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Addendum
Insert on page 118 after paragraph 2. In the original triglyceride study, chapter 2, animals
were on a J129Sv x C57/black six background and at 6 months of aged presented with a
severe hepatic steatosis phenotype. This led to significant changes in genes encoding ezymes
involved in fatty acid synthesis and fatty acid uptake, in particular ACCa and SR-B1, when
estrogen was removed. However, the animals that were examined for the estrogen
replacement study, chapter 3. were also believed to be on the same background, however due f
to their less serve presentation of the hepatic steatosis phenotype and other common ARKO \
phenotypes they were later found to be prominently of the J129Sv background rather that the %
mixed background. In addition to this the animals from our colony were infected with
helicobacter which caused the mice to become ill, and had some weight lose which also
contributed to the reduction of the hepatic steatosis phenotype. It is believed that these t
changes in the background and the health of the animals led to the reductions in the severity ;
of the hepatic steatosis in the animals discussed in chapter 3 compared with those in chapter
2. This results in a less dramatic changes in to ACCa and SR-B1 than first observed.
Currently the mice are being breed on the C57black 6 background as it is kknown to be a
better background of obese mice phenotypes.
Page 21, line 2, reference "Holak et al, 1988" should be replaced with "Kumar et al, 1970".
Page 23, section 1.322, line 10, "Singh & Poulos" should be replaced with "kotti et al,
2000".
Page 50, reference inserted after reference 11 "Kotti TJ, Savolainen K, Helander HM, Yagi 1
A, Novikov DK, KalkkinenN, Conzelmann E, Hiltunen JK, Sehmitz W 2000 In mouse alpha
-methylacyl-Co A racemase, the same gene product is simultaneously located in mitochondria
and peroxisomes. J Biol Chem. 2000 Jul 7;275(27):20887-95.
Page 34, paragraph 3, line 2, "Schoonjans et al, 2000" replace with "Korton et al, 2002"
Page 49, reference inserted after reference number 8 "Horton JD, Goldstein JL, and Brown
MS 2002 SREBPs: activators of the complete program of cholesterol and fatty acid synthesis i
in the liver J. Clin Invest. 2002 109:1125-1131. »
Page 35, section 1.44, line 4 "Russell & Setchell, 1992" should be replaced with "Russell,
2003".
Page 57 reference inserted after reference number 3 "Russell DW 2003 The enzymes,
regulation, and genetics of bile acid synthesis Annu Rev Biochem. 2003 ;72:137-74.
Page 3 Figure 1.1 double bonds in estrone should be between carbons 3 and 4 rathethan |
carbons 4 and 5 j
Page 9 line 1 a mutation in the ERa gene results in estrogen deficiency should be replaced \
with a mutation in the ERa gene results in impaired estrogen signalling. j
Page 5, line 4, page 7 paragraph 2 lines 5, 6, 7, 8 "% homology" should be repaced with 4j
"amino acid similarity". I
Page 22 paragraph 2 line 8 "long chain fatty acids" should proceed "LCFA". ^
Page 23 paragraph 2 line 7 "very long chain fatty acids" should proceed "VLCFA". 1
Pages 0.. 90 and 106 under method section headed Mice, the mice were on a C57/black 6 \
background should be inserted. J
Page 34, paragraph 2, line 10, "The COOH-terminal end regularly domain" should be I
deleted. |

Errata ^
Pages 71 and 94 "p=0.000" should be replaced with "pO.000". t
Fig 3 chapter 3 NS should be proceeded with "non significant". ;
Appendix figure 5 line 1 "gonad", should be replaced with "gonadal", line 4 "elemen" should
be replaced with "element" and line 5 "presente" should be replaced with "presented".
Page 4, line 6 "exon" should be replaced with "exons".



Page 6, section 1.221, line 3 "in" should be deleted.
Page 26, line 3 "signifcant" should be replaced with "significant".
Page 26, line 15 "lysosmes" should be replaced wilh "lysosomes".
Page 29, line 15 "isoprenes" should be replaced with "isoprene".
Page 32, line 1, "mediate" should be replaced with "mediates".
Page 32 line 3, "pinching off form" should be replaced with "pinching off to form".
Paeie 67, paragraph 2, line 8 "cholesterol high diet" should be replaced with "high cholesterol
diet".
Page 68, paragraph 3, line 2 "surcose" should be replaced with "sucrose".
Page 73, paragraph 2, line 5 "and" should be deleted.
Page 120, paragraph 2, line 4 "with have large" should be replaced with "have large".
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Abstract

Abstract

Cardiovascular disease is the number one cause of death in the western world, therefore

understanding the mechanisms which contribute to this disease are vital to its treatment.

Serum low-density lipoproteins (LDL) positively correlate with cardiovascular disease and

are elevated in men and postmenopausal women compared with premenopausal women,

implying that estrogen may play a role in their regulation. Additionally, triglyceride levels

are also elevated in a state of low estrogen, so a role for estrogen in regulating lipid

homeostasis begins to become apparent.

To further investigate this possible role of estrogen, I utilised the aromatase knockout (ArKO)

mouse, an estrogen deficient model. Previously, estrogen deficient males and females have

been shown to be obese with elevated levels of serum cholesterol and high-density lipoprotein

(HDL) and at one year of age males had elevated serum triglycerides levels. Additionally, in

older mice a fatty liver was observed. Therefore the aims of this thesis were to study the

hepatic phenotypes of the estrogen deficient ArKO mouse to gain an understanding of the role

of estrogen in lipid homeostasis and to use high cholesterol diets to further challenge

cholesterol homeostasis.

The work in this thesis shows that the absence of estrogen led to sexually dimorphic

phenotypes of lipid homeostasis in six month old mice. The absence of estrogen lead to a

more dramatic phenotype in male mice when examining triglyceride homeostasis. Estrogen

deficient males present with hepatic steatosis, due to elevated hepatic triglyceride levels. This

may be due, in part, to elevations in the expression of enzymes involved in de novo

lipogenesis, specifically fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACCo). Six

weeks of estradiol treatment beginning at 18 weeks of age, was able to reverse the hepatic

steatosis phenotype in the ArKO males by reducing hepatic triglyceride levels. This also

XI
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reduced FAS expression, indicating reduced fatty acid synthesis. Estrogen deficient females

however only presented with elevations in serum triglycerides at this age and no alteration to

hepatic triglycerides.

Both genders had disrupted cholesterol homeostasis, however it did manifest with different

presentations. Estrogen deficient males presented with elevated hepatic cholesterol levels and

no changes to serum cholesterol levels. Conversely, females presented with decreases in

hepatic cholesterol levels and elevated serum cholesterol and HDL levels. Gene expression

studies were used to examine key enzymes in cholesterol biosynthesis and excretion and in

males there were no changes, possibly indicating that estrogen regulates these proteins

posttranscriptionally. Estrogen deficiency in females led to a decrease in Cyp7a and ACAT2

expression, no other changes were seen.

Surprisingly, cholesterol feeding reversed the previously described obese phenotypes in both

genders. Additionally, it reversed the hepatic steatosis in the males, by reducing hepatic

triglyceride levels. However, despite the gender-specific disruptions to cholesterol

homeostasis, the addition of cholesterol to the diet led to similar effects within genders

regardless of estrogen status.

In conclusion, the work described here shows that estrogen has an important role in lipid

homeostasis in both males and females, however its actions differ between the sexes.
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Chapter One: Introduction and Literature Review

Chapter One: introduction and Literature Review

1.1 Introduction

Cardiovascular disease is the number one cause of death in the western world.

Epidemiological studies show that high serum low-density lipoprotein (LDL) cholesterol

levels positively correlate with cardiovascular disease (Castelli et al. 1977), conversely

elevated high density lipoprotein (HDL) levels are negatively associated (Gordon et al. 1977).

Additionally, there is increasing evidence to suggest that evaluated serum triglyceride levels

also play an important role in predicting cardiovascular health, hence understanding factors

that regulate cholesterol and triglyceride homeostasis are important in the prevention and

treatment of these diseases.

There are many factors that regulate plasma lipid levels, such as production, uptake and

excretion. Epidemiological studies have revealed a role for estrogen in regulating these

metabolic activities. After menopause, the ovaries no longer produce estrogen thereby

severely reducing circulating estrogen levels, to a level similar to adult men (Simpson et al.

2000). In the absence of estrogen there is a shift in body fat distribution from the hip region

to the abdominal region (Tchernof et al. 1998; Tchernof & Poehlman 2000; Simkin-

Silverman & Wing 2000; Sites et al. 2001; Garaulet et al. 2002), without necessarily a change

in body weight and thus postmenopausal women present with fat distribution similar to men,

implying estrogen plays a key role in body fat distribution. An increase in abdominal fat has

been associated with insulin resistance and the 'metabolic syndrome' (Meigs 2002). This

increased abdominal rather than in the peripheral fat is also associated with a higher incidence

of cardiovascular disease (Kannel et al. 1991). In addition, postmenopausal women have

altered circulating cholesterol levels, specifically increased LDL and a decrease in HDL
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levels (Heiss et al. 1980; Kuller et al. 1990). Serum triglyceride levels are also increased in

postmenopausal woman compared with premenopausal women. Interestingly, hormone

replacement therapy (HRT) has been shown to reduce LDL levels and increase HDL levels,

again implying a positive effect of estrogen on cholesterol levels (Erberich et al. 2002). Men

have lower circulating levels of estrogen compared with premenopausal women and they

have comparatively higher serum LDL and triglyceride levels, a features as also observed in

postmenopausal women (Carr 2003). This provides further evidence that estrogen may

positively regulate lipid homeostasis.

Tamoxifen is an estrogen receptor antagonist, which is used in the treatment of breast cancer.

Some patients treated with tamoxifen present with hepatic steatosis, which is generally due to

an accumulation of triglycerides. Subsequent withdrawal of treatment can reverse this side

effect (Murata et al. 2000; Nemoto et al. 2002; Coskun et al. 2002; Ogawa et al. 2003;

Nishino et al. 2003; Murata et al. 2003). Collectively this evidence reveals a role for estrogen

in the regulation of lipid homeostasis.

1.2 Estrogen biosynthesis and signalling

Estrogen is synthesised by the conversion of testosterone to 17p-estradiol and

androstenedione to estrone. Both of these reactions are catalysed by the enzyme aromatase

P450 (Figure 1.1). 17P-estradiol is the more biologically active estrogen, whereas estrone is a

weaker compound. Steroid hormones can act in a paracrine, autocrine and endocrine fashion

and estrogen exerts its effects through signalling through specific receptors, known as

estrogen receptor a (ERa) and estrogen receptor p (ERP).
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Testosterone •+ *•
! 17-ketoreductase

aromatase

Estradiol
17-ketoreductase

Androstenedione

Figure 1.1: The conversion of
aromatase testosterone to estradiol and

androstenedione to estrone. Both
reactions are catalysed by the
enzyme aromatase P450 (diagram
reproduced from
http://www.med.unibs.it/~marche

si/sterhorm.html)

Estrone

1.7,1 Aromatase

1.211 CYP19 gene structure

Human aromatase P450 is encoded by the CYP19 gene which is located on chromosome

15q21.2 (Chen et al 1988). It was cloned and characterised over a decade ago and is a

member of the P450 superfamily of genes (Means et al 1989; Harada et al 1990; Toda et al

1990). CYP19 has a coding region of ten exons where the translation initation codon is

localised in exon II (Figure 1.2). The exons II to X are distributed across approximately 34.3

kb of the genome (Sebastian & Bulun 2001). The untranslated 5' terminus contains at least

five untranslated exons, I.I, 1.3,1.4, If and Ha which are driven by tissue specific promoters

therefore are expressed in a tissue specific fashion (Means et al 1991; Kilgore et al 1992;

Jenkins et al 1993; Toda & Shizuta 1993). This untranslated region is distributed across

approximately 96.5 kb (Sebastian & Bulun 2001). Promoter I.I is located at least 90kb

upstream from the translation start site and drives expression in the placenta (Means et al

1991; Mahendroo et al 1991; Kamat et al 1999). Conversely, expression in the ovary is

driven by promoter II which is located directly upstream of the start codon (Jenkins et al

1993). Promoter 1.4 is the main promoter driving aromatase expression in adipose tissue and
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like promoter 1.1 it is also distal to the start site and is about 20 kb downstream from promoter

1.1 (Mahendroo et al. 1991). Promoter 1.3, which is located about 0.25kb upstream of the

start site has also been shown to drive aromatase expression in adipose tissue (Kamat et al.

2002), The brain specific promoter, If is located approximately 40 kb upstream of the start

codon (Kamat et al. 2002). Transcripts from these tissue specific promoters always produce

the same protein as splicing of these untranslated exon occurs at a common 3'-splice junction,

which is located upstream of the start of translation.

Exon 1.1 Exon I.4 Exon If
Placenta Adipose tissue Brain

+ 4
Exon I la
Goncds

£:
'-'EH

I AATAAA
/ATTAAA

1 . 3 II III
i

f - l l l B i-i-
IV V VI VliVll! K X

K - » * " " * • •»

- 9 6 . 5 kfc> -34 .3 kb

7HEM26?iiE

Figure 1.2: Schematic representation of the human CYP19 gene. Exons II-X are shown in
purple, and together with the corresponding introns comprise a region of 34.3 kb. Exon X
contains the heme binding region (HBR) and two polyadenylation signals present in the 3'-
untranslated region (UTR) (yellow). The 5' UTR (yellow) contains the five untranslated
exons, 1.1,1.4, If, 1.3 and Ha, this region is approximately 96.5 kb. Alternate splicing occurs
at the common start site just upstream of the ATG codon at exon II. Reproduced from (Kamat
et al. 2002).

The different promoters are regulated by different mechanisms, for example promoter n,

which drives aromatase expression in ovaries, is stimulated by follicle-stimulating hormone

(FSH) which is mediated by cyclic adenosine monophophate (cAMP) (Simpson et al 1997b).

Promoter I.I which drives aromatase expression in the placenta is regulated by retinoids (Sun

et al. 1998). Class I cytokines are known to drive aromatase expression in adipose tissue

using promoter 1.4 (Mahendroo et al. 1993; Zhao et al. 1995).
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The cDNA encoding the mouse aromatase was cloned in 1991 (Terashima et al. 1991) and

revealed a 1.5kb open reading frame with a 46bp 5'untranslated region and a 839bp

3'untranslated region, containing a poly (A) tail. This encodes a protein comprised of 503

amino acids, which shares 91 and 81% homology with the rat and human amino acid

sequences, respectively. The mouse aromatase cDNA also contains the heme-binding domain

which is highly conserved across many species and is responsible for the catalytic activity of

the enzyme (Simpson et al. 1997b). In the mouse, aromatase transcripts were detected by

reverse transcriptase-polymerase chain reaction (RT-PCR) in the hypothalamus, ovary, testis

and gonadal fat pad. The transcript was not detectable in the pituitary, skin, lung, liver or

heart (Boon et al. 1999).

1.212 Estrogen Biosynthesis

As mentioned earlier, estrogen biosynthesis is catalysed by the enzyme aromatase P450. This

enzyme binds to C19 steroids and catalyses a series of reactions, comprising two

hydroxylation steps followed by an aromatisation step, during which the phenolic A ring

characteristic of estrogens, is formed (Figure 1.3 reproduced from Robertson 2001). A

flavoprotein, niocotinamide adenine dinuleotide phosphate (reduced) (NADPH)-cytochrome

P450 reductase, is associated with aromatase (Simmons et al. 1985), regulating the transfer of

reducing equivalents from NADPH to the cytochrome P450 (Simpson et al. 1997b). The

reaction takes place in the endoplasmic reticulum of cells, where three moles of oxygen and

three moles of NADPH are used for every mole of Q9 steroid metabolised (Thompson, Jr. &

Siiteri 1974). There are two hydroxylation reactions occurring at the C19 methyl group. The

first reaction leads to the formation of 19-hydroxy-androstenedione and the second

hydroxylation results in the formation of 19-oxo androstenedione. The third reaction is a

peroxidative attack, where the C-19-oxo group removes a proton from the C\ position,
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Figure 13 Estrogen Biosynthesis

The final step in the biosynthesis of estrogen is the conversion of androgens, which is
catalysed by aromatase P450. There are two hydroxylation reactions. The first step
to estrogens leads to the formation of 19-hydroxy-androstenedione and the second
hydroxylation results in the formation of 19-oxo androstenedione. The aromatisation
step leads to the deformylation of the Cl 9 and aromatisation of the A ring, leading to
the formation of estrogen. (Reproduced from Robertson, 2001).
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leading to the deformylation of the C\9 and the aromatisation of the A ring. Thus, estradiol is

synthesised from testosterone while estrone is derived from androstenedione (Simpson et al.

1997b).

1.22 Estrogen receptors

Like all steroid hormones, estrogen exerts its effects through its specific receptors, ERa and

ERp. The human ER was cloned in 1986 from the human breast cancer cell line MCF-7

(Green et al. 1986) and the rodent ER was identified from the rat uterus in 1966 (Toft &

Gorski 1966). In the mid nineties a second ER was identified in the prostate and ovary of the

rat (Kuiper et al. 1996), in peripheral blood leukoctyes from humans (Mosselman et al. 1996)

and from mouse ovaries (Tremblay et al 1997). It was named ERP, thereby renaming the

first, ERa. Tissue distribution of the ERs in mouse revealed that transcripts of ERa have a

wide distribution, including the central nervous system, breast, liver, bone, cardiovascular

system, gastrointestinal tract and the urogenital tract (Gustafsson 1999), whereas ERJ3 is

found mainly in the ovary, hypothalamus, lung and in the male reproductive tract (Couse &

Korach 1999). Within cells ERa has been localised to the nucleus (Greene et al. 1980;

Greene et al. 1984).

1.221 Estrogen Receptor Structure and Mechanisms of Action

The two ERs are not isoforms of each other, the genes are located on separate chromosomes

and encode distinct proteins. Transcript from the mouse ERa result in a gene of nine exons,

which is approximately 6.3kb, encoding a protein of 599 amino acids with a in molecular

weight of approximately 66kDa (White et al. 1987). The ER(3 protein is composed of 485
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amino acids and has an estimated molecular weight of 54kDa (Kuiper et al. 1996; Tremblay

et al. 1997; Pettersson et al. 1997).

Like other members of the superfamily of steroid/thyroid hormone nuclear receptors the

ERa and ER|3 proteins have six functional domains, labelled A-F with differing degrees of

homology between the domains (Figure 1.4, reproduced from Gustafsson 1999). The N-

terminal domain (NHD) consists of the A/B region, which contains the activation function 1

(AF1) domain, it has only 17% homology between ERa and ERp. The DNA binding domain

(DBD), C region, has the highest homology of between ERa and ERp1 97%. The hinge

region, D domain, has little homology (30%) and contains nuclear localisation signals. The

ligand binding domain (LBD), E region, has 59% homology. The C-terminus has the E/F

region that contains the activation function (AF2) domain and both of these regions are

involved in transactivation (White & Parker 1998).

185 251 355 549 595

NHD >BG Hinge LBD F

I 45 148 214 304 500 530

16 97 30 59 18 hERp

Figure 1.4: Structure of
human ERs. The separate
domains are identified in the
ERa diagram. NHJ) refers t0

the N-teiminal domain, DBD
refers to DNA binding
domain, is responsible for
binding at estrogen response
elements (ERE) on the
chromosome. LBD refers to
ligand binding domain, The

numbers (%) in the ERp diagram refer to sequence identity (Gustafsson 1999).

In the absence of estrogen the estrogen receptor is a monomer and is associated with heat

shock proteins and other proteins (Smith 1993; Smith & Toft 1993). Once estrogen diffuses

into the cell and binds to the ligand binding domain of the receptor this complex binds to the

DNA, causing a conformational change in the estrogen receptor, leading to the dissociation of
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the bound proteins (Smith 1993). The ER can then bind to the estrogen response element

(ERE) in the DNA, which consists of two inverted repeats of A/GGGTCA separated by three

nucleotides (White & Parker 1998). The complex can then interact with basal transcription

factors and co-regulator proteins, which then lead to the transcription of target genes (Tsai &

O'Maltey 1994; Weigel & Zhang 199S; White & Parker 1998). Both the ERs are able to act

as homo and heterodimers (Pettersson et al. 1997; Luconi et al. 2002) (Figure 1.5).

1.222 Nongenomic actions of estrogen

Estrogen actions take effect over a time frame ranging from seconds to hours. This difference

led to the hypothesis of nongenomic actions of estrogen (Luconi et al. 2002), in addition to

the already characterised classical genomic pathway of signalling through ERa and ERp. The

nongenomic actions have more rapid effects and they appear to be initiated at the plasma

membrane level, but the mechanisms are still controversial. One hypothesis was established

in MCF-7 cells, whereby estradiol was reported to stimulate proliferation in mammary cancer

through the direct activation of Src at the plasma membrane. Membrane ER is able to form a

complex with Src in the inner plasma membrane, leading to the activation of Src kinase,

which through Ras/ERK, stimulates ERK, leading to cell proliferation (Luconi et al. 2002).

Another mechanism has been shown where G-protein coupled membrane ER has also been

characterised in murine macrophages and stimulation may be related to an increased calcium

flux (Benten et al. 2001). Alternatively, estrogen may mediate effects through activation of

associated endothelial nitric oxide synthase (eNOS). A subpopulation of ERa has been

localised to the plasma membrane caveolae in endothelial cells. Plasma membranes from

COS-7 cells expressing eNOS and ERa have displayed ER-mediated eNOS stimulation

(Chambliss et al. 2000).



Figure 1.5: A schematic representation of estrogen actions.

Estrogen (ligand) binds to the estrogen receptor and this complex then enters the nucleus

and mediates transcription of target genes via the estrogen response element (ERE).

Figure kindly provided by Dr. Fraser Rogerson, Prince Henry's Institute of Medical

Research.
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1.223 Ligand-lndependent Actions of Estrogen Receptors

Steroid receptors can be activated in the absence of ligand due to modulation by

kinase/phosphatase activity. Specifically, the ERs are responsive to growth factors (Weigel &

Zhang 1998). Evidence both in vitro and in vivo shows that epidermal growth factor (EGF)

can activate ERs and this action has been shown to be inhibited by the antiestrogen, N-(n-

butyl)-l l-[3,17p-dihydroxyestra-l,3,5(10)-trien-7a-yl]N-methylundecanamide (ICI-164384)

(Weigel & Zhang 1998). In addition to EGFs, other growth factors have also been shown to

stimulate ERs in vitro, these include transforming growth factor a (TGFa), insulin-like

growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2) (Newton et al. 1994).

Dopamine has also been shown to activate ERs in transfected cells and this could be inhibited

by ICI-164384 (Smith et al. 1993).

1.23 Mutations in arornatase and ER in humans

Mutations in either the CYP19 gene or the ERa gene have been identified in humans. Both

conditions result in estrogen deficiency. To date, 12 patients with mutations in the CYP19

gene have been reported, six females (Harada et al. 1992; Ito et al. 1993; Morishima et al.

1995; Mullis et al. 1997; Ludwig et al. 1998) and six males (Morishima et al. 1995; Carani et

al. 1997; Deladoey et al 1999; Herrmann et al. 2002; Rochira et al. 2002a; Maffei et al.

2003; Pura et al. 2003) and one ERa deficient male (Smith et al. 1994). Estrogen deficiency

in females leads to a failure of secondary sexual characteristics developing at puberty and

estrogen replacement is commenced. Because of this, to date, no adult estrogen deficient

females have been characterised. At puberty however, there is a phenotype present in

estrogen deficient females due to estrogen deficiency. This includes hypergonadotrophism,
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hypogonadism, and presentation with polycystic ovaries. Additionally estrogen deficient

females have delayed skeletal maturation. No disruption to lipid homeostasis has been

reported, possibly due to the estrogen replacement Men with aromatase mutations undergo

normal puberty, hence estrogen deficient men generally mature with undetected symptoms

until adulthood. All estrogen deficient men present with many abnormalities due to estrogen

insufficiency such as delayed bone age and tall stature due to a failure of epipyseal fusion

(Rochira et al. 2002b). A reproductive phenotype has been observed in one patient who

presented with oligozoospermia, however his brother who did not have a dusruption to the

CYP19 gene was also azoospermia and therefore this condition may not related to estrogen

deficiency (Carani et al. 1997). For the purposes of this thesis the focus will be on the

disruption to lipid metabolism. For further information refer to (Rochira et al. 2002b).

The mutations in the CYP19 gene of the male aromatase deficient patients have been found in

different exons: exon III, exon V, exon VI, two in exon IX and exon X. All mutations result

in the abolition of aromatase activity. Due to the absence of estrogen, these men also present

with alterations in gonadotropins and androgen levels although the changes are not consistent.

One patient presented with elevated serum FSH levels, while serum LH and testosterone were

within the normal range (Maffei et al. 2003), whereas another patient presented with elevated

serum FSH, LH and testosterone levels (Morishima et al. 1995). Two of the patients

presented with high serum FSH and testosterone, whereas their serum LH levels were normal.

The ERa deficient patient also has disrupted hormone levels, however different to those of

the aromatase deficient patients. He displayed elevations in serum estradiol and estrone, as

well as FSH and LH, whereas serum testosterone concentrations were normal (Smith et al.

1994).

10
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All male adult estrogen deficient patients present with lipid abnormalities, but there are some

differences in the details. The adult aromatase deficient patients have impaired lipid

metabolism as indicated by elevated triglycerides, LDL and total cholesterol, whilst HDL

levels are low (Morishima et al. 1995; Carani et al. 1997; Bilezikian et al. 1998; Herrmann et

al. 2002; Rochira et al. 2002a; Rochira et al. 2002b; Maffei et al. 2003; Pura et al 2003).

Conversely, the ERa deficient patient presented with lowered levels of LDL, HDL and total

cholesterol and the triglyceride levels were normal (Smith et al. 1994). One of the aromatase

deficient patients was shown to present with hepatic steatosis and diabetes type 2 however

these conditions were reversed by estradiol replacement (Maffei et al. 2003). The ERa

deficient patient and two of the aromatase deficient patients were also shown to present with

hyperinsulinemia (Rochira et al. 2002a). These patients clearly show that estrogen is required

for a normal lipid profile, however the mechanisms are yet to be fully understood.

