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Errata

Note: "X Y" means'change the text X to the text Y

ppl—251, all occurrences: "et a/" —>• "et a/.".

2»plO.eq. 2.2:"E[f-E[f]]

pl l , para. 2, line 1: "will equal frequency"

p31, listing 3.2: Change to

'with equal frequency".

1. Choose k initial class means.

2. Assign each pixel to the class with the closest mean.

3. Determine the best possible reduction in sum of squared distances

to new class means by reassigning one pixel to a new class.

4. If the reduction was positive, use the new class assignments and

means and go to Step 3, else exit.

p31,para. 3, line 4: "alss" —> "also".

p43,eq. 3.5: "w{x',yT —> ' X ^ A

p46, para. 3: "When the noise is additive, the mean and median behave similarly." —> "For

additive noise the mean and median behave similarly, but the mean is the more efficient es-

timator when the noise truly is Gaussian."

p48, fig. 3.19 caption: "(c = 3)' "(c = 2)".

p49, para. 1, line 1: "algorithms adjusts" 'algorithm adjusts".

p56, para. 3, lines 3-7: "Figure 3.26 plots this when using a 37 pixel mask."

—> "For edge and comer detection SUSAN uses a 37 pixel mask, but for denoising it

uses a variable size mask determined by a. In Smith's implementation2, the default o is

2\/2 w 2.8, which results in a square 15x15 mask."

p56, penultimate line: "the value Smith claims works well for all images [Smi95]."

default value used by Smith's implementation."

'the



p66: "4.2.2 Generalizing the facet model' '4.2.2 Different homogeneity criteria".

p85, last line: "The variance, or standard error, of the sample mean is cr2/M." —> "The

variance of the sample mean is a2/M, the square root of which is called the standard error."

pi 17, para. 1, line 2: Delete ".. . , or standard error,...".

pl23, insert after eq. 4.33: "This may be implemented in a simple manner. The highest

possible value of k is used to cluster the data first. If Equation 4.33 is satisfied, we stop.

Otherwise we decrement k and repeat. If k = 1 is reached, we stop."

ppl39—251, all occurrences: "SUSAN37" 'SUSAN".

pl39, para. 4, line 1: "The standard 37 pixel SUSAN filter" —» "The SUSAN filter".

pl39, para. 4, line 3: "and Smith claims that t = 20 works well over all image types."

—> "the value of which is not critical according to Smith [SM95]."

pl43, fig. 4.74 caption: "wither estimated' 'with a estimated".

pl58, para. 2: After "time series data." insert "The Kullback-Leibler distance measures the

relative entropy, or similarity, of two probability distributions."

pl59, line 1: "of Gaussian clusters." —> "of Gaussian clusters [Alp98]."

pi59, para. 4, line 1: "over all models"

values."

"over all models and their possible parameter

pi64, para. 2, line 5: "dark" "light".

'For the example binary segmentpi65, para. 2, line 1: "For the binary segment maps" —

maps".

pl71, para. 2: Append existing reference "[OB94]".

pi83, para. 2, line 2: Delete sentence "This is similar to the i-test compared."

pl93, para. 2: Append sentence "Spatially varying priors, although appealing, are more

complicated to implement succesfully and are beyond the scope of this thesis."

p260, reference [KS00]: "May 200." "May 2000J
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Abstract

A unifying philosophy for carrying out low level image processing called "local segmenta-

tion" is presented. Local segmentation provides a way to examine and understand existing

algorithms, as well as a paradigm for creating new ones. Local segmentation may be applied

to range of important image processing tasks. Using a traditional segmentation technique

in intensity thresholding and a simple model selection criterion, the new FUELS denoising

algorithm is shown to be highly competitive with state-of-the-art algorithms on a range of

images. In an effort to improve the local segmentation, the minimum message length in-

formation theoretic criterion for model selection (MML) is used to select between models

having different structure and complexity. This leads to further improvements in denoising

performance. Both FUELS and the MML variants thereof require no special user supplied

parameters, but instead learn from the image itself. It is believed that image processing in

general could benefit greatly from the application of the local segmentation methodology.
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si Chapter 1

Introduction

Image processing is a rapidly growing area of computer science. Its growth has been fueled

by technological advances in digital imaging, computer processors and mass storage devices.

Fields which traditionally used analog imaging are now switching to digital systems, for their

flexibility and affordability. Important examples are medicine, film and video production,

photography, remote sensing, and security monitoring. These and other sources produce

huge volumes of digital image data every day, more than could ever be examined manually.

Digital image processing is concerned primarily with extracting useful information from

images. Ideally, this is done by computers, with little or no human intervention. Image pro-

cessing algorithms may be placed at three levels. At the lowest level are those techniques

which deal directly with the raw, possibly noisy pixel values, with denoising and edge de-

tection being good examples. In the middle are algorithms which utilise low level results for

further means, such as segmentation and edge linking. At the highest level are those meth-

ods which attempt to extract semantic meaning from the information provided by the lower

levels, for example, handwriting recognition.

The literature abounds with algorithms for achieving various image processing tasks. How-

ever, there does not appear to be any unifying principle guiding many of them. Some are

one dimensional signal processing techniques which have been extended to two dimensions.

Others apply methods from alternative disciplines to image data in a somewhat inappropriate

manner. Many are the same basic algorithm with parameter values tweaked to suit the prob-

lem at hand. Alternatively, the parameters are optimized with respect to a suitable training

1
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there are some clumps of very bright and dark pixels near the corners of the square. These

errors could correspond to where the filter performed erratically, or to where there were very

noisy pixels. Without the original image it is difficult to determine which it is.

Figure 4.16: Qualitative measure of filter performance: (a) noisy image; (b) median filtered;
(c) difference between noisy and denoised, mid-grey representing zero.

4.4 Test images

In this chapter, different denoising algorithms will be compared. It is laborious to provide

results for a large set of images at each stage of the discussion. For this reason, one or more

images from the small set introduced here will be used consistently throughout this chapter.

The use of a larger set of image test set will be deferred until the final results are considered.

4.4.1 Square

The s q u a r e image in Figure 4.17 has already been encountered. It is an 8 bit per pixel

greyscale image of resolution 11 x 9. It consists of a 25 pixel square of intensity 200 atop

a 74 pixel background of intensity 50. It will be often used for illustrative purposes, and for

subjectively examining the effect of various techniques.

4.4.2 Lenna

The l enna image [Ien72j in Figure 4.18 has become a de facto standard test image through-

out the image processing arid image compression literature2. Its usefulness lies in the fact

-y

Figure 4.17: The 11 x 9 8 bpp square test image.

that it covers a wide range of image properties, such as flat regions, fine detail, varying edge

profiles, occasional scanning errors, and the fact that so many authors produce results using

it as a test image. One interesting feature is that the noise in l e n n a seems to be inversely

proportional to the brightness, perhaps a legacy of having been scanned from a negative.

Figure 4.18: (a) the 512x512 8 bpp lenna image; (b) histogram.

lenna is available from ftp: / /nic. funet. fi/pub/graphics/misc/test-images/

4.4.3 Montage

Figure 4.19 shows a greyscale test image called montage, and its histogram. It has resolu-

tion 512x512 and uses 8 bits per pixel. The image consists of four quadrants. The top left
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model for the data. This is similar, but not identical, to the maximum a posteriori (MAP)

estimate used in Bayesian analysis. When the model contains continuous parameters, MML

optimally quantizes the prior density such that the MAP estimate is invariant under non-linear

transformations of the data and model parameters.

The model selection criterion used by FUELS is replaced by a more flexible MML one.

MML makes it straightforward to include extra models in the pool of candidate models

being considered. For a 3x3 window, there exists 256 unique ways to divide the 9 pixels

into one or two segments. The MML version of FUELS is modified to evaluate and consider

all of these. This allows spatial information to be exploited, and overcomes the minimum

contrast difference that FUELS requires between segments. The "do no harm" principle is

re-interpreted, and shown to fit naturally within the MML framework.

Using MML for model selection is shown to improve results relative to FUELS, and to out-

perform other good denoising algorithms. It produces better local approximations, especially

for very noisy images. Evaluating and comparing large numbers of models using MML,

however, is much more computationally intensive than FUELS. In terms of RMSE, the im-

provements are not large. This indicates that simpler techniques like FUELS and SUSAN are

already good trade-offs between efficiency and effectiveness. In critical applications where

the best possible modeling is required, the use of MML methods could be warranted.

The local segmentation paradigm is not limited to denoising applications. It is shown that

a variety of image processing tasks may be addressed using local segmentation. Breaking

an image into its low level structural components could be considered an essential first step,

from which many other tasks are derived. It is shown how local segmentation may be used

for edge detection, pixel classification, image enlargement and image compression. The

extension to different noise models, such as impulse noise, image models, such as planar

segments, and higher dimensional data, such as volume images, is also discussed.

The FUELS local segmentation algorithm has the desirable feature of being simple, while

still producing good results. This makes it well suited to robotic and computer vision appli-

cations. It can be implemented using low amounts of memory and processing power, ideal

for putting into hardware or embedded microcontrollers. Local segmentation is inherently

parallelizable, because each pixel's local region is processed independently. Thus a highly

1

concurrent implementation would be possible. This could be useful in real time applications

where many images per second need to be analysed.

I believe that local segmentation provides a unifying philosophy for carrying out low level

image processing. It provides a way to examine and understand existing algorithms, as well

as a paradigm for creating new ones. A local segmentation analysis of an image can be

re-used by a wide range of image processing tasks. Using a traditional segmentation tech-

nique in intensity thresholding and a simple model selection criterion, the FUELS denoising

algorithm is shown to be highly competitive with staH-of-the-art algorithms on a range of

images. In an effort to improve the local segmentation, MML is applied to select between

a larger set of models having different structure and complexity. This leads to further im-

provements in denoising performance. Both FUELS and the MML variants thereof require

no special user supplied parameters, but instead learn from the noisy image itself. I believe

that image processing in general could benefit greatly from the application of the techniques

proposed in this thesis.
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Chapter 2

Notation and Terminology

2.1 Digital images

I

A digital image, is a discrete two-dimensional function, f(x,y), which has been quantized

over its domain and range [GN98]. Without loss of generality, it will be assumed that the

image is rectangular, consisting of Y rows and X columns. The resolution of such an image

is written as XxY. By convention, /(0,0) is taken to be the top left corner of the image,

and f(X - 1, Y - 1) the bottom right corner. This is summarized in Figure 2.1.

I

f(0,0)

f
X

7+9yi «•?

NT

Figure 2.1: A rectangular digital image of resolution 16 x 8.

II
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Each distinct coordinate in an image is called a pixel, which is short for "picture element".

The nature of the output of f(x, y) for each pixel is dependent on the type of image. Most

images are the result of measuring a specific physical phenomenon, such as light, heat, dis-

tance, or energy. The measurement could take any numerical form.

A greyscale image measures light intensity only. Each pixel is a scalar proportional to the

brightness. The minimum brightness is called black, and the maximum brightness is called

white. A typical example is given in Figure 2.2. A colour image measures the intensity and

chrominance of light. Each colour pixel is a vector of colour components. Common colour

spaces are RGB (red, green and blue), HSV (hue, saturation, value), and CMYK (cyan,

magenta, yellow, black), which is used in the printing industry [GW92]. Pixels in a range

image measure the depth of distance to an object in the scene. Range data is commonly used

in machine vision applications [KSOO].

2.2 Image statistics

I
'la

Medical scans often use 12-16 bits per pixel, because their accuracy could be critically

important. Those images to be processed predominantly by machine may often use higher

values of Z to avoid loss of accuracy throughout processing. Images not encoding visible

light intensity, such as range data, may also require a larger value of Z to store sufficient

distance information.

There are many other types of pixels. Some measure bands of the electromagnetic spectrum

such as infra-red or radio, or heat, in the case of thermal images. Volume images are actually

three-dimensional images, with each pixel being called a voxel. In some cases, volume

images may be treated as adjacent two-dimensional image slices. Although this thesis deals

with greyscale images, it is often straightforward to extend the methods to function with

different types of images.

Figure 2.2: A typical greyscale image of resolution 512x512.

For storage purposes, pixel values need to be quantized. The brightness in greyscale images

is usually quantized to Z levels, so f(x, y) G {0,1, • • •, Z - 1}. If Z has the form 2L, the

image is referred to as having L bits per pixel. Many common greyscale images use 8 bits

per pixel, giving 256 distinct grey levels. This is a rough bound on the number of different

intensities the human visual system is able to discern [Jah93]. For the same reasons, each

component in a colour pixel is usually stored using 8 bits.

2.2 Image statistics

2.2.1 The histogram

A histogram plots the relative frequency of each pixel value that occurs in a greyscale image.

Figure 2.3 shows the intensity histogram for the image from Figure 2.2. The histogram

provides a convenient summary of the intensities in an image, but is unable to convey any

information regarding spatial relationships between pixels. In this example, the image does

not contain many very low or very high intensity pixels. It is possible that peaks in the

histogram correspond to objects in the image, but it is difficult to be certain without visually

examining the image.

2.2.2 The mean

The image mean is the average pixel value of an image. For a greyscale image this is equal to

the average brightness or intensity. Let the image f(x, y) be referred to using the shorthand

f. The mean of this image, E[ f ], may be calculated using Equation 2.1.
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2.3 Image algebra

Var[f] = E[f2]-E[f]2

2.2.4 The entropy

0
100 1 5 0

Intensity

Figure 2.3: The histogram for the grayscale

200 250

The image histogram may be considered a probability distribution over pixel values. For

the case of a Z level greyscale image, the histogram entry for intensity z may be written as

Pr(.z). The entropy of an image, f, is given by Equation 2.7. The units of entropy are bits

when using logarithms to base 2.

image in Figure 2.2.
z~\

H ( f ) = ~ lcS2 Pr(*) bits
1 K~1 X-Z± 2=0

(2.7)

2/=0 x=C
(2.1)

2.2.3 The variance

The image variance, Var[f J, gives an estimate of the spread of pixel values around the image

mean. It can be calculated using either Equation 2,2 or Equation 2.5. The latter has the

ad fadvantage of requiring only one pass through the

/ F f image. The standard deviation is simply

Var[f] = E[f-E[f]]2

(2.2)

(2.3)

The entropy has a maximum value of log2 Z when all intensities occur will equal frequency,

corresponding to a uniform histogram. It has a minimum value of 0 when all pixels have the

same intensity. The entropy is one measure of the information content of an image. Because

it is calculated from the histogram, it is unable to take spatial factors into consideration.

2.3 Image algebra

2.3.1 Image-scalar operations

Various useful arithmetical operations may be defined for images. Let <g> represent the binary

operator for addition, subtraction, multiplication, or division. Equation 2.8 shows how to

combine a scalar, c, and an image, g, to produce a new image, f. This is a pixel-wise

operation — each pixel in g is operated on using <g> with c, and the result put in f.
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f = g<8>c f(x,y)=g{x,y)®c (2.8)

This idea could be used to enhance an image which is too dark. Consider the image in

Figure 2.4a which uses 8 bits per pixel (256 levels), but only contains pixels with intensities

from 64 to 191. One may consider enhancing it to use the full intensity range. This can

be .'Achieved using Equation 2.9, where [-J denotes integer truncation, and floating point

precision is used for all pixels during the calculation. The result is given in Figure 2.4b.

2.4 Image acquisition 13

Imagine wanting to generate a blended version of two greyscale images of identical resolu-

tion. This could be achieved using Equation 2.11, where o: determines the mixing proportion.

Alpha blending is a simple form of morphing, and is often used to dissolve between scenes

in film and television. A visual example for a = 0.5 is given in Figure 2..'>.

= | a x Si + (1 - a) x 82] (2.11)

f =
128

x255 (2.9)

Figure 2.4: (a) low contrast image; (b) after enhancement.

2.3.2 Image-image operations

The image-scalar operation may be extended to the combination of two images, gi and g2,

having the same resolution. Instead of combining a scalar with each pixel, two pixels with the

same coordinate in different images are used instead. Equation 2.10 describes this process.

Figure 2.5: Alpha-blending example: (a) first image; (b) second image; (c) blended image
using a = 0.5.

2.4 Image acquisition

Image acquisition is the process of obtaining a digitized image from a real world source.

Each step in the acquisition process may introduce random changes into the values of pixels

in the image. These changes are called noise. Assume you want to send a photo of your

new house to a friend over the Internet. This may be achieved by taking a photograph with a

conventional camera, having the film made into a print, scanning the print into a computer,

and finally emailing it to your friend. Figure 2.6 shows the many potential sources of noise.

Actual house
Light

H House
Camera

Film
Scanner

*H Digital image
Email

Digital image

CCD and stepper
motor noise

Network transmission
errors

Atmospheric noise Film grain noise

Figure 2.6: Noise may be introduced at each step in the acquisition process.
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The air between the photographer and the house may contain dust particles which interfere

with the light reaching the camera lens. The silver-halide crystals on the film vary in size and

are discontinuous, resulting in film grain noise in the printing process [MJ66]. Most scanners

use a CCD array to scan a row of the print, which may introduce photo-electronic noise. The

scanner's CCD array is controlled by a fine stepper motor. This motor has some degree of

vibration and error in its movement, which may cause pixels to be mis-aligned. The scanner

also quantizes the CCD signal, introducing quantization noise [GN98]. Transmitting the

image over the Internet is nearly always a bit preserving operation thanks to error checking

in network protocols. However, an image transmitted to Earth from a remote space probe

launched in the 1970's is almost guaranteed to contain errors.

2.5 Types of noise

i: i

2.5 Types of noise

The previous example illustrated the manner in which an image may be affected by noise

during the acquisition process. The properties of the noise introduced at each capture step

are likely to vary. However, there are three standard noise models which model well the types

of noise encountered in most images: additive, multiplicative, and impulse noise. Figure 2.7

shows how these types of noise affect a typical greyscale image.

2.5.1 Additive noise

Let f'(x, y) be the noisy digitized version of the ideal image, f(x, y), and n(x, y) be a "noise

function" which returns random values coming from an arbitrary distribution. Then additive

noise can be described by Equation 2.12.

(2.12)

Additive noise is independent of the pixel values in the original image. Typically, n(x, y)

is symmetric about zero. This has the effect of not altering the average brightness of the

image, or large parts thereof. Additive noise is a good model for the thermal noise within

photo-electronic sensors [Pit95].

Figure 2.7: Different types of noise: (a) original image; (b) additive noise; (c) multiplicative
noise; (d) impulse noise.

2.5.2 Multiplicative noise

Multiplicative noise, or speckle noise, is a signal dependent form of noise whose magnitude

is related to the value of the original pixel [KSSC87]. Equation 2.13 describes one simple

form it can take, but a more complex function of the original pixel value is also possible.

Multiplicative noise is an approximation to the noise encountered in images recorded on

film slides [Jai89] and from synthetic aperture radar [Lee81a, Cur91].

f'(x, y) = f(x, y) + n{x, y)f{x, y) = /(*, y)[l + n(x, y)] (2.13)
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2.5.3 Impulse noise

Impulse noise has the property of either leaving a pixel unmodified with probability 1 — p,

or replacing it altogether with probability p. This is shown in Equation 2.14. Restricting

n(x, y) to producing only the extreme intensities 0 or Z — 1 results in salt-pepper noise. The

source of impulse noise is usually the result of an error in transmission or an atmospheric or

man-made disturbance [PV90].

f'(x,y) =
n(x, y) with probability p

f(x, y) with probability 1 — p
(2.14)

2.5.4 Quantization noise

Quantization noise is due to the quantization of pixel values during the analog to digital

conversion. For example, imagine an analog image with brightness values ranging from 0

to 10. If it is quantized to accuracy 0.1, the digitized image will have 101 distinct grey

levels. A given intensity, z, could have originally been anywhere in the range z ± 0.05. This

uncertainty in the true value of z is called quantization noise [STM97].

2.5.5 The noise function

Usually the properties of the noise function, n(x, y), do not vary with x and y. A spatially

invariant stochastic process is referred to as being stationary. The noise function could

theoretically take any form, but many standard probability distributions have been found

useful. For additive noise, the Gaussian and Laplacian distributions are often used [JRvdH93,

AG98]. The standard case of impulse noise uses a uniform distribution on [0, Z - I).

The most common noise model used in this thesis is an additive zero-mean Gaussian of

unknown variance, independently and identically distributed for each pixel. The application

to alternative noise models is also considered. Some algorithms developed for additive noise

can be adapted to multiplicative noise by logarithmically transforming f(x, y), applying the

algorithm, and then applying the inverse transform [MPA00].

I

I
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2.6 Segmentation

Segmentation involves partitioning an image into groups of pixels which are homogeneous

with respect to some criterion. Different groups must not intersect each other and adjacent

groups must be heterogeneous [PP93]. The groups are called segments. Figure 2.8a shows a

noisy image containing three objects on a background. The result of segmentation is given

in Figure 2.8b. Four segments were discovered, and are shown with a dashed outline.

Figure 2.8: (a) original image; (b) segmented into four segments.

The homogeneity criterion used for segmenting Figure 2.8 was based only on the similarity

of pixel intensities. For images containing large amounts of noise or fine structure, this

criterion may be insufficient for successful segmentation. In those cases, some information

regarding the spatial relationship between pixels is required. In particular, the assumption

that pixels belonging to the same segment are expected to be spatially connected is exploited.

A pixel only has eight immediate neighbours. If symmetry is required, there exists only

three forms of pixel connectedness which make sense, shown in Figure 2.9. There is one

type of 8-connectedness, and two types of 4-connectedness. Type I is more popular than

Type II due to the improved proximity of the four neighbouring pixels. In this thesis, only

8-connectedness and Type 14-connectedness are considered.

Most digital images exist on a rec?angular grid. This is primarily due to the arrangement of

image sensors on camera and scanning equipment. Research has been done on the superior

properties of hexagonal grids [Sta99], but they are unlikely to displace the square grid in the

near future. In this thesis we deal only with images sampled on a square grid.
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Figure 2.9: Pixel connectedness: (a) 4-connected [Type I]; (b) 4-connected [Type II]; (c) 8-
connected.

2.7 Local windows

Most of the algorithms discussed in this thesis operate in an adaptive local manner, pro-

cessing each pixel in turn. Only a small number of neighbouring pixels are included in any

calculation. Local processing can produce simpler algorithms with lower algorithmic time

and space complexity. They may be parallelizable, theoretically to one computer processor

per pixel. There is also evidence to suggest that the human visual system functions in a

parallel local manner, combining many local interpretations into an overall image [BBBOO].

The union of the pixel being processed and its neighbouring pixels may be collectively re-

ferred to as a window, a mask, or the local region surrounding the pixel. Local windows

typically involve fewer than 50 pixels, on images with up to 107 pixels. The only unbiased

window configuration is an isotropic one — symmetrical and centered on the pixel to be pro-

cessed. A circular window meets this requirement, but because pixels reside on a rectangular

grid, some pixels would cover an area only partially within the circle. Figure 2.10 shows five

local windows which are commonly used in image processing. Each is an approximation to

a circular window, with the square windows being simplest to implement.

- K t

Figure 2.10: Common local neighbourhood configurations: 5, 9,13,21, 25 pixels.



Chapter 3

Local Segmentation in Image Processing

3.1 Introduction

This thesis proposes the use of local segmentation as an effective way to achieve a variety of

low level image processing tasks. The local segmentation principle states that the first step in

processing a pixel should be to segment the local region encompassing that pixel. This pro-

vides a snapshot of the local structural features of the image, with the signal clearly separated

from the noise. It is hoped that the identified structural information could be used to imple-

ment many image processing tasks including, but not limited to, image denoising [Mas85],

pixel classification [Cho99], edge detection [HSSB98], and pixel interpolation [AW96].

Local segmentation can be seen to belong to a continuum of approaches to image under-

standing, as shown in Figure 3.1. At the lowest level is local segmentation which operates

in a purely local manner using only a small number of pixels. At a higher level is global

segmentation which attempts to group together related pixels from throughout the image.

The highest level is object recognition, whereby global segments are combined into logical

units representing real world objects of interest.

The fundamental component of the local segmentation approach is the segmentation algo-

rithm itself. Most segmentation algorithms are designed to operate upon a whole image, or a

large portion thereof. Local segmentation can only utilise a small number of pixels belong-

ing to fragments of larger segments. Thus a local segmentation algorithm differs in that it

19
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Object Recognition Groups of .segments Meta- :global

Global Segmentation | Large groups of pixels / whole image

y
Local Segmentation Small groups of pixels

Global

Local

Figure 3.1: An image processing hierarchy.

has less data and less context to work with. In Section 3.2 the suitability of applying global

segmentation algorithms to local segmentation will be examined.

Some image processing techniques can be seen or interpreted as exploiting the principle of

local segmentation in some way. In most cases the local segmentation principle is not stated

explicitly, nor used as a guiding principle for developing related algorithms. One exam-

ple is the lossy image compression technique Block Truncation Coding, or BTC [FNK94].

BTC uses simple thresholding to segment 4x4 blocks of pixels into two classes, but it was

many years before alternative segmentation algorithms were considered. Further instances

of existing local segmentation-based algorithms will be explored in Section 3.3.

Those image processing tasks suited to local segmentation are often the first to encounter the

raw image data. This data is usually contaminated with one or more forms of noise. The

fundamental attribute of a local segmentation based algorithm should be to preserve as much

image structure (useful information) as possible, and to suppress or remove as much noise

(useless information) as possible. These goals are complementary and inseparable — the

ability to identify structure implies the ability to identify noise, and vice versa.

Good image denoising algorithms specialize in extracting structure from noisy images. This

application is probably the most appropriate low level technique for demonstrating local

segmentation. In Section 3.4, the extent to which existing denoising algorithms utilise the

principles espoused in this thesis will be explored. It is shown that the trend in state-of-the-art

denoising algorithms has been toward a local segmentation perspective.

Upon reading this chapter, certain themes will become apparent. Image processing is an

enormous field consisting of many different algorithms. Within a specific field it is often

3.2 Global segmentation
21

difficult to compare results. This is due to the rarity of objective criteria for comparison, a

lack of standard test data, and simply the widely differing goals and needs of each system.

Some techniques are ad hoc in their approach, often having been inappropriately adapted

from other fields without thought to the validity of the underlying assumptions. Others have

one or more tunable parameters which, although data dependent, must be supplied by the

user, rather than learned automatically from the image itself. It is hoped that the work in this

thesis will go some way to improving this situation.

3.2 Global segmentation

Segmentation involves partitioning an image into groups of pixels which are homogeneous

with respect to some predicate. Each group is called a segment. Different segments must

not intersect and adjacent segments must be heterogeneous [PP93]. Pixels within a seg-

ment need not necessarily be spatially connected. Clustering is usually used to refer to

segmentation techniques using a homogeneity predicate which does not consider spatial in-

formation [HS85]. The segments produced by a clustering algorithm are sometimes called

clusters, but they are still legitimate segments.

Global segmentation is concerned with segmenting a whole image. Local segmentation deals

with segmenting sub-images which are small windows on a whole image. Although a sub-

image is still a valid image, it is also a fragment of a larger scene being processed in isolation.

A side-effect of this is shown in Figure 3.2. The image consists of two global segments: a

light cross on a dark background. Each of the segments is homogeneous and fully connected.

The 3x3 sub-image is also a cross on a background, but its "background" consists of four

spatially disjoint pixels. Without a larger context it is difficult to ascertain whether they

should be treated as one or four segments. A clustering algorithm, guided only by pixel

intensities, would group them into a single segment.

The number of pixels available to local segmentation is much lower than what most global

segmentation algorithms would expect. This has an effect on the typical number of distinct

segments expected to be encountered. Figure 3.3a is a typical greyscale image called lenna .

Figure 3.3b shows an image which plots, for each pixel from lenna, the standard deviation
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Figure 3.2: A 3x3 sub-image taken from the centre of a 9x9 image with two segments.

of the 3x3 sub-image centered on that pixel. The standard deviations range from 0 to 72,

and are represented here using intensities from black to white.

Figure 3.3: (a) original image; (b) local 3x3 standard deviations, with black representing 0
and white 72.

Homogeneous regions in the original image produce dark areas in the standard deviation

image, while edges are responsible for lighter areas. The majority of Figure 3.3b is dark.

Figure 3.4 shows a histogram of the standard deviations, which is expected to be unimodal

and skewed to the right [RLU99J. The peak at 2.4 corresponds roughly to the natural level of

variation within homogeneous regions. The skew toward larger standard deviations is caused

by heterogeneous edge and texture regions varying above the natural level.
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Figure 3.4: Histogram of local 3x3 standard deviations shown in Figure 3.3b.

The area under the histogram near the natural level of variation is much higher than in the

skew. This suggests that it is highly likely that a randomly selected 3x3 sub-image will be

homogeneous, consisting of a single segment. This is in stark contrast to global segmenta-

tion, where the diagnosis or even consideration, of a single segment result is rare. A local

segmentation algorithm must therefore be able to determine automatically the number of

segments present in the sub-image. Fortunately, this task is made easier because the number

of segments is likely to be small.

A small sub-image implies small segments. Global segmentation algorithms, in an attempt to

reduce over-segmentation, often disallow segments containing fewer than a specified number

of pixels. A local segmentation algorithm should expect to diagnose many small segments,

including those consisting of a single pixel. Figure 3.5 shows a alternate 3x3 sub-image

taken from a whole image. The one pixel segment may be considered noise by global seg-

mentation, but local segmentation must be more lenient and allow for the fact that a lone

pixel may be part of a larger global segment.

Global segmentation deals mostly with segments consisting of a relatively large number of

pixels. This makes estimated parameter values for global segments naturally more robust.
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Figure 3.5: A 3x3 sub-image taken from the right of the 9x9 image with two segments.

Local segmentation must be frugal in its demands for pixel data. An important factor is the

processing of pixels from the image margins because they have incomplete neighbourhood

information. For a 3x3 window applied to an NxN image, the proportion of affected pixels

is 4(iV—1)/N2. For whole images (TV » 50), this is usually insignificant, but for sub-images

(TV <C 10) being locally segmented, this proportion can be very high. For the common 3x3

window the proportion is 8/9 — nearly every pixel in the block.

Although the underlying assumptions of local and global segmentation are different, any

good local segmentation algorithm will still owe a debt to its global counterparts. By 1994

over 1000 segmentation algorithms had been published [ZG94] and this number has likely

doubled since. The sheer variety of algorithms makes it difficult to neatly classify them, so

in this thesis they will be examined in terms of the following attributes:

• whether or not spatial information is used

• suitability to small sub-images

• ability to detect the number of segments automatically

• underlying segment and noise model

• region growing (identify homogeneity) or edge following (identify heterogeneity)

© attempt to optimize an objective criterion

• time and space complexity

• parallel or sequential execution [Ros81]

In the following sections those global segmentation algorithms relevant to the development

of good local segmentation algorithms are examined. The discussion is broken into two main

parts. Section 3.2.1 deals only with clustering techniques (non-spatial segmentation), while

Section 3.2.2 covers methods which incorporate spatial information.

3.2.1 Clustering

Segmentation which does not use spatial information is sometimes called clustering. Clus-

tering was used in numerical taxonomy and multivariate analysis long before electronic com-

puters existed [Fis36]. Image processing has adapted clustering algorithms from other dis-

ciplines by treating pixel values as independent variables. For example, colour pixels have

3 attributes and each pixel can be considered a point in 3-dimensional space. Clustering

involves grouping pixels in this multivariate space.

For the case of greyscale intensity data, clustering into M groups reduces to the simpler case

of estimating M — 1 thresholds. Each threshold T\ to TM-\ is an intensity value which acts

as a dividing point between neighbouring clusters. Typically, each pixel in the thresholded

image, £M(£, y), is set to a unique intensity, Li, associated with each of the M clusters.

Equation 3.1 expresses this formally.

tM(x,y) =

Li if

L2 if 71

if T{

LM if TM-i

f(x,y) < 7\

f(x,y) < T2

f{x,y) <

f(x,y)

(3.1)

Thresholding assumes that pixels from different segments form separate populations based

solely on the disparity of their intensities. It is well suited to images containing relatively few

objects and low amounts of noise. If there is a large number of segments, or large variation

within segments, it is more likely that the segments' pixel value distributions will overlap,

rendering valleys in the histogram less obvious or even non-existent [LCP90]. Thresholding

would be a good candidate for local segmentation, because on a small scale only a small



number of segments are expected.

Binary thresholding

Thresholding is one of the oldest, simplest and most popular techniques used in image pro-

cessing [PP93J. Most of the thresholding literature is concerned with classifying pixels into

object or background classes [Wes78, FM81, SSW88]. This is known as binary or bi-level

thresholding. Algorithms which deal with three or more classes are called multilevel thresh-

olding techniques [RRK84, PG94]. On a local scale, most sub-images are expected to be

homogeneous. This implies that the next most likely situation is sub-images with two seg-

ments. Thus an examination of binary clustering will be useful.

If an image consists of two or more clear objects, the histogram should have a corresponding

number of peaks. The thresholds should be chosen at the valleys of the histogram. For bi-

level thresholding, Prewitt et al [PM66J repeatedly smoothed the histogram until a single

minimum existed between two maxima, and chose T as the intensity corresponding to the

minimum. An example of this method is given in Figure 3.6.

Figure 3.6: (a) the 8 bpp » - - -*u.

Entropic methods treat the histogram as a probability distribution of Z symbols. Kapur et

al [KSW85] split the histogram into two parts and compute the entropy1 of each distribution.

The optimal threshold, T, is chosen to maximize the sum of the entropies of the two parts.

'The entropy measures the average information content of a set of symbols, assuming the probability of
each symbol is known. If the probability of symbol 5,- is Pr(s,), and there are N symbols, the entropy (in bits)
is given by the expression: — J2i=i P r(s») 1°S2 P r( s i ) -
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The aim is to retain as much information as possible in the binarized image by choosing

a split in which each of the two distributions are as uniform as possible. This method has

the advantage of not having to estimate any parameters, but does not help us decide on the

bimodality of the histogram.

The trend in thresholding has been toward mixture modeling, which treats an image his-

togram as a linear blend of parameterized statistical distributions [EH81, TSM85, MPOO].

Kittler's minimum error method assumes the histogram is a mixture of Gaussians with sepa-

rate means and variances [KI86]. The chosen objective criterion minimizes the classification

error. The resulting threshold corresponds to the intersection point of the two Gaussians,

shown in Figure 3.7. This point is also known as the Bayes minimum error threshold, and

Kittler provides both exhaustive and iterative search procedures for determining it [KI86].

Frequency

Intensity

its

is

Figure 3.7: Determination of the threshold in mixture modeling.

The minimum error method replaced the previously popular method of Otsu [Ots79] and i

fast implementation [RRK84]. It was shown by Kurita et al [KOA92] that Otsu's method i

actually equivalent to the Kittler's minimum error method if each distribution in the mixture

has the same form and the same variance. An adjustment to remove a mild bias of the vari-

ance estimates due to overlapping of the distributions was provided by Cho et al [CHY89].

In the minimum error paper, Kittler et al describe the problem of encountering a homoge-

neous image. In this case the histogram would be unimodal, causing the optimal threshold to

always be chosen at either the extreme left or extreme right of the histogram. To some extent

this condition can be used to distinguish between homogeneous and heterogeneous images.

This is important: in terms of local segmentation as a large proportion of the sub-images are

expected to be horjy:. JOUS and should be treated as such.
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Methods to evaluate binary thresholds objectively do exist [WR78]. Sahoo et al [SSW88] use

"uniformity" and "shape" measures to compare eight different algorithms. The uniformity

measure is concerned only with minimizing the sum of intra-class variances, while the shape

measure incorporates spatial coherence of edge boundaries. Using real images, which were

not bimodal, they found the minimum error method and the entropic method to perform best.

They also point out that it would be trivial to design a new thresholding algorithm which

jointly optimizes itself with respect to the shape and uniformity measures. This severely

limits the usefulness of these objective criteria.

Lee et al [LCP90] examined five global thresholding algorithms. They used two test images

for which the correct binary segmentation was known. In addition to the shape and uni-

formity measures, they measured the probability of mis-classification relative to the correct

segmentation. They stated that no algorithm obviously stood out, and lamented on the diffi-

culty of comparing algorithms across different types of data. Despite this, they decided that

Otsu's method [Ots79] was the best overall. This suggests that the minimum error method

would have done as well if not better. Glasbey [Gla93] also performed a similar experiment

by generating artificial histograms from mixtures of Gaussian distributions with different

means and variances. He found the iterated form of the minimum error method to do best.

This is not surprising given the way the data was generated.

Local thresholding

Global thresholding methods use the same threshold for every pixel in an image. Difficulties

arise when the illumination of a scene varies across the image [GW92]. In Figure 3.8 the

mug has been thresholded at T = 171, corresponding to the most prominent valley in its his-

togram. The resulting segmentation is poor, because the shadow and the darker background

area have been grouped with the mug. To counteract this, a different threshold, T(x, y), can

be used for each pixel in (or region of) the image. This dynamic threshold could be based on

the histogram of an appropriately sized sub-image encompassing each pixel. This is known

as adaptive, variable or local thresholding [CK72],

Nakagawa et al [NR79] divide an image into non-overlapping windows. The histogram is

assumed to be a mixture of Gaussians, but the mixture parameters are estimated under the
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Figure 3.8: (a) the mug image; (b) its histogram; (c) thresholded usi
using T = 171.

assumption of no overlap. A test for bimodality (two segments) versus unimodality (one seg-

ment) is then applied. The test involves three criteria and four user supplied numbers, and is

designed to ensure good separation and meaningful variances. If the window is bimodal, the

threshold is chosen to minimize the probability of mis-classification. For unimodal windows,

the threshold was chosen by linearly interpolating neighbouring thresholds. An extension to

windows of three segments is also described, where neighbouring threshold information aids

in choosing which of the two thresholds to choose.

Local thresholding is clearly exploiting the principle of local segmentation. Obviously, any

global thresholding technique could be used for determining each local threshold. Smaller

windows increase the chance of obtaining a unimodal histogram, corresponding to a ho-

mogeneous (or extremely noisy) region. If a method is unable to detect this situation, the

threshold it computes could be nonsensical. It is important to be able to determine the num-

ber of segments present in a local window.

Multilevel thresholding

Some binary thresholding techniques can be adapted to function with more than two clus-

ters [RRK84, KI86J. The mixture modeling approach extends easily, because it models a

histogram as a blend of distributions, choosing thresholds at the valleys between the peaks

of distributions. Equation 3.2 gives the general form of a mixture model with k classes. The

7TjS are the mixing weights which must sum to unity, <?,•(•) is the distribution function for

class i, and #,• holds the parameters of distribution i.
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t = i ) (3-2)

Often each class is assumed normally distributed with unknown mean and variance. In this

situation h{x) has Zk-1 degrees of freedom. These parameters are usually estimated using

the Expectation-Maximization (E.M.) algorithm [DLR77]. The E.M. algorithm is an iterative

process which is guaranteed to increase, at each step, the statistical likelihood (Pis 12] of

the data given the mixture model probability density function, h{x). Although the E.M.

algorithm always converges, it may do so only to a local optimum. Usually, multiple runs

at different starting conditions are required to overcome this. However, greyscale pixel data

is a simple one-dimensional case, and these problems usually only occur in multivariate
situations, such as colour pixels.

