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Abstract
Soft computing is a well-established paradigm consisting of artificial neural networks, fuzzy

inference systems, approximate reasoning and derivative free optimization techniques such as

evolutionary computation etc. Several adaptive hybrid soft computing architectures have in

recent years been developed for solving complicated real world problems. The hybridization

aims at overcoming limitations of individual techniques through fusion of different techniques.

Many of these approaches use the combination of different knowledge representation schemes,

decision-making models, learning strategies and optimization techniques to solve a

computational task. This thesis investigates the optimization of artificial neural networks and

fuzzy inference systems using a combination of evolutionary algorithms and local search

techniques.

We explored the performance of neural network supervised learning paradigms using first

order and second order error information of the three popular chaotic time series. We

implemented a Meta-Learning Evolutionary Artificial Neural Network (MLEANN) algorithm

based on a hierarchical search process combining global search and local search procedures.

Performance evaluation was made with conventionally designed neural networks using

standard learning algorithms, cutting angle method of global optimization, Mamdani and

Takagi-Sugeno neuro-fuzzy systems and multi variate adaptive regression splines.

We examined the different adaptation techniques for designing fuzzy inference systems. The

different adaptation techniques using neural network learning algorithms and evolutionary

computation were presented. We also compared the performance of some integrated neuro-

fuzzy models using Mackey Glass time series. We further illustrated how neuro-fuzzy systems

are implemented in practice. We used a concurrent neuro-fuzzy model for a stock market trend

prediction and used Mamdani and Takagi-Sugeno integrated neuro-fuzzy models for modeling

three real world problems. Performances of the neuro-fuzzy models were compared with

different neural network learning techniques using 1st order and 2nd order error information.

iii



Finally, we present Evolutionary Neuro-Fuzzy Systems (EvoNF) - a framework for

optimization of fuzzy inference systems using neural network learning and evolutionary

computation. Architecture of the evolutionary framework is presented and the representation

of each layer of the hierarchical search process is discussed. We evaluated the performance of

three different types of learning methods combining evolutionary algorithms and gradient

descent technique. Empirical results were compared with MLEANN approach and Takagi-

Sugeno neuro-fuzzy system.

Empirical results of the different optimized hybrid architectures clearly reveal the efficiency of

the proposed algorithms at the expense of some trade off in computational cost.

IV
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>l Chapter 1: Introduction

1.0 Hybrid Intelligent Systems

When the computers first appeared in the early fifties, we admired it as an artificial brain, and

we thought that we were successful in creating a low level decision making cognitive machine.

Researchers coined the term artificial intelligence and waited for many potential applications

to evolve. In the sixties computers failed to pass the Turing test due to the low processing

speed of the computers.

However, in spite of the evolution in digital computers, after several years we realized that the

so-called artificial intelligence (AI) was indeed very artificial in nature. It can be argued with

some conviction that an AI algorithm that cannot solve new problems in new ways is

emphasizing the, "artificial" and not the "intelligence". The vast majority of the AI algorithms

have nothing to do with learning. Last few decades have seen a new era of AI on emulating

humans, either in their behavior or in their neurophysiology. Rather than viewing humans as

4 the premier example of intelligence, a broader and potentially more beneficial perspective
i
^ views this species simply as a product of evolution, a process that generally produces

11 organisms of increasing intellect. Recognizing the connection between evolution and

f intelligence makes it possible to overcome the limitations of conventional artificial

| intelligence techniques, and indeed to evolve such systems and create machine intelligence

| [128].

I
v, Hybridization of different intelligent systems represents the most exciting fruit of artificial

j , intelligence to date. Such systems are starting to be employed in everyday life, and these

ft applications rank amongst the most complex computer systems ever built; never before has the

expertise of the human factors [13]. The integration of different learning and adaptation

techniques, to overcome individual limitations and achieve synergetic effects through



hybridization or fusion of these techniques, has in recent years contributed to a large number

of new intelligent system designs [12].

Soft computing introduced by Professor Lotfi Zadeh (University of California, Berkeley)

[255] is oriented towards the analysis and design of intelligent systems. It is a well-established

paradigm, where new theories with a sound biological understanding have been evolving to

construct computationally intelligent hybrid systems consisting of artificial neural network,

fuzzy logic, approximate reasoning and derivative free optimization methods such as

evolutionary computation etc. Nevertheless, hybrid intelligent system is an open instead of

conservative concept. That is, it is evolving those relevant techniques together with the

important advances in other new computing methods [76] [235].

Several adaptive hybrid intelligent systems have in recent years been developed for modelling

expertise, decision support, financial modeling, process control, mechatronics, robotics and

complicated automation tasks etc [127] [155] [231]. Many of these approaches use the

combination of different knowledge representation schemes, decision making models and

learning strategies to solve a computational task [129]. This integration aims at overcoming

limitations of individual techniques through hybridization or fusion of various techniques. It is

well known that the intelligent systems, which can provide human like expertise such as

domain knowledge, uncertain reasoning, and adaptation to a noisy and time varying

environment, are important in tackling practical computing problems. In contrast with

conventional artificial intelligence techniques which only deal with precision, certainty and

rigor the guiding principle of hybrid soft computing is to exploit the tolerance for imprecision,

uncertainty, low solution cost, robustness, partial truth to achieve tractability, and better

rapport with reality. Table 1.1 summarizes the comparison of neural networks, fuzzy inference

system, evolutionary algorithms, symbolic artificial intelligence (AI) and control theory [11]

[93].

To realize intelligent systems in practice, a synthesis of various techniques is required. Figure

if 1.1 shows the synthesis of neural networks, fuzzy logic and evolutionary algorithms and their
-I" A
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mutual interaction leading to different architectures. Each technique plays a very important

role in the development of hybrid intelligent systems. Experience has shown that it is crucial

for the design of hybrid intelligent systems to primarily focus on the integration and

interaction of different techniques rather than merge different methods to create ever-new

techniques. Techniques already well understood, should be applied to solve specific domain

problems within the system. Their weakness must be addressed by combining them with

complementary methods.

Table 1.1. Comparison of different intelligent systems with classical approaches^

Fuzzy Neural Evolutionary Symbolic Control

system network algorithms AI theory

Mathematical model

Learning ability

Knowledge representation

Expert knowledge

Nonlinearity

Optimization ability

Fault tolerance

Uncertainty tolerance

Real time operation

SG

B

G

G

G

B

G

G

G

B

G

B

B

G

SG

G

G

SG

B

SG

SB

B

G

G

G

G

SB

SB

B

G

G

SB

B

B

B

B

B

SB

SB

B

SB

B

B

G

fFuzzy terms used for grading are good (G), slightly good (SG), slightly bad (SB) and bad (B).

Artificial neural networks offer a highly structured architecture with learning and

generalization capabilities, which attempts to mimic the neurological mechanisms of the brain.

A neural network stores knowledge in a distributive manner within its weights; which have

been determined by learning with known samples. The generalization ability for new inputs is

then based on the inherent algebraic structure of the network. However, it is very difficult to



incorporate human a priori knowledge into a neural network. This is mainly because the

connectionist paradigm gains most of its strength from a distributed knowledge representation.

Evolutionary
Neuro - Fuzzy

Systems

f Evolutionary \
V. Neural Network )

Evolutionary
Fuzzy Systems

Evolutionary
Algorithms

Figure 1.1 General framework for hybrid intelligent systems

In contrast, fuzzy systems exhibit complementary characteristics, offering a very powerful

framework for approximate reasoning as it attempts to model the human reasoning process at a

cognitive level. Fuzzy systems acquire knowledge from domain experts and this is encoded

within the algorithm in terms of the set of if-then rules. Fuzzy systems employ this rule based

approach and interpolative reasoning to respond to new inputs. The incorporation and

interpretation of knowledge is straight forward, whereas learning and adaptation constitute

major problems.

Usually grouped under the term evolutionary algorithms or evolutionary computation, we find

the domains of genetic algorithms, evolution strategies, evolutionary programming, genetic

programming and learning classifier systems. They all share a common conceptual base of

simulating the evolution of individual structures via processes of selection, genetic operators,

and reproduction. The processes depend on the perceived performance of the individual

structures as defined by the environment (problem). These methods are fundamentally

iterative generation and alteration processes operating on a set of candidate solutions that form
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a population. The entire population evolves towards better candidate solutions via the selection

operation and genetic operators such as crossover and mutation. The selection operator decides

which candidate solutions move on into the next generation, thus limits the search space.

Referring to Figure 1.1, several hybrid combinations of neural networks, fuzzy systems and

evolutionary computation could be explored.

1.1.Models Of Hybrid Systems
We broadly classify the various hybrid intelligent system architectures into 4 different

categories based on the systems overall architecture: (a) Stand alone architectures (b)

Transformational architectures (c) Hierarchical hybrid architectures and (d) Integrated hybrid

architectures.

Stand Alone Architecture

Stand-alone models of hybrid systems consist of independent software components, which do

not interact in anyway. Developing stand-alone systems can have several purposes. First they

provide direct means of comparing the problem solving capabilities of different techniques

with reference to a certain application. Running different techniques in a parallel environment

permits a loose approximation of integration. Stand-alone models are often used to develop a

quick initial prototype, while a more time-consuming application is developed. Figure 1.2

displays a stand-alone system where neural network and a fuzzy system are being used

separately.
. - - ^

I Neural network 1 ( Fuzzy system j

Figure 1.2. Stand -alone architecture

Some of the benefits are simplicity and ease of development using commercially available

software packages. On the other hand, stand-alone techniques are not transferable; neither can

support the weakness of the other technique.



Transformational Hybrid Architecture

In a transformational hybrid model, initially the system begins as one type of system and end

up as the other. Determining which technique is used for development and which is used for

delivery is based on the desirable features that the technique offers. Figure 1.3 shows the

interaction between a neural network and an expert system in a transformational hybrid model

[172]. Obviously, either the expert system is incapable of adequately solving the problem, or

the speed, adaptability, and robustness of neural network is required. Knowledge from the

expert system is used to set the initial conditions and training set for artificial neural network.

Figure 1.3. Transformational hybrid architecture

Transformational hybrid models are often quick to develop and ultimately require maintenance

on only one system. Models can be developed suited to the environment and offer many

operational benefits. Unfortunately, transformational models are significantly limited. Most of

the developed models are just application oriented. For a different application, a totally new

development effort might be required. A fully automated means of transforming an expert

system to neural network and vice versa is required.

Hierarchical Hybrid Architectures

The architecture is built in a hierarchical fashion, associating a different functionality with

each layer. The overall functioning of the model will depend on the correct functioning of all

the layers. Figure 1.4 demonstrates a hierarchical hybrid architecture involving a neural

network, evolutionary algorithm and a fuzzy system. Neural network uses an evolutionary

algorithm to optimize its performance and the network output acts as a pre-processor to a

fuzzy system, which then produces the final output. Poor performance in one of the layers will

directly affect the final output.
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Figure 1.4. Hierarchical hybrid architectures

Integrated Hybrid Architectures

These me "Is include systems, which combine different techniques into one single

computational model. They share data structures and knowledge representations. In a truly

integrated model the individual systems cannot be separated. This thesis deals with the various

different integrated hybrid systems using neural networks, fuzzy systems and evolutionary

algorithms. There are also several approaches to integrate hybrid systems. A simple approach

is to put the various techniques on a side-by-side basis and focus on their interaction in the

problem-solving task [124]. This method might allow integrating alternative techniques and

exploiting their mutuality. Further more the conceptual view of the agent allows one to

abstract from the individual techniques and focus on the global system behavior, as well as

study the individual contribution of each component.

The benefits of fused architecture include robustness, improved performance and increased

problem-solving capabilities. Finally, fully integrated models can provide a full range of

capabilities such as adaptation, generalization, noise tolerance and justification. Fused systems

have limitations caused by the increased complexity of the inter module interactions and

specifying, designing, and building fully integiated models is complex.

1.3. Aim of the Thesis

The objective of this thesis is to investigate the representation of the various integrated hybrid

systems using neural networks, fuzzy systems and evolutionary algorithms. The main

contributions of this thesis are as follows:



1 Performance analysis of the different feedforward neural network supervised learning

paradigms using first order and second order error information of the three popular

chaotic time series [15]. To overcome the limitations we introduced the concept of meta-

learning in artificial neural networks designed by evolutionary algorithms.

2 Development and implementation of Meta - Learning Evolutionary Artificial Neural

Network (MLEANN) [15] [16] to optimize the neural network architecture, node transfer

function, connection weights, different learning algorithms and its parameters. The

performance of MLEANN is compared with another neural network global optimization

approach [35], neuro-fuzzy systems [131] and Multivariate Adaptive Regression Splines

(MARS) [17].

3 Performance analysis of different types of fuzzy inference systems to illustrate the role of

the shape and quantity of membership functions per I/O variable, fuzzy operators,

defuzzification method and the fuzzy inference method (eg. Mamdani, Takagi-Sugeno

type etc.) [10].

4 Performance evaluation and technical analysis of different integrated neuro-fuzzy models

[22].

4 To illustrate the cerebral quotient of neuro-fuzzy systems some practical applications of

different types of neuro-fuzzy models are presented:

• A concurrent neuro-fuzzy model was used for stock market analysis [ 19]

• Integrated neuro-fuzzy model for the following practical applications

ii Modeling electricity demand prediction in Victoria using a Mamdani fuzzy

inference system [14].

iii Automation of reactive power control using Takagi Sugeno and Mamdani fuzzy

inference system [71.

iv Weather forecast models using Mamdani fuzzy inference system [21].

5 Proposed and implemented a framework for Evolutionary design of Neuro-Fuzzy

(EvoNF) systems. The proposed algorithm based on an adaptive evolutionary algorithm is

I



capable of adapting the membership functions, rule base, fuzzy operators, learning

parameters and the fuzzy inference system [11]. Three different learning strategies for

designing aeuro-fuzzy systems are investigated.

• Combination of evolutionary algorithm and gradient descent (global search +

local search)

• Pure evolutionary learning (equivalent to evolutionary fuzzy systems)

• Combination of evolutionary algorithm and gradient descent without fuzzy

tuning

The developed three different neuro-fuzzy learning algorithms are applied to three

chaotic time series and performances are evaluated. Performance evaluation and

comparison with meta-learning evolutionary neural networks are also presented.

6. Scientific importance of the results obtained and some future research directions are also

presented.

1.4.Organization of the Thesis

In Chapter 2, we present the fundamental theoretical aspects of artificial neural network

learning paradigms namely backpropagation, conjugate gradient, quazi-Newton and

Levenberg-Marquardt algorithms followed by some experimentations using three different

chaotic time series to demonstrate the performance of the different learning algorithms when

the architecture, node transfer functions etc. are changed.

Chapter 3 begins with the theoretical framework of the proposed meta-learning evolutionary

artificial neural network algorithm based on a hierarchical evolutionary search process. We

further illustrate the chromosome representation of the various layers and implementation

details of the algorithm. Experiments were carried out on the chaotic time series and

performance comparison was made with conventionally designed neural networks (pre-fixed

architectures and node transfer functions) using standard learning algorithms, cutting angle

method of global optimization of neural networks [35] and conventionally designed Mamdani

and Takagi-Sugeno neuro-fuzzy systems and Multivariate Adaptive Regression Splines

(MARS).



In Chapter 4, we present the concepts of fuzzy inference systems emphasizing on Mamdani

and Takagi Sugeno fuzzy inference systems. A practical example was taken to demonstrate the

importance of the shape of the membership functions, number of membership functions per

input variable, fuzzy operators (T-norm and T-conorm) and the inference method itself.

Adaptive framework for automatic optimal design of fuzzy inference method using

evolutionary algorithms was also presented.

In Chapter 5, we review the different types of neuro-fuzzy systems. We presented the different

types of cooperative neuro-fuzzy models followed by a concurrent neuro-fuzzy system with a

demonstration using a practical example. We attempted to forecast the stock market trends

using a concurrent neuro-fuzzy model implementing a Mamdani type neuro-fuzzy system.

Different types of integrated neuro-fuzzy models were presented with some critical analysis

and some empirical comparison of different neuro-fiizzy models using Mackey Glass chaotic

time series are also presented towards the end of the chapter.

Chapter 6 focuses on 3 practical applications of integrated neuro-fuzzy systems. Performance

of the neuro-fuzzy models are compared with different neural network learning techniques

using 1st order and 2nd order error information.

In Chapter 7, we present the theoretical frameworks for evolutionary design of neuro fuzzy

systems. Architecture of the evolutionary framework is presented and the functioning and

representation of each layer is discussed. Three different learning algorithms were developed

and experiments are carried out on the three chaotic lime series. Empirical results were

compared with evolutionary neural networks and conventionally designed neuro-fuzzy

systems.

Finally in Chapter 8, conclusions and a number of topics for the future research in this

direction are given.
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Chapter 2: Neural Networks: Conventional
Design Limitations

2.0 Introduction

The strong interest in neural networks in the scientific community is fueled by the many

successful and promising applications especially to tasks of optimization [70], speech

recognition [50], pattern recognition [43], signal processing [171], financial modeling [211],

function approximation [242], control problems [4] [6] etc.

Even though artificial neural networks are capable of performing a wide variety of tasks, yet in

practice sometimes they deliver only marginal performance. Inappropriate topology selection

and learning algorithm are frequently blamed. There is little reason to expect that one can find

a uniformly best algorithm for selecting the weights in a feedforward artificial neural network

[237]. It is an NP-complete problem to find a set of weights for a given neural work and set of

training examples to classify even two-thirds of them correctly [119] [134] [133]. In sum, one

should be skeptical of claims in the literature on training algorithms that one being proposed is

substantially better than most others. Such claims are often defended through some

simulations based on applications in which the proposed algorithm performed better than some

familiar alternative.

In this chapter, we review the state of art techniques of different neural network learning

paradigms followed by some experimentation to demonstrate the difficulties in designing

neural networks, which are smaller, faster and with a better generalization performance.

2.1 Artificial Neural Network Learning Algorithms

The artificial neural network (ANN) methodology enables us to design useful nonlinear

systems accepting large numbers of inputs, with the design based solely on instances of input-

output relationships. For a training set T consisting of n argument value pairs and given a d-

11



dimensional argument x, an associated target value / will be approximated by the neural

network output. The function approximation could be represented as

T = {(xj.tjj.i = 1 : n}

In most applications the training set T is considered to be noisy and our goal is not to

reproduce it exactly but rather to construct a network function that generalizes well to new

function values. We will try to address the problem of selecting the weights to learn the

training set. The notion of closeness on the training set T is typically formalized through an

error function of the form

WT = I hi ~ U (2.1)

where ;>,• is the network output. Our target is to find a neural network tj such that the output _>>,•

= rj fa w) is close to the desired output /,• for the input jc, (w = strengths of synaptic

connections). The error y/T = y/T (w) is a function of w because y = tj depends upon the

parameters w defining the selected network tj. The objective function yir (w) for a neural

network with many parameters defines a highly irregular surface with many local minima,

large regions of little slope and symmetries. The common node functions (tanh, sigmoid,

logistic etc) are differentiable to arbitrary order through the chain rule of differentiation, which

implies that the error is also differentiable to arbitrary order. Hence we are able to make a

Taylor's series expansion in w for y/T. We shall first discuss the algorithms for minimizing y/T

by assuming that we can truncate a Taylor's series expansion about a point W that is possibly a

local minimum [84], The gradient (first partial derivative) vector is represented by

g(w) =
dWi

(2.2)

The gradient vector points in the direction of steepest increase of y/j and its negative points in

the direction of steepest decrease. The second partial derivative also known as Hessian matrix

is represented by H

H(w) = (2.3)
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The Taylor's series for y/r, assumed twice continuously differentiable about vs>°, ess now be

given as

= ¥T(W°) + g(w°)T(w - w°)T + -jCw - w°)TH(w°)(w -
(2.4)

where O (o) denotes a term that is of zero-order in small 8 such that Um s = 0.
S o

If for example there is continuous derivative at w°, then the remainder term is of order

It w - w° I and we can reduce (2.4) to the following quadratic model

m(w) = yrT(™°) + S(w°)T(w-w°) + -(w-w°)TH(w°)(w - w°) (2.5)

Taking the gradient in the quadratic model of (2.5) yields

Vm = g(w°) + H(w -w°) (2.6)

If we set the gradient g = 0 and solving for the minimizing w* yields

w* = w° - (2.7)

The model m can now be expressed in terms of minimum value of w* as

m(w*) = m(w°) + ^g(yvO)TH-1g(w°)

m(w) = m(w*) + — (w - w*) H(w* )(w — w*

(2.8)

a result that follows from (2.5) by completing the square or recognizing that g(w*)=0. Hence

starting from any initial value of the weight vector, we can in the quadratic case move one step

to the minimizing value when it exists. This is known as Newton's approach and can be used

in the non-quadratic case where H is the Hessian and is positive definite [84].

Multiple Minima Problem in Neural Networks

A long recognized bane of analysis of the error surface and the performance of training

algorithms is the presence of multiple stationary points, including multiple minima. Analysis
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of the behavior of training algorithms generally use the Taylor's series expansions discussed

earlier, typically with the expansion about a local minimum W. However, the multiplicity of

minima confuse the analysis because we need to be assured that we are converging to the same

local minimum as used in the expansion. How likely are we to encounter a sizable number of

local minima? Empirical experience with training algorithm sts-ws that different initialization

yield different resulting networks. Hence the issue of many minima is a real one. According to

Auer et al [30], a single node network with n training pairs and R? inputs, could end up having

(-)d local minima. Hence not only multiple minima exist, but there may be huge numbers of
d

them.

Different learning algorithms have their staunch proponents, who can always construct

instances in which their algorithm performs better than most others. In practice, there are four

types of optimization algorithms that are used to minimize WT (w). The first three methods

gradient descent, conjugate gradients and quasi-Newton are general optimization methods

whose operation can be understood in the context of minimization of a quadratic error

function. Although the error surface is surely not quadratic, for differentiable node functions it

will be so in a sufficiently small neighborhood of a local minimum, and such an analysis

provides information about the behavior of the training algorithm over the span of a few

iterations and also as it approaches its %w\. The fourth method of Levenberg and Marquardt

[68] is specifically adapted to minimization of an error function that arises from a squared

error criterion of the form we are assuming. Backpropagation calculation of gradient can be

adapted easily to provide the information about the Jacobian matrix J needed for this method.

A common feature of these training algorithms is the requirement of repeated efficient

calculation of gradients.

2.1.1 Backpropagation Algorithm

Backpropagation provides an effective method for evaluating the gradient vector needed to

implement the steepest descent, conjugate gradient, and quasi-Newton algorithms. BP differs

from straightforward gradient calculations using the chain rule for differentiation in the way it
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organizes efficiently the gradient calculation for networks having more than one hidden layer.

BP iteratively selects a sequence of parameter vectors fwh k =1:T} for -a moderate value of

running time T, with the goal of having {Vrfwk) ~ ¥(k)} converge to a small neighborhood of

a good local minimum rather than the usually inaccessible global minimum.

= minweW
\ffT(w) (2.9)

The simplest steepest descent algorithm uses the following weight update in the direction of

dk=-gk with a learning rate or step size 0*.

w*+7 = wk - akgk (2.10)

A good choice â * for the learning rate a* for a given choice of descent direction dk is the one

that minimizes y/(k+iy

ak - arg mina y/(wk + adk)

To carry out the minimization we use

(2.11)

da a=a*k

adk)

da
= 0 (2.12)

To evaluate this equation, note that

dy/(wk + adk) T

Ta = g^dk (2.13)

and conclude that for optimal learning rate we must satisfy the orthogonality condition

g{+1dk = 0 (2.14)

When the error function is not specified analytically, then its minimization along dk can be

accomplished through a numerical line search for a* or through numerical differentiation as

noted herein. The line search avoids the problem of setting a fixed step size. Analysis of such

algorithms often examine their behavior when the error function is truly a quadratic as given in

(2.5) and (2.6). In our current notation,
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gk+]
(2.15)

Hence the optimality condition for the learning rate ak derived from the orthogonality

condition (2.14) becomes

T

dT
kHdk

(2.16)

When search directions are chosen via dk = -Mg*, with Mk symmetric, then the optimal

learning rate is

(2.17)
gT

kMkHMkgk

In the case of steepest descent for s ^adratic error function, Mk is the identity and

(2.18)

One can think of ak as the reciprocal of an expected value of the eigen values {XJ of the

Hessian with probabilities determined by the squares of the coefficients of the gradient vector

gk expanded in terms of the eigen vectors fa} of the Hessian.

a T
8kgk

(2.19)

The algorithm, even in the context of a truly quadratic error surface and with line search,

suffers from greed. The successive directions do not generally support each other in that after

two steps; say, the gradient is usually no longer orthogonal to the direction taken in the first

step. In the quadratic case there exists a choice of learning rates that will drive the error to its

absolute minimum in no more than p+1 steps where p is the number of parameters. To see

this, note that

y/(w) = y/(w*) + - (w - w* f H(w - w*) = yr(w*) + L gTH~]g (2.20)

1 0



It is easily verified that if gk = g(wf) then

Sk = S, (2.21)

Hence for & >/?, we can achieve g* = 0 simply by choosing aj,....aP any permutation of 1/X}

1/Xp, the reciprocals of the eigen values of the Hessian H; the resulting product of matrices

is a matrix that annihilates each of the p eigen vectors and therefore any other vector that can

be represented as their weighted sum. Of course, in practice, we do not know the eigen values

and cannot implement this algorithm. However, this observation points out the distinction

between optimality when one looks ahead only one step and optimality when one adopts a

more distant horizon. Traditionally the step size is held at a constant vai?ae ak = a. The

simplicity of this approach is belied by the need to carefully select the learning rate. If the

fixed step size is too large, then we leave ourselves open to overshooting the line search

minimum, we may engage in oscillatory or divergent behavior, and we loose guarantees of

monotone reduction of the error function y/T .If the step size is too small, then we may need a

very large number of iterations T before we achieve a sufficiently small value of the error

function. A variation on the constant learning rate is to adopt a deterministic learning rate

schedule that varies the learning rate dependant on the iteration number.

