(320

+

MRS

ga o d
TPy

Tl

-
1
MONASH UNIVERSITY N
THESIS ACCEPTED IN SATISFACTION OF THE =
REQUIREMENTS FOR THE DEGREE OF U
DOCTOR OF PHILOSOPHY »
ONQOOOOOOOQCO LN NN ) m2 [ ENETLELLELEE LN NN %.1
: ‘} Sec. Research Graduate School Committee o
Under the copyright Act 1968, this thesis must be used only under the
¢ : normal conditions of scholarly fair dealing for the purposes of
3 n research, criticism or review. [n particuiar no results or conclusiens
- should be extracted from it, nor should it be copied or closely
] paraphrased in whole or in part without the written consent of the
3 author. Proper written acknowtedgement should be made for any
: w7 assistance obtained from this thesis.
1
E
3
,
; 3
|

e
]
k e




-_H-r.x.a.\_...rg

© Copyright

by

o
S
2]
e
=
=)
e
g
£

2002




Dynamic Reconfiguration under Real-Time Constraints

by

Dean Thompson, BComp (Info. Sys) Hons

Dissertation
Submitted by Dean Thompson
for fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

in the School of Computer Science and Soltware Engincering at

Monash University a

d Monash University
December, 2002 ':




Contents

List of Tables . . . . v v v v i e e e e e e et e e e et e e e e e e e e e e xid
List of Figures . . . . . o0 o o 0o i e e e e e e e e xiii
Abstract . . ... ... ... ..... - 4 |

Acknowledgments . . . . . . . . . .. e e e e e e e e e e, XV

[

1 Imtroduction . ................. e
1.1 Background . .. ... e e e e e e
1.2 Thesis Objectives . . . . . o . v s e e e e e e e e e e e e e

1.3 Rescarch Questions

.
.
.
.
.
.
.
.
.
.
.
.
.
.
1Y [ [ —

14 Overviewof Thesis . . . . . .. ...

2 Introducing Component Based Paradigins . . . .. . ... ... . ... .......
2.1 Components vs. Objects . . .. ... .. e e e
2.1.1 Components .. .. .....

212 ObjectS . . . e e e e e e e e e e e e e e

[S=TR » - v

2.2 Objectives of Component Based Paradigm . . . .. . .. .. PR L .?
2.2.1 Modularity / Flexibility . . . . ... ... .. B ;
222 Consistency . . .. . v v v e e O 3
223 Structure ... ... e e e e 1
224 Seftware Re-Use . . ... .. i ittt e e .. 12
225 TostING . . . o e e e e e, 12 |

il




2.2.6 Configuration Management . . . ... .. .. ittt it e, 13

&

Configuration Management within the Component Based Paradigm .. .. ... .. 14
2.3.1 Objective of Configuration Management . . . . . ... ... ... ... .... 15
2.3.2 Explaining how Configuration Management Works . . . .. ... ... .... 15
2.3.2.1 Binding Manager . .. .. ... .0t o 15
2.3.2.2 InterComponent Communmnications . . . ... ............. 17
2.3.2.3 Manipulating Components . . . .. . ... .. ..., 18
Supporting Configuration Management . . . .. . ... ... ... ... 18
2.4.1 DARWIN Configuration Language . . .. . ... ... ... .......... 19
24.1.1 Importing Services . . . . . ... e 21

24.1.2 Exporting Services . . . . . . o i v e i e e e e 21

2.4.1.3 DARWIN Components . . . . . .. oo v it v v i nin .. 22
2414 Services . . . . .. i e e e e e e e 22
2410 Levelling . ... . . . 0 i e e e 22
Supporting Architectures for Component Based Paradigm . . . . . ... . ... ... 23
Distributed Computing Enviconment . . . . . .. . . ... oo o 23
2.5.0.1 DCE Architecture . . . . . & .0 o 0 i it e e e e e e 24
Object Management Group’s Approach . . . .. ... ... ... L. 28

2.5.2.1 Object Management Group . . . . . .. ... ... ... ... 28
2.5.2.2 Oblject Management Architecture . .. ... ... ... ... . ... 29
2.5.2.3 Common Object Request Broker Architecture . . ... ... .... 33

2.5.2.4 Object Management Group and Components . . . . .. ... . ... 39

5.3 Microsoft Approacki- COM/DCOM . .. . ... ... . .o .. 40
2.5.3.1 Distributed Component Object Model . . . . ... ... .. .. ... 40
2.5.3.2 Distributed Component Object Model Architecture . . ... . ... 42
2.5.3.3 Microsoft’s Interface Definition Language . . . .. . ... ... ... 45
2.5.3.4 Implementation Repository — System Registry .. . ... ... ... 47
Microsoft Approach - NET Framework . . . . . ... ... . ... ... ... 48
254.1 Architecture . . .. ... L L e 48

SUN Microsystems - JavaBeans Approach . . . . ... ... ... ... .... 52

iv




2.5.5.1 Java: TheLangnage . . . . . . ... .. ... 52
fE 2552 JavaBeans . ... ... e e e e e 54
2.5.5.3 Enterprise JavaBeans . . . . . . . .ot it it e e e 58
2.56 Architecture Comiparison . . . . . . . . L e e e 58
2561 CORBA vS. COM .« oo oo oot e 5
2562 .NETvs. COM/DCOM . . ... ... .. .. . 61
'.ﬁ 2563 JavaBeans . . .. . ... e e e e 61
2.0 Chapter SUmMmary . . . . o o e e e e e e e e e e e 62
3 Configuration Management Systems . . . ., . ... ... ... o 63
3.1 Critiquing Configuration Management Systemss . . . . . . . ... o0 63

3.2 Componcnt Configuration Systems . . . . . v .« v o v i i i i e e 67 E

3.21 Distributed Revision Control System . . . . . . .. ... o 0oL 67 :5-

) 3.2.1.1 DRCS as a Configuration Management Tool . . .. .. ... . ... 68

3.2.2 Distributed Concurrent Versioning System . . . . . . . . .. .. L 69

3.2.2.1 DCVS as a Configuration Management Tool . . .. ... ... ... 70 :"

3.2.3 Incremental Configuration Engine . . . .. . . . L oo 71 -'

3.2.3.1 ICE as a Configuration Management Tool . . . . .. .. .. .. ... 72

3.3 Static Component Configuration Management . . . . . . .. . ... L0 L. 72

331 SoftwarcDock . ... ... . 73 -::

3.3.1.1 Softwarc Dock Architecture . . . . . ... Lo L 74

3.3.1.2 Software Dock as a Configuration Mauagement Tool . . .. . . ... 76 |

332 AAUC . st 76 -

3321 Mistral . oo e 77 N

3.3.2.2 Adele/Mistral as a Configuration Management Tool . . .. .. ... 78

3.4 Dynamic Component Management . . . . . .. ... o e 79 |

34.1 Surgeon & Polylith . . . . . oo e 79

841D Polylth - o o v v e e e e 79 s

3402 SUrBCOIL . . . . . s e e e e 80

3.41.3 Polylith & Surgeon as a Counfiguration Management Tool . . . . .. 81 ’

v

o




3.42 ProgrammersPlayground . .. ... ... .. ... oo
3.4.21 Overview of the Playground . . ... .. .. ... .. ... ....
3.4.2.2 Playground & IfO Automation Model . . . . . .. ... .. ... L.
3.4.23 Programmers Playground as a Configuration Management Tool
343 CONIC ... i e e e e e
3.43.1 CONIC’s Module Programqing Language . . . . . ... .. .. ...
3.4.32 CONIC’s Configuration Language . . .. . e e e
3.4.3.3 Dynamic Configuration . . ... ... . ... ... .. ...
3434 Runtime Support . . . . . . it it e e e e
3.4.3.5 CONIC as a Configuration Management Tool . . . ... ... . ...
Jdd Equus . . . e e e e e e e e e e e e e e e e e e e
3.441 Equus as a Configuration Management Tool .. . ... ... ....
345 REGIS . . . . e e e e
3.4.5.1 REGIS as a Configuration Management Tool . . . ... ... . ...
346 CHORUS . . . . it it e et i e e e s e
3.4.6.1 CHORUS Architecture . . .. . . . ... .. it it ..
3.46.2 CHORUS Nucleus Abstraction . . . . . ... ... .........
3.44.3 CHORUS as a Configuration Management Tool . ... ... . ...
24,7 Finite State Machines . . . .. ... .. .. ... .. L e
3.4.71 DProcessof Reconfiguration . . ... ... ...............
3.4.7.2 Reconfiguration Possibilities . . . ... ... ... ... . ...
3.4.7.3 Finite State Machines as a Configuration Management Tool . . . . .
Runtime Component Configuration & Consistency . . . . .. ... ... ... ...
3.5.1 SOFA/DCUP: Dynamic Architectures and Component Trading . . . . . . ..
3.5.1.1 SOFA Architecture Overview . . . . .. . .. ... ... ... . ...
3.5.1.2 DCUP Architecture . .. . .. .. ... . e
3.5.1.3 Interconnecting DCUP Components . . . .. ... ....... ...
3.5.1.4 Updating a SOFA/DCUP Component . . . . .o . v v v v v v v ..
3.5.1.5 SOFA/DCUP as a Configuration Management Tool . . . ... ...
352 DynamicTAO . . . . . . e e e e e e
vi

IR T LY




3.5.2.1 DynamicTAQ Architecture . . . . . . . v v 0 it i e e 107

3.5.2.2 Dynamic Reconfiguration . . ... ... ... .o L oL, 108

3523 ORBConsistency . .. .. .. ... ... i enren 109

3.5.24 Automatic Reconfiguration . . ... ... .. ... ... . . ... 110

3.5.25 DynamicTAO as a Configuration Management Tool . . ... .. .. 110

3.5.3 Preserving Consistency with REGIS . . . .............. ... ... 111

3.5.3.1 Architecture behind the Extensions to REGIS . . . .. ... .. .. 112

3.5.3.2 Reconfiguration Programming . .. ... ... ... ..o, 117

3.5.3.3 Guarantecing Mutual Consistency . .. . .. . . ... o0 119

3.5.34 REGIS Extensions as a Configuration Management Tool . . . . ., 121

36 Chapter SUMIIATY . . . . . . v et e e e e e e e e e e e 121
3.6.1 Component Configuration Systems . . . ... .. . . L L, 122 3
3.6.2 Static Component Configuration Management . . . . . ... ... .. ..., 122 ‘ﬂ
3.6.3 Dynamic Component Management . . . . . . .. ... ..o L. 122 “
3.6.4 Runtime Compounent Configuration & Consistency . . . . .. .. ... .. .. 122
4 Real-Tune Dynamic Component Reconfiguration . . . . . . ... ... ... ..., 124
."5_ 4.1 Conlfiguration Manager Comparisons . . . . . . .. . .. ... . ... ... 125 g
4.1.1 Component Configuration Systerns . . ... . .. .. ... L L 127 ;
,_ 4.1.2 Static Component Configuration Management . . .. .. .. ... ... ... 127 %ﬂ
4.1.3 Dynamic Component Configuration Management . ., . . . ... ... ... .. 128 ;
4.14 Runtime Component Configuration & Consisteney . . . . .. .. ... .. .. 129
4.2 Real-Time Dynamic Component Updates . . . .. ... . o v it it i i v 130
42,01 Real-TimeSystems . . . . . . . . . ot i e e e e 130 *
4.2.1.1 Hard Real-Time Systems . . . . . . .. . i v it i e 131 ':'-':
42.1.2  Soft Real-Time SYSLems . . « « v« c o e v e e ne e et 131
4.22 Real-Time Component Control . . . . . . . . .. . . v o v i i e o v oy o 132 *
4.3 Benefits of Introducing Control . . . .. .. ... .. L Lo oL 133 :

4.4 Chapter SUIMMAary . .« . o v v e e e e e e et e e e e e e e 134
5 Ccmponent Oriented Reconfiguration Envirominent & Scheduling System . . . 135 1
- al

vii




51

5.2

5.3

54

5.9

CORES Algorithms . . . . . . .. .t i e e e e

5.1.1 Scquencing Tasks within a Job (Single Path) . . . .. .. ... .. ... ...
5.1.L1.L1 RequireIRERIS . . . . . . . i it et et e e e e e e
5112 FormalDefinition . . . ... .. it e,

5.1.2 Scquencing Tasks within a Job (Multiple Path) . . . ... ... .. ... ...
5121 Reguirements. . . . . o ..o oo i e e e e e e
5122 FormalDefinition ... ... .. .. .. i,

5.1.3 Assembling the Overall Schedule . . . .. .. ... ... ... .. ... ...,
5.13.1 RequirementS. . . . . . . o o i i e e e e e e
513.2 Formal Definition . ... ... ... . . i

Configuration Manager . . . . . . . . . . . e e e

52.1 RolewithintheModel . . . ... ... . o o o

5.2.2 ArchitecturcoftheModel . . .. . .. ... .. oo e

5.2.3 Imterfaces provided by the Model . . . . . . . .. . . ... . .. ..

524 Sequencing withintheModel . . . .. . . .o L L Lo
5.24.1 Eusuring Logical Sequence of Interface Calls . . . . . . ... ...,
5.24.2 Ensuring Correct Sequence within the Configuration Manager

5.2.5 Exceptions withintheModel . .. . . . . . ..o . o o i .

Dynamic Comtrols . . . . . . . .o e

53.1 Dynamic Control Options . . . . .. .. .. . i ittt
5311 WillWait . .. . .. ...
5312 NoWait . . ... . . . e e e
5313 QoSWait . .. .. ... e e

Limitations . . . . . . . . . e e

54.1 Configuration Managerand Resources . . . . .« . . . o0 v i it it

54.2 Task Ordering . . . . . . . . o i e e e e e e

5.4.3 Elimination of Invalid Task Combinations/Jobs . . . . . ... ... .. ...,

54.4 Scheduling of Jobs into Master Schedule . . .. . . . . . Lo Lo

54.5 Vulnerability of Configuration Manager . . ... ... .. .. ... ... ...

Chapter SUWINMINALY . .+ o o v v it ot e et e e e e e




6 Implementing CORES .. . ... . ... . .. . it ittt 180

6.1 ArchiteCturc. . . . . . vt e e e e e e e 180
6.1.1 Hardware . . .. .. ... i e e e 181
G.1.2 Softwarc. .. .. ... e e 181

6.2 Job Evolution through CORES . . . . ... ... ... ... . .. . . 182
621 Sequencingof Tasks .. . ... ... .. ... ... 182
6.2.2 Traversing Permutated Jobs . . . . . .. . . .. .. L . e 185
6.2.3 Schedulingof Tasks . . . . . . . . . i e 186

6.3 Client / User Interface . . . . . . . . .. . e 189

6.4 Configuration Manager. . . .. . . . . . e 192

6.0 Scrver [ Component . . . . .. e e 196

G0 ExCoptions . . & . 0 e e e e e e e e e e e e e 198

6.7 Real-Time ExccutionEngiue . . . . . . .. .. . . e 200

6.8 Limitations . . . . . . 0 o e e e e e e 201
6.8.1 CPU/Mcmory Intensive Operations . . . . .. v oo o v vt ittt o 202
6.8.2 Construction of Configuration Manager . . .. . ... .. . ... ...... 202

6.9 Chapter S4anmary . . . . . . i e e e e e e e 202

7 Case Study: Radio Telescope Array . .. . ... .o v i ittt it i e 204

7.1 Background . . . . .. . e e e e e e e 204
7.1.1 Australia Telescope National Faeility . . .. . . . .. ... . ... 0. .. 205
7.1.2 Australian Telescope Compact Array . - . . . . v o v v v v i 205
7.13 RadioTelescope . ... .. .. .. . .. Lo 207

7.2 Introduction to Radio AStronomy . . . . . . . . v v i i it e e e e e e 209

73 Implementation . . . . v o i it e e e e e e e e e e e 210
7.3.1 Demonstrating CORES . .. ... .. ..., ... ... .. ... ..., 213
7.3.2 Scquencing Taskswith CORES . . . . .. ... . ... . .. .. . . ..., 213
7.3.3 Scheduling Jobs with CORES . . . . . .. ... . .. . ... 214
734 Normal Operations . .« . . . v o v v v it v r e s e e e e e i e e e ... 215
7.3.5 Specifying Reconfiguration Modes . . . . . .. . ... L o oL 216

ix




7.3.6 Demonstration of Reconfiguration . . .. ... ... ...

7.3.7 Controlling/Demonstration of Quality of Service . . . . .

74 Limitations . ................

7.5 Chapter Summary . ............ . ce s e e
8 Conclusions . ., ... ... .. ... .. e
8.1 DiscussionofFindings . ... .......... e
8.2 Rescarch Questions - . . . . . o v i i e e e e
821 ResecarchQuestion1 . ... . . . . ... ... .
8.2.2 Rescarch Question?2 . . . . . e e e - e
8.2.3 Rescarch Question 3 . . . . . e e e e Ce
824 Rescarch Questiond .. ... ....... - C e e
8.2.5 Rescarch Questiond ... ... ... .. e e e e
8.3 Future Work . ..... N
8.4 Concluding Remarks . . . . .. e e e e e s
Appendix A Interface Definition Language . . . . ., e e
A.l Interface Definition Files . . . . . . . .. . .o o o v oo ..
Al awtenmaddl .. ... ... e R, C e
A.12 antenmaManageridl .. ... .. . ... N e
A1 avallabilityddl. ... .. .. e e e e e e e e
Appendix B Job Definition Files . ... ... ... e e e e .
B.1 Jjub Definition Files . . .. .. .o 0 L oo . e
B.i.1 Job Defintion File . . . ... .... e e e e e
B.1.2 Sequenced Job Defintion Fite .. . . . . ... ... ... c e e
Appendix C CORES Command Summmary . .. ... .. . ..
C.1 CORES Command Summary . ... ... ... ... . . c e
Appendix D Source Code . . .. ... .. .. ... ., .

D.1 Processing Mcthod Calls for Unavailable Components . . . . .

P LRI
P
- P -
- . -
P -
- - [
P
DR .

1 .

P Y .
. .

L .

P

-

217
219
221
221

223
223
227
227
228
228
229
230
230
231

232
232
233
235
239

241
241
242
243

244
244

248
248

PR DT TT TN




D.1.1 processAvailability.cc. .

it
Vita . . . e e e




List of Tables

2.1

.C:!

'5‘.,1
[N

6.1
6.2
6.3

Reserved CORBA IDL Keywords . . . . ... ...
Comparison of Configuration Management Systems

Complexity of Sequencing Tasksina Job . . ...

Complexity of Constructing a Schedule. . . . . . .

Configuration Manager Exceptions . . . ... ...
Reconfiguration Event Exceptions . . . ... ...

Communication Paths and Exception Groups . . .

193
198
199




-‘;-%;%‘ﬁ-ﬁ?

o

£i5)

o
il

List of Figures

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
211
2.12
2.13
2.14

31
3.2
3.3
3.4
3.5

3.6

5.1

Direct Relerence vs. Indirect Reference. . . . . . .. ... ... ... .. ... .. 14
Sample Configuration Definition Language & System . . . . .. ... ... ... ... 19
DCE Architecture . . . . . . . o v i i e e e e e e e 24
DCE Directory Services Namespace ., . . . . . o o oo ittt i e 26
Exampleofl aDCEIDL File . . . . . . 0 . i i i e e e e et e e e e e s 27
OMG’s Object Model Reference Model . . . . . . .. .. .o n 31
CORBA Architecture . . . . . . o v i i i it ettt e e et e e e 35
Memory Layout required for Polymorphism . . ... .. ... ... . ... ..., 41
COM/DCOM Architecture . . . . . o . . . o i it i ot e et e v e 43
ExampleoflaMIDLE File . . . . . . . . 0 i i e e i e e 45
HRESULT Structure . . . . . . o ittt i e it i e et e et st ea e s 46
COM Component registered within the Registry . . .. .. ... ... . o ... 47
NET Framework Architecture . . . ... .. ... ... .y 49
NET Common Language Runtime Architecture . .. .. ... ............ 51
Diflerences between RCS and DRCS . . . .. .. .. ... . o o 69
The Software Dock Architecture . . . . .. . . .. ... . e 75
Representation of a Component in the Programmers Playground . . . . .. ... .. 84
CHORUS Architecture . . . . . . . o v i i i i i s i e e e e s 96
Overview of the SOFA/DCUP Architecture . . . . . .. .. i v vt v vt o an 105
Overview of upgrading a SOFA/DCUP Component . . . . . . . ... ... ... 106
Valid Task Sequence . . . . . . .. . i i i e 139

R

R T . - .
= PTGy P T L T I O O o S ea st ek !




5.2 Invalid Task Sequence . . . . . . . o i it it i i e e e e e 139
5.3 Sequenced Job showing Node Relationships . . . ... ... . ... .......... 140
5.4 Radio Point SourceElements . . . . .. ... ... . .. .. . L ... 143
5.5 JobeontainingOnePath. . . ... ... . ... .. il 147
5.6 Job containing Multiple Paths. . . . . ... ... ... . . 0L L, 148
5.7 CORES Structured Job containing Multiple Dependencies . . . . . ... .. ... .. 152
5.8 Identification of a Direct Path using Elementary Paths withina Job .. ... .. .. 153
59 Processingan ‘OR’Path . . . .. ... . i i i e iee e e e 156
5.10 Processing an ‘AND’ Path with Concurrency Support . .. ... .. ... .. .. .. 156
5.11 Processing an ‘AND’ Path without Concurrency Support . . ... ... ... .... 157
512 Client/CORES/Server Arcliftecture . . . . . . . . o 0ttt et i et et 167
5.13 Configuration Manager performing a Component Reconfiguration . . .. ... .. .. 1G9
6.1 OMT Diagram representing the NODE, AND, OR Relationship . ., . .. ... .... 183
6.2 Data Structure representation of a Jeb combining Multiple Paths . . . . ... . ... 183
6.3 NODE representation of an Astronomical Qlservation after Sequencing . . . .. . . 184
64 Permutation Algorithm . . . . . ... .. . ... L L e 185
6.5 Processing Successorsinan ANDNode . . . ... ...... . .. ... ........ 186
6.6 Processing Successorsinan QR Node . . . ... . ... . . e 186
6.7 Sample of the User Interface for the CORES System . . . .. ... ... ... .... 190
6.8 Module Avallability Data Structure . . . . . .. . ... Lo e 191
6.9 Client adjusting Reconfiguration Options . . . . . .. . ... . . . ... 191
6.10 Assembly and Transmission of QoS Reconfiguration Information . . .. ... .. .. 191
6.11 Processing of Reconfiguration Information . . . . . . .. ... .. .. .. .. ... 192
6.12 Pre and Post Filteringin Jonas ORBIX . . . .. ..., ... .. ... .o 000 14
6.13 Commencing the Reconfiguration Process . . . . . ... ... .. ..., 195
(.14 Finalising the Reconfiguration Process . . . . . . . . . .. v v i 196
6.15 Interfaces required by a CORES Component . . . . 0 o o v v v v v v v v v v v an os 197
7.1 Radio Telescopes at Australian Telescope Compact Array . . . ... ..« . ... .. 206
7.2 Overview of a Radio Telescope . . - . . . . .« 0 i it it e e 208

L




o e S el

7.3 Electromagnetic Spectrum . . . . . . ... .o e e 209

7.4 Plavet Jupiter with a 13cm receiver . . . . . . . L . e e 210
7.5 HI Spiral Arms of a Compact Dwarf NGC2815 . . .. ... .. ... ......... 210
7.6 Simplified Antenna Interface. . . . . . . . o o L L e e e e 211
7.7 Demonstration of Sequencing Observation . . .. ... ... .. o L L. 214
7.8 Demonstration of Loading and Scheduling Observations . . . .. . ... .. ... .. 214
7.9 Demonstration of Executing Scheduled Observations . . .. . ...« . . ... 215
7.10 Demonstration of Normal CORES OQperations . . . .. .. .. ... . .. ... 216

7.11 Demonstration of Modifying Reconfiguration Mode within the CORES System . . . 217
7.12 Start of the Quicscent State for Radio Telescope Antenna 6 . . . . . . . . ... ... 218

7.13 Demonstration of Radio Telescope Antenna 6 Not Processing Requests . . . . .. . . 218
7.14 Conclusion of the Quiescent State for Radio Telescope Antenna 6 . . . . . .. .. .. 219
7.15 Introduction of Radio Interference to Radio Telescope Antenna 6 . . . . ... .. .. 220
7.16 Falling Quality of Service Levels ‘Stop’ Radio Telescope Antenna 6 . . . . .. . .. 220

XV




Dynamic Reconfiguration under Real-Time Constraints

Dean Thompson, PhD
Monash University, 2002

Supervisor: Professor Heinz Schimidy

Abstract

Continual development and demands in computer applications has resuited in a need to develop
software systems capable of evolving to meet such changes. Traditionally, systems have been hand-
icapped by tightly integrated components restricting their flexibility.

The requirement for such flexibility led to the development of a component based programming
paradigm, cnabling the interchange of software components both locally and remotely and thus
providing the flexibility required to support change. To facilitate the development of components
a number of architectures and software systemns were developed. Examples of architectures include
CORBA, DCOM/COM, .NET and JavaBeans while software systems include DARWIN, REGIS
and SOFA/DCUP.

The rapid deployment of systems into real-jime enviropments has led to the need to perform inline
softwarc component upgrades while systems are still operating and without causing any interrup-
tions. Significant advances in reconfiguration tools have made it possible to achicve this goal, but
little support cxists for software developers and end-users t© control method calls made on compo-
nents that are not available. In addition the real-time commitments of the system must be handled.
Incorrectly handled situations can result in method calls being blocked which is unacceptable in
rcal-time environments.

This thesis addresses that concern by providing software developers and end-users with a model
known as the Component Qriented Reconfiguration Enviromment and Scheduling (CORES) envi-
romment which can be incorporated into cxisting component environments. This model provides a
level of control over niethod calls and how they are handled within a real-time cuvironment when
scit to a component which is not available. CORES allows method calls to cither wait until a
component is available or to return to the component making the initial call.

The CORES model also examines and provides support for the anipulation of real-time schedules
governing the environment and incorporating support for Quality of Service (QoS) characteristics. In
addition to the formal definition, an implementation is provided utilitising a radio telescope array at
Narrabri, Australia to show its use and advantages, This research solves the problem that software
developers and end-users face wheu operating within real-time environments by giving them back
control over how components interact with one another and the method calls themselves.

xvi




Dynamic Reconfiguration under Real-Time Constraints

Declaration

1 declare that this thesis is my own work and has not Leen submitted in any lorm for another degree
or diploma at any university or other institute of tertiary education. Information derived from the

published and unpublished work of others has been acknowledged in the text and a list of references
is given.

Dean Thompson
December 3, 2002




Acknowledgments

This thesis is the result of 5 years work and has benefited greatly from the significant contributions
and influences of many people. Before acknowledging those who assisted, I would like to apologise
in advance for any names which may have been inadvertently omitted {rom the list.

I would like to sincerely thank Dr. Chris Ling for his patience and understanding that he showed
while explaining the concept, of Petri nets and how they can be formally modelled. His assistance
and ideas were invaluable when modelling the various Petri net structures.

Thanks to Zelko Karlovic who explained the fundamentals of astronomy, astro-physics and who
pointed me in the right direction so as to obtain the answers to the questions that I asked. Without
these references and his astronomy knowledge I would have been truly lost in calculating the position
of heavenly bodies.

Special thanks to Dr. Damien Watkins for acting as my research mentor and encouraging me to write
a number of papers with him on Distributed Objects. It was through many of our conversations
that ideas for this thesis were developed and later explored. I would also like to thank him for his
constructive criticism which aided the development of this thesis and for ensuring that I remained
on track,

I would like to acknowledge the assistance of Rod Simpson and Barrie Thomnpson who tirelessly proof-
read many of the chapters and provided invaluable feedback, direction and corrections. Without
these corrections, the chapters would be a mere shadow ol themselves,

In addition, I would like to thank Michi Henning for verifying the source code and confirming the
assumption that a problem being experienced in the implementation was the result of an errorin a
third party library rather than the impiementation itself, Professors Richard Mitchell and Christine
Mingins for their supportive comments and ideas and Dr. David McConnell and the staff at the
Narrabri Radio Observatory, Australia for their time, hospitality and knowledge in explaining how
radio telescopes and the observatory work,

Thanks go to my supervisor Professor Heinz Schmidt for getting me started, introducing me to
the worlds of real-time environments and component technology, providing ideas and approaches,
allowing me to try ideas and discuss implementations and his assistance throughout the entire
canditure,

xviii




I would also like to thank the many people of the School of Computer Science and Software Engi-
neering for their generous advice and support whiie developing this thesis. In particular I would like
to thank those postgraduate students who I have shared an office with or borrowed a terminal from
and the stafl that have assisted in the production of this thesis. Specifically, I would like to thank:
i Chee Yeen Chan, Professor John Crossley, Simon Cuce, Michelle Ketchen, Shonali Krishnaswamy,
8! Dr. Jason Lowder, Trent Mifsud, Nick Nicoloudis and Dr. Peter Stasiski.

Dean Thompson

Monash University
December 2002




For my parents




Chapter 1

Introduction

1.1 Background

The need and ability to develop software systems capable of evolving to changing needs is becoming
increasingly important as systems are deployed into rapidly changing environments. This evolution
is accomplished through the hiterchanging of software components and can Lest be illustrated by
examining the lifetime of a computer system and for application. Throughout its lifetime, a system
undergoes a scrics of configuration changes to allow itself to remain relevant to its current environ-
ment. Each configuration change that is made is coordinated through a change manageinent system
and hence forms part of the systans cvolutionary process.

The development of change or configuration management systemts can largely be attributed to the
need for formal processes having to be established to allow for the management of changes within
systems. The need for having to introduce the change management concept as mentioned in Scherl
and Mazlin {1596) arose from the problems that large, monolithic systems have when composed of
a numiber of bulky components tightly integrated with one another.

These tightly coupled components led to an increase in the dependencies throughout the entire
system (Kramer and Magee 1990). This increase in dependencies makes the process of system devel-
opment very complex as changes made in one component may affect others scattered throughout the
system. To further complicate the process, these effects inay not be seen immediately after a change
but are experienced during phases of maintenance or at points where there are interconnections with
other systems,

With the increase in tightly coupled compouncnts comes the decreased ability {or systets to provide
any sort of component configuration. Such systems are difficult to reconfigure as all dependencics
must first be identified before the appropriate fow-on effects calculated.




Distributed systems have been able to reduce the dependencies in the code through the introduction
of loosely coupled components. The introduction of these loose components has led to a program-
ming style first mentioned in Kramer (1990) known as the ‘Component Bascd Programming’ which
ig based off the ‘Object Oriented’ programming paradigm (Rumbaugh, Blaha, Premerlani, Eddy,
and Lorenscn 1991; Meyer 1997). The component based approach allows developers to build sclf-
con*ained components for the system rather than constructing onc cncompassing system.

The ariginal concept of component based programming was developed in response to problems which
distributed systems suffered when constructied by clumping together a number of small programs and
arcanging them to form larger systems (Magee, Kramer, and Sloman 1989). Over a period of time
these large systems have become quite dense and can be identified by the use of heavily congested
networks and systems. To address this issue, component based programuning was developed to
provide developers with the ability to avoid problems such as scalability, complexity and dealing
with the ever continuing problem of general business evolution (Kramer and Magee 1997).

Additionally, while these monolithic systems were being developed there was little agreement on how
modules within the system should be structured, communicate with onc another or how cach should
be configured (Magee, Krainer, and Sloman 1989). As a result it was possible to determine that whilst
component based programming had managed to lay the foundation for component programming it
still did not deal with the issue of configuration management for both static and dyna:mic systems.

The consequence therefore is that little configuration technology has transpired or migrated from the
nonolithic mainframe or tightly coupled application development environments to that of distributed
systems.

While considerable cffort is being placed on the development of systems capable of integrating
configuration management along with componeni crcation and management services, there is also a
fundamental nced to incorporate these concepts into real-time systems. No where is this more evident
than the increasing number of systems which are being built with embedded real-time processing
units.

With an increasing number of softwarc and hardware compounents providing real-time support as
well as a growing number of already cxisting systems requiring the ability to reconfigure themselves
in a real-time environment comes the need of being able to give software developers and/or end-users
control over such activitics.




1.2 Thesis Objectives

The key objectives for this thesis are:

o To identify any problems or lack of support which may exist for software developers and end-
users to exert some control over what actions should be performed when a component is being
reconfigured or otherwise not available in a rcal-time environment

¢ To devclop a conceptual model which:

— Provides the ability for software devclopers or end-uscrs to exert some control over what
happens when a rccoufiguration is taking place within the system

— Provides software developers and end-users with timely information within a rcal-time
environment regarding the impact of method calls being made on thosc components which

are undergoing reconfiguration

— Provides support for objects located in a distributed heterogencous networking environ-
ment

— Provides an approach giving system developers and end-users more flexibility without
having to perform extensive reprogramming of the systemn

— Allows Quality of Service (QoS) specifications Lo impact on the availability of the com-
ponents and have this availability incorporated into the real-timc covironnient

— Dcmonstrates how flexible a system can be when end-users have some element of control

over il b

1.3 Research Questions

To address the objectives mentioned carlier in section 1.2, this thesis puts forth and addresses the
following research questions:

RQ1: To what extent do the current reconfiguration management environments provide support
for dynamic reconfiguration?

RQ2: What support exists for soltware developers or end-users to deal with a situation where a
method call is made on a compouent which is in the state of reconfiguring itself or otherwise
not available whilst operating under real-time constraints?

RQ3: What are the requirements of a conceptual model capable of addressing real-time reconfigura-
tion and what additional support is necded when deploying it within a non-trivial environment
where software developers and end-users can specify what actions should be taken if a method
call is made upon a component reconfiguring itselfl or is otherwise not available?

[N




RQ4: Is it possible to integrate into the proposed model the capability to calculate the impact
on the overall schedule and to identily what inplications may exist when various sequencing
algorithms (Lest case scenario vs. worst case scenario) are used to schedule tasks and jobs?

RQ5: What impact does the incorporation of Quality of Service (QoS) arguments have on the
proposed model so that software developers or end-users can associate QoS characteristics
with components and then have those characteristics used in conjunction with the respective
real-time commitments of the system to calculate a components availability?

In order to address these research questions, it is necessary to examine the current support that
software developers and end-users have with regard to supporting dynamic reconfiguration during
both development and the lifetiie of a systems execution.

Secondly, after the examination of the software component reconfiguration tools, each tool needs
to be assessed with regard to being able to provide software developers or end-users with some
support to deal with the situation of having to still operate a system under real-time constraints
while components are being reconfigured.

It is the contention of this thesis that although reconfiguration tools do exist to help software
developers reconfigure a system, there is no one tool or environment which provides the ability
to specify what should happen in the case of a method call being made upon a component being
reconfigured or otherwise not available.

To address this situation, a conceptual model is presented which outlines how software developers
or end-users can specify commands to a “<tem to instruct it on how to deal with method calls
being made on components that are not available, whilst at the same time not requiring the entire
system to be totally rewritten or shutdown. The model initially proposed in chapter 4 and further
developed in chapters § and 6 allows for various actions to take place il a method call is sent to a
component being reconfigured within the system.

1.4 Overview of Thesis

The remainder of this thesis directly addresses these research questions. Chapter 2 introduces the
concept of the component based paradigm and examines the issue of how the component based
paradigm is defined and its objectives. Additionally, this chapter focuses on those techniques and
programming aids developed to help software developers embrace such a programming concept.

After an examination of the component based techniques which are available to aid software devel-
opers, the chapter addresses those architectures designed to support and promote component and
object based development within a distributed system. The chapter also discusses the key Lenefits
that the component based paradigm offers and introduces the background and processes which are




commonly followed when a component is reconfigured, especially when occurring within a dynamic

systeni.

Chapter 3 introduces the criteria used to assess the major attributes of various configuration manage-
ment systemns and determine their suitability as an architecture to provide dynamic reconfiguration
services. Furthermore the chapter develops the notion of configuration management systems by
examining a number of systems and applying the criteria alrcady introduced. The chapter also
highlights how the various configuration management systems can be grouped based on the support
they provide for dynamic reconfiguration management. An understanding of the configuration archi-
tectures, environments and systems assist in answering RQ1 by highlighting what support alrcady
exists.

Chapter 4 examines the support provided by the reconfiguration management systems for perform-
ing dynamic reconfiguration management. This examination is further re-enforced by the results
from the critique perforined on each of the reconfiguration environments presented in chapter 3. The
findings from the critique influence the remainder of the chapter which examines the issuc of how
reconfiguration management environments fail to provide a level of control Lo either software devel-
opers or end-users when dealing with method calls sent to components that are being reconfigured,
especially in real-time systems. Identifying this lack of support for dealing with real-time systems
contributes to responding to RQ2.

The chapter also provides a background on the impact of having no controls available for managing
tasks within real-time systems which are governed by cither hard or soft real-time constraints.
Issues raised in this chapter are addressed by a proposed extension to provide support for soltware
developers and end-users alike to Le able to control the way in which method calls are handled when
components are being reconfigured.

Chapter 5 describes a proposed conceptual model to provide software developers and end-users with
the extra control needed to handle situations where method calls are made on components which are
reconfiguring themselves or otherwise not available within a real-time cnvironment. In addition to
providing support for reconfiguring components, the chapter presents a sequencing and scheduling
cngine responsible for taking tasks and placing them into the overall schiedule while at the same time
being mnindful of the real-time constraints within which a scheduler has to work.

Throughout the chapter the concepts required to provide this level of control for software developers
and cund-users is introduced. These include algorithms responsible for sequencing and scheduling
tasks and the dynamic controls which influence the Lehaviour of the system when a reconfiguration
event arises and the component is not available. Also included is the configuration manager that
is responsible for handling the reconfiguration events and performing operations that the dynamic
controls have specified. The chapter also identifies Lthe limitations associated with the conceptual
model.




Chapter 6 discusses the translation of the conceptual model into an implementation model which can
be incorporated into software systems. Specifically, it details how the sequencing of tasks Lioth at
the task construction level and at the scheduler v 1 were implemented. The chapter also examines
the implementation details relating to how a method call is handled if it is sent to a component that
is unable to honour it while at the same time observing any real-time constraints which have been
specified by the request.

Both chapters 5 and 6 provide details that can be used to address the concerns raised in RQ3, RQ4
and RQ5.

Chapter 7 demonstrates how the design detailed in chapler 5 and the implementation as specified
in chapter 6 can be brought together into a real-world scenario whilst at the same time providing
a system with real-time constraints in which to work. The chapter introduces a case study built
to simulate an abstracted radio observatory and provides the perfect oppertunity for the design
principles governing the system to be verified. The case study provides cnd-users with the ability
to control what happens when a method call is made against a component which is reconfiguring
or not available whilc at the same time allowing cnd-users to dictate how tasks are sequenced and
scheduled.

This chapter also provides a brief introduction to radio astronomy and the telescope facility based at
Culgoora, New South Wales, Australia which forms the basis for the simulation. To verifly the design
objectives of the system proposed in chapter 5 a number of scenarios are presented demonstrating
how cnd-users have condrol over the system during a reconfiguration cvent. The chapter concludes
with a bLrief explanation of the implementation limitations.

Chapter 8 presents the findings from the research as well as providing answers to the rescarch
questions proposed in section 1.3. The chapter also presents a section on what futuere work can be
performed based on this current rescarch and hiow it might be improved and strengthened.

R s

e




Chapter 2

Introducing Component Based

Paradigms

For the last 30 years, as noted in Szyperski (1997), we have seer: the development of the fundamental
concepts behind the component based paradigm. These developmenis have been aided by the
advances made in the areas of software engineering and the development of architectures which
facilitate component construction.

The fundamental ideas of the component based paradigm can be traced back as far as the mid 1960’s
as detailed in Naur, Randall, and Buxton (1976). It was during this time that the first notion of a
component was raised and how components could potentially be linked together to form component
based systems. This idea was further embraced within the computer programming language ‘Simula’
when it was released as it was one of the first to support the notion of what we call today ‘objects’
(Dahl and Nygaard 1966).

Since then, there have been a number of developments in the fields of component based technology
and object based technology. As a result of the advances made in the respective fields there is now
some confusion as to the difference between a component and an object. Whilst there is a diflerence
it is common to find many publications use the terms interchangeably.

This chapter aims to address this confusion by examining the differences between objects and com-
ponents. Additionally, focus is provided on the objectives of the component based paradigm and
the additional support required to provide the reconfiguration of components. To assist in the un-
derstanding of this paradigm, a number of architectures designed to facilitate the construction of
component based systems are discussed.




2.1 Components vs. Objects

The continuing developments in both component based and object based technology has led to
an increase in the number of terms uscd to describe the different frameworks which arc currently
available.

In some cases the words ‘component’ and ‘object’ are used within the same term such as the Com-
ponent Object Model (COM) (Brown and Kinde! 1996) developed by Microsoft. Additionally, there
are some frameworks which are described as being able to provide support for both object and
component construction. With these terms being seen as interchangeable it is important to actually
highlight their diflerences as well as similarities.

2.1.1 Components

As is mentioned in Szyperski (1997), a component is defined as having the following characteristics:

¢ Independently Deployable
e Is of a third-party composition/construction

¢ Has no concept of persistent state

In order for a component to be independently deployable, it must not make any assumptions about
the environment in which it is being deployed. Additionally, the comnponent must make no assump-
tions or have any tight links with any other componemt, as it can not be assumed that the other
component will exist within the same environment, Thercfore, for a component to be totally in-
dependent it must encapsulate both the data and member functions required by itself in order to
operate. Access to these data variables and functions is permitted through a serics of well defined
interfaces. From this conceptual point of view, a compounent can never be partially deployed, it must
be deployed in full, as there is no way of being able to break up a single component.

It is predicted that in the future we will see an explosive growth in the number of companics providing
third-party components {or systems. To some degree this has already started to happen with the
NET framework as described in Microsoft Corporation (2001) being designed to interoperate with
web-services which have been built by third parties. In these cases, a software developer may not
necessarily have access to the scurze code of the component but may receive it in a binary format.
In some arcas of literature this i known as binary deployment as all that is shipped with the
third-party component is the binary/byte code. With this in mind it is the responsibility of the
component developer to specify what reguirements this component needs and what this component
actually provides. Once again, in order for third-party components to operate without any problems
they must be fully sclf-contained (ic. encapsulate all the data members required, functions to perform




and any other components required to be present) so as to allow them to work straight out of the
box.

In order for something to become persistent it st first have a handle which can be used to identify
it specifically, As was mentioned carlier, components have no pereeption of persistent data and
therefore have no sensc of identity within them. A benefit from this is that a component can be
independently, removed or activated within a system without having to rely on the transfer of data
which is pertinent to it.

Again, with there being no concept of identity there is no real way of being able to differentiate
between components. This effectively means that a user has to be very carcful when loading multiple
versions of the same component into memory as each component within memory will look exactly
the same resulting in complications when coming to tell the two apart.

2.1.2 Objects
As is mentioned in Szyperski (1997), a object is defined to have the following characteristics:

¢ Unit of instantiation which has a unique identity
¢ Has state which can be persistent

¢ Provides a method whicl: can encapsulate both state and behaviour

Additionally, as specified in Stroustrup (1994) an object can also support the concept of an inhieri-
lance structure,

Similar to a component having a concept of being a unit of deployment, so does an object which has
a concept of being a unit of instantiation. This effectively means that an objoct can not be partially
instantiated and must be instantiated in full. However, it is unclear as to what would happen in the
case described in Meyers (1998) where an error (1nost typically an exception) is thrown during the
object's construction.

A conscquence of being able to instantiate an object brings with it the notion of identity. Identity is
where an object is uniquely identifiable by a specific reference. No matter how similar two objects
are to one another (they can contain the same data within their data members) they will still be
unique by virtue of their presence. The specific reference that uniquely identifics objects is constant
for its entire lifetime. Using the identity characteristic allows state data held within a particular
object instance to be uniquely identifiable. This association between the state of an object and its
instance forms the basis for state persistence and allows objects at a later date to refer back to their
own state.

The role of encapsulation also plays an important role with cach object as cach is capable of having
its own state and behaviour encapsulated. This differs from a component where encapsulation




10

exists merely for the component while objects allow for cach individual to have their own arca of
encapsulated data.

The concept of inheritance as defined in Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen (1991)
is the grouping together and organisation of classes which are similar to one another iit one respect
using a tree like structure. An example of inheritance might include having a football object inherit
from a ball object.

It is important however to rcalisc that an object is a run-time instance (Meyer 1997) of an abstract
data type {(ADT) known as a class which acts like a blueprint (Deitel and Deitel 1997). For an object
to be rcalised and used it must be instantiated {as has already been covered) through the use of
an execution plan (Szyperski 1997). This plan is responsible for allocating all of the space required
for the object as well as establishing the initial behaviour and attributes as prescribed in the class
definition.

2.2 Objectives of Commponent Based Paradigm

The component based paradigm aims to address the significant issues which exist with current
monolithic systeins. Thesc systems traditionally lack cohesion, consistency and an overall sense of
cominon purpose in their architecture, In order to address these probloms, the component based
paradigm encourages systeins to be built with modularity in mind and strougly promotes this through
its own framework.

This modularity concept is achicved through the construction of software components which can be
conuected together to form the appropriate systemn. Such a paradigm brings with it the following
benefits:

¢ Modularity / Flexibility

Consistency

Structure

Software Re-Use

Testing

Configuration Management

2.2.1 Modularity / Flexibility

The concept of modularity is achieved within the component based paradigm through the successful
deployment of software components withit. the system. As a system is built within the paradigm,




11

the software developer will notice that components which are similar in their functiovsiity will be
grouped and interact with onc another.

In addition, by specifying that each component must be scif-contained (refer to scction 2.1.1), the
developer is left with Little choice but to break down a system into its fundamental components.

The Rexibility that a software developer has within the system is directly proportional to the granu-
larity of the component. Flexibility aims to allow the software developer to substitule a component
within the systern without having to require a significant amount of re-programming. This can be
achicved if a component is written to a fine granularity level. The coarser a component is, the less
flexible the system bccomes.

The benefits of having a flexible system include the ability to allow the software developer to move
modules around the system and for those modules to be plnced wherever the system dictates the
need for them.

2.2.2 Consistency

The nced for consistency is something which is constantly assessed and valued within the component
based paradigm. To aid the software developer with the construction of the system, a number of
graphical tools have Leen developed as mentioned in Kramer, Magee, and Ng (1989) to provide the
developer with instant feedback concerning the consistency of the system,

In addition to graphical aids which exist, a number of configuration definition languages have also
been developed to aid the soltware developer during the process of system construction. These
configurution definition languages will be discussed in more detail in scction 2.4,

However, it is important to note that a full consistency check is normally performed upon the system
by the desired component framework architecture responsible for itaplementing that system. In some
cases it is impossible to provide a complete analysis of the system, although numerous developments
have been made with Labelled Transition Systems as is mentioned in Magee and Kramer (1999).

2.2.3 Structure

One of the key points that the componeni based paradigm aims to address is the lack of structure
or perceived structure in current monolithic systems. It is well recognised that these legacy systems
have been modified for a period of years resulting in tightly inter-connecied compoucents and objects.
In most cases these modifications which consist of adding additional bits of code to the system to
achicve the functionality required (band aid approach) have resulted in the decay of the underlying
system structure which is responsible for holding all of the components together. At a future point
in time after another modification is made, the system will reach a critical mass point where the
entire underlying system structure holding the system together will collapse.




12

Component based programming solves this problem by requiring the software developer to implement
the system in terms of components. Each component represents an independent low level function
or function grovp. By adopting this approach, natural functional structures will form by themselves
hence providing the system with some structure. Additionally, the paradigm is also structured in
such a way as to provide the software developer with more opportunitics to deveiop their own system

structures.

2.2.4 Software Re-Use

One of the key benefits that the component based paradigm supports along w. .h software engincering
is the concept of re-use. Both the object oriented and component based paradigms encourage the re-
use of components. One of the major problems currently facing monolithic or legacy systems is the
constant re-writing of code which performs the same task. The component based paradign: supports
the concept of using third ,~rty components either written by a local developer or purchased from
somewlicre clsc and placing them into the system.

This has a number of significant beaefits. One is the amount of time which is saved in not haviug to
rewrite a compounent which already exists. This reduction in time is achicved by not having to get
a local developer to write or in some cases rewrite a comnpaonent which already exists clsewhere. As
is mentiored in Szyperski (1997), the comnponent basad paradigm is ready for a component market
to be cstablished by software vendors so as to allow developers to be able to purchase and inscrt
pre-written components. This is a vision that dates back to the late 1960°s (Naur, Randall, and
Buxton 1976).

In addition to saving time through the development or in some cases re-development of software
components, a significant period of time can be saved by not baving to test a pre-written component?.

It is envisaged that in the near future, there will be a considerable number of software repositories
from which developers will be able to acquire the latest compouent that they require. Therc have also
been some advances in the architectures (refer to scction 2.5) which support component frameworks
to provide the system with the ability to fetch the latest version of a component (based on the
pre-requisites being met) and to install it into the system.

2.2.5 Testing

As with auy system, onc of the most important phascs is the process of testing. In traditional
monolithic systems the process of testing is normally viewed as an arduous task, as large and legacy
systeins tend to have subsystems inter-twined with one another. This makes it nearly impossible to
isolate a section of the system so as to perform isolated systen testing.

11t is assumed that a third-party component sold by a software vendor would have already performed a rigorous
set of tests upon the component.

e e e s




13

Additionally, legacy systems normelly introduce the problems associated with spaghetti code where
one change made to part of the system may have consequences or flow on effects to other parts of the
system. In these cases, a system test would result in invalidating all previous tests conducted upon
the system. This would therefore lead to having to re-check every component within the system
otherwisc known as regression testing.

The component bascd paradigm alleviates this problem by enforcing the modularity concept (refer
to section 2.2.1) which provides for components to contain functions and respousibilities within
themselves. With these components having minimal connections to others within the system, the
complexity and time taken to perform system testing is reduced. This is achieved by only having
to test the individual component rather than re-testing the entire system. Additionally, by using
this paradigm there is a reduction in the number of bugs introduced into the overall system because
componcitts are normally tested thoroughly before being introduced to a component library or
directly to the system:.

2.2.6 Configuration Management

To date we have covered some of the benefits that the component based paradigm provides. How-
ever there is still one benefit yet to be discussed which offers the software developer unparalieled
control over the way in which the system is constructed and opcrates. This benefit as outlined
in Kramer (1990} and Szyperski (1997) provides the ability for the software developer to specify
the configuration of a system as well as being able to modify the configuration while the system is
running.

The configuration/reconfiguration model which is supported within the component based paradigm
provides for a mechanism which allows components to communicote with one another at both a
functional level and at a bindiug level. This is traditionally achieved within the component based
paradigm Ly enforcing componcuis to hold onto ‘indirect’ references.

Other programming models such as the obj2ct oriented paradigm are unable to achieve this level of
configuration /reconfiguration control as the components and objects deployed within the environ-
ment hold ‘direct’ references to one another. Figure 2.1 illustrates the differences between ‘direct’
and ‘indirect’ referencing. The use of direct referencing results in components knowing the cxact
location of the other component. A change to the component’s location results in having an entire
system search: for all the references {o the old component and substituting it with the address of
the new location. Although this is feasible, it docs provide an extra strain on the system. This still
remains a fundamental problem wiil:ia these programming paradigms.




14

Direct Reference Indirect Reference

3. Send hackreal dress to Conponent B in
Binding Manager which stsres real address

Figure 2.1: Direct Reference vs. Indirect Reference

Additionally, this teclinique does not lend itself well to the concepts of distribution. In single
standalone machine environments the reference to the other object or component is normally the
virtual memory address allocated to the component. The problem is that this virtual memory.
address refers to the memory located on one physical machine. When the concept of distribution
is introduced it is possible that the same memory address which existed on one machine will not
translate across to any other machine in the system, or worse still in some cases the memory address
may point to anotlier object located on another macliine somewliere else in the network.

For the most part this is a considerable problem for the development of systems which span across
many computers. However, as we will see in section 2.5 there are now a number of architectures
which have been developed to address this distribution problem.

2.3 Configuration Management within the Component Based
Paradigm

Configuration management was incorporated into the component based paradigm so as to provide
a rich framework allowing for system developers and maintainers to interact with the configuration
of the system. Additionally, this framework serves as an abstraction layer between the logical
associations and pliysical interconnections found within each component.

When the framework is used appropriately, it allows for developers and maintainers alike to modify
aspects of the system in terms of its configuration and to analyse the impact of these changes on
the system. Once a configuration has been finalised these changes can then be declared »¢ the




15

configuration level of a functioning systemn. This specification is normally made within a specialised
configuration definition language (refer to section 2.4).

2.3.1 Objective of Configuration Management

The objective of the configuration management framework is to allow developers to provide a flexible
system which is capable of accommodating the changing needs of the system while at the same time
modelling the effects of these changes. These changes are somctimes required before the actual
chapge is implemented in the final system.

Additionally, the configuration management systemn can also be respousible for recommending or
slowly implementing the stages of a new configuration to an already existing configuration in a
sequence which would cause minimal disruptiorn. to the running system. This is similar to incremen-
tally changing the system through a number of stages. The conclusion of the reconfiguration process
allows the configuration management sysiein 1o perform a comparison between the actual results
that it has observed in the system and those that were expected.

2.3.2 Explaining how Configuration Management Works

As was mentioned in section 2.2.6, configuration management relies on the use of indirect references
to compenents. One approach as outlined in Kramer and Magee (1990), Magee, Kramer, and Sloman
(1989}, Sethuraman and Goldman (1995), Kramer, Magee, and Young (1990) is the introduction of a
‘Binding Manager’. This arrangement of components and their relationship with a bindiug manager
is explained in the next section. By using a binding manager the concept of indirect references are
further cmbraced.

2.3.2.1 Binding Manager

The binding manager plays a central part in the configuration manpugoment system, It is responsible
for maintaining the connections between all the componcents within a system. In addition to main-
taining the cornections the binding manager is responsible for identifying when it is safe to remove
and/or add a binding from/te the systemn and assess what impact this action may have on the rest
of the system.

In order to provide the functionality required to manipulate the interconnections of components, the
binding manager must provide some functionality with regards to management. This management
is achieved through a sequence of operations which resuits in the component having its staie become
quiescent. A complete explanation as to what quicscence is and how it can be achioved within
componenis can be found in Kramer and Magee (1990) and Kramer, Magee, and Young (1990). A
brief summary of the key points for quiescence is prescnied below.

i




16

The process of managing an interconticction between components requires a considerable number of
operations and mnust be performed in a logical sequence. These operations include:

e Create — This involves creating the actual component within the system. It is at this stage
that the operator can either develop their component interactively with the system or can
import it from somewhere else. The configuration manager also registers the object so that it
can refer to it at a later date.

_ e Passivate — This is the process of placing a component into a state which docs not make it
] interact with any other components within the system. This cffectively withdraws the object
| from ‘active' service. The first stage in passivating the system is to inform the components
(done via the binding manager) that the component is not available. If by an off chance a
request is macdie upon a component which has been passivated, the traditional response will be
for that request to be ‘frozen’ until the component is reactivased.

Ouce this stage has been reached the component then withdraws from actually initiating
any new interactions with the remaining components in the system. After a period of timne,
quicscence is reached as the component which is being passivated stops/finishes interacting
with the other components. In some cases, most notably those components which do internal
processing, there will never come a point in time where the component is totally quiescent. In
these cases it is assumed that after a given period of time the componcent can be said to be

quiescent.

e Activate — This operation is responsible for activating the new component with the system,
. As the component reccives the ‘activate’ operation, it initialises itself and prepares its bindings
3 to be attached to the rest of the system via instructions specified by the binding manger.

e Active — This operation is responsible for inforning the binding manager that the component
is active and is ready to receive requests via the intercomponent communication channels which
have been ostablished (refer to section 2.3.2.2). Additionally, the call to ‘active’ informs the
binding manager to send on those requests which have been in a state of ‘deep frecze’ while
waiting for the component to become active in the system,

e Link — This is one of the more important operations that a binding manager and overall
configuration management systemn can perform. This operation: is used to maintain an index
of the links flowing from onc component to another (ic. which compouents are linked together).
In general terms the operation ‘link’ is responsible for the addition of links into the central index
{maintained by the binding manager). It is this index which is used to determin» whercabouts
a method request will be dispatched. As can be appreciated, it is critical that the indexing
system remains consistent.

T e




17

¢ Unlink — In addition to managing the links between components, the binding manager must
also have a method of being able to de-register thosc links which have been nominated by a
developer as being no longer useful. The ‘unlink’ method is used to remove those relationships
from the index within the binding manager. Operations such as ‘unlink’ require the system to
perform a comprehensive check to determine any possible side-cffects. Side-cffects can include
the attempted removal of an active binding or the attempted removal of a binding which is
currently being reconfigured. Such side-effects if they exist are required to be acknowledged
before any reconfiguration takes place. Once the analysis has been completed and the impact
to the system has been assessed, the reconfiguration of the relationship index is performed.

2.3.2.2 InterComponent Communications

As previously mentioned, componenis in a component based paradigin lack any direct communication
with one another. Instead, each corponent communicates with another through the use of a binding

manager (refer to section 2.3.2.1).

Each component within the system has a proxy address which acts like a pointer to the required
functionality located within another commponent. This proxy address is actually a pointer to an entry
which is held within the binding manager.

Along with cach address which is held within the binding manager is a significant amount of other
information. This information can be of a security nature which dictates who is able to call the
method and when that function can be called, statistical information which bolds information such
as the number of times the component has been accessed, or other auxiliary information which is
required to answer questions regarding the status of the binding.

As is evident the binding manager must then maintain a list of two addresses. The first address
is the proxy address which is used by the components as a primary key in the lookup table. By
using the first address, the binding manager is capable of determining the real memory address of
the desired components interface.

Before the binding manager ‘puts through’ a request to the desired component, a number of house-
keeping functions must be performed. The first of these functions includes checking on the status
of the binding and deicrmining whether the binding is actually suitable for use. If the binding
is available then the binding manager processes the request and indicates that the link/tinding
is currently being used. Once the method invocation to the component is complete, the binding
manager records that the binding is free once more and updates its records accordingly. However, if
during the checking the binding manager determines that the binding is not available, the binding
manager ‘blocks’ or ‘freczes’ the method invocation and waits for the component to become available
once more.

T S L
=

""?j:"ulun;‘" t]




18

Overall, the binding manager is able to control how a component interacts within the system through
the use of a specificd set of interfaces. These interfaces were briefly covered in section 2.3.2.1. As
mentioned the passivate interface allows for components to become quict while reconfiguration
takes place. Once reconfiguration has taken place the activate interface allows the component Lo
rejoin the system and to process requests once more.

As a result these interfaces allow the binding manager to exert its authority over the components
within the system. In addition the binding manager can enforce its own binding protocols if desired.
These protocols can either replace the notion of quicscence within the system or can be used in
parzllel to allow the system designer to have a lot more conirol over the components, Some typical
examples of what might be added to the configuration manager include the ability to buffer incoming
requests to components which are not avatlable at that point in time or the ability to provide the
system designer with performance information such as how long is it taking for a method to get to
a component or how long is it taking a component to process a request.

Through the use of the binding manager the developer of the system has the capability of being able
to tune the way in which requests are dispatched to components within the systemn. Additionally,
with the introduction of the proxy address concept there is scope for the systemr to redirect the
function call to another module located within the system.

2.3.2.3 Manipulating Components

The nced to manipulate components is fundamental to the operations of the coufiguration manage-
ment system and the binding manager. As has been mentioned, the reconfiguration of components
and the redirection of bindings is achieved through the manipulation of the proxy address and the
real address held in the binding manager.

To the ‘caller’ everything remains static as the communication chaimel is established with the binding
manager and not the direct component, It is within the binding manager where all of the adjustinents
are made to the proxy address. With regard to the ‘callee’, the address given between it and the
binding manager remains constant. The switching of the component requests is done within the
binding manager. This is similar to the way carly phone exchanges worked where both partics
wanting to talk to one another were conuccted to the phone network, but had to dial the phone
exchange for a link to be made between the caller and the callce.

2.4 Supporting Configuration Management

Although the configuration management system allows for components to be manipulated within
the system, there is a nced for these changes to be recorded in a declarative manner.




19

This is achicved through the use of a Configuration Definition Language (CDL). CDL's have been
designed as a method of being able to aid the software developer in encapsulating the semantics of

a system while it is being analysed and designed.

Traditionally, these languages are purely descriptive and contain no constructs for any implementa-
tion. CDL’'s normally identify all of the components within a system, their interconnections, their
location within in a distributed system and any other £pecial relationships which exist. An example
of a CDL and the system that it describes is shown in figure 2.2,

System
Compenent A Compenent B
INPUT( )__.OUTPIJT
Cemponent A { Component Sysiem {
require U ut; inst
} Component_A: A
CompenentB { Compenent_B: B
provida euip ut; provids suiput;
H bind
Comperiai_A.input.. Componeni_B.output
}

Figure 2.2: Sample Configuration Definition Language & System

It is from these languages that a more detailed description of the system can be gencrated or with
the assistance of some automated tools, the configuration of a syster: specified in CDL can be
used to gencrate the appropriate classes and stubs for an implementation of the system. Section
2.4.1 introduces the DARWIN configuration language which is commonly used to represent the

configuration of a systemn.

2.4.1 DARWIN Configuration Language

DARWIN a5 defined in Dulay (1992) was developed with the objective of being able to provide a
description of a system which details the structure of those components within it, along with their
hicrarchical arrangement (Pryce and Crane 1996; Magee, Dulay, Eisenbach, and Kramer 1995).

BT S YU T W ST

T e i




20

In addition to storing the definitions of structures and their hicrarchy, DARWIN alse records the
interconnections between those components which have been identified within the system.

Most of the concepts that the DARWIN configuration language embraces were originally developed
as part of the CONIC project (Magee, Kramer, and Sloman 1989). The DARWIN configuration
language was principally developed to act as the configuration language to the REX project (Magee,
Kramer, and Sloman 1990; Kramer, Magee, Sloman, Dulay, Cheung, Crane, and Twidle 1991)
but since then has been adopted by other systems as a standard for describing the notation of
compenents, system structures and their dynamic interactions.

To achieve this, the DARWIN configuration definition language provides further enhancements to
the semantics available to model the dynamic nature of a system. Earlier configuration languages
focused on the need to provide static support and did not provide the same level of semantics
required for recording the dynamic nature of components. DARWIN adidresses this issuc through
the introduction of a dynamic keyword.

Although there have been a number of configuration definition languages and systems developed
recently such as CONIC (Magee, Kramer, and Sloman 1989), DARWIN (Dulay 1992), REGIS
(Magce, Dulay, and Kramer 1994} and PONDER (Damianou, Dulay, Lupu, and Sloman 2000), it is
intercsting to note that the most commonly used configuration definition language is DARWIN.

A contributing factor to the success of DARWIN as a configuration definition language is its richness
in notation. As mentioned before, DARWIN provides support for the configuration of a system i be
specified declaratively and to include support for dynamic systems, However DARWIN also provides
the ability for the configuration to be represented graphically. Onc tool as described in Kramer,
Magee, and Ng (1989) which is currently available is called the Software Architect and allows the
system developer to specify the configuration of a system in cither a declarative or graphical manuer,
Figure 2.2 shows an example of a DARWIN component declared declaratively and graphically.

DARWIN provides support for components to interact with onc another through a concept known
as a ‘port’. This idea of a port was originally developed in CONIC but kas been further enhanced
within the DARWIN specification.

However, one problem that DARWIN docs not address is the issue of type checking between the
different components and at the various ports that exist within the system. The decision not to
introduce type-checking at thesc points was a bi-product of the CONIC project where the issues
of type checking were not fully examined nor explored. The decision to keep type-checking out of
DARWIN was made on the basis that system developers would make the appropriate decisions with
regards to combining components. This approach or lack of type-checking has sparked a number
of rescarch groups into investigating the possibility of inserting type-checking into the DARWIN
configuration language itself or intc a DARWIN configuration language clone.