The general E.M. algorithm is computationally very expensive because it calculates k in-

tegrals per datum per step. The integrals are used to determine the partial membership of

each datum to each distribution. For the normal distribution this must be done numerically

as no closed form exists. If the distributions are well separated, it is possible to assign each

pixel wholly to one class without biasing the parameter estimates. If, additionally, the dis-

tributions are assumed normal with a common variance, the maximum likelihood criterion

optimized by the E.M. algorithm reduces to minimizing the sum of squares of each datum to

its centroid [Alp98J. This criterion may be optimized using simpler techniques.

The A;-means algorithm really refers to two different algorithms, both designed to minimize

the sum of squared errors of each datum to its cluster centroid. The simpler form, referred to

as #-means by Hansen et al [HM01], is given in Listing 3.1. Hansen et al refers to the more

complex form as &-means [McQ67, DH73, HW79], given in Listing 3.2.

1. Choose k initial class means.

2. Assign each pixel to the class with the closest mean.

3. Recompute the class means using the new assignments.

4. If any pixels have switched class, go to Step 2.

Listing 3.1: The #-means algorithm.
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2. Assign each pixel to the class with the closest mean.

3. Reassign one pixel to a new class such that the move best reduces the overall

sum of square distances criterion.

4. Recompute the class means using the new assignments.

5. If the criterion was improved, go to Step 3.

Listing 3.2: The &-means algorithm.

In if-means, every pixel is reassigned per iteration, whereas fc-means only performs one op-

timal re-assignment. For one-dimensional data like greyscale pixels, both algorithms should

produce the same clustering if provided with sensible starting conditions. This is especially

true when k is low, as it is expected to be in local segmentation.

The ISODATA [RC78] algorithm is similar to &-means but introduces various heuristics for

improving the clustering result. These heuristics include forcing a bound on the minimum

and maximum number of classes, requiring a minimum class membership amount, and re-

stricting the maximum variance within a class. Although these heuristics must be supplied as

parameiers by the user, they do allow the ISODATA algorithm to go some way to estimating

the number of classes and ensuring they have sensible properties. They also allow the user

to incorporate a priori information into the clustering process. The natural level of variation

within the image, if known, could be used to restrict the maximum variance within a class.

Fuzzy c-means [Bez81] is a variation on fc-means which allows each datum partial mem-

bership in each cluster, similar to a mixture model. Compared to the sudden jumps dur-

ing re-assignment in &-means, the cluster centroids in fuzzy c-means move more smoothly.

Its objective function alss differs, claiming to better suited to non-spherically distributed

data [HB88]. Fuzzy c-means must calculate partial memberships for each datum at each

step, which, from a computational perspective, may make it unsuited to local segmentation.
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Summary

Thresholding techniques produce segments having pixels with similar intensities. They can

handle any underlying image model as long as each intensity is associated with only one

segment. The disregard of spatial information means that pixels within a segment may not

be connected. In terms of local segmentation this may be an advantage, because the discon-

nected components of a local segment could actually be part of the same global segment.

Global thresholding will suffer when pixels from different segments overlap in their use of

intensities. If this is due to noise, a technique such as the minimum error method can estimate

the underlying cluster parameters and choose the thresholds to minimize the classification er-

ror. If the overlap is due to variation in illumination across the image, variable thresholding

could be used. This can be seen as a form of local segmentation.

The likelihood of encountering unimodal histograms is high when thresholding sub-images.

Within the local segmentation framework it is extremely important to be able to detect the

number of segments in the window. Most of the thresholding literature either ignores this

situation, or handles it with special parameters which must be provided by the user. It would

be better if these parameters were estimated from the image itself.

Thresholding has low space complexity. Only one pass through the image is required to

build a histogram. All further calculations are performed using only the histogram, as no

spatial information is required. For this reason its time complexity is also low. If the number

of pixels in the image is low compared to the number of possible grey levels (XxY<giZ),

the same benefits apply without using a histogram. Local segmentation must be applied

independently to each pixel, making thresholding an attractive option.

3.2.2 Spatial segmentation

Global segmentation algorithms which take spatial information into consideration usually

outperform their clustering-based counterparts. Spatial information is useful because most

segments corresponding to real world objects consist of pixels which are spatially connected.

Evaluating the quality of segmentation algorithms is an inherently difficult problem [PP93,

Zha97]. This section will discuss the main approaches to spatial segmentation and assess

their suitability to local segmentation.

Region based segmentation

Region growing algorithms tackle segmentation by identifying homogeneous, spatially con-

nected sets of pixels within an image. Splitting algorithms begin with large image regions

and break them up into smaller, more homogeneous ones. Merging algorithms compare

neighbouring regions (or pixels) and merge them if they have similar enough properties.

Some techniques use a combination of splitting and merging. What the)j all have in common

is the use of a measurable image property as a criterion for splitting and merging [YG01].

Region growing requires a se~d to begin. Ideally the seed would be a region, but it could be

a single pixel. A new segment is grown from the seed by assimilating as many neighbour-

ing pixels as possible that meet the homogeneity criterion. The resultant segment is then

removed from the process. A new seed is chosen from the remaining pixels. This continues

until all pixels have been allocated to a segment. As pixels are aggregated, the parameters

for each segment have to be updated. Thus the resulting segmentation could depend heavily

on the initial seed chosen and the order in which neighbouring pixels are examined.

Region splitting begins with a whole image and divides it up such that the parts are each

more homogeneous than the whole. The main difficulty is in deciding on where to make

a partition. Early approaches used a regular decomposition such as a quad tree [FKN80].

Splitting alone is insufficient for reasonable segmentation as it severely limits the shapes of

segments. Horowtiz et al [HP74] suggest a merging phase after splitting is complete. This

can be done efficiently using tree searching algorithms [Knu73], but the resulting regions

may have unnatural blocky boundaries.

A popular image model used today is the piece-wise constant segment model with additive

Gaussian noise. Under this model, pixels from the same segment are normally distributed

with mean \i and variance a2. The variance provides a measure of homogeneity within

the segment. The sample mean and variance may be used to estimate fi and a. Fisher's

criterion [YG01] in Equation 3.3 is an example of a homogeneity predicate for splitting or

merging two classes, A and B.

A — (3.3)
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Fisher's A is maximized by classes with widely separate means and low variance. Typically A

would be compared to a threshold — if it is lower, merging would proceed. The value of the

threshold impacts the number and size of segments accepted. Ideally, its value should depend

on the natural level of variation of pixel values in the image. From a local segmentation point

of view, Fisher's criterion could useful for distinguishing between the existence of one or

more clusters in a sub-image.

Edge based segmentation

Edge based segmentation is the dual to region growing. It exploits spatial information by

detecting the edges in an image, which correspond to discontinuities in the homogeneity

criterion for segments. Edge detection is usually done with local linear gradient operators,

such as the Prewitt [PM66], Sobel [Sob70] and Laplacian [GW92] filters. These operators

work well for images with sharp edges and low amounts of noise. For noisy, busy images

they may produce false and missing edges. The detected boundaries may not necessarily

form a set of closed connected curves, so some edge linking may need to be required [Can86].

There are many edge based algorithms in the literature, particularly in the area of active

contours and snakes [KWT87]. However, the application of edge models to local regions

is unlikely to be successful as local regions contain too few pixels, of which most have

incomplete neighbour information.

Hybrid region-edge approaches

Watershed segmentation [MB90, HRA96] has become popular recently, assisted by the exis-

tence of an efficient implementation [VS91]. It is a hybrid approach which uses edge detec-

tion to determine seeds for growing regions, which are then merged. First an edge detector

is applied to the image, resulting in an "elevation map" which quantifies the edge magnitude

around each pixel. Seeds for region growing are taken from the points of lowest elevation, the

so-called "basins". Region growing proceeds in a manner similar to how the basins would fill

if the elevation map was slowly and uniformly covered with water. When the "immersion"

process completes, the basins are merged into suitably sized global segments.

The edge detection and region growing steps in watershed segmentation are only loosely cou-

pled, because the elevation map can be provided beforehand. Other hybrid techniques tightly

integrate these steps, for example, Tabb's multi-scale image segmentation approach [TA97].

Tabb suggests that scale selection and edge and region detection can not be separated, and

that good segmentation algorithms effectively have to perform a Gestalt analysis. Although

this approach produces pleasing results on whole images, it is difficult to apply on a local

level where only a small number of pixels are available. His algorithm does have the ad-

mirable feature of automatically determining all required parameters from the image itself.

Relaxation labeling

Relaxation labeling can be applied to many areas of computer vision. In the past it has

been applied to scientific computing applications, particularly to the solution of simultaneous

nonlinear equations [RHZ76]. The basic elements of the relaxation labeling method are a

set of features belonging to an object and a set of labels. In the wider context of image

processing, these features are usually points, edges and surfaces. For the case of image

segmentation each pixel has a feature describing which segment it belongs to, and there is a

different label for each segment in the image.

The labeling schemes are usually probabilistic in that each pixel is partially assigned to all

segments. A pixel's assignment takes the form of normalized probabilities which estimate

the likelihood of it belonging to each segment. Different techniques are used to maximize

(or minimize) the probabilities by iterative adjustment, taking into account the probabilities

associated with neighbouring features. Relaxation strategies do not necessarily guarantee

convergence, thus pixels may not end up with full membership in a single segment.

Two main strategies are used for optimizing the iteration process [YG01 ]. Simulated anneal-

ing, or stochastic relaxation, introduces a random element into the iteration scheme, to reduce

the chance of becoming stuck in secondary optima. Geman et al [GG84] applied this to a

local Markov random field model [LiOl]. In contrast to stochastic relaxation, which makes

random changes, deterministic relaxation only makes changes which improve the configu-

ration, and thus converges much faster. Besag's Iterated Conditional Modes (ICM) [Bes86]

algorithm uses this approach for image segmentation. Due to its greedy nature, ICM does

not find a global minimum, and its results are dependent on the initial conditions chosen.
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Extending clustering methods

Haralick et al [HSD73] used the co-occurrence matrix to incorporate the spatial relationship

between pixels into the choice of threshold in texture analysis. This matrix is constructed

as a 2-D histogram from pairs of pixels at a fixed orientation and distance apart, similar to

a Markov model. Figure 3.9 gives an example of two co-occurrence matrices for a simple

4x4 image consisting of three noiseless segments. Pixels within segments should dominate

the diagonal entries of the matrix (similar grey levels) while the off-diagonal entries should

be made up of edge pixels (differing grey levels). By creating two separate histograms from

these groups and finding where the valley in the first matches a peak in the second, a thresh-

old can be obtained. The interested reader is directed to the paper for further information.

This approach is not suited to small sub-images as there are too few pixels to generate a

meaningful co-occurrence matrix.
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Figure 3.9: (a) 4x4 image with 3 segments; (b) co-occurrence matrix for horizontal pairs of
pixels; (c) co-occurrence matrix for vertical pairs of pixels.

Leung and Lam [LL96] introduce the concept of segmented-scene spatial entropy (SSE) to

extend the entropic thresholding methods to make use of spatial information. Thresholds are

chosen to maximize the amount of information in the "spatial structure" of the segmented

image. Their spatial model relates a pixel to its four immediate neighbours. This method is

too complicated to apply to small sets of pixels with little connectedness information.

An interesting approach to bi-level thresholding was taken by Lindarto [Lin96]. Traditional

entropic methods try to maximize the information needed to encode the pixel values once

the segmentation is determined. Lindarto, however, chooses a threshold which minimizes

the combined lossless encoding length (information content) of the binary segment map and
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the original pixels. The grey level pixels are encoded using a least-entropy linear predic-

tor [Tis94] optimized for each segment, while the bitmap is efficiently stored using the JBIG

algorithm [PMGL8S]. This approach uses Wallace's minimum message length (MML) in-

ductive inference principle [WB68, OH94] to choose the model (threshold) which minimizes

the overall compressed length of the model plus the data given the model. The versatile MML

model selection technique will be applied i focal segmentation in Chapter 5.

Summary

Segmentation algorithms which use spatial information can produce better results than those

which do not. This is especially true for noisy images, where pixel intensity alone is insuffi-

cient for distinguishing between segments. However, spatial segmentation algorithms would

struggle with the low amount of spatial information available in a small window. Local

segmentation must be applied to every pixel, and hence a simple and fast algorithm is also

desirable. Thresholding techniques are therefore an attractive option for local segmentation.

3.3 Local segmentation

Local segmentation is concerned with segmenting small sub-images in isolation. The main

difference between local segmentation and global segmentation is that the former has only

a small number of pixels available to it. This increases the chance that the sub-image is

homogeneous. If an edge is present, it may not be as obvious without the context of a whole

image. The concept of modeling and segmenting local regions is not new. Many algorithms

already use it in some form, but its application may be implicit and non-obvious.

3.3.1 The facet model

Most image processing applications assume that the pixel grid is a discrete approximation

to an underlying intensity surface. The facet model of Haralick et al [HW81] assumes that

the true surface is piece-wise continuous and that the image is a noisy sampled version of
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it. In particular, it assumes that each segment in the image is well modeled using a two-

dimensional polynomial function. The flat facet model assumes each piece has a constant

intensity. The sloped facet model allows the intensity to vary linearly in both directions, like

a plane. The idea extends easily to higher degree polynomials. It would be possible to fit

facet models to sub-images.

There are two main problems with the facet model. Firstly, it -does not provide a criterion

for deciding which order polynomial best fits the local region. It is important to strike a

balance between over-fitting the noise and under-fitting the structure. Secondly, polynomial

functions are not well suited to modeling sharp edges between arbitrarily shaped segments.

Segment boundaries are visually very important and it is important to handle them correctly.

3.3.2 Block truncation coding

One of the oldest appearances of local segmentation is the lossy, fixed bit rate image com-

pression technique block truncation coding, or BTC [DM79, FNK94J. In one form, BTC

divides an image into non-overlapping 4x4 blocks pixels. The pixels are segmented into

two clusters using thresholding at the block mean. The two cluster centroids, /i0 and fiu are

set average value of the pixels in each cluster. Figure 3.10 provides an example.
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Figure 3.10: BTC example: (a) original 4x4 pixel block; (b) decomposed into a bit-plane and
two means; (c) reconstructed pixels.

From a local segmentation perspective, BTC assumes that segments consist of pixels of a

common grey level separated by step edges aligned to pixel boundaries. The assumption of

two segments implies the existence of a bimodal histogram, and the use of the mean as the

threshold implies that each segment contains approximately the same number of pixels.

I

The original BTC algorithm has been modified repeatedly over the years [FNK94]. In stan-

dard BTC, the number of segments is always two. Some techniques allow the number of

segments to be varied on a block by block basis. For example, if the difference between the

two means, |/ij — //o|, is low enough, the block is considered homogeneous, so no bitmap and

only one mean are encoded. Conversely, if the block variance is very high then multilevel

thresholding can be used. This approach to automatically detecting the number of clusters is

rudimentary, but still effective. In Chapter 4, this idea will be extended to form the basis of

an effective local segmentation technique for removing noise from images.

Some BTC variants replace thresholding with spatial techniques designed to better preserve

image structure. Gradient based BTC [QS95] and correlation based BTC [Cai96] choose

a different threshold for each pixel in the block. Each threshold depends on neighbouring

gradient and pixel difference information. This itself is a crude form of relaxation labeling.

For most images the gain is minimal, suggesting that spatial information may be of limited

value when segmenting small regions.

3.3.3 SUSAN

SUSAN [Smi95, Smi96, SB97], much like the local segmentation framework of this thesis,

evolved to be a general approach to low level image processing. One of SUSAN's design

constraints was efficiency, so that it could be run on real time data in a robotic vision system.

SUSAN was originally designed for edge and corner detection, but was also adapted for

structure preserving denoising. The denoising component differs a little from the SUSAN

framework presented here, and is treated separately in Section 3.4.5.

SUSAN processes greyscale images in a local manner using an approximately circular win-

dow containing 37 pixels. The centre pixel in the window is called the nucleus. Neighbouring

pixels similar in intensity to the nucleus are grouped into an USAN, or Univalue Segment As-

similating Nucleus. The USAN creation process may appear to be a form of region growing

using the nucleus as a seed, except that pixels in the USAN are not necessarily connected.

The formation of an USAN is more related to clustering than segmentation.

The pixel similarity function is controlled by a brightness threshold, t. Smith first describes

the USAN as accepting only pixels with an intensity difference of t units from the nucleus.
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This can be considered crisp clustering, where similar pixels receive full weight, and dis-

similar pixels receive no weight. The size of the US AN is equal to the sum of weights given

to pixels in the window, which for crisp clustering, equals the number of pixels assimilated.

Smith, however, found a fuzzy membership function to give better feature detection. This

fuzzy function was "optimally" derived to have the form e~(Ay^6, where A is the intensity

difference from the nucleus. Figure 3.11 compares the crisp and fuzzy membership functions

as a function of A. When the fuzzy form is used, all pixels have partial contribution to the

size of the USAN. This is no longer an explicit segmentation of the local neighbourhood.
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Figure 3.11: Comparison of the hard and soft cut-off functions for pixel assimilation in the
SUSAN algorithm.

To perform feature detection, the USAN size for each pixel is plotted. On this surface ho-

mogeneous regions correspond to plateaus, edges to valleys, and corners to deeper valleys.

SUSAN processes this USAN surface to determine the directions and strengths of edges and

the positions of corners. Smith finds the SUSAN feature detector to give results on a par

with Canny's famous edge detection algorithm [Can86]. Smith states that SUSAN is suited

to images with segments of smoothly varying intensity and both step and ramp edges.
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The main difficulty with SUSAN is that its performance is dependent on a user supplied

brightness threshold, t. Smith claims that SUSAN is relatively insensitive to the choice of*,

and advocates a default of 20. He states that * may be used to vary SUSAN's sensitivity to

features. The value of * really controls the minimum feature contrast that can be detected.

My experiments show that * should be proportional to the natural level of intensity variation

expected within image segments. This is the only way for the USAN to assimilate pixels in

homogeneous regions and not produce false edge output.

3.4 Denoising

Image denoising is the process of removing unwanted noise from an image [Mas85, BC90].

The noise can take a variety of forms and is introduced in differing amounts at each step

during the acquisition of the image. The literature abounds with denoising techniques, but

they may be classified broadly into temporal and spatial approaches.

3.4.1 Temporal filtering

Temporal filtering averages multiple sampled versions of the same scene [She90]. If the true

image is f, and TV samples, g i . . . gN, are taken, the temporally filtered image, f, can be

calculated using Equation 3.4.

N

(3.4)
t = i

If each pixel in f was corrupted by the addition of symmetric zero-mean noise of variance

a2, then for any one pixel the expected noise variance, E[ (f - g,-)2], is a2. However, the

expected noise for the ensemble average, f, reduces to o2/N. If the noise was not additive

in nature, for example impulse noise, then a better "averaging" function, such as the median

(discussed later), should be used.

Temporal filtering is ideal if multiple version of the same image can be obtained. In practice

this does not usually happen, because the objects in the scene move, or the capturing equip-
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ment wobbles. Even slight variations can displace the pixels in each sampled image, causing

the ensemble average to become a blurred version of the original.

In this thesis it is assumed that only a single noisy version of an original image is available,

so temporal filtering of the form in Equation 3.4 can not be used. However, it will be shown

how overlapping local segmentation results for the same pixel coordinate can be combined

tc suppress noise in a fashion similar to temporal filtering.

3.4.2 Spatial filtering

Where temporal filtering uses multiple versions of each pixel value at the same position

but different "times", spatial filtering uses pixels at the same "time" but at different spatial

coordinates in the image. When temporally filtering a static scene, pixels from the same

position but different times are expected to have the same noiseless value. When those

pixels are not available, the best alternative is pixels near the current pixel. When only a

single noisy image is available, spatial filtering is the only option. This is the basis of nearly

all image denoising algorithms.

The simplest spatial filter is the averaging filter which replaces a pixel with the average of

itself and the pixels in the local neighbourhood. The most common averaging filter is the

box filter [McD81], which gives equal weight to the 9 pixels in a 3x3 window. This choice

of weights maximally reduces the noise variance when the noise is additive. Box filtering

is similar to temporal filtering except that samples from adjacent pixel positions are used as

approximations to multiple samples of the pixel at the same position. Fjgure 3.12 gives an

example of its application.

Figure 3.12: Application of the 3x3 box filter: (a) original; (b) noisy; (c) filtered.
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Although an averaging filter performs well for additive noise in homogeneous regions, it

tends to blur edges and other image structure in heterogeneous regions. Figure 3.13 gives an

mple of this undesirable behaviour. To combat this deficiency, most research is concerned
ex a
with structure preserving denoising algorithms.

Figure 3.13: Box filtering in the presence of edges: (a) original image; (b) filtered.

To preserve image structure while removing noise implies the ability to distinguish between

the two. It will be shown in later chapters that local segmentation is a good basis for mod-

eling the relationship between structure and noise in an image. Segments correspond to

homogeneous regions and boundaries between segments are structure that needs to be pre-

served. Existing spatial denoising algorithms can be examined in terms of the way they use

local segmentation. Some use no local segmentation at all, some use it implicitly, and some

explicitly use a local segmentation model.

3.43 Fixed linear filters

The simplest denoising filters are linear ones. For a square window of side length 2iV + 1,

the operation of a linear filter is described by Equation 3.5, where the weights, w{-), are

assumed to sum to one.

N
(3.5)

The box filter described in Section 3.4.2 is a linear filter with N = 1 and equal weights

w($x, Sy) = l/(2iV +1)2 . Its configuration is illustrated in Figure 3.14a. It shows the spatial

anangements of the weights used by the linear filter. Interestingly, McDonnell [McD81]
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developed a recursive algorithm which can implement box filtering with only five operations

per pixel, independent ofN.
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Figure 3.14: (a) 3x3 box filter; (b) approximate 3x3 Gaussian filter.

Gaussian filters use normalized weights of the form in Equation 3.6. This filter varies the

weights such that those pixels further from the centre contribute less to the overall average.

The spatial extent of a linear Gaussian filter is determined by a, usually chosen to be around

(2AT+l)/6, as to be mostly encapsulated by the bounding square. Figure 3,14b illustrates the

configuration of a 3x3 Gaussian filter in this case. Gaussian filters are sometimes preferred

over box filters because their effect on the Fourier spectnim of the image is better [GW92J.

w(6x, Sy) oc e (3.6)

From a local segmentation point of view, each linear filter weight may be interpreted as

being proportional to the believed probability that the pixel is related to the centre pixel.

"Relatedness" really means "in the same segment". The centre pixel usually has the highest

weight, as it should be the best estimator of its own original value when the noise is additive.

If the centre pixel is at coordinate (x, y), and another pixel is at (x + Sx, y + Sy), the implied

probability that they are in the same segment is given by Equation 3.7.

Pi(f'(x, y) and f'(x + 5x,y + 5y) in same segment) = — ,*' *
w(0, 0)

(3.7)

For example, the box filter trusts all the pixels in the window equally, giving them probability

one of being from the same source. It has been stated that the correlation between pixels is

often on the order of 0.9 to 0.95 [NH88]. From this point of view, the coefficients of the

box filter are quite reasonable. For the approximate 3x3 Gaussian filter in Figure 3.14b, the

side pixels are considered 2/4 = 0.5 correlated to the centre pixel, and the comer pixels
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1/4 = 0.25 correlated. This may be considered a primitive form of local segmentation, but

one which is unable to adapt to changing image structure.

All fixed linear filters will defocus an image, blurring edges as in Figure 3.13, and attenuat-

ing narrow lines and other fine structure. The behaviour worsens as TV increases. A positive

feature is that smoothing is very good in homogeneous regions corrupted by additive noise,

reducing the noise variance by up to a factor of (2N + I)2. What is required is a method to

distinguish between homogeneous and heterogeneous regions, to get the benefits of smooth-

ing without the disadvantage of blurring edges.

3.4.4 Rank filters

Rankfilters are designed to operate on a numerically ordered set of pixels. The pixelspi.. .

from the local neighbourhood are gathered and sorted into a new set p^).. .p(#), where

V» P(i)<P(i+i)- For greyscale images, the ordering is determined by pixel intensity, but there

is no obvious analogue for higher dimensional data such as colour pixels. Manipulation of

the ordered set of data originated as a way to improve the statistical robustness of traditional

estimates (such as the mean) when the data was contaminated [MR74, HubSij. Digital

images are often contaminated by noise. Thus, to some, it seemed natural to apply rank

techniques to image denoising.

The median

The simplest rank filter is the median filter. The median is the middle datum in a sorted

data sequence [Tuk71]. Just as the mean minimizes the average squared error, the median

minimizes the average absolute error. If the number of pixels is odd, the median is uniquely

defined. When it is even, there are an infinite number of solutions between the two middle

pixels. In this case, the average of the two middle values is usually taken as the median.

Equation 3.8 summarizes the calculation of the median, PMED> of M pixels.

if M odd

if M even
(3.3)



46 Chapter 3. Local Segmentation in Image Processing

6
5
4

5
7
6

8
6
5

Figure 3.15 gives an example of the median applied to a 3x3 sub-image. The pixels values

are homogeneous with a small amount of additive noise. In this situation the median would

choose the filtered value to be 6. The mean, p, of these pixels is 5.78, which would usually be

rounded to 6. When the noise is additive and symmetric, the mean and median will usually

agree on the filtered value, as both estimate tht centre of a distribution.

( 4 5 5 5 6 6 6 7 8 ) pMED = 6 £=5 .78

Figure 3.15: Application of the median to a homogeneous block of pixels.

Consider the situation in Figure 3.16, whereby the centre pixel from Figure 3.15 has been

contaminated by impulse noise. The pixel values are no longer homogeneous. A box filter

would produce a filtered estimate of 13.1, the outlying pixel value 73 having pulled the mean

away from the true centre. The breakdown point of the median is 50% because it is still able

to produce useful estimates when up to 50% of pixels are contaminated. In this case, the

median is 6 again — a much better estimate than the mean.

( 4 5 5 5 6 6 6 8 7 3 ) pMED = 6 £=13 .1

Figure 3.16: Application of the median to a homogeneous block with impulse noise.

In the previous two examples the pixel blocks were meant to be homogeneous. When the

noise is additive, the mean and median behave similarly. In the presence of impulse noise

the median is superior to the mean, as it can cope with up to 50% contamination. A good

structure preserving filter must also function well in the presence of edges. Figure 3.17 shows

a 3x3 pixel block containing two noiseless segments. As expected, the mean averages across

the edge. The median correctly chooses 3 as its filtered estimate, making it appear to have

special structure preserving abilities.

Figure 3.18 gives a similar example, but now the centre pixel is on the comer of a noiseless

segment. The median in this case is 8 — the value belonging to the alternate segment.

This illustrates that the median is implicitly performing primitive local segmentation. In the

( 3 3 3 3 3 3 8 8 8 ) PMED = 3 p = 4.67
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Figure 3.17: Application of the median to a noiseless edge block.

presence of two distinct segments, the median chooses a pixel from the segment containing

the majority of the pixels from the window. For a 3x3 window, this decision rule fails

whenever the intersection of the local window with the centre pixel's segment consists of

fewer than five pixels. When the window contains more than two segments, the median's

behaviour is a more complicated function of the segment populations.

( 3 3 3 3 8 8 8 8 8 ) pMED = 8

Figure 3.18: The median (incorrectly) implicitly segmenting a noiseless corner block.

The weighted median

The simple approach to local segmentation that the median takes causes it to fail when the

centre pixel belongs to a minority segment. Unfortunately, thin lines and other fine structure

correspond to this situation. Instead of moving toward a local segmentation analysis of the

problem, the concept of the median has been generalized to handle various special cases.

A popular variant is the centre weighted median [Bow84]. The philosophy of the centre

weighted median is to increase the size of the ordered set of pixels by adding c extra dupli-

cates of the centre pixel, before taking the median. The value of c depends on the number of

pixels in the window, and the type of structures one wishes to preserve [KL91].

For 3x3 windows, c = 2 could be used to preserve corner structures like the one in Fig-

ure 3.18. Figure 3.19 shows that when the centre weighted median is used, the corner pixel

is correctly filtered as 3. The duplication of the centre pixel simply improves the probability

that the centre pixel will belong to the majority segment. For the plain median filter, the cen-

tre pixel needs to be in a segment having at least fiV/2] members, where [*•] denotes round-
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-v ing to the nearest integer. The weighted median reduces this requirement to f(JV - c)/2]

pixels. This improvement comes at the cost of reducing its breakdown point.

( 3 3 3 3 3 3 8 8 8 8 8 ) pMED = 3 £=5 .77

Hgure 3.19: Using the centre weighted median (c = 3) on a noissiess corner block.
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Further variations on the median

Figure 3.20 illustrates the application of the median and centre weighted median filters to

a greyscale image. Despite their obvious failure on such a basic, albeit contrived, example,

these median based filters continue to be used as components in image processing systems.

Many extensions to the median have been suggested to overcome its defects [Tag96, GO96,

EM00]. These techniques suffer from not seriously attempting to diagnose the structural

features present within the local region [KL91], or require sets of parameters to be estimated

from a training set [CW00].

Figure 3.20: (a) original image; (b) 3x3 median filtered; (c) 3x3 weighted median, c = 3.

The limitations of median based approaches are not due to the median operator itself, but to

its misapplication to heterogeneous data. The time spent on generalizing the median to two

dimensional image data may have been better spent concentrating on modeling the underly-

ing image from a local segmentation point of view. Local segmentation would suggest that

pixels should first be appropriately segmented into homogeneous groups. The median could

then be applied just to the pixels belonging to the segment containing the centre pixel.

3.4.5 Locally adaptive filters

An adaptive denoising algorithms adjusts the functionality of the filter for each pixel in

response to an image's local properties. One would expect this to improve performance over

the static methods already discussed. Most adaptive algorithms are based on either or both

of the following two principles, whether they acknowledge it or not:

1. Pixels that are spatially close are more likely to be in the same segment.

2. Pixels that are similar in intensity are more likely to be in the same segment.

Adaptive denoising algorithms apply these principles in order to use only those pixels in

the same segment as the centre pixel for denoising. This grouping can be seen as a partial

step of local segmentation, whereby a homogeneous segment involving the centre pixel is

formed. Perhaps surprising is that the same two principles are also the basis for most global

image segmentation algorithms. This suggests that segmentation and denoising are highly

related tasks. In Chapters 4 and 5, this fact will be used to develop local segmentation based

denoising algorithms.

The Kuwahara filter

Given a 5x5 window, the Kuwahara filter [Kuw76] examines the nine unique 3x3 regions

which incorporate the centre pixel, shown with a bold outline in Figure 3.21. The mean of

the 3x3 window with the lowest variance is used as the denoised estimate. In terms of local

segmentation, utilizing the 3x3 window with lowest variance increases the chance that the

mean was computed from a homogeneous part of the image. If all global segments in the

image are at least 3x3 in size, then at least one of the nine candidate regions containing the

centre pixel will be truly homogeneous. Unfortunately this will not necessarily be the case.

There are many obvious cases where the Kuwahara filter is forced to choose a mean from

nine heterogeneous regions, resulting in blurring. For example, in Figure 3.21 the window

surrounded by a dotted line has the lowest variance. Unfortunately, that window's mean is

also highly biased to an intensity not equal to that of the centre pixel.
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Figure 3.21: The Kuwahara filter considers nine 3x3 regions within a 5x5 window.

Despite its failings, the Kuwahara technique illustrates two important points. Firstly, the case

where the pixel being processed is at the centre of the window is not the only useful case;

each pixel participates in many overlapping windows. Secondly, the Kuwahara filter chooses

the best fitting model from a set of candidate models using an objective criterion. Both these

ideas are exploited by local segmentation denoising algorithms in Chapters 4 and 5.

Gradient inverse weighted smoothing

Gradient inverse weighted smoothing [WVL81J, or GIWS, is an adaptive linear filter for

greyscale images. The weight for each pixel is inversely proportional to the intensity differ-

ence between it and the centre pixel. This is shown in Equation 3.9, where f is the noisy

image. The max operator prevents division by zero when two pixels have the same value.

w(6x, 5y) o c :
niax{§, \f'(x 5y) - f'(x,y)\)

(3.9)

There are two variants of the GIWS filter: the first includes the centre pixel in the weighted

average, while the second one does not. If the centre pixel is included it will always be given

51

a weight of 2. If not included, GIWS becomes resistant to single pixel impulse noise [Hig91].

If the image is unaffected by impulse noise, the former variant should be used, as it will give

more smoothing in the presence of additive noise.

Figure 3.22 gives an example of GIWS applied to a noiseless 3x3 corner block. The resultant

weights are higher for those pixels in the centre pixel's segment (intensity 3) than those in

the other segment (intensity 8). The smoothed estimate p is 3.56 when the centre pixel is

included in the linear combination, and 3.71 when omitted. Ideally the estimate should be

3, but in both cases it has; been polluted with values from the other segment. The extent to

which this occurs may be controlled by modifying the ^ in the denominator of Equation 3.9.
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(c) ^ = 3.56

Figure 3.22: Gradient inverse weighted smoothing (GIWS): (a) original pixels; (b) computed
weights, unnormalized; (c) smoothed value when centre pixel included.

The failure of GIWS in Figure 3.22 may be attributed to its refusal to make absolute deci-

sions about which pixels belong together. Its soft cut-off function, shown in Figure 3.23,

allows information from neighbouring segments to diffuse into the current segment. A local

segmentation approach would suggest the use of a hard cut-off to explicitly separate pixels

from different segments. The cut-off point would be related to the natural level of variation

within image segments. For the example in Figure 3.22, a hard-cut off function would have

filtered the block exactly, given any reasonable cut-off point.

Sigma filter

Lee's Sigma filter [Lee83J is based on the alpha-trimmed mean estimate for the centroid of a

data set [RL87], Firstly, the standard deviation, 5, of the pixels in the window is calculated.

The filtered value is then set to the average of those pixels within 2s of centre pixel. If the

number of pixels taking part in the average is too small, Lee recommends taking the average

of all the non-centre pixels. Lee claims that the Sigma filter performs better than the median

and GIWS with the centre pixel included.
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Figure 3.23: Pixel weighting function for the GIWS adaptive denoising algorithm.

Figure 3.24 demonstrates the Sigma filter on a corner block. The standard deviation of the

block is 2.5, resulting in the averaging of all pixels within 5 intensity units of the centre pixel.

Unfortunately, all the pixels are in this range, causing the Sigma filter to revert to a box filter.

This produces a blurred estimate of p = 5.78.

a = 2.50 p = 4x3+5x8 = 5.78

Figure 3.24: Demonstration of the Sigma filter on a noiseless corner block.

The Sigma filter tries to average only those pixels similar enough to the centre pixel. This

is an explicit form of local segmentation using a hard membership function. The similarity

measure uses the local variance to control the maximum intensity deviation a pixel may have

from the centre pixel while still being considered part of the same segment. In terms of

local segmentation, the local variance is an estimate of the natural level of variation within
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segments. In homogeneous regions it is a good estimate, but around edges it will be too high.

Thus the variation estimate is poor for those cases where its value is crucial, and acceptable

for those cases where it is not overly important.

The local variance is very sensitive to contamination from sources such as impulse noise. To

a lesser extent it also suffers from the small amount of pixel data used to calculate it. The

Sigma filter could be improved by replacing the local variance with a globally estimated or a

priori supplied natural level of variation. This is the approach taken by the local segmentation

based denoising algorithms of Chapters 4 and 5. The fact that the Sigma filter also falls back

to an overall average when too few pixels are available for averaging implies that it does not

allow segments to consist of a single pixel.

Anisotropic diffusion

Anisotropic diffusion [PM90, BSMH98] is a highly iterative process which slowly adjusts

pixel intensities to make them more like their neighbours. In its original form it has been

shown to be very similar to GIWS [Wei97J. Equation 3.10 describes the anisotropic diffusion

process: t is the iteration number; Q is the set of neighbouring coordinates, usually the four

nearest ones; M is the number of neighbours, usually four; A controls the rate of smoothing;

ip is a user-supplied function; and u is a user supplied parameter to be described later.

The ip function is the most important influence on behaviour of the diffusion process. Equa-

tion 3.11 lists the three most commonly used functions. Figure 3.25 plots these three func-

tions with respect to the intensity difference, d, for a = 5. Note that the functions have been

scaled to fit them together. Only the relative weights for a particular function are meaningful.

Standard ip(d,a) = 2d

Lorentz i/)(d,a) -

Tukey 4>(d,a) --

2d
2cr2+d2

d(l-(iff if d<\a\ else 0

(3.11)
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Figure 3.25: Anisotropic diffusion V weighting functions when o — 5. Each function has
been scaled for comparison purposes.

The Standard formulation forces a pixel value toward the intensity of each neighbour, at a

rate directly proportional to its intensity difference from that neighbour. Equation 3.12 shows

that Standard diffusion can be interpreted as static linear filter. Equal averaging of all five

pixels in the local window occurs when A = 0.4.

ft+i(x,y) =
2A

M
[ft(xf,y')-ft(x,y)]

(x',y')6Q

2A

(3.12)

(3.13)

The problem with Standard diffusion is that, if left for many iterations, the denoised image

would become completely homogeneous. In a fashion similar to the GIWS in Section 3.4.5,

all neighbouring pixels receive some weight, no matter what intensity they have. Therefore,

information from unrelated segments can diffuse across segment boundaries.

The Lorentz formulation attempts to reduce pixel leakage between segments by slowing the

diffusion process at some point, defined by the parameter a. This parameter provides a

sense of how different pixel values can be while still being in the same segment. The plot

of the Lorentz weighting function in Figure 3.25 reaches a maximum when d = V2a, and

decays thereafter. The decay is quite slow, so a large difference will still be given a signif-

icant weight. Thus pixels from different segments can still influence each other, eventually

producing a homogeneous image.

The Tukey formulation takes the Lorentz idea further and completely shuts down diffusion

when d > a, giving maximum weight when d = a/VE. A neighbouring pixel value deviat-

ing more than a intensity levels from the centre pixel will have no influence whatsoever. In

local segmentation, the a parameter may be considered proportional to the natural level of

variation of pixel values within a segment. For the simple case of constant intensity segments

with additive noise, this would relate to the standard deviation of the noise. The use of the

Tukey function ensures that the final image will never become a homogeneous image, with

the side-effect of being unable to preserve contrast differences less than a.

The X parameter controls the speed at which diffusion occurs. It is recommended that ) be

made small and the number of iterations large, as to more closely approximate the theoreti-

cally continuous diffusion formulae. It must be noted that the diffusion process is very slow,

with thousands of iterations being common. This also usually requires that all intermediate

results be kept to floating point accuracy.