An ad hoc departure from steepest descent is to add memory to the recursion through

momentum term. Now the change in parameter vector w depends not only on the current

gradient but also on the most recent change in parameter vector,

0 (2.22)

what we gain is a high frequency smoothing effect through the momentum term. The change

in parameter vector depends not only on the current gradient g*.; but also, in an exponentially

decaying fashion (provided that 0 < /? < 1), on all previous gradients. If the succession of

recent gradients has tended to alternate directions, then the sum will be relatively small and we

will make only small changes in the parameter vector. This could occur if we are in the

vicinity of a local minimum, successive changes would just serve to bounce us back and forth

past the minimum. If, however, recent gradients tends to aligft, then we will make an even
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larger change in the parameter vector and thereby move more rapidly across a large region of

descent and possibly across over a small region of ascent that screened off a deeper local

minimum. Of course, if the learning rate a is well chosen, then successive gradients will tend

to be orthogonal and a weighted sum will not cancel itself out [214].

2.1.2 Conjugate Gradient Algorithm

The motivation behind the conjugate gradient algorithm is that we wish to iteratively select

search directions (dk) that are non-interfering in the sense that successive minimizations along

these directions do not undo the progress made by previous minimizations. The search

direction is selected in such a way that at each iteratively selected parameter value wk, the

current gradient gk is orthogonal to all previous search directions di,....dk.i. Hence, at any

given step in the iteration, the error surface has a direction of steepest descent that is

orthogonal to the linear subspace of parameters spanned by the prior search directions.

Steepest descent merely assured us that the current gradient is orthogonal to the last search

direction. If the error function {VT (wk )} is quadratic with positive definite Hessian H,

choosing the search directions (dj) to be //-conjugate and the a, to satisfy (2.16) is equivalent

to the orthogonality between the current gradient and the past search directions given by

P)d}gk =0 (2.23)

it is easily verified that conjugate directions (</,•) also form a linearly independent set of

directions in weight space. If weight space has, dimension p then of course there can be only/?

linearly independent directions of vectors. Hence, it is possible to represent any point as a

linear combination of no more than/? of the conjugate directions, and in particular if w* is the

sought location of the minimum of the error function, then there exist coefficients such that

p-i „
w * -w0 = £ <Xi dt (2.24)

Thus if the error surface is quadratic with a positive definite Hessian, then selecting H-

conjugate search directions and learning rates according to (2.16) guarantees a minimum in no

more than/? iterations. To be able to apply the method of conjugate gradients we must be able

to determine such a set of directions and then solve for the correct coefficients. Conventional
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conjugate gradient algorithms use a line search to find the minimizing step and are initialized

as follows

do=go (2-25)

introducing a scaling fa to be determined, and then iterate with the simple recursion

dk+j = Sk+i+pk<*k (2-26)

According to the conjugacy condition in (2.23) and the recursion of (2.26) yield

dT
kHdk+] = 0 = 4H(-gk+ufikdk) (2.27)

Solving yields the necessary condition hat
rp

a _ dk Hgk+1
Pk ~ T

(2.28)
dkHdk

Induction can be established that this recursive definition of conjugate gradient search

directions does indeed yield a fully conjugate set when the error function is quadratic,

although the derivation of (2.28) only established that dk and dk+1 are conjugate. A version of

the conjugate gradient algorithm that does not require line searches was developed by Moller

and uses the finite difference method for estimating Hdk. To monitor the sign of the product

dk Hdk, define 8 by

8 = (2.29)

Moller introduces two new variables, X and X, to define an altered value of 5, 8 . These

variables are charged with ensuring that J > 0. Although this does not affect the error

surface, and the Hessian with the quadratic approximation will still suggest there is a

maximum along the search direction, the method produces a step size that shows good results

in practice. J is defined as follows

S = S + (X - X)d\dk

The requirement for 8 > 0 gives a condition for X

(2.30)
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X > X- (2.31)

Moller then sets X - 2(X -

in (2.30)

S = -5 + Xd\dk

-) to satisfy (2.31) and so ensures 8 > 0. Substituting this

(2.32)

In order to get a good quadratic approximation of the error surface, a mechanism to raise or

lower X is needed when the Hessian is positive definite. Detailed step-by-step description can

be found in [186].

2.1.3 Quasi - Newton Algorithm

If the error surface is purely quadratic, as per (2.7) we can solve the minimizing weight vector

in a single step through Newton's method. This solution requires knowledge of the Hessian

and assumes it constant and positive definite. We need a solution method that can take into

account the variation of H(w) with w, knowing the fact that the error function is at best only

approximately quadratic and removal from a local minimum the approximating quadratic

surface is likely to have a Hessian thet is not positive definite and the evaluation of true

Hessian is computationally too expensive.

The quasi- Newton method addresses themselves to these tasks by first generalizing the

iterative algorithm to the form

(2-33)

The choice of step size a* to use with a search direction d, = M^g^ is determined by an

approximate line search, and use of line search is essential to the success of this method. The

quazi-Newton method iteratively tracks the inverse of the Hessian without ever computing it

directly. Let q^ = gjc+j - gk, and consider the expansion for the gradient (quadratic case)
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qk = Hk(wk+] - wk) = HkPk (2.34)

If we can evaluate the difference of gradients for p linearly independent increments p0, -pp-i in

the weight vectors, then we can solve for the Hessian (assumed constant). To do so, form the

matrices P with fth column the vector/?,.;and Q with rth column the vector q^. Then we have

the matrix equation

Q = HP (2.35)

which can be solved for the Hessian, when the columns of P are linearly independent, through

H=QF1 (2.36)

Thus from the increments in the gradient induced by the increments in the weight vectors as

training proceeds, we have some hope of being able to track the Hessian. An approximation to

the inverse M of the Hessian is achieved by interchanging qkandpk in an approximation to the

Hessian itself

M-PQ1 (2.37)

Hence the information is available in the sequence of gradients that determine the qk, and the

sequence of search directions and learning rates that determine the pk, to infer to the inverse of

the Hessian, particularly if it is only slowly varying.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi - Newton algorithm [68] implements

the update for the approximate inverse M of the Hessian by

Mk+1 - Mk
qlpk

TVk+Mkqkp
T

k
T

PkPk ilPk
(2.38)

This recursion is initialized by starting with a positive definite matrix such as the identity, Mo

= I. The Determination of the learning rates is critical, as was the case for the method of

conjugate directions. Quasi-Newton methods enjoy asymptotically more rapid convergence

than that of steepest descent or conjugate gradient methods.
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2.1.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm [68] exploits the fact that the error function is a

sum of squares as given in (2,1). Introduce the following notation for the error vector and its

Jacobian with respect to the network parameters w

de
J = J•• = -— ,i = 1 : p,j - 1 : n (2.39)

The Jacobian matrix is a large p x n matrix, aU 7 whose elements are calculated directly by

backpropagation technique as presented in Section 2.1.1. Thep dimensional gradient g for the

quadratic error function can be expressed as

n

g(w) = £ ejVerfw) = Je

and the Hessian matrix by

H = '*J2_.**

{2.40)

Hence defining D = Xe,Ve,-yields the expression

H(w)=JJT + D (2.41)

The key to the LM algorithm is to approximate this expression for the Hessian by replacing

the matrix D involving second derivatives by the much simpler positively scaled unit matrix

e / . The LM is a descent algorithm using this approximation in the form

Mk = ' \ \ = wk - akMkg(wk) (2.42)
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Successful use of LM requires approximate line search to determine the rate a*. The matrix JJ

is automatically symmetric and non-negative definite. The typically large size of J may

necessitate careful memory management in evaluating the product Jf. Hence any positive €

will ensure that Mk is positive definite, as required by the descent condition. The performance

of the algorithm thus depends on the choice of e .

When the scalar e is zero, this is just Newton's method, using the approximate Hessian

matrix. When e is large, this becomes gradient descent with a small step size. As Newton's

method is more accurate, e is decreased after each successful step (reduction in performance

function) and is increased only when a tentative step would increase the performance function.

By doing this, the performance function will always be reduced at each iteration of the

algorithm [43].

2.2.Designing Artificial Neural Networks

The error surface of very small networks has been characterized previously. However,

practical networks often contain hundreds of weights and in general, theoretical and empirical

results on small networks do not scale up to large networks. To investigate the empirical

performance with the different learning algorithms on different architectures and node transfer

functions, we have choosen 3 famous chaotic time series benchmarks so that a) we know the

best solution, b) can carefully control various parameters and c) know the effect of the

different learning algorithms namely backpropagation (BP), scaled conjugate gradient (SCG),

quasi-Newton algorithm (QNA) and Levenberg Marquardt algorithm (LM).

We also report some experimentation results related to convergence speed and generalization

performance of the four different neural network-learning algorithms discussed in Section 2.1.

Performances of the different learning algorithms were evaluated when the activation

functions and architectures were changed.

We used a feedforward neural network with 1 hidden layer and the numbers of hidden neurons

were varied (14,16,18,20,24) and the speed of convergence and generalization error for each

23



of the four learning algorithms was observed. The effect of node activation functions, log-

sigmoidal activation function (LSAF) and tanh-sigmoidal activation function (TSAF), keeping

24 hidden neurons for the four learning algorithms was also studied. Computational

complexities of the different learning algorithms were also noted during each event. The

experiments were replicated 3 times each with a different starting condition (random weights)

and the worst errors were reported. No stopping criterion, and no method of controlling

generalization is used other than the maximum number of updates (epochs). All networks were

trained for an identical number of stochastic updates (2500 epochs).We used the following

three chaotic time series:

a) Waste Water Flow Prediction

The problem is to predict the wastewater flow into a sewage plant [138]. The water flow was

measured every hour. It is important to be able to predict the volume of flow f(t+l) as the

collecting tank has a limited capacity and a sudden increase in flow will cause to overflow

excess water. The water flow prediction is to assist an adaptive online controller. The data set

is represented as \f(t)tf(t-l), a(t), b(t),f(t+l)] where/(U f(t-l) and f(t+l) are the water flows at

time t,t-l, and t+1 (hours) respectively. a(t) and b(t) are the moving averages for 12 hours and

24 hours. The time series consists of 475 data points. The first 240 data sets were used for

training and remaining data for testing.

b) Mackey-Glass Chaotic Time Series

The Mackey-Glass differential equation [167] is a chaotic time series for some values of the

parameters x(0) and T.

dx(t) _ 0.2x(t - T)

dt 1 + x
1 0( t - T)

- 0.1 x(t). (2.43)

We used the value x(t-18), x(t-12), x(t-6), x(t) to predict x(t+6). Fourth order Runge-Kutta

method was used to generate 1000 data series. The time step used in the method is 0.1 and

initial condition were x(0)=\ 2, t=\l, x(t)=0 for /<0. First 500 data sets were used for training

and remaining data for testing.
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c) Gas Furnace Time Series Data

This time series was used to predict the CO2 (carbon dioxide) concentration y (t+1) [51]. In a

gas furnace system, air and methane are combined to form a mixture of gases containing CO2.

Air fed into the gas furnace is kept constant, while the methane feed rate u(t) can be varied in

any desired manner. After that, the resulting CO2 concentration y(t) is measured in the exhaust

gases at the outlet of the furnace. Data is represented as [u(t), y(t), y(t+l)]. The time series

consists of 292 pairs of observation and 50% of data was used for training and remaining for

testing.

2.2.1 Simulation Results Using ANNs

Results for four different learning algorithms for different architectures, node transfer

functions for the three different time series are presented in the following sections.

2.2.1.1 Network Architecture

This section investigates the training and generalization behavior of the networks when the

architecture of the neural network was changed. The same architecture was used for the three

different time series for the four learning algorithms using same node transfer function (tan

sigmoidal). Tables 2.1 - 2.3 summarizes the empirical results of training and generalization.

Figures 2.1 - 2.6 graphically depict the training and generalization performance for the

different learning methods.
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Table 2.1. Training and test performance for Mackey Glass Series for different architectures

Mackey Glass Time Series

Learning algorithm

BP

SCG

QNA

LM

Hidden Neurons

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

Root Mean Squared Error

Training data

0.0890

0.0824

0.0764

0.0452

0.0439

0.0040

0.0053

0.0066

0.0058

0.0045

0.0041

0.0031

0.0035

0.0038

0.0034

0.0016

0.0015

0.0015

0.0010

0.0009

Test data

0.0880

0.0860

0.0750

0.0442

0.0437

0.0051

0.0052

0.0067

0.0058

0.0045

0.0040

0.0030

0.0036

0.0038

0.0036

0.0016

0.0015

0.0015

0.0011

0.0009
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Figure 2.1. Architecture variation: Mackey-Glass time series training performance for

different learning algorithms
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Figure 2.2. Architecture variation: Mackey-Glass time series generalization performance for

different learning algorithms
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Table 2.2. Training and test performance for gas furnace time series for different architectures

Gas Furnace Time Series

Learning algorithm

BP

SCG

QNA

LM

Hidden Neurons

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

Root Mean Squared Error

Training data

0.0760

0.0835

0.0716

0.0800

0.0663

0.0160

0.0157

0.0165

0.0158

0.0153

0.0137

0.0133

0.0133

0.0136

0.0128

0.0U8

0.0140

0.0116

0.0100

0.0100

Test data

0.1291

0.1056

0.0766

0.0950

0.0970

0.0331

0.0330

0.0330

0.0361

0.0367

0.0529

0.0465

0.0376

0.0410

0.0516

0.0450

0.0971

0.1080

0.1880

0.1856
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Table 2.3. Training and test performance for wastewater flow series for different architectures

Wastewater Time Series

Learning algorithm

BP

SCG

QNA

LM

Hidden Neurons

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

Root Mean Squared Error

Training data

0.1269

0.1184

0.1182

0.1221

0.1169

0.0459

0.0428

0.0425

0.0423

0.0400

0.0423

0.0367

0.0363

0.0339

0.0316

0.0364

0.0303

0.0314

0.0259

0.0244

Test data

0.1340

0.1360

0.1350

0.1370

0.1412

0.0900

0.1130

0.1130

0.1626

0.0920

0.1271

0.1369

0.1360

0.1450

0.2620

0.0950

0.1631

0.1800

0.1314

0.1560
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Figure 2.5. Architecture variation: Waste water time series training performance for different

training algorithms
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Figure 2.6. Architecture variation: Waste water time series generalization performance for

different learning algorithms
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2.2.1.2. Node transfer functions

This section investigates the effect of different node transfer functions on training and

generalization performance for the four learning algorithms. To compare empirically we

maintained the same architecture and only changing the node transfer functions and learning

algorithms. All the networks were randomly initialized and trained for 2500 epochs. Tables

2.4 - 2.6 summarizes the empirical results of training and generalization for the two node

transfer functions, tanh-sigmoidal activation function (TSAF) and log-sigmoidal activation

function (LSAF), when the architecture was fixed with 24 hidden neurons. Figures 2.7 - 2.12

graphically depict the convergence characteristics of the four training algorithms for different

node transfer functions during 2500 epochs training.

Table 2.4. Mackey Glass time series: Training and generalization performance for different

activation functions

Time series

Mackey
Glass

Learning
algorithm

BP

SCG

QNA

LM

Activation function

TSAF

LSAF

TSAF

LSAF

TSAF

LSAF

TSAF

LSAF

Root Mean Squared Error

Training

0.0439

0.0970

0.0045

0.0076

0.0033

0.0029

0.0009

0.0009

Test

0.0437

0.0950

0.0045

0.0074

0.0034

0.0029

0.0009

0.0010
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Figure 2.10. Gas furnace series: Convergence of training when node transfer function is

changed (a) Quasi-Newton algorithm (b) Levenberg Marquardt algorithm

Table 2.5. Gas furmice series: Training and generalization performance for different activation

functions

Time series

Gas
furnace

Learning
algorithm

BP

SCG

QNA

LM

Activation function

TSAF

LSAP

TSAF

LSAF

TSAF

LSAF

TSAF

LSAF

Root Mean Squared Error

Training

0.0663

0.0940

0.0153

0.0162

0.0128

0.0137

0.0100

0.0089

Test

0.0970

0.1025

0.0367

0.0367

0.0516

0.0420

0.1856

0.1009
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Table 2.6. Waste water time series: Training and generalization performance for different

activation functions

Time series

Wastewater

Learning
algorithm

BP

SCG

QNA

LM

Activation function

TSAF

LSAF

TSAF

LSAF

TSAF

LSAF

TSAF

LSAF

Root Mean Squared Error

Training

0.1169

0.0156

0.0400

0.0420

0.0316

0.0256

0.0244

0.2160

Test

0.1412

0.1600

0.0920

0.0820

0.4600

0.2110

0.1560

0.1770

0»5

OK

045

r
• os

015

005

•005'

••ckpropasafon

• —.. - . . ~" *———•—

•* *™ m ™" ""

ow
0 M 5

DOS

OMS-

ff 0<W

0 03!

0O3

00»

001
V

0015 -*—.—.
3S

IcMtd conjuo^a gradlarK ilgoflhm

•^

110 ttO KXD HDD

" - • C M . W •C«*T1AF

30QC 3)00

Epochs

Figure 2.11. Wastewater time series: Convergence of training when node transfer function is

changed (a) backpropagation training (b) scaled conjugate gradient algorithm
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2.2.1.3 Computational Complexity of Learning algorithms

This section investigates the computational complexity of the different learning algorithms

when the architecture of the hidden layer is varied using tanh-sigmoidal activation function.

The networks were randomly initialized and trained for 2500 epochs using the different

learning algorithms. Table 2.7 summarizes the empirical values of the computational load for

the different learning methods for the three different time series.

2.3.Discussion of Results Obtained and Further Work

hi this Section we would like to evaluate and summarize the results of the various

experimentations mentioned in Section 2.2.1.

For M&jkey Glass series (Table 2.1) all the 4 learning algorithms tend to generalize well as the

hidden neurons were increased. However, the generalization was better when the hidden

neurons were using TSAF. LM showed the fastest convergence regardless of architecture and

node activation function. However, the computational complexity of LM algorithm is very

amazing as depicted in Table 2.7. For Mackey glass series (with 14 hidden neurons), when BP

was using 0.625 billion flops, LM technique required 29.4 billion flops. When the hidden

neurons were increased to 24, BP used 1.064 billion flops and LM's share jumped to 203.10

billion flops. LM gave the lowest generalization R.MSE of 0.0009 with 24 hidden neurons.
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Table 2.7. Approximate computational load for the different time series using the different

training algorithms

Learning algorithm

BP

SCG

QNA

LM

Hidden Neurons

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

14

16

18

20

24

Computational Load (billion flops)

Mackey
Glass
0.625

0.713

0.800

0.888

1.064

1.256

1.429

1.605

1.781

2.133

2.570

3.319

4.221

5.313

7.989

29.40

57.51

93.29

137.83

203.10

Gas
Furnace

0.142

0.305

0.488

0.690

0.932

0.286

0.326

0.366

0.406

0.486

0.679

0.8899

0.9000

1.131

2.193

3.930

8.355

14.03

21.10

31.83

Waste
water
0.301

0.645

0.880

1.460

1.970

0.604

0.689

0.774

0.859

1.029

1.910

2.582

3.388

4.384

6.925

12.46

27.72

93.79

118.53

175.22

As shown in Table 2.2, for gas furnace series the generalization performance were entirely

different for the different learning algorithms. BP gave the best generalization RMSE of

0.0766 with 18 hidden neurons. RMSE for SCG, QNA and LM were 0.0330 (16 neurons),
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0.0376 (18 neurons) and 0.045 (14 neurons) respectively. As depicted in Figures 2.9 and 2.10

the node transfer function also has an effect on the training speed and generalization

performance. LM algorithm converged much faster and gave a better generalization

performance when the node transfer function was changed to LSAF (Refer to Figure 2.10(b)).

Waste water prediction series also showed a different generalization performance when the

architecture was changed for the different learning algorithms (Refer to Table 2.3). BP's best

generalization RMSE was 0.135 with 18 hidden neurons using TSAF and that of SCG, QNA

and LM were 0.0900, 0.1271 and 0.095 with 14 neurons each respectively. LM algorithm

converged much faster and gave a better generalization performance when the node transfer

function was changed to LSAF (Refer to Figure 2.12(b)).

In spite of computational complexity, LM performed well for Mackey Glass series. For gas

furnace and waste water prediction SCG algorithm performed better. However, the speed of

convergence of LM in all the three cases is worth noting. This leads us to the following

questions:

• What is the optimal architecture (number of neurons and hidden layers) for a given

problem?

• What node transfer functions should one choose?

• What is the optimal learning algorithm and its parameters?

From the above discussion it is clear that the selection of the topology of a network and the

best learning algorithm and its parameters is a tedious task for designing an optimal artificial

neural network, which is smaller, faster and with a better generalization performance.

Evolutionary algorithm is an adaptive search technique based on the principles and

mechanisms of natural selection and survival of the fittest from natural evolution [85]. The

interest in evolutionary search procedures for designing neural network topology has been

growing in recent years as they can evolve towards the optimal architecture without outside

interference, thus eliminating the tedious trial and error work of manually finding an optimal

network [15] [250]. In Chapter 3, we will introduce the evolutionary design of neural networks

and the concept of meta-learaing in evolutionary artificial neural networks [15].
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Chapter 3: Meta-Learning in Evolutionary
Artificial Neural Networks

3.0 Introduction

At present, neural network design relies heavily on human experts who have sufficient

knowledge about the different aspects of the network and the problem domain. As the

complexity of the problem domain increases, manual design becomes more difficult and

unmanageable. Evolutionary artificial neural networks (EANNs) refer to a special class of

artificial neural networks (ANNs) in which evolution is another fundamental form of

adaptation in addition to learning [5] [15]. Evolutionary algorithms (EA) are used to adapt the

connection weights, network architecture and learning rules according to the problem

environment. A distinct feature of EANNs is their adaptability tc a dynamic environment. In

other words EANNs can adapt to an environment as well as changes in the environment. The

two forms of adaptation: evolution and learning in EANNs make their adaptation to a dynamic

environment much more effective and efficient. In Section 3.1, we present the fundamental

concepts of EA's followed by state of the art design of EANNs in Section 3.2. In Section 3.3,

we then present our work on evolutionary neural networks based on meta-learning

(MLEANN) followed by experimentation results and discussions.

3.1 Evolutionary Algorithms

EAs are population based adaptive methods, which may be used to solve optimization

problems, based on the genetic processes of biological organisms [85] [86]. Over many

generations, natural populations evolve according to the principles of natural selection and

"Survival of the Fittest", first clearly stated by Charles Darwin in "On the Origin of Species".

By mimicking this process, EAs are able to "evolve" solutions to real world problems, if they

have been suitably encoded. The procedure may be written as the difference equation:

x[t + 1] = s(v(x[t])) (3.1)
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1. Generate the initial population P(0) at random and set i=0;

2. Repeat until the number of iterations or time has reached the
preset limit or the population has converged.

• Evaluate the fitness of each individual in P(i)

• Select parents from P(i) based on their fitness in P (i)

• Apply reproduction operators to the parents and produce
offspring, the next generation, P(i+J) is obtained from the
offspring and possibly parents.

Figure 3.1. Pseudo code of an evolutionary algorithm

3.2 Evolutionary Artificial Neural Networks

Many of the conventional ANNs now being designed are statistically quite accurate but they

still leave a bad taste with users who expect computers to solve their problems accurately. The

important drawback is that the designer has to specify the number of neurons, their distribution

over several layers and interconnection between them. Several methods have been proposed to

automatically construct ANNs for reduction in network complexity that is to determine the

appropriate number of hidden units, layers, etc. Topological optimization algorithms such as

Extentron [31], Upstart [90], Pruning [199] [223] and Cascade Correlation [82] etc. got its

own limitations.

The interest in evolutionary search procedures for designing ANN architecture has been

growing in recent years as they can evolve towards the optimal architecture without outside

interference, thus eliminating the tedious trial and error work of manually finding an optimal

network [5] [15] [28] [52] [53] [54] [55] [87] [96] [178] [234] [247] [248] [249] [251]. The

advantage of the automatic design over the manual design becomes clearer as the complexity

of ANN increases. EANNs provide a general framework for investigating various aspects of

simulated evolution and learning [32] [45] [46] [152] [165].
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3.2.1 General Framework for EANNs

In EANN's evolution can be introduced at various levels. At the lowest level, evolution can be

introduced into weight training, where ANN weights are evolved. At the next higher level,

evolution can be introduced into neural network architecture adaptation, where the architecture

(number of hidden layers, no of hidden neurons and node transfer functions) is evolved. At the

highest level, evolution can be introduced into the learning mechanism. A general framework

of EANNs which includes the above three levels of evolution is given in Figure 3.2 [5] [15].

Slow
Evolutionary Search of learning rules

Evolutionary search of architectures and nod* transfer functions

Evolutionary search of connection weights Fast

Figure 3.2. A General Framework for EANNs

From the design point of view, the decision on the level of evolution depends on what kind of

prior knowledge is available. If there is more prior knowledge about EANN's architectures

than that about their learning rules or a particular class of architectures is pursued, it is better

to implement the evolution of architectures at the highest level because such knowledge can be

used to reduce the search space and the lower level evolution of learning rules can be more

biased towards this kind of architectures. On the other hand, the evolution of learning rules

should be at the highest level if there is more prior knowledge about them available or there is

a special interest in certain type of learning rules.

3.2.1.1 Evolutionary Search of Connection weights

The shortcomings of the BP algorithm mentioned in Section 2.1 could be overcome if the

training process is formulated as a global search of connection weights towards an optimal set

defined by the evolutionary algorithm. Optimal connection weights can be formulated as a
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globa] search problem wherein the architecture of the neural network is pre-defined and fixed

during the evolution.

Connection weights may be represented as binary strings represented by a certain length. The

whole network is encoded by concatenation of all the connection weights of the network in the

chromosome. A heuristic concerning the order of the concatenation is to put connection

weights to the same node together. Fig 3.3 illustrates the binary representation of connection

weights wherein each weight is represented by 4 bits.

4

—© Output

Input

Genotype: 0100 1000 0111 0011 0001 0101

Figure 3.2. Connection weight chromosome encoding using binary representation

Real numbers have been proposed to represent connection weights directly [209]. A

representation of the ANN could be (2.0, 6.0, 5.0, 1.0, 4.0, 10.0). However proper genetic

operators are to be chosen depending upon the representation used.