1.24 ER Mouse Knockout Models

To further understand the physiological role of estrogen, mouse models of estrogen deficiency

have been generated. Knockouts of the two estrogen receptors, aERKO and PERKO; a cross

of these resulting in a double knockout, a[3ERKO and three separate aromatase knockout

models, the ArKO, have been genetically engineered.

1.241 Estrogen Receptor alpha knockout mouse, (aERKO)

In 1993 an estrogen receptor null mouse was generated, to the only known estrogen receptor

at the time, now known as ERa. A construct containing the neomycin resistance (Neo) and

thymidine kinase (TK) sequences was inserted into exon 2 of the ER gene, thereby disrupting

the reading frame. Both male and female offspring survived to adulthood and had normal

external phenotypes (Lubahn et al. 1993). Closer analysis revealed that the female mice were

11
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infertile, having hypoplastic uteri and ovaries which lack corpora lutea, indicating they did

not ovulate. Male mice have low testis weight and although sperm was present in their testis

and the epididymus, they had a low sperm count. Serum estradiol and LH levels were

significantly elevated in knockout females, no other changes were seen in serum FSH and

testosterone levels. No changes in serum hormone levels were seen in the aERKO males

(Couse & Korach 1999). It was later observed that as the aERKO aged they developed

obesity (Heine et al. 2000; Ohlsson et al. 2000). This was associated with increased adipose

tissue in the epididymal, perirenal and inguinal regions. Increases in adipocyte tissue were

due to enlarged adipocytes and increased numbers (Heine et al. 2000), additionally, there

were elevated serum leptin levels (Ohlsson et al. 2000). Hyperphagia was not the cause of

the obesity, as food intake in the aERKOs was equal to wildtype (WT) controls, however

physical energy expenditure may have impacted on the obese phenotype as physical activity

was decreased in the aERKOs. A reduction in estrogen signalling also led to impairments in

glucose metabolism as indicated by insulin resistance and reduced glucose tolerance (Heine et

al. 2000). Additionally, there were disruptions to serum cholesterol levels, which were

elevated compared to controls and smaller LDL particles (Ohlsson et al. 2000). This

knockout model demonstrates that estrogen is important in the regulation of obesity and lipid

homeostasis, particularly when signalling through ERa.

1.242 Estrogen Receptor beta knockout mouse (pERKO)

A second estrogen receptor was cloned in 1996 (Kuiper et al. 1996), therefore to understand

the functions of this receptor, an ERf} knockout model was generated. Exon 3 of the ERp

gene was disrupted by inserting a neomycin-resistant gene (Neo) in the reverse orientation

(Krege et al. 1998). The phenotype of the pERKO differed from the aERKOs, namely both

12
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males and females were fertile although the female mice produced fewer and smaller litters,

most likely due to atresia of inore immature follicles and fewer corpora lutea. Histological

examination of the urogenital tract of 3-4 mcf-th old male mice revealed no obvious

abnormalities (Krege et al. 1998). In addition there were no changes in serum hormone levels

(Couse et al. 2003). Unlike the aERKO the PERKC • ~X\] not display an obese phenotype nor

did it have any alterations in serum cholesterol profile (Krege et al. 1998). This indicated that

the ERa is the more important receptor in relation to regulation of obesity and lipid

homeostasis by estrogens.

1.243 Double Estrogen Receptor Knockout Mouse (apERKO)

Crossing of pERKO and aERKO mice generated the apERKO mice. Advlt apERKO

female mice exhibit ovarian follicles which resemble seminiferous tubules from the testis,

including Sertoli-like cells. Hence loss of both receptors leads to an ovarian phenotype that is

distinct from the individual ERKOs (Couse et al. 1999). The male apERKO presented with a

similar phenotype to the aERKO males (Dupont et al. 2000). Serum hormone levels revealed

elevations in LH and testosterone (Couse et al. 2003). Additionally the apERKO displayed

the same obese phenotype as the aERKO (Krege et al. 1998), again indicating a role for

estrogen in regulating factors relating to obesity and lipid homeostasis which is mediated

through the ERa and not the ERp.

1.244 Limitations to the Estrogen Receptor Knockout Models

A major limitation of the ER knockout models is that the phenotype cannot be reversed. An

estrogen deficient model, that lacks circulating estrogens but still has intact ERs, is able to

13
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have estrogen replaced in an attempt to reverse any phentfypes, making this a more suitable

model to study the roles estrogen in vivo.

A secondary problem recently identified in the ER knockout models, is some residual activity

of the ERa. The technology used to generate the knockout models was insertion of the neo

gene. This still enabled alternative splicing of the ER mRNA and a 61KDa ERa protein

variant has been found in the aERKO and its activity has been shown to be as high as 75% of

WT ERa (Kos et al. 2002a; Kos et al. 2002b). As both the aERKO and {3ERKO were

generated using the same technolo.iv, it is possible that the PERKO also has residual ERfS

activity. To address this problem Dupont and colleagues have generated compound

knockouts of both receptor subtypes and a double knockout mouse (Dupont et al. 2000). No

obese phenotype has been described as yet for these models.

1.25 The Aromatase Knockout (ArKO) Mouse Model

1.251 Generation of the ArKO Mouse

As stipulated above, a mouse model totally devoid of circulating estrogens would allow the

study of the physiological effects of estrogen in both male and female mice. Additionally, in

such a model, esiiogen could be replaced to reverse the effects of the absence of estrogen.

In 1998 (Fisher et al 1998) generated an ArKO, which is totally devoid of endogenous

estrogens. Exon IX of the gene was the chosen site for disruption, as the coding sequence

between EcoRV (bp 1047) and Xhol (bp 1210) is highly conserved in all species so far

examined (Simpson et al. 1997a); The knockout mouse was generated with the insertion of

the target neomycin cassette in exon IX of the Cypl9, deleting 163bp of this exon, thus

resulting in a truncated protein (Figure 1.6, reproduced from Fisher et al. 1998). Aromatase

activity was assessed from ovaries 12 week old ArKO and WT using the tritiated water

14
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Figure 1.6: Schematic representation of a segment of the mouse Cypl9 gene.
A Represents WT fragment of 7.4kb. B Represents targeting vector in exon XI and C
Represents disrupted exon IX, 3.0kb fragment. Neo, refers to the neomycin resistant cassette.
TKl refers to the two herpes simplex virus thymidine kinase genes type 1. Roman numbers
refer to exon number.
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release assay (Ackerman et al. 1981). The ovaries from the ArKO showed no activity,

therefore the disruption of the arornatase gene was successful (Fisher et al. 1998). The ArKO

mouse thereby provides us with an estrogen deficient mouse model ideal to study the actions

of estrogen in vivo in both males and females.

Two other groups have also generated aromatase deficient mice (Honda et al. 1998; Nemoto

et al. 2000). Nemoto and colleges also generated their model by replacing 87 base pairs of

exon IX with a neo gene, which was dsrived from pMCl-neo. This model also lacks a

function aromatase enzyme and hence has no circulating estrogens (Nemoto et al. 2000).

In 1998, another group also generated an aromatase deficient mouse but they did by

disrupting exons I and II of the Cypl9 gene (Honda et al. 1998). Briefly, a Sphl fragment

(2.9kb) which included exons I and II as well as the proximal promoter region was deleted by

the insertion of neo. This disruption also led a nonfunctional aromatase enzyme, hence an

estrogen deficient model was generated.

This section of the literature review will focus on the phenotypes of the estrogen deficient

mice. The Fisher model, our model, has been the most extensively studied, however some

studies have been performed in the other models. F<anale ArKO mice presented with serum

testosterone levels 10 times that of WTs (Fisher et al. 1998; Britt et al. 2000). Similarly

ArKO male mice had elevated levels, although variable (Fishei et al. 1998; Robertson et al.

1999). Additionally, gonadotrophin levels were also altered in these mice. While estrogen

deficient females had elevated LH and FSH levels compared with WT (Fisher et al. 1998;

Britt et al. 2000), estrogen deficient males exhibited elevated LH levels (Fisher et al. 1998;

Robertson et al. 1999) but unchanged FSH levels (Robertson et al. 1999). Examination of

these mice revealed that estrogen deficiency leads to a block in folliculogenesis and an

15
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atrophic uterus (Britt et al. 2000; Toda et al. 2001c). In the ovaries of estrogen deficient

female mice there was also the development of sertoli-like cells (Britt et al. 2002), normally

present only in male testis. A disruption to reproduction in the males was also observed with a

block in spermatogenesis at the round spermatid stage, seen as early as 18 weeks in some

ArKO mice, however by one year of age all ArKO mice presented with this phenotype

(Robertson et al. 1999). In addition to disrupted spermatogenesis, lack of sexual behaviour

has also been observed in the ArKO male mice (Robertson et al. 2001; Toda et al. 2001a).

This is restored in 90% of ArKO mice following estrogen replacement from birth (Toda et al.

2001a). Hyperplasia has also been observed in the prostate (McPherson et al. 2001).

Interestingly, sexually dimorphic phenotypes have been observed in various tissues of the

estrogen deficient mice. Estrogen deficient females have increased bone turnover, whereas

the males have decreased osteoblastic and osteoclastic surfaces, revealing sexual dimorphism

in bone formation (Oz et al. 2000). Additionally, in the brain, while apoptosis in ArKO male

mice occurs in the arcuat•* nucleus (Arc) and medial preoptic area (MOP) regions of the

hypothalamus and pons regions (Hill et al. 2003), in the female ArKO mice cell death has

been observed in the frontal cortex of the brain (Boon et al. 2002). Disruption to metabolic

processes has also been characterised in these models and will be describe! in greater detail in

the next Section, 1.252. For the purposes of this thesis the focus will be on the disruptions to

the metabolic phenotype.

1.252 The Metabolic Phenotype

Metabolic phenotypes have been described in two of the ArKO models (Fisher et al. 1998;

Nemoto et al. 2000). Estrogen deficiency in both males and females results in age

progressive onset of obesity (Jones et al. 2000; Takeda et al. 2003). From as early as three

months of age, both gonadal and infrarenal fat depots were significantly elevated in a state of
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estrogen deficiency most likely due to increased adipocyte volume. Estrogsn (E2)

replacement was able to reverse this (Jones et al. 2000; Misso et al. 2003). Increases m fat

pad masses correlated with increases in circulating leptin levels (Jones et al. 2000) as well as

elevated leptin transcripts, again this could be reversed with E2 replacement (Misso et al.

2003). In addition to increased adiposity, there was a significant decrease in lean body mass.

This may be attributed in part to a decrease in physical activity, which was seen in older

female ArKO mice. A similar trend was observed in younger female ArKO mice, however it

was not statically significant (Jones et al. 2000). Hyperphagia was not the cause of obesity, as

a food intake study revealed equal feeding between genotypes in both models (Jones et al.

2000; Takeda et al. 2003). Another factor leading to the increase in adiposity may be an

elevation in lipoprotein lipase (LPL) expression (Misso et al. 2003). This may be increasing

the hydrolysis of serum triglycerides releasing free fatty acids (FFA) and sn2-

monoglycerides, which are taken up by the adipose tissue (Fredrikson & Belfrage 1983).

Estrogen deficiency did not appear to affect hormone sensitive lipase (HSL) expression

(Misso et al. 2003), which is responsible for catalysing hydrolysis of intracellular

triglycerides for release of FFA (Lewis et al. 2002). However, HSL is regulated primarily at

the level of the catalytic activity via a cAMP-dependent mechanism (Okuda et al. 1994;

Morimoto et al. 2001), therefore there may be changes occurring posttranscriptionally.

Additionally, P-oxidation rates were unchanged in gonadal fat depots (Misso et al. 2003). As

well as disruptions to lipid metabolism, glucose oxidation rates were decreased by 59% in

estrogen deficient females (Jones et al. 2000). At six months of age estrogen deficiency led to

an elevation in fasting blood glucose levels and at 18 weeks the animals had severe

impairment in glucose tolerance, which correlated with a reduced response to insulin (Takeda

et al. 2003). E2 replacement from birth improved glucose tolerance and insulin sensitivity, as
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did E2 replacement from 24 weeks for a 12 week period (Takeda et al. 2003), indicating that

estrogen mediation of glucose homeostasis is not programmed early in rodents.

Serum lipid profiles were also examined and estrogen deficiency in one year old mice led to

elevations in serum cholesterol and HDL levels in both ->exes, however only males had

elevated serum trigryceride levels (Jones et al. 2000). Gender differences were also observed

at 3-4 months in the estrogen-replete mice, namely females had significantly lower

cholesterol ievels compared with males. A similar result was observed comparing estrogen

deficient females and males although it did not reach significance. Alsc at this age, females

had significantly lower levels of triglycerides compared to males, whereas the reverse was

seen for HDLs, namely females had elevated levels compared with males (Jones et al. 2000).

These results clearly show that estrogen is an important player in regulating lipid homeostasis

in males and females.

Estrogen deficiency also led to hepatic steatosis, fatty liver, in older mice (Jones et al. 2000;

Nemoto et al. 2000). Studies performed in the third ArKO model (Nemoto et al. 2000) reveal

by Northern blot analysis revealed that there were decreases in very long chain fatty acyl-

CoA synthetase (VLACS) and peroxisomal acyl-CoA oxidase (AOX), enzymes that are

involved in the first two steps of peroxisomal P-oxidation. Additionally, medium-chain acyl-

CoA dehydrogenase (MCAD), the rate-limiting step in the mitochondrial pathway of medium

chain oxidation was also decreased, indicating both the peroxisomal and mitochondrial

pathways were disrupted (Nemoto et al. 2000). This impairment was also seen for fatty acid

P-oxidation activity in both pathways. Using tetracosanoic acid (C24:0) as a substrate to

measure peroxisomal activity and palmitic acid (C16:0) and lauric acid (C12:0) to measure

mitochondrial activity, all were reduced in the absence of estrogen (Nemoto et al. 2000). The

ArKO mice were treated with E2from birth until six months of age and this was able to
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reverse the hepatic steatosis seen in their livers and increased fatty acid p-oxidation at the

level of transcripts and activity (Nemoto et al. 2000). Also serum very low-density

lipoprotein (VLDL) was measured and was the same regardless of estrogen status (Toda et al.

2001b), indicating that export of triglycerides out of the liver is similar in both genotypes,

hence probably not a contributing factor in the development of hepatic steatosis. This data

further strengthens the hypothesis that estrogen plays an important role in lipid and

carbohydrate homeostasis.

Peroxisome proliferator-activated receptor a (PPARa) is a member of the nuclear receptor

superfamily of transcription factors and is believed to be an important regulator of fatty acid

oxidation (Djouadi et al. 1998). It enhances transcription of target genes by binding to a

peroxisomal proliferator response element (PPRE) on target sequences. The ability of

PPARa to bind to this element was not effected by estrogen status (Nemoto et al. 2000),

indicating this is not the mechanism by which estrogen regulates fatty acid (FA) metabolism.

The second ArKO mouse model (Honda c.t al. 1998) has yet not reported a metabolic

phenotype, but they have reported a disruption to hepatic expression of certain cytochrome

P450s. Specifically, the researchers have examined the members of the Cypl-3 families of

enzymes which are known to metabolise a variety of compounds to inactive products

(Yamada et al. 2002). The authors found that the absence of estrogen led to a decrease in

ryp3all protein expression in both males and females. Additionally, they found that the

female-specific Cyp3a41 was undetectable in the absence of estrogen and this could not be

reversed by E2 administration to adults, indicating neonatal programming or infantile

exposure to estrogen. Also expression of the femaie-specific Cyp2d9 was absent in estrogen

deficient mice. Expression of Cyp3a41 on the other hand, was restored in some mice with E2
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administration (Yamada et al. 2002). These results indicate an important role for estrogen in

regulating specific expression of P450s in the rodent liver.

1.3 Fatty Acids and triglycerides

The liver has two major sources of fatty acids, de novo lipogenesis and fatty acid uptake.

Within the liver, fatty acids and triglycerides have three major fates: hepatic storage,

oxidation and secretion as VLDL. This section of the literature review will focus on these

pathways and their regulation.

1.31 de novo Lipogenesis

De novo synthesis of fatty acids or de novo lipogenesis (DNL) occurs within the cytoplasm of

cells and the precursor for this process is acetyl CoA. Acetyl CoA is the product of fatty acid

oxidation and glycolysis (described in Section 1.32) and these processes mainly occur in the

mitochondria of cells. Therefore in order for DNL to occur, acetyl-CoA needs to be

transported out of the mitochondria and into the cytosol. To be transported firstly, acetyl-

CoA must be converted to citrate by citrate synthase and transported via the citrate

transporter. Once in the cytoplasm, cleavage occurs, catalysed by adenosine triphophate

(ATP)-.citrate lyase, producing acetyl CoA and oxaloacetate. During this process citrate also

activates acetyl-CoA carboxylase a (ACCa) (Lane et al. 1974; Volpe & Vagelos 1976),

which is the first enzyme in DNL and produces malonyl CoA. In addition to malonyl CoA's

role in DNL, malonyl CoA also acts to inhibit mitochondrial p-oxidation by inhibiting

carnitine palmitoyl transferase I (CTPI) (McGarry et al. 1977).

From this point, the overall production of fatty acids occurs under the regulation of fatty acid

synthase (FAS), which is a multifunctional complex made up of six enzymes (Kumar et al.
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1970; Bratcher & Hsu 1976). The centre of the complex is acyl carrier protein (ACP), which

was first identified from E. coli in 1988 (Holak et al. 1988). FAS contains a prosthetic group,

known as 4'-phosphopantotheine which is covalently linked to the ACP and its SH group is

esterified to the malonyl group during fatty acid synthesis. All of the enzymes in the FAS

complex participate in the elongation reaction where fatty acid production occurs from one

acetyl-CoA and seven malonyl-CoA and through a series of reactions consisting of a

condensation reaction followed by a reduction, then a dehydration step and finally another

reduction reaction. These reduction reactions employ NADPH as the source of reducing

equivalent. This process repeats itself until the formation of the 16 carbon palmitate.

This reaction can be summarised as:

Acetyl-CoA + 7 malonyl-CoA +14NADPH +14H+->

palmitate + 8CoA +6H2O +7ADP +7Pj +14NADP"1

(Further detail on this process is reviewed in (Smith et al. 2003).)

1.32 Fatty acid p-oxidation

The process of p-oxidation is the sequential removal of two carbons from FA eventually

ending with acetyl-CoA, the reverse of DNL. Electrons which are generated in the process

pass through the respiratory chain, which drives ATP synthesis. Additionally, acetyl-CoA is

completely oxidised to CO2 in the citric acid cycle, thus conserving energy. P-oxidation
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occurs in primarily the mitochondria however it also occurs in the peroxisomes. This section

will provide a brief overview of the two pathways of p-oxidation, the mitochondrial and the

peroxisomal (Figure 1.7, reproduced from Nelson & Cox 2000).

1.321 Mitochondrial pathway

Most FA P-oxidation occurs in the mitochondria. FA delivery is via different mechanisms

depending on their length. Delivery of short chain (SCFA) (C4 to C6) and medium chain

(MCFA) (C8 to C12) fatty acids occurs by simple diffusion across the mitochondrial

membrane into the mitochondrial matrix, where they are esterified. Esterified LCFA are

transported across the plasma membrane by the carnitine cycle shuttle mechanism. Firstly,

LCFA esters must be coupled to carnitine; this reaction is catalysed by carnitine

palmitoyltransferase I (CPTI) and once inside the inner mitochondrial matrix, the acyl-

carnitine is then converted back to LCFA e.-;'.vs and this reaction is catalysed by carnitine

palmitoyltransferase II (CPT2) (Sim et al ;:X>2). From this point, SCFA-CoA, MCFA-CoA

and LCFA-CoA, are able to undergo the re. . i .ed four-step process of p-oxidation.

As with the building of fatty acids, by two carbons at a time (described in Section 1.31), P-

oxidation involves removal of two carbons at a time, forming acetyl-CoA. This removal

begins at the carboxyl end of the fatty acid chain, with four enzymes participating in this

process. Firstly, a flavoprotein-linked dehydrogenation step begins, which is catalysed by

acyl-CoA dehydrogenase (ACD), secondly a dehydration step follows, catalysed by enoyl-

CoA hydratase (ECH), thirdly is a hydrogenase step, linking NAD+, p-hydroxyacyl-CoA

dehydrogenase catalyses this reaction. The final reaction in this process is the thiolytic

cleavage by acyl-CoA acetyltransferase (thiolase) resulting in the acetyl-CoA plus acyl-CoA

(Sim et al. 2002). The equation for one cycle beginning with palmitoyl-CoA is:
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Figure 1.7: Comparison of the mitochondrial and peroxisomal fatty acid P-
oxidation
The first dehydrogenation step differs, in the mitochondrial pathway electrons generated
move into the respiratory chain and in the peroxisomal pathway there is the production
of H2O2. Secondly, acetyl-CoA produced in the peroxisomes does not directly enter the
citric acid cycle, as it does in the mitochondrial pathway.
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Palmitoyl-CoA + CoA + FAD + NAD+ + H2O

acyl-CoA + acetyl-CoA + FADH2 + NADH + H+

The second stage in fatty acid fj-oxidation involves the newly formed acetyl-CcA entering the

citric acid cycle and being oxidised to CO2. Finally step is the electrons generated via stages

one and two are then able to eoter the respiratory chain (electron transfer) and thereby

producing ATP from oxidative phosphorylation.

1.322 Peroxisomal pathway

In addition to mitochondrial fj-oxidation, the peroxisomes are also V'Ae to perform this

process but to a lesser extent. This process differs somewhat from the mitochondrial

pathway. Peroxisomes are cell organelles and their primary role is in hydrogen peroxide

metabolism (De Duve & Baudhuin 1966). As in the mitochondrial pathway, before P-

oxidation can occur in the peroxisomal pathway, FA must undergo esterification. LCFA are

converted to the acyl-CoA derivative by long-chain acyl-CoA synthetase (Shindo &

Hashimoto 1978; Mannaerts et al. 1982) and VLCFA are converted by very long-chain fatty

acid synthetase (Singh & Poulos 1988; La?;o et al. 1990). The long-chain acyl-CoA

synthetases can be found in both the mitochondrial and peroxisomal compartments but only

he peroxisomes have the very long-chain acyl-CoA synthetase (Singh & Poulos 1988).

Another difference between the mitochondrial and peroxisomal pathways is that the LCFA do

not require the carnitine transport system for export into the peroxisome (Thomas et al. 1980;

Hertz & Bar-Tana 1992).
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Like the mitochondria! pathway there are four main reactions in the process of P-oxidation

and this occurs in the peroxisomal matrix. Firstly, is the dehydrogenation step, which differs

from the mitochondrialpatbway whereby instead of electrons moving into the respiratory

chain H2O2 is produced. The second reaction is the hydration reaction, followed by the

formation of 3-ketoacyl-CoA and the last step is the thiolytic cleavage leaving the FA two

carbons shorter, by the release of acetyl-CoA and an acyl-CoA. This process repeats itself

(Lazarow 1978; Reddy & Mannaerts 1994). Also the acetyl-CoA produced in the

peroxisomes does not directly enter the citric acid cycle due to the lack cf enzymes present in

this structure and therefore this acetyl-CoA may move into the mitochondria to be further

oxidised.

1.36 Regulation of fatty ac/r? pathways

Due to the serious health consequences of over production and/or under clearance of lipids

from the body, factors that regulate fatty acids are highly important. Several transcription

factors have been implicated in the regulation of fatty acids. These include the sterol

regulatory element binding proteins (SREBP), liver X receptor (LXR) and peroxisomal

proliferator-aclivated receptors (PPAR). SREBPs have been shown to regulate genes

involved in lipogenesis by regulating FAS, ACCa, glycerol-3-phosphate acyltransferase and

LPL (Schoonjans et al. 2000). The FAS promoter region contains a liver X receptor-response

element (LXR-RE). Additionally, the expression of FAS was altered in LXRa deficient

mice, indicating that LXRa may regulate fatty acid synthesis, but the exact mechanisms are

yet to be elucidated (Schocnjans et al. 2000).

PPAR have also been implicated in the regulation of FA. There are three subtypes,

designated PPARa, PPARy and PPAR8/0 and they have different tissue distribution and their
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vegulation of fatty acids differs in these tissues. Structurally the three subtypes are similar,

containing a central DNA-binding domain, which has two zinc-fingers and a ligand-binding

domain present in the C-Terminus. Many studies have shown that FA are endogenous

ligands for the PPARs (Forman et al. 1995; Kliewer et al. 1995; Krey et al. 1997; Kliewer et

al. 1997; Forman et al. 1997a). PPARa is the subtype present in the liver, heart, muscle and

kidney. Its role is in the regulation of FA catabolism (Dreyer et al. 1993; Peters et al. 1997).

Specifically^ PPARa has been shown to regulate the gene encoding acyl-CoA oxidase (ACO),

which catalyzes the rate-limiting step in the peroxisomal |5-oxidation of fatty acids. Within

the promoter of the ACO gene is a peroxisome proliferator response element (PPRE), which

is where PPARs bind (Dreyer et al. 1993). Additionally, PPARa also regulates FA binding

proteins (FATP) and co-oxidation (Lee et al. 2003), as well as down regulating apolipoprotein

C-II, which is involved in the inhibition of triglyceride hydrolysis by LPL (described in

Section 1.421) (Lee et al. 2003). PPARy is expressed mainly in adipocytes and macrophages,

regulating adipocyte differentiation, lipid storage and glucose homeostasis (Barak et al. 1999;

Kubota et al. 1999; Rosen et al. 1999). PPARS is ubiquitously expressed and has been

suggested to play a role in lipid homeostasis as that of a sensor for triglycerides present in

VLDL. The activation of PPARS by VLDL has been shown to induce transcription of

adipocyte differentiated regulating protein (ADRP) (Chawla et al. 2003). Therefore the

PPARs play an important role in regulating FA.

