Example 2.3.61 and the theory of pseudocomplemented semilattices motivate
the following definitions. For any quasi-bounded implicative BCS-algebra Al
let the skeleton of Al be:

S(AY) :={a":a € 4).
Also, define the dense set of A! to be:

D(AY) :={a:a*=0}.




2.3. Implicative BCS-Algebras 203

Call A! dense if D(A') = A—{0}. The following two technical lemmas collect
together some useful properties of the skeleton S(A!) and dense set D(A?').

Lemma 2.3.62. For any quasi-bounded implicative BCS-algcbra At and a,b €
A, the following assertions hold:

1. 0€ S(A?) and 1 € S(AY);
2. a€S(AY) iff a =a*;
3. a,b € S{A) implies ab € S(A1).

Proof. Let A! be a quasi-bounded implicative BCS-algebra and let a,b € A.
For (1) just note 0 = 11 = 1* € S(A!) by (2.3) and 1 = 10 = 0* € S(A?)
by (2.6). For {2), suppose a € S(A!). Then ¢ = ¢* for some ¢ € A, and
a* = (c*)*™* = ¢* = a by (2.73). Conversely, suppose a = ¢**. Then a = ¢*
with ¢ := a* so a € S(A?). For (3) suppose a, b € S(A). Then a = a** and
b= b* by (2) and so ab = a**b** = (ab)** by (2.74); from (2) we conclude
ab € S(A') as desired. .

Lemma 2.3.63. For any quasi-bounded implicative BCS-algebra A and a,b €
A, the following assertions hold: |

1. 1€ D(AY);

2. a e D(AY) iff c < a for any ¢ € A. Thus A is dense iff (4; \,0) is
flat;

3 e =biff a=b(modZ).

Proof. Let A! be a quasi-bounded implicative BCS-algebra and let ¢, b € A.
For (1), just note 1* = 11 = 0 by (2.3). For (2), suppose ¢ € D(A') and
¢ € A. Since ¢* = 0, we have ca = (ca)0 = (ca)a* = (ca)(la) = (cl)a = Oa
(as ¢ < 1) = 0 by (2.49). Thus ¢ < a. Conversely, ¢ < a for any ¢ € A implies
1 X a in particular. Thus 1¢ = 0 and ¢* = 0. Hence a € D(A?!). The second
assertion follows immediately.

For (3), suppose ¢ = b(modZ). Then ab = 0 = ba, whence ¢* = lg =
(1a)0 = (la)(ba) = (1b)(ab) = (15)0 = 1b = b* by (2.6), (2.55) and (2.6).
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Conversely, suppose a* = b*. Then ab = (ab)(la) = (ab)a* = (ab)b* =
(ab}(1d) = (al)b = 0b (as ¢ = 1) = 0 by (2.52), (2.49) and (2.6). Likewise
ba = (ba)(1d) = (ba)d* = (ba)a* = (ba)(la) = (bl)a = O0a (as b X 1) = 0
by (2.52), (2.49) and (2.6). Thus a¢ = b (mod =). ]

For any quasi-bounded implicative BCS-algebra A1, the following two the-
orems show the skeleton S(A?l) gives an internal description of the maximal
bounded implicative BCK-algebra homomorphic image A/Z, in the sense that
S{A?') has the structure of a Boolean lattice order isomorphic to the underlying
Boolean lattice of A1/Z (recall Corollary 1.6.22).

Theorem 2.3.64. Let Al be a quasi-bounded implicative BCS-algebra with
skeleton S(AY). Then S(A') is a subuniverse of Al. Thus the underlying
natural band partial ordering of A partially orders S(A') and makes S(A?)
into a Boolean lattice. For any a,b € S(A?), the meet and join in S(A?) are
respectively given by:

eANb=anb
aVb=(a"Nb")".

Proof. Let A* be a quasi-bounded implicative BCS-algebra with skeleton S(A).
By Lemma 2.3.62(1), {0,1} C S(A?Y), while a, b € S(A?) implies ab € S(AY)
by Lemma 2.3.62(3). Thus S(A!) is a subuniverse of A! and so inherits
the underlying natural band partial ordering of A. Let a,b € S(A'). By
Lemma 2.3.62(2) a = a¢** and b = b**, whence:

afNb=a"Mp™

=(1MNae)M(1Nb) by (2.25)
=(10dn@Ana) by left normality
= b " by (2.25)
=bMNa,

so the quasi-bounded subalgebra (S(A'); \,0,1) is a bounded implicative
BCK-algebra. From Corollary 1.6.22 we have that (S(AY); <) is a Boolean
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lattice, where a Ab=aNband a V o = (a* Nb*)* for any a,b € S(A!). &

Let A' be a quasi-bounded implicative BCS-algebra with skeleton S(A). In
the statement of the following theorem and in the sequel, let S(A?l) denote the
bounded implicative BCK-algebra (S{A?); \,0,1).

Theorem 2.3.65. (cf [10, Proposition 4.4]) Let A be a quasi-bounded
implicative BCS-algebra. Then S(A1) is isomorphic to the mazimal bounded
implicative BCK-algebra homomorphic image A1/ of A under the map o+
lal= (a € S(AY)).

Proof. Let Al be a quasi-bounded implicative BCS-algebra. Suppose b € A/=.
Then b = [a]z for some a € A. Now a** € S(Al) and 4™ = a(mod E) by
Lemma 2.2.13, so [a**])z = [aJe = b. Thus h is onto. Let a,b € S(AY)
and suppose ¢ = b(modZ). From Lemma 2.3.63(3) we have that o* = b*.
Therefore a* = b** and @ = ¢ = b** = b since ¢ = o™ and b = b**
by Lemma 2.3.62(2). Thus A is one-to-one, and hence is a bijection between
S(At) and A/Z.

Let a,b € S(A). By Lemma 2.3.62(2) we have that ¢ = ¢** and b = b**, so
h(a\SA1b) = h(a\A"b) (by Theorem 2.3.64) = A(a**\A'b**) = [a**\A'b*]z =
[0\ F[0*)z = [a]=\AE[b)z = h(a)\*'/2h(b). Moreover, 4(05A")) =
h(0AY) = [04"]z = 0A"/Z and A{15(AD)) = h(1AY) = [1AT)c = 147 /2. Thus A
is a map from S(A?) into A'/Z preserving \S4"), 05(A") and 15(AY); that is

to say A is an isomorphism. : .

As an application of Theorem 2.3.64 and Theorem 2.3.65 in a very natural
setting, we give below a new and conceptually simple proof of the Glivenko-
Frink theorem for pseudecomplemented semilattices.

Theorem 2.3.66 (Glivenko-Frink Theorem). Let A be a pseudocomple-
mented semilattice with canonical quasi-bounded implicative BCS-algebra poly-
nomial reduct (A; \,0,1). Then S(A) is a subuniverse of A and so inherits the
underlying semilattice partial ordering of A. Moreover S(A) = S({4; \,0,1))
and the semilattice partial ordering on S(A) and the natural band partial order-
ing on S$({4; \,0,1)) coincide on S(A). Thus the semilattice partial ordering
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on S{A) makes S(A) into a Boolean latiice, and this Boolean lattice is order
isomorphic to the underlying poset of the mazimal bounded iinplicative BCK-
algebra homomorphic image of (A; \,0,1). For any a,b € S(A) we have
a A b € S(A), and the join in S(A) is described by:

aVb=(a"Ab)".

Proof. Let A and (4; \,0,1) be as in the statement of the theorem. Because
of Theorem 2.3.64 and Theorem 2.3.65, to prove the theorem it is sufficient to
show:

(i) S(A) is a subuniverse of A;

(i) S(A) = S((4; \,0,1);

(iii) The semilattice partial ordering on S(A) and the natural band partial
ordering on S{(4; \,0,1)) coincide on S(A).

For (i), by the remarks of §1.3.5 we have both 0 € S{A) and ¢,b € S(A)
implies a A b € S(A). Since S{A) is closed under * by definition we have that
S{A) is a subuniverse of A (this observation is also implicit in the original
statement of the Glivenko-Frink theorem (Theorem 1.3.10)).

For (i) just note {(a*)¢ V&1 = (g*)2 for any a € A by Example 2.3.61(2),
and hence that S(A) = {(a")* : a € A} = {(a")\ 01} = 8((4; \,0,1)).

For (iii), let a,b € S(A). Wehave ¢ <* biff a A b =a =b A aiff
aAb* =ga=>b*A a(since b** = b by Lemma 2.3.62(2)) if aNb=a = bMNa
iff @ <M4i\OD b 5o the semilattice partial orderiug on S(A) and the natural
band partial ordering on S((4; \,0,1)) coincide on S(A). »

Remark 2.3.67. The Glivenko-Frink theorem for pseudocomplemented semi-
lattices has been established by at least three methods different from the above:
see the remark prior to {101, Theorem 1§6.4]). The present proof is direct and
would seem in principle to be the most elementary, simpler even than the short
proof of Katrindk [132]. .

Let A be an implicative BCS-algebra. A multiplier on A is a function f :
A~ A such that f(aTb) = f(a) b for all a,b € A. The set of all mul-
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tipliers is denoted M(A). Multiplier extensions of implicative BCK-algebras
have been studied by Cornish [66); what follows here is a version of a construc-
tion due to Bignall [17, pp. 49-51]. For any functions f,g : A — A, define
f\g: A—= Aand frig: A — A pointwise by (f\g)(a) := f(a)\g(a) and
{(f N g)(a) := f(a) N g(a) for all e € A respectively. Now f\g € M(A) since
(7\0){a1b) = f(ar b\g(anb) = (£() N &)\(g(a) 11 8) = (F(a)\(a) b
(by (2.62)) = (f\g)(a) Nb. Also f Mg € M(A), because (f N g)(aNb) =
flandyngland) = fle)NbNigla)Nb = f(a) M g(a) N b (by left nor-
mality) = (f M ¢)(a) 7 b. Define 0 € M(A) by 0(a) := 0 and 1 € M(A) by
1(a) = a for all a € A. Put M(A) := (M(A); \,0,1). Because the oper-
ations on M(A) are defined pointwise, the reduct (M(A); \,0) of M(A) is
an implicative BCS-algebra. Moreover, because (f M g)(a) = f(a) N g(a) =
Fa\NF@\e(a) = F@N\((\)(8)) = (\(F\))(a), f Mg is the implicative
BCS meet in (M(A); \,0). Since (f N1)(a) = f(a) N1(a) = f(a)Na =
f(aMa) = f(a), from Lemma 2.1.42(1) we deduce f < 1 for any f € M(A);
that is to say M(A) is a quasi-bounded implicative BCS-algebra.

Let p, : A — A denote the map defined by u,(b) := aMb. Since p,(bNc) =
aM(bfe)=(and)MNec=p,(b)Ncforall b,c € A we have u(a) € M(A) for
each a € A. Define p: A = M(A) by u(e) := g,. Then p is a homomorphism,
since w(@\AB)(e) = panp(e) = (A\AD) e = (M A\A(B M ) (by (262))
= o ()\MA) p, (¢} and p(04)(c) = poalc) = 04 M ¢ = 04 = 0(c) = OMA),
Moreover, p is one-to-one, since p{a) = u(b) implies p,(c) = p,(c) for all
¢ € A, which implies in particular that p (a) = p,(e) and p,(b) = p,(5).
But then ¢ = dMeand b=aNbd,sob=aNb=>bNaNb=>40NbNa
(by left normality) = M e = a. Hence p is an isbmorphism from A onto the
subalgebra p[A] of M(A), where u[A] denotes the image of A under .

Lemma 2.3.68. Every implicative BCS-algebra A embeds (as an implicative
BCS-algebra) into its canonical quasi-bounded implicative BCS-algebra multi-
plier extension M(A).

By a (\,0)-subreduct of a pseudocomplemented semilattice A := (4; A,*,0)
we mean a subalgebra of the canonical implicative BCS-algebra polynomial
reduct (4; \,0) of A. We conclude this subsection with the following problem,
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suggested by the preceding lemma and Theorem 1.6.20.

Problem 2.3.69. Is an algebra (4; \,0) of type (2,0) an implicative BCS-
algebra iff it is a (\, 0)-subreduct of a pseudocomplemented semilattice?  ®

2.3.70. The Lattice of Varieties of Implicative BCS-Algebras. Prob-
lem 2.3.69 and the results of the preceding subsections suggest that the the-
ory of implicative BCS-algebras may bear the same relationship to the the-
ory of pseudocomplemented semilattices as the theory of implicative BCK-
algebras bears to the theory of Boolean algebras. Because the canonical im-
plicative BCS-algebra polynomial reduct of the 3-element chain 3 (considered
as a pseudocomplemented semilattice) is flat, Theorem 1.3.8 and the preced-
ing remarks call for a closer examination of the role played by the algebra
B, := ({0,1,2}; \,0) of Example 2.1.5 in the variety of implicative BCS-
algebras.

Lemma 2.3.71. Let B, k € w, be the k-th direct power of By; that is, the
direct product of k copies of By, Let:

M= {(cl,...,ck) b -','50, 1= 1,...,k}
be the mazimal class of BY nd let:
Mi={ceM:m(c)=1} and My:={ceM:m(c)=2)},

where m, denotes the first projection map. Let B be the subalgebra of BE with
universe B := Bf — M and let Eg denote the Clifford-McLean congruence
on B. Then the relation:

0:= EBU(Ml X Ml)U(Mg X Mg)

is a congruence on BS.

Proof. Let B, M, My, M,,B,Zp and © be as in the statement of the lemma.
Since {B, My, My} partitions Bf we infer © is an equivalence relation on B¥.
Moreover, clearly Zg C © C Ept, where S denotes the Clifford-McLean con-
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gruence on B%. Suppose a; = b (mod ©) and a; = by (mod ©) for a5, by, ap, be €
A. To see © is a congruence we consider nine cases:

(i) @&,b € B and &, b € B; (vi) a1, b € M; and @, by € My;
(i) a1, b € B and az, bs € My; (vii) a1, b € Mz and &, by € B;
(iii) @y, by € B and ay, by € My; (viii) a1, b € M and @, by € My
(iv) @), by € M) and ay, b; € B; (ix}) @, b € My and oy, by € M,.
(v) @,b € M; and ap, by € My;

Of these cases, Cases (i}, (iv) and (vii) are non-trivial. For Case (i), suppose
a;, b € B and a3, 5, € B. Then ¢; = b; (mod=g) and e; = by (mod Zg), so
a0y = by by (mod Eg), which implies e, a, = b, b, (mod ©).

Cases (iv) and (vii) are analogous, so we show only Case (iv). For Case (iv),
we distinguish two subcases:

(iv)(a) @, b € M) and @3 = b, =0 € B;
(IV)(b) al,bl € Ml and 0-‘,'é & € B, Osé bg € B.

Of these subcases, only Subcase (iv)(b) is non-trivial. So suppose a1, b € M
and 0 #% ap € B,0 # by € B. Then ¢ = § (modEBg) (since ay, b, € M)
and a; = by (modE:"B:;) {since az = by (modZg)), 50 ayas = by by (modEB:é).
Because a;ap € M and byb, ¢ M (by Lemma 2.3.48) we have that a ey =
b1y (nod Zg), which implies a;a; = b; b (mod ©). |

Lemma 2.3.72. Let B, k € w, be the k-th direct power of By and let © be
the congruence relation on BE of Lemma 2.8.11. Then the quotient algebra
B%/© is isomorphic to By, the finite and subdirectly irreducible implicative
BCS-algebra of cardinality 2% + 1.

Proof. Let BY and © be an in the statement of the lemma. To prove the
lemma it is sufficient to show:

(i) B%/© is subdirectly irreducible;

(ii) |BE/O] = 2* + 1.

For (i), for ease of notation let B := B%/© and let =g denote the Clifford-
McLean congruence on B. Now Zp = Epg/o = Zgi/© (where Eptse and
Epe denote the Clifford-McLean congruence on B%/0© and B¥ respectively), so
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Zp = wp U {(My, M3), (M, My) }, where M, and M, are as in Lemma 2.3.71.
Therefore to see B is subdirectly irreducible (with monolith =g} it is sufficient
to show M) =¢ M, for any € € Con B such that 8 3 wg. So let § € ConB be
such that 8 # wg. There are two cases to consider:

(1) [0%]e = {0°};

(2) [0B]s # {0}
For Case (1), suppose [0B]g = {0B}. Then 6 C Sp = wgU{(M;, M), (My, M)}
by Theorem 2.1.14(4). Assume to the contrary that M; ¥y M;. Then § = wp
which is a contradiction. Thus M, =y M.

For Case (2), suppose [08]; # {0P}. Then there exists 0B # 4 € B (where
B = B}/0) such that 0B =5 A. We consider two subcases:

(2)(a) A & {M, Ma};
(2)(b) A € {My, Mz}.

For Subcase (2)(a), suppose A € {M;, Mp}. From M, = M;(modZg) and
Lemma 2.1.12(1) we have M)\PA = M,\BA (mod Zp). But M;\BA ¢ M and
Mo\BA & M by Lemma 2.3.48, where M is the maximal class of B, which im-
plies by the description of the Clifford-McLean congruence Sg that M;\BA =
M\BA. But then M, = M;\BOB =y M\BA = M;\BA =y M;\BO® = M,,
whence M, =p M.

For Subcase (2)(b), suppose A € {M;, My}. Let C € {M;, M,} be such that
C # A. From C = A(mod=g) we have C = C\P0P =) C\BA=0P =) A as
required. This completes the proof that B is subdirectly irreducible.

For (ii), just note | B| = | B /@] = | B /Zps| ~1+2. But BE/Zg; & (Ba/3s,)%,
so | By /Eps| = 2, which implies |Bf = |Bf /6| = 2¢ ~1+2 =2+ 1. Thus B
has cardinality 2% 4+ 1 as asserted. d

Theorem 2.3.73. The 3-element flat implicative BCS-algebra B, generates

the class of implicative BCS-algebras {as a variety). In symbols, iBCS =
V(B,).

Proof. Since B, € iBCS we have V(B;) C iBCS. Conversely, by Theo-
rem 2.3.54 we have that any finite and subdirectly irreducible implicative
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BCS-algebra is isomorphic either to By or to some B,, n € w. Now By/Z
is isomorphic to By, so B, € H(B;). For any k£ > 1, let B be the k-th di-
rect power of By and let © be the relation defined on B of Lemma 2.3.71.
By Lemma 2.3.71 and Lemma 2.3.72 we have that © is a congruence relation
on B¥ such that B%/@ is isomorphic to By, so B; € HP(B,). Suppose now
that A is a finite implicative BCS-algebra. Then A is isomorphic to a sub-
direct product of finite and subdirectly irreducible implicative BCS-algebras,
and so A € IPsHPH(B,). But IPsHPH < IPsHHP (by [160, Lemma 4.92])
= {PsHP < HPsHP < HHPsP (by [160, Lemma 4.92]) = HPsP = HPs
(by [160, Lemma 4.92]) < HSP, so A € V(B;). Thus V(B;) contains every
finite implicative BCS-algebra; that is to say iBCSp,y € V(B2). But this im-
plies V(iBCSf;y) € V(B;), which implies iBCS € V(B2) by Corollary 2.3.56.
n

Corollary 2.3.74. The following assertions hold in the variety of implicative
BCS-algebras:

1. The equational theory of the variety of implicative BCS-algebras is de-
cidable;

2. The first-order theory of the variety of tmplicative BCS-algebras is unde-
cidable.

Proof. Ttem (1) follows from local finiteness {Corollary 2.3.56) and a well
known result due to Harrop [107] (see also Blok and Ferreirim [27, Lemma 3.13])
to the effect that a variety V of algebras over a finite language has a decidable
equational theory if V is finitely axiomatisable and is generated {as a vari-
ety) by its finite members. Item (2) follows immediately from the remarks of
Example 2.1.5 and Theorem 2.3.73. n

Let V be a variety. Denote by A" (V) the ‘lattice of varieties’ of V, namely
the dual of the lattice of corresponding equational theories (see for example
Gritzer {99, p. 172]). For pseudocomplemented semilattices, it follows easily
from the fact that the 3-element chain 3 (considered as a pseudocomplemented
semilattice) generates PCSL as a variety (recall Theorem 1.3.8) that AV (PCSL)
is & 3-element chain, whose unique atom {A € PCSL : A = z** = z} is
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termwise definitionally equivalent to the variety of Boolean algebras (recall
Theorem 1.3.9). This remark, in conjunction with Theorem 2.3.73, calls for a
study of AV (iBCS), the lattice of varieties of implicative BCS-algebras. But
first, concerning the lattice of varieties of pre-BCK-algebras AV (PBCK), recall
iBCK is the unique atom of AY(PBCK) by the remarks of Example 2.1.4.

Theorem 2.3.75. AV (iBCS) is a three-element chain. The only non-trivial
subvariety of iBCS is iBCK, the unique atom of AV(PBCK). Thus iBCS is a
cover of IBCK in AV (PBCK) (in fact, is the only cover of iBCK in AV (PBCK)
that is not a variety of BCK-algebras).

Proof. Let V C iBCS. If V C BCK then V = iBCK by Proposition 2.3.7(2).
If V& BCK then Q(B;3) € V by Proposition 2.2.5, so iBCS = V(B3) C V by
Theorem 2.3.73. Thus iBCS is a cover of iBCK in AY{PBCK) (in fact, is the
only cover of iBCK in AV (PBCK) that is not a variety of BCK-algebras). n

By Example 2.1.4 iBCK is also the unique atom of A?(PBCK), the lattice
of quasivarieties of pre-BCK-algebras. However, Theorem 2.3.75 cannot be
generalised to the assertion that iBCS covers iBCK in A?(PBCK), in view of
the following result of Blok and Raftery [38]. The proof given here is new.

Proposition 2.3.76. [88, Proposition 6] The quasivariety Q(B;) is not a
variety. Thus iBCS is not a cover of iBCK in A?(PBCK).

Proof. Assume to the contrary that Q(B,) is a variety. By Theorem 2.3.73
and hypothesis we have iBCS = V(B,) = Q(B;) = ISP(B;), which implies
iBCSs; C 1S(By), a contradiction. The remaining assertion now follows. ]

Blok and Raftery first proved Proposition 2.3.76 by showing that the algebra
B; x C, has a homomorphic image isomorphic to ]32, and hence that H(B; x
C,) € IPs(B,,C;). Thus they do not exhibit a quasi-identity satisfied by

Q(B,) but not by iBCS. We also have been unable to exhibit such a quasi-
identity.

Problem 2.3.77. Exhibit a quasi-identity satisfied by Q(B2) but not by iBCS.
.
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For BCK-algebras, the partially ordered ‘set’ PY(BCK) of all subvarieties
of BCK has been investigated by several authors, including Wronski [239),
Wroniski and Kabzinfiski [243], Blok and Raftery [38] and Kowalski [142] (see
also Van Alten [229, Chapter 6] and van Alten and Raftery [231}), and in par-
ticular it is known that P (BCK) := (PV(BCK); C) is a (distributive) lattice
with unique atom iBCK [38, Theorem 11]. Let L3 := {{0,1,2}; =,0) be the
BCK-algebra with 0 < 1 < 2and 2= 1:=1 and let Hy := ({0,1,2}; =,0) be
the BCK-algebra with 0 <1< 2 and 2+ 1 := 2. The algebras L; and H; are
dually isomorphic to the implicational reducts of the 3-element Lukasiewicz al-
gebra and the 3-element linearly ordered Heyting algebra, respectively, and by
Jénsson’s lemma V(L3) and V(H3) are covers of iBCK in the lattice P (BCK).
By results due to Kowalski [142] the converse also holds, and so V(L3), V(Hj)
are the only covers of iBCK in PV (BCK).

Theorem 2.3.78. The varieties V(L3), V(Hj3) and iBCS are the only covers
of iBCK in AV (PBCK).

Proof. Let V be a cover of iBCK in AV(PBCK). By Proposition 2.2.5 either
Ve PY(BCK) or Q(B,) C V. If Q(B,) C V then V is iBCS by Theorem 2.3.75.
So suppose V € PV(iBCK). Since PY(BCK) is a sublattice of AV (PBCK)
(by [38, Theorem 11}) we must have that V is a cover of iBCK in PV (BCK).
Thus V is either V(L3) or V(H3). - n




Chapter 3

Applications to Universal

Algebra and Algebraic Logic

In this chapter we consider applications of the theory of pre-BCK-algebras to
universal algebra and algebraic logic. In particular, we study three classes of al-
gebras arising naturally in both universal algebra and algebraic logic, namely:
subtractive varieties with EDPI; binary (and dual binary) discriminator va-
rieties; and {pointed ternary discriminator varieties quae) pre-BCK-algebras
structurally enriched with band operations. Our motivation for studying sub-
tractive varieties with EDPI stems from Theorem 2.2.20 and the fundamental
role played by MINI-algebras in such varieties (recall the remarks of §1.1.1).
Our study of binary discriminator varieties is stimulated by Example 2.3.11
and Example 2.3.13; recall these results collectively assert that implicative
BCS-algebras arise naturally as polynomial reducts of members of binary and
pointed ternary discriminator varieties. Our investigation of pre-BCK-algebras
structurally enriched with band operations is prompted by Theorem 1.4.39 and
Corollary 1.4.40, which show that, in a sense, the study of pointed ternary dis-
criminator varieties reduces to the study of skew Boolean N-algebras.

In investigating each of the three classes described above, our main aim is
tc establish the role played (if any), at a structural level, by the theory of
pre-BCK-algebras. In particular, our object (with occasional diversions) is to
ascertain the extent to which the ideal theory and/or congruence structure of

P ‘\___-




3.1. Subtractive Varieties with EDPI 215

subtractive varieties with EDPI, binary discriminator varieties, and pointed
ternary discriminator varieties, may be reduced to a study of the ideal theory
and/or congruence structure of the varieties of MINI-algebras and implica-
tive BCS-algebras (possibly structurally enriched with additional operations)
respectively.

3.1 Subtractive Varieties with EDPI

By the remarks of Example 1.7.11, the variety of MINI-algebras is a natural
generalisation of the variety of Hilbert algebras to the subtractive but not
point-regular case, and hence is a natural example of a subtractive variety
with EDPI. Recently Agliano and Ursini have shown [10, Corollary 3.8] that
the variety of MINI-algebras is in fact a paradigm for subtractive varieties with
EDPI in the sense that a variety V is subtractive with EDPI iff every member
of V has a MINI-algebra polynomial reduct satisfying a certain weak ‘ideal
compatibility property’. Insofar as the results of §2.2.16 show that the variety
of positive implicative pre-BCK-algebras is both a natural generalisation of
the variety of positive implicative BCK-algebras to the subtractive but not
point regular case and a natural example of a subtractive variety with EDPI,
the central role played by MINI-algebras in the theory of subtractive varieties
with EDPI calls for a study of the role played by positive implicative pre-BCK-
algebras in the theory of subtractive varieties with EDPL

In §3.1.1 positive implicative pre-BCK-algebras, MINI-algebras and subtrac-
tive varieties with EDPI are studied. It is shown that the variety of positive
implicative pre-BCK-algebras is termwise definitionally equivalent to (in fact,
is dually isomorphic to) Agliano and Ursini’s variety of MINI-algebras. We
show that a variety V is subtractive with EDPI iff every algebra A € V has a
MINI-algebra polynomial reduct whose ideals coincide with those of A, sharp-
ening the result of Agliano and Ursini alluded to above. A representation
theorem for weakly congruence orderable subtractive varieties with EDPI is
also proved: for a suitable notion of weakly compatible operation, a variety
is weakly congruence orderable and subtractive with EDPI iff it is termwise
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definitionally equivalent to a variety of MINI-algebras with weakly compatible
operations.

Subtractive WBSQ varieties are studied in §3.1.22. Such varieties arise natu-
rally in algebraic logic and are subtractive (by definition) and have EDPI (since
they have EDPC). The subtractive WBSO varieties are characterised: they are
precisely the subtractive, strongly point regular varieties with EDPC. We also
show that any such variety V is distinguished as a WBSO variety by the pres-
ence of a weak relative pseudocomplementation — such that the polynomial
reduct {4; —*,1) is a MINI-algebra for any A € V. An interesting example
of a subtractive WBSO variety is the variety N of Nelson algebras, which arises
in the first instance from the algebraisation of constructive logic with strong
negation. It is shown that N has a commutative (but not regular) TD term
and is congruence permutable. An explicit QD term for N is also given. In
consequence we infer that, for any variety V of Nelson algebras, the class of
implicative subreducts of V is a subvariety of the variety of MINI-algebras.
The results answer a question of Blok and Pigozzi.

3.1.1. Positive Implicative Pre-BCK Algebras and MINI-Algebras.
Recall from Example 1.7.11 that a MINI-algebra is an algebra {(A; —,1) of
type (2,0) satisfying the following identities:

z—o1=1 (1.45)
1oz | (1.46)
z=@=22)2(zoy=2(z—o2)=1 (1.47)
= (y2o)=1 (1.48)

while a Hilbert algebra is a MINI-algebra satisfying the quasi-identity:
royx1&y—vrz~mlormy. (1.49)

By definition, the class MINI of all MINI-algebras is a variety. By the remarks
of §1.6.13, the quasivariety Hl of all Hilbert algebras is also a variety, which
is termwise definitionally equivalent to {in fact, is dually isomorphic to) the
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variety of positive implicative BCK-algebras.

By the preceding remarks, Agliano and Ursini’s variety of MINI-algebras is
a natural generalisation of the variety of Hilbert algebras to the subtractive
but not point regular case, in the sense that Hl is precisely the subquasiva-
riety of MINI axiomatised by the quasi-identity (1.49). On the other hand,
Theorem 2.2.17 shows the variety of positive implicative pre-BCK-algebras is
a natural generalisation of the variety of positive implicative BCK-algebras to
the subtractive but not point regular case, in the sense that pPBCK is precisely
the subquasivariety of pBCK axiomatised by the quasi-identity (2.5). Hence
pPBCK stands in relation to pBCK as MINI stands in relation to HI. Because
the varieties Hl and pBCK are dually isomorphic, this remark suggests that the
varieties MINI and pPBCK may themselves be dually isomorphic.

To clarify the relationship between the variety of positive implicative pre-
BCK-algebras and the variety of MINI-algebras, let the class MINI? of dual
MINI-algebras be the variety of algebras with language (=, 0) of type (2, 0)
axiomatised by the following identities:

0—z~0
T—0=z
(G~ (=)= (6= y)~0

(z—y)—z =0

Let T;(X) denote the term algebra of type £ over X, where L is the lan-
guage of MINI-algebras. Also, let Tzo(X) denote the term algebra of type £P
over X, where £? is the language of dual MINI-algebras. Consider the maps
£:Te(X) = Teo(X) and 7 : Teo(X) = Te(X) defined respectively by:

€(z) ==z reX
&p — ¢) :=&(g) —&(p) ?,q € Te(X)
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and:

7(0) =1
n(z) =1 rzeX
n(r —s) = nl(s) = n(r) r,s € Tzo(X).

(The maps £ and 7 so defined should not be confused with the similar maps
of §2.1.33 in the prequel.) Because of the axiomatisation of MINI by (1.45)-
(1.48) and the axiomatisation of MINI® by (3.1)-(3.4), the proof of the follow-
ing lemma is trivial and so is omitted.

Lemma 3.1.2. Forp,q € T¢(X) and r,s € To(X) the following assertions
hold:

1. If MINI |= p ~ ¢ then MINI® |= &(p) = £(q);

2. If MINI® |= r = s then MINI = 5(r) == 5(s). 1

Ry i

Moreover, no § = wr,(x) and { o = wr,,(X)-

By the preceding lemma, the variety of MINI-algebras is termwise definition-
ally equivalent to (in fact, is dually isomorphic to) the variety of dual MINI-
algebras. When coupled with the following proposition, this result yields The-
orem 3.1.4 below, which confirms that the varieties of positive implicative
pre-BCK-algebras and MINI-algebras are indeed dually isomorphic.

Proposition 3.1.3. An algebra (A; = ,0) of type (2,0) is a dual MINI-algebra __
iff it is a positive implicative pre-BCK-algebra. Thus the variety of dual MINI- :
algebras coincides with the variety of positive implicative pre-BCK-algebrys.

Proof. (=) Let A be a dual MiNI-algebra and let a¢,b € A. Throughout
the proof we denote ~# by juxtaposition for ease of notation. By definition
we have that A = (2.4),(2.6), so to see A is a pre-BCK-algebra we have

only to show (by Proposition 2.1.11) that A | (2.7),(2.2). For (2.7), put
a := (ab)(cb), B := ac and v := (ac)b. We have:

0= ((@B8)(v8)) ((27)B) by (3.3)




macn b 0 b e e dmde el

3.1. Subtractive Varieties with EDPI 219

((@B)(v8)){(((ab)(cb))((ac)b))B)

= ((e8)(78))(08) by (3.3)
= ((aB)(v8))0 by (3.1
= (af)(1B) by (3.2)

= (((ab)(ct))(ac) (((ac)b)(ac)).

Put «:= ac and B := b. We have:

(((ab)(cb)){ac))(((ac)b)(ac))
= (((ab){cd))(ac)) ((eB)a)
= (((ab)(cb))(ac))0 by (3.4)
= ((ab)(cb))(ac) by (3.2).

For {2.2), put a := a(ab), B := b and « := b{ab). We have:

= ((eB)(78)) (ax7) by (2.7)
= ((aB)(78)) ((a(ab))(b(ab)))

= ((eB)(v8)) (((a(ab))(b(ab)))0) by (3.2)
= (((a(ab))b)((b(ab))5)) (((a(ab)) (b(ab)))0).

Put o := ab and B := 0. We have:

(((a(ab))b)((5(ab))®)) (((a(ab))(b(ab)))0)
= (((al ab))b)((b(ab))b))(((a(ab))(b(ab ))((eB)ar))
= (((a(ab)}b)((5(ab))b)) (((a(ab))(b(ab)))(((ab)0)(ab))) by (3.4) _;
= (((a(ab))b)((b(ab))b)) (((a(ab))(b(ab)))((ab)(ab))) by (3.2). 1

Put ¢ = a, 8 := ab and 7 := b. We have:

(((a(ab))b)((5(ab)})) (((a(ab))(b(ab}))((ab)(ab)))
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= (((ﬂ(“b)) (b(ab)))) (((2B) (¥8))((e)B))
= (((a(ab))b)((b(ab))b))0 by (3.3)
= ((a(ab))b)( (ab))b) by (3.2).

Put o := b and f := ab. We have:

((a(a))8) ((5(ab))?)
= ((a(ab))d)((aB)e)
= ((a(ab))b)0 by (3.4)
= (a(ab))b by (3.2).

Hence A [= (2.2),(2.7) and so is a pre-BCK-algebra. To see A is positive
implicative it is sufficient to note:

= ((ab)(bb)) ((ab)d) by (3.3)
= ((ab)((60)b)) ((ab)?) by (3.2)
= ((ab)0) ((ab)?b) by (3.4)
= (ab)((ab)b) by (3.2).

(«) Let A be a positive implicative pre-BCK-algebra. By definition we have
that A = (3.1), (3.2). Moreover A = (3.3) by Lemma 2.2.18; since A |= (3.4)
by Lemma 2.1.12(3) we have that A is a dual MINI-algebra. "

Theorem 3.1.4, The variety of MINI-algebras is termwise definitionally equiv-
“alent to the variety of positive implicative pre-BCK algebras. Given a positive
implicative pre-BCK-algebra (A; = ,0), MINI-algebra operations are defined
on A by:

e b=b—a

1:=0

Jor any a,b € A. Conversely, given a MINI-algebra (A; —,1), positive im-




3.1. Subtractive Varieties with EDPI 221

plicative pre-BCK-algebra operations are defined on A by:

a—b:=b—a

0:=1

for any a,b € A.

Because the variety of positive implicative pre-BCK-algebras has EDPI witness
z + y (by Theorem 2.2.20), from Theorem 3.1.4 it follows immediately that the
variety of MINI-algebras is subtractive with EDPI witness ¥ — 2 (compare
this remark with Example 1.7.11). For the sake of developments in the sequel
we find it convenient to present this result here explicitly as a coroilary.

Corollary 3.1.5. (c¢f. Example 1.7.11) The variety of MINI-algebras is sub-
tractive with EDPI. Moreover, the binary ferm y — z witnesses both sub-
tractivity and EDPI for MINI in the sense of Theorem 1.7.9. That is, for any
MINI-algebra A and a,b € A,

a2 a=1

132 a=a

ac(ba iff b=Pa=1

The variety of MINI-algebras is more than just a natural example of a sub-
tractive variety with EDPJ; by Agliano and Ursini {11, Corollary 3.8] it is a
pa:radigm for such varieties in that a variety V is subtractive with EDPI iff
every A € V has a MINI-algebra polynomial reduct for which any ideal term
t(Z,y) € ITy(y) is compatible with V in the sense that for any a,b € 4 [11,
p. 375},

a2 tA(5,0) = 1.

The following theorem, whose proof is included for the sake of completeness,
presents a variant on this result.
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Theorem 3.1.6. (cf. [11, Corollary 3.8]) For a variety V with 1, the follow-
ing are equivalent for a binary term z — y of V:
1. The term y — z witnesses both subtractivity and EDPI for V in the

sense of Theorem 1.7.9;

2. For any A € V, the polynomial reduct {A; —*,1) is a MINI-aigebra,
and either one of the following conditions is satisfied:
(a) Any ideal term (%, y) € ITv(y) is compatible with V;
(b) For any a € A, (a)a = {(8)(a; 241y
Proof. Let V be as stated and let £ — y be a binary term of V.

(1) = (2)(a) Suppose y — = witnesses both subtractivity and EDPI for V
in the sense of Theorem 1.7.9. Then for any A € V, (4; —4,1)/~4 is a
Hilbert algebra dually isomorphic with (PI(A); *, (1)a) by Theorem 1.7.15(1).
Throughout the remainder of the proof to simplify notation we write @ for
the equivalence class [a]y, in A/~a containing a € A. As (1.45)-(1.47) are
identities in the language (—, 1) that hold in the variety of Hilbert algebras,
for any @, b, € A/~4 with a, b, ¢c € A we have:

1 :
(3 A1 (5 A/ 7)) M™% (g —A/=n ) 58/%n (g Ao 7)) =T
I

a AR (h ARA ) =
Because T = {1}, we infer:

a—-*1=1
I1sfa=aq
(@t (bo2c)) =2 ((a=2b) o2 (a2 ) =1

a—=A(b-ta)=1

in A, whence (4; —#,1) is a MINI-algebra. To see any ideal term ¢(Z, y) €
ITv(y) is compatible with V let ¢(Z,y) € ITv(y) and suppose b,a € A. Then
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tA(b,a) € (a)a by the description of (a)s given in §1.7.1. Since y — =
witnesses EDPI for V we have that a — t4(5, ¢) = 1 as required.

(2)(a) = (2)(b) Suppose that for any algebra A € V, the polynomial reduct
(A; —4,1) is a MINl-algebra and that any ideal term t(Z,y) € ITy(y) is
compatible with V. For any a € A, trivially (a)(a, 54,1y € (a)a. For the
opposite inclusion, let ¢ € {a)a. Then ¢ = t4(5, a) where (%, y) is an ideal
term in y and b, a € A, just because of the description of {a) given in §1.7.1.
Since ¢(%, y) is compatible with V we have a — t4(5, a) = 1, whence t4(5, a) €
(a)(4, -4 1y by Corollary 3.1.5. Thus ¢ € {(a)(4;, 4,1y and (a)a C (a)(4; 54,

(2)(b) = (1) Suppose that for any A € V the polynomial reduct {4; —*,1) is
a MINI-algebra and (a)a = (a)(4; 54,1 for any a € A. Since y — z witnesses
both subtractivity and EDPI for (4; —*,1) in the sense of Theorem 1.7.9 (by
Corollary 3.1.5), y — = witnesses both subtractivity and EDPI for A in this
sense also (by hypothesis). Thus y — z witnesses both subtractivity and EDPI
for V in the sense of Theorem 1.7.9, and the proof is complete. |

Let V be a subtractive variety let A € V. Since any V-ideal of A is a directed
union of principal V-ideals, from Theorem 3.1.6 we may infer:

Corollary 3.1.7. For a variety V with 1 and a binary term z — y of V,
the term y — = witnesses both subtractivity and EDPI for V in the sense of
Theorem 1.7.9 iff every algebra A € V has o MINI-algebra polynomial reduct
(A; =2,1) whose MINI-ideals coincide with the V-ideals of A.