21

Another reason why DARWIN is commonly used as a configuration definition language is its ability
to abstract lower level concepts of the system into a higher component. By providing this level of
abstraction the devcloper can identify scctions within the system and abstract them into a component
which can then represent the collection of functions or role within the systemn. This is very similar
to the concept of ‘partitioning’.

Additionally, this level of abstraction helps the system developer illustrate the real designs of the
system as opposed to a system which is clouded with a namber of details pertaining to the lower
levels of the system. DARWIN is capable of supporting these abstraction techniques with the help
of a number of concepts. These concepts include:

¢ Importing Services

-

Exporting Scrvices
o DARWIN Componcats

s Scrvices

Levelling

2.4.1.1 Importing Services

When DARWIN componeuts are constructed they are designed to provide the core functions whicl:
are responsible for achieving the task at hand. In certain circumstances, a component may require
the functionality of another componient to achieve its objective.

Where a component requires a service or functionality that it docs not provide itsclf, it must seck
out the required functionality from another component. It is at this point that a relationship or
connection between two components must be established. Hence, when the first component requires
a service provided by another component to achicve its goal, it is said to have imported the function
or scrvice.

In order to make this happen, the DARWIN configuration language provides a keyword called
import which notifics the configuration manager that this component requires another component
to be present before it can do any processing. The import keyword is used by the system to ensure
that its dependency tables are kept up to date.

2.4.1.2 Exporting Services

The term ‘exporting’ a scrvice is similar 10 the concept which was discussed in section 2.4.1.1 for
importing services, except that in this case it tarpens in the opposite direction. A component
which is capable of providing a service to other c.xinnnents is said to export that service if another




22

service reguires it. By default any functionality that is provided within a component. is not set to be
exported by default. The component devcloper must specify “nat they wish to export the service.

Once again the export keyword is used by the system to ensure that its dependency tables are kept
up to date.

2.4.1.3 DARWIN Components

The concept of a component within the DARWIN configuration definition language is exactly the
same as thosc components which were defined in section 2.1.1, Components within DARWIN only
need to communicate with one another if they require the services of another componcent as is
outlined in section 2.4.1.1. These components can normally be identified through the use of the
DARWIN keywords import or export.

2.4.1.4 Services

The term services is used within the DARWIN configuration definition language to describe the
functionality of a component. This functionality can either be imported into another component, or
exported from a component. The issue of services becomes of considerable importance when the
design of the systemn dictates that a serics of components are grouped or clustered together in a
manner {0 abstract part of the system.

2.4.1.5 evelling

Ag with most information systems, modelling techniques and concepts such as Data Flow or Entity
Relationship diagrams play an important role in the modelling of the business domain {Burch and
Grudnitski 1989). Additionally, these techriques are quite useful in identifying errors in the design
through a process known as levelling which allows the designer to partition the systemn into a series
of layers, cach of which vary in technical specifications.

The DARWIN configuration language when it was being designed provided for this process of lev-
elling. By allowing levelling, the developer can start with a diagram which illustrates a very high
level picture. Typically, a diagram at this level could be sised to convey the basic idea of a sysiem
to manageinent while a more detailed diagram lower down in the system could be used for analysis,
design and implementstion. In DARWIN this concept is cxpressed as components being nested
within other components.

Loevelling also helps the software developer to identify problems which exist within the system, As
one level of the system is developed and then expanded to reveal the layer below it, all of the external
connections from that level arc carricd through to the next level aud hence must be matched and
accounted for. Use of this levelling process aids the developer in identifying situationdiwhere there




23

are mismatches within the system and provides the opportunity for the appropriate actions to Le
taken.

It is for all of these reasons that the DARWIN configuration language is used for the REX system
which provides support for developing systems which span a distributed network (Magee, Kramer,
and Sloman 1900; Kramer, Magee, Sloman, Dulay, Cheung, Crane, and Twidle 1991).

2.5 Supporting Architectures for Component Based Paradigm

To date, section 2.1 has focused on the fundamental concepts and terms which are pertinent to the
component based paradigm. However these are terms and definitions which do not deal with the
implementation details.

This section examines some of the more common architectures generally available to software de-
velopers which facilitate the development of sysiems by using a component based approach. These
architectures are not to be confused with those systems detailed in chapter 3 which actually pro-
vide an environment from which systems can be constructed and reconfigured. This section only
examines the available architectures.

2.5.1 Distributed Computing Environment

As mentioned in Yang and Duddy (1995), the Distributed Computing Environment (DCE) was
developed by a consortivin of software companies known as the Open Software Foundation (OSF)?.
At the time that OSF was formed, there was a considerable amount of tension within the computing
industry as alliauces had just recently been formed for the development of the first system to allow
programming in a distributed domain. This tension as detailed in Bloomer (1992) ended with
the creation of the ‘Network Computing Architecture (NCA)’ as a result of an alliance between
Apollo and Hewlett Packard and ‘Open Network Computing (ONC)’ system developed by SUN
Microsystems.

Although both the ONC and NCA systems addressed the issue of distributed computing, they
were both of a proprietary nature costing programmers a considerable amount of money to use.
Additionally, both systems were inflexible as they were suited to one particular environment from a
vendor. After a period of time, the demand for a distributed programming environment grew, and
the OSF was formed. OSF decided to address the distributed computing programming paradigm
problem by providing both an architecture and an implementation.

While the OSF was in the process of being formed, another battle was looming between AT&T and
the rest of the computing industry. This battle was sparked by the dominance of AT&T in the UNIX

2This group is now known by the rame of XOpen,




24

market and their successful application to have the word UNIX copyrighted. As a result of these
transpiring events, there was even a greater determination for the various software and hardware
vendors to band together and develop a truly unified and standardised version of UNIX (Martin
1095). This determination resulted in the first unified UNIX operating system beirg developed.
The operating system was codenamed ‘OSF/1’. Since then OSF/1 has been superseded by ‘Digital
Unix’ which has been designed to embody all that OSF/1 aimed to achieve.

To ensure that DCE would be successful, the DCE design committee decided to develop a goal for
their system. This goal simply put is “to provide an architecture which allows developers to build
distributed applications independent of the lower level functionality”.

2.5.1.1 DCE Architecture

Figure 2.3 illustrates how the DCE architecture is structured. From the figure it is possible to
see that the architecture is modular in nature, allowing for certain areas of the DCE system to Le
replaced as required. This replacement strategy could be utilised in the instance of a new thrsads
service having to be inserted into the system as a result of an operating system change.

i e S i e A

Time Service

ruds Service |

3

Op erating System

Figure 2.3: DCE Architecture




File Service Module
The file service within DCE is responsible for providing a standardiscd interface to those files located
within the DCE system. As part of its responsibility, the service provides a complete list of files
(traditionally represented in a hierarchy structure, similar to that found on PC based operating
systems) which spans across multiple systems to the user upon request. Files located on other
systems throughout the network appear just like a local file would in the hierarchy. It is the role of
the file service to provide transparent access to these files no matter where they might reside. A cut
down version of the same file system is available on a number of UNIX platforms and is known as
the Andrew File System (AFS).

Additionally, the file service is responsible for ensuring that incoming requests for fles have the
appropriate security privileges. This is done in consultation with a sccurity scrvice which maintains
Access Control Lists (ACL’s) that govern the usage of various resources. For example, UNIX makes
use of ACL’s to control access to various parts of the file system. In bricf, an ACL is associated
with every resource and contains a list of those users or groups who have privileges to read from the
resource where appropriate and those that have write access, It is important to note that an access
privilege to read a resource does not necessarily imply that the user also has write access.

Security Service Module

The security scrvice is responsible for controlling access to all components within the DCE system.
As mentioned previously, this is also responsible for managing the ACL’s which the file scrvice
makes use ol. Effectively, the sccurity module takes requests from a client known as a principal
which contain details on the user and the requested service and then performs an authentication
Procese.

If the request can be authorised then it proceeds otherwise it is rejected and sent back to the user.
To ensure the security of the information being passed to the security module, the KERREROS data
encryption protocol is used.

Directory Service Module

The directory service should be renamed to the locator service as it is responsible for knowing and
tracking the locations of all the resources available within the DCE system. As DCE facilitates the
networking together of computers, it is possible to identify that the dircctory scrvice might have to
maintain a large amount of data dispersed over a wide arca.

As figure 2.4 illustrates, the dircctory scrvice is partitioned into a serics of levels and sections. At the
top of the directory module is the Global Directory Service (GDS) and the Domain Namne System
(DNS). The DNS component of the directory service is a third-party system and interfaces with the
networking components ef the installed operating systemn (Transarc Corporation 1996).




26

Figure 2.4: DCE Dircctory Services Namcespace

On the GDS side, we can sce that the system is partitioned into two lower levels known as the Cell
Directory Service (CDS8) and Directory File Service (DFS) or the file space as described carlier.

It is important to note that the directory service only stores information pertaining to the name of
the resource and contains no information or attributes about the resource itself. Such information
can only be retrieved after the directory service has located the object and returned the results to
the client. Once the client has the information it ¢an then formn a direet connection with the resource
required and obtain the relevant information.

Scarches within the DCE dircctory structure are hicrarchically based. If a resource can not be
"seated within the current cell, the global directory service is contacted to assist with the search.

Within the directory service a considerable amount of information is stored. Transarc Corporation
(1996) provides a comprehensive listing of all the entitics which are stored within one cell located
within the directory service.

Time Service Module

With the distributed computing covironment r ‘working a number of machines, cach of which has
its own time clock and in some cases spanning a number of time zonces, comes the problem of Leing
able to provide a synchronised time that all the machines can agree to. This becomes jmportant
when cntering into time critical functions such as database transactions or accessing and locking
disk files or providing consistent auditing information.

To address this problem, the DCE architecture synchronises on one time weasured from one point
in time. This time is calculated by the number of seconds that have clapsed since 15th October
1582. This date happens to be the start of the Gregorian calendar?.

3Refer to van Helden {1895) for an in-depth discussion on the developments of the Gregorian calendar,




27

By using this time base, all resources and components within the sysiem are able to maintain a
consistent time. Needless to say, that all time calls made by resources go through the DCE time
service.

Remote Procedure Call Module

The Remote Procedure Call (RPC) module of the DCE system forms the cornerstone of allowing
components and resources to comnmunicate with onc another. RPC which was a bi-product of the
development of the Network Computing System (NCS) as mentioned in Bloomer (1992), provides
the mechanism for components to send fow level messages to one another. It does this through the
aid of an Interface Definition Language (IDL) which allows developers Lo specify the interface to the
resource.

This interface definition file (refer to figure 2.5 for an example of a interface definition file for DCE)
is compiled to provide a serics of stubs which are then used to marshall the relevant data into a
format known as XDR (SUN Microsystems 1987). The resulting stub code is used for handling the
transmission and receiving of data to and from these resources.

/* Example of a DCE IDL File */
(uuid(6db16365-51d6-472f-b93f-00abida?29c6e) ,
version{0)]

interface subtract

{

[idempotent] void subtract_op
(
[in) bandle_t clientHandle;
[inl long numberi,
[in) long number2,
[out] long #*result

)

}

Figurc 2.5: Example of a DCE IDL File

The DCE system was one of the first architecturces to introduce an ipterface definjtion language
responsible for the decoupling of the interface from the implementation. The basic concepts of the
DCE/RPC systein have now been embraced within the development of other architectures which
provide the ability for distributed programming. The most notable architecture which has adopted
the RPC mechanism is Microsoft’s DCOM (refer to section 2.5.3.1).

Threads Service Module
The threads component of the DCE system is designed to provide the developer with a standardised
interface into the threading mechanisin used by the operating systom regardless of whether the




28

operating system is using native or green threads and is irrespective of the operating system being
used. To ensure future compatibility the DCE thread interfaces were designed to conform to the
POSIX.1 standard (Zlotnick 1991).

The thread subsystem was also engineered in such a manner as to provide the developer with some
additional flexibility. In some operating systems an interface into the threading system is unavailable.
To address this situation the DCE system has also been engineered to allow a threads library or
package to be compiled into the system. This library then acts in the place of the threads sub-system
within the DCE architecture.

Operating System

As shown in fizure 2.3 the lowest level module on the DCE architecture is the operating system
itself, Although there is nothing to specifically discuss with regards to the operating system it is
important to note that the operating system must have the appropriate hooks in place to allow such
DCE services as threading and RPC systems to operate.

The first operating system to have a fully integrated DCE system was OSF's own operating system
OSF/1. Since then Digital UNIX which has superseded OSF/1 and other operating systems has
continued to provide support for the Distributed Computing Environment (DCE). DCE today is
still one of the more popular distributed programming architectures currently available {or systems
which do not require the full benefits of the object oriented programming paradigm.

2.5.2 Object Management Group’s Approach

Although the DCE system provides an architecture for developers to construct distributed systems,
it does however lack additional functionality which is becoming more relevant in distributed systems
today. This extra functionality can be in the form of services which provide transaction based
management, concurrency or persistence. An architectuve which provides a solution to this problem
is the Common Object Request Broker Architecture (CORBA} developed by the Object Management
Group (OMG).

2.5.2.1 Object Management Group

It 1989 a number of major software vendors including Hewlett-Packard, SUN Microsystems, Canon
and 3COM came together to form the Object Management Group (OMG) in an attempt to be able to
provide a standards organisation which could help facilitate the first draft of a complete distributed
programming environment? {Ben-Natan 1995). Since then the member numbers of OMG have been
steadily increasing. Over the last § years, member numbers have increased on average by 100 per
year. In 1995 when the second edition of the CORBA specification {(Object Management Group

414 was recognised at the time that DCE provided a good stepping stone for disiributed programming but did not
provide a complete solution,

anaal s =




29

1995L) was released the reported number of members belonging to the OMG was 500, in 1990 it
was GO0 as mentioned in Siegel (1996} and at last count the number of members was well over 800
(Object Management Group 2001).

Just like the OSF, the OMG when being formed developed a charter to help steer the direction of
the members. The charter for the OMG as rlefined in Ben-Natan (1995) is to “promote the usc of
object technology and to provide an architecture which facilitates the development and deployment of

distributed object oriented systems”.

However, unlike OSF’s approach to DCE and Microsoft’s approach to DCOM (refer to section
2.5.3.1), the OMG is merely a standards organisation responsible for the development of the archi-
tectural concepts only. The OMG does not provitle any implementation for the architectures that it
specifies. As a result the OMG consists of a number of committees which oversee the design process
from a management level while technical committees and working parties are formed to deal with
the more specific issues.

2.5.2.2 Object Management Architecture

The cornerstone behind the OMG's architecture is the Object Management Architecture {OMA)
as described in Object Management Group (1997). This architecture is Lroken up into two smaller
models known as the Object Model (OM) and the Reference Model (RM). Although Loth are not
implementation models, the OM presents more of a conceptual view of the architecture while the
RM Luilds upon those concepts described in the OM.

Object Model

The role of the core object mode! within the object management architecture is to provide a conve-
nient location where the concepts and terms relating to object oriented programming can be defined
in such a context as to make sense to the clients who will be connecting to the system. Addition-
ally, by having the object model focus on the concepts of object oriented programming rather than
implementation, the developers can promote poitability as a key component to the object model.
Here is a briel explanation of the terms that the chject model defines in Qbject Management Group
(1997):

Object: An object within the core object model is an entity which can be modelled within the
real world. Traditionally, an object encapsulates both data and [unctionality which is relevant
to the real world entity. It is expected that this object will then make available some of this
functionality so that others can interact with it.

Request: A request is an event made by a client to an object for a service. It normally contains
information such as the operation requested, parameters which are to be passed to the object
and parameters which are to be completed by the object and returned to the client.




30

Object creation and deletion: It is important to note that therc are no special mechanisms
in existence for clients to be able to control the creation or deletion of objects. Clicnts will
however see the effect of an object creation through a new object refercnce being allocated to
the object.

Types: The object management architecture identifies a type as being an identifiable entity which
has a predicate associated with it. A type is considered to be valid if it satisfies the predicate
of that type. The type system is then further refined to differentiate between basic types or
constructed types. Basic types as defined in Object Management Group (1997) arc considered
to be:

s 16 & 32 bit signed and unsigned 2’s compliment integers
¢ 32 & 64 bit IEEE floating point numbers
¢ Characters which conform to the ISQ-Latin 1 standard

¢ Boolean types

A binary stream guaranteed not to undergo any transformations during transmuission

Enumecrated types

*

A string type which consists of a variable length of characters

e An ‘any’ type which can represent either a basic or constructed type
Constructed types arc defined as:

» A record structure defined with the struct keyword

¢ A discriminated union type

e A scquence type which can represent an array of elements with a single type
¢ An interface type which specifies a set of operations to be performed

Interface: An interface is an operation or a group of operations which can be performed upon an
object. This interface is the entry point to the functionality encapsulated within the object.

Operation: An operation refers to the internal functionality which exists within the object. Re-
quests are made to operations contained within objects.

Attribute: The term attribute refers to a picce of data which can be individually associated with
an object. Additionally, the term atlribuie is used within the CORBA cnvironment to provide
both get and set methods to manipulate the internal data.

Reference Model

As was mentioned previously, the reference model builds upon the founding concepts which were de-
fined in the object mnodel. Additionally, it is responsible for identifying those components, interfaces
and protocols which exist within the object management architecture.

A
o




31

Figure 2.6: OMG’s Object Model Reference Model

From figure 2.6 it is possible to sec that the reference model has been divided into four discrete units
which are interconnected with one another through the Object Request Broker (ORB).

Application Cbjects

Application vlbjacts are those which are constructed by the developer for 2 problem domain which
is specific to the end user. As a resuld of cach application object which is developed being unique
for the developers’ own domain, the OMG does not specify no: expect any particular object written
within this domain to conform to any known standard.

Domain Inverfaces

The domain interfaces module is responsible for the grouping together of those interfaces which
belong to a specific domain. Examples of these interfaces include finance, telecommunications and
clectronic commerce. To allow for the reuse of these interfaces within different organisations which
operate within the same domain, the OMG specifies a particular standard to which developers
must prograni. This ensures that objects developed for this domain are fully compatible with other
systems.

Object Services

Object services are responsible for providing objects with the basic low-level functionality required for
an applications development. 4 sample of the services standardised by the OMG include persistency,
transaction control, concurrency, security and timing. A complete list of CORBAServices can be

R e i

i

[y
R




32

found in Object Management Group (2001) or Object Management Group (1998)°. It is important
to note that all services provided to objects are independent of any application domain.

Common Facilities

Common facilities are similar to object services except they are geared more towards the application
development rather than providing a service to the object itself. Additionally, common facilities
represent a higher level of abstraction than object scrvices. As is specified in Objeet Management
Group (1995a}, the OMG has standardised upon the following:

User Interface: The user interface facility is responsible for covering all the aspects related to
user interface design. The interface allows the developer to specify the look and feel of the user
interface with respect to the design tools located on the system. In addition to providing the
user with the control elements to the user intetface it is also responsible for giving the client
casier access to the data and automating some of the tasks required.

An example of the interfaces supported include providing for operations to allow the rendering
of data for output to screcn or printer as well as providing a framework for allowing the
developer to build a compound interface environment. This is an cnvironment in which the
user has various pieces of information presented to them on a screen.

Information Management: The information management facility provides an interface to allow
data for an enterprise/organisation to be stored, retricved and manipulated in an cfficient man-
ner. The interface provides options for the modclling, storage, retrieval and encoding/decoding
of data for trausmission as well as performing the transinission itself.

System Management: As the name suggests, the system management facility is designed to
allow developers and end-users to control the management of the system. The interfaces
supported in this facility abstract such tasks as controlling the system, monitoring on-going
processes, providing an access point so that security can be managed as well as providing
a method for policies to be specified outlining the level of control provided to an individual
developer or group of developers.

Task Management: The task management facility aims to provide an infrastructure which allows
for the modelling of tasks while at the same time providing the functionality required to manage
users, production workflows, rules governing the system and conununication activities between
tasks. The task management facility also provides support for agents to cxamine the tasks
within the system.

Vertical Market: The vertical market facility aims to provide users and developers with stan-
dards which allow interoperability in specific problem domain arcas. This is a relatively new
addition to the common facilities module and is constantly under going modification. Some

5The OMG is constantly issuing request proposals for new services to be added to the OMA.




33

examples which have already been specified include imagery, support for the information super-
highway, manufacturing processes and distributed simulations. For a complete list of vertical
markets, refer to Object Management Group (1995a)®.

Object Request Broker

The Object Request Broker (ORB) as shown previously in figure 2.6 is responsible for linking to-
gether all of the other components which exist within the reference model. In addition to linking
components, the ORB is responsible for providing the central communications backbone between
objects. One of its tasks is to allow requests to flow between objects within the system while at the
same time providing this form of communication in a transparent manner. By achieving this level of
transparency, the client only ne~ds to hold onto an object reference and use this reference to contact
other objects without having to know where the object is physically located. In addition to coordi-
nating the transfer of requests between components, the ORB is also responsible for the marshalling
the data in such a manncr as to allow the data to cross machine byte-ordering boundaries. This
ensures that big-endian and little-endian systems can communicaie with one another without having
to worry about primitive data types being corrupted. This is achieved with the help of an interface
definition language which provides some separation between the interface and the implementation.
The ORB is also responsible for detecting and capturing any errors which may result from a request
from an object. If such an error does occur {corimonly known as an exception), then the ORB is
responsible for marshalling this data and sending it back to the client.

2.5.2.3 Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) object model takes those terms and
definitions defined within the core OMA object model (refer to section 2.5.2.2) and extends thom in
such a manner as o provide a real or tangible concrete model from which an architecture supporting
distributed object oriented programming can be formed. As the CORBA object model extends the
core OMA model, all of the definitions such as requests, operations, interfaces and types, both basic
and constructed continue to carry the same meaning.

Interface Definition Language

The role of the Interface Definition Language (IDL) within the CORBA architecture is to provide a
level of abstraction between the interface and the implementation of the object. This abstraction aids
developers in the design of the system as it provides a clear separation between the clients respon-
sibilities and the servers. As a consequence, all objects developed under the CORBA specification
must have their interfaces expressed in terms of an IDL.

The IDL is a language and implementation neutral environment. Effectively, this means that the
keywords used within the language are not dependent on any particular language nor does the

SAs new interoperability standards are constantly being introduced, hitp://www.omg.org provides the latest in-
formation.

i ki B e b b L e o o o R i A SR T el S e et e % , i e e o S e s e il




34

language provide any support for the programming concepts of iterution or selection. However, the
OMG does admit in Object Management Group (2001) that the interface definition language was
based on the C++ language and will most likely be modified to follow the standardisation path that
C++ takes. Table 2.1 shows keywords which are reserved within the CORBA IDL.

any attribute boolecan  case char
const context  default double enum
exception FALSE  fixed float in

inout interface  long module Object
octet oneway  ouf raiscs  rcadonly
sequence  short siring struct  switch
TRUE typedef  unsigned union  void
wchar wstring

Table 2.1: Rescrved CORBA IDL Keywords

Once the interfaces are defined in the IDL, they are compiled through a IDL compiler which generates
the appropriate client and server side stub and skeleton files. The stub code which is gencrated
contains routines which are responsiile for the marshalling and unmarshalling of data, and the
passing of the request to the desired object through the object request broker. The skeleton code
generated during the IDL compile process provides the developer with a basis from which they can
develop code. The skeleton code normally produced by the compiler containg the method calls, the
parameters being passed to and from the object expressed in CORBA types and any headers which
may be required for the program to compile.

As is mentioned in Object Management Group (2001) the goal of the OMG is to provide the ability
for developers to create systems which span over many distributed envirouments. In order to provide
developers with this flexibility, the OMG has standardised a series of language bindings which allow
developers to write objects in any of the languages supported. For example, aue to the decoupling
of the interface and the implementation, it is possible for Java clients to talk 1o C++ servers or vice
versa. The language bindings currently supported by CORBA as specificd in Object Management
Group (1999) are:

s Ada

o C

o C++

¢ COBOL
e Java

¢ Smalltalk

o med o o

L e D R ol e ek




Components of the Common Object Request Broker Architecture

As can be scen in figure 2.7, the underlying architecture of the CORBA model is very modular in
nature and hence provides the basis for a very powcerful architecture. The modular approach was
adopted to allow components within the architecture to be designed for one specific purpose. This
thercfore provides the ability for components to be updated/upgraded within the model without
causing massive disturbances to the remainder of the system,

APPLICATION OBECTS SERVER OBJECTS
l 3 k E
. v
-l
«| (BB |EE
Z w = moe 3.
22 ¢ ORB E 2 z Do
z G & 2 2 EEl |BE
252 |85 INTERFACE Q B
s W & {5 | CRBDEPENDENT INTERFACE
a £ 3
°
ORE PEPENDENT INTERFACE
OBJECT REQUEST BROKER

Figure 2.7: CORBA Architecture

The components which make up the CORBA architecture include:

o IDL Stub Interface

* Dyanamic Invocation Interface
s ORB Interface

¢ Object Adapter

o IDL Skeleton Interface

» Dynamic Skeleton Interface

* Object Request Broker

..‘..=.._:_..=, et




36

IDL Stub

The IDL stub is responsible for providing an interface between the application ebject and the Object
Request Broker. It is specifically designed to handle those requests which come from a client and are
static in nature. Static requests are those requests which were specified in the source code with a
specific object type. Traditionally, these operations involve a specific object types which are known
to the compiler at compile time.

Dynamic Invocation Interface
The Dynamic Invocation Interface (DII) is responsible for providing an interface between the ap-

plication object and the Object Request Broker. This interface is specifically designed to provide .

support for requests which come from clients and are dynamic in nature. Dynamic requests provide
developers with additional flexibility as client applications can be programmed to use both objects
and method calls which were unknown at the tine of compilation. Clients making usc of the DII are
responsible far discovering a number of paraneters required by the interface to process the method
call. The parameters include locating the object providing the service, specifying the name of the
service to be used, determining the number of parameters and their types expected by the service
and determining the flow directicas of paramete.s. The information pertaining to the layout of a
request is stored in the Interface Repository which is discussed later in this section.

From the component architecture point of view, this intcrface is responsible for performing checks
on the incoming request to ensure that the request is valid. These checks involve ensuring that the
request actually exists and that the parameters arc of the right type, right ordering and in the right
direction. If a request fails any of thesc tests then an exception is returned back to the client.

Just like the IDL system, dynamic requests can be either asynchronous or synchronous in nature.

ORB Interface

The ORB interface is responsible for providing an entry point into the internal workings of the ORB
for both application and server objects. This interface allows either clients or servers to directly
manipulate the controls of the ORB or to make usc of functions which are specific to the ORB’s
operations. The most common method calls made on the ORB include string to-object(...}
or object.to_string(). These routines arc commonly used in conjunction with dypamic requests
from clients which have a string reference to an object and need to obtain a handle to an object.

Additionally, the ORB interface provides functionality such as the ability to modify the timeout
periods for objects that are not responding to method calls right through to the ability of modifying
the behaviour of a protocol while it is connecting to a new server object.

Object Adapter

The Object Adapter Interface (OA) is responsible for providing an abstraction layer between the
server objects and the functionality which is provided within the QRB. For most opcrations per-
formed on the server object, the Object Adapter will be responsible for interrupting and forwarding

P

ki

B ro e A T e




37

the request onto either the server object or the ORB. As is described in Sicgel (1996) and Object
Management Group (2001). The Object Adapter is responsible for the following functions:

Registering Server Objects: One of the most inportant tasks that a distributed system must
attend to is its knowledge of what objects are registered in the systemn and where those objects
ar¢ physically located. The OA provides facilities which allows developers to register their
objects within a Implementation Repository. This is a structured storage arca which maintains
the name of the object, its location and the path where the object is located along with any
other additional comniand linc parameters. It is immportant to note that the registering of an
object does not mean that the object has been started. That is a task performed at a later
date,

Managing Object Reference: Just s importaat as knowing where the objects are is the process
of being able to reference those objects which are currently running. The OA is responsible for
managing all of the object references within the system so that when a client request arrives,
the OA knows exactly where to dispaich the method call.

Activation and Deactivation: In an effort to minimise the resources required to maintain a dis-
tributed system, objects arc activated and deactivated as necessary. The process of activating
an object involves finding the location of the object and starting it up based on the information
which is available within the Implementation Repository. Once started, the object registers
itself with the ORB and the server is decmed to be active. The process of deactivation occurs
normally when the scrver object has not been referenced for a set period of time. Once this
period has elapsed, the server object sends a message to the ORB and is unloaded from mem-
ory. If another request arrives for the object which was just deactivated, the entire process ol
reactivating an object must be followed.

Method invocation: As was mentioned in the introduction to the Object Adapter, the OA is
responsible for passing method invocations to and from the server object to the ORB,

Integration with other services: As the OA is responsible for interfacing the server objects
with the ORB, it makes sensc that the OA would provide support so that method invocations
could be trapped and referred to other services. A typical example might include a sccurity
service which needs to monitor all method invocations going to and from a server object. The

OA provides an excellent opportunity to provide redirection services.

IDL Skeleton Interface
The IDL Skeleton Interface is responsible for passing static requests to and from the server object.
The nature of this interface is very similar to the 1DL stub interface which exists on the client side.

. . .
e B e e gt ) e e b s o b e L o gt L i i o i s et e s e b e e i et e iy bt o e o T




a8

Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) is responsible for passing dynamic requests to and from the
server object. The nature of this interface is very similar to the DII which exists on the client side.
Just like the DII, the DSI makes use of information located within the systems Interface Repository.

Object Request Broker

The Object Request Broker (ORB) is responsible for channelling all of the coinmunications between
components which make up the architecture. It is also responsible for dealing with the lower level
issues such as the physical transfer of data as well as dealing with potential low level system faults.

Interface Repository

The Interface Repository (IR) is responsible for storing all of the information pertaining to an
individual method contained within an object. Effectively, the IR records a complete signaiure of
a method. By recording the signature in a central location, clients at a later date can examine the
repository and construct dynamic requests.

In order to make the data recorded in the repository more useful, the IR provides a set of interfaces
which allow clients to connect to the repository and to manipulate data held within it. A detailed
description of what these interfaces are can be found in Object Management Group (2001).

Implementation Repository

The Implementation Repository is responsible for recording and providing the information required
to start a server object. An important role of the imnplementation repository is to examine all incom-
ing requests which are made to start an object. Each request is checked against the repository to
ensure that it has the appropriate access privileges. If the privileges are satisfactory the Implemen-
tation Repository will start the server at the nominated location and pass through the appropriate
command line parameters. If there are insufficient privileges, the request to start the object is re-
jected. The Object Adapter and Implementation Repository share a close relationship as the Object
Adapter is responsible for sending a large number of requests to activate servers. A typical entry
for one server would contain the following information in the Implementation Repository:

» Object Name

¢ Object Location

o Path to server location

o Additional command line parameters required by server

¢ Access Privileges




39

2.5.2.4 Object Management Group and Components

An inherent weakness with the CORBA 2 standard (mentioned above) is its inability to interor:-.ate
with components or to provide support for the development of them. Specifically, the CORBA 2
specification does not include any support for the packaging and deployment of compounents thrsugh
the entire enterprise. Other disadvantages with the specification include the nced for developers to
program explicit support for non-funciional propertics such as sccurity integration, naming services,
trading, persistence or transactions. Failing to provide all of these services leads to no overall support
for the development of software architectures.

To address these concerns regarding the support of components, the OMG has introduced a CORBA
Component Manager (CCM) which is to be incorporated into version 3 of CORBA in the near
future. Primarily, the CCM has been devcloped to address the weaknesses in the CORBA 2 model
by providing a Distributed Component Objact Model which includes an architecture for defining
components and their associated interactions as well as a framework allowing events to be injected
into components. Additionally, CORBA's DCOM supports the packaging of components and the
deployment of those packages through the enterprise while at the same time remaining compatible
with other component environments such as Enterprise JavaBeans.

As detailed in Object Management Group (2002b) the CORBA Component Manager makes usc
of two models known as the Abstract Component Model (ACM) and the Component Container
Programming Model (CCMP) and a framework known as the Component Implementation Frame-
work (CIF). The ACM works by cmbracing extensions made to the Interface Definition Language
proposed in the CORBA 3 specification (Object Management Group 2002a) and the Object Model.
The specific role of the ACM is to allow developers to specify CORBA component types and the
rclationships that the component itsell has with other components. These relationships inay include
what the component offers or what is required. Other delinitions that the ACM provides for compo-
nent developers include defining which properties are configurable and what the business life cycle
operations are.

The CIF is responsible for defining a programming model for constructing the component (ie., define
how a component should be implemented). While using the CIF the developer is only encouraged
to define the business logic that the component will use through a Component Implementation
Defnition Language (CIDL). The actual implementation of the component is not, finalised until the
CIDL code has been processed and the appropriate skeleton stub code has been generated.

The remaining part of the CCM is the COCMP which is used to provide developers with the ability to
logically view a component from different perspectives. These perspectives may include examining a
component from 2 clients perspective and examining what interfaces are available or it may looking
at the component from an implementers point of view. The CCM also provides developers with
interfaces which allow the component to be integrated with services like security, persistence and
transactions without the need for the programmer to produce copious amounts of code.

e s et

At o S




40

2.5.3 Microsoft Approach - COM/DCOM

The year 1995 marked the start of a fierce rivalry between the Object Management Group (OMG)
and Microsoft?. This rivalry which coincided with the releasc of the CORBA 2 specification (Object
Management Group 1995b) was sparked by Microsoft entering into the market with its product
COM/DCOM.

2.5.3.1 Distributed Component Object Model

The Component Object Model {COM) (Microsoft Corporation and Digital Equipment Corporation
1995) was developed in 1995 by Microsoft to provide developers with an architecture to facilitate
component construction and to provide a means of allowing components to share data. The Dis-
tributed Component Object Model (DCOM) built upon the COM systemn was designed to provide
components with the additional capabilities of distributed shared mcetnory management, network
interoperability and transparency and dynamic management of component interfaces. Thompson,
Watkins, Exton, Garrett, and Sajecv (1998) provides more detail with regards to the differences be-
tween the COM and DCOM architectures. The COM/DCOM architecture was written to supersede
the original architecture which Microsoft developed called OLE which is discussed in Brockschmidt
(1994). Additionally, the architectures borrow heavily from the RPC method of communication that
is used within the DCE architecture.

One important thing to note about the COM/DCOM architccture is that it is a dinary stendard. This
means that Microsoft not only specifies the conceptual architecture but also provides an implemen-
tation of the system. The binary standard also means that Microsoft specifies how the comnponents
are laid out in memory®. Just like CORBA, components in the COM/DCOM architecture are all
accessible through interfaces..

Interfaces

Within the COM/DCOM architecture every component exports its functionality in terms of inter-
faces. Interfaces as specified in Microsoft Corporation and Digital Equipient Corporation {1995)
are implemented as an array of function pointers which then point to the desived functionality.
This approach is commonly used within the C++ compiler to provide ‘polymorphism’. Figurc 2.8
illustrates the standard memory layout used to provide support for polymerphism.

This polymorphic behaviour is achieved by having the compiler insert a pointer commonly known as
a uplr automatically into the class when the program is compiled. This vpér then points to the array
of functions supported by the component. This array of function pointers is commonly known as a
viable. To facilitate the execution of a dynamic function, the wptr is referenced so that the viable
can be found. Once found and accessible, the vtable uses an internal index to determine where to

TMicrosoft at the time was a member of the OMG and still is today.

8As yet, Microsoft products such as Visual C++ are the only compilers currently available which match the
COM/DCOM binary format.




41

dispatch the call. A complete discussion on the mechanics behind polymorphism and wpir's can be
found in Ellis and Stroustrup (1994).

Objeci Peinters Objoct “;':::ﬂ'fﬂ:bsle
| | Ir | plfunctiontir]

datal funciienPir2

data2 fuwctienPu3

data3 functionPtrg

datad functionPuS

dataS functionPut

functienP7

funcifenPir8

Figure 2.8: Memory Layout required for Polymorphism

When comparing the memory model used to provide C++ with polymorphism to the memory model
specified by Microsoft Corporation and Digital Equipment Corporation (1995), it is possible to see
one major difference. The difference is in the way the objects support the vpir. In the COM/DCOM
model, no data can be associated with the structure which supports the wplr, as opposed to C++
which allows the vpir structure to also contain data.

IUnknown Interface

All components within the COM/DCOM architecture must inherit from the IUnknown interface.
This interface is responsible for providing critical functionality through the use of three functions to
all componenis within the architecture. These functions include:

QueryInterface(REFIID requestedInterfaceldeniifier, void **relurnedObject;) 1 Inorder
to access a component within the architecture, the software developer must have an interface
to an object. The QueryInterface(... ) function is responsible for aceepting an identifier for the
component required by the developer as well as a data member which is nominated to store the
returned pointer to the interface. If the component exists, then a valid component reference is
returned and the reference count for the component is incremented, otherwise a NULL pointer
is returned. Kraig Brockschmidt in Brockschmidt (1994) dcetails the various semantics which
should be followed when using and dealing with interfaces.




42

AddRef{(...) : The AddRef{...} function is respousible for incrementing the internal reference
counter within the component. This internal reference counter is used to control when a
component is unloaded from the system.

Release(...) : The Release(...) function is responsible for decrementing the internal reference
counter within the component. Once the internal reference counter reaches a value of zero, the
architecture is signalled to unload the component from the systemn®.

2.5.3.2 Distributed Component Object Model Architecture

Just like the CORBA architecture, the COM/DCOM architecture shown in figure 2.9 depicts an
architecture made up of a number of interlinked components. As can be seen, the architecture is
structured in such a manner as to group together components which are responsible for providing a
specialised function. Threo specific arcas within the architecture stand out. These include:

¢ OLE Compound Documents
e Active X Controls

o Infrastructure Components

OLE Compound Documents

The OLE Compound Document interface is responsible for providing, a framework which allows
documents o hest COM/DCOM components within themn. The benefit of such a framework allows
components of any nature such as word documents, video files, web pages, databases, Active X
components or spreadsheets to be included within a document while at thie same tirme still providing
the functionality which is native to that component. This is known within the framework as inplace
activation.

An example of this technology may include inserting a video file describing a product which has
been prepared in a word processor. With one click the reader could click on the component, and the
video file could start showing them the object that they have Leen reading. This would all happen
within the confines of the word processor.

Brockschmidt (1994) provides a detailed discussion on the fundamental concepts and objectives
behind the OLE architecture.

Although a value of zero for the reference counter implies that the component is to be unloaded, this is not always
the case, The architecture will unload the component at the next opportuaity.




43

L L T LT T L L P P .

OLE Compound Documents  : | Active X Controls
ln-Place 1 ol
Activation o Controls
il Property
Embedding Linking . Events Pages
: Property
Drag !
and : Change
Drop
Usiform : Connectable
Data Autornation : Objects
Transfer :
Structured .
Storage Monikers
COMDCOM J

Figure 2.9: COM/DCOM Architecture

ActiveX Controls

The ActiveX programming technology was developed by Microsoft to allow developers to build com-
ponents which could plug into COM compatible applications. ActiveX componcuts, the most com-
monly built applications with the ActiveX technology, can be placed anywhere where a COM/DCOM
object can be placed. This is possible because ActiveX components are implemented through
COM/DCOM components. All ActiveX components contain a scrics of property pages which allow
applications such as word processors to interact with the component. The amount of functionality
available to the hast application is controlled by the property pages and the interpretation the de-

veloper placed upon them. A more detailed description of ActiveX technology can be found in Ernst
(1996).

Infrastructure Components
Although the term infrastructure components is not really a name uscd to describe the remaining
components of the architecture, it does seem relevant as these remaining interfaces play an important
role in controlling the various aspects of the architecture. These interfaces include managing com-
ponent and object identification, the transforring of data between components, providing support
for dynamic functionality by scripting languages and providing a standardised method of storing the
data contained within a component so that it can be retrieved at a later date.




E U

44

Monikers

Monikers within the COM/DCOM architecture are commonly referred to as srnart names. These
smart names are responsible for identifying an object within the system. They are similar in concept
to the object references which are used within the CORBA architecture. Monikers can be associated
with any COM/DCOM object ranging from a functional object written in Visual C++ to a World
Wide Web (WWW) page or a database. In addition to containing information about the objects
location, the Moniker also contains additional information to allow a client application to bind to
the object. If a Moniker i3 used on an object which is currently not activated, it is the Moniker’s
responsibility to start that object aud make all of the necessary arrangements in order 1or that object
to reccive requests.

The advantage with Moniker’s just like the object reference in CORBA, is that they can be passed
around or stored on disk. At a later date the Moniker can cither be recalled from memory or from
disk and be used to reconnect to a specific instance of an object.

Uniform Data Transfer

The Uniform Data Transfer (UDT) interface is responsible for providing a standardised method of
transferring data between objects. Previous implementations such as OLE2 (Brockschmidt 1994)
used inefficient memory copying techniques for shifting data from one component to another. These
techniques normally involved copying data from one component to some global memory and then
taking the data from the global memory and they copying it into the desired component memory
location.

The UDT allows the developer to specify how the data can be copicd from onc object te another.
With the new interface it is possible to make a direct copy from one object to another, and hence
bypass the need for an extra memory copy into the global memory segment. The introduction of
this interface now means that it is the developer’s responsibility to specify the most efficient way of
transferring data.

Automation

The automation interface is responsible for providing the same functionality which can be found in
the Dynamic Invocation Interface {DII) comnponent within the CORBA architecture. The automa-
tion interface is responsible for exposing the interface of components to clients so as to provide a
facility which allows for the dynamic lookup of functions and their various parameters.

This feature is used commonly by scripting languages which require the ability to be able 1o connect
to objects dynamically. This assists scripting languages as the invocation interface provides the
ability for them to conunect to objects which may not have been developed at the time that the
script was designed.

Structured Storage
The structured storage interface is responsible for providing a standardised interface for the persistent
storage of objects within the COM/DCOM architecture. The approach to persistent storage differs

e mm e b T e A it Pt e e T T e e oy e s LTyl




45

from other systems, as COM/DCOM views a file as a hicrarchical system containing a number of
clements which need to be stored. Other systems use the more tradilional approach of treating files
as being flat in nature. This requires the entire data stream to be flattencd out.

To aid developers in the process of making their objects persistent in nature, COM/DCOM provides
a series of interfaces which the developer can inherit to allow the object to become persistent. This
is very similar to the Java language (Arnold and Gosling 1998) which allows the developer to inherit
from a series of classes in order to provide persistency.

2.5.3.3 Microsoft’s Interface Definition Language

Just like the CORBA architecture, Microsoft also provides its own interface definition language
(MIDL) to introduce a level of abstraction between the development of a component and the actual
implementation. A significant component of the MIDL system was based on the interface definition
language uscd with the DCE system.

MIDL however, does add a few extra keywords to the DCE IDL language so as to provide support for
the COM/DCOM programming components. The keyword attribute is used to determine whether
or not the IDL file being loaded into the system is destined to be a COM/DCOM object or a DCE
one. Figure 2.10 shows an example of MIDL code. The keyword object is also used to indicate
to the IDL compiler that this interface can be made available to other components and hence the
compiler should insert into the class an automatic pointer.

/* Example of a MIDL File %/

[
object,
uuid(6db16365-51d6-472f-b93f-00ab1de29cbic),
helpstring("ISubtract Interface"),
pointer_default(unique)

]

interface ISubtract : IUnknown

{

import "unkown.idl";

HRESULT subtract_op([in] long numberl,
[in] long number2,
[out] long result);

+

Figure 2.10: Example of a MIDL File

A more detailed description of MIDL can be found in the COM/DCOM specification (Microsoft
Corporation and Digital Equipment Corporation 1995). One major difference between the MIDL and




46

D}CE IDL system is that MIDL does not support the concept of interface versioning. COM/DCOM
adopts a simple approach to interfaces. As the COM/DCOM specification states, once a interface
has been published in the pudblic domain it can no longer be changed. If a change is required in
functionality then a new interface must be introduced into the public domnain. Additionally, changes
or upgrades to an interface also bring with them certain conditions to ensure that the interface is
backward compatible. In some cascs this means that new functionality must be written in terms of
the old interface.

Interface Error Handling

Unlike CORBA's IDL which allows the developer to specify the return value for a method call, MIDL
requires that each interface must return a HRESULT value. Results calculated within the function
must be returned through an out parameter. The HRESULT value is 32 bits in length and provides the
developer with all the information required in the case of an error. Figure 2.11 shows the structure
of the HRESULT and how it is divided into a number of sections.

¥

Severity Bid

Fecility Code Reurn Code

30 15 0

Figure 2.11: HRESULT Structurc

As can be seen in the figure, the severity bit which is the most significant bit in the structure indicates
whether or not the actual call to the interface was successful. This is similar to the COMPLETED_YES,
COMPLETED_NO and COMPLETEDMAYBE statuses which arc available in the CORBA implementation
model.

The next section of the HRESULT structure is called the Facility Code. This is respousible for
informing the developer which part of the sub-system caused an error. The most conunon return code
for this section is FACILITY_ITF which indicates that an crror occurred while processing the interface.
The facility code as described in Microsoft Corporation and Digital Equipment Corporation (1995)
is reserved for the use of Microsoft and it is not recommended that developers usc this section of
the return structure.

The final section of the HRESULT is a 16 bit structure reserved for the developer. The devcloper

can place anything in this ficld providing it docs not exceed 16 bits to represent the return value
from the interface.




4T
2.5.3.4 Implementation Repository — System Registry

The introduction of the latest Microsoft operating systems bring with them a new concept in the
way that system data is stored. The advent of the system registry which is manipulated by the
command regedit provides a central storage area that programs can use to save their user settings,
system preferences and other related information. Figure 2.12 represents a registry entry as viewed
by regedit.

i 1. bea, T

) RN (0 i X .
- | ignd * At k) LEE R T P T P F T
F'_J AR NRORO-CI + Fed LU VR E L B Lpeyrent

= —

Figure 2.12: COM Component registered within the Registry

In order to minimise the amount of time required to locate an item in the system registry, a tree hier-
archy is used to classify data into the appropriate sections. The root nodes of this tree accommodate
information which is valid for the current user logged into the system (HKEY_CURRENT_USER),
all of the users not logged into the system (HKEY_.USERS), information about the current ma-
chine (HKEY_LOCAL_MACHINE), information about the current software loaded on that machine
(HKEY.LOCAL_MACHINE_SOFTWARE and HKEY_CLASSES_RQOT) as well as dynamic sta-
tistical information (HKEY_DYN_DATA) which is calculated by the machine during idle time. The
example shown in figure 2.12 illustrates the registration of a server to be used within the family of
Microsoft Office products. The data contained with the registry entry provides the servers location
on the disk and also specifies the threading model which is to be used when this server is operating,




48

In the case shown here, the ‘Apartment’ threading model is used. Additionally, the figure illustrates
the unique CLASSID identifier which is stored within the HKEY_CLASSES_RCOT branch of the
registry.

Both COM and DCOM use the system registry to store information relating 1o the location of
scrver objects and what command line parameters need to be passed to those objects to start theni.
This information is recorded within the section of the registry responsible for registering programs
installed on the current machine (HKEY_CLASSES_ROOQOT). Each application when registercd with
the system has its own unigue 128 bit identifier known as a Global Unique Identifier (GUID). This
identifier is based off the DCE Universal Unique Identifier (UUID) system but Microsoft introduced
a number of changes to suit the potentially wide distribution of software.

2.5.4 Microsoft Approach - NET Framework

To illustrate the rapid developinents being made with component frameworks, Microsoft is releasing
a new component framework known as .NET. The underlying design goals of the .NET framework
include providing a simplified approach to component development, providing a unified programming
model, providing a framework which has had elements within it standardised!® and to provide
a framework which allows for components to be deployed, executed and maintained without any
significant effort. The introduction of the .NET framework is an attempt by Microsoft to encourage
software developers to compete with one another at the application level rather than at the platforin
level (Simmons and Rofail 2002). By adopting the .NET framework and the standards which lie
beneath it {cspecially the web standards), developers will be able to develop components on Microsoft
and non-Microsoft systems!! and incorporate them into the .NET framcework. In addition to web
standards, the .NET framework also allows the ability for components o be able to communicate
with one another using the Extensible Markup Language (XML) allowing components to natively
communicate with one another.

2.5.4,1 Architecture

From the .NET architecture shown in figure 2.13 it is possible to see that the architecture has been
designed in a modular nature which allows for components within the framework to be interchanged
in the future. The figure also identifies the three major components within the system. These
components include:

e Common Language Specification

¢ Base Class Library

198oth the C# Language specification in ECMA Standards Organisation {2001a) and the Common Language
Infrastructure specified in ECMA Standards Organisation (2001b) have been ratified.
Y Microsoft has shown interest in porting the .NET framework to other systems.




49

e Common Language Runtime

Figure 2.13: NET Framocwork Architecture

Common Language Specification

Unlike other component frameworks created by Microsoft, the NET frammework provides developers
with the ability to use a varicty of languages to build a component rather than foreing programmers
into one particular language and style of programming., The Common Language Specification (CLS)
provides a series of interfaces which can be used to ‘hogk’ into the .NET framework and allow various
languages to make use of the features contained within the framework. Languages identified within
Gordon and Syme (2001) provided by Microsoft which can be used with the .NET framework include;

¢ VBNET
e C++ also known as Managed C++
. 0#12

s JavaScript

12The language specification for C# as outlined in ECMA Standards Organisation (2001a} has just recently being
standardised by ECMA.




50

In addition to those languages provided by Microsoft being available, a mumber of participating in-
stitutions involved with the development of the NET framework have provided their own extcnsions
which interface with the CLS. Some of these languages include:

« COBOL
s Eiffel
+ Perl

e Scheme

The use of the common language specification will certainly ensure that a wide variety of components
are developed for the .NET framework and that these components will be spread over a number of
different languages. It is also possible with the help of the Common Language Specification (CLS)
and the Common Language Runtime (CLR) to allow components written in different languages to
inter-operate with one another.

Base Class Library

The ‘Basc Framework Classes’ library is responsible for providing the standard functionality to the
NET framework. Such functionality can be compared to the Java java. io class which is responsible
for handling string manipulation and managing the input and output of data, however the base
class library in .NET is also responsible for providing security management, thrcad management,
network communicaiion and other functions (Microsoft Corporation 2001). Other classes such as
data and XML are¢ responsible for providing support for persistent data connections through the use
of SQL interfaces or SQL dircctives, The XML portion of the data class is responsible for providing
functionality which can parse, construct, search and manage XML data streams.

The XML web services section of the framework is responsible for allowing developers to be able
to construct distributed components which use the underlying WWW transport system and XML
language to communicate with one another, By toking such an approach to component conminuni-
cation, components are able to communicate with one another even within network environments
where firewalls are operating (providing that WWW traflic is allowed).

To complement the support already provided for web services, the NET framework allows the rapid
development of components requiring a web interface by providing a serics of interfaces to classes
contained within the ‘Web Forms' component. Applications not wanting to make use of the web
technology but still requiring a graphical interface can make use of interfaces located within a section
of the architecture known as ‘Windows Forms'. These interfaces provide developers with access to
set of graphical user interfaces which are tied into the operating system. Using these graphical
interfaces gives the application the same look and feel as other programs loaded on the system, The
‘Windows Forms’ classes also provide support for the internationalisation of applications.




51

Common Language Runtime

The ‘Common Language Runtime’ (CLR) is the component which is responsible for interfacing the
classes and components developed within the NET framework with the runtime environment. When
the structure of the Common Language Runtime is examined (refer to figure 2.14) it is possible to
see that the runtime has to deal with various aspects of a components execution.

BRSPS T A LR N

ey e R
2 %,_?. L ooM

Figure 2.14: .NET Common Language Runtime Architecture

The CLR is responsible for providing the following support to components:

¢ Threading

e Allow older components developed with COM/DCOM technology to interact with those com-
ponents which have been developed with the .NET framework

¢ Type checking components regardless of the langnage they were developed within?®

¢ Exceptions which the developer must now deal with rather than HRESULT’s which the user
could forget to check

» Sccurity which can include the use of policies based on evidence in the form of a signature or B

origin

¢ Debugging

13The CLR is able to achieve this as the CLR deals with components after they have been compiled into a Inter-
mediate Language, hence type checking is performed at the IL level,




52

o Converting the Intermediate Language generated higher up in the framework into native code
wkich can be executed

e Code Manager which may include support for versioning control
o Garbage Collection

¢ Class Loader which is responsible for actually loading the component into the systemn and
executing it

Further information relating to how languages map to the CLR and how it works at runtime can be
found in Gough (2002},

2.5.5 SUN Microsystems - JavaBeans Approach

While both the OMG and Microsoft were busy developing architectures to support the concepts of
distributed systems, SUN Microsystems was simultancously developing a language known as Java.
Java was designed to promote the benefits of the object oriented programming paradigm while at the
same time providing a basis for an architecturally neutral language. Additionally, as the language
evolved, more and more features were added to the systemn including the development of a framework
which facilitates the development and implementation of components. This architecture is known
as JavaBeans.

2.5.5.1 Java: The Language

The Java language was released in 1995, but did not become popular until late 1996 and was
designed to provide programrmers with a simple but powerful object oriented programming language
cnvironment. The major objectives of the Java language include:

® Object Oriented Programming Paradigm

¢ Distributed Programming

+ Robust Programming

® Architecture Neutrality
Object-Oriented Programming
As has already been mentioned, Java was designed with the sole purpose to provide the developer
with a complete object oriented language enviromment. This therefore means that everything within

Java is considered to be an object and that there is no such concept as a global variable accessible
Ly all classes. Objects are only allowed to access those classes which exist within their visible scope

- bl e =il

R




53

and can only communicate with one another through the use of messages. It is important to note
that classes used within Java take on a blueprini role as opposed to objects which actually exist at
runtime,

Additionally, Java also supports the object oriented concepts of identity, classification, inheritance
and encapsulation as described in Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen (1991).

Distributed Programming

A major advantage in using the Java programming language is the wide variety of class libraries that
are available to help support the developer in building applications, One of thesc libraries known
as java.net is responsible for providing the developer with a serics of methods and classes which
assist in the development of distributed and client /server architecture applications.

By providing these classes and hence providing an abstraction over the network layer, the developer
can continue to program without having to be concerned about the various newworking protocols.
Java supports both the TCP and UDP protocols as well as providing comprehensive support for
WWW programming.

Robust

Java provides developers with a robust programming environment capable of performing type check-
ing on applications while they are being compiled as well s when they are running. In order to deal
with a type checking error as well as other crrors which may occur while the program is running,
an exception handling mechanism is included within the language. This allows the programmer to
capture certain events and to respond to them accordingly.

Aun cxample of a typical exception might include trying to open a file which does not cxist. In this
case, a java,io.FileNotFoundException cxception would be raised ama tlie programmer would
have to specify how such an cxception should be dealt with. Failing to deal with the exception
would result in the exception unwinding the stack until it reaches the Java Virtual Machine (JVM}.
If the exception thread reaches the JVM, then the program aborts its execution.

Additionally, Java also provides a memory management model which is respounsible for removing
references to objects which are no longer in use. This process is known as garbage collection. One
final note is that Java does not support the notion of C++ pointers as it provides an environment
in which variables are passed around by reference. The lack of pointers avoids the need for pointer
arithmetic and hence one less area where programming errors can occur.

Architecture Neutrality

One of SUN’s major design objectives for Java was to provide a method where a developer could
develop the program once, but run it on many different platforms. This is cominonly known as the
wrile once, run maeny principle. SUN was able to achieve this through the introduction of its byte
code. This byte code is an architecturally neutral format which is generated as a end product of a
Java compile. Once compiled, the byte code can be executed on any Java Virtual Machine (JVM)

R L A T TR

\y T gl eaioenm




54

without the developer having to perform a recompilation. By adopting the JVM and bytecode
principles, SUN provides a language which can run on any platform where a JVM is present.

The only disadvantage using the JVM model is that the byte code must be interpreted before an
action can take place. This does introduce a slight performance degradation in the application as
an extra level of abstraction must be negotiated.

To ensure that code written within Java is totally portable across the various platforms, the Java
niv ©cation states the explicit sizes of the various types used within the language. These size defini-

..s arc independent of the actual machine architecture as the JVM is responsible for administering
the size of the variables. Additionally, wherever possible, Java makes use of abstractions so as to hide
the underlying architecture required. This can be demonstrated with the java.awt class hierarchy
which abstracts the native GUI controls available to the user. By using this abstraction, the same
methods in java.awt can be used independent of the platforms.

2.5.5.2 JavaBeans

At the time that Java was released in 1995, both OMG and Microsoft were providing their own
solutions to the construction of components in a distributed system. These solutions addressed the
immediate concerns of component software construction. However, short comings existed with both
approaches.

The CORBA [ramework although designed to build distributed applications. s not specifically geared
to facilitate the casy construction of software componenis and applications. This may change with
the iznminent release of CORBA 3 and the CORBA Component Model (CCM). COM however, docs
provide an object model supporting the complete notion of software components and includes the
appropriate infrastructure to allow developers to interconnect componeuts and build applications.

The only problem with the COM approach is that it is Microsoft centric!?, requiring that the
developer must have Microsoft tools and a Microsoft environment to work within,

JavaBeans provides an alternative to this problem by providing a framework which allows for the
construction of software components while at the same time harnessing the objectives and benefils
of the Java language.

Concepts & Objectives of JavaBeans

JavaBeans which was not criginally released with Java, was added to the Java 1.1 specification after
the avent model was re-developed and re-released in October 1996. Since then its popularity as a
method of building software components within the Java language has grown.

As is mentioned in SUN Microsystems (1997) the design goal for JavaBeans was to define a software
component model for Java. A subsequent aim of this goal is to provide a means by which third party

144t this stage there are no other compilers currently available other than Microsoft’s which facilitate the natjve
construction of software comnponents.




55

vencors can create and/or ship JavaBean components which will plug into cxisting applications or
software development environments.

Traditionally, JavaBeans normally consist of a set of classes and/or resources which are then made
available to an application which interacts with the component. JavaBeans are capable of providing
two levels of granularity, The first level supports the concept of using JavaBeans as the building
blocks in composing applications. Such an activity would be performed with the aid of a Beaus De-
veloper Kit (BDK) which would facilitate the interconnection of JavaBeans to form the component.

The second level is much more coarse and treats JavaBeans as being a full application. Adopting this
level of granularity allows third parties to ship JavaBeans as a particular add-on to a development
environment or as a standalone application,

JavaBeans have the advantage of being connected to the Java language inhercntly. This means
that the JavaBeans are capable of inheriting all of the benefits associated with the Janguage. These
mclude portability, security and simplicity.

Bean Definition

A Bean as defined in SUN Microsystems (1997) is a ‘reusadle software component that can be mu
nipulated visually within a builder tool’. As mentioned previousty, Beans can range from being small
components such as AWT buttons right through to complex applications which can be used in
developer environments or as standalone objoects.

However, no matter how big or small a Bean is, it must still provide support for:

Introspection: Allows for a Bean Developer Kit (BDK) to attach to a Bean and to perform an
analysis on it so as to determine how it works.

Customisation: Provides support for a Bean’s appearance or behaviour to be modified as re-
quired.

Events: Events provide the basis for Beans to be able to communicate with other components
cxternal to themselves. Events normally form the basis for how Beans inter-communicate with
one another.

Properties: Properties provide a basis for customisations to be made to the bekaviour of a Bean
from a functional perspective. It is important to note that changes made to a property tag
associated with a Bean may result in an event being triggered somewhere else within the
systein.

Persistence: Persistence relates to being able to capture the customised changes made to a Bean
and then allowing those changes to be saved and at a later point, re-loaded into the system.




o6

A common distinction which needs to be made is the difference between a class library and a
individual JavaBean. Traditionally, JavaBeans have been used to encapsulate visual aspects of a
system while class libraries are used to provide more of the functional aspects of a system.

Bean Principles
For every Bean constructed, therc are three interfaces which the bean uses to communicate with the
outside world. Thesc interfaces include:

e Properties
e Methods

e Events

Properties

Within each Bean, a programmer can specify a series of accessible attributcs. These attributes
are commonly known as its propertics and are stored within a certain section of the Becan where
developers can access them. Accessing the properties from within a development environment is
achieved with a read command while those explicitly defined as being publicly available can be
modified via the write command.

Methods

Each Bean provides a certain amount of functionality which can be accessed sthrough its method calls.
Within the Bean environment, these methods act as a public interface so as to allow applications
to make use of the functionality contained within the Bean. By default, Beans export all of their
methods to the whole system, allowing any other component to access them. If for some reason
this is not the desired result, there docs exist suitable functionality within the JavaBeans model to
restrict the publicly accessible interface to a subset of functions.

Events

Like any other event programming modcl, events are commonly used to indicate that a change has
happened within the system. They are normally riggered by some action taking place, such as the
mousc moving over the top of something, a button on the mouse being clicked or some 1/0 operation
completing. Within the JavaBcans environment, events provide the fundamental basis for allowing
other components within the systein to know what is going on and what action has just taken place.
The Java event model has been designed in such a way as to allow objects and beans to associate
EventListener’s to certain actions. Once these actions take place, the Bean, component or object
can take the appropriate action.

Basic Runtime Environment

As discussed in SUN Microsystems (1927), JavaBeans must be designed to be independently de-
ployable executable components. To highlight this point, the specification states that JavaBean
components must be able to run in both a designer environment such as the BDK as well as the




i
A

57

runtime environment. The specification does also state that facilities exist to allow developers to
split those interfaces required at design time and those at runtizne into different classes.

JavaBean Activation

JavaBean components execute within the same address space as their container. This means that
the JavaBeans execution thread will run within the same addresz space as that of the program which
is hosting the JavaBeans container. Effectively, JavaBeans will always be activated locally.

Distributed JavaBeans

As mentioned in section 2.5.5.1, the Java language provides a comprehensive class Fbrary to help
developers build distributed applications. The JavaBeans model is able to make use of this library
to assist deveiopers in building JavaBeans which operate in a distributed environment., Additionally,
JavaBeans can also be distributed by using:

Java RMI: This allows JavaBeans to use the Remote Method Invocation (RMI) concepts provided
by Java to support distribution. The RMI approach ig vory conuszion for those developers who
wish to setup a clicnt/server architecture.

Java IDL: JavaBeans also has the potential to allow interfaces to be gencrated using the industry
standard OMG CORBA IDL. Once generated, these interfaces can be ntilised by JavaBeans
to contact CORBA-compliant, servers to use their functionality.

JDBC: JavaBeans also have the ability to make use of the java.odbe library to conlact remote
databases supporting the JDBC protocol and to priform valid queries upon the data located
within the databasc.

Multi-threading

JavaBeans should always assume that they will be operating witbin a muiti-threaded environment.
As a consequence, programmers need tv be cware that it is their respousibility to ensure that the
JavaBeauns are written in such a meumer as to be shread-safs. Additisnally, developers need to
provide the routines, if required, to malsiain the data in a synchronised state.

Internaticnalisation

With Java being widely used, certain issues 1egarding the aternationalisation of names must be
addressed, By default JavaBeans can make usc of the Java AP classes which have been developed
to support infernationalisation. Dovelopers should build their javaBeans in such a manner as to
limit their exposure to such things. It is important however that the developer pays close attention
to the naming of events, methods and preperties to ensure that as the application mnoves around the
world that the functionality of the JavaBean will not be compromised as a result,




2.5.5.3 Enterprise JavaBeans

With the development of distributed applications making use of component Lased techmnologies in-
creasing and the mumber of environments supporting the paradigm growing it was necessary for
SUN Microsystems to extend its JavaBeans architecture to suit enterprise deployments. To achieve
this, 2 new platform known as Enterprise JavaBeans (EJB) was designed and incorporated into
the J2EE environment to simplify the development of components by incorporating a middleware
layer capable of providing a number of services. Some of the services supported within EJB include
transactions, security and database connectivity. Recently a new EJB standard known as EJB 2.1
SUN Microsystems (2002} has been released which includes additional services capable of provid-
ing applications with web services, time-managed container services and improvements to the EJB
declaration language {QL) which is used to provide container managed persistence.

The introduction of the EJB platform further enhances component based programming by allowing
develrpers to build distributed applications by allowing components made by various vendors to
be combined and providing the appropriate framework to allow them to interoperate with one
another, Assisting in the interoperation of components between various environments is EJB’s
ability to communicate using CORBA’s communications protoccl. This allows components operating
within the Java environment to communicate with other components operating under platforms and
languages that CORBA supports.