Adaptive smoothing

Adaptive smoothing [SMCM91] claims to be strongly related to anisotropic diffusion and

GIWS. It was designed to denoise both intensity and range images. Instead of using the

intensity difference to weight neighbouring pixels, a more thorough estimate of the gradient

is used, shown as the V operator in Equation 3.14. The parameter a is user-supplied, and

controls the scale at which the filter works.

w{ox, oc e (3.14)
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From a local segmentation perspective, the gradient term discourages the incorporation of

pixels from different segments, as the gradient between them would cross a segment bound-

ary and therefore be very high. Unfortunately, gradient functions are usually too coarse too

accurately control smoothing around fine image details [Smi95].

SUSAN

SUSAN was introduced in Section 3.3.3 in regard to its use of local segmentation principles

for edge and corner detection. SUSAN gathers the set of neighbouring pixels which are

most similar in intensity and closest in position to the centre pixel. This set is called the

US AN. The topographic pattern revealed by plotting the size of each USAN may be used to

determine the position of edges. Smith realized that a weighted average of the pixels within

an USAN form a denoised estimate of the centre pixel [Smi95, Smi96, SB97]. Unlike the

denoising algorithms described so far, SUSAN exploits both the similarity of pixel intensities

and their spatial proximity to the centre pixel, Equation 3.15 describes the resulting SUSAN

weighting function, where a is a spatial threshold and t is a brightness threshold. The centre

pixel is excluded from the average.

W{5X, 6y) OC but with w{0,0) = 0 (3.15)

Due to its exponential-of-sums form, the weighting function is separable into its spatial and

intensity components. Ignoring that fact that the centre pixel receives no weight, the spatial

component is an isotropic 2-D Gaussian distribution with variance a2. Figure 3.26 plots

this function for a — 4, the default value used by Smith's implementation2. By default,

SUSAN uses a 37 pixel circular 7x7 mask (see Figure 4.46e). The choice of a = 4 prevents

the Gaussian spatial weighting function from extending very far. Thus the weights for the

closest and furthest pixels differ by less than a factor of two when using a 37 pixel mask.

The intensity difference component is the positive half of a Gaussian function with variance

t2f2. Figure 3.27 plots this function for t = 20, the value Smith claims works well for all

images [Smi95]. SUSAN's Gaussian inter, ky weighting function effectively cuts off after

2Available from h t t p : / /www. fmrib. ox. ac . uk/~steve/susan/
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Relative spatial weight

-3 -2

Figure 3.26: The SUSAN spatial weighting component when a = 4, ignoring thatto(0,0) = 0.

three standard deviations. This corresponds to a intensity difference of 3i/\/2, which is

42 when t = 20. SUSAN's intensity weighting is much closer to a hard cut-off than the

hyperbolic one used by GIWS, already seen in Figure 3.23.

Figure 3.28 gives an example of SUSAN denoising a 3x3 window. Due to the smaller mask,

a was reduced to 2. For this example t = 2.5 was chosen, resulting in a good filtered value

of p = 3.i4. The SUSAN algorithm is very sensitive to the choice of t. If the default values

had been used, the denoised estimate would have been about 6. If the slightly lower t = 2

was used, it would have been 3.02. If t is chosen poorly, it seems that SUSAN introduces

noise into its filtered estimate. My experiments have shown that t should be proportional to

the natural level of variation within the image. For the case of additive zero-mean Gaussian

noise with variance s2, setting t = 3s works well.

When denoising, SUSAN gives no weight to the centre pixel. This has the advantage of

helping to suppress impulse noise, but the disadvantage of reducing the amount of smooth-

ing when the centre pixel is legitimate. SUSAN has an additional mode which has not been
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Figure 3.27: The SUSAN intensity difference weighting component when t = 20.
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Figure 3.28: SUSAN denoising: (a) original pixels; (b) spatial weights, unnormalized, a - 2;
(c) intensity difference weights, unnormalized, t = 2.5; (d) denoised value.

mentioned yet. When the weights for all the neighbouring pixels are too small (correspond-

ing to a weak USAN), SUSAN ignores them and uses the median of its eight immediate

neighbours instead. In terms of local segmentation, this mode is invoked when no pixels

appear to belong in the centre pixel's segment.

SUSAN's denoising outperforms the box filter, the median, GIWS, and the Saint-Marc's

adaptive smoothing method [Smi95]. It takes the intensity weighting idea from GIWS, but

modifies it to behave more like a hard cut-off function. Although the intensity weighting

function is continuous, it effectively cuts off to zero for differences greater than 3t or so.

The introduction of a spatial weighting component, ignored by most denoising algorithms,
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also helps it to perform better. The main drawback is that the brightness threshold must

be supplied. Despite this, SUSAN is one of the best and fastest local denoising algorithms

available, in part due to its implicit application of the local segmentation principle.

3.4.6 Filtering based on global segmentation

It is po. Me to use a global segmentation algorithm to perform image denoising. Imagine a

piece-wise constant image corrupted by additive noise, and a segmentation algorithm which

can segment it correctly. The average of the pixels in each segment should be close to the

constant value that originally coloured each segment. By replacing each pixel with the mean

of the segment it belongs, the image is denoised. The problem with this scheme is simply

the difficulty of achieving perfect global segmentation.

Hussain et al [HR94] take a hybrid approach, using a combination cf a Gibbs-Markov ran-

dom field and relaxation labeling to isolate segment boundaries globally. A local filter is

then used to average the centre pixel with neighbours on the same side of a boundary, in

regions with no boundaries, all pixels are averaged and thus it behaves exactly as the box

filter in Section 3.4.3. Without providing numerical results, they claim to have better subjec-

tive results when compared to simple averaging. Unfortunately, when the high noise is high,

their algorithm suffers because the distinction between noise and structuu; is less obvious.

It is unclear why they did not just average all the pixels from global segm&hts rather than

take local averages. I expect it is due to the fact that most large segments will exhibit some

spatial variation in intensity. In these cases a local average could be a better estimate of the

underlying pixel value when compared to a segment-wide average.

Watershed segmentation has also been adapted to denoising [HH95, HH99]. The image is

first segmented into "catchment basins". These basins are smaller subsets of larger segments,

and are represented by the mean of the pixels they contain. For a given basin, B, those

neighbouring (spatially connected) basins with means considered close enough to B's mean

are incorporated into B. The pixels in B are then set to the aggregated mean. The criteria for

closeness can vary. In the early paper [HH95], the closest 50% neighbouring basin means

are used, whereas later [HH99], only those means within some difference threshold, T, were

incorporated. They claim to outperform various alters, including anisotropic diffusion. The



60 Chapter 3. Local Segmentation in Image Processing 3.5 Conclusions 61

only test image used was a simple 3-class piece-wise constant synthetic image containing

very high contrast edges corrupted by additive zero-mean Gaussian noise with variance 302.

They admit their technique depends on the choice of T, which is related to the noise level.

The challenge is to estimate accurately the natural intensity variation one might expect to

observe within each segment.

3.5 Conclusions

Image segmentation algorithms attempt to partition an image into separate groups of related

pixels, called segments. Pixels are usually considered related if they have similar values,

or are located near each other. Clustering is a form of segmentation which ignores spatial

information. Segmentation is considered and essential component of image understanding

systems. Although segmentation of arbitrary images is inherently difficult, the principles

described in this chapter have been applied successfully to many tasks.

Local image processing algorithms assume that most of the information about a pixel can be

found within the small neighbourhood of pixels surrounding it. Local algorithms are often

used for low level tasks, such as denoising and edge detection. The local neighbourhood may

be considered a tiny image, but with different expected properties. It contains fewer pixels,

is made up of fewer distinct regions, and has a higher proportion of pixels in the margins.

Segmentation is a fundamental image processing task. Pixels within segments are homo-

geneous with respect to some predicate, and hence can be used to denoise the image while

preserving structure. The boundaries between segments correspond directly to discontinu-

ities in the image, hence edge detection is achievable in the same framework. It would

seem obvious to apply these ideas directly to the sub-images used in local image processing.

Strangely, much of the literature seems to treat local techniques differently, preferring to use

ad hoc methods instead, which usually require image dependent parameters to be supplied,

or estimated from training sets.

Image denoising algorithms are a good basis for examining the state of the art for modeling

images on a local level. The SUSAN algorithm is currently one of the best local, one-pass

image denoising algorithms available. During its initial development, SUSAN used a form

of explicit local segmentation. Pixels similar enough to the centre pixel were assimilated

using a hard cut-off function, and then averaged. But rather than refine the local segmenta-

tion criterion used, SUSAN moved to an implicit local segmentation, admitting all the local

pixels to the local segment, but allowing their contribution to vary. This formulation made it

difficult to link the brightness threshold parameter to a specific image model.

This thesis advocates a progression toward an explicit local segmentation model, via the

suitable application of global segmentation techniques to local image data. The local seg-

mentation principle states that the first step in processing a pixel should be to segment the

local region encompassing that pixel. The segmentation algorithm should automatically de-

termine the number of segments present in an efficient manner, and any parameters should be

estimated from the image itself. The information obtained from local segmentation should

sufficiently separate the noise and structure within the region. The structural information

may then be used to achieve goals such as denoising and edge detection.



Chapter 4

Local Segmentation applied to

Structure Preserving Image Denoising

4.1 Introduction

The local segmentation principle may be used to develop a variety of low level image pro-

cessing algorithms. In this chapter it will be applied to the specific problem of denoising

greyscale images contaminated by additive noise. The best image denoising techniques at-

tempt to preserve image structure as well as remove noise. This problem domain is well

suited to demonstrating the utility of the local segmentation philosophy.

A multilevel thresholding technique will be used to segment the local region encompassing

each pixel. The number of segments will be determined automatically by ensuring that the

segment intensities are well separated. The separation criterion will adapt to the level of ad-

ditive noise, which may be supplied by the user or estimated automatically by the algorithm.

The resulting segmentation provides a local approximation to the underlying pixel values,

which may be used to denoise the image.

The denoising algorithm presented is called FUELS, which stands for "filtering using explicit

local segmentation". FUELS differs from existing local denoising methods in various ways.

The local segmentation process clearly decides which pixels belong together, and does so

democratically, without using the centre pixel as a reference value. If the computed local
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approximation suggests changing a pixel's value by too much, the approximation is ignored,

and the pixel is passed through unmodified. The fact that each local approximation overlaps

with its neighbour means that there are multiple estimates for the true value of each pixel.

By combining these overlapping; estimates, denoising performance is further increased.

FUELS will be shown to outperform state-of-the-art algorithms on a variety of greyscah

images contaminated by additive noise. FUELS' worst case error behaviour will be shown

to be proportional to the noise level, suggesting that it is quite adept at identifying structure

in the image. The denoised images produced by FUELS will be seen to preserve more image

structure than algorithms such as SUSAN and GIWS.

4.2 Global image models

An image model is a mathematical description of the processes affecting the final pixel values

in an image. As described in Section 2.5, these processes may include atmospheric effects in

the scene, noise in the capture device, and quantization of pixel values. It may be possible to

construct a model which accounts for all these steps, but it would probably consist of many

difficult to determine parameters. Often a simpler model can incorporate the main factors

and still achieve good results.

Modeling the steps from acquisition to a final digital image is sufficient, but not necessary,

for successful image processing. In many cases the full acquisition history may not even

be known. In any case, some assumptions or prior beliefs regarding the properties of the

original scene are also required. The characteristics of the light source and the object sur-

faces will influence greatly how we expect the image pixel values to be distributed spatially

and spectrally. The number, distance and size of objects in the scene will also affect the

proportion, scale and sharpness of edges in the image.

For example, consider the artificial images in Figure 4.11. The first is greyscale light intensity

image of a simple object. The second image is also of the same object, except that the

intensity of each pixel represents the distance from the camera to each point in the scene.

1 These images are part of the Range Image Segmentation Comparison Project at the University of South
Florida, h t t p : //marathon. csee . usf. edu/range/seg-comp/images. html
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This is an example of a range image, for which the "light source" is actually a distance

measurement device. It has been shown that pixel intensities in a range image usually vary

in a spatially linear manner, due to the polyhedral nature of most objects [KSOO]. However

this may not be an appropriate assumption to make when analyzing low resolution fingerprint

images in a criminal database. There one would expect many ridges and high contrast edges.

This thesis focuses on greyscale light intensity images. The generalization to other types of

images is considered in Chapter 6.

Figure 4.1: Two images of the same scene: (a) light intensity; (b) range, darker is closer.

4.2.1 The facet model

For greyscale image data, variations on the facet model [HW81] are most commonly used.

The facet model assumes that a digital image is a discrete approximation of a piece-wise

continuous intensity surface. Each piece is disjoint and is called a facet or segment. The

underlying pixel values in each facet are assumed to follow a two dimensional polynomial

function. This polynomial fit can be of any order. Figure 4.2 provides an example of a one

dimensional discrete signal approximated by increasingly higher order polynomial curves.

The simplest facet approximation is a zeroth order polynomial of the form f(x,y) = a,

where a is a constant. Each pixel in a constant facet is assumed to have the same value.

For greyscale data this would be a scalar representing the intensity, but for colour data it

would be an RGB vector. An image containing constant facets referred to as being piece-
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Figure 4.2: One dimensional polynomial approximation: (a) the original signal; (b) constant;
(c) linear; (d) quadratic.

wise constant. Piece-wise constant image models are commonly used in image processing.

They only have one paraneter to estimate, and are simple to manipulate.

First order polynomial approximation in two dimensions has the mathematical form of a

plane, namely f(x, y) = a + bx + cy. An image containing facets of this type is piece-wise

planar. Pixel values in a planar facet are linearly dependent on the their position within

the facet. Planar facets are more flexible than constant facets, but at the expense of having

needing three parameters to be estimated for them. If b and c are small enough, and we are

concerned only with a small area within a larger planar facet, then a constant approximation

may be sufficiently accurate.

4.2.2 Generalizing the facet model

The facet model is the basis for the more general segmentation-based approach to image

modeling. The main difference is that the requirement for a polynomial approximation is

relaxed. Instead, the interior of a segment may be modeled using any mathematical descrip-

tion which defines a homogeneity criterion for the segment. For example, texture is often

modeled, not as a functional surface, but as a low order Markov model [Hua84]. A first or-

der Markov model is probability distribution over pairs of pixel values. This model is quite

different from a polynomial one, but it can still be used to define a homogeneity criterion.

An important attribute of any homogeneity criterion used in image segmentation is whether

or not it takes spatial coherence into consideration. As discussed in Section 3.2.1, techniques

such as thresholding consider only pixel values, and not their relative spatial positions. This

can produce unconnected segments, which may or may not be desirable.
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4.2.3 Image sampling

Consider the simple undigitized monochrome scene in Figure 4.3a. It consists of a square

object of uniform high intensity on a dark background of uniform low intensity, and is per-

fectly piece-wise constant. Figure 4.3b illustrates the discretization of this scene into a 9 x 11

digital image. The intensity of each pixel in the final image, shown in Figure 4.3c, is set to

the average light intensity of the area each pixel covers in the original scene. The resulting

image is also piece-wise constant, consisting of two distinct segments. This is because the

boundary between object and background coincided with the alignment of the pixel grid.

a

Figure 4.3: Discrete sampling of an object aligned to the pixel grid: (a) original scene;
(b) superimposed sampling grid; (c) digitized image.

Figure 4.4 shows what occurs when an object in a scene does not align exactly with the sam-

pling grid. The sampling process has produced a range of pixel intensities in the digitized

image. Each pixel on the object boundary has received an intensity which is a blend be-

tween the intensities of the two original segments. In fact, there are now seven unique pixel

intensities compared to the original two.
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Figure 4.4: Discrete sampling of an object mis-aligned with the pixel grid: (a) original scene;
(b) superimposed sampling grid; (c) digitized image.
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Most observers would still assert the existence of only two segments, but would have some

difficulty assigning membership of each boundary pixel to a specific segment. One inter-

pretation is that those pixels with intermediate intensities have partial membership to both

segments. If an application requires a pixel to belong only to one segment, that segment

in which it has maximum membership could be chosen. Alternatively, it could be claimed

that the image is still piece-wise constant, but now consists of ten segments. These differing

interpretations highlight the fact that an image model for a continuous scene may no longer

apply to its digitized counterpart.

4.2.4 Edges and lines

Edges are the boundaries between segments. Lines may be regarded as very narrow seg-

ments, having two edges situated very close together. Figure 4.5 gives a one dimensional

example of two types of edges and the two corresponding types of lines. The image models

used for edges and lines are not unrelated to the models used for the interior of segments.

Figure 4.5: (a) step edge; (b) line; (c) ramp edge; (d) roof.

The step edge defines a perfect transition from one segment to another. If segments are piece-

wise constant and pixels can only belong to one segment, then a step edge model is implicitly

being used. If a segment is very narrow, it necessarily has two edges in close proximity. This

arrangement is called a line. An arguably more realistic model for edges is the ramp edge. A

ramp allows for a smoother transition between segments. This may be useful for modeling

the blurred edges created from sampling a scene containing objects not aligned to the pixel

grid. Two nearby ramp edges result in a line structure called a roof.

Edge profiles may be modeled by any mathematical function desired, but steps and ramps

are by far the most commonly used. If a ramp transition occurs over a large number of pixels,
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it may be difficult to discriminate between it being an edge, or a planar facet. If pixels along

the ramp are assigned to a particular segment, the values of those pixels may be dissimilar to

the majority of pixels from inside the segment.

4.2.5 A useful noise model

As described in Section 2.4, different types of noise may be introduced at each step of the

image acquisition process. The general functional form for the noise component, n{x, y), at

each pixel is given in Equation 4.1. Parameters x and y are the spatial position of the pixel in

question, 9 is a vector of fixed parameters determining some properties of the noise such as

its intensity and spread, and f is the original image which may be required if the noise term

is data dependent. This formulation has scope for a huge number of possible noise functions.

n(.T, y ; 0, f) (4.1)

A simple, but still useful and versatile noise model is additive zero-mean Gaussian noise

which is independently and identically distributed (i.i.d.) for each pixel. Under this model

the noise adds to the original pixel value before digitization. The noise term may be written

like Equation 4.2, where "~ J\f{fi, a2)" denotes a random sample from a normal distribution

of mean \i and variance a2. Figure 4.6 plots the shape of this noise distribution when a2 = 1.

n{x,y; a2) ~ Af(0,a2) (4.2)

Because the noise is additive and symmetric about zero, it has the desirable effect, on aver-

age, of not altering the mean intensity of the image. It only has one parameter, the variance

a2, which determines the spread or strength of the noise. Although the work in this thesis

assumes that the noise variance is constant throughout the image, it would be possible to

vary it on a per pixel basis. This and other extensions are discussed in Chapter 6.

Consider a constant facet containing pixels with intensity z. After A/"(0, a2) noise is added,

it is expected that 99.7% of pixels will remain in the range z ± 3a. This is called the 3a
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Figure 4.6: The standard Gaussian distribution: z ~ j\f(0,1)

confidence interval for z [MR74]. Examination of Figure 4.6 shows that very little proba-

bility remains for values of z outside the confidence interval. Table 4.1 lists the number of

standard deviations from the mean for which a given proportion of a normally distributed

data is expected to lie.

Fraction of
data (%)

50.0
68.3
90.0
95.0
95.4
98.0
99.0
99.7

Number of standard
deviations from mean

0.674
1.000
1.645
1.960
2.000
2.326
2.576
3.000

Table 4.1: Confidence intervals for normal;;- distributed data.

Figure 4.7 shows the effect of two different noise variances on the s q u a r e image, which

has segments of intensity 50 and 200. When a — 10, the two segments remain distinct.

When a is quadrupled, the square obtains some pixels clearly having intensities closer to the

original background intensity. After clamping, the 3<7 confidence interval for the background

is50±120 = (0,170),and200±120 = (80,255) for the square. These limits have an overlap
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of 90, or approximately 2a. On average, this situation would result in about 5% of pixels

being closer to the opposing segment mean. For the 11 x 9 s q u a r e image this would affect

about 5 pixels, roughly correspond^ w >h what is observed.

Figure 4.7: The effect of different Gaussian noise levels: (a) no noise; (b) added noise
a = 10; (c) added noise a = 40.

For piece-wise constant segments, the noise standard deviation defines a natural level of

variation for the pixel values within that segment. The natural level of variation describes

the amount by which pixel values may vary while still belonging in same segment. For the

case o* planar segments, the natural level of variation depends on both the noise level and

the coefficients of the fitted plane. If a global planar segment only has a mild slope, then

the variation due to the signal may be negligible for any local window onto that segment.

The natural level of variation in the window will be dominated by the noise rather than the

underlying image model.

4.2.6 Pixel quantization

Section 4.2.3 discussed the side-effects of sampling a continuous scene on a discrete image

grid. The sampled pixel intensity is computed as an average or integral over a small area of

the scene. This intensity must also be quantized if it is to be stored in digital form [GN98],

The number of bits per pixel (bpp), L, is typically around 8 to 16. Most "everyday" images

use 8 bpp per band, but medical and scientific applications usually store data with higher

accuracy. The number of unique intensities that can be stored in L bpp is Z — 2L, which

comes to Z = 256 for 8 bpp images.

Consider the one-dimensional signal drawn with a dotted line in Figure 4.8. Quantization

to 8 levels produces the signal plotted with the solid line. Due to the rounding processing,
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a quantized value, z, could have originally had any value in the range [z - 0.5, z + 0.5).

This quantization noise may be approximated using the standard deviation of a uniform

distribution of width 1, which is ^1/12, or about 0.29. Usually the other forms of noise are

at least an order of magnitude higher than this, so quantization noise can safely be ignored

by most applications.
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Figure 4.8: Effect of quantizing the signal intensity to 8 levels.

A situation where one may not wish to ignore quantization noise is when magnifying an

image by interpolating pixel values. By default, the midpoint of the quantization region

would be used as the true value of the pixel, but it is possible to choose the true value from

anywhere within the original quantization interval. The most appropriate value could be

decided by optimization of a suitable cost function, for example, to maximize the sharpness

of the interpolated image.

4.2.7 A suitable image model

The aim of this chapter is to demonstrate a simple form of local segmentation applied to

denoising greyscale photographic-type images. Equation 4.3 mathematically describes the

process of going from an undigitized noise-free image, f, to a noisy quantized version, f n.

After quantization there is a final clamping step to ensure the pixel values fall within the

legal range. Equation 4.4 describes the clamping process, which takes the noisy quantized

image, f'n, and produces the final image, f, available to the image processor.

f'{x, y) = clamp [ fn{x, y)} =

0 if /i(ar,l/)<0

Z-\ if f'n{x,y)>Z

f'n{x,y) otherwise

(4.4)

To that end a global image model with the following properties will be assumed:

1. The image is composed of disjoint segments.

2. Segment boundaries coincide with pixel boundaries .

3. Each pixel may belong to one segment only.

4. A segment interior may be well approximated by a constant grey level, particularly at

a local level.

5. Each pixel is corrupted by additive zero-mean Gaussian noise.

6. The noise variance is common to all pixels (and hence segments).

7. Quantization noise may be ignored.

8. Saturation effects from pixel clamping are to be ignored.

AP. image model assuming piece-wise constant greyscale segments with additive noise is

probably the simplest, but still useful, image model to use. In Chapter 6, the extension of the

principles outlined in this chapter to more complex image models will be discussed.

4.2.8 Image margins

When processing a whole image with dimensions XxY in a local manner, each pixel f(x, y)

is processed in turn using only its immediate pixel neighbourhood. Difficulties arise when
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processing pixels inhabiting the margins of the image, as these pixels have incomplete neigh-

bourhoods. Figure 4.9 illustrates this situation for /(0,0) when using a 3x3 window. The 5

pixels within the dotted window labelled ? are denoted as missing, and the remaining 4 are

denoted as available pixels.

L _ _ _

M l £ *•

r "k p f » • , « *

V if
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1

J

Figure 4.9: Incomplete 3x3 neighbourhoods when processing pixels at the image margins.

There are various approaches to handling this situation:

Constant fill In this scheme, missing pixels are replaced with a fixed constant value, most

commonly zero or mid-grey.

Wrap around The image is treated as a torus, as if the upper and lower, and left and right,

edges were spatially proximate. This is achieved by treating pixel coordinates in a

modulo fashion {x + X mod X,y + Y mod Y). Note that x + X is used to handle

negative coordinates.

Nearest neighbour Missing pixels take on values equal to their nearest available neighbour.

Average fill The missing pixels are set to the arithmetic mean of the available pixels.

Specialization The algorithm is specifically modified to handle the special cases where the

neighbourhood contains fewer pixels than normal.

The "constant fill" and "wrap around" methods are clearly inferior because they invent pixel

values bearing little relevance to the available pixels. The "specialization" method is desir-

able, but even when using a 3x3 window there are eight special cases to handle (four sides

plus four corners), which can make it difficult to implement efficiently.

Figure 4.10 pictorially describes the "nearest neighbour" approach. This technique is simple

to implement, and possesses the ability to preserve certain structure in the image. For exam-

ple, if the available pixels near the margin form two separate populations, the extrapolated

neighbourhood would too. The disadvantage is that some pixel values, such as the comers,

are duplicated more than once, and hence over-represented in the extrapolated set. This can

bias the results, especially if the available pixels are very noisy.

Figure 4.10: Missing pixels are easily replaced with their nearest neighbours.

The "average fill" method chooses values for the missing pixels which are closest, in a least

squares sense, to the available pixels. This is desirable when the available pixels are homo-

geneous. However, when the available pixels are heterogeneous, this method would invent

a third class of pixels aii having the same value. It also requires more computation that the

"nearest neighbour" approach.

In this theses the "average fill" method will be used. The averaging process suggests it would

be more robust under noisy conditions when compared to "nearest neighbour". It is hoped

that it should have little effect on the overall results compared to "specialization", as the

margin pixels comprise only a small proportion of the total number of pixels in the image.

Consider a mxm square window applied to an XxY image. In Figure 4.11 the shaded area

contains pixels which have an incomplete neighbourhood. The outer dotted line denotes the

effective increase in image resolution when extrapolating missing pixels.

Equation 4.5 gives an expression for B, the ratio of missing pixels to the total number of

pixels in the image. This is die proportion of pixels, which, when at the centre of the window,

are forced to generate missing pixel values usnig one of the techniques just described.
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X+m-1

Figure 4.11: The pixels involved in border

Y+m-1

cases are shaded.

B==
(m is an odd positive integer) (4.5)

X Y

Table 4.2 lists the proportion of affected pixels for various common combinations of image

and neighbourhood dimensions. For the commonly used 3x3 window, about 1% of pro-

cessing involves missing pixels. This is not large enough to be

given the fact that the objects of interest are often

away from the margins.

a serious concern, especially

positioned near the centre of the image,

4.3 Measuring image similarity

In most of the experiments performed in this thesis, an original image, f, has controlled

amounts of noise, n, added to it to produce a noisy version, f. An example is given in Fig-

ure 4.12. A denoising algorithm produces an estimate, f, of the original image. In structure

preserving filtering it is desired that only noise, and not image structure, be removed. Thus

the aim is to produce f as "close as possible" to f.

4.3 Measuring image similarity
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m
3
3
3
5
5
5
7
7
7

X
320
512

1280
320
512

1280
320
512

1280

Y
240
512
960
240
512
960
240
512
960

B
1.45%
0.78%
0.36%
2.90%
1.56%
0.73%
4.33%
2.33%
1.09%

Table 4.2: Proportion of pixels at the margins for various mask and image sizes

'-igure 4.12: Noisy equals original plus noise: (a) original image, f; (b) additive noise, n;
(c) noisy image, f'=f+n

There are two different situations that may occur when measuring the quality of a denoised

image: when the original image is available, and when it is unknown. The first case usually

occurs in an experimental situation where a known image is artificially corrupted with noise.

The original image is ground truth, to which any denoised images may be compared directly.

The second case is the more realistic situation whereby a noisy image has been sourced, say

remotely from a space telescope, and one wishes to denoise it before further processing.

Here there is no ground truth with which to compare. In either case, there are subjective and

objective techniques for assessing the quality of denoised images.

4.3.1 Visual inspection

Visual inspection is a subjective process whereby a human viewer assesses the quality of an

image. In the case where ground truth is available, one or more assessors may perform a side

by side comparison of the denoised and original images. The comparison is usually rated us-
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ing predefined quality classes, such as "excellent", "fine", "passable", "marginal", "inferior"

and "unusable" [GW92]. This type of experiment requires that the viewing conditions be

strictly controlled. This includes factors like ambient lighting levels, the display hardware,

and the position of the assessor relative to the displayed images.

Figure 4.13 shows samples of what an assessor may be asked to examine. For this example

a reasonable assessment for the denoised image may be "passable", as there is blotchiness

in the foreground and background, and the top left corner of the bright square stands out as

being too dark. Obviously though, what is "passable" to one may be "marginal" to another,

and so on. However, most assessors will be consistent in their gradings, and a consensus

rating can usually be determined.

4.3 Measuring image similarity

Figure 4.13: Visual assessment using ground truth: (a) original image; (b) denoised image.

When ground truth is unavailable, it is still possible to perform a visual comparison by in-

specting the noisy and denoised images. Figure 4.14 shows this situation for the example.

Even without ground truth the assessor usually has some a priori beliefs on what features

are present in the original image, and the denoised image can be examined relative to these

beliefs. In effect, the assessor is determining the ground truth himself or herself. The hu-

man brain is quite good at identifying structure behind noise, so a skilled assessor could

use a noisy image as a guide to what is expected in the denoised output. The qualitative

descriptions described earlier can still be used.

4.3.2 Traditional quantitative measures

An objective measure for the quality of a denoised image would be very useful. One

traditional measure for the closeness of two data sets is the root mean squared error, or

If
fit

Figure 4.14: Visual assessment without ground truth: (a) noisy image; (b) denoised image.

RMSE [GW92]. When ground truth is available, the two data sets could be the denoised

image, f, and the original image, f. Equation 4.6 calculates the RMSE in this case.

RMSE =
\

Y-l X-l

j/=0 x=0

(4.6)

The RMSE is proportional to the disparity between two images. In the case of two equivalent

images, it is zero. For the case of additive zero-mean Gaussian noise, the RMSE between

the noisy and original images is exactly equal to the noise standard deviation.

The peak signal to noise ratio, or PSNR, is derived from the RMSE, and is measured in

decibels (dB) [RJ91]. This logarithmic measure is computed using Equation 4.7, where

Z — 1 is the maximum possible pixel intensity.

PSNR = (4.7)

RMSE and PSNR use the square of the pixel difference. This penalizes large errors very

heavily. For example, a single pixel in error by 100 will have the same contribution as

10,000 pixels in error by 1. An alternative measure, which aims to alleviate this potential

problem, is the mean absolute error, or MAE, calculated using Equation 4.8. The MAE

penalizes errors by their magnitude, and is less likely, compared to RMSE, to be biased by

occasional large errors.

Y-l A'-l

MAE=-^-YY
y=0 1=0

(4.8)
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The RMSE and MAE are useful in that they provide a number which can be compared

objectively. Their drawback is that they do not take into account the spatial distribution of

the pixel differences. Many small differences may be more tolerable than fewer larger errors,

especially if those errors occur at "busy" locations in the image. In fact, this perceptual

masking effect [TH94] is exploited by lossy image and audio compression algorithms. Large

errors clumped together, or near the image margins, may be preferred the same errors spread

around the image. There is evidence to suggest that RMSE may be well correlated to human

observers' subjective opinions [MM99]. This fact, combined with its simple formula, has

allowed RMSE to be used widely throughout the literature.

The worst case absolute error, or WCAE, is the magnitude of the single largest difference

between two images. It provides a measure of a denoising algorithm's worst case perfor-

mance. The calculation of the WCAE is given in Equation 4.9.

WCAE = argmax f(x, y) - f(x, y)
(*.»)

(4.9)

In an experimental situation, artificial noise is added to an original image to create a noisy

version thereof. Difficulties can occur if the original image already contains some noise. A

good denoising algorithm is likely to remove both the original and artificial noise compo-

nents, producing a denoised image which is less affected by noise than the original image

itself. In this situation one can not expect the denoised image to be the same as the already

noisy original. The original noise level is usually low compared to the artificial noise being

added, and can be safely ignored. Images generated by synthetic means, such ray-tracing

software [Ama87], can be made completely noiseless, not including quantization.

4.3.3 Difference images

A difference image has pixels representing the numerical difference between two images. If

[0, Z - 1] is the possible range of intensity values in the two images being compared, then

the range of the difference image will be [~Z + 1, Z - 1]. To view a difference image, the

pixel values must be mapped and clamped back to the legal range [0, Z - Ij. Equation 4.10

computes the difference image, d, between two equal-sized images, f\ and f2. If the two
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images are similar, the difference image mean should be 0, so the Z/2 term centres 0 at the

middle grey level. The clamping process has the side-effect of not being able to distinguish

errors with a magnitude greater than Z/2, but these should be rare.

d = clamp fi - f2 + —
L ^.

(4.10)

Figure 4.15 shows how a difference image can be used to compare a denoised image to

the original. The dark and light pixels in the difference image show where the denoising

algorithm did a poor job of estimating the original pixels. The mid-grey pixels around the

centre area represent where it did well. If the image were denoised perfectly, the difference

image would contain exactly the noise which was added.

Figure 4.15: Qualitative measure of filter performance: (a) original image; (b) noisy a = 40
image; (c) median filtered; (d) difference between original and denoised, mid-
grey representing zero.

In the previous example ground truth was available, as Figure 4.15a was synthetically cre-

ated. Usually, however, the noiseless image will be unavailable. The image processor must

use only the noisy image to recover the original pixel information. In this situation, only the

difference between the noisy and denoised version can be generated. Figure 4.16 gives an

example of this situation. Although there is less apparent structure in the difference image,
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there are some clumps of very bright and dark pixels near the corners of the square. These

errors could correspond to where the filter performed erratically, or to where there were very

noisy pixels. Without the original image it is difficult to determine which it is.

Figure 4.16: Qualitative measure of filter performance: (a) noisy image; (b) median filtered;
(c) difference between noisy and denoised, mid-grey representing zero.

4.4 Test images

In this chapter, different denoising algorithms will be compared. It is laborious to provide

results for a large set of images at each stage of the discussion. For this reason, one or more

images from the small set introduced here will be used consistently throughout this chapter.

The use of a larger set of image test set will be deferred until the final results are considered.

4.4.1 Square

The s q u a r e image in Figure 4.17 has already been encountered. It is an 8 bit per pixel

greyscale image of resolution 11 x 9. It consists of a 25 pixel square of intensity 200 atop

a 74 pixel background of intensity 50. It will be often used for illustrative purposes, and for

subjectively examining the effect of various techniques.

4.4.2 Lenna

The l enna image [Ien72j in Figure 4 J 8 has become a de facto standard test image through-

out the image processing ai?d image compression literature2. Its usefulness lies in the fact

2lenna is available from f tp: / /n ic . funet. f i/pub/graphics/misc/test-images/

Figure 4.17: The 11x98 bpp square test image.

that it covers a wide range of image properties, such as flat regions, fine detail, varying edge

profiles, occasional scanning errors, and the fact that so many authors produce results using

it as a test image. One interesting feature is that the noise in l e n n a seems to be inversely

proportional to the brightness, perhaps a legacy of having been scanned from a negative.

Figure 4.18: (a) the 512x512 8 bpp lenna image; (b) histogram.

4.4.3 Montage

Figure 4.19 shows a greyscale test image called montage, and its histogram. It has resolu-

tion 512x512 and uses 8 bits per pixel. The image consists of four quadrants. The top left
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is the middle 256x256 section of a smoothed version of the l enna image3. The bottom

right is a right hand fragment of a German village street scene, which contains some small

amounts of natural noise. The top right is a synthetically created image which is perfectly

piece-wise constant. It covers a range of segment boundary shapes and intensity differences

between adjacent segments. The bottom left is the same as the top right, except that the

segments are piece-wise planar, covering a range of horizontal and vertical gradients.

Figure 4.19: (a) the 512x^12 8 bpp montage image; (b) histogram.

It is hoped that this image covers a wide range of image properties, while also being very

low in noise. The low noise level is important for experiments in which synthetic noise will

be added. The image has features such as constant, planar and textured regions, step and

ramp-like edges, fine details, and homogeneous regions. The montage image will be used

for measuring objectively the RMSE performance of various techniques.

4.5 A one segment model

Local segmentation is concerned with segmenting a small window on a much larger image.

The pixel being processed, f(x, y), is usually at the centre of the window. For the following

3This image was provided by Bernd Meyer, the author of the TMW algorithm [MT97]. It is available for
download from h t t p : //www. c s s e .monash. edu. a u / ~ t o r s t e n / p h d / .
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discussion a square 3x3 window containing M = 9 pixels will assumed, as shown in Fig-

ure 4.20. However, the techniques described may be applied to any window configuration

and size. For brevity we will refer to the set of pixels from the window as the vector p. The

pixels are indexed in raster order, namely pi to pM- The centre pixel p[(M+i)/2j is the pixel

being processed, and may also be denoted simply p, without the subscript.

/(ar-l.y-l)
/(s-l,y)

/(z-l.y + l)

/(s,V-l)
ffay)

f{x + l,y-l)

/(z + 1,2, + 1)

Pi
PA

PI

P2

Pb

P&

P3
P6

P9

Figure 4.20: Equivalent naming conventions for pixels in the local window.

The simplest form of local segmentation is to do no segmentation at all, and to assume that

the pixels in p are homogeneous. Because the local region is small compared to the whole

image, a large proportion of local regions are expected to be homogeneous anyway. This is

the assumption made by the linear filters with fixed weights described in Section 3.4.2.

Under a piece-wise constant image model, pixels, p, from the interior of a global segment all

have the same true value, denoted fi. Under a A/"(0, a2) noise model, these pixels will have

noise, n, added to them. The noisy pixels, p', have the properties shown in Equation 4.11.

' = p + n where pi — /i and n* ~ AT(0, a2) (4.11)

Equation 4.12 shows the noisy pixels to have the same expected value as they did prior to

noise being added. However, the uncertainty, or variance, in their values has increased from

0 to a2. The noisy pixels may be considered to be distributed ~ jV(^, a2).

Var[p5] = = 1 • 0 + 1 • a2 = a2
(4.12)

For this situation, the optimal least squares estimator, /}, for p is the sample mean [MR74],

computed using Equation 4.13. Assuming local homogeneity, the sample mean is also the

best estimate for every pixel within the window. The variance, or "standard error" of the
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sample mean is CT2/M. Thus the more pixels from the same segment that are averaged, the

more accurate the estimate of their original value is expected to be.

M

(4.13)
t = i

Figure 4.21 shows the effect of this filter on the s q u a r e image from Section 4.17. There

is clear noise reduction in the centre of the square and in the background, but there is also

obvious blurring at the boundary between them. The assumption of only one segment exist-

ing in the local window is equivalent to the box filter described in Section 3.4.2, which gives

equal weight to each pixel in the window. As a result, it has all the same drawbacks as fixed

linear filters. If filtering were repeated, further blurring would occur, eventually producing

a completely homogeneous image. This common pixel value would be similar to the image

mean, which for square , is (25 • 200 + 74 • 50)/99 = 88.