For a variety V with 1 and a binary term z — y of V, the preceding cerollary
cannot be strengthened to the assertion that y — z witnesses both subftrac-
tivity and EDPI for V in the sense of Theorem 1.7.9 iff every A € V has a
MINI-algebra polynomial reduct {A; —*,1) whose congruences coincide with
those of A. If every A € V has a MINI-algebra polynomial reduct {4; —4,1)
whose congruences coincide with those of A, then certainly y — z witnesses
both subtractivity and EDPI for V in the sense of Theorem 1.7.9. However,
as an immediate consequence of the following proposition we have that the
converse does not hold.
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Proposition 3.1.8. The binary term z\y witnesses both subtractivity end
EDPI for the variety IhSBA of left handed skew Boolean algebras in the sense
of Theorem 1.7.9. Hence the 1hSBA-ideals of any left handed skew Boolean al-
gebra A coincide with the MINI-ideals of its canonical MINI-algebra polynomial
reduct {A; —=*,14), where ¢ =* b := b\a for any a,b € A and 14 := 0.
Nonetheless, there exists a left handed skew Boolean algebra S that has no
MINI-algebra polynomial reduct whose congruences coincide with those of S.

Proof. To establish the first two assertions of the theorem, it is sufficient to
show that for any skew Boolean algebra A and a € A,

(i) The reduct (A4; \,0) is an implicative BCS-algebra;
(ii) {a)a = (aka;\0)-
For (i), an ecasy inspection of the subdirectly irreducible skew Boolean alge-

bras 27, 3] and 3% shows that the reduct (4; \,0) of any skew Boolean
algebra A is an implicative BCS-algebra.

For (ii), let A be a skew Boolean algebra. From remarks due to Leech {150,
Section 4.6] it is known that a non-empty subset {0} C I C A is an SBA-ideal
iff the following conditions are satisfied [19, Definition 3.3}:

g,b€limpliesavbel;. and (3.5)
a€l,be AimpliesbAaAbel. (3.6)

Notice (3.6) above is equivalent to:
ea€l,b=pa, impliesh € [. (3.7)

For assume (3.6) and let a € ] and b <p a. Since b Xp a, b A a A b =b.
By (3.6), b € I. Conversely, assume (3.7) and let « € I and b € A. Since
bAaAb=pa, by (3.7) wehave bAaAb e

Let ¢ € A. From (3.5) and (3.7) it follows easily that {a)a = {b: b =p a}.
On the other hand, (a)(a;\0 = {b : & <4i\0) g1 by Theorem 2.2.20(4),

Proposition 2.2.30 and Proposition 2.3.5. Therefore to see {(a)a = {a)(a;\,0 it
is sufficient to show ¢ <p d iff ¢ <M\ d for any ¢,d € A. Solet ¢,d € A.
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Suppose ¢ <p d. Then c AdAc=1c,500=(c\dA(cAdAc)=
(c\d) A ¢ = c\d by (1.25) and (1.28). Thus ¢ <4\ d. Conversely, suppose
¢ <\ g Then c\d =0,s0 c=(c\d)V(cAdACc)=0V(cAdA
¢)=cAdAcby (1.23). Thus ¢ <p d and so ¢ <Xp d iff ¢ <40 d. Hence

(a)a = (@)(4;\,0)-
To establish the remaining assertion of the theorem, it is sufficient to show

that for any left handed skew Boolean algebra A,

(iii) The only polynomial reduct of A term equivalent to a MINI-algebra is
(4; \,0);
and also that:

(iv) There exists a left handed skew Boolean algebra S with Con {(S; \,0) #
Con S.

For (iii), let F(Z,7) denote the InSBA-free algebra on two free generators T, 7.
From Example 1.4.23, the remarks of §1.4.24, Example 2.3.26 and (i) we see
at once that F(Z, §) has D-equivalence classes:

{0y, {z.Evy)Az}, {7.GVI) AT}
{zZ\7}, {H\". {(TAGTAT}, {ZVEIVE

with:
IANGLT, (FVI)AT TATLTY ZVYAT
T,(FVI)AFLTIVY % (EVYATLYVE
I\y<TE (TVY AT NELT, (FVI)AT

Routine computations (by inspection of 2° and 37) show that F(z,%) has
exactly one other D-class distinct from those listed above, namely:

{EviNgAD)}
with:

LIS EVIN\EAT STVFFVE
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ve=(x+yNxy)

0

Figure 3.1. The IhSBA-free algebra on two free generators T, ¥.

whence F(Z,7) has the Hasse diagram of Figure 3.1 (where for notational
purposes the free generators T, 7 are denoted in the figure simply by z,y re-
spectively; like remarks apply to products of T, 7). Conversely, the diagram of
Figure 3.1 completely determines F(Z, 7), just because F(Z,7) is left handed.
I'rom this characterisation of F(Z,7) it is now easy to see (by inspection of 27
and 37) that there exists no term function —* (other than that induced by
the term y\z) definable in terms of the fundamental left handed skew Boolean
algebra operations A, V,\ such that for any left handed skew Boolean alge-
bra A, the polynomial reduct {4; ~*,0) is a MINI-algebra. Hence the only
polynomial reduct of A that is term equivalent to a MINI-algebra is (4; \,0).

. For (iv), let S denote the 6-element algebra defined by the following operation

v e S
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tables:

ASloa b cde V30D abcde \5(0abcde
010 0 0 0 0 O 010 a b ¢c d ¢ 010 0 0000
e |0 a 0 a 0 @ ala a ¢ c e ¢ afa 0 a 0 a O
b {0 0 b b b b blb ¢ b c d e bbb b 00 00
c{0 a b ¢ b ¢ clc ¢ ¢ ¢ e e cle b a 0 a 0O
d|0 0 d d d d did e b ¢ d e did 4d 00 0 0
e|l0 a d e d e ele € ¢c ¢c e e ele d a 0 a 0

It is readily verified that S is a left handed skew Boolean algebra: see Fig-
ure 3.2(a). To complete the proof it is sufficient by (iii) to show Con (S; \,0) #
Con (S; A,V, 0}, just because Con S = Con (S; A,V,0) by Proposition 1.4.27.
To this end, let & be the equivalence relation on § x § induced by the par-
tition {{0}, {a}, {b,d}, {c},{e}}. It is tedious but straightforward to check
that 6§ is a congruence relation on (S; \,0) (for a complete description of the
congruence structure of (S; \,0), see Figure 3.2{c); notice that for ease of
notation, congruences on (S; \,0) are represented in the figure by their cor-
responding partitions (with all parentheses dropped)). However, @ is not a
congruence on {(S; A,V,0). Indeed, suppose 8 € Con (5; A,V,0). Because
e =g eand b =y d, we must have that e V b =p ¢ V d, which implies
¢ =p e, a contradiction. Hence & € Con{S; A,V,0) (for a complete de-
scription of the congruence structure of (S; A,V,0), see Figure 3.2(b)) and
Con {S; \,0) # Con (S; A,V,0). n

Corollary 3.1.9. Let V be a variety with 1 and let z — y be a binary term
of V such that y — z witnesses both subtractivity and EDPI for V in the sense
of Theorem 1.7.9. In general, the congruences on the canonical MINI-algebra
polynomial reduct (4; —*,1) of A € V need not coincide with those on A.

Let A be a set and let f be an n-ary operation on A. The siice f;(a), a € 4,
is the unary operation obtained from f upon defining:

s

f,(a) = f(bl, sy b,'...l, a, bg_[_l, ceny bn)
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Oabcde

Oa,bede

0.a,bd,ce

0.ab,cde 0.a,b,c,de
- () ®) (©)

Figure 3.2. (a) The left handed skew Boolean algebra S of Proposition 3.1.8;
‘b) Con {S; A,V,0); (c) Con {S; \,0).

for fixed by,..., bi1, bis1,...,bn € A. In other words, the slice };(a) is the
unary operation obtained from f by fixing all but one of its arguments. Given
an algebra A, an n-ary operation f of A is said to be compatible with a
congruence # on A if & has the substitution property with respect to f; that
is, if:

¢ = b(modd) implies f(a)= fi(b) (modh)

for all a,5 € A and slices };(a),};(b), 1 < i £ n. An n-ary operation f of A is
said to be compatible if it is compatible with every congruence on A.

A MINI-algebra [Hilbert algebra] with compatible operations is an algebra A :=
(4; =,1,fi)jes of type (2,0,...) such that: (i) the reduct (4; —,1) is a MINI-
algebra [Hilbert algebra]; and (ii) each additional operation f; is compatible
with (4; —,1), Clearly an algebra A = (4; —,1,f;);es of type (2,0,...)
is a MINI-algebra [Hilbert algebra] with compatible operations iff Con A =
Con (4; -+,1). A version of the following lemma is presented without proof
in Agliano [7, Section 3].

Lemma 3.1.10. (¢f. [7, Section 8, p. 9]) Let A be an algebra with 1, say
{(4; 1,£)ies, and let z — y be a binary term of A such that the polynomial
reduct (A; —*,1) is a Hilbert algebra. The following are equivalent:
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1. A is term equivalent to a Hilbert algebra with compatible operations
(4; =™ 1, fi)jess

2. For any n-ary fundamental operation f := f; of A,
(a2 8) =4 (b =4 @) = (F(a) 5 Fi0)) =1

for all a,b € A and slices };(a),ﬁ(b), 1<7< m.
Proof. Let A be a Hilbert algebra and let a, b, ¢, d € A. By Theorem 1.6.15(2),

c=d(mod©*(a,b)) iff (a—=b)> ((b—=a)>(c—d))=
(a—}b)——)_((b—>a)——>(d—->c));

the lemma follows directly from this description of the principal congruences.
"

A variety V is said to be a variety of MINI-algebras [Hilbert algebras) with com-
patible operations if every member of V is a MINI-algebra [Hilbert algebra] with
compatible operations. Given Corollary 3.1.9 and the remarks immediately
preceding Proposition 3.1.8, it is natural to ask if varieties of MINI-algebras
with compatible operations admit a relevant structure theorem. For the spe-
cial case of varieties of Hilbert algebras with compatible operations, a positive
answer to this question has been obtained by Agliano in |7, Section 3]. For
the sake of both completeness and developments in the sequel, we reproduce
Agliano’s result in Theorem 3.1.11 below.

Theorem 3.1.11. [7, Theorem 3.4] For a variety V with 1 and a binary term
Tz -y of V, the following are equivalent:

1. V is termwise definitionally equivalent to a variety of Hilbert algebras witf{
compatible operations. In particular, any algebra A := (4; 1,fj)jes €V
is term equivalent to a Hilbert algebra with compatible operations (A; —*
aLff)jEJ;

2. V is congruence orderable and subtractive with EDPC. In particular, V
i§ congruence orderg‘ble and the binary term y — z wilnesses both sub-
tractivity and EDPI for V in the sense of Theorem 1.7.9.

e

e
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Proof. Let V be a variety with 1 and let £ — y be a binary term of V.

(1) = (2) Suppose V is termwise definitionally equivalent to a variety of
Hilbert algebras with compatible operations. For the first assertion, if A =
(4; 1,f;)jeq € Vis term equivalent to a Hilbert algebra with compatible opera-
tions (4; =", 1, f;)jes, then Con A = Con (4; —4,1,f;);jcs = Con {4; —4,1),
so A is congruence orderable and subtractive with EDPC. It follows that V is
congruence orderable and subtractive with EDPC. For the second assertion, if
A= (4; 1,f)jes €V is term equivalent to a Hilbert algebra with compatible
operations {4; —#,1, f);es, then Con A = Con {4; —*,1), so in particular
I(A) = I({4; —*,1)), whence a € (b)a iff @ € (b)(4, 4ay if b =D a =1
It follows that — witnesses both subtractivity and EDPI for V in the sense of
Theorem 1.7.9, and the proof is complete.

(2) = (1) Suppose V is congruence orderable and subtractive with EDPC,
and in particular that the binary term y — z witnesses both subtractivity
and EDPI for V in the sense of Theorem 1.7.9. Let A := (4; 1,f)jes €
V. Clearly A is term equivelent to the algebra (4; —4,1,f);c; obtained
from A by enriching the type of A with a binary operation symbol — whose
canonical interpretation is the term function —*. We claim (4; =41, fidjeq
is a Hilbert algebra with compatible operations. To see this, it is sufficient by
Lemma 3.1.10 to show:

(i) The polynomial reduct {(A; —*,1) is a Hilbert algebra;
(ii) For any n-ary fundamental operation f = f; of A,

(e =2 b) =42 (b =2 a) = (fi(a) A F(B)) =1
for all a, b € A and slices f;(a),f;(b), 1< i < m.

For (i), by Theorem 3.1.6 we have that the polynomial reduct {4; —4,1) is -
a MINI-algebra. By Theorem 3.1.4 and Corollary 2.2.23(2), the map f : a
(a)a is a homomorphism and (4; —#,1}/kerf is a Hilbert algebra, where
ker f = {(a,b) : @ =" b =1= b —4 g}. Because V is congruence orderable,
it is 1-regular (in the sense of Proposition 1.2.6) witness dy(z,y)} := ¢ = y,
h(z,y) =y =z by Propqgition 1.7.16, from which it follows that ker f = w,.




3.1. Subtractive Varieties with EDPI 231

Hence (4; —*4,1)} is a Hilbert algebra.

For (ii), let f{z) be a fundamental operation of A, which we may take to be
unary without loss of generality. Let e, b € A and let:

(a =2 b) VI (b A 0) = 1),

for some @ < Con A. Then of course [a]s =4/ [b]s = [1]g = [b]s =*/° [a]y, sO
(a,b) € 6. It follows that (f(a),f()) € & and by properties of —, f(a) -4
F(b) € [1]s. But [1)p = (@ =4 b)a VI (b -4 a)4, so Theorem 3.1.4 and
Lemma 2.2.19 applied twice gives:

(a =2 b) =™ (b =% a) =2 (f(a) =2 F(B))) =1

as desired. ]

Let A be an algebra with 1 and let Con A := {# € Con A : 0 > (1)5}. An
n-ary operation f of A is said to be weakly compatible if it is compatible with
every congruence 8 € Con, A. By analogy with the theory of MINI-algebras
with compatible operations, an algebra A := (4; —,1, f;);cs of type (2,0,.. )
is a MINI-algebra with weakly compatible operations if: (i) the reduct {4; —,1)
is a MINI-algebra; and (ii) each additional operation f; is weakly compatible
with {(4; -»,1).

Lemma 3.1.12. Let A = (A; —,1,f)jes be a MINI-algebra with weakly
compatible operations. Then (1)4 = (1){4, .1y = (a5 5,1)-

Proof. Let A := (A4; —,1,f;)jes be a MINI-algebra with weakly compatible
operations. B; hypothesis, Con, A = Con.(4; —,1), so (1)§ € Con, A C
Cone(4; —, 1). Hence (1) € Conc(4; —»,1); that is to say {1)j > (13, _, -
The opposite inclusion is handled similarly. Thus (1)} = (1}, ;. Since
(A; —,1) is weakly congruence orderable, by Lemma 1.7.17 we have that

(D{4; 5,1y = =a; 5, Hence (1) = (D4, 5.0y = a3 o) .

Lemma 3.1.13. Let A := (4; —,1,f)jes be a MINI-algebra with weakly
compatible operations. Then Con A/{1)% = Con (4; —,1)/(1)4.

\I
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Proof. Let A := (A; —,1,f;);es be a MINI-algebra with weakly compatible
operations. To prove the lemma, just observe that & € Con A/(1)4 iff 6 =
P/ (1) for some ¢ € Con¢ A (since (1)5 is the least element of Con, A) iff 6 =
$/(1){ 4, 1y With ¢ € Con(4; —,1) (by Lemma 3.1.12 and hypothesis) iff 6 €
Con {4; =, 1)/{1){4, -,y (since (1), _, ;y is the least element of Conc(4; —
,1)) iff 8 € Con (A; —,1)/(1)4 (by Lemma 3.1.12). Hence Con A/{1)§ =
Con {d4; —,1}/(1)5 as desired. [

Lemma 3.1.14. Let A be an algebra with 1, say (A; 1, fi)jes, and let £ — y
be a binary term of A such that the polynomial reduct (A; —*,1) is a MINI-
algebra. The following are equivalent:

1. A is term equivalent to a MINI-algebra with weakly compotible operations
(A =21, fijess |

2. For any n-ary fundamental operation f 1= f; of A,
(a =2 b) =4 ((b =2 a) = (fi(a) =2 £(b))) =1

Jor all a,b € A and slices };(a),ﬁ(b), 1<i<n.
Proof. Let A := {4; 1,f)jes and — be as in the statement of the lemma.

(1) = (2) Suppose A is term equivalent to a MINI-algebra with weakly com-
patible operations (4; —4,1, j}A)}E J- Because of Lemma 3.1.13, A/(1)§ is
term equivalent to a Hilbert algebra with compatible operations (4; —#*
1, fi)ies/{1)a. To simplify notation, throughout the remainder of the proof
we write @ for the equivalence class [a]qy in A/(1)} containing a € A. Let
A = fjA be an n-ary fundamental operation of A. Since the operation

A/(1)4 of A/{1)4 is compatible with the Hilbert algebra polynomial reduct
(4; =A,1)/(1)5, we have that:

(3 4KV B) AR ((F AN g) AW
GO @) aron PR Gy =1

— .._. A€ — e
for all 3,5 € A4/(1)4 and slices 7 *(@), 7R (B), 1 < & < n. Since
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[y, = {1}, we infer:
(a ~2 b) =2 (b =2 a) o2 F0) 22 52 (0)) =1

~A, . ~A
for all @, b € A and slices f; (a),f; (b), 1 < i < n, as required.

(2) = (1) Cleatly A is term equivalent to the algebra (4; —4,1,f4);e;
obtained from A by enriching the type of A with a binary operation sym-
bol ~+ whose canonical interpretation is the term function —#. We claim
(4; —=*,1,fA)jes is 2 MINI-algebra with weakly compatible operations. By
assumption, {4; —*,1) is a MINI-algebra. To complete the proof it is suf-
ficient to show Conc A = Con({4; —4,1). If # € Con, A then certainly
0 € Con,{A; —*,1), so Con,A C Con(A; —4,1). For the converse, let
# € Conc(4; —*,1). From the remarks of [11, p. 315] we have that § = I¢
for some I € I({4; =4, 1)), whence & = ¢; by Theorem 3.1.4 and Proposi-
tion 2.1.35, where:

¢r:={(a,b) e AxA:a*b b ac I}

To complete the proof we show:

(i) ¢r is a congruence on A;
(i) ¢1 2 (La-
For (i}, by the proof of Theorem 2.1.26, ¢, is an equivalence relation on A x 4.

Let f = J:,-A be an n-ary fundamental operation of A and suppose a;/ b; for
i=1,...,n. Fori=1,...,nand any ¢ € 4, let ﬁ(c) denote the slice:

f(bla tery bi—-l: Cs Qig1y - vy an)‘

In what follows we write = for =4 to simplify notation. By hypothesis, we
have that:

(a1 = by) = (b = ) = ((ar) = Fi(bu) =1
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(@ = b)) = ((b = a) = (@) = fi(b))) =1

(an = ba) = {(bn = @n) = (foalan) = Fulba))) =1

and by symmetry, also:

(b — a1) = ((a1 = b1) = (fi(b) = filar))) =1

(b = @) = ((a = b)) = (fi(b) - }:(ﬂ-i))) =1

— o~

(bn = an) = ((@n = ba) = (fa(ba) = ful8a))) = 1.

That is to say,

(01— b1) = (b = @) = (fan, @, ..., 00)
ﬁf(blsa’ls-“aan))) =1

(@i = bi) = ((b" = a;) = (f(br, .-, bim1, Giy @iy -, )
o = fbrs e biony iy iy - 00))) = 1

(a0 = by) = ((bn = an) = (F(b1, -+ s bpey, @)
- f(bla RS bn—l: bn))) = 1.

(bl — 01) — ((0-1 -3 bl) — (f(bl, G2y, an)
%f(al,aq,...,aﬂ))) =1

(bi = a;) = ((ﬂi = ;) = (f(ba, . .-y b1, by, digr, .oy G)
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—* f(le t-l) Qiy Qig1ye 00y an))) =1

(bn—+an) ((aﬂ-—)bﬂ)-)(_; (bl, bu-1, by )
“‘*f(bh nhan))"l

Since g; ~ b; implies a; — b;,0; — a; € I for i = 1,...,n, from (the dual of)
Lemma 2.1.21(2) we infer that:

flay, a9,...,8,) = f(by,aa,...,0,) €1
f(bla"‘abi-lsai:ai-{-l;-- ) _')'f(bla t -1, btaat+11 * vy aﬂ) € I

f(bls n—ls an) - f(bl, bn—la bﬂ) el

and also that:

f(blr@:“-:an)_'}f(al:@a'-'aan)GI
f(bls"':bi—labi:a£+1:“':a'ﬂ)_+f(b13°")bi—11aiﬁai'{-l:"'aan) €l

f(blv-':bn—-lr ) _)f(bla n—-la an) €l

Hence:

f(alaa?:”-:an) Ef(blaad?:-“aan) (m0d¢1’)
by ooy bicy, 0y Gigy, ooy 0n) = f(b1, ., 0ie1, b5y G4,y ..., 0,)  (mod @)

f(biy- ooy bucy, an) = f{by, ..., bazr, by)  (mod @)
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which implies f(ay,...,a,) = f(b1,...,b,) (mod @;) by transitivity. Hence ¢;
is a congruence on A. '

For (ii), just note that ¢; > (1){,. _, 5, (because of Proposition 2.1.35) > (1)4
(by Lemma 3.1.12). Hence ¢; > (1)4.

By (i) and (ii), ¢; is a congruence on A such that ¢; > (1)5. Therefore
¢r € Con A and hence § € Con A (since § = ¢;). Thus Con.(4; —4,1) C
Con A, and the proof is complete. |

A variety V is called a variety of MINI-algebras with weakly compatible oper-
ations if every A € V is a MINI-algebra with weakly compatible operations.
IfVis a variety of MINI-algebras with compatible operations, then certainly V
is a variety of MINI-algebras with weakly compatible operations. In general,
however, the converse does not hold. This is shown by Corollary 3.1.16 below,
which obtains as an immediate consequence of the following proposition.

Proposition 3.1.15. The variety of left handed skew Boolean algebras is
termunse definitionally equivalent to a variely of MINI-algebras with weakly
compatible operations. However, there exists a left handed skew Boolean alge-
bra S that has no MINI-algebra polynomial reduct whose congruences coincide
with those of S. Hence the variety of left handed skew Boolean algebras is not
termwise definitionally equivalent to a variety of MINI-algebras with compatible
operations.

Proof. For the first assertion, by the proof of Proposition 3.1.8 we have that
any skew Boolean algebra A = (4; A, V,\, 0) has a MINI-algebra polynomial
reduct (4; —*,14), where a —* b := b\a for any a,b € 4 and 14 :=
0. Further, an easy inspection of the subdirectly irreducible skew Boolean
algebras 27, 37 and 3% shows SBA satisfies the identities:

o~

m—}y)—)((y—+$)—+((xoz)—>(yoz)))m1

o

=2y ((y=7)>((z0z) > (zoy))) =1
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where o denotes either the term corresponding to the skew lattice meet A or
the term corresponding skew lattice join V. From these remarks it follows
that A is term equivalent to a MINI-algebra with weakly compatible opera-
tions {4; — =, 14, A, V). Hence SBA (and in particular, [nSBA) is termsize
definitionally equivalent to a variety of MINI-algebras with weakly compez:iple
operations. The remaining statements of the proposition may be inferred from
Proposition 3.1.8. : ]

Corollary 3.1.16. Let V be a variety termuwise definitionally equivalent fo
a variety of MINI-algebras with weakly compatible operations. In general, V
is not termwise definitionally equivalent to a variety of MINI-algebras with
compatible operations.

Varieties of MINI-algebras with weakly compatible operations were introduced
by Agliano in [6, Section 4] (under the name MINI-algebras with compatible
operations) in the context of his study of weakly congruence orderable subtrac-
tive varieties with EDPI. Because of Lemma 3.1.13, the class of all varieties
of MINI-algebras with weakly compatible operations may be understood as
a natural generalisation of the class of all varieties of Hilbert algebras with
compatible operations; that this generalisation is essential follows from Corol-
lary 3.1.16. Inasmuch as varieties of MINI-algebras with weakly compatible
operations generalise varieties of Hilbert algebras with compatible operations,
Theorem 3.1.11 lends one to ask if varieties of MINI-algebras with weakly
compatible operations also admit a relevant structure theorem. The following
result answers this question in the affirmative.

Theorem 3.1.17. For a variety V with 1 and a binary term x — y of V, the
Jollowing are equivelent:

1. V is weakly congruence orderable and the binary term y — z witnesses
both subtractivity and EDPI for V in the sense of Theorem 1.7.9;

2. V is termwise definitionally equivalent to a variety of MINI-algebras with
weakly compatible operations. In particular, any A := (4; 1,f;)jes €V
15 term equivalent to a MINI-algebra with weakly compatible operations
(4; =21, fi)ies-
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Remark 3.1.18. The statement but not the proof of Theorem 3.1.17 is due
to Agliano [6, Section 4]. In more detail, in [6, Theorem 4.5] Agliano asserted
that:

‘A pointed variety is weakly congruence orderable, subtractive and
has EDPI iff it is termwise definitionally equivalent to a variety of
MINI-algebras with [weakly] compatible operations.’

Although Agliano’s proof of the sufficiency of the above assertion is valid, his
proof of the necessity of the assertion is not. For his proof of necessity Agliano
simply asserts that [6, p. 16]:

‘In a MINI-algebra with [weakly] compatible operations the con-
gruences (and hence the ideals) depend only on the MINI-algebra,
operation. Therefore any such variety is weakly congruence order-
able, subtractive and has EDPL’

Because a variety of MINI-algebras with weakly compatible operations need
not have compatible operations (by Corollary 3.1.16), this argument is not
sufficient to establish the necessary direction of the preceding assertion. To
correct this error, we provide new proofs below of both the necessity and the
sufficiency of Theorem 3.1.17. n

Proof (of Theorem 8.1.17). Let V be a variety with 1 and let ¢ — y be a
binary term of V.

(1) = (2) Suppose V is weakly congruence orderable and that the binary
term » — z witnesses both subtractivity and EDPI for V in the sense of
Theorem 1.7.9. Let A := (4; 1,f*)jes € V. Clearly A is term equiva-
lent to the algebra (4; —4,1,f*);es obtained from A by enriching the type
of A with a binary operation symbol — whose canonical interpretation on
(4; =21, fA)jes is the term function —4. We claim (4; —4,1,fA)jes is
a MINI-algebra with weakly compatible operations. Since y — £ witnesses
both subtractivity and EDPI for V in the sense of Theorem 1.7.9, from Theo-
rem 3.1.6 we have that the polynomial reduct (4; —#,1) is a MINI-algebra.
Also, since V is weakly congruence orderable, from Proposition 1.7.19 we have
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that V, is a subtractive congruence orderable variety with EDPC. From The-
orem 3.1.11 it follows that (4; —*,1, f;")je 7/%4a is a Hilbert algebra with
compatible operations. That is to say, (4; —4,1, f*)iea/(1)a is a Hilbert al-
gebra with compatible operations, just because x4 = (1)§ by Lemma 1.7.17.

The proof of Lemma 3.1.14 now shows that for any n-ary fundamental opera-
tion fA = f;—A of (A, —)A, 1,_};-A)J‘€J,

(a4 b) >4 (b4 0) A N (0) A B (0) =1

for all a,b € A and slices };A(a), ﬁA(b), 1 <4< n. Thus (4; =41, /e
is a MINI-algebra with weakly compatible operations. Hence V is termwise
definitionally equivalent to a variety of MINI-algebras with weakly compatible
operations, and the proof is complete.

(2) = (1) Let A := (4; 1,f;);es € V. By hypothesis, A is term equiva-
lent to a MINI-algebra with weakly compatible operations (4; —4,1, fA);es.
Therefore V is subtractive (witness y — ). To see V has EDPI (witness
y — ), it is sufficient by Corollary 3.1.7 to show I(A) =I({4; —*#,1)). As
Con A C Con (4; —4,1), we have that N(A) C N({4; —4,1)), and hence
that I[(A) C I({(4; —*,1)). For the converse, let I € I((4; —=4,1)) and let ¢;
be the relation on 4 x A defined by:

¢r:={(a,b)e AxAd:a=*bb*ael}.

By the proof of Lemma 3.1.14, ¢; is a congruence on A. Moreover, I = [0],,,
just because of Theorem 3.1.4 and Lemma 2.1.27. Hence I € Iy(A) and
I({4; +4,1)) CI(A). Thus I(A) =I({4; —*,1)) and V has EDPI (witness
¥ —=z).

It remains to show V is weakly congruence orderable. Since V is subtractive
with EDPI (witness y — z), from Lemma 1.7.14 we have that amoa b iff ¢ =*
b=1=b —* aiff ¢ = b(modgpy). Since ¢yyy € Con A by the proof
of Lemma 3.1.14 we have that =, is a congruence on A, so A is weakly
congruence orderable. Hence V is weakly congruence orderable, and the proof
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is complete. ]

Remark 3.1.19. In [6, Theorem 4.15] Agliano extended the characterisa-
tion of weakly congruence orderable subtractive varieties with EDPI of The-
orem 3.1.17 to subtractive weakly congruence orderable varieties with EDPI
and both a meet generator and a join generator term. Agliano’s proof of [6,
Theorem 4.15] relies on the assumption that if A is an algebra term equivalent
to a (certain notion of) L-algebra with compatible operations (4; M4, UA, =4
.1, fiYies, then Con A = Con {4; —*4,1). From the definition of an L-algebra
given by Agliano in [6, Section 4, p. 20], it is readily verified by inspec-
tion of the subdirectly irreducible skew Boolean algebras 27, 37 and 3% that
any skew Boolean algebra (B; A,V,\,0) is term equivalent to an L-algebra
(B; N,U,—,1). From Proposition 3.1.15 it follows that, in general, Con A #
Con {A; —*,1}. Hence the argument employed by Agliano to characterise
subtractive weakly congruence orderable varieties with EDPI and both a meet
generator and a join generator term does not hold in general, whence the
problem of characterising such varieties remains open. n

Example 3.1.20. By Example 2.3.12, any pseudocomplemented semilattice A
has a canonical implicative BCS-algebra polynomial reduct (A; \,0), where
a\b := a A b* for any a,b € A. For any a,b € A, let a = b := b\a and let
1% := 0. Then for any a, b, ¢ € A, we have that:

(a =™ b) =2 ((b =2 a) = (a* =2 7))
= ((6"\a")\(a\b))\(t\a)
=bAa*A(aAD) AL . a*)
= (a" A (@ AB)*) A (B A (" AY)

={(a™ A (a* A D)) A (" A a”) by (1.9)
=(a™ Aa") A ((a* ADY A DY)

=0A ((a* A b)* A DY) by (1.8)
=0

=14




3.1. Subtractive Varieties with EDPI 241

and:

(a =2 b) =22 ((b 2% a) 22 ((a A c) =2 (b A )
(((6 A )\(a A ))\(a\b))}\(b\a)
=bBA)A{@AC)A{aAD) A(DA )
={cA(cha))A(DA(BAG))A(aAb*)
= (

cAa)A{bAa™*)A(aAD) by (1.9)
=(cAb)A(a*Aa™)A(a ADY)
={cAD)AOA (and) by (1.8)
=0
=1

whence A is term equivalent to a MINI-algebra with weakly compatible op-
erations (A; =4 ,14 A,*) (by Theorem 3.1.4). Hence PCSL is termwise def-
initionally equivalent to a variety of MINI-algebras with weakly compatibie
operations; from ‘Theorem 3.1.17 we conclude that PCSL is weakly congruence
orderable and subtractive with EDPI.

Conversely, from Example 2.3.12 we have that the variety PCSL of pseudo-
complemented semilattices is subtractive witness z\y. Also, by Agliano and
Ursini [11, p. 387, it is known that (a)}s = {b: b < a**} for any pseudocom-
plemented semilattice A and ¢ € A. Suppose b < a**. Then b A a* = b,
whence b A a* = (b A @) A a* = b A (a™ A a*) = 0 by (1.8). Hence
b <4i\0 ¢ On the other hand, suppose b <4i\® g, Then b A a* = 0,
whence b A a** = b A (b A a*)* = b A0* = b by (1.9). Hence b < a*
and s0 b < ¢** iff b <4\ g, Thus {(a)a = {(a)(4;\0) and PCSL has EDPI
{we remark that this result has been obtained independently by Agliand and
Ursini {11, Example 5.9]). Moreover, =4 is an equivalence relation on A x A
(recall the remarks of §1.7.8) and for any a,5 € A we have that amab iff
a\b = 0 = b\a (by:Lemma 1.7.14) iff a = b (modZ;\ ) iff a* = b* (by
Example 2.3.61(2) and Lemma 2.3.63(3)). Suppose a,~2a b and ayabe for
a1, 2, by, by € A. Since af* = (af)* = (b])* = b}* we have that = has the
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substitution property for the * operation. Also,

(@ A @) =(a]" A ag*)" by Jones [128, p. 2|
= (( *A(e))
= (o) A (B3)") __i
= (b A B5%)* "
= (b1 A bs)* by Jones {128, p. 2]

and so &24 also has the substitution property for the A operation. Thus =4 is
a congruence on A and so PCSL is weakly congruence orderable. Since PCSL is
weakly congruence orderable and subtractive with EDPI, from Theorem 3.1.17
we conclude that PCSL is termwise definitionally equivalent to a variety of
MINI-algebras with weakly compatible operations. n

Theorem 3.1.17 notwithstanding, we do not know if varieties of MINI-algebras
with compatible operations admit a coherent structure theory in general. Hence
we conclude this subsection with the following problem.

Problem 3.1.21. Do varieties of MINI-algebras with compatible operations
admit a coherent structure theory? |

3.1.22. Subtractive WBSO Varieties and Nelson Algebras. Recall
the definition of a WBSO variety from §1.5.3. By a subtractive WBSO variety
we mean a WBSO variety that is subtractive. Subtractive WBSO varieties have
been characterised in the literature: by [11, Theorem 5.4] a pointed variety is
a subtractive WBSO variety iff it is ideal determined, has EDPI and a join
generator term. Let V be a subtractive WBSO variety. By hypothesis, V is
subtractive; moreover V is strongly point regular with EDPC by Lemma 1.5.4,
Proposition 1.5.5 and Proposition 1.5.6. Suppose now that V is a variety with 1
that is subtractive and strongly 1-regular with EDPC. Subtractivity and 1-
regularity imply V is ideal determined (by Proposition 1.7.3); also subtractivity
and EDPC imply V has EDPI (by Proposition 1.7.10). Let A € Vandlet a, b €

A. Since V is strongly 1-regular there exists ¢ € A such that ©4(a,1) yoPA
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OA(b,1) = ©4(c, 1), whence:

(a)a V'™ (B)a = [1]oagayy VO™ [Leacs,)
= [loa(s1verroa,)
= {l]eA(cs]-) L‘

= {c)a

by subtractivity and the dual Brouwerian semilattice isomorphism 8 — [1]o
between Cp A and CI(A) of Proposition 1.7.10. Thus the join on I(A) of
two principal ideals of A is always principal; from Proposition 1.7.13 it follows
that V has a join generator term. As V is ideal determined with both EDPI
and a join generator term, we have that V is a subtractive WBSO variety.
That is, we have proved:

Proposition 3.1.23. For o variety V with 1, the following are equivalent:
1. V is a subtractive WBSO variety;
2. V 1s ideal determined, has EDPI and a join generator term;
3. V is subtractive, strongly 1-regular and has EDPC.

Let V be a WBSO variety. Recall from |29, Section 2] that the following
identities and quasi-identity are satisfied for any weak relative pseudocomple-
mentation — of V:

ozl (3.8)
lsz=zDz=~1. (3.9)

Froy, (3.8) and (3.9) it is clear that for V to be subtractive the quasi-identity (3.9)
need only be strengthened to the identity 1 — z =~ z. By a WBSO* variety
we mean a WBSO variety V such that V = & — z =~ z for a weak rela-
tive pseudocomplementation —. Clearly any WBSO¥ variety is subtractive;
in {4] Agliano investigated subtractive WBSO varieties and proved that the
converse also holds. That is, in a subtractive WDBSO variety V it is always
possible to choose a weak ‘relativ’e pseudocomplementaiion —» in such a way
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that V = 1 — z = z; we call such a term a subtractive weak relative pseu-
docomplementation in the sequel. The following proposition, which sharpens
Agliano’s characterisation of subtractive WBSO varieties, is implicit in results
due to Agliano [4] and Agliano and Ursini [11].

Proposition 3.1.24. For a variety V with 1 the following are equivalent:
1. V is a subtractive WBSO variety;
2. V is ¢ WBSO# variety;

3. V is @ WBSO variety and there exists ¢ binary term ¢ — y of V such
that:

(a) For any A € V, the polynomial reduct (A; —*,1) is a MINL
algebra;

(b) z — y is a weak relative pseudocomplementation for V.

Proof. The equivalence of (1) and (2) is proved by Agliano in [4, Theorem 4].
(3) = (2) is trivial. It therefore remains to show (2) = (3). So let V be
a WBSO# variety. Then there exists a binary term £ — y of V such that
VE1— 2~ zand z — yis a weak relative pseudocomplementation,
whence Condition (3)(b) is satisfied. Let A € V and let a,b € A. Since z — y
is a weak relative pseudocomplementation for V,

a—-2b=1 iff a<b where = is the quasiorder of §1.5.3
iff ©4(b,1) C0*(a,1) by [29, Lemma 2.5(i)]
iff [oar S [terty

iff (b)a C (a)a

iff b€ (a)a.

Hence y — z witnesses both subtractivity and EDPI for V in the sense of
Theorem 1.7.9. By Theorem 3.1.6 we conclude that the polynomial reduct
{(4; —4,1) is a MINI-algebra; thus Condition (3)(a) is satisfied also and the
proof is complete. _ n
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WBSO# varieties arise very naturally in algebraic logic as arbitrary congru-
ence permutable point regular varieties with EDPC. Indeed, suppose V is
a congruence permutable point regular (say 1-regular) variety with EDPC.
Then V has a QD term g¢(z,y, 2, w) by Theorem 1.5.8 and binary terms
d(zr,9),..., dn(z,y) witnessing the 1-regularity of V by Proposition 1.2.6. By
Proposition 1.5.11(2),

z gy = q(z,1,9,1)
I-Yy= Q(mslay: .‘L‘)
TAy = ( iz, y) - bz, ) - ) - dn(7, ¥)

are respectively subtractive weak relative pseudocomplementation, weak meet
and Godel equivalence terms for V, whence V is a WBSO# variety.

To within clone equivalence, the term operations induced by a weak meet z- y
and weak relative pseudocomplementation £ — y in a WBSO variety faithfully
reflect conjunction and implication on the Brouwerian semilattice of compact
congruences of any member of the variety: see Blok and Pigozii [34, p. 547]. In
view of this remark it is easy to see that - and — are respectively a conjunction
and implication for the intrinsic assertional logic $(V, 1) of V. The following
result, which is essentially well known, formalises and extends this observation.

