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ERRATA

P 244 line 3: "is a topic" for "is be a topic"

ADDENDUM

p v: 5.3.2: replace "DMU" with "decision making unit"

p 1 line 11: replace "common stock" with " common stocks"

p 9 line 2: replace "aversive" with "averse"

p 16: replace equation (2.2.10) with "M^(adjusted) = Spam "

p 51: Add at the end of footnote 4:

"Downside risk can be measured as the downside semi-variance. It measures the spread
of negative deviations or the downside variability of returns.

p 52: Add at the end of para 1:

"This is evident in empirical studies involving optimally formed portfolios rather than
in randomly formed portfolios.

p 71 line 11: replace "input" with "output"

p 76:4.4.1 line 2: replace "VRS" with "variable retums-to-scale"

p 78 para 2: Add at the end of 1st sentence:

"A brief description of the overall technical, pure technical and scale efficiencies are
available in Section 2.4.1. See Norman and Stoker (1991) for more detailed
explanation on these three efficiencies."

p 79 para 2, line 1: replace "overall" with "pure"
line 3: replace "overall" with "pure"

p 81 para 2, 2nd sentence: Insert after "asset allocation score"

"- which is computed as a weighted average of percentages of wealth allocated to eight
risky asset classes-"

p 82: Add at the end of para 1:

"In general, the classification, objective, tax structure, age and the size of the funds
do not appear to have a significant impact on their level of relative efficiency. The
overall technical efficiency and the scale efficiency are likely to be higher for
risk-averse funds with high positive net cash flow."



p 84: delete the full-stop "." in equation (4.4.1) and insert:

"where / 0 is the observed frequency and fe is the expected frequency."

P 86 para 2: replace 3rd sentence with

"The tax structure, objective, classification, size and the age of the funds do not
appear to have a strong influence on the level of relative efficiency in general."

p 92 Table 4.6, Notes: Insert item 3:

"3. A brisf description of the overall technical, pure technical and scale efficiencies
are available in Section 2.4.1. See Norman and Stoker (1991) for more details on
these three efficiencies!'

p 137 line 2: replace 'TSM" with 'Tettengill, Sundaram and Mathur (1995)"

p 137: replace 2Dd sentence with

" PSM further argued that when (i) the market return is less than the risk-free
rate and when (ii) the realised returns on high beta portfolios are less than those on
the low beta portfolios, an inverse relationship between the beta and the returns
can be inferred. They made this inference with reference to the security market
line8 given as E{Rp)-Rf = /3 pm(E(Rm) - Rf) .

p 143: replace equations (6.2.23-6.2.25) with

E(Rml-E(Rm)

EtRll-Wl)XRml-E(Rm)y\
E(Rml-E(Rm)f

=4*,,-i^x*m,-£(*j)3] (62.25r
E(Rml-E(Rm)y

p 176 Notes: 6: replace "Ac" with "Dc"

p 195 line 10 and line 11: replace "Boeing" with "PM"

p 202: Add at the end of para 2:

"The excess market return is calculated as the difference between the average market return
and the average risk-free return."

p 205 para2: Add at the end of 2nd sentence:

"The excess market return is calculated as the difference between the average market return
and the average risk-free return."
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Abstract

In today's increasingly volatile financial markets and uncertain global economic

environment, stock markets are becoming more and more risky and managed

funds' performance is rather disappointing. Therefore, investors' demand for

accurate fund rating and security/portfolio return prediction is at an all time high.

This thesis addresses three important related issues: (i) rating Australian mutual

funds' efficiencies using data envelopment analysis (DEA), (ii) assessing the

significance of various risks related to higher-order moments in pricing

securities/portfolios and (iii) investigating the beta-return relationship across

various market volatility regimes.

Because of its ability to incorporate many input factors affecting the mutual

fund's performance, the DEA technique has advantages over other performance

measures proposed in the finance literature. Currently, fund managers1 are being

criticised for rating their funds based on short-term performances only. In this

study, many input-output factors capturing short-term and long-term

performances are used. Further, an input variable capturing management strategy

is constructed and a pleasing result is that this factor turns out to be very

important in explaining the variation in inefficiency across mutual funds. When

the analysis includes long-term performance characteristics more and more funds

' See comments by Peter Costello, "Costello slams fund focus", The Australian, 30/04/03, p 22.

XV



become DEA-efficient. Further, a simulation study is conducted to assess the

sensitivity of efficiency rating to variable selection and the retums-to-scale

assumption. When the DEA model does not include all the variables deemed

relevant, the variable returns-to-scale assumption appears to be a safer option than

the constant returns-to-scale assumption.

The second issue addressed in this thesis concerns the importance of higher-order

co-moments in pricing securities/portfolios. Many previous studies that examined

unconditional asset pricing models with higher-order co-moments produced

mixed results. To our knowledge, this is the first study to consider these models

conditional on up and down market movements. For a sample of Australian

securities, the systematic variance and systematic skewness are found to be

priced, and these significant results were not uncovered in the unconditional

model.

Finally, in order to investigate the stylised fact that high market volatility leads to

high returns, the CAPM beta is allowed to vary across the three market volatility

regimes, namely, low, usual and high. Using thirty Dow Jones industrial stocks

and a sample of Australian industrial portfolios, this conditional model was

investigated as to whether the three-beta pricing model is useful in explaining

cross-sectional security/portfolio returns with the result that no statistically

significant evidence was found.
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Chapter 1

Introduction

1.1 Preamble

Private and institutional investors put their current wealth into financial assets in

order to improve their future monetary wealth. Ideally, investors would like to

maximise the return on their investments. The level of returns on investment,

however, is subject to constraints such as risk, transaction costs and taxes.

Moreover, investors need to select one or more assets from a large available set,

giving due consideration to limiting factors such as personal risk tolerance,

income and preference.

In general, investors have two broad alternatives, either to invest directly or to

invest indirectly. A combination of the two is not uncommon. Non-marketable

assets such as savings deposits, money market securities such as treasury bills,

and capital market securities such as equities or common stock, are examples of

direct investment alternatives. Indirect investment involves trading in various

financial products, such as mutua? funds and unit trusts, offered by investment
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companies. Private and institutional investors both aim to make optimal decisions

about the choice of financial assets, mainly securities.

Theories and models to facilitate asset selection surfaced in the 1950s. More than

a decade later several investment performance measures emerged. Now, with an

increasing number of private and institutional investors, investment performance

appraisal has grown into a lucrative financial service industry.

1.2 Main issues addressed in the thesis

In this thesis, we address three important issues related to investment

performance appraisal and security analysis:

(i) We develop a methodology that includes the data envelopment analysis

(DEA) technique to appraise the performance of Australian mutual funds. DEA is

a relative performance assessment tool used in many disciplines. Its application

in finance emerged only in the late 1980s and mainly in the banking sector. To

date, there are only a few studies which have appraised mutual fund performance

using DEA. These studies display a great deal of similarity, especially in terms of

choice of an input variable set in the DEA model. However, there appears to be

no agreement on output variable selection. Further, the input-output variable
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selection in these studies, to a great extent, depends upon the subjective

judgement of the researcher.

(ii) Contrary to conventional econometric methods, th;re are no diagnostic

checks for model misspecification in DEA resulting from choosing wrong input-

output variables unwittingly. The choice of an appropriate input-output variable

set, therefore, is crucial in DEA. There is ongoing debate concerning variable

selection in DEA, and in this thesis, we contribute to this debate by examining

sosme important issues, with special reference to mutual fund performance

appraisal.

(iii) The third issue addressed in this thesis is concerned with security analysis.

The main aspect of security analysis is its valuation through a relationship

between the security return and the associated risk. A formal relationship

between the required rate-of-return on a security and its risk, as measured by the

beta, is the well-known capital asset pricing model (CAPM). Many empirical

studies have failed to support the validity of CAPM. Consequently, a number of

studies have emerged proposing variants of the CAPM and their testable

conditions, hi this thesis, we investigate two issues related to capital asset

pricing: (a) the CAPM extended to include higher-order co-moments, particularly

in the up and down markets and (b) a multi-beta CAPM conditional on three

market volatility regimes.
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1.3 Outline of the thesis

In Chapter 2, investment performance appraisal methods are surveyed. We

discuss performance evaluations based on the concept of production frontier

estimation. Primarily, there are two competing theories of frontier estimation,

known as stochastic frontier estimation (SFE) and DEA. DEA enables the

inclusion of many factors in the analysis in addition to the usual return and risk

factors. Including many factors, especially several output variables, in SFE is

extremely difficult. Moreover, SFE requires an assumption on the precise

functional form of the frontier, whereas in DEA - a nonparametric method - this

assumption is not required. The DEA methodology and its application in finance

are discussed in detail in this chapter.

In Chapter 3, a brief review of the literature on CAPM is given. First, the two

fundamental relationships of the CAPM, namely, capital market line and security

market line, are described. There are many forms of asset pricing models

proposed in the finance literature. We discuss these models under five broad

categories: (i) single-factor CAPM, in that only the beta is assumed to be priced,

(ii) multifactor models with many characteristics of the asset included in the

pricing model, (iii) CAPM with higher-order co-moments, (iv) asset pricing

models conditional on different market scenarios and (v) CAPM conditional on

time-varying volatility.
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In Chapter 4, a methodology to appraise the performance of more than 250

Australian mutual funds using the DEA technique is presented and the results are

analysed and discussed. Our approach differs from previous studies in many

aspects: (i) Selection of relevant input-output variables from a set of a large

number of variables providing information on operational characteristics,

performance indicators and typical features of individual funds, (ii) Selection of

variables to capture the fund performance in the short-, medium- and long-term,

(iii) We investigate whether DEA-inefficiencies of mutual funds estimated in the

first stage could be explained using a set of environmental variables and some

features specific to the fund. Further, we construct a variable to represent

management strategy. It will be seen in this chapter that this variable turns out to

be an important contributory factor in explaining mutual fund inefficiency. The

DEA efficiency estimates of mutual funds are compared with the ratings given by

a reputed organisation in Australia, known as ASS1RT Pty Ltd.

In Chapter 5, we investigate the robustness of the DEA results to model

misspecification, the latter resulting from choosing incorrect variables and

making incorrect returns-to-scale assumptions. The performance of DEA models

on three distinct data sets generated from constant, increasing and decreasing

returns-to-scale Cobb-Douglas production functions are analysed. The overall

performances of misspecified DEA models are compared with true

specifications. Further, the DEA efficiency estimates at the production unit level
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are compared with true production unit efficiencies using several measurement

criteria. The effect of model misspecification on DEA relative efficiency is

demonstrated via an empirical example.

In Chapter 6, the significance of the relationship between the returns and higher-

order systematic co-moments is examined, particularly in the up and down

markets. Previous empirical studies on the CAPM with or without higher-order

co-moments reported mixed results. We develop asset pricing models conditional

on excess market returns (market returns - risk-free rate) being positive or

negative. The sensitivity of the results to the choice of market portfolio, various

definitions of up and down markets, estimation methods and the sample periods

are also examined in this chapter.

In Chapter 7, we incorporate time-varying market portfolio volatility in the asset

pricing model. First, three market volatility regimes are defined as low, usual and

high volatility. Second, postulating different market betas corresponding to these

market volatility regimes and using a three-state regime switching threshold

model, we derive and then estimate a new three-beta pricing model. The

empirical relevance of the three-beta model in explaining cross-sectional asset

returns is examined by using the securities in the Dow Jones Industrial index and

a set of Australian industry portfolios. The reason for examining these two
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distinct data sets is due to their differing characteristics, namely, heavily traded

securities and the portfolios from a small, open, developed economy.

Chapter 8 concludes the thesis with a summary of the empirical studies

conducted throughout the thesis, their results and main findings. Some important

issues related to DEA and asset pricing models not addressed in the thesis are

discussed. These will be investigated in future research.



Chapter 2

A Survey on Investment Performance
Appraisal

2.1 Introduction

Given today's volatile global investment climate, the increasing number of private

investors and managed funds, and the growing financial services industry,

investment performance appraisal is of paramount importance. Investors, of

course, have always been eager to assess the performance of their managed

portfolios. In early days, performance was evaluated by comparing the total return

of a managed portfolio with that of a randomly chosen unmanaged portfolio

(Modigliani and Modigliani, 1997). Later, the concept of an unmanaged 'market'

or a capitalisation-weighted portfolio comprising the entire market was introduced

so that managed portfolio performance could be evaluated and compared against

the market portfolio as a benchmark.

It is well-known that the return earned by a portfolio alone is not an accurate

measure of its performance. Further, it is well-established that higher expected

returns are associated with higher levels of risk. The downside to this is the
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possibility of considerable return losses due to market uncertainty. In short, there

is a trade-off between risk and return. Investors are generally risk aversive.

Therefore, for any risk associated with their investment, investors expect

compensation or a risk premium. Consequently, several basic performance

appraisal methods emerged in the late 1960s. With the rapid growth and

globalisation of finance sectors, the financial services industry responded with

new relative performance measures that have now become very popular and are

widely used by private and institutional investors. However, there is no consensus

in the literature as to what a suitable measure of risk is, and consequently, as to

what is a suitable measure for evaluating risk-adjusted performance.

The main shortcoming in the common measures of risk-adjusted return is their

inability to incorporate the costs incurred in generating the returns. In the late

1990s, several studies attempted to measure managed portfolio performance by

considering the return adjusted for both risk and cost, using a non-parametric

methodology of production frontier estimation commonly known as data

envelopment analysis (DEA).

In this chapter, we briefly review the literature on risk-adjusted investment

performance measures and production frontier estimation with special reference to

DEA and its application to the finance sector.
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This chapter is organised as follows. The basic investment performance measures

and the new development of comprehensive performance measures are reviewed

in Section 2.2. In Section 2.3, we describe briefly the types of production

efficiency measures at the individual production unit level and discuss the relative

merits of the two main production frontier estimation methods. The DEA

methodology is outlined and its application in appraising the relative efficiency of

managed funds is reviewed in Section 2.4. The final section presents the

conclusion of this chapter.

2.2 Investment performance evaluation

2.2.1 Early development

The measures used to evaluate asset or fund performance are based on some

variations of risk-adjusted returns. The Sharpe index described in Section 2.2.1.1

is a risk-adjusted performance measure based on total risk, while the Treynor

index and Jensen's alpha described in Sections 2.2.1.2 and 2.2.1.3 respectively,

are based on non-diversifiable risks. The advantage of the Sharpe, Treynor and

Jensen investment performance measures, apart from being simple, is that they

allow comparison of investments with different risks and returns. Although these

measures were developed in the 60s, a renewed interest in them surfaces in this

chapter shortly.
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2.2.1.1 Sharpe index

Sharpe (1966) suggested that the historical performance of a portfolio may be

calculated as the excess return earned for bearing risk per unit of total risk.

Symbolically, the Sharpe index, Sp, is written as:

(2-2-1)

where Rp is the mean portfolio return, Rf is the mean risk-free asset return and

<jp is the standard deviation of portfolio returns. A higher value for Sp indicates

that the portfolio delivers a higher performance for its level of total risk measured

by <jp. There is no benchmark for comparison of performance measures obtained

from the Sharpe index. They can mainly be used to compare the performance of

several portfolios.

2.2.1.2 Treynor index

Treynor (1965) considered only the non-diversifiable market risk of an

investment. The non-diversifiable market risk, fip, is defined as:

P =—rpm (2-2-2)

where r is the correlation coefficient between the portfolio return and the
pn

market return and am is the standard deviation of market returns. Treynor

developed the following relative measure of portfolio performance:
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(2.2.3)

Since this measure does not include diversifiable risk, it can be regarded as a

general performance measure and used regardless of the extent of diversification

of the portfolio being evaluated.

Now, from (2.2.1) and (2.2.3) we obtain

(2.2.4)
pm

Thus, if the fund under evaluation is perfectly diversified (rpn. =1.0), the Treynor

index is equal to the Sharpe index times a constant and the portfolio ranking based

on these two indices will therefore be identical. If the fund under investigation is

not perfectly diversified (rpm < 1.0) the performance ranking based on the Sharpe

and Treynor indices might be different.

The choice between using the Sharpe or Treynor index depends on the nature of

the portfolio being evaluated. If the entire portfolio is considered, the total risk of

the investment will be the same as that of the risk borne by the investor. Hence the

Sharpe index may be used here. On the other hand, if the evaluation is only on a

component of the portfolio, the risk to the investor will only be the non-

diversifiable systematic risk. Hence the Treynor measure will be more

appropriate.
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2.2.1.3 Jensen's alpha

Jensen (1969) considered an empirical version of the one-period security market

line1 given by:

RP< =Rft+PP [K, - Rfi)+ epl (2.2.5)

where,

Rpt •= realised portfolio return during time period t,

Rfi = risk-free asset return during time period / ,

Rml = realised market return during time period t, and

epl = error term that reflects portfolio return unrelated to market return.

Jensen introduced an additional term, ap, to the above model to represent a

constant periodic return (positive or negative) that an investor is able to earn in

addition to the return of an unmanaged portfolio with identical market risk. Thus,

rearranging the terms in (2.2.5) together with ap gives:

*„-*„ =«,+/?>„,,-*„)+V (2.2.6)

Jensen suggested using regression procedures to estimate ap and J3p and

interpreted the estimated alpha based on its sign; if ap > 0 (ap < o) and is

significant, then the portfolio has outperformed (under-performed) a possible

buy-hold strategy, predicted by the market.

See Section 3.2.2 for a discussion on security market line.
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Portfolio managers can of course manipulate the alpha through leverage.

Therefore, while the Jensen index is a basic risk-adjusted performance measure

based on non-diversifiable risk, as measured by the beta, it cannot be used for

ranking portfolios.

From (2.2.3) and the average of (2.2.6) over the time period, it can be seen that

Jensen's alpha is related to the Treynor index as follows:

(2.2.7)

' P

Rm - Rj- j is a constant, the Treynor index is simply a transformation of

Jensen's alpha divided by the portfolio systematic risk.

A criticism2 of the Treynor and Jensen measures is that their derivations are based

on an explicit functional relationship between risk and return only.

2.2.2 Recent developments

An average investor unfamiliar with regression analysis and modern finance

theory finds Treynor and Jensen's alpha indices difficult to interpret. Therefore,

with more and more private investors showing interest in investing in financial

assets, there is a pressing need for performance appraisal methods that an average

2 See Section 3.3.1 for some examples.
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investor can easily understand. A measure deveioped without sophisticated theory

is the Modigliani and Modigliani (1997) measure, which is described in Section

2.2.2.1. Meanwhile, the number of managed funds and the number of institutions

managing these funds has grown rapidly. The financial services industry has

responded to the needs of investors by establishing companies to do research and

rate managed funds based on many factors in addition to the usual return versus

risk. There is no doubt that the basic performance appraisal measures outlined in

Section 2.2.1 provide valuable information on management effectiveness.

However, factors such as asset class representation, portfolio correlations,

expenses and turnover are also very relevant variables that should be taken into

account in managed fund performance appraisal. Incorporating these variables

will undoubtedly improve the performance measures of funds and their rating.

Morningstar Incorporated in the United States and ASSIRT Pty Ltd in Australia

are two well-known establishments that provide ratings of a very large number of

managed funds in their respective countries. Institutional and private investors

heavily rely on these ratings for their investment choices. The measures utilised

are described briefly in Sections 2.2.2.2 and 2.2.2.3.

2.2.2.1 Modigliani and Modigliani measure

Modigliani and Modigliani (1997) developed a risk-adjusted performance

measure equating the total risk of a managed portfolio with that of the market by
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creating a hypothetical portfolio comprising a risk-free asset and the managed

portfolio. The idea is to adjust the managed portfolio risk to the level of risk of the

market portfolio and then measure the returns of the risk-matched portfolio. The

Modigliani and Modigliani measure, M\, is calculated as:

(2.2.8)

Since Rf is common to all portfolios a simpler measure of risk-adjusted

performance, M2 (adjusted) is given as:

R
M2 (adjusted) =-

R — R/ (2.2.9)

M\ and M2Aadjusted) rank portfolios identically.

From (2.2.1) and (2.2.9) we obtain,

M2
p=Spam (2.2.10)

suggesting that the Modigliani and Modigliani measure and the Sharpe index rank

portfolios identically. Further, M2 is expressed in percentages similar to portfolio

returns and therefore, it is thought to be easily understood by an ordinary investor.

2.2.2.2 Morningstar rating

Morningstar Incorporated produces a number of managed fund performance

measures that take risk and return into account. In some of their measures such as
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the Momingstar-Sharpe ratio and the Morningstar alpha, each fund receives a

numeric rating independent of the performance of other funds. Others such as the

category3 risk-adjusted rating, the three-year risk-adjusted rating and the three-

year star rating are relative measures. As with any other risk-adjusted performance

measure, Morningstar also calculates the return (Morningstar return- MSRET)

and the risk (Morningstar risk- MSRISK) of the funds and defines their risk-

adjusted rating as the difference between MSRET and MSRISK. See Sharpe

(1998) for details.

2.2.2.3 ASSIRT rating

ASSIRT is a financial services corporation that assesses managed investments in

Australia. To establish a rating, ASSIRT considers a weighted combination of

manager capability, past performance and fund issues such as objectives, features,

risk issues and strategy information. The weights assigned to manager capability,

past performance and fund issues are 55 per cent, 25 per cent and 20 per cent

respectively. Each fund is assessed and scored against more than 400 criteria and

between one to five 'stars' then awarded. The number of stars measures

ASSERT's assessment of the overall quality of a managed fund and the likelihood

3 Morningstar categorises managed funds according to the type of securities included in them. The

four categories that they use are: domestic equities, foreign equities, municipal bonds and taxable

bonds.
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that the fund is achieving its investment objectives. See Table 2.1 for ASSIRT

fund rating definitions.

Table 2.1 ASSIRT fund rating definitions

Rating

irfck

£&

Definition

An excellent fund with very strong management, a comprehensive
investment strategy and strong past performance.
A very good fund with strong management, a sound investment
strategy and solid past performance.
A competently managed fund, but with either an unimpressive or
limited performance track record. Potential to improve exists.
A fund with a weak investment management capability or strategy,
and/or a poor or very limited performance track record.
A poor quality fund with major weaknesses and/or issues affecting
the fund's management and performance.

Source: http://funds.comsec.com.au

2.3 Alternative methods of performance evaluation

In this section, the assessment of the performance of individual production units

based on the concept of a production frontier is discussed. The concept of a

production frontier somewhat reflects desired achievement levels for production

units within an industry. So the aim of the individual production unit would be to

optimise its efforts to achieve such a level defined by the production frontier. This

idea is consistent with the economic theory of optimising behaviour and therefore

is a good reason to introduce production frontiers in empirical studies of this

nature. While production units typically want to reach the production frontier, in

reality, they may fall short due to reasons within, and beyond, their control. This
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notion of shortfall introduces the concept of inefficiency of production which can

be measured. The following section gives a brief discussion of efficiency

measures, while Section 2.3.2 discusses two production frontier estimation

methods.

2.3.1 Efficiency measures

The term 'productive efficiency' is commonly used to describe the level of

performance of a production unit in terms of its utilisation of input resources in

generating outputs. Koopmans (1951) defined technical efficiency as a feasible

input/output vector where it is technologically impossible to increase any output

without simultaneously reducing another output. This analogy holds for a

reduction in any input or both a reduction in any input and an increase in any

output. Farrell (1957) demonstrated that a production unit's 'overall efficiency' is

composed of two separate efficiency measures called 'technical efficiency' and

'allocative efficiency'. Farrell measured technical inefficiency as the maximum

equi-proportional reduction in all inputs consistent with equivalent production of

observed output. A Farreil-efficient unit however, may not be Koopmans-efficient

since even after Farrell efficiency is achieved, there may exist additional slack in

individual inputs. The efficiency measures are described below for the single-

output two-input production function.
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Let x, and x2 denote the two inputs, y the output and y = f(xi,x2) the

production function. The production function shows the maximum output possible

for a given set of inputs, assuming that the firm is technically efficient. Then,

assuming that the frontier is characterised by constant returns-to-scale4 (CRS), it

may be written as 1 = / ( * , ly,x2ly) a unit (output) isoquant. The unit isoquant

may be considered as characterising frontier technology. This is graphically

presented as the curve UU' in Figure 2.1. By definition of the production frontier,

any observed point, say A = (x° /y°,x2° Iy°), corresponding to a production unit

must lie either on or above the unit isoquant. Farrell defined the technical

efficiency of production unit A as OB/OA.

Figure 2.1 Efficiency frontier

4 Returns-to-scale refers to how output responds when all input factors are varied in the same

proportion.



CHAPTER 2. PERFORMANCE APPRAISAL 21

The technical efficiency of production unit A may be interpreted as the ratio of

inputs needed to produce y° to the inputs actually used to produce / with input

maintained at the same levels of x° and x2°. Therefore, technical efficiency will

lie between 0 and 1 inclusive. Any point along the line OA will have the same

input mix as well. Technical inefficiency results when more output could be

produced given the same level of input.

Allocative efficiency is based on cost considerations, namely, input prices. The

type of efficiency measured depends on the data availability and appropriate

behavioural assumptions (Yin, 1999). When only quantities are available,

technical efficiency can be calculated. When both quantities and prices are

available, economic efficiency can be calculated and decomposed into technical

and allocative components. We do not consider input prices in the models studied

in Chapters 4 and 5 and therefore allocative efficiency measurement is not

discussed in this thesis.

2.3.2 Production frontier estimation

There are two main production frontier estimation methods: parametric and non-

parametric. Each method has its own inherent advantages and disadvantages when

used in the estimation of production frontiers and individual production unit
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efficiency. When choosing between these two techniques, usually there is a trade-

off between the structure and flexibility.

2.3.2.1 Parametric methods

Parametric methods are used to estimate the frontier with an explicit functional

form given. These types of frontier estimation methods fall under either

econometric techniques or stochastic frontier estimation (SFE) methods. The SFE

method largely depends on the industry under study as well as data availability.

The characteristics of industry and sample data impose restrictions on model

specification,5 which in turn affect the structure and flexibility of the model. An

advantage of using the SFE method is that it can handle stochastic noise.

However, the requirement of a priori (explicit) specification of the production

function and assumption of distributions for the error term without regard to the

theory are considered as shortcomings in stochastic frontier methods.

2.3.2.2 Non-parametric methods

The methods of estimating the frontier without using an explicit functional form

fall under the non-parametric category. One such method is DEA. DEA uses

mathematical programming techniques and derives the deterministic frontier

instead of estimating it.

5 Estimating an overly flexible functional form may lose statistical efficiency. On the other hand,

the more structure imposed on the model the better the estimates will be.
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Being a non-parametric technique, DEA does not impose any structural form6,

thereby avoiding the danger of misspecification of the frontier. Non-parametric

approaches, of course, use less information than parametric approaches and hence

the results might be less precise. For DEA to be successful, the data should be

assumed to be free from statistical noise. Otherwise, when applying DEA to

estimate the technical efficiency at production unit level, inefficiency may include

statistical noise as well. In DEA, the production frontier is derived based on

sample data and therefore its results could be sensitive to outliers.

A desirable property of the DEA approach is its ability to handle multiple outputs

quite easily. Virtually all parametric approaches have been limited to the single

output case. This is because the extension of parametric methods for frontier

estimation to the multiple output case raises additional theoretical and

computational problems (Banker, Conrad and Strauss, 1986).

Variable selection in DEA however, presents problems. The inclusion of many

input-output variables is not a viable option in DEA. As the number of vaiiables

in the DEA model increases, more and more production units will become

efficient. Further, if many variables are used, some of them may be highly

correlated and therefore, redundant. On the other hand, when some variables are

6 Recall that the Treynor and Jensen measures are also based on an explicit functional relationship

between risk and return.



CHAPTER 2. PERFORMANCE APPRAISAL 24

removed from the DEA model, the production unit efficiency decreases or at

most, remains unchanged. There is no standard structured approach to variable

selection in DEA. Several methods for variable selection in DEA have been

proposed in the literature. For example, Adler and Golany (2001) suggested using

principal component analysis to select a number of variables that are

representative of the available data set. Norman and Stoker (1991) proposed a

step-wise approach in which they start with a few input-output variables and

subsequently add variables to the initial set. Selection of new variables depends

on the strength of their correlation with the DEA efficiencies computed using the

initial variable set. This is continued until a reasonable set of input-output

variables is included. See also Cinca, Moiinero and Garcia (2002) for a review of

variable selection methods in DEA and a twc-stage methodology for variable

selection.

2.3.3 Comparison of SFE and DEA performance

The relative superiority of SFE and DEA methods is not just a theoretical issue

but also an empirical issue (Gong and Sickles, 1992). Thus, studies comparing the

results of the application of SFE and DEA to the same data set emerged. Some of

these studies (Banker, Conrad and Strauss, 1986; Bjurek, Hjalmarsson and

Forsund, 1990; Whiteman, 1999; Ruggiero and Vitaliano, 1999) contrasted the

frontier estimates obtained by the two methods using real-world data. Others used

simulated data sets (Banker, Charnes, Cooper and Maindiratta, 1988; Gong and
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Sickles, 1992; Banker, Gadh and Gorr, 1993; Read and Thanassoulis, 1996).

There are advantages associated with working with simulated data, as simulation

experiments allow controlling the structure of the underlying technology and the

stochastic environment.

The overall findings of these studies are that the efficiency estimates depend, to a

large extent, on the choice of the functional form to approximate the underlying

production technology and on the measurement methodology employed. The

inconsistency of the results with the different techniques makes it imperative that

more research is performed to determine the appropriate use of the two

measurement methodologies (Craycraft, 1999).

2.4 Data envelopment analysis

2.4.1 Methodology

Speaking broadly, the DEA technique defines an efficiency measure of a

production unit by its position relative to the frontier of the best performance

established mathematically by the ratio of the weighted sum of outputs to the

weighted sum of inputs; see, for example, Norman and Stoker (1991) for a

detailed description of the DEA technique. The estimated frontier of the best

performance is also refened to as efficient frontier, or envelopment surface. The

frontier of the best performance characterises the efficiency of production units
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and identifies inefficiencies based on known levels of attainment. Thus, a

production unit attains one hundred per cent efficiency only when it is not found

to be inefficient in using the inputs to generate the output when compared with

other relevant production units.

In order to motivate the discussion, we begin with the original formulation of the

DEA model introduced by Charnes, Cooper and Rhodes (1978), denoted CCR

hereafter.

Let us first define the following measures:

S = {l,...,.s} is the set of outputs considered in the analysis

M = {l,...m} is the set of inputs considered in the analysis

yrJ = known positive output level of production unity, reS

Xg= known positive input level of production unity, i&M

n = total number of production units evaluated

The CCR model for determining the relative efficiency of a designated production

unit lk' is given as:

Max r=l (2.4.1)

1
I
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subject to r=l

" r ,v .>0,

(2.4.2)

= l,2,...,s, and/ = l,2,...,«. (2.4.3)

The above formulation assumes constant returns-to-scale (CRS) and the

production frontier is a piecewise linear envelopment surface. The variables in the

model are the input and output weights ur and v; respectively. The objective

function (2.4.1) is the ratio of the weighted sum of outputs to the weighted sum of

inputs of production unit lk\ The optimal values of the variables ur and v, are

determined as a solution to the problem of maximising the efficiency measure of

production unit lk\ subject to the constraint that the efficiency measures of all

production units be less than, or equal to, one. The model (2.4.1-2.4.3) has an

infinite number of optimal solutions, since if {«*, v]\ is an optimal solution, then

{au*r,av]} will also be an optimal solution. One way of avoiding this is to impose

the constraint J£v,.;c,7 = 1 that results in the following optimisation model:

(2.4.4)

ciiKipof tn > u ' V . — / v'jC» ^ 0 , 7 = 1>2,...,W, (Z.4.JJ

r=l '=1

(2.4.6)

Max 2X;
r=l m

/=!
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i = l,2,...,ra. (2.4.7)

There is an associated linear programme to the model given in (2.4.4-2.4.7) called

'the dual'. The optimal solution to one model reveals the optimal solution to the

other. Hence, the dual problem, which always has a fewer number of constraints,

is the preferred form to handle. The dual of the model given in (2.4.4-2.4.7) is:

Min0

subject to

(2.4.8)

(2.4.9)

= l,2,..., in,

.7=1,2 72.

(2.4.10)

(2.4.11)

The variables in the model (2.4.8-2.4.11) are unrestricted 9 and X} which is non-

negative for ally. The variable 9, as evident in constraint (2.4.10), is the

proportional reduction in all inputs of the production unit '&' required to achieve

efficiency. Hence, 9 will be the Farrell (technical) efficiency. The constraints in

the model ensure that the relative efficiency of unit T never exceeds 1. The

sufficient condition for the efficiency of unit 'k' is that the optimum value of 9 is

1. Otherwise, it is labelled as inefficient compared to the other units in the sample.

I!

i\
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The orientation of the model given in (2.4.8-2.4.11) is an input reduction approach

since it provides information on how much proportional reduction of inputs is

necessary (while maintaining production levels of output) for an inefficient unit to

become DEA-efficient.

Thus far we have discussed CRS models. A measure of efficiency obtained from

the solution to model (2.4.8-2.4.11) therefore, consists of technical as well as

scale efficiencies. The variable retums-to-scale (VRS) version of the model

(2.4.8-2.4.11) was proposed by Banker, Charnes and Cooper (1984), hereafter

called the BCC model. The BCC model is (2AS-2.4.1!) together with the

additional constraint,

/ = 1 , (2.4.12)

that captures retums-to-scale characteristics. The BCC model measures technical

efficiency only. Hence, the efficiency estimates obtained in the BCC model may

be considered as "pure" technical efficiency estimates.

A DEA run will produce a relative efficiency score, 0, and a set of Xj,

j = \,2 n, values for each production unit. In the DEA literature, the units

evaluated are referred to as decision-making units (DMUs). The set of Xj values

II

i»
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convexof each unii defines a point on the envelopment surface7 made up of a

combination of the efficient units. Therefore, for an inefficient unit, the point so

defined by the Ay values becomes a role model that in turn establishes precedence

for it to become efficient. The set of efficient production units {/: A, > 0} is called

the peer group of the designated unit, '£'.

The constraint given in (2.4.12) is referred to as the convexity constraint and

accounts for VRS. When the convexity constraint is removed the resulting model

represents the CRS situation. The relative efficiency score obtained for a

designated unit under CRS is a measure of the overall technical efficiency of the

unit and is always at least as much as the corresponding value obtained under

VRS. The relative efficiency score obtained under VRS is a measure of pure

technical efficiency. The difference in overall and pure technical efficiencies is

attributed to scale efficiency. A measure of scale efficiency is simply the ratio of

overall and pure technical efficiencies.

The efficiency of certain production units obtained as the solution to model (2.4.8-

2.4.12) sometimes can be misleading due to what is known as input slack. Input

slack results when the section of the linear piecewise frontier used in the

7 Efficient units determine a piecewise linear envelopment surface. The entire mean variance

frontier also may be generated by linear combinations of any frontier portfolios (Cass and Stiglitz,

1970).

i l
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measurement of efficiency of a certain unit lies parallel to the axis of measure.

Input slack can be obtained from the solution to the model (2.4.8-2.4.12) by

substituting the optimal values of 6 {6') and Ay (A}) in (2.4.10). For the

designated unit lk\ the slack of input T will be

)xy • (2.4.13)

The value of (2.4.13) will be either zero or positive. Most studies ignore this and

simply solve the BCC model for 6 which is the Farrell technical efficiency.

2.4.2 Application

The seminal paper of Chames, Cooper and Rhodes (1978) introduced the CRS

model to measure technical efficiency only. Their model was initially applied to

the public sector (Bessent and Bessent, 1980), non-profit institutions (Charnes and

Cooper, 1980), and the education sector (Chames, Cooper and Rhodes, 1981).