2.5.6 Architecture Comparison

As has been detailed in the previous sections, there have been a number of archivectures developed to
provide some assistance to software developers. These architectures have all been designed to address
the issue of providing developers with a framework facilitating the development of applications
within a distributed environment using the component based paradigm and software components.
Of the five architectures which have been described, four support the concept of object oriented
programming while DCE provides a framework encompassing the procedural approach to software
components and systems development.

From the remaining architectures, both CORBA and COM are normally compared with one another
and are traditionally viewed as competing architectures. The next section examines some of the
similarities and diflerences between the CORBA and COM architectures.




2.5.6.1 CORBA vs. COM

Although COM and CORBA are normally described separately and are depicted as being fundamen-
tally different, they do share a number of similarities as described in Exton, Watkins, and Thompson
{1997) and Chung, Huang, Yajnik, Liang, Shih, Wang, and Wang (1998). This is not surprising con-
sidering that both COM and CORBA aim to address the same issues, it is just that their approach
and object models differ from one another.,

This major difference between COM and CORBA’s object model can be traced to the way in which
their architectures were originally developed. The CORBA architecture was originally and is still
maintained by the OMG which is a standards body. At the time that the architecture was being
developed it was this standards body which insisted that the architecture should be designed to
not compound any problems which may have existed in another architecture. The entire premise
behind the design of CORBA was to provide a specification which members could use to build
their implementation. By providing only a specification the need for creating an implementation is
removed, however having only a standard can lcad to it never being adopted or implemented. An
example of this is the Persistent Object Storage (POS) service which is currently being addressed
by the OMG.

Unlike CORBA, COM/DCOM is both a standard and an implementation. During the design process
of COM/DCOM a significant number of concepts and idcas were adopted from the DCE architecture.
These concepts included the DCE Remote Procedure Call (RPC) method of communication, the
concept of calculating a unique identifier to represent the location of an object within the system
and the Iuterface Definition Language (IDL). Although most of these concepts were re-engineered,
the basic ideas still operate in the same way. This reuse of concepts allowed the development of
COM to proceed in a timely fashion while at the same time providing a solid springboard from
which the remainder of the COM architecture could be developed. This springboard has resulted in
an architecture which provides a more complete solution.

Architectural Comparison

From an architectural perspective it is possible to see that the CORBA object and implementation
models (refer to figures 2.6 & 2.7) share nothing in common with the COM architecture (refer
to figure 2.9). It is however possible to sec that the COM architecture addresses the necds of
components more comprehensively than CORBA. This is partly due to the way in which the COM
architecture is structured and partly to do with the large number of services which the CORBA
standard is yet to implement. It is hoped that with the imnpending release of CORBA 3 that the

OMG will revisit the support needed by components and recomiend that the appropriate changes
arc made to the standard.

o R




60

Although the architectures have nothing in common, when services promised’® by the architectures
. are examined, it is possible to see that both CORBA and COM/DCOM provide similar services.

These services include:

s support for concurrency
» dynamic invocation of requests on components, handling events throughout the system

e providing an interface definition language to separate the interiace of the object from the
implementation

» providing a means for an object or component, to be uniquely identifiable throughout the entire
system

e allowing objects or components to be persistently stored and then recalled at a later time when
needed

» providing facilities for tracking and supporting transactions which take place throughout the
system

» providing a security framework to ensure the data integrity of components and objects within
the system

e a mechanisin for allowing software developers to register their servers with the system

¢ providing a means for allowing errors to be repourted back to the client

Providing a Portable Framework

A problem that both the CORBA and COM architecture share is providing a framework which is
poriahle across a variety of platforms, operating systems and languages. CORBA tries to address this
issuc by having a variety of ORB’s written for different operating systems scattered over a number of
different platforms and through the use of the Internet Inter-ORB Protocol (IIOP) allowing CRB’s
to commuunicate with one another over the internet. Additionally, CORBA also provides numerous
language bindings (refer to section 2.5.2.3) allowing developers to choose which language suits the
problem doinain the best. However the OMG and the CORBA model still can not resolve the problem
of being able to provide a complete solution to developers for component based programiming,

The COM architecture has been specifically designed to operate with the operating systems that
Microsoft is currently shipping. Thesc operating systems include Microsoft Windows NT 4.0 and
Microsoft Windows 2000. Additionally, COM/DCOM requires Microsoft development tools like
Visual C++ in order to cnsure complete compatibility with the binary standard. By adopting this

15The term promised is used due to the OMG providing standards but not a implementation. Hence some services
have been designed but do not exist in any implementation.




61 -

framework, developers are limiting themselves to Microsoft development tools in order to develop
COM/DCOM applications which are only capable of running on PC’s with the Microsoft operating
system?S.

2,5.6.2 .NET vs. COM/DCOM

The .NET framework was introduced to simplify the already existing architecture of COM/DCOM
that Microsoft provided to developers while at the same time taking advantage of new component
technology and programming methods. In addition to this, the new .NET framecwork elitninates
she need for programmers to provide in cach individual COM component the functionality required
to communicate with other components. Inter-component commaunication is bandled by the NET
framework allowing the developer to continue on with the job of writing the component.

The simplification process of the COM/DCOM architecture includes the removal of a component
having to register itself before it can be executed (refer to figure 2.12) but rather requires the
compozient to describe itself in a self-contained manner. Other registration requirements which were
required by the COM/DCOM system, such as obtaining GUIDS to uniquely identify components and
the registration of interface definitions through a IDL file have also been abandoned and incorporated
a hierarchical namespace and unified object model.

In addition to modifying the way in which a component registers itsclf, .NET also introduces a more
traditional approach to handling exceptions by abandoning the HRESULT structure and adopting
a structured exception handling system such as the termination cxception model. The use of this
exception handling technique leads to an increase in the components reliability as mentioned in
Thompson and Watkins (1997) as the developer is forced to handle crror conditions as they occur
rather than relying on the return result from a function call.

The .NET framework also simplifies the way in which memory is managed by introducing garbage
collection routines which remove references to components which are no longer being referenced
or required within the framework. This replaces the AddRef (...) and Release{...) method calls
which had to be explicitly specified and managed within a COM/DCOM architecture.

2.5.6.3 JavaBeans

JavaBeans addresses the issue of portability through the aid of Java. As JavaBeans share a close
relationship with Java (they are implemented within the Java language), they are capable of being
deployed on any system where a Java Virtual Machine (JVM) is located. This provides the ability

18Currently, there are & number of attempts being made by software vendors te port the COM/DCOM architecture
across 1o the UNIX platform. If this port is suceessful, the COM/DCOM model will probably lack facilities like OLE
and Drag-n-Drop technology which has little relevance within the UNIX environment,

Lz o e e ikt g




62

for JavaBeans to be implemented on devices ranging from the standard household PC through to
mini and mainframe computers running UNIX and portable, smart devices.

Additionally, similar to the COM architecture, JavaBeans provides a complete framework as stated
in SUN Microsystems (1997) to facilitate the development and use of components within a system.
However, after comparing the JavaBeans specification to the COM or CORBA architecture it is
possible to see that JavaBeans does not benefit from a sophisticated set of services such as the
transaction service outlined ju the CORBA specification.

2.6 Chapter Summary

In this chapter the component based paradigm has been introduced. This paradigm has been
designed to assist developers with their construction of applications by providing an infrastructure
where components can be developed or purchased from software vendors and where they can be
interconnected with one another to provide the required functionality. In order to obtain a better
appreciation, the objectives of the paradigm and the overall component based architecture were
defined and then compared to the object oriented paracdigm.

This chapter also introduced the concept of configuration management and explained the benefits
associated with the ability to reconfigure a component within a system especially if it can continue
to operaie unaffected. To further develop the ideas behind configuration management, a detailed
look at a component reconfiguring was presented.

To complement discussion on the component based paradigm and configuration management, section
2.5 presented an overview of the four main architectures developed to provide developers with an
infrastructure to build distributed applications.

The next chapter concentrates on identilying the various levels of support that exist within configu-
ration management systems for software developers or end-users to control the management of and
reconfiguration of components.




Clizpter 3

Configuration Management

Systems

In the previous chapter it was identified that the concept of reconfiguration management relies
heavily upon the component based programming paradigm. This reliance has led to a number
of architecture designs and implementations to assist software devclopers with the construction
of distributed applications using a component architccture. Chapter 2 introduced the notion of
configuration definition languages (tnost notably DARWIN) which can be used to scparate the
configuration, interface and functionality requirements of a component. Configuration definition
languages can also be used to provide a basis for defining the information required to perform static
and/or dynamic reconfiguration.

This chapter examines a variety of configuration management systems as opposed to architecturces
described in section 2.5. Some of these systems are designed to aid software developers during
construction while others provide the ability to reconfigure compounents when the system is not
operating. In addition to those systems which manage static components there are more advanced
tools and systems that can provide developers and/or operators with the ability to change the
bindings between components within systems while it is still operating,.

3.1 Critiquing Configuration Management Systems

Before examining a subset of configuration management systems available to the software engineer-
ing community, it is iimportant to identify a criteria by which these systems can be measured.

i e gt e SR it




Criterion #1 - Revision Control
Important to any configuration management system is the ability to provide the infrastructure
which allows for the identification of differences between component revisions. These differences are
commonly referred to as component deltas. A configuration management system is deemed to have
revision control if it is capable of being able to identify and store deltas in addition to providing the
user with the ability to undo or re-apply changes to the code. This allows components developers to
undo any changes that may have been introduced to the component making it behave in a erroncous
fashion.

Revision control can be supported at two levels. The first level is locally, which allows for the revision
deltas to be calculated on components stored locally on the sysiem. Component deltas are normally
stored within the file system on the local system.

The second level operates with revision control remately. This provides for component deltas to be
calculated from components located on both local and remote systems. Traditionally, such systems
also provide support for the component deltas to be scattered throughout the network. This approach
provides a level of redundancy allowing component. deltas to be preserved throughout the system.

Criterion #2 - Replication of Configuration Information

An important aspect of any application development is the role of backups. This sense of importance
is not lost on configuration management systems which arc responsible for tracking every change
made within a system whether during development or through continued maintenance. A config-
uration management system is considered to support the replication of configuration information
if it providcs the appropriate functionality enabling the configuration manageinent system to store
replicas of comnponent deltas throughout the system.

Criterion #3 - Concurrent Component Development

Throughout the development of large software projects, it is common to find the nced for multiple
developers to be able to work on the same component at the same time within the same system.
This in itsclf docs not cause any problems unless a development team member requires a piece
of code which is currently being modified by another tcam member. As a resuli, configuration
management systems need to be aware of such events occurring and be able to handle such situations
with accuracy. A configuration management system is deemed to provide concurrent component
development facilities if it provides a process which allows for the integration of concurrent changes.
Additionally, the configuration management system may have to flag potential problems when it
unotices that two or more team members have changed the same section of code within a component.

Such a situation would result in the configuration manager refusing to comnit cither change until
a member from the developmnent team could identify which of the changes made to the component
can be committed to the system.

Criterion #4 - Revision History
Although revision control systems exist, sorne systems do not provide the facility for the devcloper




65

to be able to access or use previous revisions of components without having to significantly unwind
changes already made to the system. As 2 result a configuration management system is said to
provide a complete revision histery if it allows developers to activate or recall sections of code
which have previously been superseded. This functionality allows the devcloper to see and track the
changes in the component.

Criterion #5 - Type Checking

As with any two entitics which need to cormnunicate, it is important that they share a common
understanding. This approach to communication is no different in the world of component based
programming where components which communicate with one another must be type compatible®.
Although primarily used to check the types of components during component construction, the
type checking system is also used to check the types of connections and ports associated with each
component while constructing communication channels to facilitate intez-component communication.

Therefore, a configuration management system is considered to provide type checking facilitics if
it supports checking the validity of types used within the system and identifying where potential
problems might exist within the system with regards to incompatible types.

Criterion #6 - Component Awareness

Since the development of the first configuration management system, there has been a remarkable
change in the functionality provided by various systems in addition to continuing the refinement
of aims and objectives. This has led to a large number of configuration management systems
being built to provide specific services to the software developer. These systems range [rom simply
providing the infrastructure necessary to build components and store their revision deltas through to
providiug fully integrated development enviromments allowing for components to be created, tested
and inserted into a working system in real-time and to analyse the impacts of such a modification.

This diversity has brought with it a large number of configuration management systems which
have been built in such a way that they ignore the fundamental concepts of a component. A
configuration management system is said to be component aware if it is capable of distinguishing
components within the system and providing them with additional support. This additional support
may include the ability to manage inter-component communications, define dependencics between
components or perform a consistency analysis on the system.

Criterion #7 - Inter-Component Communication & Management

An important aspect of any system writien within the component based paradigm is the way in
which components defined within the system interact and communicate with onc anothier. These
communication channels form the basis for inter-component communication while at the same time
providing the infrastructure required to support the concept of reconfiguring components.,

1A component may be considered te be type compatible if it is the same type as the originating component or if
the type can be matched within an inheritance structure.




66

As a consequence of providing the infrastructure it is vitally important that a configuration man-
agement system provides support for the development and/or management of communication ports
between components. This support might include providing the functionality required to create,
modify or remove connection ports associated with components as well as constructing or decon-
structing the communication pipe.

Criterion #8 - Quiescent Routines

As mentioned in section 2.3.2.1 and discussed in Kramer and Magee (1990) and Kramer, Magee,
and Young {1990} the concept of quiescence is extremely important for those configuration man-
agement systems aiming to provide reconfiguration services within a stable system. A configuration
management system is said to promote quiescence if it provides routines responsible for allowing the
systein to enter a state of quicscence.

Criterion #9 - Dependency Analysis

Sir. Issac Newton stated “For eoch action there is an equal but yel opposite reaction”. Although not
exactly true for the component based paradigm, it is important to analyse and identify what the
possible outcomes might be if a certain action is performed. Typically a dependency analysis is used
to determine whether or not any deadlocks currently exist or whether any deadlocks may occur as
a result of a reconfiguration action.

Additionally, dependency analysis is normally performed to determine whether the systemn is in a
consistent state. Once the proposed configuration changes are known, a scparate analysis of the
system is performed to ensure that everything will remain consistent after the change has been
applied.

Criterion #10 - Component Reconfiguration Control

For an application to continue to be relevant to its problem domain, it is necessary for it to be able to
evolve to the changing environment. In order to achieve this, the configuration managenent system
must be capable of supporting the reconfiguration of components. This reconfiguration can cither
be done stalically where the system is stopped and components are interchanged or dynamically
where the system continues to run but where the affected regions by the recoufiguration are frozen.
A configuration management system which supports reconfiguration control must allow components
to be added, modified or removed from the system. Additionally, the system should also provide
the developer with the functionality to manipulate the interconnections between components.

Criterion #11 - Abstraction

The process of reconfiguring a component within a system comprises a number of steps. These
steps may include such activities as identifying the component, introducing a state of quiescence and
stability throughout the system, removing a component, installing a new component, establishing the
new component and then slowly bringing the system out of its quiescent state. As has been identified,
a number of steps may be required to replace one component within a systemm. To simplify this,

P

T kel g e e b A e i

-1
4
¥
i
i
E:
E
i
K
b
)
:
A




67

configuration management systems ebstract*” - . ity+ reconfigura. ‘on process into one command and
hence subsequently reduce the chance of in'. .+ -..¢ an error during the reconfiguration process.

Criterion #12 - Specifying Reconfiguration Actions

Traditionally, configuration management. systems have dealt with the issue of reconfiguration by
unconditionally freezing all connections and components associated with the area whicl: is being
reconfigured. Although this approach works in many <ases, an effective configuration management
system would provide the software developer and/or user with the ability to specify what actions
should take place in the eveut of a component not being available dye to a reconfiguration.

Throughout the chapter each configuration management system will be compared to the criteria
established above to determine the suitability of the tool as a configuration management system. Use
of this criteria allows a Laseline comparison to be made against the various configuration management
systems even though not all of the systems have been designed to satisfy common goals.

The chapter concludes by examiaing a more sophisticated level of configuration /reconfiguration
management designed to allow components to be substituted while the system continues to operate.
In addition to this functionality, these systems have to be designed to analyse the consequences of
such reconfigurations by performing various analyses including both deadiock and consistency to
ensure that the system is cousistent.

3.2 Component Configuration Systems

This section focuses upon those systems which provide developers with some assistance during com-
ponent construction. To facilitate this ¢+ (- unework is provided to developers to produce consistent
components, especially those being developed within a «distributed environment.

3.2.1 Distributed Revision Control System

The origins of the Distributed Revision Contrel System (DRCS) detailed in van der Hoek, Heim-
bigner, and Wolf (1996) and van der Hoek, Carzaniga, Heimbigner, and Wolf (1998) can be traced
back to the underlying srchitecture of the Revision Control Systese (RCS) from which it evolved.
The extensions provided by DRCS bring with them an ability to utilitise the functionality of the
RCS system over a distributed domain.

The cbjective of RCS when designed, mentioned in Tichy (1985), was to provide a system capable
of allowing developers to introduce staged releases of information? stored within the repository into
the system. In addition to allowing developers to perform staged relrases it also provides the ability

2t is important to note that the RCS repository is capable of storing and versiouing many forms of data and not
Jjust source code files or documentation. R(28% only requirement for release contrc! is that the data which is to be
versioned can ¥ stored in a consislent state.

. . . . . . X . D T S P SIS T Yy PP e PPN TT T gl ¥ 24




65

for an audit trial to be created and maintained. The DRCS/RCS system has been structured in
such a manner as to allow many developers who have access to the repository to be able to place
exclusive locks on various resources heid within the repository. Providing this repository support
prevents developers from making modifications to the same resource unless the lock to the resource
has been removed.

RCS works on the basis of regisiering the resources® to be controlled and having those resources
placed into a separate directory located on the same file system (normally called ‘RCS"). As changes
are made, the DRCS system calcuiates the delta fragments and stores the chenges within the repos-
itory.

By making use of RCS, software devclopers are able to review their work and slowly add or rcmove
changes made {0 the original resource. When a resource is requested from the DRCS repository the
original resource is rctrieved and then all the deltas associated with that resource are applied to it.

After a period of time and when the resouree has had a number of revisions made, the author/operator
can chose to release the resource. This process involves taling all the deltas for the resource and
applying themn to it to create » new resource which inco: porates all of the previous deltas, After a
reiease has taken place, it is impossible to rollback through previous changes as all the deltas have
been merged into one.

The distributed aspect of DRCS caters for a number of clients who wish to make use of the
client/server architecture to form a connection with the central server holding the repository. These
connections allow distributed clients to manipulate the resource from a remote location while record-

ing the delta resource fragments. Figure 3.1 illustrates the differences between the RCS and DRCS
systems.

A problem which cxists with the DRCS system relates to the underlying architecture. This ar-
chitecture requires that all clients connect to a central repository so as to be able to access the
desired resources. This approach to handling distributed component construction can lead to major
bottlenecks at the central repository or expose the overall system to an unacceptable risk. These
risk clements may include a communications fault between a client and the repository or a hard-
ware/software fault at the repository.

3.2.1.1 DRCS as a Configuration Management Tool

DPRCS was designed to allow software developers to be able to develop and modify their resources
frotn a number of locations while at the same time providing extra functionality such as revision
control and accountability, To this cnd, DRCS provides no functionality for the decoupling of
configuration information from the implementation nor does it have any support for the management
of bindings between components. DRCS exists purely for developers and to help them release and

3 A resource can resemble any enti,. Typically this resource is a file.

]
:

i gt R e




G9

revision control their rasources. From a configuration management perspective the DRCS system
only satisfies the first criterion. DRCS provides the infrastructure required to identify differences
between resource versions and the appropriate routines to store, retrieve and manipulate those deltas.

RCS DRCS Repository
Revision Contzol System Distributed Revision Contral Syste ——

=

A

|
3
i
j
1
|
]
|
l .
- T ‘
H ; 1 H
- - H
- l L
il pepasitory ' STHRIS N
Client | X
]
I
( (] - - )
! =Ny L) - 2=
' =, =
g =) =5 =
Clients

Figure 3.1: Differences between RCS and DRCS

Although DRCS docs provide access to previous revision histories of resources, it does not provide
support to execute a specific revision. By default, DRCS only provides developers with the resource
ouce all of the deltas have been applied. No provision exists for devclopers to specify what revision
number they wish to use.

3.2.2 Distributed Concurrent Versioning System

Just like the DRCS, the Distributed Concurrent Versioning System (DCVS) is the distributed com-
puting extension to the standalone system known as the Concurrent Versioning System (CVS) which
is explained in Berliner (1990) and Cederqvist (1993). The DCVS/CVS architecture is a further
refinement to the DRCS/RCS and brings with it the additional functionality of being able to track
multiple revisions made to one resource or tracking the various revisions made to a number of
resources scattered over a file system within a project. The DCVS/CVS architecture also allows
multiple clients to lock regions within the one resource and hence support concurrent development.

The DCVS archivecture uses the same approach as CVS with regards to the storage of deltas requiring
that all deltas are stored at the ceniral repository. The DCVS architecture however differs when
it comes to the transportation of the deltas to a client site. When a client connects to the central

i
8
Ll
3
5
3
-
o

DT o Ty Ry




70

repository and requests a resource, the DRCS architecture exports the entire configuration including
the directory structure to the client site.

Once the data is at the client site, developers can make the appropriate changes to the resource and
request those changes 10 be merged back into the ¢entral repository. During the merging process,
the DCVS will apply cach change as an individual change and determine whether or not the same
resource has been changed by a previous delta (the granularity of the check can be measured in line
numbers within & source code resource).

If multiple changes are detected, the CVS core flags an error and requires either an operator or
developer to explicitly allow the change to be admitted to the system. This concurrent change
behaviour is dictated by the DCVS architecture. DCVS provides no functionality to determine
when two or more developers are modifying the same region within a resource afier Leing exported
to the client site because each site receives its own copy of the delta repository. This type of conflict
is not detected until the repositorics are merged back into the central repository.

Even though DCVS ships out the entire configuration of a system to the client site, it still relics on
having the client ship all of the deltas back to the central repository.

Hence, by using the same architecture r  he DRCS architecture, both the DCVS and DRCS systems
share the same problems and characteristics. These problems relate to the central repository and
the processing/merging of the deltas. If for some rcason the cantral repository is offline, then the
changes from the client can not be merged and the central repository starts to losc its consistency
as it falls out of synchronisation with the clicnts. However, transmitting a copy of the repository
to the client allows changes to still be made although the central repository is offling, The only
operation which can not be performed during the downtime is the merging and syachronisation with
the central repository.

3.2.2.1 DCVS as a Configuration Management Tool

Like DRCS, the DCVS system was designed to provide developers with a framework to allow large
projects to be managed over a wide geographical area. As DRCS and DCVS shage the same ar-
chitecture it should come as no surprisc that DCVS provides no functionality for the decoupling
of configuration information from the implementation nor does it have any support for managing
bindings between components. DCVS exists purely for providing developers with a versioning sys-
tem which works in a distributed domain and provides an environment which supports concurrent
developinent.

When compared to the configuration management systems criteria presented in section 3.1 it is
possibic to sec that the DCVS system satisfies the first three criterion. In addition to providing
supp-:rt for the identification and preservation of delta information, DCVS also provides the infras-
tru.ture for developers to work concurrently on components scattered over a large geographic arca,

.'
E
-t
j*

£

e




71

To achigve this functionality, the configuration repository is shipped out to remote locations and
hence provides a backup-of the configuration repository which satisfics criterion number three.

3.2.3 Incremental Configuration Engine

The Incremental Configuration Engine (ICE) as detailed in Zeller {1995b) and Zeller (1995a) pro-
vides an alternative method to configuration management. In traditional source code configuration
management systems the approach adopted is to segment all of the changes into a series of delta
componcenis. ICE takes ancther approach to the problem and places all of the deltas into one file.

Each version or configuration change is represented within the file and is then guarded by a series
of preprocessor directives which the configuration manager understands.

This approach allows developers to view previous configuration changes and source code while de-
veloping new segments of code or applying new configuration changes. Previous systems such as
DRCS and DCVS only allow one patch level to be available at any one time.

In addition to providing clients with the ability to sec multiple views of changes, ICE makes use
of version sets and feature logic. This allows the configuration engine to keep track of multiple
components within the system while in parallel, allowing developers to clearly sce all of the paths
taken to veach an cnd component. ICE provides the capabilitics to change these bindings during
design timne to reflect the appropriate configuration.

Through the use of feature logic and version sets comes the extra functionality known as workspaces.
A workspace is used within the system to allow developers to trial changes to the system in isolation.
Each workspace has a feature allocated to it allowing the system to identify that changes made within
the workspace should uot be incorporated into the overall system. Once a developer is satisfied that

the changes are acceptable, the feature is modified and the changes are reflected across the entire
system.

The advantage ICE has over other configuration management systems is its use of a specialised
file system hacovn as the ‘Feature File System' (FFS). This file system has been designed with the
express intent to allow all components within a file sysiem to be versioned. Using this file systein
allows ICE to preserve revision and versioning information rclating to access permissions to certain
parts of the system, files, directories and groups of directories which make up a configuration?.

ICE also provides a method of Leing able to compile all of the deltas for a component into a single
module. During this ‘compile’ the ICE engins is able to use its feature legic functionality and version
sets to identify the configurations that are required and is able to identify the required regions within
the configuration with the use of the UNIX utility diff? to extract the appropriate configuration.

4In other systems, the ter:in configuration would be known as o system release or & deployment.

TG Ty




72

Part of what aids the configuration process is the modified file system, as standard UNIX utilitics
and commands such as cp and make can be used to assemble the required configuration and build
the appropriate conﬁgﬁrat.ion without developers having to learn and understand specific tools built
for a configuration environment.

3.2.3.1 ICE as a Configuration Management Tocl

The Incremental Configuration Engine (ICE) has principally been designed to overcome some of the
inherent short-comings in other configuration management systems such as DRCS or DCVS. Even
though ICE adopts a different architecture to other configuration management systems, it should
be noted that it still only deals with static compouents during the construction phase.

ICE makes use of feature logic and version sets to maiutain the consistency of the system. The
consistency check that ICE performs only ensures that the right configuration is selected for the
appropriate environment. ICE has no awareness of inter-component communications nor does it
deal with issues such as type-checking and ensuring the compatibility between method calls. This
work is still left to the compiler. When ICE is compared against the configuration management
criteria it can be seen that it shares some similarities between DRCS and DCVS.

These similarities include providing the infrastructure for component deltas to be identified and
preserved as well as providing support for the concurrent development of componcuts through the
concept of workspaces. However, ICE also provides developers with the ability to exccute and assess
eny version which is recorded in the revision history. This marks a departure from DCVS or DRCS
which limits developers to only the latest release. Additionally, ICE to some extent, satisfics criterion
nine by using feature logic and version sets in an attempt to mnaintain a consistent static system. The
consistency analysis routines however are not fully developed and do not provide a comprehensive
analysis of the system when it comes to configuration management.

3.3 Static Component Configuration Management

A static component configuration management system is defined as a system which provides devel-
opers with support for the reconfiguration of components and their interconnections. However, the
static nature of these systems only permits chauges to be performed while the system is in a stable,
consistent state which is normally achicved when the systemn has been stopped. Section 3.4 examines
those systems capable of providing dynamic runtime support.

i he e s o




3.3.1 Software Dock

Software Dock architecture was developed to address the concerns detailed in Hall, Heimbigner,
van der Hoek, and Wolf (1997) about modern systems being constructed through the use of compo-
nents necessitating greater care be taken during the assembly and interconnection of those compo-
nents,

Traditionally, the concept of configuration management has centered upon the development of tools
allowing developers to have greater control over the source code and design phase. These tools
provide a means of controlling the static configuration of a system from a design perspective. Some
of these tools are examined in section 3.2.

Concerns that dreve the development of the Software Dock include the lack of configuration mnanage-
ment tools developed to support software deployment whilst at the same time taking into account
site specific information.

With the software industry moving towards a component based approach come a numnber of problems.
Problems include systems being distributed with missing components or components which are out
of date. Hence, these components or lack of, might result in a systain not being able to perform
certain tasks or providing erroncous results. To address this a sysicm needs to be developed to allow
compounents to be updated and deployed in a non-intrusive manner.

The principal architecture of Software Dock has been designed to operate within a number of en-
vironments by making use of a decentralised approach. This approach is normally implemented in
the form of networks such as the internet or corporate intra-networks and is used as the underlying
carrier for new software componentis.

The architecture also provides for the appropriate semantics to record the software configuration
for each site where it is deployed. This information is similar to the registry concept used within
Microsoft operating systems. Once recorded, the architecture of a site (both software and hardware)
can then be used to plan and develop the most strategic deployment of new software componcents,

In addition to the scitware and hardware components beiug recorded at a site, the architecture also
records the configuration information between components. This information is analysed so that
th> component dependencies can be calculated. Using this configuration information provides a
convenient way of determining the constraiuts on the system.

By recording all of this information it is possible for the Software Dock servers to monitor the
envirozment in which they are operating and be able to identify any changes being made. Ouce
changes have been ideutified, action can be taken (be it automatic or manual} to adapt to the new

and changing environment. By accepting automatic changes, the system to some degree, can adapt
itself based on site conditions.




3.3.1.1 Software Dock Architecture

The Software Dock consists of a number of servers. These servers gre located at both the client or
consumer site as well as at the server or production site.

Servers located at the consumer site are known as a Field Dock. This dock is responsible for
maintaining a registry of the local configuration information (including software, hardware and

configuration information). Its role is to propagate events received from remote sites with those
components located at a local site,

It is also used as a notification service. When a component has been changed and an update is
available, the field dock broadcasts on an appropriate channel. Applications which are susceptible
to these chianges listen to the appropriate channel. Once a change is detected, components contact
the local field dock to find out more information and learn how to adapt to the change in the system.

The field dock is also responsible for providing controlled access to the resources at the site as well
as the repository it maintains. It also provides the appropriate resources required by components
so that they can subscribe to event channels. Any change made to a local registry is sent to the

Federated Deployment Registry (explained later) so that it can remain in synchronisation with the
local field dock.

A server located at the production site is known as a Release Dock. This dock is responsible
for informing those who inquire about the current software releases and registry information. In
addition, it provides the same event chanrel mechanisms discussed previously.

A typical software release entry in the release dock will contain a number of artefacts. These artefacts
include details such as the executalles, libraries associated with them, documentation, dependency
information and any constraints appropriate for the installation of the software. It is also responsible
for housing the agents which perform the deployment, configuration, maintenance and vninstallation
activities.

The field dock is not directly responsible for the distribution and installation of new components

but rather to inform other docks located throughout the system that these components have been
changed and are now ready to be installed.

In addition to these servers the Federated Deployment Registry (FDR) acts as a reference point for
both types of docks. The FDR is responsible for providing a global namespace which spans across

both the field and release docks. By providing the global name space it allows clients to make
standard method inquiries across all installations.

The Software Dock architecture also tnakes use of the FDR as a point where events can be subscribed
toc and where properties of the entire system can be queried. In order to provide this type of
information, the FDR is organised into a tree like hierarchy (similar to how the registry by Microsoft




75

is arranged). The schema of the registry is maintained in a consistent manner as it synchronises
with all of the changes made at the field dock.

Figure 3.2 illustrates the various relationships between the docks which exist in the system, the Fed-
erated Deployment Registry, the agents and the Wide Area Message/Event Service (described later)
responsible for passing on and processing all of the various message channels within a deployment.

Agents do most of the work in the Software Dock architecture. They are normally embedded within
the docks which are scattered through the system. They arc responsible for the registration of
specific events as well as performing tasks based upon the cvents that they receive. Agents within
the system can be separated inio two categories, those that operate within the scope of a dock,
known as internal agents, and those that originate outside of the dock known as external agents.

Agent | [ Agent Fedarated
Ralease Dock yeor Deployment Agent ]
ent ;l‘"‘?
ent|
’ (Rt Field Dock
H Agant
0 Fial Dook
; ent ent

Figure 3.2: The Softwarc Dock Architecture

Internal agents are responsibic for extending the functionality of the local dock and to some extent

are trusted in their operations at the local dock. Commonly, there are three services that thesc
agents providz. These include:

¢ Viewing — Is responsible for building a interface which provides a view of the dock.

¢ Abstraction - Is where abstract interfaces are built for external agents to use. These interfaces
are built to hide any site-specific knowledge which may be required to perform activities.

¢ Isolation — Is where the dock is able to setup a strictly controlled environment for an external
agent to work within. Such an environment would allow an external agent (untrusted) to
perform updates on a component where both reading and writing operations are required.

Fasy T

o e et

e Y R

T




76

External agents are obtained from remote sites and are responsible for performing activities on
behalf of @ remote organisation. These agents are not trusted and normally require the help of an
internal agent to setup an isolated area so that the requested action can be performed.

During the installation of a component, other agents may well be triggered as a result of different
events. This can lead to a cascading number of agents being deployed throughout the system.

The communication system used throughout the Software Dock Architecture is known as the Wide-
Areca Messaging/Event service (WAM/E). WAM/E is responsible {or broadcasting all of the events
to the various softwarc docks which have becn registered within the system. The WAM/E service
is also capable of using interfaces provided at the various software docks to inject cvents into the
system.

3.3.1.2 Software Dock as a Configuration Management Tool

As previously discussed, Softwarce Dock aims to provide a method of configuration where components
can be interchanged automatically, without user intervention.

However, for such a system to allow the interchanging of components, it must assume that all
components are loosely coupled which means reconfigurations can only take place when a system is in
a static state as no dynamic consistency management is provided. The lack of a dynamic consistency
manager means that the system is unable to provide any dynamic reconfiguration support.

When compared against the configuration management gystem criteria it can be seen that the
Software Dock architecture addresses different arcas to those systems found in scction 3.2. Software
Dock provides developers with an environment capable of identifying components and automatically
responding to the neceds of those components when their environment changes satisfying criterion
ten. These changes and the information required to administer these actions are gleaned from the
numerous servers and agents scattered throughout the entire system. Additionally, the architecture
provides a simple but yet effective infrastructure allowing the system to auntomatically manage inter-
component communications.

3.3.2 Adele

Adecle as explained in Estublier and Casallas (1994) is a database oriented configuration management
system. By making use of the underlying database schema it is possible for the individual software

components, source code and header files to be individually registered into the systein. Adele refers
to these entries as clements.

As the clements are entered into the database, the system builds up a profile of the relationships
between each and constructs a dependency graph. This graph is then used to ensure that the system
remains in a consistent state.




i In addition to the dependency graph, the database also allows for the logical grouping of components,
¢ B source code and headers. Once grouped, global operations can Le performed on the groups just as
if they were an individual element themselves.

Adele also provides two other facilities which aid the construction and management of system con-

figurations. These facilities include the concept of a WorkSpace and Revision Set.

A workspace is used within the Adele system to provide developers with an area where bindings and
components can be changed with other components. All actions which are undertaken within the
workspace are subject to the dependencies contained within the dependency graph. This ensures
that the consistency of the system is preserved according to the database schema.

- The second facility Adele provides is the notion of a revision set. A revision set is a collection of all
E the revisions made to a particular system or sub-component of the system. It is normally constructed
from a set of revisions made within a workspace. The revision set acts as a superset of all revisions.

Due to Adele being able to file all elements into the underlying database, it is possible for the revision
set to be preserved as well. Once an element, it too can have a number of operations performed

on it which effects the whole set. The revision set provides the ability for developers te see what
changes have been made to the system as well as giving an opportunity to reverse some of them.

3.3.2.1 Mistral

Adele manages configurations but it does not deal with the issues of distribution nor does it address
the issue of dynamic configuration management. In an eflort to provide a distributed approach the
Mistral system as detailed in Gadonna (1999) was developed.

Mistral was built as an extension to the Adele system allowing developers to be able to move
Adele databases from one point to another. Mistral provides the functionality of permitting Adele
databases to be copied or moved from one location to another. The system also provides conversion

utilities which allow a databuse created in Adele to be imported inte other foreign database systems.

= The process of copying or moving a database between systems involves thre: steps. The first step is
to identify all of the deltas and then store these in a form which allows the data to be transferred.
The most common forms of media include magnetic tape or email.

Once generated the deltas are shipped to the other site where thoy are loaded onto the new system.
Once loaded a status report is generated reporting on objects created, relocated and or re-grouped.
"This is important data as it forms the basis of a consistency check.

After the data has been loaded and report generated, the report is sent back to the initial site where
it is run through the Adele database. Once received, M'stral reads it and makes appropriate changes
to the Adele database schema. The changes to the schema form the basis for the system to remain
consistent.




78

Explained in van der Hoek, Carzaniga, Heimbigner, and Wolf (1998), the Mistral update routine,
especially in the circumstances where a direct connection between databases can not be performed,
relies on a manual approach. By having manual intervention in the systomn it is possible for the
Adele database to becoine inconsistent. The inconsistency may be introduced as a result of an error
in the report generated by the database at the remote site, or human error where the report was
never run back through the original system.

3.3.2.2 Adele/Mistral as a Configuration Management Tool

As has already been discussed, Adele was designed to provide developers with the ability to recon-
figure components in a static system with the aid of a database management system.

The database backend of Adele is designed to ensure the consistency of the systcrh is always preserved
while at the same time preserving the various revisions of components within revision sets. Adele
itsnlf does not address concerns about dynamic reconfiguration management nor does it provide the
appropriate modules to ensure the consistency of the system while it is operational.

In an effort to address the problems with the lack of distribution in Adele, the Mistral system was
developed. Mistral, however, only provides developers with the ability to be able to shift the Adele
database around to other sites and docs not address the other problem of Adele which is lack of
dynamic reconfiguration support. Additionally, neither Mistral nor Adele provide any consistency
managers which could be used to keep the components and systems synchronised while running.

Both Adele and Mistral were designed to provide reconfiguration support for components in static
systems. When compared to the configuration management criteria (refer to section 3.1) it is possible
to establish that both Adcle and Mistral satisfy & number of the criterions. These include:

» Providing support for the identification and manipulation of the various component revisions

e Partially providing the infrastructure required through the use of revision sets to allow devel-
opcers to try out previous revisions

e Providing primitive type checking through the use of the datalase management system
¢ Providing consistency of a status nature by making use of the DBMS

* Providing suppori for component reconfiguration of a static naturc

The only difference between Adele and Mistral from a configuration comparison is that Mistral
provides support for the database which contains the configuration dclta to be exported to another
site. This allows the configuration repository to be backed up although great care needs to be taken
when integrating the repositories with one another.




79
3.4 Dynamic Component Management

In this scction, those configuration management systems which support the reconfiguration of the
interconnections between components and the components themselves are examined.

3.4.1 Surgeou & Polylith

The system Surgeon as detailed in Hofmeister, While, and Purtilo (1993) builds upon the Polylith
Software Architecture (Purtilo and Hofmeister 1991; Purtilo 1994) to provide the additional func-
tionality of dynamic reconfiguration management.

3.4.1.1 Polylith

Polylith was developed to address some of the difficultics being experienced with distributed comput-
ing. The primary design goal of Polylith was to provide a software architecture allowing deveclopers
to construct distributed applications without having to invest a significant amount of time in dealing
with the issues of distribution.

To provide this level of abstraction a concept known as a Software Bus responsible for coordinating
all of the inter-component conununications was introduced. The software bus is also responsible
for the translation of data structures between the different distributed buses or various methods of
sharing processors (eg. shared memory). This process of data translation and marshalling is not
that unfamiliar when compared with distributed frameworks such as CORBA (Object Management
Group 2001) and DCOM (Brown and Kindel 1996).

In addition to the software bus providing a level of abstraction for developers, Polylith was also
designed to make use of a language responsible for separating the interface from the functionality.
This language was known as the Module Interconnection Language (MIL).

MIL was designed to be implementation independent allowing developers to choose the Janguage
that they wish to develop the module in while at the same time providing a level of abstraction from
the implementation and the interface. This is very similar to the notion of a Interface Definition
Language (IDL) used in CORBA, COM and many other distributed system frameworks.

The role of MIL in Polylith was to allow devclopers to specify the semantics of the interface. Once
defined, Polylith would analyse the MIL specifications and build a graph that depicts the relation-
ships between the modules in the system. Additionally, MIL contains the ability {or developers
to specify the translation tables necessary for data flows Letween different distributed processing
schemes and different software buses.

oG




80

Although Polylith was designed to provide a level of abstraction for developars to develop distributed
applications, it did not address the issues rclating to component reconfiguration. To address this
issue, the system called Surgeon was developed.

3.4.1.2 Surgeon

Surgeon was developed on the foundations of Polylith in order to provide developers with the ability
to be able to dynamically reconfigure systems already operating on the software bus.

The approach adopted by Surgeon in dealing with the difficult issue of dynamic reconfiguration
management is one of simplicity. As far as Surgeon is concerned, a component is considered to be in
a consistent state providing messages or method calls being sent between components continue to flow
and reach their desired destination. Even with an assumption like this, the Surgeon system provides
1o consistency manager to oversee or coordinate the transitions of the various configurations.

Surgeon implements its reconfiguration policy by identifying those components which interact with
components that are to be replaced. The connections between neighbouring components and the
component to be replaced are frozen to prevent any further communication or participation within
the systemn.

Neighbouring components who have had some of their bindings frozen continue to operate as normal
except for where they incur an interconnection which deals with the component being replaced. Any
data waiting to be sent to the reconfiguring component is held until the object is ready to be restarted
again. This approach is similar to the node quiescence scheme detailed in Kramer and Magee (1990).
Surgeon however does not implement the quiescent set of routines.

Since the development of Surgeon, further enhancements have taken place as is detailed in Purtilo
and Hofineister (1991), ' provide components with the ability to be able to save and restore their
state. The ability to manage a components state enables it to retain persistent data through various
component revigions.

A disadvantage of the approach taken in Purtilo and Hofmetster (1991) is that it requires developers
to nominate the reconfiguration points and specify the methods for restoring and establishing the
state of the components. Such an approach gocs against what Polylith was originally designed for
where simplicity and abstraction were the main aims,

In such an approach, a tool responsible for the reconfiguration would then have to coordinate the
exercise of extracting the state from one component and marshalling the data to the other.




81

3.4.1.3 Polylith & Surgeon as a Configuration Management Tool

As mentioned in section 3.4.1.1 the Polylith system was not designed with configuration management
in mind. It was developed to provide a framework for developers to build applications which could
run on a variety of distributed architectures.

Surgeon does provide support for dynamic reconfiguration management however it does have a
significant problem in the approach it takes to dealing with frozen components. There are also
additional concerns with regards to the assumptions made reclating to the consistency of components
during a reconfiguration activity.

The problem stems from those components which have been marked for a reconfiguration activity.
Once frozen they are unable to provide any information about their status and whether they will
be able to perform their designated activity. This approach raises many issues with regard to the
protocols and communication mechanisms used within the system,

From a configuration management point of view the Surgeon system lacks a consistency manager
which is responsible for coordinating the changes within the system and the synchronisation of states
between components being removed from the system and those being added.

In addition, the Surgeon syslem and later systemns detailed in Purtilo and Hofmeister (1991) provide
no ability for any deadlock analysis to Lbe performed. Putting these concerns aside, it has been
identified in Goudarzi (1999) that under certain circumstances the reconfiguration mechanism used
can result in failure and in some cases can causc a crash of the replacing component. Overall
the Surgeon and Polylith systems do not rate too well when compared to a number of configuration
management system criterions. Both systems provide some type checking support satisfying criterion
five and in the case of the Surgeon system some support is provided for the reconfiguration of
components which satisfies criterion ten.

3.4.2 Programmers Playground

The Programmers Playground introduced in Goldman, Hoffert, McCariney, Plun, and Rodgers
(1997) and Goldman, Anderson, and Swaminathan (1993) provides a scries of softwarc libraries
which have been primarily designed to support distributed multimedia applications. The playground
has been designed with the specific intention of separating the implementation of a module from
its interface while at the same time embracing the concepts behind the ‘1/Q Automation’ model
explained in Sethuraman and Goldman (1995) and Goldman, Andersen, and Swaminathan (1993).
The playground also provides limited® support for dynamic reconfiguration and includes enhanced
support for discrete and continuous data types.

5Programmers Playground does not support the instantiation of objects, preserving consistency and connecting
them into the system at runtime.

PP T




82

An unique feature of the Programmers Playground is the way the communication channcls between
each of the modules are specified. Component connections arc mansged with the aid of a design tool
rather than having components explicitly specify the communication channels. Using this component
connection manager allows the operator to directly manipulate the external interface of an object
and its corresponding communication channels.

3.4.2.1 Overview of the Playground

The playground can be viewed as a workspace for developers. It is here that components are defined,
created and linked together to form distributed applications.

In addition to providing an area for component development, the playground provides an abstract
environment where applications can run in isolation. This isolation area allows applications to
execute with their respective components cven though the entire playground is populated with
other components running other systems. Not unlike a children'’s playground, the Programmers
Playground does not endeavour to segregaie applications into their own domain but instead kecps
them in the same area under the supervision of the executive.

As cach component is built, it is constructed from a serics of primitive data types that the playground
supports. Once a component has been built, it is given a presentation layer. This presentation
layer provides the separation from the internals of the component and the external links to other
components.

In addition to providing a barrier between the internal and external parts of a component, the
presentation layer adds cxtra functionality to the component. The prescntation layer is responsible
for providing the appropriate get and set methods to allow data structurcs contained within the
component to be observed and manipulated. Such manipulations are coordinated by the sccurity
module of the playground.

By having these interfaces present in cach component, observers can inspect the system and see
how certain components react with onc another. In addition to the observation, the observer can
also inject changes or events into the system and sce how the components react with the changing
environment. Due to the way in which components are linked, it is possible to determine what eflect
one change to the system has on the rest of the modules.

As mentioned previously, one of the unique characteristics of the Programmers Playground is the
way that communication channels between components are not explicitly defined by a developer of
the system. This allows the configuration of the system to dictate what communications take place
between components and when those connections should be made.

These communication channels are controlled through the use of a binding manager. The role of the
binding manager within the system is to supervise and inform all components of rclative changes
made in the system. The binding manager is also responsible for recording the links between all




83

componenis as well as contacting individual components and informing them of chianges specific to
them.

The Programmers Playground architecture revolves around three sub-systems. These sub-systems
control the data types and their usage, the control and coordination of components and the estab-
lishment and management of connections between components.

Data SubSystem: The Data SubSystem is responsible for providing to ihe Programiners Playground
a list of data types which can be used withia the system. These data types include:

o Integers
» Reals

» Boolecans
e Strings
+ Tuples

o Aggregate Data Types

A tuple data type provides developers with the ability to store a set of records and pass them around
the system as a collection. This is similar to the aggregate data type except that an aggregate
contains an array of single elements while the tuple can have many clements in the one record.

The Data SubSystem is also responsible for providing the way in which the data types are used.
As mentioned earlicr, the Progranuners Playground provides support for the direct inspection and
manipulation of data structures contained within components. Although inspection is possible it is
not mandatory. When a data type is being defined the component developer is provided with the
option to make the data clement either publicly available or not. If the component developer does
wish to make the variable publicly available then a public name is assigned to the data element and
the appropriate access privileges are assigned.

Conirol SubSystem: The Control SubSystem is responsible for determiring the responses which need
to be taken as a result of a change in the state of a component or a chauge in the cnvironment.
Although a playground application has no direct control, it is capable of manipulating its own
data valucs within the presentation layer to cnsure that the appropriate state changes occur. As
a conseguence, the system ensures components which are effected by the change interact with one
another in an appropriate manner.

Connection Menaegement: Connections between components in the playground are controlled through
the use of a communications manager. The communications manager is responsible for ensuring that
type safety is preserved and that the security requirements® are met.

8Security requirements refer both to the accassing of the components in addition to making sure that the observers
of the system can only modify those data structures that they are entitled to.




84

Other responsibilities for the communications manager include administering two types of connec-
tions. These connection types are classified as simple or elemeni-to-aggregate connections,

Simple connections are those which bind together two data items of the same type. The flow of data
along these connections can be defined by a developer to be uni-directional or bi-dircctional. As
simple connections deal with single elements of data it is unnecessary to provide recording locking
operations.

Figure 3.3 illustrates how two components can be connected t0 one another with the use of uni-
directional and bi-directional communication channels. The figure also demonstrates the abstraction
which the Programiners Playground provides for components where the computational elements are
separated from the published data clements.

A X
Communication

Compoaent A Channsls Compooent B

B |\¢ Y

c [P Z

Computational Published
Components Data Elements

Figure 3.3: Representation of a Component in the Programmers Playground

The other type of conncction known as a element-to-aggregate connection allows a collection of
tuples to be bound together providing the types of tuples are the same. In such a connection there
is a server (the component which initiated the connection) and a client {the comsponent receiving
the connection).

This distinction becomes important when you consider what view the client and the server have of
the data. The component acting as the server in this sibuation can sec a series of tuples while at the
client side the only data which is visible is a single tuple which contains the result of a query.

Due to the aggregate counection dealing with many records at the one time, the element-to-aggregate
relationship provides support for record locking operations. This enables the client to lock the record
that it is currently using while at the same time allowing the server to manipulate other records.




85

3.4.2.2 Playground & I/O Automation Model

By making use of the I/0 Automation model, the Programmers Playground is able to provide
developers with a dynamic environment allowing the modelling of dynamic behaviour of components
within an application. This behaviour can be represented graphically with a tool called ‘Euphoria’
as detailed in Goldman, Hoffert, McCartney, Plun, and Rodgers (1997).

This dynamic behaviour of the playground can be modelled through the various state changes whicih
take place throughout the system. By allowing the obscrver to make changes to the configuration
of the system it is possible to model the dynamic nature of the system.

3.4.2.3 Programmers Playground as a Configuration Management Tool

The Programmers Playground provides developers with a dyramic environment in which to assenible
large distributed multi-media applications. To achieve this a system was established where compo-
nents could be developed and individually tested allowing developers to concentrate on the task at
hand.

The playground provides support for components to have bindings established between themn at both
design and runtime. These bindings are handled by a communications manager that coordinates
traffic betwecn components within the system and arranges for the bindings to be changed.

One other important attribute to note about the Programnmers Playground is that it makes use of
the I/O automation model. This allows the playground environment to introduce the notion of an
observer who can manipulate public data variables. Such changes to the system allow the observer
to maodel the interactions between components and document the expected and unexpected changes.
By allowing this activity, the Programmers Playground claims to support dynamic reconfiguration
as the environment presented to the observer allows for components to be created, the manipula-
tion of public data values and altering the bindings between connections. It does not provide the
support required to update components while the system is running. The playground also lacks the
appropriate managers required to support concurrency, consistency and deadlocking issucs.

As a conscquence, the playground is a nice environment in which to model changes to a systemn, but
lacks support in the arca of dynamic reconfiguration manager. From a configuration management
point of view, the Programmers Playground provides developers with a number of services which
have been designed to simplify the process of creating components and interconnecting them to form
applications.

Compared with the configuration management criteria detailed in section 3.1 the Programmers Play-
ground satisfics a number of the criterion. Those satisfied include criterion five with the integration
of a type checking system for compounents, criterion six with the Programmers Playground providing




.
X,

N

86

an architecture that is aware and sensitive to the needs of components contained within it and cri-
terion seven with the provision of routines which are responsible for managing the inter-componenti
communications. Compliance with criterion nine is achieved through the introduction of a binding
manager capeable of allowing developers to use a limited st of tools to identify the dependencies of
components within the system while criterions ten and ecleven are satisfied by the binding manager
providing the functionality to statically reconfigure componcnts while providing developers with an
abstracted interface to shield the lower level functions required to effect the reconfiguration.

3.4.3 CONIC

As is explained in Magee, Kramer, and Sloman (1989), CONIC was designed to allow developers
to build large distributed applications and at the same time providing them with an architccture
allowing the removal of the barricrs associated with specifying configurations. CONIC was also built
to provide support for a mixed target host environment, to be uniform in its approach and to make
it simple to develop distributed applications while at the same time being efficient and portable.

The development of CONIC occurred at a time when ‘nere scemed to be little agreement with
regard to the concepts of modularity, concurrency, synchronisation, inter-process communication
and component reconfiguration,

In an effort to address these problems, a number of approaches were adopted, ranging from coin-
pletely new development and programming environments through to the modification of operating
systerms.

The driving force behind these developments stemuned from the concept that distributed applications
were considered to be a collection of sequential prograiaz as opposed to individual components work-
ing together to solve a common aim. The sequential programming approach translated into many
systems where the inter-connections between compoacnts became so tight that it was impossible to
provide any change management facilities.

The term change management refers to the concepts of evolutionary and opcerational change. Evo-
lutionary changes are very hard to predict and normally result in program modifications being
incorporated into alrcady existing systems or new technology. Operational changes are those which
nced to be made as a result of an organisational restructure or business rules.

To overcome these problems, CONIC provides its own languzge basced approach to building dis-
tributed applications. The principal objective of the language revolves around the scparation of the
interface from the functional specification.

To achieve this, CONIC introduced two languages. One is used by developers to specify the function-
ality of components, while the second is used to define the interface and configuration requirements

of components. In addition, the information specified in the interface specificetion language is used
to support dynamic reconfiguration.




3.4.3.1 CONIC’s Module Programming Language

The CONIC programming language allows for the definition of task modules types. Once built,
these types are used as the blueprint for the creation of instances within the system,

Modules communicate with one anotlier through strongly typed ports. These ports are classified
as being either exilports or entryporis. As the name suggests, an exitport is where the results of a
service can leave one component and be sent to another. An entryport is where data originating
from one component can be received and processed.

For every port which exists within the system, whether it is an entryport or exitport, it must have
a local name specified in addition to specifying a type.

The process of binding entryports and exitports together is handled by the configuration specification.
Such a specification can only be performed by sending the appropriate configuration messages. These
messages are sent to a configuration manager which uses them to arrange the components into the
appropriate configuration.

By having a configuration manager establish the configuration of the systemn, CONIC modules avoid
the worry about configuration issues., Each module is independent and free of all configuration
restraints as all references are self-contained.

CONIC provides two approaclies to the transmission of data. These approaches allow data to be
transinitted in a asynchronous or synchronous manuer.

The Notify Transaction approach to data transmission provides support for the asynchronous transfer
of data. Using this approach allows for the uni-directional transfer of data and also provides the
support necessary for the transmission of multi-destination messages. Additionally, the receiver can
block the originator of the message until it is ready to accept and process the data message.

The Request Reply approach provides the ability for the data message to be passed by making
use of a bi-directional synchronous form of comununication. When using this technique for data
transmission the sender of the message is blocked until a reply is received from the target module.
As the possibility exists for the sender to block for an extended period of time, the request reply
approach allows for a fail clausce. This clausc allows the originator to abort the data transmission to
the target if a certain time period expires or if the transaction fails,

3.4.3.2 CONIC’s Configuration Language

The CONIC configuration language is used explicitly to define cach of the configuration tasks for
cach module. Once the tasks have been defined, the language provides the scmantics for the grouping
together of configuration tasks into logical nodes. The nodes can then be used to form a hierarchical
relationship of tasks.




TP T

28

The configuration language makes use of few keywords. Some keywords that are supported include:
use, create, entryport, exitport, reply and link.

3.4.3.3 Dynamic Configuration

CONIC provides its dynamic configuration facilities through the use of a configuration tool. The
tool comprises a collection of precompiled logical nodes which can either be run as UNIX processes or
as standalone programs. The actual form these nodes take is dependent uvpon the run-time support
that is offered by CONIC.

Parameters specified to the configuration manager are used in onc of two ways. The first is to provide
configuration information detailing how many tasks should be created at a particular node. This
provides developers with the ability to distribute the load throughout the systemn. The sccond set
of parameters provided to the configuration manager allows command line arguments to be passed
to the modules. h

3.4.3.4 Runtime Support

In order to provide configurable runtime support the CONIC system allows the user to tailor the
change management system to mcet the specific requircments of the user. By providing runtime
support, CONIC is able to provide the ability to dynamically configure components while the system
is operating. This functionality provides the CONIC environment with the flexibility required for
applications and developers. Developers are able to make changes to the system whenever they
consider it necessary. These changes are made with the assistance of the configuration manager
node type ‘iman’ and the virtual target facility ‘vi’ which assist in the reccafiguration of remote
targets.

Configuration Manager - iman: The configuration manager type iman is responsible for provid-
ing a user interface to the configuration manager within the system. Users can issuc reconfiguration
commands such as manage to redefine parts of the system.

The configuration manager is able to reconfigure the different components by manipulating the
various entryport’s and exitport’s which exist in the system. As the standard communication
protocol used in CONIC provides no guaranteed forn of message delivery, a special form of the
protocol is used to ensure that configuration messages are received by the destined module,

Virtual Target - vf: As CONIC provides support for nodes to be located on other systems in

a distributed environment, it is important that there be some method available to allow for those
nodes to be contacted and manipulated. The virtual target fills this void. It is responsible for acting
as the proxy for objects located remotely. It accepts all the instructions for the node and then
forwards the requests onto the node at the remote location.

i
i
:
;
K

.
i




3.4.3.5 CONIC as a Configuration Management Tool

When CONIC was designed, it was built with the purpose of providing a framnework allowing de-
velopers to build large distributed applications without having to deal with the technical issues
associated with distribution.

In addition to providing a framework for the development of distributed applications, CONIC pro-
vides a rich set of tools allowing components to be built independently from their interfaces. This
separation provides for runtime and dynamic configuration as well as reconfiguration management.

CONIC provides this support through the usc of a configuration manager capable of redirecting
the connections between components. Additionally, the configurationr manager is able to contact
components located on remote systemns and reconfigure their connections througl the usc of the
virtual target mechanism.

Although CONIC docs provide dynamic reconfiguration support and allows for the separation of
the interface from the implementation it still suffers from the problem identified in Magee, Kramer,
and Sloman (1989). This problem rclates to making changes to a running systein which is operating
the CONIC architecture. CONIC provides no services for ensuring that the system remains in a
consistent state when a configuration change is made.

Overall, CONIC does provide a sound basis for other configuration management systems to build
upon. Just like the Programmers Playground, CONIC satisAes a number of configuration man-
agement criterion. The differences between CONIC and the Programmers Playground from a con-
figuration management perspective include the CONIC system not providing any tools to ensurc
consistency of the system or perform any dependency aualysis on the relationships which exist
within the systerm. However CONIC does provide better support for component reconfiguration and
management in both static and dynamic environments as well as providing developers with a number
of routines and interfaces whi.h provide an abstraction from the lower level commands needed to
process the reconfiguration of components.

3.4.4 Equus

As detailed in Kindberg (1991), Equus is a system built specifically for providing the functionality of
dynamic reconfiguration management. Equus is able to provide this through the use of a specialised
kernel.

These modifications provide a system capable of creating and migrating components”, providing
components with the ability to communicate with one another and providing a location service to
detect where components are located. Additionally it provides support for determining what ports

“In Equus, components are referred to as incarnations.

:
s
3

s ie e e et el £ e o e B g

B
|




90

are associated with each component, message routing capabilities, termination of components and
provides a service which detects and notifies components of a particular event.

An underlying assumption made by Equus is that all the components defined within the system
are loosely coupled. Equus also assumes that components are normally connected to onc another
through channels. These channels are used as intermediaries between components and can provide
both uni-cast and multi-cast communication methods.

When configurations take place under Equus, careful consideration takes place to determine whether
the data streams or poris being reconfigured interface with a multi-cast or uni-cast channel. If a data
stream is bound to a uni-cast channel and the end counfiguration does not require the component
anymore then the stream is removed. However, if the stream is bound to a multi-cast channel, then
the new stream/channel is inserted and no changes are made to the old binding.

The configuration management system of Equus provides three methods in which the configuration
of a system can be changed. The first approach is to propagate a port from one compouncent to
another.

The process of propagating a port between components involves the creation or identification of the
component which is to replace the old component and then to propagate the port across. Throughout
all of the configuration activities, the Equus kernel ecnsurcs no data is lost as a result of the data
streams being moved around.

A second option available to software developers for reconfiguring a system under Equus is the
attachment of a new port to an already existing configuration. If used, the approach entails the
system locating the replacement component, ereating a new port on the desired component and
then conneciing it to the system. It is important to note that this approach facilitates the creation
of a port rather than the propagation. The configuration is then assessed to determine whether the
binding is connected to a nulti-cast or uni-cast channel and the appropriate configuration changes
are made.

The third approach offered by Equus for the reconfiguration of components is stream rebinding.
This allows components the ability to change the components they are bound to at runtime. Stream
rebinding involves having the new® component cstablish itself and then reposition the bindings to
reflect the new configuration. Qnce the changes have been made and the new binding is in position,
the old binding is removed from the system.

3.4.4.1 Equus as a Configuration Management Tool

The suitability of Equus as a configuration management tool clearly becomes evident after examining
the architecture of the system and the extra functionality which has been incorporated into it to assist

91n this context, new also refers to an already existing object which has been located.




91

developers. Predominately, this extra functionality focuses on supporting dynamic reconfiguration
and allowing for the migration of components between different nodes.

Even though Equus does provide dynamic reconfiguration support to its components, it does make
a number of assumptions as to the construction of the system. The first assumption made about
the system is concerned with data transmission. Equus assumes that all data being transmitted
between components will occur in one packet and hence not be segmented during transfer. Although
a desirable assumption to have in a prototype, it is clearly not practical in a production system.

Additionally, Equus bases all of its configuration functionality around the assumption that each
component is fully aware of its own consistency information and that the component is able to
calculate the impact on the rest of the system if it were unavailable. As mentioned in Goudarzi
(1999), no individual component can be totally aware of its impact on the system nor can it totally
control its own consistency. This highlights one of the major problems with Equus as there is
no comprehensive configuration manager present which is responsible for coordinating the various
reconfigurations. Having no configuration manager in the system to coordinate reconfigurations
mecns that there are no modules responsible for performing any deadlock analysis. As a result, the
system provides no way of determining whether the configuration changes being performed on the
system will result in the system being deadlocked or entering an inconsistent state.

One final concern is the inability of Equus’s to deal with the concept known as frozen time. This
relers to the time where no execution takes place as a result of a reconfiguration operation. Equus
provides no way of handling such periods nor does it detail what happens to messages and method
calls during this period of time.

Similar to CONIC, Equus shares a number of configuration management similarities. Infact, Equus
satisfies the same criterions as CONIC except Equus restricts its type-checking support to the ports
used in inter-component communications. The Equus system also provides a limited set of commands
to configure the ports on components. These configuration routines are geared more towards the
reconfiguration of the ports themselves rather tlian components.

345 REGIS

REGIS (Magee, Dulay, and Kramer 1984) was built to further enhance configuration support, es-
pecially the dynamic reconfiguration aspects that were developed in REX (Magee, Kramer, and
Sloman 1990) and the CONIC system which both introduced the separation of the configuration
aspects of a component from its compuiation responsibilities.

REGIS extends this work by further developing the notion of separating the confipuration aspects
from the computation components while at the same time providing support for dynamic program
structures. To provide this support the REGIS system includes methods for allowing both lazy and
direct component instantiations.




02

Computation components written to work with REGIS are developed and exccuted under the C++
object model. REGIS uses the DARWIN configuration definition language as the means for express-
ing the configuration of a component.

As with CONIC, programs normally exist as a collection of components which are integrated with
onc another and execute in parallel to achieve the overall goal. Such an arrangement of components
requires a tool which can automate the task of performing consistency checks across the entire
systetn.

CONIC, REX and REGIS share many similarities when it comes to dealing with the fundamentals
of components. The difference becomes apparent when the general support that REGIS provides
for objects and the support given {0 provide dynamic configurations is considered.

A design objective for the REGIS system along with other component based systems is component
reuse. To this end, the REGIS architecture was developed to provide support for user defined and
third party components alike and to integrate them into the one architecture. This integration allows
developers to save on labour costs associated with the components development and testing time.
To allow for this integration componcnts are said to be contezt independent. This independence
allows for components to be used in contexts other than the one they were originally designed for.
This further reinforces the notion that a component should be independently deplojable as stated
by Szyperski (1997).