Proposition 3.1.25. LetV be a WBSO* variety with assertional logic S(V, 1).
Then 8(V, 1) is algebraisable and its equivalent algebraic semantics is exactly V.
Moreover, for binary terms -, +, A, — of V the following assertions hold {upon
identifying the individual variables £,y with the propositional variables p, g
respectively):

1. [181, Theorem 2.1] z - y is a weak meet for V iff p - q is a conjunction
for S(V,1);

2. [181, Theorem 2.2] xAy is = Gidel equivalence term for V iff pAg is a
G-identity for S(V,1);

3. [181, Theorem 2.5] ¢ — y is o weak relative pseudocomplementation
Jor V iff p = ¢ is a conditionel fur S(V,1);

.\‘.
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4. [181, p. 485] (p = ¢} (g — p) is a biconditional for S(V,1) iff z -y and
T — y are respectively a weak meet and weak relative peeudocomplemen-
tation for V;

5. [224, Theorem 5.1] ¢ + y is a weak join for V iff p + ¢ is a disjunction
for §(V,1); 5,

6. If V is double-pointed (say with {0,1}) and £ — y is o subtractive weak
relative pseudocomplementaiion for V then p — 0 is a weak negation
for S(V,1).

Proof. Let V be a WBSO# variety with assertional logic S(V,1). By The-
orem 1.8.15 S(V, 1) is algebraisable and its equivalent algebraic semantics is
exactly V. Of the remaining statements, only (6) is not, explicit in the litera-
ture. So suppose V is with {C, 1} and thac — 15 a subtractive weak relative
pseudocomplementation for V. Let - p := p — 0. To see — is a weak ncgation
we show {CN) and (RA;) are respectively rules of S(V, 1), viz.:

(1) p,m gy ¥

) l-s(v,:[) =

Throughout the remainder of the proof we identify the individusl variabies #

with the propositional variables § and the terms s(%), {si(%) : i = 1,...,n}, t(7)
with the formulas ¢(5), {o:(F) : i = 1,...,n},9(P) respectively. To ease no-
tation, for a given formula {7} we also write sirply .

For (i), it is sufficient to show {s(%) = 1,— s(£) 7 1} kv #(F) = 1. So let
AcVandde A If s*@) = 1 ané —~ s*(&) = 1 then 1 — 0 = 1, which
implies 0 = 1 as — is a subtractive weak relative pseudocomplementaticn. But
then 0 and 1 are not residually distinct, so A is trivial and t*(&) = 1.

For (ii), by the remarks of §1.8.9 we may assume without loss of general-
ity that I is finite, say {1,...,¢a}. Moreover, by \3) — is a conditional
for S{V, 1}, so the entailment ¢;,...,@n, % gy 4y =~ ¥ is cquivalent to the
entailment by, 1y 01 = {2 -3 -+ = (oo = ($ = = $))-++)}, and Dke-
wise the entailment (pl,...,t\,?n Fgvay ™ ¥ s equivalent to the entailient




3.1. Subtractive Varieties with EDPI 247

Fsva) #1 (p2 = (o = (oo > - #)--+)). To complete the proof it is
therefore sufficient to show: '

V= 51(%) — (32(.'3) = (- = (sa(T) = (H(F) = - £T))) -+ )) ~1
implies:
VE (@)= (82(Z) = (- = (sa(B) = = ¢(F)) -+ ) = 1.

Let A € V and & € 4. Since the polynomial reduct (4; —,1) is a MINI-
algebra, (¢ — (¢ = b)) — (¢ = 1) = 1 for any b,c € A by Theorem 3.1.4
and (2.36). Thus in particular t4(8) —+ (t4(&@) — 0) =< {A(&) — 0 (where <is
the underlying quasiorder on the MINI-algebra polynomial reduct {(4; —,1}),
whence repeated application of (the dual of) Lemma 2.1.12(2) shows:

57 (@) = (577(@) = (- = (52(@) = (A(8) = (¢4(@) = 0))) ) 2
st(8) — (52°(8) = (- = (s3(@) = (M (@) = 0))---)).
Since s{*(@) = (£4(8) = (- = (s2(@) = (t4(@) = (tM@) = 0)))--)) =1
by hypothesis, we conclude s*(@) — (s(&) — (--- = (s2(@) » (t2(@) —
0)):--)) =1 (because [1}z = {1} by (the dual of) Theorem 2.1.14(3)), which
implies the required implication holds.

By (i) and (it), both (CN) and (RA;) are rules of 8(V,1). Therefore -~ is a
weak negation for S(V, 1), and the proof is complete. N

Remark 3.1.26. In general, the proofs of Items (1)~(4) of Proposition 3.1.25
do not require the hypothesis of subtractivity. We have been unable to for-
mulate proofs of Items (5)—{6) without this assumption; however, we have no
proof that this additional ccudition is necessary. More generally, it 15 not
known to what extent satisfaction of the identity 1 — z =~ 7 (where — is
a weak relative pseudocomplernentation) is reflected in special properties of
WBSO varieties: see Blok and Pigozzi {29, p. 365; Theorem 3.7]. "

Problem 3.1.27. Comprehensively characterise those properties of WBSO#
varieties that do not extend to‘arbitrary WBSO varieties. n
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Recall from [14, Definition XI§2.1] that a De Morgan algebra is an algebra
(4; AV, ~,0,1) of type (2,2,1,0,0) such that the reduct {4; A,V,0,1) is a
bounded distributive lattice and moreover the following identities are satisfied:

~ RS (3.10)
~SrzAy) e~z Vey (3.11)
~zVy) =~z ANy, (3.12)

A Nelson algebra (or quasi-pseudo Boolean algebra in the terminology of Ra-
siowa [196, pp. 75 f1.]) is an algebra (4; A,V,—,~,0,1) of type (2,2,2,1,0,0)
such that the following conditions are satisfied for all a,b,¢ € A [209, Sec-
gion 0]

N1. The reduct (A4; A,V,~,0,1) is a De Morgan algebra with greatest ele-
ment 1, least element 0 and lattice ordering <;

N2. The relation < defined by e < bdiffa =+ b=1 isaquasiordering on A;
N aAbZcifaxb— ¢

Nd. a<biff a X band ~b < ~ g

N3. e <cand b <X ¢cimplies ¢ V b < ¢;

N6. ¢ <band a < cimplies a < b A ¢;

N7. aA~b<~(a—b)and ~(a = b) Ja A~

N8. ~(a = 0) < ¢ and ¢ X ~(a — 0);

Ng. aA~a=<b

Nelson algebras were introduced by Rasiowa in [194] (under the name M-
lattices) as the algebraic counterpart of a particular (non-axiomatic) extension
of the intuitionistic sentential calculus called constructive logic with strong
negation, which latter was introduced independently by Nelson in [174] and
Markov in [157) in response to certain philosophical objections concerning the
non-constructive nature of falsity in IPC (for a discussicn s2e Rasiowa [195,

ik )
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Chapter XII] or Wéjcicki [238, Section 5.3.0]; see also Vorob’ev {233, 234]
and Thomason [215]). More particularly, by results of Rasiowa [195, Chap-
ter XII] and Blok and Pigozzi [31, Section 5.2.1] constructive logic with strong
negation is precisely the inherent assertional logic S(N, 1) of the class N of
Nelson algebras. Since their introduction Nelson algebras have been studied,
by a number of authors, including Brignole [47], Rasiowa [195, Chapter V],-'
Sendlewski [209] and, in a recent major study, by Viglizzo [232]. By Brig-
nole [47} or Rasiowa [195, Theorem V§2.1] the class N is a variety; by Blok and
Pigozzi [29, pp. 357-358] N is a WBSO variety with weak meet z A y, weak
relative pseudocomplementation £ — y and Godel equivalence term:

tey:=E=>y)A(y=1)
where:
z=y:=(@E YY) A(~vy = ~1).

Results due to Rasiowa [195, Theorem V§1.3] show also that the variety of
Nelson algebras satisfies the identities:

Tz 1 (3.13)
1=z, | (3.14)

whence — witnesses both subtractivity and weak relative pseudocomplemen-
tation for N in the sense of Theorem 3.1.24. Thus N is a WBSO# variety.

There exist a number of open problems and erroneous communications in the
literature concerning Nelson algebras qua weak Brouweriar semilattices with
filter preserving operations [29, 34, 4]. In particular, in their paper [34] on
the structure of varieties with EDPC, Blok and Pigozzi posed the following
problem [34, Problem 7.4]: Does the variety of Nelson algebras have a com-
mutative, reqular TD term, or even a TD term? Notice that although N has
EDPC (by Proposition 1.5.6, since it is a WBSO# variety) this problem is non-
trivial, because EDPC in and of itself does not imply the existence of a term
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e(z,y, z) of N such that both N |= e(z,z,2) ~ z and e®(a, b, c) = e*(a, b, d)
if ¢ = d (mod©*(a,d)) for any A € N and q,b,c,d € A. See Blok and
Pigozzi [34, p. 570; Problem 7.1]. |

Lemma 3.1.28. The variety of Nelson algebras satisfies the following identi-

ties:
~t = (zy) =1 (3.15)
tA(z—oy)=zA(~zVy) (3.16)
tr(y22)my—(z—2) (3.17)
Ay = zmz = (¥ 2) (3.18)
sA(yva)=(zAy)V(zAz) (3.19)
g2 yN2)= (=29 Az 2) (3.20)
(zVy)2zxm(z22)A(y—2) (3.21)
T=y=>(y=)2y)=F=>13)-(z=y) - 1) (3.22)

Prooj. 1dentity (3.15) is proved in Rasiowa (195, Theorem V§1.3], while iden-
tity (3.16) is established in Brignole (47, Theorem 3]. Identities (3.17) and (3.18)
are proved in Rasiowa [195, Theorem V§1.3]. Identity {3.19) follows triv-
ially from (N1). Identity (3.20) is proved in Brignole [47, Theorem 3]. Iden-
tity (3.21) is established by Monteiro in {169, 170] (see also Viglizzo (232, (1.9),
pp. 6-7]). Identity (3.22) is Theorem V§1.4 of Rasiowa [195]. n

Lemma 3.1.29. The variety of Nelson algebras satisfies the following identi-
ties:

T {~vzoy)xl (3.23)
sy oy (3.24)
~rAy) sz (~T = 2) A~y > 2). {3.25)

Proof. Let A be a Nelson algebra and let a,b,¢ € 4. For (3.23), we have
l=~~ag 2 (~va—b)=a— {(~a—b) by (3.15) and (3.10). For (3.24),
wehave ¢ = (e 2> b)) =(a A a) = b =a — b by (3.18). For (3.25), we
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have ~M(a Ab) 2 c={~aV~b) o c=(~va— ¢} A(~b— ¢) by (3.11)
and (3.21). . a

Lemma 3.1.30. The variety of Nelson algebras satisfies the following identi-

ties:
tA{z = y) =z A~z A~y (3.26)Q'
Ty~ ANYRT Y (3.27)
t+~zAY)RT >~y (3.28)

Proof. Let A be a Nelson algebra and let ¢, b € A. By (3.11), (3.10) and (3.16)
wehave a A~(aA~bd)=aA(~vaV~~b)=aA(~aVbd)=aA(a—b),
which establishes (3.26). For (3.27), put @ :=a, §:= e and y:= e — b. We

=a—(~aVbh)

=a—>(~av~~b)

have:
a—>b=a—(a—b) by (3.24)

=1A(a— (a—b))
= (a - a) A (¢ = (a— b)) by (3.13)
=(a=Bf)A(a—>7)
=a— (BAY) by (3.20)
=a— (aA(a—b))
=a—(aA(~aVb) by (3.16).

Put a:=aq, :=a and v:= ~a V b. We have:

e (aA(~aVb))

=a=(fA7)
=(a—= ) Ala—1) by (3.20)
={e—=a)A(a—(~aVD))
=1A(a > (~aVb)) by (3.13)

by (3.10)
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=a—~{aA~b) by (3.11).

For (3.28) just note ¢ =+ ~(a A b)=a = ~(a A~~Db)=a — ~b by (3.10)
and (3.27). ‘ n

Lemma 3.1.31. The variely of Nelson algebras satisfies the following identi-
ties:

o

(zey)2rx(zey) -y (3.29)
T ~yRT o~z oY) (3.30)
= (y=22)=z—=y)- (& —2) (3.31)
= {yva)mzo (22 y) V(s> 2). (3.32)

Proof. Let A be a Nelson algebra and let a, b, ¢ € A. For (3.29) we have:

(aeb)—=a=((e=b)A(b=>a))>a
=(1=b) = ((b=a) > a) by (3.18)
= (b= a) = ((a = b) = a) by (3.17)
=(a=b)— ((b=0a) 2 ) by (3.22)
=((a=>b)A{b=>a)) 2D by (3.18)
=(aeb)—b

For (3.30), put o := a and 8 := a — b. We have:

e—+~e—=b)=a—>~f
=a— ~{aAf) by (3.28)
=a—~(aA(a—D)).

Put ¢ :=a A~aand 8:= a A b. We have:

a—~(aA(a—b))
=a—~(a /\ (~a Vb)) by (3.16)




Pt a:=g¢, f:=~(aA~b)and v := c. We have:

(aA~(ar~b)—c

=(aAB) =7y
=a—(f—7)
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=a—+~{aA~a)V(aAb)) by (3.19)
=a—~(aVf)
=a— (~{aA~a)A~(aAbd)). ~

-Put o= a, f:=~(aA~a)and v:=~(a A b). We have:
a— (~(a A~a)A~(aAb))
=a—(BA7)
= (o f) A (@ = 7) by (3.20)
=(a-—+~(a/\~a));\ (a—+~(aAb)) '
=(a— a) A (a = ~(a A D)) by (3.27)
=1A(a—=~(aAbd)) by (3.13)
=a— ~(a A b)
=a—~b by (3.28).
For (3.31), put a:=a — b, §:= a and 7y := ¢. We have:
(a—=b)—=>(a—>c) .
=a-(8—1)
=8 {a—7) by (3.17)
=(BAa)>7y by (3.18)
={an{a-b)—>c
={aA~(aA~b)) = by (3.26).

by (3.18)
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=a— (~(an~b)—=c).
Put o := a, B :=~b and v := ¢. We have:

a— (~(aA~b)—c) ~
=a—- (~(aAp)—27)
=a—((~a= P A(~B=7) by (3.25)
=a—= ({~aoc)A(~v~b = c))

=a— ((~a—=c)A (b)) by (3.10).

Put ¢ := @, f:=~a — cand y:= b = ¢. We have:

a6 ((~a=e)A (b))
=a— (B85 7)
={a - B) Ala— ) by (3.20)
=(a—(~ae=))A{a— (b))
=1A(ea— (b= ¢)) by (3.23)

=a— (b= c).
For (3.32), let v := a, f:= ¢ and y:=(a = b) V (¢ = ¢). We have:

a—((a=b)V(e—rc))
((a—=b)V(a—c)))

= (n = a) (a. ((a = b) V{(a— c))) by (3.13)
= (a = B) A (

=a— (BA7) by (3.20)
=a— (aA((e—2d)V(a—¢)).

=14 (a—

a-—+7)
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Put a:=a, f:=a = band y:= a = c. We have:

g (aA{(a=b)V(a— )
=a—{aA(BVY)
=g — ((a ABYV (A7) by (3.19)U:
=a— ({ah(a=b))V(aA(a—c)).

Puta:=a,B:=~aVbandy:=~aVvc Wehave

e ((an(a=b)V(aA(a—c))
=a—={(aA(~aVvbh)V(an(~aVe)) by (3.16)
=a= ({aAB)V (@A7))
=g (@A (V7)) by (3.19)
=a—+(aA(~aVbV~aVe))

Put o 1= g, B := b v c. We have:

a-(aA(~aVbV~aVec)
=a—{aN{~aV(bVc)))
=a— (@A (~aVvp)
=a¢— (aA(a— f)) by (3.16)
=a—(an(a=(bVe)).

Puta:=a,f:=aand y:=a - (b V ¢). We have:

= (aA(a—=(bVe))
sa=(BAy)
=(a—=>B)A(a—=7) by (3.20)
=(a—>a)A(a—(a—(bVe))
=1A(a—=(a—=(bVe)) by (3.13)
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=a— (a—=(bVec))
=a—(bVe) ‘ by (3.24).

S n

Remark 3.1.32 (Added in proof). After obtaining the derivation of the
identity (3.31) given in the proof of Lemma 3.1.31 we were made aware of the
existence of Viglizzo [232, (1.11), p. 8], wherein a simpler derivation of (3.31)
may be found. l

Theorem 3.1.33. For any Nelson algebra A and a,b,c,d € A,
¢ =d(mod©*(a,b)) iff p*(a,d,c)=p?(a,b,d)

where p(z,y,2) = (z & y) = 2. Thus the variety of Nelson algebras has
EDPC. Moreover, p(z,y, z) is a commutative TD term for N; it is not regular.

Proof. To see the variety of Nelson algebras has EDPC, let A be a Nelson
algebra and let ® := {{g,¢") : (a @ b) > g=(a & b) = ¢'}. Clearly ® is
an equivalence relation. Let ¢, ¢’,d,d' € A and suppose ¢ = ¢’ (mod @) and
d = d' (mod ®). To see P is a congruence relation we show:

(i) cAhd=c Ad (mod®); (iii) ¢ = d = ¢ = d’' (mod D);
(i) cvd=cVd{modd); (iv) ~c=~c (modq).

For (i), we have:

(aebd)s(chnd)=((aeb)2c)A((aed)—d) by (3.20)
=((ae b2 ) A((aeb)—d)
=(a&b) = (I Ad) by (3.20).

So cAd=c' Ad (mod®). For (ii), we have:

(eeb)—=(cvd)=(aeb)—>
(((ae b))V ((aebd)—>d) by (3.32)
=(a¢>b)——>
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((a e b) = )V ((a s b) > dY)
=(aebd)=(Vvd) . by (3.32).

SocVd=cVd(mod®). For (iii), we have:

(aeb)o(cad)=(aed)oc)=((aeb)—~d) by (331)
={(aebd) o) = ((aeb)—d)
=(a&b)—= (¢ = d) by (3.31).

So ¢ = d = ¢ = d'(mod ). Fou (iv), we have:

(ab)s~e=(a&b) > ~(eeb) ) by (3.30)
=(aeb) a~((a=b) =)
=(a b > ~c by (3.30).

Thus ~ ¢ = ~ ¢’ (mod ®) and P is a congruence relation. Moreover (g, b) € ¢
by (3.29), so ©4(a,b) C ®. Conversely, if ¢ = d (mod®) thenc =1 = ¢ =
(a & a) = cZgagEy (6 b) 2 c=(a&b) > d=¢apy (¢ & a) =
d =1-— d = d since —+ and <« are respectively subtractive weak relative
pseudocomplementation and Gddel equivalence terms for N. So & C ©4(a, b)
and the terms p{z, y, 2), p(z, y, w) witness EDPC for N.

Let a,b,c € A. To see p(z,y,2) is a TD term, it is sufficient to note
p*(e,a,c) = (a & a) = ¢ =1 = ¢ = ¢, just because & is a Gddel equiva-
lence term for N and — is a subtractive weak relative pseudocomplementation.
To see p(z, y, z) is commutative, let a, b, a', b’, c € 4. We have:

P (a,b,p%(e', ¥, ¢)) = (a & b) = ((a' & b') = ¢)
 =(ed)— ((a & b) = ¢) by (3.17)
= pA(a', b, p*(a, b, ¢))-

Finally, an easy inspection of the unique (to within isomorphism) 3-element
Nelson algebra establishes that p(z, y, 2) is not regular. ]
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Remark 3.1.34. Because of (3.18), p(z,y,2) = (z = y) = ((y = 7) = 2)
is also a commutative (but not regular) TD term for the variety of Nelson
algebras; compare Blok and Pigozzi [34, Corollary 5.2(i}]. n

Recall from (34, Corollary 5.2] that dual Brouwerian semilattices possess-two
distinct TD terms: the commutative (but not regular) TD term (z * (z % y)) *
(y+z) and the commutative and regular TD term z V {(z*y) V (y*2)). Thus
the existence of a commutative (but not regular) TD term for a variety V need
not preclude the existence of a commutative and regular TD term for V.

Problem 3.1.35. Does the variety of Nelson algebras possess a commutative,
regular TD term? |

Remark 3.1.36. In view of work due to Blok and Pigozzi [34, Section 5)
an obvious candidate for a commutative, regular TD term for the variety of
Nelson algebras is the term p(z,y, 2) := (z & y) A z. To see p(z, ¥, z) is not
a TD term for N, consider the following 6-element algebra A:

AM0abcdl v*0 abcdtl
0100 0 000 010 a b ¢ d 1
al0 a a a a ¢ a jla a b ¢ d 1
b |0 a b ¢ d b b |b bbb b1
¢c |0 e ¢ ¢ a ¢ clc ¢ b c bl
d |0 a d a d d dld d b b d1
110 a b ¢ d 1 11111111
—210 ¢ b ¢ d 1 ~A
0111111 0 |1
¢ {1 11111 a | b
b la a1 ¢ d 1 b |a
c|d d11d1 ¢ |d
d le ¢c1 ¢ 11 d |c
1 |10 ¢ b ¢ d 1 110

An easy sequence of checks shows A is a subdirectly irreducible Nelson al-
gebra and that the monolith of A is the congruence u induced by the parti-
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I Qabed1
b 1)
Oac,1b. Oad, 1bc
W
¢ d )
Oa,l1b,cd
a
0 0,a,b,c,d 1
(a) (b)

Figure 3.3. (a) The Nelson algebra A of Remark 3.1.36; (b) Con A..

tion {{0, a}, {2, 8}, {c}, {d}}: see Figure 3.3 (note that in Figure 3.3(b), the
congruences of A are represented by their corresponding partitions (with all
parentheses dropped)). Observe now that 0 = a (mod (1, ), but (1 < b) A
0=bA0=0#a=bAa= (1<« b) A a Thus p(z,y,2) does not even

witness EDPC for A, and so in particular cannot be a commutative, regular
TD term for N. ]

In [29, p. 361] Blok and Pigozzi assert without proper proof that the variety
of Nelson algebras is not congruence permutable. This assertion is corrected
in [34, p. 606], where Blok and Pigozzi (citing an urpublished result of Idziak)
announce that the variety of Nelson algebras is congruence permutable. They
do not provide a proof, and in particular do not give a Mal’cev term.

Lemma 3.1.37. The variety of Nelson algebras satisfies the following identi-
ties:

~Mr-y)or=l (3.33)
~Mr oy zmz = (~y - 2) (3.34)
1=~z (3.35)

Proof. Let A be a Nelson algebra and let a, b, ¢ € A. For (3.33), observe that
~(a = b) < a A ~ b by (NT). But @ A ~ b < a, which implies a A ~b < @
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by (N4). Thus ~(a — b) % ¢ A ~b =% a, whence ~(a — b) X a by
transitivity. By (N2} we conclude ~(a — b) = a = 1. For (3.34), put
a:=~(a — b), §:=a and y:=¢. We have:

~a—b)re=1- (~(a—=b) = c)
= (~(a = b) = @) = (~(a > b) = ¢) by (3.33)
=(a—f)={a—=7)
=a—= (-7 by (3.31)
=f = {a— ) by (3.17)

Put a:= a, 8 :=~(a — b) and v := c. We have:

e (~a=ab)—oc)=ao (8o

=(a— )= (a—=9) by (3.31)
=(a = ~(a—b)) = (a—c)

={a—>~b)—={a-c) by (3.30)
=a—(~b—¢) by (3.31).

For (3.35}, observe 1 = ¢ = (1 —“+a)A{~va > ~1)=aA (va > ~1)
by (3.14). Therefore to see 1 = a = a it is sufficient to show a < ~a — ~1,
or equivalently (by (N4), (N2)) both ¢ =+ (~a = ~1) =1 and ~(~a —
~1) =+ ~a =1 Nowa = (~a = ~1) =1 by (3.23). Put a := ~ag,
B:=~land y:=~a. Then ~(~va s ~1) o ~va=~la— ) y=a—
(MBo2y)=r~aa(~vrlaa~va)=~va (15 ~va)=~a s ~va=1
by (3.34),(3.10) and (3.13). Thus ¢ < ~a — ~1 as required. .

Lemma 3.1.38. Let A be a Nelson algebra. The following inequalities are
identically satisfied for any a,b € A:

a=>b<a—b (3.36)
t=>b<~b—n~a. (3.37)
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Thus the following equations are identically satisfied for any a,b € A:

(e=>b)—o(a—d)=1 | (3.38)
~a—=b) = ~(a=b)=1 (3.39)
(a=b) 2 ~(b—r~ea)=1 . (3.40)
(b= ~va) o ~a= b)) =1 (3.41)

Proof. Let A be a Nelson algebra and let a,b € A. We have (¢ = b) A (a =
b) = [(a—->b)/\(~b—-+~a)) Ala—=b)=(a=>bA(~b—~a)=a=b,
which is sufficient to establish (3.36). Also (¢ = B} A (~b = ~a) = ((a =
BYA(~b o ~a)) A(~b o ~a)=(a—b) A{~b— ~a)=a=b, which
is sufficient to establish (3.37). Equations (3.38)-(3.41) now follow immediately
by (N4), (N2). ' =

Lemma 3.1.39. Let A be a Nelson elgebra. The foilowing inequalities ure
identically satisfied for any a,b € A:

axX{a=>b)=1b (3.42)
~((a=>b)=b) X ~a. (3.43)

Thus the following inequality is identically satisfied for any a,b € A:
ea<{a=0b)=0b. (3.44)

Proof. Let A be a Nelson algebra and let a,b € A. For (3.42) observe first
that:

a— ((a=0b) =)
=(a=>b) = (a ) by (3.17)
=1 by (3.38). (3.45)
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Also, put & := a, §:= b and v := ~(a => b) and observe that:

a = (~b = ~(a=0))

=a—(~f—7)

=~fa = B) = by (3.3¢) ¥
=~{a =+ b} = ~(a = b) |
=1 by (3.39). (3.46)

Now put a:=a, f:=(a=>b) = b and y:= ~b = ~(a = b). We have:

a— ((a=b)=1)
=a- (((a=b) = d)A
(~b - ~a= b)))
=a—+(BAY)
=(a=B)A(a—7) by (3.20)
= (a = ((a=>8) = b)) A
(a— (~b = ~(a = b))
=1A1 by (3.45),(3.46)
=1

which (in view of (N2)) establishes (3.42). For (3.43), put :=a=> b, B:= b
and 7 := ~ a and observe first that:

~((a=>b) > b) > ~a
=n~(a = f) =y
=a—=(~F—o7) by (3.34)
={a=>b) = (~b > ~a)
—1 by (3.40). (3.47)
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Also, put & ;= ~b, § = ~(a = b) and v := ~ a and abserve that:

(~(~b = ~(a = b)) = ~a)

=~(a—f) =y

=a— (~f—=9) by (3.34)
=~b— (~~(a = D) > ~a)

=~b—((a=b) > ~a) by (3.10)
=(a=b)—=(~b—> ~a) by (3.17)

=1 by (3.40). (3.48)

Now put a:=(a = b) = b, f:= ~b - ~(a = b) and vy := ~ a. We have:

~((a=> b) = b) —~a
=~(((a=b) = b)A
(v ~(a=b)) > ~a
=~(anf) =y
=(~va=7)A(~B—7) by (3.25)
= (~((a = b) = b) = ~a) A
(~(~b = ~(a = b)) = ~a)
=1A1 by (3.47),(3.48)
=1

which (in view of (N2)) establishes (3.43). The remaining assertion of the
lemma now follows immediately by (N4). I

Theorem 3.1.40. (Idziak) The variety of Nelson algebras is congruence per-
mutable. A Mal’cev term witnessing congruence permutability is:

p(z,9,2) = ((z=y) = 2) A ((z=y) = 2).
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Proof. Let A be a Nelson algebra and ¢, b € 4. We have:

p*(a,a,0) = ((a = a) = b) A {(b = a) = a)

=(1=bA((b=a) = a) ™
=bA ((b=a) =) by (3.35)
=b | : by (3.44)

and:

p2(a,b,8) = ((a =) = b} A ((b = b) = a)
={(e=>b0)=>b) A(l=a)
=((e=>b)=>b)Aa by (3.35)
=a - by (3.44).

Corollary 3.1.41. The variety of Nelson algebras is arithmetical.

Proof. Congruence permutability is clear in view of the preceding theorem.
Since the variety of Nelson algebras has EDPC (by Theorem 3.1.33), it is
also congruence distributive (by Theorem 1.5.2(3)). Thus N is arithmetical as
asserted. .

In [29, p. 361] Blok and Pigozzi erroneously assert that the variety of Nelson
algebras does not have a QD term since it is not congruence p_ermutable. The
following theorem corrects this assertion.

Theorem 3.1.42. The variety of Nelson algebras is a congruence permu@able‘
WBSO variety. A @D term for N is:

q(z, ¥, 2, w) := p(elz, ¥, 2), ez, y, w), w)

where:

e(r,y,2) = (z & y) 2 2
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is the commutative TD term of Theorem 3.1.35 and:

piz,yz)=(z=2>y)=2)A (=)= )

is the Mal’cev term of Theorem 3.1.40. -
Proof. The first assertion is clear from previous remarks and Theorem 3.1.40.
The second assertion follows immediately from Theorem 3.1.33, Theorem 3.1.40

and Proposition 1.5.11(1). n

Corollary 3.1.43. The class Nss of all semisimple Nelson algebras, azioma-
tised relative to N by the identity:

((z = y) = z) = =1,

is a discriminator variety. A discriminator term for Ngg is given by ¢(z, v, 2, 2),
where ¢(z,y, 2z, w) s the @D term of Theorem 3.1.42.

Proof. By Viglizzo [232, Theorem 4.2] the class Ngg of all semisimple Nelson
algebras is a variety, axiomatised relative to N by the identity:

((z=y)—=z)oz=1

Since Ngg is a semisimple congruence permutable WBSO variety, it is a dis-
criminator variety with discriminator term ¢(z,y, z, z), where ¢{z, y, z, w) is
the QD term of Theorem 3.1.42. u

By an implicative subreduct of a Nelson algebra (4; A,V,—,~,0,1) we mean
a subalgebra of the reduct {4; —,1). If V is a variety of Nelson algebras, we
denote the class of implicative subreducts of V by S(V{=}). The following
theorem is an easy modification of a result due to Blok and Pigozzi [34].

Theorem 3.1.44. (cf. [84, Corollary 5.3]) For any variety V of Nelson
algebras, the class S(VI™1Y) of implicative subreducts of V is a variety.

Proof. We prove S(VI™1}) is a variety by showing it is closed under S, P
and H. It is closed under $ by definition, and it is easy to see it is closed
under P. So we have only to show HS(VIi=:1}) C S(vi{=1}).

)
j
L,
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Let A := (4; —,1) € S(VI>1) and let B := (B; A,V,—,~,0,1) € V with
A € S({B; -+,1)). Let ® be a congruence on A, and let F := [1). By
Lemma 1.5.4 (see also Rasiowa [195, Theorem V§4.4, Theorem V$4.3]) we
have that F is an implicative filter. That is, 1 € F and F has the detachment
property: 1 € F trivially, and, if ¢ = 1 (mod ®) and ¢ —+ d = 1 (1nod @), then:

d=1-d=gc-yd=¢ 1.

Let G be the filter on B generated by F, and let ©(G) be the congruence
on B such that G = [ljg(g); of course, ©(G) exists and is unique, just be-
cause of Proposition 1.5.5. By Proposition 1.5.5 (see also Rasiowa [195, The-
orem V§4.5]) ©(G) = {{a,b) € Bx B :a = b,b = a € G}. Moreover,
by (3.17) and Rasiowa [195, Theorem V§4.8] we have that ¢ = b (mod ©(G))
iff:

a—={e=2( == (@=?)))=1 and

a- (> =2 (a2 (b=d))=1

for some ¢,...,¢cp € F. If a,6 € A, then a = b, = a € F follows from
the fact that F' has the detachment property. Thus by Theorem 3.1.33, Re-
mark 3.1.34 and the definition of F,

a=1—(1—>a)

=3 (a=>b) = ((b=>a) = a)
={a=b) = ((b=>a)—b)
=p1— (1)

= b.

We have shown ©(G) N A2 C &. Conversely, if ¢,b € A and a = b (mod ®),
then @ = b =¢ 1 = b = o by Rasiowa {195, Theorem V§4.5]. Hence
¢ = bb=a€F C G and consequently a = b (mod ©(G)). Thus & C
O(G)N A%, So ©(G)N A? = @, and thus A/® is isomorphic to a subalgebra of
the implicative reduct of B/©(G). Hence A/® < S(V{=:!}), which completes
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the proof of the corollary. ' a

Problem 3.1.45. Axiomatise the variety S(N{=:1}). Is S(N{=:1}) finitely ax-
iomatisable? s

Let V be a vatiety of Nelson algebras. By the previous theorem, the (\:“l‘ass
S(V{=1}) of implicative subreducts of V is a variety. Moreover, by Rasiowa [105,
Theorem V§1.3] we have that N |= (1.45)~(1.48), so S(V{™1}) is a variety of
MINI-algebras (this observation also follows from Theorem 3.1.44 and Propo-
sition 3.1.24, since — is a subtractive weak relative pseudocomplementation
for N). Consider now the following 4-element Nelson algebra A:

A0 a b1 VR0 a b1l 2404 b1 A
010 0 00 0]0 a b 1 0 [1 111 0 |1
a ([0 a b a ¢ |a a a1 a /b1 b1 a |b
b 10 b b b b {b a b 1 b |1 111 b |a
110 a b1 1{1 111 1 10 a b1 10

Since ((¢ =+ 0) 20) 2= 0=(0—>0)>0=1—0=03%# 1, we conclude
that A & ((z = y) = z) = z ~ 1. Therefore in general S(V{=1}) |£ ((z -
y) = z) = z ~ 1. From these remarks it clearly follows that the varieties
of {commutative, positive implicative, implicative }-pre-BCK-algebras and the
variety of implicative BCS-algebras do not exhaust the naturally occurring
subvarieties of pre-BCK-algebras that may be of interest in universal algebra
and algebraic logic.

3.2 Binary and Dual Binary Discriminator Va-
rieties

Recall from Example 2.3.11 that on any binary discriminator algebra the bi-
nary discriminator is precisely implicative BCS difference, and thus that any
member of a binary discriminator variety has a canonical implicative BCS-
algebra polynomial reduct. This observation calls for a study of the role played
by implicative BCS-algebras in binary discriminator varieties. More generally,
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.

this remark (in conjunction with the remarks of §1.7.20) calls for the study of
bands in dual binary discriminator varieties.

Dual binary discriminator varieties are considered in §3.2.1. It is shown that
the variety of left normal bands with zero coincides with the pure dual binary
discriminator variety, namely the variety generated by the clads of all dual
binary discriminator algebras (4; A,0), where A is the dual binary discrimi-
nator on A and 0 is a nullary operation. We also give a semigroup-'theoretic
characterisation of dual binary discriminator varieties in terms of left normal
bands with zero.

In §3.2.6 binary discriminator varieties proper are studied. It is shown that the
variety of implicative BCS-algebras coincides with the pure binary discrimina-
tor variety, namely the variety generated by the class of all binary discriminator
algebras {A; b,0), where b is the binary discriminator on A and 0 is a nullary
operation. We prove that any member A of a binary discriminator variety V
has an implicative BCS-algebra polynomial reduct whose iBCS-ideals coincide
with the V-ideals of A. We characterise binary discriminator varieties in ideal-
theoretic terms: a pointed variety is a binary discriminator variety iff it is
subtractive with EDPI and is generated by a class of ideal simple algebras. A
characterisation of binary discriminator varieties in the spirit of Agliano and
Ursini’s characterisation of subtractive varietiez with EDPI is also given. The
results are illustrated with some examples.

In §3.2.22 attention is focussed on point regular binary discriminator varieties.
We prove two results that together show a pointed variety is a point regular
binary discriminator variety iff it is a ‘pointed’ fixedpoint discriminator variety.
In the main result of the section, the ‘pointed’ fixedpoint discriminator varieties
are characterised: a pointed variety is a ‘pointed’ fixedpoint discriminator
variety iff it is ideal determined, semisimple and has EDPC. The results give
a partial answer to a question of Blok and Pigozzi.

The relationship between binary and pointed ternary discriminator varieties is
considered in §3.2.32. It is shown that a pointed variety is a pointed ternary
discriminator variety iff it is a congruence permutable point regular binary
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discriminator variety. We also give an (almost) trivial syntactic criterion both
necessary and sufficient for a point regular binary discriminator variety to be
a poiuted ternary discriminator variety.

3.2.1. Dual Binary Discriminator Varieties. In [58, Example (2}, p. 242]
Chajda, Halas and Rosenberg observed that the simplest non-tfivial example of
a dual binary discriminator algebra is 2, the one-element semilattice with a zero
adjoined. Since 2 is, to within isomorphism, the only subdirectly irreducible
meet semilattice with zero, it follows from this example that the variety of meet
sernilattices with zero is a dual binary discriminator variety. This result may
be regarded as a specialisation to meet semilattices with zero of the following
theorem, in the statement of which the pure dual binary discriminator variety
(in symbols, PdBD) denotes the variety generated by the class of all dual binary
discriminator algebras { A; h, 0), where h is the dual binary discriminator
function on A and 0 is a nullary operation.

Theorem 3.2.2. The variety of left normal bands with zero coincides with the
pure dual binary discriminator variety.

Proof. Let K denote the class of all dual binary discriminator algebras (4; 4,0)
where h is the dual binary discriminator function on A and 0 is a nullary
operation. By definition of the dual binary discriminator and Example 1.3.20
every member of K is a left normal band with zero, so K C InBg, the variety of
left normal bands with zero. Hence the variety V(K) generated by K, namely
PdBD, is a subvariety of InBp. Conversely, the three-element left normal band
with zero 3 is a member of K; since an easy consequence of Corollary 1.3.19
shows 3, generates InBg as a variety we have that InBg = V(3;) C V(K) =
PdBD. .

Given a band with zero A, we say A is D-simple or primitive if the only
D-equivalence classes of A are {0} and A — {0}. Notice that A is D-simple
iff A/D is isomorphic to 2, the one element semilattice with a zero adjoined.
By the proof of Theorem 3.2.2, any dual binary discriminator algebra (consid-
ered as a band with zero) is D-simple, which observation suggests the following
semigroup-theoretic characterisation of dual binary discriminator varieties (im-
plicit in [58, Section 5]). In the statement of the theorem and in the sequel
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the dual binary discriminator [term] is denoted M; of course, this change in
notation is legitimised by Theorem 3.2.2. '

Theorem 3.2.3. (c¢f. [58, Theorem 5.2]) For a variety V the Jollowing are

equivalent:
A

1. V 15 a dual binary discriminator variety;

2. There exists a binary term £ My of V such that for any A € V, the
polynomial reduct (A; N*,0) is a left normal band with zero, and any
one of the following conditions is satisfied:

(a) V is generated by a class of algebras K such that for each A € K, the
left normal band with zero polynomial reduct (A; N#,0) is D, A;0A 0)-
simple;

(b) V is generated by a class of algebras K such that for each A € K,
the mazimal semilattice homomorphic image (A; M*,0)/D; 4, na gy
of the left normal band with zero polynomial reduct (A; M*,0) is
isomorphic to 2, the one-element semilattice with a zero adjoined;

Proof. LetV be a variety with 0. By previous remarks the equivalence (2)(a) &
{2)(b) is clear, so it only remains to prove the equivalence (1} < (2)(a).

(1) = (2)(a) Suppose V is a dual binary discriminator variety with dual binary
discriminator term z M y generated by a class K of dual binary discriminator
algebras. By definition of the dual binary discriminator and Example 1.3.20,
the polynomial reduct (4; M*,0) of each A € K is a left normal band with
zero whose only D4, na g)-equivalence classes are {0} and A — {0}. For each
A ¢ K, therefore, (4; MA,0) is primitive. Upon recalling that the class of
left normal bands with zero is equationally definable, we may also infer the
polynomial reduct {B; MB,0) of any B € V is a left normal band with zefo,
Just because the identities satisfied by V are precisely those satisfied by K.