1.37 Fatty Acid Transporters

There are two known mechanisms of FA transport, passive diffusion and protein-facilitated

transport. Passive diffusion involves the flip-flop method for movement of FA through the

lipid bilaycr, but due to low rates of diffusion the method would not allow enough FA to
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across the membrane for biological function be performed (Berk & Stump 1999; Kleinfeld

2000). Therefore the second process known as protein-facilitated transfer must be highly

signifcant.

A family of proteins known as fatty acid transporter proteins (FATPs) has recently been

discovered and they participate in the transfer of LCFA (Schaffer & Lodish 1994). Six FATPs

have been identified, designated FATP1-6 (Stahl et al. 2001). The FATPs are integral

transmembrane proteins with a structure similar to long-chain acyl-CoA synthetase. They

contain a highly conserved domain which is related to ATP-binding and hydrolysis. This

domain appears important for FA. transport but the mechanisms are yet to be fully elucidated.

In addition to the FATP other proteins have also been implicated in LCFA transport: ADRP,

caveolin (Gao & Serrero 1999;; Serrero et al. 2000; Razani et al. 2002) and CD36/FAT.

CD36/FAT is the most extensively studied transporter and it belongs to the scavenger

receptor class B type I (SR-B1) family of scavenger receptors (Stahl et al. 2001). CD3 6/FAT

is an integral membrane glycoprotein, which is expressed at the cell surface and within

lysosmes. Furthermore it is localised within membrane rafts and is present in a wide variety

of tissues (Hajri & Abumrad 2002). ADRP has been shown to localise to neutral lipid storage

droplets in a wide variety of cells, suggesting that it plays a role in the management, of neutral

lipid stores (Brasaemle et al. 1997).

Insulin, cytokines (Memon et al. 1998) and PPAR ligands (Martin et al. 1997; Motojima et al.

1998; Martin et al. 2000) have all been shown to regulate the FA transporters. Furthermore

the FATP1 promoter region has been shown to contain a PPAR binding element (Hajri &

Abumrad 2002). These transporters are present in a variety of tissues but of particular

importance to this thesis, are the transporters which are present in the liver, including,
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CD36/FAT, FATP2 (Hirsch et al. 1998), FATP3, FATP5 (Fitscher et al. 1998) and ADRP

(Jiang & Serrero 1992).

1.36 Triglyceride packaging and export

The liver assembles triglycerides into VLDL particles for secretion. Apolipoprotein B (apoB)

is the major lipoprotein present in the VLDL, and it is required for the assembly and secretion

of VLDL from the liver. Regulation of apoB occurs posttranscriptionally given that the apoB

gene is constitutively expressed and regulation occurs either during its translocation into the

endoplasmic reticulum cr via its rate of degradation (Adeli et al. 2001). Additionally apoE,

(xMahley et al. 1970; Swift et al. 1980) apoC-I, apoC-il and apoC-III (Ginsberg 1998) are also

a part of newly synthesised VLDLs. Formation of the VLDL occurs in the endoplasmic

reticulum and full maturation occurs in the Golgi apparatus of the hepatocyte before its

secreted (Ginsberg 1998). This process is mediated via microsomal triglyceride transfer

protein (MTTP), which catalyses the lipid transfer of the apoB polypeptide, in addition to

participating in the formation of triglyceride rich droplets in the ER, which are also able to

fuse with apoB particles (Gordon & Jamil 2000). MTTP is also required for triglyceride

packaging into chylomicrons in the small intestine (described in Section 1.421). The apoCs

have important functions on the VLDL surface once the lipoprotein is secreted from the liver.

ApoC-II is a cofactor necessary for LPL actions of hydrolysing triglycerides from the VLDL

particle for uptake into adipose tissue and muscle. Conversely, apoC-III is believed to inhibit

this stimulation of LPL. Once the core triglycerides have been removed, the liver can

eliminate the VLDL remnants, also known as HDL. This process involves apoE mediated

uptake via receptor mediated pathways. Additionally, they can be converted to LDL and then

be removed via the LDL-receptor pathway (described in Section 1.422) (Ginsberg 1998).
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1.37 Regulation of these pathways by estrogen

Premenopausal women have lower levels of serum triglycerides compared with men and

postmenopausal women, suggesting estrogen plays a role in their regulation. The exact

mechanisms of this regulation are not completely understood. Estrogen has an effect on de

novo synthesis of lipids. In male turkeys, estrogen has been shown to stimulate de novo FA

synthesis in the liver, which was shown by an increase in [3H]H2O incorporation into the

phospholipids and triglycerides, present in both the liver and plasma (Dashti et al. 1983).

Estrogen administration to male Xenopus laevis revealed increases in FA synthesis due to

increases in acetyl-CoA carboxylase activity (Philipp & Shapiro 1981), although estrogen

reduced de novo FA synthesis in adipose tissue of ovariectomized ewes (Green et al. 1992).

Estrogen has been shown to suppress the transcription of LPL, which catalyses hydrolysis of

serum triglycerides releasing FFA and sn2-monoglycerides for uptake into the adipose tissue

(Fredrikson & Belfrage 1983). In humans, apoE has four different alleles and in

postmenopausal women on HRT a favourable lipid profile is associated with specific alleles

(Tolosa et al. 2001; von Muhlen et al. 2002; Lehtimaki et al. 2002), indicating estrogen plays

a role in lipoprotein physiology. Estrogen may also play a role in regulating P-oxidation as

shown in one of the ArKO mouse models (described in Section 1.252) (Nemoto et al. 2000).

Despite the epidemiological data suggesting estrogen plays a role in triglyceride homeostasis,

more research is needed to understand the exact mechanisms and which pathways are

regulated by estrogen.

1.4 Cholesterol metabolism

Cholesterol is the precursors for all steroid hormones, integral to the formation of bile acids

and an essential component of cellular membranes. Cholesterol can be synthesised from
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acetyl-CoA or taken up from mainly from animal products in the diet, and is cleared from the

body via the bile acid pathway. Cholesterol synthesis and uptake are very tightly controlled

processes. Excess serum LDL cholesterol can be taken up by macrophages causing the

formation of foam cells which are then able to form atherogenic plaques, playing a key roie in

the pathogenesis of cardiovascular disease. Therefore understanding the mechanisms that

regulate cholesterol homeostasis will help in the development of suitable cholesterol lowering

drugs.

1.41 De novo synthesis of cholesterol

De novo synthesis of cholesterol utilises acetyl-CoA, like FA, but the assembly plan is

different (Figure 1.8). De novo synthesis of cholesterol occurs in four stages, three molecules

of acetyl-CoA condense to form the six carbon compound P-hydroxy-pmethylglutayl- CoA

(HMG-CoA), these reactions are catalysed by thiolase and HMG CoA synthase. HMG CoA

reductase catalyses the reduction of HMG-CoA to mevalonate, where HMG CoA reductase is

a integral membrane protein of the smooth endophsmic reticulum and also provides the rate-

limiting step in cholesterol biosynthesis. Mevalonate is then converted to isoprenes units.

Condensation of three activated isoprene molecules leads to the formation of farnesyl

pyrophosphate and condensation of two farnesyl units leads to the formation of squalene. This

reaction is catalysed by squalene synthase. The final stage is cholesterol biosynthesis is

conversion of the linear squalene into the four ring steroid nucleus of cholesterol. This

pathway was first discovered by Konrad Bloch in 1965 (Bloch 1965) and is reviewed in

Vance & Van den 2000.
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Figure 1.8: Cholesterol Biosynthesis
Firstly there is condensation of acetyl-CoA and acetoaceryl-CoA produces HMG-CoA.
This then is reduced to mevalonate and the reaction is catalysed by HMG CoA reductase
the rate-limiting step in mis reaction. Mevalonate is then converted to two activated
isoprenes. Following this there is condensation of six activated isoprene molecules leads
to the formation squalene. The final stage is cholesterol biosynthesis is the linear
squalene being converted into the four ring steroid nucleus of cholesterol.



Chapter One: Introduction and Literature Review

1.42 Cholesterol Uptake

Due to the hydrophobic nature of cholesterol esters and triglycerides, their transport through

the body via blood vessels is facilitated by specialised particles known as lipoproteins

(Ginsberg 1998). Lipoproteins are comprised of a core made up of the hydrophobic

cholesterol esters and triglycerides, surrounded by an amphipathic monolayer of

phospholipids, free cholesterol and proteins, apoproteins (apo), apos they are important

regulators of lipid transport (Ginsberg 1998). There are four major classes of lipoproteins and

their names reflect their buoyant densities (Krieger M. 1999). Dietary cholesterol is absorbed

in the small intestines and packaged into chylomicrons where it can be transported to the liver

(described in Section 1.421). The LDL is the major cholesterol carrying lipoprotein

(described in Section 1.422), and high levels in plasma are correlated with increased

atherosclerosis. HDL is involved in reverse transport of cholesterol, (described in Section

1.423) and is associated with a decreased risk of atherosclerosis. VLDL principally carries

triglycerides that are synthesised in the liver, (described in Section 1.36)(Figure 1.9

reproduced from Nelson & Cox 2000).

1.421 Uptake of dietary cholesterol: chylomicrons

Dietary cholesterol is absorbed in the small intestines and packaged into chylomicrons where

it can be transported throughout the body. AcylCoAxholesterol acyllransferase 2 (ACAT2)

converts cholesterol to cholesterol ester, and this is packaged into chylomicrons, this

esterification of cholesterol by ACAT2 also occurs within the liver (Buhman et al. 2000).

The lipoproteins which predominantly make up chylomicrons, are apo B-4S, apo A-I, apc-A-

II and apo-IV and phospholipids are also present (Ginsberg 1998). After the chylomicra enter

the plasma, they gain apo C-I, apo C-II , apo C-III and apo E, which they obtain from the
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Figure 1.9: Lipid transport and Lipoproteins
Lipids are transported in lipoproteins. Triglycerides and cholesterol are packaged into
chylomicrons in the small intestine. Lipids, mainly triglycerides can be packaged in very low-
density lipoproteins (VLDL) and exported out of the liver. The triglyceride component is
released to adipose tissue or muscle through the actions of lipoprotein lipase (LPL), the
chylomicrons remnants are taken up by the liver. The VLDL remnants (IDL) can either be
endocytosed by the liver or be converted to LDL, which can be taken up by the liver or
internalised by extra hepatic tissues. Cholesterol can be removed from these tissues via
reverse cholesterol transport in high-density lipoproteins (HDL). (Figure reproduced from
Nelson and Cox, 2000)
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surface of HDL. At this time there is free transfer of cholesterol, cholesterol esters and

phospholipids to the HDL (Ginsberg 1998). The function of apo C-II is to activate

lipoprotein lipase (LPL) (Ginsberg 199S), which is present in adipose tissue and muscle

releasing FFA and sn2-monoglycerides for uptake into the adipose tissue (Fredrikson &

Belfrage 1983). Conversely, apo C-III is known to inhibit LPL and it may also be involved in

inhibiting hepatic uptake of chylomicrons and VLDL remnants (Ginsberg 1998). Apo C-I is

only a minor component of the lipoproteins and it may be involved in inhibiting the hepatic

uptake of chylomicrons and VLDL remnants (Ginsberg 1998). Hydrolysis of the core

triglycerides leads to a reduction in the size of the core volume hence the surface area of the

chylomicrons, causing the transfer of phospholipid, free cholesterol; apo C-II and apo C-III

back to the HDL (Ginsberg 1998). The remaining chylomicron remnants are then removed

from circulation by binding the LDL receptor-related protein (LRP) on the hepatocytes

through apoE binding (Beisiegel et al. 1989).

1.422 Receptor-mediated endocytosis, uptake by LDL receptors

LDL is the major cholesterol carrying lipoprotein present in the body and transports mainly

cholesterol esters. The major apolipoprotein is apoB (Goldstein & Brown 2001). In the

periphery triglycerides from the VLDL are removed in muscle and adipose tissue via the

actions of LPL leaving VLDL remnants or IDL where the core lipids are cholesterol esters

and all other proteins are removed leaving apoB forming a LDL particle (Goldstein & Brown

2001). LDLs can then be cleared from the plasma to the liver via a process known as

receptor-mediated endocytosis (Goldstein & Brown 1974), (Figure 1.10 reproduced from

Nelson & Cox 2000).
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Figure 1.10 Model of receptor mediated endocytosis.
The LDLR is synthesised in the endoplasmic reticulum and moves to the cell surface for
ligand binding to occur. The LDL binds to the LDLR and this complex is endocytosed
into the cell where it forms an endosome. The receptor is recycled back to the cell
membrane and the endosome containing the LDL particle fiises with a lysosome where
the LDL is degraded, (Reproduced from Nelson and Cox, 2000)
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Receptor mediate endocytosis depends upon cell surface binding, intemalisation and

intraeellular degradation of plasma LDL (Goldstein & Brown 1974). Due to the apoB present

on the surface of the LDL it is able to bind to a specific receptor termed the LDL receptor

(LDLR). The LDL receptor, first cloned 1983 (Russell et al. 1983) is a cell surface

glycoprotein containing two asparagine-linked (TV-linked) oligosaccb.aride chains and there

are approximately 18 serine/threonine-linked (0-linked) oligosaccharide chains (Schneider et

al. 1982; Cummings et al. 1983). The LDLR is synthesised in the membranes of the

endoplasmic reticulum, then the LDLR make their way through the Golgi complex to the

surface of the cell where coated pits are present. Here the LDL can bind to the LDLR, once

this occurs the complex is engulfed by the clathrin coated pits and enters the cell (Goldstein et

al. 1979; Pastan & Willingham 1981; Bretscher & Pearse 1984). This can also occur in the

absence of ligand (Basu et al. 1981; Anderson et al. 1982). Once the complex is inside the

clathrin coated pits, they invaginate into the call, pinching off form clathrin coated endocytic

vesicles. The vesicles then shed their clathrin coats, fusing with other vesicles to form

endosomes. A drop in the pH causes the LDL to dissociate from the LDLR (Pastan &

Willingham 1981; Tycko & Maxfield 1982). The LDLR is recycled and the LDL is then

carried further to the lysosomes, where the lysosomal enzymes hydrolyse the apo and the

cholesteryl esters of the LDL, resulting in free cholesterol and amino acids. This cholesterol

than exerts feedback effects, where it can stimulate ACAT2 allowing cholesteryl ester

formation, it can also cause negative feedback by reducing de novo cholesterol synthesis,

through inhibiting HMG CoA reductase and reducing the rate of LDLR synthesis, via SREBP

regulated pathways (described in Section 1.43). The lifespan of the receptor is about 10-30

hours and in this time it participates in this process 150 times without lGsing fraction

(Goldstein et al. 1979; Brown et al. 1982).
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1.423 Reverse cholesterol transport

The process of reverse cholesterol transport is to transfer peripheral cholesterol to the liver

and other steroidogenic tissues. HDL is the lipoprotein which is involved in this process and

uptake into the liver occurs through HDL binding to its receptor, SR-B1. SR-B1 is a

glycoprotein of 509 residues that contains a large extracellular loop, which is aiiehored to the

plasma membrane adjacent to the short N-terminal and C-terminal domains. (Krieger M.

1999). HDLs are large buoyant particles which are made up of esterifled cholesterol. HDLs

can be taken up into the liver or otfc*? steroidogenic tissue, via SR-B1. SR-B1 mediated

binding occurs through binding of the apoB interacting with the receptor (Acton et al. 1994;

Caivo et al. 1997). Unlike LDL uptake via receptor mediated endocyctosis, SR-B1 uptake

does not involve lysosomal degradation of the lipoprotein particle, so lipid depleted particles

can be released from the cells and begin the cholesterol efflux process again (Krieger M.

1999).

1.43 Regulation of cholesterol synthesis and uptake, Sterol regulatory element

binding proteins (SREBP)

Romeostatic regulation of cholesterol is initiated with its conversion to oxysterols, which then

signal to molecules to modulate the activity of various transcription factors. The first

pathway, which is the focus of this st ^d'/n, is how the cell regulates the amount of cholesterol

biosynthesis and uptake via sterol regulatory element binding proteins (SREBP), These are

membrane bound transcription factors that are localised on the nuclear envelope and the

endoplasmic reticulum (Brown & Goldstein 1997). Target genes of the SREBPs have a sterol

response element (SRE), which are present in many genes involved in de novo synthesis of

cholesterol, including HMG CoA reductase, HMG CoA synthase, farnesyl diphosphate
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synthase and squalene synthase. The response element is also on the LDLR gene, which is

involved in receptor-mediated uptake of cholesterol (Schoonjans et al 2000). hi addition to

regulating cholesterol metabolism, these transcription factors have been showed to be

involved in lipogenesis, by regulating FAS, ACC, glycerol-3-phosphate acyltransferase and

LPL (Schoonjans et al. 2000).

There are three known SREBPs designated la, lc and 2, which were first identified in 1993

(Hua et al 1993; Yokoyama et al. 1993; Briggs et al. 1993; Wang et al. 1993). SREBP la

and lc are produced from alternate splicing of a single gene in humans, hamsters and mice

(Yokoyama et al. 1993; Hua et al. 1995; Shimomura et al. 1997). A separate gene encodes

the third SREBP, 2, and to date only one transcript has been found in humans, hamsters and

mice (Hua et al. 1993; Miserez et al. 1997). All three have a similar tripartite structure^

namely there is an NH2 terminal transcription factor domain; a middle hydrophobic region

containing two hydrophobic transrnembrane segments and a COOH-terminal regulatory

domain. Next to the NH2-terminal is a basic-helix-loop-helix-leucine zipper domain and at

the COOH-termina\ end is a regulatory domain. The NH2-terminal and the COOH-terminal

are facing the cytoplasm with the luminal loop projecting into the lumen of the organelle (Hua

etal. 1995; Duncan et al 1997).

SREBP is associated with another protein, SREBP cleavage activating protein (SCAP), which

acts to regulate sterol sensing (Schoonjans et al. 2000). The SCAP protein is made up of two

principal domains, an NH2-terminal domain, which like polytopic membrane proteins

contains alternating hydrophobic and hydrophilic segments (Hua et al. 1996; Nohturfft et al

1998) and the COOH-terminal, which has five 'WD' repeats, which are known to regulate

protein-protein interactions (Sakai et al 1997). In the case of SCAP and SREBP interaction it
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has been shown that it is these 'WD' domains in COOH-terminal that specifically interact

with the COOH-lermEiral of SREBP (Sakai et al 1997).

Sterol depletion in cells leads to the initiation of a proteolytic cascade (Figure 1.11,

reproduced from Brown & Goldstein 1999), where SCAP escorts SREBP from the

endoplasmic reticulmn to Golgi compartment where site 1 protease (SIP) cleaves SREBP at

site 1, which is located in the middle of the luminal loop, between leucine and serine (Duncan

et al. 1997). This cleavage at site 1 breaks the covalent bond between the transmembrane

domains, however they are still attached to the membranes and thus allow the second

protease, site 2 protease (S2P), to cleave at a Leu-Cys bond at the NH2-terminal at site 2.

This releases the NH2-teiminus into the nucleus, where it is able to activate transcription of

the HMG CoA reductase, HMG CoA synthase and the LDLR genes and increase cholesterol

production and uptake (Brown & Goldstein 1997; Brown & Goldstein 1999). SCAP is also a

sterol sensor, and when sterols bind to SCAP it inhibits site 1 cleavage, thereby reducing

cholesterol production and uptake (Brown & Goldstein 1997).

1.44 Bile acid pathway

The elimination of cholesterol is through the synthesis of bile acids. Bile acids are secreted

into the small intestine where they are essential in the solubilisation and absorption of dietaiy

cholesterol as well ?s fat-soluble vitamins. In the classical pathway of bile acid production

cholesterol 7a-hydroxylase is the rate-limiting step (Russell & Setchell 1992), which is

encoded by the Cyp7a gene. Null mice for this gene have been generated and they die three

weeks after birth unless supplied with dietary fat-soluble vitamins and cholic acid (Ishibashi

et al. 1996; Schwarz et al. 1996), highlighting the importance of bile salts in the intestinal

absorption of fat soluble molecules. Regulation of this pathway occurs in both a feed forward

and feed back manner, by regulating Cyp7a and thus ultimately cholesterol 7o>hydroxylase
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Figure 1.11 Model of sterol regulation of SREBP cleavage.
Top panel, represents absence of sterol leading to site 1 cleavage by SIP. SCAP regulates
this cleavage. Middle panel, site 2 cleavage occurs by S2P once SREBP is in two halves.
This cleavage occurs at the NH2-terminal bKLH-Zip domain of SREBP. Bottom panel, the
second cleavage allows to the bHLH-Zip domain to leave the membrane, with three of the
hydrophobic residues present in the COOH-terminus. This mgrates into the nucleus, binding
to the SRE of target genes initiating transcription (Reproduced from Brown and Goldstein
1999).
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(Figure 1.12). Elevations in hepatic cholesterol lead to the formation of oxysterols that

activate liver X receptor a (LXRa), which heterodimerises with 9-cis rstinoic acid receptor

(RXR). This can then bind to a LXR-RE in the Cyp7a promoter (JanowsM et al. 1996;

Forman et al. 1997b) initiating transcription of mouse Cyp7a; hence increasing bile acid

production. Mice lacking LXRa are unable to induce transcription of Cypla in response to

cholesterol feeding (Peet et al. 1998), eloquently demonstrating the importance of LXRa in

stimulating Cyp7a expression. In addition to LXRa binding to the Cypla promoter region,

another nuclear orphan receptor liver receptor homolog-l (LRH-1), also known as CPF and

FTF, has been shown to have a binding site present on Cypla only 70bp from the LXRa site

(Russell 1999). Bile acid formation activates farnesoid X receptor (FXR), a bile acid receptor

(Wang et al 1999; Makishima et al. 1999; Parks et al. 1999). As there is no FXR-binding

sites on the Cyp7a promoter (Castillo-Olivares & Gil 2000), its inhibition is via indirect

mechanisms by inducing the transcription of short heterodimer partner (SHP). This can form

a heterodimeric complex with LRH-1, and this binding causes an inhibition of Cypla

synthesis, thereby reducing bile acid synthesis (Lu et al. 2000; Goodwin et al. 2000).

Acetate

HSREBP

Cholesterol

€€ Oxysterols I FXR

Bile Acids

I
Recycling

™

Figure 1.12: Model of bile acid regulation.

Cypla encodes cholesterol 7a-hydroxylase, which
is the rate-limiting step in the formation of bile
acids. It is positively regulated by LXRa and
negatively regulated by FXR (Russell 1999).

The alternative pathway in bile acid production is

activated by cholesterol conversion to oxysterol
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that contain a hydroxyl group at either carbon position 24, 25, 27 on the side chain. These

intermediates are substrates for an oxysterol 7a-hydroxylase, which is encoded by the Cyp7b

gene, thereby producing 7ct-hydroxylated oxysterols which are then able to be funnelled into

the classical pathway of bile acid production (Schwarz et al. 1998).

hi addition to the cholesterol 7a-hydroxylase mediation of bile acids, other mechanisms are

are also responsible for removing cholesterol. Recently identified ABCG transporters G5

(Lee et al. 2001) and G8 have also been implicated in this transport (Berge et al. 2000).

ABCG transporters are integral membrane proteins that transport mainly plant sterols but also

cholesterol across cellular membranes via energy derived from the hydrolysis of ATP. These

transporters form heterodimeric complexes that allow the transport of sterol and some

cholesterol, from the small intestine and from the liver, for excretion through the bile acid

pathway. Like Cyp7a, these transporters are also regulated by the transcription factor LXR

(Berge et al. 2000). It is via these pathways that cholesterol clearance from the body is

regulated.

1.45 Regulation of cholesterol homeostasis by estrogen

As previously described, when women progress from a pre- to post-menopausal state there is

a dramatic reduction in circulating estrogens, coinciding with an elevation in serum LDL and

a reduction in serum HDL (described in Section 1.1). This can be reversed with E2

replacement. Additionally, men with reported aromatase deficiencies and a non-functioning

ER also have disrupted cholesterol homeostasis, (described in Section 1.23), indicating an

important role for estrogen in regulating pathways involved in cholesterol homeostasis.
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Therefore estrogen's regulation of these pathways has been studied by a number of

investigators.

1.451 Estrogen action on HMG CoA reductase regulation

The promoter of HMG CoA reductase has been shown to contain an estrogen-responsive

element-like sequence, termed Red-ERE (Di Croce et al. 1999), but whether estrogen acts on

this sequence in vivo is unclear. To date studies examining the relationship between estrogen

and HMG CoA reductase have provided variable results. In MCF-7 cells estrogen was able to

induce HMG CoA reductase, which was dependent on the ERE and this stimulation could be

inhibi'svl by the anti-estrogen, ICI 164,384, but this did not occur in hepatic cell lines (Di

Croce et al. 1999). It appears as if estrogen actions on HMG CoA reductase in hepatic cell

lines and in vivo (rat livers) are at the level of protein rather than mRNA (Di Croce et al.

1996; Di Croce et al. 1999). When intact female rats were treated with physiological levels

of E2, HMG CoA reductase activity was stimulated (Parini et al. 2000). Conversely, in males

pharmacological levels of E2 (10 mg/kg of E2) caused a reduction in HMG CoA reductase

activity (Marino et al. 2001). This research shows variable results in HMG CoA reductase

regulation by estrogen and that possibly any regulation may be posttranscriptional. Further

research needs to be performed to fully understand its regulation.

1.352 Estrogen actions on the LDLR

In addition to estrogen having a regulatory effect on HMG CoA reductase, it has also been

shown to stimulate LDLR expression (Di Croce et al. 1996; Parini et al 2000). E2 treatment

has been shown to cause an increase in both the mRNA and protein expression of the LDLR.