Evolutionary Search of connection weights can be formulated as follows:

1) Generate an initial population ofN weight chromosomes. Evaluate the fitness of each
EANN depending on the problem.

2) Depending on the fitness and using suitable selection methods reproduce a number of
children for each individual in the current generation.

3) Apply genetic operators to each child individual generated above and obtain the next
generation.

4) Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 2.

5) End

While gradient based techniques are very much dependant on the initial setting of weights, the

proposed algorithm can be considered generally much less sensitive to initial conditions. They

always search for a global optimal solution, while any gradient descent or second order
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optimization technique can only find local optimum in a neighborhood of the initial solution.

Performance by using the above approach will directly depend on the problem.

3.2.1.2 Evolutionary Search of Architectures

Evolutionary architecture adaptation can be achieved by constructive and destructive

algorithms. Constructive algorithms, which add complexity to the network starting from a very

simple architecture until the entire network is able to learn the task [90] [177] [170].

Destructive algorithms start with large architectures and remove nodes and interconnections

until the ANN is no longer able to perform its task [199] [223]. Then the last removal is

undone. Figure 3.3 demonstrates how typical neural network architecture could be directly

encoded and how the genotype is represented. For an optimal network, the required node

transfer function (gaussian, sigmoidal, etc.) can be formulated as a global search problem,

which is evolved simultaneously with the search for architectures [164].

To minimize the size of the genotype string and improve scalability, when priori knowledge of

the architecture is known it will be efficient to use some indirect coding (high level) schemes.

For example, if two neighboring layers are fully connected then the architecture can be coded

by simply using the number of layers and nodes. The blueprint representation is a popular

indirect coding scheme where it assumes architecture consists of various segments or areas.

Each segment or area will define a set of neurons, their spatial arrangement and their efferent

connectivity. Several high level coding schemes like graph generation system [151],

Symbiotic Adaptive Neuro-Evolution (SANE) [208] [187], marker based genetic coding [95],

L-systems [44], cellular encoding [102], fractal representation [174] etc are some of the

rugged techniques.
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Figure 3.3. Architecture chromosome using binary coding

Global search of transfer function and the connectivity of the ANN using evolutionary

algorithms can be formulated as follows

1) The evolution of architectures has to be implemented such that the evolution of weight

chromosomes are evolved at a faster rate i.e. for every architecture chromosome, there

will be several weight chromosomes evolving at a faster time scale

2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of

each EANN depending on the problem.

3) Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

4) Apply genetic operators to each child individual generated above and obtain the next

generation.

5) Check whether the network has achieved the required error rate or the specified

number of generations has been reached. Go to Step 3.

6) End

3.2.1.3 Evolutionary Search of Learning Rules

For the neural network to be fully optimal the learning rules are to be adapted dynamically

according to its architecture and the given problem. Deciding the learning rate and momentum
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can be considered as the first attempt of learning rules [150]. The basic learning rule can be

generalized by the function

n
— y I (Oil,i2...,ikX\Xij(i-l)) (3.2)

Where t is the time, Aw is the weight change, xt, x2, xn are local variables and the 9's are

the real values coefficients which will be determined by the global search algorithm. In the

above equation different values of 9's determine different learning rules. The above equation

is arrived based on the assumption that the same rule is applicable at every node of the

network and the weight updating is only dependent on the input/output activations and the

connection weights on a particular node. Genotypes {9's) can be encoded as real-valued

coefficients and the global search for learning rules using the hybrid algorithm can be

formulated as follows:

1. The evolution of learning rules has to be implemented such that the evolution of

architecture chromosomes are evolved at a faster rate i.e. for every learning rule

chromosome, there will be several architecture chromosomes evolving at a faster time

scale

2. Generate an initial population ofN learning rules. Evaluate the fitness of each EANN

depending on the problem.

3. Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

4. Apply genetic operators to each child individual generated above and obtain the next

generation.

5. Check whether the network has achieved the required error rate or the specified number

of generations has been reached. Go to Step 3.

6. End

Several researches have been going on about how to formulate different optimal learning rules

[15] [34] [88] [247]. The adaptive adjustment of BP algorithm's parameters, such as the

learning rate and momentum, through evolution could be considered as the first attempt of the
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evolution of learning rules [111]. Chalmers [66] defined the form of learning rules as a linear

function of four local variables and their six pair wise products [88] [34].

Global optimization of neural network has been widely addressed using several other

techniques [64] [78] [89] [206] [217] [216] [218] [219] [257]. Sexton et al [217] used

simulated annealing algorithm for optimization of learning. For optimization of the neural

network learning, in many cases, a pre-defined architecture was used and in a few cases

architectures were evolved together. No work has been reported to the best of our knowledge,

where the network is fully automated (interaction of the different evolutionary search

mechanisms) using the generic framework mentioned in Section 3.2. Many a times, the search

space is narrowed down by pre-defined architecture, node transfer functions and learning

rules.

3.3 Meta Learning Evolutionary Artificial Neural Networks
(MLEANN)

One major problem of evolutionary algorithm is their inefficiency in fine tuning local search

although they are good at global search. The efficiency of evolutionary training can be

improved significantly by incorporating a local search procedure into the evolution.

Evolutionary algorithms are used to first locate a good region in the space and then a local

search procedure is used to find a near optimal solution in this region. It is interesting to

consider finding good initial weights as locating a good region in the space. Defining that the

basin of attraction of a local minimum is composed of all the points, sets of weights in this

case, which can converge to the local minimum through a local search algorithm, then a global

minimum can easily be found by the local search algorithm if the evolutionary algorithm can

locate any point, i.e, a set of initial weights, in the basin of attraction of the global minimum.

Referring to Figure 3.4, Gj and G2 could be considered as the initial weights as located by the

evolutionary search and WA and WB the corresponding final weights fine-tuned by the meta-

learning technique.
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Figure 3.4. Fine tuning of weights using meta-learning

Figure 3.5 illustrates the general interaction mechanism with the learning mechanism of the

EANN evolving at the highest level on the slowest time scale. All the randomly generated

architecture of the initial population are trained by four different learning algorithms

(backpropagation-BP, scaled conjugate gradient-SCG, quasi-Newton algorithm-QNA and

Levenberg-Marquardt-LM) and evolved in a parallel environment. Parameters controlling the

performance of the learning algorithm will be adapted (example, learning rate and momentum

for BP) according to the problem. Figure 3.6 depicts the basic algorithm of proposed meta-

learning EANN. Architecture of the chromosome is depicted in Figure 3.7.

Evolutionary March of teaming algorithms and Ms parameter*

Seated Conjugate
Gradient

L«v«nb«rg
Marquardt

Backpropagation

Evolutionary March of archfttctuiM and nod* transfer functions

Evolutionary March of connection weights

Figure 3.S. Interaction of various evolutionary search mechanisms
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1. Set t=0 and randomly generate an initial population of neural networks with
architectures, node transfer Junctions and connection weights assigned at
random.

2. In a parallel mode, evaluate fitness of each ANN using BP/SCG/QNA andLM

3. Based on fitness value, select parents for reproduction

4. Apply mutation to the parents and produce offspring (s) for next generation.
Refill the population back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or number of iterations has
reached the required limit.

Figure 3.6. Meta-learning algorithm for EANNs

LRi LRa LR, LR« LR, "*
parameters of learning

algorithm

neural network
architectures

WT,

initial weights

Figure 3.7. Chromosome representation of the proposed EANN

3.3.1 MLEANN: Experimentation Setup

We have applied the proposed technique to the three-time series prediction problems discussed

in Chapter 2. For performance comparison, we used the same set of training and test data that

were used for experimentations with neural networks. For performance evaluation, the

parameters used in our experiments were set to be the same for all the 3 problems. Fitness

value is calculated based on the RMSE achieved on the test set. In this experiment, we have

considered the best-evolved neural network as the best individual of the last generation. As the

learning process is evolved separately, user has the option to pick the best neural network (e.g.

less RMSE or less computational expensive etc.) among the four learning algorithms. All the

genotypes were represented using binary coding and the initial populations were
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generated based on the following parameters shown in Table 3.1. The parameter settings,

which were evolved for the different learning algorithms, are illustrated in Table 3.2. We also

investigated the performance of the proposed method with a restriction of architecture (no of

hidden neurons). We set a maximum number of 4 hidden neurons and evaluated the learning

performance. The experiments were repeated three times and the worst RMSE values are

reported.

3.3.2 MLEANN: Experimentation Results

Table 3.3 displays empirical values of RMSE on test data for the three time series problems

without architecture restriction. For comparison purposes, test set RMSE values using

conventional design techniques are also presented in Table 3.3 (adapted from Chapter2). Table

3.4 illustrates the RMSE values on training/test set data using the meta-learning technique

when the architecture restriction was imposed. Run times for the two different

experimentations are also presented. Figures 3.8, 3.9 and 3.10 illustrates the test results of the

three data sets using the meta-learning approach (using BP algorithm). Figures 3.11, 3.12 and

3.13 displays the convergence of the meta-learning algorithm during the 40 generations for the

three data sets.

Table 3.1. Parameters used for evolutionary design of artificial neural networks

Population size

Maximum no of generations

Number of hidden nodes

Activation functions

Output neuron

Training epochs

Initialization of weights

Ranked based selection

Elitism

Mutation rate

40

40

• Experiment 1:5-16 hidden nodes

• Experiment 2: maximum 4 neurons

tanh (T), logistic (L), sigmoidal (S), tanh-
sigmoidal (T*), log-sigmoidal (L*)

linear

500

+/- 0.3

0.50

5%

0.40
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Table 3.2. Parameters settings of the learning algorithms

Learning algorithm

Backpropagation

Scaled conjugate
gradient algorithm

Quasi-Newton
algorithm

Levenberg Marquardt

Parameter

Learning rate

Momentum

Change in weight for second
derivative approximation

Regulating the indefiniteness of
the Hessian

Step lengths

Limits on step sizes

Scale factor to determine
performance

Scale factor to determine step
size.

Learning rate

Setting

0.25-0.05

0.25-0.05

0-0.0001

O-l.OE-06

1.0E-06-100

0.1-0.6

0.001-0.003

0.1-0.4

0.001-0.02

1.4 i

1.2 •

1 •

0.8 •

fc. 0.6 -
X

0.4 -

0.2 •

0 -

Mackty Glatstimt
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Figure 3. 8. Test results using 500 epochs BP meta-learning for Mackey Glass series
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Figure 3.9. Test results using 500 epochs BP meta-learning for Gas furnace series
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Figure 3.10. Test results using 500 epochs BP meta-learning for wastewater flow series
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Mackey Glass Series
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Figure 3.11. Mackey Glass time series: Average test set RSME values during the 40

generations and meta-learning
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Figure 3.12. Gas furnace time series: Average test set RSME values during the 40 generations

and meta-learning
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Wastewater Series
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Figure 3.13. Wastewater time series: Average test set RSME values during the 40 generations

and meta-learning

Table 3.3. Performance comparison between MLEANN (without architecture restriction) and

ANN

Time
series

Mackey
Glass

Gas
Furnace

Waste
Water

Learn

Algo.

BP

SCG

QNA

LM

BP

SCG

QNA

LM

BP

SCG

QNA

LM

MLEANN

RMSE

Training

0.0072

0.0030

0.0024

0.0004

0.0159

0.0110

0.0115

0.0120

0.0441

0.0457

0.0673

0.0425

Test

0.0077

0.0031

0.0027

^.0004

0.0358
f0.0210

0.0256

0.0223

0.0547

0.0579

0.0823
t0.0521

Architecture

7T,3L

11 T

6 T, 4 T*

8T,2T*1L*

8T

8 T, 2 T*

7 T, 2 L*

6 T, 1 L, 1 T*

6T,5T*,1 L

6 T, 4 L*

5 T, 5 TS

8 T, 1 LS

ANN

RMSE

0.0437

0.0045

0.0034

0.0009

0.0766

0.0330

0.0376

0.0451

0.1360

0.0820

0.1276

0.0951

Architecture

24 T*

24 T*

24 T*

24 T*

18 T*

16 T*

18 T*

14 T*

16 T*

14 T*

14 T*

14 T*
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Table 3.4. Performance results and run time comparison of MLEANN (architecture

restriction- maximum 4 hidden nodes) and ANN.

Time
series

Mackey
Glass

Gas
Furnace

Waste
Water

Learn
Algo.

BP

SCG

QNA

LM

BP

SCG

QNA

LM

BP

SCG

QNA

LM

MLEANN

RMSE

Training

0.0166

0.0062

0.0059

0.0056

0.0189

0.0179

0.0156

0.0181

0.0647

0.0580

0.0590

0.0567

Test

0.0168

0.0067

0.0058

+0.0061

0.0371

0.0295

0.0295

+0.0290

0.0639

0.0600

0.0596

+0.0591

Architecture

4T

3 T, 1 T*

3 T*, 1 L

2 L*, 2 T*

3L

1 T*. 2 L

2 T*. 1 L*, 1 L

1 T, 1 L, 1 T*

2T, 2T*

2 T*, 1 T, 1 L

3 T*, 1L*

2 L, 1 T, 1 T*

*Run time in minutes

~A

1181

2066

2169

2463

305

629

661

696

702

1254

1291

1176

288

504

528

602

62

121

128

132

146

267

279

294

** without architecture restriction, +with architecture restriction

+ Lowest RMSE error, * On a P II, 450 MHz, 256 MB RAM machine

3.3.3 Comparison with Neuro-Fuzzy Systems and Other Intelligent
Techniques

In this Section, we compare the performance of MLEANN (RMSE values on training and test

sets) with two popular neuro-fuzzy models, global optimization technique using cutting angle

method [35] and multivariate adaptive regression splines (MARS) [17]. The neuro-fuzzy

models considered were Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) [139]

implementing a Mamdani fuzzy inference system [169] and an Adaptive Neuro-Fuzzy
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Inference System (ANFIS) [130] implementing a Takagi-Sugeno fuzzy inference system

[224], The same training and test sets of the three time series were used to compare the

performance of the different intelligent systems. Training and test results for neuro-fuzzy

systems are depicted in Table 3.5.

Table 3.6 shows performance comparison of MLEANN and the recently developed Cutting

Angle Method (CAM) of deterministic global optimization [35]. Table 3.7 compares

MLEANN with multivariate adaptive regression splines (MARS), a popular regression based

approach, which was the winner of the famous KDD 2000 data mining competition.

Table 3.5. Performance comparison between MLEANN and Neuro-Fuzzy Systems

Time
series

Mackey
Glass

Gas
Furnace

Waste
Water

RMSE

EANN

Training

0.0004

0.0110

0.0425

Test

0.0004

0.0210

0.0521

Mamdani - NF

Training

0.0023

0.0140

0.0019

Test

0.0042

0.0490

0.0750

Takagi Sugeno - NF

Training

0.0019

0.0137

0.0530

Test

0.0018

0.0570

0.0810

Table 3.6. Performance comparison between MLEANN and CAM

Data set

Mackey-
Glass

Gas
Furnace

Waste
water

MLEANN

RMSE
(train)

0.0056

0.0181

0.0567

RMSE
(test)

0.0061

0.0290

0.0591

Architecture

2 T, 2 T*

1 T, I L, 1 T*

2 L, 1 T, 1 T*

CAM

RMSE
(train)

0.0085

0.0173

0.057

RMSE
(test)

0.0091

0.0384

0.066

Architecture

4S

3S

4S
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Table 3.7. Performance comparison between MLEANN and MARS

Data set

Gas
Furnace

MLEANN

RMSE
(train)

0.0110

RMSE
(test)

0.0210

Architecture

8 T, 2 T*

MARS

RMSE
(train)

0.0185

RMSE
(test)

0.0413

Architecture
(basis

functions)

5

3.4 Discussions and Conclusions

Table 3.3 shows comparative performance between MLEANN and a conventional ANN

without any architecture restriction. For Mackey glass series, using 500 epochs of BP learning,

RMSE on test set was reduced by 82% (BP), 31% (SCG), 29% (QNA) and 56% (LM). At the

same time, number of hidden neurons got reduced by approximately 58% (BP), 54% (SCG),

58% (QNA) and 55% for LM. LM algorithm gave the best RMSE error on test set (0.0004)

even though it is highly computational expensive as demonstrated in Table 2.7.

For the gas furnace time series, RMSE on test set was reduced by 53%% (BP), 36% (SCG),

69% (QNA) and 73% (LM). Savings in hidden neurons amounted to 55% (BP), 37% (SCG),

50% (QNA) and 55% (LM). SCG training gave the best RMSE value (0.0210) for gas furnace

series.

For the wastewater time series, RMSE on test set was reduced by 60% (BP), 29% (SCG), 35%

(QNA) and 45% (LM). Savings in hidden neurons amounted to 25% (BP), 29% (SCG), 29%

(QNA) and 36% (LM). LM learning gave the best RMSE value (0.0521) for wastewater series.

To have an empirical comparison, we deliberately terminated the training after 500 epochs

(regardless of early stopping in some cases). In some cases the generalization performance

could have been further improved. As depicted in Table 3.4, our experimentations with limited

architecture also reveal the efficiency of MLEANN technique. The gas furnace time series and

wastewater series could be learned just with 4 hidden neurons using LM algorithm. However,
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for Mackey glass series the results were not that encouraging when compared with the

conventional design using 24 hidden neurons. Perhaps Mackey Glass series requires more

hidden neurons to learn the problem within the required accuracy.

Table 3.5 - 3.7 depicts empirical comparison between MLEANN and some popular intelligent

systems. As evident, MLEANN has outperformed all the intelligent systems in terms of the

lowest RMSE values on test set for the time series considered.

Selection of the architecture (number of layers, hidden neurons, activation functions and

connection weights) of a network and correct learning algorithm is a tedious task for designing

an optimal artificial neural network. Moreover, for critical applications and hardware

implementations optimal design often becomes a necessity. In this paper, we have formulated

and explored; MLEANN: an adaptive computational framework based on evolutionary

computation for automatic design of optimal artificial neural networks. Empirical results are

promising and show the importance and efficacy of the technique.

hi MLEANN, our work was mostly concentrated on the evolutionary search of optimal

learning algorithms. For the evolutionary search of architectures, it will be interesting to model

as co-evolving [75] sub-networks [246] instead of evolving the whole network [232]. Further,

it will be worthwhile to explore the whole population information of the final generation for

deciding the best solution. We used a fixed chromosome structure (direct encoding technique)

to represent the connection weights, architecture, learning algorithms and its parameters. As

size of the network increases, the chromosome size grows. Moreover, implementation of

crossover is often difficult due to production of non-functional offspring's. Parameterized

encoding overcomes the problems with direct encoding but the search of architectures is

restricted to layers. In the grammatical encoding rewriting grammar is encoded. So the success

will depend on the coding of grammar (rules). Cellular configuration might be helpful to

explore the architecture of neural networks more efficiently. Gutierrez et al [107] has shown

that their cellular automata technique performed better than direct coding.

In the Chapter 4, we will investigate how fuzzy inference systems could be used for modeling

uncertainty and to make decisions from imprecise data.
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Chapter 4: The Need for Adaptation of Fuzzy
Inference Systems

4.0 Introduction

The human brain interprets imprecise and incomplete sensory information provided by the

various perceptive organs[138]. Fuzzy set theory [254] provides a systematic calculus to deal

with such vague information linguistically, and it performs numerical computation by using

linguistic labels stipulated by membership functions [79] [146] [154] [183] [204]. Some works

have also demonstrated the equivalence of fuzzy logic system and feedforward neural

networks [67] [159]. Even though a fuzzy inference system is highly interpretable (if-then

rules), it lacks the adaptability to deal with changing external environments [238].

This chapter begins with some fundamental theoretical aspects of fuzzy modeling [126] and

how fuzzy inference systems [67] could be designed for solving practical problems. To

demonstrate the difficulties in modeling fuzzy inference systems, we consider the reactive

power prediction problem for automating the power flow control to a plant [7]. The effect of

different membership functions (shape and quantity), fuzzy inference method, reasoning

mechanism, defuzzification method etc are studied and demonstrated by modeling this

problem. We further illustrate how this could be overcome by adaptation of fuzzy inference

systems using evolutionary search procedures.

4.1 Fuzzy Sets and If-Then Rules

The world of information is surrounded by uncertainty and imprecision. The human reasoning

process can handle inexact, uncertain and vague concepts in an appropriate manner. Usually,

the human thinking, reasoning and perception process cannot be expressed precisely. These

types of experiences can rarely be expressed or measured using statistical or probability

theory. Fuzzy logic provides a framework to model uncertainty, human way of thinking,

reasoning and the perception process [176] [204]. Fuzzy systems was first introduced by Lotfi
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A Zadeh, a professor at the University of California at Berkeley, in his seminal papa-

published in 1965 [253].

Let X be a space of objects and x be a generic element of X. A classical set A, A c X, is

defined as a collection of elements or objects x e X, such that x can either belong or not

belong to the set A. A fuzzy set A in .AT is defined as a set of ordered pairs

= {(x,nA(x))\xe X} (4.1)

Where MA(X) *S called the membership function (MF) for the fuzzy set A. The MF maps

each element of A" to a membership grade (or membership value) between 0 and 1. Obviously,

(4.1) is a simple extension of the definition of a classical set in which the characteristic

function is permitted to have any values between 0 and 1. Corresponding to the ordinary set

operations of union and intersection, fuzzy sets have similar operations as illustrated in

Figures 4.1 (a-c).
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Figure 4.1. (a) Fuzzy sets A and B (b) A u B (c) A n B

The intersection of two fuzzy sets A and B is a fuzzy set C, denoted b y C = ^ 4 n B ,orC = A

AND 5 , whose MF is related to those of A and B by

Hc(x) = min(nA(x),ilB(x)) = HA(x) A fiB(x) (4.2)

The intersection of two fuzzy sets A and B is specified in general by a function T: [0,1] x

[0,1] —> [0,1], which aggregates two membership grades as follows:

= T(HA(X),MB(X)) = MA(X)*MB(*) (4.3)
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where * is a binary operator for the function T. This class of fuzzy intersection operators are

usually referred to as T-norm (triangular norm) operators [106] [131]. Four of the most

frequently used T-norm operators are

Minimum: Tm[n(a,b) = min(a.b) = a A b (4.4)

Algi braicproduct: Tap(a,b) = ab

Bounded product: T^fa, b) = 0 v (a + b - 1)

Drastic product: Tjp(a,b) = -

a.ifb = 1

b.ifa = 1

O.if a,b < 1

(4.5)

(4.6)

(4.7)

The union of two fuzzy sets A and B is a fuzzy set C, denoted by C- A\J B, or C=A OR B,

whose MF is related to those of A and B by

jUC(x) = max(nA(x),nB(x)) = fiA(x) v piB(x) (4.8)

Like intersection the fuzzy union operator is specified in general by a function S: [0,1] x [0,1]

-» [0,1], which aggregates two membership grades as follows:

MAuB(x) = S(fiA(x),jlB(x)) ~ /lA(x) + jUg(x) (4.9)

where + is the binary operator for the function S. This class of fuzzy union operators are often

referred to as T-conorm (or S-norm) operators. Four of the most frequently used T-conorm

operators are

Maximum: Smax(a, b) = max(a, b) = a v b

Algebraic sum: Sas(a,b) = a + b - ab

Bounded sum: Sfofa, b) = / A (a + b)

(4.10)

(4.11)

(4.12)
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Drastic sum:

a, ifb = O

h.if a = 0

l.if a,b > 0

(4.13)

Both the intersection and union operators retain some properties of the classical set operation.

In particular, they are associative and commutative.

A more general concept, which plays an important role is the fuzzy conditional statements or

the fuzzy if-then rules. They are expressions of the form "If x is A then y is B", where A and B

are linguistic values defined by fuzzy sets on universe of discourse Xand Y respectively. Often

x is A is called the antecedent or premise, while y is B is called the consequence or conclusion.

Due to their concise form, they are often employed to capture the imprecise mode of reasoning

which plays an essential role in the human ability to make decision in an environment of

uncertainty and imprecision. The compositional rule of inference plays a key role in fuzzy

reasoning. The basic rule of inference in traditional two-valued logic is modus ponens,

according to which we can infer the truth of a proposition B from the truth of A and the

implication^ -» B.

Let A, A', and B be fuzzy sets of X, X1, and Yrespectively. Assume that the fuzzy implication

A -> B is expressed as a fuzzy relation R on X x Y. Then the fuzzy set induced by "x is A"

and the fuzzy rule "If x is A theny is B" is defined by

~ rnaxxmin[n > (x),
A

, y)J = (x) A HR(X, y)J (4.14)

Fuzzy if-then rules and fuzzy reasoning are the backbone of fuzzy inference systems, which

are the most important modeling tools based on fuzzy set theory. Figure 4.1 shows a basic

configuration of a fuzzy inference system. They are a fuzzification interface, a fuzzy rule base

(knowledge base), an inference engine (decision-making logic), and a defuzzification

interface.
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Figure 4.2. Basic architecture of a fuzzy inference system

The fuzzy rule base is characterized in the form of if-then rules in which preconditions and

consequents involve linguistic variables. The collection of these fuzzy rules forms the rule

base for the fuzzy logic system. The basic fuzzy inference system can take either fuzzy inputs

or crisp inputs, but the outputs it produces are always fnszy sets. The defuzzification task

extracts the crisp output that best represents the fuzzy set. With crisp inputs and outputs, a

fuzzy inference system implements a nonlinear mapping from its input space to output space

through a number of fuzzy if-then rules. In what follow, we shall introduce the two most

popular fuzzy inference systems that have been widely deployed in various applications. The

differences between these two fuzzy inference systems lie in the consequents of their fuzzy

rules, and thus their aggregation and defuzzification procedures differ accordingly.

Input *ftf
min

.•»..

Output MF

4-V
rr i

Output Z

lnpu»(x.y)

Figure 4.3. Mamdani fuzzy inference system using min and max for T-norm and T-conorm

operators

Most fuzzy systems employ the inference method proposed by Mamdani [169] in which the

rule consequence is defined by fuzzy sets (Figure 4.3) and has the following structure:

if x is A j and y is B j then zj = Cj (4.15)
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There are several defuzzification techniques. However, the most widely used defuzzification

technique uses the centroid of area method as follows

Centroid of area MA(Z)

\zHA(z)dz
(4.16)

where ju^ (z) is the aggregated output MF.