(2)(a) = (1) Suppose (2)(a) holds for V. Let K be a subclass of V satisfying
the conditions of (2)(a) and let A € K. Let a,b € A. If b =0, then aM* 5 =10
since the polynomial reduct (4; M4,0) is a left normal band with zero. So
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assume b # 0. If @ = 0, then aM® b = 0 = a, also because the polynomial
reduct {A; r*,0) is a left normal band with zero. So assume a # 0. Then
a,b € A—{0}, whence a = b (mod D4, s 5y) since (4; M4, 0) is primitive. By
the Clifford-McLean theorem for bands, aM®* 52 a = @, whence a M2 b =a
by left normality. We have shown that, for any e, b € A, a M b=0if b =0
and a otherwise, so M is the dual binary discriminator on A. Thus K is a
class of dual binary discriminator algebras; since K generates V as a variety
we have that V is a dual binary discriminator variety. ]

Example 3.2.4. (cf [58, Section 2, p. 241]) Let V be a pointed dual
ternary discriminator variety (say with 0) with dual ternary discriminator
term d(z, y, z) generated by a class K C V of dual ternary discriminator alge-
bras. For any A € K, let z Ny = d(0, y,z). By definition of the dual ternary
discriminator, '

am® b= d*(0,b,a)
0 ifdb=0
a otherwise
whence A is a dual binary discriminator algebra. Hence K is a class of dual
binary discriminator algebras and V is a dual binary discriminator variety. ®

Let A be a band with zero. For any B C A, let BAB [BA; AB] denote the
set {bab : b € B,a € A} [{ba; b € B,a € A}; {ab: a € A,b € B}]. A
non-empty subset I C A such that both JA C A and A C A is an ideal
of A (in the usual semigroup-theoretic sense) [111, pp. 4-5]. By remarks of
Ursini [222, Remarks (b), pp. 211-212], the semigroup-theoretic ideals of A are
precisely the ideals of A in the sense of §1.7.1; from remarks due to Petrich [180,
Chapter 1.2.3, pp. 4-5)], it follows that A is ideal simple iff B = BeB for all

¢ € B, where B := A — {0}. Suppose A is primitive. By assumption, a = ‘
b (mod D) for any a,b € B, whence BcB ={ded: d € B} ={d:d€ B}=2B
for all ¢ € B. Hence A is ideal simple. Conversely, suppose A is ideal simple.
By hypothesis, BaB = B = BbB for all a,b € B. But for any a, b € A we have
that aDb iff AaAd = AbA by Howie [111, Section 2.4, p. 55]. It follows that
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the only D-equivalence classes of A are {0} and B (:= A — {0}), whence A
is primitive. Thus A is ideal simple iff it is primitive, This observation, in
conjunction with Theorem 3.2.3, gives rise to the following problem.

Problem 3.2.5. Give an ideal-theoretic characterisation of dual binary dis-
criminator varieties. ' N

1

3.2.6. Binary Discriminator Varieties. To within isomorphism, there
is just one two-element binary discriminator algebra, namely the two-element
flat implicative BCK-algebra C; of Example 1.6.18. Since C, is, to within
isomorphism, the only subdirectly irreducible implicative BCK-algebra (recall
Theorem 1.6.19), the variety of implicative BCK-algebras is a binary discrim-
inator variety. We take this observation, which does not seem to have been
made by Chajda, Hala3 and Rosenberg in [58], as the starting point for our
study of binary discriminator varieties. To begin, denote by the pure binary
discriminetor variety (in symbols, PBD) the variety generated by the class of
all binary discriminator algebras (A; b, 0), where b is the binary discriminator
function on 4 and 0 is a nullary operation.

Theorem 3.2.7. The variety of implicative BCS-algebras coincides with the
pure binary discriminator variety.

Proof. Let K denote the class of all binary discriminator algebras (4; &,0)
where b is the binary discriminator function on A and 0 is a nullary opera-
tion. By Example 2.3.8 every member of K is a flat implicative BCS-aigebra,
whence K C iBCS. It follows that the variety V(K) generated by K, namely
PBD, is a subvariety of iBCS. Conversely, the three-element flat implicative
BCS-algebra B, is a member of K; since B, generates iBCS as a variety (by
Theorem 2.3.73) we have that iBCS = V(B,) C V(K) = PBD. =

The following result is due to the author’s Ph.D. supervisor. In the statement
of the theorem and in the sequel we denote the binary discriminator [term]
by \; of course, this change in notation is justified by Theorem 3.2.7.

Theorem 3.2.8. (Bignall) Any algebra A in a binary discriminator variety V
has en implicative BCS-algebra polynomial reduct whose iBCS-ideals coincide
with the V-ideals of A.
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Proof. By Theorem 3.2.7, any algebra A in a binary discriminator variety V
has a canonical implicative BCS-algebra polynomial reduct {(4; \,0). Let
I € Iy(A). Since V is subtractive, I = [0], for some § € Con A by Propo-
sition 1.7.5. Since @ is also a congruence on {4; \,0), we have that I is an
iBCS-ideal of {(4; \, 0}, just because the ideals of any implicative BCS-algebra
are the 0-classes of its congruences. For the converse, let (@)(4;\,0) be a prin-
cipal iBCS-ideal of the canonical implicative BCS-algebra polynomial reduct
(4; \,0). Let 9, be the relation defined on A x A by b = ¢ {mod 9,) iff
b\a = c\a. By Lemma 2.3.45(1)(a)’,(2)(a) ¥, is a congruence on (4; \,0)
with the property that [0}s, = (a)(4;\0)- Suppose f is an n-ary fundamental
operation on A and that b; = ¢; (modd,) for i = 1,..., n. By Theorem 1.7.21,

f(bl, cees b,,)\a = f(bl\a: ) bﬂ\a)\a
= f(ei\a,...,er\a)\a"
= f(cy,...,¢a)\0

s0 f(b1,...,bs) = f(e1,-- ., cn) (modd,). Hence 9, is a congruence on A and
(a)(a;\0) € Iv(A). Let now J be an arbitrary iBCS-ideal of (4; \,0). Put:

Y= V{ﬂa € Con(4; \,0): a € J},

where the join is taken in the lattice of equivalence relations. Then 3 must
be a congruence on both A and {4; \,0), just because each 9, is. Since the
0-class of 4 is clearly J, we have that J is a V-ideal of A as required. n

In general, the converse of Theorem 3.2.8 fails to hold: see Remark 3.2.21 in
the sequel.

Corollary 3.2.9. Let V be a binary discriminator variety with binary dis-
criminator term x\y and dual binary discriminator term z N y. The following
statements hold: N

1. V has EDPI witness z\y;

2. V is ideal distributive;
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3. V has the ideal extension property;

4. £y is a meet generator lerm for V;
Further, if V is with {0, 1}, then:
5. Uy = 1\((1\z) N (1\y)) is a join generator term for V.

Proof. Because of Theorem 3.2.8, Proposition 2.3.5 and Proposition-2.2.30, (1)
follows from Theorem 2.2.20, while (2) and (3) follow from Proposition 2.1.24.
For (4) and (5), notice that on any binary discriminator algebra, the binary
discriminator coincides with implicative BCS difference, while the dual binary
discriminator coincides with the implicative BCS meet. Because of these re-
marks and Theorem 3.2.8, Proposition 2.3.5 and Proposition 2.2.30, t Ny
and z U y are meet and join generator terms for V by Proposition 2.2.31 and
Proposition 2.3.60(2) respectively. | "

In introducing the binary discriminator as a generalisation of the ternary dis-
criminator to varieties exhibiting congruence permutability only locally at O,
Chajda, Halai and Rosenberg were primarily concerned with generalising a
well-known result of Pixley [184, Theorem 3.1] to the effect that a (finite) al-
gebra A is a ternary discriminator algebra iff V(A) is arithmetical and A is
hereditarily simple. In particular, in [58] they proved:

Proposition 3.2.10. [58, Corollary 2.2] If A is a binary discriminator alge-
bra then V(A) is arithmetic at 0 and A is hereditarily ideal simple.

Chadja, Halas and Rosenberg were unable to establish a converse of Proposi-
tion 3.2.10, except in the restricted case of main ideal term algebras. A main
ideal term algebra is an algebra A with O for which there exists a binary term
function o and a unary term function ' of A such that the following equations
are identically satisfied for any ¢, b € A:

(aobd™ob"=0 and eol0' =a
and moreover:

(a)a = {bod":bec A} for every a € A — {0},
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R where a” is shorthand notation for (¢')’. By [58, Theorem.4.1] a main ideal
term algebra A is a binary discriminator algebra iff A is ideal simple. In
contradistinction to this result, the following theorem characterises binary dis-
criminator algebras solely in ideal-theoretic terms.

Theorem 3.2.11. (¢f. [229, Proposition 6.13]) An algebraA is a binary
discriminator algebra iff A is ideal simple and the variety V(A) génerated
by A is subtractive with EDPIL.

Proof. (=) Let A be a binary discriminator algebra. By Proposition 3.2.10, A
is ideal simple and V(A) is subtractive. Since V(A) is a binary discriminator
variety, by Corollary 3.2.9(1) we have that V(A) has EDPL

(<) Let A be ideal simple and suppose V(A) is subtractive with EDPI. By
Theorem 1.7.9 there exists a term z\y of V(A) that witnesses both subtrac-
tivity and EDPI in the sense that V(A) = z\z = 0,z\0 ~ z and a\Bb =0
iff @ € (b)p for any B € V(A) and a,b € B. We will show z\y induces the
binary discriminator on A. Let a,b € A. Suppose b = 0. By subtractivity
a\*b = a\20 = a. Suppose b # 0. From b € (b)a we have that (b)a # {0},
whick implies by ideal simplicity that (b)o = A. Therefore ¢ € (b} 4, whence
a\*b = 0 by EDPI. Thus A is a binary discriminator algebra. L]

Corollary 3.2.12. A variety V is a binary discriminator variety iff it is sub-
tractive with EDPI and is generated by a class of ideal simple algebras.

In the following theorem, we give an alternative characterisation of binary dis-
criminator varieties, in the spirit of Agliano and Ursini’s characterisation of
subtractive varieties with EDPI (Theorem 3.1.6); note that this characterisa-
tion of binary discriminatoz varieties is implicit in {58, Section 5].

Theorem 3.2.13. (c¢f. Theorem 1.7.21) For a variety V the following are
equivalent:

1. V is a binary discriminator variety, «

2. There ezists a binary term z\y of V such that:
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(a) For any A €V, the polynomial reduct (A; \*,0) is an implicative
BCS-algebra; '

(b) Forany A€V and a € A, (a)a = {a)(a;\2 00/

(¢c) V is generated by a class K C V whose members are ideal simple.

Proof. (1) = (2) Suppose ¥ is a binary discriminator variety with binary dis-
criminator term z\y. For any A € V the polynomial reduct (4; \A,0) is an
implicative BCS-algebra by Example 2.3.11, which establishes (2)(a). More-
over, for any A € V and a € A we have {a)a = {(a)(4;\ g s & particular caze
of Proposition 3.2.8; thus (2)(b) holds. And, since V is a binary discriminator
variety, frcm Theorem 1.7.21 we have that V is generated by a class K C V of
ideal simple algebras, which establishes (2)(c).

(2) = (1) Suppose V is a variety satisfying (2)(a)-(c). By (2)(a) and Theo-
rem 2.1.3 we have that V is subtractive, while from (2}{(b) and Theorem 2.2.20
we have that V has EDPL. Because of (2)(c), it follows that V is a subtractive
variety with EDPI generated by a class K C V of ideal simple algebras; the
resuit now follows from Corollary 3.2.12. n

In the following series of examples, we list some binary discriminator varieties
beyond those given by Chajda, Halas and Rosenberg in {58].

Example 3.2.14. Let V be a fixedpoint discriminator variety with O generated
by a class K C V of fixedpoint discriminator algebras such that O realises
the discriminating element on any A € K. Let f(z,y,2) be a fixedpoint
discriminator term for V. By Example 2.3.13, V is a binary discriminator
variety with binary discriminator term f(0, y, z), while K is a class of binary
discriminator algebras generating V. .

Example 3.2.15. (cf [58, Section 2, p. 241]) Let V be a pointed ternary -
discriminator variety (say with 0) with ternary discriminator term t(z, y, z)
generated by a class K C V of ternary discriminator algebras. For any A € K|
let 2\y := (0, y, z). By defnition of the ternary discriminator,

a\*b = 14(0, b, a)
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a ifb=0

0 otherwise

whence the polynomial reduct (4; \#,0) is a flat implicative BCS-algebra.
Hence K is a class of binary discriminator algebras and V is a binary discrim-

inator variety. -
St

Example 3.2.16. By the proof of Proposition 3.1.8, the reduct {A; \,0) of any
primitive skew Boolean algebra A is a flat implicative BCS-algebra. Hence A is
a binary discriminator algebra, and the binary discriminator on A is standard
difference. By Theorem 1.4.29, the class SBA of skew ™aolean algebras is
generated as a variety by any family of primitive skew Boolean algebras that

contains the 3-element left and right handed primitive algebras 37 and 3%.

Hence SBA is a binary discriminator variety. |

Example 3.2.17. By Example 2.3.12 the class of pseudocomplemented semi-
lattices is a binary discriminator variety (with binary discriminator term z\y :=
T A y*), generated {as a binary discriminator variety) by the 3-element chain 3
{considered as a pseudocomplemented semilattice). More generally, PCSL is
generated (as a binary discriminator variety) by any subclass of the family
of bounded chains {considered as pseudocomplemented z:nilattices) that in-
cludes 3. Indeed, if A is a bounded chain, then * = 0 if b # 0 and 0 otherwise,
whence a\b = ¢ if b = 0 and a otherwise for any a, b € A. Hence the canonical
implicative BCS-algebra polynomial reduct (4; \,0) of A is flat, and A is a
binary discriminator algebra. ‘ n

Example 3.2.18. Recall from Example 1.4.30 that a Stone algebra is a dis-
tributive lattice with pseudocomplementation satisfying z* vV z** ~ 1. By
Balbes and Dwinger [14, Example VIII§7.2] any bounded chain A (considered
as a distributive lattice with pseudocomplementation) is a Stone algebra. By
Example 2.3.12 and the remarks of §1.3.5, A has a canonical implicative BCS-
algebra polynomial reduct (4; \,0), which must be flat by Example 3.2.17.
Hence A is a binary discriminator algebra. Since the class of Stone algebras is
generated (as a variety) by any subclass of the family of bounded chains that
includes 3, the 3-clement chain considered as a Stone algebra (see Balbes and

T B T i Tl SR Ly
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Dwinger [14, Theorem VIII§7.1} or Grétzer [100]), the class of Stone algebras
is a binary discriminator variety. 1 |

Remark 3.2.19 (Added in proof). The author’s Ph.D. supervisor has
pointed out that the class of Abelian Rickart semirings, studied by Cornish
in [63], is also a binary discriminator variety. This observation generalises Ex-
ample 3.2.18, since Stone algebras are a subvariety of the variety of Abelian
Rickart semirings. . ]

The final example of this subsection shows that the variety DLPC of distribu-
tive lattices with pseudocomplementation is not a binary discriminator variety.
This example is of interest since every distributive lattice with pseudocomple-
mentation has a canonical implicative BCS-algebra polynomial reduct. Binary

discriminator varieties therefore do not exhaust those classes of algebras in

which implicative BCS-algebras arise naturally (recall the remarks following
Problem 2.3.18 in the prequel).

“xample 3.2.20. By Example 2.3.12 and the remarks of §1.3.5 any distribu-
tive lattice with pseudocomplementation A has a canenical implicative BCS-
algebra polynomial reduct (4; \,0), where a\b := a A b* for any a,b € A.
However, DLPC is not a binary discriminator variety. To see this it is sufficient
to show there is no subclass K of DLPC with a binary term b(z, y) that realises
the binary discriminator on each A € K and for which DLPC = V(K}. Observe
first by inspection of both the DLPC-free algebra on two free generators [217]
and the subdirectly irreducible members of DLPC (101, Section 16] that the
only binary term b(z, y) of DLPC inducing implicative BCS differenceis z A y*.
Because of Example 2.3.61(2) and Lemma 2.3.63(2), this implies A is a binary
discriminator algebra iff (A4; \,0) is flat iff A is dense (that is, any element
in A — {0} is dense). By results due to Agliano and Ursini [9, Result, p. 256
and Gratzer [101, Exercise 3§14.3, p. 164] every dense distributive lattice with

pseudocomplementation (B; A,V,*,0) arises from a bounded distributive lat-

tice (B; A, V) upon: (i) adjoining a new element 0 to B such that 0 < & for
all b € B; (ii) defining a pseudocomplementation operation on B by " := 0
if b # 0 and b* := 1 otherwise, where 1 is the greatest element of B; and (iii}
distingnishing the operation * and the least element 0. (See also Balbes and

.
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Dwinger [14, Example VIII§7.3].) Let A be a dense distributive lattice with
pseudocemplementation. Because of the definition of * on A, it is easy to see
that A = z* V z** & 1, whence A is a Stone algebra. Hence the class of all
binary discriminator algebras of DLPC generates the variety of Stone algebras,
not the variety of distributive lattices with pseudocomplementation, so DLPC
is not a binary discriminator variety. [

Remark 3.2.21. Example 3.2.20 shows also that Condition (2)(c) of Theo-
rem 3.2.13 is not artificial. Indeed, we have already observed in Example 3.2.20
that any distributive lattice with pseudocomplementation A has a canonical
implicative BCS-algebra polynomial reduct {4; \,0), whence DLPC satisfies
Condition (2)(a) of Theorem 3.2.13. Also, by Agliano and Ursini [9, Exam-
ple 6.1, p. 256] the principal DLPC-ideal (b)a generated by b € A is ("],
whence a € (b)a iff a < 0™ iff a A b = 0iff a\b = 0 iff ¢ € {(b)(a;\0)-
Thus the principal DLPC-ideals of A coincide with the principal iBCS-ideals
of (4; \,0), and DLPC satisfies Condition (2)(b) of Theorem 3.2.13. Because
DLPC satisfies Conditions (2)(a)~(2)(b) of Theorem 3.2.13 but is not a binary
discriminator variety, Condition (2)(c) cannot he omitted from the assertion
of the theorem. ]

3.2.22. Point Regular Binary Discriminator Varieties. Corollary 3.2.9
prompts us to investigate O-regular binary discriminator varieties, since 0-
regularity implies ideal determinacy for such varieties (by Proposition 1.7.3)
and hence EDPC (by Corollary 3.2.9(1) and Proposition 1.7.10). To begin,
recall from §1.5.9 that the fixedpoint discriminator on a set A is the ternary
operation f : A®> — A defined for any a, b,c € A by:

Fla,b,c) = {" o=

0 otherwise,

where 0 € A is the discriminating element of f. A pointed fizedpoint discrimi-
nator algebra is an algebra A with O for which there is a ternary term f of A
that realises the fixedpoint discriminator on A such that 04 is the discriminat-
ing element. A pointed fizedpoint discriminator variety is a variety V with 0 for
which there is a subclass K of V such that V = V(K) and a ternary term f of ¥
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_.;_" {g such that f realises the fixedpoint discriminat(?r with discriminating element

04 on each A € K. In this case f is called a pointed fivedpoint discriminator
term for V.

Remark 3.2.23. Pointed fixedpoint discriminator varieties should not be con-

_ fused with fixedpoint discriminator varieties that happen to be pointed. In

particular, while every pointed fixedpoint discriminator variety is a fixedpoint

discriminator variety ttat is pointed, the converse does not hold. To see this,
let A := (A; 0*) be a pointed set. Let f : A3 — A be a fixedpoint discrim-
inator on A with discriminating element 04 # d € A. Let A = (4; f,0%).
Then V(A) is a fixedpoint discriminator variety that is pointed, but it is not
a pointed fixedpoint discriminator variety. See Blok and Pigozzi [34, p. 580].
]

Theorem 3.2.24. Lei V be a variety with 0. If V is a O-regular binary dis- y
criminator variety then V is a pointed fizredpoint discriminator variety. In this
case a pointed fizedpoint discrim.:;ator term for V is given by:

f(ma Y, Z) = ( te (Z\dl(fﬂ, y))\ " ')\dﬂ(mi y)

where z\y is a binary discriminator term for V and dy(z,y),..., da(z,y) are
binary terms witnessing the O-regularity of V in the sense of Proposition 1.2.6.

Proof. Let V be a variety with 0. Suppose V is a 0-regular binary discriminator
variety with binary discriminator term z\y and that di{z, y),..., du(z, y) are
binary terms witnessing the 0-regularity of V in the sense of Proposition 1.2.6.
Let K € V be a class of binary discriminator algebras generating V as a va-
riety. We will show f(z,y, ) induces the pointed fixedpoint discriminator
on any member of K. So let A € Kand a,b,c € A. Suppose ¢« = b. By
Proposition 1.2.6 we have that d;(z,z) = 0 for all 1 < i < n, whence:

(- (e\*af (@, VR - )\AdA(0,B) = (- (\RONA -+ )\ A0
c

by repeated application of the identity £\0 =~ r. Suppose instead that a #
b. If d*(a,b) = O forall 1 < i < n then a = b by Proposition 1.2.6, a

. r-“/.-l-
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contradiction. Thus d;‘(a, b) # 0 for some 1 < i < n. By definition of the
binary discriminator, this implies that the subexpression of fA(a, b, c) of the

~

form:

(- (\*di(a, D)\* - - )\ a, b)

must equal 0. We therefore have that:

(. (- (c\Adf(a, b))\A . '\',J)\Ad:&(a, b))\"dﬁ_l(a, b))\A . )\Ad‘,‘?(a, b)
(- O\ dfi (e, NS )\ Mo, )
0

by repeated application of the identity O\z ~ 0. Hence f%(a,b,c) = ¢ if
a = b and 0 otherwise, whence f(z,y,z) induces the fixedpoint discrimina-
tor on any member of K. Since K generates V as a variety we have that V
is a pointed fixedpoint discriminator variety and that f(z,y, z) is a pointed
fixedpoint discriminator term for V. "

Corollary 3.2.25. Let V be ¢ variety with {0,1}. IfV is a 0-reqular binary
discriminator variety then the following assertions hold:

1. The term f(z,y, z) of Theorem 3.2.24 is a commutative TD term for V
that is regular with respect to 1;

2. V is a variety of subtractive weak Boolean algebras with filter preserv-
ing operations. Weak meet, weak relative pseudocomplement and Godel
equivalence terms for V are defined respectively by:

-y :=f($a1ay)
r—=y :=f(f($r 1: y)af(xs 1: 1)! 1)
zAy = f(z,y,1).

Proof. Immediate by Theorem 3.2.24 and Theorem 1.5.14. "

Remark 3.2.26. The hypothesis that V is double-pointed in Corollary 3.2.25
is essential if the conclusions of the corollary are to obtain, since the variety
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of implicative BCK-algebras is a O-regular binary discriminator variety that
does not possess either a TD term that is regular or a weak meet. See Blok
and Pigozzi {34, p. 589]. n

r

Example 3.2.14 shows that a pointed fixedpoint discriminator variety is a bi-
nary discriminator variety. Given Theorem 3.2.24, it is therefore natural to ask
if the converse of Theorem 3.2.24 also holds. Perhaps surprisingly, the answer
to this question is ‘yes’.

Theorem 3.2.27. Let V be a variety with 0. If V is a pointed fizedpoint
discriminator variety, then V is a O-regular binary discriminator variety. In
this case a binary discriminator term for V is given by:

z\y := f(0,y,2)

where f(z,y,2) is a pointed fixedpoint discriminator term for V, while the
binary terms: '

di(z,y) = s\f(2,9,2) and do(z,y) = y\f(y,2,9)

witness 0-regularity for V in the sense of Proposition 1.2.6.

Proof. Let V be a variety with 0. Suppose V is a pointed fixedpoint discrimi-
nator variety with pointed fixedpoint discriminator term f(z,y,2). Let KC V
be a class of fixedpoint discriminator algebras generating V as a variety. Put
z\y = f(0,y,2). For any A € K and ¢,b € A, by Example 2.3.13 we have
that:

a\Ab = fA(Oa b, a)
¢ ifb=0
0 otherwise,
whence (4; \,0) is a flat implicative BCS-algebra. Thus z\y induces the

binary discriminator on any member of K. Since K generates V as a variety,
it follows that V is a binary discriminator variety. To see V is O-regular,
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put z/y := z\f(z,y,2). For any A € K and a,b € A, by definition of the
fixedpoint discriminator we have that:

a/b = a\*fA(a, b, a)

=fA(0,fA(a, b, a), a)

_Jo ifa#bd

B 0 otherwise,
whence (4; /,0) is (by Example 1.6.18) a‘flat implicative BCK-algebra. Be-
cause the identities satisfied by V are precisely those satisfied by K, it follows
that any algebra B € V has an implicative BCK-algebra polynomial reduct
(B; /B,0). Since any algebra with a point regulaf polynomial reduct must
itself be point regular, we conclude from the O-regularity of (B; /®,0) (re-
call Theorem 1.6.17 and Theorem 1.6.10(3)) that B is 0-regular. Thus V is

O-regular and the binary terms dy(z,y) := z/y, d(z,y) = y/z witness 0-
regularity for V in the sense of Proposition 1.2.6. L

Remark 3.2.28 (Added in proof). An implicative BCSK-algebra is an al-
gebra (4; /,\,0) of type (2,2,0) such that: (i) the reduct {4; /,0) is an
implicative BCK-algebra; (ii) the reduct (A; \,0) is an implicative BCS-
algebra; and (iii) the implicative BCK partial order <{4i/9 and the implicative
BCS partial order <V coincide. By an unpublished result of the author,
an algebra A = (4; /,\,0) of type (2,2,0) is an implicative BCSK alge-
bra iff A = (1.35)—(1.38), A = (2.47)-(2.50) and A satisfies the identities
(z\y)/z ~ 0 and z\(z\(z/y)) = z/y, whence the class iBCSK of implicative
BCSK-algebras is a variety.

The variety iBCSK arises in the first instance from algebraic logic. Let £ =
{—,=} be a language of type (2,2). BCSK logic is the deductive system
BCSK := (£, Fprgx) defined by the following axioms and inference rule:

p=(¢=p) (B1)
p=@=r))=((p=q=(@=>r) (B2)
(p=>q)=>p)=p (B3)
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»=>(q—=p) (B4)
(p=(g=r))=>((pr9—=(p—r) (B5)
p=@g—=n)=>(g—=@-r1) (B6)
(p—=g)—=p)=>p (B7)
(p=a)—q = ((g=0) -0 | (B8)
(p=>q) -9 Y (B9)
PP — ¢ Fpesk ¢ : (BCSK-MP)

BCSK logic was introduced by the author in [211] and has been extensively
investigated by Humberstone in [112], where connections with modal logic
(including the Lewis system §5) are established. Unpublished results of the
author show BCSK is algebraisable (with equivalence formulas {p = ¢, ¢ = p}
and defining equation p &~ p = p) and that its equivalent algebraic semantics
is termwise definitionally equivalent to iBCSK,

Call an implicative BCSK-algebra flat if its underlying poset is flat. The proof
of Theorem 3.2.27 shows any pointed fixedpoint discriminator algebra (4; f,0)
has a flat implicative BCSK-algebra polynomial reduct (4; /,\,0), where:

a\b:=f(0,b,a) and a/b:=a\f(e,b, a)

for any a, b € A. Conversely, unpublished resuits due to the author and the au-
thor’s Ph.D. supervisor show that an implicative BCSK-algebra is subdirectly
irreducible iff it is flat (for some details, see Humberstone [112, Section 1,
Appendix BJ), whence the class iBCSK is a pointed fixedpoint discriminator
variety with pointed fixedpoint discriminator term:

f(&,,2) = (2\(2/9))\(y/2).
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Let FPDg denote the pure pointed fizedpoint discriminator vdm‘etr, naraely the
variety of type (3, 0) generated by the class of all pointed fixedpoint discrimi-
nator algebras (4; f,0), where 0 is a nullary operation and f is the fixedpoint
discriminator on A with discriminating element 0. In view of the preceding
discussion, it is easy to see that FPDg is termwise definitionally equivalent to
iBCSK. Moreover, because the congruence structure of any algebra in a fixed-
point discriminator variety is {by Lemma 1.5.10) completely determined by
the fixedpoint discriminator term, any algebra A in a pointed fixedpoint dis-
criminator variety must have an implicative BCSK-algebra polynomial reduct
whose congruences coincide with those of A. These remarks extend and con-
trast with Blok and Pigozzi [34, Section 3]: see in particular [34, Corollary 3.6].
.

In their study [34] of varieties with equationally definable principal congru-
ences, Blok and Pigozzi posed the following problem [34, Problem 7.3): Does
there exist a purely algebraic characterisation of fizedpoint discriminator va-
rieties similar to the one for ternary discriminalor varieties given in Theo-
rem 1.5.18(4)? For pointed fixedpoint discriminator varieties, the following
theorem provides an affirmative answer to this question.

Theorem 3.2.29. For a variety V with 0, the following are equivalent:
1. V is a pointed fizedpoint discriminator variety;
2. V is ¢ O-regular binary discriminator variety;
3. V is congruence O-permutable, 0-regular, semisimple with EDPC;
4. V is ideal determined, semisimple with EDPC.

Proof. Let V be a variety with 0. The equivalence (1) < (2) follows from
Theorem 3.2.24 and Theorem 3.2.27, while the equivalence (3) < (4) is clear

from Proposition 1.7.3. Thus it only remains to demonstrate the equivalence
(2) & (3).

(2) = (3) Suppose V is a O-regular binary discriminator variety. Then V is 0-
regular and subtractive by hypothesis. Also, V is a pointed fixedpoint discrim-
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inator variety by Theorem 3.2.24, and so is semisimple {by Theorem 1.5.12)
and has EDPC (by the remarks of §1.5.9).

(3) = (2) Suppose V is congruence O-permutable, 0-regular and semisimple
with EDPC. Since V is subtractive, by Proposition 1.7.10 we have that V
has EDPI. Since V is semisimple with EDPC, from Theorem 1.5.2(4) we have
that V is generated as a variety by a class K of simple algebras. By normality
of ideals we have that K is ideal simple, and so V is a subtractive variety
with EDPI that is generated by a class K of ideal simple algebras. From
Corollary 3.2.12 it follows that V is a binary discriminator variety; since V is
0-regular by hypothesis, V is a 0-regular binary discriminator variety. L

Although pointed fixedpoint discriminator varieties do not encompass even
those fixedpoint discriminator varieties that are pointed (by Remark 3.2.23),
the hypotheses of Theorem 3.2.29 are nonetheless satisfied by most fixedpoint
discriminator varieties arising naturally as ‘quasivarieties of logic’. In particu-
lar, varieties of k-potent Wajsberg algebras and their implicational subreducts
(including Boolean algebras and implicative BCK-algebras) are pointed fixed-
point discriminator varieties. See [34, Corollary 3.6].

Example 3.2.30. By Example 2.3.14(1) each variety ce,BCK, n € w, is a
fixedpoint discriminator variety, with fixedpoint discriminator term f{(z, y, 2) :=
(z+(z~y)") = (y = z)". Although each ce,BCK is pointed, the proof of Ex-
ample 2.3.14(1) does not show each ce,BCK is a pointed fixedpoint discrim-
inator variety: recall Remark 2.3.15. In contrast, we may immediately con-
clude from Theorem 3.2.29 that each ce,BCK, n € w, is a pointed fixedpoint
discriminator variety, just because each ce,BCK is ideal determined (by The-
orem 1.6.10(3)) and semisimple with EDPC (by Example 2.3.14(1)).

Via Theorem 3.2.24, the proof of Theorem 3.2.29 yields a fixedpoint discrimi-
nator term for each ce,BCK, n € w, namely f'(z, y, z) := (2\(z = ))\(y + %),
where z\y is a binary discriminator term for ce,BCK. For each n € w,
let z\y := z-y". By [68, Lemma 1.1(ii),(iii)] ce,BCK & #\z = 0 and
ce,BCK |= 2\0 =~ z, whence \ witnesses subtractivity for ce,BCK. Also, \ wit-
nesses EDPI for ce,BCK, since it is implicit in the proof of Blok and Raftery {39,
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Theorem 4.2] that a € (b)5 iff a\*b = 0 for any A € ce,BCK. Hence \
is a binary discriminator term for each ce,BCK, n € w, and f'(z,y,2) =
(\Mz=9\y=2) = (2= (x+9)") = (y~2)" = {(z,9,2). .
Let K be a quasivariety and A € K. Recall that a strong ideal of A in the sense
of Blok and Raftery [40] is an S(K,7)-filter of A, where S(K,7) is a certain
deductive system ‘extracted’ from the quasi-equational theory of K by means
of a translation 7 [40, Section 5]. Under inclusion, the set Sldk, of all strong
ideals of A forms an algebraic lattice SIdk,. In general, the natural map
74 /- : Cong A — Sldk, A sending a K-congruence to its associated strong
ideal is neither injective nor surjective. We say K is strongly ideal determined if,
for any A € K, the map 74/~ : Conk A — SIdk s A is a lattice isomorphism;
for details, see [40, Section 5, Theorem 5.2]. Theorem 3.2.29 and preceding
remarks invite the following problem: |

Problem 3.2.31. Let V be a variety. Is V a fixedpoint discriminator variety
iff V is strongly ideal determined, semisimple with EDPC? L

3.2.32. Binary Discriminator Varieties and Pointed Ternary Dis-
criminator Varieties. Theorem 3.2.29 shows a variety with 0 is a pointed
fixedpoint discriminator variety iff it is a O-regular binary discriminator vari-
ety. Since the theory of the fixedpoint discriminator closely parallels that of
the ternary discriminator [34, p. 548], this observation calls for a study of the
relationship between binary and pointed ternary discriminator varieties. The
following theorem is an obvicus consequence of Theorem 3.2.29 and the results
of §1.5.9.

Thecrem 3.2.33. For ¢ variety V with 0 the following are equivalent:

1. V is a ternary discriminator variety;

2. V is a congruence permutable 0-regular binary discriminator variety.

In particular, if z\y is a binary discriminator term for V, p(z,y,2) is a
Mal’cev term for V, and dy(z, y),. .., d,(z, y) are binary terms of V witnessing
the O-regularity of V in the sense of Proposition 1.2.6, then:

t(:l:, y,z) = p(f(xa Y Z),f(.’b‘, Y, &,"),E)
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is a ternary discriminator term for V, where f (z, y, z) is the pointed fivedpoini
discriminator term of Theorem 3.2.24.

Proof. Let V be a variety with 0.

(1) = (2) Suppose V is a ternary discriminator variety. By Theorem 1.5.13
we have that V is a congruence permutable pointed fixedpoint discriminator
variety, so V is a congruence permutable O-regular binary discriminator variety
by Theorem 3.2.27.

(2) = (1) Suppose V is a congruence permgta,ble 0-regular binary discrimi-
nator variety. Then V is a pointed fixedpoint discriminator variety by Theo-
rem 3.2.24, Let f(z,y, 2) be the pointed fixedpoint discriminator term for V
of Theorem 3.2.24 and let p(z, y, z) be a Mal’cev term for V. Since f(z,y, 2)
is a TD term for V (by Theorem 1.5.12}, from Lemma 1.5.11(1) we have that
g{z,y,2,w) = p(f(:z:, ¥, 2),f(z,y, w), w) is a QD term for V. Since V has per-
muting congruences ¢(z,y, 2,) is a ternary discriminator term for V; clearly
q(z,y, 2,z) = t(z,y, ), completing the proof. ]

By Corollary 2.2.6 and the remarks of §3.2.6 the variety of implicative BCK-
algebras is a O-regular binary discriminator variety that is not congruence per-
mutable. Thus the hypothesis of congruence permutability cannot be omitted
from the statement of Theorem 3.2.33. The following example shows that the
assumption of Q-regularity also cannot be dropped.

Example 3.2.34. Let A := {0,1,2} be aset and let ¢ : 43> — A be the ternary
discriminator on A. Let A := (4; p,0) be the algebra with distinguished
element 0 and ternary operation p : A> = A defined by:

’

a ifa=1,b=2andc=0
p(a, b, e):=14b ifa=2b=1landc=0

\ t(a,b,c) otherwise

for any a,b,c € A. Let a\b := p(0,b,a) for any a,b € A. Clearly a\b is
the binary discriminator on A4, so A is a binary discriminator algebra. More-
over, one easily checks that A = p(z,7,y) =~ y and A |= p(z,y, ¥) = z; thus
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V(A), the variety generated by A, is a congruence permutable binary discrim-
inator variety. However, V(A) is not point regular, and in particular is not
0O-regular. Indeed, one easily shows (by inspection of the V(A)-free algebra on
one free generator) that the only constant term of V(A) is 0. Bug the partition
{{0},{1,2}} induces a non-trivial (in fact, the only non-trivial) congruence
on A, whence A itself is not O-regular. Thus V{A) is a congruence permutable
binary discriminator variety that is not point-regular (and in particular not
0-regular), and hence is not a ternary discriminator variety. | ]

In general, it is a non-trivial task to constrii‘ct a Mal’cev term for a congruence
permutable variety: witness for example Theorem 3.1.40. A simpler syntactic
criterion both necessary and sufficient for a O-regular binary discriminator
variety to be a ternary discriminator variety is therefore desirable. In the
following proposition we give just such a syntactic criterion. But first, let A
be a set and let 0 € A be fixed but arbitrary. Recall from multiple-valued
switching theory [172, Chapter 3] that a binary function + : A% — A is called
a sum-like operation (with respect to 0) if a+0=a =0+ a for any ¢ € A.
Let K be a class of algebras with 0. A binary term z + y of K is said to be sum-
like (with respect to 0) if the canonical interpretation of z+y on any A € K is
a sum-like operation with respect to 0*. See also Werner [237, Theorem 1.3).

Proposition 3.2.35. (¢f. [39, Theorem 6.1(i)]) For a variety V with O the
following are equivalent:

1. V is a ternary discriminator variety;

2. V is a O-regular binary discriminator veriety with a binary term z + y
that is sum-like (with respect to 0).

In particular, if z\y and = + y are respectively a binary discriminator term
and a sum-like term for V, then:

t(xa Y Z) = f("q“s ¥ z) + ($V(xa ¥, *’B))

is a ternary discriminator term for V, where f(z,y, z) is the pointed fivedpoint
discriminator term of Theorem 8.2.24.

s
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Proof. Let V be a variety with 0.

(1) = (2) Suppose V is a ternary discriminator variety with ternary discrimi-
nator term ¢(x, y, z). By Theorem 3.2.33 we have that V is a O-regular binary
discriminator variety. Put z + y := t(y,0, z). Because of Theorem 1.4.39, we
have that & +# y is the left handed skew lattice join on any A € V, whence V
has a sum-like term.

(2) = (1) Suppose V is a O-regular regular binary discriminator variety with
binary discriminator term z\y. By Theorem3.2.24 we have that V is a pointed
fixedpoint discriminator variety. Let K C V be a class of fixedpoint discrimina-
tor algebras generating V as a variety. Let z 4+ y be a sum-like term for V and
put {(z,y, 2) := f (3,9, 2)+(2\f(z, y, ), where f(z, y, z) is the peinted fixed-
point. discriminator term of Theorem 3.2.24. By definition of the fixedpoint
discriminator, for any A € K and @, b, ¢ € A we have:

if a =5 if b
¢ ne and a\*f%(e,b,a) = @ ifas

0 otherwise 0 otherwise.

fA(a'a b, C) =

Since - is a sum-like term, it follows that t*(a,b,¢) = a if a # b and ¢
otherwise. Thus #(z, y, 2) induces the ternary discriminator on any member
of K; since K generates V as a variety we have that V is a ternary discriminator
variety with ternary discriminator term ¢(z, y, 2). 1

Remark 3.2.36. Let V be a dual binary discriminator variety with dual binary
discriminator term z A y. In [19, Section 4.10] Bignall and Leech essentially
assert that a necessary and sufficient condition for V to be a ternary discrim-
inator variety is the existence of a binary term z @ y that is both a sum-like
term and a Gédel equivalence term for V; in this case a ternary discriminator
term for V is given by:

t(z,9,2) =z Az0y) @ (2@ (2 A (z®Y))).
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3.3 Pre-BCK Quasilattices and BCK Paralat-

tices

Collectively, the results of §1.4.32, §1.4.37, §3.2.6 and §3.2.22 intimate that
pre-BCK-algebras structurally enriched with (locally Boolean) band opera-
tions arise naturally in pointed discriminator, pointed fixedpoint discrimina-
tor and pointed discriminator varieties, which remark calls for a generalisa-
tion of Idziak’s theory of BCK-[semi]lattices to the non-commutative case.
Lemma, 1.6.24, which shows any BCK-[semi]lattice may be viewed as the con-
junction of a BCK-algebra and a [semi|lattice such that the underlying BCK-
algebra partial ordering and the [semi]lattice partial ordering either dualise
or coincide, suggests that an appropriate generalisation of BCK-[semi]lattices
is to algebras consisting of a pre-BCK-algebra reduct and a band or non-
commutative lattice reduct such that the underlying pre-BCK-algebra ordering
either coincides with or dualises an ordering on the band or non-commutative
laitice reduct. Because there exist two fundamental orderings <p and <4 on
any band, Idziak’s theory of BCK-[semillattices bifurcates when generalised to
the non-commutative case. On the one hand, the theory of BCK-[semi]lattices
generalises to a theory of pre-BCK bands and pre-BCK quasilattices PQg,
{=,0} € C C {A,V, =,0}; and on the other, to a theory of BCK bands
and BCK paralattices BP¢, { ~,0} C C C {A,V, =,0}. Within the context
of the families PQ, PQ, it is natural to focus attention (ignoring issues of
type) on certain varieties 1Qq, {A,\,0} C C' C {A,V,\,0}, of implicative
pre-BCK bands and implicative BCS quasilattices and certain varieties IPen,
{A,/,0} € C" C {A,V,/,0}, of implicative BCK bands and implicative BCK
paralattices respectively, since these clasczs oxhibit ‘locally Boolean’ behaviour.
Throughout this section, our study of all the various families PQg, 1Q¢, BP¢
and IP¢» is informed by both Idziak’s theory of BCK-[semi]lattices and Laslo
and Leech’s recent study of paralattices and quasilattices [145].