In addition to component re-use, REGIS has been structured to allow developers to reuse the
structural aspects or program skeletons for future developments. This is achieved with the DARWIN
configuration language as it allows for paramecterised types to be specified ii. templates. These
templates allow developers to build generic components {eg. linked lists, binary trees) which can
then be used in other components to build upon their structure,

The second design objective of REGIS is to provide support for dynamic configurations and is
provided within REGIS through the introduction of two new concepts. These include the lazy
instantiations of objects and support for directly instantiating dynamic components.

Lazy instantiations provide a means for a component to be defined within a configuration specifica-
tion at design time but not to be dircctly instantiated when the system runs. The ‘lazy’ component
only becomes active when a message is sent to it. The concept of lazy instantiations is normally cou-
pled with recursion which provides a mechanism to allow systems to grow when needed. Components
which are dynamically instantiated are indistinguishable from those that were created statically.

Dynamic instantiation allows components to dircctly instantiate other components (composite or
computational) dynamically at runtime. This provides an alternative from lazy instantiations when
there is a requirement to specify parameters to the new component to aid in its construction or when
a recursion approach is not applicable to the problem domain. The concept of dynamic instantiation
also allows components to only be instantiated when required.




3.4.5.1 REGIS as a Configuration Management Tool

The REGIS system provides further advances to those earlier systems such as REX and CONIC with
regard to configuration management. REGIS provides these advances through the extra function-
ality provided in the area of dynamic configuration management. This functionality is achieved by
allowing components to create new components when required {lazy instantiations} or by allowing
components already operating within the system to directly instantiate others.

In addition to the advances made in dynamic configuration management, REGIS also provides devel-
opers with an ability to separate the configuration specifications from the computation requirements
of a component, This has been achieved through an improved version of the DARWIN language.
The improved functionality allows developers to build generic components capable of taking other
components as inputs and to build templates.

To provide the functionality of REGIS, a number of daemons work together in order to supervise the
entire system. Daemons provide naming services and the ability to remotely coordinate components
located on other systems.

However REGIS lacks an appropriate sub-system which combines the task of keeping the system con-
sistent with deadlock analysis. Having no deadlock analysis means that components can potentially
get themselves into an awkward state and jeopardise the consistency of the eutire system. Addi-
tionally, there is the need for some extra work to be performed in order to provide the components
within the system with some level of persistence.

As with most configuration management systems examined, REGIS’s type checking supports both
inter-component communications and ensures the type-safely of variables used within a component.
REGIS also provides a number of routines which aid developers in the management of components
and provides the flexibility of reconfiguring components in Loth static and dynamic systems. All
of these routines provide a level of abstraction to developers who are unaware of the underlying
procedures taking place to achieve the requested action.

3.4.6 CHORUS

CHORUS detailed in Rozier et al. (1992), is a distributed operating system which has been under
development since 1980. Since its inception, there have been a number of significant changes per-
formed on the underlying structure of the system but its original aims have not changed over the
last four versions.

The design concepts embodied within CHORUS include the provision of an architecture which sup-
ports components communicating with one another through a structured set of messages. CHORUS
is also able to provide real-time services to servers. To achieve this level of real-time support a




94

special module is provided within its core dedicated to providing real-time systems with the support
required.

CHORUS makes use of a modular approach to facilitate the development and continued running
of components and servers. This approach allows deiwelpoers to add, replace, modify or remove
components without causing massive disruptions to the sremainder of the system while at the same
time providing a clear distinction between the actors® (computational component) and the ports
which form part of the communication mechanism used.

The principal design aims behind CHORUS includes support for those systems reqguiring a number
of different applications to be running over a diverse covironment. This diverse environment could
range from different types of machines or architectures through to 2xccuting various applications
writien in any language.

CHGORUS also aims to provide developers with a degree of synergy by making components appear
as if they are located together in the one spot when in reality they are geographically spread over a
large number of resources. :

3.4.6.1 CHORUS Architecture

The CHORUS architecture has been designed to provide varying levels of abstraction to the under-
lying hardware as well as providing a modular approach. The underlying architecture of CHORUS
is made up of a number of levels. These levels include the CHORUS Nucleus, the middleware or
sub-system layer and the application layer.

CHORUS Nucleus: In CHORUS, the nucleus forms the centre of all activities and is responsible
for the managing and coordinating the lowest level of resources available on the local machine. To
increase modularity and flexibility, the nucleus is broken up into four sub-sections.

The first sub-component located within the nucleus is the supervisor. This module is responsible for
dealing with the hardware of the system and the various types of hardware cxceptions and software
traps which are generated.

The next sub-component within the nucleus is responsible for providing reual-timne ezecutive services.
These services are primarily concerned withi the allocation of tasks to the available processors, Ad-
ditionally, the real-time executive is responsible for applying scheduling algorithms to the priorities
of tasks waiting for a processor.,

As CHORUS deals with components scattered throughout the system, it is critical that the nucleus
provides a memory manager. The memory manager is responsible for managing both the allocation
of local and virtual memory within the system.

9An actor refers to a component.

y
a




95

An important part of the CHORUS system is the processing of messages between components.
To achieve this the nucleus provides a sub-component responsible for coordinating all inter-process
communications. The role of the communications manager is to provide the infrastructure required
by CHORUS 10 send messages to any component within the system. Through it, both synchronous
and asynchronous messages can be sent using the RPC or various IPC communication systems.

CHORUS SubSystems: CHORUS subsystems are a collection of resources working together
to provide a means for application programs to access the lower levels of the nucleus through a
middle layer. In order to provide this middleware functionality the subsystem provides a number of
interfaces to both the application program and nucleus.

Individual Application Programs: Application programs within CHORUS are layered at the
top of the CHORUS cell. This allows them to take advantage of the completec CHORUS architecture
if they require it and at the same time allowing them to operate normally. It is important t¢ note
that although CHORUS provides hooks to the nuclcus through the middleware layer it does not
force programs to make use of the hooks.

3.4.6.2 CHORUS Nucleus Abstraction

Actors: Within the CHORUS nucleus there are many components conununicating with one another.
These components are known as ‘actors’ and consist of many resources. Each actor contains two
scparate address spaces. One address space is known as the ‘user arca’ and is wherc application
programs execute while the other address space known as the ‘system area’ is rescrved for privileged
nucleus opcrations.

There are three types of actors loaded within the CHORUS nucleus. These actor types include:
user, systemm and supervisor. Each actor type has a varying degree of trust which dictates what
operations can be undertaken and whether they can be performed.

A ‘user’ actor is considered to be unprivileged and untrusted when it comes to performing operations
within the nucleus. A ‘system’ actor is considered to be unprivileged to perform nucleus operations
but is able to execute non-privileged commands. The ‘supervisor’ actor is the only actor able to
perform privileged operations on the nucleus.

Threads: Each actor is responsible for performing an action on behalf of the nucleus. In some cases
there is a need f{or one or more routines within an actor to work concurrently. To facilitate this,
CHORUS uscs an underlying IPC mechanism to provide multi-threading support as well as allowing
actors to synchronise themselves with one another. Although threads can communicate with other
threads in actors, they arc unable to migrate from onc actor to another.

Ports: Ports form the fundamental basis for messages!® to be passed betweer actors as well as
serving to decouple the interface of a component from its computational elements.

104 message is a data structure of finite length carrying binary data. A message has a origin and a destination.




96

Ports defined by CHORUS act as portals to the inner-realms of the actors. These ports are responsi-
ble for receiving messages from remote actors and ensuring that the threads located within the local
actor pick up the messages. Ports arc also used to provide dispatch scrvices for messages beading
towards other actors.

Figure 3.4 illustrates how the CHORUS architecture is divided into a number of layers including the
application layer, middieware and nucleus. The architecture demonstrates, that the lower the layer,
the lower the level of operations being performed. The figure also illustrates how the nucleus is sub-
divided into three sections responsible for real-time services, memory management and supervision.
The relationship between the actors and the lower sub-systems is also highlighted.

Application
I Midgleware

&

Actor h Pommuaication Manager

Hooks / Interfaces

Memory Manager

Figure 3.4: CHORUS Architecture

Reconfiguration in CHORUS

Allowing the usc of ports to decouple components from their interface gives rise to the concept of
dynamic reconfiguration. By using ports as an extra level of indircetion it is possible to provide
additional functionality such as the migration of ports between actors.

CHORUS provides two approaches to dynamic reconfiguration management. The first is performed
through the migration of ports from one actor to another. This approach is normally used when a
new server needs to be introduced into the system to provide additional functionality.

Port migration refers to the process of repositioning a port [rom one actor to another. This process
results in the port located at the old actor being removed while the new actor gains an additional
port. Once the port is in position, inessages which had not already been processed by the old
configuration, will be processed at the new configuration without any cousitderable interruption.




{
:
i
S‘.
:

*
PR

"y
I

P

‘E;......‘A..__ .o

TR, ot 2 ST s

97

A disadvantage to the port migration approach is that it requires participation of the scrver to
coordinate the migration process.

An alternative approach to dynamic reconfiguration management is through the establishment and
maunipulation of a port group. Port groups are the grouping together of ports spanning many actors
and potcntially scattered across many sites. They allow for various messages to be distributed
amongst the group and to the various threads contained within cach of the actors.

The grouping of ports provides the framework necessary for passive reconfigurations. This form
of reconfiguration allows the server to be free from all of the lower level details involved in the
reconfiguration process.

The underlying featurc of port groups makes dynamic reconfiguration possible and works upon the
basis that messages are rerouted or forwarded when one port within the group is unable to reccive
the message and act upon it.

Adopting this approach allows dynamic reconfiguration to be achieved, through the establishment
of another actor in the port group with the corresponding poris. Once established, the old actor is
removed from the port group and the new actor takes over the role of processing incssages.

All reconfiguration and communication actions are supervised through the use of a protection iden-
tifier (a unique identifier which must be known to make changes to the system) and a network
manager responsible for making sure messages moving from one actor to another make use of au-
thorised pathways.

3.4.6.3 CHORUS as a Configuration Management Tool

CHORUS was originally designed to provide a comprehensive framework for the development of
large distributed systems while at the same time allowing these systems to exccute within a UNIX
environment. Additionally, CHORUS was designed to provide support for developers through the
implementation of a modular framework.

In more recent additions of CHORUS the concepts of dynamic reconfiguration have been explored.
These goals have been achieved either through the use of port migration or through the management
of port groups.

Unfortunately the approach to dynamic reconfiguration management introduced in the CHORUS
system brings a number of problems. One problem is that the CHORUS system scems to ignore
the internal state of the scrver while a reconfiguration action takes place. There appears to be no
consideration or forward planning performed, such as preserving internal data members of an actor
or a port, or getting a subsequent actor within the system to synchronise the state between the old
and new configurations.




s AR AL

vy

T e T 2 P 1T et

98

There also appears to be little analysis performed to determine what the ramifications are of a
message being sent to an actor while the systemn is in the process of performiug a reconfiguration.
CHORUS scems to ignore the concept that one message sent to an actor may result in other oper-
ations starting up within that actor or elsewhere in the system causing inconsistencies which may
complicate the reconfiguration process.

Overall, CHORUS provides a suitable framework for the development of dynamic and large systems
but provides very simplistic dynamic reconfiguration tools. There is a considerable lack of support
in the arcas of dependency and concurrent analysis which could potentially cause a CHORUS actor
to deadlock or enter an inconsistent state.

Unlike the other syastems examined, CHORUS addresses the issue of configuration management by
providing a complete operating system which has been specially designed to provide an architecture
allowing components to communicate with one another. This operating system has been refined to
allow components to interact within a real-time environment. Although CHORUS is primarily an
operating system, it can still be measured against the criteria established in section 3.1.

CHORUS, like other systems provides a limited type checking systemn which is primarily geared
towards checking the various types of ports used within the system. These type-cliecks ensure
that compatible and appropriate types are being used to inter-connect components but requires
the aid of a developer’s compiler to enforce type-checking within the components, Additionally,
CHORUS provides services which allow developers to manage the inter-connections between various
components while at the same time providing abstract facilitics to manage and manipulate the
components within the system in both a static and dynamic nature,

3.4.7 Finite State Machines

In Lim (1993) an alternative approach to dynamic reconfiguration management is presented. This
approach makes use of finite state machines coordinating the reconfiguration of basic machines!?
rather than using the traditional transaction based reconfiguration approach.

Throughout his work, Lim identifies a number of problems associated with transaction based con-
figuration management systems. Some problems include the way in which transaction based recon-
figurations provide constraints on the way in which processes can be synchronised.

Additionally, there are time constraints placed on transaction based systems which require all eflected
nodes to become quiescent. Such an action may take a considerable amount of time and hence delay
the rcconfiguration of the system. As a consequence, Lim derives from this problem that it should
not be necessary to have all the components in a quiescent state before reconfiguration commences.
Reconfiguration should start to commence as soon as possible.

1A basic machine is a term used to describe a compruent within the system that can be reconfigured.

BT Lt e g B R o e

e




iloiioc. o

>
(=]

In order for a finite state machine to work it must firet have the system expressed in a notation that
the state machine can process. This encourages developers to be very particular about the layout
and design of the system so as to simplify the state machine while at the samnc¢ time maintaining
functionality.

3.4.7.1 Process of Reconfiguration

Once specified, a cousiderable amount of processing is conducted to determine the required recovery
paths that are available as well as ¢ Iculating the possible deadlock situations which may result in
the execution of & recovery path. Whiie determining these paths, the state machine considers other
conditions which have been specified such as invariants and resource constraints,

The process of reconfiguring a basic machine using the state machine approach involves many steps.
To proceed with a reconfiguration, the basic machine must first be operating in a manner which is
consistent with its current specifications. Once a reconfiguration of the system is requested, a set
path is followed to allow the basic machine to move from one configuration state to another.

As the basic machine is reconfigured, it heads towards a transient configuration. While performing
the reconfiguration the statc machine applies transient conditions'? while at the same time slowly
removing conditions relevant to the old configuration. It is during this time that the state ma-
chine determines whether other basic machines located within the system require reconfiguration or
whether a need exists to execute any recovery actions to stabilise the system.

During the process of reconfiguration, a basic machine enters a region known as the transicnt con-
figuration point. By this stage, the basic machine hias had & number of changes made to it. From
a configuration perspective the basic machine at this point partially rescinbles a combination of the
old and new configurations. Once at this point a number of transient considerations are applied to
the entire system to ensure jts consistency.

With the transient conditions having been analysed and the system declared to be consistent the
remainder of the reconfiguration can proceed. As the basic machine moves along the reconfiguration
path it becomes subject to the conditions which the state machine has identified as being necessary tc
support the new configuration. It is also during this timne that other recovery routines are performed
s0 as to allow the system to remain in a consistent state.

Eventually, over a finite period of time the process of reconfiguring the basic machine is completed
and the finite state machine reverts back to maintaining the consistency of the system by exccuting
recovery procedurcs.

12Transient conditions are a combination of conditions which reflect both the initial and final configuration.

T T T

e giteml




100

3.4.7.2 Reconfiguration Possibilities

Lim’s model provides support for three types of reconfiguration operations o be performed to a
system. These operations inciude:

e Replacement of a Basic Machine
» Relocation of a Basic Machinc

e Restructing of a Basic Machine

Replacement of a Basic Machine: The replacement of a basic machine allows developers to add
extra functionality to the system or to correct crroncous cude which may exist. This aids in the
evolution of the system.

When replacing a basic machine it is important to note that there are a number of conditions that
must be met in order to provide a scamless reconfiguration. To ensure this migration, the new
basic machine to be installed must support the same behaviour as the old. This is similar to the
COM/DCOM architecture (Brown and Kindel 1996) where once an interface is published it remains
fixed. Additionally, when a new basic machine is placed into the systemn it must provide a mechanism
to start at a similar position as that of the replaced machine.

As part of the construction and replacemnent process of a new basic machine, a state map must also
be constructed. This map allows the state machine to map across the different states from the old
basic machiize to the new.

The overall replacement of a basic machine is performed in four steps.

1. Instruct the old basic machine to specify and store its current state

2. Instigate a reconfiguration transition responsible for issuing the destruction of the old basic
machine

J. Instantiate the new basic machine into the system where it awaits a state transfer and the
order to start exccuting

4. Instantiate a reconfiguration transition which sends the state of the previous machine to the
new machine and instructs it to commence its execution

Relocation of a Basic Machine: The steps undertaken when relocating a basic machine are
very sumilar to those performed during a replacement process except that with relocations extra
attention must be paid to the transfer of state data from oue location to anothier. To start the
relocation process, the finite staic machine must first determine the new location of the replacement
basic machine and then delermine whether the state data held within the basic machine to be
relocated neceds to be preserved or transferred to the new location.

- Lt s sds v el e Tl s e i oo g S g i bt g i i e e S




101

If a basic machine is to be relocated from one processor to another (be it on the same machine or
a different one) then consideration needs to be given to the movement of state information across
processor boundaries. Depending on the location a transformation process may be required to
marshall the data and transmit it to the destination. This process docs not need to be considered
when replacing a basic machine.

One advantage, with the relocation of a basic machine is that there is no change of state which
means that the reconfiguration can be performed at any time.

The only event which requires carcful examination is when a relocation is required as a result of a
processor failure. In such circumstance, the basic machine and its related state must be transferred.
Additionally in such situations there might be a nced for recovery conditions to be applied to help
retain and possibiy regain the consistency of the system.

Restructuring the Application: The process of restructuving an application involves the addition
and removal of basic machines. As a consequence of such a restructure there is no need to preserve
the state of any old basic machines which are no longer nceded. New basic machines which are to
be added to the systemn commence operations from their initial starting point and hence require no
state information to be transferred to them.

The only operations which might need to be performed to the overall system while restructuring is
taking place are those required for recovery. These routines are used to ensure the system remains
consistent while other basic machines are removed.

3.4.7.3 Finite State Machines as a Configuration Management Tool

In order to address problems which have been experienced by traditional transaction based config-
uration management systems, the concept of finitc state machines has been applied.

By making use of finite statc machines it is possible for the overall system to provide support for
recovery management through the use of recovery paths, comprehensive deadlock analysis (from
the examination of the various states in the system) and dynamic reconfiguration management.
This functionality is provided through the examination of the various states and the calculation of
configuration changes required to move from onc state to another.

Finite state machines are capable of providing software developers with the extra flexibility required
to commence system reconfigurations without the need for the entire systemn to enter a quiescent
state.

A problem that Lim’'s finite state model did not address was the behaviour exhibited by the model
when method calls or transactions are sent to basic machines that are not available. Although the
finite state model does include a comprehensive consistency manager, it is still unable to detect
the sporadic nature of method calls being sent amongst basic machines. It is the handling of these




102

method calls that the model fails to address. From the formal definition provided in Lim (1993)
it is impossible to know if method calls sent to these basic machines return with an appropriate
error condition or whether they are blocked until the basic machine returns to service. This lack of
information impacts on software developers and end-users operating within real-time environments
where the success or failure of a method call needs to be known straight away.

It should be noted that the finite state machine approach to reconfiguration provides a comprehensive
solution to identifying possible reconfiguration paths that can be taken to safely reconfigure a system
when compared to others. After applying the configuration management criteria to the finite state
machine model it is possible to sce that its strength lies in its dependency analysis. Additicnally,
the model provides developers with the functionality of being able to manage components and their
inter-connections.

3.5 Runtime Component Configuration & Consistency

Throughout this section those configuration management systems which provide soltware developers
with a great deal of configuration flexibility are examined. Each of the systemns detailed provide the
ability to change the way in which components are operating as well as allowing the manipulation of
inter-component relationships while the system is still exccuting. These configuration management
systems do not require the complete system to come to a halt.

3.5.1 SOFA/DCUP: Dynamic Architectures and Component Trading

The SOFA/DCUP architecture described in Plasil, Balek, and Janccek (1998) aims to provide an
architecture which allows for the creation of dynamic architectures and provides for dynamically
updating components within the systenr. Its design has been motivated by the need to provide
support for future software applications which will comprise a number of reusable componenis.

SOFA/DCUP aims to provide a framework necessary for the custornisation of components to specific
requirements as well as providing the appropriate infrastructure for allowing components to be
interconnected to one another,

To provide such a framework the SOFA/DCUP architecture relies on a considerable amount of
research performed in literature such as Magee, Kramer, and Sloman (1989) and Magee, Dulay, and
Kramer (1994) which details the area of interconnecting software cotnponents to form functional
groups as well as investigating the design of interfaces representing components. It is this interface
that provides an abstracted viewpoint of the component and aids in the dynamic reconfiguration of
systems,

"The process of interface design has primarily been concenirated on the construction of configuration
definition languages. These languages are designed to allow the interface of a component to be

et e b et b L R T e e e D e b s ety e

ek

gt e g,




103

defined in the terms of Liow it interacts with others. Early configuration languages were known as
Module Interconnection Languages (MIL’s) but have now matured into more sophisticated languages
such as those used by the CORBA and DCOM architectures (Exton, Watkins, and Thompson 1997)
and the configuration language DARWIN (Dulay 1992) used in the REGIS system.

With most configuration management systems the concept of dynamic reconfiguration is imple-
mented through the disconnection of the component from the system. Unfortunately this introduces
two significant problems. These are dealing with a new component which does not provide backward
support for the old interface and having to deal with daugling object references scattered throughout
the system pointing to the old component after it has been removed.

The SOFA and DCUP architectures address the problem of dangling references by introducing an
architecture which does not directly remove the components from the system but performs an in-line
update to an already cxisting component. '

3.5.1.1 SOFA Architecture Overview

The SOFA architecture is primarily respansible for the construction of components. It is when all
of these components are grouped together and interconnected that an application is created. Each
component using SOFA has its intcerface specified in a specialised component definition language.

The language allows software developers to specify the interconnections between the different com-
poncnts in the system and the various interfaces. These interfaces describe the services that the
component requires or provides. If a component requires a service then the direction of data flow
will be into the component while a component providing a service will have an opposite data flow,

When these components have been created they operate within an environment known as ‘SOFAnet’
which is part of the SOFA/DCUP architccture, A SOFAnct environment can be represented by a
Dirccted Acylic Graph (DAG) containing a list of how cach SOFAnode is interconuccted with cach
other.

SOFAnet also provides a self contained environment for components while providing a series of
interfaces which the SOFAnet environment can use to comuunicate with the various SOFAnodes.
In addition to providing interfaces, the SOFAnct environment provides a meta-component known as
the template repository. This repository has becn specifically designed to act as a template reference
to all other nodes within the network. As new templates arc added to the systemn they are registered
with the repository so as to allow other SOFAnodes to use them.

Associated with each SOFAnct is the RUN envircnment. This provides developers with the flexibility
to provide extra parameters to the execution environment. These parameters can be used to control
the launching of applications or aid in the construction or creation of templates at runtime.

R E——




104

3.5.1.2 DCUP Architecture

The DCUP architecture is responsible for providing the dynamic reconfiguration extensions to the
SOFA architecture. Additionally, DCUP addresses the problem of maintaining object references in
a system which is dynamically changing its components.

DCUP addresses this problem by dividing a component into two parts. One part remains statically
attached to the system and is responsible for handling the configuration issues while the other part
is dynamic and is responsible for integrating the changing implementations'?® of a component into
the system. Having part of a component attached to the system permanently cnsures that the
configuration manager will have a constant object reference for the entire lifetimne of the component
and will allow clients to always be able to reach it at its published object reference.

Within cach DCUP component there are two interfaces. The first is known as the control interface
and is responsible for coordinating a consistent approach io the management of all DCUP com-
ponents. The second interface is known as the functional interface and is responsible for linking
together the components interface to that described in the SOFA architecture.

In addition to providing two interfaces, the DCUP architecture introduces two new implementation
objects to each component. These objects are known as the Component Manager (CManager) and
the Component Builder (CBuilder).

The CManager object is responsible for the core component of the permancnt scction. As the
CManager resides in the permanent section, it is unaffected by any rcconfiguration changes. The
principle role of the object is to coordinate the updates to the inner component,

The CBuilder object is located within the dynamic part of the component and is respousible for
overseeing the integration and removal of various component implementations from the system. The
lifetime of the object is governed by how long the particular implementation of the component is in
use.

In addition to the construction and destruction of a component, the CBuilder object is responsible
for providing serialisation operations. This becomes necessary when the component needs to preserve
or change its state.

The DCUP architecture also provides an Updater component which monitors all requests for updates
throughout the system. When an update is requested, the Updater component examines the update
request and transmits the request to the corresponding CManager.

13An implementation of a component may ¢hange a number of times throughout the lifetime of the system.

i
::_'
k-
¥

1




105

Figure 3.5 illustrates both the CManager and CBuilder components which are responsible for coor-
dinating reconfiguration activities within a SOFA/DCUP component.

CBuldex

Figure 3.5: Overview of the SOFA/DCUP Architecture

3.5.1.3 Interconnecting DCUP Components

Components in the SOFA/DCUP architecture use a similar approach to that used in REGIS (Magee,
Dulay, and Kramer 1994) where components exist within an environment with specific bindings
established between them. SOFA/DCUP components also have structured interfaces similar to
the DARWIN configuration definition language allowing developers to express whether an interface
provides or requires a service.

For components to be able to provide services to the rest of the system, the component providing
the service must explicitly export the service. Once exported, components requiring the service can
execute the API call bindtoService(...) to have a reference pointer returned to them,

The process of obtaining services is slightly more complex. In DCUP/SOFA it is the outer most
layer which is responsible for providing the references to the required service. As a result, the inner
component provides its requirements through the API call getRequirements(...}. It then becomes
the CManager’s responsibility to obtain the appropriate references. Once the references have been

obtained by the outer layer they are sent to the inuner layer through the provideRequirements(...)
API call.

3.5.1.4 Updating a SOFA/DCUP Component

Updating a component under SOFA/DCUP is addressed through the underlying infrastructure de-
fined in section 3.5.1.1. This cnables developers to verform an update ont a component by using a
method call within the CBuilder object.

The overall process of updating a component involves sending the method call onLeaving(...) to
the old component and then capturing the iuternal state of the component. Once the state has
been captured, the new version of the component is created and the onArrival(...) method call
is sent to the component along with the state data. This operational scquence is performed by the
CManagex through an updateComponent (...) subroutine.




106

Figure 3.6 illustrates the process that a SOFA/DCUP component performs when a component is
being upgraded. Specifically, the figure highlights how the onLeaving(...) and onArrival(...)
functions are sequenced within the updateComponent(...) method call.

CAlanager CManager

+

1. onLeaviag (... ) method ¢all sent to implem entation
2. Component whick is lesving sendx current state and envircament

J. enfArmival (.. Jinitialises /sends state data to newcom ponent
Figure 3.6: Overview of upgrading a SOFA/DCUP Componcnt

3.5.1.5 SOFA/DCUP as a Configuration Management Tool

The SOFA/DCUP architecture was designed to provide developers with an environment in which
components could be dynamically updated without a necd to shut the system down. Additionally, the
systein cncourages the development of applications through the use of inter-connectable components
providing the basis for components to be interchanged at runtime.

The process of dynamic reconfiguration is made available through a componént definition language
which separates the computational components fromn the interface definitions. In addition to this
language, cach component is represented on two levels. One level provides the outer-component
functionality to the system and is responsible for managing the component for its entire life-time
within the system. The sccond is the inner-layer providing the functionality of the component and
is dynamic in nature as it can be replaced at any time.

However SOFA/DCUP lacks the appropriate components required to provide consisteucy checks and
comprehensive deadlock analysis. The CManager and Updater components provide only limiled sup-
port for the actual updating of components and deal more with the issue of notifying the compounent
of the change rather than calculating the ramifications of the update.




e e e L

107

The overall problem with the approach taken by SOFA/DCUP is that individual components scem
to have the power to update themselves without much consideration being given to the consistency
of the systemn. Although this approach does provide a solution to the dynamic reconfiguration
problem, Goudarzi (1999) states that no individual component is ever in a position {o determine
when it is in a safe state to update or replace a component. This action is norinally coordinated from
a configuration manager responsible for performing the dependency and consistency checks for the
entire system and required to guaranice the safety of the system. The problem with the CManager
in this architecture is its close rclationship to the implementation and hence can not possibly be in
the correct state to control configurations.

From a configuration management perspective the 8QFA /DCUP system provides developers with a
system which is component aware (refer to section 3.1) and allows them to control the reconfiguration
of components within the system.

3.5.2 DynamicTAO

The DynamicTAQ system, described in Romdan, Kon, and Campbell (1999), states that over the
last decade there has been a growing importance on the use of middleware to aid the development
of large systems. The DynamicTAO system has been designed to provide more flexibility to those
developers who rely on the use of middleware and required ability to dynamically reconfigure that
middleware while the system is operating. The DynamicTAQ architecture extends the TAO ORB
discussed in Schmidt, Levine, and Cleelan (1999).

Applications which make use of middleware iafrastructures suffer from having a static middlewnre
layer. Although applications themselves have been designed to take into consideration the ever
changing computing environment, middleware responsible for the coordination of thesc applications
does not. This means that as the environment changes, the applications iinplemented below the
layers of middleware arc unable to realise their full potential. This can lead to the inefficient use
of resources as these applications designed to take advantage of changing conditions may have to
continuc using legacy functions as the middleware is unable to support anything clse.

To overcome this, DynamicTAO allows developers to reconfigure the internal middleware while the
system is running. In achieving this DynamicTAQ makes use of reflective techniques to provide
dynamic reconfiguration suppeort. In addition to making use of reflective techniques, DynamicTAO
allows developers to pick appropriate strategics for their applications.

3.5.2.1 L, 1icTAO Architecture

As mentioned, DynamicTAQ provides reconfiguration services through a process kuown as reflection.
This process is achieved through a collection of entitics known as component configurators. Each




108

component configurator is responsible for containing the dependency information between the cur-
rent component and the remainder of the system. These component configurators play an important
role when the consistency of the system is being analysed.

Each process that runs a DynamicTAO component. has a DomainConfigurateor that is responsible for
maintaining all of the references to those instances known to the ORB and its servants. Additionaily,
each component instance of DynamnicTAO contains a TAOConfigurator.

These configurator modules are responsible for providing hooks or entry points into the running
system allowing developers to determine what sirategies are currently in use as well as allowing
them to be modified. Each strategy comes in the form of a dynamic library which can be linked into
the system while still running,

To provide the ability of this extra support for dynamic reconfiguration, three new major components
were added to the original TAO architecture. These components include:

o Network Broker: Responsible for receiving roconfiguration requests from the network and
forwarding requests onto the appropriate components.

s Persistent Repository: Responsible for storing all of the category information on different
implementations available to the DynamicTAO system and providing methods for developers
to be able to manipulate these implementations. Operations that are supported include the
creation, modification and deletion of implementations.

e Dynamic Service Configurator: Contained within this component is the DomainConfigurator
which in itself is responsible for providing operations to allow the reconfiguration of the gystem
at runtime, Additionally, the DomainConfigurator delegates some of its responsibilities for
specific components back to the component configurators.

The structuring of this architecture allows for separate components to be inscrted into the system
and for diflerent network brokers and persistent repositories to be developed and used with the
dynamic configurator service.

3.5.2.2 Dynamic Reconfiguration

As alrcady referred to, the underlying operations for dynamic reconfiguration are provided through
the dynamic service configurator. There are two ways in which developers can issue instructions to
reconfigure the system. One is through a well defined CORBA compliant interface which specifics
all of the opcrations that can be performed by the dynamic service configurator.

The other approach is to make use of a network broker. This service is provided so developers can
make dynamic connections to the system and architect changes. Additionally, some reconfiguration




109

operations which are available to developers are too hard to express in terms of a CORBA IDL and
so are only provided and implemented via the network broker.

Some of the operations available from the dynamic service configurator include:

® load_implementation
e hook_implementation
» upload_implementation

e delete_implementation

In addition, there are a number of other operations which are responsible for providing feedback
information on the systems performance as well as management routines that allow strategies to be
suspended and resumed.

3.5.2.3 ORB Consistency

As discussed in the last two scctions, it can be seen that where there is a need for dynamic recon-
figuration therc is also a need for infrastructure to be available to support the consistency of the
system, The DynamicTAO system is no different.

The DynamicTAO system approaches the issue of consistency though minimisation. At the center
of the system is a small core which is responsible for maintaining only the most critical functions of
the system. By adopting this approach the core allows itself to remain relatively free from all of the
configuration work which is done.

The process of change, cspecially dynamic change, requires a considerable amount of fore-thought
and planning in areas such as keeping the overall system consistent and deadlock analysis. Before
any change is implemented in the DynamicTAO system a series of dependency checks are performed
across the entire system to determine whether any new dynamic libraries that may be introduced
into the system will conflict with any others that are already loaded.

Additionally, in a system such as DynamicTAO which deals with other ORB'’s, dependency chocks
need to be performed to make sure that cha:.zas performed to one ORB will not effect communica-
tions with other ORB’s. In the event that such reconfigurations do have wider ramifications, other
alternative actions may be considered including the deferment of the reconfiguration or coordinating
an upgrade of the affected components on the other ORB at the same time.

After performing the appropriate analysis, the correct state of a new strategy must be determined.
In some cases the initial state of a new strategy often depends on the final state of the previous
strategy. Planning is essential to ensure that the consistency of the system is maintained between
reconfigurations.




110

Once the correct state has been determined, the underlying architecture of DynamicTAO provides
what, is necessary for the state to be preserved or transferred to anothier strategy. To ensure that the
mos: up-to-date strategy is used, cach strategy is given a unique version numbcer. This versioning
approach allows DynamicTAQ to select the most recent strategy availsble even if there are two or
more strategics working concurrently in the same section of the ORB.

3.5.2.4 Automatic Reconfiguration

As addressed earlier, most applications are developed to take advantage of the changing conditions,
but typically middleware lags belind due to its firin foundations. With the reflective nature of
DynamicTAQO the central middleware itsclf is now able to adapt to the changing circumstances as
well. This leads to systems which can self-heal and adapt to take advantage of the environment.

Romén, Kon, and Campbell (1999) identified three key arcas which have benefited greatly from the
introduction of automatic reconfiguration.

Optimisation: Through the use of automatic reconfigu. .tion, the components running within a
system can be significantly optimised. This is achieved by analysing the environment in which the
system is running and applying the knowledge gained through a set of hieuristics to the configuration.
Once implemented, the system can maximise the use of its cuvironment,

Customisation: Customisation provides for a system to be changed to meet the ever changing
needs of business. Permiiting change, the systein can allow for the incorporation of new lLusiness
practices without the nced to shutdown the cntire system and bringing the business to a halt.

Error Recovery: Due to the system continuously monitoring itself, it is capable of determining
crroncous components. Once detected, the systom can identify and carry out the necessary steps
10 repair the aflected components dynamically. Adopting this approach reduces the amount of
downtime that the system would otherwise expericnce during its lifetime.

3.5.2,5 DynamicTAO as a Configuration Management Tool

The DynamicTAO system presents a new approach to the concept of dynamic reconfiguration man-
agement of middleware. The architecture has been specifically designed as a wrapper allowing
developers to control the internats of the TAQ ORB’s middleware.

It provides developers with the fexibility to customise the middleware, or in some cases have the
middlewarc reconfigure itself, upon detection of a set of changing circumstances.

In addition to providing the underlying architecture for dynamic reconfiguration managemeat, at-
tention has been given within the confines of the system to check the consistency of the system when
a new compounent is being planned or introduced.



111

However despite its advances with dynamic reconfiguration management, the system provides no
support for deadlock analysis and appears to lack detail with regard to supporting method calls
which have been made on components currently being reconfigured. From the overall architecture
of the system, DynamicTAO pi.- .z a considerable amount of functionality expected within a
configuration management system. This functionality however is geared wore towards the internal
management of the middleware. The architecture nonetheless «dees provide a form of dynamic
reconfiguration even if it is only the ability to reconfigure the middleware which governs the operation
of the system. The manipulation of middleware allows developers to reconfigure the manner in which
memory is allocated, the way that tasks are queued and new functional components introduced to
handle the internal operational details of the system.

Apart from handling the system internals, the architecture provides partial support via the use
of version numbers to identify components used within the middlewsre, The system also supports
component awareness through its ability to activate automnatic reconfigurations in order to fieel com-
ponents which may have been damaged. DynamicTAO also provides developers with an abstracted
environment allowing access to the underlying low level details of the system such as the threading
or memory management model being used.

3.5.3 Preserving Consistency with REGIS

It can be seen from the systems already detailed that a considerable amount of effort has been placed
on the construction of systems which allow components to be dynamically reconfigured. However
in each system described it is possible to identify that each has its own determination of what
constitutes dynamic reconfiguration management.

In Goudarzi (1999} it is suggested that there are very few systems which provide developers with a
framework for dynamic reconfiguration management. This statement may well be motivated by the
fact that there are very lew systems which provide the total solution.

To overcome the problem, a new system outlined in Goudarzi (1999) is proposed which builds upon
the work already carried out into dynamic reconfiguration by the Distributed Computing Group at
Imperial College, UK and their REGIS project (Magee, Dulay, and Kramer 1994). The proposed
system aims to provide a framework allowing for the development of re-configurabie components
while at the same time including support within them so that they can Le managed throughout
their entire lifetime.

In addition to providing lifetime support for the management of the components, the framework
ras a special emphasis on preserving the consistency of the system and minimising interruptions to
the remainder of the system. This was identified in Goudarzi (1999) as one of the most common
areas overlooked by other systems but one which is critical to the smoothness of reconfiguration
operations.

e i e e S e i S i i

P e

ST S

.




b
2
b

b

112

The extensions to the REGIS architecture were proposed as a result of an examination conducted
into REGIS’s ability to support dynamic reconfiguration management and to preserve the consis-
tency ¢ components while performing reconfiguration operations. The conclusions from the review
highlighted the nced for extra support to be given to the dynamic reconfiguration module and for
the introduction of a system capable of preserving consistency during a dynainic reconfiguration.

The exiensions to the system took the form of four additional entities known as the Reconfiguration
Manager, Configuration Database, Consistency Manager and the Evenl Cowmposition Service. The
role of these managers and the architecture used for these extensions is explained in section 3.5.3.1.

An inkercent benefit of extending the REGIS sysiem is the flexibility of being able to make use of
the urderlying model while at the same time being able to provide individual enhancements. This
means that the extensions allow for the separation of the configuration aspects from behavioural
ones.

Sonic of the enhancemnents include extending the configuration programming paradigm detailed in
Kramer and Magee (1990) and allowing the original configuration descriptions to be merged with
the reconfiguration behaviour. Additionally, the exteusions further promote the idea supported in
the reconifiguration model designed by Kramer for components to be placed into a safe or guiescent
shate, allowing a component to be modified without causing any significant system disturbances.

3.5.3.1 Architecture behind the Extensions to REGIS

Throughout the development of the REGIS oxtensions, great care was taken to cnsure the exten-
sions would communicate with one another and interface with the client and underlying REGIS
architecture. It was decided that the connection oriented approach (ie. cowmponents have a direct
cominunication channel to one another) would be used to provide the distributed runtime reconfig-
uration management facilities. The use of the conuection oriented approach cusures compatibility
with most systems.

The extra dynamic reconfiguration management functionality is coordinated through the addition
of four new managers to the REGIS architecture. A detailed explanation of these managers can
be found below. In wddition to the managers, REGIS makes usc of specialised hooks to enable
the dynamic reconfiguration manager to control the state invariants contained within the individual
components.

Component Managers

Throughout this scction cach of the new component managers introduced into the REGIS cnvi-
ronment will be examined together with the role that the manager plays in keeping the system
consistent and providing the dynamic reconfiguration functionality.




113

Reconfiguration Manager (RM)
The reconfiguration manager plays a pivotal role in the reconfiguration of components. 1t is the
component responsible for coordinating all of the reconfiguration activities throughout the system.

The involvement of the reconfiguration manager starts when it receives an event message either
generated by the Event Composition Service (ECS), described later on in this section or from another
event generating source such as a change in the outside environment where the system is operating.

With the events being received, the manager examines the type of message as well as the content
and with the aid of chauge designers (programmable filters) determines which reconfiguration script
should be exccuted. Before any of the reconfiguration scripts selected by the manager are exccuted,
the manager must first ensure that the proposed changes or actions to be made to the system will
not result in any component being placed into an inconsistent state nor will the configuration process
interfere with any other reconfiguring operations.

Due to the constant need to ensure the consistency of the entire systein, the reconfiguration manager
maintains a close relationship with the data held within the Configuration Detabase (CDB) and the
Consistency Manager (CM). To further highlight this relationship, when an-cvent is detected which
results in a reconfiguration of the system, the reconfiguration manager will contact the configuration
database in an attempt to get the most accurate representation of the system.

Additionally, the information contained within the CDB helps the reconfiguration manager select
the most appropriate configuration script. Once the script is selected, both the CDB and CM are
consulted to determine what impacts and consequences these operations will have on the system,
After the consistency checks are performed and the deadlock analysis complcte, the reconfiguration
manager instructs the consistency manager to make the appropriate changes and authorises the
scripts to be performed on the basis that there are no crrors preventing them from being exccuted
successfully, While updating the system, relevant changes are made to the CDB in parallel to ensure
that the CDB aund the system arc consistent with one another.

The reconfiguration scripts used throughout the system actually perform two separate roles. The
first is to make the appropriate changes to cach of the components, while the second and more
important role of the reconfiguration script is to preserve, sct or reset the invariant data which is
being held within cach component.

By preserving the internal invariants within a compouncnt, the reconfiguration manager is capable
of resuming or starting a component from the point at which the reconfiguration of the system was
started!?.

With the REGIS extensions taking care of the mechanisms behind the manipulation of the system
and application invariants, the software developer only has to include code which provides access to

11 some cases it is not possible to restart the component at the same exact location, so the change designer must
provide an entry point which is directly translatable from the previous component.




114

the entry point, or hooks to the invariants contained within the components sub-system.

Consistency Manager (CM)

The consistency manager is responsible for ensuring that all components within the system remain
in a consistent state for the duration of their lifetime. Consistency is even preserved during reconfig-
uration periods where under certain circumstances the invariants within a component may become
invalid. All such occurrences are carefully controlied and reset at the end of the reconfiguration.

The consistency manager is contacted after the reconfiguration manager has determined that there
is a need for a change and when the appropriate reconfiguration seript has been selected. Upon re-
ceiving the changes, the consistency manager examines the implications of the script and determines
whether the change can procecd smoothly without disrupting other componcents or reconfiguration
actions currcntly happening throughout the system.

Once a reconfiguration path has been achicved, the consistency manager sends a message back to
the reconfiguration manager signalling that it can proceed with the execution of the reconfiguration
scripts.

To ensure consistency within a systom at all times, the consistency manager must adopt an approach
which allows for the detection and handling of inconsistencies. To facilitate this detection there are
two approaches available. These are: recovery and avoidance. From the relationship between the
consistency manager and the components within the system it is possible to see that there is a great
deal of interaction between the two. The extent of this interaction is governed by the avoidance
scheme usced.

Recovery Approach to Consistency

The recovery approach to consistency focuses on providing an underlying framework allowing for
the identification of thosc transactions which might be affected by a pending transaction. In such
circumstances an exception mechanism could be used to interrupt the current transaction and to
allow the reconfiguration to proceed. Omnce completed, the transaction could be restarted at the
same point if support for check-pointing, rollback or setting system invariants was in place.

However, the recovery approach to consistency management could be made redundant if the system
which the REGIS extensions are operating within provides support for an exception model. If such
support within a framework existed then a scries of special hooks could allow for the manipulation
of the invariants located within the componeut.

Avoidance Approach to Consistency
Instead of approaching the consistency problem from a heavy handed perspective like the recovery

approach, the avoidance approach takes the more serene view of placing components into a consistent




ot i i SR

e e e S M s 1

P

e Te A e Rk

2

115

state. The approach works by having the system identify those components that would be affected
by a reconfiguration and having them moved inio a safe state which isolates them from the rest of
the system. This minimises the disruption to the remainder of the system.

In order to effect such a change on a component, the consistency manager requires the ability to be
able to determine the current configuration of the system!® and make use of the special management
hooks located within each component to manage its invariants.

During the process of reconfiguration each of the components affected in the system is handled by the
use of a specialised management interface. As the reconfiguration routines proceed the configuration
database is updated to reflect the changes made,

Configuration Database (CDB)

The configuration database is regponsible for containing up-to-date information on the configuration
of the system. As each reconfiguration operation is performed, whether it be a 1ink, unlink, create
or remove operation, the appropriate record in the database is updated.

Additional to the reconfiguration operations, records within the database arc updated whenever the
reconfiguration system makes use of the specialised hooks to manipulate the state of a components
invariants.

The CDB is one of the most important components in the extensions to the REGIS architecture as its
information is in constant demand from software developers and other manager modules which need
to know the current eonfiguration. The records contained within the database assist devclopers when
a system change is planned. In order to access this data, the databasc provides a set of interfaces
which enables software developers or automated reconfiguration agents to obtain the information
they need and make the appropriate decisions from it,

To ensure that the data within the database is as current as it can be, all maodifications to the
system are centrally coordinated through the configuration database. This linkage is demonstrated
by the reconfiguration manager which consults the configuration database everytime it receives an
event. Additionally, the reconfiguration manager uses the data that it obtains to determine which
reconfiguration script should be selected or with the help of the consistency manager determine what
the implications are for applying a certain set of reconfiguration actions to the system.

Fromn the interfaces provided by the database it is possible to extract all of the structural information
contained within the system. The data recorded within the configuration database includes a unique
identifier representing the component and & value indicating whether the component in question is
a primitive one (ie. it is a basic building block) or a composite (ie. therc are other components
contained within it). The interfaces within the database are also capable of listing all the bindings
that a specific component is connected to. The database even contains the host that the component
is currently active on.

13This is achieved through the use of a configuration database such as the one described in Goudarzi (1999).




116

By forcing all reconfiguration operations to be performed through the database, it is possible to
ensure that the database maintaing the most accurat~ description of the system configuration. This
can be very important when there are multiple reco: surations being performed within the system.

As the database 15 central to all reconfiguration operations, it is necessary for it to be able to support
concurrent updates. These updates to the database minimise disruption to the system and to other
components. The actual routines responsible for providing the concurrency within the database are
embedded within the database management system.

Additionally, the database management system includes support for other concurrency strategies
used while updating the system. These strategiecs include reconfiguring a system with a single re-
configuration script or reconfiguring a system consisting of multipic reconfigurations.

Reconfiguring with a single script

As the name suggests, this approach involves reconfiguring a system with the aid of one reconfigu-
ration script. Upon the execution of the script, all of the reconfiguration operations arce identified
and grouped together.

Those operations which can be performed in a concurrent manner are processed in such a manner,
while those routines requiring scquential processing are ordered and exccuted in the specified order.
Both the reconfiguration manager and the configuration databasc take great care to make sure that
any reconfiguration operation performed in a concurrent manner does not conflict nor introduce a
state of inconsistency to any other componeat.

Performing multiple reconfigurations
This form of reconfiguration involves making changes to the system through a number of reconfig-
uration scripts. Similar to the method by which a single reconfiguration script is performed, all of
the reconfiguration scripts arc read into memory and then analysed. Those routines that can be
executed in parallel are performed in parallel while those requiring sequential processing are once
again exccuted in that particular sequence.

When using this method, the configuration database and the concurrency system take great care
to preserve the consistency of the system and ensure that only one reconfiguration action is being
performed at any one time on any onc component. This eliminates the chance of one reconfiguration
action interfering with another.

The configuration database is then updated once a transaction has been successfully committed oth-
erwise there is a potential risk of the database containing invalid data and refiecting an inconsistent
configuration.

Event Composition Sexvice (ECS)
The Event, Composition Service (ECS) serves as a gateway for all incoming cvents. Events may come




117

from components located throughout the system or from outside influences including the result from
an interface being used or some other external circumstance such as a server failing,.

Although the ECS receives a number of events from various sources, the system is only responsible
for analysing the implications of configuration events. These events arc normally triggered by one or
more configuration/reconfiguration events. These events include: create, remove, link or unlink.
If such reconfiguration events ace detected, the ECS will pass the reconfiguration event and the
component that raised the event to the reconfiguration manager for further analysis.

The identification of change in the outside cnvironment is harder to determine in some cases as the
system has to give significant consideration to events arriving over sometimes a random and extended
period of time. It is at the ECS that these events are checked and cross referenced with a list of
events contained within a configuration database and maintained by a system development team.
If the event is deemed to be configuration related then the event and a handle to the component
which raised the event are passed to the reconfiguration manager.

One of the differences that has been adopted by this system and makes it different from other
configuration management systems is the decision to separate the specification of a component from
the evaluation of the changing conditions. By shifting the evaluation wmechanisin away from the
comnponent, developers can focus on the task of creating components while allowing the ECS to deal
with the triggering of reconfiguration events.

This is achicved by having the reconfiguration language only provide support for defining how
components are to be reconfigured giving developers more flexibility in creating or modifying a
component as well promoting a much simmpler language {or developers t0 use.

3.5.3.2 Reconfiguration Programming

The concept of reconfiguration programming was inspired by the configuration programming paradigm
first described in Kramer and Magee (1990). The configuration paradigm allows a designer to be
able to describe all of the énitial components within the system as well as their dindings.

The reconfiguration programming paradigm extends this notion by allowing designers to specify what
comprises the initial system (in terms of the components and their bindings) as well as providing
support to continually update the system. This occurs by matching a type-description specification
located within a reconfiguration language with the computational component.

Once defined, these type-description instances can be manipulated to reflect changes to the system
structure through an event driven interface. As a type-descripiion instance is manipulated the cor-
responding computational component is also altered to reflect the changed state. Of course, as these
changes are made they are subject to the rules and limitations expressed within the reconfiguration
and consistency managers.




118

As mentioned, when a reconfiguration occurs, both the computational and configuration components
are changed concurrently in their respective runtime systems. This allows the changes to occur si-
multaneously to the system and ensure that the configuration database is kept up-to-date.

Primitive State-Access Methods

In order to provide the dynamic reconfiguration facilities, each computational component must
provide a set of access methods which allow external agents to query and modify the internal
invariants. The scope of these interfaces is determined by software developers.

In most cases the interface provides get(...) and set(...) routines. These operations are
responsible for maintaining structures within a component that control the behaviour specification
and synchronisation controls of an individual component. The actual manipulation of these routines
and management hooks is coordinated by the reference manager.

Primitive Configuration Descriptions

In addition to containing information such as the communication interface, instantiation parame-
ters and the configuration specification, the reconfiguration paradigm records the signatures of the
method calls.

These signatures allow software developers to incorporate these functions within reconfiguration
scripts and hence enable developers to actively restore the systemn invariants.

As reconfiguration scripts can alter the invariants of a component, great care must be taken by the
reconfiguration subsystem that the appropriate data types are selected and that they are passed into
the component correctly. To address this issue the reconfiguration manager perforius type checking
and data marshalling/unmarshalling routines where appropriate.

Composite Configuration Descriptions

Composite configuration descriptions embody everything already mentioned in the primitive con-
figuration description as well as providing support for two new method types. These method types
provide reconfiguration methods and composite state access methods.

Reconfiguration Methods

Reconfiguration methods are responsible for altering the internal configuration of a composite. They
normally include management routines to dynsimically adjust internal values which are directly
related to the configuration. An cxample of such a routine may be to increase or decrease the size
of a memory buffer or thread ponl.

Such reconfiguration methods can be accessed via one of two ways, The first is to make use of an
event based approach, This is normally the interface that reconfiguration components like the ECS
will use to aflect change on a component. This approach also allows for the loading of dynamically
linked libraries.




119

The second approach is to make use of a procedural entry point. This approach is taken when a
component needs to perform an operation. The usc of this interface is not normally encouraged and
all reconfiguration operations are dirccted towards the reconfiguration manager.

Composiie State Access Methods

Composite state access methods are similar to other access methods except the informetion provided
from these routines relates to a composite component rather than a primitive one. This means that
the return values from certain method calls performed upon a composite object might actually be
constructed by a cascading method call down all of the composite components.

Those access methods which are used on a composite component are not permitted to change the
internal configuration or structure of a component. All of the reconfigurations performed within the
system are referred o the reconfiguration manager se that the appropriate changes can be recorded
and made throughout the system.

3.5.3.3 Guaranteeing Mutual Consistency

One of the important concerns with the extensions to the REGIS system was the ability to provide
mutual consistency throughout the entire system. To ensure that the consistency approach was
going to be useable, a conscious decision was made not to follow the same decisions used in other
systems. In the past, system such as Lim (1993) have used recovery systems which have placed a
considerable overhead on the system.

To overcome the problem, exiensions to REGIS make use of an avoidance scheime that reduces the
load on the overall system while a reconfiguration is being performed. Additionally, this approach
was selected due to the specific requirement of minimising the disruption to the systein. The avoid-
ance scheme is careful not to overburden software developers with extra code which must be placed
in components to facilitate reconfiguration.

Safe-State for Reconfiguration

With most systems, the driving force behind any distributed component based application is the
components themselves. During normal operaiion, these components are inter-linked with one an-
other 50 as to be able to pass data. As the components are perforining their roles, they are said to
be in a consistent state.

However, great planning must be undertaken in order for a reconfiguration of the system to occur
without posing any threat to the bindings between the components or introdueing an inconsistent
state into the system. To assist with this planning a sct of reconfiguration rules were used to cusure
that certain actions can only be performed after other actions bave completed. These rules are




120

explained in detail in Kramer and Magee (1990) and Goudarzi (1999).

Achieving the Safe State

In order for a reconfiguration to occur within a system, it is necessary for those components involved
to move into a safe state. Apart from moving the components into a safe state comes a problem of
what to do with method calls made on components involved with the reconfiguration.

The architecture addresses this by having the method calls blocked when the corresponding com-
ponent is undergoing a reconfiguration. The method calls are then unblocked on the completion of
the reconfiguration. The use of the blocking and unblocking approach to handle component recon-
figuration is explained in Goudarzi (1999) as is the criteria used to define what suitable approaches
there are for a component to enter a safe state.

When moving a series of components into a safe state there are two bLlocking techniques that the
transition can use. The first involves the identification of how a safe state can be applied to all
components within the system while the second approach refines the first by determining how a
safe state can be brought about on only those components which are effected by the reconfiguration
request.

Blocking States

Below is a brief overview of both blocking algorithms which can be used to identify and isolate com-
ponents which are to undergo a reconfiguration. The extensions to REGIS mentioned in Goudarzi
(1999) make use of the optimistic blocking algorithm.

Pessimistic Blocking Algorithm
The pessimistic blocking approach is basically designed to bring all components within a system to
a safe state irrespective of their involvement in the reconfiguration.

The algorithm works by sending a blocking message to all components registered within the system.
Those components which are alrcady in an idle state move into a blocked state, while components
busy with transactions continue to process as normal. Upon the conclusion of the transaction, the
componcnt involved is placed into an idle state.

In some cases, a component may require the services of another component which has alrcady moved
into a blocked state. In these circwunstances a component can mmove from a blocked state back into
an idle state for vii duration of the transaction. At the end of the transaction, the component moves
back into a blocked state.

All components remain in this state until the reconfiguration has taken place, at which time they
are all instructed by the reconfiguration manager to unblock and restart processing transactions,




121

Optimistic Blocking Algorithm
The optimistic blocking algorithin differs from the pessimistic approach by only concentsating on
those components which are affected by the reconfiguration. '

The algorithin sets out to build a set of nodes directly affected Ly the reconfiguration request. Once
identified, thesn components are blocked. However, the systemn then goes on to examine whether
there are any sub-transactions which may occur, resulting in other nodes to cliange state. Instead of
allowing these nodes to change state, they are added into a new set which is known as the extended
blocking set.

Once all the nodes in the primary blocking set are blocked, the nodes left in the extended Dlocking
set are released. Changes are then made to those components located in the blocked set and upon
successful reconfiguration are released back into the system.

3.5.3.4 REGIS Extensions as a Configuration Management Tool

From the description of the extensions to the REGIS system it is possible to sce that the issue of
dynamic reconfiguration manager has been addressed. This can be scen by referring to table 4.1
illustrating how the extensions to REGIS satisfy a considerable amount of the criterions detailed in
section 3.1,

Table 4.1 also shows that the extensions to REGIS address such functionality as providing a type-
checking system through the reconfiguration manager, the provision of routines which can be used to
coordinate the inter-conuection of components and their cominunication channels, a comprehensive
dependency and consistency analysis system and the provision for introducing a state of quiescence
over components which may be affected as a result of a reconfiguration.

Houwever, even though the extensions provide the extra functionality for an abstracted environment,
the system provides little support for the operator in respect to the status of a reconfiguration
request made to the system.

Additionally, there is no support within the system for a method call to be rejected or dealt with
appropriately if it can not satisfy a certain criteria. This lack of suppoit makes it incredibly hard for
real-time systems to operate cffectively as cach transaction requires a commit or no commit action
before it will proceed.

3.6 Chapter Summary

Throughout the chapter a number of configuration management systems which have been developed
over a peried of time to address the concerns raised by the software engincering community have
been examined.




122

Based on the functionality and support these systems provide to software developers it is possible
to categorise the systems into four separate areas. Namely,

o Component Configuration Systems
e Static Component Configuration Management
¢ Dynamic Component Managoment

+ Runtime Component Coufigiiration & Consistency

3.6.1 Component Configuration Systems

From the systemr wwhich fit into this category it has been possible to determnine that they provide
support to software developers during the construction of software conponents. Traditionally, these
systems provide support for multiple revisions of a component to Le stored. In certain systems such
as ICE, extended functionality exists to aid in the generation of components which can be configured
for certain circumstances and environments.

3.6.2 Static Component Configuration Management

Static component configuration systems have been identified as those which provide support for the
reconfiguration of components. However these systems lack the ability to be able to perform changes
to the configuration of the system while it is still operating. In order for these systems to provide
any reconfiguration support they must first be placnd into a ‘safe’ or consistent state by shutting
them down.

3.6.3 Dynamic Component Management

Dynamic component management systems provide the extra funclionality required to manipulate
the confizuration of a systern. The dynamic nature of these systems perinits software developers
to change the infernal configurations and bindings between compoucents while the system is still
operating. These changes however, are inade when the components are placed into a cousistent state
and are often performed oun running systems which do not provide any comprechensive deadlock or
consistency checkin, system.

3.6.4 Runtime Component Contiguration & Consistency

Runtime component and consistency systems once again enhance those services provided by those
systems grouped into the dynamic component management category. Systems grouped into the




123

runtime componcnt configuration and consistency group provide the functionality required to re-
configure components during runtime while ensuring that the consistency of the system is preserved
during reconfiguration.

This chapter conducted an examination of various configuration management systems and compared
them with the criteria established in section 3.1 which represents the features expected in an ideal
configuration manager. The following ckapter provides a comparison of the features contained within
the various configuration management systems and discusses the results with regard to the support
given to components operating within real-time covironments and the control that both the software

developer and end-user have in circumstances where a method call is sent to a component being
reconfigured.

Tl 2t
o e b

e R

R

st oyl o




T

;E
{

124

Chapter 4

Real-Time Dynamic Component

Reconfiguration

Throughout the previous chapter, a number of configuration management systems designed to facil-
itate the development of component oriented systems and provide support for the reconfiguration of
components were introduced. As secn from the functionality provided by those configuration man-
agement systems introduced in chapter 3 and the varying levels of support provided for reconfiguring
components, it is possible to classify configuration management systems based on their functionality
and support.

Assisting the classification of configuration management systems was the criteria established in
section 3.1, Making use of the criteria allowed for the identification of key featurces contained
within systems which can be used as a basis for classification. When the criteria was applied jo
the configuration management systems introduced in chapter 3 it provided the basis for a short
description on the suitability of cach system with regard to the support provided for reconfiguring
components, cspecially those operating within a real-time enviromnent.

Chapter 4 concentrates briefly on the functionality provided by these configuration management
systems but examines in more detail the classifications identified in the previous chapter. The chapter
also focuses upon the issue of dynamically reconfiguring components within a real-time cnvironment
and why dealing with the real-time commitments of a component is so important, Additionally, the
issue of justifying the need for supporting the dynamic reconfiguration of compo aents in real-time
enviromments within configuration inanagement systems is discussed.

The chapter concludes by further examining the reconfiguration support provided by cach of the
configuration management categories and assessing how much control they provide for components

T3
.'
. '.)‘ .
L
2!
-
B ..
: !
o
fit ]
f
4
A
R
&
'.
-
At
o
ki
-y
g

i S s

i e st

o




125

being reconfigured in a dynamic environment. As can be scen from the various architectures pre-
sented in chapter 3, Jittle support is provided to enable software developers or end-users to control
the execution of methods calls made upon componeants which are undertaking reconfiguration actions
or arc not available. This is especially relevant in real-time systems.

4.1 Configuration Manager Comparisons

The configuration management systems examined in chapter 3 reinforce the conclusion that cach
system brings its own unigue functionality and perspective as to what a configuration management
system should provide.

With each system providing its own interpretation of the functionality req.ired to handle the man-
agement of components, it is impossible to directly compare rc.onfiguration cnvironments. To
address this problem and to provide a means of being able to compare the various configuration
management systems, a criteria detailed in section 3.1 was developed. Using this criteria allows
comparisons hetween the varicus environments based on the support provided for managing com-
ponents rather than the systems underlying functionaliiy. As shown in chapter 3, the application
of the various criterions led 1o configuration management systeins being grouped together based on
comunon functionality.

Table 4.1 provides a list of the configuration management systems reviewed as well as the criterions
that each system supports. A score which is the end resalt of assessing how well a particular system
satisfies the overall criteria bas been used to predetermine the order in which the configuration
management systems appear in the table. The scoring system works by allocating each criterion a
value representing its overall importance in the criteria. The values assigned to cach criterion were
equivalent to its own criterion number (ic. criterion cight has a weighted value of eight). With the
individual weighted values assigned, the total score for a given system can be calculated by totalling
cach of the criterion points associated with it,

The results from table 4.1 illusirate how configuration managers which sharc their functionality
and provide the same level of support for reconfiguring components can be grouped into the same
category.




Criterion
#1 | FF2 | FI | F4| ##5 | #6 | #7 | #8 | #9 | #10 | #11 | #12
System
Distributed Revision Control System S XX XXX XX X X X
Distributed Concurrent Versioning Systemn | v | « | v | X | X | X | X | ¥ | X X X X
Incremental Configuration Engine Sl Xy VXXX X2 X X X
Software Dock X | X | XX X | Vv | X | X ) v X
Adele | X1 Xx o @ | x| x| x|V ® X X
Mistral V| VX0 X X X |V ® X X
Surgeon Xl x| xjx 7z | x| x| X | X X X
Palylith X1 x| x4 X {7 | X1 5] X X X X X
Programmers Playground Xl x| x} x|y ||} X1 @ v v ~
CONIC X1 X | X1 Xty | v XX v v it
Equus X1 X\ x| x| ®|v | X1 Xk v v X
REGIS Xi Xl x| x|l vwiyv v ]| XK v v X
CHORUS XiXxl1x | x|olx\ 71X | X v v X
Finite State Machine X xlxtxr x|\ 717V x /7| 7/ / X
SOFA/DCUP X | X X | X | ¥y X X K v v X
| Dynamic TAQ X1 X | X170 x| vV |V X1X v v X
REGIS Extensions xtx|lxixlvlvilvlvlviv !l v | x

Table 4.1: Comparison of Configuration Management Systems

@: The systemn provides support for revision histories but does not aillow the developer to execute previous revisions of the code.

@: ICE provides limited consistency checks through the aid of feature logic but does not provide an overall dependency analysis solution.

@: The Software Dock architecture provides for components to he reconfigired antomatically as the environment. changes, however, it does not
provide for the manual intervention or reconfiguration of components by the user.

@: The system provides primitive type checking through the use of a DEMS but does ndt provide any comprehensive type checking system.
@: The system supports reconfiguration operations, but only when the system is stable or static.

®: The Programmers Playground provides a means of checking the bindings between components but not for the entire system,

@: The system provides trpe checking on the ports used within the system but does not provide any iype checking on the entire system.

®: Equus identifies that components exist within the system but provides no functionality to manipulate them.