1)
M T f*

* -1\ ,
X

X

/

J
_ ».. - ._

Y

Y

t '
SHE

Input (x,y)

2 i "
: • q,*y + r.

w * P2*« • q2*y • r2

1
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Figure 4.4. Takagi-Sugeno fuzzy inference system using a min or product as T-norm operator.

Takagi, Sugeno and Kang (TSK) proposed an inference scheme in which the conclusion of a

fuzzy rule is constituted by a weighted linesr combination of the crisp inputs rather than a

fuzzy set [224]. A basic Takagi-Sugeno fuzzy inference system is illustrated in Figure 4.4 and

the rules has the following structure

if xis Aj and y is Bj.thenzj = pjx+qjy + rj (4.17)

where/?;, qj and /-; are linear parameters. TSK fu2zy controller usually needs a smaller number

of rules, because their output is already a linear function of the inputs rather than a constant

fuzzy set.

4.2 Fuzzy Modeling

Fuzzy modeling can be pursued using the following steps.

• Select relevant input and output variables. Determine the number of linguistic terms

associated with each I/O variables. Also choose the appropriate family of

parameterized MF's, fuzzy operators, reasoning mechanism etc.
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• Choose a specific type of fuzzy inference system

• Design a collection of fuzzy if-then rules (knowledge base)

It is typically advantageous if the fuzzy rule base is adaptive to a certain application. In the

following section we will try to demonstrate the difficulties to design fuzzy inference system s

for solving practical problems.

4.2.1 Designing Fuzzy Inference Systems in Practice

We attempted to develop a power factor forecast model using Mamdani and TSK fuzzy

inference systems for automating the control of reactive power flow [7]. Utility companies

base their tariffs upon the total amount of power provided, including kilowatts (KW) and kilo

volt-amperes reactive (KVAR), though in most cases KW is the only utilized energy. By

providing appropriate reactive power compensation methods, using power capacitors, to

increase power factor ratings, the utility customer is able to substantially reduce these charges,

improve the utilization of electrical power and decrease the risk of downtime within the plant.

Usually power capacitors are turned on manually by human operators or by timer controlled

switching relays [179]. The load consumption of manufacturing plants follow a similar pattern

every day as long as the production capacity is unaltered. By knowing the load at a particular

time instant, if we are able to forecast the reactive power requirement at the next time instant

we will be able to switch on the required quantity of power capacitors and thereby avoid

inefficient (using operators or timer controlled) switching of power capacitors. The developed

model would forecast the reactive power at time t+1 just by knowing the load current at time /.

The prediction models were trained with a 24-hour load demand pattern of a heavy automobile

manufacturing plant and performance of the proposed method is evaluated by comparing the

test results with the known values of reactive power [8].
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Figure. 4.5. Testing data (a) input voltage (b) load current

The experimental system consists of two stages: Developing the fuzzy inference system and

performance evaluation using the test data. A heavy automobile manufacturing plant was

considered for the prediction of reactive power. The dataset comprises of 24-hour load flow

patterns (1440 data sets) representing the 24-hour period. The input parameters considered are

the phase voltage (V) and current (/). The normal value of input parameter voltage (F) was

fluctuated with +/- 2.5% of the normal value. All the data sets were scaled to (0-1). The inpui

voltage was fluctuated to test the modeling capability and robustness of the iuzzy inference

system. As shown in Figure 4.5, fluctuated voltage appears to be a heavy noise to the FIS. This

also ensures that the developed FIS could predict the reactive power accurately even during

worst conditions in the grid voltage regardless of the plant load. Training and testing data sets

were extracted randomly from the complete dataset. 60% of data was used for training and

remaining 40% for testing.

4.2.1.1 Design and Experimentations: Fuzzy Inference Systems

In this section we will analyze the effects (a) shape and quantity of membership functions (b)

T-norm and T-conorm operators (c) defuzzification methods and (d) inference method for

designing the FIS. Experimentations were carried out using 4 different settings using the same

rule base and are reported as follows:

Experiment 1 (To evaluate the effect on the number of MFs)

We used the following setting for designing the FIS:
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1. 2 triangular MF's for each input variable and 4 triangular MFs for the output variable

(power). The rule base consisted of 4 if-then rules.

2. 3 triangular MF's for each input variable and 9 triangular MF's for the output variable

(power). The rule base consisted of 9 if-then rules.

We used "min" and "max" as T-norm and T-conorm operators and the centroid method of

denazification for Mamdani FIS and weighted average defuzzification method for Takagi-

Sugeno FIS. The developed fuzzy inference systems using Mamdani and Takagi-Sugeno

models are depicted in Figures 4.6 - 4.9. Table 4.1 summarizes the training and testing RMSE

values.

Table 4.1. Empirical comparison of fuzzy inference systems and quantity of MFs

No. of MF's

->

3

Mamdani FIS

RMSE

Training

0.401

0.348

Test

0.397

0.334

Takagi - Sugeno FIS

RMSE

Training

0.024

0.017

Test

0.023

0.016

C M

•

J

0

• OS

1 * - " ^ ^ _
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Figure 4.6. Mamdani fuzzy inference system using two triangular MF's for input variables
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Figure 4.9. Takagi-Sugeno fuzzy inference system using 3 triangular MF's for input variables
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Experiment 2 (To evaluate the effect of shape of MFs)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.

The rule base consisted of 9 if-then rules. We used "min" and "max" as T-norm and T-conorm

operators and the centroid method of defuzzification for Mamdani FIS and weighted average

defuzzification method for Takagi-Sugeno FIS. The developed fuzzy inference systems using

Mamdani and Takagi-Sugeno models are depicted in Figures 4.10 - 4.11. Table 4.2

summarizes the training and testing RMSE values.

Table 4.2. Empirical comparison of fuzzy inference systems using Gaussian MFs

No. of MFs

3

Mamdani FIS

RMSE

Training

0.243

Test

0.240

Takagi - Sugeno FIS

RMSE

Training

0.021

Test

0.019
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Figure 4.10. Mamdani fuzzy inference system using 3 Gaussian MF's for input variables
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Experiment 3 (To evaluate the effect of fuzzy operators)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.

The rule base consisted of 9 if-then rules. We used "product" and "sum" as T-norm and T-

conorm operators and the centroid method of defuzzification for Mamdani FIS and weighted

average defuzzification method for Takagi-Sugeno FIS. Table 4.3 summarizes the training and

testing RMSE values.

Table 4.3. Empirical comparison of fuzzy inference systems for different fuzzy operators

No. of MF's

3

Mamdani FIS

RMSE

Training

0.221

Test

0.219

Takagi - Sugeno FIS

RMSE

Training

0.019

Test

0.018

Experiment 4 (To evaluate the effect of defuzzification operators)

We used 3 Gaussian MF's for each input variable and 9 Gaussian MF's for the output variable.

The rule base consisted of 9 if-then rules. We usetf "product" and "sum" as T-norm and T-

conorm operators and the following defuzzification operators for Mamdani FIS.
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Centroid

- Bisector of Area (BOA)

Mean of Maximum (MOM)

- Smallest of Maximum (SOM)

For Takagi-Sugeno FIS, the weighted sum and weighted average defuzzification method were

used. Table 4.4 summarizes the training and testing RMSE values.

Table 4.4. Empirical comparison of fuzzy inference systems for different defuzzification

operators.

Mamdani FIS

Defuzzification

Centroid

MOM

BOA

SOM

RMSE

Training

0.221

0.230

0.218

0.229

Test

0.0219

0.232

0.216

0.232

Takagi - Sugeno FIS

Defuzzification

Weighted sum

Weighted

average

RMSE

Training

0.019

0.085

Test

0.018

0.084

4.2.1.2 Discussions of Results and Problem Solution

hi this section we would like to evaluate and summarize the various experimentation results

reported in Section 4.2.1.1. As depicted in Table 4.1, when the number of input MFs were

increased from 2 to 3, the RMSE values reduced regardless of the inference system used.

However, when the shape of the MF was changed to Gaussian, Mamdani FIS improved the

RMSE but the RMSE values increased for Takagi-Sugeno FIS (Table 4.2). Using Gaussian

MFs, when the T-norm and T-Conorm operators were changed to "product" and "sum"

(instead of "min" and "max") both the inference methods performed better. This is reported in
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Experimentation 3 (Table 4.3). Finally the selection of an ideal defuzzification operator also

has a direct influence in the performance of FIS as shown in Table 4.4. BOA defuzzification

method gave the lowest RMSE value while the weighted sum seems to work well for Takagi

Sugeno FIS.

The design of the rule base (number of rules and how the inputs and outputs are related) is also

very important for the good performance of FIS. For this problem, the rule base was created

based on author's previous knowledge. When expert knowledge is not available, initial rule

base could be created with the assistance of some input space-partitioning or clustering

algorithm. The role of weighting factors emphasizing the importance of certain rules also bear

a prominent role for the overall performance.

We have considered only two most popular fuzzy inference methods. The problem would

become more complicated when we have to consider other FIS models [233].

We have demonstrated the difficulties in designing a fuzzy inference system for a funcnori

approximation problem involving just 2 inputs and 1 output. When the input / output

dimensions becomes larger, manual design becomes tedious and sometimes could even lead to

poof design and implementation. This leads us to the following questions:

• What is the but shape and number of membership functions for each I/O variable?

• How to design the knowledge base (size and optimal combination of if-then rules)?

• What are best combinations of fuzzy operators (implication/aggregators) and

defuzzification operators?

• Which inference system will give the best results?

In section 4.3, we will focus on how the various component/parameter design process could be

adapted according to the problem environment in order to automate the FIS design faster and

efficient.

4.3 Adaptation in Fuzzy Inference Systems

A conventional fuzzy controller makes use of a model of the expert who is in a position to

specify the most important properties of the process. Expert knowledge is-often the main
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source to design the fuzzy inference systems. Figure 4.12 shows the architecture of the fuzzy

inference system controlling a process. According to the performance measure of the problem

environment, the MFs, rule bases and the inference mechanism are to be adapted.

Adaptation of fuzzy
inference system

I membership functions

lf-#mi rules

i Performance
measure

fuzzy operators

Knowledge base

FuBzy inisfsfics Sysisfft

-M Process — • •

Figure 4.12. Architecture of adaptive fuzzy inference systems

Several research works are going on exploring the adaptation of fuzzy inference systems [1]

[2] [24] [47] [65] [104] [162] [166] [196] [212] [229] [239] . These include the adaptation of

membership functions, rule bases, aggregation operator etc. These techniques include but are

not limited to:

• Self-organizing process controller by Procyk et al [210], which considered the issue of

rule generation and adaptation.

• Gradient descent and its variants have been applied to fine-tune the parameters of the

input and output membership functions [197] [240].

• Pruning the quantity and adapting the shape of input/output membership functions

[241].

• Tools to identify the structure of fuzzy models [225].

• Fuzzy discretization and clustering techniques [252].

• In most cases the inference of the fuzzy rules is carried out using the 'min' and 'max'

operators for fuzzy intersection and union. If the T-norm and T-conorm operators are
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parameterized then gradient descent technique could be used in a supervised learning

environment to fine-tune the fuzzy operators.

To formulate the initial rule base, the input space is divided into multi-dimensional partitions

and then assign actions to each of the partitions. In most applications, the partitioning is

achieved using one dimensional membership functions using fuzzy if-then rules as illustrated

in Figure 4.13. The consequent parts of the rule represent the actions associated with each

partition. It is evident that the MFs and the number of rules are tightly related to the

partitioning.
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Figure 4.13. Example showing how the 2 dimensional spaces are partitioned using 3

trapezoidal membership functions per input dimension. A simple if-then rule will

appear as If input-J is medium and input 2 is large then rule R8 is fired.

Adaptation of fuzzy inference systems using evolutionary computation techniques has been

widely explored [72] [175] [202] [213]. We proposed an adaptive framework based on

evolutionary computation wherein the membership functions, rule base and fuzzy operators

are adapted according to the problem [10]. The evolutionary search of MFs, rule base, fuzzy

operators etc would progress on different time scales to adapt the fuzzy inference system

according to the problem environment. Figure 4.14 illustrates the general interaction

mechanism of the proposed framework with the evolutionary search of fuzzy inference system

(Mamdani, Takagi -Sugeno etc) evolving at the highest level on the slowest time scale. For
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1

each evolutionary search of fuzzy operators (best combination of T-norm and T-conorm,

defuzzification strategy etc), the search for the fuzzy rule base progresses at a faster time scale

in an environment decided by the problem. In a similar manner, evolutionary search of

membership functions proceeds at a faster time scale (for every rule base) in the environment

decided by the problem. The problem representation (genetic coding) is illustrated in Figure

4.15.

Evolutionary m r c h of fcizzy inference system

Evolutionary search of fuzzy operators

Evolutionary search of fuzzy rules

Evolutionary search of membership functions

Slow

X7
Fast

Figure 4.14. Interaction of evolutionary search mechanisms in the adaptation of fuzzy

inference system

Fuzzy inference system

Itulei Rule* Rule* Rule*

Fuzzy membership functions

Figure 4.15. Chromosome representation of the adaptive fuzzy inference system using

evolutionary computation
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Automatic adaptation of membership functions is popularly known as self tuning and the

genome encodes parameters of trapezoidal, triangle, logistic, hyperbolic-tangent, Gaussian

membership functions etc.[33] [48] [72] [115] [136] [197] [200].

Evolutionary search of fuzzy rules [23] [25] [97] [98] [116] [117] [118] [157] [185] can be

carried out using three approaches. In the first method (Michigan approach) the fuzzy

knowledge base is adapted as a result of antagonistic roles of competition and cooperation of

fuzzy rules. Each genotype represents a single fuzzy rule and the entire population represents a

solution. A classifier rule triggers whenever its condition part matches the current input, in

which case the proposed action is sent to the process to be controlled. The global search

algorithm will generate new classifier rules based on the rule strengths acquired during the

entire process. The fuzzy behavior is created by an activation sequence of mutually

collaborating fuzzy rules. The entire knowledge base is build up by a cooperation of

competing multiple fuzzy rules [49].

The second method (Pittsburgh approach) evolves a population of knowledge bases rather than

individual fuzzy rules [103]. Genetic operators serve to provide a new combination of rules

and new rules. In some cases, variable length rule bases are used; employing modified genetic

operators for dealing with these variable length and position independent genomes. The

disadvantage is the increased complexity of search space and additional computational burden

especially for online learning.

The third method (iterative rule learning approach) is very much similar to the first method

with each chromosome representing a single rule, but contrary to the Michigan approach, only

the best individual is considered to form part of the solution, discarding the remaining

chromosomes in the population. The evolutionary learning process builds up the complete rule

base through a iterative learning process [100].

4.4 Conclusions

In this Chapter, we have presented the fundamental concepts of fuzzy modeling and

demonstrated the difficulties to design optimal fuzzy inference systems for solving practical

problems. Empirical results clearly reveal the importance of the shape and quantity of
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membership functions for each input variable, fuzzy operators, inference method, knowledge

base etc. for designing optimal fuzzy systems. In Section 4.3, we have presented the different

adaptation techniques for designing fuzzy systems focusing evolutionary approach. We also

presented a framework for optimal design of fuzzy inference systems based on a hierarchical

evolutionary approach, which is also similar to MLEANN architecture discussed in Chapter 3.

In Chapter 5, we will present hybrid combinations of neural networks and fuzzy systems with

some practical applications. We will focus on the different types of integrated neuro-fuzzy

systems that has evolved during the last decade with some empirical comparison towards the

end.

In Chapter 7, we will demonstrate how fuzzy inference systems could be adapted and

optimized using a hybrid approach involving neural network learning algorithms and

evolutionary computation techniques.

76



Chapter 5: Integration of Neural Networks

and Fuzzy Inference Systems

5.0 Introduction

HayashJ ^t al [113] showed that a feedforward neurai network could approximate any fuzzy

rule based system and any feedforward neural network may be approximated by a rule based

fuzzy inference system [36]. Fusion of artificial neural networks and fuzzy inference systems

have attracted the growing interest of researchers in various scientific and engineering areas

due to the growing need of adaptive intelligent systems to solve the real world problems [27]

[29] [40] [57] [59] [60] [63] [74] [80] [81] [91] [94] [99] [101] [104] [105] [109] [110] [112]

[114] [222]. A neural network learns from scratch by adjusting the interconnections between

layers. Fuzzy inference system [67] is a popular computing framework based on the concept of

fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of a combination of

neural networks and fuzzy inference systems are obvious [58] [61] [131] [162] [255]. An

analysis reveals that the drawbacks pertaining to these approaches seem complementary and

therefore it is natural to consider building an integrated system combining the concepts [143]

[180]. While the learning capability is an advantage from the viewpoint of fuzzy inference

system, the automatic formation of linguistic rule base will be advantage from the viewpoint

of neural network. There are several works related to the integration of neural networks and

fuzzy inference systems [77] [120] [122] [123] [125] [138] [148] [149] [158] [161] [181]

[188] [201] [205] [220] [221] [227] [228] [236] [243] [245].

In this Chapter, we discuss the integration of neural networks and fuzzy inference systems into

three main categories: Cooperative, concurrent and integrated neuro-fuzzy models [196]. We

present 3 different types of cooperative neuro-fuzzy models namely fuzzy associative

memories, fuzzy rule extraction using self-organizing maps and systems capable of learning

fuzzy set parameters. We also illustrate a concurrent neuro-fuzzy system and a practical

application on stock market analysis. Different Mamdani [169] and Takagi-Sugeno [224] type
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integrated neuro-fiizzy systems are further introduced with a focus on some of the salient

features and advantages of the different types of neuro-fuzzy models that have been evolved

during the last decade [61]. Some discussions and conclusions are also provided towards the

end of the chapter.

5.1 Cooperative Neuro-Fuzzy Systems
In the simplest way, a cooperative model can be considered as a preprocessor wherein

artificial neural network (ANN) learning mechanism determines the fuzzy inference system

(FIS) membership functions or fuzzy rules from the training data. Once the FIS parameters are

determined, ANN goes to the background.

Fuzzy Associative Memories (FAM) by Kosko [153], fuzzy rule extraction using self

organizing maps by Pedrycz et al [203] and the systems capable of learning of fuzzy set

parameters by Nomura et al [197] are some good examples of cooperative neuro-fuzzy

systems.

5.1.1 Fuzzy Associative memories

Kosko interprets a fuzzy rule as an association between antecedent and consequent parts [153].

If a fuzzy set is seen as a point in the unit hypercube and rules are associations, then it is

possible to use neural associative memories to store fuzzy rules. A neural associative memory

can be represented by its connection matrix. Associative recall is equivalent to multiplying a

key factor with this matrix. The weights store the correlations between the features of the key

k and the information part /. Due to the restricted capacity of associative memories and

because of the combination of multiple connection matrices into a single matrix is not

recommended due to severe loss of information, it is necessary to store each fuzzy rule in a

single FAM. Rules with n conjunctively combined variables in their antecedents can be

represented by n FAMs, where each stores a single rule. The FAMs are completed by

aggregating all the individual outputs (maximum operator in the case of Mamdani fuzzy

system) and a defuzzification component.

Learning could be incorporated in FAM, as learning the weights associated with FAMs output

or to create FAMs completely by learning. A neural network-learning algorithm determines
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the rule weights for the fuzzy rules. Such factors are often interpreted as the influence of a rule

and are multiplied with the rule outputs. Rule weights can be replaced equivalently by

modifying the membership functions. However, this could result in misinterpretation of fuzzy

sets and identical linguistic values might be represented differently in different rules. Kosko

suggests a form of adaptive vector quantization technique to learn the FAMs. This approach is

termed as differential competitive learning and is very similar to the learning in self-

organizing maps.

Fuzzy rules

Neural Network Fuzzy Inference system

Data

\ /"

J V
Output

Fuzzy sets

Figure 5.1. Cooperative neuro-fuzzy model

Figure 5.1 depicts a cooperative neuro-fuzzy model where the neural network learning

mechanism is used to determine the fuzzy rules, parameters of fuzzy sets, rule weights etc.

Kosko's adaptive FAM is a cooperative neuro-fuzzy model because it uses a learning

technique to determine the rules and its weights. The main disadvantage of FAM is the

weighting of rules. Just because certain rules, doesn't have much influence doesn't mean that

they are totally unimportant. Hence the reliability of FAMs for certain applications is

questionable. Due to implementation simplicity FAMs are used in many applications.

5.1.2 Fuzzy Rule Extraction Using Self Organizing Maps

Pedryz et al [203] used self-organizing maps with a planar competition layer to cluster training

data, and they provide means to interpret the learning results. The learning results could show

whether two input vectors are similar to each other or belong to the same class. However, in

the case of high-dimensional input vectors, the structure of the learning problem can rarely be
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detected in the two dimensional map. Pedryz et al provides a procedure for interpreting the

learning results using linguistic variables.

After the learning process, the weight matrix W represents the weight of each feature of the

input patterns to the output. Such a matrix defines a map for a single feature only. For each

feature of the input patterns, fuzzy sets are specified by a linguistic description B (one fuzzy

set for each variable). They are applied to the weight matrix W to obtain a number of

transformed matrices. Each combination of linguistic terms is a possible description of a

pattern subset or cluster. To check a linguistic description B for validity, the transformed maps

are intersected and a matrix D is obtained. Matrix D determines the compatibility of the

learning result with the linguistic description B. D(B) is a fuzzy relation, and d ^ is interpreted

as the degree of support of B. By describing D^ by its a-cuts D^ [204] one obtains subsets of

output nodes, whose degree of membership is at least a such that the confidence of all patterns

Xa belong to the class described by B vanishes with decreasing a. Each B is a valid description

of a cluster if D(B) has a non-empty cc-cut Z>#. If the features are separated into input and

output features according to the application considered, then each B represents a linguistic

rule, and by examining each combination of linguistic values a complete fuzzy rule base can

be created. This method also shows which patterns belong to a fuzzy rule, because they are not

contained in any subset Xa. An important advantage when compared to FAMs is that the rules

are not weighted. The problem is with the determination of the number of output neurons and

the a values for each learning problem. Compared to FAM, since the form of the membership

function determines a crucial role in the performance the data could be better exploited. Since

Kosko's learning procedure doesn't take into account of the neighborhood relation between the

output neurons, perfect topological mapping from the input patterns to the output patterns

might not be obtained sometimes. Thus the FAM learning procedure is more dependent on the

sequence of the training data than Pedryz et al procedure.

Pedryz et al initially determines the structure of the feature space and then the linguistic

descriptions best matching the learning results by using the available fuzzy partitions are

obtained. If a large number of patterns fit none of the descriptions, this may be due to an

insufficient choice of membership functions and they can be determined anew. Hence for
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learning the fuzzy rules this approach is preferable compared to FAM [42] Performance of

this method still depends on the learning rate and the neighborhood size for weight

modification, which is problem dependant and could be determined heuristically. Fuzzy c-

means algorithm also has been explored to determine the learning rate and neighborhood size

by Bezdek et al [42] and Hoppner et al [121].

5.1.3. Systems Capable of Learning Fuzzy Set Parameters

Nomura et al [197] proposed a supervised learning technique to fine-tune the fuzzy sets of an

existing Sugeno type fuzzy system. Parameterized triangular membership functions were used

for the antecedent part of the fuzzy rules. The learning algorithm is a gradient descent

procedure that uses an error measure E (difference between the actual and target outputs) to

fine-tune the parameters of the MF. Because the underlying fuzzy system uses neither a

defuzzification procedure nor a non-differentiable t-norm to determine the fulfillment of rules,

the calculation of the modifications of the MF parameters. The procedure is very similar to the

delta rule for multilayer perceptrons. The learning takes place in an offline mode. For the input

vector, the resulting error E is calculated and based on that the consequent parts (a real value)

are updated. Then the same patterns are propagated again and only the parameters of the MFs

are updated. This is done to take the changes in the consequents into account when the

antecedents are modified. A severe drawback of this approach is that the representation of the

linguistic values of the input variables depends on the rules they appear in. Initially identical

linguistic terms are represented by identical membership functions. During the learning

process, they may be developed differently, so that identical linguistic terms are represented

by different fuzzy sets. The proposed approach is applicable only to Sugeno type fuzzy

inference system. Using a similar approach, Miyoshi et al [182] adapted fuzzy T-norm and T-

conorm operators [73] while Yager et al [244] adapted the defuzzification operator using a

supervised learning algorithm.

5.2.Concurrent Neuro-Fuzzy System
In a concurrent model, neural network assists the fuzzy system continuously (or vice versa) to

determine the required parameters especially if the input variables of the controller cannot be

measured directly. Such combinations do not optimize the fuzzy system but only aids to
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improve the performance of the overall system. Learning takes place only in the neural

network and the fuzzy system remains unchanged during this phase. In some cases the fuzzy

outputs might not be directly applicable to the process. In that case neural network can act as a

postprocessor of fuzzy outputs. Figure 5.2 depicts a concurrent neuro-fuzzy model where in

the input data is fed to a neural network and the output of the neural network is further

processed by the fuzzy system.

Neural Network Fuzzy Inference system

mj
Data output

Figure 5.2. Concurrent neuro-fuzzy model

— -
Stock Index *"
vakiM **

*

Data
preprocessor

Neural network
trained using scaled
conjugal* algorithm

Figure 5.3. Block diagram showing a concurrent neuro-fuzzy model for stock market analysis

5.2.1. Nasdaq Stock Market Analysis Using Concurrent Neuro-Fuzzy
System

During the last decade, stocks and futures traders have come to rely upon various types of

intelligent systems to make trading decisions. Several hybrid intelligent systems have in recent

years been developed for modeling expertise, decision support, complicated automation tasks
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etc. We present a concurrent neuro-fuzzy system fcr predicting the stock value and the

collective trend [19].