In §3.3.2 we study the family of classes PQg, {=,0} C € C {A,v, =,0}.
Members of the classes PQe consist of pre-BCK-algebras (possibly) structurally
enriched with band operations A or V such that the natural band quasiorder <p
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coincides with or dualises the underlying pre-BCK-algebra quasiorder <¢{~ 0,
Let A€ C or Ve C. For each choice of C, it is shown that the class PQ. is a
variety. For each FQ., we present analogues of the Clifford-McLean theorem
for hands or quasilattices; some sufficient conditions for each PQ¢ to be regular
(in a sense suitably modified from §1.3.15) are also presented.

In §3.3.13 we study the family of classes IQ¢:, {\,0} € C' C {A,V,\,0}. Mem-
bers of the classes 1Qq consist of implicative BCS-algebras (possibly) struc-
turally enriched with band operations A a.u?d V such that the natural band
partial order <4 and quasiorder <p respectively coincide with or dualise the
unclerlying implicative BCS-algebra partial order <9 and quasiorder <\,
For each choice of ', A€ C' or ve (', it is shown that the class 1Qq is a
variety. Lot A€ C'. For each ¢’ and any A € 1Qc, it is shown that the band
with zero reduct (A4; A,0) is locally Boolean (in the sense of §1.3.15). In one
of the two main results of the section, the skew Boole un algebras are charac-
verised amongsi the members of 1Qg, {A,V} C C'. Ignoring issues of similarity
type, we also show that Idziak’s variety of BCK-lattices is the splitting variety
associated with the variety of left handed skew Boolean algebras in a certain
large subvariety of PQ¢, {A,V} CC.

In §3.3.27 we study the family of classes BPe, {=,0} C C C {A,V, +,0}.
Members of the classes BP; consist of BCK-algebras (possibly) structurally
enriched with band operations A or V such that the natural band partial
order <y coincides with or dualises the underlying BCK-algebra partial or-
der <{=®, Let A€ C or V€ C. For each choice of C, we show that the
class BP¢ is a variety. It is shown that no non-trivial analogue of the Clifford-
McLean theorem exists for each BP: and hence that each BP¢ is only trivially
regular (in 2 sense suitably modified from §1.3.15). We also prove that each
BP¢ is ideal determined, congruence distributive and (when V € ) congruence
permutable. |

In §3.3.43 we study the family of classes IPqr, {/,0} C C" C {A,V,/,0}.
Members of the classes IP¢+ consist of implicative BCK-algebras (possibly)
structurally enriched with band operations A and V such that the natural
band partial order <4 coincides with or dualises the underlying implicative

o ,'!‘ . I'h‘.ﬁl.l: e
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BCK-algebra partial order <{/®, For each choice of C", A€ C" or Ve C”,
it is shown that the class IPer is a variety. Let A€ C". For each C" and
any A € |Pgv, it is shown that the band with zero reduct (4; A,0) is locally
Boolean (in the sense of §1.3.15). In the other main result of the section,
the skew Boolean M-algebras are characterised (to within termwise definitional
equivalence) amongst the members of IP¢v, {A,V} C C”. We also present a
simple equational axiomatisation of the variety of skew Boolean N-algebras.

The final two subsections of this section are devoted to the further expioration
of the theory of skew Boolean N-algebras, and hence, by extension, the the-
ory of pointed discriminator varieties. In §3.3.59 the theory of skew Boolean
N-algebras as presented in §1.4.32, §1.4.37 is extended to double-pointed skew
Boolean N-algebras. It is shown that the class of double-pointed skew Boolean
N-algebras is a variety, and the subdirectly irreducible double-pointed skew
Boolean N-algebras are characterised to within isomorphism. It is also shown
that the variety of double-pointed left handed skew Boolean N-algebras coin-
cides with the pure double-pointed discriminator variety, namely the variety
of type (3,0, 0) generated by the class of all double-pointed discriminator al-
gebras. In consequence, we infer that any algebra A in a double-pointed dis-
criminator variety has a double-pointed left handed skew Boolean N-algebra
polynomial reduct whose congruences coincide with those of A.

In §3.3.69 we present an axiomatisation of a certain deductive system SBPC.
We show SBPC is definitionally equivalent to the assertional logic of the variety
of double-pointed left handed skew Boolean N-algebras, and hence infer that
SBPC is definitionally equivalent to the assertional logic of the pure double-
pointed discriminator variety. It is also show that, in principle, there exists an
axiomatisation of SBPC such that (MP) is the only (proper) rule of inference.

Remark 3.3.1. We impose two fundamental restrictions on the scope of our
study of the varieties BP¢ {and hence, by extension, on our study of the va-
rieties PQ¢) in this section. First, our study of the varieties BP; does not
extend to a study of those members of BP¢ for which the BCK-algebra reduct
has condition (S) (recall the definition of condition (S) from §2.1.1). Although
BCK-[semi]lattices with condition (S) were considered by Idziak in his origi-
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nal paper {116] on BCK-[semillattices, a study of those members of the vari-
eties BP¢ for which the BCK-algebra reduct has condition (S) contravenes (at
least in spirit) the restrictions of Remark 1.1.2, because BCK-algebras with
condition (S) are precisely the { = ,0)-reducts of pocrims (by results due to
Iséki [121, 123]). Second, our study of the varieties BP¢ does not extend to
a study of the assertional logics S(BP¢,0) (with the obvious exception of the
assertional logic of the variety of double-pointed left handed skew Boolean
N-algebras), because the deductive systems S(BP¢,0) are, by remarks due to
Restall [199], not in general amenable to standard logical analysis (for exam-
ple, in the sense of [198]): ¢f Remark 3.3.80 and the remarks of §4.2.27 in
the sequel. By extension, the preceding restrictions apply mutalis mutandis
to our study of the varieties PQg, to better enable the uniform development
of the theory of the varieties BP¢ and PQg. |

3.3.2. Pre-BCK Bands and Pre-BCK Quasilattices. A lower pre-
BCK-band is an algebra (4; A, —,0) of type (2,2, 0) such that: (i) the reduct
(4; A,0) is a band with zero; (ii) the reduct {(4; =,0) is a pre-BCK-algebra;
and (iii) the natural band quasiorder <p coincides with the pre-BCK qua-
siorder <4 ~0 Clearly a lower pre-BCK band A is a lower BCK-semilattice
iff either A= (25) or Az Ay=yAcz

Theorem 3.3.3. An algebra (A4; A, = ,0) of type (2,2,0) is a lower pre-BCK-
band iff the following identities are satisfied:

cA(yA2)=(zAy) Az (3.49)

TAZTRZ (3.50)

(z~y)=(z=2))~-(z=y)=0 (3.51)
T—0xz (3.52)
0—z~0 | (3.53)

(tAyAz)—y=0 (3.54)
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z-(z-y)Ayr(z=(z<y)=z—~(z--y). (3.55)
Thus the class of lower pre-BCK bands is a variety.

Proof. Let A := (A; A, =,0) be an algebra of type (2, 2,0) satisfying (3.49)-
(3.53). To prove the theorem it is sufficient to show:

(i) A [=(3.54)-(3.55) iff <¢4: =% and <p coincide;
(i) A |= (3.54)—(3.55) implies {A4; A,0) is a band with zero.

For (i), let a,b € A and suppose A = (3.54)-(3.55). Suppose a <4 =0 p,
Then a=a=0(by 352)Fa=(e=b)={a=(a=b))AbA (a=(a=1))
(by (3.55)) = (a~0)AbA(a=0)=aAbAa(by (3.52)). Hence a <p b.
For the opposite implication, assume ¢ <p b. Then a A & A a = a, whence
a~b =(a AbAa)=b=0by (3.54). Hence a <4 =% } and thus
e <p biff @ <4 =0 b Conversely, suppose the quasiorders <p and <{4i =:0)
coincide. From a = (a = b) <4 =9 p we have a + (a =~ b} <p b, which implies
(a=(a=b)) AbA(a=(a+~b)) =a=(a=b). Also,fromaAbAc=pb
we have a A b A a < =9 p whence (a A b A a)=b = 0. Thus A |
(3.54)~(3.55).

For (ii), suppose A k= {3.54)—(3.55). We have bAQOAb={(bAOAD)=0=0
for any b € A by (3.52) and (3.54). Thus 0 = (a AQ) A0 A (a AD)=(a A
O)A(aAD)=aAOforanya€ A But then0=a A0A a=0A a, s0 the
reduct {A; A,0) is a band with zero. L

An upper pre-BCK-band is an algebra {4; V, = ,0) of type (2, 2,0) such that:
(i) the reduct (A; V,0) is a band with identity; (ii) the reduct (4; ~,0) is a
pre-BCK-algebra; and (iii) the natural band quasiorder <p dualises the pre-
BCK quasiorder < ~9 in the sense that a <p b iff b <% =9 g Clearly
an upper pre-BCK band A is an upper BCK-semilattice iff either A = (2.5)
or ARz Vy=yVz. The proof of the following theorem is similar to the
proof of Theorem 3.3.3 and is omitted.
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Theorem 3.3.4. An algebra (A; A, =,0) of type (2,2,0) is an upper pre-
BCK-band iff the following identities are satisfied:

Thus the class of upper pre-BCK-bands is a variety.

tV{yvz)=(zVy Ve (3.56)
TVIRI | (3.57)
- AVVESE (3.58)
. OVoraz (3.59)
(2y)=(z~2)) = (z=9) ~ 0 (3.60)
s-0%z (3.61)
0-z~0 (3.62)
sV(y—(y-z)vVensg | (3.63)
21 (yVzVy) a0, (3.64) <

Remark 3.3.5. The identities (3.58)—(3.59) cannot be omitted from the ax-
lomatisation of the variety of upper pre-BCK bands given in Theorem 3.3.4.
To see this,-let A := {0,1,2}, let A := (4; VA, ~4A 04) be the algebra
with distinguished element 0 and whose binary operations V* and =4 are

determined by the following operation tables:

A

vilo 1 2 =4101 2
0[012 01000 _
1112 1]100
2112 2200

and let A’ := (4; V&, =4 04} be the algebra of type (2,2,0) obtained
from A upon defining 04 := 04, ¢ =Ab:=a=-Aband aV® b:=b VA4
for any ¢,5 € A. An easy sequence of checks shows A |k (3.56)—(3.57),
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(3.59)—(3.64). However A [ (3.58) since 2 V 0 = 1 # 2. From these remarks
and the definition of A’ it follows at once that A’ |= (3.56)—(3.58), (3.60)-(3.64)
but A } (3.59). "

A quasilattice with zero is a qua;“la;ttice (4; A,V) for which therc exists 0 € A
(the zero of (4; A,V)) such that both 0 _{;‘f; N ¢ and @ ngiv) 0 for ali
a € 4; by abuse of language and notation we often identify a quasilattice

- with zero A := {4; A, V) with the algebra (4; A,V,0) obtained from A upon
augmenting the language of A with a new nullary operation symbol 0 whose
canonical interpretation on {A4; A,V,0) is the zero element 0 € A. A pre-BCK
quasilattice is an algebra (A; A,V, =,0) of type (2,2,2,0) such that: (i) the
reduct (4; A,V,0) is a quasilattice with zero; (ii) the reduct (4; =,0) is a
pre—BCK-algebra:; and (iil) the natural quasilattice quasiorder <p coincides
with the pre-BCK quasiorder < ~%, Clearly a pre-BCK quasilattice A is a
BCK-lattice iff either A = (25), AEsAymyAzorAEzVyxyVa.
From Theorem 3.3.3 and Theorem 3.3.4 the following result is clear.

Theorem 3.3.6. An algebra A := (A; A,V, =-,0) of type (2,2,2,0) is a pre-
BCK quasilattice iff the reduct (A; A, +,0) is a lower pre-BCK band and
the reduct {A; V, ~,0) is an upper pre-BCK band. Hence A is a pre-BCK
quasilattice iff A = (3.49)-(3.64). Therefore the class of pre-BCK quasilattices
is a variety.

Let C denote an arbitrary subset of the language {A,V, =,0} of pre-BCK
quasilattices that contains both ~ and 0. Let:

o PQc denote the variety of pre-BCK-algebras when C = { =, 0};

o PQc denote the variety of lower pre-BCK bands when € = {A, ~,0};

e PQc denote the variety of upper pre-BCK bands when € = {v, =, 0};
e PQc denote the variety of pre-BCK quasilattices when C = {A,V, ~,0}.

Notice that for each C, PQg is the class of algebras with language C axiomatised
by those identities among (3.49)~(3.64) that use only operation symbols from C;
of course, this observation is dependent upon the axiomatisation of the variety
of pre-BCK quasilattices given in Theorem 3.3.6.

1.-\/.__,/'
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Remark 3.3.7. Let A be an algebra of type £. For £' C £, by an £'-subreduct
of A we mean a subalgebra of the reduct A|., == (4; f4)ser. For a class K of
algebras, let £-K denote the class of all £'-subreducts of members of K. For
each C, PQc should not be confused with C-FQ. In particular, in contrast to
each PQ¢, we do not know in general if each C-PQ is even a quasivariety. ®

Throughout the remainder of this subsection we assume A€ C or V€ C. Re-
call from §1.4.3 that quasilattices satisfy the following modified form of the
Clifford-McLean theorem: every quasilattice is a lattice of its maximal rect-
angular subalgebras. Because any member of any PQ¢ possesses a coherent
D-quasiordering by definition, it is natural to anticipate that the Clifford-
McLean theorem for quasilattices extends to the varieties PQc.

Theorem 3.3.8 (Clifford-McLean Theorem for PQ;). Let A € PQ¢. For
any a,b € A the following are equivalent:

1. aDb;

2. a

(1

b.
Thus the following assertions hqld:

1. If A€ C then D-equivalence is a congruence relation on (4; A, =0).
The D-equivalence classes are the mazimal rectangular subalgebras of
(A; A,0), while the quotient algebra (A; A, =,0)/D s the mazimal
lower BCK-semilattice homomorphic image of (4; A, ~,0);

2. If V& C then D-equivalence is a congruence relation on (A; Vv, ~,0).
The D-equivalence classes are the mazimal rectangular subalgebras of
(4; V,0), while the quotient algebra (A; Vv, ~,0)/D is the mazimal
upper BCK-semilattice homomorphic image of (A; Vv, ~,0);

8. If {A,V} C C then D-equivalence is a congruence relation on A. The
D-equivalence classes are the mazimal rectangular subalgebras of (A; A

,V,0), while the quotient algebra A/D is the mazimal BCK-lattice ho-
momorphic image of A.
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Proof. Let A € PQe. For the first assertion of the theorem, just note aDb iff
a6 =<p b b=paiffa < =0 p <A =0 4 iff 4=b. We prove the remaining
assertions of the theorem only in the case that {A,Vv} C C; the proofs in the
other cases are not essentially différent and are omitted. So suppose {A,V} C
C. Since = is a congruence on {A; = ,0) and P is a congruence on (A4; A,V
,0), it follows from the first assertion of the theorem that D is a congruence
_ on A. By the Clifford-McLean theorem for quasilattices and Theorem 2.1.14,
we deduce that A/D is the maximal BCK-lattice homomorphic image of A
and that the D-equivalence classes are the maximal rectangular subalgebras

of (4; A,V,0). This establishes the theorem in the case that {A,V} C C, so
the proof is complete. ]

Let A be a non-commutative lattice. In general, the four Green’s equivalences
Lia;nys Rea;ays Leayvy and Ry vy on A need not be full congruences on A,
even if A is a quasilattice (compare this situation to that of skew lattices—
recall Theorem 1.4.11). A is said to be regular if all of Lia; ay, Ria; ays Lia;v)
and R4, vy are congruences on A; notice this definition is consistent with
both §1.3.11 and Theorem 1.4.11. Necessary and sufficient conditions for the
regularity of non-commutative lattices have been studied extensively by Laslo
and Leech in {145, Section 4]. In more detail, recall from non-commutative
lattice theory that a non-commutative lattice is one-sided if any one of the
following pairs of identities is satisfied [145, Section 4}:

tAyAz=zAy and zVyVz=zVy (1, 1)
tAyAz=zAy and zVyVrsyVe (1, r)
TAyAz=yAz and zVyVzszVy (r, 1)
rtAyAz~=yAz and zVyVI=yVz. (r, r)

A non-commutative lattice is two-sided if it is not one-sided. By Laslo and
Leech [145, Theorem 20] one-sided quasilattices are regular. In turn, the class
of all regular quasilattices is a variety {145, Theorem 19] that is generated by
the class of all one-sided quasilattices [145, Theorem 20].

Remark 3.3.9. One-sided non-commutative lattices were introduced by Laslo
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and Leech in [145, Section 4] under the name flat non-commutative lattices,
in conformance with standard semigroup terminology. From the perspective
of algebraic logic, however, the use of the adjective ‘flat’ to describe one-sided
non-commutative lattices is unfortunate, for it conflicts with the established
meaning of the term ‘flat’ as employed in domain theory. In particular, it
conflicts with the term ‘flat’ as used in this thesis to describe algebras that are
flat posets (and hence flat domains) with respect to some underlying partial
ordering. We adopt alternative terminology here for this reason. |

Let A € PQ¢. By analogy with non-commutative lattice theory, fof AeC
Ve C; {A,V} C C) we say (A; A, =,0) [{(4; Vv, =,0); (4; AV, =,0)] is
regular if Lea; ) and Rig ay [ocasvyy Reaivi Liasmp Reainy Leasvyy Reasvl
are congruences on (4; A, =,0) [(4; V, =,0); (4; AV, =,0)]. For C =
{n, =,0} [C = {v, =,0}] we say A is one-sided if its band reduct (4; A)
[(4; V)] is eithar left regular or right regular (recall §1.3.11). We say A is two-
sided if it is not one-sided. For C = {A,V, =,0} we say A is one-sided if its
quasilattice reduct {A; A, V) is one-sided; A is two-sided if it is not one-sided.

Proposition 3.3.10. Let A € PQc. If A is one-sided then A is regular.

Proof. We prove the proposition only in the case that {A,V} C C; the proofs
in the other cases are not essentially different and are omitted. Let A € PQe.
By the Clifford-McLean theorem for PQ¢, the Da-classes of A form maximal
rectangular bands in both {4; A} and (4; V). Since the identities (I, I)~(r, r)
are respectively equivalent to assorting that:

aAb=alaV b= ag]in each A-rectangular [V-rectangular] class;
aAb=>5[aV b= a]in erch A-rectangular [V-rectangular] class;
a Ab=alaV b=D>]in each A-rectangular [V-rectangular] class;
aAb=1>{aV b= "b]in each A-rectangular [V-rectangular] class

it follows that each of Li4; A, R(a;a) £(4; vy and Ry, vy must be either Dy
or wa. Hence all of Li4;ny, Ria; a)y £(4; vy @nd Ry4; vy are congruences on A,
so A is regular. n

Let A € PQc. In general (that is, when A is two-sided), the equivalences
Lia; nys Riasay, Lia; vy and Ry, vy (if they exist) need not be full congruences

T BT A
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on A. This is so even if A is a pre-BCK quasilattice whose quasilattice with
zero reduct (A; A,V,0) is a skew lattice. To see this, consider the following
5-element algebra A:

A0 abcd V¥0aebed =4|0ab cd

000000 O0]|0abecd 01]0000°0
a |0 a b c d ¢ |la a a a a a e 0 a d 0
bl0bbbb blbabecd b |b0OOOO
J c |0 ¢c ¢c cc clc a b ¢ d c |¢c 0000
d{0abecd dlddddd d|do0adaldo
A

An easy sequence of checks establishes that A is a pre-BCK quasilattice for
which the quasilattice with zero reduct {(4; A, V,0) is a skew lattice with zero.
Moreover, ¢ = a(modLig;avy) and b = c(mod Lig; avy) (since Lig,n =
Ria;vy and Ry, ny = L4, vy—recall §1.4.5). However, (a =b) A (a=c¢)=a A
d=d a=a<+b, 50 L v is not a congruence on A.

For each C, the following proposition provides a sufficient condition for A €
PQ¢ to be regular. Theorem 3.3.21 below shows the hypotheses of the proposi-
tion are not artificial; indeed, among natural syntactic conditions on members
of PQ¢ implying regularity, the assumptions of the proposition are the most
general known to us.

Proposition 3.3.11. Let A € PQ¢. The following assertions hold:

1. If A€ C, (A; A) is regular and A. satisfies:

(z-2)A(y—2)=(zAy)—2 (3.65)
(z—a)AG—y) = (t—(zAy)=(z—y)~(y—~3z) (366)

then (A; A, =,0) is regular. That is, £(a; ny and R(a; ny are congruences
on (Aa Ny ;:0);

2. If veC, (A; V) is regular and A satisfies:

(z=2)V({y—2)=(zVy)—=2 (3.67)
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(z—2)Vie—y)rz=(((zvy)=(z=y)~(y—2) (368)

then (4; V, =,0) is reqular. That is, Li4;vy and R4, v) are congruences
on {4; V, ~,0);

3. If {n v} C€C, (4; A V,0) is regular (in particular, if (4; A,V,0) is a
skew lattice with zero) and A satisfies (3.65)—(3.68), then A is reqular.
That is, ﬁ(A; A R(A;A}, EM;V) and R(A;V) are congrﬂences on A.

Proof. Let A € PQ; and let a,b,¢ € A. For (1), suppose A€ C, (4; A) is
regular and that A |= (3.65), (3.66). We show only that L4, ») is 2 congruence
on {4; A, ~,0); the proof that R4,y is a congruence on (4; A, ~,0) is
similar and is omitted. Since (4; A) is regular, to see L4, Ay 1s a congruence
on {4; A, ~,0) it is sufficient to show:

(1) a= b(mod La; A)) implies a =~ ¢ = b =~ ¢ (mod La A))?
(ii) @ = b (mod L4; ny) implies ¢ + @ = ¢ =~ b (mod L4, o))

since (i) and (ii) together gnarantee the substitution property for the ~ op-
eration. So suppose a = b{mod L4; ). For (i), we have (a - ¢} A (b~¢) =
(6 A b)=c¢ = a~c by (3.65); likewise (b=¢) A (a=¢c) = b=c. For (ii
notice a = b{mod L4; »y) implies ¢ = b (mod D) and hence a = b (mod=
By (3.66),

)!
).

(c=a) Ale—b)=((e=(aAb)=(a=8) = (b=a)
= (e (aA8)=0) =0
=c¢—{aAb) by (3.52)
= ¢ — a.
Similarly (¢ = b) A (¢ = a) = ¢ = b. Thus £4; ») has the substitution property
for the = operation and L y; ») is a congruence on (4; A, +,0).

For (2), suppose V€ C, {(A; V) is regular and that A = (3.67),(3.68). We
show only that L4,y is a congruence on (4; V, = ,0); the proof that R4; vy
is a congruence on (A; V, +,0) is analogous and is omitted. Since (4; V) is
regular, to see L4, v) is a congruence on {4; V, =,0) it is sufficient to show:
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(i) a=b(mod L4 ) implies a ¢ = b= ¢ (mod L4, vy);
(ii) ¢ = b (mod L4, v)) implies ¢ = ¢ = ¢ = b (mod L4; vy)

since (i) and (ii) together guarantee the substitution property for the ~ op-
eration. So suppost a = b (mod L4;vy). For (i), we have (¢ ~¢) V (b=¢) =
(avVbd)+c=ea+chby 367, (b+-c)V (a=e)=b=c¢ likewise. For (ii),
notice a = b (mod L4, vy) implies ¢ = b (mod D) and hence ¢ = b (mod E).
By (3.68),

(c=a)Vie=b)=c—{(((aVb)—=(a=Db)~(b—a))
¢—({{(e Vv b)—0)=0)
=c¢—(aVb) by (3.52)

f== 0 — .

Similarly (¢ = &) V (¢ = @) = ¢ = b. Thus £4,v) has the substitution property
for the = operation and L4, vy is a congruence on (4; Vv, =,0).

Item (3) now follows as a trivial consequence of (1), (2) and the regularity of
(4; AV, 0). .

Problem 3.3.12. For each C, let K, denote the class of all members of PQ.
that are regular. Is K¢ equationally definable? u

3.3.13. Implicative BCS Bands and Implicative BCS Quasilattices.
By the results of §1.4.32, §1.4.37, $3.2.6 and §3.2.22, algebras arising in binary
discriminator, pointed fixedpoint discriminator and pointed ternary discrim-
inator varieties all support an underlying ‘locally Boolean’ structure (in the
sense of either §1.3.15 or §1.4.24), which observation motivates the study of
those members of PQ. for which every (appropriately defined) principal sub-
algebra is ¢ Boolex:: ..ttice. Because of the results of §2.3.19, these remarks
lead naturally to a consideration of those members of PQ. for which th= pre-
BCK-algebra reduct is an implicative BCS-algebra.

Proposition 3.3.14. Let A := (4; A,\,C} de an algebra of type (2,2,0) such

that the reduct (A; A,0) is a band with zero and the reduct (A; \,0) i un
implicative 3CS-algebra. The following are equivalent:
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1. Forany a,b€ A,

e <y biffa <V p and a<p b iff a X4 g

2. A satisfies the identity:

tAyAzx~zNy. (3.65)

Proof. Let A := (A; A,\,0) be an algebra of type (2,2,0) such that the
reduct {4; A, 0) is a band with zero and the reduct (4; \,0) is an implicative
BCS-algebra.

(1) = (2) To prove the implication, we first observe that for any a, b € 4,

(i) aAbAa=anb(modE);
(i) a\(a\(aAbAa) =aAnbAa.

For (i), a M b is a greatest lower bound of {a, b} with respect to <4\ by
Proposition 2.3.5, Proposition 2.2.30 and Proposition 2.2.11. Also, a Ab A a
is a greatest lower bound of {a, b} with respect to < \9 since it is a greatest
lower bound of { e, b} with respect to <p. Therefore a A b A a = aMb (mod E)
by Lemma 1.2.3(2).

For (ii), just note that a A b A a <y a implies a A b A a <¢4iV0 o whence
c\(e\{aAbA@)=aAbAa.

To complete the proof of the implication, let a,b € A and observe that a A
b A a,aNbd € (a)a;\0. DBecause of Proposition 2.3.31, this implies the
equivalence a A b A a = ¢ i? . (modE) of (i) collapses in (a](4;\0) to the
equality a A b A @ = aMb. Hence a\b = (a N b)fa]m-\o) =(eaANbA
Nalproy = (an{aAbA a))(a]m\‘o) (by (ii)) = a\(a A b A a). But then

aAbAa=a\{a\(aAbAa)) (by (ii)) = a\(a\b) as requirea.

(2) = (1) To see a <4\0 piff @ <y b for any a, b € A, suppose a <{4i\0) p,
Then bMNa=ga,50a Ab=bNae)Ab=(bAeA)Ab=bAaANb=
677 = a by (3.69) applied twice. Similarly, & A a = a. Therefore a <4 b. For
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the converse, suppose a <y b. ThenaAbAa=a,50a=aAbdbAa=albd
by (3.69). Similarly, a = b a. Therefore a <4i\0 p,

To see a <4\ p iff ¢ <p b for any a,b € A, suppose a <{4\9 b Then
a\b=0,s0a=a\0=a\(a\b)=aAbA a by {(3.69). Hence a <p b. For the
converse, stppose ¢ <p b. ThenaAbAe=aandsoa=aAbAa=alb
by (3.69). Therefore a\b = 0 by Lemma 2.1.42(1). Hence a <4\ .~ =

A lower implicative BCS band is an algebra (4; A,\,0) of type (2,2,0) such
that: (i) the reduct (A4; A,0) is a band with zero; (ii) the reduct (4; \,0) isan
implicative BCS-algebra; (iii) the natural band quasiorder <p coincides with
the implicative BCS-algebra quasiorder <{4i\0: and (iv) the natural band par-
tial order <y coincides with the implicative BCS-algebra partial order <{4 W0},
From Proposition 3.3.14 the following result is clear.

Theorem 3.3.15. An algebra A = (4; A\, 0) of type (2,2,0) is a lower
implicative BCS band iff the reduct (4; A,0) is a band with zero, the reduct
{(4; \,0) is an implicctive BCS-algebra, and A | (3.69). Thus the class of
lower implicative BCS bands is a variety.

An upper implicative BCS band is an algebra (A; A,\,0) of type (2,2, 0) such
that: (i) the reduct (4; Vv,0) is a band with zero; (ii) the reduct {4; \,0)
is an implicative BCS-algebra; (iii) the natural band quasiorder <p dualises
the implicative BCS-algebra quasiorder <¢i\® in the sense that a <p b iff
b <4 =0 g for any ¢,b € A; and (iv) the natural band partial order <y
dualises the implicative BCS-algebra partial order <{4 V0 in the sense that
a <y biff b <4 =0 4 for any ¢,b € A. Although we know of no elegant
characterisation of upper implicative BCS bands analogous to that of Theo-
rem 3.3.15 in general, we nonetheless have the following result, the proof of
which is omitted.

Theorem 3.3.16. An algebra A := (4; V,\,0) of type (2,2,0) is an upper
implicative BCS band iff the reduct {A; V,0) is a band with zero, the reduct
(4; \,0) is an implicative BCS-algebra, and A satisfies the following identities:

eV (y\(y\z)) V== (3.70)

',-J.'
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\yvzVvy =0 {3.71)

z\(z\zVyVvz)) ~z | _ {3.72)
(zVvyVva\((zvyVv)\z)=z (3.73)
zV(z\y)~z (.‘3.74)
(z\y) V z = . (8.75)

Thus the class of upper tmplicative BCS bands is a variety.

Recall from {145, Section 1] that a fine quasilattice is a non-commutative lat-
tice that is simultaneously both a quasilattice and a paralattice. By the re-
marks of §1.4.3 and §1.4.4, the class of all fine quasilattices is a variety. Fine
quasilattices naturally generalise skew lattices, inasmuch as several important
structural results for skew lattices extend to fine qusasiiattices: se2 Laslo and
Leech {145, Section 5, pp. 28-29].

An implicative BCS quasilattice is an algebra of type (2,2,2,0) such that: (i)
the reduct {4; A,V,0) is a fine quasilattice with zerc; (ii} the reduct {4; \,0)
is an implicative BCS-algebra; {iii) the natural quasilattice quasiorder <p co-
incides with the implicative BCS-algebra qnasiorder <{4i\%; and (iv) the nat-
ural quasilattice partial orde: <y coincides with the implicative BCS-algebra
partial order <{(4i\9, From Proposition 3.2.14 the following resuit is clear.

Theorem 3.3.17. An algebra A := {A; A, V,\,0) of type (2,2,0) is an im-
plicative BCS quasilattice iff the reduct (A; A,V,0) is a fine quasilattice with
zero, the reduct (A; \,0) is an tmplicative BCS-algebra, and A | (3.6¢). Thus
the class of implicative BCS guasiiattices is a variety.

For consistency with the prequel, let ' denote an arbitrary subset of ihe
language {A, V,\, 0} of implicative BCS quasilattices that contains all of A,
and 0. Ignoring issues of type, let:

o PQe denots the variety of pre-BCK-alge! ~as when C' = {\,0};

¢ PQc denote the varicty of lower pre-BCK bands when €' = {A,\,0};
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o PQc denote the variety of upper pre-BCK bands when C' = {A,\, 0};

e PQc: denote the variety of pre-BCK quasilattices when C' = {A,V,\,0}.
Also, let:

o IQc denote the variety of implicative BCS-algebras for C' = {\, 0};

o 1Q. denote the variety of lower implicative BCS bands for £’ = {A,\,0};

o [Q denote the variety of upper implicative BCS bands for ¢’ = {v, \, 0};

» |Qc denote the variety of implicative BCS quasilattices for C' = {A,V

»\, 0},
Given the above notation, clearly IQx C PQg for any fixed choice of C'.

In non-commutative lattice theory, there exists a tundamental connzaction be-
tween vrincipal subalgebras of normal bands in semigroup theory and vae study
of ‘lov:ally Boolean’ structures: see Leech [150, Section 0.10). For the varieties
IQer, A€ €', however, it is the underlying implicative BCS-algebra principal
subalgebra structure that is decisive. To see this, let A € PQe, A€ C/, be such
that the reduct {4; \,0) is an implicative BCS-algebra. Notice that in this
case A has both a band with zero reduct {4; A,0) and a left normal band with
zero polynomial reduct (4; M,0), where (A; M, 0} is determined by (4; \,0)
as per Corollary 2.3.22(1). From this observation it follows that every a € 4
generates both a principal subalgebra (af(4; 0y of the band with zero reduct
(4; A, 0) (recall Lemma 1.3.13) and a principal subalgebra (a]4;\,0y of the left
normal band with zero polynomial reduct {A4; M, 0) (recall Proposition 2.3.31),
whence we have the following proposition.

Proposition 3.3.18. Let A€ C and let A € PQe be such that the reduct
(4; \,0) of A is an implicative BCS-algebra. Then A € IQq iff the principal
subalgebras (@]¢a; a0y and (a](a;\ ) coincide for each a € A.

Proof. Let A€ C and let A € PQe be such that the reduct (4; \,0) of A
is 2an imnlicative BCS-algebra. Throughout the proof, we denote by (a](4; A0
2ad (a4, - o) the respective universes of the principal subalgebras (a]i4; 1,0

L
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and (a](4; - 0). To simplify notation, we may also write simply (a]a for both
(@)a; a0y and (a}(a; = 0y when these sets coincide.

(=) Suppose A € |Q¢:. To see the principal subalgebras (a](; A0y and (a)(4;\,0)
coincide for every a € A, it is sufficient to show:

(i) Forany a € 4, (a]i; a0 = (alia; \0p5
(ii) If b,c € (a]a then bAc=bNc.

For (i), simply observe that for any a € A, (6)(4;40 = {0 : 0 <y a} = {b:
b <N g} = (g)ia,\,0) because <y and <M4iV0 coincide.

For (ii), Yy (i) we have that (a](4, A0y and (&](a; ~ 0 coincide, so the reference
to (a]a makes sense. Let b, ¢ € (a]4. From b A ¢ = b A ¢ A b (mod D) we have
that b Ac=bA cAb(modE). Also, b A ¢ A b= bNc(modE) by the proof
of Theorem 3.3.14. Hence b A ¢ = bN ¢ (mod Z). Now for any a € A we have
that the restriction of = to (a4 \ gy is the identity congruence on (a]4; 1,0y (by
Proposition 2.3.31), whence the equivalence & A ¢ = bM ¢ (mod E) collapses to
the equality b A ¢ = b M ¢ as desired.

(<) Suppose the principal subalgebras (a](4; A and (a](a;\0) coincide for
each ¢ € A. Since A € PQg, the quasiorders <p and <4V coincide by
definition, so to establish the assertion we need only show that the partial
orders <y and <¢i\9 coincide also. For this, just note that for any b, ¢ € 4,
b <n ¢ it () n0) S (chiaingy I (Beaing) € (a0 HEL<HAND e

"Because of the proposiiion, for any A € IQe, A € €, we may unambiguously
denote by {a]s the principal subalgebra generated by ¢ € A4; we follow this
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convention in the sequel.

Corollary 3.3.19. For any A € IQe, the principal subalgebra (a)a generated
by a € A is a Buolean lattice. Consequentiy the band with zero reduct (A; A, 0)
18 normal.

Proof. Let A € 1Qq. For every a € A, the principal subalgebra (a]a generated
by a is a Boolean lattice, because of Proposition 3.2.18 and Proposition 2.3.31.
Hence (4: A,0) is normal (by Lemma 1.3.16), and the proof is complete.
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Given the preceding corollary, throughout the remainder of this subsection we
assume A € C'.

Corollary 3.3.20. Let Ve C' and let A € Q¢ If the quasilattice with zero
reduct (4; A, V,0) is a skew lattice with zero, then it is distributive local.

Proof. Let V€ ' and let A € IQc be such that the quasilattice with zero
reduct {A; A,V,0) is a skew lattice with zero. It is clear that (4; A,V,0) is
local. Since for each a € A, the sublattice (a]a is distributive, from Proposi-
tion 1.4.22 we deduce that {4; A,V,0) is also distributive. Thus (4; A,V,0)
is distributive local. N

An implicative BCS skew latlice is an algebra (4; A, V,\,0) of type (2,2,2,0)
such that: (i) the reduct (4; A,V,0) is a skew lattice with zero; (ii) the
reduct (4; \,0) is an implicative BCS-algebra; (iii) the natural skew lattice
quasiorder <p coincides with the implicative BCS-algebra quasiorder <4 \.0),
and (iv) the natural skew lattice partial order <y coincides with the implicative
BCS-algebra partial order <{(4\9, Clearly the class of implicative BCS skew
lattices is a subvariety of the variety of implicative BCS quasilattices.

Corollary 3.3.19 and Corollary 3.3.20 direct attention towards those members
of IQe:, V € C', that are implicative BCS skew lattices, inasmuch as these alge-
bras preserve several important structural properties of skew Boolean algebras.
In particular, if {(4; A, V,\,0} is an implicative BCS skew lattice, then: (i} the
skew lattice with zero reduct (A4; A,V,0) is distributive local; (ii) the reduct
(4; \,0) is an implicative BCS-algebra; and (iii) for every ¢ € A, the principal
subalgebra (a]a generated by 2 is a Boolean sublattice. The precise rela-
tionship between implicative BCS skew lattices and skew Boolean algebras is
clarified in the following theorem, a first-order proof of (a slightly less general
form of) which may be found in [210, Section 4.2].

Theorem 3.3.21. An algebra A := (A; A,V,\,0) of type (2,2,2,0) is a skew
Boolean algebra iff the following conditions are satisfied:

1. The reduct {A; A, V,0) is a join symmetric skew lattice with zero;

2. The recuct {4; \,0) is an implicative BCS algebra;
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3. A satisfies the identity:

TAyAz=zNy. (3.69)

Given assertions (1)-(3) above, implicative BCS difference coincides with stan-
dard difference.

Proof. Let A := {(A; A,V,\,0) be an algebra of type (2,2, 2,0).

(=) Suppose A is a skew Boolezn algebra. Then the reduct (4; A,V,0) is a
locally Boolean skew lattice (in the sense of §1.4.24) by definition and so is join
symmetric. Also, the reduct (4; \,0) is an implicative BCS-algebra by the
proof of Proposition 3.1.8. Moreover, A = (3.69) since 2*, 37, 3%, = (3.69).
Hence A is an implicative BCS skew lattice.