9¢l




g T

127

4.1.1 Component Configuration Systems

As discussed in chapter 3, component configuration systems are primarily concerned with the de-
velopment of computational units and combining those units to build entire systems. To achieve
this functionality, the systems commonly provide supporting tools and the inirastructure required to
aid developers in their construction eflorts. As an example, these systems may include support for
maintaining a revision history of each component or provide developers with the flexibility of being
able to arbitrary recall previous revisions of a component and execute the code contained within it.
The ability to manipulate revisions during development allows software developers to form various
configurations and to assess them. Component configuration systems may also provide additional
support for allowing projects to be developed concurrently.

Although component configuration systems provide for the development of computatioral units, they
do lack support for both internal and external type checking and do not provide any funciionalily to
allow interactions with the unit itsclf. Additionally, these systems do not facilitate communication
between components because at this stage the components exist only in a source code perspective
and have not been instantiated. As components in these systems exisi in a meta format, source
code or non-instantiated form, there is no need for these systems to provide any comprehensive
reconfiguration support. The only reconfiguration service that may be provided is limited to the
management of a components construction. Consequently, there is no need for any deadlock or
consistency scrvices to be incorporated into the system.

This concentration of functionality designed to aid the developer with the construction of compu-
tational units is shown in table 4.1 where the Distributed Revision Control System, Distributed
Concurrent Versioning Systemn and Ineremental Configuration Engine all exhibit functionality con-
sistent with component construction. By focusing on the construction of components, these systems
do not satisfy any of the more substantial critcrions developed to assist reconfiguration management
systems.

4.1.2 Static Component Configuration Management

Static component configuration management systems are designed to allow developers a level of
flexibility enabling reconfiguration of components to occur providing that conditions are satirfied.
These conditions ensure ihe systemn remains in a stable state for the duration of reconfiguration. The
term static in this case refers to the system being at a complete stop and hence allowing developers
to be able to iuserd either source code, object code or third-party software components into the
system.

By providing this functionality, the end-users of the system gain more flexibility as it can accept or
reccive new or updated components at any point when the system upgrade criterion is met. Ounce




e

128

ready for configuration, the system can proceed to calculate and implement the desired reconfigu-
ration path. It is this path that allows the system to evolve and accommodate the domain in which
it 1s operating. These evolutions are normally brought about by adopting organisational changes or
addressing the issue of an erroneous component.

Table 4.1 illustrates that static component configuration management systems are not primarily
concerned with the fundamental development of sofiware components. This is highly evident as the
table shows these systems to have little support fo. source control, revision management, concurrent
component developinent or the ability for the developer to select what 1ovision of the code to execute,

Additionally, due to the static nature of reconfigurations within the system, there is no support for
on-going consistency checks while the system is running. The only consistency checks which may
be available within these systems is through specialised development environments responsible for
the loading and unloading of components or by a thiird-party tool such as a compiler that identifies
type-checking errors during the systems compilation.

By not having to support a dynamic environment there is no need to provide services which are
responsible for ensuring that components reach a state of quiescence nor js there a need to provide
any on-going consistency or deadlocking services while the system is operating.

It should be noted that static component configuration management systems do provide an envi-
ronment in which components can be substituted inte a system, provided the system is in a static
or stopped state. These environments cither consist of a database management system or a fully
integrated development environment.

4.1.3 Dynamic Component Configuration Management

Dynamic component configuration managerment systems differ from static component counterparts
Ly providing an environmeunt that allows components to he introduced, modified or removed from a
system while it is still performing operations. Other dynamic component configuration systems might
provide a complete environmnent specifically constructed to allow the replacement of components.

In such cnvironments as the Programmers Playground, these activitics may actually be performed
while the system is performing an action or carrying out a number of tasks. Such reconfiguration
actions however should be performed sparingly as these systems are not designed to support continual
configuration changes whilst operating but rather when they are idle. Scction 4.1.4 iutroduces those
systems which are capable of integrating configuration changes into the normal activities of the
system.

Just like the static component configuration management systems, dynamic component manage-
ment systems do not provide support for the developient of components. Functionality, such as
tevision management or supporting the development of a systemn concurrently, is left to component
configuration systems such as those mentioned in section 4.1.1.




129

When compared to the static component configuration management systems, it can be scen that
dynamic component configuration systems provide additional support for type-checking. These
type-chacking systems ensure a type match between components, the interconnections which join
components, as well as providing type checking services for variables located within components.
The actual level of type-checking is dependent on the implementation of the system. Addition-
ally, dynamic component management systems typicsiiy provide extra functionality to manage and
facilitate the communications betwaen components.

It is important to note that aithough dynamic component management systems provide for the ma-
nipulation and reconfiguration of components, they do not include services responsible for ensuring
the consistency of components. By not providing this support, software developers themselves need
to make sure that they incorporate their own consistency checks into the component when perform-
ing reconfiguration operations or that they have adequate checks in place to monitor the stability of
components. In addition to providing no consistency management, these systems do not necessarily
include support for software developers to be able to perform a compreliensive dependency analysis
wlen comnponents are being reconfigured.

4.1.4 Runtime Component Configuration & Consistency

Runtime component configuration and consistency systems further enhance the dynamic enviren-
ment by providing a means for devclopers to manipulate, add or remove componcnts from a system
while it is still performing unrelated tasks. Reconfiguration tasks are normally processed in parallel
while the underlying architecture reguired to support the seamless interchange of components within
the system processes the configuration change.

Table 4.1 shows that runtime component configuration and consistency systeins have comprchensive
consistency checking systems which are responsible for determining the impact that a configuration
change will have on a systun. Determining the componcents that will be affected by such a change
is an important step to ensuring the overall consistency of the system, as components directly and
indirectly involved in the reconfiguration must be handled with care.

In addition to the strengthened consistency checks, there are a number of systemns responsible for
determining the dependencies that exist between the various components within the system. These
systems provide a method for being able to identify those components effected by a reconfiguration
and to ‘isolate’ them while components are being restructured, updated, replaced or removed.

Overall, runtime compouent configuration and consistency systems provide a basis for a system to
be able to deal with cnanges in the workplace and evolve to the user requircments while at the
same time providing the appropriate safeguards to insulate the changes being made on the system
from other components. In the past, systems have been constrained by their inability to adopt to
the ever-changing needs of an organisation. This failure to accommodate change has cither led to

i




130

organisations investing large amounts of mouey and resources in system upgrades or discarding one
solution which has served the needs of the organisation and secking another. Through the use of
ruantime component configuration systems it is possible for an organisation to maintain one system
and to change it when the need arises.

However, after examining the various configuration management systems shown in table 4.1, it
appears that none of the listed systems provide any support to software developers or end-users to
control what happens to a method call when it is sent t0 a component under-going a reconfiguration
operation. This is especially critical in systems where components are operating within real-time
environments. The introduction of a real-time environment brings with it a new dimension as these
systems nced to know if a method call can or cannot be performed on time. A method call unable
to be performed may result in consequential actions or recovery paths having to be performed (if
specified) rather than blocking and waiting for the method call to be processed when the component
becomes available agzin.

4.2 Real-Time Dynamic Component Updates

Before examining the impact of having no control over how method calls are handled when compo-
sents are unavailable and operating within a real-iime enviromment, it is important to consider the
definition, roles and responsibilitics of real-time systems which are fundamentally cffected by any
non-anticipated availability issues.

4.2.1 Real-Time Systems

Since the development of time critical circuitry and systemns, the nced for and the complexity of
real-time systems has steadily increased. Today, most picces of electronic equipment concerned
with or operating within timing constraints contain embcedded real-time systems. These real-time
environments arc normally defined as systems which are bound by a series of timing constraints
(Bennett 1990; Levi and Agrawala 1990).

Typically, a real-time environnent cousists of two parts known as the condrolling sub-system and
the controlled sub-system. The controlling sub-systems refer to an abstract entity modelling the
physical device being controlled except that the device is emulated in software. These sub-systems
are typically hardware managers responsible for coordinating the actual signals sent to the physical
device. The controlled sub-systems refer to the actual physical device being controlled by the system.

Betwceen these sub-systems a number of interactions take place. These include data sampling from
the controlled device, pracessing of data received from the device and responding to the conclusions
reached from the processing stage. The consequences of these processing actions can range from




131

taking no corrective action through to transmitting a serics of commands to the device from where
the data originated or to other components and devices scattered throughout the system.

To this point, real-time systems have been identified as being responsible for coordinating and
executing tasks based on a strict set of timing constraints. Real-time systems however can be
further classified into two sub-categories known as ‘hard’ or ‘soft’. The difference between these
classifications depends on what the implications are for tasks which are unable to meet their deadline
and whether ‘slips’ in the deadlinc for starting tasks are permissible.

4.2.1.1 Hard Real-Time Systems

Hard real-time systems provide an environment in which an event scheduled for a particular time
must be executed. Failure to execute the task at the specified time normally results in dangerous
circunstances or a condition being raised (eg. car not starting as a result of the fuel injection system
not working due to an crror with the timning of the fuel into the system). To facilitate the execution
of these tasks at their specified deadlines, a hard real-time system {(under certain circurnstances),
will re-organise its own internal priority scheduiar to provide the best opportunity for that event
to be executed. To provide such a flexible and dynamic environment for hard rcal-time operations
requires a considerable amount of programming as thought must be given to each instruction and the
time it will take to complete. In addition to calculating the time it takes to complete an instruction,
concern must be given to factor in the implications of tasks running later than expected and what
flow-on effects such situations might introduce into the remainder of the system.

4.2,1.2 Soft Real-Time Systems

Soft real-time systems provide an environment in which the system tries to satisfy all of the tasks
scheduled within the relevant titne schedule. However the failure of a task to exccute at a nominated
time <dJoes not result in any significant circumstances occurring but rather introduces a slip into the
schedule. To recover from a slipped deadline schedule a recovery path which normally cousist of a
series of alternative actions (consequential actions) is performed. For this rcason, a soft real-time
systemn is considered to be more flexible in nature when compared to hiard real-time systems.

As mentioned, real-time systems (more often than not, soft real-time systemns) support crror recovery
paths which can be undertaken when a task slips its deadline sebzdule or is not executed. In Tsai, Bi,
Yang, and Smith (1996) the notion of time being iinportant to real-time systems is further reinforced
by taking into account the following aspects of time: Clock Access, Process Delay, Timeout Handling
and Deadline Specification and Scheduling.

1The failure of a real-time system to perform a task at a designated period of time is known as a slip.




132
4.2,.2 Real-Time Component Control

As explained, real-time systems, especially hard real-time systems, rely heavily on the timing of their
operations to ensure that tasks do not miss their deadline. To further illustrate the notion of how
important timing is to real-tine systems, it is not uncommon for software developers to calculate
both the worst cuse and bes? case scenarios for the time it will take to process a single instruction
or to perform a number of instructions contained within u loop. In addition to calculating the time
required to process instructions, a number of other factors including the speed of the processor and
load on the machine have to be considered when calculating the speed at which an instruction can
be executed.

With a heavy dependence on timing issues, real-time systems are very susceptible to untimely events
such as spontaneous reconfigurations or dealing with components that are unavailable. Such events
when incurred can causc an unexpected delay in the return of a method call sent to a component
not available. Delays such as these may have disastrous consequences in a hard real-time system if
the delay is not identified straight away or may result in soft real-time sysicms exccuting an error
recovery path to try and recover from the situation of the task not being performed within the
corresponding time frame.

Table 4.1 provides an overall summary of many available and well known configuration management
systerus. The table clearly shows that none of the configuration management systoms reviewed
provide any support for software developers or end-uscrs to control how a method call operating
under a real-time cuvironment is dealt with when a component is unavailable. Goudarzi in Goudarzi
(1999) identifies #his problem in his proposed extensions to the REGIS system but dismisses the delay
or blocking of method calls as being an inevitable part of the reconfiguration process.

This approach to delaying method calls within a system may be acceptable in a standard computing
environment but in a real-time system (especially in hard real-timne systems) such a delay must be
planned for and factored into the operation of the system. As a consequence, lack of support for
controlling the way in which a method call is hand'ed by reconfiguring components results in:

» Systcms not being able to identify that a problem exists when making method calls on com-
ponents being reconfigured until the method call has actually been made and the resulting
blocked method call has caused the real-time system to miss its deadline schedule

¢ Systems which are unable to provide appropriate procedure: to software developars or end-
users to allow them to specify what behavicur be undertaken should the systemn request a
method call to be petforied upon & component which is reconfiguring itself or is ntherwise
not available

¢ Systems not being flexible enough to suit the needs of the organisation or end-users




133

e Systems incapable of ensuring that a certain level of Quality of Service (QoS) is maintained as
a result of the system being unexpectedly interrupted or blocked by unforeseen reconfiguration
changes

4.3 Benefits of Introducing Control

As mentioned in the previous section, lack of controls available to software developers and ond-
users brings with it a significant number of problems to those real-time systems responsible for
coordinating a large number of activities over a strict and finite timing period {eg. controlling the
tracking system for a radio telescope array). To address this, the thesis presents a concept within the
framework of a real-time system allowing software developers and end-users alike to be empowered
with the ability to control and manage the execution of method calls mnade on components which
are in the process of being reconfigured.

By harnessing the concept of providing control to the user it is. possible to develop systems that
are capable of providing a considerable amount of support in dealiug with reconfiguring compo-
nents. These benefits include providing & real-time environment in whick method calls, which can
not achieve their deadline specifications as a result of a system reconfiguration or a component not
being available, arc identified and handled. As explained in chapter 5, the Component Oricnted
Reconfiguration Environment and Scheduling (CORES) model provides developers with more flex-
ibility providing a widc variety of actions which can be perforined upon method calls effected by
reconfiguring compouents.

These actions include:

¢ Allowing a method call to block while the component is being reconfigured and net to proceed
until the component has been deemed safe and is accopting new requests (vypical system
behaviour)

* Allowing a method call to return teo its caller to indicate that therc was an crror condition
preventing the execution of the request and enabling the system to take immediate action
(default behaviour for CORES)

» Providing the ability to wait until a certain Quality of Service (QoS) agreement is satisfied
before allowing the continuation of the request

As can be seen, all of the approaches to handling reconfiguring components within CORES have been
designed to provide software developers with control over how to deal with method calls which may
be interrupted as a result of reconfiguring components. CORES also provides support for identifying
how Qo5 requirements within the system can impact on the execution of method calls made within
the coniides of a real-time cnvironment.




s drage e R b S iy

134
4.4 Chapter Summary

Throughout the chapter the focus has been on examining the various strengths and weaknesses
that exist between the configuration management systems reviewed in chapter 3. To illustrate the
point, tabie 4.1 showed the differences in the functionality based on the criterion developed to allow
configuration management systems to be compared with one another.

The table illustrated how configuration management systemns that are grouped together based on
the support they provide for reconfiguring components share a common functionality. The various
support categories for configuration management include:

* Component Configuration Systems
s Static Component Configuration Management
» Dynamic Component Configuration Management

¢ Runtime Component Configuration & Consistency Managzinent

In addition to analysing the various strengths and weaknesses of configuration management systeins,
this chapter also examined what impact lack of control has on developers or end-users in a real-time
system where the exccution of tasks is time critical. Finally, the chapter concludes by identifying the
benefits of systems adopting the concepts presented in this thesis, The following chapter introduces
the CORES model which is responsible for ensuring that software developers and end-users alike
are capable of dealing with components being dynamically reconfigured in an environment which
supports real-time opcrations. The CORES model also provides the opportunity for software de-
velapers or end-users 1o specify what should occur when a method call can not be processed by a
component.




AR R i, i i e g e e AT T MR A= A gk e

Chapter 5

Component Oriented

Reconfiguration Environment &

Scheduling System

Previous chapters have raised a number of issucs which directly relate to the answering of research
questions RQ1 and RQ2 (refer to section 1.3). To answers these questions a number of configuration
management systems and proposed architectures specifically designed to facilitate the development
and reconfiguration of components were evaluated. In addition to providing support for the con-
struction and reconfiguration of components it was found that such architectures allowed software
developers and end-users to excrcise limited control over components and to a lesser degree the
handling of method calls. From the systems ider*’fied in chapter 3, an examination was conducted
(refer to chapier 4) to determine what support if any exists for dynamic reconfiguration (refer to
RQ1) and what support exists for handling mecthod calls made on components! operating within
real-time environments and participating in reconfiguration activities (refer to RQ2).

In response to RQ1 and RQ2, the examination discovered that attempts have been made to develop
systems capable of providing dynamic reconfiguration services but none were able to combine the
requirement of providing an environment that supports the dynamic reconfiguration of components
in addition to the strict tining concerns of real-time systems.

From the conclusions drawn by RQ1 and RQ2 it is clearly evident that a lack of support exists for
those systems which have components operating within real-time constraints. Specifically, this lack of
support impacts on software developers and end-users by preventing themn from being able to control
what happens when a method call is made on a component that is unavailable. This level of control

IReferred to as servers in the implementation.




ol e e

e i

i

e A Y

A

P i x 2 7 -

T

136

is vital and is required in systems operating under real-time constraints (ie. scheduling systems)
where a components inability to exccute a task needs to be immediately identified and handled. To
address this lack of support a conceptual model needs to be developed which provides additional
capabilities to allow software developers or end-users to specify what actions should be taken if a
method call is sent to a component which is unable to process it. This lack of availability might
be the result of a component being deactivated or a component being involved in reconfiguration
activities.

Such a model forms the basis behind rescarch question RQ3 which asks what are the minimal require-
ments for a conceptual model to be able to address the lack of support for rcal-time environments
and the components operating within them. The question is also asked as to whether additional
support can be integrated into the model to enable software developers and end-users to control
the behaviour of method calls. This chapter provides a solution to the concerns raised in RQ3 by
proposing a model, its requirements and a number of algorithms capable of allowing software de-
velapers and end-users to control how components and method calls are managed. Although the
algorithms presented throughout this chapter are based on already existing algorichms for schedul-
ing, they do provide an approach for the sequencing and scheduling of tasks and jobs operating
within a real-time environment where specific attention must be paid to when tasks and jobs are
performed and whether they are capable of being performed in parallel or sequentially. In addition
to RQ3, the modcl incorporates the concerns of RQ4 and RQ5 by including support to vary the
way that tasks are sequenced and scheduled as well as introducing the ability for Quality of Service
{QoS) characteristics to dictate when components are available.

Significant advances have been made in controlling method calls and objects with the development
of the design by contract approach discussed in Meyer (1997). Since the initial development, further
work has been carried out which allows contracts to be implemented in the distributed computing
paradigin as explained in Watkins (2000). The concept of allowing a contract to be established
between a client and a server and having the contract govern aspects of the method call provides a
basis for developing a system that allows software developers or end-users Lo control how a method
call is processed. Additionally, Goudarzi (1999) illustratcs how an environment can be cstablished
wher - the reconfiguration of components is possible with the assistance of quicscence routines to
stabilise the areas requiring reconfiguration. Despite these advances, there is still no available
architecture or system to handle the reconfiguration of components or control methiod calls operating
within a real-time environment.

Presented here is the Component Oriented Reconfiguration Environment and Scheduling model
(CORES) designed to provide software developers, end-users and operators alike with an environ-
ment for components to be dynamically reconfigured while concurrently handling the requirements
of a real-time system. CORES also provides a scheduling and sequencing system allowing tasks
contained within a job to be optimised and placed into a scheduling environment which is aware of
real-time constraints. The scquencing component of CORES provides the ability to sequence tasks




| %
s

ek vt e AT R o

137

using either a best case or worst case scenario. The ability to calculate the worst case scenario
is important to real-time systems which have a scheduler operating in a conservative mode. The
CORES model also introduces the functionality for software developers or end-users to handle and
control method calls when a component is being reconfigured.

5.1 CORES Algorithms

To provide functionality, CORES makes extensive usc of a variety of algorithms. These are responsi-
ble for sequencing tasks within a job, calculating the optimal path in a job containing multiple paths
and scheduling a job into the schedule. The following sections introduce the most commonly used
algorithms by CORES. The algorithms, wherever possible, are cxplained in generic terms however
in some cases it may be necessary to refer to those tasks performed by the case study presented in
chapter 7 to provide some clarification. Throughout the chapter, a number of jobs and tasks are
graphically represented with the use of Petri nets.

Petri nets were first proposed in Pctri (1862) and allow for the graphical representation of places,
transitions and flows within a job. Reisig (1985) explains that a Petri net consists of three clements.
These include: a place (referred to as a state in the thesis), a trausition and an arc. A state is a
defined point within a job (ie. a task contained within a job) and a transition rcpresents an event
happening which results in a state change. An arc represents the link from a state to a iransition
or vice versa. It is through the elements of a Petri not that the relationships between the various
tasks can be represented. The graphical nature of Petri nets allow for the implications of thosc jobs
containing multiple paths to be illustrated. The Petri nets and algorithms presented in this chapter
do not provide support for jobs containing cyclic dependencics.

The algorithmns, specifically those introduced in section 5.1.1 and 5.1.2 do not scck to provide an
alternative to the depth-firsi traversal and shortest path algorithms found in graph theory as detailed
in Sedgewick (2002) or Gross (1999) but rather to incorporate them into a model which supports
real-time requircments. With the combination of re-sequencing tasks and graph theory algorithms,
it is possible to identify the permutation which requires the least amount of time to complete.
Identifying the shortest path becomes critical when operating within real-time environments.

5.1.1 Sequencing Tasks within a Job (Single Path)

The algorithm is responsible for taking a scries of tasks contained within a job and re-sequencing
them into a specific order. This may involve minimising (worst-case scenario} or maximising (best-
case scenario) the amount of time required to complete a series of tasks. By default, the algorithm
makes use of the best-case scenario.




5.1.1.1 Requirements

The sequencing of tasks plays an important role in the overall CORES model as the scheduler
uses the calculated sequences later on in the system to formn the overall schedule. To achieve this
sequencing, the algorithm performs a number of steps.

The first algorithimic step is to acquire information about each task associated with the job. This
is used to assist in determining the placement of the tasks within the sequence and at what time a
task can be exccuted. As presented in chapter 7, the case study makes use of radio astronomy and
therefore all tasks defincd within a job in this chapter will be assumed to be astronomical in nature.
On this assumption, three key pieces of astronomical information need to be obtained for each task.
In general the data obtained at this point relates to information which can be used to determine a
possible start time.

The pieces of astronomical information which need to be obtained include the right ascension of
the radio point source, the declination of the radio point source {provide coordinates for the point
source in the sky nominated for an observation) and the total amount of time that the astronomer
wishes to spend observing a radio point source. Given this data and a time reference it is possible to
calculate a time at which a task can be started. For the case study this dictates the time at which
an observation could possibly begin. The mathematical steps involved in calculating the position
of a radio point source, given its right ascension, declination coordinates and time can be {ound in
Fitzpatrick (1970) and Duffett-Smith (1988). Part of the start time calculation relics on determining
when a task and job can actually be performed successfully. In the case of radio astronomy it refers
to calculating a start time where a radio point source would be located above the horizon. For other
scenarios this may involve checking task relationships ‘o ensure that preparatory tasks have been
performed before the main task is executed.

Having this information for a task allows the algorithm to proceed with its calculations (if requested)
to generate the possible permutations that exist for a job given the number of tasks contained within
it.

After calculating the total number of permutations, the algorithin uses them to construct an array
of possible job scenarios. This array is then used as a starting point to identify those scenarios which
are not viable and hence incligible for any further assessment.

A scenario is considered not to be viable if a sequence of tasks can not be performed in the order
specified or there exists a point in the scenario where upon the completion of one task, another task
can not be started. This is known as the continuous task test (ic. checking to make surc a task can
run when another finishes). By performing this test it is possible to identify and eliminate those
scenarios which are impossible to perform or if performed would result in resources remaining idle.

e

TR R




e e A L T TR T P TR

raa

T

el

139

Using an observation schedule as an example, figure 5.1 represents a valid scenario while figure 5.2
illustrates how a gap or idle point in the scenario between tasks causes the resource (the telescope
array) to undergo a period of idle time. Wherever possible, CORES tries to actively avoid this
situation.

Antenna NMovement Time

ELEVATION
AT ” “
F
j

Observation Period 5

TIME

Figure §.1: Valid Task Sequence

Idle Time

.l
L} ‘..
L I +a,
-| \ ™ A .' bt L}
: 3 §

-l_._l‘:l-l-.-i-'-l‘l—.:l-l-i-

: s d

ELEVATION

HORIZON .
TINME

Figure 5.2: Invalid Task Sequence

With the non-viable scenarios removed, the algorithm may proceed to determine which scenario
contains the least amount of time spent comgleting infrastructure tasks so that the main tasks can
be performed. In the case study this refers to the time spent moving an antenna from one position
where an observation finished to another point where the next task starts. The infrastructure time
is illustrated in figure 5.1 and shows the time taken to move from one position to another.

The calculation of the time spent on setting up the infrastructure requires careful planning as the
entire scenario must first be represented in such a maaner as to identify the various states resulting
from the exccution of tasks. Once the stales are identified, the algorithmm can determine what
infrastructure tasks need to be performed to allow the main task to be performed and how long it

e e T BT D T




:

i
i
I
X
4
B
¥
b
3
i
H

140

will take to setup the infrastructure. To construct the plan of a job, the algorithm iterates through
all of the valid scenarios and assembles cach in memory while making sure that additional tasks
such as those needed to setup the infrastructure are factored in. Once constructed, the algorithmn
will determine the best point in time for the scenario to start. The starting time calculated by the
sequencing routine is used internally to confirm a viable scenario. Where a scenario being assessed
is selected for scheduling, the scheduler will recalculate the start time.

The sequencer has to be extremely careful when it is laying out the tasks becausc even a small task,
such as rotating the antenna receiver, can change the dynamics of the entire scenario. Figure 5.3
illustrates what a group of tasks belonging to a job may look like after the algorithm has examined
the tasks and assembled them into a sequence.

Figure 5.3: Sequenced Job showing Node Relationships

The tasks shown in figure 5.3 denoted by the letter ‘P’ are transitions and are responsible for
establishing the infrastructure before the task is performed. In the casc study these tasks arc
responsible for positioning the antenna before a tracking operation and contribute to the scenario
infrastructure setup time. Thosc tasks labelled “T” represent transitions performing tasks. The case
study uses these tasks to track a radio point source through the sky. These transitions can take a
considerable period of time as observations or tasks can take a number of hours to complete. The
remaining task labelled ‘R’ represents additional infrastructure tasks, such as rotating the antenna
receiver turret into position. Although not explicitly defined in the job definition file, the model
automatically inserts these tasks to cnsure that the infrastructure is capable of supporting the task
at the requested time.

It is important to note that when a particular scenario for a job is being constructed all tasks that
can be performed in parallel arc grouped in such a way as to allow the algorithm to identify them so
that they can be assembled in memory. Figure 5.3 represents two tasks being executed in parallel
and for the execution to occur concurrently, the architecture must support concurrent processing,

Once the scenarios have been planned, calculated and assembled, the algorithm proceeds through
them all to determine which has the lcast amount of associated infrastructurc setup time. This
involves concentrating on the time difference between the end of one standard task and when the
next standard task starts. By determining this, the algorithm is capable of calculating the total




4k

by et T o Mt

<=

LEN

L r s b e

o P o

SR

141

amount of infrastructure setup time required for the scenario. Infrastructure tasks are not assessed
by the algorithm.

After the infrastructure sctup times have been calculated, they are totalled and compared to a best
candidate path time. If the setup infrastructure time for a given scenario is less than the time offered
by the best candidate then the scenario being examined is recorded along with the sequence of tasks
to form the new best candidate path. If the time calculated is greater than the recorded time for
the best candidate path, the scenario is ignored and the next is assessed.

This process of examining all of the possible scenarios continues until all have been examined. Upon
the completion of the algorithm, the model is capable of returning a scenario which has the least
amount of setup infrastructure time.

5.1.1.2 Formal Definition

With the aid of mathematics (specifically set notation) this section formally defines the algorithin
described in section 5.1.1.1 which is responsible for identifying the optimal scquence of tasks con-
tained within a job given that there is only one path. However, before examining the algorithm it
is necessary to outline some of the definitions used throughout this algorithm and others that the
CORES model uses in sections 5.1.2 and 5.1.3.

To concisely represent the main objectives of this algorithm, the sections pertaining to the generation
of the possible permutations of a job and the calculation of the optimal start time have been removed.
Chapter 6 details how these algorithins were implemented.

Deflnition 5.1.1.1.
A radio point source (lusk clement}) is a pair such that rps = (r,d) with r,d € R.
The elements within rps are as follows:

o 1 is the right ascension coordinale and is denoted by rps.r

o d i3 the declination coordinule and is denoted by rps.d

Let Rps denoie the set of oll radio point sources as defined above.

This defines the structure of a radio point source (from a mathematical point of view). An important
note with this definition is that the rps.r and rps.d values are independent of time and remain
constant for the radio point source. These values can be thought of as a unique identifier describing
the ‘orbit’ that the radio point source is in. The rps.» and rps.d values arc used in conjunction with
other information to locate the precise point of the radio point source in the sky.




; Definition 5.1.1.2.
A rudio point source observation (lask) is a fuple such that rpsQbs = (p,r,s,Lf) where
P s a radio point source and r,s,t,f € R. The clements within rpsQbs are as follows:

e p is the radio point source which is to be observed and is denoted by rpsObs.p.
To access the right ascension or declination velues the following notation should be
used: rpsObs.p.r or 1psObs.p.d

e r is the rise time which s expressed as the number of seconds elapsed since epoch

(1st Jamuary 1970} where the radio point source becomes visible above the horizon

s 5 15 the set time which is {ime etpressed as the number of seconds elapsed since
epoch where the radio point source sets below the horizon

| o ! s the track time which is expressed as the number of soeonds elapsed since epoch
where the tracking of the point source commences

o f is the time that the tracking finishes and is expressed as the number of seconds
clapsed since epoch where the tracking of the radio point source ceases

Each of the times recorded within a radio point source observation is bound by the fol-
lowing:

0<r<it<f<s

s For the remainder of this thesis, RpsQObs denotes the sel of all radio point seurce obser-
vations as defined above.

The definition of the radio point source observation (task) illustrates how only a segment of an f
cntire observation window is used for a radio point source. This may not always be the case, as -_;f
: other scenarios such as manufacturing process may require that a task be performed as soon as it i
1 : can and finish as latc as possible. Figure 5.4 illustrates the various clements of a radic point source '
3 i observation (task) and shows how only a subsct of the total amount of time is used.

With the radio point source (rps) and the radio point sou.ce observation (rpsQbs) having been
defined, it is possible to define an observation schedule which contains a sequence of radio point
source observations (lasks).

In addition to those definitions previously mentioned, it is necessary to define an assumption enabling
the algorithm to calculate the minimum amount of time required to perform the infrastructure tasks.
This time can be calculated by summing the difference in time between one task finishing and another
starting.




e T

:

143
& TPAI mpe.t rps.t pe.s
! M
z r’ﬂ".‘_‘
g -"‘J/! ' ““‘"\
g L ;
E _’i. : E '\‘\
ﬁ--I.'l--b-l.ﬁ.—l-a_u&:--.-u-:hu-
; . ; i\ HORIZON
/| : : P
HES ; : P,

TIVE

Figure 5.4: Radio Point Source Elements

Assumption 5.1.1.1.
To calculate the optimal obscrvation schedule®, it is necessary to call upon an ezternal
Junction which returns the number of seconds it takes for the infrastructure to be selup
to ollow the execulion of u subsequent lask (1s2) given that the preceding task (ts1) has
beers completed. The external funclion is defined as minSetup: RpsObs x RpsObs — R
such that minSetup(tsl, 152) = t where (t > 0) is the minimal time required to setup the
infrastructure.

The parameters of minSetup include:

s is1 is tracking source 1 which is the radio point source observation (old task) which
was originally being tracked

o 52 19 tracking source 2 which is the radio point source observation which is scheduled
to be tracked nezt (new task)

The function minSetup(. .. ) calculates the total amount of infrastructure setup time required by the
subsequent task after identifying what condition the preceding task left the infrastructure in. Once
the condition of the infrastructure has been determined, the function can ideuntify what actions need
to be performed and the time required before the subsequent task can be supported. If necessary,
thie results from the minSetup(...) lunction can be used to recommend the adjustment of starting
times for subsequent tasks 5o as to take into account the additional time required to setup the
infrastructure.

[t i3 assumed that the operator wishes to calculate the optimal path.




144

Problem Statement 5.1.1.1.
Given a sequence of tasks Lo be performed, find an appropriate sequence of tesks which
represents the minimal amount of time required o perform the infrastructure tasks. More
Jormally, let: » € N and s = 0y,...,0n-1 be an observation schedule with -
0; € RpsObs (0 £ { < n), find a sequence s' = of, ... ,0}, such that:

1. s' is a permulation of s that is, there is o sequence of indices %, ... i~ With
o{’_ =oj (forall0< j< ny
E 2. s" is equal to ' except that the corresponding starling and finishing times for two
: successive observations are updated inductively:
2.1 of .t = of.r (the first observation is inilinlly started as soon as it is above the
horizon)

2.2 0.+l = ma$(0‘+l T, O"f + m"lsetupfou 0'+l)) (for i> 0)

2.3 o'y f = ofyy (ol f = ofy).t) (ensure that the observation is of the required ;
duralion) '
2.4 The sequence s' is realisable iff s € RpsObs, ic. iff the starling and finishing :

times precede the radio point sources selling lime
; 3. The infrastructure selup time expressed by the following sum, is minimal:
‘ (3o, minSetup(o}’_,, o}))
Notes:

e The sequence §' is the ssme as sequence s cxcept thot the tasks are re-ordered

o Each task in the sequence s alreedy has the constraints (0 S r < < f<5), a
reclisable order of tasks must ensure that the end of one task proceeds the beginning
of the nexi

e Note that the induction rule 2.1 connects 8" and s’ becouse of.r = 0.7 since the

e e i iad &

rise limes are unchanged by definition




145

Algorithmic Solution 5.1.1.1.

Lat §§ = {s" | s" € RpsObs, s” is a permutation of s, ' _.
s” is realisable (according to problem statement 5.1.1.1) } 1

Let n € N and op = 0g,...,0n—1 be an observation schedule with o; € RpsObs (0 < i < n)

bestCandidatePathTime € R (0 < bestCandidatePathTime € R);
bestSequence € RpsQbs;
currentSetupTime € R (0 < currentSelupTime € R);

If S5 # {¢]} then

op = 88u;
Let » € N and op = 0pg,...,0Pn—1 be an observation schedule with opi € RpsObs (0 £ i < n)
in

if (opl.f + minSctup(op!, opls1) + opiy1.d) <= opiy1.s then
bestCandidatePathTime := (3_7_, minSetup(opi_,, 0pi));
end

else
continue; // Skip this permutation and move onto the next
end
end
end

/7 assert:
// If there are no realisiable sequences, then the observation can not be performed
// In the event that there are no realisiable schedules, leave the op and bestTime undefined

fer all elements s’ € §§:
Let s’ = s3,...,8h-1 be the given permutation and
if (sl.f + minSetup(s], siy1) + sly1.d) <=35i4).5 then
currentSetupTime = (37, minSetup(si_,,s{)) be the minimal infrastructure setup time
in
if bestCandidatePathTime > thisTime then
bestCandidatePathTime 1= currentSetupTime;

bestSequence := s';
end

end
else
continue; // Skip this permutation and move onto the next
end
end
end o




T T

G o St g

M
N
3

146

The solution is achiaved by iterating through each radio point senrce observation (task) contained
within a scenario and performing the following calculation:

(37, minSetup(s{_,,s!)) (0 < i< u)

As can be seen, the algorithm is responsible for going through cach ¢ask and calculating the minimum
amount of required infrastructure setnp thne before the next lask can be performed (ie. using the
case study as an example would result in calculating the time required to move the antenna from
the end of one task to the start of the next).

The results from the minSetup(...) function can be used to adjust the remaining start times of
other tasks contained within the scenario so as to take into account any changes which may have
been made earlier. Once the time spent performing infrastructure tasks is known, it is compared to
the best candidate path time. If an optimal sequence has been calculated, the tasks in the scenario
and the total amount of infrastructure sctup time is recorded after which the remaining scenarios
are evaluated. If the time calculated is not optimal then the scenario being examined is discarded
and the next scenario is evaluated.

On examining algorithm 5.1.1.1 it is clearly evident that it relies on a number instructions and loops
to satisfy its objective. Based on its structure it is possible to calculate the overall complexity of
the algorithm by determining the growth in the number of instructions that are executed when the
number of tasks and observation schedules that need to be completed are incremented.

Given that each instruction including assignments, comparisons and summations carry a complexity
value of one and that three instructions (not shown in algorithm 5.1.1.1) are needed to co-ordinate a
looping operation, it is possible to express a formula capable of calculating the number of instructions
that nced to be performed (in a worst case scenario) given the number of tasks and obsecrvation
schedules. This formula is expressed as 442 + Gt 4 45% + 8s + 2 where ¢ represents the number of
tasks to be performed and s represents the observation schedules.

|t | s | Instruction Count | Growth ]
1 | 1 24 0

2 2 62 38

3 3 116 54

4 4 186 70

5 20 1892 -

Table 5.1: Complexity of Sequencing Tasks in a Jab

The overall complexity of algorithm 5.1.1.1 is clearly identified in table 5.1 which shows the growth
rate of instructions that nced to be performed as the number of tasks and schedules requiring
processing are incremented. Examining this growth rate allows for the order of magnitude to be

i

AR T

i L fie g




imcthlcirai

T b o

:
“3
2
i
i
k-
&
¢
R

147

identified as Q(n? * s%) although the values used within table 5.1 indicate a O(nlog,) magnitude.
Closer analysis of the figures in the table indicate a quadratic relationship as the growth rate increase
at a constant rate however such a relationship is only identifiable as a result of the number of tasks
and schedules being cquivalent. The last row within the table represents a realistic example which
CORES processes. As the instruction count indicates, a considerable amount of processing is required
to sequence tasks and observation schedules.

5.1.2 Sequencing Tasks within a Job (Multiple Path)

This section presents the algorithm responsible for navigating and evaluating multiple paths within

a given job and returning the optimal sequence of tasks while ensuring that the job can be completed
successfully.

5.1.2.1 Requirements

From the algorithm defined in section 5.1.1, it is possible to sec how tasks belonging to a job can
be sequenced to minimise the amount of infrastructure setup time required when moving from one
task to another. Although this approach is satisfactory for the case study (refer to chapter 7) and
those scenarios where there is only one path to follow from start to finish, it is not satisfactory for
those where multiple paths are in existence. Figures 5.5 and 5.6 illustrate the difference between a
job which has only one path and a job containing multiple paths to reach its destination.

O —»O—» O |[O—» [0

Figure 5.5: Job containing One Path

The job presented in figure 5.6 demonstrates that for an algorithm to be abic to deal with generic
situations it must be constructed to allow jobs with onc or multiple paths to be processed equally.
From the illustration it is also possible to sce that the tasks contained within the scerario are
structured in a similar manner to a Dirccled Acylic Graph (DAG) which is commonly fouad in
graph theory. By adopting some of the principles of graph theory as explained in Diestel (1997)
and Swamy and Thulasiraman (1981) it is possible to construct a graph representing the tasks and
interconnections while ensuring that there are no repeating loops or backward flowing paths within
the graph. Additionally, using graph theory it is possible to use a variety of algorithms as mentioned
in Sedgewick {1988) and in Sedgewick (2002) to assist in the traversal of tasks.

b TR L 230 0 T L o Pl R T AL R

it e i R

AT b

| e S

5 e i 47 e et

ki sy Mg

S s e L |




et prima e LT

Figure 5.6: Job containing Multiple Paths

Figure 5.6 also illustrates that any generic algorithm developed must be aware of decision nodes.
These decision nodes are used to define the direction and actions that an algorithm must take and
are known as either an ‘OR’ task or an ‘AND’ task.

An ‘OR’ task when incurred results in the algorithm processing one of the paths attached to the task
until another ‘OR’ task is encountered. The discovery of the second 'OR’ task signals the end of the
first path. With the first ‘OR’ path processed, the algorithm steps back through the path taken and
assesscs subsequent ‘OR’ paths. Once all ‘OR’ paths have been evaluated, the algorithm delermines
which of the paths traversed is optimal, appends that path and the traversed time associated with
the path and continues on. '

The other type of task is known as the ‘AND? task and is responsible for allowing paths or operations
t0 be executed in parallel. Just like the ‘OR’ path, the ‘AND’ path is traversed umtil the second
‘AND’ task is incurred. At this point, the time taken to reach the sccond ‘AND’ task representing
the end of the sub-path is calculated. This process continues for cach ‘AND’ path, then after all the
paths have been cxamined, the path which took the longest time to traverse is selccted. This path
is selected because no matter how fast the other paths are performed, the remaining paths will still
be waiting for the slowest path to complete.

With an overview of how paths are siructured within a scenario and hiow they are navigated it is
possible to examine in more detail the mechanies of the traversal routine and the algorithm capable
of calculating the total traversal time,

When the algorithim is first presented with a scenario, it is provided with both au origin and des-
tination task. The destination task is provided so that the recursive traversal routine knows when
to stop recursing upon itsclf. In addition to this check, other checks can be performed on the task
1o sce whether or not it is the destination. These chiecks include the examination of the minimum
and maximum times recorded within the task. If both are zero then the destination task has been
identificd as no other task can be completed in zero time.

R —




149

With the origin and the destination specified, the algorithm navigates the tasks within the job
scenario. The tasks and their relationships throughout the scenario are identified by examining
each predecessor and successor that the algorithm discovers, This process begins by examining the
successors of the origin task which is passed in. While a task is being examined its internal state is
modified to ‘Visiting’. The internal state is nsed by the algorithm to determine whadier a task has
already been or is being subjected to a path discovery examination.

Before performing actions contained within the task, the internal state is inspected and if necessary
(when the task is already in the state of ‘Visiting’} the investigation of the current task is stopped
and the algorithm returns to the task which was the immediate predecessor. If the state of the
current task can successfully be changed and there are no outstanding actions to be perfortned by
the task then processing continues.

If the predecessars have not been satisfied (ie. visited) then the algorithm records the path and the
time taken to reach this point in the scenario and returns to the task’s immnediale predecessor and
continues with identifying possible paths from that point.

Once the task confirms that the predecessors have been completed, they are counted and used
to identify whether the task is deemed to be normal or whether it is being used as a collection
point for many paths to come together. If the predecessor count is greater than one theu the
algorithm examines the traversal times associated with cach predecessor path and makes a decision
on calculating the optimum path.

The decision is based on whether the task being examined is of an ‘OR’ (conjunction) typc or whether
it is of an *‘AND’ type. If the task is of type ‘OR’ then the algorithin selects the predecessor path with
the lowest, traversal time and adjusts the overall traversal time and path to reflect the optimal path.
Where it is of an ‘AND’ type, the algorithm concatenates the various predecessor paths traversed
and eliminates any duplicate path information. In the cvent that there is no concurrency support
available, the algorithm will concatenate the ‘AND’ predecessor paths resulting in the summation of
all predecessor traversal titnes and the result added to the overall time for the scenario. If concurrency
is available the predecessor path with the highest amount of traversed time is added to the overall
traversal tiine. In concurrent situations the algorithin will make any nccessary adjustinents to
common time spent by the paths as they executed concurrently.

If the task is deemed normal, the algorithin adds only the time associated with the task to the
overall traversal time.

After the calculations have been performed on the task, the task’s label is added to the path traversal
and the focus of the algorithm shifts to examining the successors recorded within the task. The
processing of the successors is achieved by establishing a loop and processing each successor contained
within the task. If successors do exist then the algorithin needs to once again identify what type
of task is being examined as successors need to be handled in differing ways depending on whether
they are of type ‘AND’ or type ‘OR’.




e s g o e ot AL s T s

e

150

If the task is identified as being normal or an ‘AND’ task, the algorithm will take the first successor
and start to traverse the path according to the successor. To assist in the traversal of tasks, a
recursive function named traverse(...) is used. In order for the function to operate successfully, it
must be provided with some information relevant to the traversal. This information is expressed in
the form of parameters. The first two parameters include the successor of the current task being
examined and the destination task which the traversal routine is secking. The remaining parameter
is a value representing the time spent traversing the job. If the successor to be passed in is the
first to be examined, then the function is passed in the total time spent traversing the job. If the
successor is a subsequent, the time passed into the function is the total traversal timme minus the
time required to complete the current task. This subtraction from the overall time is performed
s0 as to avoid the algorithm and function from double counting. The processing of the successors
continues until all have been examined.

The only differences between the ‘AND’ and *OR’ tasks is the way in which they process predecessors
and successors. Just like the *AND? task, the ‘OR’ task loops through all of its successors providing
them with the total traversal time. This is different from the processing regime used for ‘AND’ tasks
where total traversal times have to be adjusted so as to avoid any double counting whiclh may occur
when paths are combined. This is not the case with ‘OR’ tasks as only one path is sclected based
on the optimal time for the various ‘OR’ paths.

Once the successors have been examined the status of the task is modified from a state of ‘Visiting’
to “Visited’. Changing the state of the task prevents the algorithm from trying to re-examine and
process a node which has already been processed by the algorithm via a different path. If the
algorithm does discover a node which las been previously examined, the algorithm will reject the
task and return back to the preceding task.

The traversal algorithm then continues to process cach of the tasks within the scenario until the
destination task is reached. To further understand how the algorithin traverses through a job
scenario, the {ollowing section presents a formal definition. It explains how the algorithm analyses
all of the possible paths within a job scenario and how it calculates the optimal path.

5.1.2.2 Formal Definition

The algorithm discussed herc is responsible for identifying the optimal path from a job scenario which
may contain a number of paths. The algorithm is expressed with the assistance of a mathematical
induction ruleset.

Belore examining the algorithin from a formal point of view, it is important to understand how
it complements others that have alrcady been defined. Performing such an examination assists in
clarifying the role and purpose of this algorithm.

gt




151

Figure 5.3 illustrates a job {observation schedule) which has been celestially calculated and as can be
seen resembles a simple directed path. This directed path outlines a number of tasks which need to
be performed at specific times to ensure that tasks are completed successfully. Typically, a job such
as the one shown consists of two tasks which act as the starting and finishing points and contain
a series of tasks in between which are linked to one another where the successor of one task is the
predecessor of the next. Note that the observation schedule co::tains no branches in its flow and as
a consequence the execution of the job becoines merely a sequential series of tasks.

This series of execution tasks is satisfactory for simple jobs where there are no branches, but as
explained the algorithms defined thus far have not provided any support for those situations where
there exists more than one possible way of achieving the goal. The algorithin presented in section
5.1.1 confirms this by only providing a solution which minimised the amount of time spent performing
infrastructure setup tasks by altering the sequence of various tasks within the scenario.

The approach presented here addresses this issue by providing an algorithm capable of taking a job
scenario containing a nunber of valid paths and calculating the optimal path.

In examining the algorithm it is first necessary to add to the definitions outlined in scction 5.1.1.2,
These definitions are used to assist with the ordering of tasks within a job.

Definition 5.1.2.1.
Let scenarie = (s,4,f) be the representation of a job scenario which reflects the structure
of a Pelri net. The elements within e scenario are as follows:

e 3 is a finite sel called states and is denoted by scenario.s

e | is a finite set called transitions and is denoted by scenario b, The transitions set
is bound by the following condition: snN t= ¢

o f is a set of flows which can move in cither direction between stales and transitions.
The flow set is denoted by scenario.f and is bound by the following condition:

J £sxtUixs

For the remainder of this thesis, let Scenario denote the sel of all scenarios as defined
above.

Expressing the scenario as a Petri net brings the ability to specify both the origin and destination
as well as those tasks which need to be accomplished in between. Additionally, the Petri net
structure allows for the richness in semantics needed o represent the predecessors and successors
and domonstrates how a task may require or have a number of preparatory tasks which need to be
processed before the task itself can be performed. Figure 5.7 provides a graphical representation of
2 sample scenario and associated dependency information.

The figure displays that the job scenarios which the CORES model makes use of, contain an element
of symmetry within them. For cach point within the scenario where a ‘fan-out’ degree is greater than




152

onc (ie. more than one pathway exists), a respective ‘fan-in’ point is present. This ‘fan-in’ allows
various paths to converge and for the traversal algorithm to perform any calculations necessary to
determine the path travelled and to identify the path at which the converging point is considered to
be optimum.

Figure 5.7: CORES Structured Job containing Multiple Dependencics

Having points within the scenario being responsible for controlling the fanning-out’ and ‘fanning-in’
of flow paths, forins the basis behind solving the proi'em of having to correctly navigate multiple
paths within the scenario. The following statement addresses this issue by introducing the function
find(...) which identifies the various nodes within a job which have a fan degree greater than one.

Assumption 5.1.2.1.
To identify the various paths which exist within a job scenario, # is necessary lo call
upon an external function capable of identifying a node which has a fan-in degree greater
than one and matches the same ‘lype’ as the fan-out node given.

Let js € Scenario such that js reflects a viable job scenario containing multiple paths and
the scquence seq = jsg,j51, ... ,jsk with k € N be a divected path from jsg to js ifV i,
0<i<k:(sijsiva) € L

A path is deemed to be elementary if oll tasks within it are pairwise different. The set of
Ltasks §so,381, . . . .35k 15 a paih scquenee and is denoted by afseq). The set of all dementary
divected paths from jso to js is denoled by the expression E(jsp,jsk).

The definitions of an clementary path and a set of all elementary directed pathis aliows a job scenario
(refer to figure 5.8) containing a number of paths to be broken down into a series of clementary paths.
Figure 5.8 illustrates one of the possible four maximal paths and demonstrates how a maximal path

A
i
.
B
i
.y
=
e
i
!
4
-

g i s




[ ——

is constructed from a number of elementary paths. The identification of paths within a scenario

allows the traversal time required to navigate the entire scenario to Le easily calculated.

Elementary Path

Elementary Path
N

Elementary Path

Direoted Path: {AB,[C.GH,IJ}{K,LMN,R},S,T}

Figure 5.8: Identification of a Dircct Path using Elementary Paths within a Job

Problem Statement 5.1.2.1.

Given a node representing a point wilhin 8 job scenario which has a fan-out’ degree
greater than one, find the corresponding ‘fan-in’ node which has o degree greater than
one and is of the same type. More formally, let js € Scenario which reflects the scenario

to be examined and s,y € s or L,y € L.

155



Algorithmic Solution 5.1.2.1,
The ‘fan-in’ node ts identified by defining the function find: sUt = s Ut such that
find(z) =y with:

find{z) = y
whera: :c.yEsUta.ndl'yl:vla.nd
there exists seqo, seqi € E{x,y) : seqo # seq A a(segs) N afseq) = {x.y}

Using this function allows the sct of all clementary directed paths to be ¢« snstructed for a particular
_ scenarip. With each of the directed paths identified, other functions can be developed to identify
" : the optimal path through a scenario and calculate the total amount of time required to navigate
. such a path.

Problem Statement 5.1.2.2.
Given o job scenorio and two nodes representing o starling and finishing point, find an
optimal path through the scenario fromn the specified slarting point to the finishing point
while ensuring that each nodes predecessors are satisfied,

More formally, let js € Scenario be a scenario to be traversed while the nodes:

task,dest € s U ¢ represent the réspcctivc starting and finishing points.

Algorithmic Solution 5.3.2,2.
Using mathematical inductizn rules, it is possible to express the iraversal algorithm as:

1. if task # dest A | tusk® | = 1,
traverse{task,dest) := <task> A traverse(w, dest)
where w € task®
2. if task = dest,

Ry

traverse(task,dest) = <Ltask>
3. if task # dest A | task® | > 1,
if tosk € t,

traverse(task,dest) := <task> A
seq (min{traverse(w,z))) A
traverse{findMateh, dest) :
where Y € fask®, Vz € *findMaich, findMaich = find{{esk) ;
if task € s and processorCount > 1, :
traverse(task,dest) = <task> A
seq (max{traverse{w,z))) A
traverse(find{atch, dest)
vhere Vw € task®, Vz € *findMatch. findMaich = find(lask)

if task € s and processorCount = |,
traverse{task,dest) := <tesk> A traverse(findMaich,dest)




vhere findMaich = find(task)
4. optimal(traverse{w,z)) = min {optimal(traverse(y,z))}
vhere y,w € task®, z,z € ®findMatlch
5. optimal: seq s Ut — R is defined as: optimal (o) = J, . mina

From the mathematical induction ruleset, the number of additional steps necded to be performed
when dealing with scenarios containing multiple paths can clearly be scen. To deal with such
situations it is necessary to identify and process each path using recursion.

This is achieved by having the algorithm usc a number of induction rules. Each rule provides for a
certain circumstance which may be encountered by the algorithm while traversing the various paths
contained within a job. Bricfly the rules pertaining to the algorithm arc as follows:

The first rule is responsible for processing normal tasks (ie, tasks with one successor) and appending
them to the traversed path before continuing. The algorithm advances by calling the treverse(...)
function upon itself with the tasks task and dest. Belore the actual task is processed it is checked
to ensure that it is not the destination. As with any algorithmic approach which makes use of
recursive techniques, the algorithm must contain a condition which identifics when recursion is no
jonger required.

The second induction rule allows the algorithm to stop recursing when the task being examined is
cquivalent to the destination task. When a match is detected the destination is appended to the
scquence of tasks traversed and returned to the optimiser routine.

The third induction rule is responsible for identifying and dealing with those tasks which have more
than one successor. These tasks represent branches within a job leading to different paths. How
the algorithm handles these paths depends heavily on the type of the task containing the multiple
predecessors or Successors.

If the task is of an ‘OR’ type, then the various dirccted paths which can be derived from the
branch are examined. With the examination complete, cach sequence is evaluated and the sequence
requiring the least amount of time to be processed is selected and appended to the overall traversal
path.

If the task is determined to be of an ‘AND’ type, the algorithm must then determine whether
the mode]l was implemented on a systein capable of evaluating and processing a series of paths
concurrently or sequentially. Knowing this level of concurrency support enables the algorithm to
make a decision as to what approach will be taken to process the various paths.

If concurrency support is available the algorithm is able to process the multiple patas in a manner
which is similar to the optiinum path for an ‘OR’ task. The difference between the processing of
an ‘AND’ path and an 'OR’ path rclates to the way in which the converging traversed paths are
handled.




156

B (s
5]—po—»{i]

A (@ F
E O
D E

PATHS AVAILABLE  PATHS AVAILABLE SELECTED PATH & TIME
AB,C,F 24¢3+4+1 ~10 AD.EF 9
ADEF 2114541 = ©

Figure 5.9: Processing an ‘OR’ Path

For an ‘OR’ branch the optimum path is calculated by assessing each path (in parallel if available)
and determining the path that took the least amount of titne to process. For an ‘AND’ branch the
optimum path is calculated by assessing each of the paths (in parallel if available) and determining
which path took the longest to complete. The longest path to traverse is the one which will be
selected as every path has to be completed before the traversal can continue.

S

B
PATH COMPONENTS TRANSYERSAL TIMES HECORDED PATH & TIME
AB,C,F 2+3+4+1 =10 ABCDEF 10
ADE}F 24145¢1 = 9

Figure 5.10: Processing an ‘ANID Path with Concurrency Support

If concurrency suppert is not available for the processing of the various ‘AND’ paths, the algorithm
resorts to calculating the total time required to traverse all paths when placed from end to end. The
order in which the paths are assessed is irrelevant as all the tasks nced to be processed after each
other. When the traversal is complete, the traversal time for each of the ‘AND’ branches is added
to the total traversal time for the path. This time and the entire path taken by the ‘AND’ branches
are then appended to the sequence of tasks which have been traversed.

The diffcrence between the ways in which the algorithm calculates the various optimum paths can
be seen in the following diagrams. Figure 5.9 depicts how the algorithm moves through a branching
sequence considered to be of an ‘OR’ type. Figure 5.10 illustrates how the algorithm is able to

i? T T T * TRt e v gt Tl vt ot

iy bl




157

process a sequence of paths which occur after ai ‘AND’ branch with the use of the CORES model
being implemented on a system capable of supporting the concurrent processing of the paths. Figure
5.11 shows how an ‘AND" branch is processed when there is no concurrency support to examine the
paths. It also shows how all the tasks are assessed by placing one ‘AND’ branch after another,

PATH COMPONENTS TRANSYERSAL TIMES RECORDED PATH & TIME
ABCF 2+3+4+1 =10 ABCDEF 16
ADE/F 2+145+1 = @

Figure 5.11: Processing an ‘AND’ Path without Concurrency Support

Induction rule four shows how the optimal(éraverse(tusk, dest)) function acts as a wrapper by per-
forming various traversals through the job and then selecting the optimal path defined as being the
path requiring the least amount of time to traverse.

Induction rule five presents the formal definition of the optimal path. The function optimal(...) is
defined as taking a collection of ‘AND’ and *OR’ tasks from a job and returning a value representing
the minimum amount of time required to process the optimal path.

5.1.3 Assembling the Overall Schedule

To this point the chapter has concentrated on algorithms responsible for analysiug, sequencing and
optimising tasks within a specific job. This section introduces a demand-scheduling algorithm which
is responsible for examiring the broader issue of scheduling a series of jobs and formulating an overall
schedule. In the context of the case study presented in chapter 7, the schedule is responsible for
coordinating the use of the radio telescope array and its associated resources.

Although a demand-scheduling (first fit) algorithin is used to construct the schedule, it is important
to note that other scheduling techniques such as priority or precedence scheduling can be performed
to assist with the construction of the schedule. The demand scheduling technigue although inefficient
when dealing with NP-Hard problems as explained in Krause (1973) was selected due to its ability
to allocate resources to time periods when they are first identified as being required. This becomes
increasingly important when dealing with scheduling periods that contain extended periods of time
where no job can be scheduled (je. maintenance periods or scheduled downtimes). The scheduling

g o g e o e e

g Sy ek T adl o e

%

STt I e A Wl T

PR T L




et Fea o AT

A o b 5 % e o Lo g

oy AP i

158

algorithm presented in this section provides a means for optimised jobs conforming to real-time
constraints to be placed into a schedule to allow for their execution.

5.1.3.1 Requirements

With the successful completion of identifying, sequencing and optimising tasks within a job, comes
the important task of combining those jobs into the overall schedule. The construction of the
schedule brings with it many challenges including the need io ensure that each job can be scheduled
successfully and within the specified scheduling time period.

In addition to the initial job scheduling, it may be necessary to schedule the same job a number of
times. In providing this functionality the scheduler has to be carcful not to allow the scheduling of
multiple job instances to starve other unique jobs from being placed into the schedule.

The scheduler is also responsible for calculating a feasible start time where a job can be completed
successfully whilst mceting its objectives. This feasible start time is calculated by determining the
first available time a job can be successfully run within the s:-heduling period. Start times of repeated
jobs may vary based on the availability within the schedule and the required resources. With regard
to the tasks used throughout the case study, consideration to such issues as the position of the radio
point sources in respect to.the observatory and the resources required by the job impact on the start
time. After a start time has been proposed for the job, the business domain rules are applied to
ensure that it is scheduled according to the organisations policy. The application of this rule may
result in a slight starting time adjustment of the job. The magnitude of this adjustment is dependent
upon scheduling commitments already in the schedule and the initial calculated start time.

Domain rules provide end-users or operators with the ability to provide some control over job and
task scheduling. Principally, the rules arc designed to ensurc that jobs are scheduled in accordance
with policies dictated by the organisation. An example of a business domain rule implemented for
the case study cnsures that scheduled jobs begin and finish at the top of the hour (ie. 12:00pm
-> 2:00pm). It should be noted that domain rules like the one implemented for the case study can
introduce idle periods into the schedule.

To begin the job scheduling process, the scheduler must first carry out an initial appraisal of the data
which is going to be placed into the schedule. This appraisal involves calculating the total number
of jobs as well as the allocation of the total number of job slots®. With preliminary calculations
completed, the scheduler is ready to initialise its looping construcls and commence the process of
assigning start times to cach job instance awaiting scheduling,

The use of the looping constructs cnsures that each job has an equal opportunity of being scheduled.
This is achieved by having the scheduler’s outer loop iterate througls jobs while there are still job
instances awaiting scheduling. Each time the loop is evaluated the remaining number of job instances

3A job sglot refers 1o the number of times an individual job is repeated.

oy




L

o B 3 b L il L sl g 8 b et

159

awaiting scheduling is re-calculated. The number of job instances awaiting scheduling is calculated
by summing the number of instances left to be scheduled for cach job.

Once the scheduler has been passed in a sequence of jobs and has initialised its outer loop, it can
start scheduling the jobs instances. This is performed by having the scheduler position itself at the
beginning of the job instance sequence and establishing another loop which iterates through each of
the jobs.

The second loop allows the scheduler to iterate through each job and determine whether there are
any instances awaiting scheduling. Upon detecting that an instance is awaiting scheduling, the
model will acquire the required information from the job and calculate the first available time that
it can be slotted into the schedule based on resource requirements, After a proposed job start
time is calculated, it is assessed to determine whether it can be placed into the schedule. If the
proposed starting time corresponds to an available time frame within the schedule, then the job
can be scheduled. If for some reason the job can not be placed into the schedule, the scheduler will
return an error message.

Before any job is placed into the schedule, the scheduler will first apply its optional business domain
rules to the proposed start time to cnsure that the job conforns to the organisations policy. After
having had timing corrections made, the job instance is added to the schedule and the respective
resources are allocated for the period of the job. The successful loading of the job instance into the
schedule results in the number of associated instances with the job being decremented by one.

In the event that a job can not be placed into the schedule, the corresponding instances associated
with the job are set to zero. If such an action is performed the scheduler will notify the operator
that the job can no longer be scheduled and that there will be no mare attempts to schedule it.

When the scheduler has finished dealing with a job, it advances to the next in the sequence and
checks to see whether there are any instances awaiting scheduling. This automatic advancement
takes place so as to avoid any one particular job froin starving the resources from those remaining.
The looping through cach job continues until all have been visited.

Ouice the scheduler has iterated through ali the jobs, it returns to the point of calculating the number
of job instances remaining to be scheduled. It then continues until there are no more instances to
be placed or scheduled.

The next section concentrates on formalising the algorithin, the information provided to the schedul-
ing algorithin and the external functions utilitised that allow the scheduler to build the schedule.

5.1.3.2 Formal Definition

In order for the scheduler to be able to successfully schedule jobs it is necessary for it to use a
number of external functions. This scction deals with the algorithm responsible for building the




160

overall schedule whilst at the same time formally defining the various external functions that the
scheduler uses.

The examination of the scheduling routine begins with once of the most important functions for any
scheduling activity. This is the function duretion(...) which is defined externally and is responsible
for calculating the duration of a job awaiting scheduling. Such a calculation is performed by deter-
mining the total amount of time spent performing {asks within the job. The job which is provided
to the duretion(...) function contains both the planned tasks and those responsible for ensuring
that the infrastructure is setup correctly.

Assumption 5.1.3.1.
To caleulate the duration of a job, it is necessary lo make use of an external function
which returns the number of seconds spent performing all of the tasks. More formally, let
n € N and j = 0p,. ..,0,—1 be the observation schedule to perforin with o; € RpsObs and
where the external function is defined as duration: RpsObs — R such that duration(j) = ¢
where (¢ > 0) iy the lime required to perform the job. The duration(. .. ) routine calculales

the sum:
Z?:O j"f - jl' N

Although the duration(...) funciion calculates the total amount of time required to complete a
job, the algorithm nceds to be mindful of situations where the job contains tasks which can be
performed in parallel. Where a path is detected to contain tasks that have to be performed in
parallcl or contains multiple pathways, the duration routine will make usc of the traversal routine
outlined in section 9.1.2 to assist in calculating the path which should be taken. The path determined
allows the optimal(. .. ) function to identiiy the time required to traverse the path.

Apart from calculating the job duration, the scheduler is responsible for determining a time at
which it can be placed into the schedule. Determination of the start time requires the scheduler to
find a time at which the tasks within a job can be completed successfully while having regard to
the resources specified in the job request. After a proposed starting time has been calculated, the
scheduler ensures there are no other jobs or tasks within the schedule which would stop the proposed
job from being inserted. If it is determined a resource is not available, the scheduler will ignore the
proposed start time and attempt to find another capable of supporting it.

The calculation of the starting time for the schedule is handled by an external function known as
determineJobStartTime(. .. ). This function takes the job to be performed, the schedule and a set
of resources and determines a time at which it can be successfully placed into the schedule ensuring
that all the requirements of the job and schedule are met.