Nasdaq-100 index reflects Nasdaq's largest companies across major industry groups, including

computer hardware and software, telecommunications, retail/wholesale trade and

biotechnology [189]. The Nasdaq-100 index is a modified capitalization-weighted index,

which is designed to limit domination of the Index by a few large stocks while generally

retaining the capitalization ranking of companies. Through an investment in Nasdaq-100 index

tracking stock, investors can participate in the collective performance of many of the Nasdaq

stocks that are often in the news or have become household names. In this experiment, we

attempt to forecast the values of six individual stocks and group index (using neural networks)

as well as the trend analysis of the different stocks (using fuzzy inference system). Individual

stock forecasts and group trend analysis might give some insights of the actual performance of

the whole index in detail. To demonstrate the efficiency of the proposed hybrid system we

considered the two years stock chart information (ending 20 March 2001) of six major

industry groups listed on the national market tier of the Nasdaq Stock MarketSM (Nasdaq-100

index).

For the stock forecasting purpose, we made use of a neural network trained using scaled

conjugate gradient algorithm. However, the forecasted stock values might deviate from the

actual values. We modeled the deviation of the predicted value from the required value as a

fuzzy variable and used a fuzzy inference system to account for the uncertainty and decision-

making. Figure 5.3 depicts the concurrent neuro-fuzzy model for stock market analysis. We

start with data preprocessing, which consists of all the actions taken before the actual data

analysis process starts. The preprocessed data is fed into the neural network trained using a

scaled conjugate gradient algorithm for forecasting the stock outputs.

The forecasted outputs by the neural network are further analyzed using the fuzzy inference

system. This time our aim is to analyze the upward and downward trends of the different

forecasted stocks. Since the forecasted values will deviate from the desired value (depending

upon the prediction efficiency of the neural network), we propose to make use of the

uncertainty modeling capability of fuzzy inference system. The developed fuzzy inference

83



system is trained using the trend patterns of the different stock values. The difference between

the day's stock value and the previous day was calculated and used for training the fuzzy

inference system. If all the stock values were increasing we classified it as positive trend "1"

and "0" otherwise. The proposed fuzzy inference system is capable of providing detailed trend

analysis of individual stocks and also interdependences of various stocks snd how they affect

the overall index.

5.2.1.1. Experimentation setup and test results

We considered 24 months stock data for training and analyzing the efficiency of the proposed

concurrent neuro-fuzzy system. We used Nasdaq-100 main index values and six other

companies listed in the Nasdaq-100 index. Apart from the Nasdaq-100 index (IXNDX); the

other companies considered were Microsoft Corporation (MSFT), Yahoo! Inc. (YHOO), Cisco

Systems Inc. (CSCO), Sun Microsystems Inc. (SUNW), Oracle Corporation (ORCL) and Intel

Corporation (INTC). Figures 5.4 and 5.5 depict the variation of stock values for a 24 months

period from 22 March 1999 to 20 March 2001.

For each /, the stock values x (t) were first scaled by the data preprocessor. 80% of the data

was used for training and remaining was used for testing and validation. The same set of data

was used for training and testing the fuzzy inference system. Test data was presented to the

network and the output from the network was compared with the actual stock values in the

time series.

Figure 5.4.24 months data of Nasdaq-100 index adapted from [189]
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Figure 5.5.24 months data of 6 companies adapted from [189]

• Training the neural network

We used a feedforward neural network with 8 input nodes and two hidden layers consisting of

20 neurons each. We used tanh-sigmoidal activation function for the hidden neurons. The

training was terminated after 2000 epochs. The test data was passed through the network after

the training was completed.

• Building and training the fuzzy inference system

Each of the input variables consists of the difference in the stock value (for example, today's

value - yesterday's value). For building the fuzzy inference system, we had 8 input variables

(the scaled stock value differences and the time factor). We used 4 membership functions for

each of the 8 input variable and we used a neural network learning method to build up the

knowledge base automatically [139]. We report only the collective trend of all the seven stock

values. If all the trends were increasing we classified it as" /" and "0" otherwise.

• Performance and Results Achieved

Table 5.1 summarizes the training and test results achieved for the different stock values.

Figure 5.6 and 5.7 depicts the test results for the prediction of Nasdaq-100 index and other

company stock values. Table 5.2 summarizes the trend prediction results and Figure 5.8

illustrates the trend classification test results using the fuzzy inference system.
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Table 5.1. Training and testing results using neural network

Testing error (RMSE)

Learning epochs

Training error (RMSE)

Nasdaq

0.028

Microsoft

0.034

Sun

0.023

Cisco

0.030

Yahoo

0.021

Oracle

0.026

Intel

0.034

2000

0.0256

Table 5.2. Test results of trend classification using fuzzy inference system

Positive trends

Non-positive trends

Actual quantity

22

78

Fuzzy system
classification

22

78
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100

100
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Figure 5.6. Forecast test results for Nasdaq-100 index
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Figure 5.8. Test results for the collective trend prediction of Nasdaq-100 index and the six

company stock values using fuzzy inference system.
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For forecasting stocks, the RMSE on test data are comparatively small showing the reliability

of the developed prediction model. The fuzzy inference system also gave 100% trend

prediction showing the efficiency of the technique. From the viewpoint of the stock exchange

owner, participating companies, traders and investors the technique might help for better

understanding of the day-to-day stock market performance. The stock forecast error could

have been improved by providing more input variable information (stock volume etc) and if

individual neural networks were used rather than a single network. Various trend analyses

could have been done using the proposed fuzzy inference system. Some of the possible

analyses are individual stock trend predictions, interdependency of different stocks with

respect to the main index as well as individual companies. More details about the model and

results could be obtained from [19].

5.3. Integrated Neuro-Fuzzy Systems

In an integrated model, neural network learning algorithms are used to determine the

parameters of fuzzy inference systems. Integrated neuro-fuzzy systems share data structures

and knowledge representations. A fuzzy inference system can utilize human expertise by

storing its essential components in rule base and database, and perform fuzzy reasoning to

infer the overall output value. The derivation of if-then rules and corresponding membership

functions depends heavily on the a priori knowledge about the system under consideration.

However there is no systematic way to transform experiences of knowledge of human experts

to the knowledge base of a fuzzy inference system. There is also a need for adaptability or

some learning algorithms to produce outputs within the required error rate. On the other hand,

neural network learning mechanism does not rely on human expertise. Due to the homogenous

structure of neural network, it is hard to extract structured knowledge from either the weights

or the configuration of the network. The weights of the neural network represent the

coefficients of the hyper-plane that partition the input space into two regions with different

output values. If we can visualize this hyper-plane structure from the training data then the

subsequent learning procedures in a neural network can be reduced. However, in reality, the a

priori knowledge is usually obtained from human experts and it is most appropriate to express

the knowledge as a set of fuzzy if-then rules and it is very difficult to encode into an neural



network. Table 5.3 summarizes the comparison between neural networks and fuzzy inference

system [26].

Table 5.3. Comparison between neural networks and fuzzy inference systems

Artificial Neural Networks Fuzzy Inference System

Prior rule-based knowledge cannot be used

Learning from scratch

Black box

Complicated learning algorithms

Difficult to extract knowledge

Prior rule-base can be incorporated

Cannot learn (use linguistic knowledge)

Interpretable (if-then rules)

Simple interpretation and
implementation

Knowledge must be available

To a large extent, the drawbacks pertaining to these two approaches seem complementary.

Therefore, it seems natural to consider building an integrated system combining the concepts

of FIS and ANN modeling. A common way to apply a learning algorithm to a fuzzy system is

to represent it in a special neural network like architecture. However the conventional neural

network learning algorithms (gradient descent) cannot be applied directly to such a system as

the functions used in the inference process are usually non differentiable. This problem can be

tackled by using differentiable functions in the inference system or by not using the standard

neural learning algorithm. In Section 5.3.1 -5.3.2, we will discuss how to model integrated

neuro-fuzzy systems implementing Mamdani and Takagi - Sugeno FIS.

5.3.1. Integrated Neuro-Fuzzy System (Mamdani FIS)

A Mamdani neuro-fuzzy system uses a supervised learning technique (backpropagation

learning) to learn the parameters of the membership functions. The detailed function of each

layer (as depicted in Figure 5.9) is as follows:

• Layer -1 (input layer): No computation is done in this layer. Each node in this layer,

which corresponds to one input variable, only transmits input values to the next layer

directly. The link weight in layer 1 is unity.
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• Layer-2 (fuzzijication layer): Each node in this layer corresponds to one linguistic label

(excellent, good, etc.) to one of the input variables in layer 1. In other words, the output

link represent the membership value, which specifies the degree to which an input value

belongs to a fuzzy set, is calculated in layer 2. A clustering algorithm will decide the

initial number and type of membership functions to be allocated to each of the input

variable. The final shapes of the MFs will be fine tuned during network leammg.

• Layer-3 (rule antecedent layer): A node in this layer represents the antecedent part of a

rule. Usually a T-norm operator is used in this node. The output of a layer 3 node

represents the firing strength of the corresponding fuzzy rule.

• Layer-4 (rule consequent layer): This node basically has two tasks. To combine the

incoming rule antecedents and determine the degree to which they belong to the output

linguistic label (high, medium, low, etc.). The number of nodes in this layer will be

equal to the number of rules.

• Layer-5 (Combination and defuzzification layer): This node does the combination of

all the rules consequents using a T-conorm operator and finally computes the crisp

output after defuzzification.

Uy»r5
rul» Inference and iMuzzMcatlon layer

Layer4
rule comaquent layer

LaywJ
rule antecodent layer

Layer2
(fuzzMcation layer)

Layer 1
(Input layer)

Figure 5.9..Mamdani neuro-fuzzy system
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5.3.2 Integrated Neuro-fuzzy system (Takagi-Sugeno FIS)
Takagi Sugeno neuro-fuzzy systems make use of a mixture of back propagation to learn the

membership functions and least mean square estimation to determine the coefficients of the

linear combinations in the rule's conclusions. A step in the learning procedure got two parts:

In the first part the input patterns are propagated, and the optimal conclusion parameters are

estimated by an iterative least mean square procedure, while the antecedent parameters

(membership functions) are assumed to be fixed for the current cycle through the training set.

hi the second part the patterns are propagated again, and in this epoch, back propagation is

used to modify the antecedent parameters, while the conclusion parameters remain fixed. This

procedure is then iterated. The detailed functioning of each layer (as depicted in Figure 5.10)

is as follows:

• Layers 1,2 and 3 functions the same way as Mamdani FIS.

• Layer 4 (rule strength normalization): Every node in this layer calculates the ratio of

the /-th rule's firing strength to the sum of all rules firing strength

w, =
J — , / = 1,2

w\ + W2

Layer-5 (rule consequent layer): Every node / in this layer is with a node function

where wt is the output of layer 4, and {/?,-, qit /j}is the parameter set. A well-

established way is to determine the consequent parameters using the least means

squares algorithm.

Layer-6 (rule inference layer) The single node in this layer computes the overall output

as the summation of all incoming signals: Overall output = £ w,// = —LiZl.
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Figure 5.10. Takagi Sugeno neuro-fuzzy system

In the following sections we briefly discuss the different integrated neuro-fuzzy models that

make use of the complementarities of neural networks and fuzzy inference systems

implementing a Mamdani or Takagi Sugeno fuzzy inference system. Some of the major woks

in this area are GARIC [39], FALCON [160], ANFIS [130], NEFCON [191], NEFCLASS

[193], NEFPROX [196], FUN [226], SONFIN [83], FINEST [230], EFuNN [142],

dmEFuNN[142], evolutionary design of neuro fuzzy systems [147], and many others [108]

[137] [184] [256] [258].

5.3.3. Adaptive Network Based Fuzzy Inference System (ANFIS)

ANFIS [130] is perhaps the first integrated hybrid neuro-fuzzy model. ANFIS structure as

shown in Figure 5.13 is capable of implementing the Takagi and Sugeno FIS. A modified

version of ANFIS as tthown in Figure 5.13 is capable of implementing the Tsukamoto fuzzy

model (Figure 5.12). tn the Tsukamoto FIS, the overall output is the weighted average of each

rule's crisp output induced by the rule's firing strength (the product or minimum of the

degrees of match with the premise part) and output membership functions. The output

membership functions used in this scheme must be monotonically non-decreasing. ANFIS

functions exactly as discussed in Section 5.3.2. The first hidden layer is for fuzzification of the
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input variables and T-nonn operators are deployed in the second hidden layer to compute the

rule antecedent part The third hidden layer normalizes the rule strengths followed by the

fourth hidden layer where the consequent parameters of the rule are determined. Output layer

computes the overall input as the summation of all incoming signals.

Figure.5.11. Architecture of ANFIS implementing a Takagi Sugeno fuzzy inference system

)
Y

^.

!LJ{=^<=2&

Figure 5.12. Tsukamoto fuzzy reasoning

Figure S.13. Architecture of ANFIS implementing Tsukamoto fuzzy inference system

In ANFIS the adaptation (learning) process is only concerned with parameter level adaptation

within fixed structures. For large-scale- problems, it will be too complicated to determine the

optimal premise-consequent structures!, rale numbers etc. The structure of ANFIS ensures that

each linguistic term is represented by only one fuzzy set. However, the learning procedure of

ANFIS does not provide the means to apply constraints that restrict the kind of modifications
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applied to the membership functions. When using Gaussian membership functions,

operationally ANFIS can be compared with a radial basis function network.

Figure 5.14, Architecture of FALCON Figure 5.15. ASN of GARIC

5.3.4 Fuzzy Adaptive learning Control Network (FALCON)

FALCON [160] has a five-layered architecture as shown in Figure 5.14 and implements a

Mamdani type FIS. There are two linguistic nodes for each output variable. One is for training

data (desired output) and the other is for the actual output of FALCON. The first hidden layer

is responsible for the fuzzification of each input variable. Each node can be a single node

representing a simple membership function (MF) or composed of multilayer nodes that

compute a complex MF. The Second hidden layer defines the preconditions of the rule

followed by rule consequents in the third hidden layer. FALCON uses a hybrid-learning

algorithm comprising of unsupervised learning and a gradient descent, learning to optimally

adjj-:t' the parameters to produce the desired outputs. The hybrid learning occurs in two

different phases. In the initial phase, the centres and width of the membership functions are

determined by self-organized learning techniques analogous to statistical clustering

techniques. Once the initial parameters are determined, it is easy to formulate the rule

antecedents. A competitive learning algorithm is used to determine the correct rule consequent

links of each rule node. After the fiizzy rule base is established, the whole network structure is

established. The network then enters the second learning phase to adjust the parameters of the

(input and output) membership functions optimally. The backpropagation algorithm is used for
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the supervised learning. Hence FALCON algorithm provides a framework for structure and

parameter adaptation for designing neuro-fuzzy systems [162].

5.3.5. Generalized Approximate Reasoning based Intelligent Control
(GARIC)

GARIC [39] is an extended version of Berenji's Approximate Reasoning based Intelligent

Control (ARIC) that implements a fuzzy controller by using several specialized feedforward

neural networks[38]. Like ARIC, it consists of an Action state Evaluation Network (AEN) and

an Action Selection Network (ASN). The AEN is an adaptive critic that evaluates the actions

of the ASN. The ASN does not use any weighted connections, but the learning process

modifies parameters stored within the units of the network. Architecture of the GARIC - ASN

is depicted in Figure 5.15. ASN of GARIC is feedforward network with five layers. The first

hidden layer stores the linguistic values of all the input variables. Each input unit is only

connected to those units of the first hidden layer, which represent its associated linguistic

values. The second hidden layer represents the fuzzy rules nodes, which determine the degree

of fulfillment of a rule using a softmin operation. The third hidden layer represents the

linguistic values of the control output variable r\. Conclusions of the rule are computed

depending on the strength of the rule antecedents computed by the rule node layer. GARIC

makes use of local mean-of-maximum method for computing the rule outputs. This method

needs a crisp output value from each rule. Therefore, the conclusions must be defuzzified

before they are accumulated to the final output value of the controller. The learning algorithm

of the AEN of GARIC is equivalent to that of its predecessor ARIC[37]. However, the ASN

learning procedure is different from the procedure used in ARIC. GARIC uses a mixture of

gradient descent and reinforcement learning to fine-tune the node parameters. The hybrid

learning stops if the output of the AEN ceases to change. The interpretation of GARIC is

improved compared to GARIC. The relatively complex learning procedure and the

architecture of GARIC can be seen as a main disadvantage of GARIC.

5.3.6. Neuro-Fuzzy Controller (NEFCON)

The learning algorithm defined for NEFCON is able to learn fuzzy sets as well as fuzzy rules

implementing a Mamdani type FIS [191]. This method can be considered as an extension to
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GARIC that also use reinforcement learning but need a previously defined rule base. Figure

5.16(a) illustrates the basic NEFCON architecture with 2 inputs and five fuzzy rules [192].

The inner nodes Rj, ...,RS represent the rules, the nodes 6, 6 , and V the input and output

values, and //„ Vr the fuzzy sets describing the antecedents and consequents. In contrast to

neural networks, the connections in NEFCON are weighted with fuzzy ^ets instead of real

numbers. Rules with the same antecedent use so-called shared weights, which are represented

by ellipses drawn around the connections as shown in the figure. They ensure the integrity of

the rule base. The knowledge bass of the fuzzy system is implicitly given by the network

structure. The input units assume the task of fuzzification interface, the inference logic is

represented by the propagation functions, and the output unit is the defuzzification interface.

The learning process of the NEFCON model can be divided into two main phases. The first

phase is designed to learn the rule base and the second phase optimizes the rules by shifting or

modifying the fuzzy sets of the rules. Two methods are available for learning the rule base.

Incremental rule learning is used when the correct out put is not known and rules are created

based on estimated output values. As the learning progresses more rules are added according

to the requirement. For decremental rule learning, initially rules are created due to fuzzy

partitions of process variables and unnecessary rules are eliminated in the course of learning.

Decremental rule learning is less efficient compared to incremental approach. However it can

be applied to unknown processes without difficulty, and there is no need to know or to guess

an optimal output value. Both phases use a fuzzy error E, which describes the quality of the

current system state, to learn or to optimize the rule base. To obtain a good rule base it must be

ensured that the state space of the process is sufficiently covered during the learning process.

Due to the complexity of the calculations required, the decremental learning rule can only be

used, if there are only a few input variables with not too many fuzzy sets. For larger systems,

the incremental learning rule will be optimal. Prior knowledge whenever available could be

incorporated to reduce the complexity of the learning [198]. Membership functions of the rule

base are modified according to the Fuzzy Error Backpropagation (FEBP) algorithm. The

FEBP algorithm can adapt the membership functions, and can be applied only if there is

already a rule base of fuzzy rules. The idea of the learning algorithm is identical: increase the

influence of a rule if its action goes in the right direction (rewarding), and decrease its
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influence if a rule behaves counter productively (punishing). If there is absolutely no

knowledge about initial membership function, a uniform fuzzy partition of the variables

should be used.

MuzzMcalion tayar

Figure 5.16. (a) NEFCON (b) NEFCLASS (C) NEFPROX.

5.3.7 Neuro-Fuzzy Classification (NEFCLASS)

NEFCLASS is used to derive fuzzy rules from a set of data that can be separated in different

crisp classes [193]. The rule base of a NEFCLASS system approximates an (unknown)

function q> that represents the classification problem and maps an input pattern x to its class C,:

\1 if x € Q

\0 otherwise.
<t> : R" -> {0,1 } m , <p(x) = (C],...., cm). with ct = <T

Because of the propagation procedures used in NEFCLASS the rule base actually does not

approximate (p but a function <p° : Rn -» {0,1 } m . We obtain <p (x) from the equality q> (x) =<p

((p (x)), where <p reflects the interpretation of the classification result obtained from a

NEFCLASS system [194]. Figure 5.16 (b) illustrates the NEFCLASS system that maps

patterns with two features into two distinct classes by using five linguistic rules. The

NEFCLASS very much resemble the NEFCON system except the slight variation in the

learning algorithm and the interpretation of the rules. As in NEFCON system in NEFCLASS

identical linguistic values of an input variable are represented by the same fuzzy set. As

classification is the primary task of NEFCLASS, there should be two rules with identical

antecedents and each rule unit must be connected to only one output unit. The weights

between rule layer and the output layer only connect the units. A NEFCLASS system can be
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built from partial knowledge about the patterns, and can then be refined by learning, or it can

be created from scratch by learning. A user must define a number of initial fuzzy sets that

partition the domains of the input features, and specify a value for k, i.e. the maximum number

of rule nodes that may be created in the hidden layer. NEFCLASS makes use of triangular

membership functions and the learning algorithm of the membership functions uses an error

measure that tells whether the degree of fulfillment of a rule has to be higher or lower. This

information is used to change the input fuzzy sets. Being a classification system, we are not

much interested in the exact output values. In addition, we take a winner-takes-all

interpretation for the output, and we are mainly interested in the correct classification result.

The incremental rule learning in NEFCLASS is much less expensive than decremental rule

learning in NEFCON. It is possible to build up a rule base in a single sweep through the

training set. Even for higher dimensional problems, the rule base is completed after at most

three cycles. Compared to neural networks, NEFCLASS uses a much simpler learning

strategy. There is no vector quantization involved in finding the rules (clusters, and there is no

gradient information needed to train the membership functions. Some other advantages are

interpretability, possibility of initialization (incorporating prior knowledge) and its simplicity.

5.3.8. Neuro-Fuzzy Function Approximation (NEFPROX)
NEFPROX system is based on plain supervised learning (fixed learning problem) and it is

used for function approximation [195]. It is a modified version of the NEFCON model without

the reinforcement learning. The advantage of neuro-fuzzy models is that we can incorporate

prior knowledge; where as conventional neural networks have to learn from scratch.

NEFPROX is very much similar to NEFCON and NEFCLASS except the fact that NEFCON

have only a single output node, and NEFCLASS systems do not use membership functions on

the conclusion side [196]. We can initialize the NEFPROX system if we already know suitable

rules or else the system is capable to incrementally learn all rules. NEFPROX architecture is

as shown in Figure 5.16(c). While ANFIS is capable to implement only Sugeno models with

differentiable functions, NEFPROX can learn common Mamdani type of fuzzy system from

data. Further NEFPROX is much faster compared to ANFIS to yield results. However ANFIS

yields better approximation results.
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5.3.9. Fuzzy Inference Environment Software with Tuning (FINEST)

FINEST is designed to tune the fiizzy inference itself. FINEST is capable of two kinds of

tuning process, the tuning of fuzzy predicates, combination functions and the tuning of an

implication function [230]. The three important features of the system are:

• The generalized modus ponens is improved in the following four ways (1) Aggregation

operators that have synergy and cancellation nature (2) A parameterized implication

function (3) A combination function, which can reduce fuzziness (4) Backward chaining

based on generalized modus ponens.

• Aggregation operators with synergy and cancellation nature are defined using some

parameters, indicating the strength of the synergic affect, the area influenced by the

effect, etc., and the tuning mechanism is designed to tune also these parameters. In the

same way the tuning mechanism can also tune the implication function and combination

function.

• The software environment and the algorithms are designed for carrying out forward and

backward chaining based on the improved generalized modus ponens and for tuning

various parameters of a system.

FINEST make use of a backpropagation algorithm for the fine-tuning of the parameters.

Figure 16 shows the layered architecture of FINEST and the calculation process of the fuzzy

inference. The input values (*,-) are the facts and the output value (y) is the conclusion of the

fuzzy inference. Layer 1 is a fuzzification layer and layer 2 aggregates the truth-values of the

conditions of Rule i. Layer 3 deduces the conclusion from Rule / and the combination of all

the rules is done in Layer 4. Referring to Figure 5.17, the function andh /, and comb

respectively represent the function characterizing the aggregation operator of rule /, the

implication function of rule /, and the global combination function. The functions andh /,,

comb and membership functions of each fuzzy predicate are defined with some parameters.
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Figure 5.17. Architecture of FINEST

Back-propagation method is used to tune the network parameters. It is possible to tune any

parameter, which appears in the nodes of the network representing the calculation process of

the fuzzy data if the derivative function with respect to the parameters is given.

Thus FINEST framework provides a mechanism based on the improved generalized modus

ponens for fine tuning of fuzzy predicates and combination functions and tuning of the

implication function. Parameterization of the inference procedure is very much cu -.ential for

proper application of the tuning algorithm.

5.3.10. Self Constructing Neural Fuzzy Inference Network (SONFIN)
SONFIN implements a Takagi-Sugeno type fuzzy inference system. Fuzzy rules are created

and adapted as online learning proceeds via a simultaneous structure and parameter

identification [83]. In the structure identification of the precondition part, the input space is

partitioned in a flexible way according to an aligned clustering based algorithm. As to the

structure identification of the consequent part, only a singleton value selected by a clustering

method is assigned to each rule initially. Afterwards, some additional significant terms (input

variables) selected via a projection-based correlation measure for each rule will be added to

the consequent part (forming a linear equation of input variables) incrementally as learning

proceeds. For parameter identification, the consequent parameters are tuned optimally by

either Least Mean Squares [LMS] or Recursive Least Squares [RLS] algorithms and the

precondition parameters are tuned by back propagation algorithm. To enhance knowledge

representation ability of SONFIN, a linear transformation for each input variable can be
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incorporated into the network so that much fewer rules are needed or higher accuracy can be

achieved Proper linear transformations are also learned dynamically in the parameter

identification phase of SONFIN. Figure 5.18 illustrates the 6-layer structure of SONFIN.

Figure 5.18. Six layered architecture of SONFIN

Learning progresses concurrently in two stages for the construction of SONFIN. The structure

learning includes both the precondition and consequent structure identification of a fuzzy if-

then rule. The parameter learning is based on supervised learning algorithms, the parameters

of the linear equations in the consequent parts are adjusted by either LMS or RLS algorithms

and the parameters in the precondition part are adjusted by the backpropagation algorithm.

SONFIN can be used for normal operation at anytime during the learning process without

repeated training on the input-output pattern when online operation is required. In SONFIN

rule base is dynamically created as the learning progresses by performing the following

learning processes:

• Input-output space partitioning

The way the input space is partitioned determines the number of rules extracted from the

training data as well as the number of fuzzy sets on the universal of discourse of each input

variable. For each incoming pattern JC the strength a rule is fired can be interpreted as the

degree the incoming pattern belongs to the corresponding cluster. The center and width of the

corresponding membership functions (of the newly formed fuzzy rules) are assigned according
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to the first-neighbor heuristic. For each rule generated, the next step is to decompose the

multidimensional membership function to corresponding 1-D membership function for each

input variable. For the output space partitioning, almost a similar measure is adopted.