Figure 4.21: (a) original; (b) noisy a - 10 version; (c) denoised using 3x3 averaging.

4.6 A two segment model

It may be thought that because the majority of pixels exist in homogeneous regions, that

treating all windows as such would not overly affect results. Unfortunately, although het-

erogeneous windows are in the minority, they do contain a lot of visual information in the

form of edges and texture. The human visual system is very sensitive to discontinuities, and

any blurring or alteration to sharp edges would not go unnoticed [Ede99]. It is therefore

important to preserve as much information in these regions as possible.

1
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Reconsider the s q u a r e image from Figure 4.21. Globally, it consists of only two segments,

thus any local window must contain, at most, two segments. One solution for preserving

edges is to first classify the pixels from the window into two segments. Only pixels belonging

to the same segment could be used to calculate the denoised pixel values. This would prevent

the mixing of pixels from different global segments, resulting in a sharper image.

The division of pixels into two segments is obviously a form of segmentation. The BTC

technique, discussed in Section 3.3.2, successfully uses a two class model for encoding 4x4

pixel blocks. In most variants of BTC a single threshold, T, is used to divide the pixels into

two clusters [FNK94]. The representative values, fi\ and /i2> for each cluster are set equal to

the average of the pixels within each cluster. This is shown in Equation 4.14, where mi and

are the number of pixels in each cluster.

(4.14)
Pi<T

The threshold, T, may be chosen in many ways. Many techniques, including the popular

Absolute Moment BTC [LM84, CC94, MR95], simply use the mean of the pixels in the

window, calculated using Equation 4.15.

M

(4.15)
1=1

The mean measures the central tendency of the pixel values in the block. When the two

clusters have unequal numbers of pixels, the mean is biased toward the centroid of the larger

cluster. This pollutes the smaller cluster with pixels from the larger cluster, biasing both

clusters' means. This effect is shown in Figure 4.22.

When the clusters are known to be normally distributed, it is better to choose T such that the

overall mean squared error (MSE) is minimized, as shown in Equation 4.16. The optimal T

can be found by exhaustive search of the M - 1 possible binarizing thresholds [DM79].

T = argmin
TS(0,Z-l)

+ { - A2)5 (4.16)
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Intensity

Biased Overall
mean
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Figure 4.22: The mean is a poor threshold when the clusters have different populations.

An iterative technique for determining the MSE threshold in Equation 4.16 was proposed

by Efrati et al [ELM91J. It uses the block mean as the initial threshold. The computed

cluster means are then themselves averaged to produce a new- threshold, and new cluster

means computed. This continues until there is no significant change in the threshold. The

algorithm is outlined in Listing 4.1, where e quantifies the required accuracy. Usually pixel

intensities have integer values, so the algorithm can terminate if the integer part of T is no

longer changing.

2.

3.

4.

M

i= l

/

Compute fa and /}2 as

lf\\{fa+fa)-

Let the new T1 =

-T\<

in Equation 4

e then exit.

+ fa) and go

.14. "

to Step 2.

Listing 4.1: An iterative method for choosing a binary threshold.

4.6 A two segment model 89

This algorithm produces means very similar to the levels produced by the Lloyd quan-

tizer [Llo82], and is often referred to as Lloyd's algorithm. In their BTC survey paper, Franti

et al [FNK94] found Lloyd's algorithm to produce results identical to a true MSE optimizer

in nearly all situations, all while using only 1.71 iterations on average. It was not made clear

in which situations it failed — perhaps it was due to the mean being a poor initial threshold,

resulting in convergence to a local, rather than global, optimum. Nevertheless, this method

will be used for selecting binary thresholds in this chapter.

4.6.1 Application to denoising

Equation 4.17 describes how binary clustering may be used to denoise the pixels which were

clustered. The denoised pixels, pit are set equal to the mean of the cluster in which they

belong. For this clustering algorithm, this corresponds to the cluster mean that each noisy

pixel is closest in intensity to.

Pi =
fa if P\ < T

fa if Pi > T
(4.17)

Figure 4.23 compares using 1-segment and 2-segment models for denoising squa re . Filter-

ing under the assumption of two segments preserves the edges of the object much better. The

thresholding procedure appears to have correctly classified the pixels, even in the presence of

additive Gaussian noise. Within homogeneous regions the smoothing is a little worse, and is

especially noticeable in the centre of the light square. This occurs because the pixels in each

window are forcibly divided into two segments, even those which are homogeneous. Thus

the variance within each local cluster is reduced only by a factor of mi or m2, compared to

M = mi + 77i2 when the window is treated homogeneously. The possibility of applying the

filter again to the denoised output for further smoothing is discussed in Section 4.8.

Figure 4.24 quantitatively compares the denoising performance of the 1-segment and 2-

segment local models for the montage image. For each value of a tested, artificial noise

~ ,A/'(0, a2) was added to montage, and the noisy pixels rounded to integers. The RMSE

was measured between the original montage and the denoised output of each algorithm.

The 2-segment model performs significantly better for all noise levels up to a = 27. At the



90 Chapter 4. Denoising with Local Segmentation

Figure 4.23: (a) noisy, a = 10; (b) filtered with 1-segment model; (c) filtered with 2-segment
model.

highest noise levels, the distinction between adjacent global segments becomes less clear,

especially if the contrast between them is low. When the noise swamps the signal, inappro-

priate thresholds are more likely to be chosen.
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Figure 4.24: Comparison of 1 -segment and 2-segment models for denoising montage.
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4.7 Discriminating between two models

Modeling the local region as two segments helped to preserve edges and decrease the RMSE

between the original and denoised images. However, within homogeneous regions denoising

performance decreased. It would be desirable to be able to switch automatically between

one and two segment models as appropriate. The general form of this problem is called

model order selection, and many statistical and information-theoretic techniques have been

developed to tackle it [WF87, Ris87, Pre89, BS94],

If k is the number of segments in the local window, the model selection problem can be

framed as choosing either k = 1 or k = 2. Consider an image with a dark background

of intensity Hi comprising 3/4 of the total pixels, and a light foreground of intensity /J,2

comprising the remaining 1/4 of the pixels. If this image were corrupted by additive noise

~ A/"(0, a1), its histogram would have the form of in Equation 4.18.

(4.18)

Figure 4.25a shows this histogram for /ii = 3, \ii = 9 and noise standard deviation a = 1. It

is clearly bimodal, because the two cluster means are 6CT apart. It was shown in Section 4.2.5

that 99.7% of normally distributed pixels will, on average, fall within 3cr of their mean.

Figures 4.25b-d show the histogram's behaviour as the distance between the two means,

j/xi — A*2|» is decreased in multiples of the noise variance. At some point between la and

3cr the histogram becomes unimodal, but not Gaussian, in nature. The exact point at which

this occurs would also depend on the number of pixels in each cluster. The more unequal the

blend, the more likely it is to appear unimodal.

From the previous observations it would be reasonable to suggest that a method for deciding

between k — \ and k = 2 should be based on determining whether the two clusters are

well separated. If we restrict the criterion to use the difference between cluster means, the

threshold should depend on the noise variance and the number of pixels in each cluster.

Equation 4.19 gives a template for the proposed model order selection technique.

k =
1 if \fii- fc\< g(o-,mi,m2)

? Mierwise
(4.19)
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Figure 4.25: [top to bottom, left to right] A mixture of two normal distributions with common
variance, with their means separated by (a) 6<r; (b) 4<r; (c) 3<r; (d) 2a.

The two estimated cluster means, /ix and ft2, are calculated using Equation 4.14. The hypoth-

esis that there are two segments is rejected if the cluster means are too close together. The

measure of closeness is decided by comparing the inter-cluster distance with the output of

a threshold function, g(a, mi, m2). The threshold function may depend on the image noise

variance and the number of pixels in each cluster. This should make the thresholding process

adaptive to the image noise level.

4.7.1 A simple model selection criterion

Figure 4.25 showed that the two populations remained distinct up to a separation of around

4cr or so, corresponding to about a 95% confidence interval. There is no "exact" answer, as

it varies for different cluster populations, but it is obvious that the magnitude of the noise

variance is an important factor. The simplest, reasonable form for the separation threshold is

given in Equation 4.20, where C is a positive constant.
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g(a, mi,m2) = Co (4.20)

This separation threshold is a form of Fisher's criterion (Equation 3.3) under the assumption

of equal cluster variances. The two are related by the fact that C — \/2A if a = a A =

The problem is choosing an appropriate value for C.

Visual inspection

Consider the s q u a r e image again, which has a background intensity of 50 and a foreground

intensity of 200. Figures 4.26a shows a noisy a = 10 version of this image. Figures 4.26b-f

show the denoised output values of C equal to 1, 2, 3, 4 and 5 respectively. For each pixel,

if k = 1 is chosen, the denoising filter uses the one segment model of Section 4.5. If k = 2

is chosen, the two segment model of Section 4.6 is applied. In Figure 4.26, the foreground

and background are separated by 15cr, so no difficulties are expected. The denoised images

for C > 3 are equivalent, having successfully smoothed nearly the whole image.

Figure 4.26: (a) noisy, a = 10; (b)—(f) simple model selection using C = 1 . . . 5.

Figure 4.27 provides the same results as Figure 4.26, except that the noise has been increased

to cr = 20. The the two pixel populations are still well separated by 7.5a. Once again, for

C > 3, the maximum possible smoothing has occurred.
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Figure 4 .27 : (a) noisy, a = 20; (b )—(f ) s imp le m o d e l se lec t ion us ing C—1...5.

Figure 4.28 shows a much more visibly noisy image with a = 30, corresponding to only a

ha intensity difference between the two image segments. At this separation, there is a 2%

overlap of the two populations. The best smoothing occurs when C equals 3 or 4. When C —

5, some blurring of segment boundaries is observed, meaning k — 1 was sometimes chosen

incorrectly. When the global segment means are only 5<7 apart, insisting on an equivalent

cluster separation at the local level will sometimes be incorrect.

Finally, Figure 4.29 presents the very noisy case of a = 40. The true object intensities are

only 3.75a apart, corresponding to a 10% overlap. Thus it is expected that about 10 of the 99

pixels will have intensities which could be mis-classified. The best denoising occurs when

C equals 2 or 3, depending on what type of artifacts are preferred. As expected, for C > 4,

the model selection criterion fails miserably, blurring all the edges around the square.

From this analysis it may be concluded that C = 3 is a good all-round choice for the squa re

image when the noise has additive, zero-mean Gaussian characteristics. The disadvantage

of the Ca threshold is that it does not consider the number of pixels in each cluster. There

is low confidence in the "average" of a cluster containing 1 pixel compared to its 8 pixel

counterpart, because the standard error of the former is 8 times higher. A further problem

with a fixed threshold is that two segments with an intensity difference of less than Ca will

probably never be detected.

4.7 Discriminating between two models

Figure 4.28: (a) noisy, a = 30; (b)—(f) simple model selection using C = 1 . . . 5.

Figure 4.29: (a) noisy, a = 40; (b)—(f) simple model selection using C = 1 . . . 5.

Quantitative results

95

Figure 4.30 shows the RMSE between the denoised and original montage image for 6

integer values of C. One would conclude that C = 3 performs best on this image over all

the noise levels. This supports the conclusion made in Section 4.7.1.
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CO

C=1
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C=3 ---*•
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Added Gaussian noise standard deviation (a)

30

Figure 4.30: Effect of C on RMSE when denoising montage by switching between a 1-
segment and 2-segment local model.

4.7.2 Student's Mest

The simple separation criterion, g(-) = Ca, does not take into consideration the number of

pixels in each cluster. As the number of pixels in a cluster decreases, we have less confidence

that the computed cluster mean is a good estimate of the true segment mean. For the 3x3

case, the separation criterion for the situation where both clusters are about the same size,

say mi = 5 and m^ — 4, should be different to the skewed case when mi = 1 and >n2 = 8.

In the latter, there is a much greater risk that the single pixel cluster would be mis-classified,

as its mean was derived from a single noisy pixel.

The problem of deciding between k = 1 and k = 2 may be framed as traditional hypothesis

testing of the equality of two population means [Gro88], The null hypothesis states that the

two class means are the same, and that only one class exists. The alternative hypothesis states

that the means are not equal, and represent independent sub-populations. The application to

model selection in local segmentation is shown in Table 4.3.
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One segment k = 1
Two segments k = 2

Hi = \x2 Null hypothesis
[i\ j= \ii Alternative hypothesis

Table 4.3: Using hypothesis testing for model selection in local segmentation.

If it is assumed a priori that the segments are piece-wise constant with additive Gaussian

noise ~ A/*(0,<r2), a statistical "t-test" can be used to determine the more likely hypothe-

sis [Gro88]. In Equation 4.21, t is a random variable following Student's t distribution with

v = mi + ra2 — 2 degrees of freedom.

t = -fa (4.21)

**';£ + ;£

If \t\ is less than a critical value, tcrit, the null hypothesis is accepted, and the local region is

inferred to be homogeneous. If |*|>*crit» the pixels are assumed to come from two popula-

tions. Equation 4.22 summarizes the t-test model selection criterion for local segmentation.

k =
1 if < *« • «

2 if |*| > *cr«-
(4.22)

The value of tcrit depends both on the degrees of freedom, u, of t, and the percentage confi-

dence one wishes to have in the inference. Because the same window is used for each pixel,

v is fixed at mx -f m2 — 2 = M - 2. To achieve 100(1 - 2a)% confidence, tcrit should

equal ta,M-2- This may be calculated using numerical integration, or from pre-computed

tables [PH66], an extract of which is given in Table 4.4. For the case of v — oo, Student's t

distribution becomes a normal distribution.

For a window of M pixels, and a predetermined value for a, the mean separation threshold

function, g(a, mi ,m 2 ) , may be written as follows:

1*1 <
— A2I

J-L + .L
Y mi rri2

< tcrit

(4.23)

(4.24)
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Degrees of
freedom v

2
1
11
19
23
oo

a
.10

1.886
1.415
1.363
1.328
1.319
1.282

.025
4.303
2.365
2.201
2.093
2.069
1.960

.005
9.925
3.499
3.106
2.861
2.807
2.576

Table 4.4: Various values of tQjU used in nesting.

i- - i , /mi -+• m2
lA*i - #21 < tern a W—

V m i 7722

.'. g{(T,mum2) = tcritaJ M
m i 7722

(4.25)

(4.26)

Figure 4.31 compares four different values of a for denoising montage using the i-test

criterion. The value of a is used to determine dynamically the mean separation threshold in

Equation 4.26. A 3x3 filter is used, so M = 9, and the noise variance is assumed known. At

very low noise levels, the value of a does not appear to affect results, but as a is increased,

the lowest value of a = 0.005 does best. This is the highest of the confidence levels tried.

In this thesis a significance level of a = 0.005, or 99% confidence, will be used. For 3x3

windows, v = 7, so tcrit = £Q/2)M-2 = *o.oo5,7 = 3.499, or approximately 3.5. In this case,

the separation function reduces to Equation 4.27.

g{a,mum2) = 10.5 a
(4.27)

The t-test threshold function has a similar form to the simple one in Section 4.7.1, except

that C has been replaced by a term inversely related to the geometric mean of the two cluster

populations. Figure 4.32 plots mL versus the effective number of a separations required for

k = 2 to be declared. At the extremes it has values between 3 and 4, but at the middle where

the cluster populations are most symmetric is goes as low as 2.35. The i-test approach allows

cluster means to be close together as long as the evidence, in the form of more accurate mean

estimates, is strong enough. When the cluster counts are skewed, the criterion insists on a

wider separation before accepting them.
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Figure 4.31: Comparison of a values for Hest filtering of montage.
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Figure 4.32: The effective C values used by the t-test criterion: u = 7 and a = 0.005.
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so

in a

In an implementation, Equation 4.26 would not need to be recomputed for each pixel. For a

given image, the values of tcrit, M and a ?xe constants. Because m2 = M — m\, the only

"degree of freedom within a window is m\. Figure 4.32 is also symmetric around M/2,

there are only (M — l)/2 unique thresholds. These may be pre-computed and stored

look-up table. This feature would be very useful in a hardware implementation.

Visual inspection

Figure 4.33 provides a visual comparison of the i-test and C = 3 model selection functions.

The four rows correspond to added noise standard deviations of 10, 20, 30 and 40. The three

columns contain the noisy image, the C = 3 denoised image, and the i-test denoised image.

When a — 10, there is little to distinguish the two techniques. For a = 20, the light

squares have been filtered equally well, but the t-test has performed slightly worse on the

background. For all cases other than mi = 1 or 9, the effective value of C determined by the

i-test is less than 3. Therefore, on average, it will choose k = 2 more often than the simple

criterion. If there is a very noisy pixel present in a homogeneous area, the i-test criterion is

more likely to place that pixel in a segment of its own.

Interestingly, increasing the noise to a — 30 removes any observable differences between the

two methods. Normally, behaviour similar to that observed for a — 20 is expected. But it

seems in this case that, by random chance, no extreme pixel values were present in the noisy

image. When a = 40, the denoised outputs of both methods contain obvious artifacts. The

filtering errors in the C = 3 output image are milder, but a little more frequent, than those

observed in the i-test output.

Both techniques suffer at similar locations in the image. Consider a local window straddling

the edge between the square and the background. If some of the noisy square's pixels are

darker than the original background, or some of the noisy background are lighter than the

original square, both algorithms will fail. The well-known fundamental drawback of thresh-

olding algorithms is that they are unable to take spatial coherence into account. Unlike the

human visual system, the local segmentation method described thus far is not sophisticated

enough to recognize and extrapolate edge information.
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Figure 4.33: Visual comparison of two model selection functions. Columns are: noisy, C = 3
filtered, and Mest filtered images. Rows are: a =10,20, 30 and 40.

Quantitative results

Figure 4.34 shows that, for montage, the C = 3 and £-test criteria perform equivalently at

low noise levels. For values of a > 12, the simpler C = 3 criterion appears to do better.

So far, only a 3x3 window has been considered. It must be noted that the i-test criterion

varies more as the window size increases. Although not shown, I have performed further
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experiments which show that the t-tesl criterion still performs worse when the window size Is

increased to 21 and 25 pixels. This fact, in conjunction with the lack of compelling evidence

in the qualitative results, recommends the use of the simple C — 3 model selection criterion

over the more complicated i-test criterion.

LU
CO

DC

Force k=1
Force k=2 - - - *

t-test a=0.005 ---*•
C=3

15 20 25
Added Gaussian noise standard deviation (a)

Figure 4.34: RMSE comparison of model selection criteria for
montage.

4.8 Iterative reapplication of the filter

It is possible to take the output of a denoising algorithm and feed it back as input to the same

algorithm, ad infinitum. Iteration has often been used as a way to improve the performance

of denoising algorithms [Mas85], particularly anisotropic diffusion [PM90]. Equation 4.28

describes this process formally, where ft is the denoised image after the tth iteration. Ideally,

all pixel values are kept to floating point accuracy throughout. Rounding to integers after

each iteration introduces feedback of quantization noise, which could cause unusual artifacts.
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ff+i = filter(ft) where fo = f (4.28)

The effect on the final output as t increases depends wholly on the properties of the denoising

algorithm. A stable algorithm is defined as one which, after a finite number of iterations t',

produces no further changes in the output. Thus ft> = foo, and is referred to as the root

image [FCG85]. An example of an unstable algorithm is the median filter. Imagine using a

local window of 5 pixels — the centre pixels and its four nearest neighbours — and handling

the image margins by taking the median of the available pixels. Applying this median filter to

the checkerboard image in Figure 4.35a results in the inverted checkerboard of Figure 4.35b.

Reapplying for a second iteration produces Figure 4.35c, which is identical to the original

image. In this case, the instability manifests itself as an oscillation between two images, the

difference of which has the maximum possible RMSE.

Figure 4.35: Oscillatory root images: (a) original image; (b) after one iteration; (c) after two
iterations.

Ideally, the root image should resemble the original but without the noise. Many existing

techniques produce a root image in which every pixel has the same value. For example, any

fixed linear filter with more than one non-zero weight will, if iterated, eventually produce

a homogeneous image. Even anisotropic diffusion [PM90], which is meant to be iterated,

behaves in this manner if the default stopping function is used. The final common intensity

will be roughly equal to the image mean. The exact value will vary with noise in the image,

and whether pixel values are rounded back to integers after each iteration.

One would expect the local segmentation denoising algorithm to be stable and, in general,

not to converge to homogeneity. This is because the explicit segmentation uses a hard cut-

off to keep different groups of pixels separate. Pixels from different groups are unable to
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influence each other. Of course, this only works if the two groups of pixels differ enough to

be detected by the local segmentation model selection criterion. This could be problematic if

the noise level was poorly estimated, or if the intensity difference between two neighbouring

segments was below the noise level.

Visual inspection

Figure 4.36 shows the result of iterating the local segmentation denoising algorithm of Sec-

tion 4.7.1 100 times on the noiseless square . The simple model selection criterion with

C — 3 is used, and a was set to zero. The same value of a was used for each iteration.

The result of iterating a 3x3 median filter are also included for comparison purposes. It is

highly desirable for a denoising algorithm behave as an identity filter when the input image L

noiseless, and the local segmentation filter does that. The median filter truncates the corners,

but otherwise keeps the object boundaries sharp.

Figure 4.36: Iterating 100 times: (a) noiseless square; (b) 3x3 local segmentation assum-
ing a = 0; (c) 3x3 median filtered.

Figure 4.37 performs the same experiment, except that this time, noise ~ Af(0,302) has

been added to square . Each iteration, the local segmentation filter assumed that a = 30.

The local segmentation filter proves to be both useful and stable. Its output only has two

pixel values: 47 for the background and 192 for the foreground. The reason these are not

equal to 50 and 200 as in the noiseless version could be due to three reasons: the noise

not being distributed symmetrically within each segment, clamping of pixels to [0, 255], and

margin pixels being slightly over-represented due to their use in computing the extrapolated

values when the filter window goes outside the legal image coordinates, as discussed in

Section 4.2.8. Compared to Figure 4.28d, the result of only one iteration, the output is more
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visually pleasing. The median filter has also has a root image, albeit a disfigured one. The

noise has caused the median to behave unusually.

Figure 4.37: Iterating 100 times: (a) noisy a = 30 square; (b) 3x3 local segmentation
assuming a = 30; (c) 3x3 median filtered.

As shown in Figure 4.38, the local segmentation filter fails when the noise is increased to

a — 40. Its denoised output only contains pixels of intensity 101, although the mean of the

noiseless image is 88. This homogeneity is due to each of the original segments containing

pixel values more suited to the other segment. Unfortunately, the clustering algorithm can not

handle this situation. The result is "intensity leakage" between the segments. Given enough

iterations, this leakage will spread throughout the image. The median filter has reached a

better root image in this situation.

Figure 4.38: Iterating 100 times: (a) noisy a = 40 square; (b) 3x3 local segmentation
assuming a — 40; (c) 3x3 median filtered.

Quantitative results

For montage, Figure 4.39 plots the RMSE between the original and denoised outputs as the

number of iterations is increased. The local segmentation filter used C = 3 and was supplied

with the true added noise level. In general, for a given level of added noise, the RMSE
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worsens as more iterations are performed. This is a little surprising given the qualitative

results for squa re in Section 4.8. However, the assumption that the local region consists of

two piece-wise constant segments is clearly false for many positions within montage. Any

filtering errors after the first iteration would only be compounded by further iterations. Most

natural images would have properties in common with montage.

Number of iteration's
20
1 0 - - • * •

5 - - - * •

2 B-
1 —m-

4.9 Rejecting poor local models

15 20 25
Added Gaussian noise standard deviation (a)

Figure 4.39: Effect of iteration on RMSE for denoising montage. The same value of a is
used for each iteration.

The exception to the overall trend is that 2 iterations becomes slightly more beneficial than 1

when a > 18. This may just be the point at which the gain from further averaging outweighs

the loss from degrading image structure further. Figure 4.40 shows the effect of iterations

on a small portion of the noisy a = 20 mon tage image, with the corresponding difference

images underneath. Both visual inspection and RMSE agree that 2 iterations has produced

a better output. The intensities of the text and background are more uniform and pleasing to

the eye. For montage , k = 1 was chosen 80% of the time during the first iteration. This is

approaching a pure averaging filter, which, in terms of RMSE, becomes a good choice when

the noise level is high enough.

Figure 4.40: Bottom right hand corner of montage: (a) noisy a = 20; (b) after 1 iteration;
(c) after 2 iterations; (d)—(f) corresponding difference images relative to the
noiseless original.

Conclusions

It is difficult to prove if a given denoting algorithm will be usefully stable in the general

case. The previous experiments showed that for some simple cases, the local segmentation

approach to denoising may be iterated successfully. When the noise is very high compared

to the contrast between objects, pixel leakage unfortunately occurs, and multiple iterations

could produce a homogeneous image. In Chapter 5, this problem will be tackled by using a

segmentation algorithm which takes spatial information into consideration.

4.9 Rejecting poor local models

The local image model used thus far has assumed that pixels from the window are well mod-

eled using either one or two segments of constant intensity. For non-synthetic images this

assumption could be false for some windows. For example, the local region may consist of

more than two segments, or it might not be piece-wise constant in nature. Figure 4.41a gives

an example of a 3x3 block of pixels consisting of 3 segments with different constant intensi-

ties. If locally segmented under the assumption that k = 2, the resulting local approximation

would have the pixel values given in Figure 4.41b.
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Figure 4.41: The effect of a two class model on a three class region: (a) original pixels;
(b) segmented assuming k = 2.

The use of an incorrect model has forcibly merged two of the original segments. Its resulting

mean falls between the those of original segments. Thus 7 of the 9 pixels, including the centre

pixel, have a filtered value which is unreasonable given that the noise level is effectively zero.

If one believes that the noise is additive in nature and distributed ~ jV(O, a2), then confidence

interval analysis states that 99.7% of pixels are expected to fall within 3a of their original

value. If a single filtered pixel value strays further than this, there is evidence to suggest that

the local segmentation model is inappropriate.

The ability to diagnose whether the best fitting model actually fits the data well is very useful.

All medical practitioners must take the Hippocratic Oath [HipBC], which has as one of its

cardinal principles the following: First of all, do no harm. This principle may be applied

to local segmentation when denoising images. If it appears that the best fitting model has

produced an unreasonable local approximation to the original image, don't use it. Instead,

use the original pixels as they were. It is probably better to leave them unmodified than to

give them new, possibly noisier, values. Equation 4.29 describes the "do no harm" (DNH)

principle. If the local approximation suggests changing any pixel's value more than Co, then

ignore it, and pass the pixels through unmodified.

i f

p otherwise (4.29)

For montage, Figure 4.42 shows the RMSE denoising performance of the 3x3 C = 3

local segmentation filter with and without DNH enabled. The algorithm was provided with

the value of o, as per all experiments so far. The DNH option provides an impressive im-

provement in RMSE for values of o up to 20, after which it does only slightly worse. When

a is large, DNH is more likely to be invoked due to the dominating noise, rather than an

inability to model the underlying image structure. It must be remembered that for the results
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presented here, the true noise variance was supplied to the local segmentation algorithm.

In a real situation a would have to be estimated from the noisy image. This issue will be

discussed in Section 4.13.
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Figure 4.42: Effect of "do no harm" (DNH) on RMSE when denoising montage.

Figure 4.43 shows the effect that DNH has on the worst case absolute error (WCAE). As

expected the WCAE performance is much better. Enabling DNH has the effect of limit-

ing the worst case behaviour of the filter for each pixel. This is most useful in low noise

environments, because it can help to avoid smoothing out fine image structure.

Figure 4.44a shows the top left quadrant of montage with added noise ~ Af(0,52). Fig-

ures 4.44b-c uses white to denote where k = 1 and k = 2 are chosen when DNH is not used.

Figure 4.45 also uses white to show where k = 1, k = 2 and DNH are used when DNH is

enabled. DNH seems to be used mostly on the broad ramp edges and busy hat feather re-

gions, where a two segment model is probably insufficient for modeling the image structure.

For this example, 73% of DNH invocations are due to rejecting a k = 2 model. It may seem

unusual for a k — 1 model to be deemed better than a k = 2 one, but then be rejected because
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Figure 4.43: Effect of "do no harm" (DNH) on WCAE when denoising montage.

of DNH. This occurs because binary thresholding sometimes produces poor segmentations,

and before DNH, k = 1 is a better overall choice.

Figure 4.44: DNH disabled: (a) original image; (b) k = 1, 64%; (c) k = 2, 36%.

The do no harm philosophy is not limited to local segmentation applications. It could be ap-

plied to any denoising algorithm to limit its worst case behaviour. All that is required is some

measure of the natural level of variation within segments around the pixel being processed.

4.10 Different local window"

Figure 4.45: DNH enabled: (a) k = 1, 60%; (b) k = 2, 25%; (c) DNH, 15%.

For example, the simple box filter of Section 3.4.3 could invoke the DNH rule when the local

average diffr ;s too much from any local pixel values. This filter would have two implicit lo-

cal models: k = 1 and DNH. The result would be good smoothing in homogeneous regions,

and either blurring or no smoothing elsewhere.

Equation 4.29 is just one possible DNH rule. Instead of rejecting the local approximation if

just one pixel value would change too much, it could be relaxed to consider only the centre

pixel. Here DNH would be invoked less often because it is not testing the fitness of the whole

local segmentation model. For some windows the relaxed rule could improve denoising, but

for others, such as the one in Figure 4.41, it would do more damage than good.

4.10 Different local windows

The examples and experiments so far have used a 3x3 window containing 9 pixels. The

local segmentation approach is not restricted to this configuration. There are many other

commonly used windows, five of which are shown in Figure 4.46. The 5 pixel one is used

by anisotropic diffusion, while SUSAN utilizes the larger 37 pixel window.

As the number of pixels in the window increases, heterogeneous regions are less likely to be

well modeled by only two segments. Doing so could introduce large errors into the output,

regularly forcing DNH to reject filtering of the window. On the other hand, there would

be greater smoothing in homogeneous regions, because more pixels are being averaged.

Under the RMSE measure, a few large errors may have more negative influence than the
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Figure 4.46: Common windows: (a) 5; (b) 9; (c) 21; (d) 25; (e) 37 pixels.

sum positive influence of many smaller errors due to better smoothing. The balance depends

on the features of the image being denoised.

Figure 4.47 gives results for denoising mon tage , first with DNH disabled. The general

trend suggests that smaller windows achieve better denoising with respect to RMSE. The 5

pixel window performs best until a = 15, at which point the next smallest (9 pixel) win-

dow takes over. This is an interesting result. For the 3x3 window, the 4 corner pixels are

roughly 41% further away from the centre pixel than the 4 side pixels. By argument of spa-

tial coherence, the corner pixels are less likely to be related to the others. Segmenting fewer,

more related pixels means that k = 1 should be chosen more often. A small window is less

likely to cross segment boundaries than a larger one. The advantage of choosing k = 2 less

frequently is that homogeneous regions are more likely to be well modeled. For very noisy

images, k = I is chosen more often anyway, so a smaller window will give less smoothing.

This is borne out by the 5 pixel window's RMSE increase as a gets higher.

When DNH is enabled, the results change quite dramatically. Figure 4.48 shows how DNH

limits the worst case behaviour of all the windows tested. The RMSE performances are

essentially equivalent until a = 15, whereafter the 9 pixel window takes over, just as in

Figure 4.47. It appears that the 3 x 3 window strikes a good balance between compact locality,

so that a two-segment model is sufficient, and having enough pixels for reasonable smoothing

in homogeneous regions.
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Figure 4.*>7: Effect of different windows for denoising montage, DNH disabled.

4.11 Multiple overlapping local approximations

The local segmentation principle states that the first step in processing a pixel should be to

segment the local neighbourhood of that pixel. This is a democratic process, treating every

pixel equally to infer the original values of every pixel in the neighbourhood, not just the one

being processed. This is unlike many other local denoising techniques, such as SUSAN and

GIWS, which use the centre pixel as a reference pixel for intensity comparisons.

Local segmentation provides a local approximation to the underlying image around each

pixel. Because each pixel is processed independently, the local approximations overlap to

some extent. If a window containing M pixels is used, it is easy to see that each pixel from

the image participates in M separate local segmentations, at each of the M possible positions

in the window. Figure 4.49 illustrates this graphically for of a 3x3 window, where M = 9.

Thus, for each noisy pixel, there are M different estimates of its true value. The estimates

are not fully independent, as they share some pixel values in their derivation, so they can
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Figure 4.48: Effect of different windows for denoising montage, DNH enabled.

be considered semi-independent. What would be desirable is to combine these multiple

overlapping estimates into a single compound estimate, rather than just using the centre

estimate as in Equation 4.17. This should have three main benefits: a larger effective window

size, further robustness, and improved denoising performance.

For square windows containing M pixels, the new effective window would contain exactly

(2\/M - I)2 pixels, which is asymptotically a factor of four increase. For a 3x3 window

the factor is 25/9 = 2.58. The calculation of the compound estimate is likely to require little

computational effort compared to performing local segmentation with a larger window. In

homogeneous areas, up to four times as many pixels will contribute to the calculation of the

mean, reducing its standard error by the same factor.

Let pi... pM be the M overlapping denoised estimates for the same pixel. How should these

be combined to produce a compound estimate p? The simplest approach would be to take

a convex linear combination of the estimates, shown in Equation 4.30, where Wj are the

weights. The denominator term ensures the weights sum to unity.
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Figure 4.49: Each pixel participates in 9 local 3x3 windows.

M

p = M
(4.30)

4.11.1 Choosing the weights

There are various factors which could be used to influence the weight given to a particular

estimate. Four possibilities are its position in the window from which it was computed, its

standaid error, the number of segments diagnosed in its original window, and the measured

variance of its original segment.

Window position

Each denoised estimate pj is derived from a different local region. As shown in Figure 4.49,

the same shaped window is used for each region, but the position of the pixel within the



116
Chapter 4. Denoising with Local Segmentation

window differs per estimate. For a 3x3 window, the estimate appears in 9 different positions

— at the four comers, the four sides, and once at the centre. At first consideration one may

guess that the "centre" estimate should be given more weight than those from the sides and

corners. However, the local segmentation process treats all pixels democratically,

thresholding technique takes no spatial information i
and the

little justification for treating them unequally.
into consideration. There appears to be

This assertion will be tested by comparing a range of different weights. The weights should

be chosen in a manner such that the four corners are treated equally, and likewise for the four

edges. A simple model meeting these symmetry requirements is shown in Figure 4.50. Each

weight is calculated by raising a constant, p, to the power of its distance from the centre of

the window. In this case the Manhattan distance has been used. When p — 0, the model

reverts to not producing a compound estimate at all. As p approaches 1, the estimates are

treated more and more equally. Do not confuse this p with that used in image processing to

measure the correlation between neighbouring pixels. Here the values being combined are

all estimates of the same pixel.
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Figure 4.50: Weighting overlapping estimates: (a) any p; (b) p = 0; (c) p = 0.5; (d) p = 1.

Figure 4.51 compares four values of p in terms of RMSE for denoising montage. To

observe the behaviour of overlapping averaging in the simplest possible environment, DNH

is disabled. The WCAE results under for the same conditions is plotted in Figure 4.52. It

is seen that any non-zero value of p improves both the RMSE and WCAE performance,

compared to not combining overlapping estimates at all. As argued earlier, the best results

are achieved when p = 1, which gives equal weight the overlapping estimates.

Figure 4.53 gives visual results for the squa re image after adding noise ~ J\f(O, 202) to it.

The improved smoothing performance when p = 1 is clearly visible. In both cases the edges

are reconstructed without any blurring.
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Figure 4.51: Effect of p on RMSE when denoising montage.

30

The standard error

A denoised estimate, pj, takes its value as the mean of the cluster to which it belongs. It

was shown in Section 4.5 that the variance, or standard error, of an estimated cluster mean

is <72/m,j, where m7- is the number of pixels in the cluster. This variance may be used to

measure the confidence in the estimate, and could contribute to its weight. A high standard

error corresponds to a low confidence. As M and a are assumed a priori known and constant,

the confidence component could be expressed by the relationship Wj a rrij.

Figure 4.54 compares the RMSE of the confidence weighting, Wj = rrij, to equal weighting,

IUJ = 1. The weights were normalized for each pixel using Equation 4.30. Once again,

DNH is disabled to limit the number of factors influencing the result. Somewhat surprisingly,

confidence weighting performs worse than equal weighting up to a = 20, at which point they

converge. In homogeneous areas of the image, both approaches should behave equivalently,

as rrij = M for every estimate. The variation must occur in heterogeneous areas of the image.
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Figure 4.52: Effect of P on WCAE when denoising montage.
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Figure 4.53: Denoising square: (a) noisy original, o = 20; (b) output when p = 0; (c) output
when p - 1 .

In the vicinity of an edge, non-centre pixels from neighbouring homogeneous windows will

receive more weight than centre pixels from heterogeneous windows closer to the edge.

These estimates may be unreliable, so equal weighting (averaging) could be the best way to

minimize the average error, and hence RMSE. It was found that enabling DNH option did

not affect the pattern of performance observed in Figure 4.54.
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Figure 4.54: Effect of confidence weighting on RMSE when dsnoising montage.

Activity of the region

The activity of a window is considered low if it i.c homogeneous, and high if heterogeneous.

The number of segments, k, determined to be present in the window may be used as a

measure of activity. A high activity region is diagnosed when the window truly does consist

of many segments, or when the assumed image model is unsuitable. One may wish to give

preference to estimates from less active regions, to minimize potential modeling errors.

If kj is the number of segments diagnosed for the window pj came from, the activity weight

could be expressed as Wj a 1/kj. The variables nij and kj are strongly correlated, because

nij = M implies k = 1, and rrij^M implies k = 2. To a large extent, the activity weighting

is already covered by the confidence weighting described previously, so it is unlikely to im-

prove results. Numerical evidence to support this is given in Figure 4.55, where the activity

weighting provides no advantage over equal weighting.
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Figure 4.55: Effect of activity weighting on RMSE when denoising montage.

Measured class variance

Although the variance of each cluster is assumed to be a2, it is possible to also actually

calculate the sample variance, s2. If the image model is accurate, 5 and a are expec t , on

average, to be very similar. A high value of s could be used to gauge reliability of a segment

mean. But due to the small number of pixels in most clusters, a reliable estimate of the

sample segment variance is difficult to obtain. In the case of rrij = 1, the sample variance is

not even defined. For these reasons it will not be investigated further.

Summary

Of the four influences considered for weighting overlapping estimates, equal weigbtirig, or

simple averaging, was found to perform best in terms of RMSE. If overlapping is enabled,

the compound estimate, p, will be computed using Equation 4.31, where pi • • <fiM are the
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estimates being combined. Using a linear combination for calculating the compound esti-

mate is only one possibility. Non-linear functions, like the median, could also be used, but

further investigation of these possibilities is beyond the scope of this chapter.