These effects have been seen in both male and female rats. One study showed that in male

rats receiving a dose of lOmg/kg of E2, after 30 min there was a rapid increase in LDLR
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mRNA levels and after 1 hr increases in protein expression of the LDLR could be seen. The

authors also showed that this coincided with induction of the intracellular signal transduction

pathway leading to IP3 and PKC-a translocation to the membrane, and that this may possibly

be the mechanism for hormonal stimulation of the LDLR (Marino et al. 2001). Estrogen

stimulation of the LDLR has also been shown in intact female rats, although this occurred

only at high doses of E2 treatment, (lmg/kg and 4 mg/kg). No stimulation occurred at the

lower doses (Parini et al. 2000), indicating that only the pharmacological doses affect the

LDLR. This stimulation of the LDLR by E2 treatment has been shown to be reliant on the

ER as treatment with tamoxifen or clomiphene, known ER antagonists, were able to inhibit

this stimulation (Parini et al. 2000). However, treatment with these antagonists alone had no

effect on the LDLR (Parini et al. 2000). This ER mediated stimulation of the LDLR has been

shown to be a specific interaction of the ERa with the transcription factor Spl bound to the

promoter of the LDLR (Li et al. 2001). Additionally, growth hormone (GH) may also play a

role in E2 stimulation of the LDLR, as when hypophysectomized rats were treated with E2

there was only a slight increase in the LDLR mRNA levels, but GH replacement was able to

restore the E2 induction of the LDLR (Rudling et al. 1992). These studies clearly show a role

for estrogen in regulating the LDLR and that it may possibly be a regulating factor in elevated

serum LDL levels in postmenopausal women.

1.353 Estrogen actions on Cholesterol 7a-hydroxylase

As mentioned earlier, Cyp7a encodes cholesterol 7a-hydroxylase, which is the rate-limiting

step in the production of bile acids (described in Section 1.44). Estrogen treatment has been

shown to have varied effects on the Cyp7a gene and the activity of the enzyme One study

showed that rats treated with 17p-estradiol-3-benzate at 25ng/day for 20 days, induced a
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three-fold increase in the activity of cholesterol 7a-hydroxylase after two different feeding

conditions. One was after fasting and being killed in the morning and the other involved non-

fasted animals, killed at night (Ferreri & Naito 1977). Another study also performed in rats

showed an increase in the activity of cholesterol 7a-hydroxylase after estradiol treatment

(Deiiconstantinos & Ramantanis 1982). In vitro studies have also revealed a role for

estrogens in the regulation of cholesterol 7a-hydroxylase. In this case, liver microsomes

were isolated from rats which had been fed either a standard diet, where they were fed ad

libitum or fasted for 24 hours, or were fed a diet containing the bile acid sequesterant

cholestyramine. Administration of 5{iM estradiol stimulated the activity of cholesterol 7a-

hydroxylase in the rats that had either been fasted or fed the cholestyramine diet (Chico et al.

1994). Transient increases in cholesterol 7a-hydroxylase activity have also been shown in

hepatocytes cultured from rats (Chico et al. 1996). In addition to studies in rats, regulation of

cholesterol 7ot-hydroxylase by estrogens ha? also been studied in nonhuman primates. One

study used female cynomolgus monkeys that were ovariectomised and fed a moderately

atherogenic diet for 12 weeks in addition to estrogen administration. Estrogen treatment led

to significant reduction in hepatic cholesterol levels and mRNA levels of Cyp7a were

elevated (Colvin, Jr. et al. 1998). A similar study was performed in baboons and it also

showed an increase in cholesterol 7a-hydroxylase activity (Kushwaha & Born 1991). Whilst

many studies have shown that administration of estrogen leads to stimulation of cholesterol

7a-hydroxylase the exact mechanisms for this action are yet to be elucidated.

1.454 Estrogen actions on SR-B1

Estrogen has been shown to reduce hepatic uptake of HDLs in rats (Rinninger & Pittman

1987) and subsequently this reduction may be a direct consequence of estrogen's ability to
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suppress hepatic SR-B1 expression (Landschulz et al. 1996). Specifically, it is SR-B1

expression on the parenchymal cells (hepatocytes) which is reduced (Fluiter et al. 1998;

Fluiter et al. 1999), whereas estrogen treatment can increase SR-B1 expression in hepatic

Kupffer cells (sinusoidal macrophages), which are far less abundant (Fluiter et al. 1998).

Again estrogen has the ability to influence cholesterol uptake and this may also be playing an

important role in regulating serum cholesterol levels.

1.5 Aims

Although, epidemiological evidence suggests that estrogen plays an important role in lipid

homeostasis specifically studies examining the cholesterol pathway show variable results,

wln'lst studies on the triglyceride pathway are unclear on the mechanisms behind estrogen's

contribution. Therefore this thesis aims to elucidate the complete role of estrogen in lipid

homeostasis using the estrogen deficient ArKO mouse.

The first aim, of this thesis is to determine the role of estrogen in triglyceride homeostasis

using the estrogen deficient mouse model. In this study male and female mice will be

investigated, examining the morphology of their liver, and measuring serum and hepatic

triglyceride levels. To understand the mechanisms leading to the disruptions in these

pathways, real time PCR will be used to examine gene expression of key enzymes and

proteins.

'"""he second aim of this project is to examine the consequences of estrogen replacement on

lipid metabolism, and in particular, triglyceride turnover in the liver.

The third aim of this thesif is to define the role of estrogen in regulating cholesterol

homeostasis by challenging the male and female ArKO mice with high cholesterol diets.

Included in this series of experiments will be an investigation of how this dietary intervention

41



I
Chapter One: Introduction and Literature Review

affects cholesterol metabolic pathways in estrogen deficient mice, by examining hepatic and

serum cholesterol levels in the presence or absence of estrogen and using real time PCR to

measure gene expression of key enzymes in these pathways.
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Abstract

The aromatase knockout (ArKO) mouse cannot synthesize endogenous estrogens due

to disruption of the Cyp\9 gene. Previously, we have shown that the ArKO mice have

an age progressive obese phenotype in both genders, and a sexually dimorphic

alteration to hepatic cholesterol homeostasis. The present study examined the livers of

24-26 wk old ArKO mice for disruption to triglyceride and fatty acid homeostasis,

before and after being challenged for 90 d on a high cholesterol diet. Estrogen

deficiency in males significantly increased hepatic triglyceride levels, causing hepatic

steatosis, which was reversed by cholesterol feeding. Transcripts of enzymes and

proteins encoding genes regulating de novo synthesis, fatty acid uptake and VLDL

secretion were measured. Estrogen deficiency in males lead to a significant increase in

expression of both acetyl CoA carboxylase a and fatty acid synthase, indicative of

increased de novo fatty acid synthesis, however cholesterol feeding had no effect.

Adipocyte differentiated regulatory protein (ADRP) was also increased in estrogen

deficient males, indicating an increased fatty acid uptake. Cholesterol feeding

significantly increased the expression of ADRP in both genotypes; however CDS 6

expression was decreased by cholesterol feeding in the ArKO males. Despite

increased hepatic triglycerides in ArKO males, apoE and microsomal triglyceride

transfer protein expression were not changed, suggesting no compensatory increase in

VLDL secretion. Conversely, ArKO females presented with no hepatic phenotype

despite their obesity, although they had elevated serum triglyceride levels. This study

reveals estrogen deficiency leads to a severe impairment in hepatic triglyceride

homeostasis in males but not females, resulting in hepatic steatosis.
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Introduction

Estrogen is known to promote the accumulation of gluteo-femoral fat (1,2). After

menopause, whsn plasma estrogen levels decline dramatically, there is a switch in

adipocyte accumulation from tht gluteo-fer.oral region to the intra-abdominal area,

which is associated with development of a metabolic syndrome (1,3,4). The

'Metabolic Syndrome' has been linked with an increased risk of cardiovascular disease

and features of this syndrome include central obesity, elevated triglyceride levels,

increased low-density lipoproteins (LDL) and decreased high density lipoproteins

(HDL) (1,5). Central obesity is closely associated with insulin resistance and a

consequence of insulin resistance is elevated free fatty acids, which may impact on

hepatic function (1,6). In menopausal women, triglyceride levels are elevated

compared with premenopausal women and are highly correlated with increased

abdominal fat (7). Men are also icnown to have higher levels of triglycerides compared

with women (1). This evidence associates estrogen with obesity as well as triglyceride

homeostasis.

Mouse models devoid of estrogen and lacking estrogen action have been generated,

and they too have disrupted lipid homeostasis. The aromatase knockout (ArKO)

mouse presents with age-progressive obesiiy aid hepatic steatosis, and by one year of

age develop hypercholesterolemia, hyperinsilinemia, hyperleptinemia and the male

ArKO mice have hypertriglyceridemia (8). Estrogen receptor (ER) a and the ERaP

double knockout mice present with a similar obese phenotype to the ArKO (9,10),

although the ER0 knockout mice have no lipid phenotype (10). None of the three ER

null models have been reported to present with hepatic steatosis or any other liver

phenotype. A molecular characterisation of the ArKO obese phenotype revealed an

rncrease in lipoprotein lipase (LPL) in the adipose tissue, which may account for the
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increase in adiposity (11), again suggesting a role for estrogen in regulating

triglyceride homeostasis.

Previously, we have shown that the ArKO mice have altered hepatic cholesterol

homeostasis in botib male and female ArKO mice (12). Although there is sexual

dimorphism in this presentation, it is not the cause of the hepatic steatosis in the male

ArKO mice (12). Toda et al (13) generated another ArKO mouse also by disrupting

exon 9 of the Cypl9 gene. They also found the presence of hepatic steatosis as well as

a disruption of P-oxidation at *he level of gene expression and the catalytic activity of

the p-oxidative enzymes. This was reversed by 17p-estradiol replacement (14).

In addition to mouse models, men with mutations in aromatase (15,16) arcd the ERa

(17) have been reported. These patients also present with disruption to lipid

homeostasis and one of the aromatase deficient men has been reported to have hepatic

steatosis (18).

Triglyceride accumulation within the liver results from a loss balance between the rate

of fatty acid synthesis and oxidation, the rate of VLDL secretion and the rate of free

fatty acid uptake up from the serum (19). These are derived primarily as a consequence

of Hpolysis in the adipose tissue, which is elevated in type 2 diabetes (19).

hi this present study, we show that the ArKO mice develop a sexually dimorphic

phenotype of hepatic steatosis, namely, the condition only manifests in the males. This

appears to be due, in part, to differential expression of key enzymes and factors

involved in triglyceride metabolism. Moreover, the accumulation of triglycerides is

prevented by cholesterol feeding.
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Methods

Mice

The ArKO mice were generated by deleting 90% of exon DC of the Cypl9 gene as

described in Fisher et al (20). WT and homozygous null offspring were generated by

heterozygous matmgs. The genotype of the offspring was determined by PCR as

described by Robertson et al (21). The animals were housed in specific pathogen free

conditions and had unlimited access to drinking water and food.

Diets

Soy free mouse chow (Glen Forest stock feeders) is the control diet used to feed the

mice; it does not contain soy products, which are found in regular mouse chow, as

isoflavones in soy are known to have estrogenic effects (22). This diet contains 15%

of calories as fat (0.02% cholesterol), 20% calories as protein and 65% of calories as

carbohydrate. Intermediate and high cholesterol diets were fed to the mice to

challenge their lipid homeostasis. The intermediate diet had 0.2% cholesterol added to

the soy free mouse chow; this was 2 fold higher than normally needed to maintain

homeostasis. The cholesterol high diet had 2% cholesterol added to the soy free mouse

chow, which was 20-30 fold higher than that normally needed to maintain homeostasis.

ArKO and WT males and females were fed control diet (0% added cholesterol to a soy

free diet), or the 0.2% cholesterol diet or the 2% cholesterol diet for 90 days beginning

at 10-12 weeks of age. A food intake study was performed where lOg of food per day

per animal were given to the mice over a 5-day period. Food intake was calculated as

the starting amount of food of lOg minus the amount of food remaining each day.

67



Chapter Two: Results

1

Tissue Collection and Histology

Mice were weighed then killed by cervical dislocation. Truncal blood was collected

after decapitation. Blood was allowed to clot, serum collected and stored at -20 °C.

Tb»; liver was removed, weighed and snap frozen in liquid nitrogen and stored at -80°C

for gene and lipid analysis. Part of the liver was immersion fixed in Bouins fixative

then stored in 70 % ethanol. Fixed samples were embedded in a random orientation in

paraffin and sliced into 7 urn sections. Sections were then stained with hematoxylin

(Sigma, USA), counterstained with eosin (H&E) and coverslipped with DPX (BDH,

England).

Measurement of serum and hepatic lipids

Hepatic triglycerides were measured following extraction with chloroform/meiiiaiiol

(2:lv/v) (23). Briefly, 0.2 g of liver was homogenized in 10ml of

chloroform/methanol. Samples were centrifuged for 20 min at 800 g, the lipid phase

was removed and chloroform was evaporated. The triglycerides were then measured

using Triglyceride Kit (320-A, Sigma, USA). Triglycerides from the serum were

quantified using triglyceride flex (Dade Behring, Newark, DE, USA).

Measurement of fatty acid p-oxidation

Fatty acid p-oxidation was measured as described by Nemoto et al (14). Briefly,

250mg of fresh liver were homogenised in four volumes of 0.25M surcose containing

lmM EDTA. Ten \x\ of homogenate was incubatsd in assay buffer of as described (14)

with [1-14C] palmitic acid (C16:0) (Amersham Phamacia Biotach, UK). The reaction

was conducted for 25 mm at 25oC. The radioactive degradation products in the water

phase were counted on a 2500TR liquid scintillation analyser (Packard, ACT,

Australia).
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Gene Analysis

RNA was extracted from the liver using the phenol-chloroform method (Ultraspec

RNA, Fisher Biotech, Australia) and quantified spectrophotometrically. Two-step RT-

PCR was performed using random primers (Roche, Germany) and AMV reverse

transcriptase enzyme (Promega Life Sciences, USA). Lightcycler™ (Roche,

Germany) was used to quantitate mouse transcripts using specific primer pairs (Table

1). Primer pairs were shown to he specific through single peak melting curves and a

single product was detected on an ethidium bromide (Sigma, USA) 1% agarose

(Promega, Life Sciences, USA) gel in 1 X TBE corresponding to the appropriate

product size as measured by a lkb ladder (Promega, Life Sciences, USA).

All samples were normalised to 18S transcript levels. All samples were run

individually in three separate reverse transcription reactions and transcripts measured

using real time PCR. Then the data presented is the mean of three consistent runs.

Inter-assay variability was assessed using a quality control of RNA that was reverse

transcribed and used in each individual run.

Statistical Analysis

All graphs are expressed as mean ±SEM. Univariant two way ANOVA was used to

determine overall statistical differences. Genotypes within a diet were compared using

univariate ANOVA. In the experiments involving iliree diets, Tukey's post hoc test

was used to determine significance (SPSS version 10.0 for Windows, SPSS, Inc,

Chicago, IL, USA). A minimum of five animals were used in each group. Numbers

are indicated in the figures.
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Table 1. Primer sequences and product size

Gene Primer nairs
ACCa

ACCp

ADRP

ApoE

CDS 6

FAS

FATP2

FATP5

MTTP

Product size
F: 5'-TGTTTGGGGTTATTTCAGTGTTGC-3' 236
R: 5'-TGTCCAGCCAGCCAGTGTCG-3'

F:5'-CCGTGCCCTGTGCCAACCATA-3' 171
R:5'-GCAGCCGCTCCCCTTCATTCT-3'

F:5'-ACCTTGTGTCCTCCGCTTATGTCA-3' 259
R:5'-GTTACGGCACCTCTGGCACTGG-3'

F:5'-CGAGGGCGGCTGGAGGAAGTG-3' 243
R:5'-TGGGGTGATGATGGGGTTGGTAGC-3'

F:5'-TGTTCTTTGGCTTGGTTTTCACG-3' 268
R:5 '-TGTCACCCTGCTCATTTCCCTCTG-3'

F:5'-CACAGATGATGACAGGAGATGGA-3' 205
R:5'-TCGGAGTGAGGCTGGGTTGATA-3'

F:5'-CCCTTCCTGCTGTTCCGAGACGAG-3' 257
R:5'-CCCCGCAGCATTGAAAGCAGTG-3'

F:5'-CTCCCTGCCTATGCCACACCTCA-3' 113
R:5'-ATCCCCACATCAAAACCCTCACG-3'

F:5'-AGAGGCTGGGCTGGAGTT-3' 240
R:5'-TCTGGCTGAGGTGGGAATAC-3'

SR-B1

18S

F:5'-ACGCCGACCCTGTGTTGT-3'
R:5'-CCTGTTTGCCCGATGCCCTTGAC-3'

F:5'-CGGCTACCACATCCAAGGAA-3'
R:5'-GCTGGAATTACCGCGGCT-3'

166
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Results

Body Weight

ArKO males and females on the control diet were significantly heavier compared to

diet matched wildtype (WT) mice (p=0.026, p=O.Q19, respectively; FiglA and B).

Feeding of the 2% cholesterol diet resulted in a significant reduction in the body

weight of ArKO mice compared with ArKO mice on the control diet, for both males

and females (p=0.002, p=0.037., respectively; Fig 1A and B).

To ensure that the weight lost was a physiological effect and not an aversion to the

food, a food intake- study was preformed. There was no difference in food intake

between any of the three diets (data not shown).

Lives- Weight

ArKO male mice on the control diet had significantly elevated liver weight compared

to WT controls (p=0.013, Fig 2A). The cholesterol diet also had an effect on liver

weight, where the 0.2% and 2% cholesterol diets led to a significant reduction in liver

weight in ArKO mice compared to ArKO mice on the regular diet (p=0.046, Fig 2A).

Females on the other hand, displayed no differences in liver weight between ArKO and

WT on the control diet (Fig 2B). The 2% cholesterol diet also had no effect on the

liver weight of either the ArKO or WT females (Fig 2B):

Liver Morphology

Gross morphology of livers of the ArKO male mice revealed pale and enlarged livers

Closer examination of liver morphology was performed using paraffin sections stained

with haematoxylin and eosin (H&E). Examination of the liver sections revealed that

the increased liver weight seen in the control fed ArKO male mice is most likely due to

the large accumulation of lipids in their livers, which was absent from WT controls
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A Male Body Weight

(5) ' (6) (6) (6) (6)

B Female Body Weight

Figure 1. Body Weight.
A Male body weight. ArKO control mice were significantly heavier compare with
WT control mice, *p<0.05. ArKO mice on the 2% cholesterol diet had significantly
reduced body weight compared with ArKO control mice, *p<0.05. WT mice no
changes. B Female body weight. ArKO control mice were significantly heavier
compared WT control mice, *p<0.05. Cholesterol feeding significantly reduced their
body weight, *p<0.05. WT mice no changes.
ArKO (KO) mice white bar, WT mice black bar. C refers to control diet, 2% refers to
2 % cholesterol diet.



A Male Liver Weight
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B Female Liver Weight
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Figure 2. Liver Weight.
A Male iiver weight. ArKO control mice had significantly elevated liver weight
compared with WT controls, *p<0.05. Cholesterol feeding led to a significant
decrease in liver weight, *p<0.05. WT mice no changes. B Female liver weight.
Genotype and diet had no effect on liver weight.
ArKO (KO) mice white bar, WT mice black bar. C refers to control diet, 2% refers to
2 % cholesterol diet.
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(Fig 3A and D). This phenotype was reduced when male ArKO mice were fed the

0.2% cholesterol diet, as there was a reduction in the lipid accumulation of the livers of

the ArKO mice (Fig 3B and C). This appears to be dose dependent as the livers of

ArKO male mice on the 2% cholesterol diet appeared completely normal (Fig 3C).

WT males on all three diets did not display any hepatic steatosis (Figs 3D, E and F). In

accordance with the above liver weight data, the female mice showed no difference in

liver morphology, regardless of genotypes or diets (Fig 3G, H, I, J, K and L).

Hepatic triglyceride levels

Hepatic and serum triglyceride levels were measured in both male and females.

Significantly elevated levels of triglycerides were present in the livers of the ArKO

male mice compared to WT controls (p=0.001, Fig 4A). This may account for the lipid

accumulation observed in the ArKO male mice livers. These levels of triglycerides

were significantly reduced in the livers of male ArKO mice when they were fed the

0.2% and 2% cholesterol diets, thus possibly explaining the reduction in lipid

accumulation observed in figure 3A (p=0.000, Fig 4A). In contrast, female mice

displayed no differences m hepatic triglyceride levels between ArKO and WT control

mice. Female mice cf both genotypes on the 0.2% cholesterol diet had a significant

increase in hepatic triglyceride levels (p~0.008, Fig 4B). This was also increased in

female mice on the 2% cholesterol diet, however this did not reach statistical

significance (p=O.O65, Fig 4B).

Serum triglyceride levels

Serum triglyceride levels were also measured in male and female mice. No difference

was seen in serum triglyceride levels between male ArKO and WT mice on the control

diet (Fig 5A). When the male mice were fed the 2% cholesterol diet there was a

significant reduction in serum triglyceride levels in the ArKO male mice compared to
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Figure 3. Liver Morphology.
A Male ArKO control, presence of hepatic steatosis. B Male ArKO 0.2% cholesterol
diet, decreased levels of hepatic steatosis compared with ArKO control. C Male
ArKO 2% cholesterol diet, normal morphology. D Male WT control, normal
morphology. E Male WT 0.2% cholesterol diet, normal morphology. F Male WT
2% cholesterol diet, normal morphology. G Female ArKO control, normal
morphology. H Female ArKO 0.2% cholesterol diet, normal morphology. I Female
ArKO 2% cholesterol diet, normal morphology. J Female WT control, normal
morphology. K Female WT 0.2% cholesterol diet, normal morphology. L Female
WT 2% cholesterol diet, normal morphology. Scale Bar lOOÎ m.
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A Male Hepatic Triglycerides

(6) (6)

B Female Hepatic Triglycerides

1

Figure 4. Hepatic Triglyceride Levels.
A Male Trigiyceride Levels. ArKO control mice had significantly elevated hepatic
triglyceride levels compared with WT control mice, p<0.01. Cholesterol feeding
significantly reduced these levels, p<0.01. WT mice on 0.2% cholesterol diet had
significantly elevated levels compared with WT mice on the 2% cholesterol diet,
p<0.05. B Female Triglyceride Levels. Control mice had significantly lower levels
of hepatic triglycerides compared with those fed the 0.2% cholesterol diet, p<0.05.
There were no other differences between groups.
ArKO (KO) white bar, WT black bar. C refers to control diet and 2% refers to 2%
cholesterol diet.

J



A Male Serum Triglcyerides
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B Female Serum Triglycerides
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Figure 5. Serum Triglyceride Levels.
A Male Triglyceride Levels. No differences between control mice. Cholesterol
feeding significantly reduced these levels, between ArKO control and ArKO 2%
cholesterol **p< 0.01 and between WT 2% and ArKO 2%, *p<0.05. B Female
Triglyceride Levels. ArKO controls had significantly higher levels of serum
triglycerides compared with WT controls, p<0.05. Cholesterol feeding significantly
reduced serum triglyceride levels between ArKO control mice and ArKO mice fed
2% cholesterol, *p<0.05. And between WT control mice and WT mice fed 2%
cholesterol, *p<0.05.
ArKO (KO) white bar, WT black bar. C refers to control diet and 2% refers to 2%
cholesterol diet.
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diet matched WT mice and ArKO mice on the controls diet (p--0.001, Fig 5A).

Conversely, ArKO female mice, had significantly elevated levels of serum

triglycerides compared to WT controls (p=0.003, Fig 5B). The 0.2% and 2%

cholesterol diets led to a significant reduction in serum triglycerides levels in the

female ArKO mice (p=0.005 and p=0.002, respectively Fig 5B). However, the 2%

cholesterol diet also significantly reduced the serum triglyceride levels in the WT

female mice compared with WT control mice, (p=0.034, Fig 5B).

Fatty acid p- oxidation assay

In order to investigate if a change in the rate of oxidation of fatty acids could be a

factor in the triglyceride accumulation in the male ArKO mice. The rate of FA

oxidation was measured by 14C-palmitic acid break down. There were no changes in

oxidation between WT and ArKO male mice on the control diet. There was a trend for

an increase between WT controls and WT mice on the 2% cholesterol diet, (p=0.077),

but no difference between ArKO mice. Females also showed no difference between

genotypes on the control diet (data not shown). Thus we conclude that changes in fatty

acid oxidation do not contribute to the differences in triglyceride accumulation.

Gene expression of enzymes involved in fatty acid synthesis

To gain an understanding of the mechanisms that led to increased hepatic triglycerides

and the apparent reversal of this phenotype with the addition of cholesterol to their

diets, real-time PCR was performed to quantitate expression of genes involved in fatty

acid synthesis, transport and export. Transcripts were measured in ArKO and WT mice

on the control and 2% cholesterol diets.

Acetyl CoA carboxylase a (ACCa) is a key regulatory enzyme in de novo synthesis of

fatty acids. ArKO male mice on the control diet had significantly elevated levels of
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expression compared to WT mice on the control diet, (p=0.026, Fig 6A). There were

no changes in sxpression in females (Fig 6B).

Fatty acid synthase (FAS), another enzyme involved in de novo synthesis of fatty acids

was also up regulated in ArKO males on the control diet compared with WT controls,

(p=0.O38, Fig 6C). Females showed no changes in its expression (Fig 6D).

Acetyl CoA carboxylase p (ACCP) is an enzyme that may have a specific role in

regulation of p-oxidation due to its ability to inhibit carnitine:pahnitoyl-CoA

acytransferase 1 (CPT1) (24). In both males and females there were no change in

expression of accp, regardless of genotype and diet (Fig 6E and F).

Expression of genes involved in the export of triglycerides out of the liver

Apolipoprotein E (apoE) is an apolipoprotein, which is a key component of very low-

density lipoprotein (VLDL), which is the major vehicle for the export of triglycerides

out of liver. Its expression was unchanged in male or female mice livers regardless of

genotype or diet (Fig 7A and B). Microsomal triglyceride transfer protein (MTTP)

catalyses the transfer of lipids to the apolipoprotein B, which is and the key component

of VLDL (25). Preliminary data to determine the levels of MTTP transcript revealed

no changes in expression between male ArKO and WT mice (data not shown).