(<) Suppose A satisfies Conditions (1)-(3) of the theorem. By (3} and Propo-
sition 3.3.14, A € 1Q¢:. By Corollary 3.3.20, therefore, the skew lattice with
zero reduct {A4; A,V,0) is distributive local. By (1) and Lemma 1.4.17 it
follows that (A4; A,V,0) is symmetric. Since for every ¢ € A, the princi-
pal subalgebras (a)¢4; r0) and (a)i4; a,v,0) Must coincide, by Corollary 3.3.19
we have that (4; A,V,0) is locally Boolean. To complete the proof it re-
mains to show a\b is the standard difference of a,b € A. For this, just note
that a\ is the complement of a M b in (a]¢4;\,0 by (2) and Corollary 2.3.33,
and hence that a\b is the complement of a A b A a in (6](4, o0 by (3) and
Proposition 3.3.18. Since (a](a; 10 and {(a)ia; a,v,0) must coincide, a\b is the
complement of ¢ A b A a in (a)4; av,0)- Hence a\b is the standard difference
of a,b € A, and A is a skew Boolean algebra. ]

Corollary 3.3.22. An algebra A := (4; A, V,\,0) of type (2,2,2,0) is a left
handed skew Boolean algebra iff the following conditions are satisfied:

1. The reduct {A; A, V,0) is a join symmelric skew lattice with zero;
2. The reduct (A; \,0) is an implicative BCS algebra;

3. The skew lattice meet A coincides with the implicative BCS meet M.




i,
v
O
|

Ly
A
"

k-

r.: .
]
TR
i

.1i'_' .
B
2

Foa
£
s
i
b .
e
c
.’I.-.I.

£
s
i
)
G

3.3. Pre-BCK Quasilattices and BCK Paralattices 311

Given assertions (1)—(3) above, implicative BCS difference coincides with stan-
dard diffcrence.

Remark 3.3.23. The condition of join symmetry cannot be omitted from the
assertion of Theorem 3.3.21 and its corollary since the variety of left handed
skew Boolean algebras is properly contained within the class {in fact, variety)
of all implicative BCS skew lattices for which the skew lattice reduct is left
handed. To see this, consider the algebra A := (4; A, V,\,0) of type (2,2,2,0)
with universe A := {0, q, b, ¢, d, ¢,f} and derived binary operation N defined
by i Mj = i\(¢\4) for any 7,7 € A determined by the following operation
tables: '

A

AY0O a b cdef VB0 a b c def
0|00 0O00O0O00D 0|10 a b ¢ d e f
a0 a 0 a a 0 a a la a d ¢ d ¢ f
b {10 0 b b b6 b 0 blb ¢ b ¢ d e d
c 0 a e ¢c c e a c|le e d ¢ d ¢ d
d|0 f b ddidbf d|d ¢ d ¢c d ¢ d
e |00 e e e e 0 ele ¢ b ¢ d e d
flofoffof flfadecdef
\*10 ¢ b cdef DA0abdcdef
00 0 000O00 0j000O0O0O0 O
ala 0 ¢ 00 ¢ O 6 {0 a 0aa0a
bbb b 000 0 b b (00 & b b b O
clc e a 0 0 a e ¢c |0 a e ¢c ¢c e a
did & f 00 f b d |0 f b d dbf
ele e 00 0 0 e e |0 0 e e e e 0
flfofoofo flofoejffof

An easy sequence of checks shows: (i) the reduct {(A4; A, V,0) is a left handed
skew lattice with zero; (ii) the reduct (4; \,0) is an implicative BCS-algebra
(with implicative BCS meet M); and {iii) § <y 7 iff § <4V j and § <p j iff
i <U\0) 4 for any 4,5 € A. Hence A is an implicative BCS skew lattice for
which the skew lattice reduct is left handed. However, A is not a left handed
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skew Boolean algebra, since the skew lattice with zero reduct (A; A,V,0) is
not locally Boolean (in the sense of §1.4.24). In particular, (4; A,V,0) is not
symmetric, since it is not join symmetric: (e V) V(e AbAa)=dVvO0=d
but (aAbAQ)V(bVa)=0Vcec=c. n

Denote by IrPQ the variety of (1, r}-pre-BCK qua.éz'lattz‘cés, namely the subva-
riety of PQer, C' = {A,V,\,0}, satisfying the identities {1, r); also, recall the
definition of Idziak’s variety BL of BCK-lattices from §1.6.23. Perhaps surpris-
ingly, there exists an intimate connection between the variety of left handed
skew Boolean algebras and the variety of BCK-lattices (in the context of the
variety IfPQ). In more detail, the variety of left handed skew Boolean alge-
bras is the natural conjugate of BL in AV (IrPQ) in the same way that BCK is
the natural conjugate of the quasivaricty Q(B,) in AV (PBCK) (recall Propo-
sition 2.2.5). This is shown by the following proposition, in the statement of
which (and throughout the remainder of this subsection), the type of Idziak’s
variety BL is understood to be {A, Vv, \,0}.

Proposition 3.3.24. The pair (V(3%), BL) [ quivalently (IhSBA, BL)/ splits
the lattice of varieties AV (IrPQ) of (1, r)-pre-BCK quasilattices. Thus for every
variely K C IrPQ, either K C BL or V(3%) C K [equivalently hSBA C K] (and
not both).

Proof. Suppose K € AV(IrPQ) and K € BL. By hypothesis, K does not sat-
isfy (2.5), so there is an algebra A € K and there are elements a¢,b € A
such that a\b = 0 = b\a but a # . Therefore ¢ = b(modE) and so
¢ = b(modD). Thus a AbAa=uwand b A aAb=>b; because A | (1, 1)
we infer a A b = ¢ and b A @ = b. Similarly we deduce that ¢ vV b = b and
bV o = a. Because the reduct (A; A,V,0) is a quasilattice with zero, we
conclude that {0, a, b} is the universe of a subalgebra of A isomorphic to 3}.
Hence 3} € K and, by Theorem 1.4.29, IhSBA = V(37) C K. »

Remark 3.3.25. Bl is also the splitting variety associated with the 3-element
right handed skew Boolean algebra 3% in the variety of (r, 1)-pre-BCK quasi-
lattices, namely the subvariety of PQe¢:, C' = {A, V,\, 0}, satisfying the identi-
ties (r, 1). n




3.3. Pre-BCEK. Quasilattices and BCK Paralattices 313

Corollary 3.3.26. For a wariety V of (i, r)-pre-BCK quasilattices the follow-
ing statements hold:

1. V is O-reqular iff V C BL;
2. V is congruence distributive iff V C BL;

3. V is congruence n-permutable for some n > 2 iff V C BL. In particuler,
if V C BL then V is congruence permutable.

Proof. Let V be a variety of (1, r}-pre-BCK quasilattices. Suppose V C BL.
Put di(z,y) := z\y and da(z, y) := y\z. Then di(z,y) and dy(z, y) are binary
terms of V satisfying the identities and quasi-identities of Proposition 1.2.6,
80 V is O-regular. Because V is subtractive (witness z\y), from Proposi-
tion 1.7.3 we infer that V is ideal determined. Since V = (1.3),(1.4),(1.7), V is
ideal distributive by the remarks of §1.7.4, so V is congruence distributive by
ideal determinacy. Moreover, p(z,y,z) := {z\(y\2)) V (2\(y\z)) is 2 Mal'cev
term for V by Idziak [116, Theorem 2], so V is congruence permutable. For the
converse, suppose V € BL. Then IhSBA = V(3%} C V by Proposition 3.3.24.
Since the variety of left handed skew Boolean algebras is not 0-regular, V is not
O-regular. Moreover, because the variety of left handed skew Boolean algebras
satisfies no non-trivial congruence identities (by Lemma 4.8 of Cornish [65])
V does not satisfy any non-trivial congruence identity. In particular, V is not
congruence n-permutable for any n > 2. ]

Corollary 3.3.26 in conjunction with the theory of BCK-lattices shows that
several important properties of BCK-lattices do not extend to pre-BCK quasi-
lattices. On the other hand, by Theorem 3.3.8 the varieties PQ¢ satisfy a
modified form of the Clifford-McLean theorem, while by Proposition 3.3.10,
one-sided members of any PQ¢ are regular.. Thus fundamentul properties of
bands and quasilattices are preserved by pre-BCK quasilattices. Collectively,
these observations suggesi. $1:at, ‘or pre-BCK bands and pfe-BCK quasilattices,
the behaviour of these algeli#s is more closely aligned to that of bands and
quasilattices than to that ur BCK-semilattices and BCK-lattices. We return
to this point in the tollowing subsection.
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3.3.27. BCK Bands and BCK Paralattices. Recall from Lemma 1.6.2
and Proposition 1.6.4 that for any BCK-algebra A, there exist distinct partial
orders <,, n =0,1,2 on A4, where for any a, b € A,

a<pb iff ab=0
a<;b it bNa=a
a<e b iff (bna)(ba) = a.

A lower <,-BCK band, n =0,1,2, is an algebra (4; A, =,0) of type (2,2,0)
such that: (i) the reduct (4; A, 0) is a band with zero; (ii) the reduct (4; =,0)
is a BCK-algebra; and (iii) the natural band partial order <4 coincides with
the BCK partial order 55{4; =0 '

Theorem 3.3.28. An algebra (4; A, = ,0) of type (2,2,0) is a lower <o-BCK
band iff the following identities are salisfied:

sAyAZ)=(AY) Az (3.76)
TATRT (3.77)
(zty)=(z=2) = (z—y) =9 (3.78)
r—0=z (3.79)
0-z~0 (2.80)
(z-(z-y)Ay~z—(z—y) (3.81)
yAlz=(@z~y))=z—(z—y) ,‘ (3.82)
(zAyAz)—z=0. (3.83)

Thus the class ¢; tvwer <g-BCK bands is a variety.

Proof. Let A = (A; A, =,0) be an algebra of type (2,2, 0) satistying {3.76)—
(3.80) and let @, b € A. To prove the theorem it is sufficient to show:

(i) A |=(3.81)-(3.83) implies {4; =,0) is a BCK-algebra;
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(i) A = (3.81)-(3.83) iff <("1 ® and <g coincide;
(iii) A = (3.81)-(3.83) implies {4; A,0) is a band with zero.

For (i), let ¢,b € A and suppose A |= (3.81)—(3.83). To see {4; +~,0)isa
BCK-algebra it is sufﬁcient to show a~b =0=b-a implies a = b, just
because {4; - ,0) is a pre-BCK-algebra by (3.78)-(3.80). Solet ¢ = b =0 =
b~a. ThenaAb=(a=0)Ab(by B7))={a~(a=d)Adb=a=(ax))
(by (3.81)) = a=0 = a (by (3.79)). Also a A b = a A (b=0) (by {3.79))
=aA(b=(b=a))=b~(b=+a) (by (3.82)) =b=0=>b (by (3.79)). Hence
ea=aAb=b.

For (ii}, suppose A = (3 81)-(3.83). By (i), {4; =,0) is a BCK-algebra,

=0

so the reference to <.(] makes sense. Assume a _<_Z‘(]A; =% b Then
¢ = a+0 (by 379) = a=(a=b) = (a=(a=b)) A b (by (3.81)) =
(a=0) A b (by (3.79)) = a A b. Also b A a =b A (a=0) (by (3.79))
=0 A (a=(a=b)) = a=(c=b) (by (382)) = a~0 = a (by (3.79)).
Hence a _<_0A; =0y implies ¢ <y b. For the opposite implication assume
a <y b Thena Ab=a=bAa s0obAaAb=acand g=-b =
(b A a Ab)=b=0by(38). Thus a < "% b and s0 o <y iff

a g(()A; =0 Conversely, suppose the partial orders <3 and S‘(JA; = 0)

incide. From (a = (a = b)) gff‘ =% § we have (a=(a+b)) <x b, which
implies (@ ~(a~3)) Ab=a=(a=b)=bA (a=(a=b)). Moreover, from
aAbAa<ya we have a/\b/\agf,m;’o) e and thus (¢ A b A a)~a=0.
Hence A k= (3.81)-(3.83).

For (iii), suppose A = (3.81)—(3.83). Then (4; =, 0} is a BCK-algebra by (i),
so 0 gf{q; “9% gforalla e 4 by Lemma 1.6.2. By (ii), 0 <4 ¢ for all a € 4,
s0 {(A; A,0) is a band with zero. u

For a lower <,-BCK band A and ¢, b € A, an argument similar to the proof
of Treorem 3.3.28 shows that a 5&“‘ =0 b implies a <4 b iff A satisfies the
iden...ies:

-y Ahz=z—y (3.84)
gA{z—y)=z—y. (3.85)




3.3. Pre-BCK Quasilattices and BCK Paralattices 316

Conversely, a <y b implies a Sim =% b iff A satisfies the identity:
g=-(z—(zAyAz)) =T AYAT (3.86)

(For a lower <o-BCK band, we know of no corresponding equational charac-
terisation of the coincidence of the partial orders _<_§A; % and <) Nonethe-
less, the identities (3.76)-(3.80), (3.84)—(3.86) are not sufficieat to ensure sat-
isfaction of the quasi-identity (1.5). To see this, consider (A,\,0)-3, the
(A, \, 0)-reduct of the 3-element left handed primitive skew Boolean alge-

bra 37. An easy sequence of checks (ignoring issues of type) shows (A,\,0)-
3% k= (3.76)-(3.80), (3.84)—(3.86) but that A F~ (1.5).

Problem 3.3.29. For n = 1, 2, is the class of lower <,-BCK bands equation-
ally definable? |

An upper <,-BCK band, n = 0, 1,2, is an algebra (4; Vv, =,0) of type (2, 2, 0)
such that: (i) the reduct {4; Vv,0) is a band with identity; (ii) the reduct
(4; =,0) is a BCK-algebra; and (iii) the natural band partial order <y
dualises the BCK partial order gf{q; =0 in the sense that a <y biff b SS,A; =0
a for any a,b € A. The proof of the following theorem is similar to the proof
of Theorem 3.3.28 and is omitted.

Theorem 3.3.30. An algebra (4; ‘a-',. =,0) of type (2,2,0) is an upper <o-
BCK band iff the following identities are satisfied:

sV{yVva)=(zVy Vz (3.87)
tVzxz (3.88)
(6=9)=(=2)) = (z=1) =0 (3.89)
T—0r g (3.90)
0—z=x0 (3.91)

(z-(z=-y)Vy=y (3.92)




3.3. Pre-BCK Quasilattices and BCK Paralattices 317

yViE—(z—y)~y (3.93)
z—(xtVyVz)=0. (3.94)

Thus the class of upper <¢-BCK bands is a variety.

For n =1, 2, remarks concerning lower <,-BCK bands apply mutatis mutandis
to upper <,-BCK bands. In particular, for an upper <,;-BCK band A and

a,b€EA a 35{4; =0 b implies b <y a iff A satisfies the identities:

(t—y)Vrxz (3.95)
TV (z—y) =z (3.96)

Conversely, a <y b implies b SS;A; =9 o iff A satisfies the identity:
(zvyvez)=((zVyVi)=-z) =z, (3.97)

(For an upper <,-BCK band, we know of no corresponding equational char-
acterisation of the dualisation of the partial orders sé‘“ =0 and <y.)} How-
ever, the identities (3.87)-(3.91), (3.95)~(3.97) are not sufficient to ensure sat-
isfaction of the quasi-identity (2.5). To see this, consider (v,\,0)-3%, the
{V,\,0)-reduct of the 3-element right handed primitive skew Boolean alge-
bra 3%. An easy sequence of checks (ignoring issues of type) shows that
(V,\,0)-3% k= (3.87)-(3.91), (3.95)-(3.97) but that A [~ (1.5).

Problem 3.3.31. For n = 1, 2, is the class of upper <,-BCK bands equation-
ally definable? n

A paralattice with zero is a paralattice (4; A, V) for which there exists 0 € A
(the zero of {A; A,V)) such that 0 is the least clement under the natural
paralattice partial order. As is usual, by abuse of language and notation we
often identify a paralattice with zero A := {A; A, V) with the algebra (4; A
,V,0) obtained from A upon enriching the language of A with a new nullary
operation symbol 0 whose canonical interpretation on (A4; A, V,0) is the zero
element 0 € A. A <¢-BCK paralattice is an aigebra (4; A,V, =,0) of type
(2,2,2,0) such that: (i) the reduct {4; A,V,0) is a paralattice with zero; (ii)
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the reduct (A4; = ,0) is a BCK-algebra; and (iii) the natural paralattice partial
order < coincides with the BCK partial order _<_0A; “9  From Theorem 3.3.28
and Theorem 3.3.30 the following result is clear.

Theorem 3.3.32. An algebra A := (4; A,V, =,0) of type (2,2,2,0) is a
<o-BCK paralattice iff the reduct (A; A, ~,0) is a lower <o-BCK band and
the reduct (A; V, ~,0) is an upper <o-BCK band. Thus A is a <¢-BCK
parclattice iff A k= (3.76) — —(3.83), (2.87) — —(3.94). Therefore the class of
<o-BCK paralatiices is a variety.

Let C denote an arbitrary subset of the language {A,V, +~,0} of <¢-BCK
paralattices that contains both — and 0. Let:

¢ BP. denote the quasivariety of BCK-algebras when C = { +,0};

e BP. denote the variety of lower <¢-BCK bands when C = {A, ~,0};

e BP. denote the variety of upper <,-BCK bands when C = {Vv, ~,0};
o BP; denote the variety of <¢-BCK paralattices when C = {A,V, ~,0}.

Notice that for each € distinct from { ~,0}, BP¢ is the class of algebras with
language C axiomatised by those identities among (3.76)-(3.83), (3.87)—(3.94)
that use only operation symbols from C; of course, this observation is depen-
dent upon the axiomatisation of the variety of <¢-BCK paralattices given in
Theorem 3.3.32.

Remark 3.3.33. As per pre-BCK quasilattices, BP¢ should not be confused
(for each C) with C-BP, the class of all C-subreducts of the variety of <¢-BCK
paralattices. In particular, in contrast to each BP¢, we do not know in general
if each C-BP is even a quasivariety. u

Throughout the remainder of this subsection assume A€ C or V€ C. By
remarks due to Laslo and Leech [145, Section 5, p. 23}, the Green'’s equivalences
Dia; ny and D4,y on a paralattice A are not typically congruences, whence
paralattices do not in general possess a coherent Clifford-McLean structure. In
fact, by Laslo and Leech {145, Theorem 26], a paralattice A supports a coherent
Clifford-McLean structure iff it is simultaneously a quasilattice, in which case
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Dia;ny = Dia;vy. Concerning the varieties BP¢, the following proposition
shows that the presence of BCK difference causes members of BP. to have a
coherent Clifford-McLean structure only in the trivial (that is, commutative)
case.

Proposition 3.3.34. For any A € BP¢ the following assertions hold:
1. If A€ C then Dya; ny s a congruence on (A; A, =,0) iff Dig; py = wa;
2. If V€ C then D4, vy is a congruence on (4; V, =~,0) iff Dig vy = wa;

8. If {A,V} C C then Dy, py and D4, vy are congruences on A iff Dig; ny =
Wp = D(A; V)

Proof. We prove the proposition only for the case where {A,Vv} C C; the
proofs in the remaining cases do not differ significantly and are omitted. Let
{A,V} C C and let A. € BP¢. Suppose both Dy4; o) and Dy4; vy are congruences
on A.. Then in particular D4, Ay and Dy4; vy are congruences on the paralattice
with zero reduct (4; A,V,0), 50 Dy, oy = Dy4;v) by previous remarks. In view
of this last, to simplify notation we can and will write D for D4, n) = D4, v
throughout the remainder of the proof. Let a, b € A. To complete the proof it
is sufficient to show a = b (mod D) implies a = b. So suppose a = b (mod D).
Froma AbAa=aAbA a(modD) and ¢ = b(modD) we have that
(aAbAa)~a={(aAbAa)=b{medD), since D has the substitution
property for the = operation. Because (a A b A a)=~a = 0 by (3.83) we
have that (a A b A a)=b = 0(modD), whence (¢ A b A a)=b = 0 by
Lemma 1.4.13. But then ¢ ~b = 0 since ¢ = b{mod?D). An analogous
argument shows b~ ¢ = 0; since (A; =,0) is a BCK-algebra we have that

I

a = b. Thus D = wy. Since the converse holds trivially, the proposition is
proved. n

Let A € BP¢. Because Lia; p), Reainy G Diayny and Lig; vy, Reayvy € Doy vy
(when these equivalences exist), an easy modification of the proof of Proposi-
tion 3.3.34 yields:

Proposition 3.3.35. For any A € BP¢ the following assertions hola:
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1. If A€ C then Lia;ny and Rya, ay are congruences on (A; A, -=,0) iff
Lia;ny = wa = Rea; ny;

2. If ve C then Liavy and Ry, vy are congraences on {4; V, +~,0) iff
Lia;vy =wa = Rea; vy

8. If {A,V} C C then Lia; py, Ria; nys Lia;vy and Ra; vy are all congruences
on A iﬂ C(A;/\) =Wy = 'R(A;A) and ,C(A;v) =Wy = R(A; V-

Let A € BPc. For A€ C [ve C; {A,V} CC] (4; A, =,0) [(4; Vv, ~,0);
(A; AV, =,0)] is regular if Lia;ny and Ry, py [La; vy Rea; vy Loa;ny Ra; nys
Lia;vy, Ria;vy) are congruences on (4; A, =,0) [(4; V, =,0); (4; AV
, =, 0}]. Because of Proposition 3.3.35, an algebra A € BP. is regular only in
the trivial (commutative) case.

Corollary 3.3.36. For A € BP¢ the following assertions hold:
1. If N€ C then (A; A, =,0) is reqular iff Dia; o) = wa;
2. If ve C then (A; V, =,0) is regular iff D4, vy = wa;
8. If{n,V} C C then A is regular iff Dy, p) = wa = Diagvy.

Proof. We prove the corollary only for the case that {A,V} C C; the proofs
in the other cases are not significantly different and are omitted. So let A €
BPc where {A,V} € C. Suppose A is regular. Then L4, ny and Ryy; ») are
congruences on A, s0 Li4;n) = wa = Ra; ay by Proposition 3.3.35(3). Since
Dia;ny = Lia; a0 Rya; ny (by Howie [111, p. 46]) we have that Dy, o) = wa; an
analogous argument shows D4,y = wa. For the converse, suppose Dy, ) =
wa = Dy, vy Since both Lig, ay € Dia; ay and Rya; a) € Dia; ) we must have
both L4, oy = wa and Ry4; ) = wa. Similar reasoning shows L4, vy = wa and
Ra;vy = wa. Thus all of La; py, Ria;ayy Lia;v) and Rya; vy are congruences
on A, so A is regular. =

Recall from the remarks concluding §3.3.2 that the behaviour of pre-BCK
bands and pre-BCK quasilattices more closely resembles that of bands and
quasilattices than that of BCK-semilattices and BCK-lattices. In contrast,
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Proposition 3.3.34 and Corollary 3.3.36 suggest that the behaviour of <g-
BCK bands and <y-BCK paralattices is more closely aligned to that of BCK-
semilattices and BCK-lattices than to that of bands and paralattices. Further
support for this last contention is provided in the remaining results of this sub-
section, which show that properties of 0-regularity, congruence distributivity
and congruence permutability enjoyed by BCK-semilattices and BCK-lattices
are preserved upon passing to <q-BCK bands and <¢-BCK paralattices.

Proposition 3.3.37. {¢f. [116, Theorem 1]} Let A € BP¢. For any ¢, b € A,

the following are equivalent:
1. a=};
2.a+~b=0=b-a.

If V€ C, then either of (1) or (2) is equivalent to:
3 (a=b)v(b=a)=0.

Thus any variety BP. is O-regular and hence ideal determined. That is, for
any A € BP¢, the map 6 — [0)p (8 € Con A) is a lattice isomorphism from
Con A into I(A).

Proof. For the first assertion of the proposition, the only non-trivial implica-
tion to prove is (3) = (2). Solet Ve C and let A € BP¢. Let a,b € A and
suppose {(a~b) V (b+a) = 0. Wehave a=b = (a=d) VO = (a=b) V
(a+b) vV (b=a) = (a=+b) V (b=a) =0, just because the reduct {4; v,0)
is a band with identity. Similarly, b~a =0V (b~a)=(a=b)V (b~a)V
(b~a)=(a=b)V(b=-a)=0. Thus ¢ - b =0= b=+ a as required.

From the first assertion of the proposition and Proposition 1.2.6 it follows that
any BP¢ is O-regular and hence (by Proposition 1.7.3) ideal determined. Thus
for any A & BP¢ the map 6 — [0]s (# € Con A) is a lattice isomorphism from
Con A into I(A). .

Remark 3.3.38. Because any BP. is ideal determined, it has a finite basis of
ideal terms (in the sense of [57)): see Chajda and Halas [57] or Ursini [221).
Nonetheless, in general we know of no simple description of the BPc-ideals
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for any variety BP;. In particular, for each choice of C, there exists A €
BP¢ such that Igp,(A) Z Igcx({4; +,0)) (by an easy modification of a
result due to Idziak {116, Lemma 2(ii)], for each choice of C the converse
Isck({A4; ~,0)) C Ipp.(A) does obtain for any A € BP;). Indeed, examples
due to Idziak [116, p. 979] show there exists A € BP¢ such that the inclu-
sion Igp.(A) C Iack({4; =,0)) is strict when V€& C. To see the inclusion
Isp.(A) C Inck ((A4; =,0)) is strict for C = {A, =, 0}, consider the following
4-element lower <y3-BCK band A:

A*10 a b ec =20 a b c
0100 00 0 {0 00O
a |0 a a a a |la 0 00
b |0 a b b b {b a 0 a
¢c |0 a ¢ ¢ c ¢ ¢ ¢ O

An easy sequence of checks shows that A is simple but that {0, a, b} is a BCK-
ideal of the BCK-algebrareduct (4; +,0). Hence Igp.(A) Z Igck({4; ~,0)).
n

Theorem 3.3.39. For each C, the variety BP¢ is congruence distributive.

Proof. Because BP¢ = (1.3),(1.4),(1.7), from the remarks of §1.7.4 we have
that BP¢ is ideal distributive. Since BP. is ideal determined (by Proposi-
tion 3.3.37) we conclude that BP¢ is congruence distributive. ]

Remark 3.3.40. It is easily verified that if V € C then the term M(z,y,z) =
(z=(z=2)) V(2= (z+y)) V (y= (y = 2)) is a majority term for BP¢ (see
also Idziak [116, p. 841, Theorem 2}). In contrast, the varieties BP¢ have no
majority term when V & C: see Idziak [116, Remark, p. 842]. |

Proposition 3.3.41. Concerning the varieties BP¢, the following assertions
hold:

1. (cf. [187, Theorem]) If A€ C then BP¢ is congruence J-permutable;
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2. (cf. [116, p. 841, Theorem 2]) If V€ C then BP. is congruence per-
mutable, with Mal'cev term:

p(z,9,2) = (2= (y—-2)) v (z =~ (y —12)).
Proof. For (1), suppose A € C. Let:

n(zy,2) =z—(y—2)
po(z,9,2) = (z = (s —y)) A (2= (2~ y))

pa(z,y,2) =2 —(y — ).

By (1.7), (3.81), (3.82), (3.76) and (1.3), the variety BP,¢ satisfies the identi-
ties:

n(z,y,y) =z
pi(z,z,9) = piri(z, ¥, 9), i=1,2
p3(x, z, y) ~Yy

and so is congruence 4-permutable by Hagemann and Mitschke [106, Theo-
rem 2].

For (2), suppose V € C and let p(z, y, z) be as in the statement of the propo-
sition. Because of (3.92) and (3.93), it is easily verified that BP¢ satisfies the
identities p(z, z, y) = y and p(z,y, y) = z. Hence p(z,y, 2) is a Mal'cev term
for V and BP¢ is congruence permutable. n

Remark 3.3.42. The statement of Proposition 3.3.41(1) cannot be strength-
ened to the assertion that if A€ C then BP¢ is congruence 3-permutable, in
view of a result of Raftery [187, Theorem] showing that the variety of lower
BCK-semilattices is not congruence 3-permutable. n

3.3.43. Implicative BCK Bands and Implicative BCK Paraiattices.
By the results of §1.4.32, §1.4.37, §3.2.6 and §3.2.22, algebras arising in binary
discriminator, pointed fixedpoint discriminator and pointed ternary discrim-
inator varieties all support an underlying ‘locally Boolean’ structure (in the
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sense of either §1.3.15 or §1.4.24), As in §3.3.13, this observation motivates
the study of those members of BP¢ for which every (appropriately defined)
principal subalgebra is a Boolean lattice. To begin, recall the definition of
the BCK meet N from §1.6.11. For a BCK-algebra A and any a € A, let
(a] == (an 4; N*lena). By analogy with semigroup theory we call (a} the
principal subalgebra generated by a, even though the polynomial reduct (4; N)
is not a semigroup in general.

Remark 3.3.44. For a BCK-algebra A, the principal subalgebra (] generated
by a &€ A should not be confused with the BCK-subalgebra {(a]y; = Al 0),
where (a]p := {b : b <o a}, and which is also denoted (a]. In the sequel,
it will always be clear from context whether (@] denotes the BCK-subalgebra,
((a)o; = Al 0) or the principal subalgebra (a N 4; ﬂM"“f‘) generated by a.

For a BCK-algebra A, the principal subalgebra (a] generated by a € A may
be alternatively defined as ((a]y; r‘lA"'M), where (al; := {b: b <; a}, because
{b : b <; a} = an A by Proposition 1.6.4(1). From this observation it
follows that if A is commutative then (a] = ((ao; N*\@), where (alp =
{b:b <y a}, since in this case <p=<; by Lemma 1.6.12. In other words,
if A is commutative, then (a] is precisely the principal subalgebra generated
by @ of the semilattice polynomial reduct (A; N). It is this observation that
motivates our description of the algebra (a N A; ﬂAl‘m) above as the principal
subalgebra generated by «. n

As per §3.3.13, our study of varieties BP¢ supporting a ‘locally Boolean’ struc-
ture centres on the interplay of the underlying band with zero principal subaige-
bra structure and the underlying BCK-algebra principal subalgebra structure.
In more detail, let A€ C and let A € BP.. Then A has both a band with
zero reduct {A4; A, 0) and a BCK-algebra reduct {4; 1,0). Hence every a € A
generates both a principal subalgebra (a](4; A0y of the band with zero reduct
(A; A,0) (recall Lemma 1.3.13) and a principal subalgebra (a](4; ~ o) of the
BCK-algebra reduct (4; M,0). Although the principal subalgebra (a}; +, .- g
generated by a of the BCK-algebra reduct (4; =,0) is not a principal sub-
algebra in the usual semigroup theoretic sense, the following two results show
nonetheless that for the varieties BPe, A€ C, the behaviour of the under-
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lying BCK-algebra principal subaigebra structure is decisive (¢f. Proposi-

tion 3.3.18).

Proposition 3.3.45. Let A€ C and let A € BP¢. For every a € A, the
principal subalgebras (a](; a0y and (@), = oy coincide iff the reduct (A; A,0)

is ¢ normal band with zero and the reduct (A; ~,V0) is a commutative BCK-

algebra.

Proof. Let A€ C and let A € BP;. Throughout the proof, we denote by
(a)a; a0y and (alia; « oy the respective universes of the principal subalgebras

(al(a; a0y and (8)ia; = 0y. To simplify notation, we may also write simply (a]a

for both (a)i4; A0y and (aj(a; — oy when these sets coincide.

(=) Suppose that for every a € A, the principal subalgebras (a]4; A0y and

(a)¢4; ~ 0y coincide. To see the reduct (4; =,0) is a commutative BCK-

algebra, it is sufficient by Lemma 1.6.12 to show the partial orders <;

(4: = 0)

and 5§“‘; =9 coincide. For this, observe that for any a, b € A,

<9, i beand by Proposition 1.6.4(1)
iff b€ (aka; -0
iff b€ (alia; 00 by hypothesis
iff b<ua by Lemma 1.3.13(1)
iff & §§A; =0 a since A € BPg.
Hence < =% and < = coincide, and (4; =, 0) is commutative.

It remains to show the band with zero reduct {4; A,0) is normal. To this
end, recall from §1.6.11 that since the BCK-algebra reduct (4; - ,0) is com-
mutative, it has a distributive nearlattice polynomial reduct {A; N). For any
a € A, let (a]¢a,ny denote the principal subalgebra of {4; N) generated by a.
Because (4; N) is a distributive nearlattice, every principle subalgebra (a](4;
is a distributive sublattice by the remarks of §1.6.11. Because (a]< 4; ) coin-
cides with (a](4; ~ o) (by commutativity of (4; =,0) and Remark 3.3.44), and
(a)(4; = 0y coincides with (a](4; a0) (by hypothesis), we have that (a](4; A0 i
a distributive sublattice. Hence for every a € A, the principal subalgebra
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(a] (4; 0y Benerated by ¢ is a sublattice. By Lemma 1.3.16 the band with zero
reduct {4; A, 0) is normal, and the proof is complete.

(<) Suppose the reducts {4; A,0) and (4; =,0) are respectively a normal
band with zero and a commutative BCK-algebra. To see the principal sub-
algebras (a](a, A0y and (a)(s; - oy coincide for every a € A it is sufficient to
show:

(i) For any a € A, (a](A;,\,o) = (a]m; =~ ,0)5
(i) i b,c € (a]a thenbA c=bNe.

For (i}, just observe that for any a € 4, {(afia;n0 = {b : 0 <y a} = {b:
b SSA; =0 a} = {b:b SiA; 0 g} = (a)¢a; ~,0) by commutativity of

(A; ~,0) and the coincidence of the partial orders <;, and 38‘4‘ W0

For (ii), by (i) we have that (a](4; 0y and (a](a; - oy coincide, so the reference
to (a]a makes sense. Let b,c € (a]a. Since {4; A,0) is normal, b A ¢ is
the greatest lower bound of {b, ¢} with respect to the restriction of <y to
(a)(a; n0)- Also, b ¢ is the greatest lower bound of {&, ¢} with respect to the

restriction of gf,“‘ %0 (a)ia, = oy, because {4; =,0) is commutative. Since
(6l nty = (el = gy (by () and <y=<* = (by our assumptions on A),

we have that b A ¢ = b N ¢ as desired. |

Remark 3.3.46. Let A be a BCK-algebra and let a € A. Clearly, the def-
inition of the principal subalgebra (a] generated by a plays a crucial role in
the preceding proof. In particular, if (a] is instead defined as the algebra
(A N a; ﬂAl*““ﬂ), then the argument of the proof is not sufficient to establish
Proposition 3.3.45, since in this case ANa == {b: b <p a}. ]

Lét A € BP¢, A€ C, be such that the reduct (A; A,0) is a normal band with
zero and the reduct {(4; =,0) is a commutative BCK-algebra. In view of
Proposition 3.3.45, we can unambiguously write (a]a for the principal subal-
gebra generated by a; we adopt this practice henceforth.

Proposition 3.3.47. Let A€ C and let A € BP¢ be such that for every a € A,
the principal subalgebras (a)(a, a0y and (ala; -~ oy coincide. Then for every
¢ € A, the principal subalgebra (a]a is a Boolean sublattice iff the reduct
(A; =,0) is an implicative BCK-algebra.
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Proof. Let A€ C and let A € BP¢ be such that for every a € A, the principal
subalgebras (a@](4; A0y and ia(4; -~ o) coincide.

{=) Suppose that, for every a € A, the principal subalgebrs (6] is a Boolean
sublattice. By our assumptions on A and Proposition 3.3.45, the band with
zero reduct {4; A,0) is normal and the BCK-algebra reduct (4; ~,0) is
commutative. Since (4; =, 0} is commutative, A possesses a meet semilattice
polynomial reduct (A; N). For any a € A4, let (8]¢4,n) denote the principal
subalgebra of {A; M) generated by a. Because b <{4M ¢ iff b <A =0 ¢ for
any b,c € A and the band with zero reduct (4; A,0) is normal, an argument
similar to the proof of Proposition 3.3.45 shows that for every a € 4, (a)a, A0)
and (a)(a;ny coincide. Hence the principal subalgebra (a4~ is 2 Boolean
lattice for every a € A, and so (A4; N) is semi-Boolean. From Theorem 1.6.21
it follows that (A4; N) has an induced implicative BCK difference operation /,
where b/c 1= (bN C)Eb]m;n) for any b,c € A. But for any b,¢ € 4,

b/c=(bN c)h,]m; o

= (b -:— (b -._ C))Eb]{ﬂ‘ - 0
= b;(b—'—(b;c))
=ph—c by (1.31),

so b/c = b= ¢. Hence the reduct (4; =,0) is an implicative BCK-algebra.

(<) Suppose the reduct (4; =,0) is an implicative BCK-algebra. Then
for every a € A, the principal subalgebra (a]a is a Boolean lattice by our
assumptions on A and Corollary 1.6.22. B

Unless otherwise specified, throughout the remainder of this section we assume
A€ C". Given this convention, Proposition 3.3.47 leads to the study in the
sequel of those members of BP for which the band with zero reduct (4; A, 0}
is normal and the BCK-algebra reduct {A; =,0) is implicative.

A lower implicative <¢-BCK normal band is an algebfa (A; A,/,0) of type
(2,2,0) such that: (i) the reduct (A; A,0) is a normal band with zero; (ii)
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the reduct {4; /,0) is an implicative BCK-algebra; and (iil) the natural band
partial order <y coincides with the BCK partial order SSA;/ =3

Theorem 3.3.48. An algebra A := (A; A,/,0) of type (2,2,0) is a lower
implicative <o~BCK normal band iff the reduct (4; A, 0) i85 o normal band with
zero, the reduct (A; /,0) is an implicative BCK-algebra, and A |= (3.83), (3.84),
(3.85). Thus the class of lower implicative <o-BCK normd! bands is a variety.

Proof. Let A = (4; A,/,0) be an algebra of type (2, 2, 0) Such that the reduct
(4; A, 0) is a normal band with zero and the reduct (4; /;0) is an implicative
BCK-algebra. Let a, b € A. To prove the theorem it is sufficient to show:

() (anbA a)-'—a:Oiﬂ‘aS_'HbimpliesaSéA;/‘o) b;
(i) (a=b)Aa=a=b=aA (a=b)iff a <" b imPlies s <u b.

The Proof of (i) is implicit in the proof of Theorem 3.3.28. For (ii), the remarks
immediately following Theorem 3.3.28 imply (a ~b) A @ = a=b = g A
(a0} iff a Sﬁm 19 g implies a <y b. Since the BCK paTtial orders _4_{(,‘4‘ /9
and Si’l‘/ 9 coincide (by the proof of Proposition 3.2.45), the result follows.
x

By analogy with the theory of skew lattices, call a paralattiCe (4; A, V) local if
its band rec ot (A; A)is normal. An implicative <o-BCK I0cgl paralsttice is an
algebra (A: A,V,/,0) of type (2,2,2,0) such that: (i) the teduct (A; A, V,0)
is a loca] paralattice with zero; (ii) the reduct (4; /,0) is a% implicative BCK-
algebra; and (iii) the natural band partial order <y coincides with the BCK
partial order S_{(,A; /) The proof of the following result may be established by
::;.n argument similar to the proof of Theorem 3.3.48 and hehce is omitted,

Theorem 3.3.49. An algebra A := (4; A,/,0) of type (2,2,0) is an im-
plicative <4-BCK local paralattice iff the reduct (A; A,V,0) is a local par-
alattice with zero, the reduct (A; /,0) is an implicative BCK-algebra, and
A = (3.83),(3.95), (3.96). Thus the class of implicative <o~8BCK local paralat-
tices 18 q variety.

For the gake of notational consistency with the prequel, throughout the re-
mainder of this subsection let C¥ denote an arbitrary subset of the language
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{A,V,/,0} of implicative <¢-BCK local paralattices that contains either /
and 0 or all of A,/ and 0. Ignoring issues of type, let:

e BPc+ denote the quasivariety of BCK-algebras when " = {/,0};
o BP¢+ denote the variety of lower <¢-BCK bands when " = {A, /,0};

o BP. denote the variety of <o-BCK paralattices when C” = {A,V, /,0}.
Also, let:

e |Pcv denote the variety of implicative BCK-algebras when C" = {/, 0};

o |Pc» denote the variety of normal lower implicative <¢-BCK bands when

C"={A/,0}

o |Pc+ denote the variety of local implicative <¢-BCK paralattices when
¢"={AV,/,0}

Given the above notation, clearly {P¢v C BPev for any fixed choice of C”.