Performance of SONFIN can be enhanced by incorporating a transformation matrix R into the

structure, which accommodates all the a priori knowledge of the data set.

• Construction of fuzzy rule base

Generation of new input cluster corresponds to the generation of a new fuzzy rule, with its

precondition part constructed by the learning algorithm in process. At the same time we have

to decide the consequent part of the generated rule. This is done using a algorithm based on

the fact that different preconditions of rules may be mapped to the same consequent fuzzy set.

Since only the center of each output membership function is used for defuzzification, the

consequent part of each rule may simply be regarded as a singleton. Compared to the general

fuzzy rule based models with singleton output where each rule has its own singleton value,

fewer parameters are needed in the consequent part of the SONFIN, especially for complicated

systems with a large number of rules.

• Optimal consequent structure identification

TSK model can model a sophisticated system with a few rules. In SONFIN, instead of using

the linear combination of all input variables as the consequent part, only the most significant

input variables are used as the consequent terms of the SONFIN. The significant terms will be

chosen and added to the network incrementally any time when the parameter learning cannot

improve the network output accuracy anymore during the online learning process. The

consequent structure identification scheme in SONFIN is a kind of node growing method in

ANNs. When the effect of the parameter learning diminished (output error is not decreasing),

additional terms are added to the consequent part.

• Parameter identification.

After the network structure is adjusted according to the current training pattern, the network

then enters the parameter identification phase to adjust the parameters of the network

optimally based on the same training pattern. Parameter learning is performed on the whole
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network after structure learning, no matter whether the nodes (links) are newly added or are

existent originally. Backpropagation algorithm is used for this supervised learning. For each

training data set, starting at the input nodes, a forward pass is used to compute the activity

levels of all the nodes in the network to obtain the current output. Then starting at the output

dE
nodes, a backward pass is used to compute •—- for all the hidden nodes of all the layers. If w

dw
is the adjustable parameter in a node, the general rule used is:

W(t + l) = w(t) + rj\ , where TI is the learning rate.
9w;

SONFIN is perhaps one of the most computational expensive among all neuro-fuzzy models.

The network is adaptable to the users specification of required accuracy.

5.3.11. FUzzy Net [FUN]
In FUN inorder to enable an unequivocal translation of fuzzy rules and membership functions

into the network, special neurons have been defined, which, through their activation functions,

can evaluate logic expressions [226]. The network consists of an input, an output and three

hidden layers. The neurons of each layer have different activation functions representing the

different stages in the calculation of fuzzy inference. The activation function can be

individually chosen for problems. The network is initialized with a fuzzy rule base and the

corresponding membership functions. Figure 5.19 illustrates the FUN network. The input

variables are stored in the input neurons. The neurons in the first hidden layer contain the

membership functions and this performs a fuzzification of the input values. In the second

hidden layer, the conjunctions (fuzzy-AND) are calculated. Membership functions of the

output variables are stored in the third hidden layer. Their activation function is a fuzzy-OR.

Finally the output neurons contain the output variables and have a denazification activation

function.
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Dafuzzlficatbn

Rule: IF (Goal IS forward AND Sensor IS near) OR (goal IS right AND sensor IS far) THEN
steering = forward

Figure 5.19. .Architecture of the FUN showing the implementation of a sample rule

The rules and the membership functions are used to construct an initial FUN network. The rule

base can then be optimized by changing the structure of the net or the data in the neurons. To

learn the rules, the connections between the rules and the fuzzy values are changed. To learn

the membership functions, the data of the nodes in the first and three hidden layers are

changed. FUN can be trained with the standard neural network training strategies such as

reinforcement or supervised learning.

• Learning of the rules and membership functions

The rules are represented in the net through the connections between the layers. The learning

of the rules is implemented as a stochastic search in the rule space: a randomly chosen

connection is changed and the new network performance is verified with a cost function. If the

performance is worse, the change is undone, otherwise it is kept and some other changes are

tested, until the desired output is achieved. As the learning algorithm should preserve the

semantic of the rules, it has to be controlled in such a way that no two values of the same

variable appear in the same rule. This is achieved by swapping connections between the

values of the same variable. FUN uses a mixture of gradient descent and stochastic search for
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updating the membership functions. A maximum change in a random direction is initially

assigned to all Membership function Descriptors (MFDs). In a random fashion one MFD of

one linguistic variable is selected, and the network performance is tested with this MFD

altered according to the allowable change for this MFD. If the network performs better

according to the given cost function, the new value is accepted and next time another change is

tried in the same direction. Contrary if the network performs worse, the change is reversed. To

guarantee convergence, the changes are reduced after each training step and shrink

asymptotically towards zero according to the learning rate. As evident, FUN system is

initialized by specifying a fixed number of rules and a fixed number of initial fuzzy sets for

each variable and the network learns through a stochastic procedure that randomly changes

parameters of membership functions and connections within the network structure Since no

formal neural network learning technique is used it is questionable to call FUN a neuro-fuzzy

system.
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Figure 5,20(a) Architecture of EFuNN
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(b) Architecture of dmEFuNN

5.3.12. Evolving Fuzzy Neural Networks (EFuNNs and mEFuNNs)
EFuNNs [139] and dmEFuNNs [142] are based on the ECOS (Evolving COnnectionist

Systems) framework [141] for adaptive intelligent systems formed because of evolution and

incremental, hybrid (supervised / unsupervised), online learning. They can accommodate new

input data, including new features, new classes, and etc. through local element tuning [140].
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hi EFuNNs all nodes are created during learning. EFuNN has a five-layer architecture as

shown in Figure 5.20(a). The input layer is a buffer layer representing the input variables. The

second layer of nodes represents fuzzy quantification of each input variable space. Each input

variable is represented here by a group of spatially arranged neurons to represent a fuzzy

quantization of this variable. The nodes representing membership functions (triangular,

Gaussian, etc) can be modified during learning. The third layer contains rule nodes that evolve

through hybrid supervised/unsupervised learning. The rule nodes represent prototypes of

input-output data associations, graphically represented as an association of hyper-spheres from

the fiizzy input and fuzzy output spaces. Each rule node r is defined by two vectors of

connection weights: W} (r) and W2 (r), the latter being adjusted through supervised learning

based on the output error, and the former being adjusted through unsupervised learning based

on similarity measure within a local area of the input problem space [144]. The fourth layer of

neurons represents fuzzy quantification for the output variables. The fifth layer represents the

real values for the output variables. In the case of "one-of-n" EFuNNs, the maximum

activation of the rule node is propagated to the next level. In the case of "many-of-n" mode, all

the activation values of rule nodes that are above an activation threshold are propagated

further in the connectionist structure.

5.3.12.1 Dynamic Evolving Fuzzy Neural Networks (dmEFuNNs)
Dynamic Evolving Fuzzy Neural Networks (dmEFuNN) model is developed with the idea that

not just the winning rule node's activation is propagated but a group of rule nodes is

dynamically selected for every new input vector and their activation values are used to

calculate the dynamical parameters of the output function. While EFuNN make use of the

weighted fuzzy rules of Mamdani type, dmEFuNN uses the Takagi-Sugeno fuzzy rules.

The first, second and third layers of dmEFuNN have exactly the same structures and functions

as the EFuNN. The fourth layer, the fuzzy inference layer, selects m rule nodes from the third

layer which have the closest fuzzy normalised local distance to the fuzzy input vector, and

then, a Takagi-Sugeno fuzzy rule will be formed using the weighted isast square estimator.
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The last layer calculates the output of dmEFuNN. Please refer to Figure 20(b) for details about

the dmEFuNN architecture.

The number m of activated nodes used to calculate the output values for a dmEFuNN is not

less than the number of the input nodes plus one. Like the EFuNNs, the dmEFuNNs can be

used for both off-line learning and online learning thus optimising global generalization error,

or a local generalization error. In dmEFuNNs, for a new input vector (for which the output

vector is not known), a subspace consisted of w rule nodes are found and a first order

Takagi-Sugeno fuzzy rale is formed using the least square estimator method. This rule is used

to calculate the dmEFuNN output value. In this way a dmEFuNN acts as a universal function

approximator using m linear functions in a small m-dimensional node subspace. The accuracy

of approximation depends on the size of the node subspaces, the smaller the subspace is, the

higher the accuracy. It means that if there are sufficient training data vectors and sufficient

rule nodes are created, a satisfying accuracy can be obtained.

5.4.Discussions Related to Neuro-Fuzzy Models

As evident, both cooperative and concurrent models are not fully interpretable due to the

presence of neural network (black box concept). Whereas an integrated neuro-fuzzy model is

interpretable and capable of learning in a supervised mode (or even reinforcement learning

like NEFCON). In FALCON, GARIC, ANFIS, NEFCON, SONFIN, FINEST and FUN the

learning process is only concerned with parameter level adaptation within fixed structures. For

large-scale problems, it will be too complicated to determine the optimal premise-consequent

structures, rule numbers etc. User has to provide the architecture detail* (type and quantity of

MF's for input and output variables), type of fuzzy operators etc. FINEST provides a

mechanism based on the improved generalized modus ponens for fine tuning of fuzzy

predicates and combination functions and tuning of an implication function. An important

feature of EFuNN and dmEFuNN is the one pass (epoch) training, which is highly capable of

online learning. Table 5.4 provides a comparative performance of some neuro fuzzy systems

for predicting the Mackey-Glass chaotic time series [167]. Training was done using 500 data

sets and NF models were tested with another 500 data sets [9].
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Table 5.4. Performance of neuro-fuzzy systems

System

ANFIS

NEFPROX

EFuNN

dmEFuNN

SONFIN

Epochs

75

216

1

1

1

Test RMSE

0.0017

0.0332

0.0140

0.0042

0.0180

Among NF models ANFIS has the lowest Root Mean Square Error (RMSE) and NEPROX the

highest. This is probably due to Takagi-Sugeno rules implementation in ANFIS compared to

the Mamdani-type fuzzy system in NEFPROX. However NEFPROX outperformed ANFIS in

terms of computational time. Due to fewer numbers of rules SONFIN, EFuNN and dmEFuNN

are also able to perform faster than ANFIS. Hence, there is a tradeoff between interpretability

and accuracy. Takagi Sugeno type inference systems are more accurate but require more

computational effort. While Mamdani type inference, systems are more interpretable and

required less computational load bat often the accuracy is not that high.

As the problem become, more complicated manual definition of NF architecture/parameters

becomes complicated. The following questions remain unanswered:

• What is the optimal quantity of membership functions and their shape?

• What is the optimal structure (rule base) and fuzzy operators?

• What are the optimal learning parameters?

• Which fuzzy inference system will work the best for a given problem?

We will try to address the above questions in Chapter 7. In that Chapter, we will show how the

integrated neuro-fuzzy systems are implemented in practice.
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Chapter 6: Integrated Neuro-Fuzzy Systems
in Practice

6.0 Introduction

Neuro-fuzzy computing is a popular framework for solving complex problems. When

knowleclge is expressed in linguistic rules, we can build a fuzzy inference system, and if we

have data, or can learn from a simulation (training) then we can use neural networks. For

building a fuzzy inference system, we have to specify the fuzzy sets, fuzzy operators and the

rule base. Similarly, for constructing a neural network for an application, the user needs to

specify the architecture, learning algorithm and several parameters. An integrated neuro-fuzzy

system is a combination of neural network and fuzzy inference system in that neural network

learning algorithms are used to determine the parameters of the fuzzy inference system. An

even more important aspect is that the system should always be interpretable in terms of fuzzy

if-then rules, because it is based on the fuzzy system reflecting vague knowledge.

In this chapter we present 3 real life applications of integrated neuro-fuzzy systems. We begin

with an introduction of learning in neuro-fuzzy systems emphasizing Takagi Sugeno and

Mamdani fuzzy inference systems. The three applications are (1) modeling electricity demand

in Victoria (2) automation of reactive power control and (3) developing rainfall prediction

models.

6.1.Learning in Adaptive Neuro-Fuzzy Inference Systems

The basic architecture and functioning of the different layers of Adaptive Neuro-Fuzzy

Inference System (ANFIS) was presented in Chapter 5, Section 5.3.3. In this section we will

present the learning mechanism in ANFIS to learn the fuzzy inference system automatically.

ANFIS uses a hybrid learning rule with a combination of gradient descent and least squares

estimate [130]. Assuming a single output ANFIS represented by

output = F(l, S) (6.1)
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where / is the set of input variables and S is the set of parameters, if there exist a function H

such that the composite function H o F is linear in some of the elements of S, then these

elements can be identified by the least squares method [ 132]. More formally, the parameter set

S can be decomposed into two sets:

S = Sj (B S2 (where © represents direct sum), (6.2)

such that H o F is linear in the elements of S2. Then upon applying H to equation (6.1), we

have:

H(output) = H o F(l, S) (6.3)

which is linear in the elements of S2. Now the given values of elements of 5,, we can plug P

training data sets into (6.3), and obtain a matrix equation:

AX = B (X= unknown vector whose elements are parameters in S2) (6.4)

If |S2| =M (M= number of linear parameters) then the dimensions of A, Xand B are P x M, M

x 1 and P x 1 respectively. Since P is always greater than M, there is no exact solution to

equation (6.4). Instead a Least Square Estimate (LSE) of X, X*, is sought to minimize the

squared error J ^ - Z ? ! 2 . X* is computed using the pseudo-inverse of X:

X* =(A AT B (6.5)

where AT is the transpose of A and (ATA) * ATis the pseudo-inverse of A where A7 A is non-

singular. Due to computational complexity, in ANFIS a sequential method is deployed as

follows:

Let the i-th row vector of matrix A defined in equation 6.4 be a] and i-th element of matrix B

defined be bj, then X can be calculated iteratively using the following sequential formulae:

= s, -
1 + aJ+\Si<ii1+1

(6.6)
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where S{ is often called the covariance matrix and the least squares estimate X' is equal to Xp.

The initial condition to bootstrap (6.6) are Xo-0 and So-y I, where y is a positive large

number and / is the identity matrix of dimension Mx M. For a multi output ANFIS, (6.6) is

still applicable except the output = .F(/,S) will become a column vector. Each epoch of this

hybrid learning procedure is composed of a forward pass and a backward pass. In the forward

pass, we have to supply the input data and functional signals go forward to calculate each node

output until the matrices A and B in (6.4) are obtained, and the parameters in S2 are identified

by the sequential least squares formulae given in (6.6). After identifying parameters in S2, the

functional signals keep going forward till the error measure is calculated. In the backward

pass, the error rates propagate from the output layer to the input layers, and the parameters in

Si are updated by the gradient method given by

Aa = -77
dE_
da

(6.7)

where a is the generic parameter, rj is a learning rate and E the error measure. For given

fixed values of parameters in Sx, the parameters in S2 thus found are guaranteed to be the

global optimum point in the S2 parameter space due to the choice of the squared error

measure [131] [132].

The procedure mentioned above is mainly for offline learning version. However, the

procedure can be modified for an online version by formulating the squared error measure as a

weighted version that gives higher weighting factors to more recent data pairs. This amounts

to the addition of a forgetting factor X, to (6.6).

= Xt

Si+1 = T / = 0,1, P - 1
(6.8)

The value of A is between 0 and 1. The smaller the A is, faster the effects of old data decay.

However, a smaller X sometimes causes numerical instability and should be avoided.
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6.2.Learning in Evolving Fuzzy Neural Network

We have presented the architecture of the Evolving Fuzzy Neural Network (EFuNN) in

Chapter 5, Section 5.3.12. In this section, we will discuss %i online learning process in

EFuNN. A short description of the different layers in EFuNN is 5hown in Figure 5.20(a). The

third layer contains rule nodes that evolve through hybrid supervised/unsupervised learning.

The rule nodes represent prototypes of input-output data associations, graphically represented

as an association of hyper-spheres from the fuzzy input and fuzzy output spaces. Each rule

node, e.g. r,, represents an association between a hyper-sphere from the fuzzy input space and

a hyper-sphere from the fuzzy output space; Wj(rj) connection weights representing the co-

ordinates of the center of the sphere in the fuzzy input space, and W2 (rj) - the co-ordinates in

the fuzzy output space. The radius of an input hyper-sphere of a rule node is defined as (1-

Sthr), where Sthr is the sensitivity threshold parameter defining the minimum activation of a

rule node (e.g., r;, previously evolved to represent a data point {Xdl,Yd})) to an input vector

(e.g., (Xd2, Yd2)) in order for the new input vector to be associated with this rule node. Two

pairs of fuzzy input-output data vectors di=(Xdi,Ydl) and d2=(Xd2,Yd2) will be allocated to the

first rule node rt if they fall into the rj input sphere and in the r} output sphere, i.e. the local

normalised fuzzy difference between Xdi and Xd2 is smaller than the radius r and the local

normalised fuzzy difference between Ydl and Yd2 is smaller than an error threshold Errthr. The

local normalised fuzzy difference between two fuzzy membership vectors dif and d2f that

represent the membership degrees to which two real values di and d2 data belong to the pre-

defined MF, are calculated as D(d]f,d2j) = sum(abs(dj/- d2f))/sum(d}f + d2f).

If data example dj = (Xdi, Ydl)f where Xd} and Xd2 are correspondingly the input and the output

fuzzy membership degree vectors, and the data example is associated with a rule node /-/ with

a centre rj, then a new data point d2=(Xd2,Yd2), will also be associated with this rule node

through the process of associating (learning) new data points to a rule node. The centres of this

node hyper-spheres adjust in the fuzzy input space depending on a learning rate //-/, and in the

fuzzy output space depending on a learning rate lr2, on the two data point's d] and d2. The
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adjustment of the centre r^ to its new position rf can be represented mathematically by the

change in the connection weights of the rule node r, from Wj(rj) and W2(rj) to Wrfrj) and

W2(rj) according to the following vector operations:

W2 (rj) = W2(rj) + lr2. Err(Ydl,Yd2) . Aj(rj)

Wi(rf)=WJ (rj) + In. Ds (Xdl, Xdz)

(6.9)

(6.10)

where Err(Ydi,Yd2)= Ds(Ydi,Yd2)=Ydl-Yd2 is the signed value rather than the absolute value of

the fuzzy difference vector; Aj(rj) is the activation of the rule node rj for the input vector

While the connection weights from W} and W2 capture spatial characteristics of the learned

data (centres of hyper-spheres), the temporal layer of connection weights W3 captures

temporal dependencies between consecutive data examples. If the winning rule node at the

moment (t-J) (to which the input data vector at the moment (/-/) was associated) was

ri=indai(t-l), and the winning node at the moment t is r2=indai(t), then a link between the two

nodes is established as follows:

W3(n,r2)
 (l) = Wrfn.rJ ('-]) + lr3. Aj(n) (t-1} A,(r2))

 (t), (6.11)

where: Ai(r) (t) denotes the activation of a rule node r at a time moment (/); If3 defines the

degree to which the EFuNN associates links between rules (clusters, prototypes) that include

consecutive data examples (if /rj=0, no temporal associations are learned in an EFuNN

structure).

The learned temporal associations can be used to support the activation of rule nodes based on

temporal, pattern similarity. Here, temporal dependencies are learned through establishing

structural links. The ratio spatial-similarity/temporal-correlation can be balanced for different

applications through two parameters Ss and Tc such that the activation of a rule node r for a

new data example dnewis defined as the following vector operations:

A, (r) =f(Ss. D(r, dnew) + Tc.W3(r
 ("l), r)) (6.12)
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where/is the activation function of the rule node r, D(r, dnew) is the normalised fuzzy distance

value and r{ul) is the winning neuron at the previous time moment. The fourth layer of neurons

represents fuzzy quantification for the output variables. The fifth layer represents the real

values for the output variables.

EFuNN evolving algorithm is given as a procedure of consecutive ste >s [139].

1. Initialize an EFuNN structure with a maximum number of neurons and zero value

connections. If initially there are no rule nodes connected to the fuzzy input and fuzzy

output neurons, then create the first node r/=l to represent the first data example EX-

(Xdj, Ydi) and set its input Wj {rj) and output W2 {rj) connection weights as follows:

<Create a new rule node rj> to represent a data sample EX: Wt (rj)=EX: W2 (rj)= TE,

where TE is the fuzzy output vector for the (fuzzy) example EX.

2. While <there are data examples> Do

Enter the current, example {Xdi, Ydi), EX being the fuzzy input vector (the vector of the

degrees to which the input values belong to the input membership functions). If there are

new variables that appear in this example and have not been used in previous examples,

create new input and/or output nodes with their corresponding membership functions.

3. Find the normalized fuzzy similarity between the new example EX (fuzzy input vector)

and the already stored patterns in the case nodes r,-= rh r2,....,rn

D(EX,rj) = sum (abs (EX- W,(rj))) /sum (Wfa) + EX)

4. Find the activation A\ (rj) of the rule nodes r,= rh r2,....,rn. Here radial basis activation

(radbas) function, or a saturated linear (satlin) one, can be used, i.e.

A} (rj) = radbas (Ss D(EX, r, - Tc W3), ox A! (rj) = satlin (1- Ss D(EX, r, + Tc W3)).

5. Update the pruning parameter values for the rule nodes, e.g. age, average activation as

pre-defined.

6. Find m case nodes r;- with an activation value Aj (rj) above a predefined sensitivity

threshold Sthr.

7. From the m case nodes, find one rule node indaj that has the maximum activation value

8. If maxaj < Sthr, then, <create a new rule nodc> using the procedure from step 1.
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Else

9. Propagate the activation of the chosen set of m rule nodes (ty,.. .,rjm) to the fuzzy output

neurons: A2 = satlin (Aj(rj.,...,rjJ. WJ

10. Calculate the fuzzy output error vector

Err=A2-TE

11. If (D(A2, TE) > Errthr) <create a new rule node> using the procedure from step 1.

12. Update (a) the input, and (b) the output of the m-J rule nodes k = 2 : jm in case of a new

node was created, or m rule nodes k=j} :jm, in case of no new rule was created:

Ds(EX-W,(r0) = EX - WifrJ; WrfrJ = WrfrJ + lr, Ds(EX-W,(rQ), where lr, is the

learning rate for the first layer;

A2(r0 = satlin (W2(rJ.Ai(rk)); Err(rk) = TE-A2(r,J;

W2(rk) = W2(r0 + lr2. Err (r^) .A](rrf , where lr2 is the learning rate for the second layer.

13. Prune rule nodes rj and their connections that satisfy the following fuzzy pruning rule to a

pre-defined level representing the current need of pruning:

IF (a rule node r,- is OLD) and (average activation Ajavfrj) is LOW) and (the density of

the neighboring area of neurons is HIGH or MODERATE) (i.e. there are other

prototypical nodes that overlap with j in the input-output space; this condition apply only

f:.i some strategies of inserting rule nodes as explained below) THEN the probability of

pruning node (rj) is HIGH. The above pruning rule is fuzzy and it requires that the fuzzy

concepts as OLD, HIGH, etc. are predefined.

14. Aggregate rule nodes, if necessary, into a smaller number of nodes. A C-means clustering

algorithm can be used for this purpose.

15. End of the while loop and the algorithm

The rules that represent the rule nodes need to be aggregated in clusters of rules. The degree of

aggregation can vary depending on the level of granularity needed. At any time (phase) of the

evolving (learning) process, fuzzy, or exact rules can be inserted and extracted [145]. Insertion

of fuzzy rules is achieved through setting a new rule node for each new rule, such as the

connection weights Wt and W2 of the rule node represent the fuzzy or the exact rule. The

process of rule extraction can be performed as aggregation of several rule nodes into larger
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hyper-spheres. For the aggregation of two-rule nodes ry and r2, the following aggregation rule

is used

If(D(Wj(ri), WrfrJ) < = Thn) and (D(W2(n), W2(n)) <= ThrJ (6.13»

then aggregate ri and r2 into r^and calculate the centres of the new rule node as

Wj(ragg) = average (Wj(r,), WrfrJ), W2(ragg) = average (W2(n), W2(r2)) (6.14)

Here the geometrical center between two points in a fuzzy problem space is calculated with

the use of an average vector operation over the two fuzzy vectors. This is based on a presumed

piece-wise linear function between two points from the defined through the parameters Sthr

and Errthr input and output fuzzy hyper-spheres.

6.3.Neuro-Fuzzy Applications

6.3.1 Modeling Electricity Demand Prediction in Victoria (Australia)

The prediction of electricity demand has been of much interest to the electricity supply

industry for some years, both to aid long term planning strategies, involving the forecasting of

seasonal peak demands, and for use in the short term (up to 24 hours) operation of generating

plant. The nature of electricity market is changing very rapidly with a widespread international

movement towards competitiveness. Traditionally, the energy sector, and particularly the

electricity sector, has been dominated by monopoly or near monopoly enterprises, typically

either owned or regulated by government. The recent privatization of the electricity supply

industry has brought a renewed interest in this subject.

Some countries, such as Norway, Chile, Japan, UK and the United States have commonly

been supplied electricity by a large number of different regional Generators and have

developed a variety of mechanisms to allow some form of trade between them. In 1994

Victoria started the process of privatization and restructuring electricity industry to generate

competition. The objective was +o promote a more flexible, cost-effective and efficient

electricity industry with the aim of delivering cheaper electricity to business and the general

community. Following success of this operation, Australia started the process of implementing

a unified National Electricity Market in December 1998 [14].
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To meet the electricity market demands a highly reliable supply and delivery system is

required. Additionally, in order to gain a competitive advantage in this market through the

competitive spot-market pricing an accurate forecast of electricity demand at regular time

intervals is essential. Until 1996, Victorian Power Exchange (VPX) the body responsible for

the secure operations of the power system, generated electricity demand forecasts based on

weather forecasts and historical demand patterns. Our research is focused on developing more

accurate and reliable forecasting models that improve the current forecasting methods. Our

approach is to develop reliable and accurate prediction models predicting 96 half-hourly (two

days ahead) demands for electricity, and compares their performance with forecasts used by

VPX. We considered an integrated neuro-fuzzy system and a feedforward artificial neural

network trained using the scaled gradient conjugate algorithm and backpropagation algorithm.