Later Banker, Charnes and Cooper (1984) extended the CCR model to

accommodate the VRS assumption that enables measurement of scale efficiency.

This led to the rapid expansion of the application of DEA to a number of areas,

including hospitals (Conrad and Strauss, 1983; Nunamaker, 1983), electric

utilities (Fare, Grosskopf and Logan, 1983), courts (Levin, Morey and Cook,

1982), agriculture (Fare, Grabowski and Grosskopf, 1985) and marketing

(Charnes, Cooper, Learner and Phillips, 1985), to name a few. In the 1990s, DEA

became very popular due to significant advances in model development and



CHAPTER 2. PERFORMANCE APPRAISAL 32

computational efficiency. See Seiford (1996) for an evolution map that illustrates

the growth of DEA in theory and application from 1978 to 1995.

The DEA approach can be problematic when some of the inputs and/or outputs of

the decision-making unit (DMU) are stochastic. In situations where the input or

output variables of the DMUs are assumed to be random variables, a number of

studies have resorted to analytical approaches where a random component is

added to the efficient frontier (Olesen and Petersen, 1995; Retzlaff-Roberts and

Morey, 1993; Sengupta, 1987). Premachandra, Powell and Shi (1998) used a

DEA-based numerical approach to investigate the relative performance of New

Zealand managed portfolios under a stochastic environment. Now, DEA

application is becoming more sophisticated and is used as a versatile and effective

tool in empirical analysis.

2.4.2.1 Application in finance

Banking

A growing number of studies on bank branches can be found in the literature in

many different countries. See Berger and Humphrey (1997) for a survey of 130

studies that apply frontier efficiency analysis to financial institutions in twenty-

one countries. The reason for the rapid growth of such studies was mainly due to

intensified competition among major banking players at the local level and their

having to operate under different regulatory regimes in foreign markets.

I
I
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Efficiency measurement techniques generally separate bank branches that perform

better, relative to a benchmark, from the others. Since DEA is a relative efficiency

measurement technique, the use of DEA to measure bank branch efficiency is

now becoming increasingly popular. See, for example, Parkan (1987) for an

assessment of the branches of a Canadian chartered bank, Oral and Yolalan (1990)

of a Turkish bank, Giokas (1991) of the Greece Commercial Bank, Al-Faraj, Alidi

and Bu-Bshait (1993) of a Saudi Arabian bank and Athanassopoulas (1998) of a

commercial bank in the United Kingdom.

Insurance

DEA has also been applied to the financial services sector, in particular the

insurance industry, although there are only a limited number of studies. See, for

example, Berger and Humphrey (1997) for a survey of eight studies in the US,

France and Italy and Worthington and Hurley (2000) for a study of a sample of

Australian general insurers.

In general, most DEA applications in the banking and insurance sectors

concentrated on US financial institutions. The Berger and Humphrey (1997)

survey reported that of the 116 single country studies, US financial institutions

accounted for 66 of these.
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Securities

Powers and McMullen (2000) applied the DEA technique with weight restrictions

to distinguish between strong performers and others in a set of financial securities.

Weight restrictions are generally imposed to avoid production units achieving

efficiency while having undesirable input-output levels (Thompson, Langemeier,

Lee, Lee and Thrall, 1990; Wong and Beasley, 1990). They argued that security

selection could be thought of as a multi-criteria decision-making problem since

security selection is usually based on an examination of several attributes.

Considering 1-, 3-, 5-, and 10-year average returns and earnings per share as

output variables, and price to earnings ratio, beta risk and 3-year standard

deviation of returns as input variables, Powers and McMullen estimated the DEA-

efficiency of 185 of the largest market cap securities in the US. They highlighted

that DEA is able to (i) provide a single composite score for each security, (ii)

inform the decision-maker as to which securities are consistently the best when

several attributes are considered and (iii) provide information as to how much

improvement is needed for each security to become efficient with respect to given

inputs and outputs.

Managed Funds

Investment performance measures such as the Sharpe, Treynor and Jensen indices

can be used to evaluate the risk-return performance of managed funds based on

the risk-adjusted return or its variations. Murthi, Choi and Desai (1997), were the
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first to apply DEA to mutual fund appraisal. Motivated by this application and the

results, they argued that the superiority of DEA over the above three indices

comes from the fact that DEA can accommodate important variables such as

transaction costs, while the indices do not make use of such information. Another

drawback of the Treynor and Jensen indices is the requirement of a benchmark8

for performance comparisons.

Transaction costs include loads and/or other fees that financial institutions charge

investors for their expertise and for conducting financial transactions on their

behalf. Murthi, Choi and Desai (1997) modified the idea of the Sharpe index by

incorporating transaction costs. Their index, denoted by/, is expressed as:

R
/ = • (2.4.14)

VCT

1-1

where, R is the excess return, a is the standard deviation of returns, n is the

number of components of the total transaction costs and X, is the transaction

costs associated with the cost component u w( and v are the weights associated

with variables X, and a. The index / is interpreted as the excess return after

controlling for the level of risk of the investment and the expenses incurred

through transactions.

8 Grinblatt and Titman (1993) introduced a measure that does not require the use of a benchmark.

However, they failed to account for transaction costs.
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The weights w.:i = l,...,n and v can be determined by employing a parametric

approach and specifying a functional form for the association between the output

variable R and input variables X.:i = l,...,n, and a. However, acknowledging

the criticism of Varian (1990) for using parametric specifications here, Murthi,

Choi and Desai (1997) employed DEA to appraise 731 mutual funds using the

actual return as the output variable and four input variables: expense ratio

(accounts for management fees, marketing expenses and other operational

expenses), load (a charge at the time of investment and/or withdrawal also

referred to as sales charge), turnover (captures the trading activity of the fund

manager proxied by min{monthly purchases, sales}/average net asset value) and

the standard deviation of returns.

Murthi, Choi and Desai (1997) found strong evidence that mutual funds are

approximately mean-variance efficient and that efficiency is not related to

transaction costs. However, their study assumed a CRS frontier and therefore was

unable to examine the issue of scale effects on the mutual funds.

McMullen and Strong (1998), on the other hand, analysed 135 common stock

mutual funds using DEA. Their choice of the input-output variable set differed

slightly from that of Murthi, Choi and Desai (1997). McMullen and Strong

postulated that an investor's choice of a mutual fund would be typically a function
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of recent performance, long-term performance, the associated risks of these

returns and transaction costs. In particular, they considered 1-, 3- and 5-year

annualised returns as output variables and sales charge, expense ratio, minimum

initial investment and standard deviation of return measured over three years as

the input variables.

Apart from the choice of the input-output variable set, the McMuUen and Strong

(1998) study differed from Murthi, Choi and Desai (1997) in two other aspects.

These are: (i) relaxing the CRS assumption and (ii) imposing weight restrictions

on the input-output variables. McMuUen and Strong demonstrated that DEA

results could assist investors to decide which funds to buy or not to buy, by

providing them with reasons.

Sedzro and Sardano (1999) analysed 58 US equity funds in Canada using DEA.

Their study differs from McMuUen and Strong (1998) in two aspects: (i) the use

of another proxy (Vos ratio9) for risk, different from the usual standard deviation

of returns and (ii) comparison of the DEA results with three other performance

measures - the Momingstar rating, the Sharpe index and the Vos ratio (Vos,

1997). Sedzro and Sardano (1999) treat annual return as the output variable and

9 Vos ratio is an ordinal classification of funds based on the numerical evaluation of five variables

that capture several dispersion measures.
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expenditure ratio, minimum initial investment and inverse of Vos risk measure10

as the input variables.

Sedzro and Sardano (1999) reported that DEA yields results similar to those of the

Sharpe, Vos and Morningstar measures, and through critical examination of the

DEA results emphasised the advantage of using DEA over the other measures. In

particular they highlighted the possibility of identifying the causes for the under-

performance of inefficient funds.

Morey and Morey (1999) addressed the issues of integrating fund performance

over different time horizons and identification of dominant funds. They suggested

a method of eliminating subjectivity in the selection of weights in the integration

of fund performance over different time horizons by adopting a DEA-based

approach.

Premachandra, Powell and Shi (1998) proposed a spreadsheet-based stochastic

DEA model for ranking a set of portfolios created by mixing three alternative

investments, namely, securities in the New Zealand stock exchange, the NZSE40

index and a risk-free asset.

10 The more risky the fund the higher the inverse of Vos risk measure.
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The above studies clearly demonstrate the potential of DEA as a managed fund

performance appraisal technique. However, there appears to be no agreement as to

the choice of the input-output variables in DEA models nor on the time period to

be captured in the analysis. For example, so far there is no variable representing

management strategy included in DEA, although one would expect such a

variable to contribute to funds performance. This thesis intends to construct such a

variable in Chapter 4.

2.5 Conclusions

In this chapter, we reviewed the literature on investment performance appraisal

methods. Early measures were based on some form of risk-adjusted return and did

not include the costs incurred in generating the return. Later, companies

developed comprehensive performance evaluation methods that have now become

very popular among institutional and private investors. Some methods award

'stars' to managed funds based on their risk-adjusted returns after due

consideration given for costs such as sales charges. A feature of the Morningstar

company-sponsored measures is that they publish ratings separately for different

groups of funds. The groups are categorised on the basis of fund characteristics.

More recently, motivated by the ability to incorporate multiple output and

multiple input variables in performance measures, many studies adopted the non-
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parametric frontier estimation methodology, DEA, to appraise mutual fund

performance. In these studies, there appears to be (i) no agreement as to the choice

of input-output variables in DEA models, nor (ii) agreement on the time period to

be captured in the analysis. We address these two issues using a sample of

Australian mutual funds in Chapter 4 of this thesis. Further, empirical studies that

use DEA fail to incorporate variables representing management strategy. This

thesis constructs such a variable and its importance becomes evident in Chapter 4.

The choice of the variable set in DEA models is generally more of an empirical

issue. Apart from freedom of choice in the input-output variable set the analyst

will have to select the appropriate DEA model from a wide range available in the

literature. In short, model selection is a major issue in DEA. Therefore, it will be

beneficial to the analyst to be aware of the dangers of model misspecification in

DEA. Misspecification in DEA models can result due to the omission of relevant

variables, inclusion of irrelevant variables and incorrect assumption on retums-to-

scale. A few studies have addressed some of these issues under some specific

circumstances. All of them investigated a variety of model misspecifications

under different production processes using simulation studies. DEA performance

can also be sensitive to the choice of the sample size and the number of, and the

association among, the variables used in the model. In Chapter 5 we contribute to

the literature on model selection by conducting a simulation experiment.



Chapter 3

A Survey on Risk-Return Analysis

3.1 Introduction

The foundations for the development of ass«;t pricing models were laid by

Markowitz (1952) and Tobin (1958). Early theories suggested that the risk of an

individual security is the standard deviation of its returns - a measure of return

volatility. Thus, the larger the standard deviation of security returns the greater the

risk. An investor's main concern, however, is the risk of his/her total wealth made

up of a collection of securities, the portfolio. Markowitz observed that (i) when

two risky assets are combined their standard deviations are not additive, provided

the returns from the two assets are not perfectly positively correlated and (ii)

when a portfolio of risky assets is formed, the standard deviation risk of the

portfolio is less than the sum of standard deviations of its constituents. Maikowitz

was the first to develop a specific measure of portfolio risk and to derive the

expected return and risk of a portfolio. The Markowitz model generates the

efficient frontier of portfolios and the investors are expected to select a portfolio,

which is most appropriate for them, from the efficient set of portfolios available to

them.

41

M
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The computation of risk reduction as proposed by Markowitz is tedious. Sharpe

(1964) developed a computationally efficient method, the single index model,

where return on an individual security is related to the return on a common index.

The common index may be any variable thought to be the dominant influence on

stock returns and need not be a stock index (Jones, 1991). The single index model

can be extended to portfolios as well. This is possible because the expected return

on a portfolio is a weighted average of the expected returns on individual

securities.

When analysing the risk of an individual security, however, the individual

security risk must be considered in relation to other securities in the portfolio. In

particular, the risk of an individual security must be measured in terms of the

extent to which it adds risk to the investor's portfolio. Thus, a security's

contribution to portfolio risk is different from the risk of the individual security.

Investors face two kinds of risks, namely, diversifiable (unsystematic) and non-

diversifiable (systematic). Unsystematic risk is the component of the portfolio risk

that can be eliminated by increasing the portfolio size, the reason being that risks

that are specific to an individual security such as business or financial risk can be

eliminated by constructing a well-diversified portfolio. Systematic risk is

associated with overall movements in the general market or economy, and
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therefore is often referred to as the market risk. The market risk is the component

of the total risk that cannot be eliminated through portfolio diversification.

The CAPM developed by Sharpe (1964) and Lintner (1965), discussed in the

following section, relates the expected rate of return of an individual security to a

measure of its systematic risk. Since then, a variety of models have been

developed to predict asset returns. These are discussed in Section 3.3. A brief

summary is given in Section 3.4.

3.2 The capital asset pricing model

The CAPM conveys the notion that securities are priced so that the expected

returns will compensate investors for the expected risks. There are two

fundamental relationships: the capital market line and the security market line.

These two models are the building blocks for deriving the CAPM. Even though

they are not new, it is illustrative to discuss them here briefly. Further, since one

of the aims of this thesis is to investigate various forms of CAPM, these models

deserve some attention in this survey chapter.
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3.2.1 Capital market line

The capital market line (CML) specifies the return an individual investor expects

to receive on a portfolio. This is a linear relationship between risk and return on

efficient portfolios that can be written as:

'E{Rm)-R/
(3.2.1)

where,

Rp — portfolio return,

Rj- = risk-free asset return,

Rm = market portfolio return,

<jp = standard deviation of portfolio returns, and

am = standard deviation of market portfolio returns.

According to (3.2.1), the expected return on a portfolio can be thought of as a sum

of the return for delaying consumption and a premium for bearing risk inherent in

the portfolio. The CML is valid only for efficient portfolios and expresses

investors' behaviour regarding the market portfolio and their own investment

portfolios.
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3.2.2 Security market line

The security market line (SML) expresses the return an individual investor can

expect in terms of a risk-free rate and the relative risk of a security or portfolio.

The SML with respect to security / can be written as:

* « = *,+fl {E&O-*,} 0.2.2)

where,

Pi (3.2.3;

r.m = the correlation between security return, R. and market portfolio return.

The fi. can be interpreted as the amount of non-diversifiable risk inherent in the

security relative to the risk of the market portfolio. Equation (3.2.2) is a version

of the CAPM. The set of assumptions1 sufficient to derive the CAPM version of

(3.2.2) are the following:

(i) the investor's utility functions are either quadratic or normal,

(ii) all diversifiable risks are eliminated and

(iii) the market portfolio and the risk-free asset dominates the

opportunity set of risky assets.

The SML is applicable to portfolios as well. Therefore, SML can be used in

portfolio analysis to test whether securities are fairly priced, or not.

See Sinclair (1987) for a description of these assumptions.
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3.3 Asset pricing models

3.3.1 Single-factor CAPM

In order to test the validity of the CAPM researchers always test the SML given in

(3.2.2). The CAPM is a single-period ex ante model. However, since the ex ante

returns are unobservable, researchers rely on realised returns. So the empirical

question arises: Do the past security returns conform to the CAPM?

The beta in such an investigation is usually obtained by estimating the security

characteristic line (SCL) that relates the excess return on security i to the excess

return on some efficient market index at time t. The ex post SCL can be written

as:

** -R
fi= 1, +bi(Rml -Rfhe, (3.2.4)

where, TJ. is the constant return earned in each period and b{ is an estimate of /?,.

in the SML. The estimated /?,. is then used as the explanatory variable in the

following cross-sectional equation:

(3.2.5)

to test for a positive risk return trade-off. The coefficient yQ is the expected return

of a zero beta portfolio, expected to be the same as the risk-free rate and yx is the

market price of risk (market risk premium), which is significantly different from

zero and positive in order to support the validity of the CAPM. When testing the
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CAPM using (3.2.4) and (3.2.5), we are actually testing the following issues: (i)

b, s are true estimates of historical J3.s> (ii) the market portfolio used in empirical

studies is the appropriate proxy for the efficient market portfolio for measuring

historical risk premium and (iii) the CAPM specification is correct (Radcliffe,

1987).

Early studies (Lintner, 1965; Douglas, 1969) on CAPM were primarily based on

individual security returns. Their empirical results were discouraging. Miller and

Scholes (1972) highlighted some statistical problems encountered when using

individual securities in testing the validity of the CAPM. Most studies

subsequently overcame this problem by using portfolio returns. Black, Jensen and

Scholes (1972), in their study of all the stocks of the New York Stock Exchange

over the period 1931-1965, formed portfolios and reported a linear relationship

between the average excess portfolio return and the beta, and for beta >1 (<1) the

intercept tends to be negative (positive). Therefore, they developed a zero-beta

version of the CAPM model where the intercept term is allowed to change in each

period. Extending the Black, Jensen and Scholes (1972) study, Fama and

MacBeth (1973) provided evidence (i) of a larger intercept term than the risk-free

rate, (ii) that the linear relationship between the average return and the beta holds

and (iii) that the linear relationship holds well when the data covers a long time

period. Subsequent studies, however, provide weak empirical evidence on these
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relationships. See, for example, Fama and French (1992), He and Ng (1994),

Davis (1994) and Miles and Timmermann (1996).

The mixed empirical findings on the return-beta relationship prompted a number

ofresponses:

(i) The single-factor CAPM is rejected when the portfolio used as a market proxy

is inefficient. See2, for example, Roll (1977) and Ross (1977). Even very small

deviations from efficiency can produce an insignificant relationship between risk

and expected returns (Roll and Ross, 1994; Kandel and Stambaugh, 1995).

(ii) Kothari, Shanken and Sloan (1995) highlighted the survivorship bias in the

data used to test the validity of the asset pricing model specifications,

(iii) Beta is unstable over time. See, for example, Bos and Newbold (1984), Faff,

Lee and Fry (1992), Brooks, Faff and Lee (1994) and Faff and Brooks (1998).

(iv) There are several model specification issues: For example, (a) Kim (1995)

and Amihud, Christensen and Mendelson (1993) argued that errors in variables

impact on the empirical research, (b) Kan and Zhang (1999) focused on a time-

varying risk premium, (c) Jagannathan and Wang (1996) showed that specifying a

broader market portfolio can affect the results and (d) Clare, Priestley and Thomas

(1998) argued that failing to take into account possible correlations between

idiosyncratic returns may have an impact on the results.

2 Also see Fama and MacBeth (1973), Black (1993) and Chan and Lakonishok (1993) and the

references therein.
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3.3.2 Multifactor models

A growing number of studies found that the cross-sectional variation in average

security returns cannot be explained by the market beta alone and showed that

fundamental variables such as size (Banz, 1981), ratio of book-to-market value

(Rosenberg, Reid and Lanstein, 1985; Chan, Hamao and Lakonishok, 1991),

macroeconomic variables and the price to earnings ratio (Basu, 1983) account for

a sizeable portion of the cross-sectional variation in expected returns.

Fama and French (1995) observed that the two non-market risk factors SMB (the

difference between the return on a portfolio of small stocks and the return on a

portfolio of large stocks) and HML (the difference between the return on a

portfolio of high-book-to-market stocks and the return on a portfolio of low-book-

to-market stocks) are useful factors when explaining a cross-section of equity

returns. Chung, Johnson and Schill (2001) observed that as higher-order

systematic co-moments are included in the cross-sectional regressions for

portfolio returns, the SMB and HML generally become insignificant. Therefore,

they argued that SMB and HML are good proxies for higher-order co-moments.

Ferson and Harvey (1999) claimed that many multifactor model specifications are

rejected because they ignore conditioning information.

Another possibility is to construct multifactor arbitrage pricing theory (APT)

models introduced by Ross (1976). APT models allow for priced factors that are
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orthogonal to the market return and do not require that all investors are mean-

variance optimisers, as in the CAPM. Groenewold and Fraser (1997) examined

the validity of these models for Australian data and compared the performance of

the empirical version of APT and the CAPM. They concluded that APT

outperforms the CAPM in terms of within-sample explanatory power.

3.3.3 CAPM with higher-order co-moments

It is clear from well-established stylised facts that the unconditional security

return distribution is not normal (see, for example, Ane and Geman, 2000 and

Chung, Johnson and Schill, 2001) and the mean and variance of returns alone are

insufficient to characterise the return distribution completely. This has led

researchers to pay attention to the third moment - skewness3 - and the fourth

moment — kurtosis.

Many researchers investigated the validity of the CAPM in the presence of higher-

order co-moments and their effects on asset prices. In particular, the effect of

skewness on asset pricing models was investigated extensively. For example,

3 Early studies examined the empirical relation of ex post returns to total skewness (see, for

example, Arditti, 1967). Subsequent studies argued that systematic skewness is more relevant to

market valuation rather than total skewness (see, for example, Kraus and Litzenberger, 1976)

refuting the usefulness of quadratic utility as a basis for positive valuation theory. The

experimental evidence that most individuals have concave utility displaying absolute risk aversion

also supports inclusion of higher-order co-moments in risk-return analysis (see, for example

Gordon, Paradis and Rorke, 1972).
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Kraus and Litzenberger (1976), Friend and Westerfield (1980), Sears and Wei

(1985) and Faff, Ho and Zhang (1998), among others, extended the CAPM to

incorporate skewness in asset valuation models and provided mixed results.

Harvey and Siddique (2000) examined an extended CAPM, including systematic

co-skewness. Their model incorporates conditional skewness. The extended form

of CAPM is preferred as the conditional skewness captures asymmetry in risk, in

particular downside risk4, which has recently become considerably important in

measuring value at risk. Harvey and Siddique reported that conditional skewness

explains the cross-sectional variation of expected returns across assets and is

significant even when factors based on size and book-to-market are included.

A few studies have shown that non-diversified skewness and kurtosis play an

important role in determining security valuations. Fang and Lai (1997) derived a

four-moment CAPM and it was shown that systematic variance, systematic

skewness and systematic kurtosis contribute to the risk premium of an asset. See,

also, Christie-David and Chaudhry (2001) who show that the third and fourth

moments explain the return-generating process in futures markets well.

4 Downside risk is the risk of loss or underperformance that is considered as the appropriate

measure of risk. Variance, as a measure of risk, includes returns above and below the average

return, in the same vein. This has led to criticism of variance as a measure of risk.
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Investors are generally compensated for taking high risk as measured by high

systematic variance and systematic kurtosis. Investors also forego the expected

returns for taking the benefit of a positively skewed market. It also has been

documented that skewuess and kurtosis cannot be diversified away by increasing

the size of portfolios (Arditti, 1971).

3.3.4 Conditional asset pricing models

Testing for the instability of beta and the validity of the return-beta relationship is

not new. Following the suggestion made by Levy (1974) to compute separate

betas for bull and bear markets, Fabozzi and Francis (1977) were the first to

formally estimate and test the stability of betas over the bull and bear markets.

They found no evidence supporting beta instability. However, in an empirical

analysis of the cross-sectional relationship between the expected returns and beta,

Fabozzi and Francis (1978) concluded that investors like to receive a positive

premium for accepting downside risk, while a negative premium was associated

with the up market beta, suggesting that downside risk - as measured by the beta

corresponding to the bear market - may be a more appropriate measure of

portfolio risk than the conventional single beta.

Prompted by Fabozzi and Francis (1978), several studies tested for randomness of

beta. Kim and Zumwalt (1979) extended the Fabozzi-Francis design to analyse the

variation of returns on security and portfolios in up and down markets. They used
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three alternative measures to determine what constituted an up and down market.

Up market constituted those months in which the market return exceeded (i) the

mean market return, (ii) the mean risk-free rate or (iii) zero. Kim and Zumwalt

concluded that downside risk might be a more appropriate measure of portfolio

risk than the conventional single beta. Chen (1982) allowed beta to be

nonstationary in an examination of the risk-return relationship in the up and down

markets and concluded that (i) under the condition of either constant or changing

beta, investors seek compensation for assuming downside risk and (ii) as in the

Kim and Zumwalt (1979) study, the down market beta is a more appropriate

measure of portfolio risk than the single beta. Bhardwaj and Brooks (1993)

observed that the systematic risks in bull and bear time periods are statistically

different. Their classification of bull and bear markets is based on whether the

market return exceeds the median market return or not. Studies have considered

three-beta models as well. For example, Faff and Brooks (1998), noting that there

is no reason to believe that beta is constant, especially over long estimation

periods, defined three regimes relating to two major past events.

Ferson and Harvey (1991), on the other hand, in their study of US stocks and

bond returns, revealed that the time variation in the premium for beta risk is more

important than the changes in the betas themselves. This is because equity risk

premiums were found to vary with market conditions and business cycles.
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Schwert (1989) attributed differential risk premia between up and down markets

to varying systematic risk over the business cycle.

Pettengill, Sundaram and Mathur (1995) highlighted that the weak and

intertemporally inconsistent results of studies testing for a systematic relation

between return and beta is due to the conditional nature of the relation between

the beta and the realised return. They argued that when realised returns are used,

the relation between the beta and the expected return is conditional on the excess

market return. They postulated a positive (negative) relation between the beta and

returns during an up (down) market. See Section 6.2.2 for more details. Then-

study of US stocks sampled over the period 1926-1990 reported the existence of a

systematic conditional relation between the beta and the return for the total sample

period, as well as across sub-sample periods.

Following Pettengill, Sundaram and Mathur (1995), Crombez and Vander Vennet

(2000) analysed the conditional relationship between stock returns and beta on the

Brussels Stock Exchange over the period 1990-1996. They observed that the beta

factor is a strong and consistent indicator of both upward potential in bull markets

and downside risk in bear markets. They found the results to be robust for various

definitions5 of beta and different specifications6 of up and down markets. Further,

1 Beta computed using different market indices.
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they highlighted that investors could improve the performance of their portfolios

by using up and down market betas in their asset selection practice. A common

feature in the above studies is the use of monthly data.

3.3.5 CAPM conditional on time-varying volatility

Since the introduction of ARCH/GARCH7-type processes by Engle (1982) and

others, testing for, and modelling of, time-varying volatility (variance/covariance)

of stock market returns (and hence the time-varying beta) have been given

considerable attention in the literature. See Bollerslev, Engle and Wooldridge

(1988) - the first study to model the beta in terms of time-varying

variance/covariance - and the survey paper by Bollerslev, Engle and Nelson

(1994). The ARCH-based empirical models appear to provide stronger evidence,

though not convincingly, of the risk-return relationship than do the unconditional

models.

Using monthly data from the United Kingdom market from 1975 to 1996, Fraser,

Hamelink, Hoesli and MacGregor (2000) compared the cross-sectional risk-return

relationship obtained with an unconditional specification of the asset's betas with

6 Up market defined as months in which market return is non-negative and other strong criteria: (i)

market return exceeds the average value of positive market returns and (ii) market return exceeds

the average value of positive market returns plus a factor (0.5 and 0.75) of the standard deviation

of positive market returns.
7 See Section 7.2 for a description of the GARCH(p,q) model.
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betas obtained through Quantitative Threshold ARCH (QTARCH8) and GARCH-

M9 models. In all specifications, they allowed for possible negative return-risk

relationships when excess return on the market is negative. Fraser, Hamelink,

Hoesli and MacGregor observed that CAPM holds better in downward moving

markets than in upward markets and suggested that beta as a risk measure is more

appropriate in the bear markets. They observed that the QTARCH specification,

in which they allowed for asymmetries in the first and second moments of returns,

yields a significant beta without having to account for up and down markets.

Recently, several studies investigated the effect of good and bad news (leverage

effects), as measured by positive and negative returns on beta. See, for example,

Braun, Nelson and Sunier (1995) (BNS hereafter) and Cho and Engle (1999) (CE

hereafter) and the references therein. BNS investigated the variability of beta10

using bivariate Exponential GARCH (EGARCH11) models allowing market

volatility, portfolio-specific volatility and beta to respond asymmetrically to

positive and negative market and portfolio returns. CE, on the other hand, used a

two-beta model with an EGARCH variance specification and daily stock returns

8 See Gourieroux and Monfort (1992) for details.
9 Due to Bollerslev, Engle and Wooldridge (1988). See Section 7.2 for a description of the

GARCH-Mfo?) model.
10 See also Huang (200G) for the use of a Markov regime-switching model to investigate the

instability of beta.
11 Due to Nelson (1991).
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of individual firms. CE concluded that news asymmetrically affects the betas

while the BNS study that used monthly data on portfolios did not uncover this

relationship.

3.4 Conclusions

For the CAPM to hold, normality of returns is a crucial assumption, and if the

CAPM holds, then only the beta should be priced. Several studies have shown that

security returns are non-normal and this is evident especially in high frequency

data. When returns are normal, the mean and the variance are sufficient to

describe the return distribution, On the other hand, an adequate description of a

non-normal return distribution requires statements on higher-order moments such

as skewness and kurtosis. Prompted by the mixed results of the single-factor

CAPM studies and the non-normal nature of return distribution, the CAPM with

higher-order co-moments was proposed in the literature as an alternative to the

single-factor CAPM. These empirical studies, too, reported mixed results.

Because of the failure of market beta alone to explain cross-sectional variation in

security returns, multifactor models emerged. These models incorporate

fundamental variables such as size and the price-to-earnings ratio in addition to

market beta.
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Pettengill, Sundaram and Mathur (1995) argued that the studies on the beta and

cross-sectional returns relationship that used realised return as a proxy for the

expected returns might have produced biased results due to the aggregation of

positive and negative market excess returns. They postulated that when the market

return in excess of the risk-free return is negative, an inverse relationship between

beta and portfolio returns is expected. Their test for a systematic conditional

relationship between the realised returns and the beta in an empirical investigation

of US data revealed a positive risk premium in the up market and a negative risk

premium in the down market. Other studies that adopted Pettengill, Sunderam and

Mathur's conditional model to test the beta risk-return relationship on different

data sets reported stronger results than they would obtain otherwise.

As far as we are aware no study has adopted the Pettengill, Sundaram and Mathur

approach to investigate an extended CAPM with higher-order co-moments.

Postulating that the systematic risks corresponding to variance, skewness and

kurtosis are different for up and down markets, Chapter 6 in this thesis models

Australian stocks returns.

There is also a parallel literature on modelling time-varying beta. These models

also appear to produce evidence of, though not convincingly, a significant risk-

return relationship. Generally, the risk-return relationship seems to be better

captured by conditional models than unconditional ones. Previous studies that
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adopted conditional risk-return relationships developed models conditional on

market movements. In Chapter 7 of this thesis we derive an asset pricing model

conditional on market volatility. Depending on the magnitude of the market

volatility, we specify three market regimes and estimate three betas, which are in

turn included in the asset pricing model.



Chapter 4

Mutual Fund Performance Appraisal
Using Data Envelopment Analysis*

4.1 Introduction

Measuring and comparing the performance of mutual, trust and superannuation

funds has become an important concern for managers and investors alike in the

finance industry, and hence there is a pressing need for a credible measure for

assessing and ranking the performance of these managed funds. The

responsibilities of investment managers are enormous, and their potential rewards

are great. In order to reward management for good performance, it is necessary to

be able to recognise it. Moreover, the past four decades have witnessed a

proliferation of managed funds, their attractiveness to many investors around the

globe and international diversifications to reduce various market risks. Since the

important work of Sharpe (1964, 1966), Treynor (1965) and Jensen (1968, 1969),

numerous studies have been concerned with measuring performance in two

* A paper based on the material in this chapter was presented at the Australasian Finance and

Banking Conference, December 18-20, Sydney, Australia (Galagedera and Silvapulle, 2000) and is

published in the special issue on 'Efficiency and productivity issues in the financial sector' in

Managerial Finance. See Galagedera and Silvapulle (2002a).
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dimensions, risk and return, mainly using the capital asset pricing model (CAPM).

See Section 2.2 for details. The results of these studies appear to depend, to a

large extent, on the benchmark portfolio used and the measurement of risk. The

main criticism made on the use of CAPM is the validity of its underlying

assumptions; see the survey article by Shukla and Trzcinka (1992) for details.

Since then, numerous performance measures have been suggested in the recent

literature (Modigliani and Modigliani, 1997). In addition, organisations such as

Morningstar Incorporated in the US and ASSIRT Pry Ltd in Australia have

developed their own fund performance measures due to increasing demand in the

financial services industry. Chapter 2 discusses these measures more fully.

Recently, data envelopment analysis (DEA), which is a non-parametric

methodology that has been extensively used to estimate production frontiers, has

been adopted for assessing mutual fund performance; this technique is discussed

in Section 2.4.1 in some detail. Contrary to other performance measures, the DEA

technique has the ability to incorporate many factors that are associated with fund

performance in addition to the usual risk and return measures. A DEA application

typically involves a series of mathematical programming optimisations to

observed data generated from the past behaviour of each mutual fund in order to

evaluate its relative performance. The greatest advantage of using DEA over other

measures of fund performance is that DEA reveals the reason for a fund being

inefficient and shows how to restore the fund to its optimum level of efficiency.
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McMullen and Strong (1998) applied DEA to evaluate the relative performance of

135 US common stock funds using the factors, one-, three- and five-year

annualised returns, standard deviation of returns, sales charge, minimum initial

investment and expense ratio. Sedzro and Sardano (1999), on the other hand,

analysed 58 US equity funds that exist in Canada using DEA with annual return,

expense ratio, minimum initial investment and a proxy for risk as factors

associated with fund performance. Sedzro and Sardano also compared the relative

efficiencies obtained in DEA with the Sharpe and Morningstar ratios and found

that the correlation is around 0.78, indicating a strong relationship between the

two efficiency rankings. For earlier studies, see Section 2.4.2.

The primary objective of this study is to assess the relative efficiency of the

performance of 257 Australian mutual funds. To date, most studies on ranking

mutual funds using the DEA technique have been based mainly on US-managed

funds. Further, we investigate (i) the sensitivity of the DEA relative efficiencies to

the type and the number of factors that are associated with fund performance; and

(ii) using a logistic regression model, the effect of investment attributes,

management objectives and fund characteristics, which were not considered in the

DEA model, on the relative efficiency. The association between the DEA ranking

and the ASSIRT 'star' rating, which will be defined later, is also examined.
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It appears that the total assets managed by superannuation and approved deposit

funds (ADFs) in Australia by the end of 1999 stood at approximately AUD 295

billion (Council of Financial Regulators, 2000). The ADFs are generally managed

by professional fund managers and are usually invested in a range of assets such

as equities, property, debt securities and deposits. The total funds in public unit

trusts grew in value from AUD 2.72 billion in 1989 xo AUD 116.67 billion in

1999 (Reserve Bank of Australia, 2000). Unit trusts usually diversify investors'

funds into specific asset types such as equities, property, mortgages, money

market investments and overseas securities. As well, there is evidence during this

period of a dramatic increase in the number of groups actively undertaking fund

management. By the end of 1999, the number of groups actively managing

superannuation funds and ADFs in Australia exceeded 203,000, while for public

unit trusts, the corresponding number was only 257. Because of financial market

liberalisation and globalisation, the interest of foreign investors in the Australian

financial market is growing considerably. Therefore, the ranking of Australian

mutual funds would be of both local and international interest.

hi this chapter, we adopt a 'two-step' procedure that has been popular in recent

studies of DEA efficiency appraisal of the banking sector (Casu and Molyneux,

1999), the finance sector (Fried, Lovell and Vanden-Eekaut, 1993; Worthington,

1999; Worthiagton and Hurley, 2000) and the agriculture sector (Coelli, Rao and

Battese, 1998). The first step is to apply DEA for measuring the relative
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efficiency of 257 Australian mutual funds, and the second step is to use a logistic

regression model to investigate how well the variation in the relative inefficiency

scores can be explained by the investment attributes and the fund characteristics

that were not included in the DEA analysis. Further, as was discussed in Section

2.4, a drawback of empirical studies so far is the failure to include a variable

representing management strategy either as an input variable in the DEA model or

as an explanatory variable in the logistic regression model. In this chapter, we

construct such a variable.