In examining the algorithm, it is necessary to provide some additional definitions. It is desirable to
consider how the resources within the model are defined and how the scheduler represents its own
scheduling information.




161

Definition 5.1.3.1.
For every task performed, a subset of the resources available to the model are associated
with the job for its entire duration. This resource information is stored within the sched-
uler along with the job details lo ensure that those resources requested are evailadle. Let
the model resources be defined such that Resources = r,,...,rn—1 where r; € N represents
a unigue resource identifier and where v; (0 < i < 7, i € N} and where rl € N signifies
the resource limit for the model (ie. number of resources evailadle).

Each of these resource identifiers is responsible for identifying to the scheduler’s real-time execution
engine the appropriate resource which is charged with the responsibility of executing the task.

Definition 5.1.3.2.
For cach job executed by the scheduler, o corresponding entry in the schedule co-ordinales
the resources required and the time at which the job is to be execuied. Let the schedule
entry be a tuple such that scheduleEntry = {j,r,t,d} with j € RpsObs, r C Resources, t
€ R (0 < t < Meox_Period) where Maz_Period € N represents the bounds of the schedule
and d € R (0 < d < Maz_Period). The elements within schedule include:

» 7 is a sequenced observation schedule containing lasks to be performed
o r denotes the resources required by the job

e t represents the time when the job is to be performed. The time is cxpressed as the
number of seconds which have elapsed since epoch (1st January 1970)

e d is the duration in seconds that the job will run

For the remainder of this thesis, ScheduleEniry denotes the set of all schedule entizes as
defined above.

Assumption 5.1.3.2,
In order to place a job into the schedule, it is necessary to first determine a time af which
the job can be placed into the schedule. The time calculaied also needs to ensure that all
the tasks within the job cen be completed successfully, that the resources are available and
that the schedule has enough free space to fit the job in.

To determine this lime an external function is used to celculate an appropriate sterting
time for the job given all of the preconditions mentioned above. The function is defined
as dotermineJobStartTime: RpsObs x ScheduleEntry x Resources x R = R such that
determineJobStartTime(d,5,r,d) = t where (¢ > 0) is the time nominated as the starting
timne for the job.

The determinedobStartTime(. ..) calculates the respective time by taking the time at which the
scheduling period begins and searching for a time where the job can be exccuted successfully and

s . _

G i il e

B P S Ry




162

where the start time does not exceed the schedule’s Max Period. The start time, once determined,
allows the scheduler to calculate the time at which the job will finish. With an approximate start
and finish time, the scheduler is able to check the resources required by the job and ensurc that they
are available for the specified time period.

If the resources are available and there are no other jobs scheduled for the same period, the scheduier
returns the calculated starting time to the calling process so that the optional business domain rules
can be applied. If the business rules invalidate the start time, the scheduler will advance to the
proposcd finishing time and continue the search for another suitable time where the job can be
performed. This search for an appropriate start time concludes when the scheduler either identifics
that there is no more time left in the scheduling period to perform the job or another suitable time
is found. If a suitable time can not be found, an error condition will be raised and the operator
notified.

With both the start and finishing ‘imes calculated, the scheduler applies the optional business
domain rules before scheduling the job. The domain rules are applied in the function known as
prepareJobTimes(...) which takes two parameters. One parameter is the job to be performed and
the other is the calculated start time provided by the scheduler. Given thesc parameters the function
performs a number of calculations and provides both the start and finish times for the job as well
as returning a modified version of the job which conformns to the organisations policy.

For the case study referred to in chapter 7, the Australian Telescope National Facility (ATNF)
specifies the business domain rule that all jobs {(observation schi::dules) must start and finish on the
hour to ensure schedule coliesion. It should be noted that the appiication of the ATNF business rule
may in certain circumstances result in an extended period of idle titne as jobs may not actually be
scheduled to start until the very end of the hour. In such situations the resources allocated to the
job may remain idle for a considerable portion of the hour.




163

Assumption 5.1.3.3,

Before a job can be placed inlo the schedule, the determined start time must first be
assessed by the scheduling process to ensure that it meets any dusiness domain rules
which mighl be enforced by the scheduler. To assess this time and if necessary make
adjustments to both the starting time and the job itsclf, an external function is provided.
This function is defined as prepareJobStart Time: RpsObs x Resources x R — RpsQbs x
Rx R x RpsObs such that prepareJobStart Time(j, r, startTime) — modificdStartTime x
modifiedFinishTime x §' where (modifiedStartTime < slartTine < modifiedFinishTine
< Max_Period).

The prepareJobTimes(. .. ) function works by examining the proposed starting time for the job and
calculating the time difference in seconds between the start time of the job and the top of the hour.
Once the number of seconds past the hour has been determined, a process of examining each previous
second and the resources being used at that second is performed until the algorithin works its way
back to the start of the hour. If all of the resources requested by the job are available within this
period, the scheduler will insert an IDLE task at the beginning of the job which formns the modified
job and informs the scheduler runtime engine® that the modified job and the resources associated
with it are required from the top of the hour.

In addition to the task being inscrted at the beginning of the modified job, a similar task is appended
to the modified job to emsure that no other jobs are placed into the schedule. The idle tasks are
used to expand the time allocated to the job in the schedule, Within these IDLE tasks is a period
of time where the task remains idle before it can continue to process other tasks.

Problem Statement 5.1.3.1.
Given a sequence of jobs to schedule, build a schedule which allows cach job to be com-
pleted successfully while taking into consideration the respective resources that a pariicular
job uses and any organisational rules which the scheduler may be employing. More for-
mally, let: n € N and w = jo,... juw1 be the work which is to be performed with w; €
RpsObs (0 < i < n), build a schedule such that:

1. jr is the set of resources required for each job, that is jr = rp,... ,ra— wilh
ri C Resources ond where each indice corresponds o @ respective job within the
work set (0 < i< n)

2. jt is the set of instances that a particular job is to be repeated within the schedule,
that is jt = coy... ,Cn with ¢; € N and cach indice corresponding to a job which s
to be performed

3. schedule is the set of schedule entries indicating the schedule, that is
schedule = eg,. .., e, with ¢; € ScheduleEntry

4Determines when tasks are to be executed and the resources that they are to be dispatched to.




164

4. determineJobStart Time(3; ,schedule, jri duration(5;)) > 0

Algorithmic Solution 5.1.3.1.
On — Demand Scheduling Algorithm:

startTime, startTime' , finishTime € R;
modifiedJob € RpsObs;

for all jebs in:
Wofiye-r fio1 (0 i< n)

schedule := {¢};

vhile ((Z!ﬁ,!jt.c;) >m
for all i:
if jt.c; > O then
startTime := determineJobStartTime(w.ji, schedule, jr.r;, duratton(w.5));
if startTime < O then
gt.ei = 0;
end
else
prepareJobEntry(w.ji, jr.ri, startTime) -» stertTime’ x finishTime x modifiedJob;
if finishTime < Max_Period then

schedule := schedule A {modifiedJob, jr.v;, startTime', duration(modifiedJob)};
end

jlei = jlieg —1;
end
end
end
end

Like algorithin 5.1.1.1, it is possible to calculate the level of complexity in algoritlun 5.1.3.1 by
determining the relationship between the number of inputs provided and the number of times that
instructions have to be executed. Specifically, the complexity is determined by the looping clements
contained within an sigorithm, especially those containing nested loops.

With each individual instruction being given a complexity of one and looping constraints requiring
three instructions {ic. loop construction, evaluation of the iterator, incrementing the iterator), it
is possible to derive a formula which allows express the complexity of an algorithin, For algorithm
5.1.3.1 the complexity is defined as 4¢2 4- 45 + 1 where ¢ represents the maximum number of tasks
in a job and j represeats the maximum number of jobs which have to be performed.

e e T




165
t [ j | Instruction Count | Growth |
191 19 0
2|2 65 46
313 139 74
41 4 241 102
8114 313 -

Table 5.2: Complexity of Constructing a Schedule

Table 5.2 illustrates the complexity of the algorithm by representing the growth in the number of
instructions performed as the number of jobs and tasks increases. The last row in the table represents
typical values used throughout the simulation of CORES and is indicative of the number of tasks
and jobs which might be scheduled over a fortnightly period.

As the growth rate and complexity algorithm indicate, the number of tasks necded to be performed
impact heavily on the overall performance. A significant contribution to the complexity of the
algorithm is attributed to the 4¢? clement of the complexity fortnula which represents the scheduling
of the tasks contained within a job. The overall magnitude of the algorithm however can be expressed
as O(¢?) although the complexity could potentially increase if external functions which are referenced
introduce additional looping instructions.

5.2 Configuration Manager

Apart from the manipulation of tasks and the scheduling of jobs, the model proposed in this thesis is
also responsible for interacting with registered components and providing them with reconfiguration
management services while ensuring that they conform and operate within their real-time constraints
defined in sections 5.1.1 and 5.1.2. This is achieved through the establishment of a configuration
manager which is responsible for coordinating, controlling and manipulating the model and the
configuration information associated with each componcnt.

5.2.1 Role within the Model

In addition to being able to interact with components, the configuration manager cnables end-users
or operators to intcract with the model and control the manner in which method calls are handled
wlien a request is made for a service located on an unavailable component.

Situatiors resulting in the component being unavailable include a component undergoing a recon-
figuring operation or a component which has been or is being disabled. The current version of the
CORES modc! only cnables support for dynamically updating components on the same machine




166

or allowing the relocation of components within the rcalm of the model. The ability to update a
component provides software developers with the opportunity to introduce additional or improved
functionality which in turn allows the implementation of the model to meet the users requirements or
the organisations nceds. The only restriction imposed by the model on updating a component is the
introduction of additional functionality. New functions or waproved functionality which is intreduied
to the component has to implemented in terms of the old component’s interface definition.

This approach is similar 1o the manner in which the COM/DCOM models works ensuring compat-
ibility with older clients which may be operating threughout the model. Using this model dictates
that once an interface is published, all future implementations of the server will honour the same
interface. During ali reconfiguration activities, the configuration manager is responsible for handling
the exchange of state information between the old and new components. In the event of a component
being relocated from one location to another, it is the responsibility of the configuration manager to
recctve all of the method calls which arrive at the old components location and redizect then to the
new location once the component is initialised and enabled. The forwarding of method calls only
takes place upon the successful completion of all the reconfiguration operations.

One final situation that the configuration manager may cncounter is the possibility of a component
being disabled. In this event, the configuration manager must deal with all of the inbound method
calls and perform the appropriate actions which match the dynamic controls specified within the
method call when the component is unable to proress them (refer to section 5.3).

In addition to handling the various conditions that might arise with each component, the model
also provides for the configuration manager to act as an intermediary between the application pro-
gram (client) and the component {server). This rclationship allows the client, the configuration
manager and the component to exchange information pertaining to the current configuration of the
component.

The bi-directional comrmunication channel established between the configuration manager and the
client allows for the transfer of the operational status of the component, the method calls and pa-
raineters that the server is to execute (rclaying the method calls). It also allows for exceptions which
the configuration manager may receive and needs to send onto the client (relaying of exceptions) or
the results of method calls which liave been executed by the server and are ready to be sent back
to the component. The other bi-directional communication channel established between the config-
uration mmanager and the server is used to transfer component configuration data, method calls and
parameters from the client which are to be performed on the server, results of method calls that the
client has requested the server to run or exceptions destined for the configuration manager and/or
client.

The configuration manager also provides a number of interfaces which clients can use to specify
reconfiguration commands. These commands include being able to place a component into a qui-
escent state, allowing the configuration manager to perforin reconfiguration changes on it as well




167

as providing a means to manipulate the internal state data held within., Another reconfiguration
interface supports the ability to allow the client to specify actions that should be taken when a
comporeit is unable to accept or process an incoming method call.

During the initial CORES meodel startup sequence, the configuration manager is responsible for
instantiating a connection between itself and the component that it is to manage. This process is
only performed when CORES is first initialised or when a new component (server) is introduced
into the system requiring the niad for the component to obtain where possible the relevant state
data. In tases where state data is vequired the instantiation process will arrange and coordinate the
loading.

5.2.2 Architecture of the Model

The CORES model extends the traditional two tiered client/server approach by introducing an
addiiionn! tier represented as the configuration manager. This tier is inserted between the client
and the server and is used 1o form a hybrid two tiered architecture. Using this architectural approach
allows the client and configuration manager to work together and for the configuration manager and
componcent to work together in two separate groups. Figure 5.12 illustrates how the CORES model
introduces the hybrid architecture,

The introduction of th~ third tier brings with it a reformed approach to the transmission of data to
and from the client and component. Data destined for the component from the client must now pass
through the configuration manager which examines the incoming data stream for commands that
may require specific reconfiguration actions. If the data stream does not contain any instructions
which are specific for the configuration manager, the data stream is forwarded on by the configuration
manager to the component for processing. The same process is followed when data is being returned
to the client from the component.

reQUEST] cv
CLIENT F————M INTERFACE | CLIENY
REQUEST
%% CLIENT |m————p| SERVICE
D
% %0%
CLIENT CONFIGURATION SERVER/
MANAGER COMPONENT

Figure 5.12: Client/CORES /Server Architecture




e L

168

As figure 5.12 depicts, the configuration manager plays an important role in allowing data to flow
between the client and the component, With a component being a dynamic object and capable of
being removed or relocated within the model at any point in time (without informing the clients)
comus the need to provide a mechanism where clients can send method calls to a component re-
gardless of its location. Te achieve this, the CORES model, along with the underlying distributed
object framework which handles objects throughout the entire model, ensures that a configuration
manager for a component is always located at the same ‘well known’ virtual memory address even
though the component itself may be shifted. Providing the virtual memory address allows clients to
be able to interact with the configuration manager regardless of the state that the component itself
is in. Once these method calls arrive at the configuration manager, it is the responsibility of the
manager {0 forward them onto the component and to handle the various states that the component
may be in. Discovering the component in a unusable state results in the exccution of appropriate
operations dictating what happens in the cvent that method calls cannot be processed.

5.2.3 Interfaces provided by the Model

The integration of the COLES mode] with a distributed object framework allows nuinerous services
to be provided to clients. One of these services mentioned previously is the ability to be able to
redirect incoming method calls to the component regardless of where the component is located. The
only piece of information the client needs to know is the ‘well-known’ address of the configuration
manager, The configuration manager takes care of redirecting the inethod call to the component or
handling the method call during reconfiguration operations.

From an interface perspective the configuration manager operates in two distinct modes. The first
and most common is known as the ‘transparent mode’. This mode is responsible for passing data
between the client and the server and does not require the configuration manager to actively manage
or manipulate the configuration information associated with the component. The seccond mode of
opcration is known as the ‘configuration mode’ which is where the configuration manager is specif-
ically performing operations relating to the ongoing management of configuration data associated
with the component. This mode may be triggered by a request from the client or from the model
itself.

As part of the ‘configuration mode’, the configuration manager makes use of a number of interfaccs
responsible for inquiring and controlling the internal state of a component. Thesc interfaces control
whether or not the component is put into a logical state supporting reconfiguration opcrations.
The configuration mode also contains interfaces available to manipulate the internal state of the
componcent.




169

Figure 5.13 illustrates the various interactions which take place between the client, configuration
manager and the inplementation of a component known as a server when a configuration manager
receives a request 1o replace the current server with another located elsewhere within the model.

2, Check if verver A iv
. aotive

« Disable server
3. Disatile public interface

4., Sond disabin(...}

F o

7. Extrant state data

rn
»'

9. Conweet to rerver B
10. Sond state data

L 2 J

11. Initialies

F 3

12. Loaded

(serverA,servesB) openation

13, Send enatbile(...)

14. Mapipulate ohject
references

E. Aotivate public interfane

v

1. Send

SERVER B

CLIENT CONFIQGURATION MANAGER
Figure 5.13: Configuration Manager performing a Component Reconfiguration

The process of replacing a component already in use with another begins with the configuration
manager receiving a request (from a client) informing it thac the component providing the service
needs t0 be deactivated and replaced. Contained within the initial reconfiguration request is the
component which will replace the one currently in use. Upon receiving the request, the configuration
manager checks the status of the current component to determine whether or not it has already been
deactivated for other reasons. In the event it has been deactivated the configuration manager will
not attempt to issue any instructions to put it into a quiescent mode.

Where it is marked as being active, the configuration manager will take the appropriate action to
place the component into a quicscent mode. Belore this is undertaken, the configuration manager
disables its own public interface to the component. Performing this operation allows the configura-
tion manager to trap and handle (if needed) all of the incoming method calls dirccted towards the
component.

After disabling the public interface, the configuration manager turns its attention to the component
to be replaced. As it can be performing autonomous operations or processing a method call from a
client, it too must be informed of the pending shutdown and replacement operation. This becomes
a significant issue when state data has to be transferred from one component to another. To
facilitate this exchange, the conﬁgﬁration manager sends a diseble(. .. ) method call from itself to the
component. On receiving this, the component slowly moves towards o gquicscent state as explained
in Kramer and Magee {1990) and is used in such architectures as described in Goudarzi (1999} where




O i i ARG

T A A A A 2 ¢

—

oy

e Ty S 2

——

T

170

the internal workings wherever possible are brought to a graceful standstill so that the state data
cax be transferred or preserved.

After astate of quiescence has been achieved, it transmits a confirmation message to the configuration
manager to confirm that all of the functions have entered a quiescent mode. If a confirmation
message is not received within a certain period of time, the configuration manager assumes that a
total quicscent state could not be achieved. This does not prevent the configuration manager from
extracting the data, it merely increases a time delay before the extraction operation can commence.

When the configuration manager receives confirmation of quiescence or that the tirneout for quics-
cence has expired, the configuration manager will transmit a request for the state data to be either
stored in a persistent store (for fulure access) or for it to be streamed back to the configuration
manager so that it can be sent to the new component. Figure 5.13 illustrates how the data can be
sent from the component to the configuration manager as a stream.

With data now available, the configuration manager is able to connect to the replaccment component
(this may require instantiating the component if it has not been referenced before) and transfer the
state data to it. Once the component replacement has loaded the state data, it may have to performa
series of operations to change itself into a similar logical state as its predecessor. With the state data
loaded and the correct logical state achieved, it transmits a message to the configuration manager
to inform it that it is ready to accept incoming method calls.

The configuration manager will not proceed until a signal is received that it is ready. This condition
cannot be safe guarded with a timeout operation as it can take a variable amount of time to cstablish
a logical state similar to its predecessor. With the acknowledgment that the state data has been
loaded, the configuration manager sends the method call to enable the component and at the same
thne enables its own public interface which it disabled at the start of the reconfiguration process.
Once the public interface is enabled, the configuration manager processes any method calls that
were blocked whilst waiting for the component to become operational and routes the corresponding
method calls on to the correct component, The configuration manager then returns to operating in
‘transparent mode’ while at the same time listening to all communications and events which may
trigger a subsequent switch back to the ‘configuration mode’.

5.2.4 Sequencing within the Model

An important aspect in handling reconfiguration activities is ensuring the inherent logical sequencing
of information and operations flowing between the client and component. This is certainly of somne
concern when coordinating communications between the configuration manager and component.




= e b L S e A et Eoe s

o ihetadh

AL

am .

5.2.4.1 Ensuring Logical Sequence of Interface Calls

A factor when dealing with distributed systems, especially those dispersed over large areas, is the
use of expensive® communication links. In dealing with such environments, it is important to ensure
the cconomical use of interfaces located on remote components. Ensuring the logical sequencing of
interface calls and operations assists in minimising the use of expensive links for method calls which
are irrelevant or used out of sequence.

CORES addresses this issue by incorporating additional functionality into the configuration manager
using the approach proposed in Watkins and Thompson (1998) which introduced the concept of a
proxy where method calls pass through (locally if possible) before being dispatched to the remote
server. The proxy is used in such situations to detect incorrectly sequenced operations with the
help of cached data variables which examine the current method call against the expected® state of
the server, After validating the state of the component and checking to sce if the method call is
expected, it is passed through to the component and the proxy adjusts its cached data variables to
reflect the new state.

In a case where a method call is improperly sequenced, the internal state within the configuration
manager traps the method call and returns it to the client. This approach ensures CORES does
not knowingly commit resources to a method call which will fail as a result of being incorrectly
sequenced.

5.2.4.2 Ensuring Correct Sequence within the Configuration Manager

Based on the architecture of the configuration manager outlined in section 5.2.2, it is evident that
the configuration manager makes use of a mumber of operations to perform a reconfiguration. These
operations are required to be performed in a scquential order so as to be able to facilitate the
successful managenient of configuration information and te coordinate the exchange of data between
the configuration manager and component.

To ensure the level of sequencing required to manage reconfiguration operations, cach individual
operation performed within the configuration manager is designed to ensure that one operation
completes before another is started. This cnsures that the sequencing of the various reconfiguration
operations is correct.

In addition to the logical sequencing of configuration commands, the internal configuration state of
the component must also be strictly controlled. To provide this level of control and to ensure that it
will not be interrupted by any method calls during its reconfiguration, it is placed into a quiescent
state. This state is enginecred through a series of routines built into the configuration manager

SExpensive in the terms of operating costs and/or the time required for data to traverse the link,
%The term ‘expected’ refers to the component being in a suitable logical state to receive the method call.




172

and component. These routings, discussed in Kramer and Magee (1990) along with the sequencing
operations, are important when a consistent component and model is required.

5.2.5 Exceptions within the Model

The handling of exceptions within the distributed environment has always been a challenge. The
problems associated with exceptions traditionally center upon trying to get an exception raised on a
remote server located anywhere on the network and running any combination of operating systeins
and programming languages and architectures and then getting it back to the client. An additional
process complication is that not all programming languages used for either the client or server are
natively capable of supporting exceptions.

The two major organisations behind the distributed object framework, Microsoft initially with
COM/DCOM and now with the NET framework and the Object Management Group (OMG)
with CORBA have approached the problem in two distinct ways. The introduction of the new .NET
framework however does sec the two organisations unifying their approach.

The DCOM architecture approach to dealing with errors centres on a 32-bit data structure known
as a HRESULT. Every time a method call is made within DCOM, the HRESULT recturned from
the method call nceds to be examined to determine if an error has occurred. Unfortunately, this
approach is totally rcliant on the client application checking the return value, rather than having
the architecture force the client to deal with the problem when it arises.

CORBA takes a more direct approach to the handling of exceptions. Under CORBA, if an exception
occurs, an exception object is instantiated within the server object and is returned to the client.
Once the exception is transferred into ihe clients address space it will continue to progress up the
stack of the client programn in scarch of a bandler. If the exception can reach the top of the client'’s
stack, the stack in which the client program is executing is collapsed and the program terminates.
if & handler docs exist then the exception is handled by the corresponding handler and the client
program continues to operate.

Additionally, CORBA provides an alternative approach to handling exceptions for those languages
that do not directly support exceptions but do have a language mapping to the CORBA framework.
When making a remote call the CORBA system passes a SystenEnvironment data structurce which
can be modified Ly the server to reflect that there has been a problem with the execution of a
method call. Upen the return of the method call, the client can chock the SystemEnvironment data
structure to identify whether an error occurred and if so what additional information is available.
In this regard, CORBA’s SystemEnvironment data structure and COM/DCOM’s HRESULT crror
handling system are similar as both require the client to be vigilant when checking the return results
from method calls.

R s

P




173

The new architecture from Microsoft known as NET addresses this issue by adopting the same
termination exception mode used in CORBA. The NET framework now forces developers to respond
to exceptions as they happen during the execution of the method call as opposed to deferring the
problem to a later date. Additionally, inost languages which support the NET framework now have
provisions for native exception handling.

Although CORES is capable of handling cxceptions, it is unable to directly facilitate the transfer of
exception information from server to client. This inability is the result of the underlying configuration
manager architecture. As the configuration mmanager is responsible for relaying opcrations from the
client to component, it is the configuration maunager which receives the initial exception from the
component. If an exception arrives at the configuration manager which is not expected, it will
attempt to interpret the exception as normal. Failing to interpret the exception results in the
configuration manager issuing a rethrow(...) call which sends the exception onto the client in an
attempt for it to handle the error condition.

5.3 Dynamic Controls

One unique feature of the CORES model is the ability to provide end-users, developers and operators
alike with an ability to specify and control the actions that should be taken if a client tries to send
a method call to a component which is not available or is in a quiescent state as a result of a
reconfiguration operation. CORES provides three dynamic controls that can be used to dictate the
behaviour of mecthod calls in these circumstances. These controls are:

e WillWait
« NoWait
e QoSWait

With the introduction of these controls, CORES provides the unique ability to exercise more con-
trol over how to deal with method calls to components and scrvers. Based on the coufiguration
management systems reviewed in chapter 3, most other models and implementations do not pro-
vide. flexibility for end-users or operators to exercise any level of cuntrol. In these situations, the
detection of a component not being available results in the blocking of all incoming method calls
destined for it. The actual processing of the method calls is only pavformed when the component
returns back into service. CORES prevents this occurrence by use of its dynamic controls. These
controls implemented by the model provide a pivotal role in those systems operating under real-time
constraints and where there is an instant need to know if a method call can or can not be performed
by a component.

e ey an e et e ot wn T i 4 o i e il




A e i

ERT3

ke W

e e

it

My

s

5T BT 38

M E W T R R o U i P A 3

e STk RO T T

5.3.1 Dynamic Control Options

This section addresses each of the dynamic control options available within the CORES model
and explains situations in which it is envisaged that using the control would provide end-users or
operators with additional flexibility.

5.3.1.1 WillWait

The ‘WillWait’ dynamic control operation provides end-users and operators with the traditional
functionality found in many configuration managers. The ‘WillWait' option allows a method call to
be blocked at the configuration manager and to remain blocked indefinitely until the configuration
manager is informed by the component that it is ready to receive requests.

As a consequence of its blocking characteristics, the ‘WillWait’ divective is not recommmended for
real-time systems as method calls sent to servers which are not available coula block indefinitely
and may result in certain methods missing their time sensitive cues, Additionally, this control does
not provide the end-user or operator with any relevant feedback as to why a method call can not be
processed.

5.3.1.2 NoWait

The ‘NoWait' dynamic control operation is suited to those systems, end-users and operators who
require accurate and timely information about the status of their components. As the ‘NoWait’
name suggests, the directive does not wait for a component to becomne available. If the component is
unavailable at the time the method call is sent the calling process is notified through the cxception
mechanism. This situation is yscful for those environments which oporate in real-time cnvironments
and where the status of the component and method call is required in a timely fashion so that
alternative actions can be performed if necessary.

The exception thrown to indicate that the component is unavailable may contain additional infor-
mation such as the reason for a component being unavailable and possibly offer a time at which it
may become available again. It is mportant to note that the CORES model places no compulsion
on the configuration manager handling the unavailable component to provide any additional infor-
mation. If the information is available, the appropriate ficlds within the exception will be populated,
otherwise a standard cxception is fcturncd. 1t is up to the component developer to decide how much
information is returned to end-users or operators.




T

T ypar—

.15 b aree

e M

e T R

——

i e

175
53.1.3 QoSWait

The ‘QoSWait' directive provides end-users and operators with the combined fexibility of the ‘Will-
Wait' and ‘NoWait’ directives. In addition the ‘QoSWait' coutrol provides additional options that
can be used to handle what happens when a method call js sent t0 a component not ready to process
requests.

Unlike other dynamic controls, the ‘QoSWait® directive in some cascs allows the wmethod call to
wait until a certain Quality of Service (QoS) condition is met. This condition may include waiting
for another resource to become available or relate to a load valuc having to reduce threughout the
implementation of the system before the method call can be processed. Additionally, the ‘QoSWait'
directive can be used in situations where if the component is not available within a certain period
of time, the method call will give up in its attempt to have thc component process the action. In
this event, an exception will be thrown indicating the reason. The exception may contain additional
information about the method call being rejected but the CORES model places no compulsion on
returning such information. The flexibility of the ‘QoSWait’ control can potentially allow method
calls to be tied into other environments which have their own strict QoS servicing requirements or
constraints.

5.4 Limitations

Although the CORES model brings with it new functionality providing additional control to end-
users and operators, it does not provide a complete reconfiguration management solution. CORES
was principally designed to provide a new level of control over method calls in real-time systemns
and to allow the immplementation of the CORES model to be incorporated into othier reconfguration
management systemns which have been developed. By adopting this design approach, CORES as an
individual entity does have some limitations,

5.4.1 Configuration Manager and Resources

One such limitation of the model is visible when you examine figure 5.12. 1t can be scen in the figure
that the CORES model introduces an extra level of abstraction between client and the component.,
The iniroduction of the configuration manager which provides this abstraction brings with it the
resource burdens required tO maintain an additional component. In large environments where the
mode] is deployed this may result in hundreds of configuration managers looking after their own
specific component, An ideal solution to reducing the burden of the configuration manager on the
implementation of the model could be to incorporate the role of the configuration manager into the
client, the distributed object framework or the component itself.

RPT - R PF g e \a_...,_.:&l

I P R i £ R W I i St IV ST o Lo




176

If the idea of incorporating the configuration manager into the role of the component was to be
adopted, a new or modified architecture would have to be developed to cnable separation of the
implementation froin the configuration manager. Such an architecture would then allow the imple-
i mentation of the component to ‘detach’ itsell from the configuration management section and be
replaced with a new implementation. A similar architecture to the one required can be found in the
J SOFA/DCUP environment (Plasil, Balek, and Janecek 1998) where the component implementation
f and the configuration management section are in the same object.

5.4.2 Task Ordering

As part of its role within CORES, the scheduler is responsible for looking at a series of tasks which
belong to a job and rearranging those tasks until an optimised sequence is found. However when
dealing with jobs that contain no more than one path to the destination, the CORES scheduler will
examine each task as a separate entity and hence provide no support for dependency arrangements.

unks P YT e

LUk s

With no dependency information being processed, cach task is treated as a sclf contained action.
: This behaviour is not exhibited when there is morce than one path to the destination as an ordered
4§ sequence is implied.

i

i s

] The sclieduler does however provide support for the end user to provide a sequence of tasks in a
_ predefined order and have them inserted into the master schedule as given. This process is normally
i used when the end-user or operator has already sequenced the tasks external to the model. Using
this same approach would allow operators or cnd-users to load a serics of tasks dependent upon

i ;
% one another into the model. The only disadvantage of this process is that no sequencing would be '
§ performed.
L4

t 5.4.3 Elimination of Invalid Task Combinations/Jobs
; After the initial identification of tasks within a job, CORES is responsible for generating a list

which represents every possible permutation on how the job can be executed. From the list the
model identifies which job sequences or scenarios are deemed to be valid. It is the application of this
validity rule which highlights the limitation of CORES when it comes t.; thc elimination of invalid
job scenarios.

bt

While processing the permutation list, CORES makes use of a simplistic validity rule which lays out
the tasks to be performed in memory and determines whether they can be completed successfully.
If the sequence of tasks is determined not to be valid, CORES rejects the sequence and moves onto
the next permutation. This process continues until all the permutations have been examined. When

examined further, the job scenario may have been deemed invalid as a result of one or more tasks
being located in the wrong sequence. CORES could improve its validation routine with regard to
its workload and efficiency by determining at what point in the sequence the scenario was ruled




ot Lt s e

i e R S e S T g i g s =

177

invalid. With this information, the validatior :outine could eliminate similar scenarios resulting in
a significant dren in the +- Al amount of processing time required to identify valid scenarios.

5.4.4 Scuueduling 5f Joby into Master Schedule

Once a job has been sequenced and optimiscd, it is passed to the scheduler so that the tasks within it
can be scheduled to exccute at specific time points. To provide this scheduling service, CORES 1nakes
use of an opportunistic scheduling algorithm. Using this algorithm allows the scheduier to identify
the first available location within the schedule where the time is correct, the job can be completed
successfully and the resources avajlable. As explained in Blazewicz, Ecker, Pesch, Sthmidt, and
Weglarz (1996) and Brucker (1998) such scheduling algorithms are used within envirouments where
there is no guarantee of contiguous frec space being available in the schedule. These algorithms
are also uscd when there are periods within the schedule which coutain opcrations that can ¢ffect
the availability (ie. scheduled maintenance). The consequences of v-ing such an algorithm can
potentially lead to a schedule which is not totally optimised from au overall job perspective, but
where cach job within the schedule contains a list of tasks which have been individuaily optimised.

5.4.5 Vulnerability of Configuration Manager

As the configuration manager is a separate entity from the client and the server, additional precau-
tions nced to be taken to preserve the configuration data of the system. One such precaution would
be to have the configuration manager replicated throughout the distributed object framework. This
replication would ensure that a client could always zommnunicate with a server titrough a configura-
tion manager. In the case of a fault, the distributed object framework, which CORES uses, could
activa' = replicated configuration manager and handle the redirection of method calls sent from the
client v the configurstion manager.

As designed, the CORES model provides no replication or heartbeat services Lo ensure the longevity
of the configuration manager. Such support would need to be incorpeorated into the CORES modet
or distributed object framework before CORES could be integrated into any mission-critical envi-
ronment.

5.5 Chapter Summary

This chapter has focused upon the introduction of the Component Orier ed Recunfiguration Envi-
ronment & Scheduling (CORES) model and has identified those areas that form a pivotal role in its
dedinition. These areas include the formal definition of algoritluns used by the model to represent
tasks, jobs and schedules as well as incroducing the concept of a configuration manager to perform




178

various actions during periods where components are unavailable. The CORES model also intro-
duces a set of controls which end-users or operators can usc to govern the actions of method calls
when they encounter components that arc unable to accept their request.

To begin the definition of the CORES model, the chapter formally defined those algorithins responsi-
ble for sequencing and scheduling tasks and jobs while at the same time providing support to cnsure
that real-time constraints operating within the 1oodel are met. The algorithms which make up the
CORES model can be broken into a number of groups. These groups include scquencing, traversing
and processing jobs which contain only one path from beginning to end, sequencing and traversing
jobs which contain multiple paths from beginning to end and an algorithm responsible for placing
these sequenced jobs into a schedule.

The first algorithm formally defined shows how tasks within observation schedules are arranged in
such a manner as to allow the preceding task to be completed before the subsequent task can begin.
This re-arrangement of tasks ensures that real-time scheduling constraints arc met and that tasks are
correctly sequenced. The algorithm alse details how by varying the sequence of tasks and through
the uvse of permutations, it is possible to identify the task sequence which requires the least amount
of time to complete all of the specified tasks. Once the ‘optimal’ task sequence has been identified
it is passed t~: the scheduler for further processing.

The second algorithm presented within the CORES model addresses the shortcomings of the first
by providing an algorithm capabic of traversing its way through a job scenaric where there cxists
more than one way to traverse from the beginning through to the end. The algorithmn presented is
based on the concept of traversing a Direct Acylic Graph (DAG) and is defined with the assistance
of mathematical induction rules and provides a means for sub-paths to be identified and processed
accordingly within a job scenario. The combination: of this algorithm and the re-sequencing of tasks
allows for a number of paths and scenarios to be assessed and for the ‘optimal’ sequence of tasks to
be identified. Like the firsi algorithm, once the ‘optimal’ sequence has been cstablished, it is passed
to the scheduler for scheduling.

The final algorithm formally detailed within the CORES model is that of the scheduling process. As
mentioned earlier, the CORES model makes use of a demand-scheduling algorithm which allows jobs
to be placed into a schedule as soon as a slot is available. This is achieved by having the algorithn
identify the carliest point in the schedule where a job can be completed successfully based on its
requirements and the schedulers’ availability. A closer examination of the algorithm reveals that it
is capable of regulating the time at which jobs can be scheduled. This support enables the scheduler
to cnforce its own policy restrictions on what time jobs can be placed into the schedule.

In addition to providing a formal definition of the algorithms used within the ' #1 £S model, the
chapter introduced the concept of a configuration manager and the role that it ;lays within the
model. Specifically, the CORES model showed how a configuration manager is capable of coordinat-
ing the interactions which take place Letween a client and a component. These interactions extend




179

to the passing of method calls and exceptions and the inanaging of method calls which are directed
towards components that are unable to process the incoming request. The chapter also details how
the architccture of the configuration manager has been designed to allow it to be integrated into al-
ready existing distributed object frameworks. Other arecas relating to the design of the configuration
manager which were discussed included the interfaces provided to clients so that they can control
their connection and issue reconfiguration operations to their corresponding component and the in-
terfaces required by the manager so that it zan control the reconfiguration of components. Issucs
such as the sequencing of operations and the exceptions used within the configuration manager were
also covered.

The CORES model also introduced the concept of dynamic controls which can be used by eand-
users or operators to control the way in which method calls are handled when components are
unavailable. This marks a departure from other reconfiguration enviromments as CORES provides
a level of ‘control’ over how method calls are handled while others would block method requests
until the component returns to service. The functionality to control how a method call is handled
is critical and a welcome feature to those environments in which real-thme responses are required
and where end-uscrs or operators are empowered to control the destiny of their method calls. As
detailed in the chapter, the CORES model presents three types of controls which can be used to
control the actions of a method call which can not be performed. These controls include not waiting
for a component to become available, waiting indefinitely for a component to becomne available or to
link a components unavailability to other Quality of Service characteristics which exist within the
system. The introduction of this support certainly einpowers cnd-users or operators when it comes
to handling method calls.

The next chapter builds on the COLRES model and concentrates on translating it from a conceptual
model to an implementation which can be deployed into existing distributed object frameworks. The
results of this implementation model can be seen in the case study presented in chapter 7.




Chapter 6

Implementing CORES

The previous chapter introduced the Component Oriented Reconfiguration Environraent & Schedul-
ing (CORES) model which assists software developers and end-users with the ability to manage
reconfiguring components in both a dynaric and real-time cnvirenment. As with any concepiual
model, it is important to realise that they are expressed using a number of definitions and formalisms
which may not have been tested. It is the use of such untested definitions and formaiisms which
results in having to verify the model. To address this and to ensure that the mnodel is relevany and
correct, it is necessary to implement it so that a number of solid experiments can be performed and
their results analyzed. These experiments aim to examine the many facets of the mode! and to ensure
its feasibility and verify its design objectives. The remaining chapters present an implementation of
the CORES model and discuss the various resulte from the experiments performed upon it.

This chapter focises on the CORES conceptual model presented in chapter 5 and details how with
further refinements the conceptual model can be implemented. Specifically, the arcas covered are
the architecture used to provide the implementation, evolution of a jeb throughout the CORES
system (inciuding an explanation of the algorithms implemented), handling exceptions within the
system, implementation of a client using CORES, uscr-interface provided to software devclopers
and cnd-users to manage the system, configuration manager, construction and implementation of a
component within the systemn and the real-time execution engine (job dispatcher).

6.1 Architecture

The underlying architecture of the CORES system can be broken into two distinet sections.




181

6.1.1 Hardware

CORES has been implemented on a variety of machines within the SUN-SPARC product range.
Hardware variations werc experienced and were mainly due to the numerous CPU architectures
used by the machines. For the case study in chapter 7, a number of machines ranging from a
SPARCStation-10 through to a SUNUltra-1 and SUNUltra-10 were used, each machine having a
different type of processor.

Processor speeds ranged from 70MHz on the SPARCStation-10 through to 440MHz on the SUNUlira-
10. In addition to the varying CPU processor speeds, each machine contained a differing amount of
memory, ranging from 128Mb through to $12Mb. During the initial trials, the CORES system was
capable of operating on a SPARCStation-5 with 32Mb of memory. All of the nodes used throughout
the implementation of the system were inter-connected over a 10Mb/s ethernet network with cach
network port being individually switched.

6.1.2 Software

Due to a wide number of computing architectures and associated resources being used, it has been
impossible to maintain a consistent operating system across all of the platforms. This resulted in
CORES being tested on a number of different Solaris-SPARC operating systems. In particular:

s Solaris 2.5.1
¢ Solaris 2.6
o Solaris 7

¢ Solaris 8

The underlying components of CORES such as the client, the uscr-interface, the configuration
manager and the components themselves were all implemented in the C++ language. In total, the
CORES system contains approximately 30,000 lines of C++ code of which 79.5% represents actual
source code responsible for performing operations while the other remaining 20.5% is made up from
the respective header files (19.0%) and interface definition language statements (1.5%). The code
behind CORES requires the use of SUN’s SPARCworks version 4.0 compiler which runs under a
Solaris/SPARC architecture and includes the C++ language bindings. This compiler was used so
that third party libraries required by the distributed object framework which are included as part
of the compilation and linking process could be accommodated.

CORES has the capability of being able to communicate with a number of components scattered
throughout a distributed nctwork by using a CORBA distributed object framework implemented
by lona known as ORBIX. ORBIX version 2.0, with its multi-threading options enabled allows for




182

the C/C++ language bindings to be used to implement servers (instantiation of components), clients
and configuration managers. Once implemented, these servers, clients and configuration managers
can be incorporated into CORES.

6.2 Job Evolution through CORES

When a job is introduced for the first time into the CORES system, it must progress through a num-
ber of stages which are responsible for loading the tasks contained within the job and transforming
them into an optimised job suitable for scheduling.

6.2.1 Sequencing of Tasks

One of the most important actions that CORES performs is the scquencing of tasks in the overall
system as the tasks are used to provide a list of all the possible pcrmutations available for a job.
The sequencing process begins by validating all of the information contained within a job definition
file (refer to appendix B.1.1). Once validated, details contained within the file such as the number of
tasks, the resources required and the number of times that a job has to be repeated in the schedule
are recorded. This information is used to provision the amount of memory required to establish a
data structure capable of holding details on all of the tasks within the job.

With the tasks identificd, the sequencer allocates two memory locations in ibe data structure for
each task found within a job. Que memory location is allocated to the actual task to be performed
while the other is used to store a command that readies the infrastructure so that the task can be
performed.

In addition to allocating memory for the tasks and their corresponding infrastructure setup tasks,
the scquencer also allocates additional space for tasks indicating the start and finish of the job.
Depending on the circumstances, the sequencer mnay allocate extra memory within the data structure
to support any additional tasks required to prepare resources specified by the job.

With memory allocation complete, the job is revisited and cach task identified and examined. Task
identification involves counting the number of predecessors and successors associated with cach task.
The count is used to determine whether the task to be performed is standard in nature and enly
has to be performed, a fan-out task where there are more paths leaving the task than entering or a
fan-in task where there are more paths entering the task than leaving,

Based on the links betwecn tasks and the number of predecessors and successors in each task it is
possible to allocate a ‘node type’ for cach task. This ‘node type’ can be cither a type ‘AND’ (used
for normal tasks or situations where tasks have to run in parallel) or a type ‘OR’ (used for those
tasks which indicate a decision flow).

AT i S il




183

The ‘AND’ and 'OR’ node relationship is shown in figure 6.1.

NODE

juraverse(...): NODE

AND OR

waverse(...): NODE| | traverse{...): NODE

Figure 6.1: OMT Diagram reprcsenting the NODE, AND, OR Relationship

Figure 6.2 illustrates the layout of tasks in memory for a sample job after the nodes have been
examined, node types assigned and dependencics identified. The job pictured also contains a multiple
flow path stemming from an ‘OR’ node which can alter the path taken by the job to achieve its goal.
Note that figure 6.2 does not use the Petri Net notation but rather represents the references that
cach node has to one another.

Figure 6.2: Data Structure representation of a Job combining Muitiplc Paths

Whilst the sequencer can handle jobs which include flow paths, the typical job definition file used for
an astronomical observation in the case study involves having observations sequentially sequenced.
The only ¢xception to this lincar sequencing arrangement is when the infrastructure tasks need to
be performed at the beginning of the job.

Figure 6.3 illustrates a typical observation schedule (job) where the initial infrastructure tasks are
performed in parallel and the remaining tasks follow one another sequentially. A task layout such
as that illustrated assists the sequencing algorithm by allowing tasks to form one to onc mapping
with an clement representing the task within an array.

The samne sequencing approach is not possible for a job coutaining muliple flow paths as cach flow
path within the job must be identified, extracted and sequenced. Once the various sequences within




A
:
i
1)
x

it e

ST oo

BT

184

the sub-flow path have been identified, they then have to be integrated back into the original job.
This results in the construction of additional scenarios as cach permutation of the sub-flow path has
to be added to the original job.

Figure 6.3: NODE representation of an Astronomical Observation after Sequencing

The task sequencer which is invoked after the tasks have been loaded works by establishing an array
of pointers corresponding to the varicus tasks. Using the pointer array allows the task sequencer
to manipulate the logical ordering of tasks without the manipulation of the initial data structure
which represents the job scenario.

Upon the establishment of the pointer array, a permutation algorithm is employed to manipulate
the required indexes to allow various permutations to be identified.

The permutation algorithm shown in figure 6.4 demonstrates how the algorithm uses recursion to
manipulate the indexes to generate the various sequences. When the permutation algorithin is first
instantiated, the initial ordering of the job scenario is recorded.

With the initial permutation recorded the algorithm can start to transpose and promote digits from
the far right to the left of the index array. The following example outlines how with three tasks it is
possible to generate six permutations representing all of the possible ways that the three tasks can
be performed by the transposition of digits within the indexing array.

The initial array of indexes pointing to the tasks can be represented as:
12,3
Performing the transposition gives the following permutations:

1,32
2,1,3
2,3,1
31,2
3,21

These results allow the algorithm to represent cach permutation of a job and allows cach possible
sequence to be registered in order that it can be traversed at a later date.




ST

s T

185

int calculatePermutations
(int *permutation,int currentNumber,
int number0fElements,PermutationCombination *permutationTable)
C...]
if (currentNumber == pumberOfElements) // Permutated Entry complete
return (permutationTable->addNewCombination(permutation));

for (digit = 1; digit <= number0fElements; digit++)
{ // Ensure that we use every digit only once

it (isDigitUsed(permutation,currentNumber,digit))
continuwe; // Digit is used, get another one

permutation[currentNumber] = digit;
calculatePermutations(permutation,currentNumber+1,
number0fElenents,permutationTable) ;
}
£...]

Figurc 6.4: Permutation Algorithm

6.2.2 Traversing Permutated Jobs

Once the permutations have been registered, each permutated job path is traversed in an atiempt
to determine which paths are viable (eg. star is above the horizon} and which path requires the
least amount of time to traverse.

As cxplained in section 5.1.2, the traversal routine uses a simple algorithm to navigate the job
scenario. Using recursion, the algorithin starts at the initial node and processes each successor while
at the same time ensuring that the task can be completed at that point in time. The algorithm
also checks that the predecessors of a task have been completed before the task is executed. If
the predecessors for a task have not been completed the algorithm recurses back through the job
scenario until it can find another path in which to proceed,

The traversal routine plays an important part in the calculation of the total time required to navigate
a job scenario, As the routine examines each task, it extracts both the minimuin and maximum
amount of time required to perform it. Given these two numbers, the traversal algorithim will select
the appropriate time based on whether it is calculating a best case or worst case time scenario adding
the corresponding time value to the tutal time spent traversing the path. In most cases the traversal
routine will be scarching for the shortest path.

The challenging issue of processing multiple flow paths within a job is handled by the generic
traverse(...) function. This function uscs the object oriented programning paradigm concept
known as ‘izheritance’ to provide a specific version of the function depending on the node type.




186

Using this concept allows the traverse(...) function to meet the specific needs of calculating the
time spent on a series of tasks flowing from either an *AND’ node or an ‘OR’ node.

// First Succassor Being Processed
forwardTraversallList.successorl->
traverse(this,timeCalculated,...);

// Subsequent Successors Being Processed
foruardTraversalList. successor2->
traverse (this,
timeCalculated-getTaskTime(),...);

Figure 6.5: Processing Successors in an AND Node

// All successors processed in the following manner
forwvardTraversalliat.successori->
traverse(this,timeCalculated,...);

Figure 6.6: Processing Successors in an OR Node

The code segments in figures 6.5 and 6.6 illustrate the differences between the traverse(...) func-
tions. Figure 6.5 demonstrates how subsequent successors of the ‘AND' node require thic accumulated
time for the current task to ve removed. Performing this subtraction prevents the double counting
of the current task’s time when at a future point all paths which originated from the current node
arc combined. Figure 6.6 demonstrates how all the ‘OR’ node traversals are passed in the same
time. The climination of the current node’s time for *OR’ paths is not required because when the
paths are converged, only the optimal path is sclected.

Once a job scenario has been traversed, the path taken and the total time speat traversing the
scenario is recorded. When all of possible permutations have been examined, the system selects the
scenario that satisfies the criteria the operator has specified. In wnost cases, the scenario with the
shortest traversal time is sought.

After the desired seenario has been identified, it is passed to the scheduler for scheduling.

6.2.3 Scheduling of Tasks

The scheduling process is responsible for taking a job and its required resources and locating a
position in the overall schedule where the job will complete successfully. The scheduler also has to
be aware of other jobs and resource allocations which have alrcady been committed to the sit.vdule
to avoid any clashes of time slots or resources.




T UL [ WE T T A e

T R T LT LRI E E T R P

L A

mgrann A,

L iz

T ——

187

The design of the scheduler from an implementation perspective represents a different approach to
the way that scheduled tasks are stored within memory. The initial scheduler design called for the
cstablishment of a data structure capable of tracking every second within the scheduling period. The
metaory requirements for such a data structure (even for a small scheduling period of two weeks) is
quite significant, particularly when combined with a number of resource requirements. In addition
to the memory usage, the scheduling approach results in a large number of resources being used to
support its on-going management,

To overcome & problem of an unmansageable data structure, a new appreoach to storing the scheduling
information has been developed involving the restructing of how scheduled jobs are placed into and
represented within a schedule. This new approach has led to redeveloping the way in which the
dispatcher and other supporting tasks interact with the scheduled jobs.

Rather than tracking each second within the scheduling period, the new approach only records the
deltas or changes made to the schedule. This approach also simplifics the role of the dispatcher as
it has only to move through the schedule and execute tasks as it finds them. This is remarkably
different to the dispatcher which was going to use an alternative scheduling approach involving it in
examining each sccond to identify whether a task bad changed and executing it.

The technigue of recording deltas in the schedule as opposed to accounting for cvery second leads
to a significant decreasc in memory requirements to establish the scheduler’s data structure. This
reduction can best be demonstrated by comparing how both scheduling techniques are used to store
one job consisting of ten tasks operating over six resources for the period of one hundred minutes
where in cach ten minute period the task will change.

Using the first scheduling technique (accounting for every second) the scheduler allocates an array
the size of 100 (minutes) % 60 (scconds per minute) x 6 (resources) = 36,000 elements. I each
element contains 512 bytes of information, then the total schedule data structure size would be
36,000 (clements) x 512 (bytes per clenent) = 18,432,000 bytes or 17.58Mb to record 100 minutes
of scheduling information.

Using the second scheduling technigue (only the deltas arc recorded) requires the scheduler to allocate
an array the size of 10 (100 minutes / 10 tasks) + G (1 initial sctup x 6 resources) x 6 (resources)
= 96 clements. If each clement coutains 512 bytes of information, then the total data structure size
would be 96 (elerents) x 512 (bytes per clement) = 49,152 bytes or .04Mb. The result is a massive
99.73% reduction in the memory requirciients when utilising the second scheduling approach.

The process of scheduling jobs, mentioned in section 5.1.3, commences with the scheduler obtaining
the number of jobs awaiting scheduling together with the total number of job placemnents (jobs to be
inserted innto the schedule multiple times). After the calculation of the job numbers, the scheduler
takes all jol> instances and establishes a loop. This loop known as the ‘outer loop’ continues to
perform until there are no more job instances awaiting scheduling. Nested within the ‘outer loop’ is
a ‘inner Joop’ which iterates through the various jobs awaiting scheduling.




188

Once a job is identified as requiring scheduling, the scheduler commences the process of finding a
time at which all the tasks within the job can be performed successfully while ensuring that the
resources required are available and that the job will not clash with any others alteady scheduled.
The scheduler calculates a starting time for the job by testing times from the start of the scheduling
period through to the end. Once a time has been selected, the system checks to see whether the job
can be performed.

Where a starting time has been calculated for a job, the scheduler will perforn a number of checks
to ensure that the calculaied time frame will fit into the schedule, The cliecks performed include:

1. Checking to ensure that the calculated finishing time of the job fits within the scheduling
period

2. Checking the schedule and confirming that a window of idle tilne from the calculated start
time to the finish time

3. Checking to cnsure that all the resources which have been requested by the job arc available
for the calculated time period

All of these checks are implemented by scarching the schedule for the nearest event to the proposed
starting time. Once located all subsequent entries within the schedule are examined to ensure that
the above conditions are met.

All conditions being met, the scheduler will indicate that the calculated start time is valid and
will continue with the processing required to schedule the job. In the Cvent that one or more of the
conditions is not satisfied, the scheduler will continue to try and find a start time where all conditions
can be met. Where an appropriate start time can not be calculated within the scheduling period, it
is assumed that the job can not be scheduled and the scheduler moves onto the next while notifying
the end-yger that the previous job iz no longer schedulable. When this gecurs, the associated job
instances are set to zero to prevent the scheduler from trying to re-schedule it at a later date.

With the start time confirmed the scheduler performs one final assesstent to ensure that the pro-
posed start and finish times of the job satisfy the business domaijn rules enforced by the scheduler
before scheduling the job. As introduced in chapter 7, the Australian Telescope National Facility
imposes g sct of business domain rules which ensurc that jobs must stary and finish on the closest
hour. In certain jobs, it may be impossible to adjust the starting or finishing time of a job to match
the rule and therefore the scheduler allocates ‘idle time’ to the job.

Periods of ‘idle time' are represented within the schedule as special tasks so as to prevent the
scheduler from overwriting the period with a different job.

Once allocated ‘idle time’ has been placed at the beginning and encd of a job, the actuat placement
of the job within the schedule can begin. Job placement involves going through cach task within




e e T T

Sl p e e

ot e R T T

LT W

iR

y M T T T o g T o

iy

B AT Al tosker, PG R AP i T 2

189

the job and registering the resources and time block required within the schedule at the appropriate
time specified by the task. Once registered, no other job or task can be allocated to the same time
period using the same resources. It is possible however to alluw different jobs to be executed at the
same time providing that they do not use the same resources.

The job being scheduled results in the scheduler decrementing the job instances count associated
with it and moves onto the next job which has one or more job instances awaiting scheduling. This
process continues until there are no more jou instances awaiting scheduling.

6.3 Client / User Interface

Using a slightly modified client/server architecture as the underlying CORES communication mach-
anism, allows clients wishing to make use of a particular service to connect to the configuration
manager responsivle for managing the component providing the service. The modification to the
client /server architecture is evident when the relationships between the client, configuration man-
ager and the component providing the service are identified. This new architecture gives CORES
clients more control over the way they interact with the scrvice. Figure 5.12 identifies the relation-
ships between the client, configuration manager and component providing the scrvice. As the figure
illustrates, rather than forming a connection from the client directly to the service provider, CORES
requires all clients to communicate with the configuration manager, With the initial connection
formed, it is the responsibility of the configuration manager to relay the requests to the component
providing the service.

In addition to providing support for clients, the CORES system provides a user-interface allowing
cnd-users or operators to specify instructions to the system as well as having the system provide
real-time information relating to its status. An example of an interface based on the case study is
presented in chapter 7 and illustrated in figure 6.7.

Figure 6.7 identifies that the user interface consists of three window pancs. The pancs have been
specifically designed to provide operators or end-users with the opportunity to monitor the various
parts of the CORES system while at the same time being able to provide commands.

The first pane provides the operator with real-time information about the components within the
systein while at the same time displaying the progress of tasks. The sccond pane provides information
to the operator or end-user including details about events happening within the CORES system.
The scheduler also provides messages to this window including whether a job can be scheduled,
what tasks are currently running and when a scheduled task is to finish. This panel is also uscd to
report any errors which may have occurred while performing tasks such as sending method calls to
unavatlable components or system crrors which the component may have cxperienced.




i

o

el apeabease bl Ronask mduau ¥1

Fﬁh FITT0:TE - 10 Jan B2 wlompact  Arrage LET: @7:17:51 - 18 Jan O3 .l
f:Ecation_16 2:8tacion 17 I:Ecation 24
Rziwsth:148.37 degrean Azisuth:148.33 degress fizieuthi148.33 degreec
Icvation: 42.59 degress  Elevationt 42.59 dogrecs Flevationt 42,59 degreos
Receiver: thlcm Recelver: Chicw Recaiver: EkZcm
4t8¢at jon 31 Siftation 35 6:5tation 7
Acimurh:148.37 degrees Azimuth: 148,33 degreex Azdmathit 48,33 degreee
Jevation: 42.59 degroes Elevation: 44.5% degreez Elevation: 42.59 degrees
Rateiuer: chicm Hecedver: GAdem Recelver: 6Rhlcm
Obtervation Stac

Scheduler started
Antennas 1,.2.33 Tracking: HDBP4763 until 23:38:31 (18-91)
2:26:31 {18/913: @ntennas 4,.5,6¢ 'er:hing: HOI4961 until 23:00:31 {18.M1)>
3130132 18,013 fAntennas 1,2.3.4.5.6: Slewing to: HDL@L20%. Azisuth: 148,33 4
pgrees,. Elsvation: 41.98 degroes

2:26:26 <18/B1>:

Ea:zs o ce/e1)

Conmands
1 schedule DIDOS

1 censtruct-schedule

Echodule constraction can take a conziderahle period of tine, Proceed (Y/N1t y

I go
! K
Ld

Figure 6.7: Sample of the User Interface for the CORES Systemn

The final pane presented on the user interface is the command line. The command line denoted by
the prompt ‘]’ is used to provide a range of connmands (refer to appendix C.1 for a complete list of
commands which can be specified at the command line). These commands control both the under-
lying system which executes tasks and the CORES system which is responsible for reconfiguration
operations or determining actions to be performed when a component is no longer available.

A command of importance in CORES is the reconfigure-mode. This command allows CORES to
change the behaviour of method calls originating from the client and handled by the configuration
manager. As detailed in section 3.3, the CORES system provides three reconfiguration modes:
WillWait, NoWait and QoSWait which control how the client and the configuration manager respond
to components which are not available. These dynamic controls also effect the selection of the
appropriate exception harnesses which are used in the client and the configuration manager tn
enable a response to any exceptions received. These conditions may reflect an error in the system
or a reconfiguration event.

Both the client and wser interface are able to provide a level of control by manipulating the
ModuleUnivailableIngtruction data structure loceted within the ModuleAvailability defini-
tion shown in figure 6.8. For each method call that the client, user-interface and real-time execution
engine dispatch, a corresponding HoduleUnAvailableInstructionis sent to ensure that the config-
uration manager knows the operations to perform if the component is unable to process the method
call.

Figure 6.9 provides a segment of code which the client uses to setup the environment where method
calis will not wait for a component if the method call can not be processed. This figure also illustrates
that both the client and real-time execution engine located within the scheduler are informed of the
new reconfigurationOptions.




191

module ModuleAvailability
{
enum ModulelUnAvailableAction {NoWait, // Don’t wait if object is
// unavailable
WillWait, // Wait until object is available
QoSWait}; // Quality of Service Wait
gstruct ModuleUnAvailablelInstruction
{
ModuleUnAvailableActicon anlnstruction;
};
};

Figurc 6.8: Module Availability Data Structure

theScheduler.setReconfigurationOptiona(ModuleAvailability: :NoWait,0,...);
anlnstructionSet.anInstruction = ModuleAvailability::NoWait;
anInstructionSet.someQoSDuta.timePreparedToWait = 0;

Figure 6.9: Client adjusting Reconfiguration Options

The code sample shown in figure 6.10 illustrates how the ModuleUnidvailableInstruction data
structure is parcelled with a method call being made to a configuration manager. The code illustrates
a request destined for a configuration manager to process a series of Quality of Scrvice (QoS)
requircments if the component is unable to accept the request when a method call is sent.

// Build the request, pass in the parameters and invoke it
configManager << CORBA::insert{QoSProceasing::_tc_{JQoSAction,
&QoSToSatisfy, CORBA::1nMode)
<< CORBA::insert{ModuleAvailability::
_tc_ModuleUnAvailableInstruction,
kanInstructionSet, CORBA::inMode)
<< CORBA::insert(ExceptionHandlinyg:: _tc_ManualException,
kaManualException, CORBA::outMode);

aRequestForTheObject.invoke () ;

Figurc 6.10: Assembly and Transmission of QoS Reconfiguration Information




Ak T S T A

515 S L T

e A

192
6.4 Configuration Manager

The configuration manager provided as part of the CORES system and described in section 5.2 is
responsible for processing incoming method requests and determining whether or not the intended
compounent is capable of recetving them. If the configuration manager determnines that the request
can be passed through to the component, then a number of operations are performed. These include
having the configuration manager cache any data variables which can be used to speed up future
data enquiries as well as adjusting any internal states used to ensure the correct logical sequencing
of operations. When the operations have been performed, the configuration manager forwards the
request onto the intended component.

Requests which can not be processed by the component result in the configuration manager per-
forming a number of operations to ensure that any instructions contained within the accompanying
ModulelUnAvailableInstructionr data structurc arc processed accordingly. Typically, components
are unavailable as a result of reconfiguration operations.

Figure 6.11 illustrates the processUnAvailability(...) function which is responsible for taking
the availability instructions (instructions to perform when the component is not available), the time
at which the component will be available (if specified) and the object reference to the component
itself and determine what action needs to be performed.

The figure demonstrates that if the NoWait or QoSwait dynamic control with invalid QoSCriteria
data is passed into a component that is unavailable, the processUnAvailablity(...) funclion will
throw(...) an exception resulting in control being passed back to the configuration manager and
then to the clicnt.

void processUnAvailability
(const ModuleAvailability::ModuleUnAvailableInstruction
%availabilityInstructions, ...)
{
if (availabilityInstructions.anInstruction == ModuleAvailability::NoWait)
throw ObjectBeingReconfigured("Object is currently being reconfigured.®);
if ((availabilityInstructions.anInstruction == ModuleAvailability::WillWait)kk
(availabilityInstructions.someQoSData.timePreparedToWait == 0})
throw QoSObjectInvalid
{"The time value specified in the QoS structure has not been specified.™);
[...]
}

Figure 6.11: Processing of Reconfiguration Information




S e

L s

‘]
PRl LR

semth

R SRR e dsnca o

i
3

193

Table 6.1 lists those exceptions which the client and the configuration manager must be pre-
pared to handle for cach method call sent to the configuraiion manager and component. The
processUnAvailability(...) function is responsible for raising those exceptions which match the
requirements of the instructions passed in with the method call. These exceptions are initially
cought by the configuration manager and then the corresponding valuc in the SystemException
data structure is set. This structure is then sent to the client to indicate that an exception has been
raised and needs to be handled.

CORBA::SystemException ModuleAvailability::Object BeingReconfigured
ModuleAvailability::QosObjectBeingReconfigured  ModuleAvailability::QoSObjectInvalid

Table 6.1: Configuration Manager Exceptions

NOTE: CORBA::SystemException is a base class which resembles a number of exceptions.

The SystemException data structure is used to signify exceptions rather than using the throw(...)
mechanism for two reasons. The first is to ensure compatibility across those systems that have
no native support for exceptions. The second rclates to the underlying CORBA framework which
CORES uses. The CORBA framework within CORES was developed using Iona’s ORBIX product
which at the time of development and implementation was unable to support the throwing of any
user defined exceptions between the component and client. This led to the development of the
SystemException data structure being used as a means [or passing user defined exceptions between
the CORBA framework, the component and client?.

In addition to being responsible for handling method requests destined for components which are
unable to accept them due to their reconfiguration commitments, the configuration manager is
charged with the responsibility of establishing the initial connection between itself and the component
as well as acting as the choreographer for reconfiguration operations.

The pracess of establishing the initial connection to a component involves the configuration manager
taking an object reference which it has veceived and requesting a connection to be cstablished. Upon
establishment?, the object reference is committed and use for all subsequent communications until
the component is no longer used or a reconfiguration operation has resulted in the reference chonging.

Object references which are textual representations of the location and interface of a component, arc
used within the configuration manager to allow the flexibility of being able to dynamically update
the location of the component. As the component location changes, so does the object reference
recorded in the configuration manager.

IThe user defined exceptions being referred to are customised exceptions which operate between the configuration
manager and the client to reflect reconfiguration information. They are not lona’s system exceptions.
2The underlying CORBA framework in the ORBIX package takes care of the establishment phase.