M

P=T7 (4.31)

"When DNH is triggered, the filtered pixel value for the window are set equal to the original

pixel values — it is assumed that the best estimate of a pixel's true value is itself. In this

thesis, an estimate, pi, from a DNH "model" is included in the formation of the compound

estimate. An alternative would be to consider DNH estimates as unreliable, and assign them

zero weight. If the compound estimate could not be formed due to all estimates being unre-

liable, the original noisy pixel value could used instead.

4.12 Larger numbers of segments

It has been assumed so far that the local window consists of pixels from, at most, two seg-

ments. For most real images there will be occasions where this is not the case. This could be

due to the presence of three or more segments, or two segments not being aligned to the pixel

grid, as described in Section 4.2.3. In any case, results could improve if a larger number of

segments were considered. If segments are allowed to be as small as one pixel, it is possible

for M separate segments to occupy an M pixel window.

The obvious progression is to extend the thresholding method from Section 4.7 to work for

more than two clusters. Local segmentation can be considered to have two main components.

The first is the segmentation algorithm, which provides different candidaie segmentations of

the local region. In our case, each segmentation differs only in the number of clusters, k, but

it could be possible to incorporate alternative segmentations. The second component is the

model selection technique, which decides which of the candidate segmentations is the most

appropriate. In our case, this would choose the appropriate value of k for the window.
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4.12.1 Extending the clustering algorithm

In Section 4.6, Lloyd's iterative threshold selection method was used for binary threshold-

ing. What is required is an equivaJently good technique which works for up to M clusters.

A generalized form of Lloyd's method is the &-means or H-means algorithm, referred to

here as ft-means. This algorithm was discussed in Section 3.2.1, and is repeated below in

Listing 4.2. In Step 2, "closest" is usually taken to be the Euclidean norm between the two

values. For greyscale pixels this simplifies to be the absolute intensity difference, but for

higher dimensional data such as colour pixels, a full calculation would be necessary.

1. Choose k initial means (to be discussed in Section 4.12.3).

2. Assign each datum to the cluster with mean closest to its own value.

3. Recompute the cluster means using the new assignments.

4. If any pixels have switched clusters, go to Step 2.

Listing 4.2: The /b-means algorithm for local segmentation.

The objective function of &-means is to minimize the sum of squared deviations of pixels

from their cluster means. Each iteration of the &-means algorithm is guaranteed to improve

the objective function, and the algorithm will always terminate. Unfortunately, the algorithm

will stop at the nearest local minimum, which is not necessarily the global optimum [GG91,

BB95]. The minimum reached depends wholly on the choice of initial cluster means [BF98].

Three techniques for choosing the initial means will be investigated in Section 4.12.3.

4.12.2 Extending the model order selection technique

So far, the decision between k — 1 and k = 2 has been decided by examining the separation

of the two cluster means. The fc-means algorithm can be used to segment pixels into an

arbitrary number of clusters. The "mean separation criterion" can easily be extended to work

with more than two clusters — each cluster mean is required to be far enough away from

every other cluster mean. The highest value of k for which all the clusters are mutually well
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separated is deemed the optimal clustering. Equation 4.32 describes this formally, where k

is the optimal number of clusters and /}; is the estimated mean for the ith cluster.

argmax Vi, j
1- i=l...Jt

, " l 2 ) (4.32)

The /c-means algorithm can easily be configured to generate cluster means in ascending nu-

merical order, so only adjacent cluster means need to be tested for separation. Equation 4.33

shows a simplified version of Equation 4.32, where //(,) is the ith sorted cluster mean.

argmax Vi
JU Z— 1 • • ./C*~* J.

> g(a,mu m2) (4.33)

4.12.3 Choosing the initial means

Inappropriate starting conditions can cause the ft-means algorithm to converge to a local

minimum. This problem can mostly be avoided in the one dimensional case (greyscale pixel

values) by judicious choice of the initial cluster means.

Measurement space

One approach is to spread the k initial means evenly throughout the measurement space.

Equation 4.34 describes this, where p'min and p'max are the lowest and highest pixel values

being clustered, and fa is the initial mean for cluster i.

ft = Pmin (* - ! ) P'max ~ mm
k-l

where (4.34)

This method assumes that the pixel values are uniformly distributed in intensity. If the pixel

value distribution is highly skewed, some clusters may never be used. This is known as the

empty cluster problem [HMOi].
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Rank space

An alternative assignment of initial means is given in Equation 4.35, where p'.^ is the ith

sorted pixel value. Instead of spreading the initial means uniformly by intensity, they are

chosen uniformly by rank, where a pixel's rank is its sorted position. For example, in Equa-

tion 4.34 the pixels p'min and p'mnx are the same as p',^ and p|Af * respectively.

Ik = p\f I (i-i)M I \ where (4.35)

The rank technique improves the chance that the initial clusters will have at least one member

each, as the initial means are equal to existing pixel values. If the pixel data lacks variety,

adjacent clusters may still be assigned the same initial mean. This would result in one cluster

arbitrarily being chosen over another, leaving one empty after the first iteration.

Unique rank space

A simple modification can be made to the rank space method to avoid the r; • t-iem of clusters

sharing an initial mean. The M sorted pixels are first scanned to remove duplicates, leaving

M' pixels. The rank space approach can then be applied to the M' unique pixels. This is

described in Equation 4.36.

where * - ! . . . & and k < M' < M

If M' < k, it is impossible to cluster the data into k distinct

discuss potential bounds on k in more detail.

(4.36)

groups. Section 4.12.3 will

Comparison of methods for choosing initial
means

Figure 4.56 plots the RMSE denoising performance of the fc-means-based denoising algo-

rithm for the three different &-means initialization techniques. Enhanced features such as

DNH and overlapping averaging are disabled. At low noise levels the "unique rank space"

approach does best. From a — 4 onwards there is little difference between the three methods.
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Figure 4.56: Comparison of three different methods for choosing the initial k means, in terms
of RMSE denoising performance on montage.

Forcing an upper bound on k

Let K be the highest value of k to be tested. Higher values of k require more computation

because there are more parameters to estimate and distributions to compare. Any heuristics

or computable bounds on K for each pixel would reduce the amount of computation required

by local segmentation.

Maximum upper bound If each of the M pixels has a distinct value distant enough from

every other pixel's value, then the algorithm will infer M unique clusters. An absolute

upper bound on K is therefore M.

Block variance If the window variance, Var[ p' ], is less than the estimate of the noise vari-

ance, a2, then it is not possible for k > 2 to produce clusters far enough apart. In this

situation K = 1.
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Maximum possible fit The range of the pixel values, (p'max - p'min), also limits the max-

imum value of k achievable. Equation 4.37 calculates how many Ccr-wide normal

distributions could fit within the pixel range. If using the simple mean separation

criterion, the same value of C should be used for each window. If using the i-test sep-

aration criterion, the maximum possible effective value of C must be chosen to ensure

correctness in the extreme case.

K =
Co + 1 (4.37)

Unique pixel values It is not possible to have more clusters than unique pixel values, be-

cause pixels with the same value are necessarily clustered together. If the pixels are

already sorted, as required by the initial means method of Equation 4.36, the number

of unique values may be obtained with a simple one-pass O(M) algorithm.

Limited by the user The user may wish to place an upper limit on K. They may have

prior expectations regarding the number of segments in each region, or simply wish

the implementation to run more quickly. This is particularly suited to large windows,

because one would not reasonably expect to find 49 clusters in a 7x7 window.

4.12.4 Quantitative results for multiple classes

The local segmentation denoising algorithm could easily utilise the multi-class &-means seg-

mentation algorithm in Listing 4.2, and the model selection criterion of Equation 4.33. The

montage image contains many local areas having more than two segments, for example, the

intersection of the four quadrants. One would expect the multi-class mode to better denoise

these regions. The local segmentation denoising algorithm now has three main attributes:

1. Support for binary or "multi-class" local segment models.

2. An ability to average overlapping estimates or i

3. A DNH option to minimize

or just use the central estimate,

worst case behaviour filtering behaviour.
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Figure 4.57 compares binary and multi-class thresholding in terms of RMSE for denoising

montage. For the moment, both overlapping averaging and DNH are disabled. The RMSE

is much better for the multi-class model, especially at lower noise levels.
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Figure 4.57: Comparison of binary and multi-class local segmentation for denoising
montage. DNH is disabled and p — 0.

Figure 4.58 provides results for when overlapping averaging is enabled. Although the RMSE

improves for both techniques, binary thresholding benefits the most. The gap between the

two methods is only significant when a < 10. This suggests that averaging estimates from

9 possibly incorrect binary models may produce a compound estimate which better reflects

the underlying image than a single estimate alone.

In Section 4.9, "do no harm" was introduced as a way to limit the worst case performance

of a denoising filter, and was found to dramatically improve RMSE performance at lower

noise levels. Figure 4.59 compares the same binary and multi-class algorithms when DNH

is enabled, but overlapping averaging is disabled. Surprisingly, binary thresholding does

marginally better when a < 5, while multi-class thresholding is better at high noise levels.
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Figure 4.58: Comparison of binary and multi-class local segmentation for denoising
montage. DNH is disabled and p—l.

When the noise level is low, intricate image structure is more easily preserved. The multi-

class algorithm will do its best to choose a high value of k to fit this structure, but will

probably not capture all the detail. The binary model will also do its best, but with only two

clusters it is unlikely to do as well as the multi-class fit. Thus the binary method is forced

to invoke DNH, allowing fine detail to pass through unmodified. Retaining fine detail with a

small amount of noise is more beneficial than removing both noise and some image structure.

Figure 4.60 again compares the two methods when both DNH and overlapping averaging

are enabled. The RMSE metric is unable to distinguish the two methods to any significant

level. Although not shown, my experiments show this behaviour is duplicated when larger

windows, such as 5x5 and 7x7, are used instead.

These results show, at least for montage, that more complex multi-class modeling does

not improve overall RMSE results when DNH and overlapping averaging are utilized. This

behaviour could be exploited if the algorithm was implemented in hardware, or as embedded
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Figure 4.59: Comparison of 3x3 binary and multiclass local segmentation models on
montage. DNH is enabled and p = 0.

software running on a system with relatively low processing and memory capabilities. The

results also suggest that a large proportion of local windows are well modeled by two or

fewer segments, or that DNH models complex regions better than a piece-wise constant

multiclass model can. When a large number of segments are present, there are too few pixels

with which to estimate the class parameters.

Consider a noisy a = 5 version of montage. Figure 4.6.1 shows, using white, where the

binary thresholding method used DNH, k = 1, and k = 2. Figure 4.62 shows the same for

the multi-class method for values of k up to 8. The image for k = 9 is not included, as it was

only used twice for the whole image. Table 4.5 lists the frequencies of model usage, DNH

included, for the binary and multi-class methods for the same image.

The distribution of k for the multiclass method is monotonic decreasing. It did not use values

of k > 4 very often in montage. Interestingly, k = 9 was chosen twice. This is equivalent

to using DNH, because each pixel is given its own cluster. DNH is not used very often in the
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Figure 4.60: Comparison of 3x3 binary and multiclass local segmentation models on
montage. DNH is enabled and p = 1.
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Figure 4.61: Binary local segmentation of noisy a = 5 montage. White denotes: (a) DNH;
(b) k = 1; (c) k = 2.

synthetic quadrants of montage, its invocation being more beneficial in the natural areas.

When restricted to binary thresholding, the number of homogeneous regions remains the

same. The 16% of windows previously diagnosed as k > 3 need to be reclassified. It seems

that seems that 11% were allocated to DNH, while 5% were adequately handled by k = 2.

Figure 4.62: Multi-class locai segmentation of noisy a - 5 montage. White denotes:

(a) DNH; (b)—(») & = 1 to fc = 8.

Model
used
DNH
fc=l
k = 2
k == o
k = A
k = b
k = 6
k = 7
k = 8
k = 9

Multiclass
/C = 9
4%
52%
28%
10%
4%
1J%
0.2%
0.03%
11 pixels
2 pixels

Binary
K = 2
15%
52%
33%

—
—
_
—
—
—

Table 4.5: Binary and multi-class model usage for noisy a = 5 montage.
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4.13 Estimation of the noise variance

In the experiments performed in this chapter, known amounts of synthetic noise are added to

ground truth images. The various model selection criteria explored require that an estimate of

the image noise variance, a2, be known a priori. Local segmentation uses the supplied noise

variance to measure the natural level of variation of pixel values within segments. This helps

discriminate between those features attributed to structure, and those attributed to noise.

rsually, the exact noise variance is unknown. It must be guessed by the user, or estimated

from the noisy data itself. There are various algorithms in the literature for estimating the

variance of additive noise in an image [Ols93]. The algorithms fall into two main categories:

L Those which filter the noisy image first to remove structure and then estimate the

variance from the residuals [Imm96, RLU99J

2. Those which ignore heterogeneous regions and use the remaining pixels to estimate

the variance- [Lee81b, Mas85, MJR90].

Those in the first category tend to overestimate the variance, as they are unable io completely

remove structure. The second category tends to underestimate the variance, as avoiding

heterogeneous regions would naturally bias them to less noisy regions.

Figure 4.63a shows montage with a — 5 noise added to it. Figure 4.63b is the same

image except that each pixel has been replaced by the unbiased standard deviation of its

3x3 local neighbourhood, itself included. As expected, the standard deviation is lowest in

homogeneous regions, and highest in textured and edge regions. It is possible to use the

distribution of local standard deviations to estimate the global noise variance, rr2.

Figure 4.64 shows a histogram of all local standard deviations in montage having values

from 0 to 100. If montage was completely homogeneous, the histogram would be normal

with mean a and variance o2/9. However, the existence of 3x3 heterogeneous regions in

montage places many high variance entries in the right hand tail of the histogram [RLU99],

Figure 4.65 plots a smoothed version of the histogram for values up to 20. The smoothing

was performed using a sliding window average of width 3. The smoothed histogram has

a clear peak at around 5, which h equal to a, the standard deviation of the added noise.

4.13 Estimation of the noise variance

Figure 4.63: (a) noisy a = 5 montage; (b) 3x3 local standard deviations.
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Figure 4.64: Histogram of local 3x3 standard deviations from Figure 4.63b.

Thus the mode of the local standard deviation distribution could be used as an estimate for

a [BS85]. This method belongs to the second category of noise estimation algorithms.
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Figure 4.6t>: Smoothed version of main peak from Figure 4.64.

A noise estimation technique from the first category is Immerkasr's method [Imm96], de-

signed specifically for the case of zero mean additive Gaussian noise. To remove image

structure it applies the 3x3 linear filter, N, in Equation 4.66, to the noisy image. This filter

is the weighted difference of two Laplacian [GW92] filters, Lx and L2, which estimate the

second derivative of the image signal. The effect of N is to reduce constant, planar and

quadratic 3x3 facets to zero plus a linear combination of the noise. The effect of this filter

on l enna is given in Figure 4.67.
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Figure 4.66: Filter masks used by Immerkaar's noise variance estimation technique.
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Figure 4.67: (a) original lenna image; (b) after Immerkaer structure suppression, with mid
grey representing zero.

where f(x, y)*N denotes the result of applying filter N at pixel f(x, y). The formula does

not use margin pixels because they do not have a full 3x3 neighbourhood.

X-2 V-2
&2 = {f{x,y)*N)'' (4.38)

By using the fact that, for a zero mean Gaussian random variable X, E[X2] — |E [ \X \ ) ,

Immerkasr describes an alternative method for computing the estimated noise standard devia-

tion. Rather than the sum of squared residuals. Equation 4.39 uses the scaled sum of absolute

deviations. This formulation has two advantages: the summation requires no multiplications,

and the absolute deviation is more robust to the presence of outliers [Hub81]. It would also

be possible to use alternative robust methods, such as the median absolute deviation from the

median [RL87], but these will not be investigated here.

a = v / - -
.Y--21'-2

2 G(X-2)(Y-2) ^ ^
v ' v ' x=l y = l

\f(x,y) *N\ (4.39)

Figure 4.68 compares the three noise estimation techniques for estimating the standard de-

viation of synthetic noise added to montage. AvS hypothesized earlier, the two Immerkaer
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methods consistently overestimate a, because they can not remove all the image structure.

The mode method does very well, but slightly underestimates high values of a.

Although montage is assumed noiseless, it was mentioned in Section 4.4 that the lower

right quadrant does contain a small amount of noise, hence the robust Immerkaer estimate

may have some truth to it. If the noise level varies across an image, any global estimate will

fall somewhere between the lowest and highest levels.

EvStimation Method
Actual

if local variances —x—
immerkaer (standard) ---*•--

Immerkaer (robust) &

0

10 15 20 25
Added Gaussian noise standard deviation (a)

Figure 4.68: Different noise estimation algorithms for montage.

In real situations, the noise variance must be estimated from the noisy image without ref-

erence to any ground truth. Consider the familiar l enna image from Figure 4.18, which

already contains noise. Let us assume that it is additive Gaussian noise with variance s2.

If synthetic noise of variance a2 were added to lenna, the actual noise variance would be

a combination of the original and the synthetic, namely a2 + s2. We can compare noise

estimation techniques in the same manner as before on images already containing noise by

correcting the "acisul standard deviation" to include the pre-existing noise. Instead of com-

paring estimated noise levels to cr, the curve y/a2 + s2 can be used instead.
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Figure 4.69: Smoothed histogram of local standard deviations for lenna.

A method for estimating the base noise level, s, is needed. Figure 4.69 plots a smoothed

histogram of lenna ' s local 3x3 standard deviations. The mode of this histogram esti-

mates s = 2.38, while the robust Immerkaer method estimates 5 = 2.66. Figure 4.70 com-

pares noise estimation algorithms for l enna , using s — (2.38 4- 2.6C)/2 = 2.52 to correct

the curves. All the methods now mostly follow the ground truth. The standard Immerkser

method slightly overestimates at the lower end, but this is somewhat due to its estimate not

contributing to the base noise level estimate, s. The mode method slightly underestimates

at the higher end, just as it did for montage. At higher noise levels the assumption that all

the heterogeneous variances exist in the far right of the histogram breaks down, causing the

mode to be less accurate. It may be possible to estimate the mode by first fitting a spline to

the data, and then analytically determining the peak. Overall, the deviations are minor, and

any of the estimates would probably produce similar denoising results.

The specific noise estimation procedure used is only important with respect to the quality of

the variance estimates it produces. The local segmentation process does not require modifi-

cation if the noise estimation technique is varied. The ncise estimator is a separate module,

which may be replaced with a better technique if one becomes available.
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Figure 4.70: Different noise estimation algorithms for l enna , corrected for existing noise.

4.14 Comparison to other denoising algorithms

This chapter has developed a family of denoising algorithms based on the local segmenta-

tion principle. Various modifications to the basic technique were explored, many of which

improved results both visually and in terms of RMSE. The best trade-off between efficiency

and performance over a range of noise levels is determined to have the following attributes:

10)

segments (Section 4.12)

• Use of a local 3x3 window (Section 4.

• Model local regions as consisting of either 1 or 2

• Use of Lloyd's algorithm for threshold selection local segmentation (Section 4.6)

• Simple model selection criterion using C = 3 (Section 4.7)

• Use of the "do no harm" (DNH) option to limit worst case behaviour (Section 4.9)

• Equal averaging of overlapping estimates, after DNH has been applied (Section 4.11)

• One iteration only (Section 4.8)

• Estimate noise variance with Immerkar's robust method (Section 4.13)
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This variant shall hereafter be referred to as FUELS — "filtering using explicit local segmen-

tation". FUELS will be compared to the four denoising algorithms described below, each of

which was described in detail in Section 3.4.2. These algorithms were chosen because, like

FUELS, they operate locally, are relatively efficient, and use similar image models.

WMED (Section 3.4.4)

WMED is the 3x3 cenire weighted median with the centre pixel included three times.

Although not as efficient as the mean in homogeneous regions, it can preserve fine

lines and some edges. WMED may be considered a minimum level of performance

that any structure preserving denoising algorithm should reach. It is probably better

known for its resistance to impulse noise.

GIWS (Section 3.4.5)

Gradient inverse weighting smoothing, centre pixel not included, will be used. GIWS

can be considered an accelerated single iteration of anisotropic diffusion.

SUSAN37 (Section 3.4.5)

The standard 37 pixel SUSAN filter is one of the best local denoising algorithms in the

literature, and has a very efficient implementation. It requires a brightness threshold

t, and Smith claims that t = 20 works well over all image types. I found that setting

t = 3(7 gave better results, where a is the same estimated noise level that FUELS uses

when it is not provided with one.

SUSAN9 (Section 3.4.5)

The SUSAN implementation also has a 9 pixel mode, which uses a 3x3 window.

This was also included as it is closer in size to the window that FUELS uses. When

something affects both SUSAN9 and SUSAN37, the generic term "SUSAN" is used.

4.14.1 The montage image

Supplied with noise level

Figure 4.71 plots the RMSE performance of FUELS, WMED, GIWS, SUSAN37 and SU-

SAN9 for montage. Just for this time, FUELS and SUSAN were provided with the true
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value, of a. FUELS clearly outperforms the others at all noise levels. SUSAN37 also did well

until a « 12, after which point SUSAN9 took over. SUSAN9 performed badly for very low

noise levels. It is unable to assimilate enough pixels, and switches to being a 3x3 median

filter. GIWS consistently tracks the SUSAN37 method, but 2 RMSE units higher.

SUSAN9 -E--
16 f- WMED — « -

20 25
Added Gaussian noise standard deviation (a)

Figure 4.71: RMSE comparison for montage, true a supplied.

Estimated noise level

Figure 4.72 repeats the experiment, except that this lime FUELS and SUSAN utilise the

estimated noise variance. Immerkasr's noise estimation method tends to overestimate a for

montage. This is due to the large number of strong step edges, which are somewhat atypical

for photographic type data. The results once again show FUELS to perform best, although

SUSAN is within one RMSE unit at most points. It is not clear why SUSAN37 does better at

low noise levels, and SUSAN9 at high levels. I would expect a larger mask to provide more

smoothing at higher noise levels than a smaller one.
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Figure 4.72: RMSE comparison for montage, with c estimated.

The use of the estimated noise variance has narrowed the gap between those algorithms

which exploit its knowledge, namely FUELS and SUSAN, and those which do not, namely

GIWS and WMED. The poor performance of SUSAN9 at low noise levels has also gone.

This must be due to the estimated noise variance being higher than the "true" variance.

The resulting brightness threshold supplied to SUSAN is therefore higher, allowing it to

assimilate more pixels.

The denoised output

Figure 4.73 compares SUSAN and FUELS in tenns of structure preservation. The 96x96

image examined is from the centre of montage when a = 5. Ideally the difference images

should contain no structure. There are no obvious differences in the top left quadrant. In the

top right quadrant both had difficulty with the oval shape, because it has a similar intensity

to its background. SUSAN37 had trouble with the cross above it, whereas FUELS left little

trace of it in the difference image. In the lower left quadrant FUELS seems to have smaller
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errors at segment boundaries, but SUSAN37 seems to have removed more noise within seg-

ments. This could be due it using a 37 pixel window, compared to FUELS' 9 pixels. The

bottom right quadrant contains a lot of fine detail, and overall FUELS appears to have done

better than SUSAN37 there. The roof and shutters are much more obvious in the SUSAN37

filtered difference image.

Figure 4.73: (a) noisy a = 5 part of montage; (b) FUELS enhanced difference image,
RMSE=3.48; (c) SUSAN37 enhanced difference image, RMSE=4.11.

Figure 4.74 plots the WCAE for montage. Both WMED and GIWS have a near constant

WCAE, suggesting there is a pixel pattern in montage which they both consistently get

wrong. FUELS' WCAE seems directly proportional to a. This behaviour is desirable be-

cause it indicates that its mistakes are due to the random nature of the noise, rather than

difficulty preserving any particular image structure. Overlapping averaging and DNH are

mostly responsible for this positive feature of FUELS.

Both SUSANs have poor worst case performance at lower noise levels. Figure 4.75a shows

a 40 x 30 part of montage without added noise, for which SUSAN is given a brightness

threshold t = 11.73. Figures 4.75b-c show SUSAN37's output and the corresponding dif-

ference image. The two white spots in the difference image are large filtering errors, the

worst of which is out by 150 intensity units. This behaviour can be expkvned by the fact

that SUSAN switches into a special mode when all the neighbouring weight* w:e too small.

In this mode, SUSAN assumes the centre pixel is impulse noise, and instead uses the me-

dian of its eight immediate neighbours as its denoised estimate. The region of montage in

Figure 4.75a is very busy, and the median obviously chose inappropriately.

m

4.14 Comparison to other denoising algorithms 143

250

200 h

150*-
LU
<

FUELS
GIWS

SUSAN37
SUSAN9

WMED

100 f-

0
5 10 15 20 25

Added Gaussian noise standard deviation (o)

Figure 4.74: WCAE comparison for montage image, wither estimated.

Figure 4.75: (a) part of montage without added noise; (b) SUSAN37 output using t = 11.73;
(c) difference image.

4.14.2 The lenna image

The l e n n a image [len/2] in Figure 4.18 is the single most popular test image used by the

image processing community. Because l enna is not synthetic, it already contains some

noise of unknown distribution. In Section 4.13, under the assumption of additive Gaussian

noise, the natural noise standard deviation, s, was estimated as being somewhere between 2

and 3. Using the original l e n n a as ground truth is difficult, because any good denoising
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algorithm will remove both the original and synthetic noise. As the added noise level, a,

increases, the original noise is swamped and hence can mostly be ignored. However, when

a < 2s or so, the original noise level will impact the RMSE results. In these cases visual

inspection of the denoised and difference images would be necessary to fairly compare the

quality of smoothing and structure preservation.

Figure 4.76 plots RMSE results for lenna. Although FUELS performs best at all noise

levels, the two SUSAN variants are very close. In fact, when a < 9, FUELS, SUSAN and

GIWS perform within one RMSE unit of one another. Perhaps the common use of l enna

as a test image has mildly biased algorithmic development toward those techniques which

do well on l enna and other images with similar properties.

FUELS
GIWS -

USAN37 -
SUSAN9 -

WMED -

0

0 5 10 15 20 25
Added Gaussian noise standard deviation (a)

Figure 4.76: RMSE comparison for lenna, with a estimated.

Figure 4.77 shows the WCAE when denoising lenna . All except FUELS have a near-

constant WCAE. Interestingly, SUSAN37 improves its WCAE as the added noise increases

from none to low amounts. This unusual behaviour is once again likely to be due to its

fall-back median filter. Although the monotonic increase of FUELS' WCAE is desirable, it

1454.14 Comparison to other denoising algorithms

reaches levels higher than the other algorithms when o > 15. FUELS has some large errors

in the feathers of lenna ' s hat, which is notoriously difficult to process. Modeling them as

piece-wise constant segments is likely to be problematic, and invoking DNH in high noise

environments will create errors proportional to the noise level.
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Figure 4.77: WCAE comparison for lenna image, with a estimated.

4.14.3 The barb2 image

Figure 4.78a shows ba rb2 4 from the JPEG test set [PM93]. It is larger than lenna , having

resolution 720 x 576. A feature of images from the JPEG test set is that they only contain

intensities in the range [16,235]. The histogram of barb2 in Figure 4.78b clearly shows

the saturation effect caused by pixels being clamped to the reduced range. The image is

interesting in that it contains large areas of straight edge patterns in the chair, clothes and

books, but also contains clearly homogeneous background regions, including a dark, noisy

4Available from ht tp : //www. csse .monash. edu. au/~torsten/phd/
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margin on the right hand side. This variation in features make barb2 useful for examining

the structure preservation capabilities of denoising algorithms.

Figure 4.78: (a) the 720 x 576 barb2 image; (b) its histogram.

Figure 4.79 compares the denoising algorithms in terms of RMSE on barb2. Compared to

lenna, the results are more diverse, but FUELS still does best for all values of a. Another

interesting fact is that SUSAN37 achieves lower RMSE results than SUSAN9 up until a = 7,

after which they swap. Intuition suggests to me that this should be the other way around, as

a larger mask should allow better smoothing in the presence of more noise. The threshold

chosen for SUSAN may not be appropriate for all image and noise level combinations.

When denoising a highly patterned image like barb2, one would expect most algorithms

to produce some large errors. The WCAE graph in Figure 4.80 supports this hypothesis.

SUSAN9 had particular trouble with the large number of edges in the image, again due to its

fall-back median filter. FUELS has done very well for a < 15, assisted by its DNH feature.

Figure 4.81 compares the denoised outputs of FUELS and SUSAN for a sub-image of

barb2 without added noise. The estimated noise standard deviation was 4.2. The corre-

sponding difference images are also included. These were enhanced by linearly stretching

differences in the range [-12,12] to [0,255]. Large differences were clamped to ±12.

FUELS has left very little structure in the difference image. Its DNH option has obviously

been used in the vest area, because most of the differences there are zero. SUSAN9's differ-

ence image exhibits little image structure too. The large differences occur in clumps, rather

than spread evenly across the image. They are particularly noticeable on the vest. This could
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Figure 4.79: RMSE comparison for barb2, with a estimated.

be due to the fall-back median filter, which is a poor choice for that type of image structure.

The face and wicker chair from barb2 are clearly noticeable in the SUSAN37 difference

image. Although SUSAN37 produces smaller differences on average than SUSAN9, they

are correlated with edges in ba rb2 . This is probably due to the 37 pixel mask being more

likely to encompass segment boundaries, and hence blur them slightly.

A histogram of the three difference images is given in Figure 4.82. FUELS' errors all occur

in a tight distribution around zero. SUSAN37 has a slightly wider band, and one or two

outlier errors at 50. SUSAN9's predisposition to larger errors is clearly indicated by the fat

tails of its distribution.

4.15 Conclusions

It has been shown that the principles of local segmentation can be used to develop effective

denoising algorithms. After many analyses, the FUELS algorithm for denoising greyscale
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Figure 4.80: WCAE comparison for barb2, with a estimated.

images contaminated by additive noise was presented. FUELS has an efficient implementa-

tion, and only requires one parameter, the level of noise in the image. This can be supplied

by the user, or FUELS can determine it automatically. FUELS was shown to outperform

existing methods, like SUSAN and GIWS, for a variety of images and noise levels.

Both quantitative and qualitative methods were used to compare FUELS to other methods.

The RMSE was used to measure objectively the closeness of denoised images to the orig-

inals. FUELS consistently produced lower RMSE results than SUSAN, the next best per-

former. The WCAE was used to gauge the worst case performance of each algorithm. FU-

ELS had the desirable attribute of having a WCAE proportional to the noise level in the

image. The others, SUSAN included, tended to have constant or erratic WCAEs. To assess

the structure preserving ability of each algorithm, difference images were used to highlight

those areas of the image in which larger errors occurred. Although structure was apparent in

all the difference images, FUELS' tended to contain the least.

The FUELS algorithm has various attributes which are responsible for its good performance.

149

Figure 4.81: For barb2 with no added noise: (a)—(c) FUELS, SUSAN9 and SUSAN37
denoised output; (d)—(f) corresponding enhanced difference images.

Like SUSAN and GIWS, FUELS attempts to average only those pixels which, in some sense,

belong together. FUELS achieves this by explicitly segmenting the whole local region, in-

sisting that eaGh pixel belong wholly to one segment. This contrasts with SUSAN and GIWS,

which advocate a soft cut-off. A hard-cut off ensures that pixel values can not diffuse across

segment boundaries to influence other, unrelated, pixels. It has the advantage of providing

a local approximation to the underlying image, which is arrived at democratically, because

each pixel contributes equally to the local segmentation. This is unlike SUSAN and GIWS,

which assimilate pixels based on their relationship to the centre pixel in the window only.

FUELS acknowledges the requirement for denoising algorithms to have "magic" parameters

to allow adaptation to different images. The most common type of parameter controls the

distinction between noise and structure. GIWS implicitly has one in the \ term in the de-

nominator of its weighting function, while SUSAN needs a brightness threshold to control
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Figure 4.82: Partial histogram of FUELS and SUSAN denoising errors for barb2 .

its pixel assimilation. It is not always clear how to choose these parameters appropriately.

The use of local segmentation naturally links the image model to the segmentation algo-

rithm used. FUELS was developed under the assumption of piece-wise constant segments

corrupted by additive zero-mean Gaussian noise. This obviously suggests the noise standard

deviation as a measure of the natural level of pixel variation within segments. FUELS has

the advantage of automatically determining this parameter if it is unknown to the user.

Determining a local approximation to the underlying image at each pixel position has two

advantages. Firstly, because each pixel participates in multiple overlapping local approxi-

mations, there exist multiple estimates of that pixel's true value. FUELS exploits this by

averaging the overlapping estimates. This has the effect of increasing the effective window

size by a factor of 2.8, without the overhead of segmenting more pixels. £>x .iidly, the lo-

cal approximation can be assessed, and rejected if necessary. Just because an algorithm has

determined its "best" estimate for a pixel's value does not mean that estimate is of high qual-

ity. If any of the locally approximated pixel values differ too much from their original noisy
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values, FUELS refuses to accept them. Instead, the local approximation is set equal to the

unfiltered pixel values. The acceptable intensity difference used is strongly related to the

estimated image noise level. This "do no hairm" philosophy significantly improves results at

lower noise levels, and may be applied to any denoising algorithm, not just FUELS.

Examination of images in terms of local segmentation has lead to a better understanding of

image processing on a small scale, particularly for the commonly used 3x3 configuration.

At conversations and seminars, I have often heard the off-hand comment that "only 10% to

20% of images are edges". Analysis of the distribution of k values chosen for images in the

chapter suggest that only around 50-60% of pixels are locally homogeneous, 20-30% consist

of two segments, and 10-20% tend to be difficult to model well. Perhaps the speakers were

confusing edges with those pixels which are difficult to predict or model. The success of

FUELS suggests that attempts to model these difficult blocks does not significantly improve

denoising performance.

4.16 Related work

An early form of the work in Section 4.7.1 appeared in Proceedings IAPR Conference on

Pattern Recognition 1998 [ST98]. That paper outlined a structure preserving denoising al-

gorithm which decided between k = 1 and k = 2, with k — 2 being chosen if the range of

the pixels in the 3x3 neighbourhood was greater than 6cr. The noise level a was estimated as

an average of the local variances of homogeneous regions, with homogeneity being declared

if the Sobel edge strength [Sob70] was less than 16. The k = 2 model was thresholded using

the "dynamic mean" [CC94], and not iteratively determined. The concept of overlapping

averaging was also introduced, albeit only with equal weights.
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5.1 Introduction

In Chapter 4, the principle of local segmentation was introduced and applied to the problem

of image denoising. Initially, two candidate segmentations were considered for modeling the

local neighbourhood of each pixel being processed. The first candidate assumed the local

region was homogeneous. The second candidate was generated by thresholding the pixels

into two classes. A simple model selection criterion was then used to decide which of the

two candidates best modeled the underlying image. The selection criterion was based on

the level of noise in the image. It tried 10 choose a two-segment model only if the segment

means were separated enough. Later, the concept was extended to allow for more than two

candidate segmentations by using the fc-means algorithm for multi-level thresholding. Up to

M candidates were considered, where M was the number of pixels in the window.

Surprisingly, allowing the model selection process to consider models with more than two

segments did not improve results significantly. There could be two main reasons for this.

Firstly, it may be true, that, on a small scale, one is unlikely to encounter junctions between

more than two segments. Secondly, the use of thresholding to group small amounts of data

into a relatively large number of clusters may be inappropriate. Thresholding relies solely

on pixel intensity for guiding segment membership. As the image noise level increases,

153
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spatial information may be required for successful segmentation. This could be used to

better distinguish whether pixel variation is due to noise, or to underlying image structure.

Local segmentation is fundamentally concerned with choosing the best underlying local im-

age model, from a set of candidate models. This is an example of the quite general problem of

inductive inference, or model selection. Over the last few decades Bayesian techniques have

proved to be the most reliable for model selection [RR98, BS94]. In this chapter, Wallace's

Minimum Message Length (MML) criterion [WB68, WF87, WDOO] for model selection is

used to objectively compare different local segmentations. MML is an information theo-

retic criterion related to traditional Bayesianism, but extended to function better with models

containing continuous parameters. MML evaluates models using their message length. A

message is an efficient, unambiguous joint encoding of a model and the data. The model

associated with the message of shortest overall length is deemed the best model for the data.

Image denoising will again be used as a test bed for exploring the potential of an information

theoretic approach to local segmentation. It will be shown that the MML model selection

criterion leads to better RMSE performance, especially at higher noise levels, by remov-

ing the minimum contrast difference that FUELS requires. Instead of being treated as a

post-processing step, the "do no harm" heuristic will be shown to fit naturally into MML's

information theoretic framework. A much larger set of candidate segmentations are consid-

ered, allowing spatial information to be exploited. With FUELS it unclear how to compare

two different k = 2 models, but the MML criterion makes this straightforward. The MML

denoising algorithm also learns all of its required parameters from the noisy image itself.

5.2 Statistical model selection

Imagine we have some set of measurements, D, from the real world, and a set of models,

9 = {#i, 82, •••}, with which we attempt to explain these measurements. How do we assess

the quality of and choose the best model § from 0? Consider the familiar problem of polyno-

mial regression. The measurement data consists of N coordinate pairs, (xt-, yi) • • • {x^, VN)-

Equation 5.1 describes an nth order polynomial regression model, with n a positive integer.
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fn(x) =• Y ^ ciiX1 = a0 4- aix 4- a,2X2 4 h "-no;'*
t=0

(5.1)

A particular model, 0, is fully determined by its polynomial order n, and its corresponding

polynomial coefficients, a0 to on. Because the coefficients are continuous variables, there is

an infinite number of possible models, irrespective of the value of n. Because it is impossible

to evaluate an unbounded number of models, the model space must be reduced intelligently.

The residuals, n . . .?'#, are the differences between the regression model and the actual mea-

surements. Typically, the residuals are assumed normally distributed, namely rt ~ JV(O, a2).

For a given model order n, the least-sum-of-least-squares algorithm [Nie94] can be used to

estimate the optimal polynomial coefficients by minimizing Yli r\- This reduces the set of

models, 0 , to the family of least-squares polynomials parameterized by n. A model selection

criterion only needs to choose the most appropriate value of n for the data.

Figure 5.1 gives an example of 11 data pairs. These pairs exhibit some positive correlation.

Figure 5.2 shows three polynomial fits to these data pairs: n = 0 constant, n = 1 linear and

7i = 2 quadratic. The constant model does not fit the data very well. The linear and quadratic

models are more difficult to judge. The linear model has the virtue of being simpler, but the

quadratic appears to fit the end points more closely. An objective criterion is required to

choose the best model automatically.

5.2.1 Maximum likelihood

The maximum likelihood (ML) approach is an objective model selection criterion. ML

chooses the model which maximizes the probability of the data given the model — the so-

called likelihood of the data. Equation 5.2 describes the ML criterion.