The chapter is organised as follows. Section 4.2 specifies the relevant DEA model

and the logistic regression model. A discussion of the data set used and the

variables considered in this study along with their summary measures is provided

in Section 4.3. The DEA and logistic regression results are analysed in Section

4.4. Finally, concluding remarks are made in Section 4.5.

4.2 Methodology

In this section, the DEA model used to compute the relative efficiency of fund

performance is specified. Further, the logistic regression model, which is used to

investigate the effects of investment attributes and fund characteristics on the

relative inefficiency scores, is given.
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4.2.1 Data envelopment analysis model

A DEA model can be analysed in two ways, an input orientation or an output

orientation; in both of these methods, a DEA-efficient fund would always have

100 per cent efficiency. An input orientation provides information as to how

much proportional reduction of inputs is necessary while maintaining the current

levels of outputs for an inefficient fund to become DEA-efficient. On the other

hand, an output orientation analysis provides information on how much

augmentation to the levels of outputs of an inefficient fund is necessary while

maintaining current input levels for it to become DEA-efficient. However, the

latter is of little significance because output augmentation is likely to be beyond

the control of the fund manager (McMullen and Strong, 1998). Therefore, we use

the input orientation version of the DEA model developed by Banker, Charnes

and Cooper (1984), the BCC model, which is outlined in detail in Section 2.4.

The BCC model is given as:

subject to

Min0

rj >: yrk

7=1

,s,

,m,

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)
7=1
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(4.2.5)

4.2.2 Logistic regression model

We attempt to explain the variation in relative inefficiency by converting DEA

relative efficiency measurements (overall technical, pure technical and scale) to an

index measure of efficiency where if a fund is DEA-efficient it is assigned the

value 0 and if DEA-inefficient the value 1. These transformed relative efficiency

scores are regressed on a set of what is known as environmental variables using

the binary logistic regression model. These variables are expected to explain the

source of fund inefficiency.

The model we consider in the second step is:

P(fund is inefficient) =
1

1 + e"
(4.2.6)

where, Z = fi0 + Pxzx +... + fikzk. Here, the independent explanatory variables

zvz2,...,zk could be continuous or categorical. /?<,,/?,,...,/?* are the unknown

parameters.

Now, we have
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( is (4.2.8)

The ratio of the probability that a fund is inefficient to the probability that it is

efficient is referred to as the odds of the fund being inefficient. The exponent of

the coefficient /? corresponding to an explanatory variable gives the change in

odds with a unit increase in the explanatory variable, with others being fixed.

4.3 Data and variable selection

In this section, we briefly describe the data source and information on mutual

funds studied in this chapter. The rationale in selecting input and output variables

for DEA models and explanatory variables in the logistic regression model is also

given.

4.3.1 Data

The data on the 257 Australian mutual funds used in this study were collected

from ASSIRT Pty Ltd, Australia, covering the five-year period 1995 to 1999.

ASSIRT provides information on qualitative as well as quantitative variables

associated with a large number of mutual funds. Some of the qualitative variables

available in the ASSIRT database (ASSIRT Pty Ltd, 2000) are funds' features,

management objectives and strategy, and ASSIRT rating of mutual funds, while
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the quantitative variables are mainly historical information such as net cash flow1,

growth, income, size, asset allocation and fees charged. We assess the sensitivity

of the DEA relative efficiencies to different sets of input-output variable

combinations measured across short- medium- and long-run time horizons. The

reason for considering only 257 funds in this study hinges on the availability of a

complete set of information on these funds2. It is of interest to note that the total

value of assets in these 257 funds is approximately AUD 7 billion.

4.3.2 Variable selection

There is no consensus among researchers and investors as to which input and

output variables should be included in a DEA model unambiguously. Analysts

usually base variable selection on historical evidence, investor survey results,

subjective judgement and data availability. In a survey, investors of mutual funds

have revealed that the risk level, total return, reputation of the fund company,

investment goals, types of companies in which the fund invests, annual fees, fund

performance relative to other similar funds, sales charges, the fund company's

tenure in business and the fund's diversification policy are the top ten factors that

1 The difference between the amounts of investment made into and out of the fund.
2 All the 257 funds survived through the five-year sample period: 1995 to 1999. The funds that

merged, disappeared or entered during this period are excluded from the sample. Thus, this

investigation might suffer from survivorship bias. See Elton, Gruber and Blake (1996) for a

method of estimation of survivorship bias on mutual fund performance.
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they considered important prior to the last purchase of funds (Investment

Company Institute, 1997).

Our data set provided information on 23 variables (attributes and characteristics)

$ on 257 funds. We grouped these variables using factor analysis3. Table 4.1

provides a list of the variables and the rotation component matrix obtained in a

I principal component analysis. The results of the principal component analysis

extraction method4 reveal six factors with 79 per cent of variation explained by

™ them. We label each factor based on the nature of the variables contained in them.

The labels are the following:

Factor-1: Risk and short-term output

Factor-2: Investor confidence

Factor-3: Cost structure

•± Factor 4: Medium- and long-term output

i Factor-5: Scale of operation

^ 3 Factor analysis is used to identify a relatively small number of factors that can capture

relationships among sets of many interrelated variables. The goal is to identify the not-directly

v. observable factors based on a set of observable variables.

' * A The goal of extraction is to determine the factors. There are several methods for factor extraction.
1 We determined the factors from principal component analysis (PCA). In PCA, linear combinations

I of the observed variables are formed. The factors are identified according to the amount of

^ variance in the sample accounted for by the combined set of observed variables. The percentage of

total variance explained by each factor enables the determination of a suitable number of factors to -

represent the data. The larger the number of factors considered, the higher the percentage of total

™ variance explained (Norusis and SPSS Inc., 1993).
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Factor-6: Flexibility

The two variables in Factor-6, exit fee and minimum additional investment, are

deemed unimportant in an analysis of this nature, the reasons being that exit fee is

applicable at a time well into the investment and additional investment is optional

to the investor. Therefore, we do not consider exit fee and additional investment

in our analysis. The variables associated with Factors 1, 3 and 4 are considered as

input and output variables in DEA. The variables associated with Factors 2 and 5

are considered as fund attributes and characteristics that might be able to explain

the variation in inefficiency of fund performance assessed using DEA.

4.3.2.1 Input and output variable selection for DEA

In DEA, the variable set is usually chosen to reflect the factors associated with

performance of the production units and the objectives of the study. In our case,

the factors are risk, output and cost structure and the objective is performance

appraisal of Australian mutual funds.

The output used in stage-one analysis is the gross performance defined in terms of

growth and income. The gross performance, expressed as a percentage per annum,

is the sum of annual percentage growth in unit price of a fund and its annual

percentage income. We consider four output variables to capture the short-,

medium- and long-term gross performances. The short-term performance captures

the output in the last twelve months and the medium-term performance captures
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two- and three-year gross performances. The ex post five-year gross performance,

on the other hand, reflects the output in the long-term5. An attractive property of

DEA is that inclusion of these measures does not cause problems due to

multicollinearity as it would in parametric regressions (McMullen and Strong,

1998).

The input variables used in the DEA analysis are defined in the following:

(i) Standard deviations of fund returns

The primary risk associated with an investment, also referred to as market risk, is

characterised by the variability of returns produced by the investment. The basic

measure of variability (and hence the risk) is the standard deviation of fund

returns6. In accordance with the time periods captured by the four input variables

outlined above four standard deviations of the 1-, 2-, 3- and 5-year returns are

considered.

5 Some studies also considered average performance in different time periods as output variables

in DEA models. See McMullen and Strong (1998) and Powers and McMullen (2000). These

studies however, did not investigate the robustness of their results to the inclusion of only a subset

of their output variables. Therefore, they were not able to talk about the sensitivity of their results

to the time period captured in the analysis.
6 When investigating asset pricing, analysts often use the volatility of the 'tracking error'. Tracking

error is defined as the excess return over some benchmark index related to the mutual fund's stated

objective. Frequency of losses, longest uninterrupted string of losses, average gain/loss ratio and

minimum loss are further indicators of market risk. Their appropriateness depends on the

investment strategy. Following previous studies, we opted for the standard deviation as a measure

of market risk.
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(ii) Sales charge

Sales charge involved in investments is of two types: front-end load or back-end

load. A front-end load is a fee paid by an investor at the time of purchasing units

of a fund and the back-end load is a fee paid by an investor when selling units in

the mutual fund. Loads are generally used to pay the sales force.

(iii) Operating expenses

The fee for operating expenses is usually reported as an expense ratio and is

generally referred to as the management expense ratio7 (MER). MER includes

salaries and bonuses paid to fund managers, fees paid for account keeping and

may also include marketing expenses.

(iv) Minimum initial investment

Most funds specify a lower limit on the investment. It can vary from no lower

limit to very large amounts as high as AUD 500,000. Setting such a very high

minimum amount can be a deterrent to small investors.

7 Ang, Chen and Lin (1998) in a study of 938 funds observed that of four remedial options - stock

selection and trading, cost-cutting, risk taking and marketing - available to managers of poorly

performing funds, only a cost-cutting strategy is significant for performance improvement. The

management expense ratio that they consider as a proxy for cost stands out as a useful indicator

when assessing mutual fund performance.
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Thus, altogether we have four output variables and seven input variables.

Contrary to previous studies of DEA analysis, we assess the sensitivity of the

results to various combinations of input and output variables, which reflect fund

performance across different time horizons. The input and output variables used in

the DEA runs are listed in Table 4.2. Some summary statistics of these variables

are also provided therein.

4.3.2.2 Variable selection for the logistic regression model

As stated before, the stage-two analysis involves explaining the variation in the

relative inefficiencies obtained in the DEA runs in terms of environmental

variables such as a fund's operational characteristics, management strategies and

objectives, and tax structures.

Now, we define the proxies for fund-specific operational characteristics. The age

and size of the fund are considered as proxies for stability/experience and scale of

operation respectively. The twelve-month net cash flow is considered as a proxy

for the level of investor confidence.
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The explanatory variables associated with fund management strategy considered

in this study are each fund's major sector8 and an asset allocation score, which

will be constructed from proportions of the fund's wealth allocated into different

asset classes.

It is clear from information obtained from ASSIRT that the fund management's

strategy is to allocate its wealth into eight asset classes, namely, international

shares, Australian shares, listed property, direct property, international fixed

interest, Australian fixed interest, Australian cash and 'other', in some proportion,

in order to optimise the return and reduce the risk. Including information on all

eight asset classes separately in the logistic regression models increases the

number of explanatory variables in the model and therefore could result in

unreliable model estimates and hence inferences. To overcome this problem, we

compute an asset allocation score as a weighted average of percentages of wealth

allocated in all the eight asset classes. This is done as follows: (i) assign numbers

1 to 8 to asset classes according to their risk levels in ascending order9, (ii) Create

a coiii^i'iious variable for each fund by weighting the percentage allocation in each

8 'Major sector' is the main investment category that the fund actively invests in. ASSIRT

classifies each fund into one of four main investment categories: diverse assets, fixed interest,

property and shares.
9 Note that the highest number, 8 was assigned to the asset class 'other' since its contents are

largely unknown. However, the percentage allocation in 'other' lies between 0 and S.I with

median zero and its impact on .*he overall result is minimal.
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asset class, and (iii) transform this variable that lies in the range (100, 800) to give

the range (0, 100) using a simple linear transformation ax - b where a=l/7 and

b=100/7 for ease of interpretation. We have defined the resulting transformed

value as the 'asset allocation score' of the fund, which was computed for all 257

funds. Since this variable was constructed using weights to reflect the asset class

risk, we believe that the asset allocation score constructed in this chapter is a good

representation of the fund's overall management strategy. A noteworthy

observation we will see below is that this asset allocation score is highly

significant in explaining the variation in fund inefficiency. Such a variable

representing management strategy was not considered by previous studies, which

we regard as a drawback. See Section 2.4 for details.

The explanatory variables relating to fund objectives are investment objective and

fund classification. The former consists of five categories as outlined in Table 4.3,

while the latter classifies the fund as either retail or wholesale depending on the

nature of unit sale. Finally, investment tax structure is included as a proxy for the

environment under which the fund operates. It is a categorical variable as revealed

in Table 4.3. The classification by investment tax structure ensures that funds that

are taxed at the same rate belong to the same category.



CHAPTER 4. FUND PERFORMANCE APPRAISAL 76

4.4 Empirical analysis and discussion of the results

In this section, we report and discuss the results of the DEA runs and ranking of

mutual funds studied in this chapter. As has been discussed in the previous

section, we consider eleven combinations of input-output variables in the DEA

analysis; see Table 4.4 for details. Further, we analyse the results of logistic

regression, attributing variation in the relative inefficiency to mutual funds'

operational characteristics, management strategies, fund objective and tax

structure. We also test, using a Chi-square test of independence, whether the

association between the DEA efficiency estimates and the ASSERT rating of these

funds is significant.

4.4.1 The DEA results and analysis

The DEA analysis was carried out using the software DEAP Version 2.1 (Coelli,

1996) and the results of the eleven DEA runs under VRS are reported in Table

4.5. The number of input-output variables used in the DEA runs ranges from five

to eleven. Usually, the higher the number of variables used in the DEA model, the

more production units become efficient. However, it is clear from the entries in

Table 4.5 that the number of funds showing up as DEA-efficient varies

considerably across certain DEA runs even though they have the same number of

input-output variables. The reason for this observation may be due to the nature

of the variables used in the DEA model. For example, of all DEA runs with seven
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input-output variables, DEA run 4 that captures medium-term performance

characteristics, detects 21 funds being efficient, while DEA run 10 that captures

long-term performance characteristics, detects 38 funds being efficient. From

these results we infer that the longer the time horizon used in gross performance

(output) calculations the higher the number of funds showing up as DEA-efficient.

It is also noticeable that the mean and median of the relative efficiencies are high

in DEA run 10. Moreover, as the number of efficient funds increases, the

variability of relative efficiency, measured as standard deviation, decreases. The

results of the analysis of the eleven DEA runs under CRS and scale assumptions

were similar to those under VRS and hence are neither reported nor discussed.

We investigated whether the funds that are deemed efficient in the DEA runs only

with short-term performance measures are also efficient in the DEA runs with

long-term performance characteristics. We identified the efficient funds in each of

the eleven DEA runs first. We observed that efficient funds in DEA runs 1-10 are

subsets of the efficient funds in DEA run 11. In order to present these

observations graphically we numbered the 44 efficient funds identified in DEA

run 11 from 1 to 44. The shaded cells in Figure 4.1 depict the efficient funds that

matched with the efficient funds of DEA run 11. A blank cell in Figure 4.1

indicates that the fund with the relevant label on the horizontal axis that was found

to be efficient in DEA run 11 is not efficient in the DEA run that the blank cell

corresponds to. There are only a few blank cells in Figure 4.1. Therefore, the
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number of efficient funds in the DEA runs that incorporate only short-term

performance measures are also likely to be efficient in the DEA runs with long-

term measures, suggesting that an efficient fund in the DEA runs with short-term

performance characteristics is likely to be efficient in the DEA runs with long-

term performance characteristics as well. The funds, for which this observation is

not true, are those corresponding to the blank cells in Figure 4.1 and these were

examined further. We did not find sufficient evidence to consider them as extreme

cases10.

The results of DEA run 11 under the assumptions of overall technical, pure

technical and scale efficiencies are presented in Table 4.6. The mean and the three

quartiles of efficiency scores obtained in DEA run 11 are higher under scale

efficiency compared to the corresponding values under pure technical efficiency.

Further, the variation in the scale efficiency scores is lower than that of the pure

10 We also assessed the sensitivity of the DEA runs for possible outliers. Following previous

studies (see, for example, Resti (1997) and Casu and Molyneux (1999)) a reduced sample for each

of the eleven cases was obtained by eliminating the efficient funds when all the 257 funds were

included in the analysis. When the efficient funds are removed the remaining ftinds form a new

frontier. Having solved the DEA model again for each of the reduced samples we computed one-

way correlations between the newly obtained relative efficiency scores of each run and the

corresponding relative efficiency scores obtained in the DEA run when all 257 funds were used.

The correlation between relative efficiency scores obtained in the reduced sample and the relative

efficiencies obtained in the original sample is considered as an indicator of the robustness of the

results. Our results reveal that the DEA output is not sensitive to the presence of outliers. An

alternative method of detecting outliers in frontier models is available in Simar (2001).
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technical efficiency scores as evidenced by the coefficient of variation. The scale

efficiency scores appear to be clustered near the upper levels of the efficiency

measurement scale more densely than the pure technical efficiency scores. These

observations suggest that the major source of overall technical efficiency appears

to be due to scale efficiency as opposed to pure technical efficiency11. Since the

observations were similar across the other ten DEA runs, we have omitted the

discussion. In all eleven DEA runs, the number of inefficient funds under pure

technical efficiency or scale efficiency was less than that under overall technical

efficiency. This may be due to the VRS assumption, which forms a best practice

frontier that is more restrictive than the CRS assumption.

The results of the analysis indicate further that the highest mean overall technical

efficiency of 0.72 is achieved in DEA run 11 that captures long-term performance

characteristics. The mean overall technical efficiency of 0.72 can be interpreted as

follows: based on the sample information, an average fund may become efficient

by reducing its current input levels by a factor of (1-0.72) or 28 per cent.

The DEA efficiency score indicates fund performance in relation to the frontier of

the sample of funds considered in the analysis. Hence the efficiency scores are

relative since the true production frontier is unknown. Therefore, to compare the

1' Similar results were obtained in a study of 233 Australian credit unions; see Worthington

(1999).
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funds' efficiency scores based on the eleven DEA runs, we computed the

Spearman rank correlation coefficient pair wise. The DEA-efficient funds were

ranked on the basis of the number of times each efficient fund appeared in the

peer groups of the inefficient funds12. In all cases, the rank correlation coefficients

are close to 1. The choice between the DEA runs does not seem to make a notable

difference in the fund ranking. That is, the ranking of funds is independent of the

time horizon over which the performances were measured; it may be due to long-

term gross performance measures capturing short-term gross performance

information as well.

4.4.2 The logistic regression results and analysis

Now, we discuss the results of the stage-two analysis, involving logistic

regression, attributing variation in the DEA inefficiency scores to differences in

the mutual funds' environmental variables listed in Table 4.3. The model was

estimated only for DEA runs 2, 10 and 11 under the assumptions of CRS, VRS

and scale efficiencies. The reason for choosing these DEA runs is that run 2 uses

short-term and run 11 uses long-term performance measures. DEA run 10 was

chosen as its input-output variables are similar to those used in a previous study

by McMulIen and Strong (1998). The estimates of the binary logistic regression

12 Andersen and Petersen (1993) proposed an alternative procedure for ranking efficient

production units. The basic idea is to compare the unit under evaluation with a linear combination

of the rest of the units in the sample.



CHAPTER 4. FUND PERFORMANCE APPRAISAL 80

funds' efficiency scores based on the eleven DEA runs, we computed the

Spearman rank correlation coefficient pair wise. The DEA-efficient funds were

ranked on the basis of the number of times each efficient fund appeared in the

peer groups of the inefficient funds12. In all cases, the rank correlation coefficients

are close to 1. The choice between the DEA runs does not seem to make a notable

difference in the fund ranking. That is, the ranking of funds is independent of the

time horizon over which the performances were measured; it may be due to long-

term gross performance measures capturing short-term gross performance

information as well.

4.4.2 The logistic regression results and analysis

Now, we discuss the results of the stage-two analysis, involving logistic

regression, attributing variation in the DEA inefficiency scores to differences in

the mutual funds' environmental variables listed in Table 4.3. The model was

estimated only for DEA runs 2, 10 and 11 under the assumptions of CRS, VRS

and scale efficiencies. The reason for choosing these DEA runs is that run 2 uses

short-term and run 11 uses long-term performance measures. DEA run 10 was

chosen as its input-output variables are similar to those used in a previous study

by McMullen and Strong (1998). The estimates of the binary logistic regression

12 Andersen and Peteisen (1993) proposed an alternative procedure for ranking efficient

production units. The basic idea is to compare the unit under evaluation with a linear combination

of the rest of the units in the sample.
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analysis for explaining the variation in relative inefficiencies under CRS are

presented in Table 4.7.

It is evident that the estimated coefficient of the twelve-month net cash flow

variable is negative and significant in the DEA runs with medium- and long-term

information, indicating that as the net cash flow of a fund increases, the chance of

the fund being inefficient decreases. The effect of the asset allocation score on a

fund's inefficiency is positive and significant only in the DEA runs with the short-

and medium-term information. This indicates that the risk-seeking funds are likely

to increase the chance of them being inefficient in the short- and in the medium-

term. The observation that the effect of the asset allocation score is not significant

in the analysis with long-term performance measures indirectly supports the

argument that a portfolio's overall volatility is time-dependent.

Now, we discuss the effects of the categorical variables, major sector, on the

efficiencies under all three DEA runs. The property sector with a negative

coefficient indicates that, compared to shares, investment in the property sector

increases the fund's efficiency in the short- and long-terms. The logistic

regression analysis of relative efficiencies obtained under the scale efficiency

measure produced similar results, with only a minor difference from those

obtained under CRS. The difference is that the asset allocation score is significant

in DEA run 11 as well, and the age variable is also significant in DEA run 2. The
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logistic regression analysis under VRS produced different results in all three DEA

runs. For example, the age variable and asset allocation score are significant in

DEA run 2 while only the twelve-month flow is significant in DEA run 10. The

three variables, twelve-month flow, major sector and the tax structure are

significant in DEA run 11.

4.4.3 Efficiency frontier

In this section we investigate the funds that lie on the efficiency frontiers

(efficient funds) obtained in DEA runs 2, 10 and 11 under the VRS assumption.

The aim is to provide further insight into the properties of efficient funds (those

with 100 per cent efficiency) in the DEA runs with short- and long-term

performance characteristics. For this we constructed a frequency distribution of

the efficient funds according to the classifications in each secondary analysis

categorical variable. The distributions are given in Table 4.8.

The chi-square test of independence failed to reject the null hypothesis of equality

of frequency distributions in each pair of DEA runs 2, 10 and 11 and for each

categorical variable. Thus, we observe no significant differences in the

distribution of efficient funds according to fund classification, objective, major

sector and tax structure across the three DEA runs 2, 10 and 11. This means that

the distributions of efficient funds in the DEA runs with short- and long-term

performance characteristics are likely to be similar.
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Further, in Section 4.4.1, we observed that an efficient fund in the short-term

analysis is likely to be efficient in the long-term analysis as well. Therefore, the

effect of capturing a longer time-frame appears to be just an increase in the

number of efficient funds and no change in tlieir distribution according to fund

features, namely, classification, objective, major sector and tax structure.

4.4.4 DEA ranking versus ASSIRT rating

The ASSIRT rating of a given managed fund is based on its assessment for quality

of improvement and the likelihood of the fund achieving its investment objectives.

Towards this assessment and subsequent rating, ASSIRT considers management

capability (investment process, research, team and risk management), past

performance (absolute return, risk-adjusted return and risk) and fund issues

(objectives, disclosures, features, risk issues, fee benefits and strategy

information). ASSIRT, like Morningstar, assigns 'stars' to each fund under

review13.

We examined how closely the DEA efficiency score is associated with the

ASSERT 'star' rating. To do this, we produced a two-way table and tested the

association of efficiency score and 'star' rating using a chi-square test of

independence. Table 4.9 provides three two-way tables and the results of the chi-

13 See Table 2.1 in Chapter 2 for the definitions of'star' ratings.
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square test for DEA runs 2, 10 and 11. The test of the null hypothesis of

independence of the two series rejected the null at the 1% significance level in all

three cases. The computed chi-square values with 9 degrees of freedom for DEA

runs 2, 10 and 11 are 37.24, 43.01 and 44.19 respectively. The critical value is

21.67 at the 1% level.

To identify the cells that contribute to the observed sigmficant association of

efficiency score and 'star' rating we tested the standardised residuals of each cell.

The standardised residual (SR) for a cell is defined as:

(4-4.1)

SR is normally distributed with mean zero and standard deviation given by

- row sum I overall sumftl - column sum I overall sum)) (4.4.2)

provided the expected frequency of the cell is large enough. The cells that

contribute to the observed significance at the 5% level based on the test of

standardised residuals are shaded in Table 4.9. It appeals that funds with DEA

relative efficiency scores of less than 0.6 are most likely to be classified as either

one-star or two-star while funds with DEA relative efficiency scores greater than

0.8 are more likely to be classified as five-star in the ASSIRT rating. These results

suggest that the DEA efficiency scores and the ASSIRT ratings are highly

correlated.
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Previous empirical studies have found very high correlations between

performance measures such as the Sharpe ratio and Morningstar rating (Simons,

1998; Sharpe, 1998). The reason for this is not surprising because both of them

fall under the category of risk-adjusted performance measures. Clearly, the results

in Table 4.9 suggest that, when DEA captures information over the long time

horizon (DEA run 11), the association between the DEA relative efficiency score

and the ASSIRT 'star' rating is likely to be stronger compared to DEA run 2

where the information captured is over the short-term.

4.5 Conclusions

In this chapter, we estimated the relative DEA efficiencies of 257 Australian

mutual funds, and assessed the sensitivity of the results to various combinations of

input-output variables defined using short-, medium- and long-term information.

The main findings are the following: (i) fund ranking based on the DEA relative

efficiency scores is robust to the time horizon over which the input-output

variables were measured, (ii) an efficient fund in the DEA runs with short-term

performance characteristics is likely to be efficient in the DEA runs with long-

term performance characteristics as well, and (iii) the DEA runs that capture long-

term fund performance seem to reveal more funds being efficient. These

observations provide guidance to analysts in selecting the appropriate input and

output variables when using DEA in mutual fund appraisal. The overall technical
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efficiency of mutual funds appears to be dominated by the effects of scale

efficiency compared to pure technical efficiency.

Further, using the logistic regression model, we find that the higher the investment

in the property sector or the lower the investment in diverse assets, compared to

investment in shares, the higher the overall technical and scale efficiencies. In

general, the overall technical efficiency and the scale efficiency are higher for

risk-aversive mutual funds with high positive net cash flow. The structure,

classification, size and the age of the fund do not appear to have a strong influence

on the level of relative efficiency in general. A variable representing management

strategy was constructed in this chapter. An encouraging finding is that this

variable turned out to be very important in explaining fund inefficiency. We

believe that the findings are useful to investors in selecting mutual funds, and to

managers in identifying the source of inefficiencies. Moreover, the DEA results

will be useful as a short-term trading signal since DEA is able to simultaneously

incorporate several factors that might affect performance. Portfolio managers can

use the source of a fund's inefficiency revealed by DEA to identify which funds

they could emulate in order to achieve efficiency in the future.
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Table 4.1 Rotation component matrix of principal component analysis

Variable

3-yr standard deviation
1-yr standard deviation
2-yr standard deviation
5-yr standard deviation
1-yr gross performance
2-yr gross performance

9-month net cash flow
6-month net cash flow
3-month net cash flow
12-month net cash flow

Entry fee
Initial commission
Management expense ratio
Minimum initial investment
Ongoing fees

3-yr gross performance
5-yr gross performance

Age
Fund size
Market share

Exit fee
Minimum additional

investment

1
0.972
0.970
0.969
0.968
0.764
0.700

Per cent of total variation explained = 79

2

0.979
0.970
0.947
0.945

0.529

Factor
3 4 5 6

0.904
0.904
0.867

-0.648
0.626

0.895
0.848

0.752
0.592
0.533

-0.771

0.514

Notes:
1. No loadings less than 0.5 in absolute value are displayed.
2. The variables with high loadings on the same factor appear together.
3. To enhance the interpretability of the factors the varimax method of rotation has been

used.
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Table 4.2 Input and output variables for DEA runs

Variable

Output measures for DEA runs:

1-yr gross performance (1GP)
2-yr gross performance (2GP)
3-yr gross performance (3GP)
5-yr gross performance (5GP)

Input measures for DEA runs:

Entry fee
Management expense ratio (MER)
Minimum initial investment* (Ini Inv)
1-yr standard deviation (1SD)
2-yr standard deviation (2SD)
3-yr standard deviation (3SD)
5-yr standard deviation (5SD)

Unit Mean

% 7.41
% 9.34
% 9.98
% 11.74

% 2.21
% 1.49

AUD 64.25
% 2.28
% 2.51
% 2.70
% 2.40

SD

16.46
8.62
6.69
5.45

1.86
0.57

147.24
1.74
1.81
1.85
1.54

Min

-11.8
-3.0

-18.2
-5

0
0.3

0
0.01
0.01
0.03
0.07

Max

111.9
50.4
37.7
28.9

6.00
3.07

500.00
8.78
8.77
9.50
8.00

Notes:
1. Sample size is 257.
2. "The minimum initial investment is in iOOOs.

l i
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Table 4.3 Environmental variables for the logistic regression model

Variable

Age
Fund size
12-month net cash flow
Asset allocation score

Fund classification:
Retail
Wholesale

Fund objective:
Capital preservation
Capital growth (G)
Income (I)
Balance of I & G
Tax effective

Fund major sector:
Diverse assets
Fixed interest
Property
Shares

Fund tax structure:
Allocated pension
Friendly society bond
Insurance bond
Investment trust
Master fund
Rollover differed

annuity
Superannuation

Unit

Months
AUDm
AUDm

Mean

109.68
264.75

37.78
45.94

SD Min

49.11 60
584.55 0.42
145.90 -407.6
11.31 14.29

Max

399
6272
1275

85.71

No of
funds

257
257
257
257

188
69

38
135
38
39

7

65
80
8

104

27
6
5

135
5

7
72

Notes:
1. Fund classification, fund objective, fund major sector and fund tax structure are

categorical variables.
2. The minimum and maximum possible asset allocation scores are 0 and 100

respectively.
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Table 4.4 Variables considered in different DEA runs

DEA
run

1
2
3
4
5
6
7
8
9
10
11

1GP 2GP 3GP 5GP

S S V
•/ S •/

S S S

S S S •/

Entry
Fee
•

•

, ,_„ IniMER TInv

y v
s y

•/ s

1SD 2SD 3SD 5SD

V

•
• •

• • •
•

• • • •

Notes:
1. See Table 4.2 for description of abbreviated variables.
2. Output variables are given in columns 2-5 and input variables are in columns 6-12.
3. Input-output variables included in the DEA run is indicated with ' v" in the relevant

row.
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Table 4.5 Summary statistics of DEA efficiencies under VRS

DEA run

1
2
3
4
5
6
7
8
9
10
11

Number efficient

17(5)
19(5)
20(5)
21(7)
22(7)
24(7)
26(9)
29(5)
37(7)
38(7)
44(11)

Mean efficiency

0.547
0.450
0.518
0.537
0.570
0.588
0.608
0.635
0.663
0.667
0.720

SD of efficiency

0.240
0.239
0.243
0.241
0.244
0.244
0.242
0.225
0.226
0.223
0.212

Median
efficiency

0.528
0.405
0.484
0.500
0.543
0.574
0.602
0.604
0.637
0.646
0.715

Notes:
1. The figures in parentheses indicate the total number of variables used in the DEA

run.
2. Summary statistics are based on 257 observations.
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Table 4.6 Summary statistics of efficiency scores in the DEA run 11

Number
Mean
SD
1st Quartile
2nd Quartile
3rd Quartile
CV

Overall technical
efficiency

All Inefficient
funds funds

257
0.582
0.255
0.348
0.571
0.790
0.438

234
0.541
0.230
0.321
0.535
0.722
0.425

Pure technical
efficiency

All
funds

257
0.720
0.212
0.574
0.715
0.916
0.294

Inefficient
funds

213
0.662
0.186
0.552
0.673
0.795
0.281

Scale
efficiency

All Inefficient
funds funds

257
0.794
0.206
0.661
0.865
0.967
0.259

229
0.770
0.204
0.624
0.845
0.945
0.265

Notes:
1. CV = coefficient of variation, defined as the ratio of standard deviation and mean and

is sometimes reported as a percentage. CV allows comparison of the relative variability
of several data sets.

2. A measure of scale efficfency of a DMU is the ratio of overall and pure technical
efficiencies.

i
t y.
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Table 4.7 Estimates of logistic regression parameters of determinants of relative
inefficiency under CRS

Variable Coefficient (B)
DBA run 2 (% correct = 94.551
Major sector

Diverse assets
Fixed interest
Property
Shares*

Asset allocation score
Constant
DEA run 10 (% correct =
12-Month flow
Major sector

Diverse assets
Fixed interest
Property
Shares*

Asset allocation score
Constant
DEA run 11 (% correct =

12-Month flow
Major sector

Diverse assets
Fixed interest
Property
Shares*

Constant

8.6662
2.5559
-0.3801

0.0683
-1.3060

93.39)

-0.0037

9.0726
1.9501
-0.4747

0.0544
-0.4682

90.66)
-0.0041

2.4465
-0.7268
-0.7079

2.6588

Std Error

19.640
1.6243
1.2319

0.0282
1.8339

0.0014

18.804
1.5770
1.2305

0.0270
1.7989

0.0011

1.3005
0.4972
1.1373

0.3864

^-statistic

0.0000
0.0662
0.0000
0.0000
0.1885

-0.1952

0.0000
0.0000
0.0000
0.0000
0.1311

-0.2683

0.0997
-0.0297
0.0000
0.0587

Exponent(B)

5803.3
12.883
0.6838

1.0707

0.9963

8712.9
7.0291
0.6221

1.0559

0,9959

11.548
0.4835
0.4927

Notes:
1. Exponent(B) = e (Coefficient(B» and is defined as the change in odds with a unit

increase in the explanatory variable with others being fixed.
2. ̂ -statistic measures the partial correlation between the dependent variable and the

independent variable. R can range from -1 to +1. A small R value indicates that
the independent variable has a small partial contribution to the model. A positive
R value indicates that, as the variable increases in value, so does the likelihood of
the event, which is fund inefficiency, occurring.

3. Results are based on forward stepwise variable selection with the likelihood ratio
criterion where a - 0.05.

4. * Indicates reference category. The explanatory variable, major sector, is a categorical
variable. With a categorical variable, a statement about the effect of a particular category
is made only in comparison to some other category. We treat shares as the reference
category.
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Table 4.8 Composition of efficient frontier under VRS

Category

Fund classification
Retail
Wholesale

Fund objective
Tax effective
Capital preservation
Capital growth (G)
Income (I)
Balance of I and G

Fund major sector
Diverse assets
Fixed interest
Shares
Property

Fund tax structure
Allocated pension
Friendly society bond
Insurance bond
Investment trust
Master fund
Rollover DA
Superannuation

Run 11
No rfficient (%)

30 (68.18)
14 (31.82)

1 (02.27)
6 (13.64)

25 (56.82)
4 (09.09)
8 (18.18)

4 (09.09)
13 (29.55)
26 (59.09)

1 (02.27)

0 (00.00)
0 (00.00)
1 (02.27)

29 (65.91)
0 (00.00)
4 (09.09)

10 (22.73)

Run 10
No efficient (%)

24 (63.16)
14 (36.84)

1 (02.63)
6 (15.79)

20 (52.63)
4 (10.53)
7 (18.42)

4 (10.53)
12 (31.58)
21 (55.26)

1 (02.63)

0 (00.00)
0 (00.00)
1 (02.63)

27 (7L0J)
0 (00.00
2 (05.26)
8 (21.05)

Run 2
No efficient (%)

14 (73.68)
5 (26.32)

0 (00.00)
4 (21.05)
8 (42.11)
2 (10.53)
5 (26.32)

2 (10.53)
10 (52.63)
6 (31.58)
1 (05.27)

0 (00.00)
0 (00.00)
1 (05.26)

11 (57.89)
0 (00.00)
2 (10.53)
5 (26.32)

Notes:
1. Percentages in some instances do not add up to 100 due to rounding.