E
i
¥
§
i
B
!
LR
%
R
i
b

i A L i T et

i

B Ty ——

iR

ST T

194

The decision to place the configuration manager between the client and the componeni was en-
gineered to overcome the inherent difficulties in making use of other approachies such as Iona's
implementation of filters. Filters as implemented in the ORBIX product allow developers to attach
two additional classes to the component they arc implementing. One of these classes acts as a
pre-filter while the other a post-filter. These filters provide developers with the ability to intercept
method calls before they arrive at the component and after they lcave the component.

CLIENT PROCESS SERVER PROCESS

REQUEST
CLIENT | ORD
REPLY

Figure 6.12: Pre and Post Filtering in Iona's ORBIX

Figurc 6.12 illustrates the relationship between the client, request, reply, filters and server (in-
stantiation of the component). At first glance, the filter approach scems ideal for the role of the
configuration manager, however the implementation provided by ORBIX results in both the pre and
post fillers being destroyed when the server process providing the implementation of the component
is deactivated or replaced. This destruction makes the filter approach unusable as it is ot possible
to provide a consistent ‘well-known’ location for the configuration manager. Additionally, the filter
implementation developed by Iona is proprictary in nature and would make porting CORES systemn
to another system very difficult.

The solution to the problem led to the introduction of the configuration manager and placing it
between the client and the component. Having the configuration manager between these two entities
allows the client to deal with the configuration manager at a well known address while allowing it
to manage the configuration and reconfiguration of & component.

Steps involved in reconfiguring a component;
» Ensuring that the component being replaced is in a consistent state®

¢ Ensuring that the data from the component to be replaced can be extracted in a safe and
consistent manner

3The component may naver reach a totally consistent state ag a result of internal processing, but the reconfiguration
process attempts to place the component into the best possible state to support reconfiguration.




e A IS B 5y B0 a3 A 1

ok TR A bt AL

S o

195

¢ Ensuring that the new compouent which is to replace the old has been initialised

» Ensuring that the object reference of the new component has been recorded within the config-
uration manager

o Ensuring that the state data from the old component can be transferred to the new component

To meet these goals, the component reconfiguration routine is broken up into a scries of scgments.
Each segment focuses on a particular section of the reconfiguration process, The first segment of
code {figure 6.13) is responsible for initialising a semaphore which ensures there is no concurrent
access to the component during the reconfiguration process. Fhe use of this semaphore is widespread
throughout the configuration manager as each method call which passes through must first check
and gain exclusive access to the semaphore before performing its operation. In addition to the
cstablishment of the semaphore, the code demonstrates the configuration manager sending a request
to the component to commence the quiescent process.

[...]
mutex_lock (&m_reconfiguringComponent);
reconfiguringComponent = 1;

CORBA: :Request aRequestForTheObject(objectPtr,"disableAntenna");
aRequestForTheObject.send_oneway();
...

Figure 6.13: Commencing the Reconfiguration Process

The remaining segment of code shown in figure 6.14 is responsible for organising and coordinating
the extraction of state data from the component which is to be decommissioned and migrating it to
the new component. As the reconfiguration function is responsible for migrating data it is necessary
to provide a method to allow the transfer of data. A number of methods exist to facilitate this
transfer including the use of a persistent file, establishing a direct link Letween the old and new
components or making use of another form of inter-process communication. The migration of data
between the various components in the case study is handled with the assistance of a persistent file
which both components share through a common file system.

After the state data has been extracted from the component, the configuration manager proceeds to
contact the new component to confirm its accessibility and so that the object reference of the new
component can be obtained. Once obtained from the component, the object reference is recorded
for future use. The actual process of using the new object reference does not take place until the
component is enabdled. Upon the successful loading of the state data, the component initialises its
internal state. Figure 6.14 illustrates the code that the configuration manager uses to coordinate




B Ty WL T T L,

Ty

ey

PAMETE T it L

- e etani T R

196

the transfer of state data from the old component to the new. Additionally, this code shows the
replacement component being enebled with the enableAntenna() command.

[...]
aRequestForThe(bject.reset (objactPtr,"saveAntennabData");
aRequestForTheObject << CORBA::insert(_tc_stringStructure, &antennaDataFile,
CDRBA: : outMode) ;
aRequestForTheObject.invoke(}; // Perform the operation
aRequestForTheObject. reset (newlbjectPtr, "restoreAntennaData”);
aRequestForThelbject << CORBA::insert(_tc_stringStructure, &antemnaDataFile,
CORBA: ; inMode) ;
aRequestForTheObject.invoke{(); // Perform the operation
aRequestForTheObject.reset (newlbjectPtr, "enableAntenna");
aRequestForTheUbject.send_oneway(); // Perform the operation
[...]

Figure 6.14: Finalising the Reconfiguration Process

The remaining part of the reconfiguration process involves manipulating the object reference which
is used by the configuration manager to transmit method calls to the components. The process of
exchanging the object references involves placing an exclusive lock on the object reference identifier
(to ensure no concurrent accesses), releasing the memory allocated to the old reference, allocating
memory for the new reference, assigning the new reference to the configuration manager and releasing
the exclusive lock so that requests can be forwarded onto the new component.

6.5 Server / Component

The role of the component or server as it is known within the CORBA architecture is pivotal to the
CORES system as it is responsible for providing the implementation of the service. The only role
that CORES provides is the medium (implemented via the configuration manager) to link requests
from the client through to the implementation provided within the component.

Although CORES places little restriction on how a component is developed, it does if they desire, to
have it integrated into the CORLS system or have the configuration manager exercise some level of
control over the component. In order to make a component manageable by CORES, the developer
must implement at the very minimum the interfaces shown in figure 6.15.




interface Antenna
[...]

boolean restoreAntennaData(...); // Restore state data
boolean saveAntennaData(...}; // Save state data
oneway void enablefntenna()}; // Commence Quiescent mode
oneway void disableAntenna(}; // Leave Quiescent mode

{...]

Figure 6.15: Interfaces required by a CORES Component

These interfaces are used by the configuration ntanager to exert a level of control over the component.
Specifically, the component must provide a routine which allows the configuration manager to extract
the internal state data and to keep the data in a persistent form while awaiting transfer to another
implementation or component. In addition to providing a routine which allows the configuration
manager to extract the data, tho component must provide a routine capable of receiving data and
being able to initialise its internal state based on the data received. In some cases this may result
in the newer implementation having to contain conversion routines so that old daia strcams are
intespretable,

The remaining two interfaces are used to manage the quiescent state of the component so that
the configuration manager can ¢xtract the state data held within the component, The use of the
interfaces assists the configuration manager in ensuring that the component is consistent when
managing its internal state or while it is performing reconfiguration activities.

As the implementation and requirements of a component differ with a situation and implementation,
it is impossible for the CORES system to prescribe a way of being able to control the consistency and
quicscence within a component. As an example, the components presented in chapter 7 are designed
to make use of a scmmaphore and a boolean value to indicate that the component is enabled and
opcrating. Each routine performed within the component continually checks the boolean variable
which is guarded by a secmaphore to ensure that the comnponent is still enabled. When the variable
is toggled to reflect that the component has been disabled and is entering a period of quiescence, all
of the internal routines where possible? return to a state of quiescence. Each routine waits until the
boolean flag is reset and semaphore released before resuming an ‘active’ state within the component.

When the state of quicscence is achieved, or the timeout valuc for quiescence has cxpired, the
component is ready to support reconfiguration activitics including the extraction of the internal
state data.

1In some cases it may not be possible to halt ali of the internal processing being conducted by a component. Svery
attempt is made to put the component into a quiescent state.

B A S SO




198

6.6 Exceptions

Exceptions and the ManvalException data structure within the CORES system provides a means
for various communications. These communications can be categorised into the following:

o Client receiving exceptions from the configuration manager
o Configuration manager receiving exceptions from the component,

o Client receiving exceptions from component after being relayed from configuration manager

In addition to the identification of those communication categories for exceptions, the exceptions
used within CORES can be divided into two groups. One group refers to those exceptions used by
the configuration manager to indicate that a method call can not be forwarded to a component due
to reconfiguration operations. The exceptions commonly associated with reconfiguration operations
are contained in table 6.2.

ModuleAvailability::Object BeingReconfigured  ModuleAvailability::QosObjectBeingReconfigured
ModuleAvailability: :QosObjectInvalid

Table 6.2: Reconfiguration Event Exceptions

The ModuleAvailability::0bjectBeingRecontigured exception is the mnost commonly encoun-
tered exception by the client and results from performing reconfiguration operations. This exception
is raised when the system is operating under the dynarmic control NoWait and a method call attempts
‘o access a component that is not available. The remaining exceptions in table 6.2 are gencrated
when the systein is operating within the QoSWait dynamic control and cncounters a component not
available. The exception (ModuleAvailability::QoSObjectBeingReconfigured) is raised when
QoS characteristics passed in with a method call via the QoSCriteria parameter can no longer be
met as a result of the component being unavailable. The NoduleAvailability: :QoSUbjectInvalid
exception is raised in similar circumstances except that rather than being raised when the QoSCri-
teria can not be met, it is raised due to the QoSCriteria data structure carrying invalid data or not
being properly formatted.

The remaining group of excepiions dealt within CORES is slightly harder to identify. The difficulty
stems from the actual implementation of the component where a component designer may cause
any number of pre-defined system exceptions. An example of such exceptions include ‘Divide By
Zero’ through to user defined exceptions which are created by the developer and embedded within
the implementation of the component. As CORES is able to handle both user defined and system
exceptions it is not possible to producc a table of every expected exception. However the ost
common exception which fits this category is the CORBA: : SystemException exception classes.

|
!
5
1




159

Given the identification of the exception commmunication paths it is possible to associate exception
groups with the various communication paths provided in CORES. Table 6.3 highlights the exception
groups which can be found communicating within the different parts of the system.

X Communications Client <.> CM { CM <.» Component | Client »-» CM <-» Component
Exceptions o
Reconfiguration Exception v v X
System Exception v v v

Table 6.3: Comnmunication Paths and Exception Groups

Note: CM refers to Configuration Manager.
Note: Reconfiguration exceptions are delivered to the client through the ManualException data structure.

Table 6.3 confirms the special programming relationship between the client and configuration man-
ager as both need to be programmed in such a manner so as to support the reconfiguration exceptions
group. From the perspeciive of the client, specific attention must be given to the various types of
exceptions which may be returned by the configuration manager. Each method call made by a client,
must be encapsulated within a harness to trap any exceptions from the configuration manager and
when detected dealt with by the client. From the other side the configuration manager must cnsure
that it correctly identifies the exceptions it receives when processing the components availability.
Any exception information obtained is used to populate the ManualException data structurc which
is sent back to the client. Additionally, each interface within the interface definition file for a config-
uration manager must include a list of expected reconfiguration exceptions (refer to table 6.2). This
list is required by the underlying ORBIX architecture so that it can compile the code associated
with the configuration manager and is not a restriction placed upon the configuration manager by
the CORES systcin,

Exceptions originating at the component and destined for thie configuration manager can fit into
one of two categories. The first category to be considered are those exceptions which belong to the
reconfiguration exception group. Exceptions fitting into this category allow the configuration man-
ager to receive information from the component regarding its configuration status. The most specific
instance of this is the communication which takes place in the form of exceptions between the config-
uration manager and the processUnAvailability(...) function. Information passed between the
availability function and the configuration manager is used to construct the ManualException data
structure which is sent to the client. Additionally, any information contained within the reconfig-
uration exceptions group can be used by the configuration manager to reactivate any method calls
which have had their conditions met. The information contained within these exception structures

s e A A e e e e e e




200

can be vitally important for any method calls blocked as a result of data held within a QoSCri-
teria structure, especially any information concerning the time at which the component is to be
reactivated.

The second exception category relates to those exceptions belonging to the system exception group.
These are normally the result of an internat error occurring within the component. Wherever possible
the configuration manager attempts to handle these errors localiy, but in certain circumstances it
may trop the relevant exceptions and throw(...) them back to the client for handling. It should
be noted that system cxceptions are normally generated in the event of the component incurring a
fatal error in which case the client and the configuration manager may not be able to provide much
support for the component.

The final communication path which CORES offers is the ability to rclay an exception from the
component through the configuration manager and back to the client. As discussed, this commu-
nication path has to be taken because the client has no direct link with the implementation of the
component, but only with the implementation of the configuration manager.

CORES provides the unique ability of being able to pass exception information from the component
to the client via the configuration manager by sending the configuration manager an exception which
it dues not know how to process. The entirc process centres around the way in which the configura-
tion manager responds to exceptions from the component it is managing. When the configuration
manager catches an exception from the component that it is managing, it will start processing the
exception and trying to identify the type of exception thrown. As the configuration manager is
only suited to capturing and dealing with cxceptions of a certain type, it will rcach the end of its
expected exception list where it will then match the exception to the *catch all’ clause, Exceptions
which make it to the ‘catch all’ clause are re-packaged and ‘thrown’ back to the client to be handled.

The limitation to this process is that the ORBIX implementation used for the CORES system only
allows CORBA: : SystemException types to be thrown back and not user defined exceptions. In the
event that a user defined exception is raised, the Iona implementation will present an ORBIX systemn
error message informing the operator that no support exists for throwing any user defined exceptions
between the component and the client.

6.7 Real-Time Execution Engine

The Real-Time Execution Engine or dispatcher as it i8 commonly known, is located within the
scheduler and is responsible for identifying when tasks are to be performed and controlling the dis-
patching of those tasks to the corresponding resources. Due to the real-titne nature of the dispatcher,
it is important that it operates in a timely fashion so as to avoid any delays resulting in tasks not
being dispatched at the appropriate time. Timing constraints such as these are important in hard
real-time operating environments.

H

:-\

e

il

I
Y
Lo
A
Sl
f:;-.%

"




T T LTI a——

201

The process of identifying and executing tasks at a specific tiime begins with the dispatcher establish-
ing a thread for each resource that the scheduler is schaduling. Once the threads have been created,
each thread obtains a time or a reference point (the case study uses a central timing source known
as the DbservatoryClock) and enters a loop which continually evaluates the time or reference point
until such a point that the loop reaches the end of the scheduling period.

While in the loop the dispatcher constantly checks the schedule to determine whether or not there
are any tasks waiting to be processed at a specific time point. When a task execution point is
achieved, the dispatcher records the task number allocated by the scheduler and passes it onto the
routine responsible for transmitting the task to the resource.

With the task transmitted, the dispatcher returns to checking tasks located within the schedule.
After transmission of the task to the resource, the dispatcher has to be careful not to subsequently re-
send the same task back to the resource. In order to prevent this, the dispatcher before transmitting
a task to the resource, will compare the task number with the last task sent. If the number is
different the dispatcher will transmit the task to the resource otherwise the dispatcher will ignore
the task and not transmit it.

The disp. tcher developed for the case study has a provision to sleep for the period of one second
$0 as to reduce the requirements on the scheduler’s processor. In a true real-time cnvironment, the
dispatcher would either be constantly checking the time or be notified via a hardware interrupt that
the time has changed. This sleeping provision can result in some instances where the scheduler will
miss a sccond. To avoid missing any tasks, the dispatcher calculates the number of seconds that have
clapsed whilst being in the slecp mode. If the lapsed period is less than a sccond, the dispatcher will
continue to scarch for tasks. If the period is greater than one more seconds the dispatcher enters a
‘catch-up’ mode and goes through each time point it has missed in an effort to identify those tasks
that it may have missed. Upon the discovery of any tasks during this time period, it will transmit
them onto the corresponding resource. This ‘catch-up® process continues until all of the miissing
seconds have been accounted for and processed.

6.8 Limitations

On implementation of the CORES system, it was noted that the conceptual design presented in
chapter 5 did not map transparently to the implementation model. Specifically, problems were
experienced with the construction of the configuration manager and parts of the CORES scheduler.
The following sections detail the implementation limitations.




el T

L £ P S L P e e e P e R L T M A 4

L 8 2t o L T

g o b T e e

i e e T ekt W et AL ML

3

oy ot ek o T o P e

T 1 2 Irea e it

LT o T G A 1 W A

6.8.1 CPU/Memory Intensive Operations

Like other systems responsible for calculating permutations, the CORES task sequencer requires a
considerable amount of CPU time. The requirecments on the CPU and memory arc even more than
usual when CORES is performing its scquencing operations as the algorithm used to calculate the
permutations is not optimised.

This lack of optimisation results in CORE’s having to use large amounts of CPU time to calculate
all of the possible permutations and store them in a large table. Ideally, it would be beneficial to use
a morc optimised permutation algorithm and to assess cach permutation as it is generated. Doing
this would allow the sequencer to ignore invalid permutations before having the CORES system

commit memory resources and CPU time.

6.8.2 Construction of Configuration Manager

The issue of constructing the configuration manager refers more to the implementation of the CORES
system than the design as discussed in chapter 5.

The implementation of the CORES configuration manager is predominatzly built using a manual
process. It involves using the interface definitions of the component which the configuration manager
is to manage and is made up from a considerable amount of code which is repeated throughout. Due
to the large amount of repeated code and the information available within the interface definition
files it should be possible to automatically generatc a considerable amount of code which could be
used as a stub for the configuration manager.

The stub could then assist developers in introducing new functionality to the cunfiguration manager
or specd up the time the developer needs to integrate components into CORES. This would be
beneficial to developers as they currently require an understanding of the CORES system before
being able to modify the appropriate code that provides the increased flexibility and functionality
of managing method calls in real-time.

6.9 Chapter Summary

The Component Oriented Reconfiguration Environment & Scheduling (CORES) system from an
implementation perspective has been examined. This included examining the underlying implemen-
tation and the architecture that it relies upon to communicate and manage the various components
distributed over a computer network.

A further arca considercd was the evolution of a job as it passed through the system. This involved
the tracing of tasks and jobs from the point where a group of tasks are associated with a job through
to the calculation of the various permutations representing every possible order in which a job could




203

be performed. The investigation continued by examining the permutation list and calculating the
optimum permutation. The optimum path was calculated and the process of actually scheduling the
job into the schedule examined.

Additional to those areas responsible for processing jobs, the chapter focused on the client imple-
mentation which is responsible for sending method requests to the component via the configuration
manager and the user interface providing a front end to the CORES system. Both the client and
the user interface provided the flexibility for the end-user to manipulate the various reconfiguration
modes offered by the system.

Examined was also how various elements of the CORES system were transformed from a conceptual
model to an implementation. The cleinents included examining the rele and implementation of the
configuration manager including the additional control that dynamic controls provide, investigating
how cxceptions are handled within CORES and the extent of support that the configuration manager
can provide to integrated coniponents.

Inplementation and the role that the Real-Tine Execution Engine plays in identifying when and
what tacks should be executed and where tasks should be sent weiez also examined.

A case study is presented in the following chapter involving the CORES systein and the implemen-
tations discussed here. These will be applied in a practical context using the Australian Telescope
National Facilities Compact Array tclescope at Narrabri,




5
£
7
i
b
b

T LI Gk A BT S r

2 Lkt e i A3 S e

g

gpiet

e AT N U 2Ry Forgroi ot o g

Ao A e o Ry

R g T

ihoipin

T T o T Sk L2 T TR N N o

T A e T T e T Y R,

204

Chapter 7

Case Study: Radio Telescope
Array

Over the last two chapters the thesis has introduced and focused upon the design principles which
make up the Component Oriented Reconfiguration Environment & Scheduling (CORES) model and
its associated implementation. The CORES modcl was introduced to provide more control in the
way method calls are dealt with when components are unable to accept or process a method call.
This is especially hnportant in real-time systems. This chapter examines an implementation of the
CORES model which has been incorporated into a real-time practical scenario. The selection of a
real-time system provides the underlying architecture of CORES with the ability to verify its design
and to cnsure that it is capable of providing additional control to end-users! with regard to the way
that method calls are managed.

The scenario chosen incorporates CORES into a simulated radio telescope? array and is based upon
the radio telescopes found at the Australian Telescope Compact Array (ATCA) located at Culgoora
near the township of Narrabri in north-western New South Wales, Australia,

7.1 Background

The case study presented will demonstrate the architecture of CORES on a series of radio telescopes
linked to one another and linked back to a central control room which coordinates the activities
of the telescopes. The abstracted telescope system presented simulates the functionality of the
Australian Telescope Compact Array (ATCA) operated by the Australian Telescope National Facility

n the context of this chapter, end-users of the system will be referred to as observers.
2The simulated telescope operates in the same manner as a normal radio teliscope, however Lhe simulation Joes
not. provide support for the signal processing aspects nor the data capturing capabilities.

- s A




£ Bl R b S

gt sk st Lo a s R TR

s o p et S Bt gl

i et S e T

R
KA e T

e

205

(ATNF). The following section provides a brief background on the ATNF which is charged with the
responsibility of managing the compact array, while the following section provides details about the
compact array itself.

7.1.1 Australia Telescope National Facility

The Australia Telescope National Facility (ATNF) located in Marsfield, NSW is an organisation
contained within the radio astronomy division of Australia’s Commonwealth Scientific and Industrial
Research Organisation (CSIRO). The ATNF has a number of roles. The most important role the
ATNF has, is to coordinate the continuing research across Australia into the ficid of radio astronomy
which is viewed in science as one of the modern and emerging fields in astronomy. The organisational
structure of the ATNF also provides it with the ability to contribute to government policy regarding
the future of radic astronomy.

Besides these organisational roles, the ATNF is also responsible for providing support and managing
the operation of eight telescopes located in three different observatories. These observatorics include
Parkes where there is a sixty-four metre antenna, Mopra with a twenty-two metre antenna and
the compact array located in Culgoora which has six radio telescopes each measuring twenty-two
metres in diameter. All of these telescopes can be used individually or tied in with one another
to provide part of what is known as the Australian Telescope or the Australian Long Base Array.
When connected together the telescope spans from Parkes to Mopra encompassing the ATCA ncar
Narrabri. Each of these observatories are located within New South Wales, Australia.

7.1.2 Australian Telescope Compact Array

The Australian Telescope Compact Array shown in figure 7.1 consists of six antennas, five of which
are mounted to a rail track measuring three kilometres in length running in a cast-west direction.
The sixth antenna is fixed to a sixty-one metre rsil segment running in a cast-west. direction and
is spaced approximately three kilometres from the end of the other cast-west rail track. Recent
expansion work conducted at the array has led to the installation of a new rail track segment running
in a north-south direction. By having the antennas mounted on rail tracks, the ATNF is able to
modify the various compact array configurations. Each configuration allows for an antenna to be
located in a different position along the rail track and allows for the distance between the antennas
to vary aud hence provides observers with a dillerent view of the various radio point sources.




Figure 7.1: Radio Telescopes at Australian Telescope Compact Array
B \

Photo courtesy of Australian Telescope National Facility

Each telescope within the array has a reflector dish measuring twenty-two metres in diameter and is
capable of listening to and processing multiple frequencies ab the same time. Within the antenna a
PDP-11 computer? is used to coordinate the antennas activities such as processing the inputs received
frot the control room. It manages varions systems within the antenna including the crvogenies and
antenna drive systems as well as passing those signals that the antenna receives froin the radio
point source and atmosphere back to 1he control room for further processing. Both the local PDP-
11 antenna computer and the DEC equipnent located within the control roomn use a mumber of
tightly eoupled programs written in FORTIAN to coordinate the schedule and the operations sent
to the various antennas. The ATNE is enrrently undertaking an on-going long term upgrade of the
observatory which will result in the replacement of the PDP-11 computers with a new hardware
architeeture (most likely an embedded operating system}, In addition to upgrading the observatory
hardware, the sofiware is also heing upgraded 10 take advantage of the object oriented programning
paradigm so that additional functionality can be added to the array in terms of objeets, At the thime
of writing, consideration was heing given to deploying the objects thronghout the system with the
aid of a CORBA distributed object framework,

The telescope array is comumonly used for the investigation of pulsar and quasar emissions as well
as studying dead stars and the process of galaxy ereation and destruetion, It is important to clarify

that the radio telescopes ave not optical as they measure radio waves from distant galaxies and hence

Fhe antenna computer is enclosed within a faraday cage 10 reduce the electromagnetic radiation being vinitted
from it.

s b

BRI



S T T T AR A 2y e Ty

L ool e e ¥t e e

kT

il it o .

AR P g e U T P

it by

AR M B AR R b i

207

arc capable of operating at any time of the day (providing that the radio point source is above the
horizon).

7.1.3 Radio Telescope

A radio telescope is a complex piece of scientific equipment which requires the use of a number
of components so as to be able to successfully observe a radio point seurce. The number and
sophistication of components varies between telescope models. From a generic point of view, a radio
telescope in some shape or form consists of the following components:

¢ Receiver / Frontend
« Signal Processor / Backend

¢ Control System

One of the most distinctive features of more powerful radio telescopes is the large antenna dish
which is used to collect the radio waves as they arrive on carth, The reason for the Jarge dish is to
maximisc the amount of faint radio waves and focus them toward the focal point (a point where all
the radio waves are concentrated). Additionally, the large dishes arc required du:: to the actual size
of the radio waves being observed. At the focal point, the radio signals are transferred to a receiver
which allows the observer to filter out wavclengths that they are not interested in capturing. While
operating, the receiver is cooled with the aid of cryogenics to a temperature of approximately minus
two hundred and sixty degrees cenvigrade or around thirteen degrees kelvin in an cffort o eliminate
any additional radio interference from being detected. In some radio telescope configurations, the
receiver is actually located on a rotatabie turret which allows the observer to change the receiver
frequency and hence be able to detect varying wavelengths, Changes to the receiving frequency are
not made during an observation as a significant amount of calibration work needs to be performed
before any observation at a new frequency can cominence.

As radio waves travel further away from their source, the intensity, power or strength of the wave
varies inversely to the square of the distance from the source. This is known as the inverse-square
law of propagation. The implication is that by the time the radio wave reaches a radio telescope on
carth from a distant source, the signal is very faint. To overcome this problem, radio telescopes use
a signal processor consisting of an amplifier which increases the signal being fed from the receiver as
well as introducing other frequencies used to calibrate the signal. Once the signal has been amplified,
it is then sent onto a computer known as a correlator which is responsible for cleaning up the signal.
Once the signal has reached the correlator and other related computers it is here that the processing
of the signal is performed. In most cases the actual processing is performed offline after the data
from the antenna has been captured and stored on some removable media type.

R S .

s L e S Lt B

3
i

-4
i
i
.-
4




208

The control svstem hag an important role to play in the operation of the radio telescope. It is
responsible for processing all aspects of the antenna including such activitios as pointing the antenna
in the appropriate position for the observation and coordinating the data being passed from the
receiver to the signal processor. The control system is also responsible in some cases Tor performing
the scheduling and running of observations and reporting the status of the antenna back te a central
control room. In addition to processing the ohservations, the antenna control system provesses thning
signals from the control room and integrates them with the signal processor as well as passing data
back to the correlator for correlation. Other tasks involve running various system checks to ensure

that the antenna is Operating in a correct manner.

Figure 7.2 provides an illustration of a radio telescope processing incoming radio waves and passing

them onto the signal processor unit for amplification and then Lo the computer for further processing,

wa

pt

!

1
. B

R CehL AN PR okt
Amplifier Computer

£l

Figure 7.2: Overview of a Radio TFelescope

Reproduced with permission from University of Washington




7.2 Introduction to Radio Astronomy

Just like optical astronomy, radio astronomy is the study of distant. celestial objeets including plan-
ets, galaxies and stars. The difference between the two areas of astronomy is shown in figure 7.3
which illustrates the electromagnetic spectruin. The spectrum shows that both radio and optical

astronomers perforin their examinations at differing wavelengths.

‘The Electromagnetic Specirum

AR

((Radio ) ((Microwave ) { Infrared ] [ visible } [Ulteavioiet ) ( X-ray | (Gamma Ray)

aana | 1= w0 0% 0% guelam’ avwli0? 0wl w2 o'l B

Aboul the size of: Waveleagh in meters [

i% & % £ v e

Lar s g Swps Progsosry flus Iy ARcere N ke

Figure 7.3: Electromagnetic Spectrum

Reproduced with permission from the Space Telescope Science Institute

The adviraage that radio astronomiers have over their optical counterparts is the ability to be able
to perforts observations around the cloek. This provides radio astronotmers with a much larger
observation window. However even though there is a larger observation window, radio observations
can take a consitderable period of time to complete and the observations can only proceed if the point
source to be observed is above the horizon. During the daylight hours, radio telescopes normally
perform obscrvations on point sonrces which are close by due to the fact that the sun emits a

considerable munber of radio waves which can interfere and introduce *noise” to an observation.

Radio astronomers perform their observations by using radio telescopes (refer to section 7.1.3) to
detect and analyse the radio waves emitted from the various celestinl bodies being observed.  As
mentioned, the radio telescope receives these signals, filters out the ‘neise’ and then passes the

resulis onto a computer for processing.

A problem radio astronomers face is the actual length of tie wave itself as is illustrated in figure
7.3. The wavelengths can vary from a couple of miilimetres through to a couple of metres in length
compared to wavelengths in optical astronomy which are only a fraction of this size. To provide
a clear and sharp picture, the receiving arca of the telescope must be many times larger than the
wavelength being receiving (regardless as to whether it is optical or radio). Depending on the
wavelength size being observed, it may be that no siegle telescope is capable of providing a clear
picture.




210

To address this problem, a number of radio observatories use a process called ‘imerferometry” which
allows a munber of telescopes scattered over a region to be linked to one another and take a sky
sample which is the total diameter of the distance between the telescopes. The process of ‘inter-
forometry’ involves having all of the radio telescopes pointing toward the siune observation point
source. All the data from the various telescopes is fed into a special electronic device known as a
correlator.

Figure 7.4: Planet Jupiter with a 13cm vecoiver Figure 7.3: HI Spiral Arms of a Compact Dwarf

T
NGC2915

Photos courtesy of Australian Telescope National Facility

The role of the correlator is to take a pair of inputs and compare them with one another. For
example, in a case where there are three antennas operating, the correlator would compare the
data feeds from antennas 1 and 2, 1 and 3 and then the remaining combination of 2 and 3. Put
siimply, the corrclator identifies those artefacts which appear in only one of the data streams and
not in the corvesponding pair and removes the offending artefact. At the end of the observation, the
data stream reflects all that the antennas observed. Figure 7.4 represents an observation after the
incoming data stream has been processed ofiline while figure ¥.3 represents the H1 (hydrogen) spiral

arms surrounding a blue compact dwarf known as NG(2915.

7.3 TImplementation

Before examining the case study architecture of the Component Orviented Reconfiguration Environ-
ment & Scheduling (CORES) madel in a practical context, it is necessary to first understand the
implementation of the madified radio astronomy scenario into which CORES was incorporated. As

previously mentioned the implementation developed for this thesis is based upon the radio telescope

Bt n e

e . o . . . .
R S L L N SR AT



S T A B T IR I L

S i St L ot i Tt 8 T

‘i

5 s o et e oy Pt o AT T e

I R Lo B e M o AR T P e E

21

system operating at the Australian Telescope Compact Array located at Culgoora. It should be
noted however that the implementation which makes the CORES system is an abstracted version of
the one at Culgoora and does not perform all of the functions that occur within the radio telescope
array.

The case study used for this thesis is an abstracted simmulation of a radio telescope observatory and
provides for coordinating support, controlling and processing the flow of instructions to and from
six radio telescopes simultaneously with the aid of an abbreviated antenna interface shown in figure
7.6. The complete antenna interface can be found in appendix A.1.1. The antenna interface used
throughout this implementation is a subset of the operations that an actual radio telescope can
perform.

interface Antenna
{
// Provide a method call for the antenna to slew into position
oneway volid track(in double rightAscension, in double declipation,
in double trackUntil, ...);
// Bring the complete antemna to a stop
oneway void stopAntenna(in stringStructure projectLine,
in stringStructure informationLine);
// Stow the antenna
oneway void stowAntenna(in stringStructure projectLine,
in stringStructure informationLine);
f...3
} |

Figure 7.6: Simplified Antenna Interface

To cnsure that the CORES system is capable of operating in a distributed framework, each sitnulated
telescope used is located on an individual SPARC workstation so as to represent cach of the indi-
vidual antenna control computers responsible for processing the antenna instructions. Additionally,
other clements used in the implementation are spread out across the distributed network including
the ObservatoryClock which synchronises the time with the various antennas and the client/user
interface.

Apart from providing complete control over cach individual telescope, the observation system also
allows the observer to import observation files (an example is shown in appendix B.1.1) into the
system for sequencing. As described in scctions 5.2.4 and 6.2.1 the radio point sources contained
within each observation job can be sequenced in a particular order. This order is defined and
specificd by the observer when lodging the job. The sequencing process is capable of operating in
three different modes. These include:




T ol e R S T TR o M b o

212

e Best case scepario: Calculate the observation sequence which requires the least amount of time
to complete

o Worst case scenario: Calculate the observation sequence which requires the most amount of
time to complete

¢ No sequencing required: No sequencing is required as the observation has alrcady been sc-
quenced by a third party

During the sequencing process, the sequencer pays carcful attention to the placement of the various
radio point sources and ensures that only those observations which are viable (ic. jobs which can be
performed to completion without any errors) are considered. After the sequencing process has been
completed, the ‘selected’ observation sequence is written to a file which can then be imported into
the scheduler at a later date during schedule construction.

Upon the completion of the sequencing process, the observation system is then ready to cither
accept more observation files for sequencing (the scheduler only accepts sequenced jobs) or is ready
to build the overall schedule which contrels the radio telescope resources. The scheduling period
used by the radio astronomy system is defined as being thirty days fromn the potut at which the
system was started. With the scheduling period defined, the system is ready to start processing
observations which have been sequenced. The process which the scheduler undertakes to determine
a satisfactory starting time for an observation is referred to in section 6.2.3. It is important to note
that the scheduler in this astronomy system will not actually start to construct the schedule until
the observer specifies the construct-schedule directive. Until then, all the tasks passed into ihe
schedule are added to a jobs list which the scheduler uses to deterinine which jobs actually require
placement into the schedule.

Once the schedule is constructed and executed, the radio astronomy systemn is able to simulate the
management, coordination and tracking ol cach radio telescope in a manncer similar to that of the
system based at Culgoora. The implementation only simulates the antenna drive control and does
not address other technical issues such as the processing or managing of the signal Leing received
by each of the telescopes.

A complete list of commands which are available via the user interface for the radio astronomy
system including those responsible for managing the antennas actions (ie. start, stop, stow), the
scheduler and the observatory clock can be found in appendix C.1.

The incorporation of the CORES system into the underlying radio astronomy system brings with it
functionality which would not ordinarily be available. By utilitising CORES, the radio astronomy
system is able to provide the observer with additional functionality to manipulate the way in which
the system is working and how reconfigurations are handled and performed. Some of the additional
bencfits that CORES brings to the system include:




et

213

« Reconfiguring a resource while the system is operating

e Specifying what action should be taken when a resource is unable to process a method call

e Specifying Quality of Service arguments
Figure 5.12 illustrates how the architecture of the CORES systemn was incorporated into the system.
As the diagram illustrates, thc CORES configuration manager acts as a middleware betwceen those

clients wanting to communicate with the resource and the resource communicating back to the client,
The introduction of this middieware is fundamental to the success of the CORES systen:.

7.3.1 Demonstrating CORES

Having completed an overview of the scenario and the implementation of the CORES system used
throughout the thesis (refer to section 7.3), it is now possible to demonstrate a practical implementa-
tion of the system. In the next couple of sections several scenarios will be put to the implementation
of the CORES system to validate the design goals of CORES and to confirm that it is capable of
being incorporated into real-time and real-life situations:

» Sequencing tasks contained within a radio astronomy observation
¢ Scheduling various radio astronomy observations which have been sequenced

o Demoustration of normal operations

Specifying various reconfiguration modes for the system

Using Quality of Service parameters

Reconfiguring a component within the system while operating

7.3.2 Sequencing Tasks with CORES

Figure 7.7 illustrates the process that an observer must undertake within the CORES system to be
able to sequence a munber of radio point sources (tasks) within the radio astronomy observation
(job). By making usc of the sequence command the observer is able to directly interact with the
CORES scquencer and specify the order in which the tasks are to be scheduled. The default order
is to sequence the tasks in such a manner as to minimise the amount of infrastructure sctup time
required for the job while still achieving all the objectives of the job.

Appendix B.1.1 and B.1.2 illustrates how an observation program looks before and after the sc-
quencer has been through and examnined each task., Comparing the two job files with one another
illustrates how the sequencer re-orders the tasks to optimise the overall job.

P e ]

N AT S e e 5 o T B A S i

At

i

O
N e e v R B

i




A 1o L e

e i

214

T e erm Geatia ve oA oomenasduediat, VT - o ] ll
wConpact HArrayw 5= 01 12:40 ~ 1§ Jan G2 .i
1:8tatlon_16 2:Station 17 3:8cation_24
#zirmth: B5.50 degrees fAzimuths 85,50 degrens Azimith: B5.58 dogrens
levation: 70.P8 degrees Elsvation: 98,85 degroes Elevation! 70.08 Jdegress
Mcoiver- OFF Axis Receivort OFF Axis Receliver: OFF Axie
'Statiou.ﬁl. S5:5tation_35 6i8vat ion 37
fizimuth: 0%.50 degreas Bzimuth: §5.50 degrees Azimuth: B5. E dogress
evation: 98.08 degrees  Elavation: 78.009 degrees Elavation: 98.08 degress
Raceiver: OEF Axizc Ree-é\l;:r: 0Ff Axie Receiver: OFF Bxir
ervation St

12:23:41 CGIB/E1): Antennas 1.2.3.4.5.6: Idle
[12:24:00 (1B/01): Check paranster: to sequence commantd
17:24:18 CiB:@): Sequencing is complete for obzervation: DTODE

e &

] seguence

sage: zequence {ObzervationMame? [noxlminiproservel

] gegquance DIPES min

) quencing ¢an take a considerable peariod of time. Are you zuve (Y/HI: y :I
]

Figure 7.7: Demonstration of Sequencing Observation

7.3.3 Scheduling Jobs with CORES

The process of scheduling an observation (job) into the CORES system is achieved by the use
of the schedule command. As each schedule command is issued, the scheduler reads in the
contents of the sequenced file and adds the relevant data to a list containing details about all
the observations awaiting scheduling. The actual scheduling process does not commence unti! the
construct-schedule command is issued. Figure 7.8 illustrates the loading of three observations
into the scheduler while figure 7.9 confirms that the observations were actually loaded into the
system. The go command instructs the real-time execution engine to start processing the various
tasks loaded into the schedule,

P Torn kFaborse Lo mionast. |du¢|u vt

He Edt Setun . Cobd Window Help

Fm“ = 1% Jan B2 -Conpact I'ery' TET: G7:09:4¢ - 18 Jan @

1:5vat fen 16 Z:ftation 17 3ttcation 24
fAzimath: 8%5.50 degrevs Az imuth: 85.50 deyrecs Azimsth: 85.58 degrecs
levations: 90.00 degreaes  Elevation: 70.89 desrces Elovation: $8.98 tegnel
Becefuer: OFFf Pxix Raceiver: OFf R Feceivar: Oﬂ' £

415cation_J1 S:Statinn.,as 6t Stat en 57
Azimuch: §5.58 degrees fzimuth: 85.59 degrees Azimuth: & degrens
lovat lon: 9 degroez  Elevation: .0 drgreca Elevationt 9 80 degrees
Hecotuvew: OFF fuis Receiver: 0{( xiz Receiver: OFF Axis

aryvation Stat

Obsy.
Frad1f CLO/HLY: fAntennat 1,.2.3.4.5,6t Ldle
3:28 28 <10/913 The scheduler has besn notifisd of the observation: DT98Y
3:20:23 (107813 The schodulaxr has been notified of the observation! BTO11
3:20:525 (18/81): The scheduler bas beon notified of the ohservation: DISHS

£

A
Lonnands

schadule HTPROT
schedule DTHL1
echedule DTPOE

congtruct=schedula
chadule construction can taks & comaiderabls pariod of tine. Procesd (¥H): ) j

Figure 7.8: Demoustration of Loading and Scheduling Observations

T

i e SR S e e




il

Ytiratanm awabwoer Lt caach iy au ¥

FE:: Ty =18 Jan E -Conpal:t l'lrMy" [EY: @=11:37 - 18 Jan 83 4]

1:Eeatisn_16 2:8tation 17 3:5tation 24
Aaimut h:1®7.58 dagrens Azinuthz 197,58 degrees Azirath:105.50 degrees
Jevation: £6.88 degreez  Elevation: 68.00 degroes Elevation: 79.99 dsgrees
Recoluer: 683cm Ncelver- E&kdce Recaiver: EAIcm
4:Etat ion JL -s:«tion.ss 6:Station 7
Azimuth:195.58 degrees Azinuth:18d .58 degrees Agdmuth: 77.50 degress
levation: M. 89 degrees  Elevation: 74.88 deyress Elovation: 76.80 decgrees
Recolvar: ERicm Recoiver: Ghlen Recajvert MI:.'ieu
Obtarvatjion Statu
3:21:82 <i0-813: Schedules hox baen constructed., Ready to emecute
3322:89 <1SM) Ahtennas 1.2: ‘I'mking: HDOYAYEI
3222:12 (1R/81): Antennan 3.4.57 Tracking: KDAY49E2
E3:22113 180107 Scheduleor ttaptw

112214 (1B /A1): Antenna & Tracking: HPEP49E6]

C 4

1 schedula BTBBE
1 construct=~schedule
Echodule construction can take a considerable pericd of time. Procaod (Y/H]1: y

Ey

Figure 7.9: Demonstration of Executing Scheduled Observations

Once a schedule has been constructed and the scheduler executing, subsequent entries needing to
be inserted into the schedule must be installed with the insert-into-schedule directive. This
directive informs the underlying CORES scheduling process that the observation which has been
passed in, must be placed into the schedule at a point which is greater than the current time reference
point.

7.3.4 Normal Operations

During normal operations, the radio astronomy system is responsible for processing cach task located
within the schedule and coordinating the execution of those tasks to the appropriate resources.
In addition to the management of the schedule, the user interface component of the system is
responsible for providing real-time feedback from the various components so that their state can be
monitored. The user interface allows the observer to interact and specify various commands to the
CORES reconfiguration system to adjust the way in which reconfiguration events are treated and/or
performed. It also provides the ability for the observer to sce the alerts and messages which have
been received or raised by the CORES system. Figure 7.10 shows the CORES system operating
in a normal mode where tasks are being dispatched to their respective antennas and where the
information pane details the components actions within the system.

o o e

P




216

s arabwese Bor spofash e A v

mmwwwueb oo T

H H = 18 Jan @2 -Con:m:t Rrrays : 21%:51 ~ 1B Jan -
1:Seatfon 16 2:8tation 17 I:Station 24
Aaimthi148.33 degrees Azimath:148.33 degress Azith:148.33 deyrens
Yevation: 42.59 degreer  Elevation: 42.59 degrees Elovation: 42,5Y degrees
Recelver: 603ca Mecoiver: Gklem Receivar: EA3cm
41ftation_3t S:8tation 35 Gifcation 37
Azimuch:148.13 degrecs Azimuth:148. dcgress Azimuths148.33 degrens
levationt 42.5% degrecs Elewvation: 44.59 degraes FElevation: 42.59 degrees
Racoivar: $53cm Pecofver: &hdcm Recojvert Ghlcm
Oh“wat:lm Status
3:26:0f (108131 Schedulor ttarted
3:26:28 1001 Bntesnas 1.2.3: Tvacking: llDD?‘I!H until 23:30: 31 {1891
3:226:31 (16813 Antonnas A.5.G6° Trackin DEP494] wntil 23:38:31 <la.81)
I:30:32 (104813 Antennaz & 2.3.1.5 [ siwmg to: HD1O1205. Azimuth: 148.33 4
boveoz, Elawation: 41.88 degre

P d -

} schedule DIGdE T
) conatiruct-schedule
Echedule construction can tabe a congiderable perisd of tine. Procrod (Y/H1: g

Figure 7.10: Demonstration of Normal CORES Operations

7.3.5 Specifying Reconfiguration Modes

With the inclusion of the CORES system into the simulated radio astronomy system comes the
ability for the observer to be able to control how reconfiguration events within the system are
processed. As mentioned in chapter 6, the CORES system is capable of providing three modes for
reconfiguration activities. The modes include:

e NoWait
e WillWait

¢ QoSWait

Each mode introduces a new behaviour to the implementation of the system. The NoWait directive
when specified instructs the underlying CORES implementation not to block those method calls
made on components which are unavailable. An attempt to make such a call in these circumstances
results in an error condition being returned to the system allowing the observer and/or system to
handle the situation. The NoWait directive is the default reconfiguration mode for the CORES sys-
tem. Another directive, WillWait, allows a method call to be blocked by the CORES configuration
manager until either the desired component is ready to process the method call or until a certain
time period specified within the WillWait directive elapses. In the case of the time period elapsing,
an exception is raised within CORES alerting both the observer and system that the method request
has not been performed and that subsequent aciions may need to take place. The final reconfigu-
ration mode provided by CORES is the foSWait directive. This directive allows the observer to tic
into a method call a series of Quality of Service (QoS) characteristics. Examples of these character-
istics include additional resources that a method call requires or a list of constraints that need to




217

be satisfied before it can proceed. Using the QoSWait directive allows CORES to incorporate these
QQ0S requirements with the components availability.

Figure 7.11 illustrates how the reconfiguration mode which effects all interactions within the system
can be modified by the observer using the user interface. The figure also demonstrates the additional
paramcters which can be specified with the reconfigure-mode directive. Providing this command
introduces greater flexibility to the CORES system and provides the observer with an element of
control over method calls and how they are handled.

e deren seghorae D manashoedu au ¥ S e '-.:-': A;;-!I.-I:J
Ble ER Sew Coptol Wndow b o o o . '
m =19 Jdap 12 sConpact RArrey® i.s'n 22-56 9% — 18 Jan ﬁ Al

L35tation 16 2:5ention 17 J:Btation_24
Azimatht 85,50 deyrecs Azinuths 85.5%9 deogrees Azimuth: 85,58 degroes
levations 90.08 degieen Elevationt 9@.80 degrees Elevation: 98,98 degroow
Recafver: OFF Axic Recalver: Off Axis Recalvne: OFF Awis
d:Station 31 Siftation 25 6:Seation_37
Azimuth: 85.50 degrees hzinuth: 85.58 degreex Rz iputh: A5 59 degrest
lavation: Q0. 88 degrovs Elevation: 99.A0 degrees tlavationt YH_AN degreas
Receduer: OFF Axis Recajver: OFf Axig Recoiver: OFf Axis
Obzarvatien Stat
S:@2:37 {19012 The schoduler haz heen not Lfied of the observatian: DIBLL
L:2:48 (19813 Thw scheduler hax heen wotified of the ohservation: DTORE

5183152 <19/01)! Schadule has been constructed. Ready to oxecute
S:@:15 <L9/01): Chech parametera to nconﬁ re=-mode
S:i84:42 19915t Reconfiguration InFo: Mo Uait

Conmands
hedule construction can take & contiderable period of tire. Proceed (¥/N): y
reconfigure-wode

zagnt reconfigure~mode (MillWaic iMoVait IQuEWait) {timsoul’>

1 reconfigure-mode MoWait :'

Figure 7.11: Demonstration of Modifying Reconfiguration Mode within the CORES System

7.3.6 Demonstration of Reconfiguration

As discussed in the previous section, the CORES system allows the observer to specify what actions
should be performed when a component is unable to honour a method call. Figures 7.12, 7.13
and 7.14 illustrate a situation where a component runming in a reconfiguration mode of NoWait
is going through a reconfiguration process requiring it to move from one resource to another in
the system. During this reconfiguration process, which can take a considerable period of time, the
component being replaced receives a series of methed calls requesting a particular service from the
radio telescope antenna.




218

. Al s wuire Dol pervask riha au Y1 i %FM

¥ ml- 2322044 - 17 Jan 02 féouput Array= LT B7:15:07 ~ 17 dan B2 Al
L 1:5¢tation_16 21Etakion 1% Iikration 24
e Azimucth:148.3) dogrees Azimuth:149.33 degrees Azimuth:148.33 degrees
Elevation: 41.088 degreex Elevation: 41.984 degrees Elevation: 41.08 degrees
Receivor? 6BJcn Receivert 6hdcn Reteivert Ghklem
4:5¢cation 31 S:Scacion_35% 6:5cation 37
fcimuthi148.33 degroes l'ts!mth:l‘l 33 degresz Azimuthi148.33 dagrees
Plcvat‘ion. 41 .08 degrees Elevation: 41.88 degrees Elevation: 44 .56 degrees
Receiver: 6h3cwm Recelver: 60Jewn Recoivar: 683em

brorvation Statue
! Elevation: 41.87 degrees

g";;;.. (1?/01): Antennn 42 [die
19-01>: Antanna 62 |Ieconfi¢urimtﬂot available. Opcntl.nn not lxw

wed
3 25 35 19/81>: Antennas 1.2,3,4.5¢ Trachlog: ADIBLEAS uncil B1:51:34 (26-01)
3326341 419701 Antenna 62 [Re-Confis Operation) Entering a gquiescent state

r d

1 reconf igure-mode MoWait

1 create—antenna

) reconf igure=antonna % Nstirk.sd.monach.edic, nuiStatfon 52151 R:antenna. LAT$ARE
=]nin Station

Figure 7.12: Start of the Quiescent State for Radio Telescope Antenna 6

The figures indicate that the configuration manager associated with the resource known as antenna
six has intercepted the incoming method calls and has dealt with them in the manner which is
reflective of the NoWait reconfiguration mode. With every method call arriving at the configuration
manager during the reconfiguration process, the observer is notified with the help of the user interface
that the component is unavailable and that the instruction has not been processed. This scenario also
demonstrates the ability of the NoWait directive to allow the system to continue processing rather
than blocking method calls directed towards the component reconfiguring itself. At the end of the
reconfiguration process, the antenna is left in a ‘stopped’ state allowing the observer to perform
any additional operations which may be necessary before the resource is committed back to the
scheduler.

Prin b aheae ot nsiash ecuan ¥1 ) o T Qﬁ;r‘;ﬁ !3'
w cwd !imdo.' w . § . . .. . o . N N

m Ei - 17 Jon W2 wCompact Array® BT U7 2807 ~ an Py
1:$cacien 16 2=8tatinn§47 3tStation_24
Azimithi148.33 degrees Azimuth:148.]3 degrees fAzimuehil48.3]) degroes
levacion: 41.89% desress suation: 41 .07 deogress Elovation: 41 .89 degroes

Receivari: 6hlcm Receiver: Ghdcm Recodver: (BIem
4:8cation Ji S:Stat lnniil G:ftarion_37

Azimuth:148.3) degrous Rzimuthri48.13 degrees Az imtth: 95.50 degress

levation: 41.89 degroes Elevation: 41.09 deyreea Elevationt 70.84 degress

Recoiver: Ghicm Roceiver: Ghicm Recajver: OFF Axis

Obcervation Status

3:26:34 19/01): Antenna b: Reconf iguriag/ﬂac available. Operation net izzued

136 antcnnal 1,2.3.4.52 Tracking: HDPLB120% until 813551134 <28.01)

ntenna 6 [Re-Conf 4 vation} Enteri i t stat
Antenna 63 !h*&mi‘i: 3;:.-:“::3 Savi:gngn:aﬂae::::e :a:ae
fAntenna 63 dle

i &

] recont igure-wode MoMait *
1 ereatg-antenns
1 reconf igure-antenna § asickosd.omenavthoedu.auiBeatdon Si1s 1 RTanconna. id1$Ant

]nna Station j

Figure 7.13: Demonstration of Radio Telescope Antenna 6 Not Processing Requests




219

It is important to note that although the scenario dernonstrates a component being reconfigured, the
configuration manager responsible for managing it will still assess its availability each time a method
call arrives regardless of the actions which need to be performed. In the event that 2 component
is unavailable, the corresponding reconfiguration mode and cperations specified within the method
call are executed. This may involve waiting for the component to become available, noting that the
component is not available and continuing on with other tasks or waiting for a Quality of Service
(QoS) level to improve before continuing on with the execution of the task which has been scheduled.

TTokra e e adeer bt msonatt e duao ¥

TR
m: ~ 1% Jan 82 nCompatt HArraye T5Y: Oriti:ly - 1V Jan B2 -!

1:Station_16 28t ionzi? I:Enan ionIZG
Azinuthil48.36 dugreos Aximsthi140.36 deyreer Azjmuth:i4® J6 degress

levation: 41.15 degre¢s  Elevation: 41.15 dogrees Elevation® 41.15 deyrces

Raceiver: Gh3cm Becniver: 6kicn Fecelver: 6&Jcn
4:Station 31 S:Station 35 6iStation S
fcimuthild48.36 degrees AZimuth?140.36 degross Azimuthil48 .33 dagraes
levation: 41.15 degrees  Elevation: 41.15 degres: Elavatlon: 44.56 degress
Receiver: thicm Rocoiver: 6klen Recofver: 683Jcm

Ohservatlon Statur

R3:126156 (19-01): Antenna 63 {Re~Confily Opsration) Ancenna chject references are
heing replaced

RI:27:87 1378131 dncenna 6z (Ro-Confiyg Operation] Re-poritioning the antenna
23:27:42 €19/91)? Antemna 62 (Ro-Config Operation) Lesving & quisscont atate
231271592 (170913: antenns 62 Beconfigured & Stopped

) reconf igure-node NoWait i
1 craate-=Antenne
F reconf iq:n_;anunna 6 atiel . sd.monach.edu.ausStatbon Sii::1Nantenna, fdLSAnt
i
1

nia Stat

hd

Figure 7.14: Conclusion of the Quiescent State for Radio Telescope Antenna 6

7.3.7 Controlling/Demonstration of Quality of Service

In addition to being able to control the way in which method calls are dealt with when components
are not available, CORES provides the oppurtunity to allow the observer to interact with the Quality
of Service {QoS) parameters for the various components and to adjust how they react to a differing
QoS level. The implementation of the radio astronomy system with CORES integrated into it is only
capable of handling limited QoS controls as cach componert tends to have its own individual QoS
characteristics and its own way of specifying them. The implementation of the QoS support was
further complicated due to each component being unique and hrence making it difficult to provide a
generic interface capable of supporting existing and future components.

Support for the limited version of QoS controls is restricted to controlling how a radio telescope
anienna deals with the introduction of radio interference. In order to introduce QoS conditions to
the underlying CORES system, the specify-QoS command must be used to identify the compo-
nent for wlich the QoS limitations are destined (known as the QoSTarget) and the QoSParamcters.
At this point in time the only valid specify-QoS command which can be passed into CORES is:




220

specify-(oS RadicInterference <# re-try attempts> <# delay in seconds>. As the con-
mand suggests, it allows the observer to specify what action should be taken if the quality of the
incoming signal from the radio telescope antenna is subject to radio interference. By default, when
a radio telescope antenna detects radio interference it will place itself into a ‘stopped’ mode and
alert the observer. This command allows the antenna to continue to ratry a number of times at a
cersain time interval to establish whether or not the radio interference has subsided.

e T et e Lo sstank e Qi au ¥ ’;@j;!fiﬂ:
e £ Setp - Cokrol Window Hekp 0t et o e L
T 23:0:00 - 1V Jan B2 wonpact Arrayh IEVT BPILLq = 17 Jan DX ]
1:8cacion 16 2:8tation_ 17 3:5tation_24
Reimuth:148.49 degvesa Azimuthi149.49 degreos Avimuthz148.49 degress
evation: 41.56 degress Elovation: 41.56 degrees Elevat jon:z 41,56 dagreec
ceiver: 683cwm ceiver: cm Receiver: oBIcn
4:5cat ion, 31 H tatiﬂnfls $:ECatien 37
Rzimuthi148.4Y degress Azimathi148 .47 degroes Azimuth: 148 .47 dagrees
Tevation: 41.56 degress Elevation: 41.56 degrees Eievation: 41.56 degress
Roce fver: 68Icw Recedvar? 6Elem Recwluer: shlen

bsorvation Status

3133125 19003 QoS I=Radiointerfevence. L atten . of 6@ cecondr duration

1133137 {1981 Radio interferwnce started on an.enna b

3:33:30 {19813 Antenna 6 Detwcted radio incerference. Operacions suspended
133:38 (199100 1 actenyt of 6B geconds wiil e mpade to rastore normsl oparati
3

£ F
= hedule conttruction can take o conaiderable period of time. FProcsed [Y/N1T v
go
) apecify-Qus Radiolnterievence 1 48
} i::ndzee-raah-iut.rhnn“ 6 j
-

Figure 7.15: Introduction of Radio Interference to Radio Telescope Antenna 6

Caeda b we e oA nncash e gy g YT

PEETE T05A030 - 19 Jan B2 wEORPACE  RETays LSY: oreray - an ~
1:z5cacdion_16 2:5cation_17 1:8carlon_24
Rrinuthii148.51 degrocs Arimuth:148.51 degrass Arimuthz148.51 degrees
isvation: 41.62 degreer Elevation: 41.62 degrees Elevacion? 41.62 degress
Receivar: E&lcn Rocediver: &hdem Receiuvor: (hlcm
4:5cation 11 S:Btation 3% sthtacion 37
frimuthz148.51 degress Azimuth:i140.51 degrwes Azinuch:140.47 deyreaz
1evation? 41.62 degreez Elavation: #1.42 degrees Elevation: 41,56 degraot
Raceivar: &&Jcm Racefvear: Ghlem Recetver: (Alcm
Ohservatisn Statun -——
]
13437 ~219-91): Antemrna 6 reports there it ztill radio interferwnce
3:F5:137 (19010 dntennp b requires manual intervention
1:34:37 (19013 Anteona 6 Iz of Fline
134530 (19-01): Antenna £: Scoppel
™ )
; hodule construction ¢an take & contldervadle pariod of time. Proceod [Y/W): ¥
1
) apecil v—GoS RadiolnterFerence 1 &0
} ‘ntrﬂdnca—radir-intcrfcunce [ j
-

Figure 7.16: Falling Quality of Service Levels ‘Stop’ Radio Telescope Antenna 6

Figures 7.15 and 7.16 demonstrate how the observer can specify the relevant QoS parameters to
the antenna component and introduce ‘simunlated’ radio interference with the aid »f the command
introduce-radio-interference to determine how the radio telescope will react to the interruption.
The handling of the radio interference can stop in one of two ways. The first is to issue the command:

- - ....

L ba e L

PR




221

remove-radio-interference which will remove the radio interference. The second approach is to
wait until the radio telescope antenna has tried the appropriate number of times before the process
terminates,

7.4 Limitations

The radio astronomy system does suffer one implementation problem as a result of the incorporation
of the Component Oriented Reconfiguration Environment & Scheduling (CORES) system. As a
result of a mnemory leak which exhibits itself within the configurasion manager, the radio astronomy
system is not capable of running for long periods of time even though the scheduler contains a month
of scheduling information. The memory leak in question belongs to one of the compiled libraries or
executables shipped with version 2.0 of ORBIX from Iora and has been independently confirined
with the aid of a software diagnostic tool called ‘Quantify’. The exact location of the problem can
be narrowed down to the underlying ORBIX code supporting the configuration managers and the
object references that they use to communicate with the actual components being managed. For no
apparent reason, the internal Iona code responsible for forming DIT requests and transmitting them
to the component fails to release the corresponding memory buffers after it has finished with it.

After a period of time, the memory associated with the configuration manager gots to a point where
the configuration manager process is unable to obtain any more additional memory. Its inbility to
allocate any more additional metnory is cither the result of the process not being able to allocate it
for the user process, or that the operating system itself has exhausted all of the available memory.
Having reached its critical mass the configuration manager is terw.inated and the link between the
client and the component fails resulting in the system coming to a lalt.

It is envisaged that if the radio astronomy system and the underlying CORES system were to be
implemented on a newer version of the ORBIX architecture the memory allocation problemn would
not be reproduced. At the time of development another implementation of the ORBIX architecture
whichk would work with the C++ language bindings and the SPARCworks compiler was unavailable.

7.5 Chapter Summary

The chapter has examined a practical implementation of & radio astronomy system which had the
Component Oriented Reconfiguration Environment & Scheduling (CORES) system incorporated
into it. From the implementation it is possible to sce that the incorporation of CORES provided the
observer with the ability to be able to control the way in which method calls are handled when a
component they were destined for was unavailable. The chapter also demonstrated how the observer
is able to reconfigure a component while the system is operating and to a limited degree be able to




222

control the way in which components handle situations where their Quality of Service (Qo8S) levels
fluctuate.

A nuick overview was also provided on the background behind the practical implementation of a

radio telescope observatory in addition to demonstrating the various other aspects of the system.
This includes sequencing and scheduling of tasks, demonstrating a normal operating environment
and specifying the various reconfiguration modes.

The major points introduced throughout the thesis as well as the addressing of the five rescarch
questions introduced in section 1.3 are dealt with in the following chapter.




3T b g S

223

Chapter 8

Conclusions

The previous chapter provided a comprehensive demonstration of the Component Oriented Recon-
figuration and Environment & Scheduling (CORES) system verifying the conceptual model and
iltustrating how such a system can be incorporated into a real world scenario containing real-time
task commitments. Additionally the systemn demonstrated support for end-users to control the ac-
tions performed when a component is unable to process a method call {task). Awareness in dealing
with components is necessary in real-time environments, especially those operating under hard real-
time constraints where the inability to perform a task at a nominated time can resull in serious
consequences. Systems operating within soft real-tiine coustraints also operate within strict time
frames, but the exccution of cach task includes a ‘slip’ time specifying how late a task can be per-
forined or slip. Failure to execute tasks within their nominated slip time results in recovery paths
having to be performed.

Reviewed in this chapter are the motivating factors behind the development of the CORES con-
ceptual model and implementation which highlights problems existing in configuration management
systems used both academically and comnmercially. Included is discussion on how the CORES model
addresses these issues and a summary of the key points outlined throughout this thesis addressing
the research questions proposed in section 1.3. Concluding the chapter is a brief discussion on the
issues of future work identified within the thesis.

8.1 Discussion of Findings

Throughout the thesis the issue of performing reconfiguration activitics within configuration man-
agement systems has been closely examined. Lack of support given to these configuration manage-
ment systems for managing components operating within real-time environments has been identified.
Chapter 2 introduced the objectives of the component based paradigin and discussed the important




224

considerations which must be undertaken when reconfiguring a component. In addition to examining
the various concerns that component reconfigurations raise, the chapter presented a scries of steps
that software developers can undertake to introduce a level of quiescence throughout components
when performing reconfiguration operations. To complement the discussion on the component based
paradigm a number of architectures specifically designed to support component based developments
are introduced highlighting the varying degrees of support provided to components.

From the architectures reviewed, it is evident that whilst support is provided for the development
of components, none is provided to reconfigure components within real-titne environments while
honouring their real-time commitments. With no reconfiguration support provided at the architec-
ture level, it becomes the responsibility of the various configuration management systems to provide
their own level of support. As chapters 2 and 3 explain, cach configuration management system
has its own perspective on what support shiould be provided for compouents and their ability to be
reconfigured. To assist with these various intcrpretations, a criteria was established to identify the
levels of support provided for reconfiguring components within configuration management systems’.

Chapter 3 further investigates the varying level of configuration managetnent support by examining
a number of configuration managemient systems used both academically and industrially and deter-
mining the support provided for reconfiguration management (cspecially dynamic reconfiguration
management). The criteria developed in chapter 2 assisted the examination by identifying those sys-
tems capable of supporting component reconfiguration and allowing them to be categorised based
on the support provided for components and the ability to reconfigure them.

Application of one of the criterion for identifying features in configuration management systems led
to the establishment of four categories relative to the level of support provided for components and
their dypamic reconfiguration.