§ML = argmax ?v(D\6)
060

(5.2)

For the regression example, a model consists of the value of n, and n 4-1 polynomial coef-

ficients. The data consists of N y-coordinates in the form of residuals from the fitted model,

namely r* = yi — fn(%i)> As mentioned in Section 5.2, the residuals are assumed normally
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Figure 5.1: Scatter plot of 11 data points.
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Figure 5.2: Three different polynomial fits to the 11 data points.
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distributed. The variance of this distribution is calculated from the residuals [Nie94], and

is assumed true and known, just like the x coordinates. The likelihood then is equal to the

joint probability of the residuals, given the model. Traditionally the residuals are assumed

independent, hence the joint probability becomes a simple product, shown in Equation 5.3.

I
Pr(D|^)=Pr(r1,r2,...,r^|/n(.),a) =

Which model would the ML approach choose from the three in Figure 5.2? The higher the

polynomial order, the better the fit to the data, and the higher the likelihood. Thus ML would

choose the most complex model from 0 , which for Figure 5.2 is the quadratic polynomial

(n = 2). Imagine a polynomial with the same number of coefficients as there were data

points. This curve would pass through each and every point exactly, causing all residuals

to vanish. In this situation the likelihood is unity, and ML would consider it the best fit for

the data. This is despite the fact that the fitted polynomial would probably be contorted and

non-intuitive, especially for values of a; outside the range of the original data. Moreover, if

polynomials with degree n>N are allowed, the ML fit is not even unique. ML has a strong

tendency to over-fit, as the complexity of the model is not taken into consideration.

5.2.2 Interchangeability of probability and code length

Often it is inconvenient to work with probabilities. By taking the negative logarithm of a

probability, we obtain what is called a code length in Shannon's information theory [Sha48].

The MML criterion for model selection introduced in Section 5.1 constructs codes, or mes-

sages, for comparing different models. Code lengths are measured in bits when the logarithm

is to base 2, and nits when natural logarithms are used. Where probabilities are multiplied,

code lengths are added, and where probabilities are maximized, code lengths are minimized.

Probabilities and code lengths are interchangeable using the rules in Table 5.1.

For example, reconsider the maximum likelihood formula in Equation 5.2. When phrased in

terms of code lengths, ML chooses the model which minimizes the code length of the data,

called the negative log-likelihood. This arrangement is shown in Equations 5.4 and 5.5.
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Probability Code length (bits)
i>r{x)
2~c{x)

maximize
Pr(x)Pr{y)

Pr(«) € (0,1)

C(x)
- log2 Pr(x)
minimize
£(*) + C(y)
C(x) e (0, oo)

Table 5.1: Interchangeable use of probability and code length

argmin -logPr(D|0)
see

argmin C{D\0)

(5.4)

(5.5)

5.2.3 Penalized likelihood

The maximum likelihood approach to model selection tends to over-fit the data, as it does

not consider the model complexity. Human minds and science tend to prefer the simplest

explanation of a data set which still has some useful predictive power [Thol8]. To incorpo-

rate this desire, many techniques have been devised which penalize the likelihood function to

discourage over-fitting. Penalized likelihood criteria typically have the form of Equation 5.6,

where PT(-) is a penalty term. The penalty term may depend on features of the data and

model. For example, the amount of data, or the number of model parameters.

OPML = argmin C{D\6) + PT(9, D)
0 € 0

(5.6)

Over the years many penalized likelihood techniques have been developed for particular

domains [KuhOO]. The most enduring approach has been the Akaike Information Crite-

rion, or AIC [Aka92, Boz83]. AIC is approximately equivalent to minimizing the expected

Kullback-Leibler distance [KL51, DDF+98], and has been applied to various problems such

as Markov chains and segmenting time series data. Penalized likelihoods methods have been

mostly superseded by other techniques, discussed later.

The local segmentation model selection criteria of Chapter 4 may be interpreted as a penal-

ized likelihood technique. The fc-rneans clustering algorithm attempts to find the maximum
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likelihood clustering for the pixel data, under the assumption of Gaussian clusters. The mean

separation criterion may be considered the penalty term. When the means are not separated

enough, the penalty term becomes infinite, and hence that model can not be chosen.

5.2.4 Bayesianism

Equation 5.7 shows Bayes' formula for the probability of a model given the data, usually

referred to as the posterior probability of the model. As Pr(D) is constant with respect to

different models for the same data, it may be disregarded. The resulting posterior probability

is proportional to the product of the model probability and the probability of the data with

respect to that model, the latter being the familiar likelihood.

(5.7)

The model probability, Pr(0), is usually referred to as the prior probability of the model.

The prior defines a probability distribution over all possible models and their parameters, and

must be supplied by the user. It allows the incorporation of relevant background knowledge

before the data is observed. Ignorance can be expressed using a uniform prior, which gives

equal probability to all models. Thus the prior term may be ignored, and using Bayes' rule

becomes equivalent to using the maximum-likelihood method of Section 5.2.1.

The resulting posterior is a probability distribution over all models. If any of the model pa-

rameters are continuous, the posterior will be a density, and any specific model will have zero

posterior probability attached to it [BO95]. Some Bayesians will insist that, for inference

problems, the posterior distribution is a sufficient final result — they believe it is unsound to

select a specific model from it [OB94]. However, some applications require either a single

"best" model, or at most a few likely ones.

Collapsing the posterior distribution results in a single best model, called a point estimate.

Common point estimates are the mode, mean, or median of the posterior distribution, each

corresponding to different loss functions [OB94]. The mode of the posterior is most com-

monly used, and is called the maximum a posteriori (MAP) estimate. The MAP estimate

picks the model which makes the data most likely, and is shown in Equation 5.8.
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= argmax Pr(0) Pi(D\6) (5.8)

The main problem with the MAP estimate is that, although it picks the peak of the posterior

distribution, this peak may not have much probability mass associated with it. An alternate

lower peak may have much more posterior probability mass surrounding it, and could be a

better overall estimate. Figure 5.3 gives an example of this situation for the case of a model

with a single continuous parameter. When the model consists only of discrete parameters,

the MAP estimate does not suffer from the same difficulties, because neighbouring (discrete)

points in model space are not necessarily related.

Posterior

probability

Model

MAP estimate Alternate estimate

Figure 5.3: The Bayesian MAP estimate may not always coincide with the largest peaked
zone of probability mass.

5.2.5 MDL : Minimum Description Length

Model selection has moved toward information-based interpretations of Bayes's rule. Ris-

sanen's original Minimum Description Length (MDL) criterion [Ris78] is given in Equa-

tion 5.9, where C{D\9) is the negative log-likelihood of the data, Ng is the number of model

parameters, and ND is the number of data items. For the regression example in Section 5.2,

Ng = n + 1, the number of polynomial coefficients, and No = N, the number of data points.

5.2 Statistical model selection 161

OMDL = argmin log; N0 + ^ log2 ND + C(D\9) (5.9)

The Iog2 x function is pronounced "log star". It estimates the length in bits for encoding an

arbitrary integer, x € [l,co]. Its computation is outlined in Equation 5.10, where 2.865 is

a normalization constant which ensures decodability. The first log term encodes the value

of the integer. To decode the value, uie decoder needs to know how many bits were used to

encode it. This is provided by the double-log term. The triple-log term encodes the number

of bits used for the double-log term, and so on. Eventually a point is reached where encoder

and decoder have mutual understanding. The log star term is usually small compared to the

overall code length, so is sometimes ignored when applying Equation 5.9 [BO95].

2.865 + Iog2(log2(log2:c)) + • •• bits (5.10)

This MDL criterion may be interpreted as a penalized likelihood or Bayesian method, with

the "model order" costing logj Ng bits, and each model parameter costing log2 y/No bits.

The model parameters are transmitted more accurately only if justified by more data. MDL

has been developed over the years [Ris87, RisOO], but each formulation has one or more

of the following drawbacks: not being invariant under transformation of the data or model

parameters, poor performance with small amounts of data, an inability to specify useful prior

knowledge about the data, and a focus on selecting a model class rather than a particular

model [WF87, BO95]. In local segmentation, a model class would be k = 1 or k = 2, but

the model class does not specify any particular parameter values, such as which segment

each pixel belongs to, or the segment means.

5.2.6 MML : Minimum Message Length

Wallace's MML criterion [WB68, BW72, WF87, WD00] is an information theoretic crite-

rion for model selection whose origins even pre-date AIC and MDL. Good introductions to

MML are found in Oliver et al [OH94, OB94, BO95]. MML proposes that, for each model

being considered, a two part message containing a description nf the model and the data
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given that model be constructed. The message having the shortest overall message length is

considered to contain the best model for the data. This is shown in Equation 5.11.

6MML = argmin C(9) + C{D\6)
0€©

(5.11)

Each message must be constructed in such a way that it can be decoded by a receiver given

only the same prior knowledge. That is, the message must be a lossless encoding of the data.

If the data and model parameters are all discrete, MML is equivalent to the Bayesian MAP

estimate in Equation 5.8, due to the equivalence of probability and code length.

The fundamental difference to Bayes' rule occurs when the model consists of one or more

continuous parameters. To transmit a continuous value with a finite number of bits, it must

be quantized. MML provides a framework to optimally quantize the prior density. The

quantization may be interpreted as modifying the shape of the prior density such that peaked

regions with little probability mass are flattened out, and high mass regions are somewhat

boosted [Far99]. The posterior mode in the MML situation may therefore be different to the

Bayesian MAP estimate when the models have continuous parameters.

Quantizing model parameters introduces two complications. Firstly, the decoder does not

usually know which quantization levels were used. Secondly, data usually needs to be en-

coded with respect to specific parameter values, not parameter ranges. The first issue is re-

solved by including some bits for encoding the quantization bin sizes, the so-called accuracy

of parameter values (AOPVs) [OH94]. The second problem is handled by computing an ex-

pected message length rather than an absolute message length. The expectation is computed

by averaging all the message lengths that would result from using all possible parameter

values within the quantization regions.

MML is essentially a Bayesian method at heart. By converting Bayes' formula in Equa-

tion 5.7 to code lengths, the MML formula in Equation 5.11 is arrived at. MML and

Bayesianism both advocate the incorporation of prior beliefs via Pr(0). This is unlike MDL,

which attempts to do away with priors altogether [BO95]. An inference produced by MML

has the advantage of being invariant under linear and non-linear transforms of the parameter

space. MML also works well for small amounts of data [BO95, WDOO]. When the amount
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of data is very large, the length of the second part of the message dominates, and MML

gracefully reverts to maximum likelihood, just as Bayes' rule and MDL do.

5.3 Describing segmentations

Segmenting pixels into a fixed number of classes results in two sets of information: class

labels denoting which class each pixel belongs to, and one or more parameters describing

the properties of each class . Consider segmentation of the noisy pixels, p \ in Figure 5.4. If

a threshold of 60 is used, the first class has mi = 6 members averaging /ii = 22, and the

second class m2 = 3 members averaging /i2 = 84. If the classes are numbered from 1, then

c contains the class labels for each pixel. The resulting local approximation, p, is computed

by replacing each pixel with the mean of the segment it belongs to.

P' =

20
24
23

22
21
22

84
81
87

fii =22 mi = 6
/i2 = 84 m2 = 3 c =

1
1
1

1
1
1

2
2
2

P =

22
22
22

22
22
22

84
84
84

Figure 5.4: Local segmentation of a 3x3 window into two classes.

The segment map, c, consists of M labels — one for each pixel taking part in the segmen-

tation. If K is the maximum number of segments allowed, then each label could take on a

value from 1 to K. By imposing a canonical ordering on the elements, the segment map, c,

can be treated as a 1-D vector, with elements indexed as Cj. Figure 5.5 illustrates the use of

a canonical raster ordering for labels within a segment map.

c = c4

C7

C2

c5 C6

Figure 5.5: Raster order convention for labels within a segment map.
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5.3.1 Possible segmentations

If there are M pixels, each of which may belong to one of K segments, then there are KM

distinct ways to assign pixels to segments. That is, there are KM possible values for c.

Consider the local segmentation of a 2x2 window into 1 or 2 segments. In this case M = 4

and K = 2, so there are 24 = 16 possible segment maps. Figure 5.6 shows all of them, with

light and dark squares denoting q = 1 and Cj = 2 respectively.

Figure 5.6: The 16 possible 2x2 binary segment maps.

5.3.2 Canonical segmentations

Figure 5.6 has the feature that the second row is an inversion of the first row, the role of labels

having been interchanged. The labels themselves are not crucial — what is important is the

uniqueness of the segment map pattern. Figure 5.7 shows the 8 canonical segmentations after

the inverted duplicates are removed. When K = 2, the number of canonical segmentations

is always 2M~1. Note also that the bottom right hand pixel is always in the same "dark"

segment. Because the labels are interchangeable, one degree of freedom is removed, so only

M - 1 labels need to be determined relative to a predetermined one.

Figure 5.7: The 8 canonical 2x2 binary segment maps.

Listing 5.1 describes a recursive algorithm which, given M and K, generates only canonical

segmentations. The algorithm fixes the class label for the first pixel as "1" . It then does a
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// Global constants
// M : number of pixels
// K: maximum class label ie. number of segments

// Parameters to 'generate' function
// [c] : current segment map vector so far
// m : number of labels in [c] so far
// k : largest label used so far

// Return parameter of the 'generate' function
// list: list of canonical segmentations ([cl],[c2],[c3],...)

proc generate ([ c ], m, k, list )
if (m>M)then

list . insert ([ c ]) // we are done with this vector
else

for i :=1 to min(k+l,K)
generate ([c].prepend(i), m+1, max(i,k), list )

endfor
endif

endproc

proc main
list =()
generate ([1], 1, 1,

endproc

// empty list
list ) // generate all canonical K-class M-tuples

Listing 5.1: Algorithm to generate canonical segmentations only.

depth first traversal to determine the next label in c. The only labels considered at each step

are those up to and including the largest label used so far, plus the next one along, but always

restricted to the range [1, K], This ensures that no duplicates are generated.

5.3.3 Valid segmentations

For the binary segment maps generated so far, no specific requirements on spatial structure

have been imposed. One may wish to insist that the labels for a given segment be spatially

connected. In Section 2.6 the concept of pixel connectedness was introduced. For the ex-

ample of 2x2 windows, one could insist that the pixels within a segment be 4-connected.

Figure 5.8 shows all the valid binary segment maps having, at most, two sets of labels.

Valid segmentations may be generated by generating all canonical segmentations with List-
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SEEI
i X

Figure 5.8: The 7 valid 4-connected 2x2 binary segment maps.

ing 5.1, and removing those which fail a spatial-connectedness test. The algorithm for this

test is relatively simple, and is not included in this discussion. Table 5.2 shows that as M

and K increase, the proportion of canonical segmentations among all possible segmentations

decreases, as does the proportion of valid segmentations within the canonical set.

Pixels in
window (M)

4
9
9
9

Max. number
segments (K)

2
2
3
4

Number of segment maps
Possible

16
512

19,683
262,144

Canonical
8

256
3,28i
11,051

Valid

7
133
915

2,411

Table 5.2: Number of possible segmentations for various window configurations.

5.3.4 Segmentation parameters

Given the noisy data, p ' , a segment map, c, and K, it is a simple matter to compute the

segment parameters. For the case of additive zero-mean Gaussian noise, the mean is optimal,

but this could be modified for different types of noise. Figure 5.9 gives a sample 3x3 block

of pixels and two candidate segment maps: the homogeneous Ci, and the heterogeneous c2.

P' =

20
24
23

22
21
22

84
81
87

Ci =

1
1
1

1
1
i

1
1
1

C2 =

1
1
1

1
1
1

2
2
2

K = 2

Figure 5.9: Noisy pixels and two candidate segment maps.

The number of segments The number of segments is equal to the number of different la-

bels used in the segment map, c, and shall be referred to as K(c). Because ci is

homogeneous, K(c\) = 1. For the heterogeneous segment map, /f(c2) = 2.
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The segment populations The population, m*, for segment i is equal to the frequency of

pixels in the segment map having label i. Segment map Ci only has one population, so

= M = 9, whereas c2 has two segments, so mi = 6 and m2 = 3.

Representative values for each segment In this thesis, the noise is assumed to be additive

zero-mean Gaussian, for which the arithmetic mean is an efficient estimator of the true

population mean. Each segment has one mean, calculated using Equation 5.12. For

Ci, /i = 42.7, while for c2, fa = 22 and //2 = 84.

(5.12)

Ci=j

5.4 Using MML for local segmentation

The FUELS algorithm developed in Chapter 4 has two main characteristics which could

be improved. The first is that only two candidate clusterings are considered for each local

region. This limitation will be tackled later in Section 5.14. The second drawback is that

FUELS' model selection criterion depends solely on the numerical intensity difference be-

tween segment means. Specifically, they must be at least Co units apart, where a is the

image noise level, and C = 3. Thus FUELS is unable to distinguish two segments having a

contrast difference below 3cr grey levels.

A different model selection criterion is required to handle adjacent segments of low contrast.

In Section 5.2.6, the MML approach to model selection was described. MML evaluates a

model using the length.of a two part message which describes jointly the model and data.

The first part of the message describes the model and its parameters. The second part of the

message describes the data with respect to the prefixed model. Each message must be an

unambiguous and efficient encoding of the data it describes. The model associated with the

message of overall shortest length, measured in bits, is the preferred model for the data.

5.4.1 A message format

Figure 5.10 proposes a message format for encoding noisy pixels under a local segmentation

model. The first part of the message is the model, 0, which contains all the information
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required to construct a local approximation to the underlying pixel values. The segment

map, c, states which segment each pixel belongs to. The segment map is followed by the

means for each segment. The number of means depends solely on the number of unique

segments in c. This value is denoted K(c), and may be derived from the segment map, c.

Model Data

c ' < i P • I P '*

•

i
in

Segment map K(c) segment means Noisy pixel data, given the model

Figure 5.10: The proposed local segmentation message format.

Equation 5.13 states that the message length of the model part is equal to the sum of the

lengths of each component it contains. This is only true if each component of the mes-

sage is assumed independent. The details of encoding each component depend on our prior

expectations for the pixel values. This will be discussed soon in Section 5.4.2.

K{c)

C(9) = £(c) i I c ) (5.13)
t = i

The second part of the message encodes the data with respect to the model preceding it.

In our case the data consists of noisy pixels, p[- • -p'M. Pixels from a greyscale image are

usually quantized to one of Z integers. If encoded independently under the assumption of

uniformity, each pixel value requires at most log2 Z bits, but relative to a model (segment

map and means), a more efficient encoding is possible.

It was shown in Section 4.2.6 that a quantized pixel value, z, could be considered to have had

a true value anywhere in the range [z — 0.5, z + 0.5). In Chapter 4, it was assumed that clean

images were corrupted by additive Gaussian noise ~ A^(0,cr2), with u assumed constant

across the image. Thus it is assumed that pixels within a segment are normally distributed

around the segment mean. Equation 5.14 calculates the length of the data component (the

negative log-likelihood) given the model parameters.



5.4 Using MMLfor local segmentation 169

/ —-p=.e ^P~dx bits (5.14)
J O-V27T

i=Pj-0.5

5.4.2 A uniform prior

Our prior expectation regarding the types of local segmentation structure present in an image

directly impacts on the encoding of the model parameters. Like FUELS, the ::ndd domain

is restricted to 3x3 windows (M = 9) consisting of a maximum of two segments (K = 2).

In Section 5.3.?., it was shown that there are only 2M~1 canonical binary segment maps. For

the moment, let us assume that each segment map is equally likely. Equation 5.15 shows that

c may therefore be encoded with M - 1 bits. Once c is known, the number of segments,

K(c), and the number of pixels belonging to each segment are implicitly known.

£(c) = log2 2
M~l = Af - 1 bits (5.15)

How many bits should be used for each segment mean? An optimal number will be discussed

in Section 5.7. For the moment a useful approximation is considered. We already know that

a pixel value can be encoded with at most log2 Z bits. We also know that a denoised pixel is

usually rounded back to an integer at the final stage of processing. Thus a reasonable number

of bits for a segment mean could also be log2 Z bits. Equation 5.16 gives an expression for

the overall length of the model component of the message under this assumption. Note that

because M - 1 is constant for all models, it could be ignored.

C{6) = M - 1 + K(c) log2 Z bits (5.16)

5.4.3 A worked example

In this section an example of the MML model selection criterion will be given. Figure 5.11

shows the noisy 3x3 window which will be used. The global noise standard deviation is
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P' =
15
13
16

14
17
11

15
12
10

a = 1.5 (assumed)

Figure 5.11: A 3x3 window of noisy pixels.

assumed to be 1.5. Two candidate models will be considered, coinciding with those which

would have been generated by FUELS.

?eneous
Figure 5.12 shows the first candidate model. It is the simplest one possible — a homogi

segment map and a single mean. This model is 16 bits long — 8 bits for the segment map

and 8 bits for the average pixel value.

c =

1
1
1

1
1
1

1
1

1—
1

= 13.78 m =
C{9) = 8 + l x log2 256 = 16 bits
C(D | 9) = 24.93 bits
C(9 &D) = 40.93 bits

Figure 5.12: Candidate model 1 and its message length calculation.

Figure 5.12 shows the second candidate model. It is the result of iteratively thresholding the

noisy pixel values, just as FUELS does. The resulting heterogeneous segment map fits the

pixels well. Its model length is 8 bits longer than the first candidate's, as two means must be

encoded. However the data encoding length is much shorter. This is due to the pixels being

closer in value to their segment means.

c =

1
1
1

1
1
2

1
2
2

A*i = 15 mi = 6
/i2 = 11 m2 = 3

C(9) = 8 + 2 x log2 256 = 24 bits
C(D | 6) = 14.23 bits

= 38.23 bits

Figure 5.13: Candidate model 2 and its message length calculation.

Under the MML criterion, two candidate models are compared using their overall two-part

message lengths. Figure 5.14 illustrates the comparison using the two example models just

described. Candidate 2 has the shorter overall message length, and therefore Figure 5.13 is

the preferred model for the noisy pixels in Figure 5.11.

Using FUELS' model selection criterion, Candidate 2 would be rejected because its two

means are too similar: |15 — 11| < 3 x 1.5. Unlike FUELS, the MML criterion is not limited
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Candidate 1

Candidate

0: 16 bits D: 24.93 bits

6: 24 bits D: 14.23 bits

Figure 5.14: Comparing two message lengths.

to a fixed minimum contrast difference. In this example, MML made the better inference. It

should be noted that the t-test threshold from Equation 4.27, not used by FUELS, is equal to

3.71 for this example. In this case the i-test and MML would concur.

5.4.4 Posterior probability

The overall length of a message in MML is related to the Bayesian posterior probability. The

interchangeability of code length and probability ensure this fact. Equation 5.17 describes

how to compute the posterior probability of a model, post(0). The denominator normalizes

the probabilities over the set of models 0 considered.

post(0) =
2~C{9 & D)

(5.17)

oee

For the example in Section 5.4.3, Candidates 1 and 2 have posterior probabilities 0.13 and

0.87 respectively. Here the "best" model is over six times as likely as its nearest competitor.

This is good evidence for the existence of two local segments, but not compelling evidence.

These posterior probabilities may be interpreted as saying that, in 13% of cases like this, the

less likely candidate may actually be the correct one.

A corollary of Equation 5.17 is that the difference in message length of any two models

may be used to measure the relative posterior probability of the two models. For example,

Candidate 2 had a message length 2.7 bits shorter than Candidate 1. In terms of posterior

probability, the Candidate 2 is 22>7 = 6.5 times as probable as Candidate 2. This is a useful

shorthand for assessing the relative merit of two competing models.
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5.5 Application to denoising

The FUELS denoising algorithm generates two candidate local segmentation models. It

chooses what it considers to be the better one, and uses the resulting local approximation to

estimate the underlying noiseless pixel values. It is a simple matter to replace the existing

FUELS model selection criterion with the MML one described in Section 5.4. Let the re-

sulting denoising algorithm be called "Pseudo-MJVIL". This name has been chosen to avoid

confusion when MML is applied differently later.

Figure 5.15 compares the RMSE performance of FUELS and Pseudo-MML for denoising

montage. The true value of a was given to both algorithms. Overlapping averaging and

DNH were disabled, as the primary goal is to observe the effect of changing the model

selection criterion. Pseudo-MML only considered the same two candidate models as FUELS.

FUELS p=0, DNH disabled
Pseudo-MML — * - -

5 10 15 20 25

Added Gaussian noise standard deviation (a)

Figure 5.15: RMSE comparison for denoising montage, true o supplied.

The results show FUELS to outperform Pseudo-MML at all noise levels, with the discrep-

ancy increasing along with the noise level. Figure 5.16 shows where the two algorithms
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differed in their model selections. Pseudo-MML is much more likely to choose k = 2 than

FUELS. One advantage of this is that it was able to identify the low contrast oval edge around

the "h". However, it also chose k = 2 in obviously homogeneous regions.

Figure 5.16: (a) noisy a = 5 middle section of montage; (b) FUELS model selection;
(c) Pseudo-MML model selection. Black denotes k — 1 and white k = 2.

5.6 A better segment map prior

In Section 5.5, it was shown that the Pseudo-MML model selection criterion has a tendency

to over-fit. It chose k — 2 more often than it should have, resulting in less smoothing and

poorer RMSE results compared to FUELS. Although it only considers two models, Pseudo-

MML uses the same number of bits for encoding any segment map encountered. This corre-

sponds to a uniform prior probability distribution for c.

The only way to modify Pseudo-MML's behaviour is to change the prior. The analysis of

FUELS in Chapter 4 showed that, for typical images, around 50% of 3x3 regions could be

considered homogeneous. Thus it would be more realistic to assign a higher prior probability

to the single homogeneous segment map, and share the remaining probability equally among

the remaining heterogeneous segment maps. This arrangement is shown in Equation 5.18.

Note that 0.5 is an arbitrary choice, and its optimization will be considered in later sections.

Pr(c) =
0.5

0.5

if K{c) = 1

if K(c) = 2
(5.18)
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Equation 5.19 gives a new expression for the overall message length using this prior. In

terms of encoding c, the new prior corresponds to using 1 bit for homogeneous cases, and

nearly 9 bits for each heterogeneous case. Although not implemented as such, this could

be interpreted as a two step process. First, a single bit states whether k = 1 or k = 2. If

k = 1, nothing else needs to be sent. If k = 2, another log2 255 = 7.99 bits are used to state

the which of the k = 2 segment maps is relevant. It should be noted that among the various

heterogeneous segment maps, some are probably more likely to occur than others. This issue

will be discussed later in Section 5.13.

C{9 kD) = - log2 Pr(c) + K(c) log2 Z + C(D\ 9) bits (5.19)

5.6.1 Results

Figure 5.17 is the same as Figure 5.15 except that there is an extra entry for Pseudo-MML us-

ing the non-uniform prior of Equation 5.18. The more suitable prior has resulted in Pseudo-

MML's performance reaching that of FUELS.

Figure 5.18 shows where the three algorithms graphed in Figure 5.17 differed in their model

selections for the middle section of montage. The non-uniform prior improved Pseudo-

MML's model order selections, because most of the spurious A: = 2 decisions are gone. It

was still able to discern most of the low contrast oval edge around the "h", along with the

horizontal boundary below the oval. This example illustrates the importance of choosing a

suitable prior. It is especially important when the window is small, because the model part

of the message contributes significantly to the overall message length.

5.7 Optimal quantization of segment means

Under the local segmentation framework, each segment mean is used as the location param-

eter for a Gaussian distribution. The spread parameter for the distributions is assumed com-

mon and equal to the global noise standard deviation, a. The noisy pixel values from each

segment are encoded with respect to the appropriate distribution, illustrated in Figure 5.19.
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Figure 5.17: Non-uniform prior: RMSE comparison for denoising montage, true a supplied.

Figure 5.18: Model selection comparison when a = 5, black denotes k — 1 and white k = 2:
(a) FUELS; (b) Pseudo-MML; (c) Pseudo-MML with a non-uniform prior.

In Section 5.4.2 it was arbitrarily decided that log2 Z bits was a reasonable accuracy for

encoding a segment mean. If the segment means were encoded using fewer bits, the model

part of the two part message would be shorter. Correspondingly, the data part should expand,

as the segment means are less precise. There should exist a quantization level for each

segment mean which optimally trades off the length decrease of the model part with the
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Figure 5.19: Pixels are encoded relative to their segment mean,

length increase of the data part.

Much of the MML literature is concerned with optimally quantizing the parameter space for

various standard statistical models [WDOO]. Under certain uniformity assumptions [OH94],

the optimal bin size, AOPV^, for the sample mean of a normal distribution is given in Equa-

tion 5.20, where m is the number of data points used to compute the sample mean.

AOPV, = aj-
V m (5.20)

As the variance increases, the accuracy with which we are willing to encode the mean de-

creases. This is because the distribution has a wider spread, so its exact location is not as

important. As the amount of data increases, a higher accuracy is warranied. Equation 5.21

describes the number of bits required to encode an optimally quantized segment mean, where

Z is the intensity range of the image and a is the standard deviation of the noise.

£(//) = log2
AOPV,,

= l o g 2 ( f \ / i ) bits
(5.21)

A segment mean encoded with this number of bits is still decodable. Both a and Z are

assumed to be a priori known, and m may be determined from c, the first model parameter

encoded. Figure 5.20 compares the number of bits needed to encode a segment mean using

the two methods described. The original method uses exactly 8 bits, regardless of the noise

level. The optimal quantization method uses much fewer bits, and the function grows slowly.

Quantization of segment means causes one difficulty. Each pixel is no longer encoded with

respect to a fully accurate segment mean. Rather, a quantized range of possible segment

I:
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Figure 5.20: Different encodings for a segment means when a = 3 and Z = 256.

means has been communicated. Which mean from the range should be used? Rather than

taking an arbitrary point estimate, such as the midpoint, MML prefers to compute the ex-

pected message length. That is, the average of all message lengths that would result if every

possible point estimate in the quantization range was tested. It is often assumed that each

value in the quantization range is equally likely, corresponding to a locally flat prior density

in the range. A convenient closed form approximation to the expected message length can

sometimes be derived [WF87].

For the purpose of this thesis, a point estimate equal to the sample mean will be used. This

simplifies the computation and reduces the running time, without hopefully causing too much

variation in message length. The resulting expression for the approximate expected message

length is in Equation 5.22.

K{c)

E[£(0& D)] « -log2Pr(c) +
7 rzr\
-JTl)+£(D\0) bits (5.22)
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5.7.1 Results

Figure 5.21 provides RMSE results for denoising montage. The algorithm using quantized

means is referred to as "MML" to distinguish it from the earlier "Pseudo-MML". Both al-

gorithms use the non-uniform prior of Equation 5.18 to encode the segment map. DNH and

overlapping are still disabled, and the true value of a is provided.

LU
CO

DC

FUELS p=0 and DNH disabled
MML — * - -

Pseudo-MML ---*•--

10 15 20 25
Added Gaussian noise standard deviation (o)

Figure 5.21: RMSE comparison for denoising montage, true a supplied.

The RMSE performance of the three algorithms is mostly indistinguishable. FUELS does

marginally better at low noise levels, while MML does slightly better when the image is

very noisy. Figure 5.22 compares the value of k Pseudo-MML and MML chose for each

pixel when a = 5. Their model selections are very similar, so Figure 5.22c highlights the

differences. Mid-grey indicates that both algorithms chose the same value of k, white that

MML chose a higher order model, and black that MML chose a lower order model.

Interestingly, if there was a difference, it was always that MML chose k = 2 compared to

Pseudo-MML's k — 1. The quantization of segment means has reduced the cost of k = 2
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Figure 5.22: Model order selection when a — 5, black denotes k = 1, white k = 2:
(a) Pseudo-MML; (b) MML; (c) difference: white shows where MML chose k = 2
over Pseudo-MML's k = 1.

models enough for them to be selected more often. In fact, the message lengths calculated

by the MML denoising algorithm are always shorter than those of Pseudo-MML. For a given

segmentation, both algorithms use the same number of bits for the segment map, but MML

uses fewer bits for the means. Because both use the true mean as the point estimate, the pixels

are encoded in the same number of bits too. Thus MML's messages are always shorter.

5.8 Posterior blending of models

In Section 5.4.4 it was described how each model's posterior probability could be calculated

from its message length. The posterior probability may be interpreted as a confidence in each

model's ability to approximate the underlying image. This type of information is not really

available when using FUEL'S model order selection criterion.

The MML criterion chooses the model with the overall shortest message length, correspond-

ing to the highest posterior probability. This is a good thing to do when one wishes to infer

the best complete model for the window. If one is only interested in the true pixel values,

and not the most appropriate segment map and segment means, then the best thing to do is

to blend over all models weighted by their posterior probability. Parameters of non-interest

should be "integrated out" [BS94],

In the MML and Pseudo-MML algorithms, the local approximation suggested by the most

probable model alone was used for denoising. It is possible to produce a blended local ap-

proximation, pwend, which is a linear combination of the local approximations from each
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model considered. The weight given to each model is exactly equal to its posterior proba-

bility. Equation 5.23 describes its calculation, where post(0) is the posterior probability of

model 6, and pg is the local approximation associated with model 9.

(5.23)

The blended local approximation may alternatively be considered those pixel values inferred

by a composite model, 6blend. This is shown in Equation 5.24. Combining the predictions

from various "experts" is a popular technique in computer science, particularly in image

compression [STM97, MT97].

Pblend = ^2 Po s t(0) P0

0blend= Pblend = P0bUnd (5.24)

Recall the two example candidate models from Section 5.4.3. Figure 5.23 applies Equa-

tion 5.23 to blend the local approximations associated with the two candidates. In this case,

rounding back to integers would cause single best local approximation to equal the posterior

blended one. However, the denoised pixels could be retained at a higher accuracy if further

processing was to be done.

Pblend = 0.13 X
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Figure 5.23: Posterior blending of the two example models from Section 5.4.3.

5.8.1 Results

Figure 5.24 compares the RMSE performance of the posterior blended version of MML to

the MML algorithm which sin^iy uses the most probable model. For a > 8, posterior

blending improves the RMSE performance of the MML algorithm. It may also be possible

to blend models in the FUELS algorithm, but a metric would have to be invented to quantify

the suitability of each candidate model, whereas this metric comes naturally for MML.
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Figure 5.24: RMSE comparison for denoising montage, with true a supplied.

The ability to blend over multiple models is very useful when there is no clear mode (peak) in

the posterior distribution. In this case, the posterior mean has been used. This is related to the

use of a squared error loss function [OB94], which also happens to be what the RMSE metric

uses. Combining multiple local approximations together tends to produce a better overall

local approximation. In the case where one model has nearly all the posterior probability

associated with it, the algorithm behaves just like the non-blended version.

5,9 Incorporating "Do No Harm"

5.9.1 The FUELS approach to DNH

In Section 4.9 the "do no harm" (DNH) idea was applied to FUELS. DNH has the effect of

limiting the worst case behaviour of a denoising algorithm. In FUELS, if any pixel value

in the optimal local approximation differs from its noisy value by more than 3cr, the local
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approximation is rejected, and the noisy pixels are passed through unmodified. It is a simple

matter to incorporate this post processing to the posterior blended pixel values produced by

the MML denoising algorithm.

The results so far have shown FUELS and MML to perform similarly. Figure 5.25 compares

their RMSE performance when both utilise FUELS-style DNH. As expected, their perfor-

mances are much better at lower noise levels when DNH is enabled. When a > 8, MML

consistently beats FUELS, but the gap is not significant. Although not shown, their WC Bs

are identical at all points.

FUELS p=0 and DNH enabled
MML + FUELS-style DNH - - • * - -

10 15 20 25
Added Gaussian noise standard deviation (a)

Figure 5.25: RMSE comparison for denoising montage, true a supplied.

5.9.2 Information based DNH

In FUELS, the Co threshold was common to both the DNH and model selection compo-

nents. It may be beneficial for the MML algorithm to use an information theoretic approach

to DNH which fits in more appropriately with its model selection criterion and posterior
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blending. When DNH is invoked by FUELS, the noisy pixel values are passed through un-

altered. Under MML, this corresponds to encoding pixels as they are, without respect to any

particular model. A raw encoding of M noisy pixel values requires, at most, M log2 Z bits.

For example, a raw encoding of a 3x3 vvindov of 8 bpp greyscale pixels would need 72 bits.

The raw encoding may be interpreted as a null model. The null model could be placed into

the existing pool of segment-based candidate models, and be judged alongside them. This

is similar to the t-test method in Section 4.7.2, where a null and alternative hypothesis are

compared. The null model could actually have the shortest two-part message length, causing

it to be selected as the "best" model. This is like FUELS where DNH is invoked when all

other models appear unreliable. When posterior blending is used, the null model becomes

part of blend, with its local approximation being equal to the original pixel values.

For this idea to work correctly, the null model yid the standard segment-based models must

be compared fairly. Each model needs to be prefixed by a binary event stating whether a

standard, or null, model is to follow. Figure 5.26 illustrates mis arrangement, where "DNH"

denotes the use of the null model.

(a) I DNH ~|f D

(b) Not DNH ! D\e

Figure 5.26: Incorporating DNH: (a) null model encodes the data as is; (b) standard model.

Let P\:(DNH) denote the prior probability associated with the prefix for the null model. For

example, if 'Pr(DNH) = 0.1 the nail model would have a prefix of length (— Iog20.1) =

3.32 bits. The prefix for a staidavd, segment-based model wouid be only (— log2 0.9) = 0.1

bits, because according to the prior, they will be used more often.

Figure 5.27 plots the proportion of pixels for which FUELS-style DNH is invoked when

denoising montage. The two curves are effectively plotting suitable values of Pv(DNH) to

use at different noise levels. Both curves have a hyperbolic shape, approximately following

Equation 5.25. When a = 0, the prefix has zero length for the null model and infinite length

for any standard model. If this formulation was used, DNH would be invoked for every pixel
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Figure 5.27: FUELS-style DNH usage when denoising montage, true a supplied.

when a = 0. This makes sense because if the noise level is zero, then all pixels are noiseless

and should remain unaltered.

•?i(DNH) = = log2(l+a) bits (5.25)

Figure 5.28 compares three denoising algorithms: FUELS using its DNH, MML using

FUELS-style DNH, and MML using the new information based DNH, with Pr(DNH) =

1/(1+0"). For o > 5, MML with its information based DNH consistently outperforms the

others in terms of RMSE when denoising mon tage . Although not shown, similar behaviour

was observed for other images.

The worst case absolute error (WCAE) results are provided in Figure 5.29. FUELS 2nd

MML with FUELS-style DNH have the same WCAE for all noise levels tested. When

a > 10, the information-based DNH approach consistently has a lower WCAE. This is inter-

esting because the MML DNH approach makes no explicit attempt to restrict the maximum
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Figure 5.28: RMSE comparison for denoising montage, true a supplied.

allowed change in pixel intensity during the denoising step. Of course, large alterations in

intensity are unlikely to fit within the Gaussian segment models well, causing those models

to have low posterior probability.

DNH ensures that pixels do not change by more than Zo relative to the noisy image only.