>'••?!
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Table 4.9 Contingency table of DEA efficiency score and ASSIRT 'star' rating

DEA run 2

5
Stars 4

3
I o r 2

0 - less 0.4

25
55

:
• * • • - ; . • ; • • • • . • - 3 5

DEA relative efficiency score
0.4-less 0.6 0.6-less 0.8

13 13
15 8
33 11
13 y//yZwyJyyy/M

Total 124 74 32

*Chi-square test statistic = 37.24 v/ith degrees of freedom = 9

DEA run 10

5
Stars 4

3
lor 2

0-less 0.4
3
6

10

Total 30

*Chi-square test statistic = 43.01

DEA run 11

5
Stars 4

3
I o r 2
Total

*Chi-square test

0- less 0.4
2
3
6

*iiv;-$?•••• 10
21

statistic = 44.19

D5A relative efficiency score
0.4 - less 0.6 0.6 - less 0.8

'tfZjffllffiffify 14
17 14
38 33

• 22 11
77 72

with degrees of freedom = 9

DEA relative efficiency score
0.4 - less 0.6 0.6 - less 0.8

11 19
28 40

• • - 1 6 1 6

56 84

with degrees of freedom = 9

0.8-1.0
7

10
9

27

0.8-1.0
-•"--•"'425-

2r!
27

78

0.8-1.0
-, •• • • ' . . j i 3 0 -

25
34

96

Total
42
58

108
49

257

Total
42
58

108
49

257

Total
42
58

108
49

257

Notes:
1. 7 Indicates normalised residual of the cell is significant at the 5% level and >0.
2. %^ Indicates normalised residual of the cell is significant at the 5% level and <0.
3. Row labels in the contingency table indicate the ASSIRT 'star' rating.

1- star: poor quality fund and 5- stars: excellent fund with very strong management.
4. 'indicates significant at the 1% level.
5- Critical value: #oO, 9 =21.67



CHAPTER 4. FUND PERFORMANCE APPRAISAL 96

Figure 4.1 Relative efficient funds across all DEA runs under VRS

Run 4
Run
Run
Run
Run
Run
Run
Run

10 15 20 25

Efficient fund number

30 35 40 44

Notes:
1. The 44 efficient funds in Run 11 are numbered from 1 to 44. Funds observed efficient in

Runs 1-10 are subsets of tks 44 funds observed efficient in Run 11.
2. The shaded cells across each run indicate the efficient funds common with Run 11.
3. The blank cells within the shaded region indicates that the corresponding efficient

fund in Run 11 is not observed efficient in the corresponding DEA run.



Chapter 5

Experimental Evidence on the Robustness
of Data Envelopment Analysis*

5.1 Introduction

Since the seminal paper by Charnes, Cooper and Rhodes (1978), DEA

methodology - a nonparametric mathematical programming technique for

efficiency evaluation - received considerable attention in the literature. See

Chapter 2 for discussion. Being a non-parametric technique, DEA does not

require a structural form for the production frontier and can handle multiple

outputs quite easily. These attractive properties of the DEA approach enabled its

widespread use across many disciplines and the rapid growth of the methodology

itself: see the survey article by Seiford (1996). Input-output variable selection in

DEA is usually guided by expert opinion, past experience, economic theory, and

the like. Many empirical studies, indeed, have relied on these factors for variable

selection. However, when assessing mutual fund performance using DEA in

* A paper based on the material in this chapter was presented at the Econometric Society

Australasian Meeting, July 6-8, 2001, Auckland, New Zealand (Galagedera and Silvapulle, 2001)

and is published in the Journal of the Operational Research Society (Galagedera and Silvapulle,

2003).
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Chapter 4, we selected input-output variables through principal component

analysis and did not rely solely on the guidance provided by previous studies.

Unfortunately, there are no diagnostic checks for model misspecification in DEA

that could result due to choosing wrong variables unwittingly. The potential for

model misspecification in DEA therefore can be very high. Traditionally, model

misspecification is of great concern to the practitioner for reasons such as that

DEA efficiency estimates can be sensitive to the model used and variables

selected.

The primary objective of this chapter is to investigate the effects of omitting

multiple relevant variables from, or including multiple irrelevant variables in,

DEA models on production unit efficiency. In order to achieve this objective, a

simulated data set from a simple production process with three different returns-

to-scale (RS) specifications - IRS, DRS and CRS - are generated and examined.

Our conclusion is based on a comparison of the true overall mean efficiency with

DEA estimates, and likewise on a comparison of true individual production unit

efficiency with DEA estimates.

The principal causes of model misspecification in DEA are the omission of

relevant variables, the inclusion of irrelevant variables and incorrect assumption

on RS. Surprisingly, only a few studies have investigated the effects of model

misspecification on DEA results. All of them investigated a variety of model

v
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misspecifications under different production processes using simulation studies.

The studies that have already investigated DEA model misspecification based on

simulation experiments add pedagogical value and provide useful insights. For

example, Smith (1997) examined the implication of model misspecification in a

single-output multi-input CRS DEA model. In particular, Smith's study

investigated the robustness of DEA results to omission of a single relevant and

inclusion of a single irrelevant input variable, and concluded that the danger of

misspecification is very serious when a relevant variable is omitted from the DEA

model. Smith (1997) further investigated the effect of imposing VRS assumption

on the CRS frontier and found evidence of adverse effect on efficiency estimates

when the sample size is small. The above study did not investigate the effects of

imposing VRS and CRS assumptions on the IRS and DRS frontier models and

that of multiple input variable omission or inclusion. Ruggiero (1998a), on the

other hand, investigated the impact of inappropriate variables on DEA efficiency

estimates of a two-output, three-input CRS frontier model. Using a large sample,

Ruggiero (1998a) observed that DEA performs well in the presence of additional

inputs even though they are production-irrelevant1.

DEA performance can also be sensitive to the choice of the sample size, and the

number of, and the association among, the variables used in the model. Pedraja-

1 After adding production-irrelevant variables into the CRS frontier model, Ruggiero (1998a)

measured DEA efficiency imposing the VRS assumption.
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Chaparro, Salinas-Jimenez and Smith (1999) compared the true efficiency,

simulated from a CRS production process, with estimated DEA efficiency and

reported that DEA models with a small number of input variables perform well in

large samples. Further, they observed the same result when the input variables are

either highly correlated or uncorrelated. When the input variables are uncorrelated

a dramatic reduction in DEA performance is reported as the number of input

variables increases. However, the effect of model misspecification on efficiency

estimates was not investigated in their study. The results of a simulation study

investigating the effect of excluding relevant inputs on DEA efficiency suggest

that variables that are moderately correlated with each other can be omitted

without serious measurement distortion (Ruggiero, 2002).

An alternative perspective to investigating into model misspecification in DEA is

statistical assessment of the reliability of relative efficiency measures. See Banker

(1993 and 1996) and the survey article by Simar and Wilson (1999) for some

developments of statistical inference on DEA efficiency estimates. We do not

pursue this issue in this thesis.

We find that the omission of relevant variables adversely affects DEA

performance. When relevant variables are omitted in DEA analysis, VRS

assumption appears to be a safer option. This result is unaltered even when the

underlying specification is CRS. Inclusion of irrelevant variables in the analysis
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also affects DEA performance, but to a lesser extent. The correct RS assumption

appears to be very crucial in this case.

This chapter is organised as follows: The design of the experiment and the data

generation process are discussed in Section 5.2. The DEA performance results are

analysed in Section 5.3. An empirical example is given in Section 5.4. Section 5.5

summarises the findings and gives some directions for future work.

5.2 Experimental design and the data generation process

The production process that we consider is described in this section. A variety of

misspecifications on the true model are also specified. Section 5.2.2 outlines the

data generation process.

5.2.1 Experimental design

The production process we consider is the linearly homogeneous Cobb-Douglas

function, given by

'•• j = l,2,.,n (5.2.1)

where at and /? are assumed to be known parameters. The variables _y,y and xiS

are defined in Section 2.4.1. The assumption of the Cobb-Douglas form for the

production function appears to be very common. See, for example, Smith (1997)



CHAPTER 5. DEA ROBUSTNESS 102

and Ruggiero (2002). With an efficiency term denoted by y} e[0,l], which is the

technical efficiency of they th production unit, (5.2.1) becomes

///y y-1,2,...,«. (5.2.2)

Taking log of (5.2.2), an additive representation is given as

M

Inyu = In /3 + £ a , InxtJ - u} j = 1,2,..., n (5.2.3)
/=i

where Uj = - l n /
v

/ . The variable Uj >0 denotes the efficiency component. The

efficiency component is expected to represent the shortfall of output from the

production frontier. Researchers have assumed several distributions for u, these

being exponential, half-normal, Gamma and truncated normal. In empirical

applications, researchers do not generally have a priori knowledge to justify the

shape of the one-sided distribution.

In this study, we set /?=1 and assume that the true production process is

explained by three inputs only. Our choice of three inputs is to circumvent the

difficulties encountered by Smith (1997). A simulation study involving a Cobb-

Douglas production function showed that DEA performance diminishes with an

increasing number of inputs in the production process. We consider three sets of

parameter values in the Cobb-Douglas production process, obtaining the

following production functions, representing three different RS specifications.

IRS Model: y}j = xxjx\]xx£ (5,2.4)
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DRS Model: yXJ =

103

(5.2.5)

CRS Model: yx] = xl'/xfix?? (5.2.6)

Due to the characteristics of the production functions assumed in (5.2.4) and

(5.2.6), a well-defined DEA model does not overestimate inefficiency, because

DEA implicitly assumes that the production frontier is concave (Banker, Charnes

and Cooper, 1984). The extent of the overestimation of efficiency, however,

appears to be largely dependent on the sample size, with large samples being

preferred (Pedraja-Chaparro, Salinas-Jimenez and Smith, 1999).

We investigate the effect of omission of relevant inputs on DEA efficiency

estimates by comparing the true efficiency with those estimated by DEA models

with at least one relevant input missing. This set up leads to the development of

six different DEA models. For comparison of the effects of irrelevant variables,

the following DEA models are considered: two models with a single irrelevant

input, one model with two irrelevant inputs, and anotlier one with three irrelevant

inputs; see Table 5.1 for details. Model 7 shown in the shaded row in Table 5.1

only includes the true set of input variables.
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Table 5.1 Input variables considered in DEA models
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Model

1
2
3
4
5
6

8
9
10
11

Input variables

Xl

x2
x3
Xi,X2

Xl,X3

X2,X3
Xi,X2,X3 .,
Xi,X2,X3,X4
Xi,X2,X3,X5

Xi,X2,X3,X4,X5

Xi,X2,X3,X4,X5,X6

No of omitted
variables

2
2
2
1
1
1
0 ; v
0
0
0
0

No of irrelevant
variables

0
0
0
0
0
0

[•/,.,. ; .;.;-. . •;' 0 .'-V,"."•;.,

1
1
2
3

5.2.2 Data generation process

The input variables xi, X2 and X3 and the corresponding output variable are

generated randomly for a sample of 200 DMUs, according to the distributions

specified in Table 5.2. To date, DEA studies simulated input-output variables

from normal and/or uniform distributions only. We opt for the uniform

distribution. In order to generate efficiency u, the half-normal distribution with

mean zero and standard deviation 0.3 is used.
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Table 5.2 Distributions of generated input variables
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Variable

Xl

x2

X3

x4

X5

X6

Production relevance

Relevant

Relevant
Relevant

Irrelevant
Irrelevant

Irrelevant

Distribution

Uniform [1,2]
Uniform [30,50]

Uniform [30,50]
Uniform [1,2]

Uniform [1,2]
Uniform [40,60]

Having generated the efficiency component u, the true efficiency y is computed

as the exponent of the negative of the absolute value of u. We set the efficiency of

the first twenty-five DMUs equal to one. Thus, twenty-nine of the 200 DMUs

(14.5 per cent) have an efficiency of at least 0.99. The mean and standard

deviation of the generated true efficiency distribution are 0.829 and 0.142

respectively. The true mean efficiency was found to be consistent with the

empirical estimates of this parameter reported in several previous studies (Banker,

Gadh and Gorr, 1993). In addition to the three production relevant input variables,

three other production irrelevant input variables X4, X5 and X6 are also generated

using the distributions specified in Table 5.2.

When we assessed Australian mutual fund performance in the previous chapter,

we chose the input-output variables for the DEA model using principal

component analysis, past experience and subjective judgement. Those variables

were then used in an input orientation version of the BCC model outlined in
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i
j

i
i Section 2.4. This chapter, however, investigates the effects of using inappropriate
i

j variable sets on relative efficiency estimates in DEA. The DEA model considered

in this chapter is also the input orientation version of the BCC model.

Consequently, in our experimental design we induce inefficiency on the input

variables.

In order to increase the inputs by the same proportion, we divide the randomly-

generated inputs (efficient inputs) by the true efficiency. The observed output, yx,

for each of the IRS, DRS and CRS models, is obtained by substituting the

efficient inputs in equations (5.2.4-5.2.6) with the relevant set of parameters.

Farrell (1957) developed indices of technical efficiency, measured as the

maximum equiproportional reduction in all inputs consistent with the equivalent

production of observed output. Therefore, by considering the increased inputs

(Xj/y:i = 1,2,3) as observed ones, and the computed yx as the observed output in

the BCC model, we obtain the estimates of y, the true (Farrell) efficiency.

The Pearson correlation coefficients between the input variables are given in

Table 5.3. The results reported in Table 5.3 reveal that (i) none of the generated

input variables are correlated with the generated true efficiency variable y, (ii)

the correlation of the input variables are found to be within the range -0.133 and

0.168, (iii) the correlations of the relevant input variables and the irrelevant
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variables lie within -0.084 and 0.168, and (iv) of all fifteen pairs of input

variables, five are negatively correlated. Consequently, the situation we consider

in this chapter is more realistic in terms of the characteristics of input variables,

some of which are positively or negatively correlated while others are

uncorrelated.

•

5.3 Results and discussion

In this section we report the results and assess the DEA performance. The

assessment is based on two criteria: (i) overall performance and (ii) performance

at the individual production unit level. In Section 5.3.1, the true overall mean

efficiency is compared with the DEA-estimated ones. The true individual

production unit efficiency is compared with the DEA-estimated ones in Section

5.3.2.

5.3.1 Comparison of the true and DEA efficiencies

First, we examine the mean and the standard deviation (SD) of the relative

efficiencies of the eleven DEA models. As expected, the best DEA result (the

least absolute difference between the mean DEA efficiency and the true mean

efficiency) is obtained when the DEA model uses the true set of variables together

with the correct RS specification; see Table 5.4. The omission of relevant

variables leads to underestimation of the mean efficiency, while the inclusion of
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irrelevant variables leads to overestimation. In both cases, however, the mean

efficiency worsens as the number of variables omitted or included in the model

increases, with the effect of variable omission being more severe on the mean

efficiency than that of inclusion of irrelevant variables.

5.3.2 Comparison of the true and DEA efficiencies at the

DMU level

Second, we assess the mismatch between the true efficiency and the DEA

efficiency of individual DMUs by adopting four performance measures: (i) mean

absolute deviation, (ii) percentage of all DMUs correctly identified as efficient,

(iii) rank correlation between the true and DEA efficiency and (iv) percentage of

DMUs for which the DEA efficiency is within a margin of 10 percent of the true

efficiency that have been used in previous studies (Pedraja-Chaparro, Salinas-

Jimenez and Smith, 1999; Ruggiero, 1998b). As said before, our interest is in the

effect of omission of variables, inclusion of irrelevant variables and incorrect RS

specification on DEA relative efficiency. In what follows, we examine these

effects based on the four performance measurement criteria described below. Note

that our emphasis is not on the absolute values presented in the tables, because, to

some extent, they are dependent on the assumed values of the parameters of the

underlying production process. Rather, we seek patterns that might emerge from

them.
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5.3.2.1 Average deviations from the true efficiencies

The first set of performance measurement criteria we use is mean absolute

deviation (MAD) and mean deviation (MD) between the true and DEA efficiency;

these results are reported in Table 5.5. Based on the MAD criterion, the best DEA

result (the least MAD) is obtained for Model 7 with the correct RS specification.

In the IRS and DRS production processes, the presence of irrelevant variables

tends to progressively increase (decrease) MAD under the correct (incorrect) RS

assumption as the number of input variables included in the DEA model

increases. In the CRS production process, however, irrelevant variables lead to

high MAD, with MAD increasing as the number of irrelevant variables increases.

This happens whether or not the correct RS assumption is made. Moreover, when

irrelevant variables are present, the MAD between the true and DEA efficiency is

lower in all three production processes under the correct RS assumption compared

with those under the incorrect RS assumption. The MDs in Table 5.5, when

compared with the corresponding MADs, suggest that when irrelevant variables

are present, DEA might overestimate the efficiency in, if not all, then a very large

number of DM Us for the DRS and the CRS processes; this result was shown to be

strong through a detailed inspection of the results.

The variation in MAD and MD under variable omission is similar in all three

processes. As the number of omitted variables increases, both measures tend to

increase, whether or not the correct RS specification is used. An exception is that,
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when relevant variables are omitted, the VRS specification appears to be a better

option in DEA even when the true process is CRS.

5.3.2.2 Ability to identify efficient DMUs

The results of the two measures - the percentage of all DMUs correctly identified

as efficient or inefficient, and the percentage of efficient DMUs correctly

identified as efficient - are presented in Table 5.6. When variables are omitted,

DEA models under the VRS specification seem to outperform those under the

CRS assumption with respect to both performance measures considered here. As

expected, this disparity appears to be profound when identifying the efficient

DMUs. Thus, for the three production processes, VRS specification appears to be

a safer option when classifying DMUs either as efficient or inefficient in the DEA

models with omitted variables. In the DEA models with irrelevant variables

included, the same observation is made, but for the IRS and DRS processes only.

When classifying DMUs of the CRS production process either as efficient or

inefficient, the correct RS assumption in DEA appears to yield superior results

when irrelevant variables are present.
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5.3.2.3 Association between the true and estimated efficiencies

The rank correlation2 between the true and DEA efficiencies, reported in Table

5.7, reveal that when the DEA model includes irrelevant variables, the Spearman

rank correlation is always higher under the correct RS specification. However, the

rank correlation tends to decrease as the number of irrelevant variables included in

the DEA model increases. This is noted under both the VRS and CRS

specifications.

The DEA models with omitted variables in the IRS and CRS processes result in

higher rank correlations under the correct RS assumption. No clear pattern

emerges in the results for the production process with DRS specification.

Nevertheless, as the number of omitted variables in the DEA model increases, a

reduction in rank correlation is observed.

5.3.2.4 Accuracy of efficiency estimates

We compute the percentage of DMUs for which the DEA efficiency is within a

margin of 10 per cent of the true efficiency as an indication of the extent to which

the efficiency is either over-estimated or under-estimated by DEA. As seen from

the Table 5.8 entries, with relevant variables missing, this measure appears to be

2 DEA efficiency is a relative measure. Hence the knowledge of efficiency in itself is rarely the

purpose of the analysis (Pedraja-Chaparro, Salinas-Jimenez and Smith, 1999). A useful method of

assessing DEA performance is to compare DEA ranking of the sampled DMUs with that of the

ranking with the true efficiency.
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higher in the DEA models under the VRS specification. This provides further

support to the earlier observation that when relevant variables are absent, it is

safer to use the VRS specification in DEA. In the case where irrelevant variables

are present, DEA models for the CRS and IRS processes appear to perform better

in terms of this measure under the correct RS specification.

5.4 Mutual fund performance appraisal: re-visited

The aim here is to investigate the extent to which adding extra input variables,

that are not considered as typical inputs in previous mutual fund appraisal studies,

and omitting input variables that are deemed typical, affect DEA relative

efficiency estimates. We make it clear at the outset that this is merely a practical

demonstration of the sensitivity of DEA efficiency estimates to model

misspecification. In the previous chapter, we analysed the performance of 257

Australian mutual funds using DEA with gross performance as the output variable

and entry fee, expense ratio, standard deviation of gross performance and

minimum initial investment as the input variables. These are the variables

commonly used in previous studies of mutual fund appraisal. Now, we extend the

variable set by adding three more variables - age, size and twelve-month net cash

flow, but assuming them to be irrelevant input variables3.

3 Independence of input-output variables is not a requirement in DEA.
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See Table 5.9 for the Pearson correlation coefficients of the variables used. Note

that the correlation between the relevant and the irrelevant input variables lies

between -C.201 and 0.265, a mix of positive and negative relationships, as was

the case in the simulation study. See the results in Table 5.3.

Results and discussion

By choice, the number of input variables used in the DEA runs ranges from 1 to 7.

The results of the nineteen DEA runs, each with a different set of input variables

(given in Table 5.10) under the VRS and DRS specifications, are given in Table

5.11. DEA Model 7 consists of all the relevant input variables. Its results are

presented in the shaded rows in Tables 5.10 and 5.11. It is evident from the results

in Table 5.11 that the number of funds showing up as DEA-efficient varies

considerably across the DEA runs. As expected, the higher the number of input

variables used in the DEA model, the more the funds appear to be efficient. In line

with the patterns that emerged in the simulation study results, the mean efficiency

increases as the number of input variables used in the DEA model increases.

When the variables that were assumed to be relevant are omitted from the DEA

analysis, the mean fund efficiency tends to decrease as the number of omitted

variables increases, a pattern we also observed in the simulation study.
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It is interesting to note, however, that the mean efficiencies of certain pairs of

DEA runs (1 and 3, 5 and 8, 6 and 9, 10 and 12) are almost identical. Further,

DEA runs 1 and 3, 5 and 8, 6 and 9,10 and 12 showed up the same set of efficient

funds. This is true in both the CRS and VRS specifications. A notable difference

between the variables included in any pair of these DEA runs is that in one DEA

run, the variable entry fee is included as an input, and in the other it is not.

Further, in the DEA runs 1, 3, 5, 6, 8, 9, 10 and 12, the variable MER is included

as an input. If two inputs are positively correlated, then other things being equal,

they contribute less information to the DEA analysis than if they are uncorrelated

(Pedraja-Chaparro, Salinas-Jimenez and Smith, 1999). Thus, a plausible

explanation for our observation might be the high correlation (0.752) between

MER and entry fee, which may not be unique to our study4.

When the irrelevant variables are included in the DEA analysis, there is a sharp

increase in the number of efficient funds and the mean efficiency in both RS

specifications. Our observation here is somewhat different from what was noted in

the simulation study. In the simulation study, we observed that inclusion of

4 As a side issue we wish to point out that the presence of entry fee in a DEA model together with

MER as an input variable might not have a significant impact on DEA efficiency estimates of

mutual funds in empirical studies, and therefore it may not be necessary to include entry fee as an

input factor.
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irrelevant variables makes little difference5, with only a slight increase in the

mean efficiency; see Table 5.4.

5.5 Conclusions

In this chapter, using a simulation study, we investigated the effects of omission

of production-relevant input variables and inclusion of production-irrelevant input

variables (in an input orientation DEA model) on technical efficiency estimates of

individual production units.

A simulation experiment was conducted assuming the Cobb-Douglas form for the

production frontier. The results, based on a large sample, reveal that:

(i) when estimating the DEA efficiency of individual DMUs, the VRS

specification is a safer option if the DEA model does not include all the variables

deemed to be relevant in the analysis,

5 Different reasons can be advanced for this inconsistency: (i) one or more of the variables that

were thought to be irrelevant may in fact be relevant in mutual fund appraisal, (ii) Even if there is

a valid argument for inclusion of an irrelevant variable in the DEA model, some might argue that

such a variable should be treated as exogenously fixed or uncontrollable. Treating an input

variable as uncontrollable restricts efficiency estimates and therefore is likely to reduce the sharp

increase in mean efficiency, (iii) the simulated experiment results are based on a specified

production frontier, and the mutual fund features might not be conforming to it, and (iv) the

differences in the characteristics of the variables labelled as relevant and irrelevant in the DEA

analysis, a feature that is difficult to incorporate in a simulated experiment.
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(ii) when the DEA model includes more variables than necessary, the true RS

specification appears to be crucial and DEA has the tendency to overestimate the

efficiency in almost all DMUs for the CRS and DRS processes, and

(iii) clearly, the adverse impact of misspecification in DEA on individual DMU

efficiency is worse when the relevant variables are unwittingly omitted from the

DEA model, compared to the inclusion of irrelevant ones.

We also demonstrated via an empirical investigation, the effect of different input

variable choices on DEA relative efficiency estimates. For this, the efficiencies of

257 Australian mutual funds were estimated using DEA. Prompted by previous

studies that used the same set of four input variables, namely, standard deviation

of funds returns, management expense ratio, minimum initial investment and

entry fee in the DEA analysis to evaluate mutual fund efficiencies, we considered

these four input variables as the relevant ones for mutual fund appraisal, and

another three input variables, namely, age, size and twelve-month net cash flow,

as irrelevant input variables. The results are not consistent with those observed in

the simulated experiment when the irrelevant input variables are included in the

DEA analysis. A sharp increase in the mean fund efficiency is observed in this

case. This is noticeable when the retums-to-scale specification is either variable or

constant. However, when the relevant variables are omitted, a high variation in

mean DEA efficiency, as in the simulation study, is observed. Therefore, DEA's

performance in the absence of relevant variables is evidently unacceptable.
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We believe that the points we highlighted through the results of the simulation

study conducted in this chapter would be useful to DEA model builders when

choosing the input variables. Effects of model misspecification on DEA efficiency

estimates in a production process other than Cobb-Douglas merit further

investigation. Much more could be learned about the sensitivity of the DEA

model by expanding the simulation study to incorporate multiple outputs as well.

The issue of whether certain types of decision-making units are especially

disadvantaged by model misspecification is not addressed in this chapter and is a

topic for future research.
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Table 5.3 Pearson correlation coefficient between the input variables and between
the input variables and true efficiency

Input
variable

Xi

x2

x3

X4

x5

x«

x.

1
0.119**
-0.078
-0.083
0.111

0.051

x2

1
-0.006

0.120**
0.036

-0.050

x3

1
0.167*
0.109
0.089

X4 X5

1
0.077 1
0.001 -0.132"

xe True
efficiency

0.011
-C.043
0.070

-0.053
0.093

1 -0.081

Notes:
1. * Indicates significant at the 1% level and ** significant at the 5% level.

2. Pearson correlation coefficient between variables x and y is computed as:

where Sx and Sy are the standard deviation of x and y respectively, and

cov(*, y) =

3. Sample size in the simulation experiment is 200.
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Table 5.4. Mean and standard deviation of relative efficiencies

Model

1
2
3
4
5
6

8
9
10
11

True

IRS process
Mean

VRS
0.746
0.677
0.697
0.796
0.809
0.763

; 0^840 7
0.840
0.843
0.847
0.852

CRS
0.696
0.571
0.601
0.722
0.730
0.662

0.753
0.754
0.758
0.762

0.829

SD
VRS

0.145
0.142
0.155
0.138
0.143
0.141

•'0:139
0.137
0.139
0.138
0.139

CRS
0.140
0.150
0.170
0.140
0.147
0.168
0.147:
0.149
0.150
0.152
0.155

0.142

DRS process
Mean

VRS
0.670
0.697
0.719
0.773
0.793
0.804
0.842
0.844
0.850
0.852
0.853

CRS
0.626
0.662
0.678
0.726
0.754
0.766
0.7951

SD
VRS

0.165
0.138
0.144
0.141
0.145
0.137

£o;139&
0.804 0.137
0.809
0.814
0.831

0.829

0.138
0.136
0.140

CRS
0.157
0.132
0.139
0.138
0.143
0.134

xCCl36:

0.137
0.137
0.137
0.140

0.142

CRS process
Mean

VRS
0.704
0.684
0.709
0.783
0.801
0.781

••\dir$4f%
0.844
0.849
0.852
0.856

CRS
0.656
0.640
0.687
0.761
0.782
0.754

^.(?!833~I!

0.836
0.839
0.842
0.846

0.829

SD
VRS

0.156
0.140
0.149
0.139
0.144
0.139

0.137
0.138
0.137
0.138

0.1

CRS
0.150
0.130
0.146
0.140
0.144
0.138

fblfois
0.140
0.140
0.139
0.139

42

Notes:
1. Model 7 in the shaded row includes only the relevant set of input variables.
2. Models 1-6 are misspecified with some relevant input variables omitted.
3. Models 8-11 are misspecified by adding some irrelevant input variables to Model 7.
4. Sample size is 200.
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Table 5.5. Mean absolute deviation and mean deviation between the true and DEA
efficiencies

Model

l
2
3
4
5
6

8
9
10
11

IRS process
MAD

VRS
0.091
0.159
0.143
0.044
0.038
0.080

CRS
0.133
0.258
0.230
0.107
0.101
0.171

0.020
0.022
0.025
0.029

0.084
0.086
0.085
0.085

MD
VRS
0.083
0.152
0.132
0.033
0.019
0.066

-0.012
-0.014
-0.0! 8
-0.023

CRS
0.132
0.257
0.228
0.106
0.099
0.167
0.082>;
0.076
0.075
0.071
0.067

DRS process
MAD

VRS
0.169
0.136
0.116
0.068
0.055
0.036

^.o:oi3,.>
0.016
0.021
0.023
0.024

CRS
0.204
0.167
0.151
0.104
0.079
0.065

4. o.o#6;
0.037
0.035
0.034
0.027

MD
VRS
0.159
0.132
0.110
0.056
0.036
0.025

-0.016
-0.021
9.023

-0.024

CRS
0.203
0.167
0.151
0.102
0.075
0.063

0.025
0.020
0.014

-0.003

VRS
0.133
0.149
0.126
0.056
0.045
0.060

&0J2
0.016
0.020
0.023
0.027

CRS process
MAD

CRS
0.175
0.189
0.142
0.070
0.052
0.077wsmm
0.008
0.010
0.013
0.018

VRS
0.125
0.144
0.119
0.046
0.027
0.048

MD
CRS
0.173
0.189
0.142
0.068
0.047
0.074

Ca»70l2il>OT0Q5i
-0.016
-0.020
-0.023
-0.027

-0.007
-0.010
-0.013
•0.018

Notes:
1. Model 7 in the shaded row includes only the relevant set of input variables.
2. Models 1-6 are misspecified with some relevant input variables omitted.
3. Models 8-11 are misspecified by adding some irrelevant input variables to Model 7.
4. Sample size is 200.
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Table 5.6 Percentage of all DMUs and percentage of efficient DMUs correctly
identified

Mode

1

1
2
3
4
5
6

8
9
10
11

IRS process
% of all

VRS
88.5
87.5
86.5
93.0
90.0
87.5

94.0
89.5
89.5
88.5

CRS
86.5
86.0
85.5
87.5
86.5
86.0

§87$$
83.5
87.0
86.5
85.5

% of
efficient

VRS
27.6
20.7
13.8
62.1
41.4
27.6

79.3
75.9
79.3
86.2

CRS
6.9
3.4
3.4

13.8
10.3
6.9

/M2
27.6
24.1
27.6
34.5

DRS process
% of all

VRS
87.5
88.5
87.5
93.0
90.0
89.5

' j' 07 '\^1'
• '•''•ft-?•'.•'} \u

97.5
94.5
94.5
90.5

CRS
85.5
86.5
86.0
87.5
87.5
88.0

I; $.6%
91.0
88.5
90.0
87.5

% of
efficient

VRS

20.7
24.1
17.2
60.1
37.9
34.5

100.0
100.0
100.0
300.0

CRS
3.4
6.9
3.4

17.2
10.3
17.2

til-?
41.4
34.5
44.8
58.6

CRS process
% of all

VRS
88.0
88.0
87.0
93.5
90.0
88.5

SMI
97.5
94.5
94.0
92.0

CRS
85.5
86.5
86.0
90.0
86.5
87.0

99.0
96.0
96.0
95.5

of
efficient

VRS
24.1
20.7
17.2
62.1
41.4
31.0

CRS
3.4
6.9
3.4

34.5
10.3
13.8

wsmm
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0

Notes:
1. Model 7 (in the shaded row) includes only the relevant set of input variables.
2. Models 1-6 are misspecified with some relevant input variables omitted.
3. Models 8-11 are misspecified by adding some irrelevant input variables to Model 7.
4. Sample size is 200.
5. % of all: percentage of all DMUs correctly identified as efficient and inefficient.
6. % of efficient: percentage of efficient DMUs correctly identified as efficient.
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Table 5.7. Spearman rank correlation coefficients

Model

1
2
3
4
5
6

9
10
11

IRS process
VRS

0.850
0.725
0.619
0.917
0.919
0.761

I;'- 6;955 ' '
0.950
0.934
0.925
0.919

CRS
0.847
0.597
0.525
0.846
0.847
0.582
0,836
0.827
0.814
0.806
0.792

DRS process
VRS

0.637
0.806
0.722
0.860
0.865
0.924

; 0.967.
0.965
0.949
0.948
0.949

CRS
0.703
0.845
0.769
0.863
0.869
0.920

,0:9$7^
0.942
0.938
0.936
0.931

CRS process
VRS

0.738
0.760
0.670
0.892
0.896
0.839

0.967 '
0.951
0.948
0.941

CRS
0.769
0.828
0.731
0.917
0.915
0.864

mm
0.994
0.991
0.998
0.983

Notes:
1. Model 7 in the sisi'ed row includes only the relevant set of input variables.
2. Models 1-6 arc fdisspecified with some relevant input variables omitted.
3. Models 8-11 are misspecified by adding some irrelevant input variables to Model 7.
4. Sample size is 200.
5. Spearman rank correlation coefficient between ranked x (xr) and ranked y (yr)

SS
variables is computed as: ^ — where SS,. v is the sum of squares of x and yr,

SSXSSV
 r>r

SSX and SSy are the sum of squares of xr and yr respectively.
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Table 5.8. Percentage of DMUs whose DEA efficiency is within 10% of the true
efficiency

Model

1
2
3
4
5
6

9
10
11

IRS process
VRS

48.0
29.0
32.0
82.5
85.5
60.0

^fp9J;5.,^

97.0
95.5
94.0

CRS
27.5

7.0
19.0
41.5
45.5
34.0

>:-;v57.S^
,- -—5~~

57.5
58.5
57.5

DRS process
VRS

30.0
33.5
34.5
68.5
74.5
87.5

" " 9 7 . 0 ""
92.0
91.5
94.5

CRS
21.5
18.0
25.0
46.5
58.5
64.0

90.0
92.0
92.0
95.5

CRS process
VRS

37.0
32.0
34.0
75.5
82.5
71.0

~ 98.5 "
95.0
94.5

100.0

CRS
21.0
12.5
25.5
66.5
75.5
57.5

100.0
98.5
98.0

100.0

Notes:
1. Model 7 in the shaded row includes only the relevant set of input variables.
2. Models 1-6 are misspecified with some relevant input variables omitted.
3. Models 8-11 are misspecified by adding some irrelevant input variables to Model 7.
4. Sample size is 200.
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Table 5.9. Correlation of variables used in empirical study

5-yrGP
Entry fee
MER
Inilnv
5-yrSD
Age
12m flow
Size

5-yrGP

1.000
0.050
0.046
0.139"
0.543*
0.113
0.284*
0.237*

Entry
fee

1.000
0.752*
-0.473*
0.110
0.127"
-0.155"
-0.167*

MER

1.000
-0.528*
0.181"
0.137"
-0.201*
-0.148"

Inilnv

1.000
0.138"
-0.104
0.265*
0.127"

5-yrSD

1.000
0.050
0.071
0.012

Age

1.000
-0.039
0.320*

12m
flow

1.000
0.580*

Notes:
1. * Indicates significant at the 1% level and " significant at the 1% level.