Expression of genes involved in fatty acid uptake

ArKO males on the control diet had significantly up-regulated expression of adipocyte

differentiated related protein (ADRP) compared to WT control mice, (p=0.007, Fig

8A). No significant changes were seen between genotypes on the 2% cholesterol diet

(p=0.069, Fig 8A). Cholesterol fed ArKO and WTs had a significant increase in

expression of ADRP compared to genotype matched controls (p=0.049, p=0.021,
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Figure 6. Levels of transcripts for genes regulating fatty acid synthesis.
A Male ACCa transcript levels. ArKO male mice on the control had significantly
elevated levels of expression of ACCa compared with WT control mice, *p<0.05. B
Female ACCa transcript levels. NS changes in expression. C Male FAS
transcript levels. Control ArKO male mice had significantly elevated transcript
levels of FAS compared with WT control mice, *p<0.05. D Female FAS transcript
levels. NS changes in expression. E Male ACCp transcript levels. NS changes in
expression. F Female ACCp transcript levels. NS changes in expression.
ArKO (KO) white bar, WT black bar. C refers to control diet and 2% refers to 2%
cholesterol diet.
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Figure 8. Levels of transcripts for genes regulating fatty acid uptake.
A Male ADRP transcript levels. Control ArKO mice have significantly elevated
ADRP expression compared, with WT control mice, *p<0.05. Addition of
cholesterol led to a significant increase in ADRP expression in both ArKO and WT
mice, *p<Q.05 for both. B Female ADRP transcript levels. NS changes in
expression- C Mates CD36 transcript levels. CD36 transcript levels were
significantly reduced in ArKO mice on the 2% cholesterol diet compared with
ArKO control mice.* *p<G.O5 and significantly reduced compared with diet matched
WTs, pO.Ol. D Female CD36 transcript levels. NS changes in expression. E
Males FATP2 transcript levels. WT' mice expression increased when fed the 2%
cholesterol diet compared WT control mice, P<0.05. F Female FATP2 transcript
levels. NS changes in expression. G Male FATP5 transcript levels. WT mic
expression levels significantly decreased upon cholesterol feeding, PO.05. H
Female FATP5 transcript levels. Trend for a reduction in expression between
control mice and those on the 2% cholesterol diet, p=0.051. I Male SR-B1
transcript levels. Control ArKO mice had significantly reduced levels expression
compared with WT control mice, *p<0.05. WT mice fed trie 2% cholesterol diet
had significantly reduced levels of expression compared with WT control mice,
*p<0.05. J Female SR-B1 transcript levels. NS changes in expression.
ArKO (KO) white bar. WT black bar. C refers to control diet and 2% refers to 2%
cholesterol diet.
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respectively; Fig 8A). (Conversely, females showed no changes in ADRP expression

regardless of genotype or diet (Fig 8B).

CD36, another fatty acid transporter, showed no difference in levels of expression

between ArKO and WT male mice on the control diet. ArKO male mice had

significantly reduced expression when fed the 2% cholesterol diet compared to ArKO

male mice fed the control diet (p=0.037, Fig 8C) and compared to diet matched WT

male mice (p=0.005, Fig 8C). Females showed no changes in expression regardless of

genotype or diet (Fig 8D).

Fatty acid transporters 2 and 5 (FATP2, FATP5) were also measured. Males had no

significant differences in FATP2 expression between genotypes on either the control or

2% cholesterol diet. Expression of FATP in WT mice increased when fed the 2%

cholesterol diet compared with WT on the control diet (p=0.026, Fig 8E). ArKO males

showed no change in expression of FATP2 between diets. Again females showed no

differences in FATP2 expression, regardless of genotype or diet (Fig 8F).

Similar to FATP2 expression, FATP5 expression in WT male mice was reduced when

fed a diet with 2% cholesterol (p=0.005, Fig 8G). Female mice had reduced levels of

FATP5 expression between control mice and those on the 2% cholesterol diet, however

this was not significant (p=0.051, Fig 8H).

A scavenger B receptor class 1 (SR-B1), which is involved in transport of cholesterol

and fatty acids, was also measured. The male ArKO mice on the control diet had

significantly lower levels of expression compared with WT control mice (p=0.048, Fig

81). There were no differences between ArKO and WT mice when fed the 2%

cholesterol diet. There was also a significant decrease in expression for WT mice fed

the 2% cholesterol diet compared with the WT controls (p=0.013, Fig 81). Female

mice showed no changes in expression (Fig 8J).
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Discussion

Estrogen deficiency leads to obesity in both male and female ArKO mice (8), but only

the males develop hepatic steatosis. From the data presented here, it appears that the

hepatic steatosis in the ArKO male mice is a result of elevated levels of hepatic

triglycerides, although we have previously shown that there is also a modest increase

in the cholesterol content of the male ArKO livers (12). Gone expression studies

revealed increased lipogenesis, indicated by increases in FAS and acca expression and

an increase in fatty acid transport as seen by elevated ADRP expression. There was no

change in the expression of apoE, hence it is likely that there was no compensatory

increase in VLDL production for export of triglycerides from the liver thereby

exacerbating the phenotype. Most interestingly, cholesterol feeding reversed the obese

phenotype of the ArKO mice and also the hepatic steatosis in the ArKO males. Results

of the study are summarised in Table 2.

Effects of Estrogen

Previously, we reported that estrogen deficiency in ArKO mice leads abdominal

obesity (8) and increased lipoprotein lipase (LPL) expression in adipose tissue (11).

LPL catalyses hydrolysis of serum triglycerides releasing free fatty acids (FFA) and

sn2-monoglycerides for uptake into the adipose tissue (26), whereas hormone sensitive

lipase (HSL) catalyses hydrolysis of intracellular triglycerides for release of FFA. (25).

As these free fatty acids are from a central adipose depot rather than a peripheral

adipose depot they are able to drain directly into the portal vein (25). This rise in

hepatic FFA can provide substrate for increased triglyceride synthesis in the liver

(27,28). Additionally, in ArKO males there is also elevated FAS and acca expression,

resulting in increased hepatic fatty acid production, thus contributing further to the
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Table 2. Summary of Results

Parameters Measured

Absence of Estrogen 2% cholesterol diet

M M

Body Weight

Liver Weight

Hepatic Steatosis

Hepatic Triglycerides

Serum Triglycerides

acca

FAS

accp

apoE

ADRP

CD36

FATP2

FATP5

SR-B1

ft
ft

ft

ft

ft

ft

U

U

U

ft

ft

<=>

<=>

ft

<=>

<=>

KO WT KO WT

<=>

<=>

<=> ft ft

<=>

ft

ft ft

<=>

<=>

<=> <=>

<=>

<=>

Absence of estrogen refers to ArKO compared to WT controls, 2% cholesterol diet

compared with control diet, M=male, F=female, KO=ArKO, WT=wildtype
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fatty liver. Insulin inhibits HSL activity in the adipose tissue. However, in this

situation of abdominal obesity, the ability of insulin to inhibit lipolysis is impaired (29-

32) and may lead to further secretion of FFA from adipose tissue (25), thereby leading

to further production of lipids in the liver.

Transport of fatty acids into cells occurs by two main mechanisms, passive diffusion

and facilitated transfer (33). It is probable that facilitated transfer is the main

mechanism of FFA uptake since passive diffusion would be unlikely to account for

observed uptake rates (34,35). ADRP is known to enhance the uptake of long chain

fatty acids (LCFA), but not medium or short chain FA (36). Increased ADRP

expression suggests that LCFA uptake is increased in the estrogen-deficient males.

On the contrary, estrogen deficiency in females had no effects on expression of mRK'A

encoding proteins associated with fatty acid uptake despite elevated levels of FFA and

serum triglyceride levels, though it is possible that these changes are post-

transcriptional.

CD36 is a fatty acid transporter, which belongs to the SR-B1 family of scavenger

receptors and facilitates uptake of FFA and oxidized low density lipoproteins (37).

This transporter has been shown to have sexually dimorphic properties, with higher

protein expression in females (38), indicating a role for sex steroids in its regulation.

In this study, neither estrogen status nor gender had effects on mRNA levels for CD36,

possibly suggesting that estrogen regulates this transporter at the post-transcriptionai

level. Conversely, SR-B1, another scavenger receptor primarily involved in

cholesterol transport, is down regulated in the absence of estrogen, indicated by lower

levels of expression observed in ArKO male mice on the control diet compared with

WT control mice.

Also important for triglyceride regulation in liver is the export of triglycerides from the

liver through VLDL secretion. Hepatic VLDL production is predominantly substrate
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driven and the rate limiting step is FFA availability for new triglyceride synthesis (39).

Apolipoprotein B (apoB) is an important component of the VLDL, however its

regulation occurs post-transcriptionally (40) hence, its transcripts are not an ideal

marker for VLDL synthesis. ApoE is another apolipoprotein present on VLDL, apoE

deficient mice have been shown to have an impaired ability to secret VLDL (40).

ApoE is regulated at the level of transcription and thus its transcript levels are a

suitable marker. Estrogen deficiency did not lead to a change in apoE expression,

likely reflecting no change in VLDL production. For these reasons, the data suggests

that the livers of the male ArKO mice are unable to counteract the elevated fatty acid

production and uptake with increased VLDL output, thereby leading to a fatty liver

phenotype (28). Additionally, Toda et al (41) showed in their male ArKO mouses

model that VLDL fractions from ArKO plasma were no different from those from WT

mice.

We have previously shown that cholesterol homeostasis is altered in the livers of

ArKO mice in a sexually dimorphic manner (12). We show here that this sexual

dimorphism is extended to triglyceride homeostasis. The rodent liver is known to

have sex specific properties due to differing patterns of growth hormone secretion

which may lead to differential expression of cytochrome P450s (42,43). Previous work

in male mice has demonstrated that, pulsatile secretion of GH leads to activation of

JAJC kinases, which in turn phosphorylate Stat5b transcription factor, allowing it to

translocate to the nucleus to activate target genes (44-46). Interestingly, Stat5b null

mice have pale and enlarged livers (44), similar to the ArKO male mice. Thus it is

possible that growth hormone deficiency may lead to hepatic steatosis via a mechanism

involving Stat5b. In this context, growth ho none deficient men have presented with

hepatic steatosis (47) and this was reversed by growth hormone replacement in one
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man (48). Whether or not growth hormone related mechanisms are involved in the

hepatic steatosis of the male ArKO mice is currently under investigation.

Other models of hepatic steatosis are the leptin resistant and deficient mouse models.

Leptin is a peptide hormone that is secreted from adipose tissue, which acts in a

negative feedback fashion on the leptin receptors that are present in the hypothalamus.

Leptin is known to regulate food intake and spontaneous physical activity (49) and

more recently has been shown to inhibit lipogenesis, cholesterol synthesis and to

stimulate fatty acid oxidation (50). Estrogen deficiency in males but not females leads

to cell death occurring in the arcuate nucleus (Arc) and medial preoptic area (MOP)

regions of the hypothalamus (51). The Arc and medial eminence (ME) regions contain

the highest concentration of leptin receptors in the brain (52) hence it is possible that

leptin signalling is reduced in the male ArKO mice, contributing to the sexually

dimorphic lipid phenotype in the ArKO mice.

Effects of a High Cholesterol Diet

Previously, the ArKO mice were challenged with a high cholesterol diet in order to

examine the effects of estrogen on cholesterol homeostasis (12). Surprisingly, the high

cholesterol diet led to a reversal of the obese phenotypes in the ArKO mice and the

hepatic steatosis in the ArKO male mica Estrogen deficiency led to an elevation in

genes regulating lipogenesis in male mice, whereas cholesterol feeding had no

significant effect on genes involved in lipogenesis in either sex. Cholesterol feeding

had different effects on the fatty acid transporters in male mius depending on estrogen

status. Cholesterol feeding had an effect on ADRP expression only in estrogen

deficient males, where it was increased. Expression of another transporte CD36 was

reduced by cholesterol feeding only in estrogen-deficient males. Conversely, the

transporters FATP2 and FATP5 were only altered by cholesterol feeding in estrogen-

replete males. Sexually dimorphism was also observed here, in that FATP5 expression
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was reduced in females after cholesterol feeding regardless of estrogen status. Hence

estrogen and gender play important roles in affecting the ability of cholesterol to

regulate fatty acid transport. These changes however, do not explain lie mechanisms

which have led to the reversal of the hepatic steatosis in the ArKO males. As proposed

earlier, the hepatic steatosis is secondary to the obesity and insulin resistance and

therefore it is possible that clicfesterol is having its effects on the adipose tissue to

reverse the obese phenotype (53), and henos prevent the hepatic steatosis.

In conclusion, we have demonstrated a role for estrogen in the regulation of

triglyceride metabolism in the livers of male but not female mice, indicating a sexually

dimorphic regulation of this important homeostatic pathway.
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Abstract

The aromatase knockout (ArKO) mouse cannot synthesize endogenous estrogens due to

a disruption to the Cypl9 gene. Previously, we have reported that both male and female

A XO mice present with an age progressive obese phenotype, and there is a sexually

dimorphic disruption to hepatic cholesterol and triglyceride homeostasis. Only ArKO

males have elevated hepatic triglyceride levels leading to hepatic steatosis due in part to

an increase in expression of enzymes involved in de novo lipogenesis and transporters

involved in fatty acid uptake. In this study ArKO males were treated with 17|3-estradiol"

(E2) (3 \igj kg/ day) at 18 weeks old for 6 weeks. WT controls were not treated and

ArKO controls received vehicle oil injections. Estrogen replacement led to a reversal of

the previously reported obese and fatty liver phenotypes; this was achieved by

reductions in gonadal, visceral and BAT weights and a significant decrease in hepatic

triglyceride levels. Estrogen deficiency led to a significant up-regulation of hepatic

fatty acid synthase expression which was reduced with E2 replacement, although not

quite reaching significance. Acetyl CoA carboxylase a showed no significant changes.

Adipocyte differentiated regulatory protein, a fatty acid transporter, was significantly

elevated in estrogen deficient males and E2 replacement significantly reduced these

levels. Scavenger receptor class b type 1 showed no significantly changes. This study

reveals that the previously reported disruption to triglyceride homeostasis in estrogen

deficient males can be reversed with E2 treatment, indicating an important role for

estrogen in maintaining triglyceride and fatty acid homeostasis in males.
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Introduction

Hepatic steatosis is linked to insulin resistance (IR) and the 'metabolic syndrome' (1,2).

Features of the metabolic syndrome include central obesity rather than peripheral

obesity, dyslipidemia, characterised by elevated triglycerides, low-density lipoproteins

(LDL) and reduced high-density lipoproteins (HDL) (3). Menopausal women have a

reduction in circulating estrogen levels and this coincides with a shift in body fat from

the gluteal to the abdominal region, thus linking lack of estrogen to central obesity (3).

In addition to this shift in body fat, postmenopausal women have elevated circulating

triglyceride levels compared with premenopausal women, and men in general are also

known to have higher circulating levels of triglycerides compared with women, again

establishing a strong relationship between estrogen and triglyceride levels.

Mouse models of estrogen deficiency also present with dyslipidemia. Specifically, the

aromatase knockout (ArKO) mouse (4) presents with central obesity,

hypercholesterolemia. hyperinsulinemia, hyper] opt inemia and hypertriglyceridemia (5)

and importantly the male mice have hepatic steatosis (5,6). Estrogen receptor a

knockout (aERKO) mice and the estrogen receptor a and p double knockout

(aPERKO) mice (7,8) also display obese phenotype similar to the ArKO mice (5), but

the hepatic phenotype of these animals has not been reported. The estrogen receptor P

knockout (PERKO) mouse does not have a lipid phenotype (8). Thereby suggesting

ERa is the more important ER in lipid homeostasis.

We have reported that the hepatic steatosis present in ArKO males is due to an

accumulation of hepatic triglycerides. Molecular characterisation of this phenotype

revealed that estrogen deficiency in males led to elevated fatty acid synthase (FAS) and

acetyl CoA carboxylase a (ACCa) expression. There was also an increase in
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expression of adipocyte differentiated related protein (ADRP), a fatty acid transporter

present in the liver (6). There was no change in apoE expression, suggesting there was

no compensatory increase in very low-density lipoprotein (VLDL) secretion, which

would allow an increase in hepatic triglyceride clearance, thus further exacerbating the

phenotype (6). Additionally, we failed to observe an increase in fatty acid P-oxidation.

As well as elevated hepatic triglycerides in estrogen deficient male mice, previously we

have reported that male ArKO mice also have elevated levels of hepatic cholesterol (9).

In addition to our model, Toda et al (10) generated another ArKO mouse by disrupting

exon 9 of the Cypl9 gene. They reported the presence of hepatic steatosis due to a

disruption in P-oxidation, shown at the level of gene expression as well as the catalytic

activity of these enzymes. This phenotype was reversed by 17p-estradiol treatment

(11). However they did not indicate if this was sexually dimorphic.

Human models of aromatase deficiency have also been identified (12-16), and like the

ArKO mouse they also present with dyslipidemia. In one male patient hepatic steatosis

was described which was reversed with 17P-estradiol treatment (15).

Therefore the aim of this study was to attempt to rescue the fatty live/ phenotype in the

male ArKO mouse with 17p-estradiol treatment.

Methods

Mice

The ArKO mice were generated by deleting 90% of exon 9 of the Cyp\9 gene as

described by Fisher et al (4). WT and homozygous null offspring were generated by

heterozygous rnatings. The genotype of the offspring was determined by PCR as

described by Robertson et al (17). The animals were housed in specific pathogen-free
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conditions and had unlimited access to drinking water and food. These studies were

approved by the Monash Medical Centre Animal Ethics Committee.

Diets

Soy free mouse chow (Glen Forest stock feeders, Perth, Australia) is the diet used to

feed the mice; it contains no soy products, which are found in regular mouse chow, as

soy is known to have estrogenic effects (18). This diet contains 15% of calories as fat

(0.02% cholesterol), 20% calories as protein and 65% of calories as carbohydrate.

Hormone Preparation

17p-estradiol (Sigma, St Louis, MO) was dissolved in methylene chloride (Unilab, New

Zealand) and added to peanut oil (methylene chloride:oil, 1:2 v/v). The methylene

chloride was evaporated by bubbling with nitrogen and warming the solution to 37 °C.

Vehicle oil injections were identically prepared, omitting 17P-estradiol.

Experimental Design

ArKO males received daily subcutaneous injections of 17P-estradiol (3 \xgl kg/ day)

from 18 weeks of age for 6 weeks. WT controls did not receive any treatment and

ArKO controls received vehicle oil injections.

Tissue Collection and Histology

Animals were weighed, then killed at 24 weeks by CO2 asphyxiation. Blood was

removed by cardiac puncture and stored at -20°C. The liver was removed, weighed and

part of it snap frozen in liquid nitrogen and stored at -80°C for gene and lipid analysis.

Part of the liver was immersion fixed in Bouins fixative then stored in 70 % ethanol.

Fixed samples were embedded in a random orientation in paraffin and sliced into 7 \xm

sections. Sections were then stained with hematoxylin, counterstained with eosin and
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coverslipped with D?X (BDH, UK). Gonadal, visceral and brown adipose tissue (BAT)

pad were also removed and weighed.

Measurement of Hepatic Triglycerides and Cholesterol

Hepatic triglycerides and cholesterol were extracted fi-om liver by homogenising 0.2g of

tissue in 10ml of chloroform/methanol (2:lv/v) (19). Samples were centrifuged for

20min at 800g, the lipid phase removed and the chloroform evaporated. Triglyceride

and cholesterol were quantified using Infinity™ Triglycerides Lipid Stable Reagent

(Thermo Trace, Melbourne, Australia) and Cholesterol Lipid Incorporating Dynamic

Stabilization Technology, (Thermo Trace, Melbourne, Australia), respectively.

Triglyceride and Cholesterol Calibrators were used as references (Sigma USA).

Gene Analysis

RNA was extracted from liver using the phenol-chloroform method (Ultraspec RNA,

Fisher Biotech, Australia) and quantified spectrophotometrically. RNA quality was

assessed on an ethidium bromide (Sigma, USA) agarose (Promega, Life Sciences, USA)

gel. Two-step RT-PCR was performed using random primers (Roche, Germany) and

AMV reverse transcriptase enzyme (Promega Life Sciences, USA). A Lightcycler™

(Roche, Germany) was used to quantitate mouse transcripts using specific primer pairs

(6). Primer pairs were shown to be specific through single peak melting curves and a

single product was seen on an ethidium bromide (Sigma, USA) agarose (Promega, Life

Sciences, USA) gel corresponding to the appropriate product size as measured by a lkb

ladder (Promega, Life Sciences, USA).

All samples were normalized to 18S. All samples were run individually in three

separate reverse transcription reactions and transcripts measured using real time PCR.
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The data wcs presented as the mean of three consistent runs. Inter-assay variability was

assessed using reference cDNA from a control animal in repeated runs.

Statistical Analysis

All graphs were expressed as means ±SEMs and statistics were preformed using

ANOVA, SPSS for Windows version 10.0 (USA). A minimum of five animals were

used per group.

Results

Body Weight

Although ArKO male mice were slightly heavier weight than the WT control mice this

did not reach statistical significance. However, following estrogen replacement (E2),

the body weight of the ArKO mice returned to the weight of the WT control mice

(p=0.002, Fig 1A).

Liver Weight

Control ArKO mice had a significantly heavier liver weight compared with WT control

mice (p=0.026, Fig IB). E2 led to a reduction in ArKO liver weight to levels

comparable with WT controls (p=0.003, Fig IB).

Fat pad weight data

ArKO male control mice had significantly heavier gonadal fat pad weight compared

with WT control mice (p=0.038, Fig 1C). E2 replacement did not significantly reduce

gonadal fat pad weight in the ArKO mice (p=0.111, Fig 1C).

ArKO control mice also had significantly heavier visceral fat pad weight compared with

WT control mice (p=0.027, Fig ID) and E2 treatment significantly reduced visceral fat

pad weight in the treated ArKO mice (p=0.04, Fig ID).
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Figure 1: Organ Weight Data
A Body Weight, there was NS difference WT and ArKO mice, and E2 replacement
significantly reduced body weight in ArKO mice, *p<0.05. B Liver Weight, ArKO mice
have significantly elevated liver weight compared with WT mice, *p<0.05, which is
significantly reduced with E2 replacement, *p<0.05. C Gonadal Fat Pad Weight, ArKO
mice have significantly heavier fat pad weight compared with WT mice, *p<0.05. NS
change with E2 replacement. D Visceral Fat Pad Weight, ArKO mice significantly
heavier than WT, E2 replacement significantly reduced this, *p<0.05. E BAT, NS
differences between controls, and E2 replacement significantly reduced BAT weight,
*p<0.05.
ArKO (KO) white bars, WT black bars, E2 estrogen replacement.
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There were no significant differences between ArKO and WT male mice in BAT weight

(p=0.G98, Fig IE) however E2 replacement in the ArKO mice lead to a significant

reduction in BAT weight compared with ArKO control mice, (p=0.008, Fig IE).

Liver Morphology

ArKO male mice have an accumulation of lipids in their livers (Fig 2B) which are not

apparent in the WT male mice (Fig 2A). Following E2 replacement there was a reversal

of the fatty liver phenotype (Fig 2C).

Hepatic Triglyceride and Cholesterol Levels

ArKO control mice had significantly increased levels of hepatic triglyceride levels

compared with WT controls (p=0.000, Fig 3 A). These levels were significantly reduced

with E,2 treatment (p=0.000, Fig 3 A).

ArKO control mice had significantly elevated hepatic cholesterol levels compared with

WT control mice, (p=0.003, Fig 3B), however, E2 replacement in the ArKO mice did

not significantly affect these levels (p=0.558, Fig 3B).

Expression of transcripts encoding enzymes involved in de novo

synthesis of fatty acids

To explain the changes in body, fat and liver weight; hepatic triglyceride levels

following E2 replacement, liver samples were analysed for expression of various genes,

which have previously been shown to the altered in ArKO male mice.

ArKO control mice showed a significant up-regulation of FAS expression compared

with WT mice (p=0.004). With E2 treatment there was a decrease in FAS expression in

the ArKO mice (p=0.096, Fig 4A), although this did not reach significance.
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Figure 2: Liver Morphology
A WT mice have no lipid droplet. B ArKO mice have lipid droplets. C ArKO mice E2

replacement reduced lipid droplets compared control ArKOs. Scale Bar
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ACCa, another key enzyme involved in de novo synthesis of fatty acids, showed similar

changes however did not reach the level of significance between any of the groups

measured, (Fig 4B).

Gene Expression of fatty acids transporters

ADRP, a fatty acid transporter, was significantly up-regulated in the ArKO male mice

compared to WT control mice (p=0.005), additionally, there was also a significant

decrease in its expression following the E2 replacement in ArKO mice (p=0.003, Fig

4C).

SR-B1 is also involved in uptake of fatty acids and cholesterol uptake but showed no

significant differences between any of the groups (Fig 4D).

Discussion

We have previously shown that estrogen deficiency in male mice leads to hepatic

steatosis (5,6). In the present study we demonstrate that this phenotype can be rescued

by E2 replacement. This treatment significantly reduced hepatic triglycerides, with a

concomitant decrease in lipid droplets; conversely E2 replacement had little effect on

hepatic cholesterol levels. Additionally, estrogen deficiency led to an increase in

transcripts encoding factors involved in lipogenesis and long chain fatty acid (LCFA)

uptake in the male mice and the levels of these transcripts were normalised by E2

replacement. Not only did the E2 replacement have positive effects on the liver but it

also reduced the body weight, visceral pad weight, BAT weight and a trend for a

reduction in gonadal fat pad weight, indicating a general effect of E2 to reduce lipid

accumulation. The results are summarised in Table 2.
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Table 1. Summary of Results

Parameters measured Absence of estrogen Ei replacement
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Absence of estrogen refers to ArKO mice compared to WT mice, E2 replacement 1
1 1

refers to ArKO replaced with E2 compared with ArKO controls.
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There is an increasing body of evidence to suggest that there is a link between hepatic

steatosis, insulin resistance (IR) and obesity (2,20). A key defect in IR is central

adipose tissue resistance to insulin-mediated suppression of lipolysis (21). A

consequence of this resistance is elevated free fatty acid (FFA) levels (21). FFA from

central adipose depots are able to drain directly into the portal blood and promote

hepatic gluconeogenesis which increases hepatic glucose output (2,21), stimulating the

pancreatic p cells to increase insulin secretion, which up-regulates lipogenesis in the

liver (21). Insulin also acts to inhibit lipolysis; however when there is central obesity

these actions are impaired. Thus a positive loop of disregulated lipid homeostasis is

generated, eventuating in hepatic steatosis.