However, the WCAE is taken between the denoised image and the ground truth image. Con-

sider a noiseless image corrupted by additive noise with standard deviation a. There will

always be a small fraction of pixels whose values change by more than 3cr. In the worst case,

a pixel could change by Z — 1 intensity units. DNH operates relative to the noisy image, so

it is still possible for the WCAE to be very large.

Figure 5.30 plots the actual relative frequencies of DNH usage for the three algorithms tested.

MML invokes DNH less often when it uses the infonnation based DNH than it does with

FUELS-style DNH. There is a trade-off between invoking DNH too often, whereby no de-

noising occurs, or not invoking it, whereby there is a risk of producing a poor local approx-

imation which detrimentally affects the RMSE. It seems that the information based DNH is
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Figure 5.29: WCAE comparison for denoising montage, true a supplied.

better at making this trade-off. Although it was decided in a sensible manner, the 3cr thresh-

old used by FUELS-style DNH may not be optimal. It is possible that a higher value, such

as 4cr, could improve FUELS' results.

5.10 Combining overlapping estimates

In Section 4.11 the idea of combining estimates from overlapping windows was introduced.

For FUELS, various schemes for linearly combining estimates were tested. It was found that

an equal weighting (/> = 1) gave the best RMSE results. This same concept may be applied

to the MML algorithm with ease.
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Figure 5.30: How often DNH is invoked for montage, true a supplied.

5.10.1 Equal weighting

Figure 5.31 compares the RMSE performance of four algorithms on the montage image:

FUELS with p = 0 and p = 1, and MML with p = 0 and p = 1. The appropriate DNH

option is used for all instances. As expected, overlapping averaging significantly improves

the RMSE results for both FUELS and MML at all noise levels. When p = 1, there is

little to no difference between the two. It appears FUELS is able to benefit more from the

overlapping averaging than MML. This may be due to MML having already an advantage

through its application of posterior blending of models at the same pixel position.

5.10.2 Message length weightings

Overlapping averaging combines estimates of the same pixel from different models. For FU-

ELS in Section 4.11, the combination was restricted to a linear one. Equation 5.26 describes
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Figure 5.31: RMSE comparison for denoising montage, true a supplied.

this again, where pi... PM are the denoised estimates for the same pixel position from each

of the M overlapping models, p is the final denoised value, and Wj are the weights.

M

p = M

X
3=1

(5.26)

For FUELS, various schemes for choosing the weights were assessed. Each scheme tried to

use some attribute of each model to modify the weights. The attributes attempted to capture

the quality, or goodness of fit, of a model.

Model and data posterior

In an MML framework, the message length of a model is a natural measure of its goodness of

fit. Equation 5.27 bases the weights on the unnormalized posterior probability of the model
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and data. This is done using the message length associated with the model and data from

which the estimate originally came. This attempts to give more weight to those estimates

which came from models which perhaps better explained their local region.

Wj =
with pj G p ' (5.27)

Model and pixel posterior

An alternative to using the full message length is to use only the length of the model and pixel

in question. It could be argued that we are only interested in how well the local approxima-

tion modeled the particular pixel being combined. Equation 5.28 describes this formulation.

Wi = o) (5.28)

Pixel posterior

One final potential weighting scheme is given in Equation 5.29. The weight is proportional

to the posterior probability of the pixel alone. This attempts to measure how well the noisy

pixel fitted into the model it came from. That model was either the MAP or posterior blended

model for the window the pixel originated from. It is expected that this weight would behave

similarly to a weight based on the squared error: Wj = (p' — p)~2. This is because a pixel

message length is based on a Gaussian distribution.

W
j = 2'™* (5.29)

Results

Figure 5.32 compares the RMSE performance of four weighting schemes for montage:

p = 1, and the three probabilistic ones just described. None of the variable weighting

schemes perform better than equal weighting for any values of a. The same results were

found to occur for the l enna image. For these reasons, schemes other than equal weighting

will not be explored further.
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Figure 5.32: RMSE comparison for denoising montage, true a supplied.

5.11 Estimating the noise level

The analyses performed so far in this chapter have assumed that the true value of <r, the stan-

dard deviation of the synthetic noise, is known. In real situations, the noise is not synthetic

and its level is unknown. It typically has to be estimated from the data. In Section 4.13,

the FUELS algorithm was adapted to use the robust Immerkaer noise variance estimation

algorithm [Imm96]. MML could use this estimate too.

Figure 5.33 compares the FUELS and MML algorithms when both use Immerkaer's esti-

mated value for a, rather than the true value. The main variation occurs for low <r, where

the noise level is over-estimated. This causes DNH to be invoked less often, and the RMSE

results to be higher. Either way, there is very little difference between FUELS and MML.
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Figure 5.33: RMSE comparison for denoising montage, with a estimated.

5.12 Evolution of the message length

Each modification to the MML denoising algorithm has so far improved its RMSE perfor-

mance. This suggests that, on average, the models generated are becoming more reliable.

Under the MML framework, models which have shorter two-part messages are assumed to

better explain the data they are modeling. Figure 5.34 plots the average message length over

the whole montage image for the various MML-based algorithms explored so far. The

estimated noise level is used in all cases.

As expected, the average message length is mostly an increasing function of the noise level.

For Pseudo-MML, switching to a more suitable segment map prior reduces the average mes-

sage length by about 4 bits. The move from Pseudo-MML to MML via the use of quantized

segment means provides a similar gain. The inclusion of a DNH candidate model again

improves the average message length for the MML algorithm at low noise levels.

For the algorithms without DNH, the average message length is observed to slightly increase,
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Figure 5.34: Evolution of the average two-part message length for the MML denoising algo-
rithm, with a estimated from the noisy montage image.

rather than decrease, when a < 2. Immerkaer's method overestimates a when it is very

low. This could increase the relative cost of two segment models, causing fine structure

to be corrupted. Usually this structure is swamped by noise, but when there is no noise

it becomes significant. The expression in Equation 5.21 for the optimal quantization of

sample means begins to break down when a^Z. This is due to an assumption of uniformity

within quantization regions [OH94], Also, the implementation of numerical integration for

calculating the likelihood may not be accurate for very small intervals1.

5.13 Learning from the data

In this chapter, a new approach to local segmentation model selection has been developed

and applied to the problem of image denoising. Using FUELS as a basis, each component

'The standard e r f () and e r f c () functions from the GNU C maths nbrary v2.2 were used.
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was slowly modified or replaced to use ideas and techniques from information theory. This

helped to remove arbitrary constants from the algorithm, and allow a wider range of image

structure to be potentially discovered. The results for the new MML denoising algorithm

are not significantly better than FUELS, Using MML improves the WCAE at higher noise

levels, but only mildly improves RMSE. It is possible that only slight improvements are

possible because FUELS is already quite good — Chapter 4 has already shown that FUELS

outperforms rival denoising algorithms.

The performance of MML is dependent on the prior used. When denoising, the prior consists

of a, Pr(DNH), and Pr(c). The prior determines the length of the model part of each

message being compared. The prior is determined before processing of the image begins,

and is not modified during processing at all. It could be possible to vary the priors on a per

block basis. For example, the prior probability of each segment map could be dependent on

the posterior probability of segment maps from nearby pixels already processed. The aim

would be to exploit edge coherence. However, in this chapter the same priors will be re-used

for processing each pixel in the image.

Under the MML framework, models are assessed using their respective message lengths. The

overall message length (the posterior) is computed as the length of the model (determined

by the prior) plus the length of the data given the model (the negative log-likelihood). If the

amount of data is large, the data part will dominate and eventually swamp the effect of the

prior. If the amount of data is small, the prior exerts a large influence on the posterior [Pre89],

as illustrated in Figure 5.35. In fact, once the amount of data becomes large enough, the

model component may be ignored, and MML reduces to maximum likelihood.
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Figure 5.35: As the amount of data increases, the model part becomes less significant.

Because local image processing algorithms only use a small number of pixels, and differ-

ent images vary in their properties, a technique for dynamically "learning" the prior from
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the noisy image is desirable. This may be achieved by iterating the algorithm. After pro-

cessing each pixel using the global prior (common to each local window), a local posterior

is obtained. The local posteriors can be accumulated to form a global posterior when the

whole image has been processed. The global posterior is simply a probability distribution

over possible models, formed from observation of the image at all its localities. It captures

the particular essence of an image, briefly summarizing its local segmentation features. This

makes it ideal for use as a new global prior for re-processing the same image from scratch.

Iteration should continue until the priors converge.

The iteration process has an analogy with the human visual system [FH96, Ede99]. Imagine

visiting a new friend's house and pulling a photo album from their bookshelf. Before you

open it, you have no idea of what the first photo will contain. This could be considered

a state of total ignorance, expressed by the uniform priors already used in Section 5.4.2.

After opening the album to the first picture, your visual system scans it to form an initial

impression. The information gained from this first scan may be considered a posterior, which

is then used as a revised prior for a second scan. This process continues until we have

recognized or made sense of the picture, as shown in Figure 5.36.

Figure 5.36: Pictorial representation of the iterative approach to image understanding.

A data driven pri^;. incorporates image dependent information which is shared by all the

candidate local models. Because this information is common to all models, it does not need

to be incorporated into the message length. Its code length is the same for every model.

5.13.1 Learning a prior for the segment maps

The prior probability distribution for the segment maps, Pr(c), is important, because low

level image structure is the heart of local segmentation. Two priors have been considered
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so far. The uniform prior assumed all segment maps to be equally likely. In Section 5.6,

a non-uniform prior biased toward k = 1 was introduced. This prior improved the results

significantly, b' .,</: t*; coincided more accurately with the expectation about which segment

maps would be common in montage.

Figure 5.37 shows four segment maps. Currently, the prior probability for the first homo-

geneous block is 0.5. In fact, that is expectsd to vary for different images. The other three

segment maps have the same prior probability 0.5/(2M-1 — 1) « 0.001C . However, the

255 heterogeneous segment maps are not expected to occur with equal frequency. C ymmon

edge patterns would probably occur more often than, say, the random looking segment map

in Figure 5.37d. A more informative segment map prior should improve denoising results.

Hi
m in

mSp i

Figure 5.37: Potential segment maps: (a) popular k = 1; (b-c) common edge patterns;
(d) would rarely occur.

The segment map prior may be considered a multistate probability distribution, Pr(c), which

sums to unity over all possible segment maps. This is a global prior which is re-used for

each window processed. After processing each pixel (x, y), a local postenor probability

distribution over models considered is obtained. Let it be denoted posi(x,y,9), where 6

refers to a specific model from 0, the set of candidate models.

Each local posterior may be accumulated to form a global posterior, denoted Post(c), using

Equation 5.30. The global posterior probability for a specific segment m°p is the normalized

sum of local posterior probabilities for models using that particular segment map. For exam-

ple, imagine an image with four pixels, and that only one canriiduie model per pixel used a

homogeneous segment map. If that model had local posterior probabilities 0.9, 0.7, 0.1, and

0.3 for each pixel respectively, then the global posterior for the homogeneous segment map

would be (0.9 + 0.7 + 0.1 + 0.3)/4 = 0.5.

1 Y-lX-l

XY
w h e n - c <= (5.30)

y=0 z=
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Equation 5.31 describes how the global posterior may be used as a new global prior for

the image. This iterative process begins with the same noisy image each time, but uses an

improved, data driven prior. This is applicable to any components of the prior distribution.

Pr(c) t+1 = Post(c)t and Pr(c)0 is chosen sensibly. (5.31)

This iterative process is equivalent to using the E.M. algorithm discussed in Section 3.2.1.

The E.M. algorithm is guaranteed to converge, but not necessarily to a global optimum. The

best way to encourage a good optimum is to use reasonable starting conditions. The two

priors for c used so far are both reasonable, but the uniform prior would probably be a better

choice when applying the algorithm to images with unknown properties, as it has no bias.

Results

Figure 5.38 compares the MML denoising algorithm using 1 iteration and a non-uniform

segment map prior, to that using 6 iterations to learn a segment map prior. For montage, a

small improvement in RMSE is observed for a > 15. This suggests that iteration has made

a useful difference to the segment map priors. This could allow the algorithm to identify

structure behind the noise better, because common structural segment maps are cheaper to

encode. The original prior set all k = 2 segment maps to be equally likely, making it difficult

to give preference to one over the other when the noise level was high. Another possibility is

that the algorithm has learned to choose k = 1 more often, which at higher noise levels will

probably give more smoothing without the concern of damaging high contrast edges.

Figure 5.39 shows the 15 most probable segment maps that the new MML algorithm learned

from montage. Note the distinct lack of random-looking patterns. The top row coincides

with the many boundaries between squares in the two artificial quadrants in montage.

5.13.2 Learning the prior for DNH models

The prior probability Pr(DNH) is used to encode the prefix which distinguishes between

the null model and standard models. In Section 5.9, the quite reasonable prior, Pr (DNH) =
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Figure 5.38: Learning Pr(c): RMSE comparison for montage, with a estimated.

mIi
1

Figure 5.39: The 15 most popular (canonical) segment maps for montage when a = 0.

1/(1 4- a), was used. However, it should be possible to use the data driven prior method to

learn automatically a probability suited to the noisy image being processed. This could be

done in the same way as the segment maps were learned. Instead of accumulating the local
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posterior probabilities from models using a particular segment map, those posteriors for the

null models are accumulated. This global posterior probability is exactly equal to the best

value of Pr(DNH) to use for the next iteration.

Results

Figure 5.40 compares the RMSE performance of the non-iterated, one-pass MML algorithm

to one which attempts to learn only Pr(DNH) over 6 iterations. The prior for the segment

map was not learned. The results indicate that learning Pr(DNH) makes little difference to

the algorithm's performance. The same result occurred when an initial uniform prior, namely

PT(DNH) = 0.5, was used. This suggests that the existing static prior is a good one.

HI
w
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MML learning Pr(DNH)
1 iteration
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Figure 5.40: Learning Pv(DNH): RMSE comparison for montage, with a estimated.

Figure 5.41 shows proportion of times that DNH was chosen as the best model by the two

algorithms. Iterated MML leams to use DNH less often than its static counterpart, but this

makes little difference to the RMSE results. A possible explanation is that Figure 5.41 only

plots how often the null model was the "best" model. Because there are only three candidate

models, the "best" model could have posterior probability aj low as 0.34 or so. After poste-

rior blending, the influence of the "best" model may actually be quite low compared to the

sum influence of other candidates.
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Figure 5.41: Comparison of DNH invocation for montage, v.'iih cr estimated.

5,14 Incorporating more models

Learning a non-uniform prior for the segment maps allows some spatial information to be

incorporated into the MML denoising algorithm. This typically manifests itself at higher

noise levels. In most circumstances, when a is high, FUELS has little choice but to choose

k — 1. The MML algorithm may choose the alternative k — 2 thresholded model if i?>,

message length is short enough. However, it is still hampered from having to choose from a

pool of only 3 candidate models: k — 1, one thresholded k — 2, and DNH.



200
Chapter 5. Information Theoretic Local Segmentation

Under the MML framework it is a simple matter to incorporate more candidate models. For

example, all valid segmentations (Section 5.3.3) could be tested, or a few extra k = 2 seg-

mentations produced using different thresholds could be added. This thesis will take the

simplest route and consider all 256 canonical 3x3 binary segment maps. The examination

of all possible segment maps increases the model pool from 3 to 257 candidates, includ-

ing DNH. The posterior distribution should be more varied, and the data driven segment

map prior should more accurately reflect the local image structures. However, this is at the

expense of nearly a one hundred fold increase in computation.

Figure 5.42 compares FUELS with two versions of the MML algorithm. Let "MML-2" be

the familiar version which uses 2 candidate local segmentations plus DNH, and let "MML-

256" be the new version which includes all 256 models with unique segment maps. Both

algorithms are run for 6 iterations to learn Pr(DNH) and Pr(c). When a < 5, there is no

noticeable difference between MML-2 and MML-256. For images with little noise, thresh-

olding adequately segments the window. As the noise increases, the RMSE performance of

MML-256 improves, until a = 30, where it worsens again.

Figure 5.43 plots the proportion of times that the candidate with the shortest message length

was k = 2. It is obvious from the graph that considering more 2-segment models per local

region significantly increases the chance of choosing a specific 2-segment model as the best

model. This supports the argument that thresholding is insufficient when the noise level is

high. Although not shown, the increase in k = 2 is mostly at the expense of A; = 1. DNH

usage of the MML algorithms remained relatively unchanged.

5.15 Improving the running time

The MML-256 algorithm has a superior ability to discern the local structure of a noisy image.

This power comes at the cost of higher computational requirements. On a serial computer,

the running time per pixel is proportional to the number of candidate models considered.

The parameter estimation and message length calculations for each model are independent

of each other — a parallel implementation could compute them simultaneously. The com-

parison of the resulting message lengths could be done serially or using a recursive binary

algorithm. This is probably insignificant compared to the model calculation anyway.
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Figure 5.42: More models: RMSE comparison for denoising montage, with a estimated.

If restricted to a serial computer, there is still a simple modification that can reduce the

number of models which need to be considered for each window. Let a2 be the assumed

image noise variance, and s2 = Var[p' ] the sample variance of the pixels in the window. If

s < a, the window is likely to be homogeneous, as the local variance is lower than the global

noise variance. If it happens not to be homogeneous, a thresholded model would probably

be sufficient. Thus if s < a, MML-256 can change its mode of operation to that of MML-2.

Only 3, rather than 257, candidate models need to be considered. The unconsidered models

are assigned zero posterior probability. Relative to the remaining 3, the other 254 should

have long message lengths anyway. Let this variant of MML-256 be called "MML-256/2".

Figure 5.44 compares the RMSE performance of the 3 MML variants, each run for 6 it-

erations. For a < 15, MML-256 and MML-256/2 perform equivaJently. As the noise in

montage increases, the faster MML-256/2 implementation actually outperforms MML-

256. Similar behaviour was observed for other images. Although not shown, the DNH usage

of MML-256 and MML-256/2 is nearly identical.
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Figure 5.43: Proportion of times a k = 2 model was most probable in montage.

Figure 5.45 show the proportion of two-segment regions diagnosed by the algorithms. MML-

256/2 is less likely than MML-256 to choose higher order models, especially as o increases.

Switching to MML-2 mode forces MML-256/2 to choose k = 1 more often. When the noise

is very high, averaging all pixels in the window pays off better in terms of RMSE, even

if it removes slightly more image structure. This does suggest, however, that the posterior

probabilities for the various two-segment models are overstated. This could be true as the

message length calculations do not strictly account for the quantization of segment means,

giving slightly shorter messages than warranted by the data.

The reason for introducing MML-256/2 was to decrease the running time. Figure 5.46 com-

pares the average processing time per pixel used by each algorithm2. FUELS is very fast

relative to the MML variants, and barely registers on the graph. MML-2 is about 60 times

slower than FUELS. Somewhat surprising is that MML-256 is only about 43 times slower

than MML-2, despite having to evaluate 86 times as many models. The positive result is

2The experiments were run on a 1.2GHz AMD Athlon with 512MB RAM running Linux kernel 2.4.16.
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Figure 5.44: RMSE comparison for denoising montage, with a estimated.

that MML-256/2 requires, on average, 60% of the computation that MML-256 does, and

achieves better RMSE results at higher noise levels.

5.16 Results

This chapter has so far shown that an MML-based local segmentation criterion improves the

denoising performance of the FUELS algorithm. This is a direct benefit of improved mod-

eling of images at a local scale. Two useful MML variants have been identified. MML-2

considers 3 models in total, and is a logical extension to FUELS. MML-256/2 increases the

pool of candidate models considered to 257, in an effort to push the structure recognition

capabilities a little further. Together with FUELS, they represent the common trade-off be-

tween denoising ability and processing speed. In this section MML-2, MML-2/256, FUELS

and SUSAN will be compared using three test images.
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Figure 5.45: Proportion of times that k = 2 was deemed best when denoising montage.

5.16.1 The lenna image

Figure 5.47 provides RMSE results for denoising the original l enna image3. The MML

algorithms used 6 iterations each to learn the segment map and DNH prior probabilities.

Both FUELS and MML used overlapping averaging. SUSAN9 is the 3x3 variant of the

SUSAN algorithm, chosen over SUSAN37 based on the results in Chapter 4. All of the

algorithms utilized the estimated noise variance as described in Section 4.14. The RMSE

was calculated using the original l e n n a as ground truth, despite it already containing noise.

SUSAN9 appears to perform worst for l e n n a in terms of RMSE. When a < 5, the two

MML variants are beaten by FUELS, but as the noise increases, they outperform FUELS. The

poor performance of MML relative to FUELS at low noise levels is an interesting problem.

That fact is that the ground truth l e n n a is already noisy. The MML algorithms could

actually be producing better noiseless estimates of the "tine", but unknown, l enna image.

3 Available from f tp: / /nic. funet. f i/pub/graphics/misc/test-images/
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Figure 5.46: Comparison of algorithm running times for denoising montage.

Interestingly, MML-2 beats MML-256/2 when a > 20. Although not shown, the same result

occurs using the mean absolute error (MAE) metric. This unexpected behaviour was not

observed with the montage test image in Section 5.15.

Figure 5.48 compares the enhanced difference images, relative to the original l enna , for

the four algorithms on a 64x64 sub-image taken from the centre of lenna . FUELS and

MML-256/2 have similar difference images, with some larger errors scattered under the

eye. MML-2's output does not exhibit these same errors. This is because MML-2 inferred

k = 1 at those points, whereas the others chose DNH or k = 2 (not shown). The SUSAN9

difference image does have less apparent structure in it, but its homogeneous regions are

more blotchy. This means it had difficulty assimilating large numbers of pixels, resulting in

poor smoothing and a higher RMSE result.

Figure 5.49 shows the worst case absolute error (WCAE) profile of the four denoising algo-

rithms. As expected, SUSAN9 suffers at low noise levels, as it has no DNH-like capabilities.

The most interesting feature is that the WCAE of MML-256/2 nearly doubles after a = 20,
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Figure 5.47: RMSE comparison for denoising lenna, with a estimated.

Figure 5.48: Enhanced difference images for lenna when a = 25: (a) ground truth; (b) FU-
ELS; (c) MML-256/2; (d) MML-2; (e) SUSAN9.

ticu? MML-2 increases gracefully. This also helps to explain the earlier RMSE anomaly,

because Lvrge errors contribute significantly to the RMSE value. This suggests that some

two-segment models were made inappropriately probable by MML-256/2 when the noise

level was high. If an image's properties vary spatially, a single global segment prior could

produce this type of behaviour.
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Figure 5.49: WCAE comparison for denoising lenna.

5.16.2 The barb2 image

Figure 5.50 plots the RMSE for denoising the larger and more textured barb2 image4,

originally introduced in Section 4.14.3. As usual, FUELS beats MML-2 and MML-256/2

at lower noise levels, but as a increases, the disparity between the three is more apparent.

MML-256/2 proves that a higher level of image modeling can improve RMSE results to a

significant level. When a > 10, it beats FUELS and SUSAN by up to 1.8 RMSE units.

The enhanced difference images when a = 25 are given in Figure 5.51. They are from a

32x32 sub-image from the centre of barb2. These difference images have similar proper-

ties to those in Figure 5.48 for lenna. The errors in MML-2's difference image are lower

in magnitude, particularly the small circular cluster on the left hand side. This cluster has

occurred because the noisy image (not shown) had some very noisy pixels clumped together.

The WCAE results for barb2 are given in Figure 5.52. The deficiency of SUSAN9 at low

4Available from h t t p : / /www. csse.monash. edu.au/~tors ten/phd/ images/
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Figure 5.50: RMSE comparison for denoising barb2, with a estimated.

Figure 5.51: Enhanced difference images for barb2 when a = 25: (a) ground truth; (b) FU-
ELS; (c) MML-256/2; (d) MML-2; (e) SUSAN9.

noise levels is again obvious, but at higher noise levels it does better than the other tech-

niques. SUSAN9's behaviour, partially dependent on the threshold, seems to be ambitious

for low a, but successful for high a. MML-256/2 has a lower WCAE for most high values of

a, which is much better than its behaviour observed for l enna . This is perhaps due to the

distribution of segment maps being more uniform across the image, in particular the large

number of crisp edges on the wicker chair and clothing.
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Figure 5.52: WCAE comparison for denoising barb2.

5.16.3 The camera image

The camera image5 is shown in Figure 5.53. It has dimensions 256x256, which is smaller

than most test images used so far. It consists of a large number of homogeneous regions.

Although the man's coat appears uniformly dark, it hides a lot of low contrast structure.

Figure 5.54 compares the RMSE denoising performance on camera. Unlike for l e n n a

and barb2 , FUELS and the MML variants have very similar results, while SUSAN9 did

relatively worse. MML-2 and MML-256/2 are indistinguishable. The large number of ho-

mogeneous regions makes it difficult for MML-256/2 to stand out, as it gains only from

considering more two-segment models. The fact that camera contains fewer pixels also

means that the MML algorithms have less data with which to re-estimate the priors.

The difference images for a homogeneous, possibly mildly planar, 32x32 sub-image of

camera are given in Figure 5.55. FUELS' limited model selection criterion has obviously

5 Available from ftp: //nic. funet.fi/pub/graphics/misc/test-images/
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Figure 5.53: The 256x256 8 bit camera image and its histogram.
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segment models. Recall from Section 5.7 that the approximate expected message length is

calculated for each candidate. This approximation may be mildly biased toward 2-segment

models. MML-2 had no difficulty ignoring the "correctly" diagnosed glitch in the original

image. It is less likely to find an (un)suitable two-segment model, as it only considers one.

Figure 5.55: Enhanced difference images for camera when a = 15: (a) ground truth; (b) FU-
ELS; (c) MML-256/2; (d) MML-2; (e) SUSAN9.
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Figure 5.54: RMSE comparison for camera image, with a estimated.

failed on a few pixels, but this is understandable given that a — 15. MML-256/2 also had

a little trouble with the same points, suggesting that it may be incorrectly favouring
two-

5.17 Conclusions

In this chapter, the MML methodology was applied to local segmentation. The simple mean

separation criterion used by FUELS was replaced by a message length comparison between

candidate models. Each message was a concise, decodable encoding of the noisy pixels.

The message with the shortest length was deemed to contain the most appropriate model

for the local region. By using MML, the arbitrary constant, C, that FUELS required, was

eliminated. This introduced the possibility of diagnosing the presence of two segments with

close, but distinct intensities. FUELS was incapable of this in very noisy images.

MML made it straightforward to incorporate alternative models into the pool of candidates

being considered. All that was required was that the models' messages be decodable. The

"do no harm" (DNH) concept was first introduced by FUELS to reduce its worst case de-

noising performance. It was a simple matter to incorporate a DNH model into the MML

framework. The DNH candidate simply encoded the pixel values as they were, without re-

spect to any segment map or means. This information theoretic approach to DNH was found

to improve RMSE results compared to FUELS' simpler method.

MML chooses a single best model from the pool of candidates, the so-called MAP model.

The message length of a candidate model may be interpreted as a posterior probability for
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that model. Posterior probabilities provide an objective measure of the confidence in each

model. It was shown that if one is only interested in the resulting local approximation,

and not the details of the model, then blending over all models weighted by their posterior

probability was a good thing to do. This alters results when other candidate models have

message lengths; close to, but just short of, that of the MAP model. Posterior blending was

found to improve RMSE performance, especially for very noisy images.

The ease with which a DNH model was incorporated paved the way for the addition of

more segment based models. For a 3x3 window, there exists only 256 canonical binary

segment maps, including the homogeneous one. It was a simple matter to enumerate all these

models and add them to the pool. Along with DNH, this brought the total number of models

considered per pixel to 257. Doing this effectively incorporated spatial information into

the local segmentation, as segment membership was no longer restricted by pixel intensity.

The RMSE results improved, but at the expense of a large increase in running time. The

running time was halved by switching to only 3 candidate models if the local variance was

low enough to warrant a more limited search.

Using a large pool of candidate models in conjunction with posterior blending may lead to

a more accurate local approximation. Small improvements in the accuracy of the local ap-

proximation may not be noticeable because the final approximated pixel values are rounded

to their nearest integers. There may be applications where one is willing to pay for a more

accurate local approximation. For example, examination of small features where there is

little contrast may be important in medical imaging applications.

Although an image may use the full range of intensities, a sub-image may only use a small

range. If the pixel values in the sub-image were known to higher accuracy, an enhanced

version may be more accurate than if the original integer pixels were used. There was not

enough time left to pursue this line of investigation. In future work, a photo-realistic ground

truth image could be generated synthetically. The pixel depth of this image could be far

greater than 8 bits. Varying amounts of noise could be added to it, and the pixel values

of the resulting image rounded to 8 bit precision. A denoising algorithm which produces

floating point pixel estimates, such as FUELS or MML-256/2, could then be compared to

the more accurate ground truth image. This would determine whether more accurate local

approximations contain any further meaningful information.
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When segmenting 3x3 regions, only a small amount of pixel data is available, and the model

component of a two part MML message becomes significant. This places demands on effi-

ciently encoding the model, demands which may be less important for larger windows. The

length of the model part is directly related to the prior probability distributions used. The

prior for the segment maps could be directly controlled. It was shown that changing it to a

more meaningful non-uniform distribution improved results. The logical extension to this

was to learn the prior from the noisy image itself. The idea of data-driven priors was applied

to the MML denoising algorithm, something FUELS was incapable of doing. It was found

that the priors converged in about 6 iterations. The RMSE results were further improved

using this technique.

The result of this chapter is two useful techniques for local segmentation. "MML" considers

3 candidate models, and is the logical extension to FUELS. "MML-256/2" extends this even

further to consider 257 models in most cases, but only 3 models when a full search is deemed

unnecessary. The subjective analysis also showed the MML methods to produce better local

approximations, on average, than FUELS and SUSAN. However, this small improvement

only came with a lot of computational and developmental effort, suggesting that FUELS and

SUSAN are already very good. The MML-256/2 algorithm could potentially be improved

by deriving a more accurate approximation for the expected message length. In general, the

use of MML-256/2 is only wan-anted when a proper analysis is vital, the noise level is very

high, or the best possible local approximation is required.

5.18 Related work

An early form of the work in this chapter appeared in Proceedings of the International Picture

Coding Symposium 1997 [ST97]. In that paper, 11 candidate segmentations of the 3x3

window were considered: 3 homogeneous models using the mean, median and midpoint

as the reconstructed value, and 8 binary models using the 8 possible thresholds to generate

segment means. These models were constructed differently to those described in Section 5.4.

The first event stated whether k = 1 or k = 2, with both events assumed equally likely. If k =

1 the representative value for the block was assumed uniform on [0, Z — 1]. If k' = 2, the next
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event was how many pixels, m, were in the cluster with the lower mean, assumed uniform

on [1,8]. This was followed by a segment map describing the spatial arrangement of the

cluster labels. Because m was already known, there were only (^) possible bitmaps, which

were assumed equally likely. The first cluster mean, n\, was assumed uniform on [0, Z — 1].

Because the second mean was known to be higher than the first, a uniform distribution on

[Hi -f 1, Z — 1] could be used. Finally, the residuals between the local approximation and

the noisy data were encoded. These were treated differently than in the MML method of this

chapter. Two discrete residual distributions were kept, one for use by k = 1 models, and one

by k = 2 models. No numerical integration was required as all segment parameters were

quantized to their nearest integers.

Only the centre pixel of the most probable resulting local approximation was used for denois-

ing. The ideas of overlapping estimates and "do no harm" had not been developed yet. The

algorithm was also iterated such that the posterior probabilities were fed back to be priors,

just as MML does in Section 5.13. The idea of posterior blending was not yet developed, and

the global posteriors were only updated from the most probable model at each point, rather

than a weighted contribution from all models.

Chapter 6

Extensions and Further Applications of

Local Segmentation

6.1 Introduction

In Chapters 4 and 5 the principle of local segmentation was applied successfully to remov-

ing additive noise from grayscale images. The relative performance of different ideas and

parameter settings were evaluated and compared using the RMSE criterion and difference

images. Image denoising was naturally suited to demonstrating some advantages of exam-

ining images from a local segmentation perspective. However, one should not be led into

thinking that its usefulness ends there.

Local segmentation may be considered a core component of many other image processing

applications. A local segmentation analysis provides a way to split an image into its signal

and noise components. The signal may then be enhanced further without interference from

the noise. It provides a snapshot of the structural features at each point in an image, iden-

tifying which pixels belong together and where boundaries occur. Figure 6.1 espouses the

application of local segmentation as a first step in low level image processing, from which

many other tasks may be derived.

This chapter will illustrate how iocai segmentation couid be applied to pixel classification,

edge detection, pixel interpolation and image compression. It will also examine alternative

215
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~ Denoising

Edge detection

Local Segmentation Decomposition

Figure 6.1: Local segmentation decomposition as a core image processing component.

image models, noise models, and segmentation algorithms for use in local segmentation.

The extension to different data types will also be considered. Most of the ideas will only be

presented in brief, as a full study is beyond the scope of this thesis. However, some topics

do include preliminary implementations and results.

6.2 Different noise models

The FUELS and MML techniques described in this thesis have focused or. the removal of ad-

ditive zero-mean Gaussian noise, independently and identically distributed for each pixel. In

this section it will be shown how different noise models, such as impulse and multiplicative

noise, may be incorporated into the local segmentation framework.

6.2.1 Impulse noise

Recall Section 2.5, which described the nature of ergodic impulse noise. Pi
af¥ip.Ptf»rl i

Pixels in an impulse
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pixel being completely replaced by a random pixel value. This differs from additive noise

where some information about the original pixel value is retained. The random replacement

pixel is usually assumed to be drawn uniformly from the full intensity range [0, Z - 1]. A

pixel which has been affected by impulse noise is known as a corrupt pixel.

There is a small chance that a corrupt pixel will have an intensity very similar, or equal, to its

original value. However, most of the time its value will stand out from its neighbours. The

median filter in Section 3.4.4 is sometimes well suited for filtering impulse noise. In homo-

geneous regions, the median filter can cope with up to 50% of the pixels being corrupt and

still produce a reasonable denoised value. In heterogeneous regions it is less well behaved.

In terms of local segmentation, a corrupt pixel may be considered a very small segment hav-

ing an intensity sufficiently different from its neighbours. In the simplest case, this segment

would consist of one (corrupt) pixel an,/ be surrounded by other larger segments. It is possi-

ble for corrupt pixels to be adjacent, resulting in small, spatially connected groups of corrupt

pixels. If an adjacent pair of corrupt pixels is similar enough in intensity, it could even be

(mis)interpreted as a valid two pixel segment.

Let the minimum acceptable segment size (MASS) be the smallest sized local segment that

should be interpreted as structure rather than noise. Recall the 3x3 median filter from Sec-

tion 3.4.4, which was unable to filter the centre pixel correctly when the intersection of its

segment and the windows contained fewer than 5 pixels. It could be considered as having

a MASS of 5. The centre weighted median from Section 3.4.4 is able to adjust its effective

MASS by varying the centre weight, c. When c = 2, the MASS reduced to 4.

Ideally, the MASS should depend on q, the fraction of corrupted pixels in the image. The

MASS could be a global parameter to the local segmentation process, in the same way that

a is for additive noise. It could be supplied by the user, or somehow estimated from the

image itself. Equation 6.1 gives an expression for the probability that a given pixel, p, will

be surrounded (in an 8-connected sense) by exactly n corrupt pixels, where q is the per pixel

probability of impulse noise.

Pr(p has exactly n corrupt neighbours) = ( )qn(l — q)& n (6.1)
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The probability of a given pixel having no corrupt neighbours is (1 — g)8. The probability

•of that pixel being itself corrupt is q. Therefore the probability of a randomly selected pixel

being isolated and corrupt is q(l - q)8. When q = 10%, this is only 4.3% of pixels, meaning

5.7% of corrupt pixels should have one or more corrupt neighbours. This corresponds to

the majority of impulse noise occurring in clumps rather than isolation, with pairs being

most common. Fortunately, these pairs are not necessarily similar in intensity and could be

diagnosed as two separate single pixel segments.

The multi-class version of FUELS from Section 4,12 could be adapted to additionally remove

impulse noise. For each pixel, the optimal local segmentation could be determined, using the

estimated additive noise level, a, as before. If the centre pixel's segment consists of fewer

than MASS pixels, it could be considered an impulse segment. The pixels from an impulse

segment need to be assigned new values. The mean of the largest segment not containing the

centre pixel could be used. For a 3x3 window, that segment will always contain some pixels

neighbouring the centre pixel. However, for larger windows this would not necessarily be the

case. A more advanced version of this idea could take that into consideration when choosing

replacement pixel values.

Results

Figure 6.2 illustrates the application of this idea to the middle section of montage con-

taminated by 5% impulse noise. The multi-class FUELS algorithm was modified to handle

both additive and impulse noise as described earlier. Both DNH and overlapping averaging

were disabled because they would only complicate the implementation. Results for MASS=2

and MASS=3 are included. The outputs of the 3x3 median (effective MASS=5) and centre

3-weighted median filters (MASS=4) are also present for comparison. The image margins

should be ignored, as the method used for handling "missing pixels" is not entirely appropri-

ate when impulse noise is present in the image.

When MASS=2, single pixel segments will be obliterated, while larger segments will remain

intact. In Figure 6.2 it can be seen that the remaining noise mainly consists of pairs of pixels

which are similar in intensity. But this means two-pixel segments, such as the dot on the

' i ' , remain intact. When MASS=3, the modified FUELS manages to remove most of the

6.2 Different noise models

Figure 6.2: (a) clean image; (b) with q = 0.05 impulse nc
MASS=2; (d) MASS=3; (e) median; (f) weighted mi
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noise that remained when MASS=2. But this comes at the expense of structure loss on the

window shutters, the dots on ' j ' and ' ? ' , and the hole and tip of the 'a ' . At first glance the

median filtered image looks very clean, but much of the fine detail and the letters have been

seriously damaged. The weighted median appears to have done a better job overall, but also

suffers from corruption of the letters. FUELS with MASS=2 did best of all on the letters.

Figure 6.3 performs the same experiment, but with 10% (g = 0.1) corruption. In this envi-

ronment, single pixel impulse segments are less likely to occur than when q = 0.05. The

MASS=2 filter still does reasonably well under these conditions — the letters are all legible

— but much noise still remains. When MASS=3, less noise remains, but some of the let-

ters are unrecognizable. The two median filters performed similarly, but the centre weighted

median did manage to retain more of the letter structure.

Table 6.1 contains RMSE results for the filtered outputs demonstrated in Figures 6.2 and

6.3. When q — 0.05, the weighted median and MASS=2 do best. This correlates with

the subjective evaluation. When q = 0.1, the weighted median again does best in terms of

RMSE. MASS=2 does worst, as it can only remove single pixel noise segments, which are in

the minority for 10% corruption. MASS=3 and median perform similarly. Once again, this

does not differ substantially from the conclusions drawn from the earlier visual examination.

Method
Median
W. Median
MASS=2
MASS=3

q = 0.05
16.4

• 1 1 . 1
12.7
15.7

9 = 0.1
17.3
13.5
19.2
17.9

Table 6.1: RMSF results for filtering impuise noise from montage.