2. Pearson correlation coefficient between variables x and y is computed as:
co\{x,y)

sjs,
where Sx and Sy are the standard deviation ofx and y respectively and

cov(x, y) =
n-\

3. Sample size is 257.
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Table 5.10 Variables considered in different DEA runs

DEA
run
1
2
3
4
5
6
7
8
9
10

13
14
15
16
17
18
19

5-yrGP

•

•

•/

•

• /

• /

s

Entry
Fee

•/

•/

•/

s
•/
s
s

MER Inilnv 5-yrSD Age

• /

• /

s

•/ V V

" " " • / ' " • / • " • ' - * * * * • • ' • j - - - " ^ - ' - ' ^ - *

•/ • s
•/ •/ V

s s s s
y/ y s •/
s s s
s •/ s •/

Size 12m
flow

V

•/ V

Notes:
1. Relevant input variables are in columns 3-6, and irrelevant input variables are in

columns 7-9.

r-'-
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Table 5.11 Summary results of DEA runs

DEA
run

1
2
3
4
5
6
7
8
9
10
11

13
14
15
16
17
18
19

No of input
variables

1
1
2
2
2
2
2
3
3
3
3 ^ ^

5 '""'""
5
5
6
6
6
7

Mean Efficiency

VRS

0.342
0.441
0.342
0.477
0.480
0.536
0.501
0.481
0.537
0.633
0.559

" """o.He '"*"'
0.787
0.813
0.862
0.895
0.911
0.932

CRS

0.313
0.127
0.313
0.127
0.410
0.385
0.154
0.410
0.385
0.523
0.240

0.737*
0.723
0.773
0.798
0.810
0.840
0.854

Efficient funds

VRS

1.56
2.33
1.56
2.72
5.84
3.50
5.84
5.84
3.50

11.67
8.56

24.12
24.51
19.07
31.52
31.13
33.07
39.69

(%)

CRS

0.39
0.39
0.39
0.39
2.33
1.17
1.17
2.33
1.17
5.84
2.33

14.01
14.79
13.23
21.79
20.23
24.12
29.18



Chapter 6

On the Relationship Between the Higher-
Order Systematic Co-Moments and
Security Returns Conditional on Excess
Market Returns*

6.1 Introduction

Since the seminal paper by Markowitz (1959), the CAPM has become an

important tool in finance for assessment of cost of capital, portfolio performance,

portfolio diversification, valuing investments and choosing portfolio strategy,

among others. Building on Markowitz's work, Sharpe (1964) and Black (1972)

developed various versions of the CAPM that can be empirically tested. The last

half-century has witnessed the proliferation of empirical studies testing on (i) the

validity of CAPM and the stability of beta and (ii) whether or not the cross-asset

variation in expected returns could be explained by the market beta alone.

A paper based on the material in this chapter was presented at the Econometric Society

Australasian Meeting, July 7-10, 2002, Brisbane, Australia (Galagedera and Silvapulle, 2002b).

127
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In Chapter 3, we briefly mentioned that a growing number of studies found that

the variation in expected returns cannot be explained by the market beta alone and

showed that fundamental variables such as size, book-to-market value,

macroeconomic variables and price-to-earnings ratios account for a sizeable

portion of the cross-sectional variation in expected returns.

The security market line described in Section 3.2.2 suggests an overall positive
j

relationship between beta and expected returns. Alternatively, high beta securities

| are likely to experience larger gains or losses relative to the market compared to
I
i

i low beta securities. Of course, realisation of returns higher than the expected

i return is not a concern for risk-averse investors. The main distress is caused by the

{ downside risk. Prompted by these arguments, several studies paid attention to the
i

relation between beta and returns conditional on the direction of market
j

movements. Pettengill, Sundaram and Mathur (1995), hereafter PSM, observed an

j inverse relation between the beta and the returns in periods where market returns

! in excess of the risk-free return are negative (down markets). "We extend their idea
i

• by incorporating systematic higher-order co-moments (beta, systematic co-

skewness and systematic co-kurtosis) in the pricing model, and by conducting

: various tests of hypotheses on the parameters of the extended model.

The primary objective of this chapter is to investigate the asymmetric response of

security returns to higher-order co-moments in up and down markets. We take a
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significant step forward from the existing literature, to obtain two estimates for

each of beta, systematic co-skewness and systematic co-kurtosis, corresponding tc

up and down markets. We also examine whether or not these market conditions

have asymmetric effects on risk premiums in the cross-sectional relationship.

More importantly, we test for the stability of overall risk premiums related to

these higher-order co-moments under the two market conditions; this aspect is

given very little attention in the literature, in particular using CAPM with higher-

order co-moments.

Our investigation differs from previous ones in the following aspects: (i) to date,

only monthly series has been used to study the cross-sectional risk-return

conditional relationship, while we use daily data1. It is clear from stylised facts

provided by empirical evidence that skewness and kurtosis of the returns

distribution become prominent when high frequency data is used to model them.

Therefore, it is highly likely that our study would uncover the relationship

between the return and higher moments, if any, and (ii) we estimate the risks-

related to higher-order moments in up and down markets. Although it has been

recognised that the size of the investors' expected risk premium depends on

market movements (up or down, for example), this issue, to our knowledge, has

1 When daily returns are used a reduction in measurement error from beta estimates may be

achieved. In the Pogue and Conway (1972) study of 90 mutual funds, as reported by Modigliani

and Pogue (1974), a shift from monthly to daily returns reduced the average standard error of the

estimated beta values by approximately 75 per cent.
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not been investigated in the literature, particularly the return-generating process

with higher-order co-moments.

The daily returns on 128 stocks of the Australian All Ordinaries Price Index over

the period January 1985 to June 2000 are used in this chapter. We construct

portfolios and estimate beta, systematic co-skewness and systematic co-kurtosis

using time series data. The latter is done by employing two methods: (i) using

conventional formulae to estimate these measures and (ii) using an appropriate

data-generating process (DGP) and then the formulae derived by Kraus and

Litzenberger (1976). The details are given in Section 6.3. An examination of an

extended cross-sectional risk-return (four-moment) relationship suggests that the

beta and systematic co-skewness explain the cross-sectional return variation,

while the systematic co-kurtosis does not have any significant effect. We find that

the risk premiums corresponding to beta and systematic co-skewness do not differ

in up and down markets.

The chapter is organised as follows. In Section 6.2, higher-order CAPMs are

discussed: first, the theoretical development of two versions of four-moment

CAPM. Second, the cross-sectional relationship between the returns and four

moments is specified and then extended to include the risk premiums

corresponding to up and down market movements. The hypotheses of interest are

also specified in this section. The methodology used in this chapter to carry out
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the proposed empirical analysis is explained in Section 6.3. Section 6.4 describes

the data series used and their time series properties. Empirical results are reported

and analysed in Section 6.5. Sensitivity analysis is carried out in Section 6.6.

Concluding remarks and some promising directions for further work are given in

the final section.

6.2 Higher-order capital asset pricing model

In this section, we briefly outline the theoretical development of two versions of

the four-moment CAPM. The cross-sectional relationship between the returns and

four moments is extended to allow risk premiums corresponding to up and down

market movements. The hypotheses of interest are also specified in this section.

6.2.1 Theoretical development of four-moment CAPM

The following is a brief outline of two versions of the four-moment CAPM, in

which it is assumed that only the risks measured by systematic variance,

systematic skewness and systematic kurtosis are priced. See Hwang and Satchell

(1999) for details.

Consider an investment x0 - the holding in the risk-free asset - and x,- - the

holding in the risky asset /. Let Rf and R(, where / = 1,2.. JV, be returns on the

risk-free asset and N risky assets respectively. Assuming that the initial
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investment is only one unit, the problem for the investor wanting to maximise

his/her expected utility of end-of-period wealth2, w, can be stated as:

subject to
N

(6.2.1)

(6,2.2)

where E(w), a(w), y(w) and 0(w)are the first, second, third and fourth

moments of end-of-period wealth respectively, such that

tr(w) = [E\W-E{W)}2}'\ y(w) = [E{W-E(W)Y]'3 and 6(W) = [E{W-E(W)Y]'\

£/(.) is the utility function and E{.) denotes the mathematical expectation. The

Lagrangian function for the constrained maximisation problem in (6.2.1-6.2.2) is

given as:

N

1=1

(6.2.3)

where X is the Lagrangian multiplier. The first order conditions, which are the

derivatives of L with respect to x0 and xt, are given as:

BL = dE[U(w)] dE(w)

dx0 ~ dE{w) ' dx0

and

(6.2.4)

'• The investor's end-of-period wealth is given by W = Xo (l + Rf J+ 2 ^ x; V
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dL dE[U(w)]\dE(w)
dE(w) J &,

dE[U(w)] da(w)

dx,
(6.2.5)

J &,
where / = 1,. . . , / / , respectively. Now, using the expression for the investor's end-

of-period wealth and the fact that cr(w), y(W) and 0(w) axe equivalent3 to those of

the portfolio return4 Rp, we obtain BEiwj/dx, =\-yE(R,),

da(w)/dXi=j3ipcT(Rp), dy(w)ldXi=yipy{Rp) and dd(w)/dXi = 9ip9{Rp).

Pip,yip and 6^ are the beta, co-skewness and co-kurtosis of security i in relation

to portfolio p. Substituting these results in equations (6.2.4) and (6.2.5) and

eliminating X, gives:

8E[U(w)]
da(w)

8E[U(w)]
8E(w)

8E[U(w)]
dy(w)

8E[U(w)]
8E(w)

8E[U(w)]]
80{w)

r(RP)rip

(6.2.6)

8E[U(w)]
8E(w)

The ratio of partial derivatives of expected utility with respect to standard

deviation and expected wealth is the investor's marginal rate of substitution

between the expected wealth and standard deviation. Similarly, other partial

3 The equivalence follows due to the assumption that the initial investment is only one unit.

4 Tfce portfolio return is given by Rp = XOR^ + jT^ X;R; .
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derivatives are the investor's marginal rates of substitutions between the expected

wealth and skewness, and the expected wealth and kurtosis. Imposing the

equilibrium conditions on the investor's portfolio and holding the expected utility

of wealth at end-of-period constant, give the following:

r(RP)rip +
dE(w)

dd(w)
G{Rp)6ip. (6.2.7)

Now, assuming all investors have a utility with hyperbolic absolute risk aversion

and the same "cautiousness parameter", and given that risky assets are not inferior

goods, each individual investor's optimum portfolio composition will be the same.

Therefore, for the markets to clear, the individual investor's optimum portfolio

should be equivalent to the market portfolio. Invoking this into the market

equilibrium model5 that incorporates end-of-period wealth moments can be

written as:

E(R,)-Rf=l
\dE(w) \dE(w)

\dy{w)_

JdE(w)
(6.2.8)

which leads to the four-moment CAPM given as:

E(R,) -Rf= axfiim + a2ri (6.2.9)

' It is derived assuming that the market portfolio return has an asymmetric distribution.
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Pip,yip and 9jp are the beta, co-skewness and co-kurtosis of security / in relation

to market portfolio. Note that this is an extension of the three-moment CAPM

derived by Kraus and Litzenberger (1976).

Due to the desirable properties of the utility function we expect the market price

of beta reduction by one unit to be a,, which is expected to be positive as in the

conventional CAPM. The market price of co-skewness is a2, which is expected

to have the opposite sign to the skewness of the market return distribution. The

market price of co-kurtosis is a3, which is an additional measure of degree of

dispersion in returns and is expected to be positive. Succinctly, investors seek

compensation for bearing the risks measured by beta and systematic co-kurtosis,

while willing to forego return for taking the benefit of a positively skewed

market6.

In equilibrium7, noting that/?/m, yim and 0im are then equal to 1, (6.2.8) implies

dE{w)
da(w)

dE(w)
.dyi}v)_

\9(Rm). (6.2.10)

the following:

E(Rm)-Rf

Now dividing (6.2.8) by (6.2.10) we obtain

6 See Fang and Lai (1997) and Vines, Hsieh and Hatem (1994) for an intuitive explanation of the

effect of co-kurtosis and co-skewness on asset prices.
7 Applying equation (6.2.8) to the market portfolio.
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where bx =•

WK)
,*(*.)'

* ,=

and

dE(w)ldy(w)
dE(w)/da(w)

dE(w)/d0(w)

(6.2.11)

(6.2.12)

2 dE(w)/da(w)' J

It can be argued that &, < 0 and k2 > 0 (Hwang and Satchell, 1999). The higher-

order CAPM model given in (6.2.11) is an extension of the three-moment CAPM

version developed by Sears and Wei (1985).

6.2.2 Cross-sectional risk-return relationship

Testing the significance of parameters of the model given in (6.2.9) can be done in

an empirically testable form in that the expected returns in (6.2.9) are replaced

with realised returns. We argue that using the realised returns could lead to biased

results since the relationship between the co-moments and the realised returns

may differ from that of the underlying relationship between the expected return

and the co-moments given by (6.2.9).
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PSM argued that when testing the validity of the two-moment CAPM we must

recognise that a portion of the market return distribution could be below the risk-

free rate and if this is not probable, no investor will ever want to hold the risk-free

security. Referring to the security market line8, E(Rp)-Rf - fipm{E{Rm)-Rf),

PSM further argued that when the market return is lower than the risk-free rate

and the realised returns for high beta portfolios are lower than the realised returns

for low beta portfolios, an inverse relationship between the beta and returns could

reasonably be inferred during the time periods when the realised market return is

less than the risk-free rate.

In order to investigate the existence of such a relationship, PSM estimated the

coefficients of the following cross-sectional regression model:

R, =S'OI +S'uK/3im + $ , ( 1 - * ) A . + e, (6.2.13)

where k is an indicator function, defined as K = 1 when [Rmt -Rj))>0 and K = 0

when [Rmt - Rfi) < 0. The dual hypotheses tested are: {Ho: J[ = 0, Hl : J[ > 0 }

and {Ho:S^=0,Hx:S^<0}, where S[ and J[ are the means of S[, and S'2l

respectively. If Ho is rejected in both cases, then the systematic conditional

relationship is supported. In what follows, these ideas are extended to the CAPM

with higher-order co-moments.

8 Which is also valid for portfolios.



CHAPTER 6. HIGHER-ORDER CAPM 138

Equating the coefficients of the co-moments in (6.2.9) and (6.2.11), we obtain

ax=bx{E{Rm)-Rf)t a2=b2(E(Rm)-Rf) and cc3 = b3(E(Rm)-Rf). These

relationships suggest that the sign of the parameters of (6.2.9) could be affected

when realised returns are used9 instead of expected returns. The four-moment

CAPM version given by (6.2.9) does not provide a direct relationship between

security co-moments and security returns when the realised market return is less

than the risk-free rate. Therefore, when the market return is lower than the risk-

free rate an inverse relationship between security returns and higher-order co-

moments are postulated resulting in a systematic conditional relationship between

security return and higher-order co-moments. Further, we argue that the risk

premium corresponding to higher-order co-moments could be quantitatively

different for up and down markets.

We test the existence of a conditional relationship by examining the coefficients

of the following cross-sectional regression model:

= SQt + 5uKfiim + S2t (1 - K)Pim + 63lfcyi

S4l(l-fc)rim+S5lKdim +S6l(l-K)6im

(6.2.14)

9 The tests of asset pricing models could be affected by the sign of the market risk premium (Sears

and Wei, 1985).
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where K is an indicator function, defined as K = 1 when (Rml -RJj)> 0 and K =0

when (Rnt -Rfi)<0.We refer to (6.2.14) as the four-moment conditional asset

pricing model10.

The signs expected for the coefficients of (6.2.14) can be inferred by hypothesised

inverse relationships and the signs expected for a,, a2 and a3 in the

unconditional model given in (6.2.9). That is, SXX), 82<0, 53>0 and £4<0 when

the up market return distribution is negatively skewed, 83<0 and 54>0 when the

up market return distribution is positively skewed, 55>0 and 56<0. The

parameters <5,, S2 and §s are the average premiums corresponding to beta,

systematic co-skewness and systematic co-kurtosis, respectively, in the up market,

and S2, 8A and 86 are the average premiums corresponding to beta, systematic

co-skewness and systematic co-kurtosis, respectively, in the down market.

Assuming that the market movements (up or down) do not have asymmetric

effects on risk premiums, we can obtain the models with symmetric responses,

10 The model given in (6.2.14) can be reduced to the two-moment (substitute Sj, = 0 for

j = 3,...,6) and three-moment (substitute 8jt = 0 for j = 5,6) conditional pricing models and

the conditional pricing model with beta and theta (substitute 5jt = 0 for j = 3,4).
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which are (6.2.14) with Su=52l, S3l=SAl and S5l=S6l. We estimate the

symmetric and asymmetric models and compare the results.

6.2.3 Hypotheses of interest

In order to see if there is supportive empirical evidence of a conditional

relationship between the expected return and the higher-order co-moments, the

following hypotheses are tested:

(i) The null and alternative hypotheses of a systematic conditional relationship

between the beta and the realised returns:

Ho: 6X = 0 and Hx : J, > 0 (6.2.15)

in the up market, and

Ho: S2 = 0 and Hx: S2 < 0 (6.2.16)

in the down market. If the null hypotheses in both are rejected, then a systematic

conditional relationship between the beta and the realised return is supported.

(ii) The null and alternative hypotheses of a systematic conditional relationship

between the gamma and the realised returns when the up market return

distribution is positively skewed:

HQ:S2=0 and (6.2.17)

in the up market, and
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Ho : S4 = 0 and Hx : S4 > 0 (6.2.18)

in the down market. If the null hypotheses in both are rejected, then a systematic

conditional relationship between the gamma and the realised return is supported.

(iii) The null and alternative hypotheses of a systematic conditional relationship

between the gamma and the realised returns when the up market return

distribution is negatively skewed:

Ho: S3 = 0 and Hx: S3 > 0 (6.2.19)

in the up market, and

Ho :SA=0 and Hx :S4<0 (6.2.20)

in the down market. If the null hypotheses in both are rejected, then a systematic

conditional relationship between the gamma and the realised return is supported.

(iv) The null and alternative hypotheses of a systematic conditional relationship

between the theta and the realised returns:

H0: 5S = 0 and Hl: Ss > 0 (6.2.21)

in the np market, and

H0:S6=0 and H,:56<0 (6.2.22)

in the down market. If the null hypotheses in both are rejected, then a systematic

conditional relationship between the theta and the realised return is supported.
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6.3 Methodology

In this section, we discuss the method of portfolio formation and the two-stage

methodology of estimation of time series and cross-sectional asset pricing models.

The data set, which is described in detail in Section 6.4, consists of the daily

returns of 128 securities. The return series spans 3920 days.

(i) Portfolio formation

We begin with estimating beta, gamma and theta for each security for the first 632

days (2.5 years) of the sample period according to the formulae given in (6.2.23-

6.2.25). Based on these estimates, all 128 securities are assigned to eight

portfolios11. First, the securities are ranked on the basis of their estimated betas

and divided into two groups. Securities within each group are again ranked

according to gamma estimates and divided further into two subgroups. Securities

within each subgroup are again sub-divided into two subgroups after ranking the

securities according to theta estimates. Consequently, there are eight subgroups of

portfolios, with each comprising sixteen securities.

11 Portfolios are generally designed to minimise measurement errors while maintaining

considerable cross-sectional variation in portfolio betas, gammas and thetas (Fama and MacBeth,

1973). When grouping however, there will be a loss of information in the tests conducted in the

second phase. Nevertheless, tests based on portfolio returns will be more effective than tests based

on security returns (Modigliani and Pogue, 1974).
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The beta, gamma (co-skewness) and theta (co-kurtosis) risks of securities

respectively, are defined as follows:

_E[{Ril-E{Ri)tRmt-E(Rm)f\
~ E[(RMt-E(Rjf\ ( " ^

=4^f^)X^f4yj)] (6.2.25)

Now, we discuss the two-stage procedure for conducting statistical inference.

(ii) Two-stage estimation procedure

Stage-1: Portfolio estimation using time series data

The 632-day period that follows the portfolio formation period is used to estimate

the portfolio beta, gamma and theta. As has been argued before, the use of?, non-

overlapping time period for estimating the portfolio beta, gamma and theta would

minimise the errors-iii-the-variables problem. Using the 632 daily securities and

market returns, the betas, gammas and thetas are again computed via (6.2.23-

6.2.25). A portfolio's beta, gamma and theta are then obtained by averaging12 the

betas, gammas and thetas of the sixteen individual securities that are assigned to

that portfolio formed in (i) above.
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The presence of collinearity among the beta, gamma and theta estimates was

known to cause problems in the analysis in Stage-2, which will be discussed

shortly. One way of circumventing the problems due to multicollinearity among

the systematic risk measures is to use the data-generating process (DGP) that is

similar to the CAPM (Barone-Adesi, 1985). In this study, as an alternative method

of estimating portfolio co-moments, we utilise the cubic characteristic line,

Ru-Rf =cOi+cu{Rat-Rf)+c2i[Rmt-E(Rm)]2

(6.2.26)
+ cii[Rmt-E(Rm)]3+eil

as the DGP13.

Following the procedure outlined by Kraus and Litzenberger (1976) for the

quadratic market model, the equations relating beta, gamma and theta to the

coefficients of the cubic characteristic line can be given as:

Pirn ~C\i+

12 Another method of computing portfolio co-moments is using the formulae given in (6.2.23-

6.2.25).
13 It is consistent with the empirical version of the four-moment CAPM:

R. —Rf= axfiim + a2y.m + a3dim. The *-rror term of (6.2.26) is assumed to be homoscedastic,

independent of (Rmt -Rf), [Rm, -E(Rm)f and [Eml -E(Rmjf, and to have an expected

value of zero.
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and

y. =r r . -4- •7im Hi ^

respectively, where ^(w) = [E{w-i?(w)}5J and

Hwang and Satchell (1999) for details..

(6.2.29)

/6 . See

The portfolio co-moments arc computed using the estimated parameters of the

DGP and the relationships given in (6.2.27-6.2.29).H

L Stage-2: Estimation of cross-sectional relationship between the returns and

the higher-border co-moments, and hypothesis testing

Over the 126 days (0.5 year) that follows the sample period used in the estimation

of time series models in Stage-1, the daily returns are computed for each portfolio.

These daily portfolio returns are then regressed on the beta, gamma and theta

estimates obtained in Stage-115, according to the relationship16 specified in

14 The cubic characteristic line given in (6.2.26) and the associated relationships given in (6.2.27-

6.2.29) can be reduced to reflect the quadratic characteristic line and the linear characteristic line

by substituting c3j. = 0 and c2l = c3- = 0 respectively.

15 It is assumed that the portfolio beta, gamma and theta estimated in Stage-1 proxy the beta,

gamma and theta of Stage-2. Studies have shown beta coefficients to be very predictable for large

portfolios and progressively less predictable for smaller portfolios and individual securities (Levy,

1971).
16 Grouping of securities does not distort the underlying risk-return relationship (Modigliani and

Pogue, 1974).
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(6.2.14). In contrast to many previous studies which used overall mean returns,

the above procedure will uncover possible non-stationarities of the regression

coefficients - risk premiums - within the 126-day period. The portfolio formation

and the two-stage estimation procedure are repeated17 after omitting the first 126

days from the original data series. This process is rolled over through the entire

sample period, thereby allowing for further non-stationarities in the regression

coefficients in Stage-2. This method enables twenty-one repetitions of the entire

procedure spanning 2646 days.

6.4 Data

The data18 series used in this chapter consists of 128 heavily-traded securities

listed on the Australian Stock Exchange and used in the construction of the

Australian All Ordinaries Price Index. The sample spans the period 02 January

1985 through 30 June 2000, yielding a total number of 3920 observations. Two

proxies for market index are used in this study: one is the equally-weighted

average of the prices of all the 128 stocks, which we refer to as the Composite

17 The regrouping of assets by repeating the three-stage process results in portfolios with stable

beta, gamma and theta over time even when the characteristics of individual assets change over

time (Kraus and Litzenberger, 1976).
18 The data used are daily closing prices adjusted for share capitalisation changes such as share

splits and bonus issues. Data was obtained from the Core Research Database of the Securities

Industry Research Centre of Australasia. Continuously compounded returns are calculated from

the daily closing prices.
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Index, and the other is the Australian All Ordinaries Price Index (All Ords), which

is the value-weighted average of the 500 largest Australian companies based on

market capitalisation. Four proxies for the risk-free rate are used: the 90-day and

the 180-day bank-accepted bill rates, and the 5-year and 10-year Treasury bond

rates.

As discussed later in Section 6.5.1, several variations of the conditional and

unconditional pricing model are analysed. The models differ by the number and/or

the type of co-moments included in them. The construction of portfolios is based

on security co-moments and therefore the number of portfolios formed varies

depending on the pricing model estimated. However, in order to provide typical

characteristics of these portfolio distributions over the entire sample period, we

constructed sixteen portfolios based on security betas only. All 128 securities

were first sorted in descending order according to their betas and then sixteen

portfolios were formed: portfolio 1 is an equally-weighted average of the first

eight securities, portfolio 2 is an equally-weighted average of the next eight

securities, and so on. The summary statistics of the portfolios and the market

return distributions over the entire sample period are given in Table 6.1. It is clear

from Table 6.1 that for portfolios, the minimum return ranges from -7.8% to -

39.1%, while the maximum return varies between 4.5% and 44%. As expected,

high beta portfolios tend to have wider ranges between minimum and maximum

returns. Excess kurtosis can be as high as 140.7 with the minimum being -1.2. It
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is interesting to note that excluding the portfolios consisting of low beta securities

would reduce the excess kurtosis interval to -1.2 to 75.9. The skewness ranges

from -5.5 to 3.4 with four portfolios having positive skewness while the other

twelve have negative skewness. The skewness is greater in low bet portfolios

compared to the high beta portfolios.

The distributions of returns on the two market indices appear to have similar

characteristics. They both have negative skewness and very high excess kurtosis

with the All Ords having a numerically higher value of the latter. Excluding the

first five years of the sample period, which inclu 3 the October 1987 stock

market crash, yields portfolios and market return distributions with different

characteristics (these results are reported in Table 6.2); this is the sample period

used for testing the models. The skewness and the excess kurtosis of the All Ords

are much smaller in the testing period compared to that of the entire sampling

period. The minimum return of fourteen of the sixteen portfolios over the entire

sampling period occurred within the first five-year period.

6.5 Empirical results and analysis

This section reports the results of the two-stage estimation - a procedure described

in Section 6.3 - of unconditional and conditional risk-return relationships. A

sensitivity analysis is conducted to assess the robustness of the results to (i)
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various proxies for the market portfolio, (ii) the co-moment estimation method,

(iii) the risk premium estimation method, (iv) the definition of up and down

markets and (iv) the time period captured in the testing period.

6.5.1 Estimation of the unconditional risk-return relationship

First, we examine the unconditional relationship of portfolio return and co-

moments; that is, the symmetric model over the entire sample period. In this

model, it is assumed that the excess market returns (positive or negative) are

found to have the same effects on the model parameters, which are risk premiums.

The portfolio formation and the two-stage estimation procedure are rolled over

twenty-one times, obtaining 2646 estimates for the market risk premiums for beta,

gamma and theta risks. For the purpose of comparison, and also in line with what

previous studies have done, we investigate four pricing models:

(i) four-moment pricing model

Model A: Ru =ao+axpim+ a2yim + a,6im + eit, (6.2.30)

(ii) three-moment pricing model

Model B: Rit =a0 +axfiim +a2myim +eu, (6.2.31)

(iii) pricing model with beta and co-kurtosis

Model C: Ru = a0 + a,/?fa + a39in + su (6.2.32)

and

(iv) conventional two-moment pricing model
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Model D: Rk = a0 -cr, £„, + s,. (6.2.33)

The results15 reported in Table 6.3 reveal that none of the risk premiums in any of

the four unconditional pricing models is significant. We argue that this observed

weak result is due to the assumption that risk premiums are the same in the up and

down markets. That is, up and down markets have the same effects on the risk

premiums.

6.5.2 Estimation of the conditional risk-return relationship

Second, we estimate the risk premiums of the following four conditional pricing

(asymmetric) models:

(i) conditional four-moment pricing model

Model Ae:

RU = So, + 8 ^ + s2l (1 - K) pim + <Vr,« + #4,0 - * K , ( 6 , 3 4 )

(ii) conditional three-moment pricing model

ModelBC:RU =SOl +SuK/3im +52l(l-K)fiim +<53;/cr/m + 84l(\-K)ylm +e f t , (6.2.35)

(iii) conditional pricing model with beta and co-kurtosis

19 When estimating the models B, C and D, sixteen portfolios are constructed, with each

containing eight securities. The reason for coming up with a higher number of portfolios than eight

in estimating Model A, is because kurtosis is not included in models B and D and co-skewness is

not included in models C and D. The unconditional models are estimated using the method of

ordinary least squares.
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Model Cc: Rit = SOl + 5uK/3im + 82, (1 - K)Pim + S5lKdim + S6l (1 - K)6im + eit (6.2.36)

and

(iv) conditional two-moment pricing model

Model D c : RH = 8Ot + 5MKpim + S2l (1 - K)Pim + eu. (6.2.37)

In these conditional models, the excess market returns are assumed to have

asymmetric (different) effects on the model parameters, depending on whether the

excess market return is positive or negative. The proxies used for the market index

and risk-free rate are the Composite Index and the 90-day bill rate, respectively.

The excess market returns are computed as the difference between the Composite

Index returns and the 90-day bill rates. Of the 2646 days available for testing 1371

days (51.8 per cent) are up market days20. The conditional models are estimated

using the method of ordinary least squares (OLS) and the results21 are reported in

Table 6.4.

Comparing the results reported in Tables 6.3 and 6.4, it is clear that the risk

premiums are significant only in the conditional models. A noteworthy

20 A P S M study that used monthly U S data from January 1926 through December 1990 reported

that 57.6 per cent of the months correspond to up market days. A Faff (2001) study that used

monthly Austral ian data over the period 1974 to 1995 reported that 54.2 per cent o f the months

provide posit ive excess market return.
21 W e also used the 180-day bill rate and 5-year and 10-year bond rates as proxies for the risk-free

rate and found that the results and conclusions are largely unchanged.
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observation is that the models in which up and down markets are allowed to have

distinct effects on risk premiums uncover, with strong evidence, a significant

relationship between the high moment risks and the asset returns.

The results of Model Dc reveal that the up market and down market movements

have significant systematic asymmetric effects on the beta risk premium: in all

pricing models (i) the premium for beta risk in the up market is significant and

positive and (ii) in the down market the beta risk premium is significant and

negative, as expected.

Further, the results of the estimation of Model Bc reveal that the co-skewness risk

(in addition to the beta risk in the regression of portfolio returns) is significant in

both the up and down markets. The skewness of the market returns in the up

market (down market) is 2.7687 (-4.7581). Being opposite to the sign of the

market skewness in the up market and in the down market, the signs of the co-

skewness risk premiums in the conditional three-moment pricing model are

consistent with what was expected. See the hypotheses given by (6.2.17) and

(6.2.18). Although co-skewness (as an explanatory variable) in Model Ac is not

statistically significant, the market price of co-skewness has the correct sign as

postulated in the up and down markets.
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The market risk premiums associated with co-kurtosis, though significant in

Model Cc, have signs contrary to what was postulated, while those of Model Ac

have the expected signs but are not statistically significant. When we repeated the

analysis without forming portfolios we obtained similar results.

In summary, we find overwhelming evidence that the relationship between high

moment risks and portfolio returns is significant when conditional on whether the

market moves up or down. When the up and down market moves were assumed

to have the same effect on risk premiums, the models did not uncover any

significant risk premiums. The beta risk premiums are positive and negative in

the up and down markets respectively. On the other hand, the co-skewness risk

premiums in the up market (down market) have the opposite (same) sign to the up

market skewness. The systematic co-kurtosis does not appear to be priced in these

models.

6.5.3 Sensitivity analysis

This section examines the sensitivity of the results reported in Section 6.5.2 to (i)

alternative proxies for the market portfolio, (ii) the portfolio co-moment

estimation method, (iii) the risk premium estimation method in Stage-2 analysis,

(iv) the definition of up and down markets and (v) the time period used for testing

risk premiums.
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6.5.3.1 Choice of market portfolio

The results22 reported in Table 6.5 of the analysis with the All Ords as a proxy for

the market index and the 90-day bill rate for the risk-free rate support the

conditional relationship only in Model Dc. It appears that when the All Ords is

used23, the conditional relationship is not supported in the models that include

higher-order co-moments. Even though the data does not support Model Bc when

the All Ords is used as a proxy for the market index, the market price of co-

skewness has the correct sign. The results appear to be sensitive to the choice of

market portfolio, representing the efficient market index.

6.5.3.2 Portfolio co-moment estimation method

We repeated the analysis with the portfolio co-moments of Stage-1 estimated by

the DGP24 defined in (6.2.26) and the formulae given in (6.2.27-6.2.29) instead of

using the formulae given in (6.2.23-6.2.25). Table 6.6 reports the results of the

analysis using the DGP with the Composite Index and the 90-day risk-free rate.

We observe that the portfolio beta, co-skewness and co-kurtosis estimated from

22 The choice of the risk-free rate does not affect our conclusions.
23 W h e n the All Ords is used the breakdown of the total test period of 2646 days into up (51.5 pe r

cent) and down market days is only slightly different from when the Composi te Index is used.
24 He re too, four conditional pricing models were estimated. W h e n estimating Mode l A c the cubic

characteristic line defined in (6.2.26) was used. When estimating the other models the cubic

characteristic line was reduced appropriately ( C 3 / = 0 for Mode l B c , C2(. = 0 for Model C c and

C2l =C3I = 0 for Mode l D c ) .
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the DGP parameters are not significantly different from those estimated using the

formulae for beta, co-skewness and co-kurtosis and therefore it is not surprising

that we arrive at the same conclusions as those when the portfolio co-moments are

estimated using the formulae given in (6.2.23-6.2.25). In fact the figures reported

in Table 6.6 are almost identical to those in Table 6.4.

6.5.3.3 Risk premium estimation method

In Stage-2 analysis, the explanatory variables used in the cross-sectional

regression are the co-moments estimated in Stage-1. Consequently, these

generated variables are expected to cause an errors-in-the-variables problem,

which can result in inconsistent estimates25 of the risk premiums. To overcome

such problems, Fang and Lai (1997) used an instrumental variable estimation

method. This method yields consistent estimators if a set of instrumental

variables, which is uncorrelated with the disturbance term in the pricing model,

can be found. Following Fang and Lai (1997), we use an instrumental variable

estimation method26, as an alternative to OLS estimation of market risk premiums

in Stage-2.

25 In the two-stage estimation methodology, the co-moment estimates are obtained from time

series regressions in Stage-1 and co-moment risk premiums are estimated cross-sectionally in

Stage-2. Therefore, the co-moments are measured with errors that in turn could lead to an

underestimation of risk premiums.
26 Kim (1995) proposed a method of correction for the errors-in-the-variables problem that is

robust to conditional heteroscedasticity.
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The set of instruments used is the following:

Z =

156

(6.2.38)

where ru is the ranlc order of portfolio z's beta, rzi is the rank order of portfolio /'s

co-skewness and r3i is the rank order of portfolio f's co-kurtosis. See Durbin

(1954) for details. The instrumental variable estimates of risk premiums are

significant in the conditional two-moment pricing model (Model Dc) only. See

Table 6.7.

6.5.3.4 Definitions of up and down markets

We repeated the analysis with up and down markets defined27 as the positive and

negative market returns respectively, instead of excess market returns. Then, of

the 2646 days available for the testing, 1385 (52.3 per cent) were up market

days28. The estimates of the conditional asset pricing models with the Composite

Index are reported in Table 6.8.