For developing the forecasting models, we used the energy demand data for ten months period

from 27th January to 30th November 1995 in the State of Victoria. We also made use of the

associated data stating the minimum and maximum temperature of the day, time of day,

season and the day of week. The forecasting models were trained using 3 randomly selected

samples containing 20% of the data during the period 27th January 1995 to 28 November 1995.

To ascertain the forecasting accuracy the developed models were tested to predict the demand

for the period (29-30) November 1995.

3300

49 97 14S 193 241 289

Monday Tuesday Wednesday Ttwrsday Friday Saturday Sunday

—Aw»*k lnFabraary — A w«*k In October

Figure 6.1. Typical weekly demand variations
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The data for our study were the recorded half-hourly actual electricity demand for the ten

months period from January to November 1995 in the State of Victoria. Figure 6.1 shows a

typical weekly cycle of electricity demand during three different months of the year.

Fluctuations in daily demand are prevalent with peaks occurring around midday. Extreme

weather conditions in winter and summer months accentuate peaks in electricity demand due

to the widespread use of electricity for heating and cooling. Other times, electricity demand is

dominated primarily by ambient temperature, time of day, working or non-working day and

the day of week.

The experimental system consists of two stages: modeling the prediction systems (training in

the case of soft computing models) and performance evaluation. For network training, the six

selected input descriptor variables were: the minimum and maximum recorded temperatures,

previous day's demand, a value expressing the half-hour period of the day, season, and the day

of week. To evaluate the learning capability of the soft computing models, the network was

trained only on 20% of the randomly selected data. We created 3 different samples of training

data to study the effect of random sampling and periodicity. Each training sample consisted of

2937 data sets representing 20% random data.

Our objective is to develop an efficient forecasting model capable of producing a short-term

forecast of demand for electricity. The required time-resolution of the forecast is half-hourly,

and the required time-span of the forecast is 2 days. This means that the system should be able

to produce a forecast of electricity demand for the next 96 time periods. The training was

replicated three times using three different samples of training data and different combinations

of network parameters.

• Neuro-Fuzzy Training

We used 4 Gaussian membership functions for each input variable and the following evolving

parameters: sensitivity threshold Sthr=0.99, error threshold Errthr=0.00\ and learning rates

for first and second layer = 0.05. EFuNN uses a one pass training approach. The network

parameters were determined using a trial and error approach. The training was repeated three

times after reinitializing the network and the worst errors were reported. Online learning in
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EFuNN resulted in creating 2122 rule nodes. Training results and test results are summarized

in Table 6.1.

Neural network training ( SCGA versus BP)

""~l

»»«-«»

SCGA -— BP ipochs

Figure 6.2. Convergence of neural network training

• Neural Network training

Our preliminary experiments helped us to formulate a feedforward neural network with 1 input

layer, 2 hidden layers and an output layer [6-40-40-1]. Input layer consists of 6 neurons

corresponding to the input variables. The first and second hidden layers consist of 40 neurons

respectively using tanh-sigmoidal activation functions. To illustrate the convergence feature of

Scaled Conjugate Gradient Algorithm (SCGA) we also trained a neural network (with same

architecture) using backpropagation (BP) algorithm. To evaluate the neural network

performance, training was terminated after 2500 epochs. Training and testing errors are

summarized in Table 6.1. Figure 6.2 shows the convergence of SCGA with respect to BP

algorithm. Figure 6.3 depicts the test results for the different prediction models considered. To

have a performance evaluation the actual energy demand and the forecasts used by VHP and

Box - Jenkins ARIMA model [51] are also plotted in Figure 6.3.
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Compared to neural networks, an important advantage of neuro-fuzzy systems is its reasoning

ability {if-then rules) of any particular state. A fully trained EFuNN could be replaced by a set

of if-then rules [145]. A simple example of P. learned EFuNN learned rule is illustrated below.

"If the maximum temperature of the day is HIGH and minimum temperature of the day is

LOW and previous days demand is MEDIUM and it is summer (HIGH) and 9.00 AM

(HIGH) and a Monday (HIGH) tbon the electricity demand is MEDIUM."

1 9 17 25 33

— Actuil D«mnd • ANN (SCGA)

41

-VPX
49 57 65 73 81 19

T i m (hair-hour)
EFuNN -ARIMA

Figure 6.3. Test results and performance comparison of demand forecasts (2 days)

As EFuNN adopts a single pass training (1 epoch) it is more adaptable and easy for further

online training which might be highly useful for online forecasting and bidding. Another

important feature of EFuNN is that the user has the flexibility to construct the network (by

selecting the parameters). Hence, for applications where speed is more important than the

accuracy a faster network can be selected. However, an important disadvantage of EFuNN is

the determination of the network parameters like number and type of membership functions

for each input variable, sensitivity threshold, error threshold and the learning rates. Even
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though a trial and error approach is practical, when the problem becomes complicated (large

number of input variables) determining the optimal parameters will be a tedious task.

Table 6.1. Test results and performance comparison of demand forecasting

Learning epochs

Training error (RMSE)

Testing error (RMSE)

Computational load (in billion flops)

EFuNN

1

0.0013

0.0092

0.536

ANN

(BP)

2500

0.116

0.118

87.2

ANN

(SCGA)

2500

0.0304

0.0323

175.0

ARIMA

-

-

"0.0423

-

* results adapted from [190]

Our experiments on three separate data samples reveal that the results are not dependent on the

data sample. We used only 20% of the total data to evaluate the learning capability of the soft

computing models. Network performance could have been further improved by providing

more training data. Another interesting fact about the considered soft computing models is

their robustness and capability to handle noisy and approximate data that are typical in power

systems, and therefore should be more reliable in worst situations.

6.3.2 Automation of Reactive Power Control

In this experiment, we present a comparative performance of two neuro-fuzzy models and an

artificial neural network for automating the control of reactive power flow, which we had

discussed in Chapter 4, Section 4.2.1. It is a well-established fact that improvement of the

power factor and the addition of reactive power devices to the system can reduce the costs and

release electrical capacity of the power distribution system. Most of the utility companies use a

complex set of formulas, rewards/penalties etc. to receive an adequate return for their

considerable investment in the larger capacity generators, transformers, cables and switchgear

required to provide necessary KVA service to their customers. These formulas are generally

referred to as power factor adjustments or KVAR reactive demand charges. In recent years,

increased attention has been given to plant automation to reduce operational costs. Many
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manufacturing industries use human operators or timer controlled switching relays to turn on

the power capacitors to compensate the reactive power requirement. Operational costs could

be reduced and utilization efficiency improved if the power capacitor switching on/off process

is automated using some intelligent techniques. We proposed a neuro-fuzzy approach to

predict the reactive power trend (at time /+/) just by knowing the load current (at time /).

Efficient usage of the VA loading will not only improve the overall grid condition but also

reduce the consumer's industrial tariffs. Depending on the predicted reactive power demand,

power factor corrective measures could be turned on or off to control the VA inflow into the

plant The developed prediction system will be extremely useful for automated control of

power inflow, especially in the countries where there are limitations on the usage of

consumers' peak VA maximum demand [3].

• Important ^ of Reactive Power Control

The ratio of active power (P) measured in watts to the apparent power (5) in volt-amperes is

termed the power factor:

„ , , P resistance R
Power factor = cos ((p) = — =

S impedance Z

(6.15)

It has become a normal practice to say that the power factor is lagging when the current lags

the supply voltage and leading when the current leads the supply voltage. This means that the

supply voltage is regarded as the reference quantity. A majority of loads served by a power

utility draw current at a lagging power factor. When the power factor of the load is unity,

active power equals apparent power (P = S). But, when the power factor of the load is less

than unity say 0.6, the power utilized is only 60%. This means that 40% of the apparent power

is being utilized to supply the reactive power, VAR, demand of the system. It is therefore clear

that the higher the power factor of the load, the greater the utilization of the apparent power.

For the generating and transmission stations, lower the power factor the larger must be the size

of the source to generate that power, and greater must be the cross-sectional area of the

conductor to transmit it. In other words, the greater is the cost of generation and transmission

of the power. Moreover, lower power factor will also increase the I2R (7 denotes current)

losses in lines/equipment as well as result in poor voltage regulation.
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Figure 6.4. Reactive power demand variations during peak hours

We considered a heavy automobile manufacturing industry that works on 3 shifts of 8 hours

duration for studying the load demand patterns. Observed data for a 24 hour period shows that

the maximum and minimum VAR requirements are 2.96 MVAR and 0.014 MVAR,

respectively. If suitable power factor compensation was made when the reactive power

demand was increasing, the plant might not have drawn much apparent power from the grid.

The task is to predict the upward and downward trend of the reactive power demand and

provide required reactive power compensation. Load flow analysis of the captioned plant

reveals that the demand patterns are very similar every day (as long as the production of

automobiles remain fixed). Neuro-fuzzy systems and neural networks are perhaps the best

techniques for learning relationships amongst variables (function approximation). For this

problem we used two neuro-fuzzy models implementing a Takagi-Sugeno fuzzy inference

system and a Mamdani fuzzy inference system. We used the adaptive network based fuzzy

inference system to implement the Takagi-Sugeno fuzzy inference system and the evolving

fuzzy neural network to implement the Mamdani fuzzy inference system. For comparison

purposes, we also trained a feedforward artificial neural network using the backpropagation

algorithm. The proposed neuro-fiizzy models and neural network were trained on the data
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taken at every minute for a 24-hour period to predict the reactive power demand, and tested to

evaluate the prediction accuracy. To evaluate the efficiency of the prediction models, three

different training and testing data sets were extracted and the experiments were performed

three times.

Experimentation setup and test results

The experimental system consists of two stages: network (connectionist model) training and

performance evaluation. A heavy automobile manufacturing plant was considered for the

prediction of reactive power. 24-hour load flow patterns were used to train the neuro-fuzzy

models and neural network. The training data comprises of 1440 data sets representing the 24-

hour period. The input parameters considered are the phase voltage (V) and current (7). The

normal value of input parameter voltage (V) was fluctuated with +/- 2.5% of the normal value.

All the data sets were scaled to (0-1). The input voltage was fluctuated to test the learning

capability and robustness of the considered connectionist models. As shown in Figure 4.5(a),

fluctuated voltage appears to be a heavy noise to the network. This also ensures that the

proposed models could predict the reactive power accurately even during worst conditions in

the grid voltage regardless of the plant load. Training and testing data sets were extracted

randomly from the complete dataset. 60% of data was used for training and remaining 40% for

testing. To ensure that the data sample does not have any bias, we created 3 sets of data for

training and testing (random extraction). Experiments with all 3 data sets were repeated 3

times for all the connectionist models.

• Neural network training

We used a feedforward neural network with 2 hidden layers and trained using the

backpropagation algorithm. The 2 input neurons correspond to the input variables and 1 output

neuron for predicting reactive power. Initial weights, learning rate and momentum used were

0.3,0.1 and 0.1, respectively. The training was terminated after 700 epochs.

• ANFIS training

In the ANFIS network, we used 3 Gaussian membership functions for each input parameter

variable for predicting the reactive power demand. Nine rules were learned based on the

training data. The training was terminated after 50 epochs.
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• EFuNN training

We used 3 Gaussian membership functions and the following evolving parameters: sensitivity

threshold SJhr=0.95, error threshold Errthr=0.Q5 and 544 rule nodes were created during

training.

- Actual reactive power

41

Neural network

Figure 6.5. Test results showing the predicted reactive power using different models during

the peak hours of shift 1.

Table 6.2. Reactive power prediction -comparative performance

Learning epochs

Training time (seconds)

Training error (RMSE)

Testing error (RMSE)

ANFIS

50

36

0.0103

0.0102

EFuNN

1

25

0.0116

0.0120

ANN

700

188

0.0142

0.0130

• Performance and results achieved

Test data (input parameters) is passed through the trained connectionist models and the

predicted output value is compared with the observed reactive power value to calculate the
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RMSE. Figures 6.5 illustrates the test results for predicted outputs using ANFIS, EFuNN and

ANN. Table 6.2 shows an empirical comparative performance of the different connectionist

models for the reactive power prediction problem. The empirical values shown in Table 6.2

are the worst values of the three trials with the three data sets for each model.

Among all the connectionist models neuro-fuzzy systems performed better than artificial

neural network in terms of performance error achieved and training time. ANFIS performed

marginally better than EFuNN in terms of low error. However ANFIS took more training time

than EFuNN. Hence, there is a compromise between performance error and training time. An

important advantage of the EFuNN network is its online learning capability. Hence future

training would be much easier. The predicted RMSE values are within acceptable rates and

hence the developed models are reliable. The prediction accuracy could have been improved if

we had not used the noisy input parameter (voltage) or if the actual voltage values were used.

The results also show that the considered connectionist models are very robust, capable of

handling the noisy and approximate data that are typical in power systems, and therefore

should be more reliable during worst conditions. By implementing the proposed technique,

reactive power flow could be managed more efficiently by avoiding the use of operators and

timer controlled switching relays (which could be inefficient sometimes).

6.3.3 Weather Forecast Models Using Neuro-Fuzzy Systems

Rain is one of the nature's greatest gifts and in third world countries like India; the entire

agriculture depends upon rain. It is thus a major concern to identify any trends for rainfall to

deviate from its periodicity, which would disrupt the economy of the country. This fear has

been aggravated due to threat by the global warming and green house effect. The geographical

configuration of India with the three oceans, namely Indian Ocean, Bay of Bengal and the

Arabian Sea bordering the perinsula gives her a climate system with two monsoon seasons

and two cyclones interspersed with hot and cold weather seasons. The parameters that are

required to predict the rainfall are enormously complex and subtle so that the uncertainty in a

prediction using all these parameters even for a short period. The period over which a

prediction may be made is generally termed the event horizon and in best results, this is not

more than a week's time. Thus it is generally said that the fluttering wings of a butterfly at one

126



corner of the globe may cause it to produce a tornado at another place geographically far

away. Edward Lorenz (meteorologist at MIT) discovered this phenomenon in 1961 and is

popularly known as the butterfly effect. In our research, we aim to find out how well the

proposed soft computing models are able to understand the periodicity in these patterns so that

long-term predictions can be made. This would help one to anticipate with some degree of

confidence the general pattern of rainfall to be expected in the coming years. In pace with the

global interest in climatology, there has been a rapid updating of resources in India also to

access and process climatological database. There are various data acquisition centres in the

country that record daily rainfall along with other measures such as sea surface pressure,

temperature etc. that are of interest to climatological processing. These centres are also

associated with the World Meteorological Organization (WMO) [21].

Long-term rainfall prediction is very important to countries thriving on agro-based economy.

The parameters that are required to predict the rainfall are enormously complex and subtle so

that uncertainty in a prediction using all these parameters is enormous even for a short period.

In this research, we analysed 87 years of rainfall data in Kerala state, the southern part of

Indian Peninsula situated at latitude-longitude pairs (8°29' N - 76°57' E). We attempted to train

5 soft computing based prediction models with 40 years of rainfall data. For performance

evaluation, network predicted outputs were compared with the actual rainfall data.

We used an artificial neural network using backpropagation (variable learning rate), adaptive

basis function neural network [207], neural network using scaled conjugate gradient algorithm

and an Evolving Fuzzy Neural Network for predicting the rainfall lime series. The soft

computing models described above were trained on the rainfall data corresponding to a certain

period in the past and cross validate the prediction made by the network over some other

period.

• Neural Networks with Variable Learning Rates

With standard steepest descent, the learning rate is held constant throughout the training. If the

learning rate is too high, the algorithm may oscillate and become unstable. If the learning rate

is too small, the algorithm will take too long to converge. It is not practical to determine the

optimal setting for the learning rate before training, and, in fact, the optimal learning rate
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changes during the training process, as the algorithm moves across the performance surface.

The performance of the steepest descent algorithm can be improved by using an adaptive

learning rate, which will keep the learning step size as large as possible while keeping learning

stable. The learning rate is made adaptive to the complexity of the local error surface. If the

new error exceeds the old error by more than a predefined ratio (typically 1.04), the new

weights are discarded. In addition, the learning rate is decreased (typically by 70%). Otherwise

the new weights are kept. If the new error is less than the old error, the learning rate is

increased (typically by 5%). Thus a near optimal learning rate is obtained for the local terrain.

When a larger learning rate could result in stable learning, the learning rate is also increased.

When the learning rate is too high to guarantee a decrease in error, it gets decreased until

stable learning resumes.

Adaptive Basis Function Neural Network (ABFNN) performs better than the standard BP

networks in complex problems [207]. The ABFNN works on the principle that the neural

network always attempt to map the target space in terms of its basis functions or node

functions. In standard BP networks, this function is a fixed sigmoid function that can map

between zero and plus one (or between minus one and plus one) the input applied to it from

minus infinity to plus infinity. It has many attractive properties that made the BP an efficient

tool in a wide verity of applications. However some studies conducted on the BP algorithm

have shown that in spite of its wide spread acceptance, they systematically outperform other

classification procedures only when the targeted space has a sigmoidal shape. This implies that

one should choose a basis function such that the network may represent the target space as a

nested sum of products of the input parameters in terms of the basis function. The ABFNN

thus starts with the standard sigmoid basis function and alters its non-linearity by an algorithm

similar to the weight update algorithm used in BP. Instead of the standard sigmoid function,

ABFNN uses a variable sigmoid function defined as:

_ a + tanh(x)
' 1 + a

(6.16)

where a is the control parameter that is initially set to unity and is modified along with the

connection weights along the negative gradient of the error function. Such a modification
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' could improve the speed of convergence and accuracy with which the network could

approximate the target space.

OS-

61 101 161 201 261 301 361 401 461

Figure 6.6. Complexity of the rainfall database: Average monthly rainfall from (1893-1933)

AD (training data)

61 101 161 201 261 301 361 401 461 601

Figure 6.7. Complexity of the rainfall database: Average monthly rainfall from (1934-1980)

AD (test data)
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• Experimentation Setup for Training and Performance Evaluation

The rainfall data was scaled (0-1) and we divided the data from 1893-1933 as training set and

data from 1934-1980 as test set. While the proposed neuro-fuzzy system is capable of adapting

the a hitecture according to the problem we had to perform some initial experiments to

decide .Je architecture of the neural network. Since rainfall has a yearly periodicity, we started

with a network having 12 input nodes. Further experimentation showed that it was not

necessary to include information corresponding to the whole year, but 3-month information

centered over the predicted month of the fifth year in each of the 4 previous years would give

good generalization properties. Thus, based on the information from the four previous years,

the network would predict the amount of rain to be expected in each month of the fifth year.

We used the same architecture for all the three learning neural network learning algorithms.

To have a performance comparison of the different learning techniques, the training was

terminated after 1000 epochs. The training was repeated three times after re-initializing the

networks. Test data was presented to the network and the output from the network was

compared with the actual data in the time series. The worst observed errors are reported.

Following are the details of network training:

Neuro-fuzzy training

We used 5 membership functions for each input variable and the following evolving

parameters: sensitivity threshold SW?r=0.999, error threshold Errthr=0.00\.

ANN Training

For neural networks using BP, backpropagation with variable learning rate (BP-VLR) and

SCGA, we used 1 input layer, 2 hidden layers and an output layer [12-12-12-1]. Input layer

consists of 12 neurons corresponding to the input variables. The first and second hidden layer

consists of 12 neurons. For the ABFNN network, we used only I hidden layer with 7 neurons.

Training errors (RMSE) achieved are reported in Table 6.3. To have a performance evaluation

between the 4 learning algorithms, we also trained a neural network (12-7-1) with one hidden

layer containing 7 neurons and the training was terminated after 1000 epochs for all the four
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learning methods. Figure 6.8 shows the training performance and convergence of the four

neural network algorithms.

Test Results

Table 6.3 summarizes the comparative performance of EFuNN and ANN learning algorithms.

Figure 6.9 depicts the comparative performance between the different soft computing models.

Table 6.3. Test results and performance comparison of rainfall forecasting

EFuNN
ANN

(BP)

ANN ANN ANN

(VLR) (SCGA) (ABF)

Learning epochs

Training error (RMSE)

Testing error (RMSE)

Computational load (in billion flops)

1

0.0006

0.0901

0.065

10000

0.0954

0.0948

8.82

10000

0.0875

0.0936

8.75

600

0.0780

0.0923

1.26

1000

0.0800

0.0930
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Figure 6.8. Convergence of neural network learning algorithms (for 1000 epochs).
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As the RMSE values on test data are comparatively less, the prediction models are reliable. As

evident from Figure 6.9, there have been few deviations of the predicted rainfall value from

the actual. In some cases it is due to delay in the actual commencement of monsoon, El-Nino

Southern Oscillations (ENSO) resulting from the pressure oscillations between the tropical

Indian Ocean and the tropical Pacific Ocean and their quasi periodic oscillations [69]. The

integrated neuro-fuzzy technique outperformed neurocomputing techniques with the lowest

RMSE test error and performance time. Compared to pure BP and BP-VLR, ABFNN and

SCGA converged *.;;'. •ch faster. Alternatively, BP training needs more epochs (longer training

time), to achieve better performance. Compared to ANN, an important advantage of neuro-

fuzzy model is its reasoning ability {if-then rules) of any particular state. As climate and

rainfall prediction involves tremendous amount of imprecision and uncertainty, neuro-fuzzy

technique might warrant the ideal prediction model.

0.03

1 11 21 31 41 61 81 71

-^-Actual rainfall value — ANN-SCGA •„ EFuNN _»_>SBFNN

81 91 101 111

Month! (AD 1971-1960)

Figure 6.9. Test results showing monthly prediction of rainfall for 10 years using the different

connectionist models

The proposed prediction models based on soft computing on the other hand are easy to

implement and produces desirable mapping function by training on the given data set. A

network requires information only on the input variables for generating forecasts. In our

experiments, we used only 40 years training data to evaluate the learning capability. Network
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performance could have been further improved by providing more training data. Moreover, the

considered connectionist models are very robust, capable of handling the noisy and

approximate data that are typical in weather data, and therefore should be more reliable in

worst situations.

6.4.Conclusions

In this Chapter, we have presented the learning mechanisms of ANFIS and EFUNN. We have

also demonstrated how integrated neuro-fuzzy systems could be used for solving practical

problems. In all the 3 applications presented, neuro-fuzzy systems have outperformed neural

networks using different learning algorithms.

However, an important disadvantage of integrated neuro-fuzzy system is the careful

determination of the network parameters like number and shape of membership functions for

each input variable, learning rates and an efficient technique to determine the initial rule base,

fuzzy operators etc. Even though EFuNN constructs the rule base automatically, the

performance of the network still depends on the careful selection of sensitivity threshold, error

threshold learning rates etc. Even though a trial and error approach is practical, when the

problem becomes complicated (large number of input variables) determining the optimal

parameters to build an optimal network will be a difficult task.

In Chapter 7, we will discuss the issues related to modeling neuro-fuzzy systems and how it

could be overcomed using evolutionary computation.
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Chapter 7: Evolutionary Design of Neuro-
Fuzzy Systems

7.0 Introduction

As described in Section 5.3, an integrated neuro-fuzry system is a combination of artificial

neural network and fuzzy inference system in such a way that neural network learning

algorithms are used to determine the parameters of fuzzy inference system. A wide variety of

neural network learning algorithms and different types of fuzzy inference systems are

available and it might be a puzzling task to determine which combination might be the optimal

for solving a particular problem.

Potential interactions between connectionist 'earning systems, fuzzy inference systems and

evolutionary search procedures have attracted considerable research work recently [12] [9]

[10]. We have already discussed evolutionary neural networks and evolutionary fuzzy systems

in Chapter 3 and Chapter 4 respectively. In an integrated neuro-fuzzy model there is no

guarantee that the neural network-learning algorithm converges and the tuning of fuzzy

inference system will be successful. Success of evolutionary search procedures for optimal

design of neural networks and fuzzy inference system are well proven and established in many

application areas. In this chapter, we will explore how the integration of neural networks and

fuzzy inference systems could be optimized using evolutionary search procedures. We present

the theoretical frameworks and some experimental results to demonstrate the efficiency of the

proposed technique.

7.1.Integration of Neural networks, Fuzzy Inference systems and
Evolutionary Computation

Artificial neural networks and fuzzy inference systems are both very powerful soft computing

tools for solving a problem without having to analyze the problem itself in detail. Natural

intelligence is a product of evolution. Therefore, by mimicking biological evolution, we could

also simulate high-level intelligence. The evolutionary approach to artificial intelligence is
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based on the computational models of natural selection and genetics. Evolutionary

computation works by simulating a population of individuals, evaluating their performance,

and evolving the population a number of times until the required solution is obtained.

The drawbacks pertaining to neural networks and fuzzy inference systems seem

complementary and evolutionary computation could be used to optimize the integration to

produce the best possible synergetic behavior to form a single system. The integrated

architecture share data structures and knowledge representations. The parameters of the fuzzy

inference system will be fine-tuned using evolutionary algorithms and neural network learning

techniques. In such an integrated learning occurs at two levels: evolutionary learning (global

optimization) and a local search by conventional neural network algorithm (gradient descent).

Evolutionary algorithms could also be used to determine the optimal learning parameters of

the gradient descent technique.

Why Optimize Neuro-Fuzzy Systems?

Mamdam type fuzzy inference system possess a high degree of freedom to select the most

suitable fuzzification and defuzzification interface components as well as the inference

mechanism itself. Mamdani type FIS provides a highly flexible means to formulate

knowledge, while at the same it remains interpretable. Some disadvantages of Mamdani type

fuzzy inference system are the following:

• Lack of flexibility (rigid partitioning of input-output spaces). When the input

variables are mutually dependent it becomes very difficult to form a good partition

of the input space. Sometimes uniform partitioning (usually adopted method) is

inefficient and does not scale well.

• The size of the rule base increases rapidly with the number of variables and

linguistic terms in the system.

To accommodate the deficiencies mentioned above, researchers have proposed variants of the

Mamdam inference system [168].
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The main advantage of Takagi-Sugeno type fuzzy inference method is that it presents a set of

compact system equations that allows the rule consequent parameters (4.17) to be estimated

using classical methods, which facilitates the design process. This could be also interpreted as

a main drawback as this inference system does not provide a natural framework for

representing expert knowledge that is afflicted with uncertainty and thus not able to fully

utilize the fuzzy logic capability. Due to the rule consequents, incorporating expert knowledge

often becomes very difficult. Takagi-Sugeno fuzzy systems are more difficult to interpret since

tlie overall output depends on the simultaneous activation of the rule antecedents, and on the

function in the rule consequent that depends on the crisp inputs as well rather than being a

constant.