Remark 3.3.50. An upper implicative <o-BCK band is an algebra (4; Vv, /,0)
of type (2,2,0) such that: (i) the reduct (A4; v,0) is a band with identity; (ii)
the reduct (A4; /,0) is an implicative BCK-algebra; and (jii) the natural band

579 i the sense that

partial order <y dualises the BCK partial order <
a<y biff b Sff“ ™ 4 for any a,b € A. Clearly the class of upper implicative

<o-BCK bands is a variety.

By normality, it is clear that no non-trivial (that is, non-commutative) normal
subv::iriety of the variety of upper implicative <¢-BCK bands exists. Hence
there exists no non-trivial variety of upper implicative <¢-BCK normal bands
that stands in relation to the variety of upper implicative BCS bands as the
varieties IPer, {A,\,0} C ', stand in relation to the varieties IP¢cv, {A, /,0} C
C". For consistency and the sake of parity with the theory of the varieties
PQc, 1Qgr, we let: |

e BP.» denote the variety of upper <¢-BCK bands when C" = {v, /,0};

e |P.» denote the variety of upper implicative <¢-BCK bands when C" =

{v,/,0},
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even though our interest in this thesis lies exclusively in the varieties IPen,
A€ C". That the preceding definitions are coherent in the context of a unified
theory of the varieties BPgr, {/,0} € " C {A,V,/,0}, follows from Theo-
rem 3.3.53 and the remarks of §4.2.27 in the sequel. B

Proposition 3.3.51. Let A € |Pgu. Then the polynomial reduct (4; \,0) is
an implicative BCS-algebra and the polynomial reduct (A; A\,0) is a lower
implicative BCS band, where in both cases a\b := a/{a A'b A a) for any
a,b € A. Consequently, if V& C" then the polynomial reduct (A; A,V,\,0)
is an tmplicative BCS quasilattice. In particular, if V € C" and the parelattice
with zero reduct (A; A,V,0) is a skew lattice with zero, then the polynomial
reduct (A; A,V,\,0) is an implicative BCS skew lattice.

Proof. Let A € IP¢r. For the first assertion, by Theorem 1.6.21, Proposi-
tion 3.3.47 and the definition of \ we have that a\b = (aN(a A b A a));m]ﬁL
for any a,b € A. But,

an{aAbAa)=(aAbAa)Na by commutativity of N
=(aAbAa)/{(anbAa)/a)
=(aAbAa)/0 by (3.83)
=aAbAa, (3.98)

SO a\b = (a A b A a),,. From Remark 2.3.37 it follows that the polyno-
mial reduct (4; \,0) is an implicative BCS-algebra. To prove the remaining
assertions of the proposition it is sufficient to show the induced implicative
BCS-algebra partial order <4\ and quasiorder <{4 VW0 coincide with the
natural band partial order <4 and quasiorder <p respectively. Because of
Proposition 3.3.14, this reduces to establishing that a\(a\d) = a A b A a for

any a,b € A. Solet a,b € A. We have:

a\(a\b) = a/(a A (a/(a A b A a)) A o)
=a/(af/(a A A a)) by (3.84), (3.85)
=aN(aAbAa)
=aAbAa by (3.98).
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Proposition 3.3.52. Let V& C" and let A € \Per. If the paralattice with zero
reduct (A; A,V,0) is o skew lattice with zero, then the following assertions
hold:

1. The skew lattice with zero reduct (A; A,V,0) is distributive local;

2. The polynomial reduct (A; A,V,N} is a skew lattice with intersections,
where a N b := a/(a/b) for any a, b € A.

Proof. Let v& C” and let A € IP¢» be such that the paralattice with zero
reduct (A; A, V,0) is a skew lattice with zero.

For (1), we have that (A4; A,V,0) is a local skew lattice by hypothesis. Since
for each a € A, the sublattice (a]4 is distributive (by the proof of Proposi-
tion 3.3.45), from Proposition 1.4.22 we deduce that (4; A, V,0) is distributive.

For (2), the reduct {(A; A,V) is a skew lattice, while the reduct (4; N} is a
meet semilattice. Since anb = a iff a/b = 0 for any a, b € A, the underlying
partial order <4 " on the semilattice polynomial reduct {4; N) coincides with
the underlying BCK partial order 53"“ % on (4; ~,0). Since _<_0"“ *% and
<4 coincide by hypothesis, <{4™ and <4 must coincide also. Therefore the
polynomial reduct {4; A,v,N) is a skew lattice with intersections. u

An implicative <o-BCK local skew lattice is an algebra (4; A, V,\,0) of type
(2,2,2,0) such that: (i) the reduct (4; A,V,0) is a local skew lattice with zero;
(i) the reduct {4; \,0) is an implicative BCK-algebra; (iii) the natural skew
lattice partial order <y coincides with the implicative BCK-algebra partial
order gf;“ /9 Clearly the class of implicative <,-BCK local skew lattices is a
subvariety of the variety of implicative <¢p-BCK local paralattices.

Proposition 3.3.52 and Proposition 3.3.51 direct attention towards those mem-
bers of IPer, V € C*, that are implicative <¢-BCK local skew lattices, inasmuch
as these algebras enjoy several important structural properties of skew Boolean
N-algebras. In particular, if (4; A, V, /,0) is an implicative <¢-BCK local skew
lattice, then: (i) the skew lattice with zero reduct (A, V,0) is distributive lo-
cal; (ii) the polynomial reduct {4; \,0) is an implicative BCS-algebra; (iii) the
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polynomial reduct {4; N) is a meet semilattice; and (iv) for every a € A, the
principal subalgebra {a] generated by a is a Boolean sublattice. The precise
relationship between implicative <,-BCK local skew lattices ar:i skew Boolean
N-algebras is clarified in the following theorem, a version of which is asserted
with second-order proof in Bignall and Leech [19, Section 4}. For the sake of
completeness, we provide a direct proof here.

Theorem 3.3.53. (cf. [19, Theorem {.2]) A skew Boolean N-algebra is term
equivalent to an algebra (A; AV, /,0) of type (2,2,2,0) where:

1. The reduct (A; A,V,0) is a join symmetric local skew lattice with zero;

2. The reduct (A; /,0) is an implicative BCK-algebra;

3. The natural skew lattice partial order <y and the BCK partial order SSA; /)

coincide.

In particular, given such an algebra (A; AV, /,0), standard difference \ and
the intersection operation N are respectively defined on A by:

e\b:=af(a AbANa) and anb:=a/(a/d)
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for any a, b € A. Conversely, given a skew Boolean N-algebra (4; A, V,\,N,0)
and a, b € A, implicative BCK difference / is defined on A by:

a/b:=a\(aNb).

Thus the variety of skew Boolean N-algebras is termwise definitionally equiva-
lent to the variety of implicative <¢-BCK join symmetric local skew lattices.

Proof. Let A := (4; A,V,/,0) be an algebra of type (2,2,2,0) satisfying
Conditions (1)—(3) of the theorem. Then A € IP¢r, C" = {A,V,/,0}. To
see the derived algebra (4; A,V,\,N,0) (where a\b := a/(a A b A a) and
anb==aqaf(a/b) for any a,b € A) is a skew Boolean M-algebra it is sufficient
to show:

(i) The polynomial reduct {4; A, V,\,0) is a skew Boolean algebra;
(ii) The polynomial reduct (4; N) is a meet semilattice;
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(iif) The induced semilattice partial order <{4i ™ coincides with the natural
skew lattice partial order <4.

For (i}, because A € IP¢v, V€ C", from Proposition 3.3.51 we have that the
polynomial reduct (4; A,V,\,0) is an implicative BCS skew lattice. Since
the skew lattice with zero reduct (4; A,V,0) is join symmetric, from The-
orem 3.3.21 it follows that the polynomial reduct (4; A,V,\,0) is a skew
Boolean algebra. |

For (ii), because A € IPev, V€ C", from Proposition 3.3.52(2) we have that
polynomial reduct {A4; A,V,N) is a skew lattice with intersections.

For (iii), we have @ <™ b iff @ <%/ b for any a,b € 4. Since A € IPY,
we infer that @ <A™ b iff a <y b for any a,b € A. Hence the induced
semilattice partial order <4 coincides with the natural skew lattice partial
order <.

For the converse, let A := (4; A,V,\,N,0) be a skew Boolean N-algebra. We
verify Conditions (1)—(3) above are satisfied.

For (1), the reduct (A4; A,V,0) is a distributive symmetric local skew lattice
with zero by definition, and so in particular is a join symmetric local skew
lattice with zero.

For (2), we have that the reduct {4; N) is a meet semilattice by definition. For
any a € A, let (8)(4;ny denote the principal subalgebra of (4; N) generated
by a. Because of Proposition 1.4.34 and the locality of the skew lattice with
zero reduct (4; A,V,0), an argument similar to the proof of Proposition 3.3.45
shows that for every a € A, the principal subalgebra (a](a; a,v,0) coincides with
(a)¢a;ry. Without loss of generality, therefore, throughout the remainder of
the proof we can and will write {&]a for both (a](4; a,v,0y and (8}(4;ry. Since
(4; A, V,0) is locally Boolean (in the sense of §1.4.24), (a} is a Boolean lattice
for every a € A. Hence (4; N) is semi-Boolean. From Theorem 1.6.21 it follows
that (4; N) possesses an induced implicative BCK difference operation /,
where a/b := (a N b, for any a,b € A. To see a/b = a\(a N b), note:

(i} e\{aNbd) is the complement of a A (a N b) A @ in (a]a by definition of
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standard difference;
(i1) e A (e N d) A a = aN b by Proposition 1.4.34.

Because of (i) and (ii), we have that a\(a N &) is the complement of a N b
in (a]a; that is to say a\(aNd) = (aN b)Ea]A. Hence the induced implicative
BCK difference / is term definable, and A has an implicative BCK-algebra
polynomial reduct (4; /,0), where a/b := a\(a N b) for any a, b € 4.

For (3), it is sufficient to show the BCK partial ordering 5[()‘4‘/ % coincides
with the semilattice partial ordering <4™, So suppose a g.‘,“; /9 . Then
0=1ga/b=2a\(anb),s00=(aA{anb)A a,);‘m]A = (aNb)yy, , which iunplies
aNb=a Thus a <™ b, On the other hand, from a <™ § we have
aNb = a, whence a/b = a\(aNbd)=(a A(anb) A a)z'm]A = (aNb)fy, =

@, =0. Thus a <5/9 p, .
(a)a 0

Remark 3.3.54. The condition of join symmetry cannot be omitted from
the assertion of Theorem 3.3.53 since the variety of left handed skew Boolean
N-algebras is properly contained within the class (in fact, variety) of all im-
plicative <¢-BCK local skew lattices for which the skew lattice reduct is left
handed. To see this, consider the algebra A := (4; A,V,/,0} of type (2,2,0)
whose reduct (A; A, V,0) is the stew lattice with zero reduct of the implicative
BCS skew lattice of Remark 3.3.23, and whose operation /4 is determined by
the following operation table:

/210 a b ¢c d e f
0|0 00 0O0CO0O0
a|la 0 a 0 a a a
b|ldb b 0 b 0 b b
clc e ¢ 0 ¢c ac
did d f d 0 d b
ele e e 0 e 0 e
flrrsrfroro

An easy sequence of checks shows that: (i) the skew lattice with zero reduct
{(A; A,V,0) is local; (ii) the reduct (4; /,0) is an implicative BCK-algebra;
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and (iii) 1 <y j iff 4 <449 j for any 4,7 € A. Hence A is an implicative
<o-BCK local skew lattice for which the skew lattice reduct is left handed.
However, A is not a left handed skew Boolean N-algebra, since the skew lattice
with zero reduct (A4; A,V,0) is not locally Boolean (in the sense of §1.4.24).
In particular, (4; A,V,0) is not symmetric, since it is not join symmetric:
(avbd)v{ienbra)=dvOo=dbut(aAbAa)V(bVa)=0Vec=ec.
n

Remark 3.3.55 (Added in proof). A lower implicative BCK left normal
band is an algebra (4; /,1,0) of type (2, 2, 0) such that: (i) the reduct (4; /,0)
is an implicative BCK-algebra; (ii) the reduct {A; M, 0) is a left normal band
with zero; and (iii) the implicative BCK partial order 5,(3‘4‘ /% and the natural

band partial order <y coincide. By an unpublished result of the author, an
algebra A := (4; /,M,0) of type (2,2,0) is a lower implicative BCK left
' normal band iff A = (1.35)-(1.38), AE (zMNy)Nz~zN(yNz),zNzs ~
‘;“ z,(zNy)Nz=(2N2)Ny,and A | (zNy)/z = 0,2M0(z/y) ~ £/y, whence
the class iIBCKInB of lower implicative BCK left normal bands is a variety.

Recall the definition of an implicative BCSK-algebra {rom Remark 3.2.28. Be-
cause of Corollary 2.3.22(1), any implicative BCSK-algebra (4; /,\,0) has
a lower implicative BCK left normal band polynomial reduct (4; /,N,0},
where a M b := a\(a\b) for any a,b € A. Conversely, an unpublished re-
sult of the author shows that any lower implicative BCK left normal band
(A; /,n,0) has an implicative BCSK-algebra polynomial reduct (4; /,\,0},
where a\b := a/(aMb) for any a, b € A. Hence the variety of lower implicative
BCK left normal bands is termwise definitionally equivalent to the variety of
implicative BCSK-algebras (compare this result to that of Theorem 3.3.53).

Call a lower implicative BCK left normal band flat if its underlying poset is
flat. The proof of Theorem 3.2.27, in conjunction with preceding remarks,
implies that any pointed fixedpoint discriminator algebra (4; f,0) has a flat
lower implicative BCK left normal band polynomial reduct (4; /,11,0), where:

a/b :=f(0,f(a, b,a),a) and aNb :=f(0,f(0, b, a), a.)
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for any a,b € A. Conversely, the description of the subdirectly irreducible
implicative BCSK-algebras given in Remark 3.2.28 implies that a lower im-
plicative BCK left normal band is subdirectly irreducible iff it is flat, whence
the class IBCKInB is a pointed fixedpoint discriminator variety, with pointed
fixedpoint discriminator term:

£z, 9,2) = (2\(z N (z/y))) N (\(z N (y/2)))-

Recall from Remark 3.2.28 that FPDy denotes the pure pointed fixedpoint
discriminator variety. In view of the preceding discussion, it is easy to see
that FPDy is termwise definitionally equivalent to iBCKInB. Since the con-
gruence structure of any algebra in a fixedpoint discriminator variety is (by
Lemmas 1.5.10) compietely determined by the fixedpoint discriminator term,
any algebra A in a pointed fixedpoint discriminator variety must have a lower
implicative BCK left normal band polynomial reduct whose congruences coin-
cide with those of A (compare this result to that of Corollary 1.4.40).

Ignoring issucs of similarity type, it is clear from the conditions (i}, (ii) and (iii)
above defining lower implicative BCK left normal bands that iBCKInB is a
subvariety of the variety of lower implicative <¢o-BCK normal bands. This
observation, in conjunction with the above remarks and the results of §3.2.6
and §1.4.37, implies that the study of the classes BP¢, {=~,0} C C C {A,V
, = ,0} (and hence, by extension—recall Proposition 3.3.51—the classes PQg,
{+,0} € C C {AV, ~,0}) encompasses, to within termwise definitional
‘equivalence, the study of the pure binary discriminator, pure pointed fixed-
point discriminator and pure pointed ternary discriminator varieties. Con-
sequently, the study of pre-BCK quasilaitices, BCK paralattices and related
structures provides a unifying framework for the study of several important
classes of ‘generalised Boolean structures’ arising naturally in universal algebra
and algebraic logic. L

Corollary 3.3.56. An algebra (4; AV, [,0) of type (2,2,0) is a generalised
Boolean algebra iff the following conditions hold:

1. The reduct {4; A,V,0) is a lattice with zero;
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2. The reduct (4; /,0) is an implicative BCK-algebra;
3. The BCK meet z N y and the lattice meet z A y coincide.

Henceforth, by abuse of language and notation we will always understand by
the term ‘skew Boolean N-algebra’ an algebra (4; A,V,/,0) of type (2,2,2,0)
satisfying conditions (1)~(3) of Theorem 3.3.563. Conversely, by abuse of lan-
guage and notation an algebra (4; A,V,/,0) of type (2,2, 2,0) satisfying the
defining conditions of Theorem 3.3.53 will always be called a ‘skew Boolean N-
algebra’. See also Bignall and Leech [19, Section 4]. Given these conventions,
we have the following result, a first-order proof of which may be found in {210,
Section 5.2].

Theorem 3.3.57. An algebra (A; AV, [,0) of iype (2,2,2,0) is a skew foolean
N-algebra iff the following identities are satisfied:

zvyVvemazV(yVz) (3.99)
Ay AzzzA(yA2) (3.100)
tA(zVy)rz (3.101)
(yAz)Vemz (3.102)
sA{(yvVz)m(zAy)V(zA2) {3.103)
(VY Azm(zA2)V{(yA2) (3.104)
z/(z/y) ~ y/(y/z) (3.105)
(z/y)/z = (z/2)]y (3.106)
z/(y/z) =z (3.107)
(zAyAZ) /=0 (3.108)
tVizfy)~z (3.109)

(z/y) Vz=z. (3.110)
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Thus the class of skew Boolean N-algebras is a variety.
Proof. Let A 1= (4; A,V, /,0) be an algebra of type (2,2,2,0).

(=) Suppose A is a skew Boolean N-algebra. Then A = (3.99)-(3.102),
(3.105)-(3.107) by the defining conditions of Theorem 3.3.53. Moreover, be-
cause of Theorem 3.3.53, A € IPgn, C" = {/..V, /,0}, so A = (3.108)~(3.110)
by Theorem 3.3.49. Since A € |P¢r, the skew lattice with zero reduct (4; A
,V,0) is distributive local by Proposition 3.3.52, and so is symmetric by
Lemma 1.4.17 and hypothesis. Therefore A | (3.103)-(3.104) by Proposi-
tion 1.4.22, and the proof is complete.

(<) Suppose A = (3.99)-(3.110). To see A is a skew Boolean N-algebra it is
sufficient to show the defining conditions of Theorem 3.3.53 are satisfied, viz.:

(i) The reduct (4; A,V,0) is a join symmetric local skew lattice with zeroh;
(i) The reduct (4; /,0) is an implicative BCK-algebra,

(iii) The partial orders <y and 5.(]‘4; 1 coincide.

For (i), we first show (4; A,V,0) is a skew lattice with zero. So let a,b € A.
By (3.101) and (3.109) e = ¢ A (a V (a/b)) = a A @, whence A is idempotent.
By (3.101), idempotence of A and (3.103) we have a = a A (a V b) = (a A
a)V(ieAabl=aV(aAb). Simiartly (b Ve)Aa=((bAa) V(e Aa)=
(b A @) V a = ¢ by (3.104), idempotence of A and (3.102). By absorption,
a=aV {(aA(aVb)=2aV aand thus (4 A,V) is a skew lattice.
Also, 0 = a/{a A a A a) = afa by (3.108) and idempotence of A, whence
a=aV(afa)=aV0by (3109) and a = (a/a) V a = 0 V a by (3.110).
Thus {4; A, V,0) is a skew lattice with zero, and the identities (3.103)-(3.104)
in conjunction with Proposition 1.4.22 now ensure {4; A, V, 0) is distributive
symmetric local. Hence (4; A,V, 0} is join symmetric local.

For (ii}, we have already observed afa = Oforall e € A,s0 A = z/z = 0.
From this remark, the identities (3.105)-(3.107), and Theorem 1.6.17 it follows
that the reduct (4; /,0) is an implicative BCK-algebra.

For (iii), just notice that (4; A,V, /,0) is a BCK paralattice by (i}, Lemma 1.4.8,
(ii), (3.108)-(3.110) and Theorem 3.3.49. Therefore the natural skew lattice
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partial order <3 and the BCK partial order SSA‘ 9 coincide. "

Corollary 3.3.58. An algebra {4; AV, /,0) of type {2,2,2,0) is a lefi iianded
skew Boolean N-algebra iff the identities of Theorem 3.5.57 are satisfied, where
(3.108) is replaced by the identity:

(z Ay)/z=0. ‘ (3.108")

Proof. Let A := {4; A,V,/,0) be an algebra of type (2,2,2,0) such that
A k= (3.99)~(3.107), (3.108", (3.109)~(3.110) and let a,b € A. By (3.103), we
have that a A (Vo) =(a A b))V (a A a)=(a A b)V a But by (3.108)
and (3.92), (a AbY)Va=((aAb)/0)Va=((aAb)/((eshb)a)Ve=a.
Hence a A (b V a) =a =(a A b)V a, and A is left handed by the remarks
of §1.4.14. Since the converse is clear, the corollary is proved. n

3.3.59. Double-Pointed Skew Boolean N-algebras. Let A be a skew
Boolean M-algebra with maximal class M. By analogy with the theory of pre-
BCK-algebras, an algebra A := (4; A,V,/,0,1) obtained from A upon ad-
joining to the language of A a new nullary operation symbol 1 whose canonical
interpretation on Al is a fixed 1 € M is called a quasi-bounded skew Boolean
N-algebra. Clearly the class of quasi-bounded skew Boolean N-algebras is a va-
riety, axiomatised relative to the variety of skew Boolean N-algebras by either
of the identities:

t\1x~0 or zAlAz~ .

Remark 3.3.60. As per pre-BCK-algebras, in passing from a given skew
Boolean N-algebra A with maximal class M to a quasi-bounded skew Boolean
M-algebra A? there is typically no natural choice of maximal element 1 € M.

ST T -

In general, it seems plausible that distinct choices of maximal element could
give rise to non-isomorphic quasi-bounded skew Boolean N-algebras, although
this possibility cannot occur in the completely reducible case (that is, when A
is isomorphic to a direct product of primitive algebras). =

A version of the following result occurs in Blok and Pigozzi [34, Section 1].
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Proposition 3.3.61. (cf. [3{, Theorem 1.1]} An algebra {4; A,V,/,0,1) of
type (2,2,2,0,0) is a double-pointed skew Boolean N-algebra iff it is a quasi-
bounded skew Boolean N-algebra. Thus the class SBIAY of double-pointed skew
Boolean N-algebras is a variety, aziomatised relative to the variety of skew
Boolean N-algebras by either of the identities st\1 =0 orzs AlAz = 1.

Proof. Because the ideals of any skew Boolean NM-algebra coincide with the
ideals of its implicative BCS-algebra polynomial reduct, the first assertion
of the proposition follows from Lemma 2.2.27. The second assertion of the
proposition now follows from previous remarks. n

Let A be a primitive skew Boolean N-algebra (recall Example 1.4.35). Since A
is primitive, it has a maximal class M, which consists of all non-zero elements
of A. Thus A induces a double-pointed primitive skew Boolean N-algebra A,
Because of Remark 3.3.60, A* is unique to within isomorphism.

Theorem 2.3.62. The following assertions hold in the variety of double-
pointed skew Boolean N-algebras:

1. The double-pointed primitive skew Boolean N-algebras are the non-trivial
simple algebras,

2. The doutble-pointed primitive skew Boolean N-algebras are the subdirectly
irreducible algebras;

3. Bvery non-trivial double-pointed skew Boolean N-algebra is a subdirect

product of primitive algebras.

Proof. For Item (1) [Item (2)] let A* be a non-trivial simple [subdirectly irre-
ducible] double-pointed skew Boolean N-algebra. Its skew Boolean N-algebra
reduct A := (4; A,V,/,0) must also be non-trivial and simple [subdirectly
irreducible}, since A and At have the same congruences. By Theorem 1.4.36
we deduce that A is primitive, so A" is primitive. Item (3) now follows from
Birkhoff’s subdirect representation theorem [55, Theorem II§8.6). n

Recall from Theorem 1.4.38 that ¢(z,y, 2) := (2\(zAy)) V (z/y) is a ternary
discriminator term for SBIA, where zAy = (z/y) V (y/z) (since z\(z Ny) =
z/y)}. Because of Theorem 3.3.62, we may infer the following result.
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Corollary 3.3.63. The class of double-pointed skew Boolean N-algebras is a
discriminator variety, with discriminator term given by:

t(z,y,2) = (2\(zAy)) V (z/y).

Let V be a pointed discriminater variety (say with 0) with discriminator
term t(z,y,z). By the remarks of §1.5.9, V is a pointed fixedpoint dis-
criminator variety, with pointed fixedpoint discriminator term f(z,y,2) :=
t(¢(z,v,2),t(z,9,0),0). For [double-pointed] skew Boolean N-algebras we
have the following simplification.

Corollary 3.3.64. The class of [double-pointed] skew Boolean N-algebras is
a fizedpoint discriminator variety, with fivredpoint discriminator term given by

f(z,9,2) = 2\(zAy).

Proof. The result is established by an easy inspection of the subdirectly irre-
ducible {double-pointed] skew Boolean N-algebras. ]

Remark 3.3.65. Because of Remark 3.2.28, f(z,y,z) := (2\(z/y))\(y/z) is
also a pointed fixedpoint discriminator term for both SBIA and SBIA™, L]

By the pure double-pointed discriminator variety PD} we mean the double-
pointed discriminator variety of type (3,0,0) generated by the class of all
double-pointed discriminator algebras (A; ¢,0,1) where ¢ is the discriminator
and 0 and 1 are residually distinct nullary operations, while by the variety
of double-pointed left handed skew Boolean N-algebras thSBIA* we mean the
variety of all left handed skew Boolean N-algebras that are double-pointed.
From Theorem 1.4.39, Proposition 3.3.61 and [34, Theorem 1.1] we may infer
the following result.

Theorem 3.3.66. The variety PD{ is termwise definitionally equivalent to
the variety of double-pointed left handed skew Boolean N-algebras. In par-
ticular, given (A; t,0,1) € PD{, double-pointed left handed skew Boolean
N-operations A, V and | are defined on A by:

aAbi=t(b,t(,0,a),a)
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aVb:=1(0,0,a)
a/b := t(a, b,0)

for any a,b € A. Conversely, given a double-pointed left handed skew Boolean
N-algebra (4; A,V,/,0,1) and a,b,c € A, the operction t(a,b,c) := (c/(c A
‘b)) V (c A a)V (a/b) yields an algebra (A; t,0,1) in PDZ.

Clearly PD{ is also termwise definitionally equivalent to the variety of double-
pointed right handed skew Boolean M-algebras.

Corollary 3.3.67. Any algebra A in e double-pointed discriminator variety
has a double-pointed left handed skew Boolean N-algebra polynomial reduct
whose congruences coincide with those of A.

Proof. The result follows immediately from Theorem 3.3.66 and Lemma 1.5.10.
n

Remark 3.3.68. A pseudo-interior algebra is an algebra (4; -,—,°, 1) of type
(2,2,1,0) that is essentially a hybrid of an interior algebra and a residuated
partially ordered monoid (for a precise definition, see {35, Definition 2.6]).
A pseudo-interior algebra with compatible operations is an algebra (4; -,—
%y 1, Fi)ier where (4; -, —,°,1) is a pseudo-interior algebra and the additional
operations (F;);c; are such that every congruence on A has the substitution
property with respect to each F; [34, Corollary 2.17]. Pseudo-interior algebras
with compatible operations were introduced by Blok and Pigozzi in [35] as
the algebraic counterpa;rt of a certain assertional logic inherent in any vari-
ety with a commutative, regular TD term; for details, see [34, Theorem 4.1].
By [35, Corollary 4.3], a double-pointed variety V is a ternary discriminator
variety iff it is termwise definitionally equivalent to a congruence permutable,
semisimple variety of pseudo-interior algebras with compatible operations; the
hypothesis that V is double-pointed is essential. The description of double-
pointed discriminator varieties and the associated assertional logics afforded
by this result should be compared and contrasted with Corollary 3.3.67 and
the developments of §3.3.69 in the sequel. [ ]
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3.3.69. The Assertional Logic of the Variety IhSBIA*. Recall from
§1.8.9 that for any quasivariety K with 1, the inherent assertional logic S(K, 1)
of K may be defined by specifying that, for all I' U {¢} C Fmg, I gy
pif { ® 1: ¢ € T} k=¢x v = 1. It follows from this observation and
Theorem 3.3.66 that the assertional logic S(hSBIAT, 0) of the variety of double-
pointed left handed skew Boolean N-algebras is definitionally equivalent to the
assertional logic S(PDF,0) of the pure double-pointed discriminator variety.
This remark calls for a study of S(IhSBIA™, 0); in this subsection we provide a
framework for such a study by axiomatising this deductive system.

Throughout this subsection, we work with a fixed language £ := (A, V,=,0,1)
of type (2,2,2,0,0), with fixed abbreviations:

peq=(=qA(g=>p)

prqgi=(pVvVe =g

p+rg=(p—=>qA(¢g—p)
—p:=p—=0

for propositional variables p, g, and with a fixed and defining collection AzU Ir
of axioms and inferences rules, viz.:

((eAg)nr) e (pA(gAar)) (S1)
«pVQVrX@(pV@VrD (S2)
(pA(pvg)ep (S3)
((gAp)Vp)ep (S4)
(v A(pvr)e(pvignar) (S5)
(pvr)A(gvr)) e (pAgVr) (S6)
(p=>a)=p)ep (S7)

((g=p)=p)e(p=09=19) (S8)
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(p=(g=1))e (1= @=") (S9)

(p=>(qvp)) &1 (S10)

(P A (g=p) & | (s11)

((g=p)Ap)&p (S12)

Ovp)ep (S13)
rar® e st

p&Syq, TES
(pAT)e(gAs)

(CP-A) pegq rEs

pvneGvs oY)

peqg, r&s

honeass) o)
L‘;;l ) 751 £ (1)

The skew Boolean propositional calculus is the deductive system SBPC over the
language £ determined by the axiomatisation Az UJr. We denote by g the
consequence relation of SBPC. The skew Boolean propositional calculus was
introduced implicitly by the author’s Ph.D. supervisor in [18] and explicitly
by the author’s Ph.D. supervisor and the author in [20]; applications of the
skew Boolean propositional calculus to theoretical computer science have been
considered by the author and the author’s Ph.D. supervisor in [21, 22].

Theorem 3.3.70. SBPC is algebraisable with equivalence formula p & ¢ and
defining equation p = 1.

Proof. Immediate by Theorem 1.8.2 and the description of Az U Ir. .

By Theorem 1.8.3, the equivalent algebraic semantics of SBPC is the quasivari-
ety K over the language £ axiomatised by the following collection of identities
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and quasi-identities:

(gAy)rz)e(zA(yAz) =1 (3.111)
(zvy)ve)e(zvyva))=1 ' (3.112)
(zA(zvy)) ezl | (3.113)
(yrz)vz)ez=1 (3.114)
(zvy)A@Vv)e(zVvigaz))=1 (3.115)
(eva)Alyvz) e {(zAryvy=1 (3.116)
(z=y)=z)erx1 (3.117)
(y=z)=sz)e(z=y)=>y) =1 (3.118)
(z=@y=2)ey=>(=>2)~1 (3.119)
(z=(@yVvz)elxl (3.120)
(cA(y=>2)) ezl (3.121)
((y=>z)Az) =1 (3.122)
OvVr)er=l (3.123)
r&oxl (3.124)
ySrrldreyxl (3.125)
royri&yezrzxldrerrl | (3.126)
rSyrl&zowsldrAzeyAwx] (3.127)
reyrl&zSuwxldzVzeyVeuxl (3.128)

S yrl&zouwmldr=zey>uwsl (3.129)
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tx1Dze1x1] (3.130)
& lx1Dzx1 {3.131)
r&y=ldzry (3.132)

where z < y abbreviates (z = y) A (y = z) for individual variables z, y.
To see the quasivariety K has a familiar description, let InSBIA*? denote the
variety with language £ defined by the following set of identities:

(zAYAzzmz Ay A2) (3.133)
(zvVyVzxzV(yVz2) (3.134)
sA(zVyl=z (3.135)
(yAz)Vamz (3.136)
vyA{zvVay=zV(yAz) (3.137)
(zVa)A(yVz)m(zAy)Vz (3.138)
(z=>y)=>z=z (3.139)
(y=>r)=2>exs(z=2y) >y (3.140)
12> (y=z)my=> (0= 2) (3.141)
t=>(yVve)=1l (3.142)
sn{y=>2)=z (3.143)
(y=>z)Azmz (3.144)
OvVz=z. (3.145)

Let T(X) denote the term algebra of type £ over X and let To(X) denote the
term algebra of type L2 over X, where £? is the language of skew Boolean N-
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defined respectively by:

£(1):=0
£(0):=1
E&(z) =z

E(p A q) == ¢&(q) VE(p)
E(p Vv q) = &(q) A&(p)
E(p = q) := £(9)/E(p)

and:

n7(0) :=1
n(1) =0
n(z) =g

n(r A 8) = n(s) V n(r)
n(r Vv s) :=n{s) An(r)
n(r/s) := n(s) = n(r)

hold:

Moreover, 0§ = wr (x) and £ o = Wt 5(X)-

algebras. Consider the maps £ : T¢(X) — T,o(X) and 5 : Tpo(X) — T(X)

zreX

?,q € Teo(X)
p,q € Teo(X)
9,9 € Tro(X)

zeX

r,s € Te(X)
r,s € Tz (X)
r,s € Te(X).

(The maps £ and 7 so defined should not be confused with the similar maps
of §2.1.33 or §3.1.1 in the prequel.) Because of Corollary 3.3.58 and the defini-
tion of IhRSBIA*?, the proof of the following lemma is trivial and so is omitted.

Lemma 3.3.71. For p,q € Te(X) and r,s € Tro(X) the following assertions

1. If \IWSBIA*D k= p ~ ¢ then IhSBIAT k= £(p) =~ £(g);

2. IfIhSBIAY |= r & s then hSBIA™? k= n(r) = n(s).

By Lemma 3.3.71, the variety IhSBIAT? is termwise definitionally equivalent
to (in fact, is dually isomorphic to) the variety of double-pointed left handed
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skew Boolean N-algebras. In other words, IhSBIA*?

dual double-pointed left handed skew Boolean N-algebras.

is precisely the variety of

Proposition 3.3.72. The quasivariety K coincides with the variety IhSBIATD ‘

of dual double-pointed left handed skew Boolean N-algebras. aence SBPC s
strongly algebraisable.

Proof. (Sketch) To prove the proposition, it is sufficient to show the qua-

A+D

sivariety K and the variety IhSBI coincide. To establish the inclusion

K C IhSBIA*? note first that:
IhSBIAT =z~ y iff MSBIAYP Ez oy~ (3.146)

by Lemma 3.3.71 and Proposition 3.3.37(3). To complete the proof we show:

(i) thSBIAT? k= (3.111)-(3.123);
(ii) hSBIAT? |= (3.124)—(3.132).

For (i), consider a defining identity of K, say (3.111). Then K = (3.111), viz.:
KE(zayrz)e(zAalyAz) =L
Now by (3.133), we have that:
hSBIA*C = (z Ay) Az z A (y A 2),
so by (3.146), we have that:

hSBIAYY = {(zAy)Az) & (zA(y A 2) =1,

whence 1hSBIA*? |= (3.111). Because of the axiomatisation of IhNSBIA*™® by
(3.133)-(3.145), a suitable modification of the preceding argument now shows
that IhSBIA*? = (3.112)~(3.123) for each of the remaining identities (3.112)—
(3.123) dafining K.

For (ii), consider a defining quasi-identity of K, say (3.129). Then K |= (3.129);
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that is to say:

K#xﬁyml&zﬁwm'lD:c=>z®y=>wz1.
By properties of =, we have that:
hWSBAYY s y&zrwdz=zny=w
vacuously, so by (3.146) we have that:

hSBIAYY Lz o y~1& 2 wrldz=>z8y>wrl

Hence hSBIA*? k= (3.129). Because of properties of =, a suitable modi-
fication of the preceding argument now shows hSBIA*? |= (3.125)-(3.128),
(3.130)—(3.132) for each of the remaining quasi-identities (3.125)—(3.128) and
(3.130)—(3.132) axiomatising K.

By (i) and (ii), hSBIA*? |= (3.111)-(3.132), so K C IhSBIA*® as desired.

To establish the inclusion IhSBIAT? C K, note first that:
KEz=y if KEzoyxl, (3.147)

because of (3.124) and (3.132). To complete the proof, consider a defining
identity of INSBIAT?, say (3.133). Then IhSBIA*? k= (3.133); that is to say:

IhSBIA*? k= (z Ay) Az =T A (Y A 2).
Now by (3.111), we have that:
KE(zAyyrz) e (zA(yaz) =1,
so by (3.147) we have that:

Kie(zAyAzmazA(yAz).
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Thus K |= (3.133). Because of the axiomatisation of K by (3.111)-(3.132), a
suitable modification of the preceding argument now shows K = (3.134)—(3.145)
for each of the remaining identities (3.134)-(3.145) defining IhSBIA*P, Hence
[hSBIA™® C K. - ..

Remark 3.3.73 (Added in proof). It is implicit in Blok and Pigozzi (36,
Sections 3.4.5-3.4.7] and the constructive proof of Andréka, Kurucz, Németi
and Sain [13, Theorem 3.2.3] that any axiomatisation of a K-1-regular qua-
sivariety K with 1 can be translated into an axiomatisation of the inherent
assertional logic S(K, 1) of K. In more detail, let K be a K-1-regular quasi-
variety (for some constant term 1) and let A = {A,,...,A,} be a set of
binary terms witnessing the K-1-regularity of K in the sense of Czelakowski
and Pigozzi [78, Theorem 2.3]. Let Sk be the 2-dimensional deductive system
associated with K in the sense of Blok and Pigozzi [36, Section 3.4.7] and let:

7(p) := {{p,1)} and p((p,q)) = A(p,9)

be (1, 2)-translations and (2, 1)-translations in the sense of Blok and Pigozzi [36,
Section 6.1]. Then the image p[Id ' @QId] of any axiomatisation Id U QId of K
under p yields a deductive system S. Adjuin to S the further rule:

Ap,1),..., Au(p, ) Fg p (3.148)

and denote the resulting ded: stive system by S'. Because of (3.148) and
the description of p{Jd U QId, - is an interpretation of 8’ in Sk and p is an
interpretation of Sk in §', so §' nd Sk are equivalent: see for instance Blok
and Pigozzi [36, Section 6.1]. Therefore S’ is algebraisable with equivalence
formulas A,,...,4A,, and defining equation p ~ 1. Let K’ be the equivalent
quasivariety semantics of §’. Then §’ is S(K',1). Moreover, because both K
and K' satisfy the quasi-identities:

sy DA(T,y)=1& ... &An(z,y)~1
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and:

Az, y)=1& ... &Ap(z,y)=1Dz =y

one sees easily that K and K’ coincide. Hence §' = S(K’,1) = §(K, 1). Theo-
rem 3.3.70 and its counterpart Proposition 3.3.72 may be seen as a particular
instance of this general argument, due in the form above to Professor James
Raftery and the author {189]. n

Theorem 3.3.74. SBPC coincides with S(hSBIA*P 1), the assertional logic
of the variety of double-pointed left handed skew Boolean N-algebras.

Proof. By Theorem 3.3.70 and Proposition 3.3.72, SBPC is algebraisable with
equivalent algebraic semantics hSBIA*? and defining equation p ~ 1. But
by Theorem 1.8.15, S(IhSBIA*® 1) is algebraisable with the same equivalent
algebraic semantics and defining equation, so by Lemma 1.8.8, SBPC and

S(1hSBIA*P 1) coincide. »

In the sequel we continue to denote S(IhSBIAT?, 1) by SBPC. Upon recsiling
from §3.3.59 that PDZ denotes the pure double-pointed discriminator vatiety,

the following theorem may now be inferred from the preceding result and
Theorem 3.3.66. '

Corollary 3.3.75. SBPC s definitionally equivalent to S{PD¢,0), the asser-
tional logic of the pure double-pointed discriminator variety.