27 In this definition there is no reference to a risk-free rate. Therefore, the results are independent

o f the risk-free rate.
28 Crombez and Vander Vennet (2000) in their study of stocks in the Brussels Stock Exchange

over the period 1990-1996 reported 54.8 per cent up market (monthly return is larger than zero)

months.



CHAPTER 6. HIGHER-ORDER CAPM 157

The results obtained here are consistent29 with those reported in Table 6.4 where a

positive market return in excess of the risk-free rate is defined as an up market.

One reason for this appears to be that the number of up market days observed over

the sample period is not significantly different under the two definitions.

6.5.3.5 Time period used for testing risk premiums

According to the procedure outlined in Section 6.3, the risk premium is estimated

and tested over the full testing period of January 1990 through to June 2000 (2646

days or 10.5 years). Further, an analysis of the results in the full testing period

revealed that only the conditional two- and three-moment pricing models are

evidently supported. In this section, we estimate and test the risk premiums of

these two models separately in seven sub-periods by partitioning the full testing

period into intervals of 378 days (1.5 years) each.

The results of the conditional two-moment pricing model, reported in Table 6.9,

reveal that when excess market returns are positive (negative) a significant

positive (negative) relationship exists between the beta and the returns for each

sub-period, suggesting that the results are consistent across all sub-periods. That

is, the beta risk is priced in the up and down markets, with the null hypothesis of

29 Kim and Zumwalt (1979) in their analysis of security returns based on a two-beta model divided

the returns into up or down markets using three alternative cut-off levels: average monthly market

return, average risk-free rate and zero. They reported that the different cut-off levels produced

virtually identical results.
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zero mean premium given in (6.2.15-6.2.16) rejected at the 1% level in all sub-

periods.

The results of the analysis of the conditional three-moment pricing model in the

sub-periods are reported in Table 6.10. The results reveal that when the excess

market returns are positive (negative) a significant positive (negative) relationship

exists between beta and the returns for each sub-period. This suggests a

consistency in the risk premium estimates in the up and down markets for the beta

risk when gamma risk is also included in the pricing model.

The tests of the gamma risk premium estimates in the up and down markets reveal

that in sub-periods 1, 2, 3 and 7 a systematic conditional relationship between the

gamma risk and the realised return is not supported. The gamma risk premium

estimates appear to support a systematic conditional relationship in the latter part

of the testing period, namely in sub-periods 4-6. A possible reason for the

observed inconsistency might be the influence of environmental factors such as

general economic conditions. Nevertheless, as in the full testing period, the

estimated mean of gamma risk premiums in each sub-period is negative in the up

market and positive in the down market.



CHAPTER 6. HIGHER-ORDER CAPM 159

6.6 Portfolio returns and risk premiums in up and down

markets

In Section 6.5, we found evidence of significant conditional relationships in the

two- and three-moment pricing models. In this section, we analyse the portfolio

returns and the risk premiums (obtained in the estimation of the two- and three-

moment pricing models) in the up and down markets separately.

6.6.1 Portfolio returns in the two- and three-moment pricing

models

Figure 6.1 shows the realised mean returns of portfolios (constructed in the first

phase of the analysis) of Model Dc in the up and down markets. Note that in the

estimation of Model Dc, the portfolios were formed based on securities sorted

according to betas only, where portfolio-1 consisted of securities with the highest

set of betas, portfolio-2 consisted of securities with the next highest set of betas,

and so on. Consequently, we can infer from Figure 6.1 that: (i) the high beta

portfolios yield higher returns than the low beta portfolios during the up market,

while (ii) in the down market the high beta portfolios perform worse than the low

beta portfolios, which is what is generally expected by the market30.

30 Standard theory supports the argument that high-beta securities tend to experience larger gains

or losses than low-beta securities relative to the market (Crombez and Vander Vennet, 2000).
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On the other hand, portfolio construction in the estimation of Model Bc is based

on securities which were first sorted by beta and then by gamma risk. Thus,

portfolio-1 in this case is not necessarily made up of securities with high betas.

The realised means of these portfolio returns are plotted in Figure 6.2. A

significant difference between the mean portfolio returns in the up and down

markets is observed with the difference being prominent in portfolios with Mgh

beta and high gamma risks.

6.6.2 Risk premiums in the two- and three-moment pricing

models

The summary statistics of the beta risk premiums obtained in the estimation of the

conditional two-moment pricing model are given in Table 6.11. In order to

determine whether the market risk premium distributions are symmetrical in both

the up and down markets, we conducted a two-sample /-test by testing the null

A A A A

hypothesis HQ:5X--S2 against the alternative hypothesis Hi:Sl&-52, with

A

the sign of the down market premium S2, reversed, since opposite signs are

expected for the risk premiums in the up and down markets. The t-test failed to

reject the null (t= -1.6694, p-value= 0.0951) at the 5% level of significance31.

31 We segmented the full testing period of 2646 days into seven sub-periods, each sub-period with

378 days, and examined whether the distributions of beta risk premiums in these sub-periods are

symmetrical as well. In each sub-period, we find that the beta risk premiums in the up and down

markets are symmetrical.
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Therefore, we presume32 that the beta risk premiums in the up and down markets

are found to be the same. This result, together with the observation that the overall

mean excess market return33 is positive (0.0325), suggests a positive beta risk-

return trade-off34.

The summary statistics of the market risk premiums obtained in the estimation of

the conditional three-moment pricing model are given in Table 6.12. A Mest

rejects equality of means of beta risk premiums in the up and down markets (t= -

2.2548, p-value= 0.0242) at the 5% level of the test. The premiums for gamma

risk in the up and down markets were also tested for equality of the means in the

up and down markets. A /-test (/= -1.3458, p-value= 0.1785) failed to reject the

null hypothesis of equal means at the 5% level, suggesting that gamma risk

premiums in the up and down markets are not different35.

32 P S M also suggested a symmetrical relation between risk and return during up and down markets

based on a two-population Mest of the means.
33 Excess return is taken as the difference between the Composite Index return and the 90-day risk-

free rate. With the All Ords the mean excess return is 0.0472.
34 P S M argued that if a systematic condit ional relationship be tween beta risk and returns exists, a

positive reward for holding beta risk occurs when (i) market excess returns, on average, are

positive and (ii) the risk-return relationship is symmetrical between up and down markets.
35 We segmented the full testing period of 2646 days into seven sub-periods, each sub-period with

378 days, and examined whether the distributions of risk premiums in these sub-periods are

symmetrical as well. In six of the seven sub-periods, we find that the beta risk premiums and

gamma risk premiums in the up and down markets are symmetrical.
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6.7 Conclusions

In the finance literature, debate on the validity of the capital asset pricing model

and the appropriateness of the tests on the cross-sectional risk-return relationship

is controversial. Many studies have failed to find empirical evidence supporting

tins relationship between the returns and risks. This chapter considers the capital

asset pricing model tha* incorporates higher-order co-moments such as co-

skewness and co-kurtosis and tests whether or not these higher-order co-moment

risks are also priced. Further, it investigates if the risk premiums - the responses

of asset returns to higher-order co-moment risks - are asymmetric, depending on

up or down market movements.

Using daily returns on 128 stocks, portfolios were formed based on the asset's

beta and higher-order co-moment risks. We basically studied two models. In one

model, the risk premiums w?re forced to have the same effect on returns in the up

and down markets, while in the other, these effects were allowed to be distinct

under these market conditions.

We find strong empirical evidence to suggest that beta and co-skewness are

priced. These significant results are uncovered only in the conditional asset

pricing models, while the unconditional model does not uncover such a significant
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relationship. Moreover, we find that the risk premiums are the same in the up and

down market movements.

Investors are generally compensated for taking high risk as measured by high beta

and they forego the expected returns for taking the benefit of positive market

skewness. We have overwhelming evidence to suggest that the results of our

analysis are consistent with what was predicted in the finance literature. In this

j empirical analysis, it was shown that, in the presence of skewness in the market
j

j returns distribution, the expected excess rate of return is related not only to beta

j but also to co-skewness. The findings of this chapter are encouraging, as many

1 previous studies did not find empirical evidence supporting such a relationship

I between the returns and high moment risks.

In Chapter 8, we discuss further extensions of this study and recommend the use

of a larger data set so that the conditional four-moment pricing model can be

investigated with a large number of portfolios.
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Table 6.1 Summary statistics of portfolio return distributions based on the 3920
observations in the study period

Item

Portfolio 1
Portfolio 2
Portfolio 3
Portfolio 4
Portfolio 5
Portfolio 6
Portfolio 7
Portfolio 8
Portfolio 9
Portfolio 10
Portfolio 11
Portfolio 12
Portfolio 13
Portfolio 14
Portfolio 15
Portfolio 16
Composite Index
All Ords

Mean

0.0106
0.0219
0.0112
0.0138
0.0298
0.0276
0.0125
0.0141
0.0199
0.0141
0.0108
0.0254
0.0210
0.0170
0.0096
0.0236
0.0235
0.0382

Max

27.6072
28.6624
31.0057
8.3127

37.2071
19.2242
19.3193
44.1651
16.9588
9.3188
8.9449

24.3079
7.5202
8.6934

18.3856
5.8698
4.4691
6.0666

Min

-39.1399
-35.8522
-29.9952
-33.4042
-26.3932
-24.3248
-21.1739
-23.8296
-18.1925
-16.0245
-23.3255
-24.4780
-7.8442

-10.7848
-11.0805
-14.6947
-17.1663
-28.7585

SD

1.7696
2.0376
2.0716
1.1978
2.0405
1.4406
1.1923
1.7585
1.3500
1.5782
1.2613
1.3406
0.7821
0.7634
0.8905
0.7766
0.6787
1.0187

Skewness

-0.6740
-0.0448
-0.0813
-3.3610
0.0700

-0.4140
-0.7341
0.6062

-0.2286
-0.0910
-1.3196
0.2234

-1.3010
-1.8787
3.3553

-5.5398
-5.6505
-6.4200

Excess
kurtosis

8.1035
0.1283
0.3586

75.9250
-0.2762
6.2190

25.2797
10.0909
5.5744

-1.2202
16.4429
31.0144
39.8060

108.0084
122.4609
140.7268
118.3724
168.0749

Notes:
1. Data is from 02/01/1985 through 30/06/2000.
2. All rates are measured in per cent per day.
3. When constructing portfolios, the security betas were computed first using all 3920

observations. The 128 securities were then grouped into portfolios each comprising
eight securities according to the size of beta. Portfolio 1 comprises securities with the
highest set of betas and portfolio 2 comprise securities with the next highest set of
betas, and so on.

4. Skewness is computed as
1 T

— ]TR -

'- where R, is the return on a day t and

&R is the standard deviation of returns.

5. Excess kurtosis is computed as

day t and &R is the standard deviation of returns.

- 3 where Rt is the return on a
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Table 6.2. Summary statistics of portfolio return distributions based on the 2646
observations in the testing period

Item

Portfolio 1
Portfolio 2
Portfolio 3
Portfolio 4
Portfolio 5
Portfolio 6
Portfolio 7
Portfolio 8
Portfolio 9
Portfolio 10
Portfolio 11
Portfolio 12
Portfolio 13
Portfolio 14
Portfolio 15
Portfolio 16
Market
(Composite)
Market (All Ords)

Mean

0.0229
0.0185

-0.0028
-0.0037
0.0330
0.0190
0.0084
0.0411
0.0014
0.0153
0.0262
0.0047
0.0248
0.0265
0.0171
0.0092

0.0147
0.0237

Max

30.922
18.542
6.0373
13.346
37.685
19.049
42.982
28.389
10.762
17.673
23.008
4.8081
29.602
17.071
3.1058
7.4844

4.4691
6.0666

Min

-29.927
-12.634
-11.505
-18.474
-17.753
-8.8884
-10.909
-15.009
-8.3118
-16.923
-23.381
-5.6862
-8.1541
-8.4769
-3.4732
-6.8473

-6.4536
-7.4489

SD

2.2820
1.3899
1.0447
1.1753
1.8998
1.2756
1.6265
1.7035
1.1474
1.0700
1.0613
0.7087
1.5924
0.9345
0.6172
0.5966

0.5617
0.8422

Skewness

-0.0191
0.3451

-0.8131
-0.8421
0.3586
0.6966
1.6819
0.5487
0.4455

-0.4348
0.1272

-0.7203
0.6054
3.2008

-0.2833
2.0815

-6.5337
-0.6050

Excess
kurtosis

-0.1067
3.0034
8.3354
17.435
2.6746
6.3797
24.888
3.3752
4.9018
49.611
137.18
33.778
5.0553
67.678
42.690
228.64

170.46
12.154

Notes:
1. Data is from 02/01/1990 through 30/06/2000.
2. All rates are measured in per cent per day.
3. When constructing portfolios, the security betas were computed first using all 2646

observations. The 128 securities were then grouped into portfolios each comprising
eight securities according to the size of beta. Portfolio 1 comprises securities with the
highest set of betas and portfolio 2 comprise securities with the next highest set of
betas, and so on.

4. Skewness is computed as

&R is the standard deviation of returns.

5. Excess kurtosis is computed as

day / and &R is the standard deviation of returns.

where R, is the return on a day t and

- 3 where R, is the return on a
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Table 6.3 Estimates of risk premiums in unconditional pricing models

Coefficient
Model A: Ru =a0 + al/3lm +cc2)

dx

d2

d3

Model B: Rlt =a0 +alftm +a2n

A '

d2

Model C: Rjt =oc0 + ocxPim +a36

A

Model D: Ru = a0 +axfilm +slt

a,

Estimate

0.0231

-0.0888

0.1295

-0.0525

0.0355

-0.0453

0.0235

0.0308

-0.0595

0.0450

0.0271

-0.0135

/-value

1.1323

-1.2980

0.7S31

-0.3231

2.6574*

-1.5662

1.1165

2.4761**

-1.6920

1.5621

2.1082**

-0.8282

Notes:
1. * Indicates significant at the 1 % level and ** significant at the 5% level.

2. Ri, denotes the return on portfolio / on a day /; Pim,Yim ,0im the estimated beta,

co-skewness and co-kurtosis of portfolio /; and or, ,a2 ,a3 the market risk
premiums of the respective risks.

3. All rates are measured in percent per day.
4. do,d1,d2,d3 are the averages of estimates obtained from 2646 cross-sectional,

regressions.
5. When estimating Model A, eight portfolios were formed according to the size of beta,

gamma and theta estimates. When estimating models B, C and D, 16 portfolios were
constructed, with each containing eight securities. The reason for coming up with
higher number of portfolios is because kurtosis is not included in models B and D and
co-skewness is not included in models C and D.
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Table 6.4 Estimates of risk premiums in conditional pricing models using
Composite Index return

Model

Model Ac

Estimate
/-value
Model Bc

Estimate
/-value
Model Cc

Estimate
/-value
Model Dc

Estimate
/-value

0.049
1.774

0.096
4.995*

0.074
4.300*

0.091
5.051*

Up Market

I
0.549
5.882*

0.399
10.33*

0.419
9.008*

0.296
13.93*

-0.199
-0.822

-0.099
-3.444*

-

-

0.009
0.042

-

-0.096
-2.561**

-

-0.005
-0.181

-0.029
-1.590

-0.016
-0.872

-0.042
-2.316*

Down Market

A
-0.774
-7.978*

-0.524
-13.39*

-0.575
-11.73*

-0.347
-16.26*

8<

0.482
1.866

0.156
5.193*

-

-

-0.119
-0.499

-

0.196
4.476*

-

Notes:
1. 'indicates significant at the 1% level and " significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: Rmt-R^O and down market: R^-Rf^O where Rmt and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

5. Model Ac:

Ru = So, + £«*&, + 52C 0 ~ *)/?*, + < W f a + SA, 0- ~ * K . + 5S.Keun
+ S6l(l-K)9im+sil

Rit denotes the return on portfolio i on a day /; Pim,yim,0lm the estimated beta, co-

skewness and co-kurtosis of portfolio i; Su, S3t, 5U ( S2I, SAI, S6I) are the market risk

premiums for the respective risks in the up market (down markei) on a day /; K = 1 for

up market and K = 0 for down market.

6. Models Bc, Cc and Dc are obtained by letting Sst = 86: = 0, S3I = SAI = 0 and

§Jt = SAt = 5St = 86I = 0 respectively in Model Ac.

7. Sl,S3,S5 and 52,8A,S6 are the averages of estimates obtained in 1371 and 1275

cross-sectional regressions respectively.
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Table 6.5 Estimates of risk premiums in conditional pricing models using
Australian All Ordinaries Price Index return

Model

Model Ac

Estimate
/-value
Model B°
Estimate
/-value
Model Cc

Estimate
/-value
Model Dc

Estimate
/-value

So

0.054
1.807

0.063
3.571

0.047
2.844

0.039
2.619

UD Market

I
0.499
1.952

0.542
12.525*

0.535
4.368*

0.515
19.385*

-0.351
-0.622

-0.047
-1.275

-

-

0.369
0.633

-

-0.030
-0.237

-

K
-0.020
-0.592

0.015
0.753

0.015
0.754

0.026
1.552

Down

I
-0.666

-2.030**

-0.666
-13.79*

-0.757
-6.182*

-0.611
-22.74*

Market

I
0.812
1.247

0.055
1.315

-

-

K
-0.735
-1.038

-

0.139
1.131

-

Notes:
1. 'indicates significant at the 1% level and **significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in percent per day.
4. Up market: R^-R^O and down market: Rmt-R^O where Rm and Rft are the market

and risk-free returns; and the number of up market days is 1362 and the number of
down market days is 1284.

5. Model Ac:
Ru =5o, + * i M . +S2l(l-K)/3im +53lKyim + 5At(l-K)yim +85lK0im

+ S6l(l-ic)9im+sil

Rit denotes the return on portfolio i on a day /; fim, yim, 0im the estimated beta,

co-skewness and co-kurtosis of portfolio /; Su, S3I, S5l ( 8ZI, 5M, S6t) are the market

risk premiums for the respective risks in the up market (down market) on a day /;

K = 1 for up market and K = 0 for down market.
6. Models Bc, Cc and Dc are obtained by letting S$l =56l=0, Sit =S4l=0 and

S3t = 54t = S5I = 56I = 0 respectively in Model Ac.

7. 8X, S3,55 and 52, 5A, S6 are the averages of estimates obtained in 1362 and 1275

cross-sectional regressions respectively.
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Table 6.6 Estimates of risk premiums in conditional pricing models when the data
generating process to estimate portfolio beta, co-skewness and
co-kurtosis is used

Model

Model Ac

Estimate
/-value
Model Bc

Estimate
/-value
Model Cc

Estimate
/-value
Model Dc

Estimate
/-value

0.044
1.587

0.091
4.722*

0.069
4.000*

0.086
4.762*

Up

$

0.549
5.881*

0.399
10.334

0.420
9.007*

0.296
13.927

Market

A
-0.199
-0.822

-0.099
' -3.444*

0.009
0.042

-

-0.096
-2.560"

-

So

-0.011
-0.355

-0.035
-1.874

-0.0209
-1.116

-0.047
-2.605*

Down

-0.774
-7.977*

-0.524
-13.39*

-0.575
-11.73*

-0.347
-16.26*

Market

0.482
1.866

0.1562
5.193*

-

-

-0.119
-0.499

-

0.196
4.477*

-

Notes:
1. 'indicates significant at the 1% level and "significant at the 5% level.
2. The equally weighted average sample security return is proxied as the market return.
3. The 90-day bank-accepted bill rate is proxied as the risk-free return.
4. All rates are measured in per cent per day.
5. Up market: Rmt-R^O and down market: RmrRnO where Rint and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

6. Model Ac:

+ S6l(l-K)9im+sit

Rit denotes the return on portfolio i on a day /; fiim, yim, 6^ the estimated beta,

co-skewness and co-kurtosis of portfolio i; Su, S3l, S5l (821, 8At, 56t) are the market

risk premiums for the respective risks in the up market (down market) on a day /;

K - 1 for up market and K = 0 for down market.

7. Models Bc, Ccand Dc are obtained by letting 55l =S6l=0, S2t = 8At = Oand

S3i = S4I = Sst = Sbl = 0 respectively in Model Ac.

8. S^SjJs and 82,84,S6 are the averages of estimates obtained in 1371 and 1275

cross-sectional regressions respectively.
9. The DGP used in estimating Model Ac:

*> ~Rf =coi+cu(Rml -Rf)+c2i{Rmt -E(RM)Y +c3i(Rml -E(Rm)f +eit

10. The DGPs used in estimating Models Bc, Cc and Dc are obtained by letting c3l- = 0,

c • = 0 and c2i = c3/ = 0 respectively, in the DGP used in estimating Model Ac.
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Table 6.7 Estimates of risk premiums in conditional pricing models using
instrumental variable method of estimation and Composite Index return

Model

Model Ac

Estimate
/-value
Mode] Be

Estimate

Mo.;lC c

Estimate
/-value
Model Dc

Estimate
/-value

4
-0.222
-1.849

-0.069
-0.767

0.022
0.214

0.009
0.242

Up Market

J,
0.363
1.256

0.622
2.032"

-0.158
-0.427

0.388
10.21*

0.456
0.488

-0.158
-0.484

-

-

S5

-0.169
-0.176

-

0.553
1.431

-

0.119
0.847

0.033
0.284

-0.113
-1.009

0.095
2.271*

Down Market

I
-0.634
-1.815

-0.321
-0.915

-0.599
-1.606

-0.500
-11.06*

5A

-0.128
-0.135

-0.046
-0.119

-

-

0.221
0.213

-

0.233
0.594

-

Notes:
1. 'indicates significant at the 1% level and "significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: R^-R^O and down market: R^-Rf^O where R^ and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

5. Model Ae:
+ 52I (1 - S3lrcylm + S4I (1 - K)yim

Rit denotes the return on portfolio / on a day /; J3im ,/im ,9^ the estimated beta,

co-skewness and co-kurtosis of portfolio i; Su, 5it, 6st ( 52l, SAt, 56t) are the market

risk premiums for the respective risks in the up market (down market) on a day /;

K = 1 for up market and K = 0 for down market.

6. Models Bc, Cc and Dc are obtained by letting 5St =S6l=0, 53l = 8M = Oand

53I = 8M = S5I = 86I = 0 respectively in Model Ac.

7. SjJ^Ss a n d 4>£>>^6 a r e t h e av e r age s of estimates obtained in 1371 and 1275
cross-sectional regressions respectively.
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Table 6.7 Estimates of risk premiums in conditional pricing models using
instrumental variable method of estimation and Composite Index return

Model

Model Ac

Estimate
/-value
Model Bc

Estimate
/-value
Model Cc

Estimate
/-value
Model Dc

Estimate
/-value

-0.222
-1.849

-0.069
-0.767

0.022
0.214

0.009
0.242

Up Market

I
0.363
1.256

0.622
2.032**

-0.158
-0.427

0.388
10.21*

0.456
0.488

-0.158
-0.484

-

-

-0.169
-0.176

-

0.553
1.431

-

4
0.119
0.847

0.033
0.284

-0.113
-1.009

0.095
2.271*

Down

K
-0.634
-1.815

-0.321
-0.915

-0.599
-1.606

-0.500
-11.06*

Market

I
-0.128
-0.135

-0.046
-0.119

-

-

0.221
0.213

-

0.233
0.594

-

Notes:
1. 'indicates significant at the 1% level and "significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: R^-R^O and down market: R^-Rf^O where K^ and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

5. Model Ac:
2,0 - x)P,m + 8vKyim + S4l (1 - K)yim

Rit denotes the return on portfolio / on a day /; fl^, yim, Q-m the estimated beta,
co-skewness and co-kurtosis of portfolio i; 5lt, S3t, S$t ( 52t, 84t, S6t) are the market
risk premiums for the respective risks in the up market (down market) on a day /;
K = 1 for up market and K = 0 for down market.

6. Models Bc, C and Dc are obtained by letting 55t =56l=0, £3, = S4l - Oand

S3I = 5At = 55, =S6l=0 respectively in Model Ac.

7. Sl,S2,S5 and S2,S4,S6 are the averages of estimates obtained in 1371 and 1275

cross-sectional regressions respectively.
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Table 6.8 Estimates of risk premiums in conditional pricing models with up
market and down market defined as Rmt >0 and RmtO respectively
and using Composite Index return

Model

Model Ac

Estimate
/-value
Model Bc

Estimate
/-value
Model Cc

Estimate
/-value
Model De

Estimate
/-value

0.051
1.831

0.092
4.833*

0.0767
4.385*

0.089
4.932*

Up

0.562
6.063*

0.399
10.373

0.418
9.028'

0.297
14.03'

Market

-0.193
-0.806

-0.098
* -3.402*

5s

-0.013
-0.057

-

-0.098
-2.630*

-

4
-0.008
-0.259

-0.027
-1.455

-0.018
-1.030

-0.040
-2.209**

Down

A
-0.804
-8.246*

-0.533
-13.59*

-0.584
-11.81*

-0.355
-16.63*

Market

J,
0.484
1.854

0.157
5.163*

-

-

56

-0.096
-0.401

-

0.202
4.574"

-

Notes:
1. 'indicates significant at the 1% level and ** significant at the 5% level.
2. All rates are measured in per cent per day.
3. Rni is the market return; and the number of up market days is 1385 and the number of

down market days is 1261.
4. Model Ac:

Ru =S0, + £„*&, +82l{\-K)Pim +S3lfcrim + SAI(l-K)rim +S5lK0im

+ S6l(l-K)9im+£il

Rit denotes the return on portfolio / on a day /; J3im,yim,Oim the estimated beta,
co-skewness and co-kurtosis of portfolio /; Su, 53t, SSt ( S21, 5M, 56l) are the market
risk premiums for the respective risks in the up market (down market) on a day /;
K = 1 for up market and re = 0 for down market.

5. Models Bc, Cc and Dc are obtained by letting 8it =S6l=0, 83I = SAt = Oand

S3I = S4, = SSI = S6l = 0 in Model Ac respectively.
6. K = 1 for up market and K = 0 for down market days.

7. J , , d%,85 and S2,84,S6 are the averages of estimates obtained in 1385 and 1261

cross-sectional regressions respectively.
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Table 6.9 Estimates of risk premiums in conditional two-moment pricing model
using Composite Index return in sub-sample periods

Testing period

Full Period
01/1990-
06/2000
Sub-period 1
01/1990-
06/1991
Sub-period 2
07/1991 -
12/1992
Sub-period 3
01/1993-
06/1994
Sub-period 4
07/1994-
12/1995
Sub-period 5
01/1996-
06/1997
Sub-period 6
07/1997-
12/1998
Sub-period 7
01/1999-
06/2000

No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value
No of days
Estimate
/-value

Up Market

I
0.0913

5.0509*

0.0531
1.2041

0.1475
2.4982"

0.1261
2.9151*

0.1731
3.9291*

0.1933
6.2599*

0.0156
0.2445

-0.0970
-2.1120**

1371
0.2963
13.927*

176
0.2876

5.7030*
185

0.2246
3.2093*

205
0.3872

6.6485*
199

0.1653
3.7160*

227
0.1694

4.9403*
188

0.4236
5.7135*

191
0.4380

7.7817*

Down Market

I
-0.0419

-2.3155**

-0.0930
-2.3354**

0.0229
0.5853

0.0075
0.1315

-0.1222
0.4515

-0.1043
-2.5156"

-0.0633
-0.9010

0.0496
1.2252

1275
-0.3466

-16.262*
202

-0.2547
-5.5615*

193
-0.3364

-5.0031*
173

-0.4344
-6.6297*

179
-0.2131

-5.3739*
151

-0.2707
-6.6378*

190
-0.5287

-7.4522*
187

-0.3793
-8.1484*

Notes:
1. 'indicates significant at the 1% level and "significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: R^-Rf^O and down market: Rmt-Rft<0 where R^ and Rft are the market

and risk-free returns respectively.

5. Model Dc: Rit = SOI + SuKj3im + S2l (1 - K)Pim + su, Ru denotes the return on

portfolio / on a day /; /?,„, the estimated beta of portfolio /; 8U (S2t) is the market risk

premiums for beta risk in the up market (down market) on a day /; K = 1 for
up market and K = 0 for down market.

6. S0,Sl and S2 are the averages of estimates of the cross-sectional regressions.
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Table 6.10 Estimates of risk premiums in conditional three-moment pricing model
using Composite Index return in sub-sample periods

Testing
period

Full Period
01/1990-
06/2000
Sub-period 1
01/1990-
06/1991
Sub-period 2
07/1991 -
12/1992
Sub-period 3
01/1993-
06/1994
Sub-period 4
07/1994-
12/1995
Sub-period 5
01/1996-
06/1997
Sub-period 6
07/1997-
12/1998
Sub-period 7
01/1999-
06/2000

Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value
Days
Estimate
/-value

0.096
4.995*

0.073
1.178

0.205
3.163*

0.099
2.761*

0.111
2.128"

0.167
5.493*

0.036
0.556

-0.038
-0.897

Up Market

0.399
10.33'

0.477
2.529"

0.204
1.669

0.449
7.181*

0.340
3.898*

0.256
5.497*

0.595
6.075*

0.502
5.886*

1371
-0.099

-3.444*
176

-0.165
-1.023

185
-0.029
-0.309

205
-0.041
-1.047

199
-0.135

-2.752*
227

-0.064
-3.161*

188
-0.172

-3.079*
191

-0.106
-1.526

Down Market

4
-0.029
-1.590

-0.119
-2.077"

-0.017
-0.393

0.045
1.045

-0.047
-1.257

-0.063
-1.663

-0.047
-0.701

0.048
1.194

52

-0.524
-13.39*

-0.522
-3.097*

-0.439
-3.672*

-0.522
-7.90*

-0.464
-8.059*

-0.459
-9.203*

-0.704
-7.800*

-0.537
-7.079*

1275
0.156

5.193*
202

0.259
1.806

193
0.106
1.327

173
0.066
1.725

179
0.216

6.042*
151

0.153
4.453*

190
0.144

2.504**
187

0.138
2.039*

Notes:
1. * Indicates significant at the 1% level and " significant at the 5% level.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: R^-R^O and down market: Rmt-Rfi<0 where Rmt and Rn are the market

and risk-free returns.
5. Model Bc: Ra = 5OI + 5uKfiim + S2l (1 - K)(3im + S3licyim + SAl (1 - re)yinl + su,

Rit denotes the return on portfolio / on a day t\ fiim,yim the estimated beta and co-

skewness of portfolio /; 5U, S3I (52 l , S4I) are the market risk premiums for the

respective risks in the up market (down market) on a day /; K = 1 for up market and

K = 0 for down market.

6. S0,Sl,S3 and S4 are the averages of estimates obtained in cross-sectional regressions.
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Table 6.11 Summary statistics of market beta risk premiums obtained in the
estimation of the conditional two-moment pricing model

Statistic

Number of observations
Mean
(/-value)
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Up Market

1371
0.2963

(13.927)*
5.3951

-6.9003
0.7877

-0.8121
13.0862

Down Market

1275
-0.3466

(-16.262)*
6.2616

-4.5316
0.7611
0.2227
9.0725

Notes:
1. 'indicates significant at the 1% level.
2. The equally weighted average sample security return is proxied as the market return.
3. The 9Q-day bank-accepted bill rate is proxied as the risk-free return.
4. All rates are measured in per cent per day.
5. Up market: R ^ - R ^ and down market: R^-Rf^O where R^ and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

1 T (R -IfY
6. Skewness is computed as — Y i —'- where R, is the return on a day t and

1 V a )
&„ is the standard deviation of returns.

7. Excess kurtosis is computed as — 3 where Rt is the return on a

day / and aR is the standard deviation of returns.

8. The model estimated here is: Rit = SOl + SuKflim + 52t (1 - K)f5im + s,

Rit denotes the return on portfolio i on a day /; fiim is the estimated beta of portfolio i;

5U (82I) is the market risk premium for the beta risk in the up market (down market)

on a day t; K = \ for up market and K = 0 for down market.
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Table 6.12 Summary statistics of market beta and gamma risk premiums obtained
in the estimation of the conditional three-moment pricing model

S t a « c

Number of observations
Mean
(/-value)
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Up Market

1371
0.3995

(10.334)*
9.6927

-12.9082
1.4313

-1.2340
19.1843

1371
-0.0999

(-3.444)*
11.0065
-8.3708
1.0742
0.9098

22.5424

Down Market

1275
-0.5235

(-13.392)*
11.6666

-13.0547
1.3951
0.2031

19.8859

1275
0.1561

(5.193)*
9.5378

-9.2332
1.0736

-0.0715
20.1409

Notes:
1. 'indicates significant at the 1% level.
2. The equally weighted average sample security return is proxied as the market return.
3. The 90-day bank-accepted bill rate is proxied as the risk-free return.
4. All rates are measured in per cent per day.
5. Up market: R^-R^O and down market: R^-R^O where Rmt and R« are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

1 - ^
6. Skewness is computed as — ^

R,-<

aR is the standard deviation of returns.

7. Excess kurtosis is computed as

day / and aR is the standard deviation of returns.

where Rt is the return on a day / and

- 3 where Rt is the return on a

8. The model estimated here is:
R* = So, + *„*&, + Slt (1 - K)pim + 83tKYim + S4t (1 - K)yim + s,

Rit denotes the return on portfolio / on a day /; fiim,Yim the estimated beta and

co-skewness of portfolio /; Su, S3t ( S21, 5At) are the market risk premiums for the

respective risks in the up market (down market) on a day t; K = \ for up market and

K = 0 for down market.
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Figure 6.1 Mean returns of portfolios used in the conditional two-moment
pricing model

o
* 0
c

S -0.2

-0.4-

-0.6-

-0.8-

1 2 3 4 5 6 7 8 9 10 11 12

Portfolio

-Up market —•—Down market

Notes:
1. The equally weighted average sample security return is proxied as the market return.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: Rmt-RftX) and down market: Rmt-Rft<0 where R^ and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

5. Model De: Rit = SOl + 8xtKfiim + S2l (1 - K)fiim + sit,

Rit denotes the return on portfolio i on a day /; fi^ the estimated beta of portfolio /;

Su (S2t) is the market risk premiums for beta risk in the up market (down market)

on a day /; K = 1 for up market and K = 0 for down market.
6. When estimating Model Ac, sixteen portfolios were formed using beta sizes.
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Figure 6.2 Mean returns of portfolios used in the conditional three-moment
pricing model

0.2-

(0
-0.2-

-0.4-

-0.6-

-0.8-

1 2 3 4 5 6 7 8 9 10 11 12 13

Portfolio

• Up market -•— Down market

Notes:
1. The equally weighted average sample security return is proxied as the market return.
2. The 90-day bank-accepted bill rate is proxied as the risk-free return.
3. All rates are measured in per cent per day.
4. Up market: R ^ - R ^ and down market: R^-R^O where R,,,, and Rft are the market

and risk-free returns; and the number of up market days is 1371 and the number of
down market days is 1275.

5. Model Bc:
Rit = SQI + SxtKp.m + S2I (1 - K)Pim + S3lKyim + S4I (1 - K)yim + s,

Rit denotes the return on portfolio / on a day t; Pim,yin the estimated beta and

co-skewness of portfolio /; Slt, S3l (8 l t , 8AI) are the market risk premiums for the

respective risks in the up market (down market) on a day t; K = \ for up market and

K = 0 for down market.
6. When estimating Model Bc, sixteen portfolios were formed using security beta

and gamma sizes.