The system categories include:

* Systems providing reconfiguration support during component construction

+ Static component systcms where reconfiguration is only supported when the systemn has been
stopped or is in a static state

¢ Dynamic component management systems which allow interconnections between components
to be modified whiist the system operates

¢ Real-Time component configuration and consistency systems which offer the same services as
dynamic component management systems except that consistency and deadlocking support is
performed during the reconfiguration process

From those systems examined in chapter 3 it can be concluded that a number provide support fur
reconfiguration management (in various forms) but none address the issue of supporting dynamic

!Configuration management systems can exist in their own right, or be extensions to an underlying architecture,




225

reconfiguration in a real-time environment. Those systems that do provide dynamic reconfiguration
do so either in an environment which provides no consistency support and dependency analysis
or in an environment which does not allow end-users to control the action of method calls when
they can not be processed by components. Systems capable of providing dynamic reconfiguration
support within a consistent environment handle method calls destined for components that are not
available by blocking them indefinitely and waiting until the component becomes available. While
this solution works for non real-time systems where there are no timing constraints, it will not work
nor is it satisfactory for systems requiring real-time responses from real-time environments.

Chapter 4 continues the examination into the lack of support provided to end-users when dealing
with reconfiguring components within real-time systems by examining the configuration management
system groupings detailed in chapter 3 which were identified by the criteria. Investigating these
groupings revealed that although advancements have been made to assist developers and end-users
during system construction, there is still a noticeable gap when it comes o providing dynamic
reconfiguration management support to components operating under real-time constraints.

Given this lack of support, the chapter discusses the impact on systems when there are no controls
in place to manage real-time reconfiguration requests. Specifically, this lack of support is of concern
to hard real-time environments operating in real-time systems which require immediate notification
when a task can not be performed as scheduled. Chapter 4 highlights the recurring theme throughout
the thesis that configuration management systems whether designed for academic or industrial use,
still do not address the issue of providing end-users with control over method calls when components
are not available. The chapter also reaffirms that the default behaviour of indefinitely blocking
methed calls while components are unavailable is unacceptable for real-time environments where
the success or failure of a method call to execute should be reported back immediately so that
actions can be taken. To address this Jack of support for components operating in a real-time
environment, the chapter introduees a framework to overcome problems with cur-ent configuration
management systems.

Chapter 5 develops the framework presented in chapter 4 and the issues raised in chapters 2 and 3
by presenting a conceptual model known as the Component Oriented Reconfiguration Environment
& Scheduling (CORES) model. The development of CORES allows end-users to control the actions
of method calls when they can not be performed by components and provides an environment where
tasks can be sequenced and scheduled accordingly to suit their respective real-thne commitments.

CORES is supported by a number of formal definitions which detail the various aspects of the
model. Those aspects unique to the CORES model include the optimisation and sequencing of tasks
to form a path through a job while ensuring that real-time constraints of the job are met. CORES
also provides the ability to schedule jobs to ensure that the overall real-time commitments of the
system are met. In addition to providing facilities for tasks and jobs to be sequenced and scheduled,
the model introduces an architecture that provides software developers and end-users with the ability




- ~JWJ

MRS

226

to control method calls. Although the implementation is not discussed in the chapter, the model
does introduce the concept of a configuration manager and explains how it is placed between the
client and component providing the service. $¢ explained in the chapter, strategically placing the
configuration manager in this position allows iur the interception and dealing of method calls as
they pass from client to component. To provide the desired control over the method calls being sent
to components, the CORES model introduces three specific actions which can be performed by the
configuration manager. These actions control the behaviour of method calls when components are
unavailable.

It is through these controls and the architecture of the CORES model that an environment is provided
giving software developers and end-users control over method calls and the ability to ensure that
tasks meet their respective real-time decadlines. In addition to providing the required support for
software developers and end-users in a recal-tiine environment, the CORES model has been designed
so that it can be incorporated into current distributed object frameworks without the uced to
introduce additional keywords or make any significant changes to the underlying architecture.

Chapter 6 verified the formal definitions within the CORES model by providing an implementation
that demonstrates the concepts expressed within the conceptual model. Throughout the chapter a
number of the smaller supporting sub-systems specific to the implementation of CORES are detailed
including how exceptions arc used to implement the controls which influence the behaviour of method
calls and how the user-interface can control the various aspects of the systemn. Verification of the
CORES model also allows for the identification of those arcas within the conceptual model which were
either not formally or poorly defined. As a conseguence these areas could not be directly mapped to
the implementation. In these situations, the implementation proposes alternative solutions so that
the same functionality could be achieved.

The implementation of the CORES model within the CORBA framework confirmed the design
objectives stated in the model mentioned in chapter 5 by providing a model which docs not require
any distributed object framework to be extensively re-designed. The CORES system achieved this
by integrating the configuration manager into the distributed object environment between the client
requesting the service and the component providing it and by making use of standardised keywords
and concepts. This integration allows the configuration manager to be deployed into a range of
distributed object frameworks.

Chapter 7 presented the implementation of the CORES model by incerporating it into a real world
scenario wherce a need exists to control and interact with tasks in real-time. To illustrate this scenario,
the chapter showed how by using an abstracted implementation of a radio telescope observatory,
it is possible to demonstrate the definitions and formalisms used to create the CORES model and
implementation. The features most notable in the case study is the ability to reconfigure and isolate
components within the system while it is running and allowing end-users to control what actions
should be performed when method calls arc sent to components that are not available. This is

R S A R

Tl

R P

S

1

2




227

clearly shown in chapter 7 where a component is being reconfigured and where it receives a number
of incoming method calls. From the scenario presented it can be seen that the incoming method calls
are rejected and returned to the client which sent them initially while other actions in the system
continue to operate as normal. The CORES model also provides limited support for incorporating
Quality of Service (QoS) characteristics into components. An example of how Quality of Service
{Qo8) arguments can influence the availability of a component is presented in the chapter.

8.2 Research Questions

Section 1.3 introduced a number of relevant research questions designed to assist the investigation
into the issue of being able to perform dynamic reconfigurations whilst operating under real-time
constraints. Each question was tested and answered throughout the thesis and is summarised as
follows.

8.2.1 Research Question 1

To what exient do the current reconfiguration management environments provide suppor! for dynamic
reconfiguration?

Over the last couple of decades there has been tremendous development in the field of configuration
management systems. The developments have included the provision of reconfiguration support
for the construction of components through to the development of architectures allowing software
developers or end-users to inspect and in some cases modify the bindings and inter-conncctions
between components. Such advances have led to the creation of a number of Configuration Definition
Languages (CDL)’s such as DARWIN which allows developers to explicitly define bindings between
componernts.

Current reconfiguration management systems arc capable of supporting a range of activities and can
be divided into two distinct groups. The first group includes systems not capable of reconfiguring
components while the system is operating and those which are more sophisticated allowing soft-
ware developers and end-users to manipulate and control the environment that components operate
within while the system continues to operate. The sccond group cmbraces those systems capable
of managing the component environment through a number of techniques. Oue technigue involves
implementing a series of routines designed to introduce a state of quiescence within the immediate
area of the system where the reconfiguration is to take place. In addition to manipulating the envi-
ronment, these systems normally perform a series of consistency checks throughout the environment
as part of the reconfiguration process in order to detect any inconsistencics which may have been
introduced as a result of the reconfiguration process or a new component being integrated.




228

8.2.2 Research Question 2

What support ezists for software developers or end-users o deal with 6 situstion where ¢ method call
ts made on a component which is in the siale of reconfiguring itself or otherwise not available whilst
operatina under real-time consirainis?

Signifi: - at developments have been made within the software engineering community to provide
better support for the component based paradigm and reconfiguration management environments.
These developments have centered upon the development of configuration definition languages such
as DARWIN and proposed extensions to architectures such as REGIS. Although a significant amount
of work has been undertaken to improve the reconfiguration environment, very little has been done
on managing method calls and their real-time commitinents when sent to components unable to
honour the requests due to reconfiguration activitics or other obligations.

Configuration management systems whick do provide dynamic reconfiguration component services
address the issue by blocking all method calls destined for the component which is unavailable.
These incoming method calls remain blocked until such time that the component becomes available
and is ready to process them. Such an approach to method calls which can not be performed is not
acceptable in real-time systems. In such circumstances the system should be notified immediately
and in the case of soft real-time environments a notification should be sent to allow the execution
of consequential actions to proceed so that the issue of the operation not being performed on #ime
ran be addressed.

8.2.3 Research Question 3

What are the requirements of a conceplual model capable of addressing real-timne reconfiguration and
what additional support is needed when deploying it within e non-trivial environmnent where software
developers and end-users can specify what actions should be taken if a method coll is made upon o
component reconfiguring itself or is otherwise not gvailable?

To address the lack of support provided for managing method calls made on components that are
not available within real-time enviromments, this thesis presents the Component Oriented Reconfigu-
ration & Environment Scheduling (CORES) model. To provide the functionalily required the model
sets out a list of requirements, makes use of a number of formal definitions and uses algorithms
specifically designed to handle the sequencing of tasks within jobs while at the same time ensuring
that real-time constraints arc met. In addition to handling the sequencing and scheduling of jobs
the model provides support via the configuration manager for software developers and end-users to
specify what actions should take place if a component is not available. The configuration manager
provides for three actions. These actions include waiting for the component to become available,
do not wait for an unavailable component or wait until a certain Quality of Service (QoS) level is
achiceved.




229

The application of the CORES model within an abstracted implementation of a radio telcscope
array confirms that the model is capable of being implemented and used within real world scenarios
with real-time commitments. This proves that the CORES system is relevant for use by software
developers and end-users and provides the required flexibility. To confirm this flexibility a number
of tests? were performed on both the CORES conceptual model and its implementation to verify its
capability of managing method calls. The management of components within the CORES system
also extends to allowing manipulations while it is running. While performing these manipulations the
system constantly and consciously monitors the state of all tasks ensuring rcal-time commitments
are met. In the event that these conditions are not met, alternate operations are performed to
correct the state of the system.

8.2.4 Research Question 4

Is it possible to integrate into the proposed model the capability to calculate the finpact on the overall
schedule and to identify what implications may exist when various sequencing algorithms (best case
scenario vs. worst case scenario) are used to schedule tasks and jobs?

The sequencing and scheduling engine incorporated into CORES is capable of scheduling tasks and
jobs in a number of ways. Techniques provided by CORES include scheduling based on a pre-existing
order contained within the job definition file or by using a best casc (tasks completed on or before
their allotted time) or worst case scenario (tasks require either the total allotted time or additional
time) algorithm.

From the analysis of the definitions within the CORES system and experimentation with the sched-
uler it is conceivable that schedules within a real-time system can be dramatically cffected as a result
of sequencing tasks in a particular order. This is evident in real-time environments where resources
used by tasks have to be tightly controlled and monitored especially when they do not finish within
their allotted time. Circumstances such as these can result in significant changes and flow-on effects
to the entire schedule and effect the entire system. A fine balance must be reached between those
tasks sequenced using the best case scenario and those with the worst case scenario. Achieving this
balance provides the scheduler with the flexibility required to deal with situations where tasks do
not complete on time.

2 A systematic testing approach applied L6 re-occurring reconfiguration requests in a dynamic real-time environment
confirmed the flexibility of the CORES system.




AP T T

230
8.2.5 Research Question 5

What impact does the incorporation of Quality of Service (QoS) arguments have on the proposed
model so that software developers or end-users can associste QoS charecteristics with components
and then have those characleristics used in conjunction with the respective reai-time commitments
of the system lo calculate a components availability?

The CORES system presented includes the ability for end-users to specify Quality of Service (QoS)
QoSCriteria data designed to be integrated into the decision making process cflecting the availabil-
ity of a component within a real-time environment. Although an analysis was conducted into the
feasibility of incorporating Qo8 specifications into the CORES model, it concluded that a comprehen-
sive Qo8 solution could not be implemented due to the lack of standards in place for communicating
QoS information with third party components. Further complicating the integration of the QoS
implementation into CORES is the ability for cach component developer to have their own unique
way of specifying QoS requirements making it impossible for total integration.

8.3 Future Work

To date considerable work has been carried out with regard to configuration management. Improve-
ments have been made to various configuration management systems allowing reconfiguration of
static objects through to the dynamic and real-time configuration management systcms available
today. However more work necds to be undertaken with regard to the integration of consistency
checking, introduction of versioning control and the overall management and coordination of com-
ponents operating in real-time cnvironments. The problem of providing support to method calis
destined for reconfiguring components in real-time environments is addressed in the thesis by the
implementation of the CORES system. It is concluded however that additional work could be un-
dertaken in this arca in the future. Arcas which could be subject to further investigation or possibly
be integrated into CORES include:

» The generation of a softwarc tool capable of examining the interface definition of a comnponent
and fromn that definition automatically generating the necessary code required to build a con-
figuration manager for the component. This tool might aid software developers by including
clements and functionality from the CORES systamn

o The incorporation of the underlying principles in the CORES system being integrated into
another configuration management system such as the extensions proposed for REGIS which
is capable of performing additional functions such as consistency checking and a more sophis-
ticated engine for component reconfiguration. The ideas presented in CORES could provide
the additional support required for such an architecture and enable it to support real-time
reconfiguration rather than blocking method calls during the reconfiguration of a component

h
N

i

H

¥

H

N

i

et L

17

Yl Y

FhIE AT

PR i

(k)

e

Ty
T e BT

el



T

e i L B WI

231

i
5
Y
i
X
LE
g

¥

e Construction of a graphical tool which could be used to illustrate the conncction status be-
tween the client, configuration manager and the component. Such a tool could be used to
control the reconfiguration and quiescence processes as well as controlling the directives which
govern method calls sent to components that are unavailable. A graphical tool could also be
used to visualise the interconnections cxisting within a system and possibly provide real-time 5
information about the interconnections and their use ’

el

e

8.4 Concluding Remarks

It is not proposed that the CORES system will solve all the problems related to dynamic recon-
figuration management within a real-time environment, however it does address and demonstrate
how method calls destined for components being reconfigured or otherwise not available can be
handled. The CORES system aims to provide a way in which tasks can be sequenced and scheduled
within an environment which is sensitive to real-time constraints. CORES should not be viewed in
isolation as a complete dynamic real-time reconfiguration environment but more as a system which
provides a solution to the management of components in a rcal-time context. In an industry where
there is a proliferation of real-time components, it will become increasing important to provide addi-

tional support for their management and on-going reconfiguration within their own native real-time
environment while they continue to operate.

T R o e R A

e b
b




232

AR A

i

3
£

Ll

Appendix A

iy

Interface Definition Language

R

k!

e
EEY

i

Yok

A.1 Interface Definition Files i

This appendix containe a series of Interface Definition Language (IDL) files which were used to
implement the Component Oriented Reconfiguration Environment & Scheduling system. The IDL
files explicitly reproduced here and used tlucughout the thesis are subject to the following copyright
notice:

Copyright (C) 1997-2002 Bean Thompson, Monash University

COPYRIGHT NOTICE

This code is NOT FOR DISTRIBUTION. It is provided solely for the purpose of examination.
ALL RIGHTS ARE RESERVED




233

A.1.1 antenna.idl

The file antenna. idl contains the interface definition for the simplified radic telescope antenna.

tinclude “dataStructures.idl"

interface Antenna
{
/{ Provide a method call for the antenna to slew into position
oneway void slew(in double azimuth, in double elevation,
in stringStructure projectline,
in stringStructure informetionline};

// Provide a method call for the antenna to track a celestial target 10
e~-way void {rack{in double rightAscension. in double declinalion,

in double trackUntil,

in stringStruclure projectLine,

in stringStructure informationLine);

/{ Provide a method call for the rotation of the receiver turret
oneway vold rotateReceiverTurret(in antenncReceiver desiredReceiver,
in stringStructure projectLine,
in stringStructure informationLine);
20
/] Provide a method call to allow the allocated time period to be specified
oneway void allocetefdle(in double trackUntil,
in stringStruclure projectLine,
in siringStruclure informationLine);

/{ Provide a method call to get the antentas current configuration
boolean getAntennaConfig{lout double szimuth, out double elevation,
out double receiveriurret,
out short radiofnierferenice);
/{ out antennaReceiver receiverTurret); 30

/] Provide a method call to get the antennas current status
boolean getAniennaStatus(out stringSiructure projectLine,
out stringStructure informationLine};

/{ Bring the complete antenna to a stop
oneway void stopAntenna(ic siringStructure projectline,
in stringStructure informationLine),

// Start thr antenna up again 40
oneway void startAntenna{in stringsiructure projectLine,

in stringStructure informationLine);

// Stow the antenna




234

oneway void stowAntenna(in shingSiructure projectLine,
in stringStructure informationline);

}/ Start the simulation of radio interference
boolean stortRadiolnterference();
50

// Stop the simulation of radic interference
boolean stopRediolnierference();

// Check for radio interference
boolean checkForRadiolnterference(out short radiointerference);

// Restore antenna data
boolean restoreAntennaPata(in stringStructure antennalnformation);

/{ Store antenna data 60
boolean savedntennaData{out stringStructure antennalnformaetion)

// Update antenna information line
boolean updateAntennalnformation{in stringStructure informationLine);

// Enable antenna
oneway vold encbledntenne();

/{ Disable antenna
oneway void disableAntenna{); 70

Y

interface AntennaFactory

{

Antenna newAnienna();
void freedntenna(in Anlenna gAnienna);

b

R

Hevat

;._?-‘

i



235
A.1.2 antennaManager.idl

The file antennaManager . id1 contains the interface definition for the configuration manager which is
responsible for looking after the antenna component. Note that the configuration manager definition
contains the declarations for the reconfiguration exceptions.

tinclude "availability.idl"”
#include “dataStructures.idl"

interface AntennaManager

T
)

/! Provide a method call for the antenns to slew into position
boolean slew(in double ezimuth, in double elevation,
in stringStricture projectLine,
in stringStructure informationLine,
out ErceptionHandling::ManuelEzecption aManualFEzcepiion, 10
in Module Availability:: Module UnAvailadleinstruction
theAvailabitityfnstructions)
raises{ Module Availability:: Object BeingReconfigured,
Madule Availability:: QoSObject BeingReconfigured,
Module Availability:: QoSChject invalid);

}/ Provide a method call for the antenna to track a celestial target
boolean track(in double rightAscension, in double declination,
in double trackUntil, in siringSlructure projectLine,
in stringSiructure informalionline, 20
out EzceptionHandling: ManualFrception aManualBrception,
in ModuleAvailability:: ModulelU/nAvailablelnstruction
theAvailabilityinstructions)
raises{ Meodule Availability:: Object BeingReconfigured,
Module Availability:: QoS Object Being Reconfigured,
ModuleAvaslability:: QoS ObjectInvalid);

// Provide a method call for the rotation of the receiver turret
boolean rotateReceiverTurret(in antenncReceiver desiredReceiver,
in stringStruciure prejectLine, 20
in siringStructure informationline,
out Erceptionliandling:: MonualEzception
aManuslException,
in ModuleAvailabifity:
ModuleUrAvailablelgiruction
the A railabilityfnstructions)
raises{ Modulc Availability:: Object BeingReconfigured,
Module Availability:: QoS Object Being Reconfigured,
Module Availability:: QeSObject Invalid);
40
/{ Provide a method call to allow the allocated time period to be specified
boolean allocateldle(in double trackUntil,

it
!

r,

SRHIERE

T

G S




236

in siringSiruclure projeciline,
in siringSiruclure informationline,
out. Zrception Handling:: ManualEBrceplion aManuvalEzceplion,
in ModuleAvailobility:: Module UnAvailablefnstruction
theAvailabililyinstructions)
- | raises{ Module A voslabilily : Objeci BeingReconfigured,
Module Availabilily:: QoS Qljeci BeingReconfigurcd,
Module Availabilily:: QoSObject Fnvalid); 50

// Provide a method call to stop Lthe anlenna
boolean slopAntenna(in siringStruclure projeciline,
in siringStruclure informalionline,
out EzceplionHandling: ManuslEzceplion aManualEzceplion,
in Modele Avadlabiiity:: ModuleUnAvailobleMmsiruction
E _ theAvailabditityInsiructions)
k. raises{ ModulcAvailability:: Object BeingReconfigured,
ModuleAvailability:: QoS Object BeingReconfigured,
Module Avaitability:: QoSCObjectinualid); 60

/{ Provide a meihod call vo stow the antenna
boolean stowAnienno(in siringStructure projectLine,
in stringSiructure tnformationlLine,
out Erccptionlandling:: ManualEzceplion aManualEzception,
in Module Availability:: Module Un Availablemstruction
_ iheAvailabilityInstructions)
3 raises{ Module Avaslability:: Object BeingRecon figured,
g ModuleAvailabilily:: QoS Object BeingReconfigured,
Module Availability:: QoSOljectnvalid); 70

_ . // Stari the simulation of radio intecference
': boolean slariRadiofuterfercnce{out Ezceplionlandling::ManuglEzrception
aManualEzceplion,
' ' ' in ModuleAvailability:

Module UnAvailableInairuction

theAvadlabilityinsiructions)

raises! Module Availability:: Qbject BeingReconfigured,
4 ModuleAvaitability:: QoS Object Being Revonfigured,
ModuleAvailabilily:: QoSObjectinvalid); 80

// Stop the simulailion of radio interference
boolean siopRaedielnlerference(in ModuleAvailabilily::
ModuleUnAvailablemnstruction
E the Availabitilynstructions)
raises(ModuleAvaitabilily:: Object BeingReconfigured,
| ModuleAvailability:: QoSObject BeingReconfigured,
Module Avaitability:: QoS Objectinvalid);

» // Check for radio ioterference %0




boolean checkForRadiolnlerference{out short radiolnterference,
in ModuleAvailability::
Module Un AvailableInsiruction
theAvailabilityInstructions)
raises{ ModuleAvailability:; Object Being Reconfigured,
ModuleA vailability:: QoS Object Being Reconfigured,
ModuleAvailability:: QoS ObjectInvalid);

// Provide a method call to get the antennas current configuration
boolean getAntennaConfig{out double aezimuth, out double elevation,
// out antennaReceiver receiverTurret,
out double receiverTurret,
out short radioInterferencePresent,
in Module Availability:: Module Un AvailebleInstruction
the AvailabilityInstructions)
rajises{ Module Availability:: Object BeingReconfigured,
Module A vailability:: GoSObject Being Reconfigured,
Module Avaitability:: QoS Objectnvalid);

/{ Provide a method call to get the antennas current status
boolean getAntennaStatus(out stringStructure stationlD,
out stringStruclure informationLine,
in Module Availability:: Module UnAvailablefnstruction
the AvailabilityInstructions)
raises{ Module Availability:: Object BeingReconfigured,
Module Availability:: QoSOtject BeingReconfigured,
Module Availability:: QoSObjectInvalid);

// Provide a method to process the QoS requirements
boolean processQoSRequirements(in QoSPracessing::QoSAction QoSToSatisfy,
in MeduleAvailability::
Module inAvailablelnstruction
theAvailabilityinstructions,
out EzceptionHandling:: ManualErception
aManuelEzception)
raises( QoSProcessing:: NoRadioInterfevence,
QoSProcessing:: Radiolnterference,
QoSProcessing:: NotHandlingRadioInlerference):;

/{ Configuration Qperations
// Provide a method call to establish the antenna
heolean establishComponentConnection(in string antennaObjectReference);

// Provide 2 method call to allow for the reconfiguration of the antenna
oneway void reconfigureComponentConnection{in stringSiruciure
antennaObjectReference,
in stringSiructure
stationTitle);

237

100

10

120

130

et

3

AR

hos i gk

L

W

i

o
B



// Provide a method call to set the time which the component is avatlable
boolean setComponentAvailabilityTime(in double timeComponent WillBzReady);

// Provide a method call which allows the manager to be shutdown;
bootean shutdownManager{in hoolean shuidounFlag);

// Provide a method call which allows the antenna to e taken off-line
boolean antennaOffline(in boolean offfineFlag);

}{ Provide a method call which brings the antenna back on-line
boolean antennaOnline(ia boolean onlineFlag);

// Provide a method call to get the station ID
boolean getStationID{out stringStruciure aStationID);

J/ Provide a method call to pass the station ID
boolean setStationID{in siringStructure aSlationlD);

¥

interface AntennaManagerFactory

{

AntennaManager newAntennaManager();
void freeAniennaManager(in AntennaMonager aAntennaManager);

h:

238

140

150

160




239

A.1.3 availability.idl

The file availability.idl contains a number of definitions which CORES uses to provide additional
flexibility. These definitions include the ExceptionHandling, JoSProcessing, ModuleAvailability
types.

The Exception Handling object defines those exceptions thay CORES transmits to the client using
the ManualException data structure to indicai: sn event. The QoSProcessing object defines the
Quality of Service characteristics examined when the system is operating in a QoS mode. The
ModuleAvailability object defines those actions that take place when a component is uvavailable.
This object is included within every method call made from the client to the configuration manager.
The IDL file also defines those exceptions raised between the configuration manager and the routine
responsible for processing the ModuleAvailability object data.

module EzceptionHandling
{
enum FreeptionTypes {NoEzception, /1 No exception
Object BeingReconfigured, /{ Object is being
// reconfigured
QoS0bject BeingReconfigured, }/ Object is being
/{ reconfigured but
// won’t be ready by

// QoS data
QoSObjectinvalid, // Incorrect QoS data

/! supplied
NoRadiointerference, // Radio interferenve

/{ has ceased
RadioInterference, // Radio interference

// is still present
NotHandlingRadiolnterference}; // No handler for
// radio interference

struct ManualEzceplion
{
EzceptionTypes exceptionType;
double timeAt WhichComponentlsAvailable;
I5
}:

module QoSPrycessing

{

enum @QoSAction {Radiolnterference-Check, [{ Quality of Service
// characteristics for radio
[/ interference need to be
{/ examined

10

30




240
NoAction}; // No action specified
exception NeoRadioInterference { string reason; }; .
exception RadioInterference { string reason; }];
exception NotHendlingRadionterference { string reason; };
|5
module ModuleAvailability 40
{
enum ModuleUndvailableAction {NoWait, /1 Don’t wait if object is
// unavailable
WillWait, /] Call will wait until object is
// available
QoSWait); [/ Quality of Service
{1 Characteristics will
// determine whether or not the
// call will block
50
struct QoSDetail
{
QoS5Processing:: QoSAction theQoSAclions,;
short nuinberOfAttempts;
short delayBetweenEvents;
double {ocadAverage;
any eztraQoSDala;
L
60
struct ModuleAvailabilityData
{
long timePreparedToWail;
long timeComponentIsAvailableAt;
short sumberOfQoeSContracts;
QoSDetail allOfTheQoSParameters[S):
)
struct ModuleUnAuvailableInstruction
f 70

ModuleUnAvailableAction anfnstruction;
ModuleAvailabilityData someQoSData;
}i

exception ObjectBeingReconfigured { string reason; }.
exception QoSObjectBeingReconfigured { ModuleAvailabilityDato

specifiedQoSRequirements; };
exception QoSObjectinvalid { string reason; };

b




241

Appendix B

Job Definition Files

B.1 Job Definition Files

This appendix contains a sample of the job definition files which are used to provide the radio
telescope antennas with a series of tasks to perform. The underlving astrorornical principles used
throughout the CORES system and the job definition files can be found in Roth (1975), Kutner
(1987), Roy (1988) and Zombeck {1990). Additionally, the radio point sources used for the variors
observations were selected with the assistance of the Sky Catalogue 2000.0 which was written by
Hirshfield and Sinnott (1995).




242

B.1.1 Job Defintion File

The contents of the file DTO08. obs represents a series of tasks awaiting for sequencing and scheduling
into the CORES system.

% Observation file for C186b Observation

Title of Project: High—spatial resolution observations of Ela Carinae
FProject Coordinators: KA. Duncan (ATNF, AU)

Project ID: C186b

Receiver Type: 2

Antennas Reguired; 123456

Number of Celestial Points: 3

Number of Observation runs: 4

=—— Celestial Point Dala #1 ———

Celestial Point Name: ETA_CAR 10
Celestial Observalion Time: 540

Right Ascension Hour: 10

Right Ascenston Minule: 45

Right Ascension Second: 3.60

Declination Degree: —59

Declination Minule: 41

Declination Second: 3.00

—ma Celestial Point Dala #2 ———

Celestial Point Name: 1045-62

Celestial Observation Time: 45 20
Right Ascension HYour: 10

Right Ascension Minule: 47

Right Ascenision Second: 42.95

Declination Degree: —62

Dectination Minute: 17

Declinalion Second: 14.53

——= QCelestial Point Daio #2 ———

Celestial Point Neme: 0823~500

Celestial Observation Time: 56

Right Ascension Hour: 8 30
Right Ascension Minute: 25

Right Ascension Serond: 26.87

Declination Degree: --50

Declination Minute; 10

Declination Second; 3849




243

B.1.2 Sequenced Job Defintion File

The contents of the file DT008. psc represents a series of tasks which have been sequenced by the
CORES system and is awaiting scheduling.

% Sequenced Observation file for CI186b Observation

Title of Project: High—spalial retrolulion observations of Ela Carinae

Project Coordinators: R.A. Duncan {ATNF, AU)

Project 1D: G186b

Receiver Type: 2

Aniennas Required; 123456

Number of Celestisl Points: 3

Number of Qbservation runs: 4

Calculeted Observation lime: 38502.42

Approz stert time of Obscrvation: 17:59:00 10
—~w= Celestial Point Data 8 1 ———

Celestial Point Name: 0823-500

Celestial Observation Time: 3360.00

Right Ascension Hour: 8

Right Ascension Minute: 25

Right Ascension Second:; 26.87

Declinetlion Degree: =50

Declination Minute: 10

Declination Second: 38.49

——— Celestial Point Data 8 2 —~—— 20
Celestial Point Name: ETA.CAR

Celestiel Observation Time: 32400.00

Right Ascension Hour: 10

Right Ascension Minute: 45

Right Ascension Second: 3.60

Declination Degree: =59

Declination Minute: 41

Declination Second: 3.00

~—=— Celestéial Point Data 8 3 ———

Celestial Poini Name: 1045-62 3¢
Celestial Observation Time: 2700.00

Right Ascension Hour: 10

Right Ascension Minute: 47

Right Ascension Second: 42.95

Declination Degree: —62
Declination Minute: 17
Declination Second: 14.53




244

Appendix C

CORES Command Summary

C.1 CORES Command Summary

This appendix contains a list of commands that the user interface to the CORES system will accept
and process. The commands listed here allow tasks to be sequenced and scheduled as well as per-
forming a number of other activities (ic. configuration operations) which relate to the operation of
the system,

Command;: version
Parameters: <none>
Description: Displays the version information associated with the CORES system.

Command: scquence

Parameters: <jobName> [max|min{preserve]

Description: Specify the obscrvation to sequence. The sequence commmand also allows the opera-
tor to specify how they want the obscrvation to be sequenced.

Command: schedule
Parameters: <jobName>
Description: Specify the sequenced observation to admit Lo the schedule.

Command: insert-into-schedule
Parameters: <jobName>
Description: Insert the nominated sequenccd observation into the schedule at a point greater than




245

the current time reference.

Command: construct-schedule
Parameters: <none>
Description: Instruct the CORES system to build the schedule.

Command: go
Parameters: <none>
Description: Execute the observations which have been loaded into the scheduler.

Command: start
Parameters: <none>
Description: Exccute the observations which have been loaded into the scheduler.

Command: stop
Parameters: <none>
Tescription: Stop the execution of the observations.

Command: stow

Parameters: <none>

Description: Stow the exccution of the observations and return the radio telescopes to their stow
position.

Command: view-current
Parameters: <none>
Description: View the current observation being performed by each of the antenna resources.

Command: view-last
Parameters: <none>
Description: View the last observation which used cach of the antenna resources.

Command: view-next
Parameters: <none>»
Description: View the next observation to use cach of the antenna resources.




246

Command: info-schedule
Parameters: <none>
Description: Provide an overview of the contents and the status of the schedule and scheduler.

Command: reconfigure-mode

Parameters: <WillWait|NoWait|QosWait> <timeout>

Description: Specifies the configuration mode that the system operates within. It also allows the
operator to specify a timeout value when waiting for components to become available (timeout op-
tion is only available with the WillWait|QoSWait options).

Command: show-reconfig-info
Parameters: <no paramneters>
Description: Shows the systems current reconfiguration sctting,

Command: reconfigure-antenna

Parameters: <antenna #> <new antenna reference> <antenna ID>

Description: Performs a reconfiguration action on the specified antenna and moves the state data
located within that antenna to the new antenna specified by the antenna reference.

Command: set-antenna-availability

Parameters: <antenna #> <HH:MM:8S> <DD/MM>

Dcscription: Allows the operator to specify at what time the antenna referenced by the antenna
number will be available.

Command: antenna-offline
Parameters: <antenna #>
Description: Takes the nominated antenna offline.

Command: antcnna-online
Parameters: <antcnna #>
Description: Brings the nominated antenna online,

Command: clock-stop
Parameters: <uone>
Description: Stops the observatory clock.




Command: clock-start
Parameters: <none>
Description: Starts the observatory clock.

Comrmand: set-clock
Parameters: <HH:MM:8S> <DD/MM/YYYY>
Description: Sets the time on the observatory clock to the valuc entercd.

Command: specify-QoS

Parameters: <Radiolnterference>> <# re-try attempts> <# delay in seconds>

Description: Specify a Quality of Service (QoS) level and attach it to a particular element or
component within the system.

Command: introduce-radio-interfercnee
Parameters: <antenna #>
Description: Introduce radio interfercnce to the nominated antenna.

Command: remove-radio-interference
Parameters: <anteuna #>
Description: Remove radio interference to the nominated antenna.

Command: restart-antenna
Parameters: <antennagt>

Description: Brngs the nominated antenna online and then has it rejoin the current scheduled

observation.

Command: creatc-antenna
Parameters: <none>
Description: Initialise an instance of an antenna in the system.




248

Appendix D

Source Code

D.1 Processing Method Calils for Unavailable Components

4 - B This appendix provides the function processUnAvailability(...) which is exccuted cverytime
a method request is made upon a component which is not available. The source code explicitly
reproduced here and used throughout the thesis is subject to the following copyright notice:

Copyright (C) 1997-2002 Dean Thompson, Monash University

COPYRIGHT NOTICE

This code is NOT FOR DISTRIBUTION. It is provided solely for the purpose of examination.
ALL RIGHTS ARE RESERVED




Ebie

bl i | el i

S *

249

D.1.1 processAvailability.cc

The file processAvailability.cc is responsible for checking the ModuleAvailability object and
throwing the corresponding exception if a component is not available.

void precessUnAvailability
{const Module Availability:: Module Un AvailableInstruction
&avatlabilityInstructions, time.! componentAvailabilityTime,
char sebjectReference)

.3 .
if (availabilitylnstructions.aninstruction == ModuleAvailability:: No Wait)

throw ObjectBeingReconfigured("Object is currently being reconfigured.*);
if {{ovailabilityInstructions.aninstruction == ModuleAvailability:: WillWait)&:&

(availabilityInstructions. some QoSData. timePreparedTo Wait == 0)) 10

throw QoSQbjectinvalid

("The time value specified in the QoS structurs has not been specified.®);
it ({ovailabilityInstructions.anfnsiraction == Module Avaslability:: WillWait )&&

(componentAvailabililyTime == 0})

throw QoSObjectinvalid

("The time at vhich the component is to be Teady has not been specitied.");
if (avaitabilityinstructions.aninsiruction == ModuleAvailability:: WillWait)
{
if (time(NULL) > componentAvailabilityTime)

return; 20
it ((time(NULL} + (availabilityfnstructions.someQoSData,

timePrepared ToWaits60)) > componentAvailabitityTime)

{

int sleepValue = componentAvatlabilityTime — time{NULL);

if (sleepValue < D)

return;

sleep(component AvailabilityTime — time(NULL));

return;

}

else 30
{
ModuleAvailabilityData Module AvailabitityDataToReturn;
Module AvailabilityData ToReturn.limeComponentisAvailable At =
componentAvailability Time;
ModuleAvailabilityData ToReturn.timePrepared ToWait =
svailabilityfnstructions. someQoSDutotimePrepured To Wait;
Module AvailabilityDate ToReturn.aliOfTheQoSParumelers{0]. exiraGoSDala =
avatlabilityInstructions.some QoS Date.allOf TheQoSParamelers{0]. extra QoSData;
throw QoSObjectBeingReconfigured( ModuleAvailabilityData ToReturn);
} 40
}
}




Index

NET Framework
Architecture, 48
Base Class Library, 50
CLR, 51
Common Language Specification, 49
Definition, 48

Adcle
Architecture, 76, 77
Revision Set, 77
WorkSpace, 77
Definition, 76
ATCA, 205
ATNF, 205
Australia Telescope National Facility, see ATNF
Australian Telescope Compact Array, see ATCA

Binary Standard, 40

Binding Manager, 15-18
Direct References, 13
Indirect References, 13, 15

CDL, 11, 15, 19-21
Change Management Systems, 1
CHORUS
Architecture, 94
Definition, 93
Reconfiguration, 96
Class Represcntation, 10
COM
Architecture, 42
Components within, see DCOM
Definition, 40
Common Language Runtime, se¢ CLR
Common Object Request Broker Architecture,
sce CORBA
Comparsion
.NET vs. COM/DCOM, 61
CORBA vs. COM, 59
Comparison, 59

250

Portable Framework, 60
JavaBeans, 61
Component, 8
Component Based Paradigm, 4, 7, 10, 12-14,
17
Componcnt Based Programing, 2, 11
Component Based Technology, 7
Component Object Model, see COM
Component Oriented Reconfiguration Envivon-
ment and Scheduling, see CORES
Concurrent Versioning Systein, see CVS
Configuration Definition Langrage, sce CDL
Configuration Management, 1, 2, 13-15
Activate, 16, 18
Active, 16
Consistency Checking, 17
Create, 16
Intercomponent Communication Channels,
16, 17
Link, 106
Passivate, 16, 18
Reconfiguration Management, 18
Unlink, 16
Configuration Managemeunt Systems, 5, 15, 16,
18, 63
Review, 125
Component Configuration, 127
Dynamic Component Configuration, 128
Runtime Component Configuration, 129
Static Component Configuration, 127
Configuration Manager, 5
CONIC, 20, 86
Architecture, 88
Configuration Language, 87
Definition, 86
Dynamic Configuration, 88
Module Programming Language, 87
CORBA
Definition, 33




s e

DII, 36
D8], 38
IDL Skeleton Interface, 37
IDL Stub Interface, 36
Implementation Repository, 38
Interface Definition Language, 33
Interface Repository, 38
Object Adapter, 36
ORB, 38
ORB Interface, 36
CORES '
Algorithms, 137
Architecture, 167
Limitations, 175
Case Study, 204
Implementation, 210
Configuration Ma. s ger, 165
Definition, 136
Dynamic Controls, 173
NoWait, 174
QoSWait, 175
WillWait, 174
Implementation, 180
Architecture, 180
Client, 189
Component, 196
Configuration Manager, 192
Exception, 198
Limitations, 201
Real-Time Exccution Engine, 200
Server, 196
User Interface, 189
CVS, 69

DARWIN, 19-21
DARWIN Components, 22
Exporting Services, 21
Importing Services, 21
Levelling, 22
Services, 22

DCE
Architecture, 24
Cells, 26
Definition, 23
Directory Service, 25
File Secrvice, 25
Operating System Interface, 28
Remote Procedure Call, 27

251

Security Service, 25
Threads Service, 27
Time Service, 26
DCOM
ActiveX Controls, 43
Architecture, 42
Automation, 44
Definition, 40
Infrastructure Components, 43
Interfaces, 40
IUnknown Interface, 41
Memory Model, 41
Monikers, 44
OLE Compound Documents, 42
Structure Storage, 44
Uniform Data Transfer, 44
DCVS, 69
Distributed Component Object Model, see DCCM
Distributed Computing Environment, see DCE
Distributed Concurrent Versioning System, see
DCVS
Distributed Revision Control System, see DRCS
DRCS, 67
Dynamic Controls, 5
Dynamic Invocation Interface, see DII
Dynamic Reconfiguration, see Configuration
Management
Dynamic Skeleton Interface, see DSI
DynamicTAO
Architecture, 107
Definition, 107
Reconfiguration - Automatic, 110
Reconfiguration - Dynamic, 108

EJB

Definition, 58

Objectives, 58
Encapsulation, 9
Enterprise JavaBeans, see EJB
Equus, 89

Finite State Machines
Definition, 98
Reconfiguration, 99

HRESULT, 46

ICE, 71
Feature File System, 71




Feature Logic, 71, 72
Version Sets, 71, 72
Identity, 9
Incremental Configuration Engine, see ICE
Inheritance, 9, 10
Inplace Activation, 42

JAVA
Architecture neuirality, 53
Definition, 52
Distributed Programming, 53
Object Oriented Programming, 52
Robust, 53

JAVABecans, 54
Definition, 54
Enterprise JavaBeans, sece EJB
Objective, 54

Labelled Transition Systems, 11

Microsoft Interface Definition Lauguage, see
MIDL
MIDL, 45
MIL, 79
Mistral
Architecture, 77
Definition, 77
Reconfiguration, 77, 78
Module Interconnection Language, see MIL

NCA, 23
Network Computing Architecture, see NCA

Object, 8, 9
Object Based Technology, 4, 7
Object Management Architecture, see OMA
Object Management Group, sce OMG
Object Oriented, 12
Object Oriented Paradigm, see Object Ori-
ented Prograinming Paradigm
Object Criented Programming Paradigm, 2
Object Request Broker, sce ORB
OMA
Definition, 29
Object Model, 29
Reference Model, 30
Application Objects, 31
Commen Facilitics, 32
Domain Interfaces, 31

Object Services, 31
OMG, 28
Components, 39

ONC, 23

Open Network Computing, see ONC
Open Source Foundation, see XOpen
ORB, 33

QSF, see XOpen

Polylith
Architecture
Software Bus, 79
Definition, 79
Polymorphism, 40
PONDER, 20
Programmers Playground
Architecture, 82
Sub-Systems, 83
Definition, 81
I/0 Automation, 81, 85

Quiescence, 15, 16, 18, 66, 80

Radio Astronomy, 6

Introduction, 209
Radio Telescope, 207
RCS, 67, 68
Real-Time Component Control, 132
Real-Tiine Constraints, 4-6
Real-Time Environmoent, 2, 5
Real-Time Systcius

Definition, 130

Hard Real-Time, 131

Soft Real-Time, 131
Reconfiguration Event, 6
Reconfiguring Components, 5
REGIS, 20

Architecture, 91

Definition, 61

Dynamic Configuration, 92

Extensions

Consistency Management, 111

Revision Control, 64

Local Revisions, 64

Remote Revisions, 64
Revision Control System, see RCS
REX, 20

Stmula, 7




SOFA/DCUP
DCUP Architecture, i04
Definition, 102
SOFA Architecture, 103
Updating Components, 105
Software Architect, 20
Software Component Model, 54
Software Dock, 73
Architecture, 74, 76
Agents, 75
Federated Deployment Registry, 74
Field Dock, 74
Release Dock, 74
Wide-Area Messaging/Event, 76
Definition, 73
Software Repositories, 12
Surgeon
Definition, 80
Dynamic Reconfiguration Management, 80
System Registry, 47

Virtual Memory Address, 14

XOpen, 23




T

T PRI T T

e

254

Bibliography

Arnold, K. and J. Gosling (1998). The Java Programmming Language: Second Edition. The Java
Series. Addison Wesley.

Ben-Natan, R. (1995). CORBA: A Guide To Common Object Request Broker Archilecture.
McGraw-Hill.

Bennett, S. (1990). Real-Time Computer Control: An Introduction. McGraw-Hill.

Berliner, B. {(1990). CVS II: Parallelizing Software Development. in proceedings of 1990 Winter
USENIX Conference, Washington D.C.

Blazewicy, J., K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz (1996). Scheduling Computer and
Manufacturing Process. Springer-Verlag.

Bioomer, J. (1992). Power Programming with RPC. O'Reilly & Associates.

Brockschimidt, K. (1994). Inside OLE 2: the fust track lo building powerful object-oriented appli-
cations. Microsoft Press.

Brown, N. and C. Kindel (1996). Distributed Component Qbject Model Proto-
col - DCOM/1.0. One Microsoft Way, Redmond, WA: Microsoft Corporation.
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-O1.txt.

Brucker, P. (1998). Scheduling Algorithms. Springer-Verlag.

Burch, J. G. and G. Grudnitski (1989). Information Systems: Theory and Practice (5th ed.). John
Wiley and Sons, Ltd.

Cedergvist, P. (1993, November). Version Management with CVS.

Chung, P. E., Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C.-Y. Wang, and Y .-M. Wang (1998, Jan-
uary). DCOM and CORBA: Sidc Ly Side, Step by Step and Layer by Layer. C++ Report 16(1),
18-29,

Dahl, O, and K. Nygaard {1966, Scptember). Simula - An ALGOL-based Simulation Language.
Commnunications of the ACM 9(9), 671-678.




255

Damiancu, N., N. Dulay, E. Lupu, and M. Sloman (2000, January). Ponder: A Language for
Specifying Security and Management Policies for Distributed Systems: The Language Specifi-
cation. Technical Report DoC 2000/1, Department of Computing, Imperial College of Science,
Technology and Medicine. Version 1.11.

Deitel, H. M. and P. Deitel (1997). C++ How To Program (2nd ed.). Prentice Hall.
Diestel, R. (1997). Graph Theory. Springer-Verlag.
Duffett-Smith, P. (1988). Pructical Astronomy with your Calculator (3rd ed.). Cambridge Univer-

sity Press.

Dulay, N. (1992, March). The DARWIN Configuration Language. Technical report, Iinperial
College Department of Computing Internal Report, Imperial College of Science, Technology
and Medicine, 180 Queen’s Gate, London SW7 2BZ, United Kingdom.

ECMA Standards Organisation (2001a, December). C# Language Specification - ECMA Standard
334. 114 Rue du Rhéne - CH-1204 Geneva - Switzerland: ECMA Standards Organisation.
ECMA Standards Organisation (2001b, December). Common Language Infrestruciure - ECMA
Standard 335. 114 Rue du Rhone - CH-1204 Geneva - Switzerland: ECMA Standards Organ-

isation.

Ellis, M. A. and B. Stroustrup (1994). The Annotated C++ Reference Manual (2nd ed.). Addison-
Wesley.

Ernst, W. (1996). Presenting ActiveX (1st ed.). Sams.net.

Estublier, J. and R. Casallas (1994). The Adcle configuration manager. In W. Tichy (Ed.), Config-
uration Management, pp. 99-133. Baffins Lane, Chichester, West Sussex PO19 1UD, England:
John Wiley and Sons, Lid.

Exton, C., D. Watkins, and D. Thompson (1997). Comparisions Detween CORBA IDL and
COM/DCOM MIDL: Iuterfaces for Distributed Computing. In C. Mingins, R. Duke, and
B. Meyer (Eds.), fn proceedings of TOOLS 25, Technology of Object Oriented Language Sys-
temns, pp. 15-32. IEEE Computer Society Press.

Fitzpatrick, P. M. (1970). Principles of Celestial Mechanics. Academic Press, New York.
Gadonna, C. (1999, August). MISTRAL User Manual VI (1 ed.). LGL

Goldman, K. J., M. D. Anderson, and B. Swaminathan (1993, June). The Programmers’ Play-
ground: I/0 Abstraction for Heterogeneous Distributed Systems. Technical Report WUCS-
93-29, Department of Computer Science, Washington University.

Goldman, K. J., J. Hoflert, T. P. McCartney, J. Plun, and T. Rodgers (1997, February). Building
Interactive Distributed Applications in C++ with The Programmers Playground. Technical
Report WUCS-94-14, Department of Computer Science, Washington University,




256 sl
! Gordon, A. D. and D. Syme (2001, January). Typing a Multi-Language Intermediate Code. In 5
[ G. C. Necula and S. P. Rahul (Eds.), Procecdings of 28th ACM Symposium on Principles of 5

Programming Languages, Volume 36, London, pp. 248-260. ACM Press.

Goudarzi, K. (1999). Consistency FPreserving Dynamic Reconfiguration of Distributed Systems. 1
Ph. D. thesis, Dept of Computing, Imperial College of Science Technology and Medicine, 180 3
Queens Gate, London SW7 2BZ, UK. t@i

Gough, J. (2002). Compiling for the NET Common Language Runtisme (CLR). Prentice Hall.
Gross, J. L. {1999). Graph Theory and its Applications. CRC Press.

Hall, R. S., D. Heimbigner, A. van der Hoek, and A. L. Wolf (1997, May). An Architccture
for Post-Development Configuration Management in a Wide-Area Network. In proceedings of
the 1997 International Conference on Distribuled Computing Systems. Software Engincering
Research Laboratory, Department of Computer Science, University of Colorado.

Hirshficld, A. and R. W. Sinnott (1995). Sky Catalogue 2000.0. Cambridge University Press.

Hofmeister, C., E. While, and J. Purtilo (1993, March}. Surgeon: A Packaer for Dynamically W
Reconfigurable Distributed Applications. Software Engincering Journol 8(2), 95-101.

Kindberg, T. (1991). Equus: an Environment for Reconfigurable Distributed Computations, Tech-
nical report, Department of Computer Science, Queen Mary and Westfield College, University

of London. .

o

Kramer, J. (1990, May). Configuration Programming - A Framework for the Development of
Distributable Systems. In proccedings of the IEEE Internationul Conference on Computer @
Systems and Software Engincering (COMPEURO 90). Department of Computing, Imperial
College of Science, Technology and Medicine: IEEE Computer Society Press.

Kramer, J. and J. Magee (1990, November). The Evolving Philosophers Problem: Dynamic
. i Change Management. In JIEEE Transactions on Softwere Engineering, Volume 16 of IEEE
Transactions on Software Engineering. IEEE Press,
" Kramer, J. and J. Magee (1997). Exposing the Skeleton in the Coordination Closet. In Coordina-

tion ’97. Department of Computing, Iimperial College of Science, Technology and Medicine.

Kramer, J., J. Magee, and K. Ng (1989, QOctober). Graphical Configuration Programming. In
IEEE Computer, IEEE Compuer. IEEE Press.

Kramer, J., J. Magee, M. Sloman, N. Dulay, 8. Cheung, S. Crane, and K. Twidle (1991). An
Introduction to Distributed Programming in REX. Technics! Report ESPRIT Couference 91 .,:*E
- Project Number: 2080, Department of Computing, Imperial College of Science, Technology
and Medicine.

Kramer, K., J. Magee, and A. Young (1990). T'owards Unifying Fault and Change Management,
In proceedings of the IEEE International Workshop on Distributed Computing Sysiems in




257

the '90s, pp. 57-63. Department of Computing, Iinperial College of Science, Technology and
Medicine: IEEE Computer Sccicty Press.

Krause, K. L. (1973, December). Analysis of Computer Scheduling with Memory Constraints. Ph.
D. thesis, Department of Computer Science, Purdue University, Indiana, USA.

Kutner, M. L. (1987). Asirornomy: a physical perspeciive. Harper & Row.
Levi, 5.-T. and A. K. Agrawala (1990). Real Time Systemn Design. McGraw-Hill.

Lim, A. S. S. (1993). A Stale Machine Approach to Reliable and Dynamically Reconfigurable
Distributed Systems. Ph. D. thesis, University of Wisconsin-Madison.

Magee, J., N. Dulay, S. Eisenbach, and J. Kramer (1995, Septeinber). Specifying Distributed
Software Architectures. In proceedings of the Fifth European Software Engineering Conference.
Department of Computing, Imperial College of Science, Technology and Medicine.

Magee, J., N. Dulay, and J. Kramer {1994, September), A Constructive Development Environment
for Parallel and Distributed Programs. Distributed Systems Engineering Journal 1(5), 304—
312.

Magee, J. and J. Kramer (1999). Concurrency: State Models and Java Programs. John Wiley and
Sons, Ltd.

Magee, J., J. Kramer, and M. Sloman {1989, June). Constructing Distributed Systems in CONIC.
IEEE Transactions on Software Engineering 15(6).

Magee, J., J. Kramer, and M. Sk..ian (1990). An Overview of the REX Software Architecture.
In proceedings of the 2nd IEEE Compuler Society Workshop on Fulure Trends of Distributed
Computing Systems, Volume 10. IEEE Computer Society Press.

Martin, V. C. (1993, February). There can be only one! A summary of the UNIX standardization
movement. ACM CrossRoads 1(3).

Meyer, B. (1997). Object-Oriented Software Consiruction (2nd cd.). Prentice Hall.

Meyers, S. D. (1998). Effecitve C++: 50 specific ways to improve your programs and designs (2nd
ed.). Addison-Wesley.

Microsoft Corporation (2001). Micreseft .NET Framework - Techmical QOverview
(30 ecd.). One Microsoft Way, Redmond, WA: Microsoft Corporation.
http:/ fwww.gotdotnet.com/team/framework /DotNet Framework Technical Overview v3.doc.

Microsoft Corporation and Digital Equipment Corporation (1995). The Component Object Model
Specification (Version 0.9 ed.). One Microsoft Way, Redmond, WA: Microsoft Corporation and
Digital Equipment Corporation.

Naur, P., B. Randall, and J. Buxton (1976). Software Enginecring: concepis and techniques:
proceedings of the NATO conference. Petrocelli/Charter.




258

Object Management Group (1995a, November). Common Facilties Architeciure (4.0 ed.). Fram-
ingham Corporate Center, 492 Old Connecticut Path, Framingham, MA 01701 U.S.A: Object
Management Group.

Object Management Group (1995b). The Commeon Object Request Broker: Architecture and Spec-
ification (2.0 ed.). Framingham Corporate Center, 492 Oid Connecticut Path, Framingham,
MA 01701 U.S.A: Object Management Group.

Object Management Group (1997, January). A Discussion of the Object Management Architecture
(1.0 ed.). Framingham Corporate Center, 492 Old Connecticut Path, Framingham, MA (1701
U.S.A: Object Management Group.

Object Management Group (1998, December). CORBAServices: Common Object Services Speci-
fication. Framingham Corporate Center, 492 Qld Connccticut Path, Framingham, MA 01701
U.S.A: Object Management Group.

Objcét. Management Group (1999, July). CORBA Language Muppings. Framingham Corporate
Center, 492 Old Connecticut Path, Framingham, MA 01701 U.S.A: Object Management
Group.

Object Management Group (2001, December). The Common Object Request Broker: Archilec-
ture and Specification (2.6 ed.). Framingham Corporate Center, 492 Old Connccticut Path,
Framingham, MA 01701 U.S.A: Object Management Group.

Object Management Group (2002a, November). The Common Oljecl Request Broker: Architec-
ture and Specification (3.0.1 ed.). Framingham Corporate Center, 492 Old Connecticut Path,
Framingham, MA 01701 U.S.A: Object Management Group.

Object Management Group (2002b, June). CORBA Components (3.0 ed.). Framingham Corpo-
rate Center, 492 Old Connecticut Path, Framingham, MA 01701 U.S.A: Object Management
Group.

Petri, C. A. (1962). Kommunikation mit Automuten, Ph. D. thesis, Bonn: Inst. {. instrumentelle
Math, University of Bonn, Germany.

Plasil, F., D. Balck, and R. Janccek (1998, May). DCUP: Dynamic Component Updating in
Java/CORBA Environment. In proceedings of the 4th International Conference on Configuruble
Distributed Systemns. IEEE Comnputer Socicty Press.

Pryce, N. and S. Crane (1996, January). A Uniform Approach to Configuration and Communica-
tion in Distributed Systems. In proceedings of the Third International Conference on Config-
urable Distributed Systems, pp. 1-12. Department of Computing, Imperial College of Science,
Technology and Medicine.

Purtilo, J. M. (1994, January). The POLYLITH software bus. In ACM Trensactions on Program-
ming Languages and Systems, Volume 16, pp. 151-174.




259

Purtilo, J. M. and C. R. Hofmeister {1991, May). Dynamic Reconfiguration of Distributed Pro-
grams. In proceedings of the 11th International Conference on Distributed Compuling Systems
(ICDCS), Washington, DC, pp. 560-573. IEEE Computer Society.

Reisig, W. (1985). Peiri Nets, An Introduction. Springer-Verlag.

Romdn, M., F. Kon, and R. H. Campbell (1993, June). Design and Implementation of Runtime Re-
flection in Communication Middleware: The DynamicTAQO Case. In proceedings of ICDCS'99
Workshop on Middleware, Austin, TX.

Roth, G. (1975). Astronomy - A Handbook. Springer-Verlag.

Roy, A. E. (1988). Astronomy: principles and practice. Bristol ; Philadelphia, PA, USA : Institute
of Physics Pub.

Rozier, M., V. Abrossimov, F. Armand, 1. Boule, M. Glen, M. Guillemont, F. Herrman, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser (1992). Overview of the CHORUS Distributed

Operating System. In workshop on Micro-Kernels and Other Kernel Architectures, Seattle,
pp- 39-70. Berkeley, California, USENIX Association.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W, Lorenscn (1991). Object-Orienied
Modeling ond Design. Prentice-Hall,

Schmerl, B. R. and C. D. Marlin (1996, June). Consistency Issues in Partially Bound Dynamically
Composed Systems. In proceedings of the Ausiralisn Softwere Engineering Conference, pp.
183-191. Department of Computer Science, The Flinders University of South Australia: IEEE
Press.

Schmidt, D. C., D. L. Levine, and C. Cleelan (1499). Advances in Computers. Academic Press.
Sedgewick, R. (1988). Aigorithms. Addison-Wesley.
Scdgewick, R. {2002). Algorithms in C. Part 5, Graph Algorithms (3rd cd.). Addison-Wesley.

Sethuraman, R. and K. J. Goldman (1995, November). Formal Specification of a Dynamically
Configurable Distributed system. Technical Report WUCS-95-17, Department of Computer
Science, Washington University.

Siegel, J. (1996). CORBA fundamentals and programming. John Wiley and Sons, Ltd.
Simmons, C. and A. Rofail (2002). The Microsoft .NET Platforin and Technologies. Prentice Hall.
Stroustrup, B. (1994). The Design and Buolulion of C++. Addison-Wesley.

SUN Microsystems (1987, June). XDR: External Data Represcntation. Released as a Request for
Comment. Number: 1014.

SUN Microsystems (1997, July). JavaBeans Specification (Version 1.01 ed.), 2550 Garcia Avenue,
Mountain View, CA 94043: SUN Microsystems.

SUN Microsystems (2002, August). Enterprise JavaBeans Proposed Specification (2.1 ed.). 4150
Network Circle, Santa Clara, California 95054, U.S.A: SUN Microsystems.




260

Swamy, M. N. S. and K. Thulasiraman (1981). Graphs, Networks, and Algorithms. John Wiley
and Sons, Lid.

Szyperski, C. (1997). Component Software: Beyond Object-Oriented Programming. Addison-
Wesley.

Thompson, D. and D. Watkins (1997). Comparisous between CORBA and DCOM: Architectures
for Distributed Computing. In J. Chen, M, Li, C. Mingins, and B. Meyer (Eds.), TOOLS 24,
Volume 24 of Technology of Object-Oriented Languages and Systems, pp. 333 — 338.

Thompson, D., D. Watkins, C. Exton, L. Garrctt, and A. Sajeev (1998). Information Systems
Interoperability, Chapter Distributed Component Object Model, pp. 39—78. Rescarch Studies
Press.

Tichy, W. F. (1985, July). RCS, A System for Version Control. Software-Practice and Experi-
ence 15(7), 637-651.

Transarc Corporation (1996). DCE Application Development Guide - Directory Services (1.1
ed.). The Gulf Towcr, 707 Grant Street, Pittsburgh, PA 15219: Transarc Corporation.
http : | [ovpit.ucs.indiana.edu/DCE — DFS [ app_gd_ds_1.himl.

Tsai, J. J. P., Y. Bi, S. J. Yang, and R. A. Smith (1996). Distributed Real-Time Systems: Moni-
toring, Visualizalion, Debugging, and Analysis (1st ed.). Wiley-InierScience.

van der Hock, A., A. Carzaniga, D. Heimbigner, and A. L. Wolf (1998, September). A Rcusable,
Distributed Repository for Configuration Management Policy Programming. Technical Re-
port CU-CS-864-98, Software Engincering Research Laboratory, Dept. of Computer Science,
University of Colorado.

van der Hock, A., D, Heimbigner, and A. L. Wolf (1996, March). A Generic, Peer-to-Pecer Reposi-
tory for Distributed Configuration Management. In proceedings of the 18th International Con-
ference on Software Engineering, Berlin, Germany, pp. 308-317. IEEE Computer Socicty
Proess.

van Helden, A, (1995). Gregorian Calendar, hilp : //es.rice.eduf ES [ humsoc[ Galileo [ Things
[/ gregorian_calendar.html. Summary from: Gregorian Reform of the Calendar: Proceedings of
the Vatican Conference to Commemorate its 400tli Anniversary, 1582-1992, ¢d. G. V. Coyne,
M. A. Hoskin, and O. Pedersen (Vatican City: Pontifical Academy of Scicnces, Specolo Vati-
cano, 1983). Jean Mceus and Denis Savoie, “The history of the tropical year”, Journal of the
British Astronomical Association, 102 #1 (1992): 40-42.

Watkins, D. (2000, January). Adding Centracts o Interfuce Definition Languages. Ph. D. thesis,

Computer Science and Software Engiuncering, Monash University, Australia.

Watkins, D. and D. Thompson (1998). Adding Scinantics to Interface Definition Languages. In
D. Grant (Ed.), proceedings of ASWEC 98, Australian Software Engincering Conference, pp.
66-78. IEEE Computer Society Press.




261

Yang, Z. and K. Duddy (1995, June). Distributed Object Compuling with CORBA. Technical
Report RPSTC Technical Report 23, Distributed Systems Technology, University of Queensland.

Zeller, A. (1995a, October). A Unified Version Model for Configuration Management. In G. Kaiser
(Ed.), proceedings of ACM SIGSOFT’95: Symposium on the Foundations of Software Engi-
neering (FSE-3), Volume 20 of Software Engineering Notes, Washington D.C, pp. 151-160.
ACM Press.

Zeller, A. (1995b, March). Smooth Operations with Square Operators - The Version Set Model
in ICE. In I. Sommerville (Ed.)}, proceedings of 6th International Workshop on Software Con-
figuration Management (SCM-6), Volume 1167 of Lecture Notes in Computer Science, Berlin,
pp. 8-30. Springer-Verlag.

Zlotnick, F. (1991). The POSIX.! Standard: A Programmer’s Guide. Benjamin/Cummings Pub-
lishing.

Zombeck, M. V. (1990}. Handbook of Space Astronomy and Astrophysics. Cambridge University
Press.




262

Vita

Publications arising from this thesis include:

Exton, C., Watkins, D., and Thompscn, D. (1997), Comparisons Between CORBA IDL and
COM/DCOM MIDL: Interfaces for Distributed Computing., In C. Mingins, R. Duke and B.
Meyer (Editors), TOOLS 25, Volume 25 of Technology of Object Oriented Languages and
Systems. IEEE Computer Society, pp. 15-32.

Thompson, D., and Watkins, D. (1997}, Comparisons betwcen CORBA and DCOM: Archi-
tectures for Distributed Computing. In J. Chen, M. Li, C. Mingins, and B. Meyer (Editors).
TOOLS 24, Volume 24 of Technology of Object Oriented Languages and Systems. IEEE Com-
puter Society, pp. 278-283.

Thompson, D., Watkins, D., Exton, C., Garrett, L., and Sajeev, A. (1998), Distributed
Component Object Model (DCOM) In B. Kramer, M. Papazoglou and H. Schmidt (Editors),
Information Systerns Interoperability. Research Studies Press, Chapter 3, pp. 39-78.

Watkins, D., and Thompson, D. (1998), Adding Scmantics to Interface Definition Languages,
In D. Grant (Editor), ASWEC 08, Australian Software Engineering Conference. IEEE Com-
puter Society, pp 66-78.

Watkins, D., Dick, M. and Thompson, D. (1998), From UML to IDL: A Cuse Study, In C.
Mingins and B. Meyer (Editors), TOOLS 28, Volume 28 of Technology of Object Oriented
Lenguages and Systems. IEEE Computer Society, pp. 141-153.

Permanent Address: School of Computer Science and Software Enginecring
Monash University
Australia

This dissertation was typeset with BTEX 2¢1 by the author.

YIATIEX 2¢ is an extension of IATEX. IATEX is a collection of macros for TEX. TEX is a trademark of the American
Mathematical Society. ‘The macros used in formatting this dissertation were written by Glenn Maughan of Monash
University and are maintained by Dean Thompson of Monash University.