Although SBPC is a deductive system in the sense of §1.2.9, its presentation
Az U It is too closely related to the underlying axiomatisation of its squivalent
algebraic semantics to be a Hilbert-style axiomatisation in any faxiliar sense
(for example, in the sense of Sundholm {213, Section 1]). In particular, AzUIr
is not an axiomatisation of SBPC for which (MF) is the only (proper) rule
of proof. We claim that there exists just such an axiomatisation of SBPC (in
principle). Our observation to this offect results as an easy consequence of
Theorem 3.3.77 below, which characterises the logical connectives of SBPC.
But first, the following useful technical lemma, a version of which occurs in
Bulman-Fleming and Werner {50]. See also Burris [53).
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Lemma 3.3.76. (cf. [50, Lemma 1.8]; ¢f. [58, Proposition 2.8.10]) For any
(double-pointed) skew Boolean N-algebra A and any a,b € A, the following
assertions hold:

1. ©%(a A b A a,0) = ©4(a,0) AT BA(D,0);
2. ©%(aV bV a,9) = OA(a,0) V"L ©4(b,0);
8. ©4(a\b,0) = O4(q,0) xCPA ©A(5,0);
4. ©4(aAb,0) = ©4(a, b).
Proof. Let A be a (double-pointed) skew Beolean N-algebra and a, b € A. |

For (1), from Proposition 2.2.31 we have that (a M 8)a = (a)a N (b)a, just
because the ideals of A coincide with the ideals of its canonical implica-
tive BCS-algebra polynomial reduct {4; \,0). Since a A b A a =allb
(by (3.69)), we have that (a A b A a)a = {(a)a N (b)a. By normality of ideals,
[0loa(arsra0) = [0Joa(an M 0]or(se), so by ideal determinacy, ®*(a A b A
a,0) = ©4(a,0) N OA(,0).

For (2), we first observe that z V y V z is a join generator term for SBA,
Indeed, let: |
zUYy=2zVyVvse
r(z,3,2) = 2\(1\o)
t(z,y,2) =y A (2\(z\y)) A v

By an easy inspection of the subdirectly irreducible skew Boolean algebras, we
see that SBA satisfies the identities:

r(z,y,0) ~ 0 t(z,y,0) =0
r(z,y,zUy) =g tz,y,2Uy) ~y g
ouU0=0 "
so z V y V 7 is a join generator term for SBA by Proposition 1.7.13. Be- j

cause the ideals of any skew Boolean N-algebra coincide with the ideals of its
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canonical skew Boolean algebra polynomial reduct, z V y V g is alsc a join
generator term for SBIA. Hence (a V b V a)a = (a)a V** (b)4. By normal-
ity of ideals, [0]ga (avsva,0) == [OloA(ap) Vi [0}oa(s,0), S0 by ideal determiriacy,
OA(aV bV a,0) = ©4(a,0) VA 0A(h,0).

For (3), from Theorem 2.2.20(5) we have that (a\b)a = (a)a * (b)a (where *
denotes dual relative pseudocomplementation in the join semilattice (CI(A); V
,{0}a ) of compact ideals of A), just because the ideals of A coincide with the
ideals of its canonical implicative BCS-algebra polynomial reduct {4; \,0). By
normality of ideals, [0]oa(a\s0) = [Oloa(a0) ¥ [0)oa(s o), 50 by subtractivity
and Proposition 1.7.10, ©4(a\b,0) = ©*(a, 0) P4 64(b,0).

For (4), recall eAb = (a/d) v (b/a) for any skew Boolean N-aigebra A and
a,b € A. Let # € ConA. From Proposition 3.3.37, we have that aAb = 0
iff @ = b. Applying this to the quotient algebra A/f, we infer that eAbd =
0 (mod @) iff a = b (mod §), which implies that ©4(aAb,0) = O4(a,b). ®

Theorem 3.3.77. IhSBIA* is « WBSO# variety with:
1. Weak join x Ay A z;
2. Weak meetzV y V z;
3. Subtractive weak relative pseudocomplementation z\y;
4. Gdodel equivalence term zAy.
Hence the following assertions hold concerning the logical connectives of SBPC:
I'. A is a conjunction;
2.V is o disjunction;
J. — is a conditional;
4. & is a G-identily,
5. > is a biconditional;

6. - 1is a weak negation.

T e L e e B A i N o e e b i s b b o
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Proof. The theorem follows easily from Lemma 3.3.76, Theorem 3.3.74 and
Proposition 3.1.25. n

Corollary 3.3.78. For any L-formulas ¢,v,x, the following formulas are
theorems of SKPC:

¢ = (Y = ¢)
(o=@ —=x)—((p=9) = (@—x)
X (pAY)— e
(pAYp) =y
_ (x—=0) > (x = 9) = (x = (e A 9))
E - ¢ = (p V)
Y- (p VYY)
(e=x)=((®—=x)= e V) —=x)

Proof. The result follows from Theorem 3.3.77 and Wéjcicki [238, Theorem 2.4.7].
]

Corollary 3.3.79 (Deduction-Detachment Theorem for SBPC). For all
ru {(P, 11)} C Fmg,

Tyobrgpe ¥ iff Trepe e — .

Remark 3.3.80. By Corollary 3.3.79, ©(8) Fggpc ¥(P) iff Fege ©(B) = ¥(P)
iff IhSBIAY? = s(&) — (F) ~ 1 iff s2(8) <p tA(@) for all A € IhSBIA*P
and & € A, where (%), t(Z) are L-terms in the individual variables 7 identi-
fied respectively with L-formulas ¢(7),¥(g) in the propositional variables p.
Hence the consequence relation g of SBPC induces only a quasiordering
on its underlying algebraic models. In general, therefore, it is not the case
that ©(F) Hrgme ¥(P) iff ISBIATY |= s(F) ~ t(Z). Because of Font and
Jansana [91, Proposition 2.43}, this shows that SBPC is not congruential in :
the sense of Rautenberg {197]. u ’2

Apropos the claim prefixing Lemma 3.3.76, because SBPC has the DDT (wit-
ness ¢ — y), any axiomatisation of SBPC (including AzUIr) may be converted
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into one in which (MP) (for —), viz.:

PP = qlgme @

is the only (proper) rule of inference. To see this, apply the DDT from left -
to right repeatedly on all inference rules of a given axiomatisation of SBPC
until they are in the form of axioms. Then the axiomatisation obtained by
adjoining (MP) (for —) as a (proper) rule of inference to the resulting collection
of axioms is clearly an axiomatisation of SBPC. (More generally, we remark
that if K is a quasivariety with 1 such that the assertional logic S(K, 1} has a
DDT with deduction-detachment set X := {C; (p,q):i=1,..., n}, then any
axiomatisation of S{K, 1) may be converted into one in which:

@:{Ei(w:w):i:'l}'":n} E—Sd’

is the only (proper) rule of inference [189].}) Hence there exists (in principle)
an axiomatisation of SBPC for which (MP) (for —) is the only (proper) rule
of inference.

By the preceding observation, a direct demonstration that (MP) (for —) is a
derived rule of proof for SBPC is of some independent interest. In the final
result of this subsection, we provide just such a direct broof of the detachment
property (for —).

Lemma 3.3.81. For any L-formula ¢, the following formula ts a theorem of

SBPC:

(1= 9) e (3.149)
Proof.
1) (p=@ve)el (S10), p =9, g:=¢
2) e®o (R)
3) (p=(pVve)=p)e1=y) (1), (2), (CP-=)

4) A=) e{e=@Vve)=>9) (3), (S)
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5) ((p=>(eVvo)=0)ep 87, p=0,¢:=pVe
6) A=¢)eo (4), (5), (T)

Proposition 3.3.82 (Modus Ponens for =). For all L-formulas @, ),

@, = P Fempc V-
Proof.
(1) ¢ Assumption
(2) &1 (1), (1-1)
B) vevy (R)
4) (e=9)e (=9 (2), (3), (CP-=)
(5) A=y)eyY by (3.149)
6) (p=>v¥)ey (4), (8), (T)
(7) e (e=>19) (6), (S)
8) =19 | Assumption
9) (p=y)e1 (8), (1-)
10) ype1 (), 9), (T)
11 ¢ (10), (1-E).

Lemma 3.3.83. For any L-formula ¢, the following formulas are theorems of
SHPC:

(eAp) & (3.150)
(pVe)e o (3.151)
0= (3.152)
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Proof. Let ¢, be L-formulas. For (3.150), we have the following derivation:

(1)
(2)
(3)
(4)
(5)
(6)

For (3.151), we have the following derivation:

(1)

For (3.152), we have the following derivation:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

((e=9)=9) o0

ey
((p=>v)=0)Ap) & (@A)
(pAe) & (((e=9)=9) Ag)
((e=v)=z0)rp)s0
(pAp) &y

(pAp) o

o
(AP Vo) & (pV o)
(Vo) e (erp) Vo)
(lerp) Vo) ey
(pVo)erp

e

(pVe)eo

(p=> (Vo)) elp=y)
(p=>0) & (p=(pVy)
(e=>(pVve) el
(=) &1

p=> @

(S7),p:=p, g:=1

(R)

(1), (2), (£2%A)

(3), (S)

(512), g:=p=> 9, p:=p
(4), (5), (T).

by (3.150)

(R)

(1), (2), (CP-V)
(3), (5)

(S4), g:=0,p:=9¢
(4), (5), (T).

(R)

by (3.151)

(1), (2), (CP-=)

(3), (5)

(810), p ==, g:=¢
(4), (5), (T)

(6), (1-E).

Lemma 3.3.84. For any L-formulas @, ¥, the following formulas are theorems
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of SBPC:

AAp) o
(pV(pAY) &o
1V

(3.153)
(3.154)
(3.155)

Proof. Let ¢, 1, x be L-formulas. For (3.153) we have the following derivation:

1
2

3

(
(
(
(4

)
)
)
)

For (3.154) we have the following derivation:

[N - R v R
R e e

rm—— ——— o —— ——— —— — o o
0 ~3 O O
p — o — g g

h=)
St

For (3.155) we have the following derivation:

(1)

p=¢

(=) =1

PP
((e=9) Ap) & (LAp)
1Ap) e ((e=9) Ap)
((p=0)Ap) 20
(1hp) &

(Vo)
(V)& (0 V)
((eVo)A(pVve)) & (pAlpV )

(eA(pvy)) e ((eVe)aleVy)
(eve)Aleve)) e (o V(e AY)
(e A (V))& (Vv (pAy))
(eVipAy) & (W\ (o V)
(pA(pv) &

(pVipAy) &

11

by (3.152)
(1), (1-1)

(R)

(2), (3), (CP-A)
(4), (8)

(S12), g:=¢,pi=¢
(5), (6), (T).

by (3.151)

(R)

(1), (2), (CP-A)

(3), (S)

(85), pi=gp, =, r:=79
(4), (8), (T)

6), (8)

(83), p:=wp, q:=¢

(7), (8), (T).

(R)
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(2) (LAp)s@ by (3.153)

3 (Av(rg)e@vey (2), (3), (CP-v)
@) Ave)e (VA (3), (S)

5) (1v(lae) et by (3.154)

6) Avy)el (4), (8), (T)

(7) 1V (6), (1-E).

Proposition 3.3.85 (Modus Ponens for —). For all L-formulas ¢, ¥,

0,0 = P Fgppe P-

Proof. By the definition of — and Proposition 3.3.82, to prove the proposition
we need only show ¢ bgmre ¢ V 9 for all L-formulas ¢, ). For this we have:

(1) ¢ Assumption

(2) pel (1), (1-1)

@) vei (R)

@ (v eavy @), (3), (CP-v)
(5) 1vy by (3.155)

6) Avy)el (5), (1-)

(7} (pVvy) el (4), (6), (T)

8 v (7), (1-E).

The results of this subsection notwithstanding, we have been unable to obtain
a Hilbert-style axiomatisation of SBPC in which (MP) (for —) is the only
(proper) rule of inference that is ‘aesthetically pleasing’ in the sense that its
axioms have a familiar description. In particular, we have been unable to pro-

vide such an axiomatisation of SBPC whose axioms are based on the theorems
(or some variants of the theorems) of Corollary 3.3.78. Hence we conclude this




3.2, Pre-BCK Quasilattices and BCK Paralattices 360

subsection with the following problem.

Problem 3.3.86. Give an ‘aesthetically pleasing’ Hilbert-style axiomatisation
of SBPC for which the only rule of inference is (MP) (for —): p,p = ¢ e ¢
n

ey T




Chapter 4

Conclusion

4.1 Summary

Motivated by work of Blok and Raftery {38, Section 4] and Agliano and
Ursini [11, Example 3.7, Corollary 3.8], this thesis witnessed the introduction
of pre-BCK-algebras as a generalisation of BCK-algebras to the subtractive
but not BCK-0-regular case. In particular, this dissertation oversaw the in-
vestigation of the elementary theory of the variety of pre-BCK-algebras and
some of its subvarieties, and the application of this theory to the study of some
varieties arising naturally in universal algebra and algebraic logic.

Chapter 1 provided a structured account of the theory relevant to the study
of pre-BCK-algebras, ‘including: Laslo and Leech’s theory of quasilattices,
paralattices and skew lattices; Blok and Pigozzi’s hierarchy of varieties with
EDPC; the theory of BCK-algebras and BCK-lattices due to Iséki, Idziak and
others; Agliano and Ursini’s theory of ideals and subtractive varieties; and the
theory of algebraisable and assertional logics due to Blok, Pigozzi, Raftery and .
others. The main new results concerned distributivity in skew lattices. By the
results of §1.4.18, the equivalence of the middle distributive identities (1.19)-
(1.20) for lattices extends to symmetric skew lattices, but not to skew lattices.
The results provide support for Leech’s contention (initiaily prompted by the
remarks of §1.4.15) that ‘...symmetric skew lattices are the really nice skew
lattices’ {152, p. 17].
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In Chapter 2 the elementary theory of the variety of pre-BCK-algebras and
some of its subvarieties was investigated. In Section 2.1 pre-BCK-algebras
proper were considered. The results obtained show that a significant fragment
of the first-order theory of BCK-algebras extends to pre-BCK-algebras; in
particular, the ideal theory of BCK-algebras carries over to pre-BCK-algebras
almost in its entirety. In Section 2.2 varieties of pre-BCK-algebras were stud-
ied. It was shown that the correspondence between the theory of BCK-algebras
and the theory of pre-BCK-algebras exhibited in Section 2.1 extends to sub-
varieties of BCK-algebras, inasmuch as with any variety V of BCK-algebras
there may be associated a variety V, of pre-BCK-algebras (‘the natural pre-
BCK-algebraic counterpart of V') such that V, enjoys many of the same (first-
order) properties as V. In Section 2.3 the variety of implicative BCS-algebras
was investigated. Althongh the variety of implicative BCS-algebras fails to
enjoy many of the properties typically associated with a ‘tractable’ class of
algebras, the results of Section 2.3 nonetheless provide for these algebras a
fairly complete elementary theory closely resembling that of implicative BCK-
algebras. Collectively, the results of Chapter 2 indicate that pre-BCK-algebras
enjoy a coherent elementary theory that largely parallels the theory of BCK-
algebras. This suggests that pre-BCK-algebras are an appropriate generalisa-
tion of BCK-algebras to the subtractive but not BCK-0-regular case.

In Chapter 3 the theory of pre-BCK-algebras was applied to the study of
some varieties arising naturally in universal algebra and algebraic logic. In
Section 3.1 positive implicative pre-BCK-algebras in subtractive varieties with
EDPI were considered. The results obtained show in particular that the study
of ideals in subtractive varieties viith EDPI reduces to the study of ideals in
positive implicative pre-BCK-algebras. In Section 3.2 connections between im-
plicative BCS-algebras and binary discriminator varieties were investigated. It
was shown that the variety of irnplicative BCS-algebras provides a convenient
framework for the study of binary discriminator varieties, and this observation
was exploited in clarifying relationships between binary discriminator, pointed
fixedpoint discriminator and pointed ternary discriminator varieties. In Sec-
tion 3.3 varieties PQ¢, BP¢ of pre-BCK/BCK-algebras structurally enriched
with band {double band] operations were studied as a generalisation of Idziak’s
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varieties of lower/upper BCK-semilattices [BCK-lattices]. It was shown that
the theory of the varieties PQ¢ and BP¢ encompasses the theory of skew
Boolean algebras/skew Boolean N-algebras, and hence (to within termwise def-
initional equivalence) subsumes the theory of pointed discriminator varieties.
Further, the results hint that the theory of the varieties BP; accommodates
the theory of pointed fixedpoint discriminator varieties (to within termwise
definitional equivalence). Collectively, the results of Chapter 3 indicate that
{structurally enriched) pre-BCK-algebras (distinct from BCK-algebras) arise
naturally in and simplify the study of scveral classes of varieties found in uni-
versal algebra and algebraic logic. This suggests that classes of (structurally
enriched) pre-BCK-algebras may provide a unifying framework simplifying the

study of several hitherto unrelated areas of universal algebraic logic.

As a generalisation of BCK-algebras to the subtractive but not BCK-0-regular
case, the work of this thesis thus attests that pre-BCK-algebras are of inter-
est both in their own right and in their application to the study of varieties
arising naturally in universal algebra and algebraic logic. Pre-BCK-algebras
are of interest in their own right, inasmuch as they are a natural and coher-
ent generalisation of BCK-algebras to the subtractive but not BCK-0-regular
case; and their applications to universal algebraic logic are of interest, insofar
as such algebras provide a unifying framework simplifying the study of sev-
eral important classes of varieties occurring naturally in universal algebra and
algebraic logic.

4.2 Future Work

The remarks of Saction .1 clearly call for a further study of pre-BCK-algebras

and cf their application to universal algebra and algebraic logic. In what.
follows we present a brief selection of problems outlining some possibilities for

future research.

4.2.1. Pre-BCK-Algebras. By the remarks of §1.1.1, residuated struc-
tures play a central role in the algebraic study of logical systems. The residu-
ated structures most commonly encountered in algebraic logic are (left) resid-
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vated partially ordered groupoids, or structures of the form (A; @; <) where:
(i) <is a partial order on A4; (ii) @ is a binary operation on A isotone in each of
its positions; and (iii) the equivalence a < ¢® b iff a = b < ¢ is satisfied for any
a, b, ¢ € A. Pocrims and poirims provide natural examples of (left) residuated
partially ordered groupoids. On the other hand, members of pointed discrim-
inator varieties, WBSO# varieties and double-pointed binary discriminator
varieties provide important examples of algebras that do not in general enjoy
the underlying structure of a residuated partially ordered groupoid. Instead,
such algebras have the underlying structure of a (left) residuated quasiordered
groupoid, where a (Icft) residuated quasiordered groupoid is a structure of the
form (A; @; =) such that: (i) < is a quasiorder on A; (ii) @ is a binary
operation on A that is isotone in each of its positions; and (iii) the equivalence
a = c®biff a ~ b X cissatisfied for any e, b, ¢ € A. Indeed, let V be a pointed
discriminator variety, WBSO# variety or double-pointed binary discriminator
variety and let U be a joiu generator term for V. For any algebra A in V, the
structure {4; L*; X) is a (left) residuated quasiordered groupoid, where <
denotes the underlying quasiorder of the canonical MINI-algebra polynomial
reduct of A (which must exist as V has EDPI). Inasmuch as the results of
Section 2.1 lend to the conjecture that the class of residuated quasiordered
groupoids may admit a coherent elementary theory closely resembling that of
the class of residuated ordered groupoids, the preceding remarks call attention
to the following problem. '

Problem 4.2.2. Investigate the class of residuated quasiordered groupoids.
u

Considered as residuated partially ordered groupoids, pocrims (or more gen-
erally polrims) are of particular interest in algebraic logic because they are
amenable to purely algebraic investigation, since any such structure (4; &, 0; <
) satisfies a < b iff ¢ = b = 0 for any a, b € A, whence the partial order < may
he completely recovered from the residuation operation =. These remarks
snggest that attention be focussed on residuated quasiordered groupoids that
(in some sense) naturally generalise pocrims, and in fact at least one such
class of residuated quasiordered groupoids has already been considered in the.
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literature. Call an algebra A := (4; @, =, 0) of type (2,2,0) a pre-pocrim if:
(i) the reduct {A4; ®,0) is a commutative monoid; (ii) the reduct {4; ~,0) is
a pre-BCK-algebra; and (iii) A satisfies the following identities:

(E=y)=~2)-(z-(v®2) =0
(z—-(y®2) = ((z~y)—2) =0.

Clearly any pre-pocrim (4; @, ~,0) has the underlying structure of a resid-
uated quasiordered groupoid {4; @; =), where < denotes the underlying
quasiordering of the pre-BCK-algebra reduct (4; -,0). Pre-pocrims were
introduced by Higgs in [109] in connection with his example showing that the

~ class of all pocrims is not a variety. By [109, pp. 72-73] pre-pocrims are known
to preserve several important properties of pre-BCK-algebras: in particular,
for any pre-pocrim A, the relation = of Theorem 2.1.14 is a congrucnce on A
such that A /= is the maximal pocrim homomorphic image of A. Nenetheless,
it is unclear if pre-pocrims (considered as residuated quasiordered groupoids)
are the most appropriate generalisation of pocrims (understood as residuated
partially ordered groupoids). For let A be a pseudocomplemented semilat-
tice. By previous remarks, A has the underlying siructure of a residuated
quasiordered groupoid (A; w#; <), where L is the join generator term of
Proposition 2.3.60(2) and < denotes the underlying quasiorder of the canon-
icel implicative BCS-algebra polynomial reduct (4; \,0) of A. However, the _
polynomial reduct {4; U4, \,0) is not a pre-pocrim, since A = zU 0 ~ z. jf

Problem 4.2.3. Identify an appropriate generalisation of pocrims (consid-
ered as residuated partially ordered groupoids) to residuated quasiordered
groupoids. Does the quasivariety of pocrims admit a generalisation to a class '
of residuated quasiordered groupoids analogous to that of ECK-algebras to
pre-BCK-algebras? L

Recall from §1.1.1 that the quasivariety of BCK-algebras is precisely the class
of all { ~, 0)-subreducts of pocrims.

Problew: 4.2.4. Is an aigebra (4; = ,0) of type (2,0) a pre-BCK-algebra iff
it is a (=, 0)-subreduct of a residuated quasiordered groupoid in the sense of
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Problem 4.2.37 u

Residuated quasiordered groupoids may not be the only generalisation of pre-
BCK-algebras of interest in algebraic logic. Indeed, the results of Section 2.1,
in conjunction with work due to van Alten {229}, suggest that the vaiietal
closure H(LR) of the quasivariety LR of left residuation algebras is of interest
in algebraic logic as a naturally occurring generalisaiion of the variety of pre-
BCK-algebras (recall Proposition 2.1.11). In the statement of the following
problem, an algebra A ;= (4; =,0) of type (2,0} is called an H(LR)-algebra
if A € H(LR).

Problem 4.2.5. Investigate the variety H(LR). Do H(LR)-algebras stand in
relation to pre-BCK-algebras as left residuation algebras stand in relation to
BCK-algebras? ]

4,2.6. Varieties of Pre-BCK-Algebras. In Section 2.2 the varicties of
commutative, positive implicative and implicative pre-BCK-algebras were stud-
ied as the pre-BCK-algebraic counterparts of the varirties of commutative,
positive imnlicative and implicative ECK-algebras respectively. In light of the
results of Section 2.3, Section 3.1 and Section 3.2, it is natural to anticipate
that the pre-BCK-algebraic counterparts of other naturally occurring varieties
of BCK-algebras may themselves be of interest in universal algebra and alge-
braic logic. Hence we posit:

Problem 4.2.7. Investigate those varieties V, of pre-BCK-algebras arising
as the pre-BCK-algebraic counterpart ¢f a naturally occurring variety V of
BCK-algebras. In particular, investigate the natural pre-BUK-algebraic coun-
terparts of the vurieties e,BCK, n € w, and the natural pre-BCK-algebraic
counterpart of the variety HBCK i38, Theorem 3.15] of all residuation sub-
reducts of hoops. n

Apropos the preceding problem, the remarks of §1.5.1 and the results ¢f Sec-
ticn 3.1 coilectively indicate that vanuties of positive implicaiive pre-BCK-
algebras generalistag the variety of positive implicative BCK-algebras may be
of particular interest in universal algebraic logic. Let K uenote the class of all
positive implicative pre-BCK-algebras A with a left norweal baad with zero
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polynomial reduct (4; M;,0), where a My b := (a(ab))(ba) for any a,b € A,
such that the underlying natural band partial order géf‘”““’ respects pos-
itive implicative pre-BCK difference. Members of the class K more closely
resemble positive implicative BCK-algebras than do positive implicative pre-
BCK-algebras, inasmuch as any positive implicative BCK-algebra A has a
semi~Boolean algebra polynomial reduct {4; N}, where aN, b := (a(ab))(ba)
for any a,b € A (recall the remarks prior to Problem 2.3.16). Thus the fol-
lowing problem would seem relevant:

¥rroblem 4.2.8. Characterise the class K. Is it a variety? What role, if any,
does K play in the theory of pre-BCK-algebras? In algebraic logic? ]

4.2.8. Implicative BCS-Algebras. Recall from Theorem 2.3.29 that im-
plicative BCS-algebras are precisely those implicative pre-BCK-algebras A. for
which the polynomial reduct (A; M,0) is a left normal band with zero whose
underlying natural band partial order respects implicative pre-BCK difference.
This result warrants the study of bands in pre-BCK-algebras, and in partic-
ular the study of those pre-BCK-algebras A for which the polynomial reduct
(A; N,0) is a {normal) band with zero. As we know of no such studies in the
existing literature concerning (normal) bands in BCK-algebras, the preceding
remarks call particularly for a study of bands arising in DBCK-algebras.

Problem 4.2.10. Investigate (normal) bands in pre-BCK-algebras. In par-
ticular, investigate (normal) bands in BCK-algebras. Is the class of all BCK-
algebras (4; - ,0) such that the polynomial reduct {4; N) is a (normal) band
equationally definable? L]

By Theorem 2.3.73, the 3-element flat implicative BCS-algebra B, generates
the class iBCS of implicative BCS-algebras as a variety. However, by Proposi-
tion 2.3.76, the quasivariety Q(B;) generated by B, is not a variety, whence
the inclusion Q(B3) C V(B,) is strict. In consequencc;, it is natural to focus
attention on the quasivariety Q(B;) as a specialisation of iBCS. In particular,
it is natural to ask to what extent membership of the quasivariety Q(B.) is
reflected in special properties of implicative BCS-algebras. In the statement
of the following problem and in the sequel, an algebra A := (4; +,0) of type
(2,0) is cailed a Q(B;)-algebra if A € Q(B,).
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Problem 4.2.11. Characterise the Q(B3)-algebras amongst the implicative
BCS-algebras. | "

The quasivariety Q(B2) also seems of inirinsic interest in its own right, in

view of the pivotal role it plays in the theory of BCK-algebras (recall Propo-
sition 2.2.5). Two of the most pressing problems concerning Q(B2) are the
following;:

Problem 4.2.12. Give an implicational characterisation of the quasivariety
. Q(B,). Is Q(B,) finitely axiomatisable? N

Problem 4.2.13. Characterise the Q(B3)-subdirectly irreducibie Q(B3)-algebras.
To within isomorphism, are C;, B; the only Q(B;)-subdirectly irreducible
Q(B;)-algebras? n

In Problem 2.3.69 we asked if every implicative BCS-algebra arises as & ‘resid-
uation subreduct’ of a pseudocomplemented semilattice. It would also be of
interest to possess an embedding theorem for Q(B;)-algebras. Upon recalling
that the class of {\, 0)-reducts of members of SBAg; is, to within isomorphism,
precisely {C;, B,}, the following problem is suggested by Problem 4.2.13 and
Kalman’s proo}' of Theorem 1.6.20.

Problem 4.2.14. Is an algebra (4; \,0) of type (2,0) a Q(B;)-algebra iff it
is a {\, 0)-subreduct of a skew Boolean algebra? "

By Theorem 2.3.75, iBCS is a cover of iBCK in AV(PBCK), the lattice of
varieties of pre-BCK-algebras. However, by Proposition 2.3.76 this result does
not extend to A?(PBCK), the lattice of quasivarieties of pre-BCK-algebras.
Therefore we pose the following problem:

Problem 4.2.15. Is Q(B-) a {unique) cover of the atom iBCK in A?(PBCK)?
.

4.2.16. Subtractive Varieties with EDPI. Corollary 3.1.7 shows that
the study of the ideal theory of subtractive varieties with EDPI may be reduced
to the study of the ideal theory of MINI—algebras (or equivalently, positive
implicative pre-BCK-algebras) inasmuch ss a variety V with 1 is subtractive
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with EDPI (witness y — 1) iff every A € V has a MINI-algebra polynomial
reduct (4; —*,1) whose MINI-ideals coincide with the V-ideals of A. Because
any dual Brouwerian semilattice A := {A4; V,*,0) is termwise definitionally
equivalent to a generalised Boolean algebra iff A | z # (y * 2) = z (recall
the remarks of §1.3.4), the preceding observation calls for a study of the role
played by MINI-algebras satisfying ((z = y) = z) — = & 1 in the theory of
subtractive varieties with EDPI; see also Blok and Pigozzi [30, Corollary 4.3].
In the statement of the problem below, a MINI-algebra A is said to be classical
if A= ({z = ) = ) = z & 1; clearly any classical MINI-algebra is term
equivalent to (in fact, is dually isomorphic to} an implicative pre-BCK-algebra
by Theorem 3.1.4.

Problem 4.2.17. Investigate the role played by classical MINI-algebras in
the theory of subtractive varieties with EDPI. If V is a subtractive vari-
ety with EDPI (witness y — ), does it follow that the polynomial reduct
(A; —=4,1) is a classical MINI-algebra iff for any A € V, the join semilattice
(CI(A); V,{0)a) of compact ideals of A is dually relatively complemented?
]

By the pure [subtractive] WBSO variety we mean the variety generated by
the class of all algebras A := (4; -,—, A, 1) of type {2,2,2,1) where the join
semilattice (Cp A; V,wa) of compact congruences is dually relatively pseu-
docomplemented and .,— and A are weak meet, [subtractive] weak relative
pseudocomplemention and Godel equivalence terms respectively. The pure
[subtractive] WBSO varicty may be of interest in algebraic logic inasmuch as
it may provide a convenient framework for the study of [subtractive] WBSO
varieties, similar to the manner in which skew Boolean N-algebras provide a
point of reference for the study of pointed ternary discriminator varieties (re-
call Theorem 1.4.39) and implicative BCS-algebras provide a point of reference
for the study of binary discriminator varieties (recall Theorem 3.2.7). |

Problem 4.2.18. Investigate the pure {subtractive] WBSO variety. "

In {34, p. 549] Blok and Pigozzi note that with some important exceptions,
the varieties of traditional algebraic logic all have (commutative) TD terms.
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Included among these classes are the varieties of dual Brouwerian semilattices
and positive implicative BCK-algebras, which have the (commutative) TD
term z = ((z -~ y) = (y ~z)) (by [34, Corollary 5.2(ii)]), and the variety of
Nelson algebras, which has the (commutative) TD term ((z = y) = (y =
z)) — z (by Theorem 3.1.33). Upon observing that the (commutative) TD
terms for these varieties are all of the form ((---(di(z,y) — do(z,y)) —
«++) = dq(z,y)) — 2, where d(z,y), ..., ds(2, y) are binary terms witnessing
point regularity in the sense of Proposition 1.2.6 and — is a subtractive weak
relative pseudocomplementation, the following problem suggests itself.

Problem 4.2.19. Investigate the class of all varieties with a (commutative)
TD of the form ((---(di(z,y) = &(z,y)) = ---) = du(z,y)) — 2z, where
di{z,¥),-...,d(z, y) are binary terms witnessing point regularity in the sense
of Proposition 1.2.6 and — is a (subtractive) weak relative pseudocomplemen-
tation. In particular, investigate the class of all varieties with a (commutative)
TD term of the form (zAy) — z, where A and — are a Gddel equivalence
terin and a (subtractive) weak relative pseudocomplementation respectively.
|

4.2.20. Binary Discriminator Varieties. By Theorem- 3.2.29, a variety
with 0 is a pointed fixedpoint discriminator variety iff it is a 8-regular binary
discriminator variety. From this result it follows that the binary discrimina-
tor may be legitimately cousidered a generalisation of the pointed fixedpoint
discriminator to the subtractive (but not ideal determined) case. Inasmuch as
the theory of the fixedpoint discriminator closely parallels that of the ternary
discriminator {34, p. 548; Section 3], the preceding obssrvation gives rise to
the following problem:

Problem 4.2.21. To what extent does the thecry of the binary discriminator
parallel the theory of the (pointed) fixedpoint discriminator? Of the ternary
discriminator? ' |

Apropos the preceding problem, a suitable representation theorem would help
clarify connections between binary discriminator, pointed fixedpoint discrimi-
nator and ternary discriminator varieties. In particular, the following problem
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suggests itself, just because binary discriminator varieties have a well devel-
oped theory of prime ideals (by Theorem 3.2.8 and the results of §2.2.28).

Problem 4.2.22. Is there a sheaf-theoretic representation (in the sense of
Burris and Werner {56]) of binary discriminator varieties? u

In Remark 3.2.19, it was noted that the class of Abelian Rickart semirings is
a binary discriminator variety. This observation seems to be of some interest,
since it implies several classes of rings arising in real and complex analysis are
binary discriminator varieties.

Problem 4.2,23. Investigate the class of Abelian Rickart semirings (consid-
ered as a binary discriminator variety). ]

By Example 2.3.12, another important example of a naturally occurring binary
discriminator variety is the class of pseudocomplemented semilattices. Call an
algebra {(A4; A,\,0) of type (2, 2, 0) a locally pseudocompiemesnted semilattice if:
(i) the reduct (4; A,0) is a meet semilattice with zero; and (ii) for all ¢, b € 4,
the difference a\b is the pseudocomplement of b in the principal subalgebra (a]
generated by a. Locally pseudocomplemented semilattices are a naturai gen-
eralisation of pseudocomplemented semilattices that stand in relation to such
algebras as generalised Boolean algebras stand in relation to Boolean algebras.
By an unpublished theorem of the author, the class of locally pseudocomple-
mented semilattices is a finitely based variety. This result, in conjunction with
preceding remarks, invites the study of the following problem.

Problem 4.2.24. Is the class of locally pseudocomplemented semilattices a
binary discriminator variety? n

A further unpublished result of the author shows that, for any locally pseu-
docomplemented scmilattice A, the reduct (4; \,0) of A is an implicative
BCS-algebra. This result prompts the following question, which may be re-
garded as a generalisation of Problem 2.3.69. '

Problem 4.2.25. Is an algebra (A4; \,0) of type (2,0) an implicative BCS-
algebra iff it is a (\,0)-reduct of a locally pseudocomplemented sernilattice?
]

e, .
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Locally pseudocomplemented semilattices were introduced by Gréatzer in [101]
in connection with the following problem, which we include for the sake of
completeness.

Problem 4.2.26. [101, Problem 1§6.22, p. 67) Let A be a meet semilattice
with 0 for which (a] is pseudocomplemented for each a € 4; let S (a) denote
the pseudocomplements in (a]. Characterise the family of Boolean algebras

{S(e): a € A}. "

4.2.27. Pre-BCK Quasilattices and BCK Paralattices. Recall that,
when generalised to bands, Idziak’s theory of BCK-[semillattices bifurcates
(owing to the absence of commutativity). In one direction, Idziak’s theory
of BCK-[semi]lattices generalises to a theory of pre-BCK bands and pre-BCK
quasilattices PQ¢; while in another, it generalises to a theory of BCK bands
and BCK paralattices BP;. As it stands, the study of these complementary
theories is largely orthogonal, since for each choice of C the varieties PQ. and
BP¢ are incomparable. On the other hand, the results of §3.3.2 and §3.3.27
show th::t the study of both families PQg, BPc is relevant to the study of
pointed fixedpoint discriminator and pointed ternary discriminator varieties.
Prompted by the desire to provide & unified framework for the study of binary
discriminator, pointed fixedpoint discriminator and pointed ternary discrimi-
nator varieties, these remarks engender the following question:

Problem 4.2.28. Find a common generalisaticn of pre-BCK bands [pre-BCK
quasilattices] and BCK bands [BCK paralattices). n

In §3.3.2 and §3.3.27, interest was naturally centred on those varieties PQ,
and BP¢ for which {A, -,0} CC C {A,V, =,0}. However, the varieties PQ,
and BP; may also be of interest for other choices of C. In particular, those
varieties PQc¢ and BP¢ for which {V, -,0} C C would seem to merit attention,
in view of the following two observations:

1. The variety SBA of skew Boolean algebras is termwise definitionally
equivalent to a subvariety of PQe, C' = {V,\,0};

2. The variety SBIA of skew Boolean N-algebras is termwise definitionally
equivalent to a subvariety of BP¢», " = {v, /,0}.
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To justify (1), it is sufficient to note SBA =z A y = (v V 2)\((z\y) V (y\z)),
whence any skew Boolean algebra (A4; A, V,\,0) is term equivalent to its own
reduct (4; V,\,0). Similarly, to justify (2) it is sufficient to note SBIA
z Ay = (yV z)/{((z/y) vV (y/7)), whence any skew Beolean N-algebra
(4; AV, /,0) is term equivalent to its own reduct (4; v, /,0).

Problem 4.2.29. Investigate those varieties PQ¢, BP¢ for which {v, ~,0} C
CC{AV, ~,0}. .

For any variety V C PQg, an easy modification of the prc of of Theorem 2.1.36
shows the assertional logic S{V, 0) coincides with the assertional logic S(V,, ©)
of the variety of BCK-[semi]lattices V. axiomatised relative to V by the quasi-
identity (2.5). Thus the assertional logic S§(V,0) has a familiar description.
In contrast, for any variety V C BP¢ we have that V is O-regular witness
{z =~ y,y==z} (by Proposition 3.3.37), whence the equivalent algebraic se-
mantics of the algebraisable assertional logic S(V, 0} is exactly V (by Theo-
rem 1.8.15). By Remark 3.3.1, therefore, the following problem is apposite:

Problem 4.2.30. For varieties V C BP¢, investigate the assertional logics
S(V,0). In particular, investigate the assertional logics S(BP¢, 0) of the vari-
eties BP. "

In terms of gaining insight into the unfamiliar properties and behaviours of
the deductive systems S(BP¢, 0) (recall Remark 3.3.1), the problem of obtain-
ing a Gentzen-style axiomatisation for each S(BP¢, 0) would seem particularly

relevant.

Problem 4.2.31. For each BP¢, give a Gentzen-style axiomatisation (if one
exists) of the assertional logic S(BP¢, 0). .o

Let K be a K-O-regular quasivariety. In traditional algchraic logic, a standard
approach for constructing a Gentzen-style axiomatisation of S(K, 0) lies in con-
servatively extending $ [193, Definition 9.1) with a multiplicative conjunction
or fusion [199]. In aigebraic logic, fusion of premisses i< closel; related to the
calculation of residuals (86, Section 2]. Inasmuch as BCK-algebras satisfying
Iséki’s condition (8) are precisely the residuaiion reducts of pocrims, the pre-
ceding remarks call (for each BP¢) for the study of the class of all members of
BP¢ for which the BCK-algebra reduct has condition (S).
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Problem 4.2.32. For each 8P, investigate the class of all members of BP¢
for which the BCK-algebra reduct enjoys condition (S). In particular, study
the class of all BCK skew lattices for which the BCK-aigebra reduct has con-
dition {8). "

By the remarks of §i.1.1, the study of cesiduated structures in universal alge-
bra was initiated by the papers of Kru' {143]) and Ward and Dilworth [235]
on residuated lattices. Recently, the algebraic logic community has shown re-
newed interest in residuated lattices and their associated logics [43, 42, 127].
In view of these remarks and the initial motivations of this thesis, the following
problem (which is related to Problem 4.2.2) would seem pertinent.

Problem 4.2.33. Can the theory of residuated lattices be usefully extended
to skew lattices? |
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