Chapter 7

Modelling the Risk and Return
Relationship Conditional on Market
Volatility

7.1 Introduction

When testing the validity of asset pricing models, especially the CAPM, many

studies (Kim and Zumwalt, 1979; Bhardwaj and Brooks, 1993; Pettengill,

Sundaram and Mathur, 1995; Crombez and Vander Vennet, 2000) account for

market movements, defined as up and down markets. Likewise, this thesis makes

considerable progress in this direction in the previous chapter. To classify up and

down markets various definitions have been used. For example1, Kim and

Zumwalt (1979) used three threshold levels, namely, average monthly market

return, average risk-free rate and zero.

Several studies have investigated the risk-return relationship in the tails of the

market return distribution. For example, Crombez and Vander Vennet (2000)

1 See Section 3.3.4 for more references.

_ _
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conducted an extensive investigation into this relationship. First, they defined up

and down markets with two thresholds: (i) zero and (ii) the risk-free rate. Further,

to define three regimes for market movements, namely, substantially upward

moving, neutral, and substantial bear, the following threshold points were used:

(iii) the average positive market return and average negative market return, (iv)

the average positive market return plus half the standard deviation of positive

market returns and average negative market return less half the standard deviation

of negative market returns, and (v) the average positive market return plus three-

quarters of the standard deviation of positive market returns and average negative

market return less three-quarters of the standard deviation of negative market

returns. Crombez and Vander Vennet examined the beta risk-return relationship in

the aforementioned three market regimes and assessed the robustness of the

regime classification by varying the width of the neutral interval. They found the

conditional beta risk-return relationship to be stronger as the classification of up

and down markets became more pronounced. Silvapulle and Granger (2001), on

the other hand, studied the beta-return relationship over the bear, usual and bull

markets, defined using various percentiles of the bivariate distribution of security

and market returns.

An alternative approach to capture market movements is through various market

volatility regimes. It has been argued in the finance literature and media that high

volatility leads to high returns. Two interesting questions arise from this debate:
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(i) Does the beta-return relationship depend on the various market volatility

regimes? and (ii) Are the betas corresponding to these volatility regimes priced?

The main objective of this chapter is to investigate whether securities' responses

to the market vary, depending on changing market volatility as defined by ARCH-

type models. In particular, we aim to investigate whether market risks as

measured by betas estimated across three different market conditions are useful in

explaining asset/portfolio returns. Postulating three distinct betas across the three

market volatility regimes, a three-state regime-switching threshold model, with

percentiles as threshold parameters, will be employed to examine the above

issues.

In the previous chapter, we described a three-step analytical procedure to study

CAPMs with higher-order co-moments. This involved the construction of

portfolios, the estimation of higher-order co-moments and the estimation of risk

premiums. In this chapter, we adopt the same approach, though omitting step one

- the construction of portfolios.

Modelling CAPM beta instability using volatility processes is not new. See

Section 3.3.5 for a brief discussion on time-varying CAPM beta conditional on

ARCH/GARCH volatility processes. Further, CAPM beta conditional on time-

varying market volatility can be investigated in a number of ways:
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(i) as proposed in the next section, using a threshold model, which

assumes that the switch from one regime to the other is abrupt,

(ii) assuming the transition from one regime to the other is smooth,

whereby logistic or smooth transition models can be used. See

Franses and van Dijk (2000) for details,

(iii) assuming the regimes are unobservable, whereby the Markov

switching model developed by Hamilton (1988) can be used as in

Huang (2000) and Assos (1998).

Investigation of (ii) and (iii) are fetare research topics.

In Section 3.3, we cited empirical evidence raising concern about the ability of a

single beta to explain cross-sectional variation of security/poitfolio returns.

Security or portfolio systematic risk was observed to vary quite significantly over

time. Further, as has been noted in Section 3.3.5, it is well-known that the

volatility of financial time series, particularly in high frequency data, changes

oyer time. In this chapter v/e consider another possibility of incorporating market

movements into the asset pricing model by incluuing changes in conditional

market volatility. We achieve this by partitioning the market returns into three

regimes corresponding to the size of the conditional market volatility modelled

via an ARCH/GARCH-type process.
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This chapter is organised as follows: In Section 7.2, a brief introduction to

volatility models is given. In Section 7.3, we derive a three-beta asset pricing

model. The hypotheses of interest are given in Section 7.4 followed by a

description of the econometric methodology in Section 7.5. The data series used

in this study are described in Section 7.6. Section 7.7 is devoted to the empirical

results and their analysis. This is followed by a concluding section.

7.2 Modelling market volatility

It is well-knowia that the security or portfolio return-generating process in general

is unstable and highly volatile. The model that has been used successfully to

capture volatility in financial time series is the ARCH model due to the seminal

paper by Engle (1982). The ARCH model allows the current conditional variance

to be a function of the past squared error terms. This is consistent with volatility

clustering. Bollerslev (1986) later generalised the ARCH (GARCH) model such

that the current conditional variance is allowed to be a function of the past

conditional variance and past squared error terms.

The return-generating process can be written as:

ARMA(m,n) mean: R, = /u + '£aftl_i + Y^Pj£i-j + s<» (7.2.1)
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where £,/Q,_, ~ (o,af), Q,_, is the information set available at time t-1, and

the conditional variance, a? is defined as:

^) : a] =
1=1

(7.2.2)

Several studies reveal that the risk as measured by variance and the expected

returns tend to be positively correlated (Engle, Lilien and Robins, 1987). The fact

that an increase in risk tends to result in high expected returns is captured by the

following GARCH model, by including a conditional variance or conditional

standard deviation term in the mean equation given in (7.2.1) so that:

R, = (7.2.3)
M

The equations (7.2.2) and (7.2.3) together are referred to as the GARCH-in-mean

(GARCH-M(p,q)) model. The parameter X is the contemporaneous returns

response to the change of conditional variance. Further extensions of the ARCH

model are available in the vast literature2 on volatility modelling. For example,

Engle and Ng (1993) argued that there is a negative relationship between security

returns volatility and the sign of stock returns. The asymmetric volatility model,

referred to as the threshold ARCH model, can model this phenomenon.

2 EGARCH(p,?) model (see Nelson, 1991) and TGARCH(p,q) model (see Glosten, Jagannathan

and Runkle, 1989) are two other important conditional volatility models proposed in the literature.

See Bollerslev, Engle and Nelson (1994) for a survey.
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7.3 Development of the asset pricing models

In the following section, we define three market regimes and develop a

conditional three-beta security return-generating process. We then apply the

security return-generating process to a portfolio and obtain a three-beta asset

pricing model.

7.3.1 Market regimes

First, we fit a volatility model for daily market returns and obtain the estimates for

conditional variance a]. Then, based on the magnitude of these estimates we

classify daily volatilities belonging to one of three market volatility regimes, using

appropriately-defined indicator functions.

Define three indicator functions ILI,Iut and Im as follows:

!,.=1 LI

Jl if °]«>l
0 otherwise

fl // a2
L<c

0 otherwise

and

1,,.=
[1 if af>a2

H

10 otherwise

(7.3.1)
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where a\ and a2
H are the 10th and 90th percentiles of the conditional variance

series, which are used as threshold parameters. These are arbitrarily chosen

percentiles. We study the sensitivity of the results to several different percentiles

in this empirical analysis later in Section 7.7.3. The above indicator functions are

then used to partition the market volatility into three groups: days with low

(lu=l), usual (lut=l) and high (lHl =l) market volatilities. Hence, three

market regimes: low volatility market (LVM), usual volatility market (UVM) and

high volatility market (HVM) are defined.

7,3.2 Development of a three-beta security return-generating

process

In empirical investigation of the single-factor CAPM, the beta is estimated using

the market model given as:

Model A: Ru =a,+ /?,./?„„ + eu (7.3.2)

where, eu ~.Ar(o,cr2). We refer to Model A as the unconditional single-beta

security return-generating process.

To estimate the betas in the low, usual and high volatility markets, we extend the

market model given in (7.3.2) as:

Model B: Ru =a,+ £(3 i k {lklRml) + su, (7-3.3)
k=I,,U,H
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where, eb ~ N(o,a2). The ^ t t , fiiV and ^ are defined as the systematic risks

corresponding to the LVM, UVM and HVM regimes respectively. The model in

(7.3.3) is a richer specification. It is a three-state regime-switching model with

percentiles as threshold parameters.

Writing (7.3.3) in the following expanded form,

and introducing some notation we obtain,

Rit = a, + PiLRL
m, + PM + PmK> + su (7.3.5)

where Rt,=(lLtRml), C = ( V O and RH
ml ={lHlRml). We refer to (7.3.5) as

the conditional three-beta security return-generating process.

7.3.3 Portfolio analysis of the three-beta model

In this section, to establish testable hypotheses on the three betas, we analyse the

mean and variance of a portfolio comprised of securities with the return-

generating process given in (7.3.5).

Let us consider a portfolio comprised of n securities with weights w, such that

, = 1. Now, from (7.3.5) we obtain the portfolio return, Rpl as:
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K

/=i

Letting a, =2>,.a,.,

and £p/ = 2 w«£''' w e c a n w r i t e (7.3.6) as:

The mean and variance of the portfolio return are given as:

E{RP)=<*P + PPLE{K, )+ PpUE{K,

and

(7.3.6)

(7.3.7)

(7.3.8)

(7.3.9)

For a well-diversified portfolio, the unsystematic portion of the variance Var[ep)

approaches zero. Further, let us examine the covariance terms:

Lov[Kmt,KmlJ- t\KmlKmt)- J±{Kml )Z,\Kml) n-\\N\

= -E(Rk
ml)E{RLh
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where k*l and k,l = L,U,H. When the time period is long enough3, it is

reasonable to assume that the covariance terms in (7.3.9) are negligible compared

to the variance terms. Then, equation (7.3.9) reduces to:

where

and

vl ~ \fipi J Var\Ki)= component of total portfolio variation

systematically related to the LVM, (7.3.12)

Py =\Ppu)Var\Rmt)- component of total portfolio variation

systematically related to the UVM

% ={ftpjifV
ar\Rmt)- component of total portfolio variation

systematically related to the HVM.

(7.3.13)

(7.3.14)

7.3.3.1 Relationship between the portfolio betas and returns

Assuming all components of the total portfolio variation are priced, we may

express the expected portfolio return as:

3 In that case, one of the terms in (7.3.10) will always be very small. Consequently, the covariance

will also be very small. The impact of an extended time period captured in ths analysis on the

magnitude of the variance terms in (7.3.9) will be much smaller.



CHAPTER 7. CONDITIONAL VOLATILITY MODEL 189

E(Rp)=Rf +KXVL +K2VU +K3VH (7.3.15)

where Kx, K2 and K2 are constants. Now, replacing VL,VU and VH with their

explicit expressions given in (7.3.12-7.3.14), we can write (7.3.15) as:

E(Rp)=Rf pU
(7.3.16)

Hence follows:

where

(7.3.17)

(7.3.17) as a three-beta asset pricing model.

7.3.3.2 Relationship between the single-beta CAFM and the three-beta asset

pricing model

We show below that when the three-beta asset pricing model is assumed to be

applicable to the market portfolio, the single-beta CAPM is just a special case of

the three-beta asset pricing model.

When (7.3.17) is applied to the market portfolio we obtain,

E(Rm ) = Rf+ ALj3mL + Ay PmU + XHPmH (7.3.18)
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Further, for the market portfolio pmL = fimU = pmH = i . Therefore, the above

equation reduces to

{) . (7.3.19)

(7.3.20)

(7.3.21)

(7.3.22)

Now, if beta is assumed to be constant (single-beta), we have

PPL=PPU=PPH=PP

and after substituting (7.3.20) in (7.3.17), it follows

E(Rp)=Rf+(AL +*.„ +XH)fip.

Hence, from (7.3.21) and (7.3.19) we obtain

which is the single-beta CAPM.

7.4 Hypotheses of interest

1. We postulate that beta is unstable across the various volatility regimes. To test

this postulation, we conduct hypothesis testing in two stages. First, we test

separately whether the regression coefficients of the three-beta return-generating

process defined in (7.3.5) are significantly different from zero, or not. The

hypotheses to be tested are:

HQ:pik = 0 and Hx : J3ik * 0 , k = L,U,H. (7.4.1)

Second, we conduct multi-parameter testing, in that we test whether the regression

coefficients in (7.3.5) are equal, or not. The hypotheses tested are:
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and Hl : at least one of piL,PiV,PIH is* p .

(7.4.2)

In line with the conventional assumption that the larger the variance the lesser the

preference for risky assets (investors are risk averse), we postulate further, that:

2. Investors expect a premium tc accept variation in the HVM. This means we

expect K3 (see the fourth term in (7.3.15)) to be positive and its significance can

be investigated by testing

H0:ZH = 0 against Hl:AH>0. (7.4.3)

3. Investors are willing to pay a high premium for variation in the LVM. This

means that we expect K1 (see the : rond term in (7.3.15)) to be negative and its

significance can be investigated by testing

H0:AL=0 against Hx : XL < 0. (7.4.4)

4. The beta risk is priced in the UVM. This can be investigated by testing

Ho: Xu = 0 against Hx: ^ * 0. (7.4.5)

It is not clear as to what sign we should expect for the beta risk premium in the

UVM. Hence, we do not postulate a sign for K2 (see the third term in (7.3.15)).
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7.5 Methodology

We discuss below the estimation of conditional volatility models under various

assumptions on the error distribution. The two-step procedure used in the analysis

of the conditional risk-return relationship is outlined :,n Section 7.5.2.

7.5.1 Estimating conditional volatility

We model the variance of market returns according to an ARCH/GARCH

specification. We also consider three distributional assumptions for the error term

in (7.2.1); these being normal, Student-/ and skewed Student-/.

Under the normality assumption, when the conditional mean and the conditional

variance are correctly specified, the quasi-maximum likelihood estimator is

consistent (Weiss, 1986; Bollerslev and Wooldridge, 1992), although, this

estimator is inefficient. When the error distribution departs from normality, the

degree of inefficiency gets worse (Engle and Gonzalez-Rivera, 1991).

In the finance literature, security and market return distributions, especially with

high frequency data, are found to be skewed and have fat-tails. Hence, the use of

fat-tail distributions such as Student-/ and skewed Student-/ is very common in

empirical studies on modelling return distributions in finance (Pagan, 1996; Palm,

1996; Bollerslev, Chou and Kroner, 1992). When an appropriate error distribution
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is assumed, a reduction in the excess kurtosis displayed by the residuals of

conditional heteroscedasticity models is expected. These distributions tend to

capture high kurtosis better than the normal distribution (Bollerslev, 1987; Hsieh,

1989; Palm and Vlaar, 1997).

7.5.2 Analysis of the conditional risk-return relationship

As indicated earlier, the analysis of the risk-return relationship is based on a two-

stage procedure. In the first stage of the analysis, the systematic risks, /? t t, yf?(.y

and/?lW, are estimated. In the second stage we test whether the systematic risks are

priced or not.

7.5.2.1 Estimating beta risks

We estimate the models given in (7.3.2) and (7.3.3) for each security in the sample

using time series data. In this stage of the analysis, through the empirical results of

the hypotheses tests given in (7.4.1-7.4.2), we will be able to ascertain whether or

not the beta is unstable across the three regimes. It is also possible to identify

whether there exist any observable unusual pattern in terms of the magnitude of

the betas across the LVM, UVM and the HVM.
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7.5.2.2 Testing procedure

Li the second stage, in the sample period immediately following the estimation

period, using cross-sectional data we test whether the systematic risks are priced or

not. Here, we consider the betas estimated in the first stage as proxies for the true

betas in a time period immediately following the estimation period. To ascertain

whether beta in the three regimes is priced, the cross-sectional regression model

ModelC: Ru =l0 +XlfiIL +ZuJ3iu +XHfiiH +sa (7.5.1)

where eu ~N\p,(T2) is estimated, and the hypotheses given in (7.4.3-7.4.5) are

tested.

7.6 Data

We use two data sets: one is the set of Dow Jones industrial securities and the

other is a set of value weighted industry portfolios in Australia. The former

consists of thirty stocks in the US market index, while the latter belong to a small

open economy. The data sets are described in the following two sections.

7.6.1 Dow Jones industrial securities

The daily price series of the thirty securities in the Dow Jones Industrial index

covers the period 2 January 1990 to 31 December 1999, consisting of 2529

observations for each security. The daily retums are calculated as the change in the
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logarithm of the closing prices of successive days. Return on the Standard and

Poor's 500 Index (S&P500) is used to proxy the market portfolio return.

Table 7.1 provides some summary statistics of the thirty securities and the market

portfolio returns. The returns vary widely across the securities, the highest being

18.99 per cent and the lowest -26.15 per cent. The market return, as expected, has

a smaller range with the lowest and the highest return being -7.11 per cent and

4.99 per cent respectively. The standard deviation of the market return distribution,

0.89 per cent, is much smaller compared to that of the securities, of which the

lowest is 1.31 per cent and the highest is 2.45 per cent4. The market and a third of

the securities are negatively skewed. The excess kurtosis of one security, Boeing,

is extremely high compared to the others. When Boeing is left out the excess

kurtosis varies only between 8.94 and 0.85. The excess kurtosis of the market

return distribution is 5.23.

The return, absolute return and squared return for the S&P500 are plotted i:«

Figures 7.1-7.3. The spikes in Figure 7.1 indicate that the return series is not apure

4 In the full sample period the variance of the equally-weighted average return of the thirty

securities is higher than the variance of the S&P500 returns.
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random walk process5. This is confirmed by volatility clustering evident in Figures

7.2 and 7.3. Thus, it is apparent that the S&P500 return series in the sample period

has properties contrasting to those of a Gaussian distribution.

7.6.2 Australian industry portfolios

The second data set includes the daily price series of fourteen industry portfolios in

Australia. The daily returns are calculated as the change in the logarithm of the

closing prices of successive days. Although there is information on twenty-four

industry portfolios in Australia, ten were omitted from the analysis due to the non-

availability of data for the entire sample period o.C our study. The time period we

investigate is from 04 January 1988 to 29 October 1996. The return series on the

Australian All Ordinaries Index is used as a proxy for the market return. The

summary statistics of this data set are given in Table 7.2. The excess kurtosis of

the media sector is 18.44, which is very high compared to the rest. When the

media sector is excluded, the excess kurtosis then ranges only from 1.64 to 8.49.

The media sector earned the highest and the lowest returns compared to the other

portfolios studied here. Ten of the fourteen sector return distributions are

negatively skewed. The return distribution of the Australian All Ordinaries Index

is also negatively skewed.

5 If a return series is a 'white noise' process the series should be identically and independently

distributed with zero mean and constant variance (Akgiray, 1989). Moreover, the absolute and

squared returns should also lack dependency (Song, Liu and Romilly, 1998).
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The return, absolute return and squared return series of the Australian All

Ordinaries are plotted in Figures 7.4-7.6. The spikes in Figure 7.4 indicate that the

returns series is not a pure random walk process. This is further confirmed by

volatility clustering evident in Figures 7.5 and 7.6. This observation, together with

the relevant descriptive statistics provided in Table 7.2, indicate that the Australian

All Ordinaries Index return series over the sample period has properties that are

inconsistent with those of a Gaussian distribution.

7.7 Empirical results and analysis

We provide below the estimated volatility model and make some comments on the

validity of the assumptions made in the development of the three-beta asset pricing

model. The analysis of the results of the Dow Jones industrial securities and

Australian industry portfolios are presented separately in Sections 7.7.1 and 7.7.2,

respectively. The sensitivity of the results to regime classification is analysed in

Section 7.7.3.

GARCH specification

Consider that the market return has the mean equation:

and the variance equation:

(7.7.1)

(7.7.2)
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This is the GARCH(1,1)6 model which was estimated using the maximum

likelihood approach7. The estimate of the GARCH(1,1) process for S&P500

returns with normal error is:

a? = 0.0057 + 0.0529£,2_, + 0.9408(7,1,, (7.7.3)

(0.0021) (0.0094) (0.0106)

and for the Australian All Ordinaries returns with normal error is:

of = 0.0730 + 0.07465,1, + 0.8208cr/
2_J. (7.7.4)

(0.0254) (0.0199) (0.0499)

The figures in brackets are standard errors. All parameters in (7.5.3) and (7.5.4)

are significantly different from zero at the 1% level. In both cases, the models are

stationary with the sum of the coefficients being less than unity. In the estimated

mean equation /i = 0.0595 (significantly different from zero at the 1% level) for

the S&P500 returns and for the Australian All Ordinaries // = 0.0227, although it

is not significantly different from zero.

Testing for the validity of the assumptions about covariance terms

in the development of the pricing model given in (7.3.17), we made two

assumptions: (i) the model is valid for well-diversified portfolios and (ii) compared

6 Most studies that implement GARCW{p,q) models adopt low orders forp ad q. They seem to be

sufficient to model the variance dynamics over long periods (Bollerslev, Chou and Kroner, 1992).
7 The log-likelihood functions of the error distributions (normal, Student-/ and skewed Student-/)

are available '.r. Laurent and Peters (2002).
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to the variance terms, the covariance terms in (7.3.9) are negligible. Since the aim

of forming portfolios is to diversify, Australian industry portfolios are (expected to

be) largely diversified by construction. The variance and covariance terms of the

two market portfolios (S&P500 and Australian All Ordinaries) corresponding to

the three volatility regimes, given in Table 7.3, suggest that assumption (ii) above

appears to hold at least in these two cases.

7.7.1 Dow Jones securities

We present the results in two sections. First, the beta estimates are discussed and

then the beta risk premiums are analysed.

7.7.1.1 Estimates of conditional betas

As explain-1 in Section 7.5.1, we estimated the conditional variance series

corresponding to three distributions for the error term of the market return-

generating process defined in (7.7.1). Table 7.4 presents the summary statistics of

the estimated conditional variance obtained under normal, Student-? and skewed

Student-? error distributions. The summary statistics of the conditional variance

estimates under Student-/ and skewed Student-? assumptions appear to be very

similar. Therefore, we report the results of the analysis with normal and Student-?

errors only.
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We estimated the single-beta (Model A) and the three-beta (Model B) models

using time series data over the period 02 January 1990 to 30 June 1999, spanning

2400 days. The estimates of these model parameters under the normal and Student-

/ error distributional assumptions are reported in Tables 7.5 and 7.6 respectively.

The explanatory variables in Model B in (7.3.3) are found to have very low

correlations8, and therefore, they will not pose any multicollinearity problem?. The

second column in Tables 7.5 and 7.6 gives the estimated intercept that represents

the security return when all three betas are zero. For all securities, the intercept is

not significantly different from zero. The conditional betas in the LVM, UVM and

HVM are significantly different from zero at the 1% level. The estimated constant

beta reported in column 6 in Table 7.5, is also significantly different from zero at

the 1% level.

Further, for eight securities, namely, Boeing, Amex, Home Depot, GE (General

Electric), IBM, JP Morgan, Walmart and Intel, the inequality PL<J3V< PH was

observed, and in another thirteen securities, the beta estimates are in the reverse

order, hi the remaining nine securities, no clear pattern emerged.

'The pair wise Pearson correlation coefficient of Rm ,Rm and Rm lies between-0.0031 and

-0.0018.
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The results of the test of the hypothesis specified in (7.4.2) indicates that in about a

third of the securities, the null hypothesis of equal conditional betas across the

three regimes is rejected at the 10% level in favour of at least one of the betas is

different from the constant beta. The results are reported in column 7 in Tables 7.5

and 7.6. Further, the beta in the UVM and the constant beta displayed graphically

in Figure 7.9 reveal almost identical patterns. The mean beta estimate in the UVM

(1.0280) and the mean constant beta (1.0208) were found to be equal. The beta in

the LVM appears to be higher than the constant beta in many (about 60 per cent)

securities and in the HVM the split is even. These are depicted in Figures 7.7 and

7.8. The mean beta estimate of the thirty securities in the LVM is higher than the

mean beta estimate in the UVM.

7.7.1.2 Beta risk premiums

Having found strong evidence that beta is significant in the LVM, UVM and

HVM, we extended our investigation to test whether or not the beta risks in these

markets are priced and the risk premiums are equal or not. To do this, we

considered Model C given in (7.5.1) with pL,Pu and J3H as explanatory

variables. In the 128 days that followed the 2400-day estimation period, we

estimated the cross-sectional regressions and obtained 128 estimates for each beta

risk premium, kL,Xu and XH . Tables 7.7 and 7.8 report the summary statistics of

the estimated premiums together with the results of testing H0:X~t=0 against
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Ht : X. * 0 for / =L, U, H under the normal and Students error. In both cases none

of the betas is priced at the 5% significance level. However, XH has the correct

sign, while XL does not. The Jarque-Bera test indicates that the distributions of X

estimates in the low, usual and high volatility regimes are normal.

The bottom row entries in Tables 7.5 and 7.6 show that in the sample period that

we have considered, the mean beta in the three market regimes is different from

what we expect in the market portfolio, which is 1. Therefore, we cannot expect

(7.3.19) to hold, m fact, the sum of beta risk premiums in this case is 0.2860 (see

Table 7.15) and the excess market return in the sample period is 0.0374.

7.7.2 Australian portfolios

The analysis carried out in Section 7.7.1 was repeated for the fourteen Australian

industry portfolios. The results of the estimation of beta risk premiums are

reported in this section.

7.7.2.1 Estimates of conditional betas

The summary statistics of the estimated conditional variance series with nonnal,

Student-/ and skewed Student-/ errors are given in Table 7.9. The summary

statistics do net differ under Student-/ and skewed Student-/ distributional
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assumptions. Therefore, we report the results of the analysis with normal and

Student-/ errors only.

We estimated the three-beta return-generating process (Model B) for portfolios

using time series data over the period 04 January 1988 to 29 December 1995

spanning 2000 days. These results are reported in Tables 7.10 and 7.11. The

explanatory variables are not highly correlated9 and therefore will not pose

multicollinearity problems in estimating the regression parameters. Li all

portfolios, the intercept term is not significantly different from zero. On the other

hand, the betas in the low, usual and high market volatility regimes are positive

and significant at the 1% level for all portfolios and with normal and Student-/

errors. The constant beta estimates (in (7.3.2)) are also positive and significantly

different from zero at the 1% level.

One industry, Media, reveals that J3L < fly < J3H. The beta estimates for the

Alcohol & tobacco and Oil & gas industries are in the reverse order. The rest of

the industries did not reveal any notable pattern. The mean beta estimates of the

fourteen portfolios reveal that mean beta is the highest in the low volatility regime

followed by the mean beta in the high volatility regime and then by the mean beta

'The pair wise Pearson correlation coefficient of Rm,Rm and Rm lies between-0.0008 and

-0.0000.
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in the usual market volatility regime. Dow Jones securities displayed similar

results.

We examined the differences and similarities between the beta estimates across the

different regimes by conducting the hypothesis test specified in (7.4.2). The results

are reported in column 7 in Tables 7.10 and 7.11. For three industries, namely Oil

& gas, Transport and Food & household goods, the null hypothesis of no

difference is rejected at the 5% level under the normal error assumption. Under the

Student-* error assumption, the results are slightly different with the Banks &

finance portfolio now showing a significant difference at the 5% level, instead of

the Oil & gas and Food & household goods industries.

To gain further insight into the differences and similarities between the beta

estimates corresponding to the different regimes, we display betas in the three

regimes along with the constant beta graphically in Figures 7.10-7.12. It is clear in

all three figures that there is considerable variation in beta across the portfolios. As

with the Dow Jones securities, the beta in the UVM is closely associated with the

constant beta. Further, the mean constant beta is closer to the mean beta in the

UVM than to the mean beta in the LVM and HVM. (See bottom rows in Tables

7.10 and 7.11).
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7.7.2.2 Beta risk premiums

The results of the estimates of Model C given in (7.5.1) with conditional betas

corresponding to LVM, UVM and HVM as explanatory variables are given in

Tables 7.12 and 7.13. The model was estimated using cross-sectional regressions

over 211 days, following the beta estimation period of 2000 days. The beta risk

premium in the UVM is priced, with the mean premium significantly different

from zero at the 10% level. However, the mean beta risk premium in the UVM is

negative. The mean beta risk premium in the HVM is positive, as expected, but not

significantly different from zero. This insignificance may be due to the small

number of portfolios used in this study. The distribution of the beta risk premium

in each regime failed to reject the Jarque-Bera test of normality at the 1% level.

In the sample period that we have considered, the mean beta of Australian industry

portfolios in the three market regimes is less than what is expected of the market

portfolio, which is 1. Therefore, it is not surprising that the sum of the beta risk

premiums (-0.1134; see Table 7.14) is different from the excess market return

(-0.0096). It is interesting to note that the sum of beta risk premiums and the

excess market return are both negative in this case, while they are both positive in

the analysis of the Dow Jones industrial securities. The reasons for these

observations need further investigation.
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7.7.3 Sensitivity analysis

In this section, we investigate the sensitivity of conditional betas in the low, usual

and high market volatility regimes to the various percentiles (of the estimated

conditional volatility series) that define the three market regimes. We consider

three distinct percentiles: (1%, 99%), (5%, 95%) and (10%, 90%) as threshold

parameters.

We estimated the conditional betas of the Dow Jones securities and the Australian

industry portfolios across the three volatility regimes (defined using various

percentiles). In both cases pu is less sensitive lo the various percentiles compared

to fiL and fiH. Of course, as exacted, when the percentile corresponding to the

LVM (HVM) decreases (increases) fiv gets closer to the constant beta.

The estimated beta risk premiums also appear to be sensitive to the chosen

percentiles. This is clear in Tables 7.14 and 7.15 where the means of the estimated

beta risk premium in the Australian portfolios and the Dow Jones securities,

respectively, are given. With the Australian industry portfolios, it appears that the

mean beta risk premium in the UVM is negative, significantly different from zero

and decreases as the percentile that corresponds to the LVM (HVM) increases

(decreases). Whereas, with the Dow Jones securities, the mean beta risk premium

in the UVM is not significantly different from zero and the sign of the mean beta



CHAPTER 7. CONDITIONAL VOLATILITY MODEL 207

risk premium changes when the percentiles are varied. In both data sets, the mean

beta risk premium in the LVM and HVM appears to be positive, but not

significantly different from zero. However, the mean beta risk premium in the

HVM is larger than the mean beta risk premium in the LVM in the Dow Jones

securities. We observe the opposite results for the Australian portfolios.

7.8 Conclusions

In this chapter, we examined the appropriateness of a conditional three-beta model

as a security return-generating process. Having modelled the market return

volatility as a GARCH(1,1) process, we defined three volatility regimes based on

the size of the conditional volatilities. Using a three-state regime-switching model,

with the 10th and 90th percentiles of volatility as threshold parameters, a three-beta

asset pricing model is specified. The three betas correspond to low, usual and high

market volatilities.

We developed a three-beta pricing model for portfolios by assuming (i)

diversification eliminates the unsystematic risk, measured by the error variance

and (ii) when the time period captured in the analysis is long enough, the empirical

results show that the covariance terms can be considered negligible compared to

the variances. The thirty Dow Jones industrial securities and the fourteen

Australian industry portfolios were found to satisfy the second assumption.
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Clearly, the Dow Jones industrial securities are not portfolios hence the first

assumption is not expected to hold.

An analysis of the results overwhelmingly suggests that the betas in the low, usual

and high volatility regimes are positive and significant. Most of the security/

portfolio betas were not found to be significantly different in the three regimes.

We also estimated the beta for each security and portfolio in the two data sets

assuming beta is constant across all three regimes. The constant beta in the full

sample is positive and significant. The association between the constant beta and

the beta in the usual market volatility regime is very strong, as expected, and the

association gets stronger as the classification of the up and down markets becomes

more pronounced.

We also investigated whether or not the betas are priced in the cross-sectional

regression. With the Australian industry portfolios, we find that the average beta

risk premium in the usual market volatility regime is significantly different from

zero, and negative. We postulated a positive premium and a negative premium for

beta risk in the high and low market volatility regimes respectively. However, for

the Australian portfolios and the Dow Jones securities, the beta risk premiums are

positive and not significantly different from zero in both market volatility regimes.

That is, we have no evidence to suggest that the components of the total portfolio
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return variations systematically related to the low and high market volatility

regimes are priced.

The two markets we analysed in this chapter are negatively skewed. An extension

of this study to emerging markets, which are positively skewed, might give further

insights into how the three-beta pricing model would work in different economies.

The impact of market volatility on asset pricing models might be uncovered when

the market volatility is partitioned into only two regimes instead of the three that

we have studied in this chapter. As has been discussed in the introduction, this

chapter assumes the volatility is known and the beta's response to various

volatility regimes is abrupt. Application of smooth transition and Markov-

switching processes to model the CAPM-beta might provide some fruitful results,

which would be topics for future research.
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Table 7.1 Some descriptive statistics of the distribution of the continuously
compounded daily returns of Dow Jones industrial securities

Security

Dupont
Boeing
Caterpillar
Alcoa
Amex
ATT
CITIGRP
Coca Cola
Home Depot
GE
GM
Kodak
Exxon
Honeywell
HP
IBM
INTL Paper
JP Morgan
JJ
MCD
MERCK
MSFT
MMM
PM
PG
SBC
United Tec
Walmart
Disney
Intel
S&P500

Mean

0.0462
0.0292
0.0467
0.0588
0.0669
0.0350
0.1135
0.0711
0.1439
0.0895
0.0313
0.0267
0.0463
0.0747
0.0896
0.0602
0.0274
0.0418
0.0727
0.0610
0.0652
0.1808
0.0371
0.0200
0.0724
0.0441
0.0620
0.0993
0.0452
0.1440

Max

7.0881
11.0001
10.3002
13.1870
11.9843
10.6430
16.8568
8.0139
9.0151
7.6111
7.2282

11.2117
5.7618

12.4121
18.9916
12.3636
9.2126
7.8933
7.5801

10.3225
8.0339
9.9091
5.8988

11.3062
6.5404
7.9739
8.3160
7.6559

11.2655
12.8636

Min

-9.5310
-18.1134
-12.9720
-10.2400
-11.5044
-10.7423
-11.5280
-11.0643
-10.6972
-7.0941
-8.3560

-14.3635
-7.6801

-13.5240
-19.3955
-16.1969
-11.0408
-11.8600
-7.2523
-10.5928
-9.4102
-9.2520
-10.0779
-26.1523
-10.2393
-8.7999
-7.8685
-10.2679
-12.3298
-14.5082

Standard
deviation

1.6919
1.8494
1.9613
1.8128
2.0567
1.6695
2.2182
1.5641
1.9771
1.4209
1.8813
1.7540
1.3082
1.7790
2.3927
1.9095
1.7273
1.7366
1.5700
1.6075
1.6561
2.1497
1.3888
1.8854
1.5121
1.5713
1.5727
1.8838
1.7615
2.4507

Skewness

0.0108
-0.4647
-0.1179
0.4634
0.1355
0.1371
0.1527
0.0309
-0.0346
0.0729
0.1255
-0.3096
0.0915
0.0896
-0.0023
0.0524
0.0679
0.1248
0.0987
0.1597
-0.1096
0.1493
-0.2513
-1.4248
-0.0434
0.0090
0.0773
0.0394
0.0749
-0.2181

Excess
kurtosis
1.9618
8.9387
3.8819
3.2183
2.3662
5.1325
3.3720
2.6940
1.8392
1.9475
0.8476
7.9584
1.4233
5.0728
6.0335
6.6584
2.3054
2.6191
1.1124
2.7837
1.5949
1.1298
3.5187

20.1354
1.8753
1.8249
1.9465
1.6758
3.7074
2.3294

0.0564 4.9887 -7.1127 0.8896 -0.3458 5.2327

Notes:
1. Sample period is 02 January 1990 - 31 December 1999 and statistics are based on 2528

observations. The figures are given as daily percentages.