It is interesting to note that Takagi-Sugeno-type fuzzy systems are high performers (more

accuracy) but often requires complicated learning procedures and computational expensive.

On the other hand, Mamdani-type fuzzy systems can be modeled using faster heuristics but

with a compromise on the performance (high RMSE). Hence, there is always a compromise

between performance and computational time. Most of the integrated neuro-fuzzy systems

currently available are based on either Mamdani-type or Takagi-Sugeno-fuzzy inference

system. Hence selection of a good inference system itself becomes complicated when the

dimensionality and complexity of the input-output mapping increases. As evident from

Chapter 6, for a successful design of a neuro-fuzzy design, the user has to specify the shape

and quantity of the membership function for each input/output variable, fuzzy operators,

defuzzification method, fuzzy inference mechanism etc. The user also has to specify the rule

base (except EFuNN and NEFCON) and the learning technique that will fine-tune the

membership functions and other tunable parameters. We are familiar with "trapped in local

minima" whenever we refer to local search techniques. Since the neuro-fuzzy systems use

gradient descent method, there is no guarantee that global optima would be obtained and the

parameters are fine-tuned. Evolutionary algorithms are popular for obtaining a global optimal

solution but not often well in local searches. Integrating evolutionary computation (a global

optimization technique) with a local search technique might help to explore the solution space

more effectively.

136



i i

n

7.2.Generic Architecture of Evolving Neuro-Fuzzy Systems (EvoNF)

In this section, we define the architecture of EvoNF, a computational framework to optimize

fuzzy inference systems using evolutionary computation and neural network learning

algorithms. The proposed framework could adapt to Mamdani, Takagi-Sugeno or other fuzzy

inference systems. The architecture and the evolving mechanism can be considered as general

framework for adaptive neuro-fuzzy systems, that is an integrated neuro-fuzzy model that can

change their membership functions (quantity and shape), rule base (architecture), fuzzy

operators and learning parameters according to different environments without human

intervention.

Figure 7.1 shows how a Mamdani or Takagi-Sugeno fuzzy inference system could be adapted

in an integrated framework. Architecture details of Mamdani and Takagi-Sugeno fuzzy

inference system have been provided earlier in Sections 5.3.1 and 5.3.2. Solving

multiobjective scientific and engineering problems is, generally, a very difficult goal, hi these

particular optimization problems, the objectives often conflict across a high-dimension

problem space and may also require extensive computational resources. We propose a 5-tier

evolutionary search procedure wherein the membership functions, rule base (architecture),

fuzzy inference mechanism (T-norm and T-conorm operators), learning parameters and finally

the type of inference system (Mamdani, Takagi-Sugeno etc.) are adapted according to the

environment.

Figure 7.2 illustrates the interaction of various evolutionary search procedures. Referring to

Figure 7.2, for every fuzzy inference system, there exist a global search of learning algorithm,

inference mechanism, rule base and membership functions in an environment decided by the

problem. Thus the evolution of the fuzzy inference system will evolve at the slowest time

scale while the evolution of the quantity and type of membership functions will evolve at the

fastest rate. This hierarchical evolution is very much similar to the MLEANN framework

proposed in Section 3.3.

137



The function of the other layers could be derived similarly. For every learning algorithm

(parameter), there is the global search of inference mechanisms, rule base and membership

functions that proceed on a faster time scale in an environment decided by the fuzzy inference

system and the problem. For every inference mechanism (fuzzy operators) there is the giofeal

search of rule base and membership functions that proceeds on a faster time scale in an

environment decided by the learning algorithm, fuzzy inference system and the problem.
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Figure 7.1 Architecture of self-constructing EvoNF model
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Figure 7.2. General framework for EvoNF
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Likewise for every architecture, evolution of membership function parameters proceeds at the

faster time scale in an environment decided by the inference mechanism, learning algorithm,

type of fuzzy inference system and the problem. Hierarchy of me different adaptation layers

(procedures) will rely on the prior knowledge. For example, if there is more prior knowledge

about the architecture than the inference mechanism then it is better to implement the

architecture at a higher level. If we know that a particular fuzzy inference system will suit best

for the problem, we reduce the computational task by minimizing the search space.

7.3.Parameterization of the Inference System

For fine-tuning the integrated neuro-fuzzy model all the nodes functions are to be

parameterized. Evolutionary search of optimal inference procedure could only be formulated if

all the node functions are parameterized. The parameters could be further fine tuned by

evolutionary learning or any neural network learning algorithm or a combination of both.

• Parameterization of Membership Functions

Fuzzy inference system is completely characterized by its membership function. A generalized

bell MF is specified by three parameters (p, q, r) and is given by:

Bell (x, p, q, r) = —

1 + x - r
2q

Figures 7.3 (a-d) shows the effects of changing p, q and r in a bell membership function.

Similar parameterization can be done with most of the other membership functions.

/ / /
\

10 -10 10 .••:• 1 0

(a) (b) (c) (d)

Figure 7.3. (a) Changing parameter p (b) changing parameter q (c) changing parameter r (d)

changing/? and q
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• Parameterization of T-norm and T-conorm operators

T-norm is a fuzzy intersection operator, which aggregates the intersection of two fuzzy sets A

and B while T-conorm operators compute fuzzy union of two fuzzy sets A and B. The

Schweizer and Sklar's T-norm and T-conorm operator can be expressed as:

T(a,b,p) =

S(a, b, p) = 1 -\nax\0, ((1 - a

It is observed that

T(a, b, p) = ab

T(a, b, p) = min{a, b}

-»}\

(7.1)

(7.2)

(7.3)

which correspond to two of the most frequently used T-norms in combining the membership

values on the premise part of a fuzzy if-then rule [215]. To give a general idea of how the

parameter/? affects the T-norm and T-conorm operators. Figure 7.4 (a) shows two fuzzy sets A

and B and Figure 7.4 (b) and Figure 7.4 (c) are T(a,b,p)and S(a>b,p) respectively.

i n n

eoooooocooooooof

Fuzzy Mt"A" N

^ + * X Fu«yMt"B" *-

I I I -I f l -t-H-H-*-,-fj-M-HH-H-,+++++++,+++++ '
***'

Figure 7.4(a). Bell Membership functions for fuzzy set A and B

Figure 7.4(b). Effects of changing parameters of T-norm operators
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Figure 7.4(c). Effects of changing parameters of T-conorm operators

7.4.Chromosome Modeling and Representation Issues

The antecedent of a fuzzy rule defines a local region, while the consequent describes the

behavior within the region via various constituents. Basically, the antecedent part remains the

same regardless of the inference system used. Different consequent constituents result in

different fuzzy inference systems. For applying evolutionary algorithms, problem

representation (chromosome) is very important as it directly affects the proposed algorithm.

Referring to Figure 7.2, each layer (from fastest to slowest) of the hierarchical evolutionary

search process has to be represented in a chromosome for successful modeling of an integrated

neuro-fuzzy system using evolutionary computation. A typical chromosome of the EvoNF

model would appear as shown in Figure 7.5 and the detailed modeling process (refer to Figure

7.2) is as follows.

Layer 1: The simplest way is to encode the number of membership functions per input

variable and the parameters of the membership functions. Figure 7.7 depicts the chromosome

representation of n bell membership functions specified by its parameters p, q and r. The

optimal parameters of the membership functions located by the evolutionary algorithm will be

later fine tuned by the neural network-learning algorithm. Similar strategy could be used for

the output membership functions in the case of a Mamdani fuzzy inference system. Experts

may be consulted to estimate the MF shape forming parameters to estimate the search space of

the MF parameters. Ascold et al defined a second order fuzzy set [ 173] to determine the upper

and the lower boundaries of the MF parameters.
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Figure 7.5. Chromosome structure of the EvoNF model

We used the angular coding method proposed by Herrera et al [71] for representing the rule

consequent parameters of the Takagi-Sugeno inference system. Rather than directly coding the

consequent parameters, the "transformed" parameters represent the direction of the tangent a,

= arctan /?,-. The range for the parameters a,- is the interval (-90°, +90°), such that the

parameters pt can assume any real value. A single input Takagi-Sugeno system Y =pjX + p0

defines a straight line. The real valuept is simply the gradient between this line and the X-axis.

Parameter p0 determines the offset of the straight line (intercept) along the X-axis. Angular

coding is advantageous, since the value of p0 varies between different rules and it is difficult to

use some fixed interval to exploit the search space. The procedure is illustrated in Figure 7.6.

Layer 2. This layer is responsible for the optimization of the rule base. This includes deciding

the total number of rules, representation of the antecedent and consequent parts. The number

of rules grow rapidly with an increasing number of variables and fuzzy sets. The simplest way

is that each gene represents one rule, and "1" stands for a selected and "0" for a non-selected

rule. Figure 7.8 displays such a chromosome structure representation. To represent a single

rule a position dependent code with as many elements as the number of variables of the system

is used. Each element is a binary string with a bit per fuzzy set in the fuzzy partition of the

variable, meaning the absence or presence of the corresponding linguistic label in the rule. For

a three input and one output variable, with fuzzy partitions composed of 3,2,2 fuzzy sets for
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input variables and 3 fiizzy sets for output variable, the fuzzy rule will have a representation as

shown in Figure 7.9.

p,«4

Pi«-3

Figure 7.6. Angular coding technique of rule consequent parameters of Takagi Sugeno

inference system

MF,

I P» I Qi I r i j I Pn | <LT I rn

Figure 7.7. Chromosome representing n membership functions for every input/output variable

coding the parameters of a bell shape MF
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Figure 7.8. Chromosome representing the entire rule base consisting of m fuzzy rules

input variables output variable

l >h 0 l

Figure 7.9. Chromosome representing an individual fuzzy rule (3 input variables and 1 output

variable)

Layer 3. In this layer, a chromosome represents the different parameters of the T-norm and T-

conorm operators. Real number representation is adequate to represent the fuzzy operator

parameters. The parameters of the operators could be even fine- tuned using gradient descent

techniques.
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Layer 4. This layer is responsible for the selection of optimal learning parameters.

Performance of the gradient descent algorithm directly depends on the learning rate according

to the error surface. We used real number representation to represent the learning parameters.

The optimal learning parameters decided by the evolutionary algorithm will be used to tune

the membership functions and the inference mechanism.

Layer 5. This layer basically interacts with the environment and decides which fuzzy

inference system (Mamdani type and its variants, Takagi-Sugeno type, Tsukamoto type etc.)

will be the optimal according to the environment.

Once the chromosome representation, C, of the entire neuro-fuzzy model is done, the

evolutionary search procedure could be initiated as follows:

7) Generate an initial population ofN numbers ofC chromosomes. Evaluate the fitness of

each EvoNF depending on the problem.

8) Depending on the fitness and using suitable selection methods reproduce a number of

children for each individual in the current generation.

9) Apply genetic operators to each child individual generated above and obtain the next

generation.

10) Check whether the current model has achieved the required error rate or the specified

number of generations has been reached. Go to Step 2.

End

7.5.Experimentation Setup Using EvoNF

We have applied the proposed technique to the three time series mentioned in Section 2.2.

Fitness value is calculated based on the RMSE achieved on the test set. We have considered

the best-evolved neuro-fuzzy model as the best individual of the last generation. We also

explored three different learning methods:

Type 1: Evolutionary learning of membership functions, T-norm and T- conorm operators,

rule base, consequent parameters ar>d fine tuning of the membership functions using gradient
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descent method. The evolutionary algorithm further optimizes the learning rates of the

gradient descent technique. This method could be considered as a meta learning approach.

Type 2: Evolutionary learning of membership functions, T-norm operator, rule base and

consequent parameters. No gradient descent learning is used. This is equivalent to pure

evolutionary design of fuzzy inference systems.

Type 3: Evolutionary learning of membership functions, rule base and consequent parameters

with fixed T-norm (min) operator. The MFs are fine-tuned using gradient descent method and

the evolutionary algorithm is used to further optimize the learning rates. This experiment is to

demonstrate how important is the tuning of fuzzy operators.

We reduced the search space by incorporating the following priori knowledge

• Takagi-Sugeno fuzzy inference system was selected

• The initial rule base was generated using a grid partitioning method and the rule base

was further optimised using the evolutionary algorithm. This approach seems to work

faster than building up the rule base from scratch.

• only Gaussian and Bell shaped MFs was used.

The genotypes v/ere represented by real coding using floating-point numbers and the initial

populations were randomly created based on the parameters shown in Table 7.1. We used a

special mutation operator, which decreases the mutation rate as the algorithm greedily

proceeds in the search space. If the allelic value xt of the /-th gene ranges over the domain at

and Z>,the mutated gene x\ is drawn randomly uniformly from the interval [at, bi] [72].

, +A(t,bi -Xi),ifo) = 0

[XJ + A(t,bi - Xi),ifo) = 1

where <o represents an unbiased coin fl'\pp(a> =0) =p(co =1) = 0.5, and

(7.4)
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Aft, x) = x 'max. (7.5)

defines the mutation step, where y is the random number from the interval [0,1] and / is the

current generation and /,*„ is the maximum number of generations. The function A computes

a value in the range [0,x] such that the probability of returning a number close to zero

increases as the algorithm proceeds with the search. The parameter b determines the impact of

time on the probability distribution A over [0,x]. Large values of b decrease the likelihood of

large mutations in a small number of generations.

The parameters mentioned in Table 7.1 were decided after a few trial and error approaches.

Experiments were repeated 3 times for the three time series and the worst performance

measures are reported.

Table 7.2 summarizes the quantity of membership functions and the rule base before and after

Type 1 learning. Test results showing the RMSE for the three time series are presented in

Table 7.3. Figures 7.10 and 7.11 depicts of the different learning methods for gas furnace

series. Learning convergence for waster water series and Mackey glass time series are plotted

in Figures 7.12-7.15.
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Table 7.1. Parameters used for evolutionary design of neuro-fuzzy systems

Population size

Fuzzy inference system

Rule antecedent membership functions

Rule consequent parameters

T-norm operators

Learning rate

Learning epochs

Ranked based selection

Elitism

Starting mutation rate

30

Takagi Sugeno

2 - 4 membership functions per input variable
parameterized Gaussian
angular coding

Parameterized Schweizer and Sklar's operator

0.05-0.20

100 epochs of gradient descent algorithm for
all the 3 time series

0.50

5%

0.70
Iterations
Mackey
Glass

i

Typel

Type 2
Type 3

60

90
60

Gas
Furnace

Type 1

Type 2
Type 3

60

135
60

Waste
Water

Typel

Type 2
Type 3

65

180
65

Table 7.2. Comparison of membership functions and fuzzy rules before and after learning

(Type 1)

Mackey Glass

Gas Furnace

Waste Water

Before learning

MFs

Input

I]

4

3

4

h

4

3

4

I3

4

-

4

I4

4

-

4

Output

o,
linear

linear

linear

No. of
rules

256

9

256

After learning

MFs

Input

Ii

3

3

4

I2

3

4

3

I3

4

-

4

3

-

3

Output

0,

linear

linear

linear

No. of
rules

94

12

112
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Table 7.3. Comparison of EvoNF, ANFIS and MLEANN

Time

series

Mackey

Glass

Gas

Furnace

Waste

Water

Learning

algorithm

Typel

Type 2

Type 3

Typel

Type 2

Type 3

Typel

Type 2

Type 3

Neuro-fuzzy

EvoNF

RMSE

Training

0.0007

0.0009

0.0009

0.0093*

0.0111

0.0101

0.0150*

0.0190

0.0180

Test

0.0008

0.0009

0.0009

0.0110*

0.0154

0.0256

0.0310*

0.0342

0.0330

ANFIS

RMSE

Training

0.0019

0.0137

0.0530

Test

0.0018

0.0570

0.0810

MLEANN

RMSE

Training

0.0004*

0.0110

0.0425

Test

0.0004*

0.0210

0.0521

*Lowest RMSE values

Convwgwico of learning In integrated nwro*fuzzy systems

? ? ? ? ! J K R ^ S fe ? ? * ? S

Qonarations

Typ« 1 Uarnlng - - Typa 2 foaming — Type 3 learning

Figure 7.10. Gas furnace series: convergence of the different learning methods after 60

generations
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Figure 7.11. Gas furnace series: convergence of the evolutionary algorithm after 135

generations

Convergence of teaming fei Integrated neuro-fuzzy ayatama

0.16 i
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Figure 7.12. Waste water series: convergence of the different learning methods after 65

generations

149



Evolutionary learning of Integrated nmiro-ftizzy system

Generations

Figure 7.13. Waste water series: convergence of the evolutionary algorithm after 180

generations

Convergence of learning in integrated neuro-ruzzy systems

f

Typa 1 Uamlng

Generations

— Ty»« 2 learning -Typ«3l«arnln|

Figure 7.14. Mackey Glass series: convergence of the different learning methods after 60

generations
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Oonorattons

Figure 7.15. Mackey Glass series: convergence of the evolutionary algorithm after 90

generations

Figure 7.16. Gas furnace time series: membership functions for input variable 1 and 2 (before

Type 1 learning)
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Figure 7.17. Gas furnace time series: membership functions for input variable 1 and 2 (after

Type 1 learning)
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7.6.Discussions and Conclusions

We have explored the three different learning mechanisms on an integrated neuro-fuzzy

system implementing a Takagi-Sugeno fuzzy inference system. In the Type i learning an

evolutionary learning method and gradient descent method was used to fine tune the

performance. The fuzzy operators were also learned in the Type 1 method. Type 3 method is

similar to Type 1 except the fuzzy operators. The fuzzy operators were fixed for the Type 3

learning. Type 2 learning does not use the gradient descent method and all the parameterized

node functions are learned using evolutionary computation.

As evident from Table 7.3, in terms of RMSE error, the evolutionary design of neuro-fuzzy

systems could outperform the conventional design of neuro-fuzzy systems using deterministic

techniques. For interest empirical results of EvoNF was compared with ANFIS (Adaptive

Neuro-Fuzzy Inference System) implementing a Takagi-Sugeno fuzzy inference system. For

all the three time series considered, the evolutionary design approach gave the best results on

training and test sets.

i
i
I
§
2

EvoNF •

ANFIS I

NEFPROX I

EFuNN •

cfmEFuNN I

SONFIN 1

ANN 1

0
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• 0J0017
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•••0-0047

0.006 0.01
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•10.014
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0.015

RMSE
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0.018

0.02 0.026

3HHHH0'0332
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Figure 7.18. Comparison of EvoNF, popular neuro-fuzzy models and neural network

Our experiments using the three different learning strategies also reveal the importance of

fine-tuning the global search method using a local search method (integrated learning). Type-2
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learning method took longer time for the convergence and the final RMSE values obtained

were higher than the integrated learning approach. The empirical results obtained from Type 1

and Type 3 learning clearly illustrates the role of fuzzy operator tuning. For the gas furnace

series, the test results obtained using the Type 1 learning were almost 100% less than that of

Type 3 learning.

We have also compared the empirical results of EvoNF model with MLEANN. While EvoNF

could outperform MLEANN for gas furnace and waste water series, for Mackey glass series

MLEANN performed marginally better. Perhaps the chaotic behavior of the Mackey Glass

series could not be well represented using a Takagi Sugeno fuzzy inference system. Neuro-

fuzzy performance could have been improved if we used a first order Takagi-Sugeno model or

other learning methods. Figure 7.18 illustrates the comparison of EvoNF with different

integrated neuro-fuzzy models and an artificial neural network trained using the

backpropagation algorithm for predicting the Mackey Glass time series.

hi this Chapter we have presented how the optimal design of integrated neuro-fuzzy systems

could be achieved using a 5-tier evolutionary search process. However, the real success in

modeling such systems will directly depend on the genotype representation of the different

layers. All prior knowledge available about the problem domain / system design are to be

encoded into the system to minimize the search space by the evolutionary algorithms.

Hierarchical evolutionary search processes attract considerable computational effort.

Fortunately, evolutionary algorithms work with a population of independent solutions, which

makes it easy to distribute the computational load among several processors using parallel

algorithms. Hence, for complicated problems, parallel evolutionary algorithms might prove to

be very useful [62]. As a guideline, for NF systems to be highly intelligent some of the major

requirements are fast learning (memory based - efficient storage and retrieval capacities), on-

line adaptability (accommodating new features like inputs, outputs, nodes, connections etc),

achieve a global error rate and robust. The data acquisition and preprocessing training data is

also quite important for the success of optimization of fuzzy inference systems.
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Chapter 8: Conclusions

8.0.Introduction

The integration of different intelligent technologies is an active area of research in artificial

intelligence. While James Bezdek [41] defines intelligent systems in a frame called

computational intelligence, Lotfi Zadeh [255] explains the same using the soft computing

framework. Integration issues range from the different types of techniques, theories of

computation to problems of exactly how best to implement hybrid systems [12].

In this thesis, we explored the hybrid integration of neural networks - evolutionary algorithms,

fuzzy systems - evolutionary algorithms, neural networks - frizzy systems and neural networks

- fuzzy systems - evolutionary algorithms. We have applied the different hybrid combinations

to some practical applications and some popular chaotic time series, which has been widely

used by several researchers working with connectionist models. In this Chapter, we summarize

the main results obtained in the thesis. The scientific importance of the research work is

pointed out on theoretical and application study parts. In addition, the topics for future

research are discussed.

8.1.Main Results

For designing artificial neural networks, our experimentations using 4 different learning

algorithms on three different chaotic time series clearly demonstrates that there is no best

algorithm that will give optimal performance for all the problems. The initialization of

weights, node transfer functions, architecture of the neural network, learning algorithm

parameters etc play an equal role in optimization of the network performance. MLEANN

framework is able to adapt the architecture (connectivity, number of neurons and node transfer

functions), connection weights and learning algorithms and its parameters according to the

problem.
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Empirical results clearly demonstrate the efficiency of the proposed technique when compared

to the best possible design using conventional approaches. The Evolutionary approach also

shows superior performance when compared to a deterministic hybrid search technique using

cutting angle method. In MLEANN, our work wai: mostly concentrated on the evolutionary

search of optimal learning algorithms.

We have applied neuro-fuzzy systems to three practical applications and the empirical results

clearly demonstrate the efficiency of the hybrid approach. Performance of neuro-fuzzy

systems will depend on the careful selection of quantity and shape of membership functions

for each input/out variable, an algorithm to determine the rule base and other network

parameters etc. As demonstrated in Chapter 4, our various experiments also point out the need

for adaptation of the various components (membership functions and parameters, knowledge

base, fuzzy operators, inference system etc.) of a fuzzy inference system.

In Chapter 7, we presented the integration of neural networks, fuzzy inference systems and

evolutionary algorithms. This could be viewed as an adaptive computational framework for

automatic learning and optimization of fuzzy inference systems. In terms of RMSE error, the

EvoNF could outperform the conventional design of neuro-fuzzy systems using deterministic

techniques. For comparison purposes the empirical results of conventional design of neuro-

fuzzy systems was compared with ANFIS (Adaptive Neuro-Fuzzy Inference System)

implementing a Takagi-Sugeno fuzzy inference system. For all the three time series

considered, the evolutionary design approach gave the best results on training and test sets.

Experiment results also reveal the importance of evolutionary learning and fine-tuning by a

local search method. Using a pure evolutionary learning method, the algorithm requires more

iteration to converge. In spite of more iteration using a pure EA, very often the results are not

as good as the integrated learning approach (type 1). Fuzzy operator tuning also plays a major

role to optimize the performance of the integrated system.

Referring to the empirical results of the EvoNF approach, for Mackey glass series

evolutionary neural networks performed marginally better. Perhaps the chaotic behavior of the

Mackey Glass series could not be well represented using a Takagi Sugeno fuzzy inference

system. Neuro-fuzzy performance might be improved if we used a higher order Takagi-
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Sugeno model or more efficient learning methods. This also agrees with the equivalence

between fuzzy inference systems and neural networks as defined by Hayashi et al [113].

8.2.Future Research Directions

We used a fixed chromosome structure (direct encoding technique) to represent the various

layers in the connectionist models. As size of the chromosome grows, computational

complexity also increases. Cellular configuration might be helpful to explore the

representation more efficiently. For evolutionary neural networks, Gutierrez et al [107] has

shown that their cellular automata technique performed better than direct coding. For the

evolutionary search of architectures (layers/connectivity for neural networks and rule base for

fuzzy inference system), it will be interesting to model as co-evolving [75] sub-networks

instead of evolving the whole network. Further, it will be worthwhile to explore the whole

population information of the final generation for deciding the best solution.

Hierarchical evolutionary search process attracts enormous computational complexity.

Fortunately, evolutionary algorithms work with a population of independent solutions, which

makes it easy to distribute the computational load among several processors. As we all know,

the problems of the future will be more complicated in terms of complexity and data volume

attracting more computational load. Hence, more research is to be diverted to design suitable

message passing interfaces and implement the different hybrid algorithms in a parallel

environment [18]. The design of parallel evolutionary algorithms involves choices such as

using one population or multiple populations. In both cases, the size of population or

populations must be determined carefully, and when multiple populations are used, one must

decide how many to use. In addition, the populations may remain isolated or they may

communicate by exchanging individuals. Communication involves extra costs and additional

decision on topologies, on how many individuals are exchanged, and on the frequency of

communications [62].

The use of fuzzy logic to translate and improve heuristic rules has also been applied to manage

the resource of evolutionary algorithms (population size, selection pressure etc.) as the

algorithm greedily explores and exploits the search space. The technique proposed by Lee
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[156] to perform a run-time tuning of population size and reproduction operators based on the

fitness measures might be helpful to improve the computational run-time efficiency of the

evolutionary search process.

In this thesis, we have investigated only the hybrid combinations involving neural networks,

fuzzy systems and evolutionary algorithms. It will be interesting to investigate hybrid

combinations of other intelligent techniques like support vector machines [235], artificial

immune systems [76], Bayesian methods [135], rough sets [163] and popular hard computing

techniques like CART [56], MARS [92] etc.
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