Estrogen deficiency in the male mice leads to hepatic steatosis, probably due in part to

an increase in lipogenesis indicated by increases in FAS and acca expression; E2

replacement lowered the expression of FAS. Despite these findings, other studies have

shown estrogen to be a stimulator of lipogenesis in chick livers (22,23); in the rat liver

(24), and in male Xenopus laevis (25); although in ewes E2 treatment inhibited

lipogenesis (26), this was however in adipose tissue rather than in the liver.

LCFA uptake may also be elevated in the state of estrogen deficiency as seen by

increased levels of ADRP expression. This is reversed with E2 replacement. The

mechanism whereby estrogen regulates ADRP expression is not yet understood,

nevertheless another transporter, FAT/CD36 is also affected by sex steroids (27). These

studies reveal a possible involvement of estrogen in the regulation of FFA transport.

Adipose tissue is believed to have a buffering action by suppressing the release of FFA

into the circulation and by increasing triglyceride clearance (28). In the circumstance of

obesity, adipose tissue function is altered so that buffering is less effective and the
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adipocytes are filled, hence resisting further fat storage (28). Conversely, rodents who

have lipodystrophy also present with IR and diabetes (29-31). This lack of adipose

tissue prevents any buffering of FFA, also contributing to the accumulation of

triglycerides in the liver as well as skeletal muscle and pancreas (30,32). Previously we

have established that in the state of estrogen deficiency in both males and females,

obesity is associated with an increase adipocyie volume (5) and estrogen replacement

reverses the obese phenotype by causing a decrease in adipocyte volume, whereas there

was very little change in adipocyte number (5,33). The present study demonstrated that

E2 replacement in males decreases obesity by reducing gonadal, visceral and BAT

adipose depots. It is possible that the large adipocyte volumes observed in the estrogen

deficient mice (5,33) are unable to buffer the effects of FFA and therefore the liver,

another important site of triglyceride buffering (34), stores trigylcerides as a means of

protecting other sites within the body. E2 acts on the adipose depots to reduce their size

acrd hence obviate the need for the liver to assist in the buffering of triglycerides.

The presence of central obesity is not necessarily a predictor of hepatic steatosis; as

shown in estrogen deficient males and females, both are obese but only the males

present with hepatic steatosis. In this case centrally mediated factors may be playing an

important role; estrogen deficient males show loss of neurones in the arcuate nucleus

(Arc) and medial preoptic area (MOP) regions of the hypothalamus (35). The Arc and

medial eminence (ME) regions contain the highest concentration of leptin receptors in

the brain (36). Leptin is a peptide hormone that is secreted from adipose tissue, which

acts in a feedback fashion on its receptors that are present in the hypothalamus. Its

functions are to regulate food intake and spontaneous physical activity (1) and more

recently it has been shown to mhibit lipogenesis, cholesterol synthesis and stimulate
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fatty acid oxidation (1,36). Leptin deficient models present with hepatic steatosis,

hence there may he a reduction in leptin signalling in the ArKO males which is due to

damage to the hypothalamus that is contributing to the hepatic steatosis.

Growth hormone secretion is also centrally mediated, and growth hormone deficient

patients have also presented with hepatic steatosis (37,38) and reversal has been shown

in one patient by growth hormone replacement (38). Growth hormone is known to act

on liver to regulate the expression of certain cytochrome P450 isoforms in a sexually

dimorphic fashion (39,40). Whether its action extends to triglyceride balance remains

to be determined.

Previously, we have reported that estrogen deficiency in males resulted in elevated

hepatic cholesterol levels, which were further increased by a high cholesterol diet (9).

This present study has shown that although estrogen deficiency led to elevated hepatic

cholesterol levels, E2 replacement in the males did not reverse this phenotype. Thus

hepatic cholesterol levels maybe regulated independently of obesity.

The emergence of estrogen as an important regulator of lipid homeostasis is becoming

increasingly clear. This present study adds further weight to this concept and highlights

the role of estrogen in regulating lipid homeostasis in males, particularly triglyceride

homeostasis.
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The Aromatase Knockout Mouse Presents with a
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The aromatase knockout (ArKO) mouse cannot synthesize en-
dogenous estrogens due to disruption of the Cypl9 gene. We
have shown previously, that ArKO mice present with age-
progressive obesity and hepatic steatosis, and by 1 yr of age
both male and female ArKO mice develop hypercholesterol-
emia. In this present study 10- to 12-wk-old ArKO mice were
challenged for 90 d with high cholesterol diets. Our results
show a sexually dimorphic response to estrogen deficiency in
terms of cholesterol homeostasis in the liver. ArKO females
presented with elevated serum cholesterol; conversely, ArKO
males had elevated hepatic cholesterol levels. In response to
dietary cholesterol, 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductasc transcript levels were significantly reduced in fe-
males, whereas males showed more modest changes. Neither
low density lipoprotein nor sterol regulatory element-binding
protein expression levels were significantly altered by diet or

genotype. The expression ofCyp7a, which encodes cholesterol
7a-hydr«xylase, was significantly reduced in ArKO females
compared with wild-type females and was increased by cho-
lesterol feeding. Cyp7a expression was significantly elevated
in the wild-type males on the high cholesterol diet, although
no difference was seen between genotypes on the control diet.
The ATP-binding cassette G5 and ATP-binding cassette G8
transporters do not appear to be regulated by estrogen. The
expression of acyl-coenzyme Atcholesterol acyltransferase 2
showed a sexually dimorphic response, where estrogen ap-
peared to have a stimulatory effect in females, but not males.
This study reveals a sexually dimorphic difference in mouse
hepatic cholesterol homeostasis and roles for estrogen in the
regulation of cholesterol uptake, biosynthesis, and catabolism
in the female, but not in the male. (Endocrinology 144:
3895-3903, 2003)

THE POSSIBILITY that estrogen may play an important
role in regulating cholesterol homeostasis has been

suggested based on studies showing that premenopausal
women have a lower risk of cardiovascular disease than male
age-matched controls; however, postmenopausally, when
circulating estrogen levels are reduced, their risk rises com-
pared with premenopausal women (1-3). Elevated serum
low-density lipoprotein (LDL) levels have been associated
with an increased risk of cardiovascular disease (4), whereas
high-density lipoprotein (HDL) levels have been shown to
have the reverse effect (5). Oral administration of estrogen io
postmenopausal women results in lowered levels of LDL (4).
This evidence suggests that estrogen plays an important role
in cholesterol homeostasis and is protective in terms of cho-
lesterol-associated pathologies.

Models of estrogen deficiency have been used to gain
insight into the mechanisms of this regulation. These models
are the aromatase knockout (ArKO) mouse (6), the estrogen
receptor a knockout mouse (7), the estrogen receptor j3
knockout mouse (8), and the double estrogen receptor knock-
out mouse (9). ArKO mice presented with age-progressive

Abbreviations: ABCG5, ATP-binding cassette G5; ABCG8, ATP-bind-
ing cassette G8; ACAT2, acyl-coenzyme A:cholesterol acyltransferase 2;
ArKO, aromatase knockout; HDL, high-density lipoprotein; HMG CoA,
3-hydroxy-3-methyl-glutaryl-coenzyme A; LDL, *r"v-density lipopro-
tein; LDLR, LDL receptor; LXR, liver X receptor; t&EBP, sterol regula-
tory element-binding protein; WT, wild-type.

obesity and hepatic steatosis. By 1 yr of age, both male and
female ArKO mice developed hypercholesterolemia, and
male ArKO mice exhibited elevated triglycerides (10). Es-
trogen receptor a knockout and double estrogen receptor
knockout mice presented with a similar phenotype as the
ArKOs (11,12), whereas no lipid phenotype was described
in estrogen receptor J3 knockout mice (12). These results
indicate that in the absence of estrogen there is a disruption
of lipid homeostasis, and presumably this is acting primarily
through ERa. In addition to these mouse knockout models,
three adult men have been reported with aromatase defi-
ciency (13-16), and one adult male with a defect in ERa has
been described by Smith et al. (17). These men showed im-
paired glucose and lipid metabolism (18), and at least one of
the aromatase-deficient patients presented with hepatic ste-
atosis (16, 18).

It is generally recognized that cholesterol homeostasis is a
tightly regulated process, as excess circulating cholesterol is
associated with increased risk of cardiovascular disease (19).
Cholesterol homeostasis is mainly achieved by regulation of
transcription of the enzymes involved in cholesterol synthe-
sis, uptake, and clearance. When sterols in cells are low, the
NH2-terminal domain of sterol regulatory element-binding
protein (SREBP)2 is cleaved so that it can translocate from the
endoplasmic reticulum to the nucleus and up-regulate the
transcription of 3-hydroxy-3-methyl-glutaryl-coenzyme A
(HMG CoA) reductase and HMG CoA synthase, enzymes
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involved in the de nova synthesis of cholesterol. The LDL
receptor (LDLR) is also regulated through this process to
allow the uptake of cholesterol from serum (19). Cholesterol
is cleared from the body via the liver through the bile acid
pathway and also by direct secretion into the bile. The en-
zyme cholesterol 7a-hydroxylase, encoded by the Cyp7a
gene, catalyzes the rate-limiting step in the pathway of bile
acid synthesis and is positively regulated by cholesterol. This
is believed to be mediated, at least in rodents, by the for-
mation of oxygenated cholesterol metabolites that serve as
ligands for liver X receptor (LXR)or, an orphan member of the
nuclear receptor superfamily that is required for Cyp7a tran-
scriptional activity (20). Similarly, the ATP-binding cassette
G5 (ABCG5) and ATP-binding cassette G8 (ABCG8) trans-
porters, responsible for clearing cholesterol from the liver,
are also regulated by LXRa (21).

In the present study the role of estrogen in regulating
cholesterol homeostasis by the liver has been examined using
the ArKO mouse model (6). The aim of the study was to gain
further insight into the role of estrogen to regulate cholesterol
homeostasis. To achieve this, ArKO mice were challenged
with high cholesterol diets, and transcripts of enzymes and
factors involved in cholesterol synthesis, uptake, snd clear-
ance were measured.

Materials and Methods
Mice

The ArKO mice were generated by deleting 90% of exon 9 of the Cypl 9
gene a? described by Fisher el a/. (6). Wild-type (WT) and homozygous
null offspring were generated by heterozygous matings. The genotype
of the offspring was determined by PCR as described by Robertson et
tl. (22). Experimental design and animal usage were approved by the
Monash MedicaJ Center animal ethics committee. The animals were
housed in specific pathogen-free conditions and had unlimited access to
drinking water and food.

Diets

Soy-free mouse chow (Glen Forest Stock Feeders, Perth, Australia)
was the control diet used to feed the mice; it contains wheat meal instead
of the scy meal found in regular mouse chow, as isoflavones in soy are

known to have estrogenic effects (23). This diet contains 15% of calories
as fat (0.02% cholesterol), 20% calories as protein, and 65% cf Tories as
carbohydrate. Intermediate and high cholesterol diets were fed to the
mice to challenge their lipid homeostasis. The intermediate diet had 0.2%
cholesterol added to the soy-free mouse chow; this is 2-fold more than
what is normally needed to maintain homeostasis. The high cholesterol
diet had 2% cholesterol added to the soy-free mouse chow, which is 20-
to 30-fold more than that normally needed to maintain homeostasis.
ArKO and WT males and females were fed the control diet (0% added
cholesterol to a soy-free diet), the 02% cholesterol diet, or the 2% cho-
lesterol diet for 90 d beginning at 10-12 wk of age.

Tissue collection

Mice were killed by cervical dislocation. Truncal blood was collected
after decapitation. Blood was allowed to clot, and serum was collected
and stored at —20 C. The liver was removed, weighed, snap-frozen in
liquid nitrogen, and stored at -80 C for gene and lipid analyses.

Measurement of serum and hepatic lipids

Cholesterol and HDL were quantified in the bloodstream using Cho-
lesterol Flex and automated HDL cholesterol kits, respectively (Dade
Behring, Newark, DE). Hepatic cholesterol levels were quantified after
homogenization of 0.2 g liver in 10 ml chlorofcrm/methanol (2:1, vol/
vol) (20). Samples were centrifuged for 20 min at 800 X g; the lipid phase
was removed, and chloroform was evaporated off. Total cholesterol v»'as
quantified using the Cholesterol 20 kit (352-20, Sigma-Aldrich Corp., St.
Louis, MO).

Gene analysis

RNA was extracted from the liver using the phenol-chloroform
method (Ultraspec RNA, Fisher Biotech, Australia) and was quantified
spectrophotometrically. Two-step RT-PCR was performed using ran-
dom primers (Roche, Mannheim, Germany) and AMV reverse tran-
scriptase enzyme (Promega, Madison, WI). A LightCycler (Roche) was
used to quantitate mouse transcripts using specific primer pairs. Primer
pairs were shown to be specific through a single peak in the melting
curves, and a single product was seen on an ethidium bromide v"agma-
Aldrich Corp.) agarose (Promega) gel corresponding to the appropriate
product size as measured by a 1-kb ladder (Promega). To further confirm
the primer specificity, PCR products were sequenced to confirm their
identities. Primer sequences are shown in Table 1.

All samples woe normalized to 18S. All samples were run individ-
ually in three separate RT reactions, transcripts were measured using
real-time PCR, and then the data were presented as a mean of the three

TABLE 1. Primer sequences and product size

Gene Primer pairs Product size (bp)

HMG CoA reductase

LDLR

SREBP2

Cholesterol 7a-hydroxylase

ABCG5 transporter

ABCG8 transporter

ACAT2

18S

F: 5'-GTGGGACCAACCTTCTACCTCA-3'
R: 5'-ACTGAACTGAAGCGCGGGCAT-3'
F: 5'-GTGGAGGAACTGGCGGCTGAAG-3'
R: 5'-CTCCAGACCTCCCCATCCAGCAC-3'

F: 5'-CACAATATCATTGAAAAGCGCTACCGGTCC-3'
R: 5^TTrTTCTGATTGGCCAGCTTCAGCACCATG-3'
F: 5'-TCTGGGGGATTGCTGTGGTAGT-3'
R: 5'-GTCCACTTCATCACAAACTCCCTG-3'
F: 5'-CTGCTGAGGCGAGTAACAAGAAAC-3'
R: 5'-GTCCl'CCCCTTCAGCGTCAT1CG-3'
F: 5'-GACCTGCCCACGCTGCTCATTCAT-3'
R: 5'-CCGCAGGTTTGTCAGCCAGTAGAT-3'
F: 5'-GAGACAYACCCCAGGACACC-3'
R: 5'-GTTGGCAAAGACAGGGACAC-3'

F: 5'-CGG CTA CCA CAT CCA AGG AA-3'
R: 5'-GCT GGAATT ACCGCGGCT-3'

275

248

200 (47)

230

322

330

133

180

r, Forward; R, reverse.
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consistent runs. Interassay variability was assessed using the same stan-
dards in repeated runs and assessing viie crossing points to ensure
consistency between runs.

Statistical analysis

All graphs were expressed as the mean ± SEM. Univariate ANOVA
was used to detennine overall statistical differences. Genotypes within
a diet were compared using univariate ANOVA. When there were three
diets, Tukey's post hoc test was used to determine significance (SPSS
version 10.0 for Windows, SPSS, Inc., Chicago, IL).

Results
Serum cholesterol levels

Serum cholesterol and HDL were measured in males and
females. Overall, the female ArKO mice had significantly
elevated levels of female serum cholesterol and HDL com-
pared with WT animals (P = 0.015; Fj = 6.716 and P = 0.017;
Fj= 6.427, respectively). For individual diets, the ArKO fe-
males on the control diet had significantly elevated levels of
serum cholesterol compared with WT controls (P = 0.019;
F, = 6.736; Fig. 1A), and serum HDL levels were significantly
elevated in ArKO females on the control diet compared with
control WT mice (P = 0.006; Fu = 12.614; Fig. 1C). No sig-
nificant changes were seen in serum cholesterol or HDL
between ArKO or WT mice on the 0.2% (P = 0.293; Fj = 1.245
and P = 0.455; Ft = 0.609, respectively) or the 2% cholesterol
diet (P = 0.310; Fj = 1.157 and P = 0.291; Fj = 1.261). There
was no significant difference between diets for either serum
cholesterol (P = 0.192; F2 = 1.754) or HDL (P = 0.602; F2 =
0.517).

Conversely, males on the control diet showed no differ-
ence between ArKO and WT in serum cholesterol levels (P =
0.117; F-, = 3.005) or either the 0.2% or 2% cholesterol diets
(P = 0.585; Fj = 0.318 and P = 0.730; Fj = 0.158, respectively;
Fig. IB). When they were fed the 2% cholesterol diet, there

was a significant reduction in serum cholesterol levels for
both genotypes compared with animals on the control diet
(P = 0.012; F2 = 5.562; Fig. IB). There was also a reduction
in serum cholesterol levels in the males fed the 0.2% cho-
lesterol diet compared with animals fed the control diet, (P =
0.056; F2 = 5.562), although it did not reach significance.
Similarly, serum HDL levels did not differ between geno-
types on the control diet (P = 0.429; Fa = 0.686), the 02%
cholesterol diet (P = 0.130; Fj = 2.717), or the 2% cholesterol
diet (P = 0.900; F, = 0.017). However, when they were fed
the 2% cholesterol diet, there was a significant reduction in
HDL levels compared with control-fed animals (P = 0.005;
F2 = 6.353; Fig. ID). There was also was a reduction in serum
HDL levels in males fed the 0.2% cholesterol diet compared
with animals fed the control diet (P = 0.069; F2 = 6.353).

Hepatic cholesterol levels

Hepatic cholesterol levels were measured in both males
and females. Female ArKO mice on the control diet showed
significaruly lower levels of hepatic cholesterol compared
with WT (P = 0.05; Fu = 4.217; Fig. 2A). Hepatic cholesterol
levels were elevated significantly in ArKO and WT females
fed both the 0.2% and 2% cholesterol diets compared with
control-fed animals (P = 0.000 and P = 0.000, respectively;
F2 = 19.239; Fig. 2A). No differences were seen between
genotypes on the 0.2% and 2% cholesterol diets (P = 0.251;
Fj = 1.507 and P = 0.275; Fj = 1.405, respectively). The male
mice showed the opposite effect, namely that ArKO mice on
the control diet had significantly elevated levels of hepatic
cholesterol compared with WT controls (P = 0.000; Fa =
217.187; Fig. 2B). When the male mice were fed the 0.2% and
2% cholesterol diets, there was a significant increase in he-
patic cholesterol levels in all groups compared with controls
(P = 0.000 and P = 0.000, respectively; F2 = 47.439; Fig. 2B).

Male Strain Ckolestaro! Levels

FIG. 1. Serum lipid profiles. A, Female serum &\o-
lesterol levels. Overall, ArKOs have significantly el-
evated serum cholesterol levels compared with WT
animals (P = 0.015; Pj = 6.716). ArKO controls have
significantly elevated scrum cholesterol levels com-
pared with WT controls (P = 0.019; Fx = 6.736). B,
Male serum cholesterol levels. Levels from males on
the control diet were significantly elevated compared
with males fed the 2% cholesterol diet (P = 0.012;
F2 = 5.562). C, Female serum HDL cholesterol levels
Overall, ArKOs have significantly elevated seruri
HDL levels compared with WTs (P = 0.017; F , «
6.427). ArKO controls have significantly elevated st-
rum HDL levels compared with WT controls (P -••
0.006; Fj = 12.614). D, Male serum HDL cholesterol*,
levels. Males on the control diet have significant!;!
elevated levels compared with males on the 2% cho-
lesterol diet (P = 0.O05; F! = 6.353). ArKO O and
WT (•) mice, wtc and koc, WT and ArKO on thiii
control diet; WT 0.2% and KO 0.2%, WT and ArKO
on the 0.2% cholesterol diet; WT 2% and KO 2%, W r
and ArKO on the 2% cholesterol diet. *, P < 0.0',.

Female Strum Cbolef tend Levdl

(6) (O (5) (6)

Female Serum HDL levels

(« (5) («) (9 (5) <«>

D M«le Serum HDL kvdi

* *
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Fenale Hepatic Ckol-rterol Levels

B Male HepadcOcdefteroI Levels

FIG. 2. Hepatic cholesterol levels. A, Fsmale hepatic cholesterol lev-
els. ArKO mice on the control diet have significantly lower levels of
hepatic cholesterol eompaTT;:' ith WT (P = 0.05; Fj = 4.217). Both
genotypes fed the 0.2% and 2 * cholesterol diets have significantly
higher levels of hepatic cholesterol compared control fed animals (P =
0.000; F? = 19.239). B, Male hepatic cholesterol levels. ArKO com-
pared with WT on the control diet had significantly elevated hepatic
cholesterol (P = 0.000; F, = 217.187). ArKO mice fed the 0.2% and 2%
cholesterol diets have significantly higher levels of hepatic cholesterol
compared with diet-matched controls (for both, P = 0.000; F 2 =
47.439). Between genotypes there was a significant difference for both
0.2% and 2% cholesterol diets (P = 0.030; F, = 6.676 and P = 0.O03;
F, = 15.48, respectively). D, ArKO mice; •> WT mice. WTC and KOC,
WT and ArKO on the control diet; WT 0.2% and KO 0.2%, WT and
ArKO on 0.2% cholesterol diet; WT 2 * and KO 2%, WT and ArKO on
2% cholesterol diet. *, P < 0.05; **, P < 0.01.

However, the hepatic cholesterol content of male ArKOs on
the 0.2% and 2% cholesterol diets remained significantly
elevated compared with their diet-matched controls (P =
0.030; Fj = 6.676 and P = 0.003; F^ = 15.48, respectively;
Fig- 2B).

Expression of genes involved in de novo cholesterol
synthesis and uptake

To gain an understanding of the mechanisms that led to
the altered cholesterol homeostasis, real-time PCR was per-
formed to quantdtate the expression of genes involved in
cholesterol metabolism. Transcripts were measured in ArKO
and WT mice on the control and 2% cholesterol diets. Female
ArKO mice on the control diet showed no statistically sig-
nificant change in HMG CoA reductase transcript levels
compared with WT controls (P = 0.269; F, = 1.368) or when
they fed 2% cholesterol (P = 0.568; FT = 0.348; Fig. 3A). When
they were fed the 2% cholesterol diet, there was a significant

reduction in transcript levels for both ArKO and WT females
(P = 0.017; Fj = 6.766; Fig. 3A). For the males, however, there
were no diiferences between genotype on either diet (control
diet P = 1.00; Fj = 0.000; 2% cholesterol diet P = 0.212; F, =
1.778) or between diets (P = 0.130; ¥1 = 2.501; Fig. 3B).

The LDLR is responsible for the uptake of LDL cholesterol
from serum. No changes were seen for males and females
regardless of genotype (LDLR control diet males, P = 0.477;
Fj = 0.552; females, P = 0.774; Fx = 0.087; 2% cho •esterol diet
males, P = 0309; Fj = 1.148; females, P = 0.365; F2 = 0.900)
or between diets (females, P = 0.093; Fa = 3.110; males, P =
0.961; Fi = 0.002; Fig. 3, C and D). SREBP2 is responsible for
the transcriptional regulation of both HMG CoA reductase
and tine LDLR. Its transcripts showed no changes in expres-
sion levels in males and females regardless of genotype (con-
trol diet females, P = 0.248; Fj = 1.056; males, P = 0.217; Fj =
1.763; 2% cholesterol diet: females, P = 0.246; F, = 1.518;
males, P = 0.416; Fj = 0.720) or between diets (females, P =
0.094; Fj = 3.097; males, P = 0.822; ^ = 0.052; Fig. 3, E and F).

Expression of genes involved in the clearance of cholesterol

Cholesterol 7a-hydroxylase catalyzes the rate-limiting
step of cholesterol conversion into bile acids and is encodeu
by the Cyp7a gene. Female ArKO mice had significantly
lower levels of expression of Cyp7a compared with WT con-
trols (P = 0.044; Fj = 4.616; Fig. 4A). When the female mice
were fed the 2% cholesterol diet, there was a significant
elevation in Cyp7a transcript levels in ArKO females com-
pared with ArKO controls (P = 0.049; Vl = 4.414; Fig. 4A).
Cypla expression was lower in male livers compared with
females and was not different in male ArKO and WT on the
control diet (P = 0.726; Fj = 0.130) vs. when they were fed
the 2% cholesterol diet (P = 0.212; Fa = 1.778). However, 2%
cholesterol up-regulated Cyp7a expression in WT males, but
not in ArKO males (P = 0.025; F, = 6.529; Fig. 4B).

The role of the ABCG5 and ABCG8 transporters is to
remove excess cholesterol from both liver and intestine. Fe-
males on the control diet had no difference in both trans-
porter transcript levels between genotypes (ABCG5: P =
0.506; Fj = 0.476; ABCG8: P = 0.631; Fj = 0.245) or when fed
the 2% cholesterol diet (AB.CG5: P = 0.728; F, = 0.128;
ABCG8: P = 0.932; Fj = 0.008; Fig. 4, C and E). Challenge with
the high cholesterol diet resulted in a significant up-regula-
tion in both genotypes compared with controls (P = 0.009;
Fx = 8.514 and P = 0.002; Fa = 12.135, respectively; Fig. 4, E
and C). Similarly, males on the control diet also showed no
differences in transcript levels for ABCG5 and ABCG8 trans-
porters (P = 0.205; Fj = 1.844 and P - 0.231; Fj = 1.653,
respectively) or on the 2% cholesterol diet (ABCG5: P = 0.205;
Fa = 1.844; ABCG8: P = 0.651; Fj - 0.218; Fig. 4, D and F).
However, when the diet was supplemented with 2% cho-
lesterol, there was a significant up-regulation in expression
only for the ABCG8 transporter in both ArKO and WT (P =
0.022; Fj = 6.209); ABCG5 transporter expression did not
change (P = 0.822; Fj = 0.052; Fig. 4, D and F).

Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2)
catalyzes the formation of cholesterol esters from unesteri-
fied cholesterol in the liver. Transcript levels were signifi-
cantly reduced in female ArKO control mice compared with
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A FoMleHMGCoAndaetne B Male HMG C*h radactaie

FIG. 3. Levels of transcripts for genes regulating de novo
cholesterol synthesis and uptake. A, Female HMG CoA
reductase transcript levels. Females on the control diet
have significantly higher levels of transcripts for HMG CoA
reductase compared with 2% cholesterol-fed females (P =
0.017; Fj = 6.766). B, Male HMG CoA reductase transcript
levels. P = NS, changes between genotypes for either Ciet
or between diets. C, Female LDLR transcript levels. P =
NS, between genotypes for either diet or between diets. D,
Male LDLR transcript levels. P = NS, between genotypes
for either diet or between diets. C, Female SREBP2 tran-
script levels. P = NS, between genotypes for cither diet, or
between diets. F, Male SREBP2 transcript levels. P = NS,
between genotypes for either diet or between diets. D,
ArKO mice; • , WT mice. WTC and KOC, WT and ArKO on
the control diet; WT 2% and KO 2%, WT and ArKO on the
2% cholesterol diet.

(6) (6) (6) («) V) (5) («) (6)

WT (P = 0.015; F, = 7.146), No significant changes were seen
between genotypes for the 2% cholesterol diet (P = 0.123; Fj
= 2.836; Fig. 4G). No significant changes were seen in ACAT2
levels for 2% cholesterol-fed animals (P = 0.123; Fj = 2.836).
ACAT2 expression was not different between male ArKO
and WT on the control diet (P = 0.246; ?t = 1.540) or the 2%
cholesterol diet (P = 0.187; Fj = 2.011. Both genotypes, how-
ever, responded with a significant up-regulation of ACAT2
when fed the 2% cholesterol diet (P = 0.04; Fj = 11.014;
Fig.4H).

Discussion

The rodent liver has long been known to have gender-
specific properties, for example, the sexually dimorphic ex-
pression of certain members of the P450 superfamily in-
volved in the metabolism of steroid hormones (24,25). This
difference has been related to the differing patterns of GH
secretion in males and females. We have previously reported
that male ArKO mice are more prone to the development of

hepatic steatosis than are female ArKO mice (26). Herein we
report on a sexually dimorphic regulation of cholesterol ho-
meostasis as revealed by the ArKO phenotype. The results
are summarized in Table 2 and indicate a role for estrogen
in the regulation of cholesterol metabolism by the liver of
female, but not male, mice. On the other hand, the livers of
both sexes responded to a high cholesterol diet in a broadly
similar fashion, although there were some differences in the
details.

Female hepatic phenotype

We observed that although cholesterol feeding did not
result in a rise in serum cholesterol levels in female WT mice,
there was a 3-fold increase in hepatic cholesterol levels. This
was accompanied by a 3-fold decrease in the levels of tran-
scripts for HMG CoA reductase and more modest declines
in the levels of transcripts for the LDLR and SREBP2 (these
did not reach statistical significance). These results are con-
sistent with the concept that dietary cholesterol enters the
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Female Cypln B MaleQ?7a

FlG. 4. Levels of transcripts for genes regulating cho-
lesterol clearance. A, Female Cyp7a transcript levels.
ArKO controls have significantly lower levels of Cyp7a
compared with control WT (P = 0.044; Fj = 4.616).
ArKO females fed the 2% cholesterol diet have signifi-
cantly elevated levels of Cyp7a compared with ArKO
control-fed females (P = 0.049; F, = 4.414). B, Male
Cyp7a transcript levels. A significant increase in Cyp7a
was seen for WT fed 2% cholesterol compared with con-
trol animals (P = 0.025; Fj = 6.529). C, Female ABCG5
transporter t r a n s e p t levels. Control-fed females had
significantly lower levels of ABCG5 transporter com-
pared with 2% cholesterol-fed females (P = 0.009; Fj =
8.514). D, Male ABCG5 transporter transcript levels.
P = NS, differences were seen between genotypes for
either diet or between diets. E, Female ABCG8 trans-
porter transcript levels. Control-fed females has signif-
icantly lower levels of ABCG8 transporter transcript
levels compared with 2% cholesterol-fed females (P =
0.002; Fj = 12.136). F, Male ABCG8 transporter tran-
script levels. Control-fed males had significantly lower
levels of ADCG8 transporter transcript levels compared
with 2% cholesterol fed males (P = 0.022; Fj = 6.209).
G, Female ACAT2 transcript levels. Control-fed ArKOs
had significantly lower levels of ACAT2 compared with
WT controls (P = 0.015; F, = 7.146). H, Male ACAT2
transcript levels. Control-fed males hf: 1 significantly
lower levels of ACAT2 compared with 2% ciwlesterol-fed
males (P = 0.004; Fj = 11.014). ArKO O and WT (•)
mice. WTC and KOC, WT and ArKO on the control diet;
WT 2% and KO 2%, WT and ArKO on the 2% cholesterol
diet. *, P < 0.05.

(6)

C Female ABCG5 transporter D Mate ABCGS transporter

(6) (6) (6) (5) (6) (6)

bloodstream in the form of chylomicrons, which are metab-
olized by peripheral lipoprotein lipase to remove much of the
triglyceride component. The resulting cholesterol-enriched
remnants are then cleared by the liver (27). This cholesterol
entering the liver would then serve to inhibit the de nuvo
synthesis of cholesterol and its uptake by the LDLR, at least
in part by inhibiting the expression of the genes encoding
these protein (19, 28). Such inhibition is believed to be me-
diated primarily by oxysterols formed from the hepatic cho-
lesterol acting to inhibit the cleavage of SREBP2 to form the
N-terminal fragment released from the endoplasmic reticu-
lum. This enters the nucleus to act as a transcription factor
for the genes encoding HMG CoA reductase and the LDLR
(19). In addition, cholesterol has been shown to stimulate the
transcription of Cyp7a, the gene encoding cholesterol 7a-
hydroxylase, the rate-limiting step in bile acid synthesis. This
is believed to be mediated by oxysterols acting as ligands J :?r
LXRa (20, 29). Nevertheless, in the present study Cyp7a
transcript levels were not increased in the wild-type mice
upon feeding cholesterol.

In the case of ArKO mice on the regular soy-free diet,
serum cholesterol levels were elevated, and liver cholesterol
was decreased relative to the WT mice. This is suggestive of
a defect in cholesterol clearance from the blood by the livers
of the ArKO mice. There was a concomitant decrease in
transcript levels for HMG CoA reductase relative to WT, but
little or no change in the levels of transcripts for the LDL

receptor or SREBP2. The most dramatic change was a 3-fold
decrease in transcript levels for Cyp7a. Several studies have
examined the role of estrogens in the regulation of HMG CoA
reductase transcripts and protein with variable results (BO-
SS). The promoter of HMG CoA reductase has an estrogen-
responsive element-like sequence, RED-ERF. (34). Studies to
date are unclear on whether estrogen acts on this in vivo.
HMG CoA reductase activity has been shown to be respon-
sive to estradiol (10 nM) in MCF7 cells and was strongly
inhibited by the antiestrogen ICI 164,384. However, in this
study there were no changes in transcript levels (34). A study
in intact female rats showed a biphasic effect of estrogen.
Whereas physiological levels of estrogen led to an increase
in HMG CoA reductase activity, higher levels of estrogen (1
mg/kg-d) reduced HMG CoA reductase activity back to con-
trol levels. These studies indicated that if estrogen does play
a role in regulating cholesterol synthesis through the regu-
lation of HMG CoA reductase, it appears to be acting at the
level of activity rather than transcription. It may be, there-
fore, that the lower levels of hepatic cholesterol in the ArKO
females compared with controls are due to a down-regula-
tion of HMG CoA reductase activity.

On the other hand, several studies have shown that es-
trogen up-regulates cholesterol 7a-hydroxylase (35-38);
thus, the lack of estrogen action on the livers of the ArKO
females together with the lower hepatic cholesterol levels
may be the reason for the significant decrease in Cyp7a
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FIG. 4. Continued

TABLE 2. Summary of results

E Female ABCG8 transporter
3.5

MaleABCGS transporter

Parameters measured

Serum cholesterol
Serum HDL
Hepatic cholesterol
HMG CoA reductase
LDLR
SREBP2
Cholesterol 7o-hydroxylase
ABCG5 transporter
ABCG8 transpoiter
ACAT2

•f

o
o
>U-
o

O
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o
o
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KO
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F
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KO
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M

WT
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0-
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o
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o
ft

ft
ft

Column 1 refers to parameters measure; column 2 refers to ArKO
compared to WT on the control diet; column 3 refers to 2% cholesterol
diet compared to control diet. F, Female; M, male; KO, ArKO. -ft,
Increase; <U-, decrease; O, no change.

transcript levels that we observed. Thus, the failure of cho-
lesterol feeding to increase Cyp7a transcripts in trie WT liver
may be due to the fact that the gene is already aciivated by
estrogen.

Consistent with these concepts, cholesterol feeding of the
ArKO females resulted in an increase in liver cholesterol to
a lesser extent than in WT animals, but a decline in HMG CoA
reductase transcripts to the levels seen in both ArKO and WT
animals fed cholesterol. There were no changes in the levels

(6) (6) (6) (6)

Female ACAT2 H

(6) (5) (6) (6)

MaleACAT2

(«) (« («) (6) (6) (5) («) (6)

of transcripts for the LDLR and SREBP2. However, most
drvmiatically there was a 4-fold increase in the expression of
Cyp7^ transcript levels upon feeding cholesterol to A;KO
females io levels similar to those seen in WT animals. We
conclude from these studies that in the livers of female mice,
estrogen and cholesterol induce the expression of Cyp7a to
a similar extent, but the effects are not additive. The lack of
change in LDLR transcript levels in ArKO animals compared
with WT is perhaps surprising in the light of reports that
estrogens increase the levels of LDLR and its mRNA (39-41)
and also the high circulating cholesterol levels present in the
absence of estrogen. However, these studies generally em-
ployed pharmacological levels of 17a-ethinyl estradiol, and
so it is unclear whether physiological levels of estradiol have
the capacity to regulate LDLRs. It is aLso important to note
that inhibition of estrogen action with compounds such as
tamoxifen and clomiphene (60 mg/kg) did not decrease
LDLR expression (30). Thus, although estrogen at high con-
centrations is a potent stimulator of the LDLR it may not be
required for normal functioning of the receptor.

Regarding the ABCG cholesterol transporters, it appears that
neither the ABCG5 nor the ABCG8 transporter was affected by
the estrogenic state of the mice, although both were induced by
cholesterol feeding. This is consistent wiith the role of LXRa to
regulate the expression of these transporters (21). In the female
liver, ACAT2 transcript levels were suppressed in the absence
of estrogen; this may indicate a role for estrogen in ACAT2
regulation, or it may possibly be due to lower levels of hepatic
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cholesterol observed in the ArKO females. Cholesterol feeding
raised the levels of ACAT2 expression in the ArKO females to
a value not different from WT.

Male hepatic phenotype

Overall the levels of the various transcripts in the male
livers compared with those of the females would suggest a
similar responsiveness to cholesterol feeding, but a failure to
respond to estrogen. Thus, the cholesterol content of the male
livers was increased upon cholesterol feeding, and this was
actually accompanied by a decrease in circulating levels in
contrast to those in females. There was also an increase in
liver cholesterol in ArKO males, in contrast to a decrease seen
in ArKO females, suggesting that the inhibitory effect of
estrogen deprivation on cholesterol uptake by the female
livers was not present in the males, but that elevated andro-
gens might stimulate cholesterol uptake by the liver. Fur-
thermore, the level of transcripts for Cyp7a increased upon
cholesterol feeding in the WT males, but was not affected by
the estrogenic state of the animals, again in contrast to the
females where the level of Cyp7a was dramatically decreased
in the ArKO livers compared with those in WT mice.

In the livers of male mice, the ABCG8 transporter tran-
scripts behaved similarly to those in the females; namely, a
stimulation upon cholesterol feeding, but no effect of estro-
genic status. However, the ABCG5 transporter was unre-
sponsiw. and the WT levels were 2- to 3-fold less compared
with those in females. In the case of ACAT2, this did respond
to cholesterol feeding with a Mold elevation in transcript
levels. This was in contrast to the female liver, where wild-
type ACA12 transcript levels were elevated 2-fold compared
with those in the male. Estrogen did not appear to affect
ACAT2 expression in the males, in which the absence of
estrogen led to lower transcript levels in the females.

An important question that arises is the origin of the es-
trogen that would influence the livers of WT animals. Es-
trogen levels in WT males are undetectable in the peripheral
circulation, yet the male ArKO liver displays marked hepatic
steatosis (26). An interesting potential source of estrogen that
would affect the livers of both male and female mice is the
gastric mucosa. Recently Ueyama et al. (42) showed that
gastric parietal cells were a potent site of aromatase activity,
which resulted in high circulating estradiol levels in the
hepatic portal vein, but not in the peripheral circulation,
indicating that estradiol was cleared by the liver. Aromatase
activity in gastric mucosa appeared to be roughly equal in
males and females. This, then, would provide a nonsexually
dimorphic source of estrogen to the liver. It may be assumed,
therefore, that the differences between the livers of male and
female mice with regard to the effects of estrogen on cho-
lesterol metabolism must reflect differences in the respon-
siveness of the livers of males and females to the presence of
estrogen. Whether androgens play a role in this differential
responsiveness remains to be ascertained. Alternatively, and
perhaps additionally, the action of estrogen on the liver may
be secondary to action in the brain as a consequence of local
aromatase activity in the brain.. As mentioned previously,
sexually dimorphic differences in the levels of certain hepatic
cytochrome P450 levels have been attributed to different

patterns of GH secretion in males and females (43-45). Res-
olution of this issue must await the generation of a mouse
with a brain-specific inactivation of the aromatase gene.

In conclusion, we have demonstrated a role for estrogen in
the regulation of cholesterol metabolism by the livers of
female, but not male mice, indicating a sexually dimorphic
response in this important hcaneostatic pathway.
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Chapter Five: General Discussion and Conclusions

5.1 Summary

Previously epidemiological studies of postmenopausal women have suggested that

estrogen may play a role in regulating cholesterol and triglyceride homeostasis. The

work described in this thesis has examined the effects of estrogen deficiency in both

male and female mice on hepatic triglyceride and cholesterol homeostasis. Overall

these studies have revealed sexual dimorphism in the regulation of these pathways in

the absence of estrogen, namely that males appear to have a more dramatic phenotype

in the absence of estrogen in terms of triglyceride homeostasis. Conversely,

examination of cholesterol homeostasis revealed alterations in both estrogen deficient

males and females, however this disruption differs between the genders. Therefore

these studies reveal that estrogen is required for normal lipid homeostasis in both

males and females, but the mechanisms by which estrogen regulates homeostasis

differs. This is particularly important finding in terms of searching for suitable drugs

to treat lipid abnormalities in both sexes.

After cholesterol was added to the diets of the mice to challenge cholesterol

homeostasis, the hepatic steatosis present in estrogen deficient males was reversed

and serum triglyceride levels in estrogen deficient females were lowered. Increased

dietary cholesterol also lowered serum cholesterol levels in the estrogen deficient

males, however the mechanisms are not completely understood.

5.2 Triglyceride homeostasis

Estrogen deficiency in male mice leads to hepatic steatosis due to an accumulation of

hepatic triglycerides (described in chapter two). To elucidate the mechanism that lead
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to this disruption, gene expression of key enzymes involved in triglyceride

homeostasis was measured using real time PCR. These data revealed increased

lipogenesis as indicated by increases in FAS and ACCot expression and an increase in

FA transport as seen by elevated ADRP expression. Due to the elevated level of

hepatic triglycerides one might expect a compensatory increase in VLDL production

for export of triglycerides from the liver. However, the measurement of apoE

expression revealed no change, possibly indicating that t&erc was no increased output,

thereby exacerbating the phenotype. We did not however, see any alterations in FA p-

oxidation unlike one other group with an ArKO mouse model, where they showed it

was decreased. Surprisingly estrogen deficient females did not display any alterations

in hepatic triglyceride homeostasis. The only disruption the ArKO female mice

displayed was elevated levels of serum triglycerides.

The incidence of obesity is approaching epidemic proportions in the western world

and a consequence of this condition is hepatic steatosis. Central obesity, which is

what is commonly associated with estrogen deficiency, rather than peripheral obesity,

is related to the condition IR or the 'metabolic syndrome'. Previously, we have

shown that estrogen deficiency leads to obesity in both genders (Jones et al. 2000).

This obesity is due to increased adipocyte volume (Jones et al. 2000), which is a

consequence of increased filling of the adipocyte. Gene expression studies reveaied

increased LPL expression in adipose tissue (Misso et al. 2003b), which catalyses

hydrolysis of serum triglycerides releasing FFA and sn2-monoglycerides for uptake

into the adipose tissue (Fredrikson & Belfrage 1983). Therefore estrogen deficiency

appears to lead to increased uptake of FFA into adipose tissue. Release of FFA from

adipocytes is dependent on HSL. It catalyses hydrolysis of intracellular triglycerides

(Lewis et al. 2002) allowing the release of FFA, which are then able to drain directly
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into the portal vein as they are from a central adipose depot rather than a peripheral

adipose depot (Lewis et al. 2002). However in the case of the ArKO mouse no

change was seen in HSL expression, even though HSL is regulated via stimulation of

the catalytic activity via a cAMP-dependent mechanism (Morimoto et al. 2001;

Okuda et al. 1994). Hence there may be changes posttranscriptionally. This rise in

FFA can provide substrate for increased triglyceride synthesis in the liver (Bergman

1997; Haque & Sanyal 2002). Increased triglyceride synthesis likely occurred in the

estrogen deficient males as seen by elevated FAS and ACCa expression, which would

result in increased hepatic FA production and resulting triglyceride synthesis, thus

contributing to the fatty liver phenotype. Insulin is known to inhibit HSL activity in

the adipose tissue. However, when there is increased abdominal adiposity, the ability

to inhibit insulin lipolysis is impaired (Chitturi et al. 2002; Day 2002; Youssef &

McCullough 2002; Marchesini et al. 2001), possibly leading to further secretion of

FFA from adipose tissue (Lewis et al. 2002), thereby leading to further production of

lipids in the liver, establishing a positive feedback mechanism of disregulated FA

homeostasis. hi addition to insulin inhibiting HSL activity, it is also known to

stimulate hepatic gluconeogenesis thereby increasing hepatic glucose output. This

acts back on the pancreas, and in the case of normal pancreas function there is a

further increased ii?.sulin output, resulting in normoglycaemia. This is observed in

older ArKO mice, where their insulin levels are elevated, however serum glucose

levels remain normal (Jones et al. 2000). However as described earlier, in the

situation of increased abdominal obesity insulin has little effect, thereby further

contributing to the lack of normal regulation of lipid homeostasis.

Based on this concept, adipose tissue serves as a buffer to the release of FFA into the

circulation (Frayn 2002). When there is obesity this alters adipose tissue function and
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thus makes buffering less effective as the adipocytes are filled, hence resisting further

fat storage (Frayn 2002). In addition to adipose tissue the liver also has a high

capacity for storage of triglycerides. Hence, if the ability of adipose tissue to store

triglycerides is compromised, this then increases the need for the liver to acts as a

storage centre (Gibbons et ah 2000). Rodents who present with lipodystrophy, where

there is no adipose tissue and hence are unable to buffer FFA, add further support to

this theory. In this situation there is an accumulation of triglycerides in the liver as

well as skeletal muscle and pancreas (Kim et ah 2000; Koyama et ah 1997). E2

replacement in the ArKO males, described in chapter 3, revealed a reversal of their

obese phenotype by reducing gonadal, visceral and BAT fat pad weights. In addition

to this there was reversal of the hepatic steatosis. This again suggests that adipose

tissue mr." rct as a buffer for triglycerides, as E2 may have acted on the adipose

depot. • 0 reduce their size and hence obviate the need for the liver to assist in the

bu, •:... jf triglycerides.

Previously, we have shown that estrogen deficiency in both genders causes obesity,

which is associated with an increased adipocyte volume (Jones et ah 2000). Estrogen

replacement in the females was able to reverse this phenotype by causing a decrease

in adipocyte volume, whereas there was very little change in adipocyte number (Jones

et ah 2000; Misso et ah 2003b). This was also associated with a decrease in LPL

expression, thereby the adipocytes are not taking up as much FFA, a possible

explanation for their decrease in size.

In addition to increased synthesis of FA contributing to the hepatic steatosis, LCFA

uptake may also have been increased, as seen by elevated levels of ADRP expression.

This could be reversed with E2 replacement. Additionally, ADRP has been localised
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to neutral lipid storage droplets in a wide variety of cells suggesting that it plays a role

in the management of neutral lipid stores (BrasaenJe et al. 1997). Another

transporter, FAT/CD36 is also affected by sex steroids (Fitzsimmons et al. 2002).

Female rats have higher levels of protein expression compared with males, and

castration of both sexes leads to comparable expression. In the study described in

chapter 2, mRNA expression of FAT/CD36 was measured and there was no effect by

estrogen or by gender. Hence any regulation of estrogen may possibly be

posttranscriptional. These studies suggest a possible involvement of estrogen in the

regulation of FFA transport.

Another contributing factor in the development of hepatic steatosis is transport of

triglycerides out of the liver. Apo E is a lipoprotein present on the surface of VLDL.

As described in. section 1.36, mRNA expression was measured and there were no

changes regardless of estrogen status. Additionally, preliminary data measuring

MTTP showed no changes in expression. MTTP catalyses lipid transfer to the apoB

polypeptide, and participates in the formation of triglyceride rich droplets present in

the ER which are also able to fuse with apoB particles. Together this data suggests

that there was also no increase in hepatic triglyceride output despite the increase in

FA synthesis and uptake. Another group, which has generated an estrogen deficient

ArKO mouse also, measured VLDL and found no changes in serum levels regardless

of estrogen status (Toda et al. 2001), further supporting our finding.

5.3 Cholesterol Homeostasis

Like trigiyceride homeostasis estrogen deficiency resulted in disrupted cholesterol

homeostasis. In female mice there was increased serum cholesterol and HDL levels
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and decreased hepatic cholesterol, whereas in males there v/as increased hepatic

cholesterol and no changes in serum cholesterol or HDL levels, as described in

chapter three. Transcripts of key enzymes in the cholesterol metabolism pathway

were measured and estrogen deficiency had very little effect on these in males,

however effects observed in females. Cyp7a, which encodes cholesterol 7a-

hydroxylase, was significantly reduced in the state of estrogen deficiency, as was

ACAT2, which is involved in cholesterol esterification. This was despite previous

studies showing that estrogen is able to stimulate Cyp7a expression and cholesterol

7a-hyroxylase activity. These decreases in the expression of the genes, may be due to

lower levels of hepatic cholesterol present in the estrogeu deficient females rather

than a direct effect on the genes thTnselves. Although there were changes in hepatic

cholesterol concentration in the absence of estrogen in ArKO females, there were no

changes in the expression of HMG OoA reductase between ArKO females and WT

controls. As discussed in section 1.351 estrogen has been shown to affect HMG CoA

reductase activity, rather than affecting transcription and this may possibly explain a

lack of change at the levels of gene expression.

Considering the changes to serum and hepatic cholesterol levels in both male and

female estrogen deficient mice, it was perhaps surprising to not find greater changes

in expression of these enzymes, in particular the lack of changes in the LDLR despite

elevated serum cholesterol Additionally, estrogen has been shown to be quite a

potent stimulator of LDLR expression (described in Section 1.352). However,

antiestrogens such as tamoxifeh and raloxifen were unable to inhibit LDLR

expression, suggesting that estrogen withdrawal does not necessarily cause a decrease

in LDLR expression.

I
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In estrogen deficient male mice elevated hepatic cholesterol levels were unable to be

reversed by E2 replacement, (described in Chapter three). This is in contrast to hepatic

triglyceride levels which were reduced by E2 replacement. The E2 replacement was

given to the animals at 18 weeks of age for six weeks, thus suggesting that estrogen

may play a role in neonatal prograjunaing of cholesterol controlling mechanisms. This

has been shown in the expression °f some cytochrome P450 genes (Cyps), namely

that the absence of estrogen leads t o a lack of expression of certain P450 isoforms.

Furthermore the expression of sorne 1*450 isoforms can be restored by E2 replacement

in adulthood, however not all isofor*ns (described in Section 1.252) (Yamada et al.

2002). This indicates that estrogen is important for expression of certain liver

enzymes, and in some circumstances it is required neonatally.

5.4 Sexually dimorphic ph^notypes

Estrogen deficiency led to sex^ ty dimorphic effects in both triglyceride and

cholesterol homeostasis (described in Chapters two and four). The rodent liver is

known to have sex specific properties due to different patterns of GH secretion, in that

secretion of GH is pulsatile in m a l e s and females however, with have large intervals

in between pulses in males ^ d shorter frequency in females. These differing

secretary patterns lead to differential expression of liver cytochrome P450s

(Gustafsson et al 1983a; Gustafsson et al 1983b). It has been shown that in males,

pulsatile secretion of GH leads t o activation of JAK Kinases, which in turn

phosphorylate Stat5b transcription factor, allowing it to translocate to the nucleus to

activate target genes (Davey et al 1999a; Davey et al. 1999b; Sueyoshi et al. 1999).

Interestingly, Stat5b null mice n a v e pale and enlarged livers (Davey et al 1999a),

which is similar to the ArK.0 r^ales. Thus it is possible that growth hormone
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deficiency may lead to hepatic steatosis via a mechanism ?nvolving Stat5b.