Conclusions

One method for adapting the multi-class FUELS algorithm to remove impulse noise was

presented. It functioned by treating all local segments containing fewer than a specified

number of pixels, the MASS, as noise. Corrupt pixels were replaced by the denoised mean

of their largest neighbouring segment. Additive noise was simultaneously removed for those

segments not diagnosed as impulse noise.
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Figure 6.3: (a) clean image; (b) with q = 0.1 impulse noise; (c) multi-class FUELS, MASS=2;
(d) MASS=3; (e) median; (f) weighted median.
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The MASS=2 implementation works well for 5% corruption. It tended to preserve more

structure than the median varieties, but could not cope with the occasional pairs of corrupt

pixels with similar intensities. As the impulse noise level was increased, higher values for

the MASS are required to cope. In those situations it tends to leave more noise behind,

but preserve more structure in the areas where it took it away. This should make it more

amenable to multiple passes through the data.

The best MASS to use depends on the amount of impulse noise present. It is preferred that

the algorithm determine the most suitable MASS for a particular image automatically. One

possibility is to apply filters with known MASS and examine the number of pixels which

suffer gross changes. From that number it may be possible to estimate the percentage noise

corruption, g, and hence a suitable MASS.

6.2.2 Multiplicative noise

Multiplicative noise was first introduced in Section 2.5. It may be considered additive noise,

with the noise term being proportional to the intensity of the original pixel. Equation 6.2

illustrates the situation, where n(x, y) is a random value from some unspecified distribution.

(6.2)
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/(a?, V) + n{x, y)f(x, y)

It is common to assume that the multiplicative noise function n(x, y) is normally distributed

as Af(0, a2), with a constant over the image. Multiplying a variable ~ JV(O, a2) by a scalar,

a, results in a variable ~ Af(0, a2o2). In Equation 6.2, a would be the intensity of the original

pixel. Thus multiplicative noise could be considered additive noise where the variance is

dependent on the original pixel value. There are various ways in which this behaviour could

be exploited by the local segmentation algorithms developed in this thesis.

Consider a small block of pixels corrupted by the multiplicative noise model just described.

Under the assumption of homogeneity, the mean, /i, of the block would be a reasonable

estimate of the original intensities. FUELS would assume the block variance to be a2. Under

a multiplicative noise model it would be approximately equal to {(ia)2. Similar arguments

would apply to the clusters determined under a heterogeneous model. A modified FUELS

model selection criterion would use the per cluster variance to determine suitability, rather

than a common noise variance. A simpler alternative is to simply use the average brightness

of the block to determine a local noise variance to be used by all derived clusters.

The treatment just described is not ideal. The mean is not necessarily the best estimate to

use, as bright pixels are less reliable than dark ones. The binary clustering algorithm used

by FUELS assumes the clusters have a common variance. To properly handle multiplicative

noise a more complex clustering technique should be used. However, it has been shown that

with some modifications, local segmentation could be used for more than just additive noise.

6.2.3 Spatially varying noise

It is possible for the noise to vary from location to location within an image. Consider an

additive zero-mean noise component in which the variance depends on the spatial location

within the image. This is shown in Equation 6.3, where a is a function of the pixel position.

f'(x,y) = f(x,y) + tf(0,a(x,y)2) (6.3)

Under this model the variance could vary erratically from point to point. It would be difficult

to determine an appropriate values of a for each pixel. A more likely situation is for the

variance to vary smoothly across the image, or to be constant within global segments but

discontinuous between segments. In these cases, the variance will be mostly consistent on

a local scale. The technique used by FUELS and MML to estimate the global noise vari-

ance could be applied to small sub-images centered on each pixel. Under the assumption

of smoothness, the variance could be measured in a regular fashion for a proportion of all

pixels. The variance for the remaining pixels could be interpolated from the estimated ones.

The fc-means segmentation algorithm used by FUELS could not be applied unmodified to an

image containing known, spatially varying noise. Although it does not take spatial informa-

tion into account, and the value of a noisy pixel is still the best estimate of its true value, the

equal averaging of pixels to estimate the segment mean is inappropriate. Instead a weighted

mean, based on the noise variance of each pixel value, should be used. The model selection

criterion would also need to be modified to handle the different variance of each pixel, and

therefore of each segment.
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6.3 Different structural models

Image models have two components: the structural model for describing the underlying

noiseless signal, and the noise model for describing the way in which the signal was cor-

rupted. It has already been shown how different noise models may be incorporated into local

segmentation. In this section, extensions to the structural component will be briefly explored.

6.3.1 Multispectral pixels

The work in this thesis has been derived under the assumption of greyscale pixel data, but

local segmentation is not restricted to this. A pixel from an alternative colour space may

be interpreted as a vector, rather than scalar. Consider the "RGB" triplet sometimes used

for colour pixels. If the noise is considered additive zero-mean Gaussian with the same

variance in each band, FUELS and MML may be used with little modification. The it-

means clustering algorithm extends naturally to multi-dimensional data, although it is more

sensitive to stalling conditions. The mean separation criterion would have to be modified

to be a distance in RGB space, rather than a simple intensity difference. Under the MML

framework, each segment mean and residual would be encoded as a vector. Each colour

component in the vector could be considered 3 independent scalars. These ideas also apply

to multispectral data, which may have any number of bands.

6.3.2 Planar regions

The structural model used so far has assumed piece-wise constant segments. Piece-wise con-

stant segments are the lowest level in the facet model hierarchy, described in Section 4.2.1.

It was argued that, on a local scale, constant facets would be sufficient to model most im-

age behaviour. The success of the FUELS and MML algorithms have shown that a simple

model can be taken a long way, but not all image data is well modeled by constant facets. In

Section 4.2, it was stated that range images contain segments which vary in a linear, or pla-

nar, fashion. Even photographic images like l enna and barb2 have regions which exhibit

some planar-like behaviour. It would be useful to incorporate planar segments into the local

segmentation framework.
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A constant segment has only one parameter, //, to describe its average intensity. A planar

segment has three parameters. The intensity profile for a planar segment may be written

like Equation 6.4, where fi is the average brightness, and Ax and Ay are the horizontal and

vertical gradient terms respectively.

f{x, y) = n + xAx + yAy (6.4)

If the noise is assumed distributed as A/*(0, a2) for each pixel, the optimal values for the three

parameters may be determined using the familiar least-sum-of-squares algorithm [Nie94].

A simpler solution for pixels from a regular square region, like the popular 3x3 window, is

given in Figure 6.4. The gradient terms are actually equivalent to the outputs of the horizontal

and vertical Prewitt edge detector masks [PM66].
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Figure 6.4: Computing the parameters for a homogeneous 3x3 planar model.

It has been shown how to derive a planar model for a homogeneous region. Under the

MML framework, this model could be incorporated into the pool of candidates, alongside

the homogeneous constant model and two-segment constant models. The model part of its

message would be longer, as three parameters need to be encoded to describe the fitted plane.

It should be possible to determine the optimal quantization levels for Ax and Ay. The data

part is the residuals between the fitted plane and the noisy pixel values. MML naturally takes

into consideration the complexity of each model via its overall message length. The planar

model would only be chosen over the constant model as warranted by the data.

Fitting planes to each segment in a heterogeneous window is more complicated. Obviously,

when there is more than one segment present, there are fewer pixels in each segment. It is

difficult to estimate reliably the gradient terms for the fitted planes, due to the lack of data.

For an MML message, the small number of pixels would make it difficult to save enough bits

in the data part to make up for the extra bits used for encoding the parameters of the plane.
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FUELS and MML allow segments to be unconnected, further complicating the modeling.

For a 3x3 window, fitting planes to two or more segments would not probably be justified.

A homogeneous planar model can already model ramp edges very well. This phenomenon

is what two segment regions were previously forced to approximate.

6.3.3 Higher dimensional data

The digital images processed in this thesis were two dimensional in nature, with each coor-

dinate hosting a pixel. Today, medical imaging techniques are able to generate three dimen-

sional (3D) volume linages. Figure 6.5 shows a small 8 x 5 x 4 volume image, which has

160 elements in a?I. Volume images are sometimes treated as a series of 2D image slices.

Each slice may also be temporally shifted due to time spent in the acquisition process.

Figure 6.5: An 8 x 5 x 4 volume image.

Each element in a volume image is called a voxel, which is shorthand for "volume element".

In the simplest case, a voxel stores a scalar measurement, such as a bone density or radioac-

tive dye intensity. Figure 6.6 shows the local neighbourhood of a voxel. Translating the 2D

concept of 4-connectivity to 3D results in a neighbourhood of 6 voxels.

Local segmentation is a philosophy, not a particular algorithm or implementation. Its prin-

ciples apply equally well to 2D greyscale images as they do to 3D volume images. A local

neighbourhood for each voxel can be defined. This neighbourhood may then be segmented

using any suitable technique. If spatial information is not important, then FUELS or MML-

2 could be applied without any major changes. The principles of DNH and overlapping

averaging would still apply to volume data.
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Figure 6.6: Each voxel (dotted) has 6 neighbours in its immediate neighbourhood.

The extension to 3D is only the beginning. Medical scanners are able to take temporal se-

quences of volume images. For example, to examine blood flow through the body over a

period of time. This could be treated as 4D information. The local neighbourhood would

consist of voxels around the current voxel in the current "frame", along with voxels around

the same position in adjacent frames. A possible complication is that the "time" dimen-

sion is inherently different from the spatial ones, whereas FUELS and MML assume certain

isotropic behaviour. Planar models might be useful for handling this situation.

These ideas also apply to digital video, which is a time series of 2D images. Local segmenta-

tion would be able to detect a change in the number of local segments around each pixel. This

change would probably be associated with moving objects in the recorded scenes. Hence,

local segmentation could be used as a low level step in object tracking systems.

6.3.4 Larger window sizes

In Section 4.10, FUELS was tested on different windows sizes, the largest of which contained

37 pixels. It was found that smaller windows produced better lower RMSE when denoising.

This may not be true if a more sophisticated image model was used. FUELS and MML-2

extend naturally to larger mask sizes, as they only considered a fixed number of candidate

models based on thresholding.

MML-256 took the path of considering all possible segment maps. For a 3x3 window,

this came to 256 distinct segmentations. This exhaustive approach does not scale well to

larger windows. For each extra pixel included in the window, the number of binary segment



maps doubles. As the window size increases, the average number of segments present in the

underlying image is also expected to rise. This also increases the total number of candidate

segmentations to be potentially considered.

Obviously the search space needs to be restricted. The homogeneous and optimally thresh-

olded models should always be included. A segmentation algorithm which exploits spatial

information could be used to generate extra candidates. The thresholded segmentation could

be used a starting point for the spatial algorithm. Most spatial segmentation algorithms re-

quire one or more parameters to control their operation. A few different values for these

parameters could be tried, and each resulting segmentation added to the pool.

Reducing the search space is only part of the problem. Each segment map needs to be costed

in bits. An explicit prior distribution over all possible segment maps is no longer suitable, due

to the large number of possibilities. Instead, a method for efficiently coding segment maps

is needed, which implicitly gives a prior to all segment maps. The field of lossless image

compression would be a good place to find a method for doing this. I have already done

some preliminary investigations into the use of a low order Markov model for compressing

binary segment maps, much like the JBIG algorithm [GGLR81, PMGL88J. The Markov

model parameters are dynamically learned using the data-driven prior approach. The details

of this work are outside the scope of this thesis.

6.4 Pixel classification

Pixel classification is the process of classifying each pixel in an image as a smooth, shaped,

or textured feature point [Cho99]. Smooth points correspond to homogeneous regions, such

as those positioned in the interior of global segments with a low natural level of variation.

Shaped regions, or edge regions, are those occurring near the boundaries and junctions be-

tween global segments. There is no universally accepted definition for texture. Caelli and

Reye [CR93] propose that textured regions and edge regions are the same features, but at

different scales. They suggest that texture be considered a high resolution area containing

many edges in close proximity.

Local segmentation necessarily classifies the region surrounding each pixel. The most im-

portant attribute determined by the local segmentation process is k, the number of segments

6.4 Pixel classification
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present. This k may be used for pixel classification. Ignoring DNH for the moment, the

multi-class 3x3 FUELS algorithm estimates k to be between 1 and 9. When k = 1, the

window is "smooth". When k > 1, the window contains segment, boundaries, so a "shaped"

classification is more appropriate. In summary, we have:

Smooth"

"Shaped"

k = l

k>2

Figure 6.7 shows l enna and its corresponding classification map. Black pixels denote

smooth points and white pixels denote shaped points. The classification is based on values

of k as determined by the multi-class FUELS algorithm with DNH disabled. The noise level

was estimated to be a = 2.658.

Figure 6.7: (a) original lenna; (b) classification into smooth (black) and shaped (white)
feature points.

Of the pixels in Figure 6.7b, 59% are smooth and 41% are shaped. The smooth points do

indeed correlate with the large homogeneous regions in l enna , and the shaped points to

the edges and texture. Pixel classification of this type could be used in various ways. For

example, a lossy image compression algorithm could allocate more bits to the shaped areas

to preserve sharpness. A global segmentation algorithm could attempt to cluster only smooth

points first, and then apply region growing to annex shaped points accordingly.
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In the example of Figure 6.7, shaped and textured feature points were not distinguished. Win-

dows which are not well modeled by one or more segments could be considered "textured"

regions. The multi-class FUELS algorithm uses its DNH mode to identify such windows.

In Section 4.12.4 it was also shown that windows where k = M, where M is the number

of pixels in the window, are equivalent to DNH. Thus local segmentation could be used to

classify pixels into three groups as follows:

"Smooth" <=

"Shaped" <=

"Textured" «=

=* k =

=> k<

=> k =

1

2

A

<M

for DNH

Figure 6.8 applies these classification rules to l enna . Only 5% of pixels are classified as

textured. About a third occur near edges, possibly ramps. These are difficult to model with

piece-wise constant segments. Another third seem to be isolated patches, perhaps planar re-

gions for which a segment-based model was inappropriate. The last third do actually appear

in textured regions of the image, particularly the feathers in lenna ' s boa. This result is less

encouraging than when only smooth and shaped points were considered.

v

Pixel classification could possibly be improved by examining the image at different scales.

Chou [Cho99] performs edge strength measurements on the original image and two down-

sampled versions thereof. A set of rules relating edge strength at each position over the

various scales is then used to make the final decision. For example, a low edge response at

all scales gives strong evidence for the point being smooth, and correspondingly, consistently

high edge responses suggest a shaped point. If the edge strength varies relatively over scales

then it could be considered a textured point. It would be possible to apply these types of

rules using the values of k determined at different scales.

6.5 Edge detection

Edge detection describes the general problem of determining the location, magnitude and

orientation of (segment) boundaries in an image [HSSB98]. The precision and accuracy to

which these edge attributes may be determined is what discriminates between algorithms.

6.5 Edge detection
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Figure 6.8: (a) original lenna; (b) smooth points (white); (c) shaped points (white); (d) tex-
tured points (white).

The "shaped" pixel classification in Section 6.4 may be considered a primitive edge detector.

It provides a rough location, but no magnitude or orientation. This section will explore some

advanced methods for edge detection from a local segmentation perspective.
more

6.5.1 Edge strength measurement

Edge strength measurement algorithms are used to estimate the magnitude of an edge tran-

sition around each point in ti-.e image. They do not attempt to determine the exact posmon

or direction of an edge. Edge strength may be used as a simple edge detector. It should
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give a low response in homogeneous regions, and a high response in the vicinity of segment

boundaries. The response usually increases with both the sharpness and contrast of the edge.

The output of an edge strength algorithm could be used by segmentation algorithms. For

example, those pixels furthest from high edge activity may be used as seeds for a region

growing algorithm. A map of edge strengths could be used as the "elevation map" for the

watershed segmentation algorithm [HH94]. Alternatively, the identified edge pixels may be

used to initiate a boundary tracking process.

The commonly used Sobel 3x3 linear convolution masks [Sob70, GW92] treat the image

as a functional surface, and attempt to estimate the gradient magnitude in two orthogonal

directions. Equation 6.5 shows the horizontal mask, Sx, and the vertical mask, Sy. The edge

strength measurement esoB{x, y) at each point is the Pythagorean combination of the result

of convolving the two directional masks with each pixel f(x, y).
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Local segmentation may be applied to edge strength measurement. Consider FUELS' thresh-

olding from Section 4.14, which diagnoses the window as consisting of one or two segments.

For the two segment case, the numerical difference between the two cluster means could be

considered a measure of edge strength. Equation 6.6 gives an expression for computing

an edge strength image, eLS. Because only regions with a contrast difference greater than

Ca are diagnosed as consisting of two segments, that amount is subtracted from the edge

strength. Homogeneous blocks receive an edge strength of zero.

(6.6)

This measure of edge strength is only one possibility. An alternative would be to consider the

intensity difference between the centre pixel and the neighbouring pixel nearest in intensity,

but from the other segment.

6.5 Edge detection

Results

Figure 6.9 provides edge strength results for l e

mentation based method. The Sobel and local

to the full intensity range, to improve visibility (

output is also included1. It used the same value

Figure 6.9: (a) original lenna, estimated a = 2.66
SAN using t = [3<rJ = 8.

The local segmentation edge strength measuremer

tic. Its performance could be said to fall somewhe

'SUSAN source code: h t t p : / /www. f mr ib . ox. ac
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to be less sensitive to noise than SUSAN, but picks up more potential detail than Sobel. It

would be interesting to apply thinning and edge linking to the local segmentation output, but

that is outside the scope of this chapter. The results are useful in that they essentially come

for free from the local segmentation decomposition, and do not use any spatial information.

A more advanced implementation could consider the actual pattern of cluster assignments

for each window, and accordingly determine edge direction, or disregard incoherent patterns.

6.5.2 Probabilistic edge detection

The MML-256 local segmentation algorithm from Chapter 5 considers all 256 possible 3x3

segment maps. This results in a posterior probability distribution over possible binary seg-

ment maps for the local 3x3 window. The segment model assumes that pixels belong wholly

to one segment, and that segment boundaries occur between pixels. Thus a segmentation im-

plicitly defines the existence of segment boundaries.

Consider the 3x3 block of pixels of Figure 6.10. A pixel interface is the junction line be-

tween two adjacent pixels. There are 12 pixel interfaces in a 3x3 block, 6 of them horizontal

and 6 of them vertical. A edge, or boundary, is said to exist at a pixel interface if the segment

labels for the two pixels at the interface are different. At first glance it may appear that there

are 912 boundary patterns, but there are really much fewer, because each pattern must form

one or more logical segments.

Figure 6.11 illustrates three potential segment maps. The homogeneous segment map asserts

that no boundaries are present in the window. The window with a vertical edge asserts the

existence of a boundary at 3 of the 12 possible interfaces. The diagonal line in the third

window is even more complex, insisting that there is a boundary present at 6 interfaces.

6.5 Edge detection
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Figure 6.11: Examples of segment maps, with boundaries shown in bold.

The posterior information gleaned from the MML-256 local segmentation process may be

used for edge detection. For an XxY image there are (X -l)x(Y - 1) horizontal pixel

boundaries, and the same number of vertical ones. Each processed pixel produces a prob-

ability distribution over possible segment maps. If the segment labels on both sides of an

interface are different, then a boundary is present along that interface. For a given segment

map, the probability of each interface's boundary existing in the image can be assumed to

have the same probability — ihe posterior probability for the segment map in question.

Thus a probability for the existence of an edge at each pixel interface can be determined.

Each interface occurs in 6 overlapping windows, so probabilities can be accumulated. The

horizontal and vertical probabilities can be stored in two images, called h and v, each of

resolution (X — l)x(Y—l). Bach image may be visualized alone, or they could be combined

into a single image, e. Three different methods for combining the horizontal and vertical

edge probability images are considered:

1. Averaging: e = | ( h -I- v).

2. Euclidean magnitude, or normalized Z2 norm: e = \l I v ,

3. The maximum, or Loo norm: e = max(h, v).

Results

Figure 6.12 gives results for part of lenna . Black represents probability zero, and white

probability one. The MML-256 algorithm was iterated 6 times to learn priors for the segment

maps. The DNH model was treated like a homogeneous window, in that it did not contribute
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Figure 6.12: Example of probabilistic pixel boundary detection: (a) part of lenna; (b) h;
(c) v; (d) (h + v)/2; (e) ^(h 2 + v2)/2; (f) max(h, v).

any posterior probability to any pixel interfaces. An alternative would have been to treat all

pixel interfaces as being active.

This technique seems to work extremely well. The vertical image clearly picks up the hang-

ing feather at the top of the image. This feather does not appear at all in the horizontal

image, as desired. The diagonal brim of the hat is clearly detected in both h and v, because
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diagonal edges are a blend of horizontal and vertical changes. For visualization purposes,

the max(v, h) function appears to give an output image with more contrast. The max oper-

ation clearly states whether an edge is present or not, regardless of its orientation. The other

two methods for combining v and h respond more to diagonal edges than to vertical and

horizontal ones.

Figure 6.13 shows the combined probabilistic edge strength image for the complete l e n n a

image, using the max(h, v) method. It was produced under the same conditions as Fig-

ure 6.12f. The results are quite remarkable. All the important boundaries are clearly visible.

Most interesting is the amount of detail with respect to individual feathers on the boa hang-

ing from the hat. It has also managed to detect a large proportion of the fine diagonal lines

present above the band on the hat.

Conclusions

The results of this section clearly show the power of the MML-256 local segmentation frame-

work. The horizontal and vertical edge strength decomposition derived naturally from the

local segmentation models used. It would be possible to transform this orthogonal decompo-

sition into another coordinate space. For example, polar coordinates would describe the edge

magnitude and the edge orientation at each position. The L2 norm plotted in Figure 6.12e

is effectively the magnitude. The angle of orientation, a, may additionally be derived using

the trigonometric expression a = arctan ^ 4 -

6.6 Image enlargement

Image enlargement increases the resolution of an image. It is also called image expansion,

zooming, and interpolation. Consider the simplest problem of doubling the size of an image

from XxY to 2Xx2Y. The doubled image has four times as many pixels as the original.

Exactly 75% of the pixels need new values determined for them. This situation is shown in

Figure 6.14. The problem is to predict suitable values for the unknown pixels, such that the

features of the original image remain intact.
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Figure 6.13: Probabilistic edge strength for lenna
•nna using max(v,h).

The simplest technique for image enlargement is pixel replication. It makes the assumption

that the known pixel values were obtained from a 2x2 down-sampling of an originally larger

image. Thus, the "best" replacement pixels have values equal to the known pixel. An exam-

ple is given in Figure 6.15. The main disadvantage with pixel replication is that, for natural

images, the results are very blocky. The next simplest idea is to interpolate the pixel inten-

sities linearly. This often looks better than pixel replication, but has a tendency to produce

blurred edges, much like the box filter for denoising.
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Figure 6.14: Doubling an image's size means predicting all the'?' pixels.
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Figure 6.15: Pixel replication is the simplest expansion method.

Structure directed enlargement algorithms attempt to maintain edge coherence when esti-

mating values for the unknown pixels. It is possible to use the MML-256 local segmentation

method to aid image enlargement. Consider the 5 x 5 window of the enlarged image in Fig-

ure 6.16a. It has 9 known pixels, which are numbered. In the original image, assume the best

model used the binary segment map denoted by the white and grey pixels. Segment 1 had 4

pixels in it, and segment 2 had 5 pixels in it.

Now consider the 3x3 sub-window in Figure 6.16b. It has 4 known pixels, and 5 unknown

pixels. The segment memberships that the 4 known pixels had in the original segment map

can be assumed consistent. All that remains is to determine which segment each of the

unknown pixels belong to. When that is achieved, each unknown pixel can be assigned a

value equal ti • its segment's mean. Because only 5 pixels don't belong to a segment, there

are only 25 = 32 possible segment maps that could apply.

The MML-256 algorithm can be used to calculate the message lengths for these 32 possible

models. The same prior used for the original image could be re-used, ensuring that the
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32 possibilities

Figure 6.16: Using local segmentation for structure directed i
interpolation.

original image structure is replicated in the enlarged image. The segment means in each

message would be equal to the segment means calculated from the original 9 known pixels

in the 5x5 window. The data part of the message would only consist of residuals for the

known pixels. Of the 32 possible segment maps, the one with the shortest message length is

used to fill in values for the unknown pixels. It is straightforward to incorporate overlapping

average and posterior blending into image enlargement too.

Figure 6.17 compares three image enlargement methods for doubling montage (only the

middle shown). As expected, pixel replication produces blocky output, and linear interpo-

lation produced blurry output. In comparison, the MML-256 result is good. The edges of

the artificial shapes and letters look more continuous. MML-256 based zooming may be

considered a fractal type approach, because the same prior is used at two different scales,

ensuring the image is self-similar at different resolutions.

Digital zooming has many applications. Most digital cameras on the market only support

optical zooming up to a point, after which digital zooming takes over. It is important that

the "invented" zoomed data appear realistic. Deinterlacing of digitized television signals can

be interpreted as taking an interlaced frame of size 2XxY, and producing a full frame of

size 2Xx2Y. Predicting pixel values for the missing rows could be done by adapting the

MML-256 technique just described.
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Figure 6.17: Comparison of doubling methods: (a) denoised image; (b) pixel replication;
(c) linear interpolation; (d) MML-256 based enlargement.

6.7 Image compression

Image compression is concerned with efficiently encoding images for storage and transmis-

sion [RJ91]. Lossless image compression encodes the data exactly, the decoded image being

identical to the original. Lossy image compression encodes an approximation of the original

image in order to reduce the encoded length. Lossy algorithms must trade-off the level of

compression and the amount of distortion in the reconstructed image.

In the past, image processing and image compression have been treated as separate disci-

plines. The use of information theoretic techniques for analysing data, such as MML and
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MDL, has proffered a merging of the two disciplines. Both image compression and MML

are concerned with optimal lossless encodings of the data. The data part of a two part MML

message may be considered the noise, while the model part is the structure. This could be

useful to a lossy compression algorithm for deciding which image information is impor-

tant, in addition to any heuristics based on the human visual system. Better compression is

intimately linked with better understanding of data.

6.7.1 Aiding lossy compression

Lossy image compression may be considered to consist of two stages, illustrated in Fig-

ure 6.18. Firstly, a suitable approximation to the original image is determined. Secondly, the

approximate image is losslessly encoded. Although all lossy image compression algorithms

effectively do this, it is not always clear how they choose which information to discard.

0110010110001

0010100001110

1001100101100

1010101100011

Original Image Lossy Approximation Lossless encoding

Figure 6.18: Lossy compression can be considered a two stage process.

An alternative to allowing the lossy compression algorithm to distinguish between structure

and noise is to preprocess the image to remove the noise first. The parameters to the lossy

algorithm can then be chosen to preserve more of the information they are given. That is, the

discarding of visually unimportant information (first •«" >*e) can be replaced by a denoising

algorithm, leaving the encoding (second stage) to the compression algorithm.

In Chapters 4 and 5, local segmentation was shown to produce good denoising algorithms.

The denoised output of FUELS could be used as the input to a compression program. Having

the noise removed would assist in decreasing the size of the compressed file. An alternative

approach would be for a local segmentation technique to determine where bits should be

spent. For example, k = 1 regions have low information content, and hence fewer bits
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should be used for encoding those regions. Important structural details, such as edges, occur

in k = 2 regions, and more bits should be used to ensure that these features are represented

accurately in the lossy compressed image.

6.7.2 Adaptive BTC

Block truncation coding (BTC) is a simple and fast technique for image compression, and

was discussed in Section 3.3.2. In its original form, BTC processes 4x4 blocks of pixels

at a time, and outputs data with a fixed bit rate. For 8 bit per pixel greyscale image data,

the resulting compression ratio is 4:1, or 2 bits per pixel. An example of its operation on a

sub-image of l e n n a is given in Figure 6.19.

Figure 6.19: Standard BTC: (a) original image at 8 bpp; (b) reconstructed image at 2 bpp;
(c) bitmap.

Local segmentation and BTC are closely related. Both techniques involve segmenting a

small group of connected pixels. The segmentation includes a bitmap for describing pixel

assignments to segments, and representative intensities for each segment. The original BTC

method always used two classes, which is similar to FUELS. However, BTC used the block

mean as a threshold, and chose the segment "means" to preserve the variance of the overall

block. This is in contrast to FUELS' use of the adaptive Lloyd quantizer.

When a block is homogeneous, there is no need to transmit a bitmap and two means —

a single mean is sufficient. Some variants of BTC attempt to exploit this property to save

bits and improve compression. To make a decodable bitstream, each block's encoding is

preceded by one bit to distinguish between homogeneous and standard blocks. An alternative

is to send the two means first, and if they are the same, not to send a bitmap. Mitchell et
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al [MD80] assume the region is homogeneous if the block variance is less than one, and

Nasiopoulos et al [NWM91] do the same if the range of the block is less than some threshold.

FUELS already provides a way to estimate a suitable threshold for distinguishing between

homogeneous and heterogeneous blocks. Figure 6.20 shows how Adaptive BTC can improve

the bit rate with little loss in image quality compared to standard BTC. The threshold used is

3a, where <j is estimated as 2.84. This results in 41% of blocks being declared homogeneous,

reducing the overall bit rate to 1.39 bpp. The bitmap image clearly shows how two segments

were only used in high activity regions of the image.

_____ — • • i n imipurruiir'TniHTTMfimnflll—STfT''4

Figure 6.20: Adaptive BTC: (a) original image; (b) bitmap; (c) reconstructed image at 1.39
bpp, 41% homogeneous blocks using threshold of 8.5; (d) reconstructed image
at 2 bpp.

Prefixing each block with a bit describing how many segments are in the block implicitly

places a prior probability distribution over segmentations. Specifically, it gives probability

0.5 to k — 1, and shares the remaining 0.5 between all possible 4x4 clusterings, of which

there are 215 = 32768. This is obviously an inefficient coding, because Section 5.14 showed

that not all binary segment maps are equally likely. The MML methodology could be applied

to first determine these probabilities from the image. These probabilities could then be sent

up front, and the rest of the image encoded using them. If the cost of the upfront information

is small enough, a net gain in bit rate would be possible.
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6.7.3 Lossless predictive coding

The great majority of lossless compression algorithms are based on predicting the value

of the next pixel to be encoded. Examples include CALIC [WM96], LOCO [WSS00],

HBB [STM97], TMW [MT97] and Glicbawls [MTOl]. The prediction must be fanned using

only those pixels which have already been encoded — the causal neighbourhood shown in

Figure 6.21. This is because the decoder does not yet know about future pixels.
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Figure 6.21: The causal local neighbourhood consists of pixels known to both encoder and
decoder.

Typically, only pixels in the local neighbourhood are used for prediction. In Figure 6.21 they

have been labelled with the standard compass point notation [STM97], where N denotes

north, W denotes west, and so on. The pixel to be encoded, ?, is usually referred to as the

current pixel. The predicted value for the current pixel is often taken to be a linear combina-

tion of the pixels in the causal neighbourhood. For example, the Pirsch predictor [Pir80] is

calculated as 0.5W+0.25N+0.25NE.

Local segmentation could be used to improve the quality of predicted values. The amount

of noise in a predicted pixel value is a linear combination of the noise in each of the pixels

used for the prediction. It i.« desirable that this noise be minimized. Instead of using the

decoded (original) pixel values for prediction, denoised versions of them could be used.

For example, FUELS could be used to filter the image as it is decoded. The overlapping

estimate technique would even provide reasonable denoised values for those pixels without

a complete two-sided neighbourhood.
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When encoding each pixel, it must be with respect to some distribution over possible pixel

values. The most commonly used, distributions are Gaussian and Laplacian, due io their

symmetry and unimodality. The "predicted value" is used to estimate the location parameter

of the distribution. The spread parameter captures the level of confidence we have in the pre-

dicted value. Besides the prediction formula, the method used for determining an appropriate

spread value is what distinguishes most algorithms.

Some techniques implicitly use a single spread parameter for the whole image, such as loss-

less JPEG [PM93]. Some estimate it directly from the causal neighbourhood, like Glicbawls.

CALIC and LOCO use the idea of context coding, whereby the local causal neighbourhood is

classified into a context. Only a small number of contexts are used, with each one effectively

providing a spread estimate to use for encoding the current pixel.

The FUELS approach could be used for determining contexts. Let us assume the decoder has

been transmitted an estimate of the global noise variance, a. The c ausal neighbourhood could

be locally segmented. The optimally determined segment map could be used as a context

number. The number of contexts could be controlled through the number of neighbours

taking part in the segmentation. Most useful is -hat local segmentation could distinguish

between homogeneous and heterogeneous contexts. The spread parameter for each context

could be adaptively learned in a fashion similar to CALIC and LOCO.

A more general approach is to use local segmentation for both the prediction and the context

selection. The causal region could be optimally segmented. If k = 1, the predicted value

will be in the same segment, or another new segment. The predicted value should probably

be equal to the mean of the causal neighbourhood. If k = 2, the current pixel could belong

to either of the causal segments, or be from a new segment. The encoder could examine the

current pixel and determine which of the two segments it belongs to. A single binary event

could be used to state which of those two segments it is. The mean of that segment could be

used as the predicted value. This approach to prediction should be good at predicting large

changes in the vicinity of edges.

A more complex version of the previous idea could be based on the MML-256 algorithm. Let

us assume the encoder and decoder agree on a prior over segment maps. The causal neigh-

bourhood could be segmented in all possible ways, not including the current pixel. For each
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segment map considered, there are two new segmentations containing an extra pixel which

can be derived by assuming that the current pixel is in each of the two possible segments

(assuming k = 2). The prior could be used to assign weights to all these segmentations. The

predicted values could be blended together based on the posterior probability of each of the

segmentations. This is similar to the way TMW blends prediction distributions.

6.8 Conclusions

It has been shown how to apply local segmentation to a variety of image processing tasks

besides denoising, including edge detection, image zooming and image compression. Also

discussed was how to incorporate different image models and noise models into the local seg-

mentation framework. These followed on from the constant facet and additive noise models

used by FUELS and the MML denoising algorithms in Chapters 4 and 5. The extension of

the ideas in this thesis from 2D images to 2D video sequences, 3D volume images, and 4D

volume image sequences was also considered.

The local segmentation principle is a simple one. It states that whenever a pixel is processed,

only those neighbouring pixels in the same segment should take part in the processing. This

chapter illustrated how this idea provides a consistent and unified way of examining images

in a low level manner. The simplicity of local segmentation allows it to be applied to any

algorithms where pixels are processed by looking at the values of neighbouring pixels. Its

power and flexibility lies in its simplicity.

Most of the ideas in this chapter could only be explored in brief, as the work required is out-

side the scope of this thesis. The most promising results are for probabilistic edge detection

and impulse noise removal. These idea* in particular would be deserving of further research.

The FUELS local segmentation methodology has a simple implementation, requiring little

memory and processing power. It could be crafted as a generic image processing tool which

could function in real time, potentially embedded in hardware.
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Conclusions

Local segmentation is already used, in some form, by a number of image processing algo-

rithms. Sometimes its use is implicit, like with median filters, or more explicit, such as for

SUSAN. The properties of a particular algorithm can be examined by isolating the local seg-

mentation model it uses. This can help to reveal its strengths and weaknesses. The more

situations an image processing technique's local segmentation criterion diagnoses correctly,

the better its performance. Image denoising is well suited to demonstrating the utility of local

segmentation. Good image denoising algorithms attempt to identify and preserve structure,

while simultaneously removing noise.

A denoising algorithm called FUELS was developed. Although binary thresholding is a very

simple type of segmentation, FUELS showed that it was good enough to outperform existing

state-of-the-art denoising algorithms. Unconnected segments are often unavoidable, because

the intersection of a window with a global segment may disguise their actual connectedness

via pixels outside the window. Thus the main limitation of thresholding may actually be an

advantage when applied locally. The windows used in local processing are usually too small

to incorporate much spatial information anyway.

The move from assuming homogeneity within the local region to allowing for the presence

of two segments lead to a big improvement in performance. This gain was much larger than

that which came from also allowing more than two segments. Although this was true for

3x3 windows, k may not be true for larger ones. The popularity of the 3x3 window, along

249
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7. Conclusions

with results for FUELS, suggest that it represents a good trade-off between compact locality
and the need for more detailed models.

The work on FUELS introduced the idea of "do no harm" (DNH). FUELS generates two

candidate models, and chooses the one it thinks is better. It is possible that both candidates

are poor ones for the local region, so using one could do more damage than good. If this

situation was identified by the DNH mode, the pixels were left unmodified. This is similar

to defaulting to a null model if there is insufficient evidence for any of the alternatives. The

DNH idea is not particular to FUELS or even local segmentation — it could be applied to any

denoising algorithm to improve its worst case performance, especially at low noise levels.

Most denoising algorithms use the centre pixel of the window as a reference pixel to com-

pare with each other pixel in turn, to produce a denoised estimate of the centre pixel only.

Local segmentation differs from this in that it treats all pixels in the window democratically,

producing denoised values for them all. Because windows overlap, there are multiple esti-

mates for each pixel. With little extra work, FUELS was able to average these estimates to

further improve performance. This illustrates the advantages of combining predictions from

different experts, which is harder to do when the centre pixel receives special treatment.

Moving to an MML framework lead to better local segmentation, which itself lead to further

improvements in denoising performance. MML made it straightforward to consider a larger

set of models. It provides a robust method for comparing the relative merit of different

models, but can not rate them in an absolute sense. The DNH principle suggested the addition

of a null model, which left the pixels unmodified, to serve as a benchmark. By comparing

against this model it was possible to establish whether the other models were useful or not.

The MML denoising algorithms performed best of all when the noise level was high. This

showed that thresholding, as a technique for local segmentation, was insufficient for very

noisy images. MML provided a way to incorporate spatial information through its use of a

data-driven prior for the segment maps. It was able to learn the general characteristics of an

image, which guided it in segmenting each local region. It found that for most images, some

segment maps are more likely to occur than others. Homogeneous windows were the most

common situation diagnosed, which is why simplistic denoising techniques, like box filters,

do well for most parts of an image.
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Local segmentation could be considered for use in any situation where the current pixel is

processed by making reference to the values of its neighbouring pixels. Algorithms that deal

with these situations make up a large proportion of algorithms used in image processing. It

was shown that local segmentation is applicable to a host of image processing tasks besides

denoising. This is because it makes obvious the connection between higher level analysis,

which typically involves segmentation, and low level analysis, namely local segmentation.

The principle of local segmentation is a simple one, but has not really been explicitly stated

in the literature. The success of FUELS showed that even a simplistic implementation of lo-

cal segmentation was able to produce high quality results. The application of MML to local

segmentation was original, and lead to further small improvements in local image modeling.

Because FUELS and SUSAN already represent an excellent trade-off between efficiency

and effectiveness, many applications may not be able to exploit MML's better local approx-

imations anyway. The success of local segmentation in denoising bodes well for its wider

application in image processing. The idea of data driven priors, using a null model as a ref-

erence, and mixing expert predictions can be applied not just to images, but to nearly any

data processing domain.
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