1 T (R -JR V
2. Skewness is computed as — V — where R. is the return in day t and aR

1 \ a J
is

standard deviation of returns. Excess kurtosis is computed as - 3 .
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Table 7.2 Some descriptive statistics of the distribution of the continuously
compounded daily returns of Australian industry portfolios

Industry portfolio

Alcohol & tobacco
Banks & finance
Building materials
Chemicals
Developers &

contractors
Diversified resources
Engineering
Food & household

goods
Media
Oil & gas
Paper & packaging
Retail
Solid fuels
Transport
All Ords

Mean

0.0173
0.0419
0.0173
0.0484

0.0214
0.0517
0.0150

0.0258
0.0409
0.0375
0.0250
0.0208
0.0230
0.0132
0.0265

Max

5.3245
5.8253
3.8593
6.5418

3.4345
4.9845
5.2929

10.6032
22.9683
4.3657
5.6948
4.8496

11.5480
5.8325
3.7817

Min

-6.0148
-7.1480
-7.9626
-9.1292

-6.1888
-7.5387
-8.2022

-6.4924
-15.494
-8.4277
-8.1917
-7.0938
-6.4683
-7.0321
-8.4411

Standard
deviation

1.2126
1.1112
0.9776
1.1524

0.9191
1.1966
1.0562

0.9756
1.8712
1.0253
1.1016
1.0622
1.3454
1.1149
0.8307

Skewness

-0.1162
0.0086

-0.2669
-0.1729

-0.3230
-0.0915
-0.1970

0.4516
0.4453

-0.2248
-0.1110
-0.1731
0.1597

-0.1205
-0.5920

Excess
kurtosis

2.3002
2.6581
2.8614
3.7289

3.2014
1.6409
3.0470

8.4872
18.4350
3.6292
2.9680
3.2560
4.6016
2.2102
6.1126

Notes:
1. Sample period is 04 January 1988 - 29 October 1996.
2. The figures are given as daily percentages.
3. Statistics are based on 2211 observations.

— \3
i T \ R — R

4. Skewness is computed as — Y —„ I where R, is the return in day / and

&B is the standard deviation of returns.
A

5. Excess kurtosis is computed as
TTTi

- 3 where R, is the return in day

and &D is the standard deviation of returns.
A



CHAPTER 7. CONDITIONAL VOLATILITY MODEL 212

Table 7.3 Variance-covariance of Australian All Ordinaries Index and S&P500

Index returns corresponding to volatility regimes

Var{RL
mt)

Var{R"mt)

Cov{RL
mt,R

u
m,)

Cov{R"m,X,)

Australian All
Ordinaries

0.04137

0.55037

0.09864

-0.00000

-0.00001

-0.00016

S&P 500

0.02377

0.57426

0.19533

-0.00025

-0.00019

-0.00054

Notes:

1. Var{RL
mt)=Var(lLtRml),

2. CoV{RitXlh
k,l = L,U,H.

Var(RH
mt)=Var{lmRml).

^l and
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Table 7.4 Descriptive statistics of the conditional variance series of 2 "cP500
Index returns

Ttfm
XlCHl

Sample size
Mean
Median
Maximum
Minimum
Standard deviation
lO^percentile
90thpercentile
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

Normal
2528

0.8025
0.6119
5.4028
0.2100
0.6570
0.2891
1.4547
3.2058
14.457

26346.49
0.0000

Error distribution
Student-/

2528
0.8063
0.6132
4.8103
0.2005
0.6404
0.2805
1.5144
2.7401

10.4653

14699.73
0.0000

Skewed Student-/
2528

0.8041
0.6119
4.8097
0.1998
0.6390
0.2799
1.5089
2.7485

10.5330

14869.10
0.0000

Notes:
1. Volatility model: mean equation Rml =/u + et and the variance equation

a-,2 =
2. The GARCH(1,1) model is estimated using maximum likelihood.

where R, is the return in day / and
1 T ( R —

3. Skewness is -reputed as — j j ~

&R is the standard deviation of returns.

4. Excess kurtosis is computed as ^SMl
— \4

TVx
- 3 where R, is the return in day /

and &R is the standard deviation of returns.

5. JB statistic is computed as: +^(K~3Y] whereas the sample size, .Sis

the skewness, K is the kurtosis and k represents the number of estimated coefficients,
used to create the series. Under the null hypothesis of a normal distribution, the
JB statistic is distributed as ^ 2 with 2 degrees of freedom.
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Table 7.5 Beta estimates for Dow Jones industrial securities based on three-beta
return-generating process with normal errors

Security

Dupont
Boeing
Caterpillar
Alcoa
Amex
ATT
CITIGRP
Coca Cola
Home Depot
GE
GM
Kodak
Exxon
Honeywell
HP
IBM
INTL Paper
JP Morgan
JJ
MCD
MERCK
MSFT
MMM
PM
PG
SBC
United Tec
Walmart
Disney
Intel '

1 * o
-0.0051
-0.0236
-0.0038
0.0138

-0.0104
-0.0190
0.0235
0.0117
0.0686
0.0240

-0.0271
-0.0135
0.0107
0.0218
0.0188
0.0018

-0.0161
-0.0242
0.0203
0.0101
0.0118
0.1081

-0.0023
-0.0266
0.0149

-0.0054
0.0114
0.0273

-0.0136
0.0637

PL

U07T
0.8322*
0.8881*
1.1958*
0.9924*
1.1118*
2.0025*
1.2252*
1.0328*
1.0650*
1.3115*
0.9019*
0.7577'
1.0896*
1.4897*
0.8232*
1.0766*
1.0634*
0.9757*
1.0930*
0.6245*
1.1126*
0.7911*
0.9210*
1.3821*
1.5595*
0.9643*
1.0939*
1.2266*
1.3827*

l.oooT
0.9072*
0.9578*
0.7700*
1.2752*
0.8807*
1.5394*
1.0456*
1.2874*
1.1515*
1.0432*
0.7262*
0.7306*
0.9239*
1.2851*
0.9953*
0.7901*
1.1043*
1.0635*
0.9037*
1.1239*
1.3592*
0.7196*
0.9855*
0.9494*
0.8730*
0.8559*
1.2368*
0.9529*
1.4022*

HP
07359*"
1.0112*
0.8330*
0.6733*
1.6203*
0.9765*
1.4949*
0.9939*
1.5064*
1.2093*
0.9200*
0.6274*
0.4765*
0.8983*
1.1346*
1.1653*
0.6334*
1.2835*
0.7737*
0.8294*
0.8904*
1.2835*
0.6406*
0.6225*
0.9512*
0.6162*
0.9154*
1.3923*
1.0644*
1.4662*

0.9920*
0.8340*
0.9075*
0.7429*
1.3346*
0.8229*
1.5742*
1.0322*
1.3328*
1.1596*
1.0492*
0.7545*
0.6598*
0.8664*
1.3123*
0.9879*
0.7223*
1.1804*
1.0316*
0.8257*
1.0462*
1.4137*
0.7110*
0.9559*
0.9463*
0.8707*
0.8582*
1.2688*
0.9537*
1.4770*

F-value

3.4671T
0.1955
0.1919
1.5749

7.2428*
0.9609
1.4608
1.2930

3.7821*
0.5075
1.1839
0.8633

6.6511*
0.2944
0.6446

2.1761***
3.1089"

1.5772
6.6039*
0.8633

5.8194*
0.3883
0.2982

4.4597*
2.1973***
13.2952*

0.1168
1.3347
0.7615
0.1435

Mean 0.0091 1.1031 1.0280 0.9880 1.0208

Notes:
1. 'indicates significant at 1% level, ** at5% level and *** at 10% level.
2. The model estimated is:

ModelB: Rit =a, + £ A* ( 4 *„,,)+*» where, elt ~ N(O,<72).
k=L,U,H

3. F- value is the test statistic in the hypothesis test where
Ho 'PL = PU=PH = PP

 a n d H\ • at least one °f PL>PU and J3H * J3p.

4. Pp is the beta estimate obtained in Model A: Ru - a{ + PjRml + eit.
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Table 7.6 Beta estimates for Dow Jones industrial
return-generating process with Student-/

! Security , n

Pu

l loiO1 07241
0.9204* 0 9771*
0.9556* 0.8364*
0.7526* 0.7166*
1-2822* 1.6036*
0.8885* 0.9529*
1.5305* 1.5237*
1-0517* 0.9954*
1.2890* 1.4981*
1-1472* 1.2155*
1.0261* 0.9638*
0.7387* 0.6013*
0.7301* 0.4935*
0.9287* 0.8787*
1-3079* 1.0708*
0.9726* 1.1994*
0.7833* 0.6590*
1-1039* 1.2900*
1.0654* 0.7780*
0.8975* 0.8494*
1.1164* 0.9312*
1.3510* 1.2915*
0.7.188* 0.6552*
0.9798* 0.6394*
0.9592* 0.9412*
0.8752* 0.6018*
0.8S92* 0.9112*
1.2406" 1.3845*
0.9495* 1.0802*
1.3951* 1.4620*

securities based on three-beta
errors

Dupont
Boeing
Caterpillar
Alcoa
Amex
ATT
CITIGRP
Coca Cola
Home Depot
GE
GM
Kodak
Exxon
Honeywell
HP
IBM
INTL Paper
JP Morgan
JJ
MCD
MERCK
MSFT
MMM
PM
PG
SBC
United Tec
Walmart
Disney
Intel
Mean

"o

-0.0043
-0.0229
-0.0043
0.0132

-0.0098
-0.0184
0.0238
0.0129
0.0685
0.0236

-0.0279
-0.0125
0.0111
0.0218
0.0197

-0.0004
-0.0160
-0.0238
0.0203
0.0101
0.0115
0.1067

-0.0018
-0.0274
0.0166

-0.0053
0.0120
0.0277

-0.0130
0.0623
0.0091

0.9970*
0.7977*
0.9211*
1.2444*
0.9534*
1.1107*
1.9644*
1.0734*
1.0567*
1.1148*
1.3558*
0.8213*
0.6423*
1.1340*
1.4806*
1.0729*
1.0290*
1.0130*
0.9138*
1.0719*
0.4908*
1.2522*
0.6921*
0.9387*
1.2207*
1.6217*
0.9147*
1.0632*
1.1607*
1.5832*
1.0902 1.0273 0.9909

0.9920
0.8340*
0.9075*
0.7429*
1.3346*
0.8229*
1.5742*
1.0322*
1.3328*
1.1596*
1.0492*
0.7545*
0.6598*
0.8664*
1.3123*
0.9879*
0.7223*
1.1804*
1.0316*
0.8257*
1.0462*
1.4137*
0.7110*
0.9559*
0.9463*
0.8707*
0.8582*
1.2688*
0.9537*
1.4770*
1.0208

F-value

3.9240
0.2357
0.3188
1.6575

6.1227*
0.9877
1.1807
0.6523

2.9647**
0.5039
1.0662
0.9183

6.8030*
0.5199
1.5411

2.4712***
1.8147

2.6759**
6.4980*
0.6772

6.0751*
0.0541
0.1708

3.9431*
1.0832

14.0735*
0.0500
1.2571
0.9489
0.3245

Notes:
1. 'indicates significant at 1% level, "at 5% level and *** at 10% level.
2. The model estimated is:

ModelB: Ru =at+ 2 X M J + * * where> */, ~

3. F- value is the test statistic in the hypothesis test where

#o -Pi = Pv =PH=PP and Hx :at least one of pL,pv and PH*Pp.

4. Pp is the beta estimate obtained in Model A: Ru = at + P,Rml + elt.
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Table 7.7 Summary statistics of lambda estimates of Model-C for Dow Jones
industrial securities with normal errors

Statistic
n
Mean
(/-value)
Median
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

128
-0.2573

(-1.3353)
0.0027
6.4286

-7.6874
2.1801

-0.3441
0.5625

4.2126
0.1217

K
128

0.0947
(0.7266)
-0.0059
4.0896
-3.6214
1.4743
0.1273

-0.0657

0.3686
0.8317

K
128

-0.1613
(-0.4684)

-0.2556
12.4156
-9.0592
3.8972
0.3217
0.2624

2.5752
0.2759

XH
128

0.3526
(1.6744)'**

0.4448
6.3749

-6.2822
2.3823

-0.2341
0.1357

1.2678
0.5305

Notes:
1. Model C: Rit = A 0 + ^ ^

2. Skewness is computed as —
TJ— i

the standard deviation of returns.

R -

+ eit where, eit ~N\0,(T2).

where Rt is the return in day / and aR is

3. Excess kurtosis is computed as I — ^ 1 " '» " I ~ 3 where R, is the return in <
\T 1=1 \ aR

and &K is the standard deviation of returns.

4. JB statistic is computed as: — — I S2 +-(K-3)2\ where Nis the sample size, Sis

the skewness, K is the kurtosis and & represents the number of estimated coefficients
used to create the series. Under the null hypothesis of a normal distribution, the JB
statistic is distributed as %2 with 2 degrees of freedom.

5. '"indicates significant at 10% level.

6. XL = estimated beta risk premium in the LVM.

7. Xv = estimated beta risk premium in the UVM.

8. XH = estimated beta risk premium in the HVM.
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Table 7.8 Summary statistics of lambda estimates of Model-C for Dow Jones
industrial securities with Student-r errors

Statistic
n
Mean
(/-value)
Median
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

128
-0.2469

(-1.2546)
-0.0455
6.1157

-6.7261
2.2263

-0.2675
0.0516

1.5408
0.4628

h
128

0.0425
(0.3209)

0.0200
3.7872

-4.6634
1.5000

-0.1916
0.1812

0.9582
0.6193

*v
128

-0.0785
(-0.2252)

-0.2371
11.5272
-9.4068
3.9439
0.3591
0.0919

2.7964
0.2470

128
0.3128

(1.4731)
0.5492
6.4569

-5.8941
2.4026

-0.2750
-0.1211

1.6916
0.4292

Notes:
1.Model C: Rit =A0 +^j3iL +/L2/?/c/ *?^piH +e,, where, eit ~ N(o,a2).

N-kf » 1
2. JB statistic is computed as: N k S2 + -(K - 3)2 ) where Nis the sample size, Sis

6 ^ 4
the skewness, K is the kurtosis and k represents the number of estimated coefficients
used to create the series. Under the null hypothesis of a normal distribution, the JB
statistic is distributed as %2 with 2 degrees of freedom.

3. Skewness is computed as — V —'— where R, is the return in day / and aR is
Tl^\ o-R )

the standard deviation of returns.

4. Excess kurtosis is computed as

and &„ is the standard deviation of returns.

5. XL = estimated beta risk premium in the LVM.

6. i y = estimated beta risk premium in the UVM.

7. XH = estimated beta risk premium in the HVM.

- 3 where R, is the return in day /



CHAPTER 7. CONDITIONAL VOLATILITY MODEL 218

Table 7.9 Descriptive statistics of the distribution of conditional variance series of
Australian All Ordinaries Price Index returns

Statistic
Sample size
Mean
Median
Maximum
Minimum
Standard deviation
lO^percentile
PO^percentile
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

Normal
2000

0.6954
0.6334
6.0063
0.4362
0.3065
0.5090
0.9277
9.5351

137.2447

1599981.0
0.0000

Student-/
2000

0.6813
0.6165
5.4685
0.3804
0.3150
0.4741
0.9473
7.8280

93.5733

765767.4
0.0000

Skewed Student-/
2000

0.6820
0.6162
5.6083
0.3782
0.3206
0.4720
0.9471
7.9454

97.2905

809828.9
0.0000

Notes:
1. Volatility model: mean equaiion Rmt - fi + £,- and the variance equation

2. The GARCH(1,1) model is estimated using maximum likelihood.

1 T(R-flY
3. Skewness is computed as — jj -~ where R, is the return in day / and aR is

the standard deviation of returns.

4. Excess kurtosis is computed as

and &R is the standard deviation of returns.

- 3 where R, is the return in day /

5. JB statistic is computed as: — - f S2 +-(K -3)2 1 where Wis the sample size, Sis

the skewness, K is the kurtosis and k represents the number of estimated coefficients
used to create the series. Under the null hypothesis of a normal distribution, the JB
statistic is distributed as x"1 with 2 degrees of freedom.
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Table 7.10 Beta estimates for Australian industry portfolios based on three-beta
return-generating process with normal errors

Industry portfolio

Alcohol & tobacco
Banks & finance
Building materials
Chemicals
Developers &
contractors
Diversified resources
Engineering
Food & household
goods
Media
Oil & gas
Paper & packaging
Retail
Solid fuels
Transport
Mean

-0.0021
0.0125

-0.0078
0.0297

0.0019
0.0201

-0.0054

0.0054
0.0013
0.0199
-0.0003
-0.0020
0.0068
-0.0155
0.0047

A
0.8863*
1.1577*
0.9714*
0.9032*

0.7291*
1.2188*
0.8929*

0.7228"
1.1435*
0.9089*
0.9161*
0.8656*
0.6234*
1.1138*
0.9324

fiv
0.7964"
1.0520*
0.9445*
0.7033*

0.6829*
1.2488*
0.7318*

0.6626*
1.3984*
0.7744*
0.8914*
0.8881*
0.6799*
0.9801*
0.8882

h
0.6957*
1.1432*
0.9564*
0.7068*

0.7656*
1.1621*
0.7868*

0.8324*
1.5604*
0.5954*
0.9927*
0.8457*
0.5752*
1.1398*
0.9113

K
0.7874*
1.0714*
0.9478'
0.7157*

0.6974*
1.2347*
0.7493*

0.6905*
1.4063*
0.7570*
0.9073*
0.8807*
0.6616*
1.0109*
0.8941

F- value

0.8179
1.5425
0.0721
1.0588

0.8074
1.1228
1.0620

2.6368"
1.6337

3.7738"
0.8873
0.1804
0.4332

3.2314"

Notes:
1. 'indicates significant at 1% level and "significant at 5% level.
2. The model estimated is:

ModelB: Rit = a, + 2> t t(/**„,)+** where ' su ~N[0,a2).
k=L,U,H

3. F- value is the test statistic in the hypothesis test where

HO'PL=PU=PH= PP
 a n d Hi '•at least one °f PL>PV

 and
 P

4. fi is the beta estimate obtained in Model A: Rit = at + /?,J?m/ + su.
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Table 7.11 Beta estimates for Australian industry portfolios based on three-beta
return-generating process with Student-/ errors

Industry portfolio

Alcohol & tobacco
Banks & finance
Building materials
Chemicals
Developers &
contractors
Diversified resources
Engineering
Food & household
goods
Media
Oil & gas
Paper & packaging
Retail
Solid fuels
Transport
Mean

-0.0015
0.0120

-0.0083
0.0297

0.0029
0.0201

-0.0047

0.0055
0.0010
0.0188
0.0003

-0.0017
0.0075

-0.0154
0.0047

A
0.8727*
1.1637*
0.9904*
0.8852*

0.683*
1.2161*
0.7901*

0.7192*
1.1395*
0.9175*
0.9163*
0.8783*
0.6206*
1.0916*
0.9203

Pu
0.8061"
1.0496*
0.9397*
0.7103*

0.6979*
1.2479*
0.7492*

0.6667*
1.3892*
0.7644*
0.8996*
0.8900*
0.6854*
0.9866*
0.8916

PH

0.6562"
1.1481*
0.9734*
0.6766'

0.7012*
1.1731*
0.7338*

0.8031*
1.6014*
0.6541*
0.9443*
0.8333*
0.5537*
1.1056*
0.8970

PP
0.7874"
1.0714*
0.9478*
0.7157*

0.6974*
1.2347*
0.7493*

0.6905*
1.4063*
0.7570*
0.9073*
0.8807*
0.6616*
1.0109*
0.8941

F- value

0.4798
3.4046"

1.2448
0.2588

0.4386
0.9074
0.2150

0.5599
1.8806
0.0914
0.1431
0.8143
0.5547

4.2108*

Notes:
1. 'indicates significant at 1% level and "significant at 5% level.
2. The model estimated is:

Model B: Ru = a,. + £/?«(4# f f l ,)+ ek where, eu ~ N{0,a2).
k=L,U,H

3. F- value is the test statistic in the hypothesis test where

H0:pL=Pu=PH= PP
 and H\ '•at least one °f PL>PV and P

4. P is the beta estimate obtained in Model A: Rit = «,- + PjRM + Eu •
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Table 7.12 Summary statistics of lambda estimates of Model-C for Australian
industry portfolios with normal errors

Statistic
n
Mean
(/-value)
Median
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

k
211

0.1391
(1.4980)

0.0831
3.8725

-3.0763
1.3486
0.1245
3.1507

0.7450
0.6890

k
211

0.1955
(1.0432)

0.3331
7.9399

-7.9240
2.7223

-0.1079
3.1264

0.5497
0.7597

k
211

-0.3595
(-1.6731)"*

-0.6400
8.7440

-9.4594
3.1213

-0.0279
2.8263

0.2927
0.8639

k
211

0.0506
(0.3736)

0.1801
4.6218

-7.2385
1.9691

-0.2854
3.3336

3.8421
0.1465

Notes:

1. Model C: Ru = V

2. Skewness is computed as —
T

the standard deviation of returns.

3. Excess kurtosis is computed as

+ ̂ PiH +£u w h e r e ' Eu ~ M0 '0"2)-

^ 1 - ' where R, is the return in day / and aR is

- 3 where Rt is the return in day /

and aR is the standard deviation of returns.

4. JB statistic is computed as: — — S2 +-{K-3)2 where Nis the sample size, Sis
6 \ 4 )

the skewness, K is the kurtosis and k represents the number of estimated coefficients
used to create the series. Under the null hypothesis of a normal distribution, the JB
statistic is distributed as %2 w ' t n 2 degrees of freedom.

5. '"indicates significant at 10% level.
6. XL = estimated beta risk premium in the LVM.

7. Xy = estimated beta risk premium in the UVM.

8. XH = estimated beta risk premium in the HVM..
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Table 7.13 Summary statistics of lambda estimates of Model-C for Australian
industry portfolios with Student-f errors

Statistic
n
Mean
(/-value)
Median
Maximum
Minimum
Standard deviation
Skewness
Excess kurtosis

Jarque-Bera (JB)
Probability

4
211

0.1940
(2.3062)**

0.1987
3.0213

-2.8893
1.2218
0.0227
2.7981

0.3765
0.8284

4
211

0.1580
(0.8572)

0.2590
7.4546

-7.0981
2.6767
-0.0079
3.1095

0.1077
0.9476

4
211

-0.4834
(-1.8752)*"

-0.8179
10.1928

-10.6157
3.7446
0.1064
3.1551

0.6094
0.7373

4
211

0.1559
(0.9933)

0.2307
5.8362

-6.1912
2.2801

-0.2050
3.0778

1.5305
0.4652

Notes:
1. Model C: R:, = . it w h e r e > £u

1 T (R - # Y
3. Skewness is computed as — V —'- where R, is the return in day / and &R is

the standard deviation of returns.

4. Excess kurtosis is computed as - 3 where R, is the return in day t

and aR is the standard deviation of returns.

5. JB statistic is computed as: — H S2+-(K-3)2 whereNis the sample size, Sis
6 I 4 )

the skewness, K is the kurtosis and k represents the number of estimated coefficients
used to create the series. Under the null hypothesis of a normal distribution, the JB
statistic is distributed as x* w ' t n 2 degrees of freedom.

6. ** Indicates significant at 5% level and *** significant at 10% level.

7. 4 = estimated beta risk premium in the LVM.

8. 4 = estimated beta risk premium in the UVM.

9. XH = estimated beta risk premium in the HVM.
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Table 7.14 Mean beta risk premium estimates of Model-C for Australian industry
portfolios with normal errors

Percentiles
^ow High
volatility volatility

1 99
(/-value)

5 95
(/-value)

10 90
(/-value)

0.2391
(3.0608)*

0.1961
(2.7255)*

0.1391
(1.4980)

~ —— _

\

0.1209
(1.3490)
0.0971

(0.8221)
0.1955

(1.0432)

— • — _

Ay

-0.2019
(-1.6010)
-0.2674

(-1.8977)*"
-0.3595

(-1.6731)***

—

4
-0.1283

(-0.9401)
0.0005

(0.0043)
0.0506

(0.3736)

-0.2093

-0.1698

-0.1134

Notes:
1. Averages are based on 211 observations.
2. * Indicates significant at 1% level and *** significant at 10% level.

3. XL = estimated beta risk premium in the LVM.

4. A,v = estimated beta risk premium in the UVM.

5. A.H = estimated beta risk premium in the HVM.
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Table 7.15 Mean beta risk premium estimates of Model-C for Dow Jones
industrial securities with normal errors

Percentiles

Low High
volatility volatility

1 99
(/-value)

5 95
(/-value)

10 90
(/-value)

K
-0.3762

(-1.9144)***
-0.2940

(-1.5553)
-0.2573

(-1.3353)

0.0906
(1.0675)
0.0475

(0.5491)
0.0947

(0.7266)

Ay

0.1279
(0.5315)
-0.0355

(-0.1205)
-0.1613

(-0.4684)

XH

0.1732
(1.3757)
0.3073

. (1.6589)
0.3526

(1.6744)"*

0.3917

0.3193

0.2860

Notes:
1. Averages are based on 128 observations.
2. *" Indicates significant at 10% level.

3. XL = estimated beta risk premium in the LVM.

4. Xu = estimated beta risk premium in the UVM.

5. XH = estimated beta risk premium in the HVM.
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Figure 7.1 Returns of the S&P500 Index

Notes:
1. Sample period is 02 January 1990-31 December 1999.
2. Sample size is 2528 daily returns.
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Figure 7.2 Absolute returns of the S&P500 Index

Notes:
1. Sample period is 02 January 1990-31 December 1999.
2. Sample size is 2528 daily returns.
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Figure 7.3 Squared returns of the S&P500 Index

Notes:
1. Sample period is 02 January 1990-31 December 1999.
2. Sample size is 2528 daily returns.
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Figure 7.4 Returns of the Australian All Ordinaries Index

Notes:
1. Sample period is 04 January 1988 - 29 October 1996.
2. Sample size is 2211 daily returns.

II
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Figure 7.5 Absolute returns of the Australian All Ordinaries Index

Notes:
1. Sample period is 04 January 1988 - 29 October 1996.
2. Sample size is 2211 daily returns.



CHAPTER 7. CONDITIONAL VOLATILITY MODEL 230

Figure 7.6 Squared returns of the Australian All Ordinaries Index

S
qu

ar
ed

 r
et

ur
n

80 i

70-

60-

50-

40-

30-

20-

10-

(

iiiiiLJL
) 500 1000 1500

Day

I J -

2000

Notes:
1. Sample period is 04 January 1988 - 29 October 1996.
2. Sample size is 2211 daily returns.
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Figure 7.7 Beta in the LVM and constant beta for Dow Jones securities

15

Security

LVM beta - * - Constant beta

Notes:
1. Security 1 corresponds to Dupoint, security 2 corresponds to Boeing in that

order as given in Table 7.1
2. LVM is low volatility market.
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Figure 7.8 Beta in the HVM and constant beta for Dow Jones securities

Notes:
1. Security 1 corresponds to Dupoint, security 2 corresponds to Boeing in that

order as given in Table 7.1
2. HVM is high volatility market.
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Figure 7.9 Beta in the UVM and constant beta for Dow Jones securities

UVM beta - * - Constant beta

Notes:
1. Security 1 corresponds to Dupoint, security 2 corresponds to Boeing in that

order as given in Table 7.1
2. UVM is usual volatility market.
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Figure 7.10 Beta in the LVM and constant beta for Australian portfolios

Notes:
1. Portfolio 1 corresponds to Alcohol & tobacco, portfolio 2 corresponds to

Banks & finance in that order as given in Table 7.2
2. LVM is low volatility market.
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Figure 7.11 Beta in the HVM and constant beta for Australian portfolios

Notes:
1. Portfolio 1 corresponds to Alohol & tobacco, portfolio 2 corresponds to

Banks & finance in that order as given in Table 7.2
2. HVM is high volatility market.
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Figure 7.12 Beta in the UVM.and constant beta for Australian portfolios

Notes:
1. Portfolio 1 corresponds to Alohol & tobacco, portfolio 2 corresponds to

Banks & finance in that order as given in Table 7.2
2. UVM is usual volatility market.



Chapter 8

Conclusion

8.1 Concluding views

This thesis investigates three important issues arising in empirical finance,

namely, (i) performance appraisal of mutual funds using a nonparametric

technique known as data envelopment analysis (DEA). The primary aim was to

address the problems associated with input and output variable selection in the

DEA model. We also investigated the robustness of DEA results to model

misspecification. (ii) An investigation into the importance of higher-order co-

moments in the asset pricing model, and (iii) modelling the risk and return

relationship conditional on various market volatility regimes. The following is a

brief discussion of the main findings of the thesis.

The literature survey presented in Chapter 2 highlights that although DEA is able

to quite easily handle multiple output variables, there is no consensus among

researchers as to the choice of input-output variables in mutual fund performance

appraisal. The major difference is in the choice of output variables. Several

studies considered a single output reflecting the fund returns measured over a

twelve-month period, while others included several output variables such as one-,

237
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three- and five- year annualised returns. This led to the question of an appropriate

time frame that should be captured when appraising mutual funcs.

Studies comparing DEA fund efficiency estimates with those of othe- methods

used in the finance literature, sucb. as the Sharpe index, reported a strong

association between them. Moreover, DEA is able to identify the causes of mutual

fund inefficiency and this is very useful to fund managers, investors and the like.

In the Chapter 2 survey, two main weaknesses in the DEA analysis are identified

and they are addressed in Chapters 4 and 5.

Chapter 4 adopts the DEA technique to measure the relative efficiencies of 257

Australian mutual funds and examines the dependence of efficiency on mutual

fund attributes such as age, size and twelve-month net funds flow, management

strategy and the operating environment using the logistic regression model.

Further, the sensitivity of DEA efficiency to different input-output variable

combinations was investigated. We observe that more funds become efficient

when DEA captures the fund's long-term growth and income distributions rather

than the short or the medium-term ones. The DEA ranking of funds, however, was

independent of the time horizon over which these performance characteristics

were measured. A pleasing aspect of this study is that a new variable - asset

allocation score, constructed to capture management strategy, turned out to be an

important factor in explaining mutual fund inefficiency. Evidence from logistic
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regression analysis suggests that a fund's efficiency depends, to a large extent, on'

the asset allocation score. The asset allocation score is constructed from the fund's

wealth allocation +.o various asset classes. The major source of overall technical

efficiency appeared to be scale efficiency as opposed to pure technical efficiency.

In general, all other things being equal, ths overall technical efficiency and the

scale efficiency are higher for risk-aversive mutual funds with a high positive net

flow of funds.

Chapter 5 contributes to an on-going debate about variable selection in DEA by

investigating the sensitivity of DEA efficiency estimates to including

inappropriate variables and unwittingly omitting several important input variables.

We considered a large sample, 200 production units. Data was simulated from

constant, increasing and decreasing returns-to-scale (RS) Cobb-Douglas

production processes. For constant and decreasing RS processes, DEA with

inelevant inputs tended to over-estimate the efficiency in almost all production

units. The correct RS specification was crucial when the DEA model included

irrelevant variables. On the other hand, when relevant variables were omitted, the

variable RS appeared to be a safer option. The effect of omission of relevant

inputs on individual production unit efficiency was more adverse compared to the

inclusion of irrelevant ones.
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Chapter 3 is devoted to a survey on the risk-return relationship and empirical

analysis of asset pricing models. We highlighted that the risk-return relationship

conditional on market movements and on time-varying volatility models are the

two approaches that have received considerable attention recently. Evidence from

the empirical studies that adopt these approaches is stronger in favour of beta and

of the validity of the single-factor capital asset pricing model (CAPM). We also

noted that numerous studies investigated the ability of CAPM to explain asset

returns by including higher-order co-moments. Prompted by these studies and

their inconclusive findings, we focus on the asset pricing models with higher-

order co-moments and those conditional on various market volatility regimes.

Chapter 6 examines a CAPM that incorporates higher-order co-moments such as

co-skewness and co-kurtosis and tests whether or not the risk premiums of these

co-moments are priced. Acknowledging that using realised return for the

expected ones could give biased results, we tested a higher-order version of the

CAPM in the up and down markets. The up (down) market was defined as the

market return above (below) the risk-free asset return. We compared the

estimates of the unconditional model with those of the conditional model.

Further, we investigated if the risk premiums are different depending on up or

down market movements.
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Using daily returns on 128 Australian stocks, portfolios were formed based on

the assets' beta and high-moment risks. These portfolio returns were then used in

subsequent analysis. We found strong evidence to suggest that the beta and co-

skewness are priced. These significant results were uncovered only in the

conditional asset pricing models, while the unconditional model did not uncover

such a significant relationship. Moreover, we found in the cross-sectional

analysis that the risks have symmetric effects on asset returns in the up and down

market movements. The main findings of this analysis are encouraging, as many

previous studies reported an insignificant relationship between the returns and

high-moment risks.

A conditional three-beta asset-pricing model is derived and tested in Chapter 7.

The literature on asset price movements suggests that financial time series

volatility is clustering and varying over time. The ARCH/GARCH models that

capture these phenomena have also been well developed in the literature. These

models and the revelation in a very large number of studies that beta is not

constant prompted us to examine whether or not the beta is different across the

three market volatility regimes, namely, high, usual and low. A three-state

regime-switching threshold model, which assumes that the switch from one

regime to other is abrupt, is used to address this issue.
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The results based on the Dow Jones industrial securities and the Australian

industry portfolios suggest that the betas in the three market regimes are positive

and significantly different from zero. With the Australian data we observed that

the beta in the usual volatility market (VM) is priced and negative. With both sets

of data we observed that the market price of the beta in the low VM is positive,

which is an unexpected result, and that of the beta in the high VM is positive as

expected; the latter is not found to be statistically significant. Overall, there is no

evidence to suggest that the components of total portfolio variation systematically

related to the low and high market volatility regimes are priced.

8.2 Future research directions

The empirical analysis presented in this thesis raises some interesting issues that

will be potential topics for future research. They are summarised as follows:

• When analysing the performance of mutual funds in Chapter 4, we considered

the minimum initial investment as an input variable in the DEA model. In the

sample data set that we considered, the minimum initial investment varies

from 0 to AUD 500,000. Clearly, small investors will not be able to invest in

mutual funds that demand very large initial investments. For small investors

the interest would lie in funds with either no restriction or which demand only

a small minimum initial investment. Therefore, it will be useful to compare
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the performance and the reasons for under-performance of mutual funds in

the following three cases: (1) all the funds, ignoring the size of the minimum

initial investments, (2) the funds with either no restriction or small minimum

initial investments and (3) funds with high minimum initial investments.

• The simulation experiment conducted in Chapter 5 can be extended to

investigate whether certain types of production units are especially

disadvantaged by model misspecification1 in DEA. As far as we are aware, no

study has undertaken such a task.

• Chapter 6 investigated the conditional asset pricing models that incorporate

higher-order co-moments by applying them to Australian data where the

market return distribution is negatively skewed. On the other hand, many

emerging markets' return distributions are found to be positively skewed,

while the developed markets' return distributions are negatively skewed (see,

for example, Aggarwal, Inclan and Leal, 1999). Thus, an extension of this

investigation into emerging markets, we believe, would give further insights

into how the conditional pricing models would work under different

economic/financial environments. The analysis, especially with the

conditional four-moment pricing model, considered only a very small sample

1 The importance of this issue is backed by the comments made by the editor of Journal of the

Operational Research Society in reviewing the article, Galagedera and Silvapulle (2003).
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of portfolios. The issue of adopting the results of conditional higher-order

pricing models to test risk-return trade-off is not addressed in this thesis and

is be a topic for future research.

The three-beta asset pricing model we proposed in Chapter 7 may be more

suitable for markets with very high conditional volatility. It is also possible

that a two-beta model corresponding to high and low volatilities is more

appropriate than the three-beta model. These models need to be explored

further in future.

The End
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