Interestingly, growth hormone deficient men have also presented with hepatic

steatosis (Takano et al. 1997) and in one male this was reversed by growth hormone

replacement (Ichikawa et al. 2003). Estrogen deficiency in males but not females

leads to cell death occurring in the arcuate nucleus (Arc) and medial preoptic area

(MOP) regions of ths hypothalamus (Hill et al. 2003). Whether or not this leads to a

disruption to growth hormone secretion in the male ArKO mice is currently being

investigated.

In addition to the ArKO model, other models of estrogen deficiency have shown

alterations in sex-specific cytochrome P450s. In the aERKO female mice there was

repression of the female-specific Cyp2a4 gene and subsequent expression of the male

specific Cyp2d9 gene, which also remained expriitf-ied in aERKO males.

Additionally, the transcription factor Stat5b had nuclear localisation in both genders

of the ccERKOs, where normally this would only occur in males, which is due to the

differences in growth hormone secretion. When the mice were hypophysectomised

Stat5b was undetectable in liver extracts of female aERKOs, indicating this

regulation is through growth hormone (Sueyoshi et al. 1999). This study implies that

ERa plays a key role in regulating growth hormone secretion in both genders and

hence may a play a role regulating the sexual dimorphic expression of hepatic P450s.

Additionally, one of the ArKO mouse models revealed that the absence of estrogen

led to disruptions to hepatic P450 expression (described in Section 1.252), adding

further evidence to the importance of estrogen signalling for normal hepatic enzyme

expression.
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Obesity in both genders leads to increased leptin secretion (Jones et al. 2000). Leptin

is a peptide hormone that is secreted from adipose tissue and signals to the leptin

receptors that are present in the hypothalamus to suppress food intake. Additionally,

leptin is known to regulate spontaneous physical activity (Zhang et al. 1994) and

more recently has been shown to inhibit lipogenesis, cholesterol synthesis and to

stimulate fatty acid oxidation (Muoio & Lynis 2002). Leptin resistant and deficient

mouse models also present with hepatic steatosis. As mentioned earlier leptin signals

to the leptin receptors present in the hypothalamus and specifically the Arc and ME

regions which contain the highest concentration of leptin receptors in the brain

(Sainsbury et al. 2002). This is one of the areas of the hypothalamus in the male

ArKO mice where cell death is occurring. Hence it is possible that despite the

elevated serum ieptin levels in the estrogen deficient males, leptin signalling may be

reduced, contributing to the hepatic steatosis in the ArKO mice.

5.5 Effects of a high cholesterol diet

In an attempt to examine the role of estrogen in regulating cholesterol homeostasis, I

challenged the mice with high cholesterol diets and found some very surprising and

interesting findings. Despite the disruptions to cholesterol homeostasis in the absence

of estrogen, namely that males had elevated hepatic cholesterol levels and females

presented with elevated serum cholesterol levels, the addition of cholesterol to the diet

had much the same effect within genders, regardless of estrogen status (summarised in

Table 2 Chapter four).

The high cholesterol diet had a greater effect on triglyceride homeostasis (summarised

in Table 2 in Chapter two), namely it led to the reversal of the obese phenotype in

both genders and of the hepatic steatosis in the ArKO males, due to a decrease in
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hepatic triglycerides. Cholesterol feeding had no significant effect on genes involved

in lipogenesis in either sex, therefore this was not the mechanism which lead to the

reversal of the hepatic steatosis. The fatty acid transporters in males were affected

differently by the high cholesterol diet and depended on estrogen status. Specifically,

ADRP expression was increased by cholesterol feeding only in estrogen deficient

males. Conversely, expression of CD36/FAT was reduced by cholesterol feeding

only in estrogen-deficient males. The transporters FATP2 and FATP5 were only

altered by cholesterol feeding in estrogen-replete males. Sexual dimorphism was also

observed here, in that FATP5 expression was reduced in females after cholesterol

feeding regardless of estrogen status. Hence estrogen and gender play important roles

in affecting the ability of cholesterol to regulate fatty acid transport. These changes

however, do not explain the mechanisms which have led to the reversal of the hepatic

steatosis in the ArKO males. As proposed earlier, the hepatic steatosis is secondary to

the obesity and insulin resistance. Cholesterol feeding also led to a reduction in body

weight, which was reflected by a decrease in gonadal fat pad mass and therefore it is

possible that cholesterol is having its effects on the adipose tissue to reverse the obese

phenotype, and hence prevent the hepatic steatosis. This reduction of gonadal fat pad

mass was due to a decreased adipocyte volume reflected in a decrease in T,PL

expression (Misso et al. 2003a). Smaller adipocytes may in this case therefore lead to

reduced FFA to be taken up by the liver, thereby reversing the hepatic steatosis.

5.6 Conclusions

Estrogen deficiency in both males and females leads to a disruption in lipid

homeostasis. Interestingly, despite estrogen deficiency in both genders, the

mechanisms of these disruptions are sexually dimorphic. Furthermore, estrogen
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deficiency in males leads to a more dramatic phenotype when examining triglyceride

homeostasis. Therefore the work presented in this thesis has further extended the

notion that estrogen is critical for lipid homeostasis, and highlighted its importance in

males.

1
1
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ABSTRACT

The estrogen deficient aromatase knockout (ArKO) mouse develops obesity by three months of

age, marked by an increase in the weights of gonadal and infrarenal fat depots. The onset of

obesity is characterised by pronounced hypertrophy of adipocytes in these mice with

corresponding increases in transcripts encoding factors involved in the development of

adiposity. The absence of aromatase in mice and in humans with natural mutations of the

aromatase gene also leads to a metabolic syndrome in particular, hepatic steatosis. In the

ArKO mouse, this hepatic steatosis along with increased body weight, surprisingly, is prevented

by cholesterol feeding. In the present study we sought to investigate whether the reduction in

body weight upon cholesterol feeding is reflected in gonadal fat depots since these depots

account for a large percentage of body weight in the ArKO mouse. Indeed gonadal fat depots

of female ArKO mice were significantly reduced upon cholesterol feeding. Concomitantly,

stereological examination revealed that the adipocyte hypertrophy of the ArKO mouse was

dramatically reduced upon cholesterol feeding. Transcriptional analysis using real-time PCR

revealed concurrent changes with adipocyte volume in the levels of transcripts encoding

lipoprotein lipase and caveolin-1. Little change was observed in levels of transcripts for factors

involved in de novo fatty acid synthesis, p-oxidation, differentiation and cholesterol metabolism

suggesting that cholesterol feeding causes a decrease in the hypertrophy of the adipocytes

resulting from estrogen deficiency, primarily as a consequence of changes in levels of

expression of lipoprotein lipase and therefore fatty acid uptake.
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INTRODUCTION

Adipocyte hypertrophy is characterised by volume expansion of the adipocyte from excessive

accumulation of intracellular lipid. The balance of three main processes determines adipocyte

volume: namely, lipogenesis, iipolysis and lipid oxidation. Lipogenesis can involve de novo

synthesis of fatty acids from acetyl CoA and employs acetyl CoA carboxylase (ACC) (1) and

fatty acid synthase (FAS) (24). In this case the glycerol component is derived from glycerol-3-

phosphate, which in turn is formed by reduction of dihydroxyacetone phosphate (4;5).

Adipocyte triglycerides can also be derived from the metabolism of serum lipoproteins such as

chylomicrons and very low-density lipoproteins (VLDL) (6-8), which contain apolipoprotein Cll

(9-11). Bound to glucosaminoglycans on the luminal surface of capillary endothelial cells (12),

lipoproiein lipase (LPL) hydrolyzes the ester bonds at the 1,3 positions of the triglycerides

leading to the release of free fatty acids (FFA) and sn2-monoglycerides, which are taken up by

the adipocyte and resynthesized into new triglyceride (13). Lipolysis results in the hydrolysis of

intracellular triglyceride to FFA and glycerol via the action of the enzyme hormone sensitive

lipase (HSL) (13;14). These constituents can either be released into the bloodstream and

taken up by the liver (15) or else the fatty acid components can be subjected to the process of

mitochondrial p-oxidation which involves enzymes such as carnitine palmitoyl transferase 1

(CPT1) (16) and the long (LCAD) (17;18) and medium chain (MCAD) acyl CoA

dehydrogenases(19). 3
3

There are many models of adipocyte hypertrophy, resulting from either genetic consequence,

such as the Zucker (fa/fa) rat (20) or diet manipulation. High fat diets have been used widely,

in which the development of adipocyte hypertrophy precedes the induction of obesity (21-23).

Recently, a transgenic mouse model was developed, in which SREBPIa is over expressed in
s

I
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adipocytes, resulting in a rise in intracellular fatty acid synthesis and secretion, thus

contributing to a fatty liver (24). Morphologically, this phenotype is similar to that which we

found in the aromatase knockout (AiKO) mouse. We have shown that the obese phenotype of

the estrogen-deficient ArKO mouse is characterised by pronounced adipocyte hypertrophy in

gonadal fat depots and further that this was attributed predominantly to LPL action in females

(25). Further metabolic studies in our ArKO mouse reveal the presence of

hypercholesterolemia, hypertriglyceridemia and hyperieptinemia in male and female mice (26).

This obese model also displays hepatic steatosis in males, which along with increased body

weight, surprisingly, is prevented upon cholesterol feeding (27).

Since gonadal fat accounts for a large percentage of body weight in the ArKO mouse (26), we

sought to determine whether the reduction in body weight upon cholesterol feeding is also

reflected in gonadal fat depots. Adipocyte volume has previously been associated with

cholesterol availability, such that Le Lay et al (28) reported that cholesterol depletion induced

hypertrophy of isolated rat adipocytes. To this end we examined gonadal fat depots

morphologically and transcriptionally, using stereological methods as well as real-time PCR to

investigate the mechanisms involved in cholesterol and lipid metabolism in response to

cholesterol feeding in the ArKO mouse. We report here novel findings of the interaction

between estrogen and cholesterol in regulating lipid metabolism in gonadal fat depots.
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MATERIALS AND METHODS

Mice. ArKO mice were generated by the disruption of the aromatase gene (Cyp19) via

insertion of a neomycin resistance cassette into exon 9 as described by Fisher et al (29).

Heterozygous males and females were bred to produce WT and homozygous-nuil offspring.

Mice were genotyped by PCR as described by Robertson et al (30). Animals were maintained

under specific pathogen-free conditions and had unlimited access to drinking water as

described (26).

Diet At 10-12 wk of age, female WT and ArKO mice were randomly assigned to receive either

control diet or high cholesterol diet for a period of 90d. The control diet consisted of a soy-free

mouse chow (Glen Forest Stock Feeders, Perth, Australia) as described by Hewitt et al (31).

The high cholesterol diet consisted of the soy-free mouse chow, supplemented with 2%

cholesterol, which is 100 fold more than normal chow.

Tissue Collection. At 24 wk of age, mice were humanely killed by cervical dislocation. Blood

was collected following decapitation and was allowed to clot. The serum was separated and

stored at -20°C. Gonadal fat was removed and the wet mass measured. Of the total gonadal

fat collected, 100mg was immersion-fixed in Bouins fluid, and stored in 70% alcohol at 4°C for

stereological analysis; 100mg was digested for counting experiments as described below and

the remainder was snap frozen in liquid nitrogen, and stored at -80°C for transcript analysis.

All experiments conformed to the National Health and Medical Research Council (Australia)

ethics code of practice.
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Adipocyte Number. Fresh gonadal fat was digested in filtered Krebs buffer containing 8.4ml

5X salt solution (4.5% NaCI, 0.23% KCI, 0.11% KH2PO4, 0.19% MgSO4-7H2O, 0.9% CaCI2in

sterile H2O), 1.3% NaHCO3, 4% bovine serum albumin, 0.2% dextrose and 240U/ml

collagenase in sterile H2O. The digest was filtered through gauze to remove debris.

Adipocytes were stained with methylene blue and 10pJ aliquots were used for counting in a

hemocytometer.

Adipocyte Volume. Bouins-fixed gonadal fat was processed in a Histokinette (Leica,

Melbourne, Australia), embedded with a random orientation in paraffin and sliced into 10//m

sections. Sections were stained with hematoxylin, counterstained with eosin, then cover

slipped with DPX (BDH, Poole, UK). Adipocyte volume was determined at X10 magnification

as described by Jones et al (26), using CASTGRID Version 1.10 (Olympus Corp., New Hyde

Park, NY) on an Olympus Corp. BX50 microscope.

RNA Extraction and Quantification. Total RNA was isolated from 100mg frozen gonadal fat

using the phenol/chloroform extraction method (Ultraspec RNA, Fisher Biotec, Perth, Australia).

RNA was treated with ribonuclease-free deoxyribonuclease (Ambion Inc., Austin, TX). Total

RNA was quantified using UV absorption at 260nm and RNA integrity was confirmed via 1%

agarose gel electrophoresis.

RNA Expression. Total RNA was isolated from 100mg frozen GAT using the

phenol/chloroform extraction method (Ultraspec RNA, Fisher Biotec, Perth, Australia). RNA

(1p.g) was reverse transcribed (RT) with Expand buffer, 10mM dithiothreitol, 20mM

deoxynucleotide triphosphate mix, 20U/reaction ribonuclease I (Roche, Mannheim, Germany),

50U/reaction Expand (Roche) enzyme and sterile H2O to a final volume of 20jil. cDNA was
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diluted five times and amplified by real-time PCR in the Lightcycler (Roche) using Fast Start

Master SYBR Green I (Roche) and specific oligonucleotide pairs designed to amplify a

transcript that spans a minimum of two exons to avoid DNA contamination. Oligonucleotide

sequences are shown in Table 1. Real-time PCR data were calculated as a ratio of transcript

molecules per microgram of total RNA since we have previously demonstrated that transcripts

routinely employed as internal standards are altered by the estrogen deficient state of the ArKO

mouse (25).

Statistical Analysis. Study groups consisted of n=5-7. Data are expressed as mean ± SEM.

Comparisons between groups were made irfag univariate analysis of variance and Tukey's

post hoc test was used to determine significance (SPSS 10.0, SPSS Inc., Chicago, IL).
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TABLE 1. Oligonucleotide Sequences

Transcript Sense Primer (5'-3f) Antisense Primer (5'-3') Product Size (bp)

LPL

FAS

ACCa

ACCp

CPT1

LCAD

SREBP2

AGTAGACTGGTTGTATCGGG

CACAGATGATGACAGGAGATGG

TGTTTGGGGTTATTTCAGTGTTGC

CCGTGCCCTGTGCCAACCATA

ATTCTGTGCGGCCCTTATTGGAT

GCTGCCCTCCTCCCGATGTT

CACAATATCATTGAAAAGCGCTACCGGTCC

LDL receptor r GTGGAGGAACTGGCGGCTGAAG

HMG CoA reductase GTGGGACCAACCTTCTACCTCA

Caveolin-1

CD59

CTGAGAAGCAAGTGTATGACG

GACTCATCTTACTCCTGCTGCTTCT

AGCGTCATCAGGAGAAAGG

TCGGAGTGAGGCTGGGTTGAT

TGTCCAGCCAGCCAGTGTCG

GCAGCCGCTCCCCTTCATTCT

TTTGCCTGGGATGCGTGTAGTGT

ATGTTTCTCTGCGATGTTGATG

TTTTTCTGATTGGCCAGCTTCAGCACCATG

CTCCAGACCTCCCCATCCAGCAC

ACTGAACTGAAGCGCGGGCAT

CAAAGTAAATGCCCCAGATGAG

AACACCTTTGATACACTTG

PPARy TTGACAGGAAAGACAACGGA GAGCAGAGTCACTTGGTCATT
Hybridisation probes TTTTTCAAGGGTGCCAGTTTCGATCC Flouro 3' Red 640 TAGAAGCCGTGCAAGAGATCACAGAGTATG 3'

280

205

236

171

395

258

200(47)

248

275

249

174

246

3wSS»aS*teS^Ssas«i&^



. Appendix

RESULTS

Gonadal Fat Depots

Gonadal fat mass is significantly greater in 24-week-old ArKO mice compared with WT mice,

consistent with previous findings in yorjiger mice (26). Interestingly, cholesterol feeding

resulted in a dramatic reduction in the mass of these depots to values comparable to that of

WT mice (Figure 1).

Adipocyte Number

The number and volume of adipocytes determine gonadal fat mass. Adipocyte counting

experiments reveal that while the number of adipocytes is unaffected by cholesterol in ArKO

mice, WT mice fed a high cholesterol diet have significantly greater numbers of adipocytes than |
i

WT mice fed a control diet (Figure 2). The hyperplasia observed in gonadal fat of 10-12 wk old f

ArKO mice (25) is not seen in these older mice (24-week-old). f

i
Visual Assessment of Photomicrographs I

Visual examination of adipose tissue cross sections confirmed that the diameters of the I

adipocytes from gonadal fat of ArKO mice are much greater than those of WT, as seen in I

younger mice (25;26). Moreover, cholesterol feeding caused a dramatic reduction in the f

diameter of ArKO adipocytes from gonadal fat (Figure 3A). f

Adipocyte Volume

Stereological examination of adipocyte volume confirmed that these changes seen in adipocyte

diameter were characteristic of a significant increase in the volume of adipocytes from gonadal

fat of ArKO mice compared to that of WT mice as shown in figure 3B. Figure 3B also
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Figure 2. Adipocyte Number. Fresh gonadal adipose tissue was digested in collagenase, stained
with methylene blue and adipocytes were counted with a hemocytometer. Results are presented
as mean ± SEM. **p<0.01.
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Appendix

demonstrates a decrease in adipocyte voiuns in gonadal fat of ArKO mice fed a high

cholesterol diet, thus reversing hypertrophy in these mice.

Real-time PCR

In order to investigate the molecular mechanisms behind these morphological changes, real-

time PCR was employed to quantify the levels of transcripts encoding enzymes and factors

involved in lipid and cholesterol metabolism in gonadal fat.

Levels of transcripts encoding factors that regulate adipocyte volume

LPL is responsible for the hydrolysis of plasma triglycerides from dietary chylomicrons and very

low-density proteins (VLDL) originating in the liver. This process generates FFA and sn2-

monoglycerides that are taken up by the adipocyte. We have already shown that intracellular

lipid accumulation is predominately a consequence of increased LPL expression in ArKO mice

and also that estrogen treatment reduces transcript levels of LPL, resulting in loss of adipocyte

hypertrophy in ArKO mice (25). In this study, we confirm that transcript levels for LPL are

increased in gonadal fat depots of ArKO mice relative to WT mice. Furthermore, as shown in

figure 4, levels of transcripts for LPL are reduced upon cholesterol feeding in the ArKO mice,

reflecting the dramatic reduction in adipocyte hypertrophy and thus gonadal fat mass. From

studies in 10-12wk old ArKO mice, we concluded that de novo lipid synthesis, indicated by FAS

is not a factor contributing to changes in gonadal fat brought about by estrogens (25). We

report here that transcript levels of FAS, ACC alpha (ACCa) and ACC beta (ACCp) of 24-

week-old ArKO mice are unchanged compared to WT controls and upon cholesterol feeding

(data not shown), suggesting that de novo lipid synthesis is unchanged. Levels of transcripts

encoding CPT1 and LCAD were also unchanged, similar to findings in younger mice (25) and

cholesterol feeding had no effect on these transcripts, suggesting no changes in mitochondrial
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p-oxidation (data not shown). Again, it seems that changes i?? the level of transcripts of factors

involved in de novo lipid synthesis and p-oxidation are of themselves unlikely to be responsible

for the changes in hypertrophy.

Levels oftranscnpts for differentiation factor: peroxisome proliferator-activated receptor

gamma (PPARrf

In contrast to what we observed in younger mice (25), transcripts encoding PPARy are

unchanged in 24-week-old ArKO mice compared with WT mice and these transcripts are

unaffected by cholesterol feeding (data not shown).

Levels oftranscnpts encoding factors involved in cholesterol metabolism

In order to determine whether cholesterol metabolism responds to cholesterol feeding in

adipose tissue, we measured transcripts encoding sterol regulatory element binding protein 2

(SREBP2), 3-hydroxy-3-methylglutaryl-CoA (HMG CoA) reducfase and the low-density

lipoprotein (LDL) receptor. SREBP2 regulates intracellular cholesterol levels by stimulating

transcription of the HMG CoA reductase gene resulting in increased synthesis of endogenous

cholesterol and by stimulating transcription of the LDL receptor gene resulting in increased

uptake of cholesterol from the circulation (31;32). We have found that in adipose tissue these

transcripts are present in all four groups, however there were no significant differences

observed between groups regardless of the absence of estrogen or cholesterol feeding (Figure

5), consistent with the body of data indicating that regulation of SREBP2 activity is primarily

due to post-transcriptional proteolytic cleavage (33-35).
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Transcripts encoding membrane markers

Cholesterol has an important role in membrane structure and function, where it provides rigidity

for caveolae and lipid rafts. Caveolin-1 is an essential component of caveolae and therefore

serves as a useful membrane marker in addition to its role in intracelluiar trafficking (36;37).

Levels of transcripts encoding caveolin-1 are significantly elevated in gonadal fat from ArKO

mice compared with gonadal fat from WT mice. Upon cholesterol feeding, caveolin-1

transcripts are reduced in gonadal fat from ArKO mice (Figure 6A). These data correspond

with the reported changes in adipocyte volume in these mice, where upon estrogen deficiency,

the adipocytes are enlarged to a hypertrophic state together with a larger area for intracelluiar

trafficking after which cholesterol feeding reduces their size. CD59 was also measured as a

membrane marker (38), however there are no significant differences in this transcript between

WT and ArKO, nor are any significant differences between the two diets (Figure 6B).

I



A. Caveolin-1
« 6.0,

X 5.0,

E 4.0,

I 3.0̂

^ 2 .0 -

5 :
is i.o.

I

•

**
T

(6)

* *
II I
T••• T•

1 m ' (6)

A. CD59

X 1.0,

0.6,

0.4-^

0.2 ,

o-
•

VA/T
0%

T

(6)

WT
2%

•
(5)

ArKO
0%

T

(6)

ArKO
2%

F/gt/re 6. Membrane Markers. Total RNA was extracted from gonadai adipose tissue using the
phenol/chloroform method (Ultraspec RNA, Fisher Biotec) and reverse transcribed (RT) with
random hexamers. cDNA was diluted 5 times and amplified by real-time PCR in the Lightcyler
(Roche), using specific oligonucleotide pairs. A. Caveolin-1 B. CD59. Results are presented as
mean ± SEM. **p<0.01

I



f

Appendix

DISCUSSION

Body weights of female mice (27) from all four groups are reflected in gonadal adipose tissue

weights. The significant increase found in gonadal fat from ArKO mice compared with WT mice

is reduced in mice fed a high cholesterol diet. We have previously reported that elevated

serum cholesterol levels of ArKO mice are unchanged upon cholesterol feeding (39); hence

these effects of a high cholesterol diet are not mediated by increases in circulating cholesterol

levels. Concomitant with levels of transcripts encoding PPARy, it appears that by six months of

age, hyperplasia has ceased in these mice and adipocyte number does not contribute to these

changes, unlike that seen in younger mice (25). Moreover, the mechanisms leading to

hyperplasia observed in WT mice fed a high cholesterol diet is presently unclear but is the |
|

subject of further investigation in our laboratory. Rather, the changes in adiposity appear to be f

a consequence of alterations in adipocyte volume, which are in turn largely a result of changes I

I
in expression of transcripts for LPL. LPL hydrolyses plasma triglycerides from chylomicrons, |

releasing FFA and sn2-monoglycerides, which are taken up by the adipocyte, thus expanding

the volume of the adipocyte, leading to hypertrophy. Interestingly, ArKO mice fed a high

cholesterol diet have significantly smaller adipocytes in association with reduced transcript

levels encoding LPL. These data support the early work of Lewis who reported a reduction in

adipose tissue LPL activity in baboons fed a high cholesterol diet (40). We propose that LPL is

the chief contributor to such changes, as enzymes involved in de novo fatty acid synthesis

(FAS, ACCa, ACCp), p-oxidation (CPT1, LCAD) and differentiation (PPARy) remain
unchanged between groups of WT and ArKO mice fed a control or high cholesterol diet.

We then sought to explore the status of cholesterol metabolism in the adipocyte since the

adipocyte membrane requires a source of cholesterol in order to maintain structural integrity.
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The integrity of cholesterol in adipocyte membranes is sustained via two mechanisms: namely,

de now cholesterol synthesis, from acetyl CoA and mevalonate (41), originating in the

endoplasmic reticulum (42) under the direction of SREBP2 (32); and cholesterol uptake,

facilitated predominantly via the LDL receptor (32;43), and may also be regulated by the VLDL

receptor and LPL (44). Assuming that these processes are tightly directed as in hepatic

systems, the paradigm of controlled receptor-mediated uptake and synthesis of cholesterol

established by Brown and Goldstein (31 ;45) may apply and we might then expect that

cholesterol feeding would disable SREBP2 and consequently levels of HMG CoA reductase

and LDL receptor would fall. However no changes were seen in the transcript levels of these

factors. Changes in the levels of transcripts for caveolin-1 are consistent with the changes in

surface area that would be expected from the volume changes in the adipocytes observed in

the four groups of animals, and are not elevated upon cholesterol feeding. This observation

suggests that caveolin-1 levels in adipocytes are regulated primarily by changes in volume as a

consequence of LPL activity and increased fatty acid uptake.

From these studies reported here, we propose that cholesterol feeding causes a decrease in

the hypertrophy of the adipocytes resulting from estrogen insufficiency, and this appears to be

primarily a consequence of changes in levels of expression of LPL.

I
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Appendix Two

Table 1: Real Time PCR Primer conditions

Primers MQCI2 (mM) annealina T (oC) extension time (sees)

%

ABCG 5 transporter 3

ABCG 8 transporter 4

ACAT2 4

ACCa 2

ACCp 5

ADRP 4

ApoE 3

CD36 2

Cyp7a 3

FAS 4

FATP2 4

FATP5 4

HMG CoA reductaso 2

LDLR

MTTP

SR-B1

SREBP2

2

4

3

3

3

62

71

63

60

60

67

70

68

63

60

71

69

60

60

60

64

60

60

14

9

10

10

10

7

9

7

9

10

5

5

10

9

5

10

9